WorldWideScience

Sample records for volumetric mri studies

  1. Volumetric MRI study of the intrauterine growth restriction fetal brain

    Energy Technology Data Exchange (ETDEWEB)

    Polat, A.; Barlow, S.; Ber, R.; Achiron, R.; Katorza, E. [Tel Aviv University, Sackler School of Medicine, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer (Israel)

    2017-05-15

    Intrauterine growth restriction (IUGR) is a pathologic fetal condition known to affect the fetal brain regionally and associated with future neurodevelopmental abnormalities. This study employed MRI to assess in utero regional brain volume changes in IUGR fetuses compared to controls. Retrospectively, using MRI images of fetuses at 30-34 weeks gestational age, a total of 8 brain regions - supratentorial brain and cavity, cerebral hemispheres, temporal lobes and cerebellum - were measured for volume in 13 fetuses with IUGR due to placental insufficiency and in 21 controls. Volumes and their ratios were assessed for difference using regression models. Reliability was assessed by intraclass correlation coefficients (ICC) between two observers. In both groups, all structures increase in absolute volume during that gestation period, and the rate of cerebellar growth is higher compared to that of supratentorial structures. All structures' absolute volumes were significantly smaller for the IUGR group. Cerebellar to supratentorial ratios were found to be significantly smaller (P < 0.05) for IUGR compared to controls. No other significant ratio differences were found. ICC showed excellent agreement. The cerebellar to supratentorial volume ratio is affected in IUGR fetuses. Additional research is needed to assess this as a radiologic marker in relation to long-term outcome. (orig.)

  2. Volumetric study of the olfactory bulb in patients with chronic rhinonasal sinusitis using MRI

    Directory of Open Access Journals (Sweden)

    Reda A. Alarabawy

    2016-06-01

    Conclusions: MRI with volumetric analysis is a useful tool in assessment of the olfactory bulb volume in patients with olfactory loss and appears to be of help in assessment of the degree of recovery in patients after sinus surgery.

  3. A Technique for Generating Volumetric Cine MRI (VC-MRI)

    Science.gov (United States)

    Harris, Wendy; Ren, Lei; Cai, Jing; Zhang, You; Chang, Zheng; Yin, Fang-Fang

    2016-01-01

    Purpose To develop a technique to generate on-board volumetric-cine MRI (VC-MRI) using patient prior images, motion modeling and on-board 2D-cine MRI. Methods One phase of a 4D-MRI acquired during patient simulation is used as patient prior images. 3 major respiratory deformation patterns of the patient are extracted from 4D-MRI based on principal-component-analysis. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI. The deformation field is represented as a linear combination of the 3 major deformation patterns. The coefficients of the deformation patterns are solved by the data fidelity constraint using the acquired on-board single 2D-cine MRI. The method was evaluated using both XCAT simulation of lung cancer patients and MRI data from four real liver cancer patients. The accuracy of the estimated VC-MRI was quantitatively evaluated using Volume-Percent-Difference(VPD), Center-of-Mass-Shift(COMS), and target tracking errors. Effects of acquisition orientation, region-of-interest(ROI) selection, patient breathing pattern change and noise on the estimation accuracy were also evaluated. Results Image subtraction of ground-truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground-truth with prior image. Agreement between profiles in the estimated and ground-truth VC-MRI was achieved with less than 6% error for both XCAT and patient data. Among all XCAT scenarios, the VPD between ground-truth and estimated lesion volumes was on average 8.43±1.52% and the COMS was on average 0.93±0.58mm across all time-steps for estimation based on the ROI region in the sagittal cine images. Matching to ROI in the sagittal view achieved better accuracy when there was substantial breathing pattern change. The technique was robust against noise levels up to SNR=20. For patient data, average tracking errors were less than 2 mm in all directions for all patients. Conclusions Preliminary studies demonstrated the

  4. The core musculature in male prepubescent tennis players and untrained counterparts: a volumetric MRI study.

    Science.gov (United States)

    Sanchis-Moysi, Joaquin; Idoate, Fernando; Álamo-Arce, David; Calbet, José A L; Dorado, Cecilia

    2017-04-01

    The effects of exercise on the core musculature have not been investigated in prepubescents. The main purpose of the present study was to determine the volume and degree of asymmetry of rectus abdominis, obliques and transversus abdominis, quadratus lumborum, iliopsoas, gluteus and paravertebralis muscles in prepubescent tennis players and in untrained boys. The muscle volume was determined using magnetic resonance imaging (MRI) in 7 male prepubescent tennis players and 10 untrained controls (mean age 11.0 ± 0.8 years, Tanner 1-2). After accounting for height and body weight as covariates, the tennis players had 14-34% greater volume than the controls in all the muscles analysed (P quadratus lumborum and non-dominant gluteus, which had similar volumes in both groups (P = NS). Compared to controls, the tennis players displayed a greater degree of asymmetry in quadratus lumborum and rectus abdominis (3% vs. 15%, P quadratus lumborum and rectus abdominis compared to untrained boys.

  5. The thalamus in cirrhotic patients with and without hepatic encephalopathy: A volumetric MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Ran, E-mail: taoran1648@yahoo.cn [Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Department of Radiology, Bethune International Peace Hospital of People' s Liberty Army, Shijiazhuang 050082, Hebei Province (China); Zhang, Jiuquan, E-mail: jiuquanzhang@yahoo.com [Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); You, Zhonglan, E-mail: you_zhonglan@163.com [Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Wei, Luqing, E-mail: weiluqing@foxmail.com [Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Fan, Yi, E-mail: fanyi1978@yahoo.cn [Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Cui, Jinguo, E-mail: cuijinguo2005@163.com [Department of Radiology, Bethune International Peace Hospital of People' s Liberty Army, Shijiazhuang 050082, Hebei Province (China); Wang, Jian, E-mail: wangjian_811@yahoo.com [Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China)

    2013-11-01

    Background and aims: The thalamus is a major relay and filter station in the central neural system. Some previous studies have suggested that the thalamus maybe implicated in the pathogenesis of hepatic encephalopathy. The aim of our study was to investigate changing thalamic volumes in cirrhotic patients with and without hepatic encephalopathy. Methods: Neuropsychological tests and structural MR scanning were performed on 24 cirrhotic patients, 23 cirrhotic patients with minimal hepatic encephalopathy, 24 cirrhotic patients during their first episode of overt hepatic encephalopathy, and 33 healthy controls. Voxel-based morphometry analysis was performed to detect gray matter morphological changes. The thalamus and whole brain volume were extrapolated. A receiver operating characteristic curve analysis of thalamic volumes was used to discriminate patients with minimal hepatic encephalopathy from those with hepatic cirrhosis. Results: Thalamic volume increased in a stepwise manner in patients with progressively worse stages of hepatic encephalopathy compared to healthy subjects. Additionally, a comparison of gray matter morphometry between patients with Child–Pugh grades A, B, or C and controls revealed a progression in thalamic volumes in parallel with the degree of liver failure. Moreover, thalamic volume was significantly correlated with the number connection test A time and digit-symbol test score in cirrhotic patients with minimal hepatic encephalopathy (r = 0.659, P = 0.001; r = −0.577, P = 0.004; respectively). The area under the receiver operating characteristic curve was 0.827 (P = 0.001). Conclusions: A significantly increased thalamic volume may be provide an objective imaging measure for predicting seizures due to minimal hepatic encephalopathy in cirrhotic patients.

  6. The cerebellum link to neuroticism: a volumetric MRI association study in healthy volunteers.

    Science.gov (United States)

    Schutter, Dennis J L G; Koolschijn, P Cédric M P; Peper, Jiska S; Crone, Eveline A

    2012-01-01

    Prior research suggests an association between reduced cerebellar volumes and symptoms of depression and anxiety in patients with mood disorders. However, whether a smaller volume in itself reflects a neuroanatomical correlate for increased susceptibility to develop mood disorders remains unclear. The aim of the present study was to examine the relationship between cerebellar volume and neurotic personality traits in a non-clinical subject sample. 3T Structural magnetic resonance imaging scans were acquired, and trait depression and anxiety scales of the revised NEO personality inventory were assessed in thirty-eight healthy right-handed volunteers. Results showed that cerebellar volume corrected for total brain volume was inversely associated with depressive and anxiety-related personality traits. Cerebellar gray and white matter contributed equally to the observed associations. Our findings extend earlier clinical observations by showing that cerebellar volume covaries with neurotic personality traits in healthy volunteers. The results may point towards a possible role of the cerebellum in the vulnerability to experience negative affect. In conclusion, cerebellar volumes may constitute a clinico-neuroanatomical correlate for the development of depression- and anxiety-related symptoms.

  7. The cerebellum link to neuroticism: a volumetric MRI association study in healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Dennis J L G Schutter

    Full Text Available Prior research suggests an association between reduced cerebellar volumes and symptoms of depression and anxiety in patients with mood disorders. However, whether a smaller volume in itself reflects a neuroanatomical correlate for increased susceptibility to develop mood disorders remains unclear. The aim of the present study was to examine the relationship between cerebellar volume and neurotic personality traits in a non-clinical subject sample. 3T Structural magnetic resonance imaging scans were acquired, and trait depression and anxiety scales of the revised NEO personality inventory were assessed in thirty-eight healthy right-handed volunteers. Results showed that cerebellar volume corrected for total brain volume was inversely associated with depressive and anxiety-related personality traits. Cerebellar gray and white matter contributed equally to the observed associations. Our findings extend earlier clinical observations by showing that cerebellar volume covaries with neurotic personality traits in healthy volunteers. The results may point towards a possible role of the cerebellum in the vulnerability to experience negative affect. In conclusion, cerebellar volumes may constitute a clinico-neuroanatomical correlate for the development of depression- and anxiety-related symptoms.

  8. A longitudinal observational study of brain atrophy rate reflecting four decades of multiple sclerosis: a comparison of serial 1D, 2D, and volumetric measurements from MRI images

    Energy Technology Data Exchange (ETDEWEB)

    Martola, Juha; Zhang, Yi; Aspelin, Peter; Kristoffersen Wiberg, Maria [Karolinska Institutet, Division of Radiology, Department of Clinical Science, Intervention, and Technology, Stockholm (Sweden); Bergstroem, Jakob [Karolinska Institutet, The Medical Statistics Unit, Department of Learning, Informatics, Management and Ethics (LIME), Stockholm (Sweden); Fredrikson, Sten; Stawiarz, Leszek; Hillert, Jan [Karolinska Institutet, Division of Neurology, Department of Clinical Neuroscience, Stockholm (Sweden); Flodmark, Olof; Lilja, Anders [Karolinska University Hospital, Department of Neuroradiology, Department of Clinical Neuroscience, Stockholm (Sweden); Ekbom, Anders [Karolinska Institutet, Clinical Epidemiology Unit, Stockholm (Sweden)

    2010-02-15

    Multiple sclerosis (MS) has a variable progression with an early onset of atrophy. Individual longitudinal radiological evaluations (over decades) are difficult to perform due to the limited availability of magnetic resonance imaging (MRI) in the past, patients lost in follow-up, and the continuous updating of scanners. We studied a cohort with widespread disease duration at baseline. The observed individual atrophy rates over time of 10 years represented four decades of disease span. Thirty-seven MS patients (age range 24-65 years with disease duration 1-33 years) were consecutively selected and evaluated with MRI at baseline 1995 and in 1996. They were followed up for a decade (mean of 9.25 years, range 7.3-10 years) up to 2003-2005. Brain parenchymal volume and volumes of the supratentorial ventricles were analyzed with semi-automated volumetric measurements at three time points (1995, 1996, and 2003-2005). Volumetric differences were found over shorter periods of time (1-7 months); however, differences vanished by the end of follow-up. A uniform longitudinal decrease in brain volume and increase in ventricle volumes were found. Frontal horn width (1D) correlated strongest to 3D measures. No statistical differences of atrophy rates between MS courses were found. Supratentorial ventricular volumes were associated with disability and this association persisted during follow-up. Despite variable clinical courses, the degenerative effects of MS progression expressed in brain atrophy seem to uniformly progress over longer periods of time. These volumetric changes can be detected using 1D and 2D measurements performed on a routine PACS workstation. (orig.)

  9. Volumetric analysis of the hypothalamus in Huntington Disease using 3T MRI: the IMAGE-HD Study.

    Directory of Open Access Journals (Sweden)

    Sanaz Gabery

    Full Text Available Huntington disease (HD is a fatal neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin gene. Non-motor symptoms and signs such as psychiatric disturbances, sleep problems and metabolic dysfunction are part of the disease manifestation. These aspects may relate to changes in the hypothalamus, an area of the brain involved in the regulation of emotion, sleep and metabolism. Neuropathological and imaging studies using both voxel-based morphometry (VBM of magnetic resonance imaging (MRI as well as positron emission tomography (PET have demonstrated pathological changes in the hypothalamic region during early stages in symptomatic HD. In this investigation, we aimed to establish a robust method for measurements of the hypothalamic volume in MRI in order to determine whether the hypothalamic dysfunction in HD is associated with the volume of this region. Using T1-weighted imaging, we describe a reproducible delineation procedure to estimate the hypothalamic volume which was based on the same landmarks used in histologically processed postmortem hypothalamic tissue. Participants included 36 prodromal HD (pre-HD, 33 symptomatic HD (symp-HD and 33 control participants who underwent MRI scanning at baseline and 18 months follow-up as part of the IMAGE-HD study. We found no evidence of cross-sectional or longitudinal changes between groups in hypothalamic volume. Our results suggest that hypothalamic pathology in HD is not associated with volume changes.

  10. Volumetric Analysis of the Hypothalamus in Huntington Disease Using 3T MRI: The IMAGE-HD Study

    Science.gov (United States)

    Gabery, Sanaz; Georgiou-Karistianis, Nellie; Lundh, Sofia Hult; Cheong, Rachel Y.; Churchyard, Andrew; Chua, Phyllis; Stout, Julie C.; Egan, Gary F.; Kirik, Deniz; Petersén, Åsa

    2015-01-01

    Huntington disease (HD) is a fatal neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin gene. Non-motor symptoms and signs such as psychiatric disturbances, sleep problems and metabolic dysfunction are part of the disease manifestation. These aspects may relate to changes in the hypothalamus, an area of the brain involved in the regulation of emotion, sleep and metabolism. Neuropathological and imaging studies using both voxel-based morphometry (VBM) of magnetic resonance imaging (MRI) as well as positron emission tomography (PET) have demonstrated pathological changes in the hypothalamic region during early stages in symptomatic HD. In this investigation, we aimed to establish a robust method for measurements of the hypothalamic volume in MRI in order to determine whether the hypothalamic dysfunction in HD is associated with the volume of this region. Using T1-weighted imaging, we describe a reproducible delineation procedure to estimate the hypothalamic volume which was based on the same landmarks used in histologically processed postmortem hypothalamic tissue. Participants included 36 prodromal HD (pre-HD), 33 symptomatic HD (symp-HD) and 33 control participants who underwent MRI scanning at baseline and 18 months follow-up as part of the IMAGE-HD study. We found no evidence of cross-sectional or longitudinal changes between groups in hypothalamic volume. Our results suggest that hypothalamic pathology in HD is not associated with volume changes. PMID:25659157

  11. Structural brain abnormalities in patients with inflammatory illness acquired following exposure to water-damaged buildings: a volumetric MRI study using NeuroQuant®.

    Science.gov (United States)

    Shoemaker, Ritchie C; House, Dennis; Ryan, James C

    2014-01-01

    Executive cognitive and neurologic abnormalities are commonly seen in patients with a chronic inflammatory response syndrome (CIRS) acquired following exposure to the interior environment of water-damaged buildings (WDB), but a clear delineation of the physiologic or structural basis for these abnormalities has not been defined. Symptoms of affected patients routinely include headache, difficulty with recent memory, concentration, word finding, numbness, tingling, metallic taste and vertigo. Additionally, persistent proteomic abnormalities in inflammatory parameters that can alter permeability of the blood-brain barrier, such as C4a, TGFB1, MMP9 and VEGF, are notably present in cases of CIRS-WDB compared to controls, suggesting a consequent inflammatory injury to the central nervous system. Findings of gliotic areas in MRI scans in over 45% of CIRS-WDB cases compared to 5% of controls, as well as elevated lactate and depressed ratios of glutamate to glutamine, are regularly seen in MR spectroscopy of cases. This study used the volumetric software program NeuroQuant® (NQ) to determine specific brain structure volumes in consecutive patients (N=17) seen in a medical clinic specializing in inflammatory illness. Each of these patients presented for evaluation of an illness thought to be associated with exposure to WDB, and received an MRI that was evaluated by NQ. When compared to those of a medical control group (N=18), statistically significant differences in brain structure proportions were seen for patients in both hemispheres of two of the eleven brain regions analyzed; atrophy of the caudate nucleus and enlargement of the pallidum. In addition, the left amygdala and right forebrain were also enlarged. These volumetric abnormalities, in conjunction with concurrent abnormalities in inflammatory markers, suggest a model for structural brain injury in "mold illness" based on increased permeability of the blood-brain barrier due to chronic, systemic inflammation

  12. MRI assessment of relapsed glioblastoma during treatment with bevacizumab: Volumetric measurement of enhanced and FLAIR lesions for evaluation of response and progression—A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Pichler, Josef, E-mail: josef.pichler@gespag.at [Wagner Jauregg Weg 15, 4020 Linz, Landesnervenklinik Linz (Austria); Pachinger, Corinna, E-mail: pachingercorinna@gmx.at [Wagner Jauregg Weg 15, 4020 Linz, Landesnervenklinik Linz (Austria); Pelz, Manuela, E-mail: mauela.pelz@gespag.at [Wagner Jauregg Weg 15, 4020 Linz, Landesnervenklinik Linz (Austria); Kleiser, Raimund, E-mail: raimund.kleiser@gespag.at [Wagner Jauregg Weg 15, 4020 Linz, Landesnervenklinik Linz (Austria)

    2013-05-15

    Purpose: To develop a magnetic resonance imaging (MRI) metric that is useful for therapy monitoring in patients with relapsed glioblastoma (GBM) during treatment with the antiangiogenic monoclonal antibody bevacizumab (Bev). We evaluated the feasibility of tumour volume measurement with our software tool in clinical routine and tried to establish reproducible and quantitative parameters for surveillance of patients on treatment with antiangiogenic drugs. Materials and methods: In this retrospective institutional pilot study, 18 patients (11 men, 7 women; mean age 53.5) with recurrent GBM received bevacizumab and irinotecan every two weeks as second line therapy. Follow up scans were assessed every two to four months. Data were collected on a 1.5 T MR System (Siemens, Symphony) with the standard head coil using our standardized tumour protocol. Volumetric measurement was performed with a commercial available software stroketool in FLAIR and T1-c imaging with following procedure: Pre-processing involved cutting noise and electing a Gaussian of 3 × 3 to smooth images, selecting a ROI (region of interest) in healthy brain area of the contra lateral side with quantifying the intensity value, adding 20% to this value to define the threshold level. Only values above this threshold are left corresponding to the tumour lesion. For the volumetric measurement the detected tumour area was circuited in all slices and finally summing up all values and multiplied by slice thickness to get the whole volume. Results: With McDonalds criteria progression was indicated in 14 out of 18 patients. In contrast, volumetric measurement showed an increase of contrast enhancement of >25%, defined as threshold for progression, in 11 patients (78%) and in 12 patients (85%) in FLAIR volume, respectively. 6 patients revealed that volumes in MRI increased earlier than the last scan, which was primarily defined as the date of progression with McDonald criteria, changing PFS after re-evaluation of

  13. Volumetric MRI and {sup 1}H MRS study of hippocampus in unilateral MCAO patients: Relationship between hippocampal secondary damage and cognitive disorder following stroke

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiangyu; Wang, Chengyuan; Xia, Liming [Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Dadao 1095, Wuhan 430030 (China); Zhu, Wenhao [Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Dadao 1095, Wuhan 430030 (China); Zhao, Lingyun [Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Dadao 1095, Wuhan 430030 (China); Zhu, Wenzhen, E-mail: zhuwenzhen@hotmail.com [Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Dadao 1095, Wuhan 430030 (China)

    2012-10-15

    Objective: To determine whether hippocampi alter in patients at the recovery stage of middle cerebral artery occlusion (MCAO) and whether the changes of hippocampi involve in the cognitive impairment in such patients. Meterials and methods: Forty-four patients with unilateral infarction solely in MCAO territory and 44 age-, sex- and education background-matched healthy volunteers were enrolled in this study. All subjects underwent 3-dimensional fast spoiled gradient-echo (3D FSPGR) and sing-voxel proton magnetic resonance spectroscopy ({sup 1}H MRS) protocols at a 1.5 T MR scanner. The ratios of n-acetylaspartate/creatine (NAA/Cr) and myo-inositol/creatine (mI/Cr) were obtained by using software integrated in the MR scanner. The hippocampal volumes were estimated by manually measurement. Results: The volume and NAA/Cr ratio were found significantly decreased and mI/Cr ratio significantly increased in the hippocampus ipsilateral to occluded middle cerebral artery (MCA) as compared with values in the contralateral hippocampus or healthy control. A reduced NAA/Cr ratio was also observed in contralateral hippocampus compared to controls. The shrinkage ratio of hippocampus ipsilateral to MCAO was found related to the Mini–Mental State Examination (MMSE) score. Conclusion: Our study identified that the hippocampal secondary damage occurred in patients after MCAO, and it could be evaluated noninvasively by volumetric magnetic resonance imaging (MRI) and {sup 1}H MRS. Moreover, the hippocampal secondary damage in MCAO patients indeed contributed to their cognitive impairment.

  14. Femoral head osteonecrosis: Volumetric MRI assessment and outcome

    Energy Technology Data Exchange (ETDEWEB)

    Bassounas, Athanasios E. [Department of Medical Physics, School of Medicine, University of Ioannina, GR 451 10 Ioannina (Greece); Karantanas, Apostolos H. [Department of Radiology, School of Medicine, University of Crete, Heraklion, GR 711 10 (Greece); Fotiadis, Dimitrios I. [Unit of Medical Technology and Intelligent Information Systems, Department of Computer Science, University of Ioannina and Biomedical Research Institute-FORTH, GR 451 10 Ioannina (Greece); Malizos, Konstantinos N. [Orthopaedic Department, Medical School, University of Thessalia, GR 412 22 Larissa (Greece)]. E-mail: kmalizos@otenet.gr

    2007-07-15

    Effective treatment of femoral head osteonecrosis (FHON) requires early diagnosis and accurate assessment of the disease severity. The ability to predict in the early stages the risk of collapse is important for selecting a joint salvage procedure. The aim of the present study was to evaluate the outcome in patients treated with vascularized fibular grafts in relation to preoperative MR imaging volumetry. We studied 58 patients (87 hips) with FHON. A semi-automated octant-based lesion measurement method, previously described, was performed on the T1-w MR images. The mean time of postoperative follow-up was 7.8 years. Sixty-three hips were successful and 24 failed and converted to total hip arthroplasty within a period of 2-4 years after the initial operation. The rate of failures for hips of male patients was higher than in female patients. The mean lesion size was 28% of the sphere equivalent of the femoral head, 24 {+-} 12% for the successful hips and 37 {+-} 9% for the failed (p < 0.001). The most affected octants were antero-supero-medial (58 {+-} 26%) and postero-supero-medial (54 {+-} 31%). All but postero-infero-medial and postero-infero-lateral octants, showed statistically significant differences in the lesion size between patients with successful and failed hips. In conclusion, the volumetric analysis of preoperative MRI provides useful information with regard to a successful outcome in patients treated with vascularized fibular grafts.

  15. Language Laterality in Autism Spectrum Disorder and Typical Controls: A Functional, Volumetric, and Diffusion Tensor MRI Study

    Science.gov (United States)

    Knaus, Tracey A.; Silver, Andrew M.; Kennedy, Meaghan; Lindgren, Kristen A.; Dominick, Kelli C.; Siegel, Jeremy; Tager-Flusberg, Helen

    2010-01-01

    Language and communication deficits are among the core features of autism spectrum disorder (ASD). Reduced or reversed asymmetry of language has been found in a number of disorders, including ASD. Studies of healthy adults have found an association between language laterality and anatomical measures but this has not been systematically…

  16. Verbal Memory Decline following DBS for Parkinson’s Disease: Structural Volumetric MRI Relationships

    Science.gov (United States)

    Geevarghese, Ruben; Lumsden, Daniel E.; Costello, Angela; Hulse, Natasha; Ayis, Salma; Samuel, Michael; Ashkan, Keyoumars

    2016-01-01

    Background Parkinson’s disease is a chronic degenerative movement disorder. The mainstay of treatment is medical. In certain patients Deep Brain Stimulation (DBS) may be offered. However, DBS has been associated with post-operative neuropsychology changes, especially in verbal memory. Objectives Firstly, to determine if pre-surgical thalamic and hippocampal volumes were related to verbal memory changes following DBS. Secondly, to determine if clinical factors such as age, duration of symptoms or motor severity (UPDRS Part III score) were related to verbal memory changes. Methods A consecutive group of 40 patients undergoing bilateral Subthalamic Nucleus (STN)-DBS for PD were selected. Brain MRI data was acquired, pre-processed and structural volumetric data was extracted using FSL. Verbal memory test scores for pre- and post-STN-DBS surgery were recorded. Linear regression was used to investigate the relationship between score change and structural volumetric data. Results A significant relationship was demonstrated between change in List Learning test score and thalamic (left, p = 0.02) and hippocampal (left, p = 0.02 and right p = 0.03) volumes. Duration of symptoms was also associated with List Learning score change (p = 0.02 to 0.03). Conclusion Verbal memory score changes appear to have a relationship to pre-surgical MRI structural volumetric data. The findings of this study provide a basis for further research into the use of pre-surgical MRI to counsel PD patients regarding post-surgical verbal memory changes. PMID:27557088

  17. Histology-derived volumetric annotation of the human hippocampal subfields in postmortem MRI

    Science.gov (United States)

    Adler, Daniel H.; Pluta, John; Kadivar, Salmon; Craige, Caryne; Gee, James C.; Avants, Brian B.; Yushkevich, Paul A.

    2013-01-01

    Recently, there has been a growing effort to analyze the morphometry of hippocampal subfields using both in vivo and postmortem magnetic resonance imaging (MRI). However, given that boundaries between subregions of the hippocampal formation (HF) are conventionally defined on the basis of microscopic features that often lack discernible signature in MRI, subfield delineation in MRI literature has largely relied on heuristic geometric rules, the validity of which with respect to the underlying anatomy is largely unknown. The development and evaluation of such rules is challenged by the limited availability of data linking MRI appearance to microscopic hippocampal anatomy, particularly in three dimensions (3D). The present paper, for the first time, demonstrates the feasibility of labeling hippocampal subfields in a high resolution volumetric MRI dataset based directly on microscopic features extracted from histology. It uses a combination of computational techniques and manual post-processing to map subfield boundaries from a stack of histology images (obtained with 200 μm spacing and 5 μm slice thickness; stained using the Kluver-Barrera method) onto a postmortem 9.4 Tesla MRI scan of the intact, whole hippocampal formation acquired with 160 μm isotropic resolution. The histology reconstruction procedure consists of sequential application of a graph-theoretic slice stacking algorithm that mitigates the effects of distorted slices, followed by iterative affine and diffeomorphic co-registration to postmortem MRI scans of approximately 1 cm-thick tissue sub-blocks acquired with 200 μm isotropic resolution. These 1 cm blocks are subsequently co-registered to the MRI of the whole HF. Reconstruction accuracy is evaluated as the average displacement error between boundaries manually delineated in both the histology and MRI following the sequential stages of reconstruction. The methods presented and evaluated in this single-subject study can potentially be applied to

  18. An MRI-based semiautomated volumetric quantification of hip osteonecrosis

    Energy Technology Data Exchange (ETDEWEB)

    Malizos, K.N.; Siafakas, M.S.; Karachalios, T.S. [Dept. of Orthopaedics, Univ. of Thessalia, Larissa (Greece); Fotiadis, D.I. [Dept. of Computer Science, Univ. of Ioannina (Greece); Soucacos, P.N. [Dept. of Orthopaedic Surgery, Univ. of Ioannina (Greece)

    2001-12-01

    Objective: To objectively and precisely define the spatial distribution of osteonecrosis and to investigate the influence of various factors including etiology. Design: A volumetric method is presented to describe the size and spatial distribution of necrotic lesions of the femoral head, using MRI scans. The technique is based on the definition of an equivalent sphere model for the femoral head. Patients: The gender, age, number of hips involved, disease duration, pain intensity, limping disability and etiology were correlated with the distribution of the pathologic bone. Seventy-nine patients with 122 hips affected by osteonecrosis were evaluated. Results: The lesion size ranged from 7% to 73% of the sphere equivalent. The lateral octants presented considerable variability, ranging from wide lateral lesions extending beyond the lip of the acetabulum, to narrow medial lesions, leaving a lateral supporting pillar of intact bone. Patients with sickle cell disease and steroid administration presented the largest lesions. The extent of the posterior superior medial octant involvement correlated with the symptom intensity, a younger age and male gender. Conclusion: The methodology presented here has proven a reliable and straightforward imaging tool for precise assessment of necrotic lesions. It also enables us to target accurately the drilling and grafting procedures. (orig.)

  19. The prognostic role of prenatal MRI volumetric assessment in fetuses with isolated ventriculomegaly.

    Science.gov (United States)

    Gezer, Naciye Sinem; Güleryüz, Handan; Gezer, Cenk; Koçyiğit, Ali; Yeşilırmak, Didem; Ekin, Atalay; Bilgin, Muzaffer; Ertaş, İbrahim Egemen

    2015-01-01

    In this prospective study, we aimed to establish the value of volumetric assessment by prenatal brain MRI in determining the prognosis of fetuses with isolated VM. A total of 23 fetuses with isolated VM were included in the study. Supratentorial cerebral parenchyma volume (PV) and ventricular volume (VV) were measured, and supratentorial ventricular/parenchymal volume (VV/PV) ratios were calculated. Pregnancy and postnatal neurodevelopmental outcomes up to two years of age were obtained and correlated with the volumetric measurements. VV was found to be strongly and positively correlated with ventricular dimension. There was a statistically significant difference between the VV/ PV ratios of the good and poor prognosis groups into which the cases had been categorized. The fetuses with a poor prognosis had a significantly higher VV/PV ratio. Volumetric parenchymal and ventricular measurements obtained by fetal brain MRI may contribute to future clinical studies concerning the evaluation of fetuses with VM and provide an important indicator in cases where management dilemmas arise.

  20. Multiparametric MRI in the assessment of response of rectal cancer to neoadjuvant chemoradiotherapy: A comparison of morphological, volumetric and functional MRI parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hoetker, Andreas M. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Universitaetsmedizin Mainz, Department of Diagnostic and Interventional Radiology, Mainz (Germany); Tarlinton, Lisa; Gollub, Marc J. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Mazaheri, Yousef [Memorial Sloan Kettering Cancer Center, Department of Medical Physics, New York, NY (United States); Woo, Kaitlin M.; Goenen, Mithat [Memorial Sloan Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York, NY (United States); Saltz, Leonard B. [Memorial Sloan Kettering Cancer Center, Department of Medicine, Gastrointestinal Oncology Service, New York, NY (United States); Goodman, Karyn A. [Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, New York, NY (United States); Garcia-Aguilar, Julio [Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, NY (United States)

    2016-12-15

    To compare morphological and functional MRI metrics and determine which ones perform best in assessing response to neoadjuvant chemoradiotherapy (CRT) in rectal cancer. This retrospective study included 24 uniformly-treated patients with biopsy-proven rectal adenocarcinoma who underwent MRI, including diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) sequences, before and after completion of CRT. On all MRI exams, two experienced readers independently measured longest and perpendicular tumour diameters, tumour volume, tumour regression grade (TRG) and tumour signal intensity ratio on T2-weighted imaging, as well as tumour volume and apparent diffusion coefficient on DW-MRI and tumour volume and transfer constant K{sup trans} on DCE-MRI. These metrics were correlated with histopathological percent tumour regression in the resected specimen (%TR). Inter-reader agreement was assessed using the concordance correlation coefficient (CCC). For both readers, post-treatment DW-MRI and DCE-MRI volumetric tumour assessments were significantly associated with %TR; DCE-MRI volumetry showed better inter-reader agreement (CCC=0.700) than DW-MRI volumetry (CCC=0.292). For one reader, mrTRG, post-treatment T2 tumour volumetry and assessments of volume change made with T2, DW-MRI and DCE-MRI were also significantly associated with %TR. Tumour volumetry on post-treatment DCE-MRI and DW-MRI correlated well with %TR, with DCE-MRI volumetry demonstrating better inter-reader agreement. (orig.)

  1. Usefulness of MRI-assisted metabolic volumetric parameters provided by simultaneous {sup 18}F-fluorocholine PET/MRI for primary prostate cancer characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong-il [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Cancer Research Institute, Seoul (Korea, Republic of); Cheon, Gi Jeong [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, Cancer Research Institute, Seoul (Korea, Republic of); Seoul National University College of Medicine, Radiological Science Research Institute, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Nuclear Medicine, 101 Daehak-ro, Chongno-gu, Seoul (Korea, Republic of); Paeng, Jin Chul [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Cho, Jeong Yeon [Seoul National University College of Medicine, Radiological Science Research Institute, Seoul (Korea, Republic of); Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, 101 Daehak-ro, Chongno-gu, Seoul (Korea, Republic of); Kwak, Cheol [Seoul National University Hospital, Department of Urology, Seoul (Korea, Republic of); Kang, Keon Wook; Chung, June-Key [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, Cancer Research Institute, Seoul (Korea, Republic of); Seoul National University College of Medicine, Radiological Science Research Institute, Seoul (Korea, Republic of); Kim, Euishin Edmund [Seoul National University, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of); University of California, Department of Radiological Sciences, Irvine, CA (United States); Lee, Dong Soo [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of)

    2015-07-15

    The aim of this study was to determine the usefulness of MRI-assisted positron emission tomography (PET) parameters provided by simultaneous {sup 18}F-fluorocholine (FCH) PET/MRI for characterization of primary prostate cancer. Thirty patients with localized prostate cancer (mean age 69.4 ± 6.7 years) confirmed by biopsy were prospectively enrolled for simultaneous PET/MRI imaging. The patients underwent {sup 18}F-FCH PET/MRI 1 week before undergoing total prostatectomy. Multiple parameters of diffusion-weighted MRI [minimum and mean apparent diffusion coefficient (ADC{sub min} and ADC{sub mean})], metabolic PET [maximum and mean standardized uptake value (SUV{sub max} and SUV{sub mean})], and metabolic volumetric PET [metabolic tumor volume (MTV) and uptake volume product (UVP)] were compared with laboratory, pathologic, and immunohistochemical (IHC) features of the prostate cancer specimen. PET parameters were divided into two categories as follows: volume of interest (VOI) of prostate by SUV cutoff 2.5 (SUV{sub max}, SUV{sub mean}, MTV{sub SUV}, and UVP{sub SUV}) and MRI-assisted VOI of prostate cancer (SUV{sub maxMRI}, SUV{sub meanMRI}, MTV{sub MRI}, and UVP{sub MRI}). The rates of prostate cancer-positive cases identified by MRI alone, {sup 18}F-FCH PET alone, and {sup 18}F-FCH PET/MRI were 83.3, 80.0, and 93.3 %, respectively. Among the multiple PET/MRI parameters, MTV{sub MRI} showed fair correlation with serum prostate-specific antigen (PSA; r = 0.442, p = 0.014) and highest correlation with tumor volume (r = 0.953, p < 0.001). UVP{sub MRI} showed highest correlation with serum PSA (r = 0.531, p = 0.003), good correlation with tumor volume (r = 0.908, p < 0.001), and it was significantly associated with Gleason score (p = 0.041). High MTV{sub MRI} and UVP{sub MRI} values were significant for perineural invasion, lymphatic invasion, extracapsular extension, seminal vesicle invasion, and positive B-cell lymphoma 2 (Bcl-2) expression (all p < 0

  2. Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy

    NARCIS (Netherlands)

    De Vis, J B; Zwanenburg, J J|info:eu-repo/dai/nl/290473683; van der Kleij, L A; Spijkerman, J M; Biessels, G J|info:eu-repo/dai/nl/165576367; Hendrikse, J|info:eu-repo/dai/nl/266590268; Petersen, E T

    2016-01-01

    OBJECTIVES: To assess whether volumetric cerebrospinal fluid (CSF) MRI can be used as a surrogate for brain atrophy assessment and to evaluate how the T2 of the CSF relates to brain atrophy. METHODS: Twenty-eight subjects [mean age 64 (sd 2) years] were included; T1-weighted and CSF MRI were perform

  3. White Matter Lesion Assessment in Patients with Cognitive Impairment and Healthy Controls: Reliability Comparisons between Visual Rating, a Manual, and an Automatic Volumetrical MRI Method—The Gothenburg MCI Study

    Directory of Open Access Journals (Sweden)

    Erik Olsson

    2013-01-01

    Full Text Available Age-related white matter lesions (WML are a risk factor for stroke, cognitive decline, and dementia. Different requirements are imposed on methods for the assessment of WML in clinical settings and for research purposes, but reliability analysis is of major importance. In this study, WML assessment with three different methods was evaluated. In the Gothenburg mild cognitive impairment study, MRI scans from 152 participants were used to assess WML with the Fazekas visual rating scale on T2 images, a manual volumetric method on FLAIR images, and FreeSurfer volumetry on T1 images. Reliability was acceptable for all three methods. For low WML volumes (2/3 of the patients, reliability was overall lower and nonsignificant for the manual volumetric method. Unreliability in the assessment of patients with low WML with manual volumetry may mainly be due to intensity variation in the FLAIR sequence used; hence, intensity standardization and normalization methods must be used for more accurate assessments. The FreeSurfer segmentations resulted in smaller WML volumes than the volumes acquired with the manual method and showed deviations from visible hypointensities in the T1 images, which quite likely reduces validity.

  4. MRI-guided single fraction ablative radiotherapy for early-stage breast cancer : a brachytherapy versus volumetric modulated arc therapy dosimetry study

    NARCIS (Netherlands)

    Charaghvandi, Ramona K; den Hartogh, Mariska D; van Ommen, Anne-Mar L N; de Vries, Wilfred J H; Scholten, Vincent; Moerland, Rien; Philippens, Mariëlle E P; Schokker, Rogier I; van Vulpen, Marco; van Asselen, B; van den Bongard, Desirée H J G

    2015-01-01

    BACKGROUND AND PURPOSE: A radiosurgical treatment approach for early-stage breast cancer has the potential to minimize the patient's treatment burden. The dosimetric feasibility for single fraction ablative radiotherapy was evaluated by comparing volumetric modulated arc therapy (VMAT) with an inter

  5. Myocardial kinematics based on tagged MRI from volumetric NURBS models

    Science.gov (United States)

    Tustison, Nicholas J.; Amini, Amir A.

    2004-04-01

    We present current research in which left ventricular deformation is estimated from tagged cardiac magnetic resonance imaging using volumetric deformable models constructed from nonuniform rational B-splines (NURBS). From a set of short and long axis images at end-diastole, the initial NURBS model is constructed by fitting two surfaces with the same parameterization to the set of epicardial and endocardial contours from which a volumetric model is created. Using normal displacements of the three sets of orthogonal tag planes as well as displacements of both tag line and contour/tag line intersection points, one can solve for the optimal homogeneous coordinates, in a least squares sense, of the control points of the NURBS model at a later time point using quadratic programming. After fitting to all time points of data, lofting the NURBS model at each time point creates a comprehensive 4-D NURBS model. From this model, we can extract 3-D myocardial displacement fields and corresponding strain maps, which are local measures of non-rigid deformation.

  6. Multi-atlas multi-shape segmentation of fetal brain MRI for volumetric and morphometric analysis of ventriculomegaly.

    Science.gov (United States)

    Gholipour, Ali; Akhondi-Asl, Alireza; Estroff, Judy A; Warfield, Simon K

    2012-04-15

    The recent development of motion robust super-resolution fetal brain MRI holds out the potential for dramatic new advances in volumetric and morphometric analysis. Volumetric analysis based on volumetric and morphometric biomarkers of the developing fetal brain must include segmentation. Automatic segmentation of fetal brain MRI is challenging, however, due to the highly variable size and shape of the developing brain; possible structural abnormalities; and the relatively poor resolution of fetal MRI scans. To overcome these limitations, we present a novel, constrained, multi-atlas, multi-shape automatic segmentation method that specifically addresses the challenge of segmenting multiple structures with similar intensity values in subjects with strong anatomic variability. Accordingly, we have applied this method to shape segmentation of normal, dilated, or fused lateral ventricles for quantitative analysis of ventriculomegaly (VM), which is a pivotal finding in the earliest stages of fetal brain development, and warrants further investigation. Utilizing these innovative techniques, we introduce novel volumetric and morphometric biomarkers of VM comparing these values to those that are generated by standard methods of VM analysis, i.e., by measuring the ventricular atrial diameter (AD) on manually selected sections of 2D ultrasound or 2D MRI. To this end, we studied 25 normal and abnormal fetuses in the gestation age (GA) range of 19 to 39 weeks (mean=28.26, stdev=6.56). This heterogeneous dataset was essentially used to 1) validate our segmentation method for normal and abnormal ventricles; and 2) show that the proposed biomarkers may provide improved detection of VM as compared to the AD measurement.

  7. Accuracy of model-based tracking of knee kinematics and cartilage contact measured by dynamic volumetric MRI.

    Science.gov (United States)

    Kaiser, Jarred; Monawer, Arezu; Chaudhary, Rajeev; Johnson, Kevin M; Wieben, Oliver; Kijowski, Richard; Thelen, Darryl G

    2016-10-01

    The purpose of this study was to determine the accuracy of knee kinematics and cartilage contact measured by volumetric dynamic MRI. A motor-actuated phantom drove femoral and tibial bone segments through cyclic 3D motion patterns. Volumetric images were continuously acquired using a 3D radially undersampled cine spoiled gradient echo sequence (SPGR-VIPR). Image data was binned based on position measured via a MRI-compatible rotary encoder. High-resolution static images were segmented to create bone models. Model-based tracking was performed by optimally registering the bone models to the volumetric images at each frame of the SPGR-VIPR series. 3D tibiofemoral translations and orientations were reconstructed, and compared to kinematics obtained by tracking fiducial markers. Imaging was repeated on a healthy subject who performed cyclic knee flexion-extension. Cartilage contact for the subject was assessed by measuring the overlap between articular cartilage surfaces. Model-based tracking was able to track tibiofemoral angles and translations with precisions less than 0.8° and 0.5mm. These precisions resulted in an uncertainty of less than 0.5mm in cartilage contact location. Dynamic SPGR-VIPR imaging can accurately assess in vivo knee kinematics and cartilage contact during voluntary knee motion performed in a MRI scanner. This technology could facilitate the quantitative investigation of links between joint mechanics and the development of osteoarthritis.

  8. Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy.

    Science.gov (United States)

    De Vis, J B; Zwanenburg, J J; van der Kleij, L A; Spijkerman, J M; Biessels, G J; Hendrikse, J; Petersen, E T

    2016-05-01

    To assess whether volumetric cerebrospinal fluid (CSF) MRI can be used as a surrogate for brain atrophy assessment and to evaluate how the T2 of the CSF relates to brain atrophy. Twenty-eight subjects [mean age 64 (sd 2) years] were included; T1-weighted and CSF MRI were performed. The first echo data of the CSF MRI sequence was used to obtain intracranial volume, CSF partial volume was measured voxel-wise to obtain CSF volume (VCSF) and the T2 of CSF (T2,CSF) was calculated. The correlation between VCSF/T2,CSF and brain atrophy scores [global cortical atrophy (GCA) and medial temporal lobe atrophy (MTA)] was evaluated. Relative total, peripheral subarachnoidal, and ventricular VCSF increased significantly with increased scores on the GCA and MTA (R = 0.83, 0.78 and 0.78 and R = 0.72, 0.62 and 0.86). Total, peripheral subarachnoidal, and ventricular T2 of the CSF increased significantly with higher scores on the GCA and MTA (R = 0.72, 0.70 and 0.49 and R = 0.60, 0.57 and 0.41). A fast, fully automated CSF MRI volumetric sequence is an alternative for qualitative atrophy scales. The T2 of the CSF is related to brain atrophy and could thus be a marker of neurodegenerative disease. • A 1:11 min CSF MRI volumetric sequence can evaluate brain atrophy. • CSF MRI provides accurate atrophy assessment without partial volume effects. • CSF MRI data can be processed quickly without user interaction. • The measured T 2 of the CSF is related to brain atrophy.

  9. Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Vis, J.B. de; Zwanenburg, J.J.; Kleij, L.A. van der; Spijkerman, J.M.; Hendrikse, J. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Biessels, G.J. [University Medical Center Utrecht, Department of Neurology, Brain Center Rudolf Magnus, Utrecht (Netherlands); Petersen, E.T. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Hvidovre Hospital, Danish Research Centre for Magnetic Resonance, Hvidovre (Denmark)

    2016-05-15

    To assess whether volumetric cerebrospinal fluid (CSF) MRI can be used as a surrogate for brain atrophy assessment and to evaluate how the T{sub 2} of the CSF relates to brain atrophy. Twenty-eight subjects [mean age 64 (sd 2) years] were included; T{sub 1}-weighted and CSF MRI were performed. The first echo data of the CSF MRI sequence was used to obtain intracranial volume, CSF partial volume was measured voxel-wise to obtain CSF volume (V{sub CSF}) and the T{sub 2} of CSF (T{sub 2,CSF}) was calculated. The correlation between V{sub CSF} / T{sub 2,CSF} and brain atrophy scores [global cortical atrophy (GCA) and medial temporal lobe atrophy (MTA)] was evaluated. Relative total, peripheral subarachnoidal, and ventricular V{sub CSF} increased significantly with increased scores on the GCA and MTA (R = 0.83, 0.78 and 0.78 and R = 0.72, 0.62 and 0.86). Total, peripheral subarachnoidal, and ventricular T{sub 2} of the CSF increased significantly with higher scores on the GCA and MTA (R = 0.72, 0.70 and 0.49 and R = 0.60, 0.57 and 0.41). A fast, fully automated CSF MRI volumetric sequence is an alternative for qualitative atrophy scales. The T{sub 2} of the CSF is related to brain atrophy and could thus be a marker of neurodegenerative disease. (orig.)

  10. Volumetric MRI of the limbic system: anatomic determinants

    Energy Technology Data Exchange (ETDEWEB)

    Bilir, E.; Craven, W.; Hugg, J.; Gilliam, F.; Martin, R.; Faught, E.; Kuzniecky, R. [UAB Epilepsy Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL (United States)

    1998-03-01

    The limbic system comprises the hippocampal formation, fornix, mamillary bodies, thalamus, and other integrated structures. It is involved in complex functions including memory and emotion and in diseases such as temporal lobe epilepsy. Volume measurements of the amygdala and hippocampus have been used reliably to study patients with temporal lobe epilepsy but have not extended to other limbic structures. We performed volume measurements of hippocampus, amygdala, fornix and mamillary bodies in healthy individuals. Measurements of the amygdala, hippocampus, fornix and mamillary bodies revealed significant differences in volume between right and left sides (P < 0.001). The intraclass coefficient of variation for measurements was high for all structures except the mamillary bodies. Qualitative image assessment of the same structures revealed no asymmetries between the hemispheres. This technique can be applied to the study of disorders affecting the limbic system. (orig.) With 4 figs., 2 tabs., 23 refs.

  11. Brain and behaviour in children with 22q11.2 deletion syndrome: a volumetric and voxel-based morphometry MRI study.

    Science.gov (United States)

    Campbell, Linda E; Daly, Eileen; Toal, Fiona; Stevens, Angela; Azuma, Rayna; Catani, Marco; Ng, Virginia; van Amelsvoort, Therese; Chitnis, Xavier; Cutter, William; Murphy, Declan G M; Murphy, Kieran C

    2006-05-01

    In people with velo-cardio-facial syndrome [or 22q11.2 deletion syndrome (22qDS)], a single interstitial deletion of chromosome 22q11.2 causes a wide spectrum of cognitive deficits ranging from global learning difficulties to specific cognitive deficits. People with 22qDS are also at high risk of developing attention-deficit/hyperactivity disorder and autism spectrum disorders in childhood, and schizophrenia in adolescence or adult life. However, the neurobiology of 22qDS, and the relationship between abnormalities in brain anatomy and behaviour, is poorly understood. Thus, we studied the neuroanatomy of 22qDS children using fully automated voxel-based morphometry (VBM) and manually traced single region-of-interest (ROI) analysis. Also, we investigated whether those brain regions that differed significantly between groups were related to behavioural differences within children with 22qDS. We compared the brain morphometry of 39 children and adolescents with 22qDS (mean age: 11 years, SD +/-3, IQ = 67, SD +/-10) and 26 sibling controls (mean age: 11 years, SD +/-3, IQ = 102, SD +/-12). Using VBM, we found, after correction for IQ, that individuals with 22qDS compared with controls had a significant reduction in cerebellar grey matter, and white matter reductions in the frontal lobe, cerebellum and internal capsule. Using single ROI analysis, we found that people with 22qDS had a significant (P social behavioural difficulties and grey matter in frontostriatal regions. Thus, subjects with 22qDS have widespread changes in brain anatomy, particularly affecting white matter, basal ganglia and cerebellum. Also, within 22qDS, regionally specific differences in brain development may partially underpin behavioural differences. We suggest that there is preliminary evidence for specific vulnerability of the frontostriatal and cerebellar-cortical networks in 22qDS.

  12. Somatic mutations associated with MRI-derived volumetric features in glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Gutman, David A.; Dunn, William D. [Emory University School of Medicine, Departments of Neurology, Atlanta, GA (United States); Emory University School of Medicine, Biomedical Informatics, Atlanta, GA (United States); Grossmann, Patrick; Alexander, Brian M. [Harvard Medical School, Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital, Boston, MA (United States); Cooper, Lee A.D. [Emory University School of Medicine, Biomedical Informatics, Atlanta, GA (United States); Georgia Institute of Technology, Department of Biomedical Engineering, Atlanta, GA (United States); Holder, Chad A. [Emory University School of Medicine, Radiology and Imaging Sciences, Atlanta, GA (United States); Ligon, Keith L. [Brigham and Women' s Hospital, Harvard Medical School, Pathology, Dana-Farber Cancer Institute, Boston, MA (United States); Aerts, Hugo J.W.L. [Harvard Medical School, Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital, Boston, MA (United States); Brigham and Women' s Hospital, Harvard Medical School, Radiology, Dana-Farber Cancer Institute, Boston, MA (United States)

    2015-12-15

    MR imaging can noninvasively visualize tumor phenotype characteristics at the macroscopic level. Here, we investigated whether somatic mutations are associated with and can be predicted by MRI-derived tumor imaging features of glioblastoma (GBM). Seventy-six GBM patients were identified from The Cancer Imaging Archive for whom preoperative T1-contrast (T1C) and T2-FLAIR MR images were available. For each tumor, a set of volumetric imaging features and their ratios were measured, including necrosis, contrast enhancing, and edema volumes. Imaging genomics analysis assessed the association of these features with mutation status of nine genes frequently altered in adult GBM. Finally, area under the curve (AUC) analysis was conducted to evaluate the predictive performance of imaging features for mutational status. Our results demonstrate that MR imaging features are strongly associated with mutation status. For example, TP53-mutated tumors had significantly smaller contrast enhancing and necrosis volumes (p = 0.012 and 0.017, respectively) and RB1-mutated tumors had significantly smaller edema volumes (p = 0.015) compared to wild-type tumors. MRI volumetric features were also found to significantly predict mutational status. For example, AUC analysis results indicated that TP53, RB1, NF1, EGFR, and PDGFRA mutations could each be significantly predicted by at least one imaging feature. MRI-derived volumetric features are significantly associated with and predictive of several cancer-relevant, drug-targetable DNA mutations in glioblastoma. These results may shed insight into unique growth characteristics of individual tumors at the macroscopic level resulting from molecular events as well as increase the use of noninvasive imaging in personalized medicine. (orig.)

  13. In vivo MRI volumetric measurement of prostate regression and growth in mice

    Directory of Open Access Journals (Sweden)

    Nalcioglu Orhan

    2007-07-01

    Full Text Available Abstract Background Mouse models for treatment of late-stage prostate cancer are valuable tools, but assessing the extent of growth of the prostate and particularly its regression due to therapeutic intervention or castration is difficult due to the location, small size and interdigitated anatomy of the prostate gland in situ. Temporal monitoring of mouse prostate regression requires multiple animals and examination of histological sections. Methods Initially, T2-weighted magnetic resonance imaging (MRI was performed on normal year-old C57/BL6 mice. Individual mice were repeatedly imaged using inhalation anesthesia to establish the reproducibility of the method and to follow hormone manipulation of the prostate volume. Subsequently, MRI fat signal was suppressed using a chemical shift-selective (CHESS pulse to avoid signal contamination and enhance discrimination of the prostate. Results High field (7T MRI provides high resolution (117 × 117 μm in plane, highly reproducible images of the normal mouse prostate. Despite long imaging times, animals can be imaged repeatedly to establish reliability of volume measurements. Prostate volume declines following castration and subsequently returns to normal with androgen administration in the same animal. CHESS imaging allowed discrimination of both the margins of the prostate and the dorsal-lateral lobes of the prostate (DLP from the ventral lobes (VP. Castration results in a 40% reduction in the volume of the DLP and a 75% reduction in the volume of the VP. Conclusion MRI assessment of the volume of the mouse prostate is precise and reproducible. MRI improves volumetric determination of the extent of regression and monitoring of the same mouse over time during the course of treatment is possible. Since assessing groups of animals at each time point is avoided, this improves the accuracy of the measurement of any manipulation effect and reduces the number of animals required.

  14. Exploration of volumetric cerebral changes, with de micro-MRi, due to psychomotor exercise in mice

    OpenAIRE

    Moës, Florian; Plenevaux, Alain; Becker, Guillaume; Tirelli, Ezio; Lespine, Louis-Ferdinand

    2015-01-01

    It's well know that exercise is good for health .In addition exercise has postive effects on cognition ,neurodegenerative disease and on mood. Some studies show that exercise has effect on brain so the aim of this study is to see if there are volumetric changes due to exercise or not.

  15. A novel computer algorithm allows for volumetric and cross-sectional area analysis of indirect decompression following transpsoas lumbar arthrodesis despite variations in MRI technique.

    Science.gov (United States)

    Gates, Timothy A; Vasudevan, Ram R; Miller, Kai J; Stamatopoulou, Vasiliki; Mindea, Stefan A

    2014-03-01

    Many patients present for neurosurgical spine evaluation with MRI studies conducted at facilities outside of the treating medical center. These images often vary widely in technique, for example, variation in slice thickness, number of slices, and gantry angle. While these images may be sufficient in conjunction with a physical exam to make surgical evaluations, we have found they are often incapable of being used for objective post-operative volumetric comparisons. In order to overcome this, we created a computer program that compensates for these variations in MRI technique. For this study, we examined patients who had undergone outside MRI pre-operatively and were deemed appropriate for a lateral retroperitoneal transpsoas lumbar interbody arthrodesis procedure. Volumetric analysis was performed on sagittal and axial T2-weighted pre- and post-operative MRI. The percentage change of central canal volume and foraminal area was calculated for each level. The authors identified five levels with MRI sufficient for volumetric analysis and eight levels (16 foramina) sufficient for foraminal cross-sectional analysis. Through use of our computer algorithm, average central canal volume and foraminal cross-sectional area was calculated to increase by 32.8% and 67.6% respectively following the procedure. These results are consistent with previous study findings and support the idea that restoration of the anterior column via a lateral approach can result in significant indirect decompression of the neural elements. Additionally, the novel algorithm created and used for this study suggests that it can achieve quick measurement and comparison of MRI studies despite variations in pre- and post-operative technique.

  16. Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy

    DEFF Research Database (Denmark)

    De Vis, J B; Zwanenburg, J J; van der Kleij, L A;

    2016-01-01

    ) and medial temporal lobe atrophy (MTA)] was evaluated. RESULTS: Relative total, peripheral subarachnoidal, and ventricular VCSF increased significantly with increased scores on the GCA and MTA (R = 0.83, 0.78 and 0.78 and R = 0.72, 0.62 and 0.86). Total, peripheral subarachnoidal, and ventricular T2...... of the CSF increased significantly with higher scores on the GCA and MTA (R = 0.72, 0.70 and 0.49 and R = 0.60, 0.57 and 0.41). CONCLUSION: A fast, fully automated CSF MRI volumetric sequence is an alternative for qualitative atrophy scales. The T2 of the CSF is related to brain atrophy and could thus...

  17. The association of brain structure with gait velocity in older adults: a quantitative volumetric analysis of brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Ezzati, Ali [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Montefiore Medical Center, Department of Neurology, Bronx, NY (United States); Katz, Mindy J. [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Lipton, Michael L. [Albert Einstein College of Medicine of Yeshiva University, The Gruss Magnetic Resonance Research Center and Departments of Radiology, Psychiatry and Behavioral Sciences and the Dominick P. Purpura Department of Neuroscience, Bronx, NY (United States); Montefiore Medical Center, The Department of Radiology, Bronx, NY (United States); Lipton, Richard B. [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Albert Einstein College of Medicine of Yeshiva University, Department of Epidemiology and Population Health, Bronx, NY (United States); Verghese, Joe [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Albert Einstein College of Medicine, Division of Cognitive and Motor Aging, Bronx, NY (United States)

    2015-08-15

    While cortical processes play an important role in controlling locomotion, the underlying structural brain changes associated with slowing of gait in aging are not yet fully established. Our study aimed to examine the relationship between cortical gray matter volume (GM), white matter volume (WM), ventricular volume (VV), hippocampal and hippocampal subfield volumes, and gait velocity in older adults free of dementia. Gait and cognitive performance was tested in 112 community-residing adults, age 70 years and over, participating in the Einstein Aging Study. Gait velocity (cm/s) was obtained using an instrumented walkway. Volumetric MRI measures were estimated using a FreeSurfer software. We examined the cross-sectional relationship of GM, WM, VV, and hippocampal total and subfield volumes and gait velocity using linear regression models. In complementary models, the effect of memory performance on the relationship between gait velocity and regional volumes was evaluated. Slower gait velocity was associated with smaller cortical GM and total hippocampal volumes. There was no association between gait velocity and WM or VV. Among hippocampal subfields, only smaller presubiculum volume was significantly associated with decrease in gait velocity. Addition of the memory performance to the models attenuated the association between gait velocity and all volumetric measures. Our findings indicate that total GM and hippocampal volumes as well as specific hippocampal subfield volumes are inversely associated with locomotor function. These associations are probably affected by cognitive status of study population. (orig.)

  18. The relationship between limited MRI section analyses and volumetric assessment of synovitis in knee osteoarthritis

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, L.A. [Academic Unit of Medical Physics, University of Leeds and Leeds General Infirmary, Leeds (United Kingdom)]. E-mail: lar@medphysics.leeds.ac.uk; Keenan, A.-M. [Academic Unit of Musculoskeletal Disease, University of Leeds and Leeds General Infirmary, Leeds (United Kingdom); Grainger, A.J. [Department of Radiology, Leeds General Infirmary, Leeds (United Kingdom); Emery, P. [Academic Unit of Musculoskeletal Disease, University of Leeds and Leeds General Infirmary, Leeds (United Kingdom); McGonagle, D. [Academic Unit of Musculoskeletal Disease, University of Leeds and Leeds General Infirmary, Leeds (United Kingdom); Calderdale Royal Hospital, Salterhebble, Halifax (United Kingdom); Conaghan, P.G. [Academic Unit of Musculoskeletal Disease, University of Leeds and Leeds General Infirmary, Leeds (United Kingdom)

    2005-12-15

    AIM: To assess whether simple, limited section analysis can replace detailed volumetric assessment of synovitis in patients with osteoarthritis (OA) of the knee using contrast-enhanced magnetic resonance imaging (MRI). MATERIALS AND METHODS: Thirty-five patients with clinical and radiographic OA of the knee were assessed for synovitis using gadolinium-enhanced MRI. The volume of enhancing synovium was quantitatively assessed in four anatomical sites (the medial and lateral parapatellar recesses, the intercondylar notch and the suprapatellar pouch) by summing the volumes of synovitis in consecutive sections. Four different combinations of section analysis were evaluated for their ability to predict total synovial volume. RESULTS: A total of 114 intra-articular sites were assessed. Simple linear regression demonstrated that the best predictor of total synovial volume was the analysis containing the inferior, mid and superior sections of each of the intra-articular sites, which predicted between 40-80% (r {sup 2}=0.396, p<0.001 for notch; r {sup 2}=0.818, p<0.001 for medial parapatellar recess) of the total volume assessment. CONCLUSIONS: The results suggest that a three-section analysis on axial post-gadolinium sequences provides a simple surrogate measure of synovial volume in OA knees.

  19. Serial volumetric registration of pulmonary CT studies

    Science.gov (United States)

    Silva, José Silvestre; Silva, Augusto; Sousa Santos, Beatriz

    2008-03-01

    Detailed morphological analysis of pulmonary structures and tissue, provided by modern CT scanners, is of utmost importance as in the case of oncological applications both for diagnosis, treatment, and follow-up. In this case, a patient may go through several tomographic studies throughout a period of time originating volumetric sets of image data that must be appropriately registered in order to track suspicious radiological findings. The structures or regions of interest may change their position or shape in CT exams acquired at different moments, due to postural, physiologic or pathologic changes, so, the exams should be registered before any follow-up information can be extracted. Postural mismatching throughout time is practically impossible to avoid being particularly evident when imaging is performed at the limiting spatial resolution. In this paper, we propose a method for intra-patient registration of pulmonary CT studies, to assist in the management of the oncological pathology. Our method takes advantage of prior segmentation work. In the first step, the pulmonary segmentation is performed where trachea and main bronchi are identified. Then, the registration method proceeds with a longitudinal alignment based on morphological features of the lungs, such as the position of the carina, the pulmonary areas, the centers of mass and the pulmonary trans-axial principal axis. The final step corresponds to the trans-axial registration of the corresponding pulmonary masked regions. This is accomplished by a pairwise sectional registration process driven by an iterative search of the affine transformation parameters leading to optimal similarity metrics. Results with several cases of intra-patient, intra-modality registration, up to 7 time points, show that this method provides accurate registration which is needed for quantitative tracking of lesions and the development of image fusion strategies that may effectively assist the follow-up process.

  20. TU-F-CAMPUS-J-05: Fast Volumetric MRI On An MRI-Linac Enables On-Line QA On Dose Deposition in the Patient

    Energy Technology Data Exchange (ETDEWEB)

    Crijns, S; Glitzner, M; Kontaxis, C; Maenhout, M; Bol, G; Lagendijk, J; Raaymakers, B [University Medical Center Utrecht, Utrecht (Netherlands); Senneville, B Denis de [University Medical Center Utrecht, Utrecht (Netherlands); Mathematical Institute of Bordeaux, University of Bordeaux, Talence Cedex (France)

    2015-06-15

    Purpose: The introduction of the MRI-linac in radiotherapy brings MRI-guided treatment with daily plan adaptions within reach. This paradigm demands on-line QA. With its ability to perform continuous volumetric imaging in an outstanding soft-tissue contrast, the MRI- linac promises to elucidate the dose deposition process during a treatment session. Here we study for a prostate case how dynamic MRI combined with linac machine parameters and a fast dose-engine can be used for on-line dose accumulation. Methods: Prostate imaging was performed in healthy volunteer on a 1.5T MR-scanner (Philips, Best, NL) according to a clinical MR-sim protocol, followed by 10min of dynamic imaging (FLASH, 4s/volume, FOV 40×40×12cm{sup 3}, voxels 3×3×3mm{sup 3}, TR/TE/α=3.5ms/1.7ms/5°). An experienced radiation oncologist made delineations, considering the prostate CTV. Planning was performed on a two-compartment pseudoCT (air/water density) according to clinical constraints (77Gy in PTV) using a Monte-Carlo (MC) based TPS that accounts for magnetic fields. Delivery of one fraction (2.2Gy) was simulated on an emulator for the Axesse linac (Elekta, Stockholm, SE). Machine parameters (MLC settings, gantry angle, dose rate, etc.) were recorded at 25Hz. These were re-grouped per dynamic volume and fed into the MC-engine to calculate a dose delivered for each of the dynamics. Deformations derived from non-rigid registration of each dynamic against the first allowed dose accumulation on a common reference grid. Results: The DVH parameters on the PTV compared to the optimized plan showed little changes. Local deformations however resulted in local deviations, primarily around the air/rectum interface. This clearly indicates the potential of intra-fraction adaptations based on the accumulated dose. Application in each fraction helps to track the influence of plan adaptations to the eventual dose distribution. Calculation times were about twice the delivery time. Conclusion: The current

  1. Multi-modal MRI investigation of volumetric and microstructural changes in the hippocampus and its subfields in mild cognitive impairment, Alzheimer's disease, and dementia with Lewy bodies.

    Science.gov (United States)

    Mak, Elijah; Gabel, Silvy; Su, Li; Williams, Guy B; Arnold, Robert; Passamonti, Luca; Vazquez Rodríguez, Patricia; Surendranathan, Ajenthan; Bevan-Jones, W Richard; Rowe, James B; O'Brien, John T

    2017-04-01

    Volumetric atrophy and microstructural alterations in diffusion tensor imaging (DTI) measures of the hippocampus have been reported in people with Alzheimer's disease (AD) and mild cognitive impairment (MCI). However, no study to date has jointly investigated concomitant microstructural and volumetric changes of the hippocampus in dementia with Lewy bodies (DLB). A total of 84 subjects (23 MCI, 17 DLB, 14 AD, and 30 healthy controls) were recruited for a multi-modal imaging (3T MRI and DTI) study that included neuropsychological evaluation. Freesurfer was used to segment the total hippocampus and delineate its subfields. The hippocampal segmentations were co-registered to the mean diffusivity (MD) and fractional anisotropy (FA) maps obtained from the DTI images. Both AD and MCI groups showed significantly smaller hippocampal volumes compared to DLB and controls, predominantly in the CA1 and subiculum subfields. Compared to controls, hippocampal MD was elevated in AD, but not in MCI. DLB was characterized by both volumetric and microstructural preservation of the hippocampus. In MCI, higher hippocampal MD was associated with greater atrophy of the hippocampus and CA1 region. Hippocampal volume was a stronger predictor of memory scores compared to MD within the MCI group. Through a multi-modal integration, we report novel evidence that the hippocampus in DLB is characterized by both macrostructural and microstructural preservation. Contrary to recent suggestions, our findings do not support the view that DTI measurements of the hippocampus are superior to volumetric changes in characterizing group differences, particularly between MCI and controls.

  2. Accuracy of fully automated, quantitative, volumetric measurement of the amount of fibroglandular breast tissue using MRI: correlation with anthropomorphic breast phantoms.

    Science.gov (United States)

    Wengert, Georg J; Pinker, Katja; Helbich, Thomas H; Vogl, Wolf-Dieter; Spijker, Sylvia M; Bickel, Hubert; Polanec, Stephan H; Baltzer, Pascal A

    2017-06-01

    To demonstrate the accuracy of fully automated, quantitative, volumetric measurement of the amount of fibroglandular breast tissue (FGT), using MRI, and to investigate the impact of different MRI sequences using anthropomorphic breast phantoms as the ground truth. In this study, 10 anthropomorphic breast phantoms that consisted of different known fractions of adipose and protein tissue, which closely resembled normal breast parenchyma, were developed. Anthropomorphic breast phantoms were imaged with a 1.5 T unit (Siemens, Avantofit) using an 18-channel breast coil. The sequence protocol consisted of an isotropic Dixon sequence (Di), an anisotropic Dixon sequence (Da), and T1 3D FLASH sequences with and without fat saturation (T1). Fully automated, quantitative, volumetric measurement of FGT for all anthropomorphic phantoms and sequences was performed and correlated with the amounts of fatty and protein components in the phantoms as the ground truth. Fully automated, quantitative, volumetric measurements of FGT with MRI for all sequences ranged from 5.86 to 61.05% (mean 33.36%). The isotropic Dixon sequence yielded the highest accuracy (median 0.51%-0.78%) and precision (median range 0.19%) compared with anisotropic Dixon (median 1.92%-2.09%; median range 0.55%) and T1 -weighted sequences (median 2.54%-2.46%; median range 0.82%). All sequences yielded good correlation with the FGT content of the anthropomorphic phantoms. The best correlation of FGT measurements was identified for Dixon sequences (Di, R(2)  = 0.999; Da, R(2)  = 0.998) compared with conventional T1 -weighted sequences (R(2)  = 0.971). MRI yields accurate, fully automated, quantitative, volumetric measurements of FGT, an increasingly important and sensitive imaging biomarker for breast cancer risk. Compared with conventional T1 sequences, Dixon-type sequences show the highest correlation and reproducibility for automated, quantitative, volumetric FGT measurements using anthropomorphic breast

  3. Tumor shrinkage assessed by volumetric MRI in the long-term follow-up after stereotactic radiotherapy of meningiomas

    Energy Technology Data Exchange (ETDEWEB)

    Astner, Sabrina T.; Theodorou, Marilena; Dobrei-Ciuchendea, Mihaela; Kopp, Christine; Molls, Michael [Dept. of Radiotherapy and Radiooncology, Klinikum rechts der Isar, Technical Univ. of Munich (Germany); Auer, Florian [Dept. of Neuroradiology, Klinikum rechts der Isar, Technical Univ. of Munich (Germany); Grosu, Anca-Ligia [Dept. of Radiotherapy, Univ. Hospital Freiburg (Germany)

    2010-08-15

    Purpose: To evaluate tumor volume reduction in the follow-up of meningiomas after fractionated stereotactic radiotherapy (FSRT) or linac radiosurgery (RS) by using magnetic resonance imaging (MRI). Patients and Methods: In 59 patients with skull base meningiomas, gross tumor volume (GTV) was outlined on contrast-en-hanced MRI before and median 50 months (range 11-92 months) after stereotactic radiotherapy. MRI was performed as an axial three-dimensional gradient-echo T1-weighted sequence at 1.6 mm slice thickness without gap (3D-MRI). Results were compared to the reports of diagnostic findings. Results: Mean tumor size of all 59 meningiomas was 13.9 ml (0.8-62.9 ml) before treatment. There was shrinkage of the treated meningiomas in all but one patient. Within a median volumetric follow-up of 50 months (11-95 months), an absolute mean volume reduction of 4 ml (0-18 ml) was seen. The mean relative size reduction compared to the volume before radiotherapy was 27% (0-73%). Shrinkage measured by 3D-MRI was greater at longer time intervals after radiotherapy. The mean size reduction was 17%, 23%, and 30% (at < 24 months, 24-48 months, and 48-72 months). Conclusion: By using 3D-MRI in almost all patients undergoing radiotherapy of a meningioma, tumor shrinkage is detected. The data presented here demonstrate that volumetric assessment from 3D-MRI provides additional information to routinely used radiologic response measurements. After FSRT or RS, a mean size reduction of 25-45% can be expected within 4 years. (orig.)

  4. A Combined Random Forests and Active Contour Model Approach for Fully Automatic Segmentation of the Left Atrium in Volumetric MRI

    Directory of Open Access Journals (Sweden)

    Chao Ma

    2017-01-01

    Full Text Available Segmentation of the left atrium (LA from cardiac magnetic resonance imaging (MRI datasets is of great importance for image guided atrial fibrillation ablation, LA fibrosis quantification, and cardiac biophysical modelling. However, automated LA segmentation from cardiac MRI is challenging due to limited image resolution, considerable variability in anatomical structures across subjects, and dynamic motion of the heart. In this work, we propose a combined random forests (RFs and active contour model (ACM approach for fully automatic segmentation of the LA from cardiac volumetric MRI. Specifically, we employ the RFs within an autocontext scheme to effectively integrate contextual and appearance information from multisource images together for LA shape inferring. The inferred shape is then incorporated into a volume-scalable ACM for further improving the segmentation accuracy. We validated the proposed method on the cardiac volumetric MRI datasets from the STACOM 2013 and HVSMR 2016 databases and showed that it outperforms other latest automated LA segmentation methods. Validation metrics, average Dice coefficient (DC and average surface-to-surface distance (S2S, were computed as 0.9227±0.0598 and 1.14±1.205 mm, versus those of 0.6222–0.878 and 1.34–8.72 mm, obtained by other methods, respectively.

  5. A Combined Random Forests and Active Contour Model Approach for Fully Automatic Segmentation of the Left Atrium in Volumetric MRI

    Science.gov (United States)

    Luo, Gongning

    2017-01-01

    Segmentation of the left atrium (LA) from cardiac magnetic resonance imaging (MRI) datasets is of great importance for image guided atrial fibrillation ablation, LA fibrosis quantification, and cardiac biophysical modelling. However, automated LA segmentation from cardiac MRI is challenging due to limited image resolution, considerable variability in anatomical structures across subjects, and dynamic motion of the heart. In this work, we propose a combined random forests (RFs) and active contour model (ACM) approach for fully automatic segmentation of the LA from cardiac volumetric MRI. Specifically, we employ the RFs within an autocontext scheme to effectively integrate contextual and appearance information from multisource images together for LA shape inferring. The inferred shape is then incorporated into a volume-scalable ACM for further improving the segmentation accuracy. We validated the proposed method on the cardiac volumetric MRI datasets from the STACOM 2013 and HVSMR 2016 databases and showed that it outperforms other latest automated LA segmentation methods. Validation metrics, average Dice coefficient (DC) and average surface-to-surface distance (S2S), were computed as 0.9227 ± 0.0598 and 1.14 ± 1.205 mm, versus those of 0.6222–0.878 and 1.34–8.72 mm, obtained by other methods, respectively. PMID:28316992

  6. Volumetric MRI analysis of hippocampal subregions in Cushing's disease: a model for glucocorticoid neural modulation.

    Science.gov (United States)

    Toffanin, T; Nifosì, F; Follador, H; Passamani, A; Zonta, F; Ferri, G; Scanarini, M; Amistà, P; Pigato, G; Scaroni, C; Mantero, F; Carollo, C; Perini, G I

    2011-01-01

    Several preclinical studies have demonstrated neuronal effects of glucocorticoids on the hippocampus (HC), a limbic structure with anterior-posterior anatomical and functional segmentation. We propose a volumetric magnetic resonance imaging analysis of hippocampus head (HH), body (HB) and tail (HT) using Cushing's disease (CD) as model, to investigate whether there is a differential sensitivity to glucocorticoid neuronal damage in these segments. We found a significant difference in the HH bilaterally after 12 months from trans-sphenoidal surgical selective resection of the adrenocorticotropic hormone (ACTH)-secreting pituitary micro-adenomas. This pre-post surgery difference could contribute to better understand the pathopysiology of CD as an in vivo model for stress-related hypercortisolemic neuropsychiatric disorders.

  7. Volumetric MRI Analysis of the Amygdala and Hippocampus in Subjects with Major Depression

    Institute of Scientific and Technical Information of China (English)

    夏军; 陈军; 周义成; 张景峰; 杨波; 夏黎明; 王承缘

    2004-01-01

    In order to explore the MRI volume of the amygdala and hippocampus in patients with major depression, quantitative MRI of the amygdala and hippocampus were studied in 22 patients with major depression and compared with 13 age-matched controls. The results showed that both groups exhibited similar significant hippocampal asymmetry (left smaller than right). The volume of the bilateral hippocampus was significantly smaller in the major depression group than that in control group. The patients had significant asymmetry of the amygdalar volumes (right smaller than left). No correlation was found between hippocampal volume abnormalities and ill duration. It was concluded that the hippocampus and amygdala within limbic-cortical networks may play a crucial role in the pathogenesis of major depression.

  8. Characterization of three dimensional volumetric strain distribution during passive tension of the human tibialis anterior using Cine Phase Contrast MRI.

    Science.gov (United States)

    Jensen, Elisabeth R; Morrow, Duane A; Felmlee, Joel P; Murthy, Naveen S; Kaufman, Kenton R

    2016-10-03

    Intramuscular pressure correlates strongly with muscle tension and is a promising tool for quantifying individual muscle force. However, clinical application is impeded by measurement variability that is not fully understood. Previous studies point to regional differences in IMP, specifically increasing pressure with muscle depth. Based on conservation of mass, intramuscular pressure and volumetric strain distributions may be inversely related. Therefore, we hypothesized volumetric strain would decrease with muscle depth. To test this we quantified 3D volumetric strain in the tibialis anterior of 12 healthy subjects using Cine Phase Contrast Magnetic Resonance Imaging. Cine Phase Contrast data were collected while a custom apparatus rotated the subjects' ankle continuously between neutral and plantarflexion. A T2-weighted image stack was used to define the resting tibials anterior position. Custom and commercial post-processing software were used to quantify the volumetric strain distribution. To characterize regional strain changes, the muscle was divided into superior-inferior sections and either medial-lateral or anterior-posterior slices. Mean volumetric strain was compared across the sections and slices. As hypothesized, volumetric strain demonstrated regional differences with a decreasing trend from the anterior (superficial) to the posterior (deep) muscle regions. Statistical tests showed significant main effects and interactions of superior-inferior and anterior-posterior position as well as superior-inferior and medial-lateral position on regional strain. These data support our hypothesis and imply a potential relationship between regional volumetric strain and intramuscular pressure. This finding may advance our understanding of intramuscular pressure variability sources and lead to more reliable measurement solutions in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Brain tissue- and region-specific abnormalities on volumetric MRI scans in 21 patients with Bardet-Biedl syndrome (BBS

    Directory of Open Access Journals (Sweden)

    Johnston Jennifer

    2011-07-01

    Full Text Available Abstract Background Bardet-Biedl syndrome (BBS is a heterogeneous human disorder inherited in an autosomal recessive pattern, and characterized by the primary findings of obesity, polydactyly, hypogonadism, and learning and behavioural problems. BBS mouse models have a neuroanatomical phenotype consisting of third and lateral ventriculomegaly, thinning of the cerebral cortex, and reduction in the size of the corpus striatum and hippocampus. These abnormalities raise the question of whether humans with BBS have a characteristic morphologic brain phenotype. Further, although behavioral, developmental, neurological and motor defects have been noted in patients with BBS, to date, there are limited reports of brain findings in BBS. The present study represents the largest systematic evaluation for the presence of structural brain malformations and/or progressive changes, which may contribute to these functional problems. Methods A case-control study of 21 patients, most aged 13-35 years, except for 2 patients aged 4 and 8 years, who were diagnosed with BBS by clinical criteria and genetic analysis of known BBS genes, and were evaluated by qualitative and volumetric brain MRI scans. Healthy controls were matched 3:1 by age, sex and race. Statistical analysis was performed using SAS language with SAS STAT procedures. Results All 21 patients with BBS were found to have statistically significant region- and tissue-specific patterns of brain abnormalities. There was 1 normal intracranial volume; 2 reduced white matter in all regions of the brain, but most in the occipital region; 3 preserved gray matter volume, with increased cerebral cortex volume in only the occipital lobe; 4 reduced gray matter in the subcortical regions of the brain, including the caudate, putamen and thalamus, but not in the cerebellum; and 5 increased cerebrospinal fluid volume. Conclusions There are distinct and characteristic abnormalities in tissue- and region- specific volumes

  10. Constrained reverse diffusion for thick slice interpolation of 3D volumetric MRI images.

    Science.gov (United States)

    Neubert, Aleš; Salvado, Olivier; Acosta, Oscar; Bourgeat, Pierrick; Fripp, Jurgen

    2012-03-01

    Due to physical limitations inherent in magnetic resonance imaging scanners, three dimensional volumetric scans are often acquired with anisotropic voxel resolution. We investigate several interpolation approaches to reduce the anisotropy and present a novel approach - constrained reverse diffusion for thick slice interpolation. This technique was compared to common methods: linear and cubic B-Spline interpolation and a technique based on non-rigid registration of neighboring slices. The methods were evaluated on artificial MR phantoms and real MR scans of human brain. The constrained reverse diffusion approach delivered promising results and provides an alternative for thick slice interpolation, especially for higher anisotropy factors.

  11. WE-G-BRD-06: Volumetric Cine MRI (VC-MRI) Estimated Based On Prior Knowledge for On-Board Target Localization

    Energy Technology Data Exchange (ETDEWEB)

    Harris, W; Yin, F; Cai, J; Zhang, Y; Ren, L [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: To develop a technique to generate on-board VC-MRI using patient prior 4D-MRI, motion modeling and on-board 2D-cine MRI for real-time 3D target verification of liver and lung radiotherapy. Methods: The end-expiration phase images of a 4D-MRI acquired during patient simulation are used as patient prior images. Principal component analysis (PCA) is used to extract 3 major respiratory deformation patterns from the Deformation Field Maps (DFMs) generated between end-expiration phase and all other phases. On-board 2D-cine MRI images are acquired in the axial view. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI at the end-expiration phase. The DFM is represented as a linear combination of the 3 major deformation patterns. The coefficients of the deformation patterns are solved by matching the corresponding 2D slice of the estimated VC-MRI with the acquired single 2D-cine MRI. The method was evaluated using both XCAT (a computerized patient model) simulation of lung cancer patients and MRI data from a real liver cancer patient. The 3D-MRI at every phase except end-expiration phase was used to simulate the ground-truth on-board VC-MRI at different instances, and the center-tumor slice was selected to simulate the on-board 2D-cine images. Results: Image subtraction of ground truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground truth with prior image. Excellent agreement between profiles was achieved. The normalized cross correlation coefficients between the estimated and ground-truth in the axial, coronal and sagittal views for each time step were >= 0.982, 0.905, 0.961 for XCAT data and >= 0.998, 0.911, 0.9541 for patient data. For XCAT data, the maximum-Volume-Percent-Difference between ground-truth and estimated tumor volumes was 1.6% and the maximum-Center-of-Mass-Shift was 0.9 mm. Conclusion: Preliminary studies demonstrated the feasibility to estimate real-time VC-MRI for on

  12. Volumetric Magnetic Resonance Imaging Study of Brain and Cerebellum in Children with Cerebral Palsy

    Science.gov (United States)

    Maciorkowska, Elżbieta; Gościk, Elżbieta

    2016-01-01

    Introduction. Quantitative magnetic resonance imaging (MRI) studies are rarely used in the diagnosis of patients with cerebral palsy. The aim of present study was to assess the relationships between the volumetric MRI and clinical findings in children with cerebral palsy compared to control subjects. Materials and Methods. Eighty-two children with cerebral palsy and 90 age- and sex-matched healthy controls were collected. Results. The dominant changes identified on MRI scans in children with cerebral palsy were periventricular leukomalacia (42%) and posthemorrhagic hydrocephalus (21%). The total brain and cerebellum volumes in children with cerebral palsy were significantly reduced in comparison to controls. Significant grey matter volume reduction was found in the total brain in children with cerebral palsy compared with the control subjects. Positive correlations between the age of the children of both groups and the grey matter volumes in the total brain were found. Negative relationship between width of third ventricle and speech development was found in the patients. Positive correlations were noted between the ventricles enlargement and motor dysfunction and mental retardation in children with cerebral palsy. Conclusions. By using the voxel-based morphometry, the total brain, cerebellum, and grey matter volumes were significantly reduced in children with cerebral palsy. PMID:27579318

  13. [Standartization of MRI studies in multiple sclerosis].

    Science.gov (United States)

    Bryukhov, V V; Krotenkova, I A; Morozova, S N; Krotenkova, M V

    2016-01-01

    The use of magnetic resonance imaging (MRI) in patients with multiple sclerosis has markedly increased in recent years. The main task of the MRI studies after the diagnosis of multiple sclerosis is to assess the dynamics of MRI for determining disease progression and monitoring the efficacy of therapy. In this regard, it is very important to obtain the most identical baseline and follow-up MRI that is possible when a single standard protocol is used. This article presents the protocol of brain MRI and spinal cord MRI and interpretation of MRI studies in patients with multiple sclerosis.

  14. Automated fibroglandular tissue segmentation and volumetric density estimation in breast MRI using an atlas-aided fuzzy C-means method

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shandong; Weinstein, Susan P.; Conant, Emily F.; Kontos, Despina, E-mail: despina.kontos@uphs.upenn.edu [Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2013-12-15

    Purpose: Breast magnetic resonance imaging (MRI) plays an important role in the clinical management of breast cancer. Studies suggest that the relative amount of fibroglandular (i.e., dense) tissue in the breast as quantified in MR images can be predictive of the risk for developing breast cancer, especially for high-risk women. Automated segmentation of the fibroglandular tissue and volumetric density estimation in breast MRI could therefore be useful for breast cancer risk assessment. Methods: In this work the authors develop and validate a fully automated segmentation algorithm, namely, an atlas-aided fuzzy C-means (FCM-Atlas) method, to estimate the volumetric amount of fibroglandular tissue in breast MRI. The FCM-Atlas is a 2D segmentation method working on a slice-by-slice basis. FCM clustering is first applied to the intensity space of each 2D MR slice to produce an initial voxelwise likelihood map of fibroglandular tissue. Then a prior learned fibroglandular tissue likelihood atlas is incorporated to refine the initial FCM likelihood map to achieve enhanced segmentation, from which the absolute volume of the fibroglandular tissue (|FGT|) and the relative amount (i.e., percentage) of the |FGT| relative to the whole breast volume (FGT%) are computed. The authors' method is evaluated by a representative dataset of 60 3D bilateral breast MRI scans (120 breasts) that span the full breast density range of the American College of Radiology Breast Imaging Reporting and Data System. The automated segmentation is compared to manual segmentation obtained by two experienced breast imaging radiologists. Segmentation performance is assessed by linear regression, Pearson's correlation coefficients, Student's pairedt-test, and Dice's similarity coefficients (DSC). Results: The inter-reader correlation is 0.97 for FGT% and 0.95 for |FGT|. When compared to the average of the two readers’ manual segmentation, the proposed FCM-Atlas method achieves a

  15. Posttraumatic syringomyelia: volumetric phantom and patient studies using MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Freund, Michael; Habicht, Dirk; Kalvine, Kira; Sartor, Klaus [Department of Neuroradiology, Medical School, University of Heidelberg (Germany); Aschoff, Alfred [Department of Neurosurgery, Medical School, University of Heidelberg (Germany)

    2002-12-01

    The purpose of this study was to determine the volume of posttraumatic syringomyelia (PTS) based on standard MRI data acquisitions, and to compare the volumes with the neurological deficits of the patients. Firstly, phantom studies were performed using routine T1- (T1W; TR 500 ms, TE 13 ms) spin-echo (SE) images, 3D gradient-echo (GE) images and T2-weighted (T2W) turbo spin-echo (TSE) images (TR 3000 ms, TE 130 ms), in the sagittal plane. The slices were interleaved so that there was no gap. Twelve phantoms simulating a PTS were constructed and filled with fluid. Each volume was exactly measured immediately prior to filling (volumes: 3600-74,000 mm{sup 3}, mean 27,500 mm{sup 3}). In the clinical study 32 patients with PTS were examined using the same protocol. Patients were supine and a phased-array coil was used. The phantom studies revealed measurement errors of within 35%. There were problems defining the boundaries in the small and irregular phantoms as well as in small and irregular PTS, and due to the partial-volume averaging effect. The two small irregular phantoms could only be measured on the axial images. The T2W images in the axial plane showed the best results: measurement accuracy 92%. In the clinical study all examinations were technically successful. The volumes of the PTS ranged between 200 and 19,800 mm{sup 3}; the mean volume was 4075 mm{sup 3}. Our initial results show that the volume measurement of a PTS using standard MRI sequences can help generate more objective and accurate measures of spinal cord lesions, and this may enhance the sensitivity of MRI in detecting disease progression or regression after treatment. (orig.)

  16. Brain volumetric abnormalities in patients with anorexia and bulimia nervosa: a voxel-based morphometry study.

    Science.gov (United States)

    Amianto, Federico; Caroppo, Paola; D'Agata, Federico; Spalatro, Angela; Lavagnino, Luca; Caglio, Marcella; Righi, Dorico; Bergui, Mauro; Abbate-Daga, Giovanni; Rigardetto, Roberto; Mortara, Paolo; Fassino, Secondo

    2013-09-30

    Recent studies focussing on neuroimaging features of eating disorders have observed that anorexia nervosa (AN) is characterized by significant grey matter (GM) atrophy in many brain regions, especially in the cerebellum and anterior cingulate cortex. To date, no studies have found GM atrophy in bulimia nervosa (BN) or have directly compared patients with AN and BN. We used voxel-based morphometry (VBM) to characterize brain abnormalities in AN and BN patients, comparing them with each other and with a control group, and correlating brain volume with clinical features. We recruited 17 AN, 13 BN and 14 healthy controls. All subjects underwent high-resolution magnetic resonance imaging (MRI) with a T1-weighted 3D image. VBM analysis was carried out with the FSL-VBM 4.1 tool. We found no global atrophy, but regional GM reduction in AN with respect to controls and BN in the cerebellum, fusiform area, supplementary motor area, and occipital cortex, and in the caudate in BN compared to AN and controls. Both groups of patients had a volumetric increase bilaterally in somatosensory regions with respect to controls, in areas that are typically involved in the sensory-motor integration of body stimuli and in mental representation of the body image. Our VBM study documented, for the first time in BN patients, the presence of volumetric alterations and replicated previous findings in AN patients. We evidenced morphological differences between AN and BN, demonstrating in the latter atrophy of the caudate nucleus, a region involved in reward mechanisms and processes of self-regulation, perhaps involved in the genesis of the binge-eating behaviors of this disorder. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Volumetric Pricing of Agricultural Water Supplies: A Case Study

    Science.gov (United States)

    Griffin, Ronald C.; Perry, Gregory M.

    1985-07-01

    Models of water consumption by rice producers are conceptualized and then estimated using cross-sectional time series data obtained from 16 Texas canal operators for the years 1977-1982. Two alternative econometric models demonstrate that both volumetric and flat rate water charges are strongly and inversely related to agricultural water consumption. Nonprice conservation incentives accompanying flat rates are hypothesized to explain the negative correlation of flat rate charges and water consumption. Application of these results suggests that water supply organizations in the sample population converting to volumetric pricing will generally reduce water consumption.

  18. MRI and 1H-MRS detects volumetric and metabolic abnormalities of hippocampal sclerosis in temporal lobe epilepsy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective:To further investigate the ability of MRI and 1H-MRS techniques for presurgical evaluation of hippocampal sclerosis. Methods:MRI and 1H-MRS were performed on 30 healthy subjects to determine the confidence levels. Eight patients who were pathologically confirmed hippocampal sclerosis were then studied using the same protocols. The difference of hippocampal formation (DHF) was used to determine atrophy of hippocampus. Areas under the peak of N-acetylaspartate(NAA) ,Creatine(Cr) and Choline (Cho) were measured, and the ratios of NAA/Cr, Cho/Cr, and NAA/Cr+Cho were calculated. NAA/Cr+Cho value was applied to localize the seizure focus. Results:Two patients showed hippocampal atrophy according to DHF value. NAA/Cr ratio decreased significantly in ipsilateral hippocampus compared to that in contralateral hippocampus and control subjects(P<0.01). Cho/Cr value increased in both ipsi-and contralateral hippocampus in comparison with that in control subjects(P<0.01). NAA/Cr+Cho ratio, however, significantly reduced in both ipsi-and contralateral hippocampus(P<0.01) with lowest NAA/Cr+Cho ratio in seizure foci. Six patients could be lateralized by reduced and/or asymmetric NAA/Cr+Cho value. Conclusion:1H-MRS should be a promising diagnostic tool to detect neuron abnormality.1H-MRS and MRI complement each other hi presurgical lateralization of epileptogenic lesion in epilepsy patients.

  19. The value of MRI in early Perthes` disease: an MRI study with a 2-year follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Lahdes-Vasama, T. [Department of Orthopaedic Surgery, Helsinki University Central Hospital, Children`s Hospital, Stenbaeckinkatu 11, FIN-00290 Helsinki (Finland); Lamminen, A. [Department of Radiology, Helsinki University Central Hospital, Helsinki (Finland); Merikanto, J. [Department of Orthopaedic Surgery, Helsinki University Central Hospital, Children`s Hospital, Stenbaeckinkatu 11, FIN-00290 Helsinki (Finland); Marttinen, E. [Department of Radiology, Children`s Hospital, Helsinki (Finland)

    1997-06-01

    Eleven hips in nine patients with Perthes` disease were studied by plain radiography at 3-month and MRI at 6-month intervals over a period of 2 years. The aim was to clarify the value of MRI in estimating epiphyseal involvement and in predicting uncoverage of the epiphysis. Signal intensities of the epiphysis and metaphysis were visually evaluated from T1- (T1W) and T2-weighted (T2W) images. The extent of decreased signal intensity (DSI) in the epiphyses was volumetrically calculated from T1W images and then compared with follow-up radiographs. The area of epiphyseal DSI corresponding best with Catterall`s classification was seen by MRI 3-8 months after the first symptoms. MRI images obtained earlier usually showed less involvement than the follow-up radiographs. However, two features predicting extensive epiphyseal necrosis were: (1) DSI on both T1W and T2W images covering over two-thirds of the epiphysis and (2) diffuse bone marrow oedema of the femoral neck and metaphysis. When T1W images showed a reappearance of high signal intensity patches in the lateral quarter of the epiphysis, no clinically significant uncoverage was seen during the follow-up. Extensive epiphyseal necrosis can, therefore, sometimes be predicted by MRI even within the first 3 months, but MRI visualises epiphyseal involvement more clearly 3-8 months after the first symptoms. (orig.). With 3 figs., 2 tabs.

  20. Development of an MRI rating scale for multiple brain regions: comparison with volumetrics and with voxel-based morphometry

    Energy Technology Data Exchange (ETDEWEB)

    Davies, R.R.; Williams, Guy B. [University of Cambridge, Department of Clinical Neurosciences, Cambridge (United Kingdom); Scahill, Victoria L.; Graham, Kim S. [Cardiff University, MRC Cognition and Brain Sciences Unit, Cambridge and Wales Institute of Cognitive Neuroscience, School of Psychology, Cardiff (United Kingdom); Graham, Andrew [University of Cambridge, Department of Clinical Neurosciences, Cambridge (United Kingdom); Cardiff University, MRC Cognition and Brain Sciences Unit, Cambridge and Wales Institute of Cognitive Neuroscience, School of Psychology, Cardiff (United Kingdom); Hodges, John R. [University of Cambridge, Department of Clinical Neurosciences, Cambridge (United Kingdom); Cardiff University, MRC Cognition and Brain Sciences Unit, Cambridge and Wales Institute of Cognitive Neuroscience, School of Psychology, Cardiff (United Kingdom); Prince of Wales Medical Research Institute, Cognitive Neurology, Sydney, NSW (Australia)

    2009-08-15

    We aimed to devise a rating method for key frontal and temporal brain regions validated against quantitative volumetric methods and applicable to a range of dementia syndromes. Four standardised coronal MR images from 36 subjects encompassing controls and cases with Alzheimer's disease (AD) and frontotemporal dementia (FTD) were used. After initial pilot studies, 15 regions produced good intra- and inter-rater reliability. We then validated the ratings against manual volumetry and voxel-based morphometry (VBM) and compared ratings across the subject groups. Validation against both manual volumetry (for both frontal and temporal lobes), and against whole brain VBM, showed good correlation with visual ratings for the majority of the brain regions. Comparison of rating scores across disease groups showed involvement of the anterior fusiform gyrus, anterior hippocampus and temporal pole in semantic dementia, while anterior cingulate and orbitofrontal regions were involved in behavioural variant FTD. This simple visual rating can be used as an alternative to highly technical methods of quantification, and may be superior when dealing with single cases or small groups. (orig.)

  1. Continuous table acquisition MRI for radiotherapy treatment planning: Distortion assessment with a new extended 3D volumetric phantom

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Amy, E-mail: aw554@uowmail.edu.au; Metcalfe, Peter [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia and Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); Liney, Gary [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); South West Clinical School, University of New South Wales, Sydney, NSW 2170 (Australia); Holloway, Lois [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); South West Clinical School, University of New South Wales, Sydney, NSW 2170 (Australia); Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Dowling, Jason; Rivest-Henault, David [Commonwealth Scientific and Industrial Research Organisation, Australian E-Health Research Centre, Herston, QLD 4029 (Australia)

    2015-04-15

    Purpose: Accurate geometry is required for radiotherapy treatment planning (RTP). When considering the use of magnetic resonance imaging (MRI) for RTP, geometric distortions observed in the acquired images should be considered. While scanner technology and vendor supplied correction algorithms provide some correction, large distortions are still present in images, even when considering considerably smaller scan lengths than those typically acquired with CT in conventional RTP. This study investigates MRI acquisition with a moving table compared with static scans for potential geometric benefits for RTP. Methods: A full field of view (FOV) phantom (diameter 500 mm; length 513 mm) was developed for measuring geometric distortions in MR images over volumes pertinent to RTP. The phantom consisted of layers of refined plastic within which vitamin E capsules were inserted. The phantom was scanned on CT to provide the geometric gold standard and on MRI, with differences in capsule location determining the distortion. MRI images were acquired with two techniques. For the first method, standard static table acquisitions were considered. Both 2D and 3D acquisition techniques were investigated. With the second technique, images were acquired with a moving table. The same sequence was acquired with a static table and then with table speeds of 1.1 mm/s and 2 mm/s. All of the MR images acquired were registered to the CT dataset using a deformable B-spline registration with the resulting deformation fields providing the distortion information for each acquisition. Results: MR images acquired with the moving table enabled imaging of the whole phantom length while images acquired with a static table were only able to image 50%–70% of the phantom length of 513 mm. Maximum distortion values were reduced across a larger volume when imaging with a moving table. Increased table speed resulted in a larger contribution of distortion from gradient nonlinearities in the through

  2. Quantitative Tractography and Volumetric MRI in Blast and Blunt Force TBI: Predictors of Neurocognitive and Behavioral Outcome

    Science.gov (United States)

    2015-10-01

    middle frontal and left inferior parietal regions, as well as with the left caudate and right lateral and medial orbital-frontal regions (Orff et al...within cortical and subcortical regions within the frontal and temporal lobes including prefrontal cortices, the anterior cingulate, the temporal cortex... lobe volumes. Initial efforts have proved that volumetric analyses are not as sensitive to the effects of TBI (at least in this subset of

  3. Semi-automated volumetric analysis of artificial lymph nodes in a phantom study.

    Science.gov (United States)

    Fabel, M; Biederer, J; Jochens, A; Bornemann, L; Soza, G; Heller, M; Bolte, H

    2011-12-01

    Quantification of tumour burden in oncology requires accurate and reproducible image evaluation. The current standard is one-dimensional measurement (e.g. RECIST) with inherent disadvantages. Volumetric analysis is discussed as an alternative for therapy monitoring of lung and liver metastases. The aim of this study was to investigate the accuracy of semi-automated volumetric analysis of artificial lymph node metastases in a phantom study. Fifty artificial lymph nodes were produced in a size range from 10 to 55mm; some of them enhanced using iodine contrast media. All nodules were placed in an artificial chest phantom (artiCHEST®) within different surrounding tissues. MDCT was performed using different collimations (1-5 mm) at varying reconstruction kernels (B20f, B40f, B60f). Volume and RECIST measurements were performed using Oncology Software (Siemens Healthcare, Forchheim, Germany) and were compared to reference volume and diameter by calculating absolute percentage errors. The software performance allowed a robust volumetric analysis in a phantom setting. Unsatisfying segmentation results were frequently found for native nodules within surrounding muscle. The absolute percentage error (APE) for volumetric analysis varied between 0.01 and 225%. No significant differences were seen between different reconstruction kernels. The most unsatisfactory segmentation results occurred in higher slice thickness (4 and 5 mm). Contrast enhanced lymph nodes showed better segmentation results by trend. The semi-automated 3D-volumetric analysis software tool allows a reliable and convenient segmentation of artificial lymph nodes in a phantom setting. Lymph nodes adjacent to tissue of similar density cause segmentation problems. For volumetric analysis of lymph node metastases in clinical routine a slice thickness of ≤3mm and a medium soft reconstruction kernel (e.g. B40f for Siemens scan systems) may be a suitable compromise for semi-automated volumetric analysis. Copyright

  4. A fully-automatic caudate nucleus segmentation of brain MRI: application in volumetric analysis of pediatric attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Igual, Laura; Soliva, Joan Carles; Hernández-Vela, Antonio; Escalera, Sergio; Jiménez, Xavier; Vilarroya, Oscar; Radeva, Petia

    2011-12-05

    Accurate automatic segmentation of the caudate nucleus in magnetic resonance images (MRI) of the brain is of great interest in the analysis of developmental disorders. Segmentation methods based on a single atlas or on multiple atlases have been shown to suitably localize caudate structure. However, the atlas prior information may not represent the structure of interest correctly. It may therefore be useful to introduce a more flexible technique for accurate segmentations. We present CaudateCut: a new fully-automatic method of segmenting the caudate nucleus in MRI. CaudateCut combines an atlas-based segmentation strategy with the Graph Cut energy-minimization framework. We adapt the Graph Cut model to make it suitable for segmenting small, low-contrast structures, such as the caudate nucleus, by defining new energy function data and boundary potentials. In particular, we exploit information concerning the intensity and geometry, and we add supervised energies based on contextual brain structures. Furthermore, we reinforce boundary detection using a new multi-scale edgeness measure. We apply the novel CaudateCut method to the segmentation of the caudate nucleus to a new set of 39 pediatric attention-deficit/hyperactivity disorder (ADHD) patients and 40 control children, as well as to a public database of 18 subjects. We evaluate the quality of the segmentation using several volumetric and voxel by voxel measures. Our results show improved performance in terms of segmentation compared to state-of-the-art approaches, obtaining a mean overlap of 80.75%. Moreover, we present a quantitative volumetric analysis of caudate abnormalities in pediatric ADHD, the results of which show strong correlation with expert manual analysis. CaudateCut generates segmentation results that are comparable to gold-standard segmentations and which are reliable in the analysis of differentiating neuroanatomical abnormalities between healthy controls and pediatric ADHD.

  5. Association of metabolic dysregulation with volumetric brain magnetic resonance imaging and cognitive markers of subclinical brain aging in middle-aged adults: the Framingham Offspring Study

    National Research Council Canada - National Science Library

    Tan, Zaldy S; Beiser, Alexa S; Fox, Caroline S; Au, Rhoda; Himali, Jayandra J; Debette, Stephanie; Decarli, Charles; Vasan, Ramachandran S; Wolf, Philip A; Seshadri, Sudha

    2011-01-01

    ...) in middle-aged adults. Framingham Offspring participants who underwent volumetric MRI and detailed cognitive testing and were free of clinical stroke and dementia during examination 7 (1998-2001...

  6. Volumetric Concentration Maximum of Cohesive Sediment in Waters: A Numerical Study

    Directory of Open Access Journals (Sweden)

    Jisun Byun

    2014-12-01

    Full Text Available Cohesive sediment has different characteristics compared to non-cohesive sediment. The density and size of a cohesive sediment aggregate (a so-called, floc continuously changes through the flocculation process. The variation of floc size and density can cause a change of volumetric concentration under the condition of constant mass concentration. This study investigates how the volumetric concentration is affected by different conditions such as flow velocity, water depth, and sediment suspension. A previously verified, one-dimensional vertical numerical model is utilized here. The flocculation process is also considered by floc in the growth type flocculation model. Idealized conditions are assumed in this study for the numerical experiments. The simulation results show that the volumetric concentration profile of cohesive sediment is different from the Rouse profile. The volumetric concentration decreases near the bed showing the elevated maximum in the cases of both current and oscillatory flow. The density and size of floc show the minimum and the maximum values near the elevation of volumetric concentration maximum, respectively. This study also shows that the flow velocity and the critical shear stress have significant effects on the elevated maximum of volumetric concentration. As mechanisms of the elevated maximum, the strong turbulence intensity and increased mass concentration are considered because they cause the enhanced flocculation process. This study uses numerical experiments. To the best of our knowledge, no laboratory or field experiments on the elevated maximum have been carried out until now. It is of great necessity to conduct well-controlled laboratory experiments in the near future.

  7. Volumetric assessment of recurrent or progressive gliomas: comparison between F-DOPA PET and perfusion-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Cicone, Francesco [Sant' Andrea Hospital, Rome (Italy). Unit of Nuclear Medicine; Rome Sapienza Univ. (Italy). Dept. of Surgical and Medical Sciences and tranlational Medicine; Research Centre Juelich (Germany). Inst. of Neureoscience and Medicine; Filss, Christian P.; Langen, Karl-Josef [Research Centre Juelich (Germany). Inst. of Neureoscience and Medicine; RWTH Aachen Univ. Hospital (Germany). Dept. of Nuclear Medicine; Minniti, Giuseppe; Scaringi, Claudia [Rome Sapienza Univ. (Italy). Dept. of Surgical and Medical Sciences and tranlational Medicine; Sant' Andrea Hospital, Rome (Italy). Unit of Radiotherapy; Rossi-Espagnet, Camilla; Bozzao, Alessandro [Sant' Andrea Hospital, Rome (Italy). Unit of Neuroradiology; Rome Sapienza Univ. (Italy). Dept. of Neurosciences, Mental Health and Sensory Organs (Ne.S.M.O.S.); Papa, Annalisa; Scopinaro, Francesco [Sant' Andrea Hospital, Rome (Italy). Unit of Nuclear Medicine; Rome Sapienza Univ. (Italy). Dept. of Surgical and Medical Sciences and tranlational Medicine; Galldiks, Norbert [Research Centre Juelich (Germany). Inst. of Neureoscience and Medicine; Cologne Univ. (Germany). Dept. of Neurology; Shah, N. Jon [Research Centre Juelich (Germany). Inst. of Neureoscience and Medicine

    2015-05-01

    To compare the diagnostic information obtained with 6-[{sup 18}F]-fluoro-l-3,4-dihydroxyphenylalanine (F-DOPA) PET and relative cerebral blood volume (rCBV) maps in recurrent or progressive glioma. All patients with recurrent or progressive glioma referred for F-DOPA imaging at our institution between May 2010 and May 2014 were retrospectively included, provided that macroscopic disease was visible on conventional MRI images and that rCBV maps were available for comparison. The final analysis included 50 paired studies (44 patients). After image registration, automatic tumour segmentation of both sets of images was performed using the average signal in a large reference VOI including grey and white matter multiplied by 1.6. Tumour volumes identified by both modalities were compared and their spatial congruence calculated. The distances between F-DOPA uptake and rCBV hot spots, tumour-to-brain ratios (TBRs) and normalized histograms were also computed. On visual inspection, 49 of the 50 F-DOPA and 45 of the 50 rCBV studies were classified as positive. The tumour volume delineated using F-DOPA (F-DOPA{sub vol} {sub 1.6}) greatly exceeded that of rCBV maps (rCBV{sub vol} {sub 1.6}). The median F-DOPA{sub vol} {sub 1.6} and rCBV{sub vol} {sub 1.6} were 11.44 ml (range 0 - 220.95 ml) and 1.04 ml (range 0 - 26.30 ml), respectively (p < 0.00001). Overall, the median overlapping volume was 0.27 ml, resulting in a spatial congruence of 1.38 % (range 0 - 39.22 %). The mean hot spot distance was 27.17 mm (±16.92 mm). F-DOPA uptake TBR was significantly higher than rCBV TBR (1.76 ± 0.60 vs. 1.15 ± 0.52, respectively; p < 0.0001). The histogram analysis showed that F-DOPA provided better separation of tumour from background. In 6 of the 50 studies (12 %), however, physiological uptake in the striatum interfered with tumour delineation. The information provided by F-DOPA PET and rCBV maps are substantially different. Image interpretation is easier and a larger tumour extent

  8. Three-dimensional volumetric MRI with isotropic resolution: improved speed of acquisition, spatial resolution and assessment of lesion conspicuity in patients with recurrent soft tissue sarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Ahlawat, Shivani [The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Morris, Carol [The Johns Hopkins Medical Institutions, Department of Orthopedic Surgery, Baltimore, MD (United States); The Johns Hopkins Medical Institutions, Department of Oncology, Baltimore, MD (United States); Fayad, Laura M. [The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); The Johns Hopkins Medical Institutions, Department of Orthopedic Surgery, Baltimore, MD (United States); The Johns Hopkins Medical Institutions, Department of Oncology, Baltimore, MD (United States)

    2016-05-15

    To assess the acquisition speed, lesion conspicuity, and inter-observer agreement associated with volumetric T{sub 1}-weighted MR sequences with isotropic resolution for detecting recurrent soft-tissue sarcoma (STS). Fifteen subjects with histologically proven recurrent STS underwent MRI, including axial and coronal T{sub 1}-weighted spin echo (T{sub 1}-WSE) (5-mm slice thickness) and coronal 3D volumetric T{sub 1}-weighted (fat-suppressed, volume-interpolated, breath-hold examination; repetition time/echo time, 3.7/1.4 ms; flip angle, 9.5 ; 1-mm slice thickness) sequences before and after intravenous contrast administration. Subtraction imaging and multiplanar reformations (MPRs) were performed. Acquisition times for T{sub 1}-WSE in two planes and 3D sequences were reported. Two radiologists reviewed images for quality (>50 % artifacts, 25-50 % artifacts, <25 % artifacts, and no substantial artifacts), lesion conspicuity, contrast-to-noise ratio (CNR{sub muscle}), recurrence size, and recurrence-to-joint distance. Descriptive and intraclass correlation (ICC) statistics are given. Mean acquisition times were significantly less for 3D imaging compared with 2-plane T{sub 1}-WSE (183.6 vs 342.6 s; P = 0.012). Image quality was rated as having no substantial artifacts in 13/15 and <25 % artifacts in 2/15. Lesion conspicuity was significantly improved for subtracted versus unsubtracted images (CNR{sub muscle}, 100 ± 138 vs 181 ± 199; P = 0.05). Mean recurrent lesion size was 2.5 cm (range, 0.7-5.7 cm), and measurements on 3D sequences offered excellent interobserver agreement (ICC, 0.98 for lesion size and 0.96 for recurrence-to-joint distance with MPR views). Three-dimensional volumetric sequences offer faster acquisition times, higher spatial resolution, and MPR capability compared with 2D T{sub 1}-WSE for postcontrast imaging. Subtraction imaging provides higher lesion conspicuity for detecting recurrent STS in skeletal muscle, with excellent interobserver

  9. Lesion Explorer: a video-guided, standardized protocol for accurate and reliable MRI-derived volumetrics in Alzheimer's disease and normal elderly.

    Science.gov (United States)

    Ramirez, Joel; Scott, Christopher J M; McNeely, Alicia A; Berezuk, Courtney; Gao, Fuqiang; Szilagyi, Gregory M; Black, Sandra E

    2014-04-14

    Obtaining in vivo human brain tissue volumetrics from MRI is often complicated by various technical and biological issues. These challenges are exacerbated when significant brain atrophy and age-related white matter changes (e.g. Leukoaraiosis) are present. Lesion Explorer (LE) is an accurate and reliable neuroimaging pipeline specifically developed to address such issues commonly observed on MRI of Alzheimer's disease and normal elderly. The pipeline is a complex set of semi-automatic procedures which has been previously validated in a series of internal and external reliability tests(1,2). However, LE's accuracy and reliability is highly dependent on properly trained manual operators to execute commands, identify distinct anatomical landmarks, and manually edit/verify various computer-generated segmentation outputs. LE can be divided into 3 main components, each requiring a set of commands and manual operations: 1) Brain-Sizer, 2) SABRE, and 3) Lesion-Seg. Brain-Sizer's manual operations involve editing of the automatic skull-stripped total intracranial vault (TIV) extraction mask, designation of ventricular cerebrospinal fluid (vCSF), and removal of subtentorial structures. The SABRE component requires checking of image alignment along the anterior and posterior commissure (ACPC) plane, and identification of several anatomical landmarks required for regional parcellation. Finally, the Lesion-Seg component involves manual checking of the automatic lesion segmentation of subcortical hyperintensities (SH) for false positive errors. While on-site training of the LE pipeline is preferable, readily available visual teaching tools with interactive training images are a viable alternative. Developed to ensure a high degree of accuracy and reliability, the following is a step-by-step, video-guided, standardized protocol for LE's manual procedures.

  10. Investigation of the growth patterns of non-functioning pituitary macroadenomas using volumetric assessments on serial MRI investigations

    Directory of Open Access Journals (Sweden)

    Jaco Pieterse

    2016-03-01

    Full Text Available Background: Benign non-functioning pituitary macroadenomas (NFMA often cause mass effect on the optic chiasm necessitating transsphenoidal surgery to prevent blindness.However, surgery is complicated and there is a high tumour recurrence rate. Currently, very little is known about the natural (and residual post-surgical growth patterns of these NFMA. Conflicting data describe decreased growth to exponential growth over various time periods.Due to lack of information on growth dynamics of these NFMA, suitable follow-up imaging protocols have not been described to date.Objective: To determine if NFMA grow or stay quiescent over a time period using serial MRI investigations and a stereo logical method to determine tumour volume. In addition, to evaluate if NFMA adhere to a certain growth pattern or grow at random.Method: Thirteen patients with NFMA had serial MRI investigations over a 73-month period at the Universitas Academic Hospital. Six of the selected patients had undergone previous surgery, while seven patients had received no medical or surgical intervention. By using astereological method, tumour volumes were calculated and plotted over time to demonstrate growth curves. The data were then fitted to tumour growth models already described in literature in order to obtain the best fit by calculating the r2 value.Results: Positive tumour growth was demonstrated in all cases. Tumour growth patterns of nine patients best fitted the exponential growth curve while the growth patterns of three patients best fitted the logistic growth curve. The remaining patient demonstrated a linear growth pattern.Conclusion: A specific growth model best described tumour growth observed in non-surgical and surgical cases. If follow-up imaging confirms positive growth, future growth can be predicted by extrapolation. This information can then be used to determine the relevant follow-up-imaging interval in each individual patient.

  11. Radial volumetric imaging breath-hold examination (VIBE) with k-space weighted image contrast (KWIC) for dynamic gadoxetic acid (Gd-EOB-DTPA)-enhanced MRI of the liver: advantages over Cartesian VIBE in the arterial phase

    Energy Technology Data Exchange (ETDEWEB)

    Fujinaga, Yasunari; Ohya, Ayumi; Tokoro, Hirokazu; Yamada, Akira; Ueda, Kazuhiko; Kadoya, Masumi [Shinshu University School of Medicine, Department of Radiology, Matsumoto (Japan); Ueda, Hitoshi; Kitou, Yoshihiro; Adachi, Yasuo; Shiobara, Aya; Tamaru, Naomichi [Radiology Division of Shinshu University Hospital, Matsumoto (Japan); Nickel, Marcel D. [Siemens AG Healthcare Sector, H IM MR PI TIO Oncology, Erlangen (Germany); Maruyama, Katsuya [Siemens Japan. K. K., Imaging and Therapy Systems Division, Shinagawa, Tokyo (Japan)

    2014-06-15

    To compare radial volumetric imaging breath-hold examination with k-space weighted image contrast reconstruction (r-VIBE-KWIC) to Cartesian VIBE (c-VIBE) in arterial phase dynamic gadoxetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (DCE-MRI) of the liver. We reviewed 53 consecutive DCE-MRI studies performed on a 3-T unit using c-VIBE and 53 consecutive cases performed using r-VIBE-KWIC with full-frame image subset (r-VIBE{sub full}) and sub-frame image subsets (r-VIBE{sub sub}; temporal resolution, 2.5-3 s). All arterial phase images were scored by two readers on: (1) contrast-enhancement ratio (CER) in the abdominal aorta; (2) scan timing; (3) artefacts; (4) visualisation of the common, right, and left hepatic arteries. Mean abdominal aortic CERs for c-VIBE, r-VIBE{sub full}, and r-VIBE{sub sub} were 3.2, 4.3 and 6.5, respectively. There were significant differences between each group (P < 0.0001). The mean score for c-VIBE was significantly lower than that for r-VIBE{sub full} and r-VIBE{sub sub} in all factors except for visualisation of the common hepatic artery (P < 0.05). The mean score of all factors except for scan timing for r-VIBE{sub sub} was not significantly different from that for r-VIBE{sub full}. Radial VIBE-KWIC provides higher image quality than c-VIBE, and r-VIBE{sub sub} features high temporal resolution without image degradation in arterial phase DCE-MRI. circle Radial VIBE-KWIC minimised artefact and produced high-quality and high-temporal-resolution images. circle Maximum abdominal aortic enhancement was observed on sub-frame images of r-VIBE-KWIC. (orig.)

  12. A volumetric study of parietal lobe subregions in Turner syndrome

    OpenAIRE

    Brown, Wendy E.; Shelli R Kesler; Eliez, Stephan; Warsofsky, Ilana S.; Haberecht, Michael; Reiss, Allan L.

    2004-01-01

    Turner syndrome, a genetic disorder that results from the complete or partial absence of an X chromosome in females, has been associated with specific impairment in visuospatial cognition. Previous studies have demonstrated a relationship between parietal lobe abnormalities and visuospatial deficits in Turner syndrome. We used high-resolution magnetic resonance imaging to measure parietal lobe subdivisions in 14 participants with Turner syndrome (mean age 13 years 5 months, SD 5 years) and 14...

  13. Study of Volumetrically Heated Ultra-High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rocca, Jorge J. [Colorado State Univ., Fort Collins, CO (United States)

    2016-10-27

    Heating dense matter to millions of degrees is important for applications, but requires complex and expensive methods. The major goal of the project was to demonstrate using a compact laser the creation of a new ultra-high energy density plasma regime characterized by simultaneous extremely high temperature and high density, and to study it combining experimental measurements and advanced simulations. We have demonstrated that trapping of intense femtosecond laser pulses deep within ordered nanowire arrays can heat near solid density matter into a new ultra hot plasma regime. Extreme electron densities, and temperatures of several tens of million degrees were achieved using laser pulses of only 0.5 J energy from a compact laser. Our x-ray spectra and simulations showed that extremely highly ionized plasma volumes several micrometers in depth are generated by irradiation of gold and Nickel nanowire arrays with femtosecond laser pulses of relativistic intensities. We obtained extraordinarily high degrees of ionization (e.g. we peeled 52 electrons from gold atoms, and up to 26 electrons from nickel atoms). In the process we generated Gigabar pressures only exceeded in the central hot spot of highly compressed thermonuclear fusion plasmas.. The plasma created after the dissolved wires expand, collide, and thermalize, is computed to have a thermal energy density of 0.3 GJ cm-3 and a pressure of 1-2 Gigabar. These are pressures only exceeded in highly compressed thermonuclear fusion plasmas. Scaling these results to higher laser intensities promises to create plasmas with temperatures and pressures exceeding those in the center of the sun.

  14. Light-Curing Volumetric Shrinkage in Dimethacrylate-Based Dental Composites by Nanoindentation and PAL Study

    Science.gov (United States)

    Shpotyuk, Olha; Adamiak, Stanislaw; Bezvushko, Elvira; Cebulski, Jozef; Iskiv, Maryana; Shpotyuk, Oleh; Balitska, Valentina

    2017-01-01

    Light-curing volumetric shrinkage in dimethacrylate-based dental resin composites Dipol® is examined through comprehensive kinetics research employing nanoindentation measurements and nanoscale atomic-deficient study with lifetime spectroscopy of annihilating positrons. Photopolymerization kinetics determined through nanoindentation testing is shown to be described via single-exponential relaxation function with character time constants reaching respectively 15.0 and 18.7 s for nanohardness and elastic modulus. Atomic-deficient characteristics of composites are extracted from positron lifetime spectra parameterized employing unconstrained x3-term fitting. The tested photopolymerization kinetics can be adequately reflected in time-dependent changes observed in average positron lifetime (with 17.9 s time constant) and fractional free volume of positronium traps (with 18.6 s time constant). This correlation proves that fragmentation of free-volume positronium-trapping sites accompanied by partial positronium-to-positron traps conversion determines the light-curing volumetric shrinkage in the studied composites.

  15. Dynamic MRI study for breast tumors

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Tsuneaki (Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine)

    1990-10-01

    Application of MRI for diagnosis of breast tumors was retrospectively examined in 103 consecutive cases. Contrast enhancement, mostly by dynamic study, was performed in 83 cases using Gd-DTPA and 0.5 T superconductive apparatus. Results were compared to those of mammography and sonography. On dynamic study, carcinoma showed abrupt rise of signal intensity with clear-cut peak formation in early phase, while benign fibroadenoma showed slow rise of signal intensity and prolonged enhancement without peak formation. In 12 of 33 carcinomas (33%), peripheral ring enhancement was noted reflecting vascular stroma of histologic sections. All fibroadenomas showed homogenous enhancement without peripheral ring. In MRI, sensitivity, specificity, and accuracy were 86%, 96%, 91%. In mammography 82%, 95%, 87% and in ultrasonography 91%, 95%, 93%. Although MRI should not be regarded as routine diagnostic procedure because of expense and limited availability, it may afford useful additional information when standard mammographic findings are not conclusive. (author).

  16. Tunnel widening after ACL reconstruction with aperture screw fixation or all-inside reconstruction with suspensory cortical button fixation: Volumetric measurements on CT and MRI scans.

    Science.gov (United States)

    Mayr, Raul; Smekal, Vinzenz; Koidl, Christian; Coppola, Christian; Fritz, Josef; Rudisch, Ansgar; Kranewitter, Christof; Attal, René

    2017-10-01

    Tunnel widening after anterior cruciate ligament reconstruction (ACLR) is influenced by the surgical and fixation techniques used. Computed tomography (CT) is the most accurate image modality for assessing tunnel widening, but magnetic resonance imaging (MRI) might also be reliable for tunnel volume measurements. In the present study tunnel widening after ACLR using biodegradable interference screw fixation was compared with all-inside ACLR using button fixation, with tunnel volume changes being measured on CT and MRI scans. Randomized controlled trial; Level of evidence, 2. Thirty-three patients were randomly assigned to hamstring ACLR using a biodegradable interference screw or all-inside cortical button fixation. CT and MRI scanning were done at the time of surgery and six months after. Tunnel volume changes were calculated and compared. On CT, femoral tunnel volumes changed from the postoperative state (100%) to 119.8% with screw fixation and 143.2% with button fixation (P=0.023). The changes in tibial tunnel volumes were not significant (113.9% vs. 117.7%). The changes in bone tunnel volume measured on MRI were comparable with those on CT only for tunnels with interference screws. Tibial tunnels with button fixation were significantly underestimated on MRI scanning (P=0.018). All-inside ACLR using cortical button fixation results in increased femoral tunnel widening in comparison with ACLR with biodegradable interference screw fixation. MRI represents a reliable imaging modality for future studies investigating tunnel widening with interference screw fixation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The entire dural sinus tree is compressed in patients with idiopathic intracranial hypertension: a longitudinal, volumetric magnetic resonance imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Rohr, Axel; Bindeballe, Jan; Riedel, Christian; Jansen, Olav [University Clinic of Schleswig-Holstein Campus Kiel, Department of Neuroradiology, Kiel (Germany); Baalen, Andreas van [University Clinic of Schleswig-Holstein Campus Kiel, Department of Neuropediatrics, Kiel (Germany); Bartsch, Thorsten [University Clinic of Schleswig-Holstein Campus Kiel, Department of Neurology, Kiel (Germany); Doerner, Lutz [University Clinic of Schleswig-Holstein Campus Kiel, Department of Neurosurgery, Kiel (Germany)

    2012-01-15

    The objective of this study was to explore the volumetric alterations of dural sinuses in patients with idiopathic intracranial hypertension (IIH). Standardized cranial magnetic resonance imaging (MRI) was used in 17 patients prior to and following treatment of IIH and in seven controls. Magnetic resonance venographies (MRV) were employed for (a) judgement of circumscript dural sinus stenoses and (b) computation of sinus volumes. Cross-sectional areas (CSA) of the superior sagittal sinuses (SSS) were measured on T2-weighted images. Results of the initial MRIs were compared to those on follow-up MRIs and to results of controls. Stenoses of the transverse sinuses (TS) resulting in cranial venous outflow obstruction (CVOO) were present in 15/17 (88%) patients, normalizing in 7/15 cases (47%) after treatment of IIH. CVOO was not detected in the control group. Segmentation of MRV revealed decreased dural sinus volumes in patients with IIH as compared to controls (P = 0.018). Sinus volumes increased significantly with normalization of intracranial pressure independent from disappearing of TS stenoses (P = 0.007). The CSA of the SSS were normal on the initial MRIs of patients with IIH and increased on follow-up after treatment (P < 0.001). However, volumetries displayed overlap in patients and controls. Patients with IIH not only exhibit bilateral stenoses of the TS as has been reported, but volume changes of their entire dural sinus system also occur. The potential etiopathological and diagnostic roles of these changes are discussed. (orig.)

  18. Volumetric alterations in the nucleus accumbens and caudate nucleus in bulimia nervosa: a structural magnetic resonance imaging study.

    Science.gov (United States)

    Coutinho, Joana; Ramos, Ana Filipa; Maia, Liliana; Castro, Liliana; Conceição, Eva; Geliebter, Allan; Machado, Paulo P P; Gonçalves, Óscar; Sampaio, Adriana

    2015-03-01

    Bulimia nervosa (BN) is an eating disorder characterized by recurrent episodes of binge eating and inappropriate compensatory behaviors (such as purging, fasting, or excessive exercise) to prevent weight gain. BN has been associated with deficits in inhibitory control processes. The basal ganglia specifically, the nucleus accumbens (NAc) and the caudate nucleus (CN) are part of the frontostriatal circuits involved in inhibitory control. The main goal of this study was to investigate the presence of morphological alterations in the NAc and the CN in a sample of patients diagnosed with BN. Forty-one female participants, 21 diagnosed with BN and 20 healthy matched controls (HC), underwent a structural magnetic resonance imaging (MRI) acquisition and clinical assessment. The NAc and the CN were manually segmented using the software Slicer 3D. The results reveal a significant volumetric decrease in the CN and a preserved NAc volume in BN compared to the control group. These findings suggest a contributory role of the caudate nucleus part of the dorsal striatum in the psychopathology of BN. © 2014 Wiley Periodicals, Inc.

  19. Quantitative Tractography and Volumetric MRI in Blast and Blunt Force TBI: Predictors of Neurocognitive and Behavioral Outcome

    Science.gov (United States)

    2014-10-01

    JHTR-D-13-00184 May 30, 2014 17:19 J Head Trauma Rehabil Copyright c© 2014 Wolters Kluwer Health | Lippincott Williams & Wilkins The Relationship Between...text of the culture and value systems in which he/she lives and Copyright © 2014 Lippincott Williams & Wilkins. Unauthorized reproduction of this article...self-report. No Glasgow Coma Scale scores were avail- able for this study, and all information (LOC, PTA, Copyright © 2014 Lippincott Williams

  20. Quantitative Tractography and Volumetric MRI in Blast and Blunt Force TBI: Predictors of Neurocognitive and Behavioral Outcome

    Science.gov (United States)

    2012-10-01

    have shown that the fornix—a limbic white matter (WM) structure connecting the hippocampus and mammillary bodies—is a predilection site for neurotrauma...connecting the hippocampus to the frontal lobe. Since studies have suggested that hippocampal atrophy may precipitate cognitive decline in the context of...be especially productive, and we are currently actively pursuing additional funding to complement the aims and goals of this award. REFERENCES

  1. Quantitative Tractography and Volumetric MRI in Blast and Blunt Force TBI: Predictors of Neurocognitive and Behavioral Outcome

    Science.gov (United States)

    2016-10-01

    to properly and accurately image this region (small, densely packed fibers with bony artifact ). In a study published within a special journal series...chures distributed in clinics or within the general hospital areas at the Veterans Affairs San Diego Healthcare System (VASDHS) or at veteran organiza...acquisitions, and all images were corrected for motion artifact using the eddy correct FSL command. Visual inspection of all images was performed for

  2. A Multicenter Study of Volumetric Computed Tomography for Staging Malignant Pleural Mesothelioma.

    Science.gov (United States)

    Rusch, Valerie W; Gill, Ritu; Mitchell, Alan; Naidich, David; Rice, David C; Pass, Harvey I; Kindler, Hedy L; De Perrot, Marc; Friedberg, Joseph

    2016-10-01

    Standard imaging modalities are inaccurate in staging malignant pleural mesothelioma (MPM). Single-institution studies suggest that volumetric computed tomography (CT) is more accurate but labor intensive. We established a multicenter network to test interobserver variability, accuracy (relative to pathologic stage), and the prognostic significance of semiautomated volumetric CT. Six institutions electronically submitted to an established multicenter database clinical and pathologic data for patients with MPM who had operations. Institutional radiologists reviewed preoperative CT scans for quality and then submitted by electronic network (AG Mednet, www.agmednet.com) to the biostatistical center. Two reference radiologists blinded to clinical data performed semiautomated tumor volume calculations using Vitrea Enterprise 6.0 software (Vital Images, Minnetonka, MN) and then submitted readings to the biostatistical center. Study end points included feasibility of the network, interobserver variability for volumetric CT, correlation of tumor volume to pTN stages, and overall survival (OS). Of 164 patients, the CT scans for 129 were analyzable and read by reference radiologists. Most tumors were less than 500 cm(3). A small bias was observed between readers because one provided consistently larger measurements than the other (mean difference, 47.9; p = .0027), but for 80%, the absolute difference was 200 cm(3) or less. Spearman correlation between readers was 0.822. Volume correlated with pTN stages and OS, best defined by three groups with average volumes of 91.2, 245.3, and 511.3 cm(3) associated with median OS of 37, 18, and 8 months, respectively. For the first time, a multicenter network was established and initial correlations of tumor volume with pTN stages and OS are shown. A larger multicenter international study is planned to confirm the results and refine correlations. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights

  3. The frontal and temporal horn ratio to assess dimension of paediatric hydrocephalus: a comparative volumetric study.

    Science.gov (United States)

    Antes, Sebastian; Welsch, Melanie; Kiefer, Michael; Gläser, Mareike; Körner, Heiko; Eymann, Regina

    2013-01-01

    Magnetic resonance imaging and cranial -ultrasound are the most frequently implemented imaging methods for investigating the infantile hydrocephalic brain. A general and reliable measurement index that can be equally applied in both imaging methods to assess dimension of ventricular dilatation is currently not available. For this purpose, a new parameter called the frontal and temporal horn ratio - determinable in coronal slices of the brain - was developed and evaluated in a comparative volumetric retrospective study: Statistical analyses of 118 MRIs of 46 different shunt-treated pediatric patients revealed a good linear correlation between the new index and the actual ventricular volume.

  4. High-throughput volumetric reconstruction for 3D wheat plant architecture studies

    Directory of Open Access Journals (Sweden)

    Wei Fang

    2016-09-01

    Full Text Available For many tiller crops, the plant architecture (PA, including the plant fresh weight, plant height, number of tillers, tiller angle and stem diameter, significantly affects the grain yield. In this study, we propose a method based on volumetric reconstruction for high-throughput three-dimensional (3D wheat PA studies. The proposed methodology involves plant volumetric reconstruction from multiple images, plant model processing and phenotypic parameter estimation and analysis. This study was performed on 80 Triticum aestivum plants, and the results were analyzed. Comparing the automated measurements with manual measurements, the mean absolute percentage error (MAPE in the plant height and the plant fresh weight was 2.71% (1.08cm with an average plant height of 40.07cm and 10.06% (1.41g with an average plant fresh weight of 14.06g, respectively. The root mean square error (RMSE was 1.37cm and 1.79g for the plant height and plant fresh weight, respectively. The correlation coefficients were 0.95 and 0.96 for the plant height and plant fresh weight, respectively. Additionally, the proposed methodology, including plant reconstruction, model processing and trait extraction, required only approximately 20s on average per plant using parallel computing on a graphics processing unit (GPU, demonstrating that the methodology would be valuable for a high-throughput phenotyping platform.

  5. Imaging tools to study pharmacology: functional MRI on small rodents

    Directory of Open Access Journals (Sweden)

    Elisabeth eJonckers

    2015-10-01

    Full Text Available Functional Magnetic Resonance Imaging (fMRI is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD fMRI techniques, including resting state (rsfMRI, stimulus-evoked (st-fMRI, and pharmacological MRI (phMRI. Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sensory stimulation and/or a pharmacological challenge. The first part of this review describes the physiological basis of BOLD fMRI and the hemodynamic response on which the MRI contrast is based. Specific emphasis goes to possible effects of anaesthesia and the animal’s physiological conditions on neural activity and the hemodynamic response. The second part of this review describes applications of the aforementioned techniques in pharmacologically-induced, as well as in traumatic and transgenic disease models and illustrates how multiple fMRI methods can be applied successfully to evaluate different aspects of a specific disorder. For example, fMRI techniques can be used to pinpoint the neural substrate of a disease beyond previously defined hypothesis-driven regions-of-interest (ROIs. In addition, fMRI techniques allow one to dissect how specific modifications (e.g. treatment, lesion etc. modulate the functioning of specific brain areas (st-fMRI, phMRI and how functional connectivity (rsfMRI between several brain regions is affected, both in acute and extended time frames. Furthermore, fMRI techniques can be used to assess/explore the efficacy of novel treatments in depth, both in fundamental research as well as in preclinical settings. In conclusion, by describing several exemplary studies, we aim to highlight the advantages of functional MRI in exploring the acute and long-term effects of pharmacological substances and/or pathology on brain functioning along with

  6. Smaller right amygdala in Caucasian alcohol-dependent male patients with a history of intimate partner violence: a volumetric imaging study.

    Science.gov (United States)

    Zhang, Lishu; Kerich, Mike; Schwandt, Melanie L; Rawlings, Robert R; McKellar, Joshua D; Momenan, Reza; Hommer, Daniel W; George, David T

    2013-05-01

    Studies have shown that various brain structure abnormalities are associated with chronic alcohol abuse and impulsive aggression. However, few imaging studies have focused on violent individuals with a diagnosis of alcohol dependence. The present study used volumetric magnetic resonance imaging (MRI) to compare the volumes of different structural components of prefrontal cortex and six subcortical structures in perpetrators of intimate partner violence with alcohol dependence (IPV-ADs), non-violent alcohol-dependent patients (non-violent ADs) and healthy controls (HCs). Caucasian men (n = 54), ages 24-55, who had participated in National Institutes of Alcohol Abuse and Alcoholism treatment programs, were grouped together as IPV-ADs (n = 27), non-violent ADs (n = 14) and HCs (n = 13). The MRI scan was performed at least 3 weeks from the participant's last alcohol use. T1-weighted images were used to measure the volumes of intracranial space, gray and white matter, orbitofrontal cortex, medial prefrontal cortex, lateral prefrontal cortex, and six subcortical structures. Results revealed that IPV-ADs, compared with non-violent ADs and HCs, had a significant volume reduction in the right amygdala. No significant volumetric difference was found in other structures. This finding suggests that structural deficits in the right amygdala may underlie impulsive types of aggression often seen in alcohol-dependent patients with a history of IPV. It adds to a growing literature suggesting that there are fundamental differences between alcohol-dependent patients with and without IPV. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction.

  7. MRI

    Science.gov (United States)

    MRI does not use ionizing radiation. No side effects from the magnetic fields and radio waves have been reported. The most common type of contrast (dye) used is gadolinium. It is very safe. Allergic reactions rarely ...

  8. Volumetric characterization of the flow over miniature wind farms: An experimental study

    Science.gov (United States)

    Wing, Lai; Troolin, Dan; Hyun, Jin Kim; Tobin, Nicolas; Zuniga Zamalloa, Carlo; Chamorro, Leonardo P.

    2014-11-01

    An internal boundary layer is known to develop from the interaction between wind farms and the atmospheric boundary layer. It possesses characteristic features able to modulate the turbulence dynamics over large regions and eventually modify the micro climate in the vicinity of the wind farm. In this study, we examine the structure of the turbulence above various miniature wind farm configurations using 3D Particle Image velocimetry (PIV). Each miniature wind farm is placed in the boundary-layer wind tunnel at the Mechanical Science Engineering, UIUC. The turbines are fabricated using 3D printing and have a loading system that controls their tip-speed ratio and allows for characterizing the loads. Volumetric PIV is performed at various locations over and downstream a series of wind farm layouts. High-order turbulence statistics, turbulence structure and characteristic coherent motions are obtained and discussed in terms of the wind farm layout.

  9. MR volumetric study of piriform-cortical amygdala and orbitofrontal cortices: the aging effect.

    Directory of Open Access Journals (Sweden)

    Jing Shen

    Full Text Available INTRODUCTION: The piriform cortex and cortical amygdala (PCA and the orbitofrontal cortex (OFC are considered olfactory-related brain regions. This study aims to elucidate the normal volumes of PCA and OFC of each age groups (20.0-70.0 year old, and whether the volumes of PCA and OFC decline with increasing age and diminishing olfactory function. METHODS: One hundred and eleven healthy right-handed participants (54 males, 57 females, age 20.0 to 70.0 years were recruited to join this study after excluding all the major causes of olfactory dysfunction. Volumetric measurements of PCA and OFC were performed using consecutive 1-mm thick coronal slices of high-resolution 3-D MRIs. A validated olfactory function test (Sniffin' Sticks assessed olfactory function, which measured odor threshold (THD, odor discrimination (DIS, and odor identification (ID as well as their sum score (TDI. RESULTS: The volume of OFC decreased with age and significantly correlated with age-related declines in olfactory function. The volume of OFC showed significant age-group differences, particularly after 40 years old (p < 0.001, while olfactory function decreased significantly after 60 years old (p < 0.001. Similar age-related volumetric changes were not found for PCA (p = 0.772. Additionally, there was significant correlation between OFC and DIS on the Right Side (p = 0.028 and between OFC and TDI on both sides (p < 0.05. There was no similar correlation for PCA. CONCLUSIONS: Aging can have a great impact on the volume of OFC and olfactory function while it has much smaller effect on the volume of PCA. The result could be useful to establish normal volumes of PCA and OFC of each age group to assess neurological disorders that affect olfactory function.

  10. Volumetric MRI for evaluation of regional pattern and progression of neocortical degeneration in Alzheimer's disease; MR-Volumetrie zur Darstellung von Verteilung und zeitlicher Abfolge neokortikaler Degeneration bei Morbus Alzheimer

    Energy Technology Data Exchange (ETDEWEB)

    Leinsinger, G. [Institut fuer Klinische Radiologie, Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Muenchen (Germany); Institut fuer Klinische Radiologie, LMU Muenchen, Ziemssenstrasse 1, 80336, Muenchen (Germany); Teipel, S.; Pruessner, J.; Hampel, H. [Klinik fuer Psychiatrie, Ludwig-Maximilians-Universitaet Muenchen, Muenchen (Germany); Wismueller, A.; Born, C.; Meindl, T.; Flatz, W.; Schoenberg, S.; Reiser, M. [Institut fuer Klinische Radiologie, Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Muenchen (Germany)

    2003-07-01

    Volumetric analysis of the corpus callosum and hippocampus using MRI in Alzheimer's disease (AD) to evaluate the regional pattern and progression of neocortical neurodegeneration. In subsequent studies we investigated patients with AD and healthy controls. Volumetry was based on MRI-data from a sagittal 3D T1w-gradient echo sequence. The corpus callosum (CC) was measured in a midsagittal slice, and subdivided into 5 subregions. Volumetry of the hippocampus/amygdala-formation (HAF) was performed by segmentation in coronary reoriented slices. In AD patients we found a significant atrophy in the rostrum und splenium of CC. The atrophy was correlated with the severity of dementia, but no correlation was found with the load of white matter lesions. In comparison with {sup 18}FDG-PET, we found a significant correlation of regional CC-atrophy with the regional decline of cortical glucose metabolism. A ROC-analysis demonstrated no significant differences in the diagostic accuracy of HAF volumetry and regional CC volumetry of the splenium (region C5) even in mild stages of dementia. Regional atrophy of CC can be used as a marker of neocortical degeneration even in early stages of dementia in AD. (orig.) [German] Volumetrische Analyse des Corpus callosum und Hippokampus mittels MRT bei der Alzheimer-Erkrankung (AD), mit dem Ziel die regionale Verteilung und Progression der neokortikalen relativ zur allokortikalen Neurodegeneration zu erfassen. In mehreren Studienabschnitten wurden Patienten mit AD und gesunde Kontrollen untersucht. Als Grundlage fuer die Volumetrie diente eine sagittale 3D-T1w-Gradientenechosequenz. Die Vermessung des Corpus callosum (CC) erfolgte in der mittsagittalen Schicht, wobei 5 Subregionen definiert wurden. Die Volumetrie des Hippokampus-Amygdala-Komplexes (HAK) wurde durch Segmentierung an koronar reorientierten Schichten durchgefuehrt. Bei Patienten mit AD fand sich eine signifikante Atrophie in Rostrum und Splenium des CC. Dabei zeigte sich

  11. White Matter Development during Adolescence as Shown by Diffusion MRI

    Science.gov (United States)

    Schmithorst, Vincent J.; Yuan, Weihong

    2010-01-01

    Previous volumetric developmental MRI studies of the brain have shown white matter development continuing through adolescence and into adulthood. This review presents current findings regarding white matter development and organization from diffusion MRI studies. The general trend during adolescence (age 12-18 years) is towards increasing…

  12. Hippocampus, caudate nucleus and entorhinal cortex volumetric MRI measurements in discrimination between Alzheimer’s disease, mild cognitive impairment, and normal aging

    Directory of Open Access Journals (Sweden)

    Rasha Elshafey

    2014-06-01

    Conclusion: Semi-automated MR volumetric measurements can be used to determine atrophy in hippocampus, caudate nucleus and entorhinal cortex which aided in discrimination of healthy elderly control subjects from subjects with AD and MCI and predict clinical decline of MCI leading to increase the efficiency of clinical treatments, delay institutionalization and improve cognition and behavioral symptoms.

  13. MRI study of lumbosacral lipoma in children

    Energy Technology Data Exchange (ETDEWEB)

    Taviere, V.; Brunelle, F.; Baraton, J.; Teman, M.; Pierre-Kahn, A.; Lallemand, D.

    1989-06-01

    We report our experience with 16 cases of lumbosacral lipoma and MRI in children. From these observations, MRI appears to be a suitable examination. The exact situation of the cord and the lipoma is clearly seen. Associated anomalies such as syringomyelia is also clearly demonstrated.

  14. To see bruxism: a functional MRI study

    Science.gov (United States)

    2015-01-01

    Objective: Since the pathophysiology of bruxism is not clearly understood, there exists no possible treatment. The aim of this study is to investigate the cerebral activation differences between healthy subjects and patients with bruxism on behalf of possible aetiological factors. Methods: 12 healthy subjects and 12 patients with bruxism, a total of 24 right-handed female subjects (aged 20–27 years) were examined using functional MRI during tooth-clenching and resting tasks. Imaging was performed with 3.0-T MRI scanner with a 32-channel head coil. Differences in regional brain activity between patients with bruxism and healthy subjects (control group) were observed with BrainVoyager QX 2.8 (Brain Innovation, Maastricht, Netherlands) statistical data analysis program. Activation maps were created using the general linear model: single study and multistudy multisubject for statistical group analysis. This protocol was approved by the ethics committee of medical faculty of Kirikkale University, Turkey (02/04), based on the guidelines set forth in the Declaration of Helsinki. Results: The group analysis revealed a statistically significant increase in blood oxygenation level-dependent signal of three clusters in the control group (p < 0.005), which may indicate brain regions related with somatognosis, repetitive passive motion, proprioception and tactile perception. These areas coincide with Brodmann areas 7, 31, 39 and 40. It is conceivable that there are differences between healthy subjects and patients with bruxism. Conclusions: Our findings indicate that there was a decrease of cortical activation pattern in patients with bruxism in clenching tasks. This indicates decreased blood flow and activation in regional neuronal activity. Bruxism, as an oral motor disorder concerns dentistry, neurology and psychiatry. These results might improve the understanding and physiological handling of sleep bruxism. PMID:25806864

  15. Assessment of apical periodontitis by MRI. A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Geibel, M.A. [Ulm Univ. (Germany). Oral and Maxillofacial Surgery; Schreiber, E.S.; Bracher, A.K.; Rasche, V. [Ulm Univ. (Germany). Internal Medicine II; Hell, E.; Ulrici, J. [Sirona Dental Systems GmbH, Bensheim (Germany). Dental Imaging; Sailer, L.K. [DOC Praxisklinik im Wiley, Neu-Ulm (Germany). MKG; Ozpeynirci, Y. [Ulm Univ. (Germany). Diagnostic and Interventional Radiology

    2015-04-15

    The purpose of this clinical feasibility study was to evaluate the applicability of magnetic resonance imaging (MRI) for the assessment of apical periodontitis in direct comparison with cone beam CT (CBCT). 19 consecutive patients (average age 43 ± 13 years) with 34 lesions in total (13 molars, 14 premolars and 7 front teeth) were enrolled in this feasibility study. Periapical lesions were defined as periapical radiolucencies (CBCT) or structural changes in the spongy bone signal (MRI), which were connected with the apical part of a root and with at least twice the width of the periodontal ligament space. The location and dimension of the lesions were compared between MRI and CBCT. While mainly mineralized tissue components such as teeth and bone were visible with CBCT, complimentary information of the soft tissue components was assessable with MRI. The MRI images provided sufficient diagnostic detail for the assessment of the main structures of interest. Heterogeneous contrast was observed within the lesion, with often a clear enhancement close to the apical foramen and the periodontal gap. No difference for lesion visibility was observed between MRI and CBCT. The lesion dimensions corresponded well, but were slightly but significantly overestimated with MRI. A heterogeneous lesion appearance was observed in several patients. Four patients presented with a well circumscribed hyperintense signal in the vicinity of the apical foramen. The MRI capability of soft tissue characterization may facilitate detailed analysis of periapical lesions. This clinical study confirms the applicability of multi-contrast MRI for the identification of periapical lesions.

  16. Lying about Facial Recognition: An fMRI Study

    Science.gov (United States)

    Bhatt, S.; Mbwana, J.; Adeyemo, A.; Sawyer, A.; Hailu, A.; VanMeter, J.

    2009-01-01

    Novel deception detection techniques have been in creation for centuries. Functional magnetic resonance imaging (fMRI) is a neuroscience technology that non-invasively measures brain activity associated with behavior and cognition. A number of investigators have explored the utilization and efficiency of fMRI in deception detection. In this study,…

  17. Neural Basis of Tics: A Functional MRI Study

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-09-01

    Full Text Available Event-related functional MRI (fMRI was used to study the neural basis of spontaneous motor and vocal tics in 10 patients with Tourette syndrome, at the National Institute of Neurological Disorders and Stroke, Bethesda, MD.

  18. Lying about Facial Recognition: An fMRI Study

    Science.gov (United States)

    Bhatt, S.; Mbwana, J.; Adeyemo, A.; Sawyer, A.; Hailu, A.; VanMeter, J.

    2009-01-01

    Novel deception detection techniques have been in creation for centuries. Functional magnetic resonance imaging (fMRI) is a neuroscience technology that non-invasively measures brain activity associated with behavior and cognition. A number of investigators have explored the utilization and efficiency of fMRI in deception detection. In this study,…

  19. MRI-guided percutaneous nephrostomy: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Kariniemi, Juho; Sequeiros, Roberto Blanco; Ojala, Risto; Tervonen, Osmo [Oulu University Hospital, Department of Radiology, P.O. Box 50, Oulu (Finland)

    2009-05-15

    The purpose of this study was to assess the feasibility and safety of magnetic resonance imaging (MRI)-guided PCN in an open-configuration low-field MRI system. Eight patients were prospectively enrolled in the study. The degree of the dilatation of the renal collecting system varied from minimal to severe. All procedures were performed solely under MRI guidance with a 0.23-T open configuration C-arm-shaped MRI system with interventional optical tracking. In each case, PCN was performed with a MRI-compatible drainage kit using the Seldinger technique. Seven out of eight nephrostomies were successfully performed under MRI guidance. All PCN procedures in dilated renal collection systems were successful; however, nephrostomy catheter could not be placed in a nondilated system. The mean time needed for the MRI-guided PCN was 26 min. No major complications occurred during the procedure or follow-up. MRI-guided PCN in dilated renal collection system is feasible and safe. The presented technique has limitations that necessitate further technical developments before the procedure can be applied to nondilated kidneys and recommended for routine clinical use. (orig.)

  20. Glioblastoma: does the pre-treatment geometry matter? A postcontrast T1 MRI-based study

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Beteta, Julian; Martinez-Gonzalez, Alicia; Molina, David; Amo-Salas, Mariano; Luque, Belen; Perez-Garcia, Victor M. [Universidad de Castilla-La Mancha, Laboratory of Mathematical Oncology, Edificio Politecnico, Instituto de Matematica Aplicada a la Ciencia y la Ingenieria, Ciudad Real (Spain); Arregui, Elena; Calvo, Manuel; Borras, Jose M.; Lopez, Carlos; Claramonte, Marta [Hospital General de Ciudad Real, Ciudad Real (Spain); Barcia, Juan A.; Iglesias, Lidia; Avecillas, Josue [Hospital Clinico San Carlos, Madrid (Spain); Albillo, David; Navarro, Miguel; Villanueva, Jose M.; Paniagua, Juan C.; Perez-Romasanta, Luis [Hospital Universitario de Salamanca, Salamanca (Spain); Martino, Juan; Velasquez, Carlos [Hospital Marques de Valdecilla, Santander (Spain); Asenjo, Beatriz; Benavides, Manuel; Herruzo, Ismael [Hospital Carlos Haya, Malaga (Spain); Delgado, Maria del Carmen; Valle, Ana del [Universidad de Sevilla, Facultad de Matematicas, Sevilla (Spain); Falkov, Anthony [Auckland Radiation Oncology, Auckland (New Zealand); Schucht, Philippe [Bern Inselspital, Neurosurgery Department, Bern (Switzerland); Arana, Estanislao [Instituto Valenciano de Oncologia, Valencia (Spain)

    2017-03-15

    The potential of a tumour's volumetric measures obtained from pretreatment MRI sequences of glioblastoma (GBM) patients as predictors of clinical outcome has been controversial. Mathematical models of GBM growth have suggested a relation between a tumour's geometry and its aggressiveness. A multicenter retrospective clinical study was designed to study volumetric and geometrical measures on pretreatment postcontrast T1 MRIs of 117 GBM patients. Clinical variables were collected, tumours segmented, and measures computed including: contrast enhancing (CE), necrotic, and total volumes; maximal tumour diameter; equivalent spherical CE width and several geometric measures of the CE ''rim''. The significance of the measures was studied using proportional hazards analysis and Kaplan-Meier curves. Kaplan-Meier and univariate Cox survival analysis showed that total volume [p = 0.034, Hazard ratio (HR) = 1.574], CE volume (p = 0.017, HR = 1.659), spherical rim width (p = 0.007, HR = 1.749), and geometric heterogeneity (p = 0.015, HR = 1.646) were significant parameters in terms of overall survival (OS). Multivariable Cox analysis for OS provided the later two parameters as age-adjusted predictors of OS (p = 0.043, HR = 1.536 and p = 0.032, HR = 1.570, respectively). Patients with tumours having small geometric heterogeneity and/or spherical rim widths had significantly better prognosis. These novel imaging biomarkers have a strong individual and combined prognostic value for GBM patients. (orig.)

  1. Development, Construction, and Operation of a Multisample Volumetric Apparatus for the Study of Gas Adsorption Equilibrium

    Science.gov (United States)

    Ribeiro, Rui P. P. L.; Silva, Ricardo J. S.; Esteves, Isabel A. A. C.; Mota, Jose´ P. B.

    2015-01-01

    The construction of a simple volumetric adsorption apparatus is highlighted. The setup is inexpensive and provides a clear demonstration of gas phase adsorption concepts. The topic is suitable for undergraduate chemistry and chemical engineering students. Moreover, this unit can also provide quantitative data that can be used by young researchers…

  2. Frontal-subcortical volumetric deficits in single episode, medication-naive depressed patients and the effects of 8 weeks fluoxetine treatment: a VBM-DARTEL study.

    Directory of Open Access Journals (Sweden)

    Lingtao Kong

    Full Text Available BACKGROUND: Convergent studies suggest that morphological abnormalities of frontal-subcortical circuits which involved with emotional and cognitive processing may contribute to the pathophysiology of major depressive disorder (MDD. Antidepressant treatment which has been reported to reverse the functional abnormalities of frontal-subcortical circuits in MDD may have treating effects to related brain morphological abnormalities. In this study, we used voxel-based morphometry method to investigate whole brain structural abnormalities in single episode, medication-naïve MDD patients. Furthermore, we investigated the effects of an 8 weeks pharmacotherapy with fluoxetine. METHODS: 28 single episode, medication-naïve MDD participants and 28 healthy controls (HC acquired the baseline high-resolution structural magnetic resonance imaging (sMRI scan. 24 MDD participants acquired a follow-up sMRI scan after 8 weeks antidepressant treatment. Gray matter volumetric (GMV difference between groups was examined. RESULTS: Medication-naïve MDD had significantly decreased GMV in the right dorsolateral prefrontal cortex and left middle frontal gyrus as well as increased GMV in the left thalamus and right insula compared to HC (P<0.05, corrected. Moreover, treated MDD had significantly increased GMV in the left middle frontal gyrus and right orbitofrontal cortex compared to HC (P<0.05, corrected. No difference on GMV was detected between medication-naïve MDD group and treated MDD group. CONCLUSIONS: This study of single episode, medication-naïve MDD subjects demonstrated structural abnormalities of frontal-subcortical circuitsin the early stage of MDD and the effects of 8 weeks successful antidepressant treatment, suggesting these abnormalities may play an important role in the neuropathophysiology of MDD at its onset.

  3. An Experimental study of the initial volumetric strain rate effect on the creep behaviour of reconstituted clays

    Science.gov (United States)

    Bagheri, M.; Rezania, M.; Nezhad, M. M.

    2015-09-01

    Clayey soils tend to undergo continuous compression with time, even after excess pore pressures have substantially dissipated. The effect of time on deformation and mechanical response of these soft soils has been the subject of numerous studies. Based on these studies, the observed time-dependent behaviour of clays is mainly related to the evolution of soil volume and strength characteristics with time, which are classified as creep and/or relaxation properties of the soil. Apart from many empirical relationships that have been proposed in the literature to capture the rheological behaviour of clays, a number of viscid constitutive relationships have also been developed which have more attractive theoretical attributes. A particular feature of these viscid models is that their creep parameters often have clear physical meaning (e.g. coefficient of secondary compression, Cα). Sometimes with these models, a parameter referred to as initial/reference volumetric strain rate, has also been alluded as a model parameter. However, unlike Cα, the determination of and its variations with stress level is not properly documented in the literature. In an attempt to better understand , this paper presents an experimental investigation of the reference volumetric strain rate in reconstituted clay specimens. A long-term triaxial creep test, at different shear stress levels and different strain rates, was performed on clay specimen whereby the volumetric strain rate was measured. The obtained results indicated the stress-level dependency and non-linear variation of with time.

  4. Resting-state fMRI studies in epilepsy

    Institute of Scientific and Technical Information of China (English)

    Wurina; Yu-Feng Zang; Shi-Gang Zhao

    2012-01-01

    Epilepsy is a disease characterized by abnormal spontaneous activity in the brain.Resting-state functional magnetic resonance imaging (RS-fMRI) is a powerful technique for exploring this activity.With good spatial and temporal resolution,RS-fMRI is a promising approach for accurate localization of the focus of seizure activity.Although simultaneous electroencephalogram-fMR1 has been performed with patients in the resting state,most studies focused on activation.This mini-review focuses on RS-fMRI alone,including its computational methods and its application to epilepsy.

  5. Functional MRI in human motor control studies and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Toma, Keiichiro [Kyoto Univ. (Japan). Graduate School of Medicine; Nakai, Toshiharu [Inst. of Biomedical Research and Innovation, Kobe (Japan)

    2002-07-01

    Functional magnetic resonance imaging (fMRI) has been a useful tool for the noninvasive mapping of brain function associated with various motor and cognitive tasks. Because fMRI is based on the blood oxygenation level dependent (BOLD) effect, it does not directly record neural activity. With the fMRI technique, distinguishing BOLD signals creased by cortical projection neurons from those created by intracortical neurons appears to be difficult. Two major experimental designs are used in fMRI studies: block designs and event-related designs. Block-designed fMRI presupposes the steady state of regional cerebral blood flow and has been applied to examinations of brain activation caused by tasks requiring sustained or repetitive movements. By contrast, the more recently developed event-related fMRI with time resolution of a few seconds allows the mapping of brain activation associated with a single movement according to the transient aspects of the hemodynamic response. Increasing evidence suggests that multiple motor areas are engaged in a networked manner to execute various motor acts. In order to understand functional brain maps, it is important that one understands sequential and parallel organizations of anatomical connections between multiple motor areas. In fMRI studies of complex motor tasks, elementary parameters such as movement length, force, velocity, acceleration and frequency should be controlled, because inconsistency in those parameters may alter the extent and intensity of motor cortical activation, confounding interpretation of the findings obtained. In addition to initiation of movements, termination of movements plays an important role in the successful achievement of complex movements. Brain areas exclusively related to the termination of movements have been, for the first time, uncovered with an event-related fMRI technique. We propose the application of fMRI to the elucidation of the pathophysiology of movement disorders, particularly dystonia

  6. Language networks in children: Evidence from functional MRI studies

    OpenAIRE

    2009-01-01

    We review functional MRI and other neuroimaging studies of language skills in children from infancy to adulthood. These studies show developmental changes in the networks of brain regions supporting language, which can be affected by brain injuries or neurological disorders. Particular aspects of language rely on networks that lateralize to the dominant hemisphere; others rely on bilateral or non-dominant mechanisms. Multiple fMRI tasks for pediatric patients characterize functional brain reo...

  7. A planning study investigating dual-gated volumetric arc stereotactic treatment of primary renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Devereux, Thomas, E-mail: thomas.devereux@petermac.org [Radiation Therapy Services, Peter MacCallum Cancer Centre, Melbourne (Australia); Pham, Daniel [Radiation Therapy Services, Peter MacCallum Cancer Centre, Melbourne (Australia); Kron, Tomas [Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne (Australia); Sir Peter MacCallum Department of Oncology, Melbourne University, Melbourne (Australia); Foroudi, Farshad [Sir Peter MacCallum Department of Oncology, Melbourne University, Melbourne (Australia); Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne (Australia); Supple, Jeremy [School of Applied Sciences, Royal Melbourne Institute of Technology, Melbourne (Australia); Siva, Shankar [Sir Peter MacCallum Department of Oncology, Melbourne University, Melbourne (Australia); Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne (Australia)

    2015-04-01

    This is a planning study investigating the dosimetric advantages of gated volumetric-modulated arc therapy (VMAT) to the end-exhale and end-inhale breathing phases for patients undergoing stereotactic treatment of primary renal cell carcinoma. VMAT plans were developed from the end-inhale (VMATinh) and the end-exhale (VMATexh) phases of the breathing cycle as well as a VMAT plan and 3-dimensional conformal radiation therapy plan based on an internal target volume (ITV) (VMATitv). An additional VMAT plan was created by giving the respective gated VMAT plan a 50% weighting and summing the inhale and exhale plans together to create a summed gated plan. Dose to organs at risk (OARs) as well as comparison of intermediate and low-dose conformity was evaluated. There was no difference in the volume of healthy tissue receiving the prescribed dose for the planned target volume (PTV) (CI100%) for all the VMAT plans; however, the mean volume of healthy tissue receiving 50% of the prescribed dose for the PTV (CI50%) values were 4.7 (± 0.2), 4.6 (± 0.2), and 4.7 (± 0.6) for the VMATitv, VMATinh, and VMATexh plans, respectively. The VMAT plans based on the exhale and inhale breathing phases showed a 4.8% and 2.4% reduction in dose to 30 cm{sup 3} of the small bowel, respectively, compared with that of the ITV-based VMAT plan. The summed gated VMAT plans showed a 6.2% reduction in dose to 30 cm{sup 3} of the small bowel compared with that of the VMAT plans based on the ITV. Additionally, when compared with the inhale and the exhale VMAT plans, a 4% and 1.5%, respectively, reduction was observed. Gating VMAT was able to reduce the amount of prescribed, intermediate, and integral dose to healthy tissue when compared with VMAT plans based on an ITV. When summing the inhale and exhale plans together, dose to healthy tissue and OARs was optimized. However, gating VMAT plans would take longer to treat and is a factor that needs to be considered.

  8. Study of MRI in Stratified Viscous Plasma Configuration

    CERN Document Server

    Carlevaro, Nakia; Renzi, Fabrizio

    2016-01-01

    We analyze the morphology of the Magneto-rotational Instability (MRI) for a stratified viscous plasma disk configuration in differential rotation, taking into account the so-called corotation theorem for the background profile. In order to select the intrinsic Alfv\\'enic nature of MRI, we deal with an incompressible plasma and we adopt a formulation of the perturbation analysis based on the use of the magnetic flux function as a dynamical variable. Our study outlines, as consequence of the corotation condition, a marked asymmetry of the MRI with respect to the equatorial plane, particularly evident in a complete damping of the instability over a positive critical height on the equatorial plane. We also emphasize how such a feature is already present (although less pronounced) even in the ideal case, restoring a dependence of the MRI on the stratified morphology of the gravitational field.

  9. SLIMMER: SLIce MRI motion estimation and reconstruction tool for studies of fetal anatomy

    Science.gov (United States)

    Kim, Kio; Habas, Piotr A.; Rajagopalan, Vidya; Scott, Julia; Rousseau, Francois; Barkovich, A. James; Glenn, Orit A.; Studholme, Colin

    2011-03-01

    We describe a free software tool which combines a set of algorithms that provide a framework for building 3D volumetric images of regions of moving anatomy using multiple fast multi-slice MRI studies. It is specifically motivated by the clinical application of unsedated fetal brain imaging, which has emerged as an important area for image analysis. The tool reads multiple DICOM image stacks acquired in any angulation into a consistent patient coordinate frame and allows the user to select regions to be locally motion corrected. It combines algorithms for slice motion estimation, bias field inconsistency correction and 3D volume reconstruction from multiple scattered slice stacks. The tool is built onto the RView (http://rview.colin-studholme.net) medical image display software and allows the user to inspect slice stacks, and apply both stack and slice level motion estimation that incorporates temporal constraints based on slice timing and interleave information read from the DICOM data. Following motion estimation an algorithm for bias field inconsistency correction provides the user with the ability to remove artifacts arising from the motion of the local anatomy relative to the imaging coils. Full 3D visualization of the slice stacks and individual slice orientations is provided to assist in evaluating the quality of the motion correction and final image reconstruction. The tool has been evaluated on a range of clinical data acquired on GE, Siemens and Philips MRI scanners.

  10. Volumetric composition of nanocomposites

    DEFF Research Database (Denmark)

    Madsen, Bo; Lilholt, Hans; Mannila, Juha

    2015-01-01

    Detailed characterisation of the properties of composite materials with nanoscale fibres is central for the further progress in optimization of their manufacturing and properties. In the present study, a methodology for the determination and analysis of the volumetric composition of nanocomposites...... is presented, using cellulose/epoxy and aluminosilicate/polylactate nanocomposites as case materials. The buoyancy method is used for the accurate measurements of materials density. The accuracy of the method is determined to be high, allowing the measured nanocomposite densities to be reported with 5...... significant figures. The plotting of the measured nanocomposite density as a function of the nanofibre weight content is shown to be a first good approach of assessing the porosity content of the materials. The known gravimetric composition of the nanocomposites is converted into a volumetric composition...

  11. VolHOG: a volumetric object recognition approach based on bivariate histograms of oriented gradients for vertebra detection in cervical spine MRI.

    Science.gov (United States)

    Daenzer, Stefan; Freitag, Stefan; von Sachsen, Sandra; Steinke, Hanno; Groll, Mathias; Meixensberger, Jürgen; Leimert, Mario

    2014-08-01

    The automatic recognition of vertebrae in volumetric images is an important step toward automatic spinal diagnosis and therapy support systems. There are many applications such as the detection of pathologies and segmentation which would benefit from automatic initialization by the detection of vertebrae. One possible application is the initialization of local vertebral segmentation methods, eliminating the need for manual initialization by a human operator. Automating the initialization process would optimize the clinical workflow. However, automatic vertebra recognition in magnetic resonance (MR) images is a challenging task due to noise in images, pathological deformations of the spine, and image contrast variations. This work presents a fully automatic algorithm for 3D cervical vertebra detection in MR images. We propose a machine learning method for cervical vertebra detection based on new features combined with a linear support vector machine for classification. An algorithm for bivariate gradient orientation histogram generation from three-dimensional raster image data is introduced which allows us to describe three-dimensional objects using the authors' proposed bivariate histograms. A detailed performance evaluation on 21 T2-weighted MR images of the cervical vertebral region is given. A single model for cervical vertebrae C3-C7 is generated and evaluated. The results show that the generic model performs equally well for each of the cervical vertebrae C3-C7. The algorithm's performance is also evaluated on images containing various levels of artificial noise. The results indicate that the proposed algorithm achieves good results despite the presence of severe image noise. The proposed detection method delivers accurate locations of cervical vertebrae in MR images which can be used in diagnosis and therapy. In order to achieve absolute comparability with the results of future work, the authors are following an open data approach by making the image dataset

  12. Automated segmentation of ventricles from serial brain MRI for the quantification of volumetric changes associated with communicating hydrocephalus in patients with brain tumor

    Science.gov (United States)

    Pura, John A.; Hamilton, Allison M.; Vargish, Geoffrey A.; Butman, John A.; Linguraru, Marius George

    2011-03-01

    Accurate ventricle volume estimates could improve the understanding and diagnosis of postoperative communicating hydrocephalus. For this category of patients, associated changes in ventricle volume can be difficult to identify, particularly over short time intervals. We present an automated segmentation algorithm that evaluates ventricle size from serial brain MRI examination. The technique combines serial T1- weighted images to increase SNR and segments the means image to generate a ventricle template. After pre-processing, the segmentation is initiated by a fuzzy c-means clustering algorithm to find the seeds used in a combination of fast marching methods and geodesic active contours. Finally, the ventricle template is propagated onto the serial data via non-linear registration. Serial volume estimates were obtained in an automated robust and accurate manner from difficult data.

  13. STUDY ON THE VOLUMETRIC RATIO OF THE HYBRID GM REGENERATOR OVER THE COLD CHAMBER WORKING AT 4K.

    Energy Technology Data Exchange (ETDEWEB)

    WANG,L.

    1999-07-12

    This paper presents a computational analysis on the hybrid GM regenerator at liquid helium region. The effects of the ratio of the regenerator volume over the cold chamber volume on cooling performance were simulated numerically. The results show that there exits a minimum ratio of the regenerator volume over the cold chamber volume for a G-M cryocooler at 4K. The cooling capacity of the refrigerator drops sharply with smaller regenerator, and rises slowly with larger regenerator. The effects of the material combinations of the hybrid regenerator on the volumetric ratio were also studied. The design principle of the geometry size of the regenerator working at 4K was discussed.

  14. Application of MRI and biomedical engineering in speech production study.

    Science.gov (United States)

    Ventura, S R; Freitas, D R; Tavares, João Manuel R S

    2009-12-01

    Speech production has always been a subject of interest both at the morphological and acoustic levels. This knowledge is useful for a better understanding of all the involved mechanisms and for the construction of articulatory models. Magnetic resonance imaging (MRI) is a powerful technique that allows the study of the whole vocal tract, with good soft tissue contrast and resolution, and permits the calculation of area functions towards a better understanding of this mechanism. Thus, our aim is to demonstrate the value and application of MRI in speech production study and its relationship with engineering, namely with biomedical engineering. After vocal tract contours extraction, data were processed for 3D reconstruction culminating in model construction of some of the sounds of European Portuguese. MRI provides useful morphological data about the position and shape of the different speech articulators, and the biomedical engineering computational tools for its analysis.

  15. Volumetric Virtual Environments

    Institute of Scientific and Technical Information of China (English)

    HE Taosong

    2000-01-01

    Driven by fast development of both virtual reality and volume visualization, we discuss some critical techniques towards building a volumetric VR system, specifically the modeling, rendering, and manipulations of a volumetric scene.Techniques such as voxel-based object simplification, accelerated volume rendering,fast stereo volume rendering, and volumetric "collision detection" are introduced and improved, with the idea of demonstrating the possibilities and potential benefits of incorporating volumetric models into VR systems.

  16. Mixed-effects and fMRI studies

    DEFF Research Database (Denmark)

    Friston, K.J; Stephan, K.E; Ellegaard Lund, Torben

    2005-01-01

    This note concerns mixed-effect (MFX) analyses in multisession functional magnetic resonance imaging (fMRI) studies. It clarifies the relationship between mixed-effect analyses and the two-stage 'summary statistics' procedure (Holmes, A.P., Friston, K.J., 1998. Generalisability, random effects...... and population inference. NeuroImage 7, S754) that has been adopted widely for analyses of fMRI data at the group level. We describe a simple procedure, based on restricted maximum likelihood (ReML) estimates of covariance components, that enables full mixed-effects analyses in the context of statistical...

  17. Impact of Global Normalization in fMRI Acupuncture Studies

    Directory of Open Access Journals (Sweden)

    Jinbo Sun

    2012-01-01

    Full Text Available Global normalization is often used as a preprocessing step for dispelling the “nuisance effects.” However, it has been shown in cognitive and emotion tasks that this preprocessing step might greatly distort statistical results when the orthogonality assumption of global normalization is violated. The present study examines this issue in fMRI acupuncture studies. Thirty healthy subjects were recruited to evaluate the impacts of the global normalization on the BOLD responses evoked by acupuncture stimulation during De-qi sensation and tactile stimulation during nonpainful sensations. To this end, we compared results by conducting global normalization (PSGS and not conducting global normalization (NO PSGS based on a proportional scaling model. The orthogonality assumption of global normalization was violated, and significant changes between BOLD responses for NO PSGS and PSGS were shown in most subjects. Extensive deactivations of acupuncture in fMRI were the non-specifically pernicious consequences of global normalization. The central responses of acupuncture during De-qi are non-specifically activation-dominant at the somatosensory-related brain network, whose statistical power is specifically enhanced by PSGS. In conclusion, PSGS should be unjustified for acupuncture studies in fMRI. The differences including the global normalization or not may partly contribute to conflicting results and interpretations in previous fMRI acupuncture studies.

  18. Feasibility study of volumetric modulated arc therapy with constant dose rate for endometrial cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ruijie [Department of Radiation Oncology, Peking University Third Hospital, Beijing (China); Wang, Junjie, E-mail: junjiewang47@yahoo.com [Department of Radiation Oncology, Peking University Third Hospital, Beijing (China); Xu, Feng [Department of Biomedical Engineering, Peking University Third Hospital, Beijing (China); Li, Hua [Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing (China); Zhang, Xile [Department of Radiation Oncology, Peking University Third Hospital, Beijing (China)

    2013-10-01

    To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. The nine-field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry run was performed to assess the dosimetric accuracy with MatriXX from IBA. Compared with IMRT, the VMAT-CDR plans delivered a slightly greater V{sub 20} of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability.

  19. White matter development in early puberty: a longitudinal volumetric and diffusion tensor imaging twin study.

    Science.gov (United States)

    Brouwer, Rachel M; Mandl, René C W; Schnack, Hugo G; van Soelen, Inge L C; van Baal, G Caroline; Peper, Jiska S; Kahn, René S; Boomsma, Dorret I; Hulshoff Pol, H E

    2012-01-01

    White matter microstructure and volume show synchronous developmental patterns in children. White matter volume increases considerably during development. Fractional anisotropy, a measure for white matter microstructural directionality, also increases with age. Development of white matter volume and development of white matter microstructure seem to go hand in hand. The extent to which the same or different genetic and/or environmental factors drive these two aspects of white matter maturation is currently unknown. We mapped changes in white matter volume, surface area and diffusion parameters in mono- and dizygotic twins who were scanned at age 9 (203 individuals) and again at age 12 (126 individuals). Over the three-year interval, white matter volume (+6.0%) and surface area (+1.7%) increased, fiber bundles expanded (most pronounced in the left arcuate fasciculus and splenium), and fractional anisotropy increased (+3.0%). Genes influenced white matter volume (heritability ~85%), surface area (~85%), and fractional anisotropy (locally 7% to 50%) at both ages. Finally, volumetric white matter growth was negatively correlated with fractional anisotropy increase (r = -0.62) and this relationship was driven by environmental factors. In children who showed the most pronounced white matter growth, fractional anisotropy increased the least and vice-versa. Thus, white matter development in childhood may reflect a process of both expansion and fiber optimization.

  20. White matter development in early puberty: a longitudinal volumetric and diffusion tensor imaging twin study.

    Directory of Open Access Journals (Sweden)

    Rachel M Brouwer

    Full Text Available White matter microstructure and volume show synchronous developmental patterns in children. White matter volume increases considerably during development. Fractional anisotropy, a measure for white matter microstructural directionality, also increases with age. Development of white matter volume and development of white matter microstructure seem to go hand in hand. The extent to which the same or different genetic and/or environmental factors drive these two aspects of white matter maturation is currently unknown. We mapped changes in white matter volume, surface area and diffusion parameters in mono- and dizygotic twins who were scanned at age 9 (203 individuals and again at age 12 (126 individuals. Over the three-year interval, white matter volume (+6.0% and surface area (+1.7% increased, fiber bundles expanded (most pronounced in the left arcuate fasciculus and splenium, and fractional anisotropy increased (+3.0%. Genes influenced white matter volume (heritability ~85%, surface area (~85%, and fractional anisotropy (locally 7% to 50% at both ages. Finally, volumetric white matter growth was negatively correlated with fractional anisotropy increase (r = -0.62 and this relationship was driven by environmental factors. In children who showed the most pronounced white matter growth, fractional anisotropy increased the least and vice-versa. Thus, white matter development in childhood may reflect a process of both expansion and fiber optimization.

  1. Volumetric Three-Dimensional Display Systems

    Science.gov (United States)

    Blundell, Barry G.; Schwarz, Adam J.

    2000-03-01

    A comprehensive study of approaches to three-dimensional visualization by volumetric display systems This groundbreaking volume provides an unbiased and in-depth discussion on a broad range of volumetric three-dimensional display systems. It examines the history, development, design, and future of these displays, and considers their potential for application to key areas in which visualization plays a major role. Drawing substantially on material that was previously unpublished or available only in patent form, the authors establish the first comprehensive technical and mathematical formalization of the field, and examine a number of different volumetric architectures. System level design strategies are presented, from which proposals for the next generation of high-definition predictable volumetric systems are developed. To ensure that researchers will benefit from work already completed, they provide: * Descriptions of several recent volumetric display systems prepared from material supplied by the teams that created them * An abstract volumetric display system design paradigm * An historical summary of 90 years of development in volumetric display system technology * An assessment of the strengths and weaknesses of many of the systems proposed to date * A unified presentation of the underlying principles of volumetric display systems * A comprehensive bibliography Beautifully supplemented with 17 color plates that illustrate volumetric images and prototype displays, Volumetric Three-Dimensional Display Systems is an indispensable resource for professionals in imaging systems development, scientific visualization, medical imaging, computer graphics, aerospace, military planning, and CAD/CAE.

  2. STUDY OF POSTERIOR FOSSA TUMORS BY HIGH RESOLUTION MRI

    Directory of Open Access Journals (Sweden)

    Sree Hari

    2016-01-01

    Full Text Available INTRODUCTION Magnetic Resonance Imaging (MRI is the imaging modality used for the assessment of infratentorial neoplasms. Although Computed Tomography (CT provides better demonstration of small or subtle calcifications within tumors. OBJECTIVES Study is done to assess the potential of MRI in characterisation of different tumors in posterior fossa by evaluating various unenhanced and gadolinium enhanced sequences and to compare high resolution FSE MRI sequences with routine FSE MRI sequences in diagnosing posterior fossa brain tumors. Also correlate findings on Magnetic Resonance Imaging with Pathological diagnosis. MATERIALS AND METHODS A total of 52 patients were diagnosed by CT brain as having posterior fossa brain for a year of 2 years were included in the study. In all studies MR imaging was performed with a clinical 1.5 T system (General electrical medical systems. A dedicated phased-array coil was used. RESULTS The age group ranged from 1 year to 60 years, majority were between 1 to 20 years (39%. Slight male preponderance was seen (males 29, females 23. Commonest tumor encountered in our study was vestibular schwannoma. DWI alone can differentiate different pediatric posterior fossa brain tumors. One case of pilocytic astrocytoma showed solid lesion instead of typical cystic lesion with mural nodule. One case AT-RT showed 2 lesions one in cerebrum, one in CP angle. Common feature being intra-axial lesion involving cerebellum. MRI was able to predict diagnosis in 50 of the 52 tumors. CONCLUSION Magnetic Resonance Imaging was found to be a highly sensitive imaging procedure and method of choice for posterior fossa brain tumors.

  3. Methodological proposal for the volumetric study of archaeological ceramics through 3D edition free-software programs: the case of the celtiberians cemeteries of the meseta

    Directory of Open Access Journals (Sweden)

    Álvaro Sánchez Climent

    2014-10-01

    Full Text Available Nowadays the free-software programs have been converted into the ideal tools for the archaeological researches, reaching the same level as other commercial programs. For that reason, the 3D modeling tool Blender has reached in the last years a great popularity offering similar characteristics like other commercial 3D editing programs such as 3D Studio Max or AutoCAD. Recently, it has been developed the necessary script for the volumetric calculations of three-dimnesional objects, offering great possibilities to calculate the volume of the archaeological ceramics. In this paper, we present a methodological approach for the volumetric studies with Blender and a study case of funerary urns from several celtiberians cemeteries of the Spanish Meseta. The goal is to demonstrate the great possibilities that the 3D editing free-software tools have in the volumetric studies at the present time.

  4. A Technique for Generating Volumetric Cine-Magnetic Resonance Imaging.

    Science.gov (United States)

    Harris, Wendy; Ren, Lei; Cai, Jing; Zhang, You; Chang, Zheng; Yin, Fang-Fang

    2016-06-01

    The purpose of this study was to develop a techique to generate on-board volumetric cine-magnetic resonance imaging (VC-MRI) using patient prior images, motion modeling, and on-board 2-dimensional cine MRI. One phase of a 4-dimensional MRI acquired during patient simulation is used as patient prior images. Three major respiratory deformation patterns of the patient are extracted from 4-dimensional MRI based on principal-component analysis. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI. The deformation field is represented as a linear combination of the 3 major deformation patterns. The coefficients of the deformation patterns are solved by the data fidelity constraint using the acquired on-board single 2-dimensional cine MRI. The method was evaluated using both digital extended-cardiac torso (XCAT) simulation of lung cancer patients and MRI data from 4 real liver cancer patients. The accuracy of the estimated VC-MRI was quantitatively evaluated using volume-percent-difference (VPD), center-of-mass-shift (COMS), and target tracking errors. Effects of acquisition orientation, region-of-interest (ROI) selection, patient breathing pattern change, and noise on the estimation accuracy were also evaluated. Image subtraction of ground-truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground-truth with prior image. Agreement between normalized profiles in the estimated and ground-truth VC-MRI was achieved with less than 6% error for both XCAT and patient data. Among all XCAT scenarios, the VPD between ground-truth and estimated lesion volumes was, on average, 8.43 ± 1.52% and the COMS was, on average, 0.93 ± 0.58 mm across all time steps for estimation based on the ROI region in the sagittal cine images. Matching to ROI in the sagittal view achieved better accuracy when there was substantial breathing pattern change. The technique was robust against noise levels up to SNR = 20. For

  5. Precuneus atrophy in early-onset Alzheimer's disease: a morphometric structural MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Karas, Giorgos [Vrije Universiteit Medical Centre, Department of Diagnostic Radiology, Amsterdam (Netherlands); Vrije Universiteit Medical Center, Alzheimer Center, Amsterdam (Netherlands); Scheltens, Philip; Jones, Bethany [Vrije Universiteit Medical Center, Alzheimer Center, Amsterdam (Netherlands); Vrije Universiteit Medical Center, Department of Clinical Neurology, Amsterdam (Netherlands); Rombouts, Serge [Vrije Universiteit Medical Center, Alzheimer Center, Amsterdam (Netherlands); Vrije Universiteit Medical Center, Department of Clinical Physics and Informatics, Amsterdam (Netherlands); Schijndel, Ronald van [Vrije Universiteit Medical Center, Image Analysis Center, Amsterdam (Netherlands); Vrije Universiteit Medical Center, Department of Clinical Physics and Informatics, Amsterdam (Netherlands); Klein, Martin [Vrije Universiteit Medical Center, Department of Medical Psychology, Amsterdam (Netherlands); Flier, Wiesje van der [Vrije Universiteit Medical Center, Alzheimer Center, Amsterdam (Netherlands); Vrenken, Hugo [Vrije Universiteit Medical Center, Image Analysis Center, Amsterdam (Netherlands); Barkhof, Frederik [Vrije Universiteit Medical Centre, Department of Diagnostic Radiology, Amsterdam (Netherlands); Vrije Universiteit Medical Center, Image Analysis Center, Amsterdam (Netherlands); Vrije Universiteit Medical Center, Alzheimer Center, Amsterdam (Netherlands)

    2007-12-15

    Alzheimer's disease (AD) usually first presents in elderly patients, but may also develop at an earlier age. Patients with an early age at onset tend to present with complaints other than memory impairment, such as visuospatial problems or apraxia, which may reflect a different distribution of cortical involvement. In this study we set out to investigate whether age at onset in patients with AD determines the pattern of atrophy on cerebral MRI scans. We examined 55 patients with AD over a wide age range and analyzed their 3-D T1-weighted structural MRI scans in standard space using voxel-based morphometry (VBM). Regression analysis was performed to estimate loss of grey matter as a function of age, corrected for mini-mental state examination (MMSE) scores and sex. The VBM analyses identified multiple areas (including the temporal and parietal lobes), showing more atrophy with advancing age. By contrast, a younger age at onset was found to be associated with lower grey matter density in the precuneus. Regionalized volumetric analysis of this region confirmed the existence of disproportionate atrophy in the precuneus in patients with early-onset AD. Application of a multivariate model with precuneus grey matter density as input, showed that precuneal and hippocampal atrophy are independent from each other. Additionally, we found that a smaller precuneus is associated with impaired visuospatial functioning. Our findings support the notion that age at onset modulates the distribution of cortical involvement, and that disproportionate precuneus atrophy is more prominent in patients with a younger age of onset. (orig.)

  6. Reversible cerebral shrinkage in kwashiorkor: an MRI study.

    Science.gov (United States)

    Gunston, G D; Burkimsher, D; Malan, H; Sive, A A

    1992-08-01

    Protein energy malnutrition is associated with cerebral atrophy which may be detrimental to intellectual development. The aim of this study was to document the anatomical abnormalities which lead to the appearance of cerebral atrophy using magnetic resonance imaging (MRI) in the acute stage of kwashiorkor and to monitor changes during nutritional rehabilitation. Twelve children aged 6 to 37 months requiring admission to hospital for the treatment of kwashiorkor were studied. The children were evaluated clinically, biochemically, and by MRI of their brains on admission and 30 and 90 days later. Brain shrinkage was present in every child on admission. White and grey matter appeared equally affected and the myelination was normal for age. At 90 days, the cerebral changes had resolved in nine and improved substantially in the remainder, by which time serum proteins and weight for age were within the normal range. The findings of this study suggest that brain shrinkage associated with kwashiorkor reverses rapidly with nutritional rehabilitation.

  7. Detection of volume loss in hippocampal layers in Alzheimer's disease using 7 T MRI: A feasibility study

    Directory of Open Access Journals (Sweden)

    Claire Boutet

    2014-01-01

    Full Text Available In Alzheimer's disease (AD, the hippocampus is an early site of tau pathology and neurodegeneration. Histological studies have shown that lesions are not uniformly distributed within the hippocampus. Moreover, alterations of different hippocampal layers may reflect distinct pathological processes. 7 T MRI dramatically improves the visualization of hippocampal subregions and layers. In this study, we aimed to assess whether 7 T MRI can detect volumetric changes in hippocampal layers in vivo in patients with AD. We studied four AD patients and seven control subjects. MR images were acquired using a whole-body 7 T scanner with an eight channel transmit–receive coil. Hippocampal subregions were manually segmented from coronal T2*-weighted gradient echo images with 0.3 × 0.3 × 1.2 mm3 resolution using a protocol that distinguishes between layers richer or poorer in neuronal bodies. Five subregions were segmented in the region of the hippocampal body: alveus, strata radiatum, lacunosum and moleculare (SRLM of the cornu Ammonis (CA, hilum, stratum pyramidale of CA and stratum pyramidale of the subiculum. We found strong bilateral reductions in the SRLM of the cornu Ammonis and in the stratum pyramidale of the subiculum (p < 0.05, with average cross-sectional area reductions ranging from −29% to −49%. These results show that it is possible to detect volume loss in distinct hippocampal layers using segmentation of 7 T MRI. 7 T MRI-based segmentation is a promising tool for AD research.

  8. Detection of volume loss in hippocampal layers in Alzheimer's disease using 7 T MRI: A feasibility study

    Science.gov (United States)

    Boutet, Claire; Chupin, Marie; Lehéricy, Stéphane; Marrakchi-Kacem, Linda; Epelbaum, Stéphane; Poupon, Cyril; Wiggins, Christopher; Vignaud, Alexandre; Hasboun, Dominique; Defontaines, Bénédicte; Hanon, Olivier; Dubois, Bruno; Sarazin, Marie; Hertz-Pannier, Lucie; Colliot, Olivier

    2014-01-01

    In Alzheimer's disease (AD), the hippocampus is an early site of tau pathology and neurodegeneration. Histological studies have shown that lesions are not uniformly distributed within the hippocampus. Moreover, alterations of different hippocampal layers may reflect distinct pathological processes. 7 T MRI dramatically improves the visualization of hippocampal subregions and layers. In this study, we aimed to assess whether 7 T MRI can detect volumetric changes in hippocampal layers in vivo in patients with AD. We studied four AD patients and seven control subjects. MR images were acquired using a whole-body 7 T scanner with an eight channel transmit–receive coil. Hippocampal subregions were manually segmented from coronal T2*-weighted gradient echo images with 0.3 × 0.3 × 1.2 mm3 resolution using a protocol that distinguishes between layers richer or poorer in neuronal bodies. Five subregions were segmented in the region of the hippocampal body: alveus, strata radiatum, lacunosum and moleculare (SRLM) of the cornu Ammonis (CA), hilum, stratum pyramidale of CA and stratum pyramidale of the subiculum. We found strong bilateral reductions in the SRLM of the cornu Ammonis and in the stratum pyramidale of the subiculum (p < 0.05), with average cross-sectional area reductions ranging from −29% to −49%. These results show that it is possible to detect volume loss in distinct hippocampal layers using segmentation of 7 T MRI. 7 T MRI-based segmentation is a promising tool for AD research. PMID:25161900

  9. Functional MRI in pre-surgical planning: case study and cautionary ...

    African Journals Online (AJOL)

    Functional MRI in pre-surgical planning: case study and cautionary notes. ... Since its inception almost 20 years ago, functional magnetic resonance imaging ... Although the clinical applications of fMRI are still limited, there have recently been ...

  10. A human post-mortem brain model for the standardization of multi-centre MRI studies.

    Science.gov (United States)

    Droby, Amgad; Lukas, Carsten; Schänzer, Anne; Spiwoks-Becker, Isabella; Giorgio, Antonio; Gold, Ralf; De Stefano, Nicola; Kugel, Harald; Deppe, Michael; Wiendl, Heinz; Meuth, Sven G; Acker, Till; Zipp, Frauke; Deichmann, Ralf

    2015-04-15

    Multi-centre MRI studies of the brain are essential for enrolling large and diverse patient cohorts, as required for the investigation of heterogeneous neurological and psychiatric diseases. However, the multi-site comparison of standard MRI data sets that are weighted with respect to tissue parameters such as the relaxation times (T1, T2) and proton density (PD) may be problematic, as signal intensities and image contrasts depend on site-specific details such as the sequences used, imaging parameters, and sensitivity profiles of the radiofrequency (RF) coils. Water or gel phantoms are frequently used for long-term and/or inter-site quality assessment. However, these phantoms hardly mimic the structure, shape, size or tissue distribution of the human brain. The goals of this study were: (1) to validate the long-term stability of a human post-mortem brain phantom, performing quantitative mapping of T1, T2, and PD, and the magnetization transfer ratio (MTR) over a period of 18months; (2) to acquire and analyse data for this phantom and the brain of a healthy control (HC) in a multi-centre study for MRI protocol standardization in four centres, while conducting a voxel-wise as well as whole brain grey (GM) and white matter (WM) tissue volume comparison. MTR, T2, and the quotient of PD in WM and GM were stable in the post-mortem brain with no significant changes. T1 was found to decrease from 267/236ms (GM/WM) to 234/216ms between 5 and 17weeks post embedment, stabilizing during an 18-month period following the first scan at about 215/190ms. The volumetric measures, based on T1-weighted MP-RAGE images obtained at all participating centres, revealed inter- and intra-centre variations in the evaluated GM and WM volumes that displayed similar trends in both the post-mortem brain as well as the HC. At a confidence level of 95%, brain regions such as the brainstem, deep GM structures as well as boundaries between GM and WM tissues were found to be less reproducible than

  11. MRI and Diffusion-Weighted MRI Volumetry for Identification of Complete Tumor Responders After Preoperative Chemoradiotherapy in Patients With Rectal Cancer: A Bi-institutional Validation Study.

    NARCIS (Netherlands)

    Lambregts, Doenja M J; Rao, Sheng-Xiang; Sassen, Sander; Martens, Milou H; Heijnen, Luc a; Buijsen, Jeroen; Sosef, Meindert; Beets, Geerard L; Vliegen, Roy a; Beets-Tan, Regina G H

    2015-01-01

    BACKGROUND:: Retrospective single-center studies have shown that diffusion-weighted magnetic resonance imaging (DWI) is promising for identification of patients with rectal cancer with a complete tumor response after neoadjuvant chemoradiotherapy (CRT), using certain volumetric thresholds.\

  12. Longitudinal MRI studies of brain morphometry

    DEFF Research Database (Denmark)

    Skimminge, Arnold Jesper Møller

    into the accompanying deformation field. Deformation fields from high dimensional warping founds tensor based morphometry (TBM), and provides unique opportunities to study human brain morphology and plasticity. In this thesis, specially adapted image processing streams utilizing several image registration techniques......High resolution MR images acquired at multiple time points of the brain allow quantification of localized changes induced by external factors such as maturation, ageing or disease progression/recovery. High-dimensional warping of such MR images incorporates changes induced by external factors...

  13. Functional MRI studies in disruptive behaviour disorders.

    Science.gov (United States)

    Bellani, M; Garzitto, M; Brambilla, P

    2012-03-01

    Aggressive or antisocial behaviours with violations of social rules are the main features of disruptive behaviour disorders (DBDs), which are developmental diseases and include conduct disorder and oppositional defiant disorder. In the last decade, several efforts have been made to shed light on the biological underpinnings of DBDs. In this context, the main findings of functional magnetic resonance imaging studies in DBD are reported here. There are indications of neural dysfunctions in response to affective stimuli, especially regarding medial and orbitofrontal prefrontal cortex and connected subcortical structures.

  14. Connectivity in Autism: A review of MRI connectivity studies

    Science.gov (United States)

    Rane, Pallavi; Cochran, David; Hodge, Steven M.; Haselgrove, Christian; Kennedy, David; Frazier, Jean A.

    2016-01-01

    Autism Spectrum Disorder (ASD) affects 1 in 50 children between the ages of 6–17 years as per a 2012 CDC survey of parents. The etiology of ASD is not precisely known. ASD is an umbrella term, which includes low (IQ70) individuals. A better understanding of the disorder, and how it manifests in an individual subject can lead to more effective intervention plans to fulfill the individual’s treatment needs. Magnetic resonance imaging (MRI) is a non-invasive investigational tool that can help study the ways in which the brain develops and/or deviates from the typical developmental trajectory. MRI offers insights into the structure, function, and metabolism of the brain. In this article, we review published studies on brain connectivity changes in ASD using either resting state functional MRI or diffusion tensor imaging. The general findings of decreases in white matter integrity and long-range neural coherence are prevalent in ASD literature. However, there is somewhat less of a consensus in the detailed localization of these findings. There are even fewer studies linking these connectivity alterations with the behavioral phenotype of the disorder. Nevertheless, with the help of data sharing and large-scale analytic efforts, the field is advancing towards several convergent themes. These include reduced functional coherence of long-range intra-hemispheric cortico-cortical default mode circuitry, impaired inter-hemispheric regulation, and an associated, perhaps compensatory, increase in local and short-range cortico-subcortical coherence. PMID:26146755

  15. Hydrodynamic study of syringomyelia by MRI and intraoperative ultrasonography

    Energy Technology Data Exchange (ETDEWEB)

    Moritake, Kouzo; Takaya, Mikio; Minamikawa, Jun; Ishikawa, Masatsune; Kikuchi, Haruhiko; Minami, Shunsuke (Kyoto Univ. (Japan). Faculty of Medicine)

    1989-08-01

    Syringomyelic cavities were studied with magnetic resonance imaging (MRI) in eleven patients with special reference to the hemodynamic contribution to the pathogenesis of syringomyelia. They were also studied intraoperatively with ultrasonography (USG) in five patients. Syrinx cavities combined with lumbosacral lipomyelomeningocele or with spinal stenosis did not present a flow-void phenomenon reflecting pulsatile movements of syrinx fluid. On serial MRI study in those the patients, enlargement of the syrinx cavity was not observed. Syrinx cavities occupying the caudal part of the spinal cord did not develop either. These cases were not treated surgically but followed conservatively. On the other hand, the flow-void sign in the syrinx cavities was present on MRI in patients who also had Chiari type I or type II malformations. They were treated with a syringo-subarachnoid shunt. In these cases, intraoperative USG disclosed marked fluctuation of syrinx cavity size synchronous with the motions of pulmonary ventilation. In all of them, clinical signs and symptoms improved postoperatively to various degrees. These results suggest that both the flow-void sign in the syrinx cavity on MRI and marked fluctaution of cavity size on intraoperative USG are indications for the shunt operation and support William's revised theory (1987). Fluctuation of cystic cavity size synchronous with ventilation suggests that venous pressure in the spinal subarachnoid space contributes to the pathogenesis of syringomyelic cavities. Further analysis of the fluctuation of cystic cavities by video monitoring will provide further information on the etiology and other clinical problems of syringomyelia. (author).

  16. Influence of volumetric shrinkage and curing light intensity on proximal contact tightness of class II resin composite restorations: in vitro study.

    NARCIS (Netherlands)

    El-Shamy, H.; Saber, M.H.; Dorfer, C.E.; El-Badrawy, W.; Loomans, B.A.C.

    2012-01-01

    BACKGROUND : Proximal contact tightness of class II resin composite restorations is influenced by a myriad of factors. Previous studies investigated the role of matrix band type and thickness, consistency of resin composite, and technique of placement. However, the effect of volumetric shrinkage of

  17. Multi-institutional comparison of volumetric modulated arc therapy vs. intensity-modulated radiation therapy for head-and-neck cancer : a planning study

    NARCIS (Netherlands)

    Holt, Andrea; Van Gestel, Dirk; Arends, Mark P.; Korevaar, Erik W.; Schuring, Danny; Kunze-Busch, Martina C.; Louwe, Rob J. W.; van Vliet-Vroegindeweij, Corine

    2013-01-01

    Background: Compared to static beam Intensity-Modulated Radiation Therapy (IMRT), the main advantage of Volumetric Modulated Arc Therapy (VMAT) is a shortened delivery time, which leads to improved patient comfort and possibly smaller intra-fraction movements. This study aims at a treatment planner-

  18. Multi-institutional comparison of volumetric modulated arc therapy vs. intensity-modulated radiation therapy for head-and-neck cancer: a planning study

    NARCIS (Netherlands)

    Holt, A.; Gestel, D. Van; Arends, M.P.; Korevaar, E.W.; Schuring, D.; Kunze-Busch, M.C.; Louwe, R.J.W.; Vliet-Vroegindeweij, C. van

    2013-01-01

    BACKGROUND: Compared to static beam Intensity-Modulated Radiation Therapy (IMRT), the main advantage of Volumetric Modulated Arc Therapy (VMAT) is a shortened delivery time, which leads to improved patient comfort and possibly smaller intra-fraction movements. This study aims at a treatment planner-

  19. Multi-institutional comparison of volumetric modulated arc therapy vs. intensity-modulated radiation therapy for head-and-neck cancer: a planning study

    NARCIS (Netherlands)

    Holt, A.; Gestel, D. Van; Arends, M.P.; Korevaar, E.W.; Schuring, D.; Kunze-Busch, M.C.; Louwe, R.J.W.; Vliet-Vroegindeweij, C. van

    2013-01-01

    BACKGROUND: Compared to static beam Intensity-Modulated Radiation Therapy (IMRT), the main advantage of Volumetric Modulated Arc Therapy (VMAT) is a shortened delivery time, which leads to improved patient comfort and possibly smaller intra-fraction movements. This study aims at a treatment

  20. Multi-institutional comparison of volumetric modulated arc therapy vs. intensity-modulated radiation therapy for head-and-neck cancer : a planning study

    NARCIS (Netherlands)

    Holt, Andrea; Van Gestel, Dirk; Arends, Mark P.; Korevaar, Erik W.; Schuring, Danny; Kunze-Busch, Martina C.; Louwe, Rob J. W.; van Vliet-Vroegindeweij, Corine

    2013-01-01

    Background: Compared to static beam Intensity-Modulated Radiation Therapy (IMRT), the main advantage of Volumetric Modulated Arc Therapy (VMAT) is a shortened delivery time, which leads to improved patient comfort and possibly smaller intra-fraction movements. This study aims at a treatment

  1. Influence of volumetric shrinkage and curing light intensity on proximal contact tightness of class II resin composite restorations: in vitro study.

    NARCIS (Netherlands)

    El-Shamy, H.; Saber, M.H.; Dorfer, C.E.; El-Badrawy, W.; Loomans, B.A.C.

    2012-01-01

    BACKGROUND : Proximal contact tightness of class II resin composite restorations is influenced by a myriad of factors. Previous studies investigated the role of matrix band type and thickness, consistency of resin composite, and technique of placement. However, the effect of volumetric shrinkage of

  2. The importance of accurate anatomic assessment for the volumetric analysis of the amygdala

    Directory of Open Access Journals (Sweden)

    L. Bonilha

    2005-03-01

    Full Text Available There is a wide range of values reported in volumetric studies of the amygdala. The use of single plane thick magnetic resonance imaging (MRI may prevent the correct visualization of anatomic landmarks and yield imprecise results. To assess whether there is a difference between volumetric analysis of the amygdala performed with single plane MRI 3-mm slices and with multiplanar analysis of MRI 1-mm slices, we studied healthy subjects and patients with temporal lobe epilepsy. We performed manual delineation of the amygdala on T1-weighted inversion recovery, 3-mm coronal slices and manual delineation of the amygdala on three-dimensional volumetric T1-weighted images with 1-mm slice thickness. The data were compared using a dependent t-test. There was a significant difference between the volumes obtained by the coronal plane-based measurements and the volumes obtained by three-dimensional analysis (P < 0.001. An incorrect estimate of the amygdala volume may preclude a correct analysis of the biological effects of alterations in amygdala volume. Three-dimensional analysis is preferred because it is based on more extensive anatomical assessment and the results are similar to those obtained in post-mortem studies.

  3. Composite pulses for RF phase encoded MRI: A simulation study.

    Science.gov (United States)

    Salajeghe, Somaie; Babyn, Paul; Sarty, Gordon E

    2017-02-01

    In B1 encoded MRI, a realistic non-linear phase RF encoding coil will generate an inhomogeneous B1 field that leads to spatially dependent flip angles. The non-linearity of the B1 phase gradient can be compensated for in the reconstruction, but B1 inhomogeneity remains a problem. The effect of B1 inhomogeneity on tip angles for conventional, B0 encoded MRI, may be minimized using composite pulses. The objective of this study was to explore the feasibility of using composite pulses with non-linear RF phase encoding coils and to identify the most appropriate composite pulse scheme. RF encoded signals were simulated via the Bloch equation for various symmetric, asymmetric and antisymmetric composite pulses. The simulated signals were reconstructed using a constrained least squares method. Root mean square reconstruction errors varied from 6% (for an asymmetric composite pulse) to 9.7% (for an antisymmetric composite pulse). An asymmetric composite pulse scheme created images with fewer artifacts than other composite pulse schemes in inhomogeneous B0 and B1 fields making it the best choice for decreasing the effects of spatially varying flip angles. This is contrary to the conclusion that antisymmetric composite pulses are the best ones to use for spin echo sequences in conventional, B0 encoded, MRI. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  4. Epileptic networks studied with EEG-fMRI.

    Science.gov (United States)

    Gotman, Jean

    2008-01-01

    It is not easy to determine the location of the cerebral generators and the other brain regions that may be involved at the time of an epileptic spike seen in the scalp EEG. The possibility to combine EEG recording with functional MRI scanning (fMRI) opens the opportunity to uncover the regions of the brain showing changes in metabolism and blood flow in response to epileptic spikes seen in the EEG. These regions are presumably involved in the abnormal neuronal activity at the origin of epileptic discharges. This paper reviews the methodology involved in performing such studies, including the special techniques required for recording the EEG inside the scanner and the statistical issues in analyzing the fMRI signal. We then discuss the results obtained in patients with different types of focal epileptic disorders and in patients with primary generalized epilepsy. The results in general indicate that interictal epileptic discharges may affect brain areas well beyond the presumed region in which they are generated. The noninvasive nature of this method opens new horizons in the investigation of brain regions involved and affected by epileptic discharges.

  5. Directly Grown Nanostructured Electrodes for High Volumetric Energy Density Binder-Free Hybrid Supercapacitors: A Case Study of CNTs//Li4Ti5O12

    Science.gov (United States)

    Zuo, Wenhua; Wang, Chong; Li, Yuanyuan; Liu, Jinping

    2015-01-01

    Hybrid supercapacitor (HSC), which typically consists of a Li-ion battery electrode and an electric double-layer supercapacitor electrode, has been extensively investigated for large-scale applications such as hybrid electric vehicles, etc. Its application potential for thin-film downsized energy storage systems that always prefer high volumetric energy/power densities, however, has not yet been explored. Herein, as a case study, we develop an entirely binder-free HSC by using multiwalled carbon nanotube (MWCNT) network film as the cathode and Li4Ti5O12 (LTO) nanowire array as the anode and study the volumetric energy storage capability. Both the electrode materials are grown directly on carbon cloth current collector, ensuring robust mechanical/electrical contacts and flexibility. Our 3 V HSC device exhibits maximum volumetric energy density of ~4.38 mWh cm-3, much superior to those of previous supercapacitors based on thin-film electrodes fabricated directly on carbon cloth and even comparable to the commercial thin-film lithium battery. It also has volumetric power densities comparable to that of the commercial 5.5 V/100 mF supercapacitor (can be operated within 3 s) and has excellent cycling stability (~92% retention after 3000 cycles). The concept of utilizing binder-free electrodes to construct HSC for thin-film energy storage may be readily extended to other HSC electrode systems.

  6. Dimensional and volumetric analysis of the oropharyngeal region in obstructive sleep apnea patients: A cone beam computed tomography study

    Science.gov (United States)

    Tikku, Tripti; Khanna, Rohit; Sachan, Kiran; Agarwal, Akhil; Srivastava, Kamna; Lal, Anubha

    2016-01-01

    Background: Obstructive Sleep Apnea (OSA) is a potentially life-threatening condition in which there is a periodic cessation of breathing (for 10 sec or longer) that occurs during sleep in the presence of inspiratory effort. The aim of the study was to assess volumetric and dimensional differences between OSA patients and normal individuals in the upright posture. Material and Method: The present study was conducted on CBCT scans of 32 patients who were divided into two groups -Group I (control group) and Group II (OSA subjects). Group I consisted of 16 patients with normal airway with ESS score from 2 to 10, STOP BANG Questionnaire score of CBCT for various diagnostic reasons. Group II had patients with ESS score >10, STOP BANG Questionnaire score of > 3, AHI index >5. Linear and angular parameters, volume and minimum cross-section area (MCA) of oropharyngeal airway, anteroposterior length and lateral width at MCA was compared amongst the groups. Results: The oropharyngeal volume, MCA, and the anteroposterior and lateral width of the airway at MCA of the OSA subjects was significantly lesser than that of normal subjects. The length of both soft palate and tongue was significantly more in Group II. The angle between the nasopharyngeal airway and the oropharyngeal airway was significantly more obtuse in Group II. Conclusion: The reduction in oropharyngeal volume in OSA patients could be attributed to different anatomical and pathophysiological factors that were corroborated with the findings of the present study. PMID:27857764

  7. MRI study on spinal canal content in Western Maharashtrian population

    Directory of Open Access Journals (Sweden)

    Khanapurkar SV, Kulkarni DO, Bahetee BH, Vahane MI

    2014-07-01

    Full Text Available The morphology of the spinal canal content has been studied since the invention of myelography. However, most studies have measured the diameters of the spinal cord only, not the size of the subarachnoid space. The present study complements the current data on the morphology of the spinal contents, and in particular, the spinal subarachnoid space, by analyzing MRI images. Objective: To study morphology of the dural sac, spinal cord & subarachnoid space using MRI. To define the inner geometrical dimensions of spinal canal content that confine the maneuver of an endoscope inserted in cervical spine. 3. To have comprehensive knowledge of the anatomy of cervical spinal canal. Method: Based on MRI images of the spine from 60 normal patients of age between 25-60 years, the dimensions of spinal cord, dural sac & subarachnoid space were measured at mid-vertebral & intervertebral level from C1-C7 vertebrae. The parameters measured were transverse, sagittal diameter of spinal cord & dural sac. The subarachnoid space was measured as anterior, posterior, right, left distance between spinal cord and dura mater. Results: It was found that at each selected transverse level, the subarachnoid space tends to be symmetrical on the right and left sides of the cord, and measures 3.38 mm on an average. However, the anterior and posterior segment, measured on the mid-sagittal plane are generally asymmetric & varies greatly in size ranging 1mm to 6mm with mean 2.57 of anterior & 2.59 of posterior. These measurements match those found in previous studies. The coefficient of variance for the dimensions of the subarachnoid space is as high as 36.16%, while that for the dimensions of the spinal cord (transverse & sagittal are11.08%&13.28%respectively. Conclusion: The findings presented here, expand our knowledge of morphology of spinal canal and show that a thecaloscope must be smaller than 3.38 mm in diameter.

  8. Cerebral activation during thermal stimulation of patients who have burning mouth disorder: an fMRI study.

    Science.gov (United States)

    Albuquerque, Romulo J C; de Leeuw, Reny; Carlson, Charles R; Okeson, Jeffrey P; Miller, Craig S; Andersen, Anders H

    2006-06-01

    The pathophysiology of burning mouth disorder (BMD) is not clearly understood, but central neuropathic mechanisms are thought to be involved. The aim of this study was to gain insight into the pathophysiology associated with BMD by using functional magnetic resonance imaging (fMRI). Areas of brain activation following thermal stimulation of the trigeminal nerve of eight female patients with BMD (mean age 49.1+/-10.1) were mapped using fMRI and compared with those of eight matched pain-free volunteers (mean age 50.3+/-12.3). Qualitative and quantitative differences in brain activation patterns between the two study groups were demonstrated. BMD patients displayed greater fractional signal changes in the right anterior cingulate cortex (BA 32/24) and bilateral precuneus than did controls (p<0.005). The control group showed larger fractional signal changes in the bilateral thalamus, right middle frontal gyrus, right pre-central gyrus, left lingual gyrus, and cerebellum than did the BMD patients (p<0.005). In addition, BMD patients had less volumetric activation throughout the entire brain compared to the control group. Overall, BMD patients displayed brain activation patterns similar to those of patients with other neuropathic pain conditions and appear to process thermal painful stimulation to the trigeminal nerve qualitatively and quantitatively different than pain-free individuals. These findings suggest that brain hypoactivity may be an important feature in the pathophysiology of BMD.

  9. Building an EEG-fMRI Multi-Modal Brain Graph: A Concurrent EEG-fMRI Study.

    Science.gov (United States)

    Yu, Qingbao; Wu, Lei; Bridwell, David A; Erhardt, Erik B; Du, Yuhui; He, Hao; Chen, Jiayu; Liu, Peng; Sui, Jing; Pearlson, Godfrey; Calhoun, Vince D

    2016-01-01

    The topological architecture of brain connectivity has been well-characterized by graph theory based analysis. However, previous studies have primarily built brain graphs based on a single modality of brain imaging data. Here we develop a framework to construct multi-modal brain graphs using concurrent EEG-fMRI data which are simultaneously collected during eyes open (EO) and eyes closed (EC) resting states. FMRI data are decomposed into independent components with associated time courses by group independent component analysis (ICA). EEG time series are segmented, and then spectral power time courses are computed and averaged within 5 frequency bands (delta; theta; alpha; beta; low gamma). EEG-fMRI brain graphs, with EEG electrodes and fMRI brain components serving as nodes, are built by computing correlations within and between fMRI ICA time courses and EEG spectral power time courses. Dynamic EEG-fMRI graphs are built using a sliding window method, versus static ones treating the entire time course as stationary. In global level, static graph measures and properties of dynamic graph measures are different across frequency bands and are mainly showing higher values in eyes closed than eyes open. Nodal level graph measures of a few brain components are also showing higher values during eyes closed in specific frequency bands. Overall, these findings incorporate fMRI spatial localization and EEG frequency information which could not be obtained by examining only one modality. This work provides a new approach to examine EEG-fMRI associations within a graph theoretic framework with potential application to many topics.

  10. Building an EEG-fMRI multi-modal brain graph: a concurrent EEG-fMRI study

    Directory of Open Access Journals (Sweden)

    Qingbao Yu

    2016-09-01

    Full Text Available The topological architecture of brain connectivity has been well characterized by graph theory based analysis. However, previous studies have primarily built brain graphs based on a single modality of brain imaging data. Here we develop a framework to construct multi-modal brain graphs using concurrent EEG-fMRI data which are simultaneously collected during eyes open (EO and eyes closed (EC resting states. FMRI data are decomposed into independent components with associated time courses by group independent component analysis (ICA. EEG time series are segmented, and then spectral power time courses are computed and averaged within 5 frequency bands (delta; theta; alpha; beta; low gamma. EEG-fMRI brain graphs, with EEG electrodes and fMRI brain components serving as nodes, are built by computing correlations within and between fMRI ICA time courses and EEG spectral power time courses. Dynamic EEG-fMRI graphs are built using a sliding window method, versus static ones treating the entire time course as stationary. In global level, static graph measures and properties of dynamic graph measures are different across frequency bands and are mainly showing higher values in eyes closed than eyes open. Nodal level graph measures of a few brain components are also showing higher values during eyes closed in specific frequency bands. Overall, these findings incorporate fMRI spatial localization and EEG frequency information which could not be obtained by examining only one modality. This work provides a new approach to examine EEG-fMRI associations within a graph theoretic framework with potential application to many topics.

  11. Building an EEG-fMRI Multi-Modal Brain Graph: A Concurrent EEG-fMRI Study

    Science.gov (United States)

    Yu, Qingbao; Wu, Lei; Bridwell, David A.; Erhardt, Erik B.; Du, Yuhui; He, Hao; Chen, Jiayu; Liu, Peng; Sui, Jing; Pearlson, Godfrey; Calhoun, Vince D.

    2016-01-01

    The topological architecture of brain connectivity has been well-characterized by graph theory based analysis. However, previous studies have primarily built brain graphs based on a single modality of brain imaging data. Here we develop a framework to construct multi-modal brain graphs using concurrent EEG-fMRI data which are simultaneously collected during eyes open (EO) and eyes closed (EC) resting states. FMRI data are decomposed into independent components with associated time courses by group independent component analysis (ICA). EEG time series are segmented, and then spectral power time courses are computed and averaged within 5 frequency bands (delta; theta; alpha; beta; low gamma). EEG-fMRI brain graphs, with EEG electrodes and fMRI brain components serving as nodes, are built by computing correlations within and between fMRI ICA time courses and EEG spectral power time courses. Dynamic EEG-fMRI graphs are built using a sliding window method, versus static ones treating the entire time course as stationary. In global level, static graph measures and properties of dynamic graph measures are different across frequency bands and are mainly showing higher values in eyes closed than eyes open. Nodal level graph measures of a few brain components are also showing higher values during eyes closed in specific frequency bands. Overall, these findings incorporate fMRI spatial localization and EEG frequency information which could not be obtained by examining only one modality. This work provides a new approach to examine EEG-fMRI associations within a graph theoretic framework with potential application to many topics. PMID:27733821

  12. Comparing Visually Assessed BI-RADS Breast Density and Automated Volumetric Breast Density Software: A Cross-Sectional Study in a Breast Cancer Screening Setting.

    Directory of Open Access Journals (Sweden)

    Daniëlle van der Waal

    Full Text Available The objective of this study is to compare different methods for measuring breast density, both visual assessments and automated volumetric density, in a breast cancer screening setting. These measures could potentially be implemented in future screening programmes, in the context of personalised screening or screening evaluation.Digital mammographic exams (N = 992 of women participating in the Dutch breast cancer screening programme (age 50-75y in 2013 were included. Breast density was measured in three different ways: BI-RADS density (5th edition and with two commercially available automated software programs (Quantra and Volpara volumetric density. BI-RADS density (ordinal scale was assessed by three radiologists. Quantra (v1.3 and Volpara (v1.5.0 provide continuous estimates. Different comparison methods were used, including Bland-Altman plots and correlation coefficients (e.g., intraclass correlation coefficient [ICC].Based on the BI-RADS classification, 40.8% of the women had 'heterogeneously or extremely dense' breasts. The median volumetric percent density was 12.1% (IQR: 9.6-16.5 for Quantra, which was higher than the Volpara estimate (median 6.6%, IQR: 4.4-10.9. The mean difference between Quantra and Volpara was 5.19% (95% CI: 5.04-5.34 (ICC: 0.64. There was a clear increase in volumetric percent dense volume as BI-RADS density increased. The highest accuracy for predicting the presence of BI-RADS c+d (heterogeneously or extremely dense was observed with a cut-off value of 8.0% for Volpara and 13.8% for Quantra.Although there was no perfect agreement, there appeared to be a strong association between all three measures. Both volumetric density measures seem to be usable in breast cancer screening programmes, provided that the required data flow can be realized.

  13. Volumetric modulation arc radiotherapy with flattening filter-free beams compared with conventional beams for nasopharyngeal carcinoma: a feasibility study

    Institute of Scientific and Technical Information of China (English)

    Mingzan Zhuang; Tuodan Zhang; Zhijian Chen; Zhixiong Lin; Derui Li; Xun Peng; Qingchun Qiu

    2013-01-01

    There is increasing interest in the clinical use of flattening filter-free (FFF) beams.In this study,we aimed to investigate the dosimetric characteristics of volumetric modulated arc radiotherapy (VMAT) with FFF beams for nasopharyngeal carcinoma (NPC).Ten NPC patients were randomly selected to undergo a RapidArc plan with either FFF beams (RA-FFF) or conventional beams (RA-C).The doses to the planning target volumes (PTVs),organs at risk (OARs),and normal tissues were compared.The technical delivery parameters for RapidArc plans were also assessed to compare the characteristics of FFF and conventional beams.Both techniques delivered adequate doses to PTVs.For PTVs,RA-C delivered lower maximum and mean doses and improved conformity and homogeneity compared with RA-FFF.Both techniques provided similar maximum doses to the optic nerves and lenses.For the brain stem,spinal cord,larynx,parotid glands,oral cavity,and skin,RA-FFF showed significant dose increases compared to RA-C.The dose to normal tissue was lower in RA-FFF.The monitor units (MUs) were (536 ± 46) MU for RA-FFF and (501 ± 25) MU for RA-C.The treatment duration did not significantly differ between plans.Although both treatment plans could meet clinical needs,RA-C is dosimetrically superior to RA-FFF for NPC radiotherapy.

  14. Accuracy of Dose Delivery in Multiple Breath-Hold Segmented Volumetric Modulated Arc Therapy: A Static Phantom Study

    Directory of Open Access Journals (Sweden)

    Kimiya Noto

    2014-01-01

    Full Text Available Purpose. Accuracy of dose delivery in multiple breath-hold segmented volumetric modulated arc therapy (VMAT was evaluated in comparison to noninterrupted VMAT using a static phantom. Material and Methods. Five VMAT plans were evaluated. A Synergy linear accelerator (Elekta AB, Stockholm, Sweden was employed. A VMAT delivery sequence was divided into multiple segments according to each of the predefined breath-hold periods (10, 15, 20, 30, and 40 seconds. The segmented VMAT delivery was compared to noninterrupted VMAT delivery in terms of the isocenter dose and pass rates of a dose difference of 1% with a dose threshold of 10% of the maximum dose on a central coronal plane using a two-dimensional dosimeter, MatriXX Evolution (IBA Dosimetry, Schwarzenbruck, Germany. Results. Means of the isocenter dose differences were 0.5%, 0.2%, 0.2%, 0.0%, and 0.0% for the beam-on-times between interrupts of 10, 15, 20, 30, and 40 seconds, respectively. Means of the pass rates were 85%, 99.9%, 100%, 100%, and 100% in the same order as the above. Conclusion. Our static phantom study indicated that the multiple breath-hold segmented VMAT maintains stable and accurate dose delivery when the beam-on-time between interrupts is 15 seconds or greater.

  15. The pineal volume: a three-dimensional volumetric study in healthy young adults using 3.0 T MR data.

    Science.gov (United States)

    Sun, Bo; Wang, Dan; Tang, Yuchun; Fan, Lingzhong; Lin, Xiangtao; Yu, Taifei; Qi, Hengtao; Li, Zhenping; Liu, Shuwei

    2009-11-01

    It is usually difficult to distinguish small pineal tumors via routine or enhanced magnetic resonance (MR) scan. The knowledge of normal pineal size is helpful to detect small pineal lesions, while very few true volumetric data of pineal glands have been reported. Therefore, we obtained the accurate reference range of normal pineal volumes in 112 individuals aged 20-30 years recruited randomly from a healthy community sample. Transverse and sagittal 3.0T magnetic resonance data were obtained using three-dimensional (3D) T1-weighted FSPGR and T2-weighted SE sequences. True pineal volumes were measured from T1-weighted images, while estimated volumes were calculated using pineal length, width and height. All the glands were divided into three types according to the maximum inner diameter of pineal cysts. The prevalence of asymptomatic pineal cyst is 25.00%, with a slight female predominance. In the whole sample, we found no gender differences of pineal volume, but a significant gender difference of pineal volume index. A significant correlation between pineal volume and asymptomatic cyst was found. After excluding cases with big pineal cysts, there were significant correlations between pineal volume and head circumference, body height and body weight, respectively. This study suggests that asymptomatic pineal cysts may exert an important influence on pineal volume.

  16. Haptic fMRI: combining functional neuroimaging with haptics for studying the brain's motor control representation.

    Science.gov (United States)

    Menon, Samir; Brantner, Gerald; Aholt, Chris; Kay, Kendrick; Khatib, Oussama

    2013-01-01

    A challenging problem in motor control neuroimaging studies is the inability to perform complex human motor tasks given the Magnetic Resonance Imaging (MRI) scanner's disruptive magnetic fields and confined workspace. In this paper, we propose a novel experimental platform that combines Functional MRI (fMRI) neuroimaging, haptic virtual simulation environments, and an fMRI-compatible haptic device for real-time haptic interaction across the scanner workspace (above torso ∼ .65×.40×.20m(3)). We implement this Haptic fMRI platform with a novel haptic device, the Haptic fMRI Interface (HFI), and demonstrate its suitability for motor neuroimaging studies. HFI has three degrees-of-freedom (DOF), uses electromagnetic motors to enable high-fidelity haptic rendering (>350Hz), integrates radio frequency (RF) shields to prevent electromagnetic interference with fMRI (temporal SNR >100), and is kinematically designed to minimize currents induced by the MRI scanner's magnetic field during motor displacement (Tesla fMRI scanner's baseline noise variation (∼.85±.1%). Finally, HFI is haptically transparent and does not interfere with human motor tasks (tested for .4m reaches). By allowing fMRI experiments involving complex three-dimensional manipulation with haptic interaction, Haptic fMRI enables-for the first time-non-invasive neuroscience experiments involving interactive motor tasks, object manipulation, tactile perception, and visuo-motor integration.

  17. Medial tibial pain: a dynamic contrast-enhanced MRI study.

    Science.gov (United States)

    Mattila, K T; Komu, M E; Dahlström, S; Koskinen, S K; Heikkilä, J

    1999-09-01

    The purpose of this study was to compare the sensitivity of different magnetic resonance imaging (MRI) sequences to depict periosteal edema in patients with medial tibial pain. Additionally, we evaluated the ability of dynamic contrast-enhanced imaging (DCES) to depict possible temporal alterations in muscular perfusion within compartments of the leg. Fifteen patients with medial tibial pain were examined with MRI. T1-, T2-weighted, proton density axial images and dynamic and static phase post-contrast images were compared in ability to depict periosteal edema. STIR was used in seven cases to depict bone marrow edema. Images were analyzed to detect signs of compartment edema. Region-of-interest measurements in compartments were performed during DCES and compared with controls. In detecting periosteal edema, post-contrast T1-weighted images were better than spin echo T2-weighted and proton density images or STIR images, but STIR depicted the bone marrow edema best. DCES best demonstrated the gradually enhancing periostitis. Four subjects with severe periosteal edema had visually detectable pathologic enhancement during DCES in the deep posterior compartment of the leg. Percentage enhancement in the deep posterior compartment of the leg was greater in patients than in controls. The fast enhancement phase in the deep posterior compartment began slightly slower in patients than in controls, but it continued longer. We believe that periosteal edema in bone stress reaction can cause impairment of venous flow in the deep posterior compartment. MRI can depict both these conditions. In patients with medial tibial pain, MR imaging protocol should include axial STIR images (to depict bone pathology) with T1-weighted axial pre and post-contrast images, and dynamic contrast enhanced imaging to show periosteal edema and abnormal contrast enhancement within a compartment.

  18. Juxtafacet cysts of the lumbar spine: a positional MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Niggemann, Pascal [University Hospital Bonn, Department of Radiology, Bonn (Germany); Kuchta, Johannes [Interdisziplinaeres Wirbelsaeulenzentrum, Bonn (Germany); Hoeffer, Janine; Beyer, Hans-Konrad [Upright MRT, Cologne (Germany); Grosskurth, Dieter; Delank, Karl-Stefan [Upright MRT, Cologne (Germany); University of Cologne, Department of Orthopaedic and Trauma Surgery, Cologne (Germany)

    2012-03-15

    Juxtafacet cysts (JFC) are related to facet joint degeneration. Supine MRI is routinely used to evaluate JFC. However, some JFC are missed and found only intraoperatively. The present study addresses positional MRI features and factors leading to variation in the size of JFC. Fifty patients in whom positional MRI had been performed were investigated retrospectively and 67 distinct intraspinal or intraneuroforaminal were JFC found. Signal intensity, size of the JFC, the presence and variance of a vertebral slip and the angular movement of affected segments were assessed in supine, neutral sitting, flexion (sitting) and extension (standing). The overall movement of the spine and the lordosis angle in different positions were measured. JFC varied in size in segments with unstable slip and increased angular movement (variation of the angle in the affected segment in function: 13.3 degrees compared to 8.7 degrees). JFC with bright signals tended to vary in size compared to JFC with intermediate or low signal intensity (all: p < 0.001). Joint effusion and displacement of effusion lead to formation and variations in the size of JFC. JFC were most prominent in extension: 6.7 mm, less prominent in supine: 5.5 mm and in neutral sitting position: 4.6 mm (all p < 0.05). The detection rate for JFC was 97% for extension, 89% for supine and 78% for neutral sitting. The detection rate of JFC improves with increasing lordosis of the spine and under weight-bearing conditions, particularly when standing. Unstable slipping or increased angular movement affects the size of JFC. (orig.)

  19. Study and modeling of changes in volumetric efficiency of helix conveyors at different rotational speeds and inclination angels by ANFIS and statistical methods

    Directory of Open Access Journals (Sweden)

    A Zareei

    2017-05-01

    Full Text Available Introduction Spiral conveyors effectively carry solid masses as free or partly free flow of materials. They create good throughput and they are the perfect solution to solve the problems of transport, due to their simple structure, high efficiency and low maintenance costs. This study aims to investigate the performance characteristics of conveyors as function of auger diameter, rotational speed and handling inclination angle. The performance characteristic was investigated according to volumetric efficiency. In another words, the purpose of this study was obtaining a suitable model for volumetric efficiency changes of steep auger to transfer agricultural products. Three different diameters of auger, five levels of rotational speed and three slope angles were used to investigate the effects of changes in these parameters on volumetric efficiency of auger. The used method is novel in this area and the results show that performance by ANFIS models is much better than common statistical models. Materials and Methods The experiments were conducted in Department of Mechanical Engineering of Agricultural Machinery in Urmia University. In this study, SAYOS cultivar of wheat was used. This cultivar of wheat had hard seeds and the humidity was 12% (based on wet. Before testing, all foreign material was separated from the wheat such as stone, dust, plant residues and green seeds. Bulk density of wheat was 790 kg m-3. The auger shaft of the spiral conveyor was received its rotational force through belt and electric motor and its rotation leading to transfer the product to the output. In this study, three conveyors at diameters of 13, 17.5, and 22.5 cm, five levels of rotational speed at 100, 200, 300, 400, and 500 rpm and three handling angles of 10, 20, and 30º were tested. Adaptive Nero-fuzzy inference system (ANFIS is the combination of fuzzy systems and artificial neural network, so it has both benefits. This system is useful to solve the complex non

  20. Central Nervous System Changes in Pediatric Heart Failure: A Volumetric Study

    OpenAIRE

    Menteer, Jondavid; Macey, Paul M.; Woo, Mary A.; Panigrahy, Ashok; Harper, Ronald M.

    2010-01-01

    Autonomic dysfunction, mood disturbances, and memory deficits appear in pediatric and adult heart failure (HF). Brain areas controlling these functions show injury in adult HF patients, many of whom have comorbid cerebrovascular disease. We examined whether similar brain pathology develops in pediatric subjects without such comorbidities. In this study, high-resolution T1 brain magnetic resonance images were collected from seven severe HF subjects age (age 8–18 years [mean 13]; left ventricul...

  1. Volumetric Analysis of Carotid Plaque Components and Cerebral Microbleeds: A Correlative Study.

    Science.gov (United States)

    Saba, Luca; Sanfilippo, Roberto; di Martino, Michele; Porcu, Michele; Montisci, Roberto; Lucatelli, Pierleone; Anzidei, Michele; Francone, Marco; Suri, Jasjit S

    2017-03-01

    The purpose of this work was to explore the association between carotid plaque volume (total and the subcomponents) and cerebral microbleeds (CMBs). Seventy-two consecutive (male 53; median age 64) patients were retrospectively analyzed. Carotid arteries were studied by using a 16-detector-row computed tomography scanner whereas brain was explored with a 1.5 Tesla system. CMBs were studied using a T2*-weighted gradient-recalled echo sequence. CMBs were classified as from absent (grade 1) to severe (grade 4). Component types of the carotid plaque were defined according to the following Hounsfield unit (HU) ranges: lipid less than 60 HU; fibrous tissue from 60 to 130 HU; calcification greater than 130 HU, and plaque volumes of each component were calculated. Each carotid artery was analyzed by 2 observers. The prevalence of CMBs was 35.3%. A statistically significant difference was observed between symptomatic (40%) and asymptomatic (11%) patients (P value = .001; OR = 6.07). Linear regression analysis demonstrated an association between the number of CMBs and the symptoms (P = .0018). Receiver operating characteristics curve analysis found an association between the carotid plaque subcomponents and CMBs (Az = .608, .621, and .615 for calcified, lipid, and mixed components, respectively), and Mann-Whitney test confirmed this association in particular for the lipid components (P value = .0267). Results of this study confirm the association between CMBs and symptoms and that there is an increased number of CMBs in symptomatic patients. Moreover, we found that an increased volume of the fatty component is associated with the presence and number of CMBs. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  2. Planning study of flattening filter free beams for volumetric modulated arc therapy in squamous cell carcinoma of the scalp.

    Directory of Open Access Journals (Sweden)

    Youqun Lai

    Full Text Available Flattening filter free (FFF beams show the potential for a higher dose rate and lower peripheral dose. We investigated the planning study of FFF beams with their role for volumetric modulated arc therapy (VMAT in squamous cell carcinoma of the scalp.One patient with squamous cell carcinoma which had involvement of entire scalp was subjected to VMAT using TrueBeam linear accelerator. As it was a rare skin malignancy, CT data of 7 patients with brain tumors were also included in this study, and their entire scalps were outlined as target volumes. Three VMAT plans were employed with RapidArc form: two half-field full-arcs VMAT using 6 MV standard beams (HFF-VMAT-FF, eight half-field quarter-arcs VMAT using 6 MV standard beams (HFQ-VMAT-FF, and HFQ-VMAT using FFF beams (HFQ-VMAT-FFF. Prescribed dose was 25 × 2 Gy (50 Gy. Plan quality and efficiency were assessed for all plans.There were no statistically significant differences among the three VMAT plans in target volume coverage, conformity, and homogeneity. For HFQ-VMAT-FF plans, there was a significant decrease by 12.6% in the mean dose to the brain compared with HFF-VMAT-FF. By the use of FFF beams, the mean dose to brain in HFQ-VMAT-FFF plans was further decreased by 7.4% compared with HFQ-VMAT-FF. Beam delivery times were similar for each technique.The HFQ-VMAT-FF plans showed the superiority in dose distributions compared with HFF-VMAT-FF. HFQ-VMAT-FFF plans might provide further normal tissue sparing, particularly in the brain, showing their potential for radiation therapy in squamous cell carcinoma of the scalp.

  3. Ictal EEG/fMRI study of vertiginous seizures.

    Science.gov (United States)

    Morano, Alessandra; Carnì, Marco; Casciato, Sara; Vaudano, Anna Elisabetta; Fattouch, Jinane; Fanella, Martina; Albini, Mariarita; Basili, Luca Manfredi; Lucignani, Giulia; Scapeccia, Marco; Tomassi, Regina; Di Castro, Elisabetta; Colonnese, Claudio; Giallonardo, Anna Teresa; Di Bonaventura, Carlo

    2017-03-01

    Vertigo and dizziness are extremely common complaints, related to either peripheral or central nervous system disorders. Among the latter, epilepsy has to be taken into consideration: indeed, vertigo may be part of the initial aura of a focal epileptic seizure in association with other signs/symptoms, or represent the only ictal manifestation, a rare phenomenon known as "vertiginous" or "vestibular" seizure. These ictal symptoms are usually related to a discharge arising from/involving temporal or parietal areas, which are supposed to be a crucial component of the so-called "vestibular cortex". In this paper, we describe three patients suffering from drug-resistant focal epilepsy, symptomatic of malformations of cortical development or perinatal hypoxic/ischemic lesions located in the posterior regions, who presented clusters of vertiginous seizures. The high recurrence rate of such events, recorded during video-EEG monitoring sessions, offered the opportunity to perform an ictal EEG/fMRI study to identify seizure-related hemodynamic changes. The ictal EEG/fMRI revealed the main activation clusters in the temporo-parieto-occipital regions, which are widely recognized to be involved in the processing of vestibular information. Interestingly, ictal deactivation was also detected in the ipsilateral cerebellar hemisphere, suggesting the ictal involvement of cortical-subcortical structures known to be part of the vestibular integration network. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Nonlocal Regularized Algebraic Reconstruction Techniques for MRI: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Xin Li

    2013-01-01

    Full Text Available We attempt to revitalize researchers' interest in algebraic reconstruction techniques (ART by expanding their capabilities and demonstrating their potential in speeding up the process of MRI acquisition. Using a continuous-to-discrete model, we experimentally study the application of ART into MRI reconstruction which unifies previous nonuniform-fast-Fourier-transform- (NUFFT- based and gridding-based approaches. Under the framework of ART, we advocate the use of nonlocal regularization techniques which are leveraged from our previous research on modeling photographic images. It is experimentally shown that nonlocal regularization ART (NR-ART can often outperform their local counterparts in terms of both subjective and objective qualities of reconstructed images. On one real-world k-space data set, we find that nonlocal regularization can achieve satisfactory reconstruction from as few as one-third of samples. We also address an issue related to image reconstruction from real-world k-space data but overlooked in the open literature: the consistency of reconstructed images across different resolutions. A resolution-consistent extension of NR-ART is developed and shown to effectively suppress the artifacts arising from frequency extrapolation. Both source codes and experimental results of this work are made fully reproducible.

  5. Cortical language activation in aphasia:a functional MRI study

    Institute of Scientific and Technical Information of China (English)

    徐晓俊; 张敏鸣; 商德胜; 汪启东; 罗本燕; 翁旭初

    2004-01-01

    Background Functional neuroimaging has been used in neurolinguistic research on normal subjects and on patients with brain damage. This study was designed to investigate the differences of the neural basis underlying language processing between normal subjects and aphasics.Methods Functional magnetic resonance imaging (fMRI) was used to map the language network in 6 normal subjects and 3 patients with aphasia who were in the stage of recovery from acute stroke. The participants performed a word generation task during multi-slice functional scanning for the measurement of signal change associated with regional neural activity induced by the task. Results In normal subjects, a distributed language network was activated. Activations were present in the frontal, temporal, parietal and occipital regions. In the patient group, however, no activation was detected in the left inferior frontal gyrus whether the patient had a lesion in the left frontal lobe or not. Two patients showed activations in some right hemisphere regions where no activation appeared in normal subjects. Conclusions fMRI with word generation task is feasible for evaluating language function in aphasic patients. Remote effect of focal lesion and functional redistribution or reorganisation can be found in aphasic patients.

  6. Volumetric definition of shoulder range of motion and its correlation with clinical signs of shoulder hyperlaxity. A motion capture study.

    Science.gov (United States)

    Ropars, Mickaël; Cretual, Armel; Thomazeau, Hervé; Kaila, Rajiv; Bonan, Isabelle

    2015-02-01

    Shoulder hyperlaxity (SHL) is assessed with clinical signs. Quantification of SHL remains difficult, however, because no quantitative definition has yet been described. With use of a motion capture system (MCS), the aim of this study was to categorize SHL through a volumetric MCS-based definition and to compare this volume with clinical signs used for SHL diagnosis. Twenty-three subjects were examined with passive and active measurement of their shoulder range of motion (SROM) and then with an MCS protocol, allowing computation of the shoulder configuration space volume (SCSV). Clinical data of SHL were assessed by the sulcus sign, external rotation with the arm at the side (ER1) >85° in a standing position, external rotation >90° in a lying position, and Beighton score for general joint laxity. Active and passive ER1, EIR2 (sum of external and internal rotation at 90° of abduction), flexion-extension, and abduction were also measured and correlated to SCSV. Except for the sulcus sign, SCSV was significantly correlated with all clinical signs used for SHL. Passive examination of the different SROMs was better correlated to SCSV than active examination. In passive examination, the worst SROM was ER1 (R = 0.36; P = .09), whereas EIR2, flexion, and abduction were highly correlated to SCSV (P 85° in a standing position appear less discriminating and should be replaced by EIR2 measurement for SHL diagnosis. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  7. Monitoring the early signs of cognitive decline in elderly by computer games: an MRI study.

    Directory of Open Access Journals (Sweden)

    Enikő Sirály

    Full Text Available It is anticipated that current and future preventive therapies will likely be more effective in the early stages of dementia, when everyday functioning is not affected. Accordingly the early identification of people at risk is particularly important. In most cases, when subjects visit an expert and are examined using neuropsychological tests, the disease has already been developed. Contrary to this cognitive games are played by healthy, well functioning elderly people, subjects who should be monitored for early signs. Further advantages of cognitive games are their accessibility and their cost-effectiveness.The aim of the investigation was to show that computer games can help to identify those who are at risk. In order to validate games analysis was completed which measured the correlations between results of the 'Find the Pairs' memory game and the volumes of the temporal brain regions previously found to be good predictors of later cognitive decline.34 healthy elderly subjects were enrolled in the study. The volume of the cerebral structures was measured by MRI. Cortical reconstruction and volumetric segmentation were performed by Freesurfer.There was a correlation between the number of attempts and the time required to complete the memory game and the volume of the entorhinal cortex, the temporal pole, and the hippocampus. There was also a correlation between the results of the Paired Associates Learning (PAL test and the memory game.The results gathered support the initial hypothesis that healthy elderly subjects achieving lower scores in the memory game have increased level of atrophy in the temporal brain structures and showed a decreased performance in the PAL test. Based on these results it can be concluded that memory games may be useful in early screening for cognitive decline.

  8. A semi-automated volumetric software for segmentation and perfusion parameter quantification of brain tumors using 320-row multidetector computed tomography: a validation study

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Soo Young; Suh, Sangil; Ryoo, Inseon; Park, Arim; Seol, Hae Young [Korea University Guro Hospital, Department of Radiology, Seoul (Korea, Republic of); Noh, Kyoung Jin [Soonchunhyang University, Department of Electronic Engineering, Asan (Korea, Republic of); Shim, Hackjoon [Toshiba Medical Systems Korea Co., Seoul (Korea, Republic of)

    2017-05-15

    We developed a semi-automated volumetric software, NPerfusion, to segment brain tumors and quantify perfusion parameters on whole-brain CT perfusion (WBCTP) images. The purpose of this study was to assess the feasibility of the software and to validate its performance compared with manual segmentation. Twenty-nine patients with pathologically proven brain tumors who underwent preoperative WBCTP between August 2012 and February 2015 were included. Three perfusion parameters, arterial flow (AF), equivalent blood volume (EBV), and Patlak flow (PF, which is a measure of permeability of capillaries), of brain tumors were generated by a commercial software and then quantified volumetrically by NPerfusion, which also semi-automatically segmented tumor boundaries. The quantification was validated by comparison with that of manual segmentation in terms of the concordance correlation coefficient and Bland-Altman analysis. With NPerfusion, we successfully performed segmentation and quantified whole volumetric perfusion parameters of all 29 brain tumors that showed consistent perfusion trends with previous studies. The validation of the perfusion parameter quantification exhibited almost perfect agreement with manual segmentation, with Lin concordance correlation coefficients (ρ {sub c}) for AF, EBV, and PF of 0.9988, 0.9994, and 0.9976, respectively. On Bland-Altman analysis, most differences between this software and manual segmentation on the commercial software were within the limit of agreement. NPerfusion successfully performs segmentation of brain tumors and calculates perfusion parameters of brain tumors. We validated this semi-automated segmentation software by comparing it with manual segmentation. NPerfusion can be used to calculate volumetric perfusion parameters of brain tumors from WBCTP. (orig.)

  9. When Learning and Remembering Compete: A Functional MRI Study

    NARCIS (Netherlands)

    Huijbers, W.; Pennartz, C.M.A.; Cabeza, R.; Daselaar, S.M.

    2009-01-01

    Recent functional neuroimaging evidence suggests a bottleneck between learning new information and remembering old information. In two behavioral experiments and one functional MRI (fMRI) experiment, we tested the hypothesis that learning and remembering compete when both processes happen within a b

  10. Learning and generalization under ambiguity: an fMRI study.

    Directory of Open Access Journals (Sweden)

    J R Chumbley

    2012-01-01

    Full Text Available Adaptive behavior often exploits generalizations from past experience by applying them judiciously in new situations. This requires a means of quantifying the relative importance of prior experience and current information, so they can be balanced optimally. In this study, we ask whether the brain generalizes in an optimal way. Specifically, we used Bayesian learning theory and fMRI to test whether neuronal responses reflect context-sensitive changes in ambiguity or uncertainty about experience-dependent beliefs. We found that the hippocampus expresses clear ambiguity-dependent responses that are associated with an augmented rate of learning. These findings suggest candidate neuronal systems that may be involved in aberrations of generalization, such as over-confidence.

  11. Feature-based MRI data fusion for cardiac arrhythmia studies.

    Science.gov (United States)

    Magtibay, Karl; Beheshti, Mohammadali; Foomany, Farbod Hosseyndoust; Massé, Stéphane; Lai, Patrick F H; Zamiri, Nima; Asta, John; Nanthakumar, Kumaraswamy; Jaffray, David; Krishnan, Sridhar; Umapathy, Karthikeyan

    2016-05-01

    Current practices in studying cardiac arrhythmias primarily use electrical or optical surface recordings of a heart, spatially limited transmural recordings, and mathematical models. However, given that such arrhythmias occur on a 3D myocardial tissue, information obtained from such practices lack in dimension, completeness, and are sometimes prone to oversimplification. The combination of complementary Magnetic-Resonance Imaging (MRI)-based techniques such as Current Density Imaging (CDI) and Diffusion Tensor Imaging (DTI) could provide more depth to current practices in assessing the cardiac arrhythmia dynamics in entire cross sections of myocardium. In this work, we present an approach utilizing feature-based data fusion methods to demonstrate that complimentary information obtained from electrical current distribution and structural properties within a heart could be quantified and enhanced. Twelve (12) pairs of CDI and DTI image data sets were gathered from porcine hearts perfused through a Langendorff setup. Images were fused together using feature-based data fusion techniques such as Joint Independent Component Analysis (jICA), Canonical Correlation Analysis (CCA), and their combination (CCA+jICA). The results suggest that the complimentary information of cardiac states from CDI and DTI are enhanced and are better classified with the use of data fusion methods. For each data set, an increase in mean correlations of fused images were observed with 38% increase from CCA+jICA compared to the original images while mean mutual information of the fused images from jICA and CCA+jICA increased by approximately three-fold. We conclude that MRI-based techniques present potential viable tools in furthering studies for cardiac arrhythmias especially Ventricular Fibrillation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Volumetric gain of the human pancreas after left partial pancreatic resection: A CT-scan based retrospective study.

    Science.gov (United States)

    Phillip, Veit; Zahel, Tina; Danninger, Assiye; Erkan, Mert; Dobritz, Martin; Steiner, Jörg M; Kleeff, Jörg; Schmid, Roland M; Algül, Hana

    2015-01-01

    Regeneration of the pancreas has been well characterized in animal models. However, there are conflicting data on the regenerative capacity of the human pancreas. The aim of the present study was to assess the regenerative capacity of the human pancreas. In a retrospective study, data from patients undergoing left partial pancreatic resection at a single center were eligible for inclusion (n = 185). Volumetry was performed based on 5 mm CT-scans acquired through a 256-slice CT-scanner using a semi-automated software. Data from 24 patients (15 males/9 females) were included. Mean ± SD age was 68 ± 11 years (range, 40-85 years). Median time between surgery and the 1st postoperative CT was 9 days (range, 0-27 days; IQR, 7-13), 55 days (range, 21-141 days; IQR, 34-105) until the 2nd CT, and 191 days (range, 62-1902; IQR, 156-347) until the 3rd CT. The pancreatic volumes differed significantly between the first and the second postoperative CT scans (median volume 25.6 mL and 30.6 mL, respectively; p = 0.008) and had significantly increased further by the 3rd CT scan (median volume 37.9 mL; p = 0.001 for comparison with 1st CT scan and p = 0.003 for comparison with 2nd CT scan). The human pancreas shows a measurable and considerable potential of volumetric gain after partial resection. Multidetector-CT based semi-automated volume analysis is a feasible method for follow-up of the volume of the remaining pancreatic parenchyma after partial pancreatectomy. Effects on exocrine and endocrine pancreatic function have to be evaluated in a prospective manner. Copyright © 2015 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  13. Feasibility of laser marking in Barrett's esophagus with volumetric laser endomicroscopy: first-in-man pilot study.

    Science.gov (United States)

    Swager, Anne-Fré; de Groof, Albert J; Meijer, Sybren L; Weusten, Bas L; Curvers, Wouter L; Bergman, Jacques J

    2017-09-01

    Volumetric laser endomicroscopy (VLE) provides a circumferential scan of the esophageal wall layers and has potential to improve detection of neoplasia in Barrett's esophagus (BE). The novel VLE laser marking system enables direct in vivo marking of suspicious areas as identified on VLE. These laser marked areas can subsequently be targeted for biopsies. The aim was to evaluate the visibility and positional accuracy of laser marks (LMs) in different esophageal tissue types on white light endoscopy (WLE) and VLE. Patients with BE with or without neoplasia underwent imaging with VLE. Protocol refinements were practiced in a learning phase. In the second phase, visibility of LMs was assessed by random marking in squamous, BE, and gastric tissue. In phase 3, positional accuracy of the LMs was tested by identifying and laser marking surrogate targets (endoscopically placed cautery marks). In the final phase, the most suspicious areas for neoplasia were identified in each patient using VLE, targeted by LMs, and biopsy samples subsequently obtained. Sixteen patients with BE were included (14 men; median age, 68 years), 1 of whom was included twice in different study phases. Worst histologic diagnoses were 9 non-dysplastic Barrett's esophagus (NDBE), 3 low-grade dysplasia (LGD), 4 high-grade dysplasia (HGD), and 1 early adenocarcinoma (EAC). In total, 222 LMs were placed, of which 97% was visible on WLE. All LMs were visible on VLE directly after marking, and 86% could be confirmed during post hoc analysis. LM targeting was successful with positional accuracy in 85% of cautery marks. Inaccurate targeting was caused by system errors or difficult cautery mark visualization on VLE. In the final phase (5 patients), 18 areas suspicious on VLE were identified, which were all successfully targeted by LMs (3 EAC, 3 HGD, 1 LGD, and 11 NDBE). Mean VLE procedure time was 22 minutes (±6 minutes standard deviation); mean endoscopy time was 56 minutes (±17 minutes). No adverse events

  14. MRI visualisation by digitally reconstructed radiographs

    Science.gov (United States)

    Serrurier, Antoine; Bönsch, Andrea; Lau, Robert; Deserno, Thomas M.

    2015-03-01

    Visualising volumetric medical images such as computed tomography and magnetic resonance imaging (MRI) on picture archiving and communication systems (PACS) clients is often achieved by image browsing in sagittal, coronal or axial views or three-dimensional (3D) rendering. This latter technique requires fine thresholding for MRI. On the other hand, computing virtual radiograph images, also referred to as digitally reconstructed radiographs (DRR), provides in a single two-dimensional (2D) image a complete overview of the 3D data. It appears therefore as a powerful alternative for MRI visualisation and preview in PACS. This study describes a method to compute DRR from T1-weighted MRI. After segmentation of the background, a histogram distribution analysis is performed and each foreground MRI voxel is labeled as one of three tissues: cortical bone, also known as principal absorber of the X-rays, muscle and fat. An intensity level is attributed to each voxel according to the Hounsfield scale, linearly related to the X-ray attenuation coefficient. Each DRR pixel is computed as the accumulation of the new intensities of the MRI dataset along the corresponding X-ray. The method has been tested on 16 T1-weighted MRI sets. Anterior-posterior and lateral DRR have been computed with reasonable qualities and avoiding any manual tissue segmentations. This proof-of-concept holds for research application for use in clinical PACS.

  15. Accelerated hypofractionated adjuvant whole breast radiation with simultaneous integrated boost using volumetric modulated arc therapy for early breast cancer: A phase I/II dosimetric and clinical feasibility study from a tertiary cancer care centre of India

    Directory of Open Access Journals (Sweden)

    Dodul Mondal

    2017-03-01

    Mini abstract: Simultaneous integrated boost with accelerated hypofractionated whole breast radiotherapy using Volumetric Modulated Arc Therapy is a novel approach. Patient selection and technical considerations are of paramount importance. The present study describes successful implementation of this approach.

  16. SU-E-T-766: Treatment Planning Comparison Study On Two Different Multileaf Collimators Delivered with Volumetric Modulated Arc Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R; Xiaomei, F; Bai, W [The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei (China); Zhang, X [The First Hospital of Hebei Medical University, Shijiazhuang, Hebei (China); Gao, Y [Hebei General Hospital, Shijiazhuang, Hebei (China)

    2015-06-15

    Purpose: To compare and evaluate the performance of two different multileaf collimators(MLCi2 and Agility) delivery with volumetric modulated arc therapy techniques. Methods: Treatment plans were graded four (Low, Moderate, Moderate-High and High complexity) accorrding to the complexity. This includes 1 Low complexity(brain metastasis), 2 Moderate complexity(Lung and Liver), 1 Moderate-High complexity(prostate) and 1 High complexity ( head and neck) cases. Total dose of 60 Gy was given for all the plans. All cases were desigined two VMAT plans, one with MLCi2(group A) and the other with Agility(group B). All plans were done on Elekta VMAT with Monaco treatment planning system. All plans were generated with 6 MV X-rays for both Plan A and Plan B. Plans were evaluated based on the ability to meet the dose volume histogram, radiation conformity index, estimated radiation delivery time, dose homogeneity index(HI) and monitor units(MU) needed to deliver the prescribed dose. Results: Plans of group B achieved the best HI (HI = 1.05 Vs. 1.06) at the Low complexity cases while plans of group A were slightly better at the high complexity cases (HI = 1.12 Vs. 1.14). Faster VMAT plan delivery with Agility than with MLCi2 as plan complexity increased (Low complexity:52s Vs.52s, Moderate complexity:58s Vs. 55s, Moderate-High complexity: 171s Vs.152s, High complexity : 326s Vs. 202s ), especially for the most complex paradigms delivered time can be decresed 38%. No Significant changes were observed between the group B and group A plans in terms of the healthy tissue mean dose and MU. Both plans respected the planning objective for all organs at risk. Conclusion: The study concludes that VMAT plans with the novel Agility MLC can significant decrease the delivering time at the high complexity cases, while a slight compromise in the dose homogeneity index should be noted. This work was supported by The Medical Science Foundation of The health department of Hebei Province (No

  17. Negative childhood experiences alter a prefrontal-insular-motor cortical network in healthy adults: A preliminary multimodal rsfMRI-fMRI-MRS-dMRI study

    Science.gov (United States)

    Duncan, Niall W.; Hayes, Dave J.; Wiebking, Christine; Tiret, Brice; Pietruska, Karin; Chen, David Q.; Rainville, Pierre; Marjańska, Malgorzata; Mohammid, Omar; Doyon, Julien; Hodaie, Mojgan; Northoff, Georg

    2016-01-01

    Research in humans and animals has shown that negative childhood experiences (NCE) can have long-term effects on the structure and function of the brain. Alterations have been noted in grey and white matter, in the brain’s resting state, on the glutamatergic system, and on neural and behavioural responses to aversive stimuli. These effects can be linked to psychiatric disorder such as depression and anxiety disorders that are influenced by excessive exposure to early life stressors. The aim of the current study was to investigate the effect of NCEs on these systems. Resting state functional MRI (rsfMRI), aversion task fMRI, glutamate magnetic resonance spectroscopy (MRS), and diffusion magnetic resonance imaging (dMRI) were combined with the Childhood Trauma Questionnaire (CTQ) in healthy subjects to examine the impact of NCEs on the brain. Low CTQ scores, a measure of NCEs, were related to higher resting state glutamate levels and higher resting state entropy in the medial prefrontal cortex (mPFC). CTQ scores, mPFC glutamate and entropy, correlated with neural BOLD responses to the anticipation of aversive stimuli in regions throughout the aversion-related network, with strong correlations between all measures in the motor cortex and left insula. Structural connectivity strength, measured using mean fractional anisotropy, between the mPFC and left insula correlated to aversion-related signal changes in the motor cortex. These findings highlight the impact of NCEs on multiple inter-related brain systems. In particular, they highlight the role of a prefrontal-insular-motor cortical network in the processing and responsivity to aversive stimuli and its potential adaptability by NCEs. PMID:26287448

  18. Genetic correlates of brain aging on MRI and cognitive test measures: a genome-wide association and linkage analysis in the Framingham study

    OpenAIRE

    2007-01-01

    Abstract Background Brain magnetic resonance imaging (MRI) and cognitive tests can identify heritable endophenotypes associated with an increased risk of developing stroke, dementia and Alzheimer's disease (AD). We conducted a genome-wide association (GWA) and linkage analysis exploring the genetic basis of these endophenotypes in a community-based sample. Methods A total of 705 stroke- and dementia-free Framingham participants (age 62 +9 yrs, 50% male) who underwent volumetric brain MRI and ...

  19. Correlating anterior insula gray matter volume changes in young people with clinical and neurocognitive outcomes: an MRI study

    Directory of Open Access Journals (Sweden)

    Hatton Sean N

    2012-05-01

    Full Text Available Abstract Background The anterior insula cortex is considered to be both the structural and functional link between experience, affect, and behaviour. Magnetic resonance imaging (MRI studies have shown changes in anterior insula gray matter volume (GMV in psychosis, bipolar, depression and anxiety disorders in older patients, but few studies have investigated insula GMV changes in young people. This study examined the relationship between anterior insula GMV, clinical symptom severity and neuropsychological performance in a heterogeneous cohort of young people presenting for mental health care. Methods Participants with a primary diagnosis of depression (n = 43, bipolar disorder (n = 38, psychosis (n = 32, anxiety disorder (n = 12 or healthy controls (n = 39 underwent structural MRI scanning, and volumetric segmentation of the bilateral anterior insula cortex was performed using the FreeSurfer application. Statistical analysis examined the linear and quadratic correlations between anterior insula GMV and participants’ performance in a battery of clinical and neuropsychological assessments. Results Compared to healthy participants, patients had significantly reduced GMV in the left anterior insula (t = 2.05, p = .042 which correlated with reduced performance on a neuropsychological task of attentional set-shifting (ρ = .32, p = .016. Changes in right anterior insula GMV was correlated with increased symptom severity (r = .29, p = .006 and more positive symptoms (r = .32, p = .002. Conclusions By using the novel approach of examining a heterogeneous cohort of young depression, anxiety, bipolar and psychosis patients together, this study has demonstrated that insula GMV changes are associated with neurocognitive deficits and clinical symptoms in such young patients.

  20. Correlation between dynamic contrast-enhanced MRI and histopathology in the measurement of tumor and breast volume and their ratio in breast cancer patients: a prospective study

    Institute of Scientific and Technical Information of China (English)

    LIU Qian; YE Jing-ming; XU Ling; DUAN Xue-ning; ZHAO Jian-xin; LIU Yin-hua

    2012-01-01

    Background Earlier studies have examined the association between the diameter of primary tumors measured by magnetic resonance imaging (MRI) and histopathology in breast cancer patients.However,the diameter does not completely describe the dimensions of the breast tumor or its volumetric proportion relative to the whole breast.The association between breast tumor volume/breast volume ratios measured by these two techniques has not been reported.Methods Seventy-three patients were recruited from female patients with primary breast tumors admitted to our center between January and December 2010.They were divided into two groups.Group A (n=46) underwent modified radical mastectomy (MRM),and Group B (n=27) underwent preoperative neoadjuvant chemotherapy before MRM.They were examined by dynamic-contrast enhanced MRI (DCE-MRI) to measure breast volumes (BVs),tumor volumes (TVs),and tumor volume/breast volume ratios (TV/BV).These measurements were compared with histopathology results after MRM,and the associations between MRI and pathology were analyzed by linear regression and Bland-Altman analysis.Results For Group A,the correlation coefficients for BVs,TVs,and TV/BV ratios measured by the two techniques were 0.938,0.921,and 0.897 (all P <0.001),respectively.For Group B,the correlation coefficients for BVs,TVs,and TV/BV ratios were 0.936,0.902,and 0.869 (all P<0.01),respectively.The results suggest statistically significant correlations between these parameters measured by the two techniques for both groups.Conclusion For these patients,BVs,TVs,and TV/BV ratios measured by DCE-MRI significantly correlated with those determined by histopathology.

  1. Effect of compression paddle tilt correction on volumetric breast density estimation.

    Science.gov (United States)

    Kallenberg, Michiel G J; van Gils, Carla H; Lokate, Mariëtte; den Heeten, Gerard J; Karssemeijer, Nico

    2012-08-21

    For the acquisition of a mammogram, a breast is compressed between a compression paddle and a support table. When compression is applied with a flexible compression paddle, the upper plate may be tilted, which results in variation in breast thickness from the chest wall to the breast margin. Paddle tilt has been recognized as a major problem in volumetric breast density estimation methods. In previous work, we developed a fully automatic method to correct the image for the effect of compression paddle tilt. In this study, we investigated in three experiments the effect of paddle tilt and its correction on volumetric breast density estimation. Results showed that paddle tilt considerably affected accuracy of volumetric breast density estimation, but that effect could be reduced by tilt correction. By applying tilt correction, a significant increase in correspondence between mammographic density estimates and measurements on MRI was established. We argue that in volumetric breast density estimation, tilt correction is both feasible and essential when mammographic images are acquired with a flexible compression paddle.

  2. Individualized prediction of illness course at the first psychotic episode: a support vector machine MRI study.

    LENUS (Irish Health Repository)

    Mourao-Miranda, J

    2012-05-01

    To date, magnetic resonance imaging (MRI) has made little impact on the diagnosis and monitoring of psychoses in individual patients. In this study, we used a support vector machine (SVM) whole-brain classification approach to predict future illness course at the individual level from MRI data obtained at the first psychotic episode.

  3. Should we screen BRCA1 mutation carriers only with MRI? A multicenter study

    NARCIS (Netherlands)

    Obdeijn, I.-M.; Winter-Warnars, G.A.O.; Mann, R.M.; Hooning, M.J.; Hunink, M.G.M.; Tilanus-Linthorst, M.M.

    2014-01-01

    BRCA1 mutation carriers are offered screening with MRI and mammography. Aim of the study was to investigate the additional value of digital mammography over MRI screening. BRCA1 mutation carriers, who developed breast cancer since the introduction of digital mammography between January 2003 and Marc

  4. MRI outcomes with cladribine tablets for multiple sclerosis in the CLARITY study

    DEFF Research Database (Denmark)

    Comi, Giancarlo; Cook, Stuart D; Giovannoni, Gavin

    2013-01-01

    We herein provide a comprehensive assessment of magnetic resonance imaging (MRI) outcomes from CLARITY, a 96-week, double-blind study demonstrating significant clinical and MRI improvements in patients with relapsing-remitting multiple sclerosis (RRMS) treated with cladribine tablets. Patients wi...

  5. An fMRI study of processing novel metaphoric sentences.

    Science.gov (United States)

    Mashal, N; Faust, M; Hendler, T; Jung-Beeman, M

    2009-01-01

    Due to inconsistent findings, the role of the two cerebral hemispheres in processing metaphoric language is controversial. The present study examined the possibility that these inconsistent findings may be due, at least partly, to differences in the type (i.e., words vs sentences) or the familiarity of the linguistic material. Previous research has shown that novel two-word metaphoric expressions showed stronger activation in the right homologue of Wernicke's area for the novel metaphors than for both literal expressions and unrelated word pairs. In the present study fMRI was used to identify the left (LH) and the right hemisphere (RH) neural networks associated with processing unfamiliar, novel metaphoric sentences taken from poetry, as compared to those involved in processing familiar literal sentences and unfamiliar nonsensical sentences. Across participants, several left lateralised brain regions showed stronger activation for novel metaphoric sentences than for the nonsensical sentences although both types of sentence represent unfamiliar linguistic expressions. Moreover, the metaphoric sentences elicited more activation in the left dorsolateral prefrontal cortex and the posterior middle temporal gyri than did both the literal sentences and the nonsensical sentences. The increased activation in these brain regions might reflect the enhanced demand on the episodic and semantic memory systems in order to generate de-novo verbal semantic associations. The involvement of the left posterior middle temporal gyri could reflect extra reliance on classical brain structures devoted to sentence comprehension.

  6. Walking indoors, walking outdoors: an fMRI study

    Directory of Open Access Journals (Sweden)

    Riccardo eDalla Volta

    2015-10-01

    Full Text Available An observation/execution matching system for walking has not been assessed yet. The present fMRI study was aimed at assessing whether, as for object-directed actions, an observation/execution matching system is active for walking and whether the spatial context of walking (open or narrow space recruits different neural correlates. Two experimental conditions were employed. In the execution condition, while being scanned, participants performed walking on a rolling cylinder located just outside the scanner. The same action was performed also while observing a video presenting either an open space (a country field or a narrow space (a corridor. In the observation condition, participants observed a video presenting an individual walking on the same cylinder on which the actual action was executed, the open space video and the narrow space video, respectively. Results showed common bilateral activations in the dorsal premotor/supplementary motor areas and in the posterior parietal lobe for both execution and observation of walking, thus supporting a matching system for this action. Moreover, specific sectors of the occipital-temporal cortex and the middle temporal gyrus were consistently active when processing a narrow space versus an open one, thus suggesting their involvement in the visuo-motor transformation required when walking in a narrow space. We forward that the present findings may have implications for rehabilitation of gait and sport training.

  7. The Neural Basis of Typewriting: A Functional MRI Study.

    Directory of Open Access Journals (Sweden)

    Yuichi Higashiyama

    Full Text Available To investigate the neural substrate of typewriting Japanese words and to detect the difference between the neural substrate of typewriting and handwriting, we conducted a functional magnetic resonance imaging (fMRI study in 16 healthy volunteers. All subjects were skillful touch typists and performed five tasks: a typing task, a writing task, a reading task, and two control tasks. Three brain regions were activated during both the typing and the writing tasks: the left superior parietal lobule, the left supramarginal gyrus, and the left premotor cortex close to Exner's area. Although typing and writing involved common brain regions, direct comparison between the typing and the writing task revealed greater left posteromedial intraparietal cortex activation in the typing task. In addition, activity in the left premotor cortex was more rostral in the typing task than in the writing task. These findings suggest that, although the brain circuits involved in Japanese typewriting are almost the same as those involved in handwriting, there are brain regions that are specific for typewriting.

  8. Investigating emotion with music: an fMRI study.

    Science.gov (United States)

    Koelsch, Stefan; Fritz, Thomas; V Cramon, D Yves; Müller, Karsten; Friederici, Angela D

    2006-03-01

    The present study used pleasant and unpleasant music to evoke emotion and functional magnetic resonance imaging (fMRI) to determine neural correlates of emotion processing. Unpleasant (permanently dissonant) music contrasted with pleasant (consonant) music showed activations of amygdala, hippocampus, parahippocampal gyrus, and temporal poles. These structures have previously been implicated in the emotional processing of stimuli with (negative) emotional valence; the present data show that a cerebral network comprising these structures can be activated during the perception of auditory (musical) information. Pleasant (contrasted to unpleasant) music showed activations of the inferior frontal gyrus (IFG, inferior Brodmann's area (BA) 44, BA 45, and BA 46), the anterior superior insula, the ventral striatum, Heschl's gyrus, and the Rolandic operculum. IFG activations appear to reflect processes of music-syntactic analysis and working memory operations. Activations of Rolandic opercular areas possibly reflect the activation of mirror-function mechanisms during the perception of the pleasant tunes. Rolandic operculum, anterior superior insula, and ventral striatum may form a motor-related circuitry that serves the formation of (premotor) representations for vocal sound production during the perception of pleasant auditory information. In all of the mentioned structures, except the hippocampus, activations increased over time during the presentation of the musical stimuli, indicating that the effects of emotion processing have temporal dynamics; the temporal dynamics of emotion have so far mainly been neglected in the functional imaging literature. Copyright 2005 Wiley-Liss, Inc.

  9. A study on the correlation between plan complexity and gamma index analysis in patient specific quality assurance of volumetric modulated arc therapy.

    Science.gov (United States)

    Rajasekaran, Dhanabalan; Jeevanandam, Prakash; Sukumar, Prabakar; Ranganathan, Arulpandiyan; Johnjothi, Samdevakumar; Nagarajan, Vivekanandan

    2015-01-01

    To evaluate the new Octavius 4D system for patient specific quality assurance and to study the correlation between plan complexity and gamma index analysis in patient specific quality assurance of VMAT using the Octavius 4D system. McNiven (2010) proposed a study to evaluate the utility of a complexity metric, the Modulation Complexity Score, to evaluate the relationship of the metric with deliverability in IMRT. Evaluation of the Octavius 4D system was carried out by gamma evaluation of user defined MLC created patterns and AAPM TG 119 benchmark plans. The relationship between plan complexity expressed as Modulation Complexity Score (MCS) and the gamma index analysis was established by a planar and volumetric gamma analysis of 106 clinically approved VMAT patient plans of different sites. Average volumetric 3D global gamma evaluation (3 mm/3%) results for the evaluation plans was 97.41% for 6 MV X-rays and 98.30% for 15 MV X-rays. Average MCS values for the head and neck, pelvic and thoracic plans were 0.2224, 0.3615 and 0.1874. Average volumetric 3D global gamma analysis (3 mm/3%) results for the head and neck, pelvic and thoracic VMAT plans were 95.45%, 97.51% and 96.98%, respectively. Out of 90 correlation analyses between the MCS and gamma passing rate, only 3 had the r value greater than 0.5. The Octavius 4D system is a suitable device for patient specific pretreatment QA. Global and local gamma analysis results showed a weak correlation with the MCS.

  10. Usefulness of Integrated PET/MRI in Head and Neck Cancer: A Preliminary Study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo Jin; Seo, Hyo Jung; Cheon, Gi Jeong; Kim, Ji Hoon; Kim, E. Edmund; Kang, Keon Wook; Paeng, Jin Chul; Chung, Junekey; Lee, Dong Soo [Seoul National Univ., Seoul (Korea, Republic of)

    2014-06-15

    The new modality of an integrated positron emission tomography/magnetic resonance imaging (PET/MRI) has recently been introduced but not validated. Our objective was to evaluate clinical performance of {sup 18}F-fluoro-2-deoxyglucose ({sup 18}F-FDG) PET/MRI in patients with head and neck cancer. This retrospective study was conducted between January 2013 and February 2013. Ten patients (eight men, two women; mean age, 61.4±13.4 years) with histologically proven head and neck tumors were enrolled.Whole-body PET/MRI and regional positron emission tomography (PET) with dedicated MRI were sequentially obtained. Maximum standardized uptake value (SUVmax), SUVmean, metabolic tumor volume, total lesion glycolysis and contrast enhancement were analyzed. A total of ten whole-body positron emission tomography (PET), ten regional positron emission tomography (PET), ten dedicated MRI and ten regional PET/gadolinium-enhanced T1-weighted (Gd)-MRI images were analyzed for initial staging. Two nuclear medicine physicians analyzed positron emission tomography (PET) and PET/MRI with a consensus. One radiologist analyzed dedicated MRI. The primary lesions and number of metastatic lymph nodes analyzed from each image were compared. Eight patients were diagnosed with head and neck cancer (one tongue cancer, four tonsillar cancers, one nasopharyngeal cancer and two hypopharyngeal cancers) by histological diagnosis. Two benign tumors (pleomorphic adenoma and Warthin tumor) were diagnosed with surgical operation. Whole-body positron emission tomography (PET) and regional positron emission tomography (PET) attenuated by MRI showed good image quality for the lesion detection. Whole-body positron emission tomography (PET) and regional positron emission tomography (PET) detected ten primary sites and compensated for a missed lesion on dedicated MRI. A discordant number of suspicious lymph node metastases was noted according to the different images; 22, 16, 39 and 40 in the whole

  11. Non-invasive quantification of small bowel water content by MRI: a validation study

    Science.gov (United States)

    Hoad, C. L.; Marciani, L.; Foley, S.; Totman, J. J.; Wright, J.; Bush, D.; Cox, E. F.; Campbell, E.; Spiller, R. C.; Gowland, P. A.

    2007-12-01

    Substantial water fluxes across the small intestine occur during digestion of food, but so far measuring these has required invasive intubation techniques. This paper describes a non-invasive magnetic resonance imaging (MRI) technique for measuring small bowel water content which has been validated using naso-duodenal infusion. Eighteen healthy volunteers were intubated, with the tube position being verified by MRI. After a baseline MRI scan, each volunteer had eight 40 ml boluses of a non-absorbable mannitol and saline solution infused into their proximal small bowel with an MRI scan being acquired after each bolus. The MRI sequence used was an adapted magnetic resonance cholangiopancreatography sequence. The image data were thresholded to allow for intra- and inter-subject signal variations. The MRI measured volumes were then compared to the known infused volumes. This MRI technique gave excellent images of the small bowel, which closely resemble those obtained using conventional radiology with barium contrast. The mean difference between the measured MRI volumes and infused volumes was 2% with a standard deviation of 10%. The maximum 95% limits of agreement between observers were -15% to +17% while measurements by the same operator on separate occasions differed by only 4%. This new technique can now be applied to study alterations in small bowel fluid absorption and secretion due to gastrointestinal disease or drug intervention.

  12. Non-invasive quantification of small bowel water content by MRI: a validation study

    Energy Technology Data Exchange (ETDEWEB)

    Hoad, C L [Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Marciani, L [Wolfson Digestive Diseases Centre, QMC, Nottingham University Hospitals, University of Nottingham, Nottingham (United Kingdom); Foley, S [Wolfson Digestive Diseases Centre, QMC, Nottingham University Hospitals, University of Nottingham, Nottingham (United Kingdom); Totman, J J [Brain and Body Centre, University of Nottingham, Nottingham (United Kingdom); Wright, J [Division of GI Surgery, QMC, Nottingham University Hospitals, University of Nottingham, Nottingham (United Kingdom); Bush, D [Division of GI Surgery, QMC, Nottingham University Hospitals, University of Nottingham, Nottingham (United Kingdom); Cox, E F [Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Campbell, E [Wolfson Digestive Diseases Centre, QMC, Nottingham University Hospitals, University of Nottingham, Nottingham (United Kingdom); Spiller, R C [Wolfson Digestive Diseases Centre, QMC, Nottingham University Hospitals, University of Nottingham, Nottingham (United Kingdom); Gowland, P A [Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom)

    2007-12-07

    Substantial water fluxes across the small intestine occur during digestion of food, but so far measuring these has required invasive intubation techniques. This paper describes a non-invasive magnetic resonance imaging (MRI) technique for measuring small bowel water content which has been validated using naso-duodenal infusion. Eighteen healthy volunteers were intubated, with the tube position being verified by MRI. After a baseline MRI scan, each volunteer had eight 40 ml boluses of a non-absorbable mannitol and saline solution infused into their proximal small bowel with an MRI scan being acquired after each bolus. The MRI sequence used was an adapted magnetic resonance cholangiopancreatography sequence. The image data were thresholded to allow for intra- and inter-subject signal variations. The MRI measured volumes were then compared to the known infused volumes. This MRI technique gave excellent images of the small bowel, which closely resemble those obtained using conventional radiology with barium contrast. The mean difference between the measured MRI volumes and infused volumes was 2% with a standard deviation of 10%. The maximum 95% limits of agreement between observers were -15% to +17% while measurements by the same operator on separate occasions differed by only 4%. This new technique can now be applied to study alterations in small bowel fluid absorption and secretion due to gastrointestinal disease or drug interventio000.

  13. Fingersomatotopy in area 3b: an fMRI-study

    Directory of Open Access Journals (Sweden)

    Rosén Birgitta

    2004-08-01

    Full Text Available Abstract Background The primary sensory cortex (S1 in the postcentral gyrus is comprised of four areas that each contain a body map, where the representation of the hand is located with the thumb most laterally, anteriorly and inferiorly and the little finger most medially, posteriorly and superiorly. Previous studies on somatotopy using functional MRI have either used low field strength, have included a small number of subjects or failed to attribute activations to any area within S1. In the present study we included twenty subjects, who were investigated at 3 Tesla (T. We focused specifically on Brodmann area 3b, which neurons have discrete receptive fields with a potentially more clearcut somatotopic organisation. The spatial distribution for all fingers' peak activation was determined and group as well as individual analysis was performed. Results Activation maps from 18 subjects were of adequate quality; in 17 subjects activations were present for all fingers and these data were further analysed. In the group analysis the thumb was located most laterally, anteriorly and inferiorly with the other fingers sequentially positioned more medially, posteriorly and superiorly. At the individual level this somatotopic relationship was present for the thumb and little finger, with a higher variability for the fingers in between. The Euclidian distance between the first and fifth finger was 17.2 mm, between the first and second finger 10.6 mm and between the remaining fingers on average 6.3 mm. Conclusion Results from the group analysis, that is both the location of the fingers and the Euclidian distances, are well comparable to results from previous studies using a wide range of modalities. On the subject level the spatial localisation of the fingers showed a less stringent somatotopic order so that the location of a finger in a single subject cannot be predicted from the group result.

  14. Lateralisation of cerebral response to active acupuncture in patients with unilateral ischaemic stroke: an fMRI study

    National Research Council Canada - National Science Library

    Huang, Yong; Chen, Jun-Qi; Lai, Xin-Sheng; Tang, Chun-Zhi; Yang, Jun-Jun; Chen, Hua; Wu, Jun-Xian; Xiao, Hui-Ling; Qu, Shan-Shan; Zhang, Yi-Dan; Zhang, Zhang-Jin

    2013-01-01

    Acupuncture is beneficial in treating stroke neuropsychiatric symptoms. The present study aimed to identify functional brain response to active acupuncture in patients with unilateral ischaemic stroke using functional MRI (fMRI...

  15. Small gray matter volume in orbitofrontal cortex in Prader-Willi syndrome: a voxel-based MRI study.

    Science.gov (United States)

    Ogura, Kaeko; Fujii, Toshikatsu; Abe, Nobuhito; Hosokai, Yoshiyuki; Shinohara, Mayumi; Takahashi, Shoki; Mori, Etsuro

    2011-07-01

    Prader-Willi syndrome (PWS) is a genetically determined neurodevelopmental disorder presenting with behavioral symptoms including hyperphagia, disinhibition, and compulsive behavior. The behavioral problems in individuals with PWS are strikingly similar to those in patients with frontal pathologies, particularly those affecting the orbitofrontal cortex (OFC). However, neuroanatomical abnormalities in the frontal lobe have not been established in PWS. The aim of this study was to look, using volumetric analysis, for morphological changes in the frontal lobe, especially the OFC, of the brains of individuals with PWS. Twelve adults with PWS and 13 age- and gender-matched control subjects participated in structural magnetic resonance imaging (MRI) scans. The whole-brain images were segmented and normalized to a standard stereotactic space. Regional gray matter volumes were compared between the PWS group and the control group using voxel-based morphometry. The PWS subjects showed small gray-matter volume in several regions, including the OFC, caudate nucleus, inferior temporal gyrus, precentral gyrus, supplementary motor area, postcentral gyrus, and cerebellum. The small gray-matter volume in the OFC remained significant in a separate analysis that included total gray matter volume as a covariate. These preliminary findings suggest that the neurobehavioral symptoms in individuals with PWS are related to structural brain abnormalities in these areas.

  16. Imaging large vessel vasculitis with fully integrated PET/MRI: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Einspieler, Ingo; Pyka, Thomas; Eiber, Matthias [Technische Universitaet Muenchen, Klinikum rechts der Isar, Department of Nuclear Medicine, Munich (Germany); Thuermel, Klaus; Wolfram, Sabine; Moog, Philipp [Technische Universitaet Muenchen, Klinikum rechts der Isar, Department of Nephrology, Munich (Germany); Reeps, Christian [Technische Universitaet Muenchen, Department of Vascular Surgery, Klinikum rechts der Isar, Munich (Germany); Essler, Markus [Rheinische Friedrich-Wilhelms-Universitaet, Department of Nuclear Medicine, Universitaetsklinikum Bonn, Bonn (Germany)

    2015-04-16

    The aim of this study was to evaluate the feasibility of hybrid [{sup 18}F]fluorodeoxyglucose (FDG) positron emission tomography (PET)/MRI in patients with large vessel vasculitis (LVV) by comparing visual and quantitative parameters to that of PET/CT. Furthermore, the value of PET/MRI in disease activity and extent of LVV was assessed. A total of 16 [{sup 18}F]FDG PET/MRI and 12 [{sup 18}F]-FDG PET/CT examinations were performed in 12 patients with LVV. MRI of the vessel wall by T1-weighted and T2-weighted sequences was used for anatomical localization of FDG uptake and identification of morphological changes associated with LVV. In addition, contrast-enhanced (CE) magnetic resonance angiography (MRA) was performed. The vascular FDG uptake in the vasculitis group was compared to a reference group of 16 patients using a four-point visual score. Visual scores and quantitative parameters [maximum standardized uptake value (SUV{sub max}) and target to background ratio (TBR)] were compared between PET/MRI and PET/CT. Furthermore, correlations between C-reactive protein (CRP) and quantitative PET results, as well the extent of vasculitis in PET, MRI/CE-MRA and combined PET/MRI, were analysed. TBRs, SUV{sub max} values and visual scores correlated well between PET/MRI and PET/CT (r = 0.92, r = 0.91; r = 0.84, p < 0.05). There was no significant difference between both modalities concerning SUV{sub max} measurements and visual scores. In PET/MRI, PET alone revealed abnormal FDG uptake in 86 vascular regions. MRI/CE-MRA indicated 49 vessel segments with morphological changes related to vasculitis, leading to a total number of 95 vasculitis regions in combination with PET. Strong and significant correlations between CRP and disease extent in PET alone (r = 0.75, p = 0.0067) and PET/MRI (r = 0.92, p < 0.0001) in contrast to MRI/CE-MRA only were observed. Regarding disease activity, no significant correlations were seen between quantitative PET results and CRP, although there

  17. The effect of brain hematoma location on volumetric inductive phase shift spectroscopy of the brain with circular and magnetron sensor coils: a numerical simulation study.

    Science.gov (United States)

    Rojas, R; Rubinsky, B; González, C A

    2008-06-01

    This numerical simulation study addressed the effects of the location of a discrete brain hematoma on the volumetric inductive phase shift of the brain measured with an induction circular sensor coil and an induction magnetron sensor coil. The theoretical study simulates the brain cavity as a circular sphere transversely centered with respect to the circular and magnetron sensor coils. As a case study for the effects of hematoma location, we employed similar size simulated spherical hematomas placed at three different positions from the center of the brain outward. A three-dimensional finite element analysis of the field equations in the frequency range from 100 kHz to 100 MHz revealed a substantial effect of hematoma location on the ability of both the circular and magnetron sensors to detect the hematomas. In particular it was found that there are frequencies, which may be related to resonance, at which the occurrence of the hematomas has no effect on the volumetric inductive phase shift of the brain. Furthermore it was found that the relative sensitivity of circular and magnetron sensor coils with respect to the occurrence of hematoma varies with the location of the hematoma.

  18. Studies on the reliability of high-field intra-operative MRI in brain glioma resection

    Directory of Open Access Journals (Sweden)

    Zhi-jun SONG

    2011-07-01

    Full Text Available Objective To evaluate the reliability of high-field intra-operative magnetic resonance imaging(iMRI in detecting the residual tumors during glioma resection.Method One hundred and thirty-one cases of brain glioma(69 males and 62 females,aged from 7 to 79 years with mean of 39.6 years hospitalized from Nov.2009 to Aug.2010 were involved in present study.All the patients were evaluated using magnetic resonance imaging(MRI before the operation.The tumors were resected under conventional navigation microscope,and the high-field iMRI was used for all the patients when the operators considered the tumor was satisfactorily resected,while the residual tumor was difficult to detect under the microscope,but resected after being revealed by high-field iMRI.Histopathological examination was performed.The patients without residual tumors recieved high-field MRI scan at day 4 or 5 after operation to evaluate the accuracy of high-field iMRI during operation.Results High quality intra-operative images were obtained by using high-field iMRI.Twenty-eight cases were excluded because their residual tumors were not resected due to their location too close to functional area.Combined with the results of intra-operative histopathological examination and post-operative MRI at the early recovery stage,the sensitivity of high-field iMRI in residual tumor diagnosis was 98.0%(49/50,the specificity was 94.3%(50/53,and the accuracy was 96.1%(99/103.Conclusion High-quality intra-operative imaging could be acquired by high-field iMRI,which maybe used as a safe and reliable method in detecting the residual tumors during glioma resection.

  19. Cerebral fat embolism studied with MRI and SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Erdem, E. (Dept. of Neurology, Hacettepe Univ. School of Medicine, Ankara (Turkey)); Namer, I.J. (Inst. of Biophysics, Faculty of Medicine, Louis Pasteur Univ., Strasbourg (France)); Saribas, O. (Dept. of Neurology, Hacettepe Univ. School of Medicine, Ankara (Turkey)); Aras, T. (Dept. of Nuclear Medicine, Hacettepe Univ. School of Medicine Ankara (Turkey)); Tan, E. (Dept. of Neurology, Hacettepe Univ. School of Medicine, Ankara (Turkey)); Bekdik, C. (Dept. of Nuclear Medicine, Hacettepe Univ. School of Medicine Ankara (Turkey)); Zileli, T. (Dept. of Neurology, Hacettepe Univ. School of Medicine, Ankara (Turkey))

    1993-03-01

    In a patient with fat embolism to the brain CT showed no abnormality. MRI performed after recovery from coma, when the patient had aphasia and quadriparesis, demonstrated multiple high signal abnormalities in the white matter on both T1- and T2-weighted images. HMPAO-SPECT showed left-sided hypoperfusion which resolved in parallel with clinical improvement 1 month later. (orig.)

  20. Usefulness of MRI and SPECT studies in evaluating the lesion of aphasia

    Energy Technology Data Exchange (ETDEWEB)

    Hanyu, Haruo; Kobayashi, Yasutaka; Arai, Hisayuki; Hatano, Nobuyoshi; Yamaguchi, Katsuhiko; Katsunuma, Hideyo (Tokyo Medical Coll. (Japan))

    1990-06-01

    Since the introduction of CT scanning, correlations between neuropsychological findings and anatomical lesions have been studied. Anatomical studies by CT scans may, however, be misleading in delineating the extent of lesions in aphasia. We have carried out MRI (magnetic resonance imaging) and SPECT (single photon emission CT) examinations in 15 aphasic patients with cerebrovascular disease and discussed the usefulness of these studies. Compared to CT scan, MRI or SPECT studies were considered to be very useful in 8 of 15 patients. The useful points of these studies were: (1) easy detection of lesions with undetectable damages on CT, (2) demonstration of functional abnormalities in areas adjacent or distant from cerebrovascular lesions, and (3) precise definition of topographical abnormalities because of the three-dimensional imaging capability of MRI. As MRI or SPECT may define the actual extent of lesions and show areas of functional abnormality, these studies are useful and necessary in the assessment of lesions causing aphasia. (author).

  1. EEG-fMRI integration for the study of human brain function.

    Science.gov (United States)

    Jorge, João; van der Zwaag, Wietske; Figueiredo, Patrícia

    2014-11-15

    Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have proved to be extremely valuable tools for the non-invasive study of human brain function. Moreover, due to a notable degree of complementarity between the two modalities, the combination of EEG and fMRI data has been actively sought in the last two decades. Although initially focused on epilepsy, EEG-fMRI applications were rapidly extended to the study of healthy brain function, yielding new insights into its underlying mechanisms and pathways. Nevertheless, EEG and fMRI have markedly different spatial and temporal resolutions, and probe neuronal activity through distinct biophysical processes, many aspects of which are still poorly understood. The remarkable conceptual and methodological challenges associated with EEG-fMRI integration have motivated the development of a wide range of analysis approaches over the years, each relying on more or less restrictive assumptions, and aiming to shed further light on the mechanisms of brain function along with those of the EEG-fMRI coupling itself. Here, we present a review of the most relevant EEG-fMRI integration approaches yet proposed for the study of brain function, supported by a general overview of our current understanding of the biophysical mechanisms coupling the signals obtained from the two modalities.

  2. Using a reference when defining an abnormal MRI reduces false-positive MRI results-a longitudinal study in two cohorts at risk for rheumatoid arthritis.

    Science.gov (United States)

    Boer, Aleid C; Burgers, Leonie E; Mangnus, Lukas; Ten Brinck, Robin M; Nieuwenhuis, Wouter P; van Steenbergen, Hanna W; Reijnierse, Monique; Huizinga, Tom W J; van der Helm van Mil, Annette H M

    2017-10-01

    The use of hand and foot MRI in the diagnostic process of RA has been advocated. Recent studies showed that MRI is helpful in predicting progression from clinically suspect arthralgia (CSA) to clinical arthritis, and from undifferentiated arthritis (UA) to RA. Symptom-free persons can also show inflammation on MRI. This study aimed to evaluate if MRI findings in symptom-free volunteers are relevant when defining a positive MRI. Two hundred and twenty-five CSA patients and two hundred and one UA patients underwent MRI of MCP, wrist and MTP joints at baseline and were followed for 1 year on progression to arthritis and RA, respectively, as reported previously. MRI was considered positive if ⩾ 1 joint showed inflammation (called uncorrected definition), or if ⩾ 1 joint had inflammation that was present in < 5% of persons of the same age category at the same location (called 5% corrected definition). Test characteristics were compared for both definitions. By using MRI data of symptom-free volunteers as reference, specificity of MRI-detected inflammation increased from 22 to 56% in CSA patients, and from 10 to 36% in UA patients. The sensitivity was not affected; it was 88 and 85% in CSA patients and 93 and 93% in UA patients. The accuracy also increased, from 32 to 60% in CSA patients and 22 to 44% in UA patients. The use of a reference population resulted in a substantial reduction of false-positive results, without influencing the sensitivity. Although common for other tests in medicine, this phenomenon is novel for MRI in the early detection of RA.

  3. Neural plasticity in functional and anatomical MRI studies of children with Tourette syndrome

    DEFF Research Database (Denmark)

    Eichele, Heike; Plessen, Kerstin J

    2012-01-01

    callosum and the limbic system. Discussion: Factors that potentially influence the development of adaptive changes in the brain of children with TS are age, comorbidity with other developmental disorders, medication use, IQ along with study-design or MRI techniques for acquisition, and analysis of data...... resulted in 13 original studies, which were reviewed with a focus on findings suggesting adaptive processes (using fMRI) and plasticity (using anatomical MRI). Differences in brain activation compared to healthy controls during tasks that require overriding of prepotent responses help to understand...

  4. Comparative study on developmental stages of the clavicle by postmortem MRI and CT imaging

    DEFF Research Database (Denmark)

    Larsen, Sara Tangmose; Lynnerup, Niels; Jensen, K.E.

    2013-01-01

    Objectives: The developmental stages of the clavicles are important for forensic age estimation purposes in adolescents. This study compares the 4-stage system to evaluate the ossification of the medial end of the clavicle as visualized by magnetic resonance imaging (MRI) and computed tomography...... (CT). As several forensic institutes routinely perform CT scans, the large amount of available data may serve as reference sample for MRI in specific cases. Material and methods: This prospective study included an MRI and CT scan of 47 autopsy cases performed prior to medico-legal autopsy (age range...

  5. Volumetric structural magnetic resonance imaging findings in pediatric posttraumatic stress disorder and obsessive-compulsive disorder: a systematic review

    Directory of Open Access Journals (Sweden)

    Fatima eAhmed

    2012-12-01

    Full Text Available Objectives: Structural magnetic resonance imaging (sMRI studies of anxiety disorders in children and adolescents are limited. Posttraumatic stress disorder (PTSD and obsessive-compulsive disorder (OCD have been best studied in this regard. We systematically reviewed structural neuroimaging findings in pediatric PTSD and OCD. Methods: The literature was reviewed for all sMRI studies examining volumetric parameters using PubMed, ScienceDirect and PsychInfo databases, with no limit on the time frame of publication. Nine studies in pediatric PTSD and 6 in OCD were suitable for inclusion. Results: Volumetric findings were inconsistent in both disorders. In PTSD, findings suggest increased as well as decreased volumes of the prefrontal cortex (PFC and corpus callosum; whilst in OCD studies indicate volumetric increase of the putamen, with inconsistent findings for the anterior cingulate cortex (ACC and frontal regions. Conclusions: Methodological differences may account for some of this inconsistency and additional volume-based studies in pediatric anxiety disorders using more uniform approaches are needed.

  6. Spinal cord involvement in chronic inflammatory demyelinating polyradiculoneuropathy: a clinical and MRI study.

    Science.gov (United States)

    Ioannidis, Panagiotis; Parissis, Dimitris; Karapanayiotides, Theodoros; Maiovis, Pantelis; Karacostas, Dimitris; Grigoriadis, Nikolaos

    2015-06-01

    Concomitant central nervous system (CNS) involvement in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is rare. Although the spinal nerve roots may present MRI abnormalities in CIDP, hitherto, the spinal cord has been investigated in a single study. We retrospectively investigated clinically and with MRI a cohort of patients with definite CIDP diagnosis (EFNS/PNS criteria) for evidence of brain and spinal cord involvement, who were initially admitted in our department during the last 4 years. Among 12 patients with CIDP (men: 8, mean age: 59.3 years, mean disease duration: 3.8 years), nine patients had their MRI scan during a clinical relapse and three during remission. Brain MRI did not document typical multiple sclerosis lesions in any patient. We did not identify any MRI abnormalities in ten patients without clinical evidence of spinal cord involvement. Conversely, MRI disclosed extensive lesions of the thoracic cord in two patients with an overt spinal cord syndrome, whom we describe. This represents the biggest MRI study of CIDP patients who have been investigated for spinal cord involvement. Our data support earlier observations that a minority of CIDP patients may additionally develop CNS involvement of variable degree.

  7. Negative predictive value of multiparametric MRI for prostate cancer detection: Outcome of 5-year follow-up in men with negative findings on initial MRI studies

    Energy Technology Data Exchange (ETDEWEB)

    Itatani, R., E-mail: banguliao@gmail.com [Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556 (Japan); Department of Radiology, Kumamoto Chuo Hospital, 1-5-1, Tainoshima, Kumamoto 862-0965 (Japan); Namimoto, T. [Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556 (Japan); Atsuji, S.; Katahira, K.; Morishita, S. [Department of Radiology, Kumamoto Chuo Hospital, 1-5-1, Tainoshima, Kumamoto 862-0965 (Japan); Kitani, K.; Hamada, Y. [Department of Urology, Kumamoto Chuo Hospital, 1-5-1, Tainoshima, Kumamoto 862-0965 (Japan); Kitaoka, M. [Department of Pathology, Kumamoto Chuo Hospital, 1-5-1, Tainoshima, Kumamoto 862-0965 (Japan); Nakaura, T. [Department of Diagnostic Radiology, Amakusa Medical Center, Kameba 854-1, Amakusa, Kumamoto 863-0046 (Japan); Yamashita, Y. [Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556 (Japan)

    2014-10-15

    Highlights: • We assess the negative predictive value of multiparametric MRI for prostate cancer. • Patients with positive prostate biopsy findings were defined as false-negative. • Patients with negative initial prostate biopsy findings were followed up for 5 years. • The negative predictive value was 89.6% for significant prostate cancer. • MRI is a useful tool to rule out significant prostate cancer before biopsy. - Abstract: Objective: To assess the clinical negative predictive value (NPV) of multiparametric MRI (mp-MRI) for prostate cancer in a 5-year follow-up. Materials and methods: One hundred ninety-three men suspected of harboring prostate cancer with negative MRI findings were included. Patients with positive transrectal ultrasound (TRUS)-guided biopsy findings were defined as false-negative. Patients with negative initial TRUS-guided biopsy findings were followed up and only patients with negative findings by digital rectal examination, MRI, and repeat biopsy and no increase in PSA at 5-year follow-up were defined as “clinically negative”. The clinical NPV of mp-MRI was calculated. For quantitative analysis, mean signal intensity on T2-weighted images and the mean apparent diffusion coefficient value on ADC maps of the initial MRI studies were compared between peripheral-zone (PZ) cancer and the normal PZ based on pathologic maps of patients who had undergone radical prostatectomy. Results: The clinical NPV of mp-MRI was 89.6% for significant prostate cancer. Small cancers, prostatitis, and benign prostatic hypertrophy masking prostate cancer returned false-negative results. Quantitative analysis showed that there was no significant difference between PZ cancer and the normal PZ. Conclusion: The mp-MRI revealed a high clinical NPV and is a useful tool to rule out clinically significant prostate cancer before biopsy.

  8. Vicarious function within the human primary motor cortex? A longitudinal fMRI stroke study

    National Research Council Canada - National Science Library

    Jaillard, Assia; Martin, Chantal Delon; Garambois, Katia; Lebas, Jean François; Hommel, Marc

    2005-01-01

    .... We examined four patients with one ischaemic stroke limited to M1, and four sex- and age-matched healthy controls in a temporally balanced prospective longitudinal fMRI study over three sessions...

  9. Connectivity network measures predict volumetric atrophy in mild cognitive impairment.

    Science.gov (United States)

    Nir, Talia M; Jahanshad, Neda; Toga, Arthur W; Bernstein, Matt A; Jack, Clifford R; Weiner, Michael W; Thompson, Paul M

    2015-01-01

    Alzheimer's disease (AD) is characterized by cortical atrophy and disrupted anatomic connectivity, and leads to abnormal interactions between neural systems. Diffusion-weighted imaging (DWI) and graph theory can be used to evaluate major brain networks and detect signs of a breakdown in network connectivity. In a longitudinal study using both DWI and standard magnetic resonance imaging (MRI), we assessed baseline white-matter connectivity patterns in 30 subjects with mild cognitive impairment (MCI, mean age 71.8 ± 7.5 years, 18 males and 12 females) from the Alzheimer's Disease Neuroimaging Initiative. Using both standard MRI-based cortical parcellations and whole-brain tractography, we computed baseline connectivity maps from which we calculated global "small-world" architecture measures, including mean clustering coefficient and characteristic path length. We evaluated whether these baseline network measures predicted future volumetric brain atrophy in MCI subjects, who are at risk for developing AD, as determined by 3-dimensional Jacobian "expansion factor maps" between baseline and 6-month follow-up anatomic scans. This study suggests that DWI-based network measures may be a novel predictor of AD progression.

  10. Evaluation of Tumor Angiogenesis by MRI Study Using Iron Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mansour Ashoor

    2010-05-01

    Full Text Available Angiogenesis is the growth of new blood vessels from existing ones and it is a perquisite for the growth, invasion and metastasis of solid tumors. This complex process involves multiple steps and pathways dependent on the local balance between positive and negative regulatory factors, as well as interactions among the tumor, its vasculature and the surrounding extracellular tissue matrix. Tumors lay dormant yet viable, unable to grow beyond 2-3 mm3 in size without angiogenesis."nWith the development of novel therapies for treat-ment of several diseases, directed noninvasive imaging strategies will be critical for defining the pathophysiology of angiogenesis. Imaging modalities used to detect angiogenesis include PET, SPECT, MRI, CT, US and near-infrared optical imaging. For these modalities, methods have been developed to measure blood volume, blood flow and several other semi quantitative and quantitative kinetic hemodynamic parameters such as vascular permeability. Characteristic molecular makers of angiogenesis may be visualized with the aid of molecular imaging agents such as VEGFs or the α vß3 integrin. "nMRI is a practical modality for assessing angiogenesis over time because it is already widely used clinically to assess tumor growth and for response evaluation. Anatomical information can be co registered with functional and molecular information within a single imaging method. Moreover, MRI does not involve ionizing radiation and the commonly used contrast agent has low toxicity. "nSuper paramagnetic iron oxides (SPIO are FDA-approved contrast agents for use in magnetic reson-ance (MR imaging. Most of the administered SPIO end up in the reticuloendotelial system via endocytosis and the iron core released from the SPIO is utilized in normal iron metabolism pathways. We utilize the paramagnetic characteristics of SPIO to improve the contrast of the image in MRI."nFor the first time we will introduce a method for evaluating angiogenesis

  11. Flexible Volumetric Structure

    Science.gov (United States)

    Cagle, Christopher M. (Inventor); Schlecht, Robin W. (Inventor)

    2014-01-01

    A flexible volumetric structure has a first spring that defines a three-dimensional volume and includes a serpentine structure elongatable and compressible along a length thereof. A second spring is coupled to at least one outboard edge region of the first spring. The second spring is a sheet-like structure capable of elongation along an in-plane dimension thereof. The second spring is oriented such that its in-plane dimension is aligned with the length of the first spring's serpentine structure.

  12. Association of Coffee Consumption with MRI Markers and Cognitive Function: A Population-Based Study

    OpenAIRE

    Araújo, Larissa Fortunato; Mirza, Saira; Bos, Daniel; Niessen, Wiro; Barreto, Sandhi Maria; Van der Lugt, Aad; Vernooij, Meike; Hofman, Albert; Tiemeier, Henning; Ikram, Arfan,; Polidori, M. C.

    2016-01-01

    textabstractBackground: Coffee is one of the most widely consumed beverages worldwide and has been of considerable interest in research on cognition and dementia. Objective: To investigate the effect of coffee on preclinical brain MRI markers of dementia and cognitive performance. Methods: In 2,914 participants from the population-based Rotterdam Study (mean age: 59.3±7.2 years, 55 females), we assessed coffee consumption, performed brain MRI, and assessed cognition at baseline. To study cogn...

  13. Simulation Study on Active Noise Control for a 4 Tesla MRI Scanner

    Science.gov (United States)

    Li, Mingfeng; Lim, Teik C.; Lee, Jing-Huei

    2008-01-01

    The purpose of this work is to study computationally the possibility of the application of a hybrid active noise control technique for MRI acoustic noise reduction. A hybrid control system combined with both feedforward and feedback loops embedded is proposed for potential application on active MRI noise reduction. A set of computational simulation studies were performed. Sets of MRI acoustic noise emissions measured at the patient's left ear location were recorded and used in the simulation study. By comparing three different control systems, namely the feedback, the feedforward and the hybrid control, our results revealed that the hybrid control system is the most effective. The hybrid control system achieved approximately a 20 dB reduction at the principal frequency component. We concluded that the proposed hybrid active control scheme could have a potential application for MRI scanner noise reduction. PMID:18060719

  14. Simulation study on active noise control for a 4-T MRI scanner.

    Science.gov (United States)

    Li, Mingfeng; Lim, Teik C; Lee, Jing-Huei

    2008-04-01

    The purpose of this work is to study computationally the possibility of the application of a hybrid active noise control technique for magnetic resonance imaging (MRI) acoustic noise reduction. A hybrid control system combined with both feedforward and feedback loops embedded is proposed for potential application on active MRI noise reduction. A set of computational simulation studies were performed. Sets of MRI acoustic noise emissions measured at the patient's left ear location were recorded and used in the simulation study. By comparing three different control systems, namely, the feedback, the feedforward and the hybrid control, our results revealed that the hybrid control system is the most effective. The hybrid control system achieved approximately a 20-dB reduction at the principal frequency component. We concluded that the proposed hybrid active control scheme could have a potential application for MRI scanner noise reduction.

  15. A multifunctional method (ERP and fMRI of analysis on facial expression. Three pilot studies

    Directory of Open Access Journals (Sweden)

    Galit Yovel

    2007-04-01

    Full Text Available As social primates, one of the most important cognitive tasks we conduct, dozens of times a day, is to look at a face and extract the person's identity. During the last decade, the neural basis of face processing has been extensively investigated in humans with event-related potential (ERP and functional MRI (fMRI. These two methods provide complementary information about the temporal and spatial aspects of the neural response, with ERPs allowing high temporal resolution of milliseconds but low spatial resolution of the neural generator and fMRI displaying a slow hemodynamic response but better spatial localization of the activated regions. Despite the extensive fMRI and ERP research of faces, only a few studies have assessed the relationship between the two methods and no study to date have collected simultaneous ERP and fMRI responses to face stimuli. In the current paper we will try to assess the spatial and temporal aspects of the neural response to faces by simultaneously collecting functional MRI and event-related potentials (ERP to face stimuli. Our goals are twofold: 1 ERP and fMRI show a robust selective response to faces. In particular, two well-established face-specific phenomena, the RH superiority and the inversion effect are robustly found with both ERP and fMRI. Despite the extensive research of these effects with ERP and fMRI, it is still unknown to what extent their spatial (fMRI and temporal (ERP aspects are associated. In Study 1 we will employ an individual differences approach, to assess the relationship between these ERP and fMRI face-specific responses. 2 Face processing involves several stages starting from structural encoding of the face image through identity processing to storage for later retrieval. This representation undergoes several manipulations that take place at different time points and in different brain regions before the final percept is generated. By simultaneously recording ERP and fMRI we hope to gain a

  16. Assessment of CF lung disease using motion corrected PROPELLER MRI: a comparison with CT

    Energy Technology Data Exchange (ETDEWEB)

    Ciet, Pierluigi [General Hospital Ca' Foncello, Radiology Department, Treviso (Italy); Sophia Children' s Hospital, Pediatric Pulmonology Erasmus MC, Rotterdam (Netherlands); Erasmus MC, Radiology, Rotterdam (Netherlands); Serra, Goffredo; Catalano, Carlo [University of Rome ' ' Sapienza' ' , Radiology, Rome (Italy); Bertolo, Silvia; Morana, Giovanni [General Hospital Ca' Foncello, Radiology Department, Treviso (Italy); Spronk, Sandra [Erasmus MC, Radiology, Rotterdam (Netherlands); Erasmus MC, Epidemiology, Rotterdam (Netherlands); Ros, Mirco [Ca' Foncello Hospital, Pediatrics, Treviso (Italy); Fraioli, Francesco [University College London (UCL), Institute of Nuclear Medicine, London (United Kingdom); Quattrucci, Serena [University of Rome Sapienza, Pediatrics, Rome (Italy); Assael, M.B. [Azienda Ospedaliera di Verona, Verona CF Center, Verona (Italy); Pomerri, Fabio [University of Padova, Department of Medicine-DIMED, Padova (Italy); Tiddens, Harm A.W.M. [Sophia Children' s Hospital, Pediatric Pulmonology Erasmus MC, Rotterdam (Netherlands); Erasmus MC, Radiology, Rotterdam (Netherlands)

    2016-03-15

    To date, PROPELLER MRI, a breathing-motion-insensitive technique, has not been assessed for cystic fibrosis (CF) lung disease. We compared this technique to CT for assessing CF lung disease in children and adults. Thirty-eight stable CF patients (median 21 years, range 6-51 years, 22 female) underwent MRI and CT on the same day. Study protocol included respiratory-triggered PROPELLER MRI and volumetric CT end-inspiratory and -expiratory acquisitions. Two observers scored the images using the CF-MRI and CF-CT systems. Scores were compared with intra-class correlation coefficient (ICC) and Bland-Altman plots. The sensitivity and specificity of MRI versus CT were calculated. MRI sensitivity for detecting severe CF bronchiectasis was 0.33 (CI 0.09-0.57), while specificity was 100 % (CI 0.88-1). ICCs for bronchiectasis and trapped air were as follows: MRI-bronchiectasis (0.79); CT-bronchiectasis (0.85); MRI-trapped air (0.51); CT-trapped air (0.87). Bland-Altman plots showed an MRI tendency to overestimate the severity of bronchiectasis in mild CF disease and underestimate bronchiectasis in severe disease. Motion correction in PROPELLER MRI does not improve assessment of CF lung disease compared to CT. However, the good inter- and intra-observer agreement and the high specificity suggest that MRI might play a role in the short-term follow-up of CF lung disease (i.e. pulmonary exacerbations). (orig.)

  17. Navicular bone position determined by positional MRI: a reproducibility study

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Philip; Nybing, Janus D. [Copenhagen University Hospital Frederiksberg and Bispebjerg, Department of Radiology, Frederiksberg (Denmark); Johannsen, Finn E.; Stallknecht, Sandra E. [Copenhagen University Hospital Bispebjerg, Institute of Sports Medicine Copenhagen, Copenhagen, NV (Denmark); Hangaard, Stine; Hansen, Bjarke B. [Copenhagen University Hospital Frederiksberg, Parker Institute, Department of Rheumatology, Frederiksberg (Denmark); Boesen, Mikael [Copenhagen University Hospital Frederiksberg and Bispebjerg, Department of Radiology, Frederiksberg (Denmark); Copenhagen University Hospital Frederiksberg, Parker Institute, Department of Rheumatology, Frederiksberg (Denmark)

    2016-02-15

    To examine intraobserver, interobserver and between-day reproducibility of positional MRI for evaluation of navicular bone height (NVH) and medial navicular position (MNP). Positional MRI (pMRI) of the foot was performed on ten healthy participants (0.25 T G-scanner). Scanning was performed in supine and standing position, respectively. Two radiologists evaluated the images in a blinded manner. Reliability and agreement were assessed by calculation of intraclass correlation coefficient (ICC) and 95 % limits of agreement as a percentage of the mean (LOA%). Intraobserver and interobserver reliability was ''substantial'' in both supine and standing position (ICC 0.86-0.98) and showed good agreement (LOA% 4.9-14.7 %). Between-day reliability of navicular height and medial navicular position in standing position remained substantial (ICC 0.85-0.92) with adequate agreement (LOA% 8.3-19.8 %). In supine position between-day reliability was ''moderate'' for NVH (ICC 0.72) and ''slight'' for MNP (ICC 0.39). Agreement remained adequate between-days for MNP in supine position (LOA% 17.7 %), but it was less than adequate for NVH in supine position (LOA% 24.2 %). Navicular height and medial navicular position can be measured by pMRI in a very reproducible manner within and between observers. Increased measurement variation is observed between-days in supine position, which may be due to small positional differences or other unknown biomechanical factors. (orig.)

  18. Contradictory Reasoning Network: An EEG and fMRI Study

    OpenAIRE

    Porcaro, Camillo; Medaglia, Maria Teresa; Thai, Ngoc Jade; Seri, Stefano; Rotshtein, Pia; Tecchio, Franca

    2014-01-01

    Contradiction is a cornerstone of human rationality, essential for everyday life and communication. We investigated electroencephalographic (EEG) and functional magnetic resonance imaging (fMRI) in separate recording sessions during contradictory judgments, using a logical structure based on categorical propositions of the Aristotelian Square of Opposition (ASoO). The use of ASoO propositions, while controlling for potential linguistic or semantic confounds, enabled us to observe the spatial ...

  19. MRI-based Preplanning Using CT and MRI Data Fusion in Patients With Cervical Cancer Treated With 3D-based Brachytherapy: Feasibility and Accuracy Study

    Energy Technology Data Exchange (ETDEWEB)

    Dolezel, Martin, E-mail: dolezelm@email.cz [Oncology Centre, Multiscan and Pardubice Regional Hospital, Pardubice (Czech Republic); First Faculty of Medicine, Charles University, Prague (Czech Republic); Odrazka, Karel [Oncology Centre, Multiscan and Pardubice Regional Hospital, Pardubice (Czech Republic); First Faculty of Medicine, Charles University, Prague (Czech Republic); Zizka, Jan [Department of Radiology, Charles University Teaching Hospital, Hradec Kralove (Czech Republic); Vanasek, Jaroslav; Kohlova, Tereza; Kroulik, Tomas [Oncology Centre, Multiscan and Pardubice Regional Hospital, Pardubice (Czech Republic); Spitzer, Dusan; Ryska, Pavel [Department of Radiology, Multiscan and Pardubice Regional Hospital, Pardubice (Czech Republic); Tichy, Michal; Kostal, Milan [Department of Gynaecology, Multiscan and Pardubice Regional Hospital, Pardubice (Czech Republic); Jalcova, Lubica [Oncology Centre, Multiscan and Pardubice Regional Hospital, Pardubice (Czech Republic)

    2012-09-01

    Purpose: Magnetic resonance imaging (MRI)-assisted radiation treatment planning enables enhanced target contouring. The purpose of this study is to analyze the feasibility and accuracy of computed tomography (CT) and MRI data fusion for MRI-based treatment planning in an institution where an MRI scanner is not available in the radiotherapy department. Methods and Materials: The registration inaccuracy of applicators and soft tissue was assessed in 42 applications with CT/MRI data fusion. The absolute positional difference of the center of the applicators was measured in four different planes from the top of the tandem to the cervix. Any inaccuracy of registration of soft tissue in relation to the position of applicators was determined and dose-volume parameters for MRI preplans and for CT/MRI fusion plans with or without target and organs at risk (OAR) adaptation were evaluated. Results: We performed 6,132 measurements in 42 CT/MRI image fusions. Median absolute difference of the center of tandem on CT and MRI was 1.1 mm. Median distance between the center of the right ovoid on CT and MRI was 1.7 and 1.9 mm in the laterolateral and anteroposterior direction, respectively. Corresponding values for the left ovoid were 1.6 and 1.8 mm. Rotation of applicators was 3.1 Degree-Sign . Median absolute difference in position of applicators in relation to soft tissue was 1.93, 1.50, 1.05, and 0.84 mm in the respective transverse planes, and 1.17, 1.28, 1.27, and 1.17 mm in selected angular directions. The dosimetric parameters for organs at risk on CT/MRI fusion plans without OAR adaptation were significantly impaired whereas the target coverage was not influenced. Planning without target adaptation led to overdosing of the target volume, especially high-risk clinical target volume - D{sub 90} 88.2 vs. 83.1 (p < 0.05). Conclusions: MRI-based preplanning with consecutive CT/MRI data fusion can be safe and feasible, with an acceptable inaccuracy of soft tissue registration.

  20. A study of brain MRI findings in children with epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Kanematsu, Sachiko; Sumida, Sawako; Muto, Ayako; Osawa, Makiko; Ono, Yuko [Tokyo Women' s Medical Coll. (Japan); Uchida, Moriyasu; Maruyama, Hiroshi

    2000-06-01

    Magnetic resonance imaging in the brain was performed in 293 patients with childhood-onset (<15 y.o.) epilepsy who had been classified into 4 groups, idiopathic localization-related epilepsy (ILRE), 78 patients; idiopathic generalized epilepsy (IGE), 116 patients; symptomatic localization-related epilepsy (SLRE), 68 patients and symptomatic generalized epilepsy (SGE), 31 patients, with the Classification of Epilepsies and Epileptic Syndrome (1989 International League Against Epilepsy). The examination was performed with a 1.5 T magnet. One hundred twenty-five patients (42.7%) showed abnormal findings, and the incidence in each group was as follows: Idiopathic epilepsy: The rate of abnormal findings in the ILRE and IGE groups was 21.8% and 20.7%, respectively. Most of the abnormal findings were secondary changes, such as diffuse or localized brain atrophy. Of the congenital abnormalities, the main finding was arachnoid cyst. Symptomatic epilepsy: The rate of abnormality in the SLRE patients was 88.2%, and 85% of the findings were secondary changes, i.e., brain atrophy, or degeneration of the white matter. In the SGE group, the rate was 77.4%, with an almost equal percentage of congenital and secondary changes. Of 255 patients who were examined by electroencephalography (EEG) on the same day as MRI, about 50% showed a correlation between the EEG records and the MRI abnormalities. However, only 8 patients showed a correlation in localization between the EEG and MRI abnormalities. (author)

  1. A digital volumetric tomography (DVT study in the mandibular molar region for miniscrew placement during mixed dentition

    Directory of Open Access Journals (Sweden)

    Mayur S. Bhattad

    2015-04-01

    Full Text Available OBJECTIVE: To assess bone thickness for miniscrew placement in the mandible during mixed dentition by using digital volumetric tomograph (DVT. MATERIAL AND METHODS: A total of 15 healthy patients aged 8-10 years old, with early exfoliated mandibular second deciduous molar, were included. DVT images of one quadrant of the mandible were obtained using Kodak extraoral imaging systems and analyzed by Kodak dental imaging software. The error of the method (EM was calculated using Dahlberg's formula. Mean and standard deviation were calculated at 6 and 8 mm from the cementoenamel junction (CEJ.Paired t-test was used to analyze the measurements. RESULTS: Buccal cortical bone thickness, mesiodistal width and buccolingual bone depth at 6 mm were found to be 1.73 + 0.41, 2.15 + 0.49 and 13.18 + 1.22 mm, respectively; while at 8 mm measurements were 2.42 + 0.34, 2.48 + 0.33 and 13.65 + 1.25 mm, respectively. EM for buccal cortical bone thickness, mesiodistal width and buccolingual bone depth was 0.58, 0.40 and 0.48, respectively. The difference in measurement at 6 and 8 mm for buccal cortical plate thickness (P 0.05. CONCLUSION: Bone thickness measurement has shown promising evidence for safe placement of miniscrews in the mandible during mixed dentition. The use of miniscrew is the best alternative, even in younger patients.

  2. Predicting response to neoadjuvant chemotherapy in primary breast cancer using volumetric helical perfusion computed tomography: a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Sonia P.; Makris, Andreas [Academic Oncology Unit, Mount Vernon Cancer Centre, Middlesex (United Kingdom); Gogbashian, Andrew; Simcock, Ian C.; Stirling, J.J. [Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Middlesex (United Kingdom); Goh, Vicky [Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Middlesex (United Kingdom); Lambeth Wing, St Thomas' Hospital, Division of Imaging Sciences, Kings College London, London (United Kingdom)

    2012-09-15

    To investigate whether CT-derived vascular parameters in primary breast cancer predict complete pathological response (pCR) to neoadjuvant chemotherapy (NAC). Twenty prospective patients with primary breast cancer due for NAC underwent volumetric helical perfusion CT to derive whole tumour regional blood flow (BF), blood volume (BV) and flow extraction product (FE) by deconvolution analysis. A pCR was achieved if no residual invasive cancer was detectable on pathological examination. Relationships between baseline BF, BV, FE, tumour size and volume, and pCR were examined using the Mann-Whitney U test. Receiver operating characteristic (ROC) curve analysis was performed to assess the parameter best able to predict response. Intra- and inter-observer variability was assessed using Bland-Altman statistics. Seventeen out of 20 patients completed NAC with four achieving a pCR. Baseline BF and FE were higher in patients who achieved a pCR compared with those who did not (P = 0.032); tumour size and volume were not significantly different (P > 0.05). ROC analysis revealed that BF and FE were able to identify responders effectively (AUC = 0.87; P = 0.03). There was good intra- and inter-observer agreement. Primary breast cancers which exhibited higher levels of perfusion before treatment were more likely to achieve a pCR to NAC. (orig.)

  3. Human memory retention and recall processes. A review of EEG and fMRI studies.

    Science.gov (United States)

    Amin, Hafeezullah; Malik, Aamir S

    2013-10-01

    Human memory is an important concept in cognitive psychology and neuroscience. Our brain is actively engaged in functions of learning and memorization. Generally, human memory has been classified into 2 groups: short-term/working memory, and long-term memory. Using different memory paradigms and brain mapping techniques, psychologists and neuroscientists have identified 3 memory processes: encoding, retention, and recall. These processes have been studied using EEG and functional MRI (fMRI) in cognitive and neuroscience research. This study reviews previous research reported for human memory processes, particularly brain behavior in memory retention and recall processes with the use of EEG and fMRI. We discuss issues and challenges related to memory research with EEG and fMRI techniques.

  4. Pediatric MRI

    Data.gov (United States)

    U.S. Department of Health & Human Services — The NIH Study of Normal Brain Development is a longitudinal study using anatomical MRI, diffusion tensor imaging (DTI), and MR spectroscopy (MRS) to map pediatric...

  5. Imaging large vessel vasculitis with fully integrated PET/MRI: a pilot study.

    Science.gov (United States)

    Einspieler, Ingo; Thürmel, Klaus; Pyka, Thomas; Eiber, Matthias; Wolfram, Sabine; Moog, Philipp; Reeps, Christian; Essler, Markus

    2015-06-01

    The aim of this study was to evaluate the feasibility of hybrid [(18)F]fluorodeoxyglucose (FDG) positron emission tomography (PET)/MRI in patients with large vessel vasculitis (LVV) by comparing visual and quantitative parameters to that of PET/CT. Furthermore, the value of PET/MRI in disease activity and extent of LVV was assessed. A total of 16 [(18)F]FDG PET/MRI and 12 [(18)F]-FDG PET/CT examinations were performed in 12 patients with LVV. MRI of the vessel wall by T1-weighted and T2-weighted sequences was used for anatomical localization of FDG uptake and identification of morphological changes associated with LVV. In addition, contrast-enhanced (CE) magnetic resonance angiography (MRA) was performed. The vascular FDG uptake in the vasculitis group was compared to a reference group of 16 patients using a four-point visual score. Visual scores and quantitative parameters [maximum standardized uptake value (SUVmax) and target to background ratio (TBR)] were compared between PET/MRI and PET/CT. Furthermore, correlations between C-reactive protein (CRP) and quantitative PET results, as well the extent of vasculitis in PET, MRI/CE-MRA and combined PET/MRI, were analysed. TBRs, SUVmax values and visual scores correlated well between PET/MRI and PET/CT (r = 0.92, r = 0.91; r = 0.84, p vasculitis, leading to a total number of 95 vasculitis regions in combination with PET. Strong and significant correlations between CRP and disease extent in PET alone (r = 0.75, p = 0.0067) and PET/MRI (r = 0.92, p < 0.0001) in contrast to MRI/CE-MRA only were observed. Regarding disease activity, no significant correlations were seen between quantitative PET results and CRP, although there was a trend towards significance (r = 0.55, p = 0.0651). PET/MRI also showed active LVV in 15/16 examinations. Hybrid PET/MRI is feasible in LVV and holds promise for precisely determining disease extent and disease activity.

  6. Widespread Volumetric Brain Changes following Tooth Loss in Female Mice

    Science.gov (United States)

    Avivi-Arber, Limor; Seltzer, Ze'ev; Friedel, Miriam; Lerch, Jason P.; Moayedi, Massieh; Davis, Karen D.; Sessle, Barry J.

    2017-01-01

    Tooth loss is associated with altered sensory, motor, cognitive and emotional functions. These changes vary highly in the population and are accompanied by structural and functional changes in brain regions mediating these functions. It is unclear to what extent this variability in behavior and function is caused by genetic and/or environmental determinants and which brain regions undergo structural plasticity that mediates these changes. Thus, the overall goal of our research program is to identify genetic variants that control structural and functional plasticity following tooth loss. As a step toward this goal, here our aim was to determine whether structural magnetic resonance imaging (sMRI) is sensitive to detect quantifiable volumetric differences in the brains of mice of different genetic background receiving tooth extraction or sham operation. We used 67 adult female mice of 7 strains, comprising the A/J (A) and C57BL/6J (B) strains and a randomly selected sample of 5 of the 23 AXB-BXA strains (AXB1, AXB4, AXB24, BXA14, BXA24) that were produced from the A and B parental mice by recombinations and inbreeding. This panel of 25 inbred strains of genetically diverse inbred strains of mice is used for mapping chromosomal intervals throughout the genome that harbor candidate genes controlling the phenotypic variance of any trait under study. Under general anesthesia, 39 mice received extraction of 3 right maxillary molar teeth and 28 mice received sham operation. On post-extraction day 21, post-mortem whole-brain high-resolution sMRI was used to quantify the volume of 160 brain regions. Compared to sham operation, tooth extraction was associated with a significantly reduced regional and voxel-wise volumes of cortical brain regions involved in processing somatosensory, motor, cognitive and emotional functions, and increased volumes in subcortical sensorimotor and temporal limbic forebrain regions including the amygdala. Additionally, comparison of the 10 BXA14

  7. Automated Breast Volumetric Sonography Compared with Magnetic Resonance Imaging in Jewish BRCA 1/2 Mutation Carriers.

    Science.gov (United States)

    Halshtok Neiman, Osnat; Erlich, Zippy; Friedman, Eitan; Rundstein, Arie; Shalmon, Anat; Servadio, Yael; Sklair Levy, Miri

    2016-10-01

    Automated breast volumetric sonography (ABVS) is a new technology with various possible applications. To compare ABVS and breast magnetic resonance imaging (MRI) in the surveillance of women with BRCA1/2 gene mutation carriers. We conducted a prospective study in Jewish female BRCA1/2 mutation carriers who underwent breast MRI and ABVS. The results of both exams performed 6 months apart or less, and relevant clinical data, were reviewed. The BIRADS results were divided into three subgroups according to subsequent expected management: BIRADS 1-2 (normal study), BIRADS 3 (probably benign finding), and BIRADS 4 and 5 (suspicious findings). BIRADS 0 and 6 scores were excluded from the study. Distribution of ABVS and MRI BIRADS scores were compared using McNemar's test, and concordance was calculated using the Cohen kappa test. Overall, 68 women, 40 BRCA1 and 28 BRCA2 mutation carriers, age range 26-69 (mean 44.55 ± 12.1 years), underwent 79 paired ABVS and MRI examinations. McNemar's test calculations showed no significant difference between MRI and ABVS BIRADS score distribution. Cohen's kappa test resulted in k = 0.158, an agreement that can be described as only "slight agreement" between both modalities. Of 14 discordant cases there was one cancer, revealed by MRI and not by ABVS performed 6 months prior to MRI. ABVS showed slight agreement with MRI in BRCA1/2 mutation carriers. These preliminary results on a small group of healthy high risk patients suggest that the diagnostic abilities of ABVS are inferior to MRI. Further studies encompassing larger groups are needed.

  8. Neural correlates of text‐based emoticons: a preliminary fMRI study

    OpenAIRE

    Kim, Ko Woon; Lee, Sang Won; Choi, Jeewook; Kim, Tae Min; Jeong, Bumseok

    2016-01-01

    Abstract Introduction Like nonverbal cues in oral interactions, text‐based emoticons, which are textual portrayals of a writer's facial expressions, are commonly used in electronic device–mediated communication. Little is known, however, about how text‐based emoticons are processed in the human brain. With this study, we investigated whether the text‐based emoticons are processed as face expressions using fMRI. Methods During fMRI scan, subjects were asked to respond by pressing a button, ind...

  9. Collective Correlations of Brodmann Areas fMRI Study with RMT-Denoising

    OpenAIRE

    Burda, Zdzislaw; Kornelsen, Jennifer; Nowak, Maciej A.; Porebski, Bartosz; Sboto-Frankenstein, Uta; Tomanek, Boguslaw; Tyburczyk, Jacek

    2013-01-01

    We study collective behavior of Brodmann regions of human cerebral cortex using functional Magnetic Resonance Imaging (fMRI) and Random Matrix Theory (RMT). The raw fMRI data is mapped onto the cortex regions corresponding to the Brodmann areas with the aid of the Talairach coordinates. Principal Component Analysis (PCA) of the Pearson correlation matrix for 41 different Brodmann regions is carried out to determine their collective activity in the idle state and in the active state stimulated...

  10. A Nanocomplex System as Targeted Contrast Agent Delivery Vehicle for MRI Dynamic Contrast Enhancement Study

    OpenAIRE

    Korotcov, Alexandru; Shan, Liang; Meng, Huan; Wang, Tongxin; Sridhar, Rajagopalan; Zhao, Yuliang; Liang, Xing-Jie; Wang, Paul C.

    2010-01-01

    We have developed and tested a liposomal nanocomplex system, which contains Gd-DTPA as a payload and transferrin on the surface, as a tumor specific targeting MRI contrast agent for studying prostate cancer tumors in mice. In vivo, the probe significantly enhanced the MRI signal. The image contrast between the peripheral region of the tumor and the non-involved muscle was nearly 50% higher two hours after administration of the nanocomplex. The liposomal nanocomplex increased the amount of Gd ...

  11. Assessment of swallowing and its disorders—A dynamic MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Vijay Kumar, K.V., E-mail: vijaykumarkv@yahoo.in [Department of Speech, Language and Hearing Sciences, SRU (India); Shankar, V., E-mail: drshankarv@yahoo.co.in [Department of Neurology, SRU (India); Santosham, Roy, E-mail: santoshamroy@yahoo.com [Department of Radiology and Imaging Sciences, SRU (India)

    2013-02-15

    Magnetic resonance imaging overcomes the limitations of videofluoroscopy in assessing without radiation exposure. The clinical utility of dynamic MRI for swallowing disorders is not well documented. This study demonstrates the feasibility of using dynamic MRI in assessment of swallowing disorders. Ten normal and three brainstem lesion patients participated in this study. GE Signa HDxt 1.5 Tesla MRI scanner with head-and-neck coil as a receiver and fast imaging employing steady state acquisition sequence was used. The swallow was analyzed in terms of symmetry and amplitude of movements of velum, faucial pillars, tongue, epiglottis and cricopharyngeous and images from the sagittal, coronal and axial planes. In sagittal plane posterior movement of tongue and its compression on velum, elevation of hyoid bone, elevation of larynx and lid action of epiglottis, in the coronal view the symmetrical movements of the faucial pillars and pharyngeal constrictor muscles and in axial plane three anatomical landmarks were targeted based on their role in swallowing, viz. velum, epiglottis and cricopharyngeous were studied. In brainstem lesion individuals, posterior movement of tongue, and elevation of larynx were not seen. Asymmetrical movements of faucial pillars and cricopharyngeous muscle were appreciated in the dynamic MRI. This demonstrates that, dynamic MRI is an efficient tool to understand the swallowing physiology and helps the speech language pathologist in modifying the swallowing maneuvers. Dynamic MRI is an effective tool in assessing swallowing and its disorders. This muscle specific information is not appreciated in videofluoroscopy and this information is necessary to modify the therapy maneuvers.

  12. Considerations for Resting State Functional MRI and Functional Connectivity Studies in Rodents

    Directory of Open Access Journals (Sweden)

    Wen-Ju ePan

    2015-08-01

    Full Text Available Resting state functional MRI (rs-fMRI and functional connectivity mapping have become widely used tools in the human neuroimaging community and their use is rapidly spreading into the realm of rodent research as well. One of the many attractive features of rs-fMRI is that it is readily translatable from humans to animals and back again. Changes in functional connectivity observed in human studies can be followed by more invasive animal experiments to determine the neurophysiological basis for the alterations, while exploratory work in animal models can identify possible biomarkers for further investigation in human studies. These types of interwoven human and animal experiments have a potentially large impact on neuroscience and clinical practice. However, impediments exist to the optimal application of rs-fMRI in small animals, some similar to those encountered in humans and some quite different. In this review we identify the most prominent of these barriers, discuss differences between rs-fMRI in rodents and in humans, highlight best practices for animal studies, and review selected applications of rs-fMRI in rodents. Our goal is to facilitate the integration of human and animal work to the benefit of both fields.

  13. Clinical examination, MRI and arthroscopy in meniscal and ligamentous knee Injuries – a prospective study

    Directory of Open Access Journals (Sweden)

    Bastawrous SS

    2008-05-01

    Full Text Available Abstract Data from 565 knee arthroscopies performed by two experienced knee surgeons between 2002 and 2005 for degenerative joint disorders, ligament injuries, loose body removals, lateral release of the patellar retinaculum, plica division, and adhesiolysis was prospectively collected. A subset of 109 patients from the above group who sequentially had clinical examination, MRI and arthroscopy for suspected meniscal and ligament injuries were considered for the present study and the data was reviewed. Patients with previous menisectomies, knee ligament repairs or reconstructions and knee arthroscopies were excluded from the study. Patients were categorised into three groups on objective clinical assessment: Those who were positive for either meniscal or cruciate ligament injury [group 1]; both meniscal and cruciate ligament injury [group 2] and those with highly suggestive symptoms and with negative clinical signs [group 3]. MRI was requested for confirmation of diagnosis and for additional information in all these patients. Two experienced radiologists reported MRI films. Clinical and MRI findings were compared with Arthroscopy as the gold standard. A thorough clinical examination performed by a skilled examiner more accurately correlated at Arthroscopy. MRI added no information in group 1 patients, valuable information in group 2 and was equivocal in group 3 patients. A negative MRI did not prevent an arthroscopy. In this study, specificity, positive and negative predictive values were more favourable for clinical examination though MRI was more sensitive for meniscal injuries. The use of MRI as a supplemental tool in the management of meniscal and ligament injuries should be highly individualised by an experienced surgeon.

  14. Biopsy guided by real-time sonography fused with MRI: a phantom study

    DEFF Research Database (Denmark)

    Ewertsen, C.; Grossjohann, Hanne Sønder; Nielsen, Kristina Rue

    2008-01-01

    OBJECTIVE: The purpose of our study was to test the accuracy of sonographically guided biopsies in a phantom of structures not visible on sonography but shown on MRI by using commercially available sonography systems with image fusion software. MATERIALS AND METHODS: A previously recorded MRI...... examination from a custom-made phantom was loaded into the sonography system. The phantom contained spheres that were invisible to sonography and contained red dye. The red dye was visible in the biopsy if it was successful. The images were coregistered using structures visible on both sonography and MRI......, and biopsies were taken. The biopsy procedure was continued until a biopsy was successful, and the number of needle passes and time spent were registered. RESULTS: A total of 130 targets were hit. Ten minutes was used for loading the MRI data set and the coregistration; 94 of the 130 biopsies (72.3%) were...

  15. SU-E-T-421: Feasibility Study of Volumetric Modulated Arc Therapy with Constant Dose Rate for Endometrial Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, R; Wang, J [Peking University Third Hospital, Beijing, Beijing (China)

    2014-06-01

    Purpose: To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. Methods: The nine-Field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry Run was performed to assess the dosimetric accuracy with MatriXX from IBA. Results: Compared with IMRT, the VMAT-CDR plans delivered a slightly greater V20 of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs Decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. Conclusion: VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability. This work is supported by the grant project, National Natural; Science Foundation of China (No. 81071237)

  16. Nonequilibrium volumetric response of shocked polymers

    Energy Technology Data Exchange (ETDEWEB)

    Clements, B E [Los Alamos National Laboratory

    2009-01-01

    Polymers are well known for their non-equilibrium deviatoric behavior. However, investigations involving both high rate shock experiments and equilibrium measured thermodynamic quantities remind us that the volumetric behavior also exhibits a non-equilibrium response. Experiments supporting the notion of a non-equilibrium volumetric behavior will be summarized. Following that discussion, a continuum-level theory is proposed that will account for both the equilibrium and non-equilibrium response. Upon finding agreement with experiment, the theory is used to study the relaxation of a shocked polymer back towards its shocked equilibrium state.

  17. Knee joint anterior malalignment and patellofemoral osteoarthritis: an MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Tsavalas, Nikolaos; Karantanas, Apostolos H. [University Hospital, University of Crete, Department of Medical Imaging, Heraklion, Crete (Greece); Katonis, Pavlos [University Hospital, University of Crete, Department of Orthopaedic Surgery, Heraklion, Crete (Greece)

    2012-02-15

    To evaluate patellofemoral congruency measurements on MRI and correlate the findings with severity of ipsilateral osteoarthritis. We retrospectively reviewed 650 consecutive knee MRI examinations from 622 patients divided into two age groups: {<=}50 and >50 year-old. The femoral sulcus angle (SA) and depth (SD), lateral patellar displacement (LPD), lateral patellofemoral angle (LPFA), tibial tubercle-trochlear groove (TT-TG) distance and Insall-Salvati index as well as the grade of focal cartilage defects (ranging from I to IV) in the patellofemoral region were assessed in each subject on axial and sagittal fat-saturated intermediate-w MR images. A significant difference exists between normal and knees with patellofemoral joint osteoarthritis regarding SA (p = 0.0002 and <0.0001), SD (p = 0.0004 and <0.0001), LPD (p = 0.0014 and 0.0009) and LPFA (p = 0.0002 and 0.0003) in both age groups ({<=}50 and >50 respectively). Significant correlation was found between grading of cartilage defects and SA (rho = 0.21, p = 0.0001 and 0.443, <0.0001), SD (rho = -0.198, p = 0.0003 and -0.418, <0.0001), LPD (rho = 0.176, p = 0.0013 and 0.251, 0.0002) and LPFA (rho = -0.204, p = 0.0002 and -0.239, 0.0005) in both age groups. Knee joint anterior malalignment is multivariably associated with patellofemoral osteoarthritis. circle MRI is an excellent method to evaluate knee alignment and articular cartilage damage. (orig.)

  18. Carbamazepine reduces memory induced activation of mesial temporal lobe structures: a pharmacological fMRI-study

    Directory of Open Access Journals (Sweden)

    Okujava Michael

    2001-11-01

    Full Text Available Abstract Background and Purpose It is not known whether carbamazepine (CBZ; a drug widely used in neurology and psychiatry influences the blood oxygenation level dependent (BOLD contrast changes induced by neuronal activation and measured by functional MRI (fMRI. We aimed to investigate the influence of CBZ on memory induced activation of the mesial temporal lobes in patients with symptomatic temporal lobe epilepsy (TLE. Material and Methods Twenty-one individual patients with refractory symptomatic TLE with different CBZ serum levels and 20 healthy controls were studied using BOLD fMRI. Mesial temporal lobe (MTL activation was induced by a task that is based on the retrieval of individually familiar visuo-spatial knowledge. The extent of significant MTL fMRI activation was measured and correlated with the CBZ serum level. Results In TLE patients, the extent of significant fMRI activation over both MTL was negatively correlated to the CBZ serum level (Spearman r = -0.654, P Conclusions In TLE patients, carbamazepine reduces the fMRI-detectable changes within the mesial temporal lobes as induced by effortful memory retrieval. FMRI appears to be suitable to study the effects of chronic drug treatment in patients with epilepsy.

  19. Brain stem and cerebellum volumetric analysis of Machado Joseph disease patients

    Directory of Open Access Journals (Sweden)

    S T Camargos

    2011-01-01

    Full Text Available Machado-Joseph disease, or spinocerebellar ataxia type 3(MJD/SCA3, is the most frequent late onset spinocerebellar ataxia and results from a CAG repeat expansion in the ataxin-3 gene. Previous studies have found correlation between atrophy of cerebellum and brainstem with age and CAG repeats, although no such correlation has been found with disease duration and clinical manifestations. In this study we test the hypothesis that atrophy of cerebellum and brainstem in MJD/SCA3 is related to clinical severity, disease duration and CAG repeat length as well as to other variables such as age and ICARS (International Cooperative Ataxia Rating Scale. Whole brain high resolution MRI and volumetric measurement with cranial volume normalization were obtained from 15 MJD/SCA3 patients and 15 normal, age and sex-matchedcontrols. We applied ICARS and compared the score with volumes and CAG number, disease duration and age. We found significant correlation of both brain stem and cerebellar atrophy with CAG repeat length, age, disease duration and degree of disability. The Spearman rank correlation was stronger with volumetric reduction of the cerebellum than with brain stem. Our data allow us to conclude that volumetric analysis might reveal progressive degeneration after disease onset, which in turn is linked to both age and number of CAG repeat expansions in SCA 3.

  20. Clinical studies of cerebral arteriosclerosis in diabetic subjects. Analysis with brain MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Makoto; Tanahashi, Hideo (Osaka Rosai Hospital, Sakai (Japan)); Nomura, Makoto; Yamada, Yoshio; Abe, Hiroshi

    1994-11-01

    In order to investigate the clinical characteristics of cerebral arteriosclerosis in diabetic subjects, brain MRI studies were conducted in diabetic patients and healthy subjects. The subjects were 93 diabetic patients without symptoms and signs of cerebral infarction (49 males and 44 females) with a mean age of 59 years and 73 healthy subjects (43 males and 30 females) with a mean age of 57 years. The MRI studies were performed on a General Electric 1.5-T signa system. The spin-echo technique (T2-weighted image) was used with a pulse repetition time (TR) of 2,500 msec and echo time (TE) of 80 msec. The quantitative evaluation of cerebral infarction was assessed using personal computer and image-scanner. By MRI, the incidence of cerebral infarction in diabetic patients was significantly higher than that in healthy subjects (30.1% vs. 13.7%, respectively, p<0.05). The mean age of the diabetic patients with cerebral infarctions was higher than that of those without cerebral infarctions. Hypertension and diabetic nephropathy were present more frequently in the subjects with cerebral infarctions. These data suggest that it is important to delay the onset and slow the progression of cerebral infarction in diabetic patients by strict blood glucose control and management of blood pressure. (author).

  1. [Magnetic resonance imaging (MRI) in children and adolescents – study design of a feasibility study concerning examination related emotions].

    Science.gov (United States)

    Jaite, Charlotte; Bachmann, Christian; Dewey, Marc; Weschke, Bernhard; Spors, Birgit; von Moers, Arpad; Napp, Adriane; Lehmkuhl, Ulrike; Kappel, Viola

    2013-11-01

    Numerous research centres apply magnetic resonance imaging (MRI) for research purposes in children. In view of this practical research, ethical concerns regarding the strains the study participants are exposed to during the MRI examination are discussed. The study evaluates whether an MRI examination induces negative emotions in children and adolescents which are more intense than the ones caused by electroencephalography (EEG), an examination method currently classified as causing "minimal stress." Furthermore, the emotional stress induced by the MRI examination in children and adolescents is compared with that induced in adults. The study gathers data on examination-related emotions in children (age 8-17;11, male and female) who undergo an MRI examination of the cerebrum with a medical indication. The comparison group is a sample of children and adolescents examined with EEG (age 8-17;11, male and female) as well as a sample of adults (age 18-65, male and female) examined with MRI. At present, the study is in the stage of data collection. This article presents the study design of the MRI research project.

  2. Presurgical mapping with functional MRI. Comparative study with transcranial magnetic stimulation and intraoperative mapping

    Energy Technology Data Exchange (ETDEWEB)

    Kaminogo, Makio; Morikawa, Minoru; Ishimaru, Hideki; Ochi, Makoto; Onizuka, Masanori; Shirakawa, Yasushi; Takahashi, Haruki; Shibata, Shobu [Nagasaki Univ. (Japan). School of Medicine

    1999-05-01

    The thumb movement was evoked by transcranical magnetic stimulation (TCS) for the mapping of the motor cortex. After the placement of the marker determined by TCS on the scalp, fMRI under motor tasks consisting of repetitive grasping was performed. For motor cortex activation, an axial oblique plane to maximize gray matter sampling in the rolandic cortex was employed in order to compare these different mapping techniques more precisely. Sixteen patients with brain tumors were included in this study. In nine patients, fMRI disclosed activation in one restricted gyrus or in the localized area around one restricted sulcus. Of these nine patients, preoperative TCS mapping corresponded closely with fMRI in six, while in the remaining three, the TCS marker fell between 1 and 2 cm apart from the fMRI-activated area. However, in these three patients, intraoperative electrocortical stimulation corresponded with the preoperative mapping with fMRI. In six patients, contiguous two gyri were activated by motor tasks. The TCS marker was disclosed on one of the two activated gyri. Of these six patients, the position of the TCS marker and fMRI-activated site corresponded with each other in four cases. They were found on the same gyrus but there was 1.0-2.0 cm distance between them in two cases. Intraoperative somatosensory evoked potential was monitored in two of these six cases. They corresponded well with the mapping by fMRI and TCS together. In only one patient, no significant activation area was obtained by fMRI because of excessive head motion during motor tasks. The TCS maker in this patients was identical with intraoperative electro-cortical stimulation mapping. (K.H.)

  3. Comparative study of whole-body MRI and bone scintigraphy for the detection of bone metastases

    Energy Technology Data Exchange (ETDEWEB)

    Balliu, E., E-mail: eballiu@gmail.co [Department of Magnetic Resonance, IDI Girona, Hospital Universitari de Girona Dr Josep Trueta, Girona (Spain); Boada, M.; Pelaez, I. [Department of Magnetic Resonance, IDI Girona, Hospital Universitari de Girona Dr Josep Trueta, Girona (Spain); Vilanova, J.C. [Department of Magnetic Resonance, Clinica Girona - Hospital Sta Caterina, Girona (Spain); Barcelo-Vidal, C. [Department of Computer Science and Applied Mathematics, University of Girona (Spain); Rubio, A.; Galofre, P. [Department of Nuclear Medicine, IDI Girona, Hospital Universitari de Girona Dr Josep Trueta, Girona (Spain); Castro, A. [Department of Internal Medicine, Hospital Universitari de Girona Dr Josep Trueta, Girona (Spain); Pedraza, S. [Department of Magnetic Resonance, IDI Girona, Hospital Universitari de Girona Dr Josep Trueta, Girona (Spain)

    2010-12-15

    Aim: To assess and compare the diagnostic accuracy of whole-body magnetic resonance imaging (MRI) and bone scintigraphy in the detection of metastases to bone. Material and methods: Forty randomly selected patients with known malignant tumours were prospectively studied using bone scintigraphy and whole-body MRI. Two patients were excluded. Symptoms of bone metastasis were present in 29 (76%) patients and absent in nine (24%). Findings were classified into four categories according to the probability of bone metastasis: (1) negative, (2) probably negative, (3) probably positive, and (4) positive. Diagnostic accuracy was determined according to the area under the receiver operating characteristic (ROC) curve. The definitive diagnosis was reached using other imaging techniques, biopsy, or 12 months clinical follow-up. Results: Metastases were present in 18 patients. The sensitivity, specificity, and diagnostic accuracy were 94, 90, and 92%, respectively, for whole-body MRI and 72, 75, and 74%, respectively, for bone scintigraphy. Diagnostic accuracy measured by the area under the ROC curve was significantly higher for whole-body MRI (96%) than for bone scintigraphy (77%; p<0.05). Interobserver agreement measured by the kappa index was significantly higher for whole-body MRI (0.895) than for bone scintigraphy (0.524; p<0.05). Whole-body MRI detected lesions in tissues other than bone in 17 (45%) patients. Conclusions: Whole-body MRI is more accurate and more objective than bone scintigraphy for the detection of bone metastases. Whole-body MRI can also detect lesions in tissues other than bone.

  4. Influence of increment of gantry angle and number of arcs on esophageal volumetric modulated arc therapy planning in Monaco planning system: A planning study

    Directory of Open Access Journals (Sweden)

    L Nithya

    2014-01-01

    Full Text Available The objective of this study was to analyze the influence of the increment of gantry angle and the number of arcs on esophageal volumetric modulated arc therapy plan. All plans were done in Monaco planning system for Elekta Synergy linear accelerator with 80 multileaf collimator (MLC. Volumetric modulated arc therapy (VMAT plans were done with different increment of gantry angle like 15 o , 20 o , 30 o and 40 o . The remaining parameters were similar for all the plans. The results were compared. To compare the plan quality with number of arcs, VMAT plans were done with single and dual arc with increment of gantry angle of 20 o . The dose to gross tumor volume (GTV for 60 Gy and planning target volume (PTV for 48 Gy was compared. The dosimetric parameters D 98% , D 95% , D 50% and D max of GTV were analyzed. The homogeneity index (HI and conformity index (CI of GTV were studied and the dose to 98% and 95% of PTV was analyzed. Maximum dose to spinal cord and planning risk volume of cord (PRV cord was compared. The Volume of lung receiving 10 Gy, 20 Gy and mean dose was analyzed. The volume of heart receiving 30 Gy and 45 Gy was compared. The volume of normal tissue receiving greater than 2 Gy and 5 Gy was compared. The number of monitor units (MU required to deliver the plans were compared. The plan with larger increment of gantry angle proved to be superior to smaller increment of gantry angle plans in terms of dose coverage, HI, CI and normal tissue sparing. The number of arcs did not make any difference in the quality of the plan.

  5. Magnetic Resonance Image Segmentation and its Volumetric Measurement

    Directory of Open Access Journals (Sweden)

    Rahul R. Ambalkar

    2013-02-01

    Full Text Available Image processing techniques make it possible to extract meaningful information from medical images. Magnetic resonance (MR imaging has been widely applied in biological research and diagnostics because of its excellent soft tissue contrast, non-invasive character, high spatial resolution and easy slice selection at any orientation. The MRI-based brain volumetric is concerned with the analysis of volumes and shapes of the structural components of the human brain. It also provides a criterion, by which we recognize the presence of degenerative diseases and characterize their rates of progression to make the diagnosis and treatments as a easy task. In this paper we have proposed an automated method for volumetric measurement of Magnetic Resonance Imaging and used Self Organized Map (SOM clustering method for their segmentations. We have used the MRI data set of 61 slices of 256×256 pixels in DICOM standard format

  6. COMPARISON OF VOLUMETRIC REGISTRATION ALGORITHMS FOR TENSOR-BASED MORPHOMETRY

    Science.gov (United States)

    Villalon, Julio; Joshi, Anand A.; Toga, Arthur W.; Thompson, Paul M.

    2015-01-01

    Nonlinear registration of brain MRI scans is often used to quantify morphological differences associated with disease or genetic factors. Recently, surface-guided fully 3D volumetric registrations have been developed that combine intensity-guided volume registrations with cortical surface constraints. In this paper, we compare one such algorithm to two popular high-dimensional volumetric registration methods: large-deformation viscous fluid registration, formulated in a Riemannian framework, and the diffeomorphic “Demons” algorithm. We performed an objective morphometric comparison, by using a large MRI dataset from 340 young adult twin subjects to examine 3D patterns of correlations in anatomical volumes. Surface-constrained volume registration gave greater effect sizes for detecting morphometric associations near the cortex, while the other two approaches gave greater effects sizes subcortically. These findings suggest novel ways to combine the advantages of multiple methods in the future. PMID:26925198

  7. The corticospinal tract in amyotrophic lateral sclerosis: an MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, E.; Warmuth-Metz, M. [Department of Neuroradiology, University of Wuerzburg (Germany); Ochs, G.; Pelzl, A. [Department of Neurology, University of Wuerzburg, Wuerzburg (Germany)

    1998-02-01

    Cortical motor neurone loss and corticospinal tract (CST) degeneration are typical of amyotrophic lateral sclerosis (ALS). It is a matter of debate whether qualitative assessment of the CST by MRI is useful in the diagnosis. It is also an open question whether quantitative determination of the T2 relaxation times can improve its value. Signal intensity along the CST on 14 consecutive slices was assessed using arbitrary visual rating on double-echo T2-weighted and proton-density spin-echo images of 21 patients with ALS and 21 age- and sex-matched controls. T2 was determined quantitatively. On the T2-weighted images the patients` ratings did not differ from that of controls. The T2 of patients and controls showed no statistical difference in any slice. There was no correlation between T2 and patient age, duration of the disease, or predominant bulbar, lower or upper motor neurone signs. The only correlation between MRI findings and disease was on the proton-density images: all cases in which the CST was poorly seen were controls; a clearly high-signal CST was seen only in the patients. High conspicuity of the CST was thus specific but not sensitive for the diagnosis of ALS. T2-weighted images and measurement of T2 were not useful for diagnosis. (orig.) With 2 figs., 1 tab., 26 refs.

  8. Brain Activity Associated with Emoticons: An fMRI Study

    Science.gov (United States)

    Yuasa, Masahide; Saito, Keiichi; Mukawa, Naoki

    In this paper, we describe that brain activities associated with emoticons by using fMRI. In communication over a computer network, we use abstract faces such as computer graphics (CG) avatars and emoticons. These faces convey users' emotions and enrich their communications. However, the manner in which these faces influence the mental process is as yet unknown. The human brain may perceive the abstract face in an entirely different manner, depending on its level of reality. We conducted an experiment using fMRI in order to investigate the effects of emoticons. The results show that right inferior frontal gyrus, which associated with nonverbal communication, is activated by emoticons. Since the emoticons were created to reflect the real human facial expressions as accurately as possible, we believed that they would activate the right fusiform gyrus. However, this region was not found to be activated during the experiment. This finding is useful in understanding how abstract faces affect our behaviors and decision-making in communication over a computer network.

  9. Laminectomy-induced arachnoradiculitis: a postoperative serial MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, H. [Departments of Orthopaedic Surgery, Toyama Medical and Pharmaceutical University, Faculty of Medicine, Toyama (Japan); Tsuji, H. [Departments of Orthopaedic Surgery, Toyama Medical and Pharmaceutical University, Faculty of Medicine, Toyama (Japan); Kanamori, M. [Departments of Orthopaedic Surgery, Toyama Medical and Pharmaceutical University, Faculty of Medicine, Toyama (Japan); Kawaguchi, Y. [Departments of Orthopaedic Surgery, Toyama Medical and Pharmaceutical University, Faculty of Medicine, Toyama (Japan); Yudoh, K. [Departments of Orthopaedic Surgery, Toyama Medical and Pharmaceutical University, Faculty of Medicine, Toyama (Japan); Futatsuya, R. [Departments of Radiology, Toyama Medical and Pharmaceutical University, Faculty of Medicine, Toyama (Japan)

    1995-11-01

    Time-related changes of laminectomy-induced cauda equina adhesions were investigated by MRI in ten patients with degenerative spinal disease who underwent posterior surgery to the lumbar spine; seven had disc herniations and three spinal stenosis. Axial MRI was performed before and 3, 7, 21 and 42 days after surgery. Cauda equina adhesions were most severe at the laminectomised levels L3-4, L4-5 and L5-S1 (n = 16); partial adhesions were found in 9 of 16 levels at 6 weeks after surgery. At the L3-4 or L5-S1 levels (n = 14), the area of laminar exposure without laminectomy, the cauda equina adhesions continued 1 week after surgery, but thereafter resolved; only partial adhesions were seen at 5 of 14 levels 6 weeks after surgery. Shrinkage of the arachnoid sac was also found at the level of the laminectomy, but it re-expanded 3 weeks after surgery in all cases. Cauda equina adhesions and shrinkage of the sac were correlated closely with laminectomy, with or without discectomy, suggesting that an inflammatory process of deep wound healing may be involved in the mechanism of a laminectomy-induced arachnoradiculitis which may be correlated with postoperative leg symptoms. (orig.). With 7 figs., 1 tab.

  10. A neurotological study of patients with pontine hyperintense lesions on T2 weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Toru; Tominaga, Satoru; Yukimasa, Akiko; Oku, Masaya; Sakagami, Masafumi [Hyogo Coll. of Medicine, Nishinomiya (Japan)

    2002-03-01

    Pontine hyperintense lesions seen on T2-weighted MRI were thought to be related to disequilibrium. Some of these lesions have a low signal on T1-weighted imaging, while others have an iso-signal. The purpose of this study was to clarify the relationship between neurological findings and pontine lesions detected by MRI. The subjects were 11 patients (6 males, 5 females; age range: 30 to 83 years [mean: 64.1 years]) with pontine hyperintense lesions identified on T2-weighted MRI. We compared the clinical signs and the MRI findings. Six of the patients had low-intensity areas on T1-weighted images, and the other 5 had iso-intensity areas. Six patients complained of vertigo, and 5 complained of dizziness. Eight complained of positionaly evoked disequilibrium. Positional nystagmus was seen in 4 patients. In 9 patients, abnormalities were found on the ENG test, including the saccadic eye movement test, ETT, and OKP. Numbness on the lips occurred in 2 patients, and cerebellar signs were present in 4. None of the patients had facial paralysis. Disequilibrium originating in the central nervous system was suggested in 10 patients. Clinical examinations revealed similar findings in patients with a low signal on T1-weighted MRI and those with an iso-signal. Our results indicate that pontine lesions identified by T2-weighted MRI cause vertigo or dizziness, and, in most cases, these lesions cause abnormal neurological or neurological abnormalities. (author)

  11. MRI assessment of thoracic stent grafts after emergency implantation in multi trauma patients: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Rasche, Volker [University Hospital Ulm, Department of Internal Medicine II, Ulm (Germany); University Hospital Ulm, University of Ulm, Department of Internal Medicine II, Ulm (Germany); Oberhuber, Alexander; Orend, Karl-Heinz [University Hospital Ulm, Department of Vascular and Thoracic Surgery, Ulm (Germany); Trumpp, Stephan [University Hospital Ulm, Department of Internal Medicine II, Ulm (Germany); University Hospital Ulm, Department of Vascular and Thoracic Surgery, Ulm (Germany); Bornstedt, Axel; Merkle, Nico; Rottbauer, Wolfgang [University Hospital Ulm, Department of Internal Medicine II, Ulm (Germany); Hoffmann, Martin [University Hospital Ulm, Department of Diagnostic and Interventional Radiology, Ulm (Germany)

    2011-07-15

    To evaluate the feasibility of MRI for static and dynamic assessment of the deployment of thoracic aortic stent grafts after emergency implantation in trauma patients. Twenty patients initially presenting with a rupture of the thoracic aorta were enrolled in this study. All patients underwent thoracic endovascular aortic repair (TEVAR). The deployment of the implanted stent graft was assessed by CTA and MRI, comprising the assessment of the aortic arch with and without contrast agent, and the assessment of the motion of the stent graft over the cardiac cycle. The stent graft geometry and motion over the cardiac cycle were assessable by MRI in all patients. Flow-mediated signal variations in areas of flow acceleration could be well visualised. No statistically significant differences in stent-graft diameters were observed between CT and MRI measurements. MRI appears to be a valuable tool for the assessment of thoracic stent grafts. It shows similar performance in the accurate assessment of stent-graft dimensions to the current gold standard CTA. Its capability of providing additional functional information and the lack of ionising radiation and nephrotoxic contrast agents may make MRI a valuable tool for monitoring patients after TEVAR. (orig.)

  12. EEG-fMRI Bayesian framework for neural activity estimation: a simulation study

    Science.gov (United States)

    Croce, Pierpaolo; Basti, Alessio; Marzetti, Laura; Zappasodi, Filippo; Del Gratta, Cosimo

    2016-12-01

    Objective. Due to the complementary nature of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), and given the possibility of simultaneous acquisition, the joint data analysis can afford a better understanding of the underlying neural activity estimation. In this simulation study we want to show the benefit of the joint EEG-fMRI neural activity estimation in a Bayesian framework. Approach. We built a dynamic Bayesian framework in order to perform joint EEG-fMRI neural activity time course estimation. The neural activity is originated by a given brain area and detected by means of both measurement techniques. We have chosen a resting state neural activity situation to address the worst case in terms of the signal-to-noise ratio. To infer information by EEG and fMRI concurrently we used a tool belonging to the sequential Monte Carlo (SMC) methods: the particle filter (PF). Main results. First, despite a high computational cost, we showed the feasibility of such an approach. Second, we obtained an improvement in neural activity reconstruction when using both EEG and fMRI measurements. Significance. The proposed simulation shows the improvements in neural activity reconstruction with EEG-fMRI simultaneous data. The application of such an approach to real data allows a better comprehension of the neural dynamics.

  13. A Study on Role of Magnetic Resonance Imaging (MRI in Intracranial Space Occupying Lesions

    Directory of Open Access Journals (Sweden)

    Bhavesh Ramjibhai Goyani

    2015-03-01

    Full Text Available Background: The high morbidity and mortality associated with Intracranial Space Occupying Lesions necessitates their early diagnosis so as to plan the intervention that is required. In the present study cases of either clinically suspected brain space occupying lesions or already diagnosed cases of brain space occupying lesions were studied by cross sectional imaging of MRI. Methodology: The present cross-sectional study was conducted presented with symptoms of raised ICT of sub acute onset and had lateralizing sign. A semi-structured questionnaire was prepared and demographic and clinical data like age, sex, symptoms and various morphological characters of Supratentorial SOLs were studied. A clinico-radiological correlation and confirmation of Radiological diagnosis was done by biopsy/surgery/MRI whenever possible to minimize patient follow up. Results: Majority of the patients were in the fourth decade (28.5%. Metastases were the most common single group of intracranial space occupying lesion (27%, Gliomas were the most common brain tumors (31.4%. Of the Gliomas, astrocytomas accounted for (81.8%. Most common hemisphere to be involved was the parietal lobe (31.4%. Intra-axial involvement (78.58 % was most common localization in present study. Edema was the most common associated MRI finding (74.3%. Conclusion: The diagnostic accuracy of MRI in evaluation of intracranial space occupying lesion was 98.57 %. MRI remains the first line investigation for diagnosing and evaluation Intracranial space occupying lesion with a reasonable degree of diagnostic accuracy and with the advent of newer modifications of MRI such as MR Spectroscopy, 3-Tesla MRI, and newer techniques like MR Perfusion. [Natl J Med Res 2015; 5(1.000: 18-21

  14. Volumetric localization of epileptic activities in tuberous sclerosis using synthetic aperture magnetometry

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Zheng [Hospital for Sick Children, Research Institute, Toronto (Canada); Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Xiang, Jing [Hospital for Sick Children, Research Institute, Toronto (Canada); Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Holowka, Stephanie; Chuang, Sylvester [Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Hunjan, Amrita; Sharma, Rohit; Otsubo, Hiroshi [Hospital for Sick Children, Division of Neurology, Toronto (Canada)

    2006-01-01

    Magnetoencephalography (MEG) is a novel noninvasive technique for localizing epileptic zones. Tuberous sclerosis complex (TSC) is often associated with medically refractory epilepsy with multiple epileptic zones. Surgical treatment of TSC requires accurate localization of epileptogenic tubers. The objective of this study was to introduce a new MEG technique, synthetic aperture magnetometry (SAM), to volumetrically localize irritable zones and clarify the correlations between SAM, dipole modeling and anatomical tubers. Eight pediatric patients with TSC confirmed by clinical and neuroimaging findings were retrospectively studied. MEG data were recorded using a whole-cortex CTF OMEGA system. Sleep deprivation was employed to provoke epileptiform activity. Irritable zones were localized using both dipole modeling and SAM. MRI detected 42 tubers in the eight patients. Dipole modeling localized 28 irritable zones, and 19 out of the 28 zones were near tubers (19/42, 45%). SAM found 51 irritable zones, and 31 out of the 51 zones were near tubers (31/42, 74%). Among the 51 irritable zones determined by SAM, thirty-five zones were in 1-35 Hz, nine zones were in 35-60 Hz, and seven zones were in 60-120 Hz. The new method, SAM, yielded very plausible equivalent sources for patients who showed anatomical tubers on MRI. Compared to conventional dipole modeling, SAM appeared to offer increased detection of irritable zones and beneficial volumetric and frequency descriptions. (orig.)

  15. A Dosimetric Study of Using Fixed-Jaw Volumetric Modulated Arc Therapy for the Treatment of Nasopharyngeal Carcinoma with Cervical Lymph Node Metastasis.

    Directory of Open Access Journals (Sweden)

    Wu-Zhe Zhang

    Full Text Available To study the dosimetric difference between fixed-jaw volumetric modulated radiotherapy (FJ-VMAT and large-field volumetric modulated radiotherapy (LF-VMAT for nasopharyngeal carcinoma (NPC with cervical lymph node metastasis.Computed tomography (CT datasets of 10 NPC patients undergoing chemoradiotherapy were used to generate LF-VMAT and FJ-VMAT plans in the Eclipse version 10.0 treatment planning system. These two kinds of plans were then compared with respect to planning-target-volume (PTV coverage, conformity index (CI, homogeneity index (HI, organ-at-risk sparing, monitor units (MUs and treatment time (TT.The FJ-VMAT plans provided lower D2% of PGTVnd (PTV of lymph nodes, PTV1 (high-risk PTV and PTV2 (low-risk PTV than did the LF-VMAT plans, whereas no significant differences were observed in PGTVnx (PTV of primary nasopharyngeal tumor. The FJ-VMAT plans provided lower doses delivered to the planning organ at risk (OAR volumes (PRVs of both brainstem and spinal cord, both parotid glands and normal tissue than did the LF-VMAT plans, whereas no significant differences were observed with respect to the oral cavity and larynx. The MUs of the FJ-VMAT plans (683 ± 87 were increased by 22% ± 12% compared with the LF-VMAT plans (559 ± 62. In terms of the TT, no significant difference was found between the two kinds of plans.FJ-VMAT was similar or slightly superior to LF-VMAT in terms of PTV coverage and was significantly superior in terms of OAR sparing, at the expense of increased MUs.

  16. Volumetric T1 and T2 magnetic resonance brain toolkit for relaxometry mapping simulation

    Directory of Open Access Journals (Sweden)

    Antonio Carlos da Silva Senra Filho

    Full Text Available Abstract Introduction Relaxometry images are an important magnetic resonance imaging (MRI technique in the clinical routine. Many diagnoses are based on the relaxometry maps to infer abnormal state in the tissue characteristic relaxation constant. In order to study the performance of these image processing approaches, a controlled simulated environment is necessary. However, a simulated relaxometry image tool is still lacking. This study proposes a computational anatomical brain phantom for MRI relaxometry images, which aims to offer an easy and flexible toolkit to test different image processing techniques, applied to MRI relaxometry maps in a controlled simulated environment. Methods A pipeline of image processing techniques such as brain extraction, image segmentation, normalization to a common space and signal relaxation decay simulation, were applied to a brain structural ICBM brain template, on both T1 and T2 weighted images, in order to simulate a volumetric brain relaxometry phantom. The FMRIB Software Library (FSL toolkits were used here as the base image processing needed to all the relaxometry reconstruction. Results All the image processing procedures are performed using automatic algorithms. In addition, different artefact levels can be set from different sources such as Rician noise and radio-frequency inhomogeneity noises. Conclusion The main goal of this project is to help researchers in their future image processing analysis involving MRI relaxometry images, offering reliable and robust brain relaxometry simulation modelling. Furthermore, the entire pipeline is open-source, which provides a wide collaboration between researchers who may want to improve the software and its functionality.

  17. Fetal MRI for prediction of neonatal mortality following preterm premature rupture of the fetal membranes.

    Science.gov (United States)

    Messerschmidt, Agnes; Pataraia, Anna; Helmer, Hanns; Kasprian, Gregor; Sauer, Alexandra; Brugger, Peter C; Pollak, Arnold; Weber, Michael; Prayer, Daniela

    2011-11-01

    Lung MRI volumetrics may be valuable for fetal assessment following early preterm premature rupture of the foetal membranes (pPROM). To evaluate the predictive value of MRI lung volumetrics after pPROM. Retrospective cohort study of 40 fetuses after pPROM in a large, tertiary, perinatal referral center. Fetuses underwent MRI lung volumetrics. Estimated lung volume was expressed as percentage of expected lung volume (our own normal references). Primary outcome was neonatal mortality due to respiratory distress before discharge from hospital. Gestational age range was 16-27 weeks. Estimated-to-expected lung volume was 73% in non-survivors and 102% in survivors (P < 0.05). There were no survivors with a lung volume less than 60% of expected. By logistic regression, mortality could be predicted with a sensitivity of 80%, specificity of 86% and accuracy of 85%. Fetal MR lung volumetrics may be useful for predicting mortality due to respiratory distress in children with early gestational pPROM.

  18. Fetal MRI for prediction of neonatal mortality following preterm premature rupture of the fetal membranes

    Energy Technology Data Exchange (ETDEWEB)

    Messerschmidt, Agnes; Sauer, Alexandra; Pollak, Arnold [Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna (Austria); Pataraia, Anna; Kasprian, Gregor; Weber, Michael; Prayer, Daniela [Medical University of Vienna, Department of Radiology, Vienna (Austria); Helmer, Hanns [Medical University of Vienna, Department of Obstetrics and Maternal-Fetal Medicine, Vienna (Austria); Brugger, Peter C. [Medical University of Vienna, Center of Anatomy and Cell Biology, Vienna (Austria)

    2011-11-15

    Lung MRI volumetrics may be valuable for fetal assessment following early preterm premature rupture of the foetal membranes (pPROM). To evaluate the predictive value of MRI lung volumetrics after pPROM. Retrospective cohort study of 40 fetuses after pPROM in a large, tertiary, perinatal referral center. Fetuses underwent MRI lung volumetrics. Estimated lung volume was expressed as percentage of expected lung volume (our own normal references). Primary outcome was neonatal mortality due to respiratory distress before discharge from hospital. Gestational age range was 16-27 weeks. Estimated-to-expected lung volume was 73% in non-survivors and 102% in survivors (P < 0.05). There were no survivors with a lung volume less than 60% of expected. By logistic regression, mortality could be predicted with a sensitivity of 80%, specificity of 86% and accuracy of 85%. Fetal MR lung volumetrics may be useful for predicting mortality due to respiratory distress in children with early gestational pPROM. (orig.)

  19. Hip Morphology in MPS-1H Patients: An MRI-based Study.

    Science.gov (United States)

    Breyer, Sandra R; Muschol, Nicole; Schmidt, Mona; Rupprecht, Martin; Babin, Kornelia; Herrmann, Jochen; Stücker, Ralf

    2016-09-15

    Hip dysplasia is common in mucopolysaccharidosis type-1H (MPS-1H) patients, but its morphology is not completely understood. No magnetic resonance imaging (MRI)-based studies have been reported in the literature. The purpose of this study was to improve knowledge of hip dysplasia pathology by describing the hip morphology of these patients in MRI scans, plain radiographs, and arthrograms. We performed a retrospective chart review of 18 MPS-1H patients. Supine anteroposterior pelvic radiographs of 36 hips and MRI scans of 18 hips were analyzed. Six arthrographs were also available. Plain radiographs were available for 18 patients. The mean age was 6.0 (SD=3.8) years. The mean acetabular index (AI) was 36.2 degrees (SD=5.8), and the mean migration percentage was 59.0% (SD=17.2). MRI data were available for 9 patients. The MRI findings were compared with the radiographs of the same patient. The mean AI (39.3 degrees, SD=5.8) was confirmed by the MRI findings (39.1 degrees, SD=5.5). The migration percentage was lower in the MRI scans than in the radiographs. Radiologically, the center-edge angle was negative in all patients, with a mean of -16.8 degrees (SD=7.9), and the MRI images produced a more negative value (-19.6 degrees, SD=7.6). The soft tissue coverage of the femoral head was described with the inclusion of the cartilaginous roof and labrum. The cartilaginous AI was 22.4 degrees (SD=7.5), and the labral AI was 13.5 degrees (SD=6.7). All 6 arthrograms revealed stability during dynamic testing. This study provides the first description of hip morphology in MPS-1H patients through MRI-based data. The cartilaginous coverage of the hip was increased compared with that of healthy children. The use of radiography alone may lead to a misunderstanding of hip morphology. MRI and arthrogram is highly recommended if surgery is considered.

  20. Advances in longitudinal studies of amnestic mild cognitive impairment and Alzheimer's disease based on multi-modal MRI techniques.

    Science.gov (United States)

    Hu, Zhongjie; Wu, Liyong; Jia, Jianping; Han, Ying

    2014-04-01

    Amnestic mild cognitive impairment (aMCI) is a prodromal stage of Alzheimer's disease (AD), and 75%-80% of aMCI patients finally develop AD. So, early identification of patients with aMCI or AD is of great significance for prevention and intervention. According to cross-sectional studies, it is known that the hippocampus, posterior cingulate cortex, and corpus callosum are key areas in studies based on structural MRI (sMRI), functional MRI (fMRI), and diffusion tensor imaging (DTI) respectively. Recently, longitudinal studies using each MRI modality have demonstrated that the neuroimaging abnormalities generally involve the posterior brain regions at the very beginning and then gradually affect the anterior areas during the progression of aMCI to AD. However, it is not known whether follow-up studies based on multi-modal neuroimaging techniques (e.g., sMRI, fMRI, and DTI) can help build effective MRI models that can be directly applied to the screening and diagnosis of aMCI and AD. Thus, in the future, large-scale multi-center follow-up studies are urgently needed, not only to build an MRI diagnostic model that can be used on a single person, but also to evaluate the variability and stability of the model in the general population. In this review, we present longitudinal studies using each MRI modality separately, and then discuss the future directions in this field.

  1. Compressed Sensing for fMRI: Feasibility Study on the Acceleration of Non-EPI fMRI at 9.4T

    Directory of Open Access Journals (Sweden)

    Paul Kyu Han

    2015-01-01

    Full Text Available Conventional functional magnetic resonance imaging (fMRI technique known as gradient-recalled echo (GRE echo-planar imaging (EPI is sensitive to image distortion and degradation caused by local magnetic field inhomogeneity at high magnetic fields. Non-EPI sequences such as spoiled gradient echo and balanced steady-state free precession (bSSFP have been proposed as an alternative high-resolution fMRI technique; however, the temporal resolution of these sequences is lower than the typically used GRE-EPI fMRI. One potential approach to improve the temporal resolution is to use compressed sensing (CS. In this study, we tested the feasibility of k-t FOCUSS—one of the high performance CS algorithms for dynamic MRI—for non-EPI fMRI at 9.4T using the model of rat somatosensory stimulation. To optimize the performance of CS reconstruction, different sampling patterns and k-t FOCUSS variations were investigated. Experimental results show that an optimized k-t FOCUSS algorithm with acceleration by a factor of 4 works well for non-EPI fMRI at high field under various statistical criteria, which confirms that a combination of CS and a non-EPI sequence may be a good solution for high-resolution fMRI at high fields.

  2. Evidence for Policy Making: Clinical Appropriateness Study of Lumbar Spine MRI Prescriptions Using RAND Appropriateness Method

    Directory of Open Access Journals (Sweden)

    Hossein Yousefi Manesh

    2013-01-01

    Full Text Available MRI is a new and expensive diagnostic technology, which has been used increasingly all over the world. Low back pain is a worldwide prevalent disorder and MRI technique is one of the several ways to diagnose it. This paper aims to identify the appropriateness of lumbar spine MRI prescriptions in Shiraz teaching hospitals using standardized RAND Appropriateness Method (RAM criteria. Methods This study consisted of two phases. The first phase involved a qualitative enquiry and the second phase had a quantitative cross-sectional nature. In the first phase RAM was used for developing lumbar spine MRI indications and scenarios. In the second phase, the finalized scenarios were compared with the history and physical examination of 300 patients with low back pain. The rate of appropriateness of lumbar spine MRI prescription was then calculated. Results Of 300 cases of lumbar spine MRI prescriptions, approximately 167 (56% were considered inappropriate, 72 (24% were uncertain, and 61 (20% were deemed to be appropriate. The economic burden of inappropriate prescriptions was calculated at 88,009,000 Rials. In addition, the types of expertise and physical examination were considered as related factors to appropriateness of prescriptions. Conclusion In conclusion, a large proportion of lumbar spine MRI prescriptions, which result in financial burden on the insurance companies and the patients alike is unnecessary. This study suggests that policy makers consider this evidence while decision-making. Our findings highlight the imperative role of Health Technology Assessment (HTA and Clinical Practice Guidelines (CPGs. As a result, developing local clinical guidelines may create the commitment needed in physicians in prescribing appropriate prescriptions within the health sector. The study further recommends that appropriate scenarios should be considered as a criterion for payment and reimbursement.

  3. Structural MRI correlates of cognitive impairment in patients with multiple sclerosis: A Multicenter Study.

    Science.gov (United States)

    Preziosa, Paolo; Rocca, Maria A; Pagani, Elisabetta; Stromillo, Maria Laura; Enzinger, Christian; Gallo, Antonio; Hulst, Hanneke E; Atzori, Matteo; Pareto, Deborah; Riccitelli, Gianna C; Copetti, Massimiliano; De Stefano, Nicola; Fazekas, Franz; Bisecco, Alvino; Barkhof, Frederik; Yousry, Tarek A; Arévalo, Maria J; Filippi, Massimo

    2016-04-01

    In a multicenter setting, we applied voxel-based methods to different structural MR imaging modalities to define the relative contributions of focal lesions, normal-appearing white matter (NAWM), and gray matter (GM) damage and their regional distribution to cognitive deficits as well as impairment of specific cognitive domains in multiple sclerosis (MS) patients. Approval of the institutional review boards was obtained, together with written informed consent from all participants. Standardized neuropsychological assessment and conventional, diffusion tensor and volumetric brain MRI sequences were collected from 61 relapsing-remitting MS patients and 61 healthy controls (HC) from seven centers. Patients with ≥2 abnormal tests were considered cognitively impaired (CI). The distribution of focal lesions, GM and WM atrophy, and microstructural WM damage were assessed using voxel-wise approaches. A random forest analysis identified the best imaging predictors of global cognitive impairment and deficits of specific cognitive domains. Twenty-three (38%) MS patients were CI. Compared with cognitively preserved (CP), CI MS patients had GM atrophy of the left thalamus, right hippocampus and parietal regions. They also showed atrophy of several WM tracts, mainly located in posterior brain regions and widespread WM diffusivity abnormalities. WM diffusivity abnormalities in cognitive-relevant WM tracts followed by atrophy of cognitive-relevant GM regions explained global cognitive impairment. Variable patterns of NAWM and GM damage were associated with deficits in selected cognitive domains. Structural, multiparametric, voxel-wise MRI approaches are feasible in a multicenter setting. The combination of different imaging modalities is needed to assess and monitor cognitive impairment in MS.

  4. An fMRI study on sunk cost effect.

    Science.gov (United States)

    Zeng, Jianmin; Zhang, Qinglin; Chen, Changming; Yu, Rongjun; Gong, Qiyong

    2013-06-26

    Sunk cost effect (also called escalation of commitment, etc) is a pervasive, interesting and famous decision bias, which has been intensively discussed in psychology, economics, management, political science, zoology, etc. To date, little has been known about the neural basis of this phenomenon. We investigated it by using functional magnetic resonance imaging (fMRI) to monitor healthy subjects' brain activities when they made decisions in a task wherein sunk cost and incremental cost were systematically manipulated. Higher sunk cost only increased activity of some brain areas (mainly lateral frontal and parietal cortices, which are involved in risk-taking), whereas lower incremental cost mainly increased activity of some brain areas (including striatum and medial prefrontal cortex, which are sensitive to rewards). No overlapping brain areas were found to respond to both sunk cost and incremental cost. These results favor certainty effect over self-justification or diminishing sensitivity as account of sunk cost effect.

  5. Neurobiological origin of spurious brain morphological changes: A quantitative MRI study.

    Science.gov (United States)

    Lorio, Sara; Kherif, Ferath; Ruef, Anne; Melie-Garcia, Lester; Frackowiak, Richard; Ashburner, John; Helms, Gunther; Lutti, Antoine; Draganski, Bodgan

    2016-05-01

    The high gray-white matter contrast and spatial resolution provided by T1-weighted magnetic resonance imaging (MRI) has made it a widely used imaging protocol for computational anatomy studies of the brain. While the image intensity in T1-weighted images is predominantly driven by T1, other MRI parameters affect the image contrast, and hence brain morphological measures derived from the data. Because MRI parameters are correlates of different histological properties of brain tissue, this mixed contribution hampers the neurobiological interpretation of morphometry findings, an issue which remains largely ignored in the community. We acquired quantitative maps of the MRI parameters that determine signal intensities in T1-weighted images (R1 (=1/T1), R2 *, and PD) in a large cohort of healthy subjects (n = 120, aged 18-87 years). Synthetic T1-weighted images were calculated from these quantitative maps and used to extract morphometry features-gray matter volume and cortical thickness. We observed significant variations in morphometry measures obtained from synthetic images derived from different subsets of MRI parameters. We also detected a modulation of these variations by age. Our findings highlight the impact of microstructural properties of brain tissue-myelination, iron, and water content-on automated measures of brain morphology and show that microstructural tissue changes might lead to the detection of spurious morphological changes in computational anatomy studies. They motivate a review of previous morphological results obtained from standard anatomical MRI images and highlight the value of quantitative MRI data for the inference of microscopic tissue changes in the healthy and diseased brain. Hum Brain Mapp 37:1801-1815, 2016. © 2016 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.

  6. A study on cerebral hemodynamic analysis of moyamoya disease by using perfusion MRI

    Science.gov (United States)

    Dong, Kyung-Rae; Goo, Eun-Hoe; Lee, Jae-Seung; Chung, Woon-Kwan

    2013-10-01

    This study examined the clinical applications of perfusion magnetic resonance imaging (MRI) in patients with moyamoya disease (MMD). Twenty-two patients with moyamoya disease (9 men and 13 women) with a mean age of 9.3 years (range: 4-22 years) were enrolled in this study. Perfusion MRI was performed by scanning the patients7.5 cm upward from the base of the cerebellum before their being process for post-treatment. The scan led to the acquisition of the following four map images: the cerebral blood volume (CBV), the cerebral blood flow (CBF), the mean transit time (MTT) for the contrast medium, and the time to peak (TTP) for the contrast medium. The lesions were assessed using the CBV, the CBF, the MTT and the TTP maps of perfusion MRI; the MTT and the TTP were measured in the lesion areas, as well as in the normal and the symmetric areas. Perfusion defects were recognizable in all four perfusion MRI maps, and the MTT and the TTP showed a conspicuous delay in the parts where perfusion defects were recognized. The MTT and the TTP images of perfusion MRI reflected a significant correlation between the degrees of stenosis and occlusion in the posterior cerebral artery (PCA), as well as the development of collateral vessels. The four perfusion MRI maps could be used to predict the degrees of stenosis and occlusion in the posterior circulation, as well as the development of the collateral vessels, which enabled a hemodynamic evaluation of the parts with perfusion defects. Overall, perfusion MRI is useful for the diagnosis and the treatment of moyamoya disease and can be applied to clinical practice.

  7. Renal and perirenal space involvement in acute pancreatitis: An MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xing Hui, E-mail: lixinghui1005@126.com [Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000 (China); Zhang, Xiao Ming, E-mail: cjr.zhxm@vip.163.com [Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000 (China); Ji, Yi Fan, E-mail: 526504036@qq.com [Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000 (China); Jing, Zong Lin, E-mail: jzl325@163.com [Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000 (China); Huang, Xiao Hua, E-mail: nc_hxh1966@yahoo.com.cn [Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000 (China); Yang, Lin, E-mail: linyangmd@163.com [Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000 (China); Zhai, Zhao Hua, E-mail: zhaizhaohuada@163.com [Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000 (China)

    2012-08-15

    Objectives: To study the prevalence and characteristics of renal and perirenal space involvement and its relation to the severity of acute pancreatitis (AP) using MRI. Methods: 115 patients with AP who underwent MRI with the clinical kidney function test were retrospectively analyzed in this study. MRI sequences included conventional and diffusion weighted imaging (DWI) sequences. The renal and perirenal space involvement in AP was noted on MRI. The renal apparent diffusion coefficient (ADC) on DWI was measured for each kidney. The severity of AP on MRI was graded using MR severity index (MRSI). The relationships among the renal and perirenal space involvement on MRI, the renal ADC, MRSI and the results of the kidney function test were analyzed. Results: In the 115 patients with AP, the renal and perirenal space abnormalities detected included renal parenchymal abnormalities (0.8%), abnormalities of the renal collecting system (2.6%), renal vascular abnormalities (1.7%), thickened renal fascia (99%), perirenal stranding (62%) and perirenal fluid collection (40%). The prevalence of perirenal space abnormalities was correlated with the severity of AP based on MRSI (P < 0.05). The renal ADC values were lower in patients with abnormal kidney function than in those without kidney injury (P < 0.05). The prevalence of kidney function abnormalities was 9.4%, 32% and 100% in mild, moderate, and severe AP cases, respectively (P = 0.00). Conclusion: Perirenal space involvement is much more than renal parenchymal involvement in AP. The prevalence of perirenal space involvement in AP on MRI has a positive correlation with the severity of AP according to MRSI.

  8. Spatial Distortion in MRI-Guided Stereotactic Procedures: Evaluation in 1.5-, 3- and 7-Tesla MRI Scanners.

    Science.gov (United States)

    Neumann, Jan-Oliver; Giese, Henrik; Biller, Armin; Nagel, Armin M; Kiening, Karl

    2015-01-01

    Magnetic resonance imaging (MRI) is replacing computed tomography (CT) as the main imaging modality for stereotactic transformations. MRI is prone to spatial distortion artifacts, which can lead to inaccuracy in stereotactic procedures. Modern MRI systems provide distortion correction algorithms that may ameliorate this problem. This study investigates the different options of distortion correction using standard 1.5-, 3- and 7-tesla MRI scanners. A phantom was mounted on a stereotactic frame. One CT scan and three MRI scans were performed. At all three field strengths, two 3-dimensional sequences, volumetric interpolated breath-hold examination (VIBE) and magnetization-prepared rapid acquisition with gradient echo, were acquired, and automatic distortion correction was performed. Global stereotactic transformation of all 13 datasets was performed and two stereotactic planning workflows (MRI only vs. CT/MR image fusion) were subsequently analysed. Distortion correction on the 1.5- and 3-tesla scanners caused a considerable reduction in positional error. The effect was more pronounced when using the VIBE sequences. By using co-registration (CT/MR image fusion), even a lower positional error could be obtained. In ultra-high-field (7 T) MR imaging, distortion correction introduced even higher errors. However, the accuracy of non-corrected 7-tesla sequences was comparable to CT/MR image fusion 3-tesla imaging. MRI distortion correction algorithms can reduce positional errors by up to 60%. For stereotactic applications of utmost precision, we recommend a co-registration to an additional CT dataset. © 2015 S. Karger AG, Basel.

  9. Robot-assistant for MRI-guided liver ablation: A pilot study.

    Science.gov (United States)

    Franco, Enrico; Ristic, Mike; Rea, Marc; Gedroyc, Wladyslaw M W

    2016-10-01

    Percutaneous ablation under MRI-guidance allows treating otherwise inoperable liver tumors locally using a catheter probe. However, manually placing the probe is an error-prone and time consuming task that requires a considerable amount of training. The aim of this paper was to present a pneumatically actuated robotic instrument that can assist clinicians in MRI-guided percutaneous intervention of the liver and to assess its functionality in a clinical setting. The robot positions a needle-guide inside the MRI scanner bore and assists manual needle insertions outside the bore. The robot supports double oblique insertions that are particularly challenging for less experienced clinicians. Additionally, the system employs only standard imaging sequences and can therefore be used on different MRI scanners without requiring prior integration. The repeatability and the accuracy of the robot were evaluated with an optical tracking system. The functionality of the robot was assessed in an initial pilot study on two patients that underwent MRI-guided laser ablation of the liver. The robot positioned the needle-guide in a repeatable manner with a mean error of 0.35 mm and a standard deviation of 0.32 mm. The mean position error corresponding to the needle tip, measured for an equivalent needle length of 195 mm over 25 fixed points, was 2.5 mm with a standard deviation of 1.2 mm. The pilot study confirmed that the robot does not interfere with the equipment used for MRI-guided laser ablation and does not visibly affect the MR images. The robot setup integrated seamlessly within the established clinical workflow. The robot-assisted procedure was successfully completed on two patients, one of which required a complex double oblique insertion. For both patients, the insertion depth and the tumor size were within the range reported for previous MRI-guided percutaneous interventions. A third patient initially enrolled in the pilot study and was considerably heavier than the others

  10. FEMUR SHAPE RECOVERY FROM VOLUMETRIC IMAGES USING 3-D DEFORMABLE MODELS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new scheme for femur shape recovery from volumetric images using deformable models was proposed. First, prior 3-D deformable femur models are created as templates using point distribution models technology. Second, active contour models are employed to segment the magnetic resonance imaging (MRI) volumetric images of the tibial and femoral joints and the deformable models are initialized based on the segmentation results. Finally, the objective function is minimized to give the optimal results constraining the surface of shapes.

  11. A longitudinal study of cerebral glucose metabolism, MRI, and disability in patients with MS

    DEFF Research Database (Denmark)

    Blinkenberg, M; Jensen, C.V.; Holm, S;

    1999-01-01

    in longitudinal studies of MS patients, but little is known about the associated changes in cerebral neural function. METHODS: The authors studied 10 patients with clinically definite MS who underwent serial measurements of CMRglc, MRI T2-weighted total lesion area (TLA), and clinical evaluation of disability...... (Expanded Disability Status Scale [EDSS]) over a period of approximately 2 years (three examinations). CMRglc was calculated using PET and 18-fluorodeoxyglucose (FDG). RESULTS: The global cortical CMRglc decreased with time (p...OBJECTIVE: To study the time-related changes in cerebral metabolic rate of glucose (CMRglc) in MS patients and to correlate these with changes in MRI lesion load and disability. BACKGROUND: Measurements of MRI lesion load and neurologic disability are used widely to monitor disease progression...

  12. Test-retest reliability of white matter structural brain networks: A multiband diffusion MRI study

    Directory of Open Access Journals (Sweden)

    Tengda eZhao

    2015-02-01

    Full Text Available The multiband EPI sequence has been developed for the human connectome project to accelerate MRI data acquisition. However, no study has yet investigated the test-retest (TRT reliability of the graph metrics of white matter (WM structural brain networks constructed from this new sequence. Here, we employed a multiband diffusion MRI (dMRI dataset with repeated scanning sessions and constructed both low- and high-resolution WM networks by volume- and surface-based parcellation methods. The reproducibility of network metrics and its dependence on type of construction procedures was assessed by the intra-class correlation coefficient (ICC. We observed conserved topological architecture of WM structural networks constructed from the multiband dMRI data as previous findings from conventional dMRI. For the global network properties, the first order metrics were more reliable than second order metrics. Between two parcellation methods, networks with volume-based parcellation showed better reliability than surface-based parcellation, especially for the global metrics. Between different resolutions, the high-resolution network exhibited higher TRT performance than the low-resolution in terms of the global metrics with a large effect size, whereas the low-resolution performs better in terms of local (region and connection properties with a relatively low effect size. Moreover, we identified that the association and primary cortices showed higher reproducibility than the paralimbic/limbic regions. The important hub regions and rich-club connections are more reliable than the non-hub regions and connections. Finally, we found WM networks from the multiband dMRI showed higher reproducibility compared with those from the conventional dMRI. Together, our results demonstrated the fair to good reliability of the WM structural brain networks from the multiband EPI sequence, suggesting its potential utility for exploring individual differences and for clinical

  13. Test-retest reliability of white matter structural brain networks: a multiband diffusion MRI study.

    Science.gov (United States)

    Zhao, Tengda; Duan, Fei; Liao, Xuhong; Dai, Zhengjia; Cao, Miao; He, Yong; Shu, Ni

    2015-01-01

    The multiband EPI sequence has been developed for the human connectome project to accelerate MRI data acquisition. However, no study has yet investigated the test-retest (TRT) reliability of the graph metrics of white matter (WM) structural brain networks constructed from this new sequence. Here, we employed a multiband diffusion MRI (dMRI) dataset with repeated scanning sessions and constructed both low- and high-resolution WM networks by volume- and surface-based parcellation methods. The reproducibility of network metrics and its dependence on type of construction procedures was assessed by the intra-class correlation coefficient (ICC). We observed conserved topological architecture of WM structural networks constructed from the multiband dMRI data as previous findings from conventional dMRI. For the global network properties, the first order metrics were more reliable than second order metrics. Between two parcellation methods, networks with volume-based parcellation showed better reliability than surface-based parcellation, especially for the global metrics. Between different resolutions, the high-resolution network exhibited higher TRT performance than the low-resolution in terms of the global metrics with a large effect size, whereas the low-resolution performs better in terms of local (region and connection) properties with a relatively low effect size. Moreover, we identified that the association and primary cortices showed higher reproducibility than the paralimbic/limbic regions. The important hub regions and rich-club connections are more reliable than the non-hub regions and connections. Finally, we found WM networks from the multiband dMRI showed higher reproducibility compared with those from the conventional dMRI. Together, our results demonstrated the fair to good reliability of the WM structural brain networks from the multiband EPI sequence, suggesting its potential utility for exploring individual differences and for clinical applications.

  14. Longitudinal quantitative MRI assessment of cortical damage in multiple sclerosis: A pilot study.

    Science.gov (United States)

    Gracien, René-Maxime; Reitz, Sarah C; Hof, Stephanie-Michelle; Fleischer, Vinzenz; Droby, Amgad; Wahl, Mathias; Steinmetz, Helmuth; Groppa, Sergiu; Deichmann, Ralf; Klein, Johannes C

    2017-02-27

    Quantitative MRI (qMRI) allows assessing cortical pathology in multiple sclerosis (MS) on a microstructural level, where cortical damage has been shown to prolong T1 -relaxation time and increase proton density (PD) compared to controls. However, the evolution of these changes in MS over time has not been investigated so far. In this pilot study we used an advanced method for the longitudinal assessment of cortical tissue change in MS patients with qMRI in comparison to cortical atrophy, as derived from conventional MRI. Twelve patients with relapsing-remitting MS underwent 3T T1 /PD-mapping at two timepoints with a mean interval of 12 months. The respective cortical T1 /PD-values were extracted from the middle of the cortical layer and the cortical thickness was measured for surface-based identification of clusters with increasing/decreasing values. Statistical analysis showed clusters with increasing PD- and T1 -values over time (annualized rate for T1 /PD increase in these clusters: 3.4 ± 2.56% for T1 , P = 0.0007; 2.3 ± 2.59% for PD, P = 0.01). Changes are heterogeneous across the cortex and different patterns of longitudinal PD and T1 increase emerged. Analysis of the cortical thickness yielded only one small cluster indicating a decrease of cortical thickness. Changes of cortical tissue composition in MS seem to be reflected by a spatially inhomogeneous, multifocal increase of the PD values, indicating replacement of neural tissue by water, and of the T1 -relaxation time, a surrogate of demyelination, axonal loss, and gliosis. qMRI changes were more prominent than cortical atrophy, showing the potential of qMRI techniques to quantify microstructural alterations that remain undetected by conventional MRI. 1 J. Magn. Reson. Imaging 2017. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Studying the neural bases of prism adaptation using fMRI: A technical and design challenge.

    Science.gov (United States)

    Bultitude, Janet H; Farnè, Alessandro; Salemme, Romeo; Ibarrola, Danielle; Urquizar, Christian; O'Shea, Jacinta; Luauté, Jacques

    2016-12-30

    Prism adaptation induces rapid recalibration of visuomotor coordination. The neural mechanisms of prism adaptation have come under scrutiny since the observations that the technique can alleviate hemispatial neglect following stroke, and can alter spatial cognition in healthy controls. Relative to non-imaging behavioral studies, fMRI investigations of prism adaptation face several challenges arising from the confined physical environment of the scanner and the supine position of the participants. Any researcher who wishes to administer prism adaptation in an fMRI environment must adjust their procedures enough to enable the experiment to be performed, but not so much that the behavioral task departs too much from true prism adaptation. Furthermore, the specific temporal dynamics of behavioral components of prism adaptation present additional challenges for measuring their neural correlates. We developed a system for measuring the key features of prism adaptation behavior within an fMRI environment. To validate our configuration, we present behavioral (pointing) and head movement data from 11 right-hemisphere lesioned patients and 17 older controls who underwent sham and real prism adaptation in an MRI scanner. Most participants could adapt to prismatic displacement with minimal head movements, and the procedure was well tolerated. We propose recommendations for fMRI studies of prism adaptation based on the design-specific constraints and our results.

  16. Functional Topography of Human Corpus Callosum: An fMRI Mapping Study

    Directory of Open Access Journals (Sweden)

    Mara Fabri

    2013-01-01

    Full Text Available The concept of a topographical map of the corpus callosum (CC has emerged from human lesion studies and from electrophysiological and anatomical tracing investigations in other mammals. Over the last few years a rising number of researchers have been reporting functional magnetic resonance imaging (fMRI activation in white matter, particularly the CC. In this study the scope for describing CC topography with fMRI was explored by evoking activation through simple sensory stimulation and motor tasks. We reviewed our published and unpublished fMRI and diffusion tensor imaging data on the cortical representation of tactile, gustatory, auditory, and visual sensitivity and of motor activation, obtained in 36 normal volunteers and in 6 patients with partial callosotomy. Activation foci were consistently detected in discrete CC regions: anterior (taste stimuli, central (motor tasks, central and posterior (tactile stimuli, and splenium (auditory and visual stimuli. Reconstruction of callosal fibers connecting activated primary gustatory, motor, somatosensory, auditory, and visual cortices by diffusion tensor tracking showed bundles crossing, respectively, through the genu, anterior and posterior body, and splenium, at sites harboring fMRI foci. These data confirm that the CC commissure has a topographical organization and demonstrate that its functional topography can be explored with fMRI.

  17. Resting-state fMRI study of patients with fragile X syndrome

    Science.gov (United States)

    Isanova, E.; Petrovskiy, E.; Savelov, A.; Yudkin, D.; Tulupov, A.

    2017-08-01

    The study aimed to assess the neural activity of different brain regions in patients with fragile X syndrome (FXS) and the healthy volunteers by resting-state functional magnetic resonance imaging (fMRI) on a 1.5 T MRI Achieva scanner (Philips). Results: The fMRI study showed a DMN of brain function in patients with FXS, as well as in the healthy volunteers. Furthermore, it was found that a default mode network of the brain in patients with FXS and healthy volunteers does not have statistically significant differences (p>0.05), which may indicate that the basal activity of neurons in patients with FXS is not reduced. In addition, we have found a significant (pfunctional status of the brain in patients with FXS were received. The significant increase in the resting state functional connectivity within the right inferior parietal and right angular gyrus (p<0.001) in patients with FXS was found.

  18. Candidate Biomarkers in Children with Autism Spectrum Disorder: A Review of MRI Studies

    Institute of Scientific and Technical Information of China (English)

    Dongyun Li; Hans-Otto Karnath; Xiu Xu

    2017-01-01

    Searching for effective biomarkers is one of the most challenging tasks in the research field of Autism Spectrum Disorder (ASD).Magnetic resonance imaging (MRI) provides a non-invasive and powerful tool for investigating changes in the structure,function,maturation,connectivity,and metabolism of the brain of children with ASD.Here,we review the more recent MRI studies in young children with ASD,aiming to provide candidate biomarkers for the diagnosis of childhood ASD.The review covers structural imaging methods,diffusion tensor imaging,resting-state functional MRI,and magnetic reso nance spectroscopy.Future advances in neuroimaging techniques,as well as cross-disciplinary studies and largescale collaborations will be needed for an integrated approach linking neuroimaging,genetics,and phenotypic data to allow the discovery of new,effective biomarkers.

  19. Muscle hypertrophy in prepubescent tennis players: a segmentation MRI study.

    Directory of Open Access Journals (Sweden)

    Joaquin Sanchis-Moysi

    Full Text Available PURPOSE: To asses if tennis at prepubertal age elicits the hypertrophy of dominant arm muscles. METHODS: The volume of the muscles of both arms was determined using magnetic resonance imaging (MRI in 7 male prepubertal tennis players (TP and 7 non-active control subjects (CG (mean age 11.0 ± 0.8 years, Tanner 1-2. RESULTS: TP had 13% greater total muscle volume in the dominant than in the contralateral arm. The magnitude of inter-arm asymmetry was greater in TP than in CG (13 vs 3%, P<0.001. The dominant arm of TP was 16% greater than the dominant arm of CG (P<0.01, whilst non-dominant arms had similar total muscle volumes in both groups (P = 0.25, after accounting for height as covariate. In TP, dominant deltoid (11%, forearm supinator (55% and forearm flexors (21% and extensors (25% were hypertrophied compared to the contralateral arm (P<0.05. In CG, the dominant supinator muscle was bigger than its contralateral homonimous (63%, P<0.05. CONCLUSIONS: Tennis at prepubertal age is associated with marked hypertrophy of the dominant arm, leading to a marked level of asymmetry (+13%, much greater than observed in non-active controls (+3%. Therefore, tennis particpation at prepubertal age is associated with increased muscle volumes in dominant compared to the non-dominant arm, likely due to selectively hypertrophy of the loaded muscles.

  20. Right ventricle segmentation from cardiac MRI: a collation study.

    Science.gov (United States)

    Petitjean, Caroline; Zuluaga, Maria A; Bai, Wenjia; Dacher, Jean-Nicolas; Grosgeorge, Damien; Caudron, Jérôme; Ruan, Su; Ayed, Ismail Ben; Cardoso, M Jorge; Chen, Hsiang-Chou; Jimenez-Carretero, Daniel; Ledesma-Carbayo, Maria J; Davatzikos, Christos; Doshi, Jimit; Erus, Guray; Maier, Oskar M O; Nambakhsh, Cyrus M S; Ou, Yangming; Ourselin, Sébastien; Peng, Chun-Wei; Peters, Nicholas S; Peters, Terry M; Rajchl, Martin; Rueckert, Daniel; Santos, Andres; Shi, Wenzhe; Wang, Ching-Wei; Wang, Haiyan; Yuan, Jing

    2015-01-01

    Magnetic Resonance Imaging (MRI), a reference examination for cardiac morphology and function in humans, allows to image the cardiac right ventricle (RV) with high spatial resolution. The segmentation of the RV is a difficult task due to the variable shape of the RV and its ill-defined borders in these images. The aim of this paper is to evaluate several RV segmentation algorithms on common data. More precisely, we report here the results of the Right Ventricle Segmentation Challenge (RVSC), concretized during the MICCAI'12 Conference with an on-site competition. Seven automated and semi-automated methods have been considered, along them three atlas-based methods, two prior based methods, and two prior-free, image-driven methods that make use of cardiac motion. The obtained contours were compared against a manual tracing by an expert cardiac radiologist, taken as a reference, using Dice metric and Hausdorff distance. We herein describe the cardiac data composed of 48 patients, the evaluation protocol and the results. Best results show that an average 80% Dice accuracy and a 1cm Hausdorff distance can be expected from semi-automated algorithms for this challenging task on the datasets, and that an automated algorithm can reach similar performance, at the expense of a high computational burden. Data are now publicly available and the website remains open for new submissions (http://www.litislab.eu/rvsc/).

  1. A Study of Long-Term fMRI Reproducibility Using Data-Driven Analysis Methods.

    Science.gov (United States)

    Song, Xiaomu; Panych, Lawrence P; Chou, Ying-Hui; Chen, Nan-Kuei

    2014-12-01

    The reproducibility of functional magnetic resonance imaging (fMRI) is important for fMRI-based neuroscience research and clinical applications. Previous studies show considerable variation in amplitude and spatial extent of fMRI activation across repeated sessions on individual subjects even using identical experimental paradigms and imaging conditions. Most existing fMRI reproducibility studies were typically limited by time duration and data analysis techniques. Particularly, the assessment of reproducibility is complicated by a fact that fMRI results may depend on data analysis techniques used in reproducibility studies. In this work, the long-term fMRI reproducibility was investigated with a focus on the data analysis methods. Two spatial smoothing techniques, including a wavelet-domain Bayesian method and the Gaussian smoothing, were evaluated in terms of their effects on the long-term reproducibility. A multivariate support vector machine (SVM)-based method was used to identify active voxels, and compared to a widely used general linear model (GLM)-based method at the group level. The reproducibility study was performed using multisession fMRI data acquired from eight healthy adults over 1.5 years' period of time. Three regions-of-interest (ROI) related to a motor task were defined based upon which the long-term reproducibility were examined. Experimental results indicate that different spatial smoothing techniques may lead to different reproducibility measures, and the wavelet-based spatial smoothing and SVM-based activation detection is a good combination for reproducibility studies. On the basis of the ROIs and multiple numerical criteria, we observed a moderate to substantial within-subject long-term reproducibility. A reasonable long-term reproducibility was also observed from the inter-subject study. It was found that the short-term reproducibility is usually higher than the long-term reproducibility. Furthermore, the results indicate that brain

  2. Demonstration of the reproducibility of free-breathing diffusion-weighted MRI and dynamic contrast enhanced MRI in children with solid tumours: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Keiko; Jerome, Neil P.; Collins, David J.; Orton, Matthew R.; D' Arcy, James A.; Leach, Martin O. [Cancer Research UK Cancer Imaging Centre at The Institute of Cancer Research, London (United Kingdom); Wallace, Toni; Koh, Dow-Mu [Royal Marsden Hospital, Department of Radiology, London, England (United Kingdom); Moreno, Lucas [The Institute of Cancer Research, Paediatric Drug Development Team, Divisions of Cancer Therapeutics and Clinical Studies, London (United Kingdom); Spanish National Cancer Research Centre (CNIO), Clinical Research Programme, Madrid (Spain); The Royal Marsden NHS Foundation Trust, Paediatric Drug Development Unit, Children and Young People' s Unit, Sutton (United Kingdom); Pearson, Andrew D.J.; Marshall, Lynley V.; Carceller, Fernando; Zacharoulis, Stergios [The Institute of Cancer Research, Paediatric Drug Development Team, Divisions of Cancer Therapeutics and Clinical Studies, London (United Kingdom); The Royal Marsden NHS Foundation Trust, Paediatric Drug Development Unit, Children and Young People' s Unit, Sutton (United Kingdom)

    2015-09-15

    The objectives are to examine the reproducibility of functional MR imaging in children with solid tumours using quantitative parameters derived from diffusion-weighted (DW-) and dynamic contrast enhanced (DCE-) MRI. Patients under 16-years-of age with confirmed diagnosis of solid tumours (n = 17) underwent free-breathing DW-MRI and DCE-MRI on a 1.5 T system, repeated 24 hours later. DW-MRI (6 b-values, 0-1000 sec/mm{sup 2}) enabled monoexponential apparent diffusion coefficient estimation using all (ADC{sub 0-1000}) and only ≥100 sec/mm{sup 2} (ADC{sub 100-1000}) b-values. DCE-MRI was used to derive the transfer constant (K{sup trans}), the efflux constant (k{sub ep}), the extracellular extravascular volume (v{sub e}), and the plasma fraction (v{sub p}), using a study cohort arterial input function (AIF) and the extended Tofts model. Initial area under the gadolinium enhancement curve and pre-contrast T{sub 1} were also calculated. Percentage coefficients of variation (CV) of all parameters were calculated. The most reproducible cohort parameters were ADC{sub 100-1000} (CV = 3.26 %), pre-contrast T{sub 1} (CV = 6.21 %), and K{sup trans} (CV = 15.23 %). The ADC{sub 100-1000} was more reproducible than ADC{sub 0-1000}, especially extracranially (CV = 2.40 % vs. 2.78 %). The AIF (n = 9) derived from this paediatric population exhibited sharper and earlier first-pass and recirculation peaks compared with the literature's adult population average. Free-breathing functional imaging protocols including DW-MRI and DCE-MRI are well-tolerated in children aged 6 - 15 with good to moderate measurement reproducibility. (orig.)

  3. The Importance of the Default Mode Network in Creativity--A Structural MRI Study

    Science.gov (United States)

    Kühn, Simone; Ritter, Simone M.; Müller, Barbara C. N.; van Baaren, Rick B.; Brass, Marcel; Dijksterhuis, Ap

    2014-01-01

    Anecdotal reports as well as behavioral studies have suggested that creative performance benefits from unconscious processes. So far, however, little is known about how creative ideas arise from the brain. In the current study, we aimed to investigate the neural correlates of creativity by means of structural MRI research. Given that unconscious…

  4. Puzzlingly High Correlations in fMRI Studies of Emotion, Personality, and Social Cognition

    Science.gov (United States)

    Vul, Edward; Harris, Christine; Winkielman, Piotr; Pashler, Harold

    2009-01-01

    Functional Magnetic Resonance Imaging (fMRI) studies of emotion, personality, and social cognition have drawn much attention in recent years, with high-profile studies frequently reporting extremely high (e.g., > 8) correlations between behavioral and self-report measures of personality or emotion and measures of brain activation. We show that…

  5. Are Errors Differentiable from Deceptive Responses when Feigning Memory Impairment? An fMRI Study

    Science.gov (United States)

    Lee, Tatia M. C.; Au, Ricky K. C.; Liu, Ho-Ling; Ting, K. H.; Huang, Chih-Mao; Chan, Chetwyn C. H.

    2009-01-01

    Previous neuroimaging studies have suggested that the neural activity associated with truthful recall, with false memory, and with feigned memory impairment are different from one another. Here, we report a functional magnetic resonance imaging (fMRI) study that addressed an important but yet unanswered question: Is the neural activity associated…

  6. Using fMRI to Study Conceptual Change: Why and How?

    Science.gov (United States)

    Masson, Steve; Potvin, Patrice; Riopel, Martin; Foisy, Lorie-Marlene Brault; Lafortune, Stephanie

    2012-01-01

    Although the use of brain imaging techniques, such as functional magnetic resonance imaging (fMRI) is increasingly common in educational research, only a few studies regarding science learning have so far taken advantage of this technology. This paper aims to facilitate the design and implementation of brain imaging studies relating to science…

  7. Neural Substrates of the Topology Test to Measure Fluid Reasoning: An fMRI Study

    Science.gov (United States)

    Masunaga, Hiromi; Kawashima, Ryuta; Horn, John L.; Sassa, Yuko; Sekiguchi, Atsushi

    2008-01-01

    In our prior study the negative correlation between Topology, a behavioral measure of fluid reasoning, and adult age diminished with the increase in the level of expertise in a cognitively-demanding domain of expertise in the game of GO. The present fMRI study was designed to investigate neural substrates of Topology. The modified topology…

  8. The cerebral intravascular enhancement sign is not specific: a contrast-enhanced MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Bakshi, R.; Kinkel, W.R.; Bates, V.E.; Mechtler, L.L.; Kinkel, P.R. [Lucy Dent Imaging Center, University at Buffalo, NY (United States)

    1999-02-01

    The intravascular enhancement (IVE) sign, also known as the ``arterial enhancement sign``, is an abnormal finding in the brain on contrast-enhanced MRI studies. IVE has been described in arterial cerebrovascular disorders, most commonly in acute or subacute arterial ischemic infarcts. However, the specificity of this sign has not been established. We describe four patients with disorders other than arterial strokes in whom gadolinium-enhanced high-field (1.5 T) MRI suggested IVE. The conditions were herpes simplex viral encephalitis, idiopathic cerebellitis, pneumococcal meningitis, and superior sagittal sinus thrombosis with venous infarction. IVE in these cases may be due to multiple factors, including arterial, venous, perivascular, and leptomeningeal or sulcal contrast medium accumulation. Our observations suggest that arterial ischemia, previously described as the cardinal cause of IVE, probably does not explain all instances, and urge caution in interpreting this sign as a specific MRI manifestation of acute arterial infarction or ischemia. (orig.) With 4 figs., 1 tab., 44 refs.

  9. Assessment of biofeedback rehabilitation in post-stroke patients combining fMRI and gait analysis: a case study

    OpenAIRE

    Del Din, Silvia; Bertoldo, Alessandra; Sawacha, Zimi; Jonsdottir, Johanna; Rabuffetti, Marco; Cobelli, Claudio; Ferrarin, Maurizio

    2014-01-01

    Background The ability to walk independently is a primary goal for rehabilitation after stroke. Gait analysis provides a great amount of valuable information, while functional magnetic resonance imaging (fMRI) offers a powerful approach to define networks involved in motor control. The present study reports a new methodology based on both fMRI and gait analysis outcomes in order to investigate the ability of fMRI to reflect the phases of motor learning before/after electromyographic biofeedba...

  10. Mentalizing in schizophrenia: A multivariate functional MRI study.

    Science.gov (United States)

    Martin, Andrew K; Dzafic, Ilvana; Robinson, Gail A; Reutens, David; Mowry, Bryan

    2016-12-01

    Schizophrenia is associated with mentalizing deficits that impact on social functioning and quality of life. Recently, schizophrenia has been conceptualized as a disorder of neural dysconnectivity and network level analyses offers a means of understanding the underlying deficits leading to mentalizing difficulty. Using an established mentalizing task (The Triangles Task), functional magnetic resonance images (fMRI) were acquired from 19 patients with schizophrenia and 17 age- and sex-matched healthy controls (HCs). Participants were required to watch short animations of two triangles interacting with each other with the interactions either random (no interaction), physical (patterned movement), or mental (intentional movement). Task-based Partial Least Squares (PLS) was used to analyze activation differences and commonalities between the three conditions and the two groups. Seed-based PLS was used to assess functional connectivity with peaks identified in the task-based PLS. Behavioural PLS was then performed using the accuracy from the mental conditions. Patients with schizophrenia performed worse on the mentalizing condition compared to HCs. Task-based PLS revealed one significant latent variable (LV) that explained 42.9% of the variance in the task, with theLV separating the mental condition from the physical and random conditions in patients with schizophrenia, but only the mental from physical in healthy controls. The mental animations were associated with increased modulation of the inferior frontal gyri bilaterally, left superior temporal gyrus, right postcentral gyrus, and left caudate nucleus. The physical/random animations were associated with increased modulation of the right medial frontal gyrus and left superior frontal gyrus. Seed-based PLS identified increased functional connectivity with the left inferior frontal gyrus (liFG) and caudate nucleus in patients with schizophrenia, during the mental and physical interactions, with functional connectivity

  11. The effects of cidofovir on progressive multifocal leukoencephalopathy: an MRI case study

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, R.L.; Cheng, K.H. [Physics Dept., Texas Technical University, Lubbock (United States); Sack, K. [Mount Diablo Medical Center, Concord, CA (United States)

    2001-05-01

    MRI was used to study the effects of introducing cidofovir (HPMPC, Vistide) to the antiretroviral therapy of a 33-year-old white man diagnosed as having progressive multifocal leukoencephalopathy (PML) secondary to AIDS. In response to combined cidofovir and antiretroviral therapy he showed significant clinical improvement. MRI showed a decrease in extent of existing lesions, without new ones. Blood chemistry information obtained indicated some involvement of immunologic mechanisms: the CD4:8 ratio showed improvement from an average of 0.08 before treatment to 0.13 during therapy. (orig.)

  12. Study of inter-fraction movements of tongue during radiation therapy in cases of tongue malignancy using volumetric cone beam computed tomography (CBCT imaging

    Directory of Open Access Journals (Sweden)

    Mirza Athar Ali

    2015-12-01

    Full Text Available Purpose: Tongue is a mobile organ in head and neck region predisposing it for geographic miss during the course of fractionated radiotherapy for tongue malignancy. This study analyses movement of tongue during the course of radiotherapy using volumetric KV-cone beam computed tomography (KV-CBCT imaging for patients of tongue malignancy treated without using tongue bite. Methods: We analysed 100 KV-cone beam CTs performed on 10 patients with carcinoma of tongue undergoing fractionated radiotherapy. All the patients underwent thermoplastic mask immobilisation and CT simulation. During the course of radiotherapy, all patients underwent volumetric KV-CBCT imaging to assess the movements of tongue. Five arbitrary reference points were used to analyse the movements of tongue in 3-dimensions: 1 Point A: Tip of tongue; 2 Point B: Point over right lateral border, 4 cm posterior to the tip of tongue; 3 Point C: Point over left lateral border, 4 cm posterior to the tip of tongue; 4 Point D: Point over superior most part (dorsum of tongue, 4 cm posterior to the tip of tongue; 5 Point E: Point over the surface of base of tongue at the level of tip of epiglottis. Results: Mean movements of point A: +0.21 cm (SD: 0.12 and -0.23 cm (SD: 0.14, point B: +0.14 cm (SD: 0.04 and -0.19 cm (SD: 0.1, point C: +0.12 cm (SD: 0.05 and -0.14 cm (SD: 0.06, point D: +0.15 cm (SD: 0.07 and -0.29 cm (SD: 0.22 and point E: +0.23 cm (SD: 0.15 and -0.23 cm (SD: 0.14. Conclusion: Organ movement is one of the great challenges encountered during radiotherapy. Tongue is one such organ in head and neck region. Concept of internal target volume (ITV margin which takes into account the internal organ movements should be considered for tongue malignancies. ITV to PTV margin will depend on the setup accuracy, immobilization device and imaging modality utilised for setup verification. In an IGRT (Image Guided Radio Therapy setup, a PTV margin of 0.3 to 0.5 cm from ITV would be safe.

  13. Functional MRI study of mild Alzheimer's disease using amplitude of low frequency fluctuation analysis

    Institute of Scientific and Technical Information of China (English)

    XI Qian; ZHAO Xiao-hu; WANG Pei-jun; GUO Qi-hao; YAN Chao-gan; HE Yong

    2012-01-01

    Background Previous studies have shown that the functional brain activity in the resting state is impaired in Alzheimer's disease (AD) patients.However,most studies focused on the relationship between different brain areas,rather than the amplitude or strength of the regional brain activity.The purpose of this study was to explore the functional brain changes in AD patients by measuring the amplitude of the blood oxygenation level dependent (BOLD) functional MRI (fMRI) signals.Methods Twenty mild AD patients and twenty healthy elderly subjects participated in the fMRI scan.The amplitude of low frequency fluctuation (ALFF) was calculated using REST software.Results Compared with the healthy elderly subjects,the mild AD patients showed decreased ALFF in the right posterior cingulate cortex,right ventral medial prefrontal cortex,and in the bilateral dorsal medial prefrontal cortex.No brain region with increased ALFF was found in the AD group compared with the control group.Conclusions The reduced activity in the posterior cingulate cortex and medial prefrontal cortex observed in the present study suggest that the functional abnormalities of those areas are at an early stage of AD.The ALFF analysis may provide a useful tool in fMRI study of AD.

  14. Three-Dimensional Volumetric Assessment of Diastolic Function by Cardiac Magnetic Resonance Imaging: The Multi-Ethnic Study of Atherosclerosis (MESA).

    Science.gov (United States)

    Nacif, Marcelo S; Almeida, Andre L C; Young, Alistair A; Cowan, Brett R; Armstrong, Anderson C; Yang, Eunice; Sibley, Christopher T; Hundley, W Gregory; Liu, Songtao; Lima, Joao Ac; Bluemke, David A

    2017-01-01

    Cardiac Magnetic Resonance is in need of a simple and robust method for diastolic function assessment that can be done with routine protocol sequences. To develop and validate a three-dimensional (3D) model-based volumetric assessment of diastolic function using cardiac magnetic resonance (CMR) imaging and compare the results obtained with the model with those obtained by echocardiography. The study participants provided written informed consent and were included if having undergone both echocardiography and cine steady-state free precession (SSFP) CMR on the same day. Guide points at the septal and lateral mitral annulus were used to define the early longitudinal relaxation rate (E'), while a time-volume curve from the 3D model was used to assess diastolic filling parameters. We determined the correlation between 3D CMR and echocardiography and the accuracy of CMR in classifying the diastolic function grade. The study included 102 subjects. The E/A ratio by CMR was positively associated with the E/A ratio by echocardiography (r = 0.71, p potencial na avaliação rotineira da função diastólica por RMC.

  15. Three cases of CLIPPERS: a serial clinical, laboratory and MRI follow-up study.

    Science.gov (United States)

    Kastrup, O; van de Nes, J; Gasser, T; Keyvani, K

    2011-12-01

    The aim of the study was to further determine the pathophysiology, clinical course, MRI-features and response to therapy of chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS), which has recently been proposed as a rare chronic inflammatory central nervous system disorder responsive to immunosuppressive therapy. Three patients with this rare entity underwent serial clinical and bimonthly MRI follow-up over a period of up to 16 months. Extensive laboratory work-up and brain biopsy were performed. Intravenous methylprednisolone or oral dexamethasone was administered as treatment, additionally cyclophosphamide in one patient. Clinically, diplopia, nystagmus, ataxia and facial paresthesia were the cardinal symptoms. Magnetic resonance imaging (MRI) disclosed patchy spot-like gadolinium enhancement in a "salt-and-pepper like appearance" in the pons, midbrain and cerebellum, in two cases with thalamic and in the other with spinal involvement. Brain biopsies demonstrated a predominantly angiocentric but also diffuse infiltration pattern by small mature lymphocytes. Treatment with steroids led to rapid clinical improvement and marked resolution of MRI lesions. As discontinuation of steroids led to clinical relapse, one patient was treated with a further course of steroids and the other with steroids and cyclophosphamide as immunosuppressive therapy. This led to stable remission with only mild clinical residue and normalization of MRI. Extensive laboratory and radiological work-up could not identify any other cause of the disease. Of note, in two cases a marked elevation of IgE in serum was found initially and throughout the course. CLIPPERS seems to be a distinct inflammatory central nervous system disorder. It shows characteristic MRI core features. Extrapontine involvement seems to be frequent. Histologically it is characterised by predominantly angiocentric infiltration by small mature lymphocytes. A pathogenetic

  16. Perceiving Age and Gender in Unfamiliar Faces: An fMRI Study on Face Categorization

    Science.gov (United States)

    Wiese, Holger; Kloth, Nadine; Gullmar, Daniel; Reichenbach, Jurgen R.; Schweinberger, Stefan R.

    2012-01-01

    Efficient processing of unfamiliar faces typically involves their categorization (e.g., into old vs. young or male vs. female). However, age and gender categorization may pose different perceptual demands. In the present study, we employed functional magnetic resonance imaging (fMRI) to compare the activity evoked during age vs. gender…

  17. Seeing Chinese Characters in Action: An fMRI Study of the Perception of Writing Sequences

    Science.gov (United States)

    Yu, Hongbo; Gong, Lanyun; Qiu, Yinchen; Zhou, Xiaolin

    2011-01-01

    The Chinese character is composed of a finite set of strokes whose order in writing follows consensual principles and is learnt through school education. Using functional magnetic resonance imaging (fMRI), this study investigates the neural activity associated with the perception of writing sequences by asking participants to observe…

  18. A STUDY ON PERITUMORAL BRAIN EDEMA AROUND MENINGIOMAS BY MRI AND CONTRAST CT

    NARCIS (Netherlands)

    GO, KG; KAMMAN, RL; WILMINK, JT; MOOYAART, EL

    1994-01-01

    In the present study upon 9 meningiomas, the volume of peritumoral brain edema was calculated by integration of the cross-sectional edematous areas on serial MRI slices. It was zero in 3 cases and ranged from 11 to 176.4 ml in the other cases. There was disruption of the cortex in all cases, ranging

  19. Effects of motor fatigue on human brain activity, an fMRI study

    NARCIS (Netherlands)

    van Duinen, Hiske; Renken, Remco; Maurits, Natasha; Zijdewind, Inge

    2007-01-01

    The main purpose of this study was to investigate effects of motor fatigue on brain activation in humans, using fMRI. First, we assessed brain activation that correlated with muscle activity during brief contractions at different force levels (force modulation). Second, a similar analysis was done f

  20. Functional Imaging of Broca’s Area in Native Persian Speakers: An fMRI Study

    Directory of Open Access Journals (Sweden)

    A Mahdavi

    2008-12-01

    Full Text Available Background/Objective: The problem of localization of speech associated cortices using noninvasive methods has been of utmost importance in many neuroimaging studies, but the results are difficult to resolve for specific neurosurgical applications. In this study, we used fMRI to delineate language-related brain activation patterns with emphasis on the Broca's area during the execution of two Persian language tasks."nPatients and Methods: The subjects comprised of nine healthy right-handed men who participated voluntarily in this study. They performed two consequent fMRI paradigms namely; "Word Production" and "Reverse Word Reading". The fMRI data were collected and analyzed. Then, functional images were registered to anatomical images using FSL software. The laterality indices were also calculated in regions of interest with different threshold levels."nResults: The results indicate that Broca's area, as the classical language-production center, was robustly activated while performing these two tasks. In eight out of nine subjects, the left hemisphere dominancy and Broca's area activation were observed and in one case activation was prominent in the homologous area in the right hemisphere."nConclusion: Similar pattern of cortical activation during Persian word production and Anglophone languages such as English was revealed. fMRI is a valuable means for brain mapping in language studies.

  1. A STUDY ON PERITUMORAL BRAIN EDEMA AROUND MENINGIOMAS BY MRI AND CONTRAST CT

    NARCIS (Netherlands)

    GO, KG; KAMMAN, RL; WILMINK, JT; MOOYAART, EL

    1994-01-01

    In the present study upon 9 meningiomas, the volume of peritumoral brain edema was calculated by integration of the cross-sectional edematous areas on serial MRI slices. It was zero in 3 cases and ranged from 11 to 176.4 ml in the other cases. There was disruption of the cortex in all cases, ranging

  2. Assessment of abstract reasoning abilities in alcohol-dependent subjects: an fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Bagga, Deepika; Singh, Namita; Singh, Sadhana; Modi, Shilpi; Kumar, Pawan [Institute of Nuclear Medicine and Allied Sciences (INMAS), NMR Research Centre, Delhi (India); Bhattacharya, D. [Base Hospital, Department of Psychiatry, Delhi Cantt (India); Garg, Mohan L. [Panjab University, Department of Biophysics, Chandigarh (India); Khushu, Subash [Institute of Nuclear Medicine and Allied Sciences (INMAS), NMR Research Centre, Delhi (India); INMAS, DRDO, NMR Research Centre, Delhi (India)

    2014-01-15

    Chronic alcohol abuse has been traditionally associated with impaired cognitive abilities. The deficits are most evident in higher order cognitive functions, such as abstract reasoning, problem solving and visuospatial processing. The present study sought to increase current understanding of the neuropsychological basis of poor abstract reasoning abilities in alcohol-dependent subjects using functional magnetic resonance imaging (fMRI). An abstract reasoning task-based fMRI study was carried out on alcohol-dependent subjects (n = 18) and healthy controls (n = 18) to examine neural activation pattern. The study was carried out using a 3-T whole-body magnetic resonance scanner. Preprocessing and post processing was performed using SPM 8 software. Behavioral data indicated that alcohol-dependent subjects took more time than controls for performing the task but there was no significant difference in their response accuracy. Analysis of the fMRI data indicated that for solving abstract reasoning-based problems, alcohol-dependent subjects showed enhanced right frontoparietal neural activation involving inferior frontal gyrus, post central gyrus, superior parietal lobule, and occipito-temporal gyrus. The extensive activation observed in alcohol dependents as compared to controls suggests that alcohol dependents recruit additional brain areas to meet the behavioral demands for equivalent task performance. The results are consistent with previous fMRI studies suggesting decreased neural efficiency of relevant brain networks or compensatory mechanisms for the execution of task for showing an equivalent performance. (orig.)

  3. Modelling large motion events in fMRI studies of patients with epilepsy

    DEFF Research Database (Denmark)

    Lemieux, Louis; Salek-Haddadi, Afraim; Lund, Torben E;

    2007-01-01

    % of cases, there was a significant effect of motion in 50% of the brain or greater; for the scan nulling effect, the proportion was 36%; this effect was predominantly in the neocortex. We conclude that careful consideration of the motion-related effects in fMRI studies of patients with epilepsy is essential...

  4. Adherence to MRI protocol consensus guidelines in multiple sclerosis: an Australian multi-centre study.

    Science.gov (United States)

    Curley, Michael; Josey, Lawrence; Lucas, Robyn; Dear, Keith; Taylor, Bruce V; Coulthard, Alan; Chapman, Caron; Coulthard, Alan; Dear, Keith; Dwyer, Terry; Kilpatrick, Trevor; Lucas, Robyn; McMichael, Tony; Pender, Michael P; Ponsonby, Anne-Louise; Taylor, Bruce; Valery, Patricia; van der Mei, Ingrid; Williams, David

    2012-12-01

    Multiple sclerosis (MS) is a debilitating disease that causes significant morbidity within a young demographic. Diagnostic guidelines for MS have evolved, and imaging has played an increasingly important role in diagnosis over the last two decades. For imaging to contribute to diagnosis in a meaningful way, it must be reproducible. Consensus guidelines for MRI in MS exist to define correct sequence type and imaging technique, but it is not clear to what extent they are followed. This study reviewed MRI studies performed on Australian individuals presenting with a first clinical diagnosis of central nervous system demyelination (FCD) for adherence to published guidelines and discussed practical implementation of MS guidelines in light of recent updates. The Ausimmune study was a prospective case control study of Australian participants presenting with FCD from 2003 to 2006. Baseline cranial and spinal cord MRI studies of 226 case participants from four separate Australian regions were reviewed. MRI sequences were classified according to anatomical location, slice plane, tissue weighting and use of gadolinium-containing contrast media. Results were compared with the 2003 Consortium of Multiple Sclerosis Centres MRI protocol for the diagnosis of MS. The composition of core cranial MRI sequences performed varied across the 226 scans. Of the studies, 91% included sagittal fluid attenuated inversion recovery (FLAIR) sequences. Cranial axial T2-weighted, axial FLAIR and axial proton density-weighted sequences were performed in 88%, 60% and 16% (respectively) of scans. Only 25% of the studies included a T1-weighted contrast-enhanced sequence. Concordance with the guidelines in all sequences was very low (2). Only a small number of MRI investigations performed included all of the sequences stipulated by consensus guidelines. This is likely due to poor awareness in the imaging community of the guidelines and the rationale behind certain sequences. Radiologists with a sub

  5. The PICTURE study: diagnostic accuracy of multiparametric MRI in men requiring a repeat prostate biopsy.

    Science.gov (United States)

    Simmons, Lucy A M; Kanthabalan, Abi; Arya, Manit; Briggs, Tim; Barratt, Dean; Charman, Susan C; Freeman, Alex; Gelister, James; Hawkes, David; Hu, Yipeng; Jameson, Charles; McCartan, Neil; Moore, Caroline M; Punwani, Shonit; Ramachandran, Navin; van der Meulen, Jan; Emberton, Mark; Ahmed, Hashim U

    2017-04-25

    Transrectal prostate biopsy has limited diagnostic accuracy. Prostate Imaging Compared to Transperineal Ultrasound-guided biopsy for significant prostate cancer Risk Evaluation (PICTURE) was a paired-cohort confirmatory study designed to assess diagnostic accuracy of multiparametric magnetic resonance imaging (mpMRI) in men requiring a repeat biopsy. All underwent 3 T mpMRI and transperineal template prostate mapping biopsies (TTPM biopsies). Multiparametric MRI was reported using Likert scores and radiologists were blinded to initial biopsies. Men were blinded to mpMRI results. Clinically significant prostate cancer was defined as Gleason ⩾4+3 and/or cancer core length ⩾6 mm. Two hundred and forty-nine had both tests with mean (s.d.) age was 62 (7) years, median (IQR) PSA 6.8 ng ml (4.98-9.50), median (IQR) number of previous biopsies 1 (1-2) and mean (s.d.) gland size 37 ml (15.5). On TTPM biopsies, 103 (41%) had clinically significant prostate cancer. Two hundred and fourteen (86%) had a positive prostate mpMRI using Likert score ⩾3; sensitivity was 97.1% (95% confidence interval (CI): 92-99), specificity 21.9% (15.5-29.5), negative predictive value (NPV) 91.4% (76.9-98.1) and positive predictive value (PPV) 46.7% (35.2-47.8). One hundred and twenty-nine (51.8%) had a positive mpMRI using Likert score ⩾4; sensitivity was 80.6% (71.6-87.7), specificity 68.5% (60.3-75.9), NPV 83.3% (75.4-89.5) and PPV 64.3% (55.4-72.6). In men advised to have a repeat prostate biopsy, prostate mpMRI could be used to safely avoid a repeat biopsy with high sensitivity for clinically significant cancers. However, such a strategy can miss some significant cancers and overdiagnose insignificant cancers depending on the mpMRI score threshold used to define which men should be biopsied.

  6. Volumetric assessment of tumour response using functional MR imaging in patients with hepatocellular carcinoma treated with a combination of doxorubicin-eluting beads and sorafenib

    Energy Technology Data Exchange (ETDEWEB)

    Corona-Villalobos, Celia Pamela [Johns Hopkins University, School of Medicine, The Russell H. Morgan Department of Radiology and Radiological Sciences, Baltimore, MD (United States); Halappa, Vivek Gowdra; Bonekamp, Susanne; Kamel, Ihab R. [Johns Hopkins University, The Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Baltimore, MD (United States); Geschwind, Jean-Francois H.; Reyes, Diane [Johns Hopkins University, Department of Vascular and Interventional Radiology, School of Medicine, Baltimore, MD (United States); Cosgrove, David [Johns Hopkins University, School of Medicine, Department of Oncology, Baltimore, MD (United States); Pawlik, Timothy M. [Johns Hopkins University, School of Medicine, Department of Surgical Oncology, Baltimore, MD (United States)

    2014-09-17

    To prospectively assess treatment response using volumetric functional magnetic resonance imaging (MRI) metrics in patients with hepatocellular carcinoma (HCC) treated with the combination of doxorubicin-eluting bead-transarterial chemoembolization (DEB TACE) and sorafenib. A single center study enrolled 41 patients treated with systemic sorafenib, 400 mg twice a day, combined with DEB TACE. All patients had a pre-treatment and 3-4 week post-treatment MRI. Anatomic response criteria (RECIST, mRECIST and EASL) and volumetric functional response (ADC, enhancement) were assessed. Statistical analyses included paired Student's t-test, Kaplan-Meier curves, Cohen's Kappa, and multivariate cox proportional hazard model. Median tumour size by RECIST remained unchanged post-treatment (8.3 ± 4.1 cm vs. 8.1 ± 4.3 cm, p = 0.44). There was no significant survival difference for early response by RECIST (p = 0.93). EASL and mRECIST could not be analyzed in 12 patients. Volumetric ADC increased significantly (1.32 x 10{sup -3} mm{sup 2}/sec to 1.60 x 10{sup -3} mm{sup 2}/sec, p < 0.001), and volumetric enhancement decreased significantly in HAP (38.2 % to 17.6 %, p < 0.001) and PVP (76.6 % to 41.2 %, p < 0.005). Patients who demonstrated ≥ 65 % decrease PVP enhancement had significantly improved overall survival compared to non-responders (p < 0.005). Volumetric PVP enhancement was demonstrated to be significantly correlated with survival in the combination of DEB TACE and sorafenib for patients with HCC, enabling precise stratification of responders and non-responders. (orig.)

  7. Evaluation of static and dynamic MRI for assessing response of bone sarcomas to preoperative chemotherapy: Correlation with histological necrosis

    Directory of Open Access Journals (Sweden)

    Priyadarshi Amit

    2015-01-01

    Full Text Available Objectives: Preoperative chemotherapy plays a key role in management of bone sarcomas. Postoperative evaluation of histological necrosis has been the gold standard method of assessing response to preoperative chemotherapy. This study was done to evaluate the efficacy of static and dynamic magnetic resonance imaging (MRI for assessing response preoperatively. Materials and Methods: Our study included 14 patients (12 osteosarcomas and 2 malignant fibrous histiocytomas with mean age of 21.8 years, treated with preoperative chemotherapy followed by surgery. They were evaluated with static and dynamic MRI twice, before starting chemotherapy and again prior to surgery. Change in tumor volume and slope of signal intensity - time curve were calculated and correlated with percentage of histological necrosis using Pearson correlation test. Results: The change in dynamic MRI slope was significant (P = 0.001. Also, ≥60% reduction in slope of the curve proved to be an indicator of good histological response [positive predictive value (PPV =80%]. Change in tumor volume failed to show significant correlation (P = 0.071. Although it showed high negative predictive value (NPV = 85.7%, PPV was too low (PPV = 57.14%. Conclusions: Dynamic MRI correctly predicts histological necrosis after administration of preoperative chemotherapy to bone sarcomas. Hence, it can be used as a preoperative indicator of response to neoadjuvant chemotherapy. On the other hand, volumetric assessment by static MRI is not an effective predictor of histological necrosis. This study proves the superiority of dynamic contrast-enhanced study over volumetric study by MRI.

  8. MRI of the Chest

    Medline Plus

    Full Text Available ... or potentially pose a risk, depending on their nature and the strength of the MRI magnet. Many ... of the body being studied. If a contrast material will be used in the MRI exam, a ...

  9. Quantitative Techniques in Volumetric Analysis

    Science.gov (United States)

    Zimmerman, John; Jacobsen, Jerrold J.

    1996-12-01

    Quantitative Techniques in Volumetric Analysis is a visual library of techniques used in making volumetric measurements. This 40-minute VHS videotape is designed as a resource for introducing students to proper volumetric methods and procedures. The entire tape, or relevant segments of the tape, can also be used to review procedures used in subsequent experiments that rely on the traditional art of quantitative analysis laboratory practice. The techniques included are: Quantitative transfer of a solid with a weighing spoon Quantitative transfer of a solid with a finger held weighing bottle Quantitative transfer of a solid with a paper strap held bottle Quantitative transfer of a solid with a spatula Examples of common quantitative weighing errors Quantitative transfer of a solid from dish to beaker to volumetric flask Quantitative transfer of a solid from dish to volumetric flask Volumetric transfer pipet A complete acid-base titration Hand technique variations The conventional view of contemporary quantitative chemical measurement tends to focus on instrumental systems, computers, and robotics. In this view, the analyst is relegated to placing standards and samples on a tray. A robotic arm delivers a sample to the analysis center, while a computer controls the analysis conditions and records the results. In spite of this, it is rare to find an analysis process that does not rely on some aspect of more traditional quantitative analysis techniques, such as careful dilution to the mark of a volumetric flask. Figure 2. Transfer of a solid with a spatula. Clearly, errors in a classical step will affect the quality of the final analysis. Because of this, it is still important for students to master the key elements of the traditional art of quantitative chemical analysis laboratory practice. Some aspects of chemical analysis, like careful rinsing to insure quantitative transfer, are often an automated part of an instrumental process that must be understood by the

  10. Hemispheric preference in visuospatial processing: a complementary approach with fMRI and lesion studies.

    Science.gov (United States)

    Ng, V W; Eslinger, P J; Williams, S C; Brammer, M J; Bullmore, E T; Andrew, C M; Suckling, J; Morris, R G; Benton, A L

    2000-06-01

    Historically, the left cerebral hemisphere has been considered specialized for language, whereas the right cerebral hemisphere is aligned with spatial processes. However, studies have called into question adherence to this model and suggested that both hemispheres participate in language and spatial cognition. Using functional Magnetic Resonance Imaging (fMRI) and human brain lesion studies, we determined whether these complementary techniques could clarify issues of hemispheric dominance. Using a modified Benton Judgement of Line Orientation (JLO) test, considered a relatively pure spatial processing task, we found robust and significant (p < 0.0005) bilateral superior parietal lobe activation on fMRI in ten right-handed male adult volunteers. This was corroborated by lesion data in a cohort of 17 patients who showed significant JLO impairments after either right or left parietal lobe damage, with right parietal damage associated with somewhat more severe deficit. Detailed wavelet analysis of the fMRI time-series did, however, reveal a more dominant role of the right parietal lobe in "kick-starting" the task. To our knowledge, this is a novel way of using fMRI to address functional hemispheric differences in a cognitive task that is known to have bilateral representation.

  11. A functional MRI study of language disturbances in subjects with migraine headache during treatment with topiramate.

    Science.gov (United States)

    De Ciantis, Alessio; Muti, Marco; Piccolini, Carlo; Principi, Massimo; Di Renzo, Antonio; De Ciantis, Rita; Frondizi, Domenico; Iannone, Gregorio; Ottaviano, Pierfausto; Piccirilli, Massimo

    2008-05-01

    Topiramate (TPM) is a new antiepileptic drug approved for the prevention of migraine headache. However its use is limited by treatment-emergent adverse events; in particular, therapy can exert profound impact on language function. In this investigation, we used functional magnetic resonance imaging (fMRI) to study the anatomofunctional correlates of language disturbances in TPM patients experiencing subjective cognitive impairment. Ten right-handed individuals receiving therapy (five with and five without language disfluency) and five matched healthy control subjects took part in this study. During fMRI subjects alternately rested and performed a word-generating task. The task comprised the silent generation of words beginning with a different input letter visually presented. The activation paradigm consisted of six activation blocks alternating with six baseline rest blocks. The main fMRI measure was the pattern activation of the prefrontal regions (Brodmann's areas 44, 45, and 46) in both left and right hemispheres. Patients receiving TPM (50-100 mg/day) significantly reduced mean monthly migraine frequency. However several differences in fMRI activation were evident in the subject group comparison. Notably, changes in brain activity were observed during the phonemic task in patients with language disturbances. It is likely that TPM therapy is associated with a "remapping" of the language cerebral network.

  12. Cerebral lateralization of language in normal left-handed people studied by functional MRI.

    Science.gov (United States)

    Pujol, J; Deus, J; Losilla, J M; Capdevila, A

    1999-03-23

    To use functional MRI (fMRI) to further define the occurrence of left-hemisphere, bilateral, and right-hemisphere language in a normal left-handed population. A total of 100 healthy volunteers, consisting of 50 left-handed subjects and a reference group of 50 right-handed subjects, were studied by fMRI of the frontal cortex during silent word generation. Ninety-six percent of right-handed subjects showed fMRI changes lateralized to the left hemisphere, whereas 4% showed a bilateral activation pattern. In contrast, left-hemisphere lateralization occurred in 76% of left-handers, bilateral activation in 14%, and right-hemisphere lateralization in the remaining 10%. The predominance of right-hemisphere activation, however, was weak in these cases; only a single left-handed subject (2%) showed complete right-hemisphere lateralization. Silent word generation lateralizes to the left cerebral hemisphere in both handedness groups, but right-hemisphere participation is frequent in normal left-handed subjects. Exclusive right-hemisphere activation rarely occurred in the frontal lobe region studied.

  13. EEG-fMRI methods for the study of brain networks during sleep

    Directory of Open Access Journals (Sweden)

    Jeff H. Duyn

    2012-07-01

    Full Text Available Modern neuroimaging methods may provide unique insights into the mechanism and role of sleep, as well as into particular mechanisms of brain function in general. Many of the recent neuroimaging studies have used concurrent EEG and fMRI, which present unique technical challenges ranging from the difficulty of inducing sleep in the MRI environment to appropriate instrumentation and data processing methods to obtain artifact free data. In addition, the use of EEG-fMRI during sleep leads to unique data interpretation issues, as common approaches developed for the analysis of task-evoked activity do not apply to sleep. Reviewed are a variety of statistical approaches that can be used to characterize brain activity from fMRI data acquired during sleep, with an emphasis on approaches that investigate the presence of correlated activity between brain regions. Each of these approaches has advantages and disadvantages that must be considered in concert with the theoretical questions of interest. Specifically, fundamental theories of sleep control and function should be considered when designing these studies and when choosing the associated statistical approaches. For example, the notion that local brain activity during sleep may be triggered by local, use-dependent activity during wakefulness may be tested by analyzing sleep networks as statistically independent components. Alternatively, the involvement of regions in more global processes such as arousal may be investigated with correlation analysis.

  14. The Problem of Metal Needles in Acupuncture-fMRI Studies

    Directory of Open Access Journals (Sweden)

    Florian Beissner

    2011-01-01

    Full Text Available Acupuncture is a therapy based on sensory stimulation of the human body by means of metal needles. The exact underlying mechanisms of acupuncture have not been clarified so far. Functional magnetic resonance imaging (fMRI has become an important tool in acupuncture research. Standard acupuncture needles, which are made of ferromagnetic steel, however, are problematic in acupuncture-fMRI studies for several reasons, such as attraction by the scanner's magnetic field, significant image distortions and signal-dropouts, when positioned close to the head or even heating due to absorption of radio frequency (RF. The aim of this study was to compare two novel types of acupuncture needles with a standard needle for their effect on MRI image quality. The standard needle severely reduced image quality, when located inside the RF coil. The nonferromagnetic metal needle may pose a risk due to RF heating, while the plastic needle has a significantly larger diameter. In conclusion, our recommendations are: (1 standard needles should not be used in MRI; (2 Nonferromagnetic metal needles seem to be the best choice for acupoints outside of the transmitter coil; and (3 only plastic needles are suited for points inside the coil. Laser acupuncture may be a safe alternative, too.

  15. A high-resolution MRI study of linear growth of the human fetal skull base

    Energy Technology Data Exchange (ETDEWEB)

    Jeffery, N. [University Coll., London (United Kingdom). Dept. of Anatomy and Development Biology

    2002-04-01

    The skull base, otherwise referred to as the basicranium or cranial base, plays a key role in the process of skull development, providing both support for the brain and an architectural component of the craniofacial complex. Consequently, the fetal skull base has been the focus of numerous studies employing various methods, including sectioning, plain radiography and CT. This paper investigates high-resolution (hr) MRI as an alternative method for looking at and quantifying the fetal skull base. The evaluation tests two basic hypotheses drawn from previous studies. These suggest that the anterior segment of the midline skull base grows more rapidly than the posterior segment and that the width of the posterior cranial fossa increases disproportionately in relation to its length. I imaged 42 formalin preserved human fetuses from museum collections with hrMRI. The T2-weighted image voxels were significantly smaller than those acquired with conventional clinical MRI. Landmarks of the fetal skull base were identified on reformatted axial and sagittal images. Bivariate plots revealed that the growth rate of the anterior skull base is almost twice that of the posterior skull base and that increases in the width of the posterior cranial fossa exceed those in its length. These findings confirm those of previous investigations and show that hrMRI offers a way forward in noninvasive quantification of fetal morphology. ----------------------------------------------------------------------------.

  16. Simultaneous EMG-fMRI during startle inhibition in monosymptomatic enuresis--an exploratory study.

    Science.gov (United States)

    Schulz-Juergensen, Sebastian; Wunberg, David; Wolff, Stephan; Eggert, Paul; Siniatchkin, Michael

    2013-01-01

    Evidence is growing that monosymptomatic enuresis (ME) is a maturational disorder of the central nervous system with a lack of arousal and lacking inhibition of the micturition reflex. Previous studies have shown a significant reduction of prepulse inhibition (PPI) of startle in children with enuresis. However, it is still unclear whether the abnormal PPI in enuresis is based on an inhibitory deficit at brainstem or cortical level. Nine children with ME and ten healthy children were investigated using simultaneous recording of EMG from the M. orbicularis oculi and functional MRI. The experimental paradigm consisted of acoustic startle stimulation, with startle-alone stimuli and prepulse-startle combinations. Functional MRI data were processed using multiple regression and parametric modulation with startle amplitudes as a parameter. Neither patients with enuresis nor healthy children revealed measurable PPI in the MRI scanner. Startle stimuli caused equal hemodynamic changes in the acoustic cortex, medial prefrontal and orbitofrontal cortex in both groups. The amplitude of startle correlated with more prominent BOLD signal changes in the anterior cingulate cortex in healthy subjects than in patients with ME. This pronounced frontal activation in healthy controls was related to the PPI condition, indicating that the prefrontal cortex of healthy children was activated more strongly to inhibit startle than in patients with ME. In conclusion, apart from the possibility that recordings of PPI inside the MRI scanner may be compromised by methodological problems, the results of this study suggest that high cortical control mechanisms at the prefrontal level are relevant for the pathogenesis of ME.

  17. A hierarchical model for probabilistic independent component analysis of multi-subject fMRI studies.

    Science.gov (United States)

    Guo, Ying; Tang, Li

    2013-12-01

    An important goal in fMRI studies is to decompose the observed series of brain images to identify and characterize underlying brain functional networks. Independent component analysis (ICA) has been shown to be a powerful computational tool for this purpose. Classic ICA has been successfully applied to single-subject fMRI data. The extension of ICA to group inferences in neuroimaging studies, however, is challenging due to the unavailability of a pre-specified group design matrix. Existing group ICA methods generally concatenate observed fMRI data across subjects on the temporal domain and then decompose multi-subject data in a similar manner to single-subject ICA. The major limitation of existing methods is that they ignore between-subject variability in spatial distributions of brain functional networks in group ICA. In this article, we propose a new hierarchical probabilistic group ICA method to formally model subject-specific effects in both temporal and spatial domains when decomposing multi-subject fMRI data. The proposed method provides model-based estimation of brain functional networks at both the population and subject level. An important advantage of the hierarchical model is that it provides a formal statistical framework to investigate similarities and differences in brain functional networks across subjects, for example, subjects with mental disorders or neurodegenerative diseases such as Parkinson's as compared to normal subjects. We develop an EM algorithm for model estimation where both the E-step and M-step have explicit forms. We compare the performance of the proposed hierarchical model with that of two popular group ICA methods via simulation studies. We illustrate our method with application to an fMRI study of Zen meditation.

  18. fMRI and MEG in the study of typical and atypical cognitive development.

    Science.gov (United States)

    Taylor, M J; Donner, E J; Pang, E W

    2012-01-01

    The tremendous changes in brain structure over childhood are critical to the development of cognitive functions. Neuroimaging provides a means of linking these brain-behaviour relations, as task protocols can be adapted for use with young children to assess the development of cognitive functions in both typical and atypical populations. This paper reviews some of our research using magnetoencephalography (MEG) and functional MRI (fMRI) in the study of cognitive development, with a focus on frontal lobe functions. Working memory for complex abstract patterns showed clear development in terms of the recruitment of frontal regions, seen with fMRI, with indications of strategy differences across the age range, from 6 to 35 years of age. Right hippocampal involvement was also evident in these n-back tasks, demonstrating its involvement in recognition in simple working memory protocols. Children born very preterm (7 to 9 years of age) showed reduced fMRI activation particularly in the precuneus and right hippocampal regions relative to control children. In a large normative n-back study (n=90) with upright and inverted faces, MEG data also showed right hippocampal activation that was present across the age range; frontal sources were evident only from 10 years of age. Other studies have investigated the development of set shifting, an executive function that is often deficit in atypical populations. fMRI showed recruitment of frontal areas, including the insula, that have significantly different patterns in children (7 to 14 years of age) with autism spectrum disorder compared to typically developing children, indicating that successful performance implicated differing strategies in these two groups of children. These types of studies will help our understanding of both normal brain-behaviour development and cognitive dysfunction in atypically developing populations. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  19. Functional correlates of cognitive dysfunction in multiple sclerosis: A multicenter fMRI Study.

    Science.gov (United States)

    Rocca, Maria A; Valsasina, Paola; Hulst, Hanneke E; Abdel-Aziz, Khaled; Enzinger, Christian; Gallo, Antonio; Pareto, Debora; Riccitelli, Gianna; Muhlert, Nils; Ciccarelli, Olga; Barkhof, Frederik; Fazekas, Franz; Tedeschi, Gioacchino; Arévalo, Maria J; Filippi, Massimo

    2014-12-01

    In this multicenter study, we applied functional magnetic resonance imaging (fMRI) to define the functional correlates of cognitive dysfunction in patients with multiple sclerosis (MS). fMRI scans during the performance of the N-back task were acquired from 42 right-handed relapsing remitting (RR) MS patients and 52 sex-matched right-handed healthy controls, studied at six European sites using 3.0 Tesla scanners. Patients with at least two abnormal (<2 standard deviations from the normative values) neuropsychological tests at a standardized evaluation were considered cognitively impaired (CI). FMRI data were analyzed using the SPM8 software, modeling regions showing load-dependent activations/deactivations with increasing task difficulty. Twenty (47%) MS patients were CI. During the N-back load condition, compared to controls and CI patients, cognitively preserved (CP) patients had increased recruitment of the right dorsolateral prefrontal cortex. As a function of increasing task difficulty, CI MS patients had reduced activations of several areas located in the fronto-parieto-temporal lobes as well as reduced deactivations of regions which are part of the default mode network compared to the other two groups. Significant correlations were found between abnormal fMRI patterns of activations and deactivations and behavioral measures, cognitive performance, and brain T2 and T1 lesion volumes. This multicenter study supports the theory that a preserved fMRI activity of the frontal lobe is associated with a better cognitive profile in MS patients. It also indicates the feasibility of fMRI to monitor disease evolution and treatment effects in future studies.

  20. Neuropathologic correlates of hippocampal atrophy in the elderly: a clinical, pathologic, postmortem MRI study.

    Directory of Open Access Journals (Sweden)

    Robert J Dawe

    Full Text Available The volume of the hippocampus measured with structural magnetic resonance imaging (MRI is increasingly used as a biomarker for Alzheimer's disease (AD. However, the neuropathologic basis of structural MRI changes in the hippocampus in the elderly has not been directly assessed. Postmortem MRI of the aging human brain, combined with histopathology, could be an important tool to address this issue. Therefore, this study combined postmortem MRI and histopathology in 100 elderly subjects from the Rush Memory and Aging Project and the Religious Orders Study. First, to validate the information contained in postmortem MRI data, we tested the hypothesis that postmortem hippocampal volume is smaller in subjects with clinically diagnosed Alzheimer's disease compared to subjects with mild or no cognitive impairment, as observed in antemortem imaging studies. Subsequently, the relations of postmortem hippocampal volume to AD pathology, Lewy bodies, amyloid angiopathy, gross infarcts, microscopic infarcts, and hippocampal sclerosis were examined. It was demonstrated that hippocampal volume was smaller in persons with a clinical diagnosis of AD compared to those with no cognitive impairment (P = 2.6 × 10(-7 or mild cognitive impairment (P = 9.6 × 10(-7. Additionally, hippocampal volume was related to multiple cognitive abilities assessed proximate to death, with its strongest association with episodic memory. Among all pathologies investigated, the most significant factors related to lower hippocampal volume were shown to be AD pathology (P = 0.0018 and hippocampal sclerosis (P = 4.2 × 10(-7. Shape analysis allowed for visualization of the hippocampal regions most associated with volume loss for each of these two pathologies. Overall, this investigation confirmed the relation of hippocampal volume measured postmortem to clinical diagnosis of AD and measures of cognition, and concluded that both AD pathology and hippocampal sclerosis affect hippocampal

  1. Survival benefit in women with BRCA1 mutation or familial risk in the MRI screening study (MRISC)

    NARCIS (Netherlands)

    Saadatmand, Sepideh; Obdeijn, Inge-Marie; Rutgers, Emiel J.; Oosterwijk, Jan C.; Tollenaar, Rob A.; Woldringh, Gwendolyn H.; Bergers, Elisabeth; Verhoef, Cornelis; Heijnsdijk, Eveline A.; Hooning, Maartje J.; de Koning, Harry J.; Tilanus-Linthorst, Madeleine M.

    2015-01-01

    Adding MRI to annual mammography screening improves early breast cancer detection in women with familial risk or BRCA1/2 mutation, but breast cancer specific metastasis free survival (MFS) remains unknown. We compared MFS of patients from the largest prospective MRI Screening Study (MRISC) with 1:1

  2. Genome-wide association studies of mri-defined brain infarcts: Meta-analysis from the charge consortium

    NARCIS (Netherlands)

    S. Debette (Stéphanie); J.C. Bis (Joshua); M. Fornage (Myriam); H.A. Schmid (Herbert); M.A. Ikram (Arfan); S. Sigurdsson (Stefan); G. Heiss (Gerardo); M.V. Struchalin (Maksim); A.V. Smith (Albert Vernon); A. van der Lugt (Aad); C. DeCarli (Charles); T. Lumley (Thomas); D.S. Knopman (David); C. Enzinger (Christian); G. Eiriksdottir (Gudny); P.J. Koudstaal (Peter Jan); A.L. DeStefano (Anita); B.M. Psaty (Bruce); C. Dufouil (Carole); D.J. Catellier (Diane); F. Fazekas (Franz); T. Aspelund (Thor); Y.S. Aulchenko (Yurii); A. Beiser (Alexa); J.I. Rotter (Jerome); C. Tzourio (Christophe); D.K. Shibata (Dean); M. Tscherner (Maria); T.B. Harris (Tamara); F. Rivadeneira Ramirez (Fernando); L.D. Atwood (Larry); K. Rice (Kenneth); R.F. Gottesman (Rebecca); M.A. van Buchem (Mark); A.G. Uitterlinden (André); M. Kelly-Hayes (Margaret); M. Cushman (Mary Ann); Y. Zhu (Yicheng); E.A. Boerwinkle (Eric); V. Gudnason (Vilmundur); A. Hofman (Albert); J.R. Romero (Jose Rafael); M.M.B. Breteler (Monique); R. Schmidt (Reinhold); L.J. Launer (Lenore); W.T. Longstreth Jr

    2010-01-01

    textabstractBackground and Purpose-Previous studies examining genetic associations with MRI-defined brain infarct have yielded inconsistent findings. We investigated genetic variation underlying covert MRI infarct in persons without histories of transient ischemic attack or stroke. We performed meta

  3. Genome-wide association studies of mri-defined brain infarcts: Meta-analysis from the charge consortium

    NARCIS (Netherlands)

    S. Debette (Stéphanie); J.C. Bis (Joshua); M. Fornage (Myriam); H.A. Schmid (Herbert); M.A. Ikram (Arfan); S. Sigurdsson (Stefan); G. Heiss (Gerardo); M.V. Struchalin (Maksim); A.V. Smith (Albert Vernon); A. van der Lugt (Aad); C. DeCarli (Charles); T. Lumley (Thomas); D.S. Knopman (David); C. Enzinger (Christian); G. Eiriksdottir (Gudny); P.J. Koudstaal (Peter Jan); A.L. DeStefano (Anita); B.M. Psaty (Bruce); C. Dufouil (Carole); D.J. Catellier (Diane); F. Fazekas (Franz); T. Aspelund (Thor); Y.S. Aulchenko (Yurii); A. Beiser (Alexa); J.I. Rotter (Jerome); C. Tzourio (Christophe); D.K. Shibata (Dean); M. Tscherner (Maria); T.B. Harris (Tamara); F. Rivadeneira Ramirez (Fernando); L.D. Atwood (Larry); K. Rice (Kenneth); R.F. Gottesman (Rebecca); M.A. van Buchem (Mark); A.G. Uitterlinden (André); M. Kelly-Hayes (Margaret); M. Cushman (Mary Ann); Y. Zhu (Yicheng); E.A. Boerwinkle (Eric); V. Gudnason (Vilmundur); A. Hofman (Albert); J.R. Romero (Jose Rafael); M.M.B. Breteler (Monique); R. Schmidt (Reinhold); L.J. Launer (Lenore); W.T. Longstreth Jr

    2010-01-01

    textabstractBackground and Purpose-Previous studies examining genetic associations with MRI-defined brain infarct have yielded inconsistent findings. We investigated genetic variation underlying covert MRI infarct in persons without histories of transient ischemic attack or stroke. We performed meta

  4. Brain imaging correlates of recovered swallowing after dysphagic stroke: A fMRI and DWI study

    Directory of Open Access Journals (Sweden)

    Paul Glad Mihai

    2016-01-01

    Full Text Available Neurogenic dysphagia frequently occurs after stroke and deglutitive aspiration is one of the main reasons for subacute death after stroke. Although promising therapeutic interventions for neurogenic dysphagia are being developed, the functional neuroanatomy of recovered swallowing in this population remains uncertain. Here, we investigated 18 patients post-stroke who recovered from dysphagia using an event related functional magnetic resonance imaging (fMRI study of swallowing. Patients were characterized by initial dysphagia score (mild to severe, lesion mapping, white matter fractional anisotropy (FA of the pyramidal tracts, and swallowing performance measurement during fMRI scanning. Eighteen age matched healthy participants served as a control group. Overall, patients showed decreased fMRI-activation in the entire swallowing network apart from an increase of activation in the contralesional primary somatosensory cortex (S1. Moreover, fMRI activation in contralesional S1 correlated with initial dysphagia score. Finally, when lesions of the pyramidal tract were more severe, recovered swallowing appeared to be associated with asymmetric activation of the ipsilesional anterior cerebellum. Taken together, our data support a role for increased contralesional somatosensory resources and ipsilesional anterior cerebellum feed forward loops for recovered swallowing after dysphagia following stroke.

  5. MRI-guided percutaneous retrograde drilling of osteochondritis dissecans of the talus: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Kerimaa, Pekka; Ojala, Risto; Markkanen, Paula; Tervonen, Osmo; Blanco Sequeiros, Roberto [Oulu University Hospital, Department of Radiology, Oulu (Finland); Sinikumpu, Juha-Jaakko; Korhonen, Jussi [Oulu University Hospital, Department of Paediatric Surgery, Oulu (Finland); Hyvoenen, Pekka [Oulu University Hospital, Department of Surgery, Oulu (Finland)

    2014-07-15

    The purpose of this study was to evaluate the feasibility of MRI guidance for percutaneous retrograde drilling in the treatment of osteochondritis dissecans of the talus (OCDT). Four patients, one juvenile and three adults, with one OCDT lesion each and persisting ankle pain after conservative treatment, were treated with MRI-guided retrograde drilling. All lesions were stable and located in the middle or posterior medial third of the talar dome. Pain relief and the ability to return to normal activities were assessed during clinical follow-up. MRI and plain film radiographs were used for imaging follow-up. Technical success was 100 % with no complications and with no damage to the overlying cartilage. All patients experienced some clinical benefit, although only one had complete resolution of pain and one had a relapse leading to surgical treatment. Changes in the pathological imaging findings were mostly very slight during the follow-up period. MRI guidance seems accurate, safe and technically feasible for retrograde drilling of OCDT. Larger series are needed to reliably assess its clinical value. (orig.)

  6. MRI micturating urethrography for improved urethral delineation in prostate radiotherapy planning: a case study

    Science.gov (United States)

    Rai, Robba; Sidhom, Mark; Lim, Karen; Ohanessian, Lucy; Liney, Gary P.

    2017-04-01

    Stereotactic ablative body radiotherapy is used in prostate cancer to deliver a high dose of radiation to the tumour over a small number of treatments. This involves the simulation of the patient using both CT and MRI. Current practice is to insert an indwelling catheter (IDC) during CT to assist with visualisation of the urethra and subsequently minimise dose to this highly critical structure. However, this procedure is invasive and has an associated risk of infection. This is a case study, which demonstrates our initial experience of using a real-time non-invasive MRI technique to replace the use of IDC for prostate cancer patients. The patient was scanned on a dedicated 3T MRI and was instructed to micturate in their own time whereupon a sagittal T2 weighted HASTE sequence was acquired every 5 s. This was subsequently followed by T2 weighted axial imaging at the level of mid prostate to provide improved urethral definition. Acquired images showed bladder voidance in real-time and an increase in signal intensity in the proximal urethra post voiding allowing for delineation of the urethra. The dimension and shape of the proximal urethra was well visualised and accumulation time of urine in the urethra was sufficient to enable optimum timing of the scanning technique. We have presented for the first time a micturating urethography technique using MRI, which has allowed us to visualise the urethra without contrast and with minimal invasiveness to the patient.

  7. Merosin-deficient congenital muscular dystrophy (CMD): a study of 25 Brazilian patients using MRI

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Claudia C.; Lucato, Leandro T.; Martin, Maria G.M. [School of Medicine of the University of Sao Paulo, Department of Radiology, Sao Paulo, SP (Brazil); Ferreira, Lucio G.; Resende, Maria B.D.; Carvalho, Mary S.; Marie, Suely K.N.; Reed, Umbertina C. [School of Medicine of the University of Sao Paulo, Department of Neurology, Sao Paulo, SP (Brazil); Jinkins, J.Randy [Downstate Medical Center, State University of New York, Department of Radiology, Brooklyn, NY (United States)

    2005-06-01

    Merosin-deficient congenital muscular dystrophy (CMD) is characterized clinically by hypotonia and muscular weakness and, on imaging studies, by white matter (WM) abnormality. To evaluate MRI findings in Brazilian patients with merosin-deficient CMD. Twenty-five patients were evaluated using MRI. Three patients presented with partial merosin deficiency and 22 with total merosin deficiency. Follow-up examinations were done in 7 cases. T1- and T2-weighted images were performed in all examinations, and fluid-attenuated inversion recovery (FLAIR) was performed in 15. Enhanced images were done in 11 cases. The WM involvement was classified according to location and severity. From 1991 to 2004, 32 MRI examinations were performed. Severe involvement was found in 23 patients in the frontal and temporal lobes, in 18 patients in the parietal lobes, and in 7 patients in the occipital lobes. The brain stem (n=5), cerebellum (n=6), internal capsules (n=1), and external capsules (n=5) were also affected. One patient had occipital pachygyria, and one had cerebellar vermian hypoplasia. No gadolinium enhancement was noted. Follow-up MRI showed no interval change (n=4), progression (n=1), or improvement of the findings (n=2). (orig.)

  8. Motor function deficits in schizophrenia: an fMRI and VBM study

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sadhana; Modi, Shilpi; Kumar, Pawan; Singh, Namita; Khushu, Subash [Institute of Nuclear Medicine and Allied Sciences (INMAS), NMR Research Center, Delhi (India); Goyal, Satnam; Bhatia, Triptish; Deshpande, Smita N. [RML Hospital, PGIMER, New Delhi (India)

    2014-05-15

    To investigate whether the motor functional alterations in schizophrenia (SZ) are also associated with structural changes in the related brain areas using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 right-handed SZ patients and 14 right-handed healthy control subjects matched for age, sex, and education were examined with structural high-resolution T1-weighted MRI; fMRI images were obtained during right index finger-tapping task in the same session. fMRI results showed reduced functional activation in the motor areas (contralateral precentral and postcentral gyrus) and ipsilateral cerebellum in SZ subjects as compared to healthy controls (n = 14). VBM analysis also revealed reduced grey matter in motor areas and white matter reduction in cerebellum of SZ subjects as compared to controls. The present study provides an evidence for a possible association between structural alterations in the motor cortex and disturbed functional activation in the motor areas in persons affected with SZ during a simple finger-tapping task. (orig.)

  9. Functional MRI in pre-surgical planning: Case study and cautionary notes

    Directory of Open Access Journals (Sweden)

    Bruce S Spottiswoode

    2012-09-01

    Full Text Available Background. Since its inception almost 20 years ago, functional magnetic resonance imaging (fMRI has greatly advanced our knowledge of human brain function. Although the clinical applications of fMRI are still limited, there have recently been encouraging advances for its use in pre-operative functional cortical mapping to identify potentially eloquent areas prior to neurosurgery. Objectives. We explore the potential use of this emerging technique by presenting a neurosurgical case study, as performed at the Cape Universities Brain Imaging Centre (CUBIC, Tygerberg, Cape Town. We conclude with a brief summary of the potential pitfalls of this technique, as well as cautionary guidelines based on our experience. Methods and results. A 22-year-old male patient from Tygerberg Hospital underwent the successful resection of an anaplastic astrocytoma after fMRI presurgical planning at our facility. The subject was able to leave the ward unassisted. Conclusion. If consideration is given to the many limitations of this emerging technique, fMRI can be useful in aiding the neurosurgeon in pre-operative planning of his surgical approach.

  10. Test Facility for Volumetric Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, M.; Dibowski, G.; Pfander, M.; Sack, J. P.; Schwarzbozl, P.; Ulmer, S.

    2006-07-01

    Long-time testing of volumetric absorber modules is an inevitable measure to gain the experience and reliability required for the commercialization of the open volumetric receiver technology. While solar tower test facilities are necessary for performance measurements of complete volumetric receivers, the long-term stability of individual components can be tested in less expensive test setups. For the qualification of the aging effects of operating cycles on single elements of new absorber materials and designs, a test facility was developed and constructed in the framework of the KOSMOSOL project. In order to provide the concentrated solar radiation level, the absorber test facility is integrated into a parabolic dish system at the Plataforma Solar de Almeria (PSA) in Spain. Several new designs of ceramic absorbers were developed and tested during the last months. (Author)

  11. Clinical significance of reduced cerebral metabolism in multiple sclerosis. A combined PET and MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiayan; Tanaka, Makoto; Kondo, Susumu; Okamoto, Koichi [Gunma Univ., Maebashi (Japan). School of Medicine; Hirai, Shunsaku

    1998-04-01

    Magnetic resonance imaging (MRI) in patients with multiple sclerosis (MS) has provided major insights into the disease`s natural history, and many studies have focussed on possible correlations between MRI findings and the clinical manifestations of MS. In contrast, there are few reports on possible relationships between functional imaging data and cognitive function. The present study assessed the relationship between clinical presentation and combined anatomical and functional imaging data in MS. Twenty patients with definite MS underwent MRI and positron emission tomography (PET) to evaluate cerebral blood flow (rCBF) and oxygen metabolism (rCMRO{sub 2}). The relationships between these neuroimaging findings and clinical data, including the Expanded Disability Status Scale (EDSS), Mini-mental status scale, Hasegawa Dementia Scale and relapse time, were evaluated with Spearman`s rank correlation coefficients. A general reduction in rCBF and rCMRO{sub 2} in the gray and white matter were found in the MS patients. EDSS was correlated with the number and size of the lesions on MRI and was negatively correlated with rCMRO{sub 2}. A correlation between the decrease in rCMRO{sub 2} and the level of cognitive impairment was also found. The severity of cerebral hypometabolism was also related to the number of relapses. Morphological and functional findings obtained by MRI and PET are closely related to the clinical status in MS. Our results suggest that measurement of cerebral metabolism in MS has the potential to be an objective marker for monitoring disease activity and to provide prognostic information. (author)

  12. Reliability of information-based integration of EEG and fMRI data: a simulation study.

    Science.gov (United States)

    Assecondi, Sara; Ostwald, Dirk; Bagshaw, Andrew P

    2015-02-01

    Most studies involving simultaneous electroencephalographic (EEG) and functional magnetic resonance imaging (fMRI) data rely on the first-order, affine-linear correlation of EEG and fMRI features within the framework of the general linear model. An alternative is the use of information-based measures such as mutual information and entropy, which can also detect higher-order correlations present in the data. The estimate of information-theoretic quantities might be influenced by several parameters, such as the numerosity of the sample, the amount of correlation between variables, and the discretization (or binning) strategy of choice. While these issues have been investigated for invasive neurophysiological data and a number of bias-correction estimates have been developed, there has been no attempt to systematically examine the accuracy of information estimates for the multivariate distributions arising in the context of EEG-fMRI recordings. This is especially important given the differences between electrophysiological and EEG-fMRI recordings. In this study, we drew random samples from simulated bivariate and trivariate distributions, mimicking the statistical properties of EEG-fMRI data. We compared the estimated information shared by simulated random variables with its numerical value and found that the interaction between the binning strategy and the estimation method influences the accuracy of the estimate. Conditional on the simulation assumptions, we found that the equipopulated binning strategy yields the best and most consistent results across distributions and bias correction methods. We also found that within bias correction techniques, the asymptotically debiased (TPMC), the jackknife debiased (JD), and the best upper bound (BUB) approach give similar results, and those are consistent across distributions.

  13. Dynamic Causal Modelling and physiological confounds: a functional MRI study of vagus nerve stimulation.

    Science.gov (United States)

    Reyt, Sébastien; Picq, Chloé; Sinniger, Valérie; Clarençon, Didier; Bonaz, Bruno; David, Olivier

    2010-10-01

    Dynamic Causal Modelling (DCM) has been proposed to estimate neuronal connectivity from functional magnetic resonance imaging (fMRI) using a biophysical model that links synaptic activity to hemodynamic processes. However, it is well known that fMRI is sensitive not only to neuronal activity, but also to many other psychophysiological responses which may be task-related, such as changes in cardio-respiratory activity. They are not explicitly taken into account in the generative models of DCM and their effects on estimated neuronal connectivity are not known. The main goal of this study was to report the face validity of DCM in the presence of strong physiological confounds that presumably cannot be corrected for, using an fMRI experiment of vagus nerve stimulation (VNS) performed in rats. First, a simple simulation was used to evaluate the principled ability of DCM to recover directed connectivity in the presence of a confounding factor. Second, we tested the experimental validity using measures of the BOLD correlates of left 5Hz VNS. Because VNS mostly activates the central autonomic regulation system, fMRI signals were likely to represent both direct and indirect vascular responses to such activation. In addition to the inference of standard statistical parametric maps, DCM was thus used to estimate directed neural connectivity in a small brain network including the nucleus tractus solitarius (NTS) known to receive vagal afferents. Though blood pressure changes may constitute a major physiological confound in this dataset, model comparison of DCMs still allowed the identification of the NTS as the input station of the VNS pathway to the brain. Our study indicates that current developments of DCM are robust to psychophysiological responses to some extent, but does not exclude the need to develop specific models of brain - body interactions within the DCM framework to better estimate neuronal connectivity from fMRI time series. Copyright 2010 Elsevier Inc. All

  14. Quantitative breast MRI radiomics for cancer risk assessment and the monitoring of high-risk populations

    Science.gov (United States)

    Mendel, Kayla R.; Li, Hui; Giger, Maryellen L.

    2016-03-01

    Breast density is routinely assessed qualitatively in screening mammography. However, it is challenging to quantitatively determine a 3D density from a 2D image such as a mammogram. Furthermore, dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is used more frequently in the screening of high-risk populations. The purpose of our study is to segment parenchyma and to quantitatively determine volumetric breast density on pre-contrast axial DCE-MRI images (i.e., non-contrast) using a semi-automated quantitative approach. In this study, we retroactively examined 3D DCE-MRI images taken for breast cancer screening of a high-risk population. We analyzed 66 cases with ages between 28 and 76 (mean 48.8, standard deviation 10.8). DCE-MRIs were obtained on a Philips 3.0 T scanner. Our semi-automated DCE-MRI algorithm includes: (a) segmentation of breast tissue from non-breast tissue using fuzzy cmeans clustering (b) separation of dense and fatty tissues using Otsu's method, and (c) calculation of volumetric density as the ratio of dense voxels to total breast voxels. We examined the relationship between pre-contrast DCE-MRI density and clinical BI-RADS density obtained from radiology reports, and obtained a statistically significant correlation [Spearman ρ-value of 0.66 (p < 0.0001)]. Our method within precision medicine may be useful for monitoring high-risk populations.

  15. Mold allergy in the Mediterranean Island of Crete, Greece: a 10-year volumetric, aerobiological study with dermal sensitization correlations.

    Science.gov (United States)

    Gonianakis, Michael I; Neonakis, Ioannis K; Gonianakis, Ioannis M; Baritaki, Maria A; Bouros, Demosthenis; Potamias, George; Kontou-Fili, Kalliopi S

    2006-01-01

    Mold spores are universal outdoor and indoor components and generally are recognized as possible sources of respiratory allergies. A 10-year aerobiological study (1994-2003) was conducted in the city of Heraklion located at the center of the Mediterranean island of Crete, Greece. Eighteen mold species exhibiting a normal annual seasonal pattern have been identified and recorded. The most abundant mold species include (a) Cladosporium, (b) Alternaria, (c) miscellaneous ascosporas (d) Leptosphaeria, and (e) basidiomycete Coprinus. In parallel, 571 atopic individuals were tested by skin-prick tests (SPTs). Among these 571 patients 42.5% showed dermal positivity to mold allergens. Most positive SPTs were those of (a) Alternaria, (b) Cladosporium, (c) Fusarium, (d) Aspergillus, and (e) Mucor. No linear relationship was noted between SPT frequencies and percentages of mold species. All of these aerobiological and sensitization data constitute a firm basis for further medical and biological research and application.

  16. An initial study on the estimation of time-varying volumetric treatment images and 3D tumor localization from single MV cine EPID images.

    Science.gov (United States)

    Mishra, Pankaj; Li, Ruijiang; Mak, Raymond H; Rottmann, Joerg; Bryant, Jonathan H; Williams, Christopher L; Berbeco, Ross I; Lewis, John H

    2014-08-01

    In this work the authors develop and investigate the feasibility of a method to estimate time-varying volumetric images from individual MV cine electronic portal image device (EPID) images. The authors adopt a two-step approach to time-varying volumetric image estimation from a single cine EPID image. In the first step, a patient-specific motion model is constructed from 4DCT. In the second step, parameters in the motion model are tuned according to the information in the EPID image. The patient-specific motion model is based on a compact representation of lung motion represented in displacement vector fields (DVFs). DVFs are calculated through deformable image registration (DIR) of a reference 4DCT phase image (typically peak-exhale) to a set of 4DCT images corresponding to different phases of a breathing cycle. The salient characteristics in the DVFs are captured in a compact representation through principal component analysis (PCA). PCA decouples the spatial and temporal components of the DVFs. Spatial information is represented in eigenvectors and the temporal information is represented by eigen-coefficients. To generate a new volumetric image, the eigen-coefficients are updated via cost function optimization based on digitally reconstructed radiographs and projection images. The updated eigen-coefficients are then multiplied with the eigenvectors to obtain updated DVFs that, in turn, give the volumetric image corresponding to the cine EPID image. The algorithm was tested on (1) Eight digital eXtended CArdiac-Torso phantom datasets based on different irregular patient breathing patterns and (2) patient cine EPID images acquired during SBRT treatments. The root-mean-squared tumor localization error is (0.73 ± 0.63 mm) for the XCAT data and (0.90 ± 0.65 mm) for the patient data. The authors introduced a novel method of estimating volumetric time-varying images from single cine EPID images and a PCA-based lung motion model. This is the first method to estimate

  17. An initial study on the estimation of time-varying volumetric treatment images and 3D tumor localization from single MV cine EPID images

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Pankaj, E-mail: pankaj.mishra@varian.com; Mak, Raymond H.; Rottmann, Joerg; Bryant, Jonathan H.; Williams, Christopher L.; Berbeco, Ross I.; Lewis, John H. [Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Li, Ruijiang [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305 (United States)

    2014-08-15

    Purpose: In this work the authors develop and investigate the feasibility of a method to estimate time-varying volumetric images from individual MV cine electronic portal image device (EPID) images. Methods: The authors adopt a two-step approach to time-varying volumetric image estimation from a single cine EPID image. In the first step, a patient-specific motion model is constructed from 4DCT. In the second step, parameters in the motion model are tuned according to the information in the EPID image. The patient-specific motion model is based on a compact representation of lung motion represented in displacement vector fields (DVFs). DVFs are calculated through deformable image registration (DIR) of a reference 4DCT phase image (typically peak-exhale) to a set of 4DCT images corresponding to different phases of a breathing cycle. The salient characteristics in the DVFs are captured in a compact representation through principal component analysis (PCA). PCA decouples the spatial and temporal components of the DVFs. Spatial information is represented in eigenvectors and the temporal information is represented by eigen-coefficients. To generate a new volumetric image, the eigen-coefficients are updated via cost function optimization based on digitally reconstructed radiographs and projection images. The updated eigen-coefficients are then multiplied with the eigenvectors to obtain updated DVFs that, in turn, give the volumetric image corresponding to the cine EPID image. Results: The algorithm was tested on (1) Eight digital eXtended CArdiac-Torso phantom datasets based on different irregular patient breathing patterns and (2) patient cine EPID images acquired during SBRT treatments. The root-mean-squared tumor localization error is (0.73 ± 0.63 mm) for the XCAT data and (0.90 ± 0.65 mm) for the patient data. Conclusions: The authors introduced a novel method of estimating volumetric time-varying images from single cine EPID images and a PCA-based lung motion model

  18. Volumetric intensity-modulated arc therapy vs conventional intensity-modulated radiation therapy in nasopharyngeal carcinoma: a dosimetric study

    Science.gov (United States)

    White, Peter; Chan, Kit Chi; Cheng, Ka Wai; Chan, Ka Yiu; Chau, Ming Chun

    2013-01-01

    Dosimetric comparisons between RapidArc (RA) and conventional Intensity-Modulated Radiation Therapy (IMRT) techniques for nasopharyngeal carcinoma (NPC) were performed to address differences in dose coverage of the target, sparing of organs-at-risk (OARs), delivery of monitor units (MUs) and time, to assess whether the RA technique was more beneficial for treatment of NPC. Eight NPC patients (Stages I–IV), who had completed RA treatment, were selected for this study. Computed tomography data sets were re-planned using 7-fields fixed beam IMRT. Quantitative measurements of dose-endpoint values on the dose-volume histograms were carried out for evaluation of: (i) dose homogeneity (D5% – D95%); (ii) degree of conformity (CI95%); (iii) tumor control probability (TCP); (iv) doses to OARs; (v) normal tissue complication probability (NTCP); (vi) treatment time; and (vii) MUs. RA plans achieved better dose conformity and TCP in planning target volumes (PTVs). Target dose homogeneity was not as high as for IMRT plans. Doses to tempero-mandibular joints, clavicles, parotid glands and posterior neck, and their NTCPs were significantly lower in RA plans (P delivery time for RA treatment technique was also noted. PMID:23188186

  19. Volumetric changes in the upper airway after bimaxillary surgery for skeletal class III malocclusions: a case series study using 3-dimensional cone-beam computed tomography.

    Science.gov (United States)

    Lee, Yoonjung; Chun, Youn-Sic; Kang, Nara; Kim, Minji

    2012-12-01

    Postsurgical changes of the airway have become a great point of interest and often have been reported to be a predisposing factor for obstructive sleep apnea after mandibular setback surgery. The purpose of this study was to evaluate the 3-dimensional volumetric changes in the upper airway space of patients who underwent bimaxillary surgery to correct Class III malocclusions. This study was performed retrospectively in a group of patients who underwent bimaxillary surgery for Class III malocclusion and had full cone-beam computed tomographic (CBCT) images taken before surgery and 1 day, 3 months, and 6 months after surgery. The upper and lower parts of the airway volume and the diameters of the airway were measured from 2 different levels. Presurgical measurements and the amount of surgical correction were evaluated for their effect on airway volume. Data analyses were performed by analysis of variance and multiple stepwise regression analysis. The subjects included 21 patients (6 men and 15 women; mean age, 22.7 yrs). The surgeries were Le Fort I impaction (5.27 ± 2.58 mm impaction from the posterior nasal spine) and mandibular setback surgery (9.20 ± 4.60 mm set back from the pogonion). No statistically significant differences were found in the total airway volume for all time points. In contrast, the volume of the upper part showed an increase (12.35%) and the lower part showed a decrease (14.07%), with a statistically significant difference 6 months after surgery (P Bimaxillary surgery for the correction of Class III malocclusion affected the morphology by increasing the upper part and decreasing the lower part of the airway, but not the total volume. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Influence of jaw tracking in intensity-modulated and volumetric-modulated arc radiotherapy for head and neck cancers: a dosimetric study

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Karthick Raj [Research and Development Centre, Bharathiar University, Tamilnadu (India); Upadhayay, Sagar [Radiation Oncology, Kathmandu Cancer Center, Bhaktapur (Nepal); Das, K. J. Maria [Dept. of Radiotherapy, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh (India)

    2017-03-15

    To Study the dosimetric advantage of the Jaw tracking technique in intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) for Head and Neck Cancers. We retrospectively selected 10 previously treated head and neck cancer patients stage (T1/T2, N1, M0) in this study. All the patients were planned for IMRT and VMAT with simultaneous integrated boost technique. IMRT and VMAT plans were performed with jaw tracking (JT) and with static jaw (SJ) technique by keeping the same constraints and priorities for a particular patient. Target conformity, dose to the critical structures and low dose volumes were recorded and analyzed for IMRT and VMAT plans with and without JT for all the patients. The conformity index average of all patients followed by standard deviation (x¯x¯ ± σx¯σx¯) of the JT-IMRT, SJ-IMRT, JT-VMAT, and SJ-VMAT were 1.72 ± 0.56, 1.67 ± 0.57, 1.83 ± 0.65, and 1.85 ± 0.64, and homogeneity index were 0.059 ± 0.05, 0.064 ± 0.05, 0.064 ± 0.04, and 0.064 ± 0.05. JT-IMRT shows significant mean reduction in right parotid and left parotid shows of 7.64% (p < 0.001) and 7.45% (p < 0.001) compare to SJ-IMRT. JT-IMRT plans also shows considerable dose reduction to thyroid, inferior constrictors, spinal cord and brainstem compared to the SJ-IMRT plans. Significant dose reductions were observed for critical structure in the JT-IMRT compared to SJ-IMRT technique. In JT-VMAT plans dose reduction to the critical structure were not significant compared to the SJ-IMRT due to relatively lesser monitor units.

  1. Objectively Measured Physical Activity Is Associated with Brain Volumetric Measurements in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Rachel E. Klaren

    2015-01-01

    Full Text Available Background. Little is known about physical activity and its association with volumes of whole brain gray matter and white matter and deep gray matter structures in persons with multiple sclerosis (MS. Purpose. This study examined the association between levels of physical activity and brain volumetric measures from magnetic resonance imaging (MRI in MS. Method. 39 persons with MS wore an accelerometer for a 7-day period and underwent a brain MRI. Normalized GM volume (NGMV, normalized WM volume (NWMV, and deep GM structures were calculated from 3D T1-weighted structural brain images. We conducted partial correlations (pr controlling for demographic and clinical variables. Results. Moderate-to-vigorous physical activity (MVPA was significantly associated with NGMV (pr=0.370, p<0.05, NWMV (pr=0.433, p<0.01, hippocampus (pr=0.499, p<0.01, thalamus (pr=0.380, p<0.05, caudate (pr=0.539, p<0.01, putamen (pr=0.369, p<0.05, and pallidum (pr=0.498, p<0.01 volumes, when controlling for sex, age, clinical course of MS, and Expanded Disability Status Scale score. There were no associations between sedentary and light physical activity with MRI outcomes. Conclusion. Our results provide the first evidence that MVPA is associated with volumes of whole brain GM and WM and deep GM structures that are involved in motor and cognitive functions in MS.

  2. Study of performance of high speed turning using the volumetric dimension coefficient of resultant cutting force; Estudio del rendimiento del torneado de alta velocidad utilizando el coeficiente de dimension volumetrica de la fuerza de corte resultante

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Gonzalez, L. W.; Perez-Rodriguez, R.; Zambrano-Robledo, P. C.; Siller-Carrillo, H. R.; Toscano-Reyes, H.

    2013-07-01

    This work deals with the experimental study of the resultant cutting force evolution of two coating carbide and a cermet inserts, during the dry turning of AISI 1045 steel with 400, 500 and 600 m/min cutting speeds. A new criterion for machinability study, the coefficient of volumetric dimension of cutting force, it is introduced. The investigation showed a better performance of cermet for moderate and intermediate cutting speeds, while at high cutting speed and final machining time, the three layers coated carbide achieved the best result. The factorial analysis of variance demonstrated a significant effect of machining time on the coefficient of volumetric dimension of resultant cutting force, while the material insert factor and their interaction, for intermediate cutting speed was just significant. (Author)

  3. Enhanced emotional reactivity after selective REM sleep deprivation in humans: an fMRI study

    OpenAIRE

    Rosales-Lagarde, Alejandra; Jorge L Armony; del Río-Portilla, Yolanda; Trejo-Martínez, David; Conde, Ruben; Corsi-Cabrera, Maria

    2012-01-01

    Converging evidence from animal and human studies suggest that rapid eye movement (REM) sleep modulates emotional processing. The aim of the present study was to explore the effects of selective REM sleep deprivation (REM-D) on emotional responses to threatening visual stimuli and their brain correlates using functional magnetic resonance imaging (fMRI). Twenty healthy subjects were randomly assigned to two groups: selective REM-D, by awakening them at each REM sleep onset, or non-rapid eye m...

  4. Enhanced emotional reactivity after selective REM sleep deprivation in humans: an fMRI study

    OpenAIRE

    Alejandra eRosales-Lagarde; Jorge L Armony; Yolanda edel Río-Portilla; David eTrejo-Martínez; Ruben eConde; Maria eCorsi-Cabrera

    2012-01-01

    Converging evidence from animal and human studies suggest that REM sleep modulates emotional processing. The aim of the present study was to explore the effects of selective REM sleep deprivation on emotional responses to threatening visual stimuli and their brain correlates using functional magnetic resonance imaging (fMRI). Twenty healthy subjects were randomly assigned to two groups: selective REM sleep deprivation (REM-D), by awakening them at each REM sleep onset, or NREM sleep interrupt...

  5. A Feasibility Study of Quantifying Longitudinal Brain Changes in Herpes Simplex Virus (HSV) Encephalitis Using Magnetic Resonance Imaging (MRI) and Stereology

    Science.gov (United States)

    Keller, Simon S.; Das, Kumar; Vidyasagar, Rishma; Parkes, Laura M.; Burnside, Girvan; Griffiths, Michael; Kopelman, Michael; Roberts, Neil; Solomon, Tom

    2017-01-01

    Objectives To assess whether it is feasible to quantify acute change in temporal lobe volume and total oedema volumes in herpes simplex virus (HSV) encephalitis as a preliminary to a trial of corticosteroid therapy. Methods The study analysed serially acquired magnetic resonance images (MRI), of patients with acute HSV encephalitis who had neuroimaging repeated within four weeks of the first scan. We performed volumetric measurements of the left and right temporal lobes and of cerebral oedema visible on T2 weighted Fluid Attenuated Inversion Recovery (FLAIR) images using stereology in conjunction with point counting. Results Temporal lobe volumes increased on average by 1.6% (standard deviation (SD 11%) in five patients who had not received corticosteroid therapy and decreased in two patients who had received corticosteroids by 8.5%. FLAIR hyperintensity volumes increased by 9% in patients not receiving treatment with corticosteroids and decreased by 29% in the two patients that had received corticosteroids. Conclusions This study has shown it is feasible to quantify acute change in temporal lobe and total oedema volumes in HSV encephalitis and suggests a potential resolution of swelling in response to corticosteroid therapy. These techniques could be used as part of a randomized control trial to investigate the efficacy of corticosteroids for treating HSV encephalitis in conjunction with assessing clinical outcomes and could be of potential value in helping to predict the clinical outcomes of patients with HSV encephalitis. PMID:28125598

  6. Quantification of liver, pancreas, kidney, and vertebral body MRI-PDFF in non-alcoholic fatty liver disease.

    Science.gov (United States)

    Idilman, Ilkay S; Tuzun, Ali; Savas, Berna; Elhan, Atilla Halil; Celik, Azim; Idilman, Ramazan; Karcaaltincaba, Musturay

    2015-08-01

    The purpose of the present study was to determine liver, pancreas, kidney, and vertebral fat deposition in NAFLD patients by proton density fat fraction (PDFF) using magnetic resonance imaging (MRI) and to evaluate the relationships among them. A total of 41 biopsy-proven NAFLD patients underwent MRI-PDFF with IDEAL-IQ. MRI protocol included T1-independent volumetric multi-echo gradient-echo imaging with T2* correction and spectral fat modeling. The MR examinations were performed on a 1.5 HDx MRI system. MRI-PDFF measurements were obtained from liver, pancreas, renal cortex and sinus, and vertebral body. Liver biopsy specimens were retrieved from the archives and evaluated by one pathologist according to NASH CRN. The median age of the patients was 47 years. The median interval between liver biopsy and MRI examination was 16 days. Mean liver, pancreas, renal cortex, renal sinus, T12 and L1 vertebral body MRI-PDFFs were 18.7%, 5.7%, 1.7%, 51%, 43.2%, and 43.5%, respectively. No correlation between either liver MRI-PDFF or histological steatosis, and other organ MRI-PDFFs was observed. A good correlation between pancreas and vertebral body MRI-PDFFs, and pancreas and renal sinus MRI-PDFFs was observed. Diabetic patients had higher average pancreas MRI-PDFF compared to non-diabetics (12.2%, vs., 4.8%; P = 0.028). Pancreas and vertebral body MRI-PDFF is well correlated in NAFLD patients and both of them are higher in diabetic patients which may explain increased bone fractures in diabetics. MRI-PDFF can be used to demonstrate fat fractions of different organs and tissues and to understand fat metabolism.

  7. Segmentation of Brain Tumors in MRI Images Using Three-Dimensional Active Contour without Edge

    Directory of Open Access Journals (Sweden)

    Ali M. Hasan

    2016-11-01

    Full Text Available Brain tumor segmentation in magnetic resonance imaging (MRI is considered a complex procedure because of the variability of tumor shapes and the complexity of determining the tumor location, size, and texture. Manual tumor segmentation is a time-consuming task highly prone to human error. Hence, this study proposes an automated method that can identify tumor slices and segment the tumor across all image slices in volumetric MRI brain scans. First, a set of algorithms in the pre-processing stage is used to clean and standardize the collected data. A modified gray-level co-occurrence matrix and Analysis of Variance (ANOVA are employed for feature extraction and feature selection, respectively. A multi-layer perceptron neural network is adopted as a classifier, and a bounding 3D-box-based genetic algorithm is used to identify the location of pathological tissues in the MRI slices. Finally, the 3D active contour without edge is applied to segment the brain tumors in volumetric MRI scans. The experimental dataset consists of 165 patient images collected from the MRI Unit of Al-Kadhimiya Teaching Hospital in Iraq. Results of the tumor segmentation achieved an accuracy of 89% ± 4.7% compared with manual processes.

  8. A dosimetric study of volumetric modulated arc therapy planning techniques for treatment of low-risk prostate cancer in patients with bilateral hip prostheses

    Directory of Open Access Journals (Sweden)

    Suresh B Rana

    2014-01-01

    Full Text Available Background and Purpose: Recently, megavoltage (MV photon volumetric modulated arc therapy (VMAT has gained widespread acceptance as the technique of choice for prostate cancer patients undergoing external beam radiation therapy. However, radiation treatment planning for patients with metallic hip prostheses composed of high-Z materials can be challenging due to (1 presence of streak artifacts from prosthetic hips in computed tomography dataset, and (2 inhomogeneous dose distribution within the target volume. The purpose of this study was to compare the dosimetric quality of VMAT techniques in the form of Rapid Arc (RA for treating low-risk prostate cancer patient with bilateral prostheses. Materials and Methods: Three treatment plans were created using RA techniques utilizing 2 arcs (2-RA, 3 arcs (3-RA, and 4 arcs (4-RA for 6 MV photon beam in Eclipse treatment planning system. Each plan was optimized for total dose of 79.2 Gy prescribed to the planning target volume (PTV over 44 fractions. All three RA plans were calculated with anisotropic analytical algorithm. Results : The mean and maximum doses to the PTV as well as the homogeneity index among all three RA plans were comparable. The plan conformity index was highest in the 2-Arc plan (1.19 and lowest in the 4-Arc plan (1.10. In comparison to the 2-RA technique, the 4-RA technique reduced the doses to rectum by up to 18.8% and to bladder by up to 7.8%. In comparison to the 3-RA technique, the 4-RA technique reduced the doses to rectum by up to 14.6% and to bladder by up to 3.5%. Conclusion: Based on the RA techniques investigated for a low-risk prostate cancer patient with bilateral prostheses, the 4-RA plan produced lower rectal and bladder dose and better dose conformity across the PTV in comparison with the 2-RA and 3-RA plans.

  9. MR volumetric assessment of endolymphatic hydrops

    Energy Technology Data Exchange (ETDEWEB)

    Guerkov, R.; Berman, A.; Jerin, C.; Krause, E. [University of Munich, Department of Otorhinolaryngology Head and Neck Surgery, Grosshadern Medical Centre, Munich (Germany); University of Munich, German Centre for Vertigo and Balance Disorders, Grosshadern Medical Centre, Marchioninistr. 15, 81377, Munich (Germany); Dietrich, O.; Flatz, W.; Ertl-Wagner, B. [University of Munich, Institute of Clinical Radiology, Grosshadern Medical Centre, Munich (Germany); Keeser, D. [University of Munich, Institute of Clinical Radiology, Grosshadern Medical Centre, Munich (Germany); University of Munich, German Centre for Vertigo and Balance Disorders, Grosshadern Medical Centre, Marchioninistr. 15, 81377, Munich (Germany); University of Munich, Department of Psychiatry and Psychotherapy, Innenstadtkliniken Medical Centre, Munich (Germany)

    2014-10-16

    We aimed to volumetrically quantify endolymph and perilymph spaces of the inner ear in order to establish a methodological basis for further investigations into the pathophysiology and therapeutic monitoring of Meniere's disease. Sixteen patients (eight females, aged 38-71 years) with definite unilateral Meniere's disease were included in this study. Magnetic resonance (MR) cisternography with a T2-SPACE sequence was combined with a Real reconstruction inversion recovery (Real-IR) sequence for delineation of inner ear fluid spaces. Machine learning and automated local thresholding segmentation algorithms were applied for three-dimensional (3D) reconstruction and volumetric quantification of endolymphatic hydrops. Test-retest reliability was assessed by the intra-class coefficient; correlation of cochlear endolymph volume ratio with hearing function was assessed by the Pearson correlation coefficient. Endolymph volume ratios could be reliably measured in all patients, with a mean (range) value of 15 % (2-25) for the cochlea and 28 % (12-40) for the vestibulum. Test-retest reliability was excellent, with an intra-class coefficient of 0.99. Cochlear endolymphatic hydrops was significantly correlated with hearing loss (r = 0.747, p = 0.001). MR imaging after local contrast application and image processing, including machine learning and automated local thresholding, enable the volumetric quantification of endolymphatic hydrops. This allows for a quantitative assessment of the effect of therapeutic interventions on endolymphatic hydrops. (orig.)

  10. Fusion of multi-parametric MRI and temporal ultrasound for characterization of prostate cancer: in vivo feasibility study

    Science.gov (United States)

    Imani, Farhad; Ghavidel, Sahar; Abolmaesumi, Purang; Khallaghi, Siavash; Gibson, Eli; Khojaste, Amir; Gaed, Mena; Moussa, Madeleine; Gomez, Jose A.; Romagnoli, Cesare; Cool, Derek W.; Bastian-Jordan, Matthew; Kassam, Zahra; Siemens, D. Robert; Leveridge, Michael; Chang, Silvia; Fenster, Aaron; Ward, Aaron D.; Mousavi, Parvin

    2016-03-01

    Recently, multi-parametric Magnetic Resonance Imaging (mp-MRI) has been used to improve the sensitivity of detecting high-risk prostate cancer (PCa). Prior to biopsy, primary and secondary cancer lesions are identified on mp-MRI. The lesions are then targeted using TRUS guidance. In this paper, for the first time, we present a fused mp-MRI-temporal-ultrasound framework for characterization of PCa, in vivo. Cancer classification results obtained using temporal ultrasound are fused with those achieved using consolidated mp-MRI maps determined by multiple observers. We verify the outcome of our study using histopathology following deformable registration of ultrasound and histology images. Fusion of temporal ultrasound and mp-MRI for characterization of the PCa results in an area under the receiver operating characteristic curve (AUC) of 0.86 for cancerous regions with Gleason scores (GSs)>=3+3, and AUC of 0.89 for those with GSs>=3+4.

  11. Structural MRI studies of language function in the undamaged brain.

    Science.gov (United States)

    Richardson, Fiona M; Price, Cathy J

    2009-10-01

    In recent years, the demonstration that structural changes can occur in the human brain beyond those associated with development, ageing and neuropathology has revealed a new approach to studying the neural basis of behaviour. In this review paper, we focus on structural imaging studies of language that have utilised behavioural measures in order to investigate the neural correlates of language skills in the undamaged brain. We report studies that have used two different techniques: voxel-based morphometry of whole brain grey or white matter images and diffusion tensor imaging. At present, there are relatively few structural imaging studies of language. We group them into those that investigated (1) the perception of novel speech sounds, (2) the links between speech sounds and their meaning, (3) speech production, and (4) reading. We highlight the validity of the findings by comparing the results to those from functional imaging studies. Finally, we conclude by summarising the novel contribution of these studies to date and potential directions for future research.

  12. Cognitive dissonance induction in everyday life: An fMRI study.

    Science.gov (United States)

    de Vries, Jan; Byrne, Mark; Kehoe, Elizabeth

    2015-01-01

    This functional magnetic resonance imaging (fMRI) study explored the neural substrates of cognitive dissonance during dissonance "induction." A novel task was developed based on the results of a separate item selection study (n = 125). Items were designed to generate dissonance by prompting participants to reflect on everyday personal experiences that were inconsistent with values they had expressed support for. One experimental condition (dissonance) and three control conditions (justification, consonance, and non-self-related inconsistency) were used for comparison. Items of all four types were presented to each participant (n = 14) in a randomized design. The fMRI analysis used a whole-brain approach focusing on the moments dissonance was induced. Results showed that in comparison with the control conditions the dissonance experience led to higher levels of activation in several brain regions. Specifically dissonance was associated with increased neural activation in key brain regions including the anterior cingulate cortex (ACC), anterior insula, inferior frontal gyrus, and precuneus. This supports current perspectives that emphasize the role of anterior cingulate and insula in dissonance processing. Less extensive activation in the prefrontal cortex than in some previous studies is consistent with this study's emphasis on dissonance induction, rather than reduction. This article also contains a short review and comparison with other fMRI studies of cognitive dissonance.

  13. Masking level differences--a diffusion tensor imaging and functional MRI study.

    Directory of Open Access Journals (Sweden)

    David S Wack

    Full Text Available In our previous study we investigated Masking Level Differences (MLD using functional Magnetic Resonance Imaging (fMRI, but were unable to confirm neural correlations for the MLD within the auditory cortex and inferior colliculus. Here we have duplicated conditions from our previous study, but have included more participants and changed the study site to a new location with a newer scanner and presentation system. Additionally, Diffusion Tensor Imaging (DTI is included to allow investigation of fiber tracts that may be involved with MLDs. Twenty participants were included and underwent audiometric testing and MRI scanning. The current study revealed regions of increased and decreased activity within the auditory cortex when comparing the combined noise and signal of the dichotic MLD stimuli (N0Sπ and NπS0 with N0S0. Furthermore, we found evidence of inferior colliculus involvement. Our DTI findings show strong correlations between DTI measures within the brainstem and signal detection threshold levels. Patterns of correlation when the signal was presented only to the right ear showed an extensive network in the left hemisphere; however, the opposite was not true for the signal presented only to the left ear. Our current study was able to confirm what we had previously hypothesized using fMRI, while extending our investigation of MLDs to include the characteristics of connecting neural pathways.

  14. MRI-based comparative study of different mild cognitive impairment subtypes: protocol for an observational case–control study

    Science.gov (United States)

    Yu, Yang; Zhao, Weina; Li, Siou; Yin, Changhao

    2017-01-01

    Introduction Amnestic mild cognitive impairment (aMCI) and vascular mild cognitive impairment (VaMCI) comprise the 2 main types of mild cognitive impairment (MCI). The first condition generally progresses to Alzheimer's disease, whereas the second is likely to develop into vascular dementia (VD). The brain structure and function of patients with MCI differ from those of normal elderly individuals. However, whether brain structures or functions differ between these 2 MCI subtypes has not been studied. This study is designed to analyse neuroimages of brain in patients with VaMCI and aMCI using multimodality MRI (structural MRI (sMRI), functional MRI and diffusion tensor imaging (DTI)). Methods and analysis In this study, 80 participants diagnosed with aMCI, 80 participants diagnosed with VaMCI, and 80 age-matched, gender-matched and education-matched normal controls (NCs) will be recruited to the Hongqi Hospital of Mudanjiang Medical University, Heilongjiang, China. All participants will undergo neuroimaging and neuropsychological evaluations. The primary outcome measures will be (1) microstructural alterations revealed by multimodal MRIs, including sMRI, resting-state functional MRI and DTI; and (2) a neuropsychological evaluation, including the Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Auditory Verbal Learning Test (AVLT), Memory and Executive Screening (MES), trail making test, Stroop colour naming condition and Clinical Dementia Rating (CDR) scale, to evaluate global cognition, memory function, attention, visuospatial skills, processing speed, executive function and emotion, respectively. Trial registration number NCT02706210; Pre-results. PMID:28274963

  15. Methodological Considerations in Conducting an Olfactory fMRI Study

    Directory of Open Access Journals (Sweden)

    Faezeh Vedaei

    2013-01-01

    Full Text Available The sense of smell is a complex chemosensory processing in human and animals that allows them to connect with the environment as one of their chief sensory systems. In the field of functional brain imaging, many studies have focused on locating brain regions that are involved during olfactory processing. Despite wealth of literature about brain network in different olfactory tasks, there is a paucity of data regarding task design. Moreover, considering importance of olfactory tasks for patients with variety of neurological diseases, special contemplations should be addressed for patients. In this article, we review current olfaction tasks for behavioral studies and functional neuroimaging assessments, as well as technical principles regarding utilization of these tasks in functional magnetic resonance imaging studies.

  16. A MRI study of fusiform gyrus in schizotypal personality disorder.

    Science.gov (United States)

    Dickey, Chandlee C; McCarley, Robert W; Voglmaier, Martina M; Niznikiewicz, Margaret A; Seidman, Larry J; Frumin, Melissa; Toner, Sarah; Demeo, Susan; Shenton, Martha E

    2003-11-01

    The fusiform gyrus is important for face and object recognition, is abnormal in schizophrenia, but has not been studied in schizotypal personality disorder (SPD). Thin-slice MR images showed no differences, either in right, left or total fusiform gyri volumes, between subjects with SPD (N=21) and normal controls (N=19). However, there was a correlation between severity of illusions and magical thinking suffered by the SPD subjects and smaller right fusiform gyrus volumes. This suggests that future studies may be useful in determining the functional competence of this gyrus in SPD.

  17. SU-E-J-257: Image Artifacts Caused by Implanted Calypso Beacons in MRI Studies

    Energy Technology Data Exchange (ETDEWEB)

    Amro, H; Chetty, I; Gordon, J; Wen, N [Henry Ford Health System, Detroit, MI (United States)

    2014-06-01

    Purpose: The presence of Calypso Beacon-transponders in patients can cause artifacts during MRI imaging studies. This could be a problem for post-treatment follow up of cancer patients using MRI studies to evaluate metastasis and for functional imaging studies.This work assesses (1) the volume immediately surrounding the transponders that will not be visualized by the MRI due to the beacons, and (2) the dependence of the non-visualized volume on beacon orientation, and scanning techniques. Methods: Two phantoms were used in this study (1) water filled box, (2) and a 2300 cc block of pork meat. Calypso beacons were implanted in the phantoms both in parallel and perpendicular orientations with respect to the MR scanner magnetic field. MR image series of the phantom were obtained with on a 1.0T high field open MR-SIM with multiple pulse sequences, for example, T1-weighted fast field echo and T2-weighted turbo spin echo. Results: On average, a no-signal region with 2 cm radius and 3 cm length was measured. Image artifacts are more significant when beacons are placed parallel to scanner magnetic field; the no-signal area around the beacon was about 0.5 cm larger in orthogonal orientation. The no-signal region surrounding the beacons slightly varies in dimension for the different pulse sequences. Conclusion: The use of Calypso beacons can prohibit the use of MRI studies in post-treatment assessments, especially in the immediate region surrounding the implanted beacon. A characterization of the MR scanner by identifying the no-signal regions due to implanted beacons is essential. This may render the use of Calypso beacons useful for some cases and give the treating physician a chance to identify those patients prior to beacon implantation.

  18. Posture influences motor imagery: An fMRI study

    NARCIS (Netherlands)

    Lange, F.P. de; Helmich, R.; Toni, I.

    2006-01-01

    Motor imagery is widely used to study cognitive aspects of the neural control of action. However, what is exactly simulated during motor imagery is still a matter of debate. On the one hand, it is conceivable that motor imagery is an embodied cognitive process, involving a simulation of movements of

  19. Cerebral migration of intraocular silicone oil: an MRI study

    DEFF Research Database (Denmark)

    Kiilgaard, Jens Folke; Milea, Dan; Løgager, Vibeke;

    2011-01-01

    for retinal detachment. Methods: Nineteen patients included in this study were referred for silicone oil removal after uncomplicated retinal detachment surgery using internal silicone oil tamponade. Patients with a previous history of intraocular silicone oil, glaucoma or optic pit were excluded. After...

  20. Five cases of a Joseph disease family with non-REM sleep apnea and MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Junichi; Tsuruta, Kazuhito; Yamamura, Yoshinori; Kurihara, Teruyuki; Matsukura, Shigeru

    1987-09-01

    Four male and one female patients of a new Joseph disease family in southern Kyushu are presented. This disorder is inherited by autosomal dominant trait. The clinical symptoms are characterized by bulging eyes, ophthalmoplegia, dysarthria, rigospasticity of the lower limbs, marked dystonia and bradykinesia. In our cases, extrapyramidal symptoms were improved by amantadine and L-dopa therapy. CSF homovanilic acid (HVA) was markedly reduced. Muscle biopsy and electromyographic studies revealed neurogenic changes. MRI revealed mild atrophy of frontal lobe and cerebellum, and marked atrophy of brain stem. These findings were consistent with the clinical manifestations. Our case had central type sleep apnea by sleep EEG and polygraphic studies. This is the first report about sleep apnea and MRI of Joseph disease.

  1. 上呼吸道感染后伴嗅觉功能障碍者嗅觉相关脑皮层的MRI体积测量%MRI volumetric analysis of olfaction-related cortex in olfactory dysfunction patients after upper respiratory tract infections

    Institute of Scientific and Technical Information of China (English)

    代光政; 伍建林; 周世昱; 沈晶

    2014-01-01

    dysfunction patients after upper respiratory tract infections (patient group) and fifteen age-and gender-matched normal volunteers (control group) were enrolled in this study to undergo 1.5 Tesla MR scanning.The volumes of olfaction-related cortex,including entorhinal cortex (EC),perirhinal cortex (PRC) and insular cortex (IC),were drawn and computed with Dr.View software.Olfactory function test was performed with the "Sniffin' Sticks" method which consisted of three tests:odor threshold (THR),odor discrimination (DIS),odor identification (ID),and their sum score (TDI).Statistical differences in the volumetric measures of bilateral EC,PRC,and IC between patient and control group were analyzed by analysis of covariance (ANCOVA) with age and intracranial volume (ICV) as covariates.Statistical differences in the olfactory function between patient and control group were analyzed by ANCOVA with age as a covariate.Results (1) The EC volume of patient group in the left and right side were (1.5 ± 0.3),(1.6 ± 0.1) cm3,while the control group were (1.7 ± 0.2),(1.8 ± 0.3) cm3 ; The PRC volume of patient group in the left and right side were (1.9 ± 0.4),(1.9 ± 0.3) cm3,and the control group were (2.5 ± 0.8),(2.3 ± 0.7) cm3 ; The IC volume of patient group in the left and right side were (5.2 ± 0.4),(5.8 ± 0.5) cm3,and the control group were (5.8 ± 0.8),(6.7 ± 0.2) cm3.EC,PRC and IC volumes of patient group and control group were measured and the results showed that the olfaction-related cortex volume was decreased in patient group showing significant statistical difference (F =4.913,4.793,7.832,5.574,9.842,7.221,P < 0.05).(2) Olfactory function test of patient group and control group was performed and the results showed that the scores of patient group were lower than that of control group,and the differences were significant (F =54.508,118.774,93.039,53.692,74.139,53.626,91.842,91.696,P < 0.01).Conclusions It is feasible to measure the volumes of olfaction-related cortex

  2. Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: a clinical validation study.

    Science.gov (United States)

    Stender, Johan; Gosseries, Olivia; Bruno, Marie-Aurélie; Charland-Verville, Vanessa; Vanhaudenhuyse, Audrey; Demertzi, Athena; Chatelle, Camille; Thonnard, Marie; Thibaut, Aurore; Heine, Lizette; Soddu, Andrea; Boly, Mélanie; Schnakers, Caroline; Gjedde, Albert; Laureys, Steven

    2014-08-09

    Bedside clinical examinations can have high rates of misdiagnosis of unresponsive wakefulness syndrome (vegetative state) or minimally conscious state. The diagnostic and prognostic usefulness of neuroimaging-based approaches has not been established in a clinical setting. We did a validation study of two neuroimaging-based diagnostic methods: PET imaging and functional MRI (fMRI). For this clinical validation study, we included patients referred to the University Hospital of Liège, Belgium, between January, 2008, and June, 2012, who were diagnosed by our unit with unresponsive wakefulness syndrome, locked-in syndrome, or minimally conscious state with traumatic or non-traumatic causes. We did repeated standardised clinical assessments with the Coma Recovery Scale-Revised (CRS-R), cerebral (18)F-fluorodeoxyglucose (FDG) PET, and fMRI during mental activation tasks. We calculated the diagnostic accuracy of both imaging methods with CRS-R diagnosis as reference. We assessed outcome after 12 months with the Glasgow Outcome Scale-Extended. We included 41 patients with unresponsive wakefulness syndrome, four with locked-in syndrome, and 81 in a minimally conscious state (48=traumatic, 78=non-traumatic; 110=chronic, 16=subacute). (18)F-FDG PET had high sensitivity for identification of patients in a minimally conscious state (93%, 95% CI 85-98) and high congruence (85%, 77-90) with behavioural CRS-R scores. The active fMRI method was less sensitive at diagnosis of a minimally conscious state (45%, 30-61) and had lower overall congruence with behavioural scores (63%, 51-73) than PET imaging. (18)F-FDG PET correctly predicted outcome in 75 of 102 patients (74%, 64-81), and fMRI in 36 of 65 patients (56%, 43-67). 13 of 41 (32%) of the behaviourally unresponsive patients (ie, diagnosed as unresponsive with CRS-R) showed brain activity compatible with (minimal) consciousness (ie, activity associated with consciousness, but diminished compared with fully conscious individuals

  3. Brain imaging correlates of recovered swallowing after dysphagic stroke: A fMRI and DWI study

    OpenAIRE

    Paul Glad Mihai; Mareile Otto; Martin Domin; Thomas Platz; Shaheen Hamdy; Martin Lotze

    2016-01-01

    Neurogenic dysphagia frequently occurs after stroke and deglutitive aspiration is one of the main reasons for subacute death after stroke. Although promising therapeutic interventions for neurogenic dysphagia are being developed, the functional neuroanatomy of recovered swallowing in this population remains uncertain. Here, we investigated 18 patients post-stroke who recovered from dysphagia using an event related functional magnetic resonance imaging (fMRI) study of swallowing. Patients were...

  4. Neural Correlates of the Poggendorff Illusion Driven by Illusory Contour: An fMRI Study

    OpenAIRE

    Qi Chen; Li Li

    2011-01-01

    The Poggendorff illusion is a well-documented geometric illusion that involves the brain's perception of the interaction between oblique lines and object contours: an oblique line is apparently misaligned once interrupted by two parallel contours. This illusion occurs even when the parallel contours are defined subjectively or illusorily. In this fMRI study, we adopted a 4 (type of stimuli: Poggendorff illusion under real contour and its corresponding control condition; Poggendorff illusion u...

  5. Refractory Epilepsy-MRI, EEG and CT scan, a Correlative Clinical Study

    Directory of Open Access Journals (Sweden)

    Dijana Nikodijevic

    2016-02-01

    CONCLUSION: Our study confirms that for an accurate diagnosis of refractory epilepsy in patients, a combination of neuroimaging and neurophysiologic methods is required. MRI showed to be highly sensitive in detecting the etiologic factor in RE patients, whereas EEG was sensitive in localization of the epileptogenic focus, with high correlation between these two methods. An early diagnosis of these patients is very important in having a better therapeutic response and prognosis for them.

  6. Right temporal cortical hypertrophy in resilience to trauma: an MRI study

    OpenAIRE

    Sevenius Nilsen, André; Hilland, Eva; Kogstad, Norunn; Heir, Trond; Hauff, Edvard; Lien, Lars; Endestad, Tor

    2016-01-01

    Background In studies employing physiological measures such as magnetic resonance imaging (MRI), it is often hard to distinguish what constitutes risk-resilience factors to posttraumatic stress disorder (PTSD) following trauma exposure and what the effects of trauma exposure and PTSD are. Objective We aimed to investigate whether there were observable morphological differences in cortical and sub-cortical regions of the brain, 7–8 years after a single potentially traumatic event. Methods Twen...

  7. Altered resting-state functional connectivity in post-traumatic stress disorder: a perfusion MRI study

    Science.gov (United States)

    Li, Baojuan; Liu, Jian; Liu, Yang; Lu, Hong-Bing; Yin, Hong

    2013-03-01

    The majority of studies on posttraumatic stress disorder (PTSD) so far have focused on delineating patterns of activations during cognitive processes. Recently, more and more researches have started to investigate functional connectivity in PTSD subjects using BOLD-fMRI. Functional connectivity analysis has been demonstrated as a powerful approach to identify biomarkers of different brain diseases. This study aimed to detect resting-state functional connectivity abnormities in patients with PTSD using arterial spin labeling (ASL) fMRI. As a completely non-invasive technique, ASL allows quantitative estimates of cerebral blood flow (CBF). Compared with BOLD-fMRI, ASL fMRI has many advantages, including less low-frequency signal drifts, superior functional localization, etc. In the current study, ASL images were collected from 10 survivors in mining disaster with recent onset PTSD and 10 survivors without PTSD. Decreased regional CBF in the right middle temporal gyrus, lingual gyrus, and postcentral gyrus was detected in the PTSD patients. Seed-based resting-state functional connectivity analysis was performed using an area in the right middle temporal gyrus as region of interest. Compared with the non-PTSD group, the PTSD subjects demonstrated increased functional connectivity between the right middle temporal gyrus and the right superior temporal gyrus, the left middle temporal gyrus. Meanwhile, decreased functional connectivity between the right middle temporal gyrus and the right postcentral gyrus, the right superior parietal lobule was also found in the PTSD patients. This is the first study which investigated resting-state functional connectivity in PTSD using ASL images. The results may provide new insight into the neural substrates of PTSD.

  8. Chest MRI

    Science.gov (United States)

    Nuclear magnetic resonance - chest; Magnetic resonance imaging - chest; NMR - chest; MRI of the thorax; Thoracic MRI ... healthy enough to filter the contrast. During the MRI, the person who operates the machine will watch ...

  9. Association between trochlear morphology and chondromalacia patella: an MRI study.

    Science.gov (United States)

    Duran, Semra; Cavusoglu, Mehtap; Kocadal, Onur; Sakman, Bulent

    This study aimed to compare trochlear morphology seen in magnetic resonance imaging between patients with chondromalacia patella and age-matched control patients without cartilage lesion. Trochlear morphology was evaluated using the lateral trochlear inclination, medial trochlear inclination, sulcus angle and trochlear angle on the axial magnetic resonance images. Consequently, an association between abnormal trochlear morphology and chondromalacia patella was identified in women. In particular, women with flattened lateral trochlea are at an increased risk of patellar cartilage structural damage. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Study on MRI Changes in Phenylketonuria in Patients Referred to Mofid Hospital/Iran

    Directory of Open Access Journals (Sweden)

    Parveneh KARIMZADEH

    2014-04-01

    Full Text Available How to Cite This Article: Karimzadeh P, Ahmadabadi F, Jafari N, Shariatmadari F, Nemati H, Ahadi A, Karimi Dardashti S, Mirzarahimi M, Dastborhan Z, Zare Noghabi J. Study on MRI Changes in Phenylketonuria in Patients Referred to Mofid Hospital. Iran J Child Neurol. 2014 Spring 8(2:53-56.ObjectivePhenylketonuria is one of the most common metabolic disorders and the first known cause of mental retardation in pediatrics. As Screening for phenylketonuria (PKU is not a routine neurometabolic screening test for neonates in Iran, many PKU cases may be diagnosed after developing the clinical symptoms. One of the findings of PKU is myelination disorders, which is seen as hypersignal regions in T2-weighted (T2W and FLAIR sequences of brain MRI. The aim of our study was to assess MRI changes in PKU patients referred to Mofid Children’s Hospital, 2010-2011.Materials & MethodsWe studied all PKU cases referred to our clinic as a referral neurometabolic center in Iran for brain MRI and assessed the phenylalanine level at the time of Imaging. The mean phenylalanine level (in one year, clinical manifestations,and MRI pattern based on Thompson scoring, were evaluated.ResultsThe mean age of our study group was 155±99 months and the mean diagnosis age was 37±27.85 months. There were 15 patients with positive and 15 with negative family history. The mean phenylalanine level at the time of imaging was 9.75±6.28 and the mean 1 year phenylalanine level was 10.28±4.82. Seventy percent of our patients had MRI involvement, in whom 20% showed atrophic changes, in addition to white matter involvement. Based on modified Thompson scoring, the score for our study group was 4.84.The maximum involvement in MRI was in occipital region, followed by parietal, frontal, and temporal zones. There was not any correlation between MRI score and patients’ age. But we found significant relationship between MRI score andthe age of regimen cessation. No correlation

  11. Pain empathy in schizophrenia: an fMRI study.

    Science.gov (United States)

    Horan, William P; Jimenez, Amy M; Lee, Junghee; Wynn, Jonathan K; Eisenberger, Naomi I; Green, Michael F

    2016-05-01

    Although it has been proposed that schizophrenia is characterized by impaired empathy, several recent studies found intact neural responses on tasks measuring the affective subdomain of empathy. This study further examined affective empathy in 21 schizophrenia outpatients and 21 healthy controls using a validated pain empathy paradigm with two components: (i) observing videos of people described as medical patients who were receiving a painful sound stimulation treatment; (ii) listening to the painful sounds (to create regions of interest). The observing videos component incorporated experimental manipulations of perspective taking (instructions to imagine 'Self' vs 'Other' experiencing pain) and cognitive appraisal (information about whether treatment was 'Effective' vs 'Not Effective'). When considering activation across experimental conditions, both groups showed similar dorsal anterior cingulate cortex (dACC) and anterior insula (AI) activation while merely observing others in pain. However, there were group differences associated with perspective taking: controls showed relatively greater dACC and AI activation for the Self vs Other contrast whereas patients showed relatively greater activation in these and additional regions for the Other vs Self contrast. Although patients demonstrated grossly intact neural activity while observing others in pain, they showed more subtle abnormalities when required to toggle between imagining themselves vs others experiencing pain. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. Cerebral basis of visual hallucinations in Parkinson's disease: structural and functional MRI studies.

    Science.gov (United States)

    Ibarretxe-Bilbao, Naroa; Junque, Carme; Marti, Maria J; Tolosa, Eduardo

    2011-11-15

    The presence of visual hallucinations (VH) is a significant predictor of dementia in Parkinson's disease (PD) and it is associated with a more rapid cognitive decline. Non-demented PD patients with VH present greater neuropsychological impairment than those without VH in domains such as verbal and visual memory, language comprehension, and visuospatial and visuoperceptive functions. Frontal dysfunction has also been described in PD with VH, including deficits in verbal fluency, sustained attention, and inhibition. In PD with VH, structural and functional abnormalities within the primary visual system and visual association areas, including ventral and dorsal pathways, have been reported. Structural MRI studies have shown that non-demented PD patients with VH present grey matter reduction in parieto-occipital areas and the hippocampal head. A follow-up study performed at a mean of 30 months revealed that unlike PD patients without VH, PD patients with VH frequently develop dementia associated with progressive atrophy in limbic, paralimbic and neocortical areas. Functional MRI (fMRI) studies have revealed altered activation in occipito-temporal and frontal areas in response to simple and complex visual stimuli in PD patients with VH, suggesting a marked impairment in bottom-up visual processing, as well as an attentional deficit in the pathophysiology of VH in PD.

  13. An fMRI study on the neural mechanisms of hyperalgesic nocebo effect

    Science.gov (United States)

    Kong, Jian; Gollub, Randy L.; Polich, Ginger; Kirsch, Irving; LaViolette, Peter; Vangel, Mark; Rosen, Bruce; Kaptchuk, Ted J

    2008-01-01

    Summary Previous studies suggest that nocebo effects, sometimes termed “negative placebo effects,” can contribute appreciably to a variety of medical symptoms and adverse events in clinical trials and medical care. In this study, using a within-subject design, we combined fMRI and an expectation / conditioning manipulation model to investigate the neural substrates of nocebo hyperalgesia using heat pain on the right forearm. Thirteen subjects completed the study. Results showed that after administering inert treatment, subjective pain intensity ratings increased significantly more on nocebo regions as compared with the control regions where no expectancy / conditioning manipulation was performed. fMRI analysis of hyperalgesic nocebo responses to identical calibrated noxious stimuli showed signal increases in brain regions including bilateral dorsal ACC, insula, superior temporal gyrus; left frontal and parietal operculum, medial frontal gyrus, orbital prefrontal cortex, superior parietal lobule and hippocampus; right claustrum / putamen, lateral prefrontal gyrus and middle temporal gyrus. Functional connectivity analysis of spontaneous resting-state fMRI data from the same cohort of subjects showed a correlation between two seed regions (frontal operculum and left hippocampus) pain network including bilateral insula, operculum, ACC, and left S1 / M1. In conclusion, we found evidence that nocebo hyperalgesia may be predominantly produced through an affective-cognitive pain pathway (medial pain system) and the left hippocampus may play an important role in this process. PMID:19052227

  14. Motor association cortex activity in Parkinson`s disease. A functional MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Yukiko [Yamaguchi Univ., Ube (Japan). School of Medicine

    1998-08-01

    The purpose of this study was to examine the activation of motor association cortex using functional magnetic resonance imaging (fMRI) in patients with Parkinson`s disease (PD) and control subjects during performed hand movements. There were 26 patients with PD (12 patients with Hoehn and Yahr stage I-II, 14 patients with stage III) and 8 control subjects. Functional imaging was performed using a 1.5 tesla MRI system equipped with a single-shot, echo-planar pulse sequence. The significant signal changes were observed within the primary sensorimotor area, the supplementary motor area (SMA), and the parietal association area in both PD and control subjects. In PD subjects, the SMA was less activated than in control subjects; there were significant differences in the number of pixels activated in SMA between control and Yahr III group (p<0.01), and between Yahr I-II and Yahr III group (p<0.01). Our results demonstrated that movement related cerebral activity in the SMA is reduced in PD subjects, consistent with previously published data using other methods. It is well known from anatomical studies that one of the major cortical outputs of the basal ganglia is the SMA. This may explain the hypoactivation of the SMA in PD. Studies using fMRI provide a promising method not only for localizing cortical activation related to voluntary movements but also for investigating pathophysiology of movement disorders. (author)

  15. Probing the Interoceptive Network by Listening to Heartbeats: An fMRI Study.

    Directory of Open Access Journals (Sweden)

    Nina I Kleint

    Full Text Available Exposure to cues of homeostatic relevance (i.e. heartbeats is supposed to increase the allocation of attentional resources towards the cue, due to its importance for self-regulatory, interoceptive processes. This functional magnetic resonance imaging (fMRI study aimed at determining whether listening to heartbeats is accompanied by activation in brain areas associated with interoception, particularly the insular cortex. Brain activity was measured with fMRI during cue-exposure in 36 subjects while listening to heartbeats vs. sinus tones. Autonomic markers (skin conductance and subjective measures of state and trait anxiety were assessed. Stimulation with heartbeat sounds triggered activation in brain areas commonly associated with the processing of interoceptive information, including bilateral insular cortices, the inferior frontal operculum, and the middle frontal gyrus. A psychophysiological interaction analysis indicated a functional connectivity between the middle frontal gyrus (seed region and bilateral insular cortices, the left amygdala and the supplementary motor area. The magnitude of neural activation in the right anterior insular cortex was positively associated with autonomic arousal. The present findings indicate that listening to heartbeats induced activity in areas of the interoception network as well as changes in psychophysiological arousal and subjective emotional experience. As this approach constitutes a promising method for studying interoception in the fMRI environment, a clinical application in anxiety prone populations should be addressed by future studies.

  16. Probing the Interoceptive Network by Listening to Heartbeats: An fMRI Study.

    Science.gov (United States)

    Kleint, Nina I; Wittchen, Hans-Ulrich; Lueken, Ulrike

    2015-01-01

    Exposure to cues of homeostatic relevance (i.e. heartbeats) is supposed to increase the allocation of attentional resources towards the cue, due to its importance for self-regulatory, interoceptive processes. This functional magnetic resonance imaging (fMRI) study aimed at determining whether listening to heartbeats is accompanied by activation in brain areas associated with interoception, particularly the insular cortex. Brain activity was measured with fMRI during cue-exposure in 36 subjects while listening to heartbeats vs. sinus tones. Autonomic markers (skin conductance) and subjective measures of state and trait anxiety were assessed. Stimulation with heartbeat sounds triggered activation in brain areas commonly associated with the processing of interoceptive information, including bilateral insular cortices, the inferior frontal operculum, and the middle frontal gyrus. A psychophysiological interaction analysis indicated a functional connectivity between the middle frontal gyrus (seed region) and bilateral insular cortices, the left amygdala and the supplementary motor area. The magnitude of neural activation in the right anterior insular cortex was positively associated with autonomic arousal. The present findings indicate that listening to heartbeats induced activity in areas of the interoception network as well as changes in psychophysiological arousal and subjective emotional experience. As this approach constitutes a promising method for studying interoception in the fMRI environment, a clinical application in anxiety prone populations should be addressed by future studies.

  17. Learn the effective connectivity pattern of attention networks: a resting functional MRI and Bayesian network study

    Science.gov (United States)

    Li, Juan; Li, Rui; Yao, Li; Wu, Xia

    2011-03-01

    Task-based neuroimaging studies revealed that different attention operations were carried out by the functional interaction and cooperation between two attention systems: the dorsal attention network (DAN) and the ventral attention network (VAN), which were respectively involved in the "top-down" endogenous attention orienting and the "bottomup" exogenous attention reorienting process. Recent focused resting functional MRI (fMRI) studies found the two attention systems were inherently organized in the human brain regardless of whether or not the attention process were required, but how the two attention systems interact with each other in the absence of task is yet to be investigated. In this study, we first separated the DAN and VAN by applying the group independent component analysis (ICA) to the resting fMRI data acquired from 12 healthy young subjects, then used Gaussian Bayesian network (BN) learning approach to explore the plausible effective connectivity pattern of the two attention systems. It was found regions from the same attention network were strongly intra-dependent, and all the connections were located in the information flow from VAN to DAN, which suggested that an orderly functional interactions and information exchanges between the two attention networks existed in the intrinsic spontaneous brain activity, and the inherent connections might benefit the efficient cognitive process between DAN and VAN, such as the "top-down" and "bottom-up" reciprocal interaction when attention-related tasks were involved.

  18. A central analgesic mechanism of acupuncture for migraine An ongoing functional MRI study**

    Institute of Scientific and Technical Information of China (English)

    Lei Lan; Yujie Gao; Fang Zeng; Wei Qin; Mingkai Dong; Mailan Liu; Taipin Guo; Fanrong Liang

    2013-01-01

    Shaoyang acupoints are the most frequently used in migraine treatment. However, the central anal-gesic mechanism remains poorly understood. Studies have demonstrated that single stimulus of the verum acupuncture in healthy subjects can induce significant connectivity or activity changes in pain-related central networks compared with sham acupuncture. However, these findings are not indicative of the central analgesic mechanism of acupuncture at Shaoyang acupoints. Thus, we recruited 100 migraine sufferers and randomly assigned them into five groups: Shaoyang uncommon acupoint, Shaoyang common acupoint, Yangming uncommon acupoint, non-acupoint control, and blank control groups. Subjects were subjected to evaluation of curative effects and functional MRI prior to and after 10 and 20 acupuncture treatments. Al subjects were diagnosed by physicians and enrol ed fol owing clinical physical examination. Subjects were observed during 1-4 weeks after inclusion. At the fifth week, the first clinical evaluation and resting functional MRI were conducted. The Shaoyang uncom-mon acupoint, Shaoyang common acupoint, Yangming uncommon acupoint, and non-acupoint control grousp then were treated with acupuncture, five times per week, 20 times in total over 4 weeks. The second and third clinical evaluations and resting functional MRI screenings were conducted fol owing 10 and 20 acupuncture treatments. The blank control group was observed during the 5 to 8 week pe-riod, fol owed by clinical evaluation and resting functional MRI. The aim of this study was to examine changes in brain functional activity and central networks in subjects with migraine undergoing acu-puncture at Shaoyang uncommon acupoints. This study provides a further explanation of the central analgesic mechanism by which acupuncture at Shaoyang acupoints treats migraine.

  19. [Mystery of alar ligament rupture: value of MRI in whiplash injuries--biomechanical, anatomical and clinical studies].

    Science.gov (United States)

    Bitterling, H; Stäbler, A; Brückmann, H

    2007-11-01

    Whiplash injury of the cervical spine is a frequent issue in medical expertise and causes enormous consequential costs for motor insurance companies. Some authors accuse posttraumatic changes of alar ligaments to be causative for consequential disturbances. Review of recent studies on biomechanics, anatomical and clinical MR imaging. Biomechanical experiments can not induce according injuries of alar ligaments. Although MRI provides excellent visualization of alar ligaments, the range of normal variants is high. Biomechanical studies give no evidence of alar ligament involvement in whiplash disease. Using MRI, signal alterations of alar ligaments can hardly be differentiated from common normal variants. Functional MRI provides no diagnostic yield.

  20. Regional differences in the CBF and BOLD responses to hypercapnia: a combined PET and fMRI study

    DEFF Research Database (Denmark)

    Rostrup, Egill; Law, I; Blinkenberg, M

    2000-01-01

    Previous fMRI studies of the cerebrovascular response to hypercapnia have shown signal change in cerebral gray matter, but not in white matter. Therefore, the objective of the present study was to compare (15)O PET and T *(2)-weighted MRI during a hypercapnic challenge. The measurements were perf...... that the differences in the magnitude of the fMRI response can largely be attributed to differences in flow and that there is a considerable difference in the time course of the response between gray and white matter....

  1. Pooling fMRI data: meta-analysis, mega-analysis and multi-center studies

    Directory of Open Access Journals (Sweden)

    Sergi G Costafreda

    2009-09-01

    Full Text Available The quantitative analysis of pooled data from related fMRI experiments has the potential to significantly accelerate progress in brain mapping. Such data-pooling can be achieved through meta-analysis (the pooled analysis of published results, mega-analysis (the pooled analysis of raw data or multi-site studies which can be seen as designed mega-analyses. Current limitations in function-location brain mapping and how data-pooling can be used to remediate them are reviewed, with particular attention to power aggregation and mitigation of false positive results. Some recently developed analysis tools for meta- and mega-analysis are also presented, and recommendations for the conduct of valid fMRI data pooling are formulated.

  2. Preclinical animal acute toxicity studies of new developed MRI contrast agent based on gadolinium

    Science.gov (United States)

    Nam, I. F.; Zhuk, V. V.

    2015-04-01

    Acute toxicity test of new developed MRI contrast agent based on disodium salt of gadopentetic acid complex were carried out on Mus musculus and Sprague Dawley rats according to guidelines of preclinical studies [1]. Groups of six animals each were selected for experiment. Death and clinical symptoms of animals were recorded during 14 days. As a result the maximum tolerated dose (MTD) for female mice is 2.8 mM/kg of body weight, male mice - 1.4 mM/kg, female rats - 2.8 mM/kg, male rats - 5.6 mM/kg of body weight. No Observed Adverse Effect Dose (NOAEL) for female mice is 1.4 mM/kg, male mice - 0.7 mM/kg, male and female rats - 0.7 mM/kg. According to experimental data new developed MRI contrast agent based on Gd-DTPA complex is low-toxic.

  3. Collective Correlations of Brodmann Areas fMRI Study with RMT-Denoising

    Science.gov (United States)

    Burda, Z.; Kornelsen, J.; Nowak, M. A.; Porebski, B.; Sboto-Frankenstein, U.; Tomanek, B.; Tyburczyk, J.

    We study collective behavior of Brodmann regions of human cerebral cortex using functional Magnetic Resonance Imaging (fMRI) and Random Matrix Theory (RMT). The raw fMRI data is mapped onto the cortex regions corresponding to the Brodmann areas with the aid of the Talairach coordinates. Principal Component Analysis (PCA) of the Pearson correlation matrix for 41 different Brodmann regions is carried out to determine their collective activity in the idle state and in the active state stimulated by tapping. The collective brain activity is identified through the statistical analysis of the eigenvectors to the largest eigenvalues of the Pearson correlation matrix. The leading eigenvectors have a large participation ratio. This indicates that several Broadmann regions collectively give rise to the brain activity associated with these eigenvectors. We apply random matrix theory to interpret the underlying multivariate data.

  4. Cerebrospinal fluid production and dynamics in normal aging: a MRI phase-mapping study

    DEFF Research Database (Denmark)

    Gideon, P; Thomsen, C; Ståhlberg, F

    1994-01-01

    Magnetic resonance imaging (MRI) phase mapping was used for non-invasive evaluation of the to-and-fro motion of cerebrospinal fluid (CSF) in the cerebral aqueduct, and to measure the supratentorial CSF production in vivo, in 13 healthy volunteers to determine whether normal aging affects...... these parameters. Eight young healthy volunteers (mean age 29.8 years) and five elderly healthy volunteers (mean age 69.0 years) were examined, all were normal on conventional MRI. Slightly higher aqueductal CSF peak flow velocities and peak volume flow in both the caudal and rostral directions were found...... in fact occurs at this relatively high rate. Our study further suggests that the differences found in human CSF production rates are caused by interindividual factors other than age....

  5. Magnetic resonance imaging (MRI: a technique to study flow an microstructure of concentrated emulsions

    Directory of Open Access Journals (Sweden)

    M. A. d'Avila

    2005-03-01

    Full Text Available Nuclear magnetic resonance (NMR and magnetic resonance imaging (MRI have recently been recognized as important techniques for R&D of products and processes, as is attested by several successful applications in different areas of chemical engineering in recent years. In this article we present new experimental methods based on MRI to study flow and microstructure of concentrated emulsions. The objective is to present the unique features of this noninvasive technique to accurately measure different properties of flowing particulate opaque systems. Experimental results of velocity profiles, spatial distribution of droplet sizes and spatial homogeneity of an oil-in-water dispersion in a horizontal, concentric cylinder geometry using different pulse sequences are presented. The application of these techniques allowed probing important information on flow and microstructure of multiphase systems of interest in chemical engineering and food science.

  6. Unilateral occlusion of duplicated uterus with ipsilateral renal anomaly in young girls: a study with MRI

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.W. [Dept. of Medical Imaging, National Taiwan Univ. Hospital, Taipei (Taiwan, Province of China); Shieh, C.P. [Dept. of Pediatric Nephrology, Taipei Municipal Women and Children`s Hospital (Taiwan, Province of China); Chen, W.J. [Dept. of Surgery, National Taiwan Univ. Hospital, Taipei (Taiwan, Province of China)

    1995-11-01

    Twenty-four young girls (mean age 13.0 years) with unilateral occlusion of a duplicated uterus and ipsilateral renal agenesis, dysplasia or hypoplasia were studied with magnetic resonance imaging (MRI) following ultrasound examination. Hydrocolpos (n=4), hydrometrocolpos (n=2), hematocolpos (n=11), hematometrocolpos (n=5), hematocolpometra, hematosalpinx (n=3) and hematometra, hematosalpinx (n=1) were noted (two of these patients had presented with hydrocolpos and hematocolpos before and after the menarche). Twenty-two of these girls presented with ipsilateral renal agenesis (right 11, left 11) with ectopic ureters to Gartner`s dust cysts (GDC) in two, in one renal hypoplasia and in one renal dysplasia with ectopic ureters to GDC. MRI offered specific images of the genital tract, showing the exact type of muellerian duct anomaly and providing high diagnostic accuracy. Such preoperative identification of a uterine anomaly, complemented with appropriate surgical intervention, can assist young girls in achieving normal fertility in the future. (orig.)

  7. Neural activity during production of rorschach responses: An fMRI study.

    Science.gov (United States)

    Giromini, Luciano; Viglione, Donald J; Zennaro, Alessandro; Cauda, Franco

    2017-02-10

    Recently, a lot of effort has been made to ground Rorschach interpretations to their evidence base. To date, however, no studies have yet described, via fMRI, what brain areas get involved when one takes the Rorschach. To fill this gap in the literature, we administered the ten-inkblot stimuli to 26 healthy volunteers during fMRI. Analysis of BOLD signals revealed that, compared to fixating a cross, looking at the Rorschach inkblots while thinking of what they might be associated with higher temporo-occipital and fronto-parietal activations, and with greater activity in some small, sub-cortical regions included in the limbic system. These findings are in line with the traditional conceptualization of the test, as they suggest that taking the Rorschach involves (a) high-level visual processing, (b) top-down as well as bottom-up attentional processes, and (c) perception and processing of emotions and emotional memories.

  8. Posture influences motor imagery: an fMRI study.

    Science.gov (United States)

    de Lange, Floris P; Helmich, Rick C; Toni, Ivan

    2006-11-01

    Motor imagery is widely used to study cognitive aspects of the neural control of action. However, what is exactly simulated during motor imagery is still a matter of debate. On the one hand, it is conceivable that motor imagery is an embodied cognitive process, involving a simulation of movements of one's own body. The alternative possibility is that, although motor imagery relies on knowledge of the motor processes, it does not entail an actual motor simulation that is influenced by the physical configuration of one's own body. Here we discriminate between these two hypotheses, in the context of an established motor imagery task: laterality judgments of rotated hand drawings. We found that reaction times of hand laterality judgments followed the biomechanical constraints of left or right hand movements. Crucially, the position of subjects' own left and right arm influenced laterality judgments of left and right hands. In neural terms, hand laterality judgments activated a parieto-frontal network. The activity within this network increased with increasing biomechanical complexity of the imagined hand movements, even when the amount of stimulus rotation was identical. Moreover, activity in the intraparietal sulcus was modulated by subjects' own hand position: a larger incongruence in orientation between the subjects' hand and the stimulus hand led to a selective increase in intraparietal activity. Our results indicate that motor imagery generates motor plans that depend on the current configuration of the limbs. This motor plan is calculated by a parieto-frontal network. Within this network, the posterior parietal cortex appears to incorporate proprioceptive information related to the current position of the body into the motor plan.

  9. MRI based volumetric assessment of knee cartilage after ACL-reconstruction, correlated with qualitative morphologic changes in the joint and with clinical outcome. Is there evidence for early posttraumatic degeneration?; MRT-basierte Knorpelvolumetrie nach Kreuzbandersatzplastik in Korrelation mit qualitativen Gelenkveraenderungen und dem klinischen Outcome. Gibt es Hinweise auf fruehzeitige posttraumatische degenerative Veraenderungen?

    Energy Technology Data Exchange (ETDEWEB)

    Arnoldi, A.P.; Weckbach, S.; Horng, A.; Reiser, M. [Ludwig-Maximilians-Univ. Muenchen (Germany). Dept. of Clinical Radiology; Nussbickel, C. [Klinikum Garmisch-Partenkirchen (Germany). Dept. of Internal Medicine; Noebauer, I. [Medizinische Universitaet Wien (Austria). Klinik fuer Radiodiagnostik; Zysk, S. [Orthopaedie Zentrum Groebenzell (Germany). Center of Orthopaedics; Glaser, C. [NYU Medical Center, New York, NY (United States). Dept. of Radiology

    2011-12-15

    Purpose: The purpose of this study was to analyze potential quantitative and qualitative changes of the knee cartilage and joint indicative of early posttraumatic OA 4 years after ACL-reconstruction and to correlate the MRI-findings with the clinical outcome (CO). Materials and Methods: 1.5 T MRI-scans were performed on 9 patients post-op and 4 years later. Using a high-resolution T 1-w-fs-FLASH-3D-sequence cartilage volume (cVol) and thickness (mTh) were quantified. Using standard PD-w fs and T 1-w sequences qualitative changes of the joint structures were analyzed based on the WORMS-score. CO was rated by an orthopaedic surgeon using Lysholm-score, OAK-score, Tegner-activity-score (TAS), and Arthrometer KT-1000 testing. Results: Mean changes of cVol were -1.8 % (range: -5.9 %; + 0.7 %) and of mTh -0.8 % (range: -3.0 %; + 1.1 %). No significant change (95 %-CI) could be identified for any compartment. Three patients developed new peripatellar ostheophytes, acute trauma related changes mostly decreased. Mean outcome of Lysholm-score and OAK-score were 90 pts and 86 pts, mean TAS was 4.3 pts. Average maximum tibial translation reached 5.2 mm comparing to 6.7 mm on the healthy contralateral side. Conclusion: Despite a tendency towards decreased cVol and mTh 4 years after ACL-reconstruction qMRI revealed no significant cartilage loss. Newly developing osteophytes did not match with the observed good CO. This small pilot study motivates future quantitative and qualitative-structural MRI-based assessment of articular cartilage and other joint structures in order to improve diagnostic tools for the detection of early OA. (orig.)

  10. OMERACT Rheumatoid Arthritis Magnetic Resonance Imaging Studies. Exercise 5: an international multicenter reliability study using computerized MRI erosion volume measurements

    DEFF Research Database (Denmark)

    Bird, P; Ejbjerg, B; McQueen, F;

    2003-01-01

    Scoring erosions on magnetic resonance imaging (MRI) is one method of estimating damage in patients with rheumatoid arthritis (RA), but it has limitations. The aim of this pilot study was to assess the feasibility and inter-reader reliability of computer assisted erosion volume estimation...

  11. Genome-wide association studies of mri-defined brain infarcts: Meta-analysis from the charge consortium

    OpenAIRE

    2010-01-01

    textabstractBackground and Purpose-Previous studies examining genetic associations with MRI-defined brain infarct have yielded inconsistent findings. We investigated genetic variation underlying covert MRI infarct in persons without histories of transient ischemic attack or stroke. We performed meta-analysis of genome-wide association studies of white participants in 6 studies comprising the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. Methods-Using 2.2 mi...

  12. Volumetric image classification using homogeneous decomposition and dictionary learning: A study using retinal optical coherence tomography for detecting age-related macular degeneration.

    Science.gov (United States)

    Albarrak, Abdulrahman; Coenen, Frans; Zheng, Yalin

    2017-01-01

    Three-dimensional (3D) (volumetric) diagnostic imaging techniques are indispensable with respect to the diagnosis and management of many medical conditions. However there is a lack of automated diagnosis techniques to facilitate such 3D image analysis (although some support tools do exist). This paper proposes a novel framework for volumetric medical image classification founded on homogeneous decomposition and dictionary learning. In the proposed framework each image (volume) is recursively decomposed until homogeneous regions are arrived at. Each region is represented using a Histogram of Oriented Gradients (HOG) which is transformed into a set of feature vectors. The Gaussian Mixture Model (GMM) is then used to generate a "dictionary" and the Improved Fisher Kernel (IFK) approach is used to encode feature vectors so as to generate a single feature vector for each volume, which can then be fed into a classifier generator. The principal advantage offered by the framework is that it does not require the detection (segmentation) of specific objects within the input data. The nature of the framework is fully described. A wide range of experiments was conducted with which to analyse the operation of the proposed framework and these are also reported fully in the paper. Although the proposed approach is generally applicable to 3D volumetric images, the focus for the work is 3D retinal Optical Coherence Tomography (OCT) images in the context of the diagnosis of Age-related Macular Degeneration (AMD). The results indicate that excellent diagnostic predictions can be produced using the proposed framework.

  13. Pseudo-continuous arterial spin labeling MRI study of schizophrenic patients.

    Science.gov (United States)

    Ota, Miho; Ishikawa, Masanori; Sato, Noriko; Okazaki, Mitsutoshi; Maikusa, Norihide; Hori, Hiroaki; Hattori, Kotaro; Teraishi, Toshiya; Ito, Kimiteru; Kunugi, Hiroshi

    2014-04-01

    Arterial spin labeling (ASL) magnetic resonance imaging (MRI) is a novel noninvasive technique that can measure regional cerebral blood flow (rCBF). To our knowledge, few studies have examined rCBF in patients with schizophrenia by ASL-MRI. Here we used pseudo-continuous ASL (pCASL) to examine the structural and functional imaging data in schizophrenic patients, taking the regional cerebral gray matter volume into account. The subjects were 36 patients with schizophrenia and 42 healthy volunteers who underwent 3-tesla MRI, diffusion tensor imaging (DTI), and pCASL. We evaluated the gray matter volume imaging, DTI, and pCASL imaging data in a voxel-by-voxel statistical analysis. The schizophrenia patients showed reduced rCBF in the left prefrontal and bilateral occipital cortices compared to the healthy volunteers. There was a significant reduction of gray matter volume in the left inferior frontal cortex in the schizophrenia patients. With respect to the fractional anisotropy (FA) values in the DTI, there were significant FA reductions in the left superior temporal, left external capsule, and left inferior prefrontal regions in the patients compared to the controls. Our pCASL study with partial volume effect correction together with volumetry and DTI data demonstrated hypoactivity in the left prefrontal area beyond structural abnormalities in schizophrenia patients. There were also hypofunction areas in bilateral occipital cortices, although structural abnormalities were not apparent. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. The "mirror-neuron system" in MS: A 3 tesla fMRI study.

    Science.gov (United States)

    Rocca, M A; Tortorella, P; Ceccarelli, A; Falini, A; Tango, D; Scotti, G; Comi, G; Filippi, M

    2008-01-22

    The mirror neuron system (MNS) is an observation-execution matching system activated, in humans, during action observation, motor learning, and imitation of action. We used functional MRI (fMRI) to investigate the properties of the MNS in patients with multiple sclerosis (MS). Using a 3 tesla scanner, we acquired fMRI in 16 right-handed patients with relapsing-remitting MS and 14 controls. Two motor tasks were studied. The first consisted of repetitive flexion-extension of the last four fingers of the right hand (simple task) alternated to epochs of rest; the second (MNS task) consisted of observation of a movie showing the hand of another subject while performing the same task. During the simple task, compared to controls, patients with MS had more significant activations of the contralateral primary sensorimotor cortex and supplementary motor area. During the MNS task, both groups showed the activation of several visual areas, the infraparietal sulcus, and the inferior frontal gyrus (IFG), bilaterally. The IFG and the visual areas were significantly more active in patients than controls. The between-group interaction analysis showed that in patients with MS, part of the regions of the MNS were more active also during the simple task. This study suggests increased activation of the mirror neuron system in patients with multiple sclerosis (MS) with a normal level of function and widespread CNS damage. The potentialities of this system in facilitating clinical recovery in patients with MS and other neurologic conditions should be investigated.

  15. Serial MRI and MRS studies with unusual findings in Rasmussen's encephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Tuerkdogan-Soezueer, D. [Department of Pediatric Neurology, Institute of Neurological Sciences, Marmara University, Istanbul (Turkey); Oezek, M.M.; Pamir, M.N. [Department of Neurosurgery, Institute of Neurological Sciences, Marmara University, Istanbul (Turkey); Sav, A. [Department of Pathology, Institute of Neurological Sciences, Marmara University, Istanbul (Turkey); Dincer, A. [Radyomar MR Center, Istanbul (Turkey)

    2000-06-01

    Rasmussen's syndrome is characterized by intractable seizures and progressive neuropsychiatric deterioration secondary to unilateral cortical inflammation and tissue destruction. Diagnosis of Rasmussen's syndrome in the early phase depends mainly on the clinical features. Neuroimaging and histopathologic examinations may not be specific during this period. We report a case of Rasmussen's syndrome followed by serial MRI and magnetic resonance spectroscopy (MRS) studies over a 3- to 16-month period. A healthy 6-year-old boy presented with focal motor seizures. An MRI study demonstrated prominent enlargement and T2 hyperintensity of the left mesial temporal lobe and perisylvian region. This early finding evolved to volume loss and later progressive atrophy of the ipsilateral hemisphere when epilepsia partialis continua occurred. Being aware of those early MRI features in a patient with increasing frequency of focal motor seizures should suggest Rasmussen's syndrome. In addition, we found prominently increased myoinositol concentration in atrophic cortex which might reflect increased gliosis in the late period of the disease. (orig.)

  16. Evaluation of group homogeneity during acupuncture stimulation in fMRI studies.

    Science.gov (United States)

    Sun, Jinbo; Qin, Wei; Dong, Minghao; Yuan, Kai; Liu, Jixin; Liu, Peng; Zhang, Yi; von Deneen, Karen M; Tian, Jie

    2010-08-01

    To evaluate the extent of individual differences of functional MRI (fMRI) signal changes induced by acupuncture stimulation. Acupuncture at ST36 and checkerboard stimulation was applied to 16 subjects. We calculated the mean distance using beta values in a generalized linear model (GLM) analysis and employed it to study the group homogeneity by detecting the outliers. A more significant individual difference was presented in acupuncture stimulation compared with visual stimulation through evaluation of the mean distance. From the group results, we found that the activations were more significant in the homogeneous group results. Combining the behavior and fMRI results, there was no direct correlation between deqi index and mean distance in acupuncture stimulation. The deqi index of the outlier was in the normal range and did not differ significantly from others. Traditional group results without removing outliers were not sensitive enough to detect the real acupuncture effect. We suggest that individual difference should be taken into consideration for future acupuncture studies. Also, group analysis paralleled with individual analysis is critical for a full understanding of acupuncture effects. 2010 Wiley-Liss, Inc.

  17. A Pilot Study on Coupling CT and MRI through Use of Semiconductor Nanoparticles

    CERN Document Server

    Getzin, Matthew; Chuang, Yen-Jun; McCallum, Scott; Cong, Wenxiang; Wang, Chao; Pan, Zhengwei; Dai, Guohao; Wang, Ge

    2014-01-01

    CT and MRI are the two most widely used imaging modalities in healthcare, each with its own merits and drawbacks. Combining these techniques in one machine could provide unprecedented resolution and sensitivity in a single scan, and serve as an ideal platform to explore physical coupling of x-ray excitation and magnetic resonance. Molecular probes such as functionalized nanophosphors present an opportunity to demonstrate a synergy between these modalities. However, a simultaneous CT-MRI scanner does not exist at this moment. As a pilot study, here we propose a mechanism in which water solutions containing LiGa5O8:Cr3+ nanophosphors can be excited with x-rays to store energy, and these excited particles may subsequently influence the T2 relaxation times of the solutions so that a difference in T2 can be measured by MRI before and after x-ray excitation. The trends seen in our study suggest that a measurable effect may exist from x-ray excitation of the nanophosphors. However, there are several experimental con...

  18. fMRI analysis for motor paradigms using EMG-based designs: a validation study.

    Science.gov (United States)

    van Rootselaar, Anne-Fleur; Renken, Remco; de Jong, Bauke M; Hoogduin, Johannes M; Tijssen, Marina A J; Maurits, Natasha M

    2007-11-01

    The goal of the present validation study is to show that continuous surface EMG recorded simultaneously with 3T fMRI can be used to identify local brain activity related to (1) motor tasks, and to (2) muscle activity independently of a specific motor task, i.e. spontaneous (abnormal) movements. Five healthy participants performed a motor task, consisting of posture (low EMG power), and slow (medium EMG power) and fast (high EMG power) wrist flexion-extension movements. Brain activation maps derived from a conventional block design analysis (block-only design) were compared with brain activation maps derived using EMG-based regressors: (1) using the continuous EMG power as a single regressor of interest (EMG-only design) to relate motor performance and brain activity, and (2) using EMG power variability as an additional regressor in the fMRI block design analysis to relate movement variability and brain activity (mathematically) independent of the motor task. The agreement between the identified brain areas for the block-only design and the EMG-only design was excellent for all participants. Additionally, we showed that EMG power variability correlated well with activity in brain areas known to be involved in movement modulation. These innovative EMG-fMRI analysis techniques will allow the application of novel motor paradigms. This is an important step forward in the study of both the normally functioning motor system and the pathophysiological mechanisms in movement disorders.

  19. Memory Deficits in Schizophrenia: A Selective Review of Functional Magnetic Resonance Imaging (fMRI Studies

    Directory of Open Access Journals (Sweden)

    Adrienne C. Lahti

    2013-06-01

    Full Text Available Schizophrenia is a complex chronic mental illness that is characterized by positive, negative and cognitive symptoms. Cognitive deficits are most predictive of long-term outcomes, with abnormalities in memory being the most robust finding. The advent of functional magnetic resonance imaging (fMRI has allowed exploring neural correlates of memory deficits in vivo. In this article, we will give a selective review of fMRI studies probing brain regions and functional networks that are thought to be related to abnormal memory performance in two memory systems prominently affected in schizophrenia; working memory and episodic memory. We revisit the classic “hypofrontality” hypothesis of working memory deficits and explore evidence for frontotemporal dysconnectivity underlying episodic memory abnormalities. We conclude that fMRI studies of memory deficits in schizophrenia are far from universal. However, the current literature does suggest that alterations are not isolated to a few brain regions, but are characterized by abnormalities within large-scale brain networks.

  20. Silent speechreading in the absence of scanner noise: an event-related fMRI study.

    Science.gov (United States)

    MacSweeney, M; Amaro, E; Calvert, G A; Campbell, R; David, A S; McGuire, P; Williams, S C; Woll, B; Brammer, M J

    2000-06-05

    In a previous study we used functional magnetic resonance imaging (fMRI) to demonstrate activation in auditory cortex during silent speechreading. Since image acquisition during fMRI generates acoustic noise, this pattern of activation could have reflected an interaction between background scanner noise and the visual lip-read stimuli. In this study we employed an event-related fMRI design which allowed us to measure activation during speechreading in the absence of acoustic scanner noise. In the experimental condition, hearing subjects were required to speechread random numbers from a silent speaker. In the control condition subjects watched a static image of the same speaker with mouth closed and were required to subvocally count an intermittent visual cue. A single volume of images was collected to coincide with the estimated peak of the blood oxygen level dependent (BOLD) response to these stimuli across multiple baseline and experimental trials. Silent speechreading led to greater activation in lateral temporal cortex relative to the control condition. This indicates that activation of auditory areas during silent speechreading is not a function of acoustic scanner noise and confirms that silent speechreading engages similar regions of auditory cortex as listening to speech.

  1. The spinning dancer illusion and spontaneous brain fluctuations: an fMRI study.

    Science.gov (United States)

    Bernal, Byron; Guillen, Magno; Marquez, Juan Camilo

    2014-01-01

    The brain activation associated with the Spinning Dancer Illusion, a cognitive visual illusion, is not entirely known. Inferences from other study modalities point to the involvement of the dorso-parieto-occipital areas in the spontaneous switchings of perception in other bistable non-kinetic illusions. fMRI is a mature technique used to investigate the brain responses associated with mental changes. Resting-state fMRI is a novel technique that may help ascertain the effects of spontaneous brain changes in the top-down regulation of visual perception. The purpose of this report is to describe the brain activation associated with the subjective illusory changes of perception of a kinetic bistable stimulus. We hypothesize that there is a relationship between the perception phases with the very slow cortical spontaneous fluctuations, recently described. A single normal subject who was trained to produce voluntarily perception phase switches underwent a series of fMRI studies whose blocks were either defined post-hoc or accordingly with a predefined timeline to assess spontaneous and voluntarily evoked visual perception switches, respectively. Correlation of findings with resting-state fMRI and independent component analysis of the task series was sought. Phases of the rotation direction were found associated with right parietal activity. Independent component analysis of the task series and their comparison with basal resting-state components suggest that this activity is related to one of the very slow spontaneous brain fluctuations. The spontaneous fluctuations of the cortical activity may explain the subjective changes in perception of direction of the Spinning Dancer Illusion. This observation is a proof-of-principle, suggesting that the spontaneous brain oscillations may influence top-down sensory regulation.

  2. Characteristics of acute groin injuries in the adductor muscles: A detailed MRI study in athletes.

    Science.gov (United States)

    Serner, A; Weir, A; Tol, J L; Thorborg, K; Roemer, F; Guermazi, A; Yamashiro, E; Hölmich, P

    2017-06-26

    Acute adductor injuries account for the majority of acute groin injuries; however, little is known about specific injury characteristics, which could be important for the understanding of etiology and management of these injuries. The study aim was to describe acute adductor injuries in athletes using magnetic resonance imaging (MRI). Male athletes with acute groin pain and an MRI confirmed acute adductor muscle injury were prospectively included. MRI was performed within 7 days of injury using a standardized protocol and a reliable assessment approach. 156 athletes presented with acute groin pain of which 71 athletes were included, median age 27 years (range 18-37). There were 46 isolated muscle injuries and 25 athletes with multiple adductor injuries. In total, 111 acute adductor muscle injuries were recorded; 62 adductor longus, 18 adductor brevis, 17 pectineus, 9 obturator externus, 4 gracilis, and 1 adductor magnus injury. Adductor longus injuries occurred at three main injury locations; proximal insertion (26%), intramuscular musculo-tendinous junction (MTJ) of the proximal tendon (26%) and the MTJ of the distal tendon (37%). Intramuscular tendon injury was seen in one case. At the proximal insertion, 12 of 16 injuries were complete avulsions. This study shows that acute adductor injuries generally occur in isolation from other muscle groups. Adductor longus is the most frequently injured muscle in isolation and in combination with other adductor muscle injuries. Three characteristic adductor longus injury locations were observed on MRI, with avulsion injuries accounting for three-quarters of injuries at the proximal insertion, and intramuscular tendon injury was uncommon. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Meta-Analysis of fMRI Studies of Disruptive Behavior Disorders.

    Science.gov (United States)

    Alegria, Analucia A; Radua, Joaquim; Rubia, Katya

    2016-11-01

    Functional magnetic resonance imaging (fMRI) studies in conduct disorder and in oppositional defiant disorder have shown inconsistencies. The aim of this meta-analysis of fMRI studies in disruptive behavior disorders was to establish the most consistent brain dysfunctions and to address task- and subtype-related heterogeneity. Web-based publication databases were searched to conduct a meta-analysis of all whole-brain fMRI studies of youths with disruptive behavior disorder or conduct problems up to August 2015. Sub-meta-analyses were conducted in functional subdomains of emotion processing; in cool and hot executive functions, which refer to goal-directed higher cognitive functions with and without motivational and affective significance; and in a subgroup of youths with additional psychopathic traits. The authors performed a meta-analysis of voxel-based group differences in functional activation using the anisotropic effect-size version of seed-based d mapping. Across 24 studies, 338 youths with disruptive behavior disorder or conduct problems relative to 298 typically developing youths had consistent underactivation in the rostral and dorsal anterior cingulate and in the medial prefrontal cortex and ventral caudate. Sub-meta-analyses of fMRI studies showed that medial fronto-cingulate dysfunction was driven by hot executive function. The sub-meta-analysis of emotion processing fMRI studies showed the most consistent underactivation in the dorsolateral prefrontal cortex and temporal pole, while cool executive functions were associated with temporal abnormalities. Youths with disruptive behavior disorder with psychopathic traits showed reduced ventromedial prefrontal-hypothalamic-limbic activation, but they also showed hyperactivation in cognitive control mediating dorsolateral prefrontal-dorsal and striatal regions. The findings show that the most consistent dysfunction in youths with disruptive behavior disorder is in the rostro-dorsomedial, fronto-cingulate, and

  4. Genetic correlates of brain aging on MRI and cognitive test measures: a genome-wide association and linkage analysis in the Framingham study

    Science.gov (United States)

    Seshadri, Sudha; DeStefano, Anita L; Au, Rhoda; Massaro, Joseph M; Beiser, Alexa S; Kelly-Hayes, Margaret; Kase, Carlos S; D'Agostino, Ralph B; DeCarli, Charles; Atwood, Larry D; Wolf, Philip A

    2007-01-01

    Background Brain magnetic resonance imaging (MRI) and cognitive tests can identify heritable endophenotypes associated with an increased risk of developing stroke, dementia and Alzheimer's disease (AD). We conducted a genome-wide association (GWA) and linkage analysis exploring the genetic basis of these endophenotypes in a community-based sample. Methods A total of 705 stroke- and dementia-free Framingham participants (age 62 +9 yrs, 50% male) who underwent volumetric brain MRI and cognitive testing (1999–2002) were genotyped. We used linear models adjusting for first degree relationships via generalized estimating equations (GEE) and family based association tests (FBAT) in additive models to relate qualifying single nucleotide polymorphisms (SNPs, 70,987 autosomal on Affymetrix 100K Human Gene Chip with minor allele frequency ≥ 0.10, genotypic call rate ≥ 0.80, and Hardy-Weinberg equilibrium p-value ≥ 0.001) to multivariable-adjusted residuals of 9 MRI measures including total cerebral brain (TCBV), lobar, ventricular and white matter hyperintensity (WMH) volumes, and 6 cognitive factors/tests assessing verbal and visuospatial memory, visual scanning and motor speed, reading, abstract reasoning and naming. We determined multipoint identity-by-descent utilizing 10,592 informative SNPs and 613 short tandem repeats and used variance component analyses to compute LOD scores. Results The strongest gene-phenotype association in FBAT analyses was between SORL1 (rs1131497; p = 3.2 × 10-6) and abstract reasoning, and in GEE analyses between CDH4 (rs1970546; p = 3.7 × 10-8) and TCBV. SORL1 plays a role in amyloid precursor protein processing and has been associated with the risk of AD. Among the 50 strongest associations (25 each by GEE and FBAT) were other biologically interesting genes. Polymorphisms within 28 of 163 candidate genes for stroke, AD and memory impairment were associated with the endophenotypes studied at p < 0.001. We confirmed our previously

  5. Brain and Behavior in Children with 22Q11.2 Deletion Syndrome: A Volumetric and Voxel-Based Morphometry MRI Study

    Science.gov (United States)

    Campbell, Linda E.; Daly, Eileen; Toal, Fiona; Stevens, Angela; Azuma, Rayna; Catani, Marco; Ng, Virginia; Van Amelsvoort, Therese; Chitnis, Xavier; Cutter, William; Murphy, Declan G. M.; Murphy, Kieran C.

    2006-01-01

    In people with velo-cardio-facial syndrome [or 22q11.2 deletion syndrome (22qDS)], a single interstitial deletion of chromosome 22q11.2 causes a wide spectrum of cognitive deficits ranging from global learning difficulties to specific cognitive deficits. People with 22qDS are also at high risk of developing attention-deficit hyperactivity disorder…

  6. Brain and behaviour in children with 22q11.2 deletion syndrome: a volumetric and voxel-based morphometry MRI study

    NARCIS (Netherlands)

    L.E. Campbell; E. Daly; F. Toal; A. Stevens; R. Azuma; M. Catani; V. Ng; T. van Amelsvoort; X. Chitnis; W. Cutter; D.G.M. Murphy; K.C. Murphy

    2006-01-01

    In people with velo-cardio-facial syndrome [or 22q11.2 deletion syndrome (22qDS)], a single interstitial deletion of chromosome 22q11.2 causes a wide spectrum of cognitive deficits ranging from global learning difficulties to specific cognitive deficits. People with 22qDS are also at high risk of de

  7. Brain scale-free properties in awake rest and NREM sleep: a simultaneous EEG/fMRI study.

    Science.gov (United States)

    Lei, Xu; Wang, Yulin; Yuan, Hong; Chen, Antao

    2015-03-01

    Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) studies revealed that spontaneous activity in the brain has scale-invariant properties, as indicated by a frequency spectrum that follows a power-law distribution. However, current knowledge about the exact relationship between scaling properties in EEG and fMRI signals is very limited. To address this question, we collected simultaneous EEG-fMRI data in healthy individuals during resting wakefulness and non-rapid eye movement (NREM) sleep. For either of these conditions, we found that both EEG and fMRI power spectra followed a power-law distribution. Furthermore, the EEG and fMRI scaling exponents were highly variable across subjects, and sensitive to the choice of reference and nuisance variables in EEG and fMRI data, respectively. Interestingly, the EEG exponent of the whole brain selectively corresponded to the fMRI exponent of the thalamus during NREM sleep. Together, our findings suggest that scale-free brain activity is characterized by robust temporal structures and behavioral significance. This motivates future studies to unravel its physiological mechanisms, as well as its relevance to behavior.

  8. MR-Imaging of teeth and periodontal apparatus: an experimental study comparing high-resolution MRI with MDCT and CBCT.

    Science.gov (United States)

    Gaudino, Chiara; Cosgarea, Raluca; Heiland, Sabine; Csernus, Réka; Beomonte Zobel, Bruno; Pham, Mirko; Kim, Ti-Sun; Bendszus, Martin; Rohde, Stefan

    2011-12-01

    The aim of this study was (1) to assess the ability of magnetic resonance imaging (MRI) to visualize dental and periodontal structures and (2) to compare findings with multidetector computed tomography (MDCT) and cone beam CT (CBCT). Four porcine mandibles were examined with (1) 3T-MRI, (2) MDCT and (3) CBCT. Two observers independently reviewed MR, MDCT and CBCT images and assessed image quality of different dental and periodontal structures. To assess quantitatively the accuracy of the different imaging technique, both observers measured burr holes, previously drilled in the mandibles. Dental structures, e.g. teeth roots, pulpa chamber and dentin, were imaged accurately with all imaging sources. Periodontal space and cortical/trabecular bone were better visualized by MRI (p < 0.001). MRI could excellently display the lamina dura, not detectable with MDCT and only inconstant visible with CBCT (p < 0.001). Burr hole measurements were highly precise with all imaging techniques. This experimental study shows the diagnostic feasibility of MRI in visualization of teeth and periodontal anatomy. Detection of periodontal structures was significantly better with MRI than with MDCT or CBCT. Prospective trials have to evaluate further the potential benefit of MRI in a clinical setting.

  9. MR-Imaging of teeth and periodontal apparatus: an experimental study comparing high-resolution MRI with MDCT and CBCT

    Energy Technology Data Exchange (ETDEWEB)

    Gaudino, Chiara; Csernus, Reka; Pham, Mirko; Bendszus, Martin; Rohde, Stefan [University Hospital Heidelberg, Department of Neuroradiology, Heidelberg (Germany); Cosgarea, Raluca; Kim, Ti-Sun [University Hospital Heidelberg, Department of Periodontology, Heidelberg (Germany); Heiland, Sabine [University Hospital Heidelberg, Section of Experimental Radiology, Heidelberg (Germany); Beomonte Zobel, Bruno [University Campus Bio-Medico of Rome, Department of Radiology, Interdisciplinary Center for Biomedical Research, Rome (Italy)

    2011-12-15

    The aim of this study was (1) to assess the ability of magnetic resonance imaging (MRI) to visualize dental and periodontal structures and (2) to compare findings with multidetector computed tomography (MDCT) and cone beam CT (CBCT). Four porcine mandibles were examined with (1) 3T-MRI, (2) MDCT and (3) CBCT. Two observers independently reviewed MR, MDCT and CBCT images and assessed image quality of different dental and periodontal structures. To assess quantitatively the accuracy of the different imaging technique, both observers measured burr holes, previously drilled in the mandibles. Dental structures, e.g. teeth roots, pulpa chamber and dentin, were imaged accurately with all imaging sources. Periodontal space and cortical/trabecular bone were better visualized by MRI (p < 0.001). MRI could excellently display the lamina dura, not detectable with MDCT and only inconstant visible with CBCT (p < 0.001). Burr hole measurements were highly precise with all imaging techniques. This experimental study shows the diagnostic feasibility of MRI in visualization of teeth and periodontal anatomy. Detection of periodontal structures was significantly better with MRI than with MDCT or CBCT. Prospective trials have to evaluate further the potential benefit of MRI in a clinical setting. (orig.)

  10. A Pilot Study of Diffusion-Weighted MRI in Patients Undergoing Neoadjuvant Chemoradiation for Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Kyle C. Cuneo

    2014-10-01

    Full Text Available PURPOSE: In the current study we examined the ability of diffusion MRI (dMRI to predict pathologic response in pancreatic cancer patients receiving neoadjuvant chemoradiation. METHODS: We performed a prospective pilot study of dMRI in patients with resectable pancreatic cancer. Patients underwent dMRI prior to neoadjuvant chemoradiation. Surgical specimens were graded according to the percent tumor cell destruction. Apparent diffusion coefficient (ADC maps were used to generate whole-tumor derived ADC histogram distributions and mean ADC values. The primary objective of the study was to correlate ADC parameters with pathologic and CT response. RESULTS: Ten of the 12 patients enrolled on the study completed chemoradiation and had surgery. Three were found to be unresectable at the time of surgery and no specimen was obtained. Out of the 7 patients who underwent pancreaticoduodenectomy, 3 had a grade III histopathologic response (>90% tumor cell destruction, 2 had a grade IIB response (51% to 90% tumor cell destruction, 1 had a grade IIA response (11% to 50% tumor cell destruction, and 1 had a grade I response (>90% viable tumor. Median survival for patients with a grade III response, grade I-II response, and unresectable disease were 25.6, 18.7, and 6.1 months, respectively. There was a significant correlation between pre-treatment mean tumor ADC values and the amount of tumor cell destruction after chemoradiation with a Pearson correlation coefficient of 0.94 (P = .001. Mean pre-treatment ADC was 161 × 10−5 mm2/s (n = 3 in responding patients (>90% tumor cell destruction compared to 125 × 10−5 mm2/s (n = 4 in non-responding patients (>10% viable tumor. CT imaging showed no significant change in tumor size in responders or non-responders. CONCLUSIONS: dMRI may be useful to predict response to chemoradiation in pancreatic cancer. In our study, tumors with a low ADC mean value at baseline responded poorly to standard chemoradiation and

  11. Correction: Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents

    Science.gov (United States)

    Hachani, Roxanne; Lowdell, Mark; Birchall, Martin; Hervault, Aziliz; Mertz, Damien; Begin-Colin, Sylvie; Thanh, Nguy&Ecirtil; N. Thi&Cmb. B. Dot; Kim

    2016-02-01

    Correction for `Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents' by Roxanne Hachani et al., Nanoscale, 2015, DOI: 10.1039/c5nr03867g.

  12. MRI and low back pain

    Science.gov (United States)

    Backache - MRI; Low back pain - MRI; Lumbar pain - MRI; Back strain - MRI; Lumbar radiculopathy - MRI; Herniated intervertebral disk - MRI; Prolapsed intervertebral disk - MRI; Slipped disk - MRI; Ruptured ...

  13. Disorder-specific volumetric brain difference in adolescent major depressive disorder and bipolar depression.

    Science.gov (United States)

    MacMaster, Frank P; Carrey, Normand; Langevin, Lisa Marie; Jaworska, Natalia; Crawford, Susan

    2014-03-01

    Structural abnormalities in frontal, limbic and subcortical regions have been noted in adults with both major depressive disorder (MDD) and bipolar disorder (BD). In the current study, we examined regional brain morphology in youth with MDD and BD as compared to controls. Regional brain volumes were measured in 32 MDD subjects (15.7 ± 2.1 years), 14 BD subjects (16.0 ± 2.4 years) and 22 healthy controls (16.0 ± 2.8 years) using magnetic resonance imaging (MRI). Regions of interest included the hippocampus, dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), caudate, putamen and thalamus. Volumetric differences between groups were significant (F26,80 = 1.80, p = 0.02). Post-hoc analyses indicated that individuals with MDD showed reduced left hippocampus volumes (p = 0.048) as well as right ACC white and gray matter volumes (p = 0.003; p = 0.01) compared to controls. BD participants also displayed reduced left hippocampal and right/left putamen volumes compared to controls (p < 0.001; p = 0.015; p = 0.046 respectively). Interestingly, right and left ACC white matter volumes were smaller in MDD than in BD participants (p = 0.019; p = 0.045 respectively). No volumetric group differences were observed for the DLPFC and thalamus. Discriminant analysis was able to correctly classify 81.0 % of subjects as having BD or as MDD based on imaging data. Confirmation and extension of our findings requires larger sample sizes. Our findings provide new evidence of distinct, specific regional brain volumetric differences between MDD and BD that may be used to distinguish the two disorders.

  14. Body growth and brain development in premature babies: an MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Tzarouchi, Loukia C.; Zikou, Anastasia; Kosta, Paraskevi; Argyropoulou, Maria I. [University of Ioannina, Department of Radiology, Medical School, Ioannina (Greece); Drougia, Aikaterini; Andronikou, Styliani [University of Ioannina, Intensive Care Unit, Child Health Department, Medical School, Ioannina (Greece); Astrakas, Loukas G. [University of Ioannina, Department of Medical Physics, Medical School, Ioannina (Greece)

    2014-03-15

    Prematurity and intrauterine growth restriction are associated with neurodevelopmental disabilities. To assess the relationship between growth status and regional brain volume (rBV) and white matter microstructure in premature babies at around term-equivalent age. Premature infants (n= 27) of gestational age (GA): 29.8 ± 2.1 weeks, with normal brain MRI scans were studied at corrected age: 41.2 ± 1.4 weeks. The infants were divided into three groups: 1) appropriate for GA at birth and at the time of MRI (AGA), 2) small for GA at birth with catch-up growth at the time of MRI (SGA{sub a}) and 3) small for GA at birth with failure of catch-up growth at the time of MRI (SGA{sub b}). The T1-weighted images were segmented into 90 rBVs using the SPM8/IBASPM and differences among groups were assessed. Fractional anisotropy (FA) was measured bilaterally in 15 fiber tracts and its relationship to GA and somatometric measurements was explored. Lower rBV was observed in SGA{sub b} in superior and anterior brain areas. A positive correlation was demonstrated between FA and head circumference and body weight. Body weight was the only significant predictor for FA (P< 0.05). In premature babies, catch-up growth is associated with regional brain volume catch-up at around term-equivalent age, starting from the brain areas maturing first. Body weight seems to be a strong predictor associated with WM microstructure in brain areas related to attention, language, cognition, memory and executing functioning. (orig.)

  15. Cerebral Functional Reorganization in Ischemic Stroke after Repetitive Transcranial Magnetic Stimulation: An fMRI Study.

    Science.gov (United States)

    Li, Jing; Zhang, Xue-Wei; Zuo, Zhen-Tao; Lu, Jie; Meng, Chun-Ling; Fang, Hong-Ying; Xue, Rong; Fan, Yong; Guan, Yu-Zhou; Zhang, Wei-Hong

    2016-12-01

    Our study aimed to figure out brain functional reorganization evidence after repetitive transcranial magnetic stimulation (rTMS) using the resting-state functional magnetic resonance imaging (rsfMRI). Twelve patients with unilateral subcortex lesion in the middle cerebral artery territory were recruited. Seven of them received a 10-day rTMS treatment beginning at about 5 days after stroke onset. The remaining five received sham treatment. RsfMRI and motor functional scores were obtained before and after rTMS or sham rTMS. The rTMS group showed motor recovery according to the behavioral testing scores, while there was no significant difference of motor functional scores in the sham group before and after the sham rTMS. It proved that rTMS facilitates motor recovery of early ischemic stroke patients. Compared with the sham, the rTMS treatment group achieved increased functional connectivity (FC) between ipsilesional M1 and contralesional M1, supplementary motor area, bilateral thalamus, and contralesional postcentral gyrus. And decreased FC was found between ipsilesional M1 and ipsilesional M1, postcentral gyrus and inferior and middle frontal gyrus. Increased or decreased FC detected by rsfMRI is an important finding to understand the mechanism of brain functional reorganization. The rTMS treatment is a promising therapeutic approach to facilitate motor rehabilitation for early stroke patients. © 2016 John Wiley & Sons Ltd.

  16. Functional versus Nonfunctional Rehabilitation in Chronic Ischemic Stroke: Evidences from a Randomized Functional MRI Study

    Directory of Open Access Journals (Sweden)

    Maristela C. X. Pelicioni

    2016-01-01

    Full Text Available Motor rehabilitation of stroke survivors may include functional and/or nonfunctional strategy. The present study aimed to compare the effect of these two rehabilitation strategies by means of clinical scales and functional Magnetic Resonance Imaging (fMRI. Twelve hemiparetic chronic stroke patients were selected. Patients were randomly assigned a nonfunctional (NFS or functional (FS rehabilitation scheme. Clinical scales (Fugl-Meyer, ARA test, and modified Barthel and fMRI were applied at four moments: before rehabilitation (P1 and immediately after (P2, 1 month after (P3, and three months after (P4 the end of rehabilitation. The NFS group improved significantly and exclusively their Fugl-Meyer scores at P2, P3, and P4, when compared to P1. On the other hand, the FS group increased significantly in Fugl-Meyer at P2, when compared to P1, and also in their ARA and Barthel scores. fMRI inspection at the individual level revealed that both rehabilitation schemes most often led to decreased activation sparseness, decreased activity of contralesional M1, increased asymmetry of M1 activity to the ipsilesional side, decreased perilesional activity, and decreased SMA activity. Increased M1 asymmetry with rehabilitation was also confirmed by Lateralization Indexes. Our clinical analysis revealed subtle differences between FS and NFS.

  17. Brain Activities Associated with Graphic Emoticons: An fMRI Study

    Science.gov (United States)

    Yuasa, Masahide; Saito, Keiichi; Mukawa, Naoki

    In this paper, we describe the brain activities that are associated with graphic emoticons by using functional MRI (fMRI). We use various types of faces from abstract to photorealistic in computer network applications. A graphics emoticon is an abstract face in communication over computer network. In this research, we created various graphic emoticons for the fMRI study and the graphic emoticons were classified according to friendliness and level of arousal. We investigated the brain activities of participants who were required to evaluate the emotional valence of the graphic emoticons (happy or sad). The experimental results showed that not only the right inferior frontal gyrus and the cingulate gyrus, but also the inferior and middle temporal gyrus and the fusiform gyrus, were found to be activated during the experiment. Forthermore, it is possible that the activation of the right inferior frontal gyrus and the cingulate gyrus is related to the type of abstract face. Since the inferior and middle temporal gyrus were activated, even though the graphic emoticons are static, we may perceive graphic emoticons as dynamic and living agents. Moreover, it is believed that text and graphics emoticons play an important role in enriching communication among users.

  18. The Use of Functional MRI to Study Appetite Control in the CNS

    Directory of Open Access Journals (Sweden)

    Akila De Silva

    2012-01-01

    Full Text Available Functional magnetic resonance imaging (fMRI has provided the opportunity to safely investigate the workings of the human brain. This paper focuses on its use in the field of human appetitive behaviour and its impact in obesity research. In the present absence of any safe or effective centrally acting appetite suppressants, a better understanding of how appetite is controlled is vital for the development of new antiobesity pharmacotherapies. Early functional imaging techniques revealed an attenuation of brain reward area activity in response to visual food stimuli when humans are fed—in other words, the physiological state of hunger somehow increases the appeal value of food. Later studies have investigated the action of appetite modulating hormones on the fMRI signal, showing how the attenuation of brain reward region activity that follows feeding can be recreated in the fasted state by the administration of anorectic gut hormones. Furthermore, differences in brain activity between obese and lean individuals have provided clues about the possible aetiology of overeating. The hypothalamus acts as a central gateway modulating homeostatic and nonhomeostatic drives to eat. As fMRI techniques constantly improve, functional data regarding the role of this small but hugely important structure in appetite control is emerging.

  19. Spinal epidural abscess with gadolinium-enhanced MRI: serial follow-up studies and clinical correlations

    Energy Technology Data Exchange (ETDEWEB)

    Sadato, N. (Dept. of Diagnostic Radiology, Maryland Univ. Medical System, Baltimore, MD (United States)); Numaguchi, Y. (Dept. of Diagnostic Radiology, Maryland Univ. Medical System, Baltimore, MD (United States)); Rigamonti, D. (Dept. of Neurological Surgery, Maryland Univ. Medical System, Baltimore, MD (United States)); Kodama, T. (Dept. of Diagnostic Radiology, Maryland Univ. Medical System, Baltimore, MD (United States)); Nussbaum, E. (Dept. of Neurological Surgery, Maryland Univ. Medical System, Baltimore, MD (United States)); Sato, S. (Dept. of Diagnostic Radiology, Maryland Univ. Medical System, Baltimore, MD (United States)); Rothman, M. (Dept. of Diagnostic Radiology, Maryland Univ. Medical System, Baltimore, MD (United States))

    1994-01-01

    We reviewed serial MRI with and without gadolinium-DTPA in eight patients with spinal epidural abscess and correlated the findings and the clinical manifestations. In four patients, diffuse abscesses spanned four vertebral bodies or more; the others had focal abscesses associated with osteomyelitis and/or diskitis. In three of the four patients with diffuse abscesses, MRI (NCMRI) showed diffuse encasement of the subarachnoid space. Contrast-enhanced MRI (CEMRI) demonstrated linear enhancement surrounding unenhanced pus. In the four patients with focal abscesses, CEMR delineated the inflammatory process more clearly than NCMR. On follow-up studies, decrease in abscess size and better visualization of the subarachnoid space correlated with clinical improvement in both diffuse and focal abscesses. Despite clinical improvement, contrast enhancement persisted in the disk or epidural space of three patients, and was thought to represent chronic granulomatous change or postsurgical scar. CEMR is very valvable for the initial diagnosis of an epidural abscess, particularly if it involves lengthy segments. During follow-up, CEMR can document responses to therapy, and provide information for determining appropriate treatment. (orig.)

  20. Quantitative NumART2* mapping in functional MRI studies at 1.5 T.

    Science.gov (United States)

    Hagberg, Gisela E; Bianciardi, Marta; Patria, Fabiana; Indovina, Iole

    2003-12-01

    Quantitative mapping of the effective transverse relaxation time, T2* and proton density was performed in a motor activation functional MRI (fMRI) study using multi-echo, echo planar imaging (EPI) and NumART2* (Numerical Algorithm for Real time T2*). Comparisons between NumART2* and conventional single echo EPI with an echo time of 64 ms were performed for five healthy participants examined twice. Simulations were also performed to address specific issues associated with the two techniques, such as echo time-dependent signal variation. While the single echo contrast varied with the baseline T2* value, relative changes in T2* remained unaffected. Statistical analysis of the T2* maps yielded fMRI activation patterns with an improved statistical detection relative to conventional EPI but with less activated voxels, suggesting that NumART2* has superior spatial specificity. Two effects, inflow and dephasing, that may explain this finding were investigated. Particularly, a statistically significant increase in proton density was found in a brain area that was detected as activated by conventional EPI but not by NumART2* while no such changes were observed in brain areas that showed stimulus correlated signal changes on T2* maps.

  1. Pseudo-subarachnoid hemorrhage in cryptococcal meningitis: MRI findings and pathological study.

    Science.gov (United States)

    Nakae, Yoshiharu; Kudo, Yosuke; Yamamoto, Ryoo; Johkura, Ken

    2013-12-01

    A pseudo-subarachnoid hemorrhage (pseudo-SAH) is a brain computed tomography (CT) finding that is seen as high-density areas along the basal cisterns, the sylvian vallecula/fissure, the tentorium cerebella, or the cortical sulci, although no SAH is found upon lumbar puncture or at autopsy. There is one report of cryptococcal meningitis presenting as pseudo-SAH, but the explanatory pathology is unknown. A 68-year-old woman with headache, fever, decreased hearing, and decreased vision was admitted to our hospital. Cerebrospinal fluid India ink staining was positive, and culture yielded Cryptococcus neoformans. Cryptococcus meningitis was diagnosed. Head CT and magnetic resonance imaging (MRI) showed no abnormality upon admission, but 1 month later, head CT showed iso- to high-density areas within the sulci, and fluid-attenuated inversion recovery MRI showed high signal intensity within the convexity sulci resembling an SAH. These areas were enhanced by gadolinium on T1-weighted images. Lumber puncture produced no evidence of bleeding. Biopsy of the left frontal lobe sulci was performed, and histopathological study revealed inflammation and granulation with capsules of C. neoformans. The inflammation and granulation at the convexity sulci induced by the C. neoformans infection explained the pseudo-SAH in this case. Physicians should be aware that cryptococcal meningitis-induced inflammation and granulation at the sulci can present as pseudo-SAH on CT and MRI.

  2. Early Reversible Ischemia of Femoral Head Epiphysis in Piglets on Gadolinium-enhanced MRI: An experimental study

    Institute of Scientific and Technical Information of China (English)

    LI Xiaoming; HU Junwu; ZHEN Hongwei; TANG Lihua; XU Anhui

    2006-01-01

    The purpose of this study is to demonstrate if Gadolinium-enhanced MRI can detect early reversible ischemia of the femoral head epiphysis caused by hip hyper-abduction in piglets. Between 3 and 6 h consistent hyper-abduction, gadolinium-enhanced MRI was performed in 20 femoral heads of 10 piglets. After completion of MRI scan, the piglets were allowed to ambulate freely for 1 or 7 days and re-imaged. The enhanced-MRI results of epiphyseal and physeal cartilage and the secondary center of ossification were observed. MRI appearances and histological findings were compared. On Gadolinium-enhanced MRI, decreased or absent enhancement was seen in 14 cartilaginous epiphyses of all 20 femoral heads. Reperfusion was completed in 10 of 14 femoral heads after one day of ambulation and in the rest 4 after 7 days of ambulation. Gadolinium-enhanced MRI can identify early ischemia and its reversal of the capital femoral epiphysis induced by hip hyper-abduction.

  3. Variability of ischiofemoral space dimensions with changes in hip flexion: an MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Adam C.; Howe, Benjamin M. [Mayo Clinic College of Medicine, Department of Radiology, Rochester, MN (United States); Hollman, John H.; Finnoff, Jonathan T. [Mayo Clinic College of Medicine, Department of Physical Medicine and Rehabilitation, Rochester, MN (United States)

    2017-01-15

    The primary aim of this study was to determine if ischiofemoral space (IFS) dimensions vary with changes in hip flexion as a result of placing a bolster behind the knees during magnetic resonance imaging (MRI). A secondary aim was to determine if IFS dimensions vary between supine and prone hip neutral positions. The study employed a prospective design. Sports medicine center within a tertiary care institution. Five male and five female adult subjects (age mean = 29.2, range = 23-35; body mass index [BMI] mean = 23.5, range = 19.5-26.6) were recruited to participate in the study. An axial, T1-weighted MRI sequence of the pelvis was obtained of each subject in a supine position with their hips in neutral and flexed positions, and in a prone position with their hips in neutral position. Supine hip flexion was induced by placing a standard, 9-cm-diameter MRI knee bolster under the subject's knees. The order of image acquisition (supine hip neutral, supine hip flexed, prone hip neutral) was randomized. The IFS dimensions were then measured on a separate workstation. The investigator performing the IFS measurements was blinded to the subject position for each image. The main outcome measurements were the IFS dimensions acquired with MRI. The mean IFS dimensions in the prone position were 28.25 mm (SD 5.91 mm, standard error mean 1.32 mm). In the supine hip neutral position, the IFS dimensions were 25.1 (SD 5.6) mm. The mean difference between the two positions of 3.15 (3.6) mm was statistically significant (95 % CI of the difference = 1.4 to 4.8 mm, t{sub 19} = 3.911, p =.001). The mean IFS dimensions in the hip flexed position were 36.9 (SD 5.7) mm. The mean difference between the two supine positions of 11.8 (4.1) mm was statistically significant (95 % CI of the difference = 9.9 to 13.7 mm, t{sub 19} = 12.716, p <.001). Our findings demonstrate that the IFS measurements obtained with MRI are dependent upon patient positioning with respect to hip flexion and

  4. Volumetric and shape analyses of subcortical structures in United States service members with mild traumatic brain injury.

    Science.gov (United States)

    Tate, David F; Wade, Benjamin S C; Velez, Carmen S; Drennon, Ann Marie; Bolzenius, Jacob; Gutman, Boris A; Thompson, Paul M; Lewis, Jeffrey D; Wilde, Elisabeth A; Bigler, Erin D; Shenton, Martha E; Ritter, John L; York, Gerald E

    2016-10-01

    Mild traumatic brain injury (mTBI) is a significant health concern. The majority who sustain mTBI recover, although ~20 % continue to experience symptoms that can interfere with quality of life. Accordingly, there is a critical need to improve diagnosis, prognostic accuracy, and monitoring (recovery trajectory over time) of mTBI. Volumetric magnetic resonance imaging (MRI) has been successfully utilized to examine TBI. One promising improvement over standard volumetric approaches is to analyze high-dimensional shape characteristics of brain structures. In this study, subcortical shape and volume in 76 Service Members with mTBI was compared to 59 Service Members with orthopedic injury (OI) and 17 with post-traumatic stress disorder (PTSD) only. FreeSurfer was used to quantify structures from T1-weighted 3 T MRI data. Radial distance (RD) and Jacobian determinant (JD) were defined vertex-wise on parametric mesh-representations of subcortical structures. Linear regression was used to model associations between morphometry (volume and shape), TBI status, and time since injury (TSI) correcting for age, sex, intracranial volume, and level of education. Volumetric data was not significantly different between the groups. JD was significantly increased in the accumbens and caudate and significantly reduced in the thalamus of mTBI participants. Additional significant associations were noted between RD of the amygdala and TSI. Positive trend-level associations between TSI and the amygdala and accumbens were observed, while a negative association was observed for third ventricle. Our findings may aid in the initial diagnosis of mTBI, provide biological targets for functional examination, and elucidate regions that may continue remodeling after injury.

  5. Volumetric-modulated arc therapy vs conventional fixed-field intensity-modulated radiotherapy in a whole-ventricular irradiation: A planning comparison study

    Energy Technology Data Exchange (ETDEWEB)

    Sakanaka, Katsuyuki [Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto (Japan); Mizowaki, Takashi, E-mail: mizo@kuhp.kyoto-u.ac.jp [Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto (Japan); Sato, Sayaka; Ogura, Kengo; Hiraoka, Masahiro [Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto (Japan)

    2013-07-01

    This study evaluated the dosimetric difference between volumetric-modulated arc therapy (VMAT) and conventional fixed-field intensity-modulated radiotherapy (cIMRT) in whole-ventricular irradiation. Computed tomography simulation data for 13 patients were acquired to create plans for VMAT and cIMRT. In both plans, the same median dose (100% = 24 Gy) was prescribed to the planning target volume (PTV), which comprised a tumor bed and whole ventricles. During optimization, doses to the normal brain and body were reduced, provided that the dose constraints of the target coverage were satisfied. The dose-volume indices of the PTV, normal brain, and body as well as monitor units were compared between the 2 techniques by using paired t-tests. The results showed no significant difference in the homogeneity index (0.064 vs 0.065; p = 0.824) of the PTV and conformation number (0.78 vs 0.77; p = 0.065) between the 2 techniques. In the normal brain and body, the dose-volume indices showed no significant difference between the 2 techniques, except for an increase in the volume receiving a low dose in VMAT; the absolute volume of the normal brain and body receiving 1 Gy of radiation significantly increased in VMAT by 1.6% and 8.3%, respectively, compared with that in cIMRT (1044 vs 1028 mL for the normal brain and 3079.2 vs 2823.3 mL for the body; p<0.001). The number of monitor units to deliver a 2.0-Gy fraction was significantly reduced in VMAT compared with that in cIMRT (354 vs 873, respectively; p<0.001). In conclusion, VMAT delivers IMRT to complex target volumes such as whole ventricles with fewer monitor units, while maintaining target coverage and conformal isodose distribution comparable to cIMRT; however, in addition to those characteristics, the fact that the volume of the normal brain and body receiving a low dose would increase in VMAT should be considered.

  6. A Study of volumetric modulated arc therapy for stereotactic body radiation therapy in case of multi-target liver cancer using flattening filter free beam

    Energy Technology Data Exchange (ETDEWEB)

    Yeom, Mi Sook; Yoon, In Ha; Hong, Dong Gi; Back, Geum Mun [Dept. of Radiation Oncology, ASAN Medical Center, Seoul (Korea, Republic of)

    2015-06-15

    Stereotactic body radiation therapy (SBRT) has proved its efficacy in several patient populations with primary and metastatic limited tumors. Because SBRT prescription is high dose level than Conventional radiation therapy. SBRT plan is necessary for effective Organ at risk (OAR) protection and sufficient Planning target volume (PTV) dose coverage. In particular, multi-target cases may result excessive doses to OAR and hot spot due to dose overlap. This study evaluate usefulness of Volumetric modulated arc therapy (VMAT) in dosimetric and technical considerations using Flattening filter free (FFF) beam. The treatment plans for five patients, being treated on TrueBeam STx(Varian™, USA) with VMAT using 10MV FFF beam and Standard conformal radiotherapy (CRT) using 15MV Flattening filter (FF) beam. PTV, liver, duodenum, bowel, spinal cord, esophagus, stomach dose were evaluated using the dose volume histogram(DVH). Conformity index(CI), homogeneity index(HI), Paddick's index(PCI) for the PTV was assessed. Total Monitor unit (MU) and beam on time was assessed. Average value of CI, HI and PCI for PTV was 1.381±0.028, 1.096±0.016, 0.944±0.473 in VMAT and 1.381± 0.042, 1.136±0.042, 1.534±0.465 in CRT respectively. OAR dose in CRT plans evaluated 1.8 times higher than VMAT. Total MU in VMAT evaluated 1.3 times increase than CRT. Average beam on time was 6.8 minute in VMAT and 21.3 minute in CRT respectively. OAR dose in CRT plans evaluated 1.8 times higher than VMAT. Total MU in VMAT evaluated 1.3 times increase than CRT. Average beam on time was 6.8 minute in VMAT and 21.3 minute in CRT. VMAT for SBRT in multi-target liver cancer using FFF beam is effective treatment techniqe in dosimetric and technical considerations. VMAT decrease intra-fraction error due to treatment time shortening using high dose rate of FFF beam.

  7. A New Method of Studying Quantitatively the Non-Linear Elasticity Deformation Rock Volumetric Strain%一种定量研究非线弹性岩石体积应变新方法

    Institute of Scientific and Technical Information of China (English)

    李莲明; 李治平; 车艳

    2011-01-01

    When the rock is deformed by pressure decreasing in the formation, it is difficult to study the non-linear elasticity deformation rock volumetric strain. According to the power relationship between the non-elastic deformation rock elastic modelling quantity and effective pressure, this paper establishes the theoretic expressions between rock volumetric strain and effective pressure under the surface experiment conditions and the formation conditions, proposese a new method of the “Trial Calculation & Iteration”used to study the non-linear elasticity deformation rock volumetric strain quantitatively, calculates the a and b values of the rock non-linear elasticity deformation constants by means of the experiment databetween the non-linear elasticity rock volumetric strain and the effective pressure, and forecastes the non-linear elasticity deformation rock volumetric strain quantitatively. The application of this method indicates that the relative errors between the predictive values of the non-linear rock volumetric strain, rock porosity under the surface experiment conditions & rock porosity of the formation pressure decrease and the experiment values or the predictive values using experiment data of them should be less than or equal to 7.39%,0.80% & 3.92% and preferable consistance, and that it is possible to convert from the experimental data of the surface conditions to the data of reservoir conditions. This method provides an effective way to calculate the non-linear elasticity deformation rock volumetric strain quantitatively.%砂岩气藏地层压力下降岩石发生非线弹性变形时,定量研究非线弹性岩石体积应变的大小是个难点.由非线弹性岩石弹性模量与有效压力满足的乘幂关系,推导了地面实验和地层条件岩石体积应变理论关系,提出了一种定量研究岩石体积应变的试算迭代法,并结合岩石变形实验岩石体积应变与有效压力变化数据,求取了岩

  8. Understanding the Pathophysiology of Alzheimer's Disease and Mild Cognitive Impairment: A Mini Review on fMRI and ERP Studies

    Directory of Open Access Journals (Sweden)

    Takao Yamasaki

    2012-01-01

    Full Text Available The prevalence of Alzheimer's disease (AD is predicted to increase rapidly in the coming decade, highlighting the importance of early detection and intervention in patients with AD and mild cognitive impairment (MCI. Recently, remarkable advances have been made in the application of neuroimaging techniques in investigations of AD and MCI. Among the various neuroimaging techniques, functional magnetic resonance imaging (fMRI has many potential advantages, noninvasively detecting alterations in brain function that may be present very early in the course of AD and MCI. In this paper, we first review task-related and resting-state fMRI studies on AD and MCI. We then present our recent fMRI studies with additional event-related potential (ERP experiments during a motion perception task in MCI. Our results indicate that fMRI, especially when combined with ERP recording, can be useful for detecting spatiotemporal functional changes in AD and MCI patients.

  9. Multilingualism and fMRI: Longitudinal Study of Second Language Acquisition

    Directory of Open Access Journals (Sweden)

    John Wright

    2013-05-01

    Full Text Available BOLD fMRI is often used for the study of human language. However, there are still very few attempts to conduct longitudinal fMRI studies in the study of language acquisition by measuring auditory comprehension and reading. The following paper is the first in a series concerning a unique longitudinal study devoted to the analysis of bi- and multilingual subjects who are: (1 already proficient in at least two languages; or (2 are acquiring Russian as a second/third language. The focus of the current analysis is to present data from the auditory sections of a set of three scans acquired from April, 2011 through April, 2012 on a five-person subject pool who are learning Russian during the study. All subjects were scanned using the same protocol for auditory comprehension on the same General Electric LX 3T Signa scanner in Duke University Hospital. Using a multivariate analysis of covariance (MANCOVA for statistical analysis, proficiency measurements are shown to correlate significantly with scan results in the Russian conditions over time. The importance of both the left and right hemispheres in language processing is discussed. Special attention is devoted to the importance of contextualizing imaging data with corresponding behavioral and empirical testing data using a multivariate analysis of variance. This is the only study to date that includes: (1 longitudinal fMRI data with subject-based proficiency and behavioral data acquired in the same time frame; and (2 statistical modeling that demonstrates the importance of covariate language proficiency data for understanding imaging results of language acquisition.

  10. Different cerebral connectivity of obese and lean children studied with fMRI

    Science.gov (United States)

    Anaya Moreno, Maryan A.; Hernández López, Javier M.; Hidalgo Tobón, Silvia; Dies Suarez, Pilar; Barragán Pérez, Eduardo; De Celis Alonso, Benito

    2014-11-01

    In this work we studied the different fMRI brain activations and connections between normal weighted (NW) and obese (OB) infants for different types of food odours. A total of 30 right handed volunteers (infants 8.4±2 years) of both sexes were studied. Infants were divided in two group, one with BMI between 19 and 24 kg/m2 and the other with BMI over 30 kg/m2. The first part of this project consisted of a study in which fMRI BOLD activations to pleasant, neutral and healthy food was performed on both groups. Cerebellum regions were found to be more active in the NW group over the OB when presented with odour cues. OB volunteers in contrast showed larger activations in cingulate cortex structures than their NW counterparts when presented with food odours. The second part of this study performed connectivity studies (ROI to ROI) comparing both groups for each smell. The NW group presented for the onion smell a strong reward anticipation connection between the gustatory cortex and the cingulate cortex which the OB group did not have. In contrast the OB group presented strong orbitofrontal connections (decision making) with gustatory and somatosensory cortex when stimulated with the chocolate odour which the NW did not present. We can conclude that clear differences in fMRI BOLD activation as well as connectivity between the OB and NW groups were found. This points at a very different processing mechanisms of odour cues in infants. To our knowledge this study has never been performed before on infants.

  11. Multilingualism and fMRI: Longitudinal Study of Second Language Acquisition

    Science.gov (United States)

    Andrews, Edna; Frigau, Luca; Voyvodic-Casabo, Clara; Voyvodic, James; Wright, John

    2013-01-01

    BOLD fMRI is often used for the study of human language. However, there are still very few attempts to conduct longitudinal fMRI studies in the study of language acquisition by measuring auditory comprehension and reading. The following paper is the first in a series concerning a unique longitudinal study devoted to the analysis of bi- and multilingual subjects who are: (1) already proficient in at least two languages; or (2) are acquiring Russian as a second/third language. The focus of the current analysis is to present data from the auditory sections of a set of three scans acquired from April, 2011 through April, 2012 on a five-person subject pool who are learning Russian during the study. All subjects were scanned using the same protocol for auditory comprehension on the same General Electric LX 3T Signa scanner in Duke University Hospital. Using a multivariate analysis of covariance (MANCOVA) for statistical analysis, proficiency measurements are shown to correlate significantly with scan results in the Russian conditions over time. The importance of both the left and right hemispheres in language processing is discussed. Special attention is devoted to the importance of contextualizing imaging data with corresponding behavioral and empirical testing data using a multivariate analysis of variance. This is the only study to date that includes: (1) longitudinal fMRI data with subject-based proficiency and behavioral data acquired in the same time frame; and (2) statistical modeling that demonstrates the importance of covariate language proficiency data for understanding imaging results of language acquisition. PMID:24961428

  12. Multilingualism and fMRI: Longitudinal Study of Second Language Acquisition.

    Science.gov (United States)

    Andrews, Edna; Frigau, Luca; Voyvodic-Casabo, Clara; Voyvodic, James; Wright, John

    2013-05-28

    BOLD fMRI is often used for the study of human language. However, there are still very few attempts to conduct longitudinal fMRI studies in the study of language acquisition by measuring auditory comprehension and reading. The following paper is the first in a series concerning a unique longitudinal study devoted to the analysis of bi- and multilingual subjects who are: (1) already proficient in at least two languages; or (2) are acquiring Russian as a second/third language. The focus of the current analysis is to present data from the auditory sections of a set of three scans acquired from April, 2011 through April, 2012 on a five-person subject pool who are learning Russian during the study. All subjects were scanned using the same protocol for auditory comprehension on the same General Electric LX 3T Signa scanner in Duke University Hospital. Using a multivariate analysis of covariance (MANCOVA) for statistical analysis, proficiency measurements are shown to correlate significantly with scan results in the Russian conditions over time. The importance of both the left and right hemispheres in language processing is discussed. Special attention is devoted to the importance of contextualizing imaging data with corresponding behavioral and empirical testing data using a multivariate analysis of variance. This is the only study to date that includes: (1) longitudinal fMRI data with subject-based proficiency and behavioral data acquired in the same time frame; and (2) statistical modeling that demonstrates the importance of covariate language proficiency data for understanding imaging results of language acquisition.

  13. A study on clinical findings about vertebral disease diagnosed with MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ham-Gyum [Ansan College, Seoul (Korea, Republic of)

    2006-09-15

    In order to analyze clinical characteristics like sex-and age-based onset frequency and onset region from vertebral disease cases, this study investigated total 1,291 cases of vertebral disease that were diagnosed via magnetic resonance imaging (MRI) from January to December 2004 at B University Hospital in metropolitan area. For higher diagnostic accuracy in cases of spinal disorder diagnosed, this study analyzed findings from data reading conducted by veteran specialists in diagnostic radiology. But this study excluded uncertain lesion cases, the cases requiring differential diagnosis from other disorders and so on from subjects under analysis. This study employed superconductive 1.5 Tesla SIGNA MR/i for MRI test and basically received resulting images via FSE (fast spin echo). In particular, this study obtained T1 and T2 myelogram with regard to regional characteristics (such as cervical vertebrae, thoracic vertebrae and lumbar vertebra) and imaging characteristics for sagittal and transverse section. As a result, this study came to the following conclusions: 1. In terms of general characteristics of subjects under analysis, male group comprised 53.5% and female 46.5% out of total 1,291 subjects. 2. The regional onset frequency of spinal disorders was converged primarily on lumbar vertebra (65.5%), which was followed by cervical vertebrae (27.3%) and thoracic vertebrae (7.0%) respectively. 3. Top 10 cases with high onset frequency of spinal disorders can be listed as follows: 1) posterior bulging disc 65.8% 2) narrowing of neural foramen 23.8% 3) herniated intervertebral disc (HIVD) 22.4% 4) spinal stenosis 16.7% 5) osteochondrosis 6.4% 6) compression fracture 6.4% 7) facet joint arthropathy 6.2% 8) spondylolisthesis 6.0% 9) spinal cord tumor 3.5% 10) inter body fusion 2.6%.

  14. MRI study on reversible and irreversible electroporation induced blood brain barrier disruption.

    Directory of Open Access Journals (Sweden)

    Mohammad Hjouj

    Full Text Available Electroporation, is known to induce cell membrane permeabilization in the reversible (RE mode and cell death in the irreversible (IRE mode. Using an experimental system designed to produce a continuum of IRE followed by RE around a single electrode we used MRI to study the effects of electroporation on the brain. Fifty-four rats were injected with Gd-DOTA and treated with a G25 electrode implanted 5.5 mm deep into the striata. MRI was acquired immediately after treatment, 10 min, 20 min, 30 min, and up to three weeks following the treatment using: T1W, T2W, Gradient echo (GE, serial SPGR (DCE-MRI with flip angles ranging over 5-25°, and diffusion-weighted MRI (DWMRI. Blood brain barrier (BBB disruption was depicted as clear enhancement on T1W images. The average signal intensity in the regions of T1-enhancement, representing BBB disruption, increased from 1887±83 (arbitrary units immediately post treatment to 2246±94 20 min post treatment, then reached a plateau towards the 30 min scan where it reached 2289±87. DWMRI at 30 min showed no significant effects. Early treatment effects and late irreversible damage were clearly depicted on T2W. The enhancing volume on T2W has increased by an average of 2.27±0.27 in the first 24-48 hours post treatment, suggesting an inflammatory tissue response. The permanent tissue damage, depicted as an enhancing region on T2W, 3 weeks post treatment, decreased to an average of 50±10% of the T2W enhancing volumes on the day of the treatment which was 33±5% of the BBB disruption volume. Permanent tissue damage was significantly smaller than the volume of BBB disruption, suggesting, that BBB disruption is associated with RE while tissue damage with IRE. These results demonstrate the feasibility of applying reversible and irreversible electroporation for transient BBB disruption or permanent damage, respectively, and applying MRI for planning/monitoring disruption volume/shape by optimizing electrode positions

  15. Branch Atheromatous Plaque: A Major Cause of Lacunar Infarction (High-Resolution MRI Study

    Directory of Open Access Journals (Sweden)

    Jong-Won Chung

    2012-07-01

    during this study indicates that HR-MRI better delineates intracranial arterial lesions, suggesting that its use will lead to a further understanding of the mechanisms involved in stroke.

  16. SU-E-J-222: Feasibility Study of MRI-Only Proton Therapy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Spadea, M [ImagEngLab, Magna Graecia University, Catanzaro (Italy); Izquierdo, D; Catana, C [Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA (United States); Collins-Fekete, C; Bortfeld, T; Seco, J [Massachusetts General Hospital, Harvard Medical, Boston, MA (United States)

    2015-06-15

    Purpose: To assess the dosimetric equivalence of MRI based proton planning vs. single energy x-ray CT. Methods: 8 glioblastoma patients were imaged with CT and MRI after surgical resection. T1-weighted 3DMPRAGE was used to delineate the GTV, which was subsequently rigidly registered to the CT volume. A pseudoCT was generated from the aligned MRI by combining segmentation and atlas-based approaches. The spatial resolution both for pseudo- and real CT was 0.6×0.6×2.5mm. Three orthogonal proton beams were simulated on the pseudoCT. Two co-planar beams were set on the axial plane. The third one was planned parallel to the cranio-caudal (CC) direction. Each beam was set to cover the GTV at 98% of the nominal dose (18Gy). The proton plan was copied and transferred to the real CT, including aperture/compensator geometry. Dose comparison between pseudoCT and CT plan was performed beam-by-beam by quantifying the range shift of dose profile on each slice of the GTV. The GTV’s V{sub 98} was computed for the CT. Results: For beams in axial plane the median absolute value of the range shift was 0.3mm, with 0.9mm and 1.4mm as 95th percentile and maximum, respectively. Worst scenarios were found for the CC beam, where we measured 1.1mm (median), 2.7mm (95thpercentile) and 5mm (maximum). Regardless the direction, beams passing through the surgical site, where metal (Titanium MRI-compatible) staples were present, were mostly affected by range shift. GTV’s V{sub 98} for CT was not lower than 99.3%. Conclusion: The study showed the clinical feasibility of an MRI-alone proton plan. Advantages include the possibility to rely on better soft tissue contrast for target and organs at risk delineation without the need of further CT scan and image registration. Additional investigation is required in presence of metal implants along the beam path and to account for partial volume effects due to slice thickness.

  17. Volumetric CT-images improve testing of radiological image interpretation skills

    Energy Technology Data Exchange (ETDEWEB)

    Ravesloot, Cécile J., E-mail: C.J.Ravesloot@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Schaaf, Marieke F. van der, E-mail: M.F.vanderSchaaf@uu.nl [Department of Pedagogical and Educational Sciences at Utrecht University, Heidelberglaan 1, 3584 CS Utrecht (Netherlands); Schaik, Jan P.J. van, E-mail: J.P.J.vanSchaik@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Cate, Olle Th.J. ten, E-mail: T.J.tenCate@umcutrecht.nl [Center for Research and Development of Education at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Gijp, Anouk van der, E-mail: A.vanderGijp-2@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Mol, Christian P., E-mail: C.Mol@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Vincken, Koen L., E-mail: K.Vincken@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands)

    2015-05-15

    Rationale and objectives: Current radiology practice increasingly involves interpretation of volumetric data sets. In contrast, most radiology tests still contain only 2D images. We introduced a new testing tool that allows for stack viewing of volumetric images in our undergraduate radiology program. We hypothesized that tests with volumetric CT-images enhance test quality, in comparison with traditional completely 2D image-based tests, because they might better reflect required skills for clinical practice. Materials and methods: Two groups of medical students (n = 139; n = 143), trained with 2D and volumetric CT-images, took a digital radiology test in two versions (A and B), each containing both 2D and volumetric CT-image questions. In a questionnaire, they were asked to comment on the representativeness for clinical practice, difficulty and user-friendliness of the test questions and testing program. Students’ test scores and reliabilities, measured with Cronbach's alpha, of 2D and volumetric CT-image tests were compared. Results: Estimated reliabilities (Cronbach's alphas) were higher for volumetric CT-image scores (version A: .51 and version B: .54), than for 2D CT-image scores (version A: .24 and version B: .37). Participants found volumetric CT-image tests more representative of clinical practice, and considered them to be less difficult than volumetric CT-image questions. However, in one version (A), volumetric CT-image scores (M 80.9, SD 14.8) were significantly lower than 2D CT-image scores (M 88.4, SD 10.4) (p < .001). The volumetric CT-image testing program was considered user-friendly. Conclusion: This study shows that volumetric image questions can be successfully integrated in students’ radiology testing. Results suggests that the inclusion of volumetric CT-images might improve the quality of radiology tests by positively impacting perceived representativeness for clinical practice and increasing reliability of the test.

  18. ISPMER: Integrated system for combined PET, MRI, and electrophysiological recording in somatosensory studies in rats

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Y.-Y. [Institute of Biomedical Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, Taiwan (China); Chen, Y.-Y. [Department of Electrical and Control Engineering, National Chiao-Tung University, Hsinchu, Taiwan (China); Chen, J.-C. [Faculty of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China); Department of Education and Research, Taipei City Hospital, Taipei, Taiwan (China); Chang Chen [Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (China); Jaw, F.-S. [Institute of Biomedical Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, Taiwan (China)], E-mail: jaw@ha.mc.ntu.edu.tw

    2007-10-01

    The present study developed an integrated system for use in combined PET, MRI, and electrophysiological recording in somatosensory studies in rats, called ISPMER. A stereotaxic frame was designed for animal positioning that could be used in all three measurement modalities, and its dimensions complied with the gold standard of the Paxinos and Watson rat brain atlas. A graphical user interface was developed for analyzing the data using several signal processing algorithms. This integrated system provides a novel interface for the recording and processing of three-dimensional neuronal signals in three modalities.

  19. Psychological and physiological responses to stress: a review based on results from PET and MRI studies

    Energy Technology Data Exchange (ETDEWEB)

    Cortez, Celia Martins; Cruz, Frederico Alan de Oliveira; Silva, Dilson [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Biologia Roberto Alcantara Gomes. Dept. de Ciencias Fisiologicas]. E-mail: ccortez@uerj.br

    2008-12-15

    A new application for the nuclear imaging techniques is the study of organic responses to stress. Neuroimaging techniques allow the assessment of brain activation changes in association with the metabolic responses to stress. In this paper, a review of general effects of the stress on organic activity is made, emphasizing important advances introduced by studies using PET and fMRI. The importance of the hypothalamus-pituitary-adrenal axis to onset the adequate psychical and organic responses to sustain the homeostasis during the stress is discussed, as well as the possibility of traumatic stressing experiences have negative effects on the brain. (author)

  20. Functional Study of the Heart using MRI and Multi-slice CT (MSCT

    Directory of Open Access Journals (Sweden)

    "Sh. Akhlaghpour

    2005-08-01

    Full Text Available Introduction & Background: By using newer imaging techniques (MRI and MSCT, it is possible to perform functional studies of the heart including, wall mo-tion, chamber volume evaluation, and myocardial mass and wall thickness. While MRI had recently been introduced as the gold standard method for the morphological and functional studies of the heart, recent advances in the number of detectors, rotation time, and reconstruction protocols made Multislice CT (MSCT another new application for functional studies of the heart too. Ordinary raw data for coro-nary CT angiography is sufficient for these functional studies. Apart from the point that which technique is to be used to get a standard and reproducible meas-urement, a proper imaging strategy is necessary. To use MSCT, various softwares are available for these studies. By the use of these two modalities, valvular evaluations are also possible as addressed in many recent publications. In this article the strategy for functional study of the heart is presented and some case studies are also discussed.

  1. Real-time MRI of the temporomandibular joint at 15 frames per second-A feasibility study.

    Science.gov (United States)

    Krohn, Sebastian; Gersdorff, Nikolaus; Wassmann, Torsten; Merboldt, Klaus-Dietmar; Joseph, Arun A; Buergers, Ralf; Frahm, Jens

    2016-12-01

    The purpose of this study was to develo