WorldWideScience

Sample records for volumetric medical images

  1. Medical students' cognitive load in volumetric image interpretation : Insights from human-computer interaction and eye movements

    NARCIS (Netherlands)

    Stuijfzand, Bobby G.; Van Der Schaaf, Marieke F.; Kirschner, Femke C.; Ravesloot, Cécile J.; Van Der Gijp, Anouk; Vincken, Koen L.

    2016-01-01

    Medical image interpretation is moving from using 2D- to volumetric images, thereby changing the cognitive and perceptual processes involved. This is expected to affect medical students' experienced cognitive load, while learning image interpretation skills. With two studies this explorative researc

  2. Volumetric Medical Image Coding: An Object-based, Lossy-to-lossless and Fully Scalable Approach.

    Science.gov (United States)

    Danyali, Habibiollah; Mertins, Alfred

    2011-01-01

    In this article, an object-based, highly scalable, lossy-to-lossless 3D wavelet coding approach for volumetric medical image data (e.g., magnetic resonance (MR) and computed tomography (CT)) is proposed. The new method, called 3DOBHS-SPIHT, is based on the well-known set partitioning in the hierarchical trees (SPIHT) algorithm and supports both quality and resolution scalability. The 3D input data is grouped into groups of slices (GOS) and each GOS is encoded and decoded as a separate unit. The symmetric tree definition of the original 3DSPIHT is improved by introducing a new asymmetric tree structure. While preserving the compression efficiency, the new tree structure allows for a small size of each GOS, which not only reduces memory consumption during the encoding and decoding processes, but also facilitates more efficient random access to certain segments of slices. To achieve more compression efficiency, the algorithm only encodes the main object of interest in each 3D data set, which can have any arbitrary shape, and ignores the unnecessary background. The experimental results on some MR data sets show the good performance of the 3DOBHS-SPIHT algorithm for multi-resolution lossy-to-lossless coding. The compression efficiency, full scalability, and object-based features of the proposed approach, beside its lossy-to-lossless coding support, make it a very attractive candidate for volumetric medical image information archiving and transmission applications.

  3. A method to detect landmark pairs accurately between intra-patient volumetric medical images.

    Science.gov (United States)

    Yang, Deshan; Zhang, Miao; Chang, Xiao; Fu, Yabo; Liu, Shi; Li, Harold H; Mutic, Sasa; Duan, Ye

    2017-08-23

    An image processing procedure was developed in this study to detect large quantity of landmark pairs accurately in pairs of volumetric medical images. The detected landmark pairs can be used to evaluate of deformable image registration (DIR) methods quantitatively. Landmark detection and pair matching were implemented in a Gaussian pyramid multi-resolution scheme. A 3D scale-invariant feature transform (SIFT) feature detection method and a 3D Harris-Laplacian corner detection method were employed to detect feature points, i.e., landmarks. A novel feature matching algorithm, Multi-Resolution Inverse-Consistent Guided Matching or MRICGM, was developed to allow accurate feature pairs matching. MRICGM performs feature matching using guidance by the feature pairs detected at the lower resolution stage and the higher confidence feature pairs already detected at the same resolution stage, while enforces inverse consistency. The proposed feature detection and feature pair matching algorithms were optimized to process 3D CT and MRI images. They were successfully applied between the inter-phase abdomen 4DCT images of three patients, between the original and the re-scanned radiation therapy simulation CT images of two head-neck patients, and between inter-fractional treatment MRIs of two patients. The proposed procedure was able to successfully detect and match over 6300 feature pairs on average. The automatically detected landmark pairs were manually verified and the mismatched pairs were rejected. The automatic feature matching accuracy before manual error rejection was 99.4%. Performance of MRICGM was also evaluated using seven digital phantom datasets with known ground truth of tissue deformation. On average, 11855 feature pairs were detected per digital phantom dataset with TRE = 0.77 ± 0.72 mm. A procedure was developed in this study to detect large number of landmark pairs accurately between two volumetric medical images. It allows a semi-automatic way to generate the

  4. Volumetric CT-images improve testing of radiological image interpretation skills

    Energy Technology Data Exchange (ETDEWEB)

    Ravesloot, Cécile J., E-mail: C.J.Ravesloot@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Schaaf, Marieke F. van der, E-mail: M.F.vanderSchaaf@uu.nl [Department of Pedagogical and Educational Sciences at Utrecht University, Heidelberglaan 1, 3584 CS Utrecht (Netherlands); Schaik, Jan P.J. van, E-mail: J.P.J.vanSchaik@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Cate, Olle Th.J. ten, E-mail: T.J.tenCate@umcutrecht.nl [Center for Research and Development of Education at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Gijp, Anouk van der, E-mail: A.vanderGijp-2@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Mol, Christian P., E-mail: C.Mol@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Vincken, Koen L., E-mail: K.Vincken@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands)

    2015-05-15

    Rationale and objectives: Current radiology practice increasingly involves interpretation of volumetric data sets. In contrast, most radiology tests still contain only 2D images. We introduced a new testing tool that allows for stack viewing of volumetric images in our undergraduate radiology program. We hypothesized that tests with volumetric CT-images enhance test quality, in comparison with traditional completely 2D image-based tests, because they might better reflect required skills for clinical practice. Materials and methods: Two groups of medical students (n = 139; n = 143), trained with 2D and volumetric CT-images, took a digital radiology test in two versions (A and B), each containing both 2D and volumetric CT-image questions. In a questionnaire, they were asked to comment on the representativeness for clinical practice, difficulty and user-friendliness of the test questions and testing program. Students’ test scores and reliabilities, measured with Cronbach's alpha, of 2D and volumetric CT-image tests were compared. Results: Estimated reliabilities (Cronbach's alphas) were higher for volumetric CT-image scores (version A: .51 and version B: .54), than for 2D CT-image scores (version A: .24 and version B: .37). Participants found volumetric CT-image tests more representative of clinical practice, and considered them to be less difficult than volumetric CT-image questions. However, in one version (A), volumetric CT-image scores (M 80.9, SD 14.8) were significantly lower than 2D CT-image scores (M 88.4, SD 10.4) (p < .001). The volumetric CT-image testing program was considered user-friendly. Conclusion: This study shows that volumetric image questions can be successfully integrated in students’ radiology testing. Results suggests that the inclusion of volumetric CT-images might improve the quality of radiology tests by positively impacting perceived representativeness for clinical practice and increasing reliability of the test.

  5. Nonrigid registration of volumetric images using ranked order statistics

    DEFF Research Database (Denmark)

    Tennakoon, Ruwan; Bab-Hadiashar, Alireza; Cao, Zhenwei

    2014-01-01

    Non-rigid image registration techniques using intensity based similarity measures are widely used in medical imaging applications. Due to high computational complexities of these techniques, particularly for volumetric images, finding appropriate registration methods to both reduce the computation...... burden and increase the registration accuracy has become an intensive area of research. In this paper we propose a fast and accurate non-rigid registration method for intra-modality volumetric images. Our approach exploits the information provided by an order statistics based segmentation method, to find...... the important regions for registration and use an appropriate sampling scheme to target those areas and reduce the registration computation time. A unique advantage of the proposed method is its ability to identify the point of diminishing returns and stop the registration process. Our experiments...

  6. Magnetic Resonance Image Segmentation and its Volumetric Measurement

    Directory of Open Access Journals (Sweden)

    Rahul R. Ambalkar

    2013-02-01

    Full Text Available Image processing techniques make it possible to extract meaningful information from medical images. Magnetic resonance (MR imaging has been widely applied in biological research and diagnostics because of its excellent soft tissue contrast, non-invasive character, high spatial resolution and easy slice selection at any orientation. The MRI-based brain volumetric is concerned with the analysis of volumes and shapes of the structural components of the human brain. It also provides a criterion, by which we recognize the presence of degenerative diseases and characterize their rates of progression to make the diagnosis and treatments as a easy task. In this paper we have proposed an automated method for volumetric measurement of Magnetic Resonance Imaging and used Self Organized Map (SOM clustering method for their segmentations. We have used the MRI data set of 61 slices of 256×256 pixels in DICOM standard format

  7. All Photons Imaging Through Volumetric Scattering

    Science.gov (United States)

    Satat, Guy; Heshmat, Barmak; Raviv, Dan; Raskar, Ramesh

    2016-01-01

    Imaging through thick highly scattering media (sample thickness ≫ mean free path) can realize broad applications in biomedical and industrial imaging as well as remote sensing. Here we propose a computational “All Photons Imaging” (API) framework that utilizes time-resolved measurement for imaging through thick volumetric scattering by using both early arrived (non-scattered) and diffused photons. As opposed to other methods which aim to lock on specific photons (coherent, ballistic, acoustically modulated, etc.), this framework aims to use all of the optical signal. Compared to conventional early photon measurements for imaging through a 15 mm tissue phantom, our method shows a two fold improvement in spatial resolution (4db increase in Peak SNR). This all optical, calibration-free framework enables widefield imaging through thick turbid media, and opens new avenues in non-invasive testing, analysis, and diagnosis. PMID:27683065

  8. DIRECT VOXEL-PROJECTION FOR VOLUMETRIC DATA RENDERING IN MEDICAL IMAGERY

    Institute of Scientific and Technical Information of China (English)

    吕忆松; 陈亚珠; 郭玉红

    2002-01-01

    The volumetric rendering of 3-D medical image data is very effective method for communication about radiological studies to clinicians. Algorithms that produce images with artifacts and inaccuracies are not clinically useful. This paper proposed a direct voxel-projection algorithm to implement volumetric data rendering. Using this algorithm, arbitrary volume rotation, transparent and cutaway views are generated satisfactorily. Compared with the existing raytracing methods, it improves the projection image quality greatly. Some experimental results about real medical CT image data demonstrate the advantages and fidelity of the proposed algorithm.

  9. Medical Imaging.

    Science.gov (United States)

    Barker, M. C. J.

    1996-01-01

    Discusses four main types of medical imaging (x-ray, radionuclide, ultrasound, and magnetic resonance) and considers their relative merits. Describes important recent and possible future developments in image processing. (Author/MKR)

  10. Marginal Space Deep Learning: Efficient Architecture for Volumetric Image Parsing.

    Science.gov (United States)

    Ghesu, Florin C; Krubasik, Edward; Georgescu, Bogdan; Singh, Vivek; Yefeng Zheng; Hornegger, Joachim; Comaniciu, Dorin

    2016-05-01

    Robust and fast solutions for anatomical object detection and segmentation support the entire clinical workflow from diagnosis, patient stratification, therapy planning, intervention and follow-up. Current state-of-the-art techniques for parsing volumetric medical image data are typically based on machine learning methods that exploit large annotated image databases. Two main challenges need to be addressed, these are the efficiency in scanning high-dimensional parametric spaces and the need for representative image features which require significant efforts of manual engineering. We propose a pipeline for object detection and segmentation in the context of volumetric image parsing, solving a two-step learning problem: anatomical pose estimation and boundary delineation. For this task we introduce Marginal Space Deep Learning (MSDL), a novel framework exploiting both the strengths of efficient object parametrization in hierarchical marginal spaces and the automated feature design of Deep Learning (DL) network architectures. In the 3D context, the application of deep learning systems is limited by the very high complexity of the parametrization. More specifically 9 parameters are necessary to describe a restricted affine transformation in 3D, resulting in a prohibitive amount of billions of scanning hypotheses. The mechanism of marginal space learning provides excellent run-time performance by learning classifiers in clustered, high-probability regions in spaces of gradually increasing dimensionality. To further increase computational efficiency and robustness, in our system we learn sparse adaptive data sampling patterns that automatically capture the structure of the input. Given the object localization, we propose a DL-based active shape model to estimate the non-rigid object boundary. Experimental results are presented on the aortic valve in ultrasound using an extensive dataset of 2891 volumes from 869 patients, showing significant improvements of up to 45

  11. Medical imaging

    CERN Document Server

    Townsend, David W

    1996-01-01

    Since the introduction of the X-ray scanner into radiology almost 25 years ago, non-invasive imaging has become firmly established as an essential tool in the diagnosis of disease. Fully three-dimensional imaging of internal organs is now possible, b and for studies which explore the functional status of the body. Powerful techniques to correlate anatomy and function are available, and scanners which combine anatomical and functional imaging in a single device are under development. Such techniques have been made possible through r ecent technological and mathematical advances. This series of lectures will review both the physical basis of medical imaging techniques using X-rays, gamma and positron emitting radiosiotopes, and nuclear magnetic resonance, and the mathematical methods used to reconstruct three-dimentional distributions from projection data. The lectures will trace the development of medical imaging from simple radiographs to the present-day non-invasive measurement of in vivo biochemistry. They ...

  12. In Vivo Real Time Volumetric Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Rasmussen, Morten Fischer; Brandt, Andreas Hjelm;

    2015-01-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological...

  13. Hyperspectral image classification based on volumetric texture and dimensionality reduction

    Science.gov (United States)

    Su, Hongjun; Sheng, Yehua; Du, Peijun; Chen, Chen; Liu, Kui

    2015-06-01

    A novel approach using volumetric texture and reduced-spectral features is presented for hyperspectral image classification. Using this approach, the volumetric textural features were extracted by volumetric gray-level co-occurrence matrices (VGLCM). The spectral features were extracted by minimum estimated abundance covariance (MEAC) and linear prediction (LP)-based band selection, and a semi-supervised k-means (SKM) clustering method with deleting the worst cluster (SKMd) bandclustering algorithms. Moreover, four feature combination schemes were designed for hyperspectral image classification by using spectral and textural features. It has been proven that the proposed method using VGLCM outperforms the gray-level co-occurrence matrices (GLCM) method, and the experimental results indicate that the combination of spectral information with volumetric textural features leads to an improved classification performance in hyperspectral imagery.

  14. FELIX 3D display: an interactive tool for volumetric imaging

    Science.gov (United States)

    Langhans, Knut; Bahr, Detlef; Bezecny, Daniel; Homann, Dennis; Oltmann, Klaas; Oltmann, Krischan; Guill, Christian; Rieper, Elisabeth; Ardey, Goetz

    2002-05-01

    The FELIX 3D display belongs to the class of volumetric displays using the swept volume technique. It is designed to display images created by standard CAD applications, which can be easily imported and interactively transformed in real-time by the FELIX control software. The images are drawn on a spinning screen by acousto-optic, galvanometric or polygon mirror deflection units with integrated lasers and a color mixer. The modular design of the display enables the user to operate with several equal or different projection units in parallel and to use appropriate screens for the specific purpose. The FELIX 3D display is a compact, light, extensible and easy to transport system. It mainly consists of inexpensive standard, off-the-shelf components for an easy implementation. This setup makes it a powerful and flexible tool to keep track with the rapid technological progress of today. Potential applications include imaging in the fields of entertainment, air traffic control, medical imaging, computer aided design as well as scientific data visualization.

  15. Improved volumetric imaging in tomosynthesis using combined multiaxial sweeps.

    Science.gov (United States)

    Gersh, Jacob A; Wiant, David B; Best, Ryan C M; Bennett, Marcus C; Munley, Michael T; King, June D; McKee, Mahta M; Baydush, Alan H

    2010-09-03

    This study explores the volumetric reconstruction fidelity attainable using tomosynthesis with a kV imaging system which has a unique ability to rotate isocentrically and with multiple degrees of mechanical freedom. More specifically, we seek to investigate volumetric reconstructions by combining multiple limited-angle rotational image acquisition sweeps. By comparing these reconstructed images with those of a CBCT reconstruction, we can gauge the volumetric fidelity of the reconstructions. In surgical situations, the described tomosynthesis-based system could provide high-quality volumetric imaging without requiring patient motion, even with rotational limitations present. Projections were acquired using the Digital Integrated Brachytherapy Unit, or IBU-D. A phantom was used which contained several spherical objects of varying contrast. Using image projections acquired during isocentric sweeps around the phantom, reconstructions were performed by filtered backprojection. For each image acquisition sweep configuration, a contrasting sphere is analyzed using two metrics and compared to a gold standard CBCT reconstruction. Since the intersection of a reconstructed sphere and an imaging plane is ideally a circle with an eccentricity of zero, the first metric presented compares the effective eccentricity of intersections of reconstructed volumes and imaging planes. As another metric of volumetric reconstruction fidelity, the volume of one of the contrasting spheres was determined using manual contouring. By comparing these manually delineated volumes with a CBCT reconstruction, we can gauge the volumetric fidelity of reconstructions. The configuration which yielded the highest overall volumetric reconstruction fidelity, as determined by effective eccentricities and volumetric contouring, consisted of two orthogonally-offset 60° L-arm sweeps and a single C-arm sweep which shared a pivot point with one the L-arm sweeps. When compared to a similar configuration that

  16. A hand-held row-column addressed CMUT probe with integrated electronics for volumetric imaging

    DEFF Research Database (Denmark)

    Engholm, Mathias; Christiansen, Thomas Lehrmann; Beers, Christopher;

    2015-01-01

    A 3 MHz, λ / 2-pitch 62+62 channel row-column addressed 2-D CMUT array designed to be mounted in a probe handle and connected to a commercial BK Medical scanner for real-time volumetric imaging is presented. It is mounted and wire-bonded on a flexible PCB, which is connected to two rigid PCBs wit...

  17. Visualization and volumetric structures from MR images of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Parvin, B.; Johnston, W.; Robertson, D.

    1994-03-01

    Pinta is a system for segmentation and visualization of anatomical structures obtained from serial sections reconstructed from magnetic resonance imaging. The system approaches the segmentation problem by assigning each volumetric region to an anatomical structure. This is accomplished by satisfying constraints at the pixel level, slice level, and volumetric level. Each slice is represented by an attributed graph, where nodes correspond to regions and links correspond to the relations between regions. These regions are obtained by grouping pixels based on similarity and proximity. The slice level attributed graphs are then coerced to form a volumetric attributed graph, where volumetric consistency can be verified. The main novelty of our approach is in the use of the volumetric graph to ensure consistency from symbolic representations obtained from individual slices. In this fashion, the system allows errors to be made at the slice level, yet removes them when the volumetric consistency cannot be verified. Once the segmentation is complete, the 3D surfaces of the brain can be constructed and visualized.

  18. In Vivo Real Time Volumetric Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Rasmussen, Morten Fischer; Brandt, Andreas Hjelm

    2015-01-01

    . This paper investigates the in vivo applicability and sensitivity of volumetric SA imaging. Utilizing the transmit events to generate a set of virtual point sources, a frame rate of 25 Hz for a 90° x 90° field-of-view was achieved. Data were obtained using a 3.5 MHz 32 x 32 elements 2-D phased array......Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological...... transducer connected to the experimental scanner (SARUS). Proper scaling is applied to the excitation signal such that intensity levels are in compliance with the U.S. Food and Drug Administration regulations for in vivo ultrasound imaging. The measured Mechanical Index and spatial-peak- temporal...

  19. Two-dimensional random arrays for real time volumetric imaging

    DEFF Research Database (Denmark)

    Davidsen, Richard E.; Jensen, Jørgen Arendt; Smith, Stephen W.

    1994-01-01

    Two-dimensional arrays are necessary for a variety of ultrasonic imaging techniques, including elevation focusing, 2-D phase aberration correction, and real time volumetric imaging. In order to reduce system cost and complexity, sparse 2-D arrays have been considered with element geometries...... real time volumetric imaging system, which employs a wide transmit beam and receive mode parallel processing to increase image frame rate. Depth-of-field comparisons were made from simulated on-axis and off-axis beamplots at ranges from 30 to 160 mm for both coaxial and offset transmit and receive...... selected ad hoc, by algorithm, or by random process. Two random sparse array geometries and a sparse array with a Mills cross receive pattern were simulated and compared to a fully sampled aperture with the same overall dimensions. The sparse arrays were designed to the constraints of the Duke University...

  20. Diverging Wave Volumetric Imaging Using Subaperture Beamforming.

    Science.gov (United States)

    Santos, Pedro; Haugen, Geir Ultveit; Lovstakken, Lasse; Samset, Eigil; D'hooge, Jan

    2016-12-01

    Several clinical settings could benefit from 3-D high frame rate (HFR) imaging and, in particular, HFR 3-D tissue Doppler imaging (TDI). To date, the proposed methodologies are based mostly on experimental ultrasound platforms, making their translation to clinical systems nontrivial as these have additional hardware constraints. In particular, clinically used 2-D matrix array transducers rely on subaperture (SAP) beamforming to limit cabling between the ultrasound probe and the back-end console. Therefore, this paper is aimed at assessing the feasibility of HFR 3-D TDI using diverging waves (DWs) on a clinical transducer with SAP beamforming limitations. Simulation studies showed that the combination of a single DW transmission with SAP beamforming results in severe imaging artifacts due to grating lobes and reduced penetration. Interestingly, a promising tradeoff between image quality and frame rate was achieved for scan sequences with a moderate number of transmit beams. In particular, a sparse sequence with nine transmissions showed good imaging performance for an imaging sector of 70 (°)×70 (°) at volume rates of approximately 600 Hz. Subsequently, this sequence was implemented in a clinical system and TDI was recorded in vivo on healthy subjects. Velocity curves were extracted and compared against conventional TDI (i.e., with focused transmit beams). The results showed similar velocities between both beamforming approaches, with a cross-correlation of 0.90 ± 0.11 between the traces of each mode. Overall, this paper indicates that HFR 3-D TDI is feasible in systems with clinical 2-D matrix arrays, despite the limitations of SAP beamforming.

  1. Illustration-inspired depth enhanced volumetric medical visualization.

    Science.gov (United States)

    Svakhine, Nikolai A; Ebert, David S; Andrews, William M

    2009-01-01

    Volume illustration can be used to provide insight into source data from CT/MRI scanners in much the same way as medical illustration depicts the important details of anatomical structures. As such, proven techniques used in medical illustration should be transferable to volume illustration, providing scientists with new tools to visualize their data. In recent years, a number of techniques have been developed to enhance the rendering pipeline and create illustrative effects similar to the ones found in medical textbooks and surgery manuals. Such effects usually highlight important features of the subject while subjugating its context and providing depth cues for correct perception. Inspired by traditional visual and line-drawing techniques found in medical illustration, we have developed a collection of fast algorithms for more effective emphasis/de-emphasis of data as well as conveyance of spatial relationships. Our techniques utilize effective outlining techniques and selective depth enhancement to provide perceptual cues of object importance as well as spatial relationships in volumetric datasets. Moreover, we have used illustration principles to effectively combine and adapt basic techniques so that they work together to provide consistent visual information and a uniform style.

  2. Pulse sequence for dynamic volumetric imaging of hyperpolarized metabolic products

    Science.gov (United States)

    Cunningham, Charles H.; Chen, Albert P.; Lustig, Michael; Hargreaves, Brian A.; Lupo, Janine; Xu, Duan; Kurhanewicz, John; Hurd, Ralph E.; Pauly, John M.; Nelson, Sarah J.; Vigneron, Daniel B.

    2008-07-01

    Dynamic nuclear polarization and dissolution of a 13C-labeled substrate enables the dynamic imaging of cellular metabolism. Spectroscopic information is typically acquired, making the acquisition of dynamic volumetric data a challenge. To enable rapid volumetric imaging, a spectral-spatial excitation pulse was designed to excite a single line of the carbon spectrum. With only a single resonance present in the signal, an echo-planar readout trajectory could be used to resolve spatial information, giving full volume coverage of 32 × 32 × 16 voxels every 3.5 s. This high frame rate was used to measure the different lactate dynamics in different tissues in a normal rat model and a mouse model of prostate cancer.

  3. Floating volumetric image formation using a dihedral corner reflector array device.

    Science.gov (United States)

    Miyazaki, Daisuke; Hirano, Noboru; Maeda, Yuki; Yamamoto, Siori; Mukai, Takaaki; Maekawa, Satoshi

    2013-01-01

    A volumetric display system using an optical imaging device consisting of numerous dihedral corner reflectors placed perpendicular to the surface of a metal plate is proposed. Image formation by the dihedral corner reflector array (DCRA) is free from distortion and focal length. In the proposed volumetric display system, a two-dimensional real image is moved by a mirror scanner to scan a three-dimensional (3D) space. Cross-sectional images of a 3D object are displayed in accordance with the position of the image plane. A volumetric image is observed as a stack of the cross-sectional images. The use of the DCRA brings compact system configuration and volumetric real image generation with very low distortion. An experimental volumetric display system including a DCRA, a galvanometer mirror, and a digital micro-mirror device was constructed to verify the proposed method. A volumetric image consisting of 1024×768×400 voxels was formed by the experimental system.

  4. Quantitative volumetric Raman imaging of three dimensional cell cultures

    Science.gov (United States)

    Kallepitis, Charalambos; Bergholt, Mads S.; Mazo, Manuel M.; Leonardo, Vincent; Skaalure, Stacey C.; Maynard, Stephanie A.; Stevens, Molly M.

    2017-03-01

    The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell-material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy.

  5. Quantitative volumetric Raman imaging of three dimensional cell cultures

    KAUST Repository

    Kallepitis, Charalambos

    2017-03-22

    The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell–material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy.

  6. Volumetric and two-dimensional image interpretation show different cognitive processes in learners

    NARCIS (Netherlands)

    van der Gijp, Anouk; Ravesloot, C.J.; van der Schaaf, Marieke F; van der Schaaf, Irene C; Huige, Josephine C B M; Vincken, Koen L; Ten Cate, Olle Th J; van Schaik, JPJ

    2015-01-01

    RATIONALE AND OBJECTIVES: In current practice, radiologists interpret digital images, including a substantial amount of volumetric images. We hypothesized that interpretation of a stack of a volumetric data set demands different skills than interpretation of two-dimensional (2D) cross-sectional imag

  7. Volumetric and two-dimensional image interpretation show different cognitive processes in learners.

    Science.gov (United States)

    van der Gijp, Anouk; Ravesloot, Cécile J; van der Schaaf, Marieke F; van der Schaaf, Irene C; Huige, Josephine C B M; Vincken, Koen L; Ten Cate, Olle Th J; van Schaik, Jan P J

    2015-05-01

    In current practice, radiologists interpret digital images, including a substantial amount of volumetric images. We hypothesized that interpretation of a stack of a volumetric data set demands different skills than interpretation of two-dimensional (2D) cross-sectional images. This study aimed to investigate and compare knowledge and skills used for interpretation of volumetric versus 2D images. Twenty radiology clerks were asked to think out loud while reading four or five volumetric computed tomography (CT) images in stack mode and four or five 2D CT images. Cases were presented in a digital testing program allowing stack viewing of volumetric data sets and changing views and window settings. Thoughts verbalized by the participants were registered and coded by a framework of knowledge and skills concerning three components: perception, analysis, and synthesis. The components were subdivided into 16 discrete knowledge and skill elements. A within-subject analysis was performed to compare cognitive processes during volumetric image readings versus 2D cross-sectional image readings. Most utterances contained knowledge and skills concerning perception (46%). A smaller part involved synthesis (31%) and analysis (23%). More utterances regarded perception in volumetric image interpretation than in 2D image interpretation (Median 48% vs 35%; z = -3.9; P Cognitive processes in volumetric and 2D cross-sectional image interpretation differ substantially. Volumetric image interpretation draws predominantly on perceptual processes, whereas 2D image interpretation is mainly characterized by synthesis. The results encourage the use of volumetric images for teaching and testing perceptual skills. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  8. Aberration-free volumetric high-speed imaging of in vivo retina

    Science.gov (United States)

    Hillmann, Dierck; Spahr, Hendrik; Hain, Carola; Sudkamp, Helge; Franke, Gesa; Pfäffle, Clara; Winter, Christian; Hüttmann, Gereon

    2016-10-01

    Certain topics in research and advancements in medical diagnostics may benefit from improved temporal and spatial resolution during non-invasive optical imaging of living tissue. However, so far no imaging technique can generate entirely diffraction-limited tomographic volumes with a single data acquisition, if the target moves or changes rapidly, such as the human retina. Additionally, the presence of aberrations may represent further difficulties. We show that a simple interferometric setup-based on parallelized optical coherence tomography-acquires volumetric data with 10 billion voxels per second, exceeding previous imaging speeds by an order of magnitude. This allows us to computationally obtain and correct defocus and aberrations resulting in entirely diffraction-limited volumes. As demonstration, we imaged living human retina with clearly visible nerve fiber layer, small capillary networks, and photoreceptor cells. Furthermore, the technique can also obtain phase-sensitive volumes of other scattering structures at unprecedented acquisition speeds.

  9. Semiautomatic segmentation of liver metastases on volumetric CT images

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jiayong [Department of Biomedical Engineering, Shanghai University of Medicine & Health Sciences, 101 Yingkou Road, Yang Pu District, Shanghai 200093 (China); Schwartz, Lawrence H.; Zhao, Binsheng, E-mail: bz2166@cumc.columbia.edu [Department of Radiology, Columbia University Medical Center, 630 West 168th Street, New York, New York 10032 (United States)

    2015-11-15

    Purpose: Accurate segmentation and quantification of liver metastases on CT images are critical to surgery/radiation treatment planning and therapy response assessment. To date, there are no reliable methods to perform such segmentation automatically. In this work, the authors present a method for semiautomatic delineation of liver metastases on contrast-enhanced volumetric CT images. Methods: The first step is to manually place a seed region-of-interest (ROI) in the lesion on an image. This ROI will (1) serve as an internal marker and (2) assist in automatically identifying an external marker. With these two markers, lesion contour on the image can be accurately delineated using traditional watershed transformation. Density information will then be extracted from the segmented 2D lesion and help determine the 3D connected object that is a candidate of the lesion volume. The authors have developed a robust strategy to automatically determine internal and external markers for marker-controlled watershed segmentation. By manually placing a seed region-of-interest in the lesion to be delineated on a reference image, the method can automatically determine dual threshold values to approximately separate the lesion from its surrounding structures and refine the thresholds from the segmented lesion for the accurate segmentation of the lesion volume. This method was applied to 69 liver metastases (1.1–10.3 cm in diameter) from a total of 15 patients. An independent radiologist manually delineated all lesions and the resultant lesion volumes served as the “gold standard” for validation of the method’s accuracy. Results: The algorithm received a median overlap, overestimation ratio, and underestimation ratio of 82.3%, 6.0%, and 11.5%, respectively, and a median average boundary distance of 1.2 mm. Conclusions: Preliminary results have shown that volumes of liver metastases on contrast-enhanced CT images can be accurately estimated by a semiautomatic segmentation

  10. Parkinson's disease: diagnostic utility of volumetric imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wei-Che; Chen, Meng-Hsiang [Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Department of Diagnostic Radiology, Kaohsiung (China); Chou, Kun-Hsien [National Yang-Ming University, Brain Research Center, Taipei (China); Lee, Pei-Lin [National Yang-Ming University, Department of Biomedical Imaging and Radiological Sciences, Taipei (China); Tsai, Nai-Wen; Lu, Cheng-Hsien [Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Department of Neurology, Kaohsiung (China); Chen, Hsiu-Ling [Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Department of Diagnostic Radiology, Kaohsiung (China); National Yang-Ming University, Department of Biomedical Imaging and Radiological Sciences, Taipei (China); Hsu, Ai-Ling [National Taiwan University, Institute of Biomedical Electronics and Bioinformatics, Taipei (China); Huang, Yung-Cheng [Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Department of Nuclear Medicine, Kaohsiung (China); Lin, Ching-Po [National Yang-Ming University, Brain Research Center, Taipei (China); National Yang-Ming University, Department of Biomedical Imaging and Radiological Sciences, Taipei (China)

    2017-04-15

    This paper aims to examine the effectiveness of structural imaging as an aid in the diagnosis of Parkinson's disease (PD). High-resolution T{sub 1}-weighted magnetic resonance imaging was performed in 72 patients with idiopathic PD (mean age, 61.08 years) and 73 healthy subjects (mean age, 58.96 years). The whole brain was parcellated into 95 regions of interest using composite anatomical atlases, and region volumes were calculated. Three diagnostic classifiers were constructed using binary multiple logistic regression modeling: the (i) basal ganglion prior classifier, (ii) data-driven classifier, and (iii) basal ganglion prior/data-driven hybrid classifier. Leave-one-out cross validation was used to unbiasedly evaluate the predictive accuracy of imaging features. Pearson's correlation analysis was further performed to correlate outcome measurement using the best PD classifier with disease severity. Smaller volume in susceptible regions is diagnostic for Parkinson's disease. Compared with the other two classifiers, the basal ganglion prior/data-driven hybrid classifier had the highest diagnostic reliability with a sensitivity of 74%, specificity of 75%, and accuracy of 74%. Furthermore, outcome measurement using this classifier was associated with disease severity. Brain structural volumetric analysis with multiple logistic regression modeling can be a complementary tool for diagnosing PD. (orig.)

  11. Volumetric Spectroscopic Imaging of Glioblastoma Multiforme Radiation Treatment Volumes

    Energy Technology Data Exchange (ETDEWEB)

    Parra, N. Andres [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Maudsley, Andrew A. [Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida (United States); Gupta, Rakesh K. [Department of Radiology and Imaging, Fortis Memorial Research Institute, Gurgaon, Haryana (India); Ishkanian, Fazilat; Huang, Kris [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Walker, Gail R. [Biostatistics and Bioinformatics Core Resource, Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, Florida (United States); Padgett, Kyle [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida (United States); Roy, Bhaswati [Department of Radiology and Imaging, Fortis Memorial Research Institute, Gurgaon, Haryana (India); Panoff, Joseph; Markoe, Arnold [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Stoyanova, Radka, E-mail: RStoyanova@med.miami.edu [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States)

    2014-10-01

    Purpose: Magnetic resonance (MR) imaging and computed tomography (CT) are used almost exclusively in radiation therapy planning of glioblastoma multiforme (GBM), despite their well-recognized limitations. MR spectroscopic imaging (MRSI) can identify biochemical patterns associated with normal brain and tumor, predominantly by observation of choline (Cho) and N-acetylaspartate (NAA) distributions. In this study, volumetric 3-dimensional MRSI was used to map these compounds over a wide region of the brain and to evaluate metabolite-defined treatment targets (metabolic tumor volumes [MTV]). Methods and Materials: Volumetric MRSI with effective voxel size of ∼1.0 mL and standard clinical MR images were obtained from 19 GBM patients. Gross tumor volumes and edema were manually outlined, and clinical target volumes (CTVs) receiving 46 and 60 Gy were defined (CTV{sub 46} and CTV{sub 60}, respectively). MTV{sub Cho} and MTV{sub NAA} were constructed based on volumes with high Cho and low NAA relative to values estimated from normal-appearing tissue. Results: The MRSI coverage of the brain was between 70% and 76%. The MTV{sub NAA} were almost entirely contained within the edema, and the correlation between the 2 volumes was significant (r=0.68, P=.001). In contrast, a considerable fraction of MTV{sub Cho} was outside of the edema (median, 33%) and for some patients it was also outside of the CTV{sub 46} and CTV{sub 60}. These untreated volumes were greater than 10% for 7 patients (37%) in the study, and on average more than one-third (34.3%) of the MTV{sub Cho} for these patients were outside of CTV{sub 60}. Conclusions: This study demonstrates the potential usefulness of whole-brain MRSI for radiation therapy planning of GBM and revealed that areas of metabolically active tumor are not covered by standard RT volumes. The described integration of MTV into the RT system will pave the way to future clinical trials investigating outcomes in patients treated based on

  12. Volumetric synthetic aperture imaging with a piezoelectric 2D row-column probe

    Science.gov (United States)

    Bouzari, Hamed; Engholm, Mathias; Christiansen, Thomas Lehrmann; Beers, Christopher; Lei, Anders; Stuart, Matthias Bo; Nikolov, Svetoslav Ivanov; Thomsen, Erik Vilain; Jensen, Jørgen Arendt

    2016-04-01

    The synthetic aperture (SA) technique can be used for achieving real-time volumetric ultrasound imaging using 2-D row-column addressed transducers. This paper investigates SA volumetric imaging performance of an in-house prototyped 3 MHz λ/2-pitch 62+62 element piezoelectric 2-D row-column addressed transducer array. Utilizing single element transmit events, a volume rate of 90 Hz down to 14 cm deep is achieved. Data are obtained using the experimental ultrasound scanner SARUS with a 70 MHz sampling frequency and beamformed using a delay-and-sum (DAS) approach. A signal-to-noise ratio of up to 32 dB is measured on the beamformed images of a tissue mimicking phantom with attenuation of 0.5 dB cm-1 MHz-1, from the surface of the probe to the penetration depth of 300λ. Measured lateral resolution as Full-Width-at-Half-Maximum (FWHM) is between 4λ and 10λ for 18% to 65% of the penetration depth from the surface of the probe. The averaged contrast is 13 dB for the same range. The imaging performance assessment results may represent a reference guide for possible applications of such an array in different medical fields.

  13. Blockwise conjugate gradient methods for image reconstruction in volumetric CT.

    Science.gov (United States)

    Qiu, W; Titley-Peloquin, D; Soleimani, M

    2012-11-01

    Cone beam computed tomography (CBCT) enables volumetric image reconstruction from 2D projection data and plays an important role in image guided radiation therapy (IGRT). Filtered back projection is still the most frequently used algorithm in applications. The algorithm discretizes the scanning process (forward projection) into a system of linear equations, which must then be solved to recover images from measured projection data. The conjugate gradients (CG) algorithm and its variants can be used to solve (possibly regularized) linear systems of equations Ax=b and linear least squares problems minx∥b-Ax∥2, especially when the matrix A is very large and sparse. Their applications can be found in a general CT context, but in tomography problems (e.g. CBCT reconstruction) they have not widely been used. Hence, CBCT reconstruction using the CG-type algorithm LSQR was implemented and studied in this paper. In CBCT reconstruction, the main computational challenge is that the matrix A usually is very large, and storing it in full requires an amount of memory well beyond the reach of commodity computers. Because of these memory capacity constraints, only a small fraction of the weighting matrix A is typically used, leading to a poor reconstruction. In this paper, to overcome this difficulty, the matrix A is partitioned and stored blockwise, and blockwise matrix-vector multiplications are implemented within LSQR. This implementation allows us to use the full weighting matrix A for CBCT reconstruction without further enhancing computer standards. Tikhonov regularization can also be implemented in this fashion, and can produce significant improvement in the reconstructed images.

  14. Medical Imaging System

    Science.gov (United States)

    1991-01-01

    The MD Image System, a true-color image processing system that serves as a diagnostic aid and tool for storage and distribution of images, was developed by Medical Image Management Systems, Huntsville, AL, as a "spinoff from a spinoff." The original spinoff, Geostar 8800, developed by Crystal Image Technologies, Huntsville, incorporates advanced UNIX versions of ELAS (developed by NASA's Earth Resources Laboratory for analysis of Landsat images) for general purpose image processing. The MD Image System is an application of this technology to a medical system that aids in the diagnosis of cancer, and can accept, store and analyze images from other sources such as Magnetic Resonance Imaging.

  15. A Technique for Generating Volumetric Cine-Magnetic Resonance Imaging.

    Science.gov (United States)

    Harris, Wendy; Ren, Lei; Cai, Jing; Zhang, You; Chang, Zheng; Yin, Fang-Fang

    2016-06-01

    The purpose of this study was to develop a techique to generate on-board volumetric cine-magnetic resonance imaging (VC-MRI) using patient prior images, motion modeling, and on-board 2-dimensional cine MRI. One phase of a 4-dimensional MRI acquired during patient simulation is used as patient prior images. Three major respiratory deformation patterns of the patient are extracted from 4-dimensional MRI based on principal-component analysis. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI. The deformation field is represented as a linear combination of the 3 major deformation patterns. The coefficients of the deformation patterns are solved by the data fidelity constraint using the acquired on-board single 2-dimensional cine MRI. The method was evaluated using both digital extended-cardiac torso (XCAT) simulation of lung cancer patients and MRI data from 4 real liver cancer patients. The accuracy of the estimated VC-MRI was quantitatively evaluated using volume-percent-difference (VPD), center-of-mass-shift (COMS), and target tracking errors. Effects of acquisition orientation, region-of-interest (ROI) selection, patient breathing pattern change, and noise on the estimation accuracy were also evaluated. Image subtraction of ground-truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground-truth with prior image. Agreement between normalized profiles in the estimated and ground-truth VC-MRI was achieved with less than 6% error for both XCAT and patient data. Among all XCAT scenarios, the VPD between ground-truth and estimated lesion volumes was, on average, 8.43 ± 1.52% and the COMS was, on average, 0.93 ± 0.58 mm across all time steps for estimation based on the ROI region in the sagittal cine images. Matching to ROI in the sagittal view achieved better accuracy when there was substantial breathing pattern change. The technique was robust against noise levels up to SNR = 20. For

  16. Color Medical Image Analysis

    CERN Document Server

    Schaefer, Gerald

    2013-01-01

    Since the early 20th century, medical imaging has been dominated by monochrome imaging modalities such as x-ray, computed tomography, ultrasound, and magnetic resonance imaging. As a result, color information has been overlooked in medical image analysis applications. Recently, various medical imaging modalities that involve color information have been introduced. These include cervicography, dermoscopy, fundus photography, gastrointestinal endoscopy, microscopy, and wound photography. However, in comparison to monochrome images, the analysis of color images is a relatively unexplored area. The multivariate nature of color image data presents new challenges for researchers and practitioners as the numerous methods developed for monochrome images are often not directly applicable to multichannel images. The goal of this volume is to summarize the state-of-the-art in the utilization of color information in medical image analysis.

  17. Volumetric particle image velocimetry with a single plenoptic camera

    Science.gov (United States)

    Fahringer, Timothy W.; Lynch, Kyle P.; Thurow, Brian S.

    2015-11-01

    A novel three-dimensional (3D), three-component (3C) particle image velocimetry (PIV) technique based on volume illumination and light field imaging with a single plenoptic camera is described. A plenoptic camera uses a densely packed microlens array mounted near a high resolution image sensor to sample the spatial and angular distribution of light collected by the camera. The multiplicative algebraic reconstruction technique (MART) computed tomography algorithm is used to reconstruct a volumetric intensity field from individual snapshots and a cross-correlation algorithm is used to estimate the velocity field from a pair of reconstructed particle volumes. This work provides an introduction to the basic concepts of light field imaging with a plenoptic camera and describes the unique implementation of MART in the context of plenoptic image data for 3D/3C PIV measurements. Simulations of a plenoptic camera using geometric optics are used to generate synthetic plenoptic particle images, which are subsequently used to estimate the quality of particle volume reconstructions at various particle number densities. 3D reconstructions using this method produce reconstructed particles that are elongated by a factor of approximately 4 along the optical axis of the camera. A simulated 3D Gaussian vortex is used to test the capability of single camera plenoptic PIV to produce a 3D/3C vector field, where it was found that lateral displacements could be measured to approximately 0.2 voxel accuracy in the lateral direction and 1 voxel in the depth direction over a 300× 200× 200 voxel volume. The feasibility of the technique is demonstrated experimentally using a home-built plenoptic camera based on a 16-megapixel interline CCD camera and a 289× 193 array of microlenses and a pulsed Nd:YAG laser. 3D/3C measurements were performed in the wake of a low Reynolds number circular cylinder and compared with measurements made using a conventional 2D/2C PIV system. Overall, single camera

  18. FEMUR SHAPE RECOVERY FROM VOLUMETRIC IMAGES USING 3-D DEFORMABLE MODELS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new scheme for femur shape recovery from volumetric images using deformable models was proposed. First, prior 3-D deformable femur models are created as templates using point distribution models technology. Second, active contour models are employed to segment the magnetic resonance imaging (MRI) volumetric images of the tibial and femoral joints and the deformable models are initialized based on the segmentation results. Finally, the objective function is minimized to give the optimal results constraining the surface of shapes.

  19. Medical ultrasound imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2007-01-01

    The paper gives an introduction to current medical ultrasound imaging systems. The basics of anatomic and blood flow imaging are described. The properties of medical ultrasound and its focusing are described, and the various methods for two- and three-dimensional imaging of the human anatomy...

  20. Review of prospects and challenges of eye tracking in volumetric imaging.

    Science.gov (United States)

    Venjakob, Antje C; Mello-Thoms, Claudia R

    2016-01-01

    While eye tracking research in conventional radiography has flourished over the past decades, the number of eye tracking studies that looked at multislice images lags behind. A possible reason for the lack of studies in this area might be that the eye tracking methodology used in the context of conventional radiography cannot be applied one-on-one to volumetric imaging material. Challenges associated with eye tracking in volumetric imaging are particularly associated with the selection of stimulus material, the detection of events in the eye tracking data, the calculation of meaningful eye tracking parameters, and the reporting of abnormalities. However, all of these challenges can be addressed in the design of the experiment. If this is done, eye tracking studies using volumetric imaging material offer almost unlimited opportunity for perception research and are highly relevant as the number of volumetric images that are acquired and interpreted is rising.

  1. Medical imaging technology

    CERN Document Server

    Haidekker, Mark A

    2013-01-01

    Biomedical imaging is a relatively young discipline that started with Conrad Wilhelm Roentgen’s discovery of the x-ray in 1885. X-ray imaging was rapidly adopted in hospitals around the world. However, it was the advent of computerized data and image processing that made revolutionary new imaging modalities possible. Today, cross-sections and three-dimensional reconstructions of the organs inside the human body is possible with unprecedented speed, detail and quality. This book provides an introduction into the principles of image formation of key medical imaging modalities: X-ray projection imaging, x-ray computed tomography, magnetic resonance imaging, ultrasound imaging, and radionuclide imaging. Recent developments in optical imaging are also covered. For each imaging modality, the introduction into the physical principles and sources of contrast is provided, followed by the methods of image formation, engineering aspects of the imaging devices, and a discussion of strengths and limitations of the modal...

  2. Medical Image Fusion

    Directory of Open Access Journals (Sweden)

    Mitra Rafizadeh

    2007-08-01

    Full Text Available Technological advances in medical imaging in the past two decades have enable radiologists to create images of the human body with unprecedented resolution. MRI, PET,... imaging devices can quickly acquire 3D images. Image fusion establishes an anatomical correlation between corresponding images derived from different examination. This fusion is applied either to combine images of different modalities (CT, MRI or single modality (PET-PET."nImage fusion is performed in two steps:"n1 Registration: spatial modification (eg. translation of model image relative to reference image in order to arrive at an ideal matching of both images. Registration methods are feature-based and intensity-based approaches."n2 Visualization: the goal of it is to depict the spatial relationship between the model image and refer-ence image. We can point out its clinical application in nuclear medicine (PET/CT.

  3. Medical imaging systems

    Science.gov (United States)

    Frangioni, John V

    2013-06-25

    A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

  4. Radiology resident MR and CT image analysis skill assessment using an interactive volumetric simulation tool - the RadioLOG project.

    Science.gov (United States)

    Gondim Teixeira, Pedro Augusto; Cendre, Romain; Hossu, Gabriela; Leplat, Christophe; Felblinger, Jacques; Blum, Alain; Braun, Marc

    2017-02-01

    Assess the use of a volumetric simulation tool for the evaluation of radiology resident MR and CT interpretation skills. Forty-three participants were evaluated with a software allowing the visualisation of multiple volumetric image series. There were 7 medical students, 28 residents and 8 senior radiologists among the participants. Residents were divided into two sub-groups (novice and advanced). The test was composed of 15 exercises on general radiology and lasted 45 min. Participants answered a questionnaire on their experience with the test using a 5-point Likert scale. This study was approved by the dean of the medical school and did not require ethics committee approval. The reliability of the test was good with a Cronbach alpha value of 0.9. Test scores were significantly different in all sub-groups studies (p radiological practice (3.9 ± 0.9 on a 5-point scale) and was better than the conventional evaluation methods (4.6 ± 0.5 on a 5-point scale). This software provides a high quality evaluation tool for the assessment of the interpretation skills in radiology residents. • This tool allows volumetric image analysis of MR and CT studies. • A high reliability test could be created with this tool. • Test scores were strongly associated with the examinee expertise level. • Examinees positively evaluated the authenticity and usability of this tool.

  5. Volumetric Diffuse Optical Tomography for Small Animals Using a CCD-Camera-Based Imaging System

    Directory of Open Access Journals (Sweden)

    Zi-Jing Lin

    2012-01-01

    Full Text Available We report the feasibility of three-dimensional (3D volumetric diffuse optical tomography for small animal imaging by using a CCD-camera-based imaging system with a newly developed depth compensation algorithm (DCA. Our computer simulations and laboratory phantom studies have demonstrated that the combination of a CCD camera and DCA can significantly improve the accuracy in depth localization and lead to reconstruction of 3D volumetric images. This approach may present great interests for noninvasive 3D localization of an anomaly hidden in tissue, such as a tumor or a stroke lesion, for preclinical small animal models.

  6. Effect of anatomical backgrounds on detectability in volumetric cone beam CT images

    Science.gov (United States)

    Han, Minah; Park, Subok; Baek, Jongduk

    2016-03-01

    As anatomical noise is often a dominating factor affecting signal detection in medical imaging, we investigate the effects of anatomical backgrounds on signal detection in volumetric cone beam CT images. Signal detection performances are compared between transverse and longitudinal planes with either uniform or anatomical backgrounds. Sphere objects with diameters of 1mm, 5mm, 8mm, and 11mm are used as the signals. Three-dimensional (3D) anatomical backgrounds are generated using an anatomical noise power spectrum, 1/fβ, with β=3, equivalent to mammographic background [1]. The mean voxel value of the 3D anatomical backgrounds is used as an attenuation coefficient of the uniform background. Noisy projection data are acquired by the forward projection of the uniform and anatomical 3D backgrounds with/without sphere lesions and by the addition of quantum noise. Then, images are reconstructed by an FDK algorithm [2]. For each signal size, signal detection performances in transverse and longitudinal planes are measured by calculating the task SNR of a channelized Hotelling observer with Laguerre-Gauss channels. In the uniform background case, transverse planes yield higher task SNR values for all sphere diameters but 1mm. In the anatomical background case, longitudinal planes yield higher task SNR values for all signal diameters. The results indicate that it is beneficial to use longitudinal planes to detect spherical signals in anatomical backgrounds.

  7. Lossless Medical Image Compression

    Directory of Open Access Journals (Sweden)

    Nagashree G

    2014-06-01

    Full Text Available Image compression has become an important process in today‟s world of information exchange. Image compression helps in effective utilization of high speed network resources. Medical Image Compression is very important in the present world for efficient archiving and transmission of images. In this paper two different approaches for lossless image compression is proposed. One uses the combination of 2D-DWT & FELICS algorithm for lossy to lossless Image Compression and another uses combination of prediction algorithm and Integer wavelet Transform (IWT. To show the effectiveness of the methodology used, different image quality parameters are measured and shown the comparison of both the approaches. We observed the increased compression ratio and higher PSNR values.

  8. Classification in Medical Imaging

    DEFF Research Database (Denmark)

    Chen, Chen

    Classification is extensively used in the context of medical image analysis for the purpose of diagnosis or prognosis. In order to classify image content correctly, one needs to extract efficient features with discriminative properties and build classifiers based on these features. In addition...... to segment breast tissue and pectoral muscle area from the background in mammogram. The second focus is the choices of metric and its influence to the feasibility of a classifier, especially on k-nearest neighbors (k-NN) algorithm, with medical applications on breast cancer prediction and calcification...

  9. Medical Imaging and Infertility.

    Science.gov (United States)

    Peterson, Rebecca

    2016-11-01

    Infertility affects many couples, and medical imaging plays a vital role in its diagnosis and treatment. Radiologic technologists benefit from having a broad understanding of infertility risk factors and causes. This article describes the typical structure and function of the male and female reproductive systems, as well as congenital and acquired conditions that could lead to a couple's inability to conceive. Medical imaging procedures performed for infertility diagnosis are discussed, as well as common interventional options available to patients. © 2016 American Society of Radiologic Technologists.

  10. Feature-based Alignment of Volumetric Multi-modal Images

    Science.gov (United States)

    Toews, Matthew; Zöllei, Lilla; Wells, William M.

    2014-01-01

    This paper proposes a method for aligning image volumes acquired from different imaging modalities (e.g. MR, CT) based on 3D scale-invariant image features. A novel method for encoding invariant feature geometry and appearance is developed, based on the assumption of locally linear intensity relationships, providing a solution to poor repeatability of feature detection in different image modalities. The encoding method is incorporated into a probabilistic feature-based model for multi-modal image alignment. The model parameters are estimated via a group-wise alignment algorithm, that iteratively alternates between estimating a feature-based model from feature data, then realigning feature data to the model, converging to a stable alignment solution with few pre-processing or pre-alignment requirements. The resulting model can be used to align multi-modal image data with the benefits of invariant feature correspondence: globally optimal solutions, high efficiency and low memory usage. The method is tested on the difficult RIRE data set of CT, T1, T2, PD and MP-RAGE brain images of subjects exhibiting significant inter-subject variability due to pathology. PMID:24683955

  11. Progress in two-dimensional arrays for real-time volumetric imaging.

    Science.gov (United States)

    Light, E D; Davidsen, R E; Fiering, J O; Hruschka, T A; Smith, S W

    1998-01-01

    The design, fabrication, and evaluation of two dimensional array transducers for real-time volumetric imaging are described. The transducers we have previously described operated at frequencies below 3 MHz and were unwieldy to the operator because of the interconnect schemes used in connecting to the transducer handle. Several new transducers have been developed using new connection technology. A 40 x 40 = 1,600 element, 3.5 MHz array was fabricated with 256 transmit and 256 receive elements. A 60 x 60 = 3,600 element 5.0 MHz array was constructed with 248 transmit and 256 receive elements. An 80 x 80 = 6,400 element, 2.5 MHz array was fabricated with 256 transmit and 208receive elements. 2-D transducer arrays were also developed for volumetric scanning in an intra cardiac catheter, a 10 x 10 = 100 element 5.0 MHz forward-looking array and an 11 x 13 = 143 element 5.0 MHz side-scanning array. The-6dB fractional bandwidths for the different arrays varied from 50% to 63%, and the 50 omega insertion loss for all the transducers was about-64 dB. The transducers were used to generate real-time volumetric images in phantoms and in vivo using the Duke University real time volumetric imaging system, which is capable of generating multiple planes at any desired angle and depth within the pyramidal volume.

  12. Optimization of element length for imaging small volumetric reflectors with linear ultrasonic arrays

    OpenAIRE

    Barber, T. S.; Wilcox, P. D.; Nixon, A. D.

    2016-01-01

    A 3D ultrasonic simulation study is presented, aimed at understanding the effect of element length for imaging small volumetric flaws with linear arrays in ultrasonically noisy materials. The geometry of a linear array can be described by the width, pitch and total number of the elements along with the length perpendicular to imaging plane. This paper is concerned with the latter parameter, which tends to be ignored in array optimization studies and is often chosen arbitrarily for industrial ...

  13. Classification in Medical Imaging

    DEFF Research Database (Denmark)

    Chen, Chen

    Classification is extensively used in the context of medical image analysis for the purpose of diagnosis or prognosis. In order to classify image content correctly, one needs to extract efficient features with discriminative properties and build classifiers based on these features. In addition......, a good metric is required to measure distance or similarity between feature points so that the classification becomes feasible. Furthermore, in order to build a successful classifier, one needs to deeply understand how classifiers work. This thesis focuses on these three aspects of classification...... to segment breast tissue and pectoral muscle area from the background in mammogram. The second focus is the choices of metric and its influence to the feasibility of a classifier, especially on k-nearest neighbors (k-NN) algorithm, with medical applications on breast cancer prediction and calcification...

  14. Motion compensation in a tomographic ultrasound imaging system: Toward volumetric scans of a limb for prosthetic socket design.

    Science.gov (United States)

    Ranger, Bryan J; Feigin, Micha; Pestrov, Nikita; Zhang, Xiang; Lempitsky, Victor; Herr, Hugh M; Anthony, Brian W

    2015-08-01

    Current methods of prosthetic socket fabrication remain subjective and ineffective at creating an interface to the human body that is both comfortable and functional. Though there has been recent success using methods like magnetic resonance imaging and biomechanical modeling, a low-cost, streamlined, and repeatable process has not been fully demonstrated. Medical ultrasonography, which has significant potential to expand its clinical applications, is being pursued to acquire data that may quantify and improve the design process and fabrication of prosthetic sockets. This paper presents a new multi-modal imaging approach for acquiring volumetric images of a human limb, specifically focusing on how motion of the limb is compensated for using optical imagery.

  15. Volumetric elasticity imaging with a 2-D CMUT array.

    Science.gov (United States)

    Fisher, Ted G; Hall, Timothy J; Panda, Satchi; Richards, Michael S; Barbone, Paul E; Jiang, Jingfeng; Resnick, Jeff; Barnes, Steve

    2010-06-01

    This article reports the use of a two-dimensional (2-D) capacitive micro-machined ultrasound transducer (CMUT) to acquire radio-frequency (RF) echo data from relatively large volumes of a simple ultrasound phantom to compare three-dimensional (3-D) elasticity imaging methods. Typical 2-D motion tracking for elasticity image formation was compared with three different methods of 3-D motion tracking, with sum-squared difference (SSD) used as the similarity measure. Differences among the algorithms were the degree to which they tracked elevational motion: not at all (2-D search), planar search, combination of multiple planes and plane independent guided search. The cross-correlation between the predeformation and motion-compensated postdeformation RF echo fields was used to quantify motion tracking accuracy. The lesion contrast-to-noise ratio was used to quantify image quality. Tracking accuracy and strain image quality generally improved with increased tracking sophistication. When used as input for a 3-D modulus reconstruction, high quality 3-D displacement estimates yielded accurate and low noise modulus reconstruction.

  16. Wavelets in medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H. [Sharda University, SET, Department of Electronics and Communication, Knowledge Park 3rd, Gr. Noida (India); University of Kocaeli, Department of Mathematics, 41380 Kocaeli (Turkey); Istanbul Aydin University, Department of Computer Engineering, 34295 Istanbul (Turkey); Sharda University, SET, Department of Mathematics, 32-34 Knowledge Park 3rd, Greater Noida (India)

    2012-07-17

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  17. Posttraumatic syringomyelia: volumetric phantom and patient studies using MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Freund, Michael; Habicht, Dirk; Kalvine, Kira; Sartor, Klaus [Department of Neuroradiology, Medical School, University of Heidelberg (Germany); Aschoff, Alfred [Department of Neurosurgery, Medical School, University of Heidelberg (Germany)

    2002-12-01

    The purpose of this study was to determine the volume of posttraumatic syringomyelia (PTS) based on standard MRI data acquisitions, and to compare the volumes with the neurological deficits of the patients. Firstly, phantom studies were performed using routine T1- (T1W; TR 500 ms, TE 13 ms) spin-echo (SE) images, 3D gradient-echo (GE) images and T2-weighted (T2W) turbo spin-echo (TSE) images (TR 3000 ms, TE 130 ms), in the sagittal plane. The slices were interleaved so that there was no gap. Twelve phantoms simulating a PTS were constructed and filled with fluid. Each volume was exactly measured immediately prior to filling (volumes: 3600-74,000 mm{sup 3}, mean 27,500 mm{sup 3}). In the clinical study 32 patients with PTS were examined using the same protocol. Patients were supine and a phased-array coil was used. The phantom studies revealed measurement errors of within 35%. There were problems defining the boundaries in the small and irregular phantoms as well as in small and irregular PTS, and due to the partial-volume averaging effect. The two small irregular phantoms could only be measured on the axial images. The T2W images in the axial plane showed the best results: measurement accuracy 92%. In the clinical study all examinations were technically successful. The volumes of the PTS ranged between 200 and 19,800 mm{sup 3}; the mean volume was 4075 mm{sup 3}. Our initial results show that the volume measurement of a PTS using standard MRI sequences can help generate more objective and accurate measures of spinal cord lesions, and this may enhance the sensitivity of MRI in detecting disease progression or regression after treatment. (orig.)

  18. Selective-plane illumination microscopy for high-content volumetric biological imaging

    Science.gov (United States)

    McGorty, Ryan; Huang, Bo

    2016-03-01

    Light-sheet microscopy, also named selective-plane illumination microscopy, enables optical sectioning with minimal light delivered to the sample. Therefore, it allows one to gather volumetric datasets of developing embryos and other light-sensitive samples over extended times. We have configured a light-sheet microscope that, unlike most previous designs, can image samples in formats compatible with high-content imaging. Our microscope can be used with multi-well plates or with microfluidic devices. In designing our optical system to accommodate these types of sample holders we encounter large optical aberrations. We counter these aberrations with both static optical components in the imaging path and with adaptive optics. Potential applications of this microscope include studying the development of a large number of embryos in parallel and over long times with subcellular resolution and doing high-throughput screens on organisms or cells where volumetric data is necessary.

  19. Rapidly-steered single-element ultrasound for real-time volumetric imaging and guidance

    Science.gov (United States)

    Stauber, Mark; Western, Craig; Solek, Roman; Salisbury, Kenneth; Hristov, Dmitre; Schlosser, Jeffrey

    2016-03-01

    Volumetric ultrasound (US) imaging has the potential to provide real-time anatomical imaging with high soft-tissue contrast in a variety of diagnostic and therapeutic guidance applications. However, existing volumetric US machines utilize "wobbling" linear phased array or matrix phased array transducers which are costly to manufacture and necessitate bulky external processing units. To drastically reduce cost, improve portability, and reduce footprint, we propose a rapidly-steered single-element volumetric US imaging system. In this paper we explore the feasibility of this system with a proof-of-concept single-element volumetric US imaging device. The device uses a multi-directional raster-scan technique to generate a series of two-dimensional (2D) slices that were reconstructed into three-dimensional (3D) volumes. At 15 cm depth, 90° lateral field of view (FOV), and 20° elevation FOV, the device produced 20-slice volumes at a rate of 0.8 Hz. Imaging performance was evaluated using an US phantom. Spatial resolution was 2.0 mm, 4.7 mm, and 5.0 mm in the axial, lateral, and elevational directions at 7.5 cm. Relative motion of phantom targets were automatically tracked within US volumes with a mean error of -0.3+/-0.3 mm, -0.3+/-0.3 mm, and -0.1+/-0.5 mm in the axial, lateral, and elevational directions, respectively. The device exhibited a mean spatial distortion error of 0.3+/-0.9 mm, 0.4+/-0.7 mm, and -0.3+/-1.9 in the axial, lateral, and elevational directions. With a production cost near $1000, the performance characteristics of the proposed system make it an ideal candidate for diagnostic and image-guided therapy applications where form factor and low cost are paramount.

  20. Label-free volumetric optical imaging of intact murine brains

    Science.gov (United States)

    Ren, Jian; Choi, Heejin; Chung, Kwanghun; Bouma, Brett E.

    2017-04-01

    A central effort of today’s neuroscience is to study the brain’s ’wiring diagram’. The nervous system is believed to be a network of neurons interacting with each other through synaptic connection between axons and dendrites, therefore the neuronal connectivity map not only depicts the underlying anatomy, but also has important behavioral implications. Different approaches have been utilized to decipher neuronal circuits, including electron microscopy (EM) and light microscopy (LM). However, these approaches typically demand extensive sectioning and reconstruction for a brain sample. Recently, tissue clearing methods have enabled the investigation of a fully assembled biological system with greatly improved light penetration. Yet, most of these implementations, still require either genetic or exogenous contrast labeling for light microscopy. Here we demonstrate a high-speed approach, termed as Clearing Assisted Scattering Tomography (CAST), where intact brains can be imaged at optical resolution without labeling by leveraging tissue clearing and the scattering contrast of optical frequency domain imaging (OFDI).

  1. Volumetric image classification using homogeneous decomposition and dictionary learning: A study using retinal optical coherence tomography for detecting age-related macular degeneration.

    Science.gov (United States)

    Albarrak, Abdulrahman; Coenen, Frans; Zheng, Yalin

    2017-01-01

    Three-dimensional (3D) (volumetric) diagnostic imaging techniques are indispensable with respect to the diagnosis and management of many medical conditions. However there is a lack of automated diagnosis techniques to facilitate such 3D image analysis (although some support tools do exist). This paper proposes a novel framework for volumetric medical image classification founded on homogeneous decomposition and dictionary learning. In the proposed framework each image (volume) is recursively decomposed until homogeneous regions are arrived at. Each region is represented using a Histogram of Oriented Gradients (HOG) which is transformed into a set of feature vectors. The Gaussian Mixture Model (GMM) is then used to generate a "dictionary" and the Improved Fisher Kernel (IFK) approach is used to encode feature vectors so as to generate a single feature vector for each volume, which can then be fed into a classifier generator. The principal advantage offered by the framework is that it does not require the detection (segmentation) of specific objects within the input data. The nature of the framework is fully described. A wide range of experiments was conducted with which to analyse the operation of the proposed framework and these are also reported fully in the paper. Although the proposed approach is generally applicable to 3D volumetric images, the focus for the work is 3D retinal Optical Coherence Tomography (OCT) images in the context of the diagnosis of Age-related Macular Degeneration (AMD). The results indicate that excellent diagnostic predictions can be produced using the proposed framework.

  2. Medical Image Analysis Facility

    Science.gov (United States)

    1978-01-01

    To improve the quality of photos sent to Earth by unmanned spacecraft. NASA's Jet Propulsion Laboratory (JPL) developed a computerized image enhancement process that brings out detail not visible in the basic photo. JPL is now applying this technology to biomedical research in its Medical lrnage Analysis Facility, which employs computer enhancement techniques to analyze x-ray films of internal organs, such as the heart and lung. A major objective is study of the effects of I stress on persons with heart disease. In animal tests, computerized image processing is being used to study coronary artery lesions and the degree to which they reduce arterial blood flow when stress is applied. The photos illustrate the enhancement process. The upper picture is an x-ray photo in which the artery (dotted line) is barely discernible; in the post-enhancement photo at right, the whole artery and the lesions along its wall are clearly visible. The Medical lrnage Analysis Facility offers a faster means of studying the effects of complex coronary lesions in humans, and the research now being conducted on animals is expected to have important application to diagnosis and treatment of human coronary disease. Other uses of the facility's image processing capability include analysis of muscle biopsy and pap smear specimens, and study of the microscopic structure of fibroprotein in the human lung. Working with JPL on experiments are NASA's Ames Research Center, the University of Southern California School of Medicine, and Rancho Los Amigos Hospital, Downey, California.

  3. Volumetric Three-Dimensional Display Systems

    Science.gov (United States)

    Blundell, Barry G.; Schwarz, Adam J.

    2000-03-01

    A comprehensive study of approaches to three-dimensional visualization by volumetric display systems This groundbreaking volume provides an unbiased and in-depth discussion on a broad range of volumetric three-dimensional display systems. It examines the history, development, design, and future of these displays, and considers their potential for application to key areas in which visualization plays a major role. Drawing substantially on material that was previously unpublished or available only in patent form, the authors establish the first comprehensive technical and mathematical formalization of the field, and examine a number of different volumetric architectures. System level design strategies are presented, from which proposals for the next generation of high-definition predictable volumetric systems are developed. To ensure that researchers will benefit from work already completed, they provide: * Descriptions of several recent volumetric display systems prepared from material supplied by the teams that created them * An abstract volumetric display system design paradigm * An historical summary of 90 years of development in volumetric display system technology * An assessment of the strengths and weaknesses of many of the systems proposed to date * A unified presentation of the underlying principles of volumetric display systems * A comprehensive bibliography Beautifully supplemented with 17 color plates that illustrate volumetric images and prototype displays, Volumetric Three-Dimensional Display Systems is an indispensable resource for professionals in imaging systems development, scientific visualization, medical imaging, computer graphics, aerospace, military planning, and CAD/CAE.

  4. Semiautomated volumetric response evaluation as an imaging biomarker in superior sulcus tumors

    Energy Technology Data Exchange (ETDEWEB)

    Vos, C.G.; Paul, M.A. [VU University Medical Center, Departments of Surgery, Amsterdam (Netherlands); Dahele, M.; Soernsen de Koste, J.R. van; Senan, S. [VU University Medical Center, Departments of Radiation Oncology, Amsterdam (Netherlands); Bahce, I.; Smit, E.F. [VU University Medical Center, Departments of Pulmonary Diseases, Amsterdam (Netherlands); Thunnissen, E. [VU University Medical Center, Departments of Pathology, Amsterdam (Netherlands); Hartemink, K.J. [VU University Medical Center, Departments of Surgery, Amsterdam (Netherlands); Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AVL), Department of Surgery, Amsterdam (Netherlands)

    2014-02-15

    Volumetric response to therapy has been suggested as a biomarker for patient-centered outcomes. The primary aim of this pilot study was to investigate whether the volumetric response to induction chemoradiotherapy was associated with pathological complete response (pCR) or survival in patients with superior sulcus tumors managed with trimodality therapy. The secondary aim was to evaluate a semiautomated method for serial volume assessment. In this retrospective study, treatment outcomes were obtained from a departmental database. The tumor was delineated on the computed tomography (CT) scan used for radiotherapy planning, which was typically performed during the first cycle of chemotherapy. These contours were transferred to the post-chemoradiotherapy diagnostic CT scan using deformable image registration (DIR) with/without manual editing. CT scans from 30 eligible patients were analyzed. Median follow-up was 51 months. Neither absolute nor relative reduction in tumor volume following chemoradiotherapy correlated with pCR or 2-year survival. The tumor volumes determined by DIR alone and DIR + manual editing correlated to a high degree (R{sup 2} = 0.99, P < 0.01). Volumetric response to induction chemoradiotherapy was not correlated with pCR or survival in patients with superior sulcus tumors managed with trimodality therapy. DIR-based contour propagation merits further evaluation as a tool for serial volumetric assessment. (orig.)

  5. Two-dimensional catheter arrays for real-time intracardiac volumetric imaging

    Science.gov (United States)

    Light, Edward D.; Fiering, Jason O.; Lee, Warren; Wolf, Patrick D.; Smith, Stephen W.

    1999-06-01

    We have previously described 2D arrays of several thousand elements operating up to 5.0 MHz for transthoracic cardiac imaging. Lately, there has been interest in developing catheter based intracardiac imaging systems to aid in the precise tracking of anatomical features for improved diagnoses and therapies. We have constructed several arrays for real time intracardiac volumetric imaging based upon two different designs; a 10 X 10 equals 100 element 5.0 MHz forward looking 2D array, and a 13 X 11 equals 143 element 5.0 MHz 2D array for side scanning applications.

  6. Radiology resident MR and CT image analysis skill assessment using an interactive volumetric simulation tool - the RadioLOG project

    Energy Technology Data Exchange (ETDEWEB)

    Gondim Teixeira, Pedro Augusto; Leplat, Christophe [CHRU-Nancy Hopital Central, Service d' Imagerie Guilloz, Nancy (France); Universite de Lorraine, IADI U947, Nancy (France); Cendre, Romain [INSERM, CIC-IT 1433, Nancy (France); Hossu, Gabriela; Felblinger, Jacques [Universite de Lorraine, IADI U947, Nancy (France); INSERM, CIC-IT 1433, Nancy (France); Blum, Alain [CHRU-Nancy Hopital Central, Service d' Imagerie Guilloz, Nancy (France); Braun, Marc [CHRU-Nancy Hopital Central, Service de Neuroradiologie, Nancy (France)

    2017-02-15

    Assess the use of a volumetric simulation tool for the evaluation of radiology resident MR and CT interpretation skills. Forty-three participants were evaluated with a software allowing the visualisation of multiple volumetric image series. There were 7 medical students, 28 residents and 8 senior radiologists among the participants. Residents were divided into two sub-groups (novice and advanced). The test was composed of 15 exercises on general radiology and lasted 45 min. Participants answered a questionnaire on their experience with the test using a 5-point Likert scale. This study was approved by the dean of the medical school and did not require ethics committee approval. The reliability of the test was good with a Cronbach alpha value of 0.9. Test scores were significantly different in all sub-groups studies (p < 0.0225). The relation between test scores and the year of residency was logarithmic (R{sup 2} = 0.974). Participants agreed that the test reflected their radiological practice (3.9 ± 0.9 on a 5-point scale) and was better than the conventional evaluation methods (4.6 ± 0.5 on a 5-point scale). This software provides a high quality evaluation tool for the assessment of the interpretation skills in radiology residents. (orig.)

  7. Lossless Compression of Medical Images Using 3D Predictors.

    Science.gov (United States)

    Lucas, Luis; Rodrigues, Nuno; Cruz, Luis; Faria, Sergio

    2017-06-09

    This paper describes a highly efficient method for lossless compression of volumetric sets of medical images, such as CTs or MRIs. The proposed method, referred to as 3D-MRP, is based on the principle of minimum rate predictors (MRP), which is one of the state-of-the-art lossless compression technologies, presented in the data compression literature. The main features of the proposed method include the use of 3D predictors, 3D-block octree partitioning and classification, volume-based optimisation and support for 16 bit-depth images. Experimental results demonstrate the efficiency of the 3D-MRP algorithm for the compression of volumetric sets of medical images, achieving gains above 15% and 12% for 8 bit and 16 bit-depth contents, respectively, when compared to JPEG-LS, JPEG2000, CALIC, HEVC, as well as other proposals based on MRP algorithm.

  8. Deep learning for automatic localization, identification, and segmentation of vertebral bodies in volumetric MR images

    Science.gov (United States)

    Suzani, Amin; Rasoulian, Abtin; Seitel, Alexander; Fels, Sidney; Rohling, Robert N.; Abolmaesumi, Purang

    2015-03-01

    This paper proposes an automatic method for vertebra localization, labeling, and segmentation in multi-slice Magnetic Resonance (MR) images. Prior work in this area on MR images mostly requires user interaction while our method is fully automatic. Cubic intensity-based features are extracted from image voxels. A deep learning approach is used for simultaneous localization and identification of vertebrae. The localized points are refined by local thresholding in the region of the detected vertebral column. Thereafter, a statistical multi-vertebrae model is initialized on the localized vertebrae. An iterative Expectation Maximization technique is used to register the vertebral body of the model to the image edges and obtain a segmentation of the lumbar vertebral bodies. The method is evaluated by applying to nine volumetric MR images of the spine. The results demonstrate 100% vertebra identification and a mean surface error of below 2.8 mm for 3D segmentation. Computation time is less than three minutes per high-resolution volumetric image.

  9. 4D ultrafast ultrasound flow imaging: in vivo quantification of arterial volumetric flow rate in a single heartbeat

    Science.gov (United States)

    Correia, Mafalda; Provost, Jean; Tanter, Mickael; Pernot, Mathieu

    2016-12-01

    We present herein 4D ultrafast ultrasound flow imaging, a novel ultrasound-based volumetric imaging technique for the quantitative mapping of blood flow. Complete volumetric blood flow distribution imaging was achieved through 2D tilted plane-wave insonification, 2D multi-angle cross-beam beamforming, and 3D vector Doppler velocity components estimation by least-squares fitting. 4D ultrafast ultrasound flow imaging was performed in large volumetric fields of view at very high volume rate (>4000 volumes s-1) using a 1024-channel 4D ultrafast ultrasound scanner and a 2D matrix-array transducer. The precision of the technique was evaluated in vitro by using 3D velocity vector maps to estimate volumetric flow rates in a vessel phantom. Volumetric Flow rate errors of less than 5% were found when volumetric flow rates and peak velocities were respectively less than 360 ml min-1 and 100 cm s-1. The average volumetric flow rate error increased to 18.3% when volumetric flow rates and peak velocities were up to 490 ml min-1 and 1.3 m s-1, respectively. The in vivo feasibility of the technique was shown in the carotid arteries of two healthy volunteers. The 3D blood flow velocity distribution was assessed during one cardiac cycle in a full volume and it was used to quantify volumetric flow rates (375  ±  57 ml min-1 and 275  ±  43 ml min-1). Finally, the formation of 3D vortices at the carotid artery bifurcation was imaged at high volume rates.

  10. A Volume Rendering Algorithm for Sequential 2D Medical Images

    Institute of Scientific and Technical Information of China (English)

    吕忆松; 陈亚珠

    2002-01-01

    Volume rendering of 3D data sets composed of sequential 2D medical images has become an important branch in image processing and computer graphics.To help physicians fully understand deep-seated human organs and focuses(e.g.a tumour)as 3D structures.in this paper,we present a modified volume rendering algorithm to render volumetric data,Using this method.the projection images of structures of interest from different viewing directions can be obtained satisfactorily.By rotating the light source and the observer eyepoint,this method avoids rotates the whole volumetric data in main memory and thus reduces computational complexity and rendering time.Experiments on CT images suggest that the proposed method is useful and efficient for rendering 3D data sets.

  11. Multitracer: a Java-based tool for anatomic delineation of grayscale volumetric images.

    Science.gov (United States)

    Woods, Roger P

    2003-08-01

    A Java-based tool for delineating anatomic boundaries in 8- and 16- bit grayscale volumetric images is described. Modern features implemented by the tool include the ability to simultaneously view the current cursor position and the previously delineated boundaries on three orthogonal planes, the ability to magnify images during delineation using high-quality interpolation, the ability to encode and save boundaries with subvoxel resolution, and the ability to utilize coregistered images interchangeably during delineation. Additional features facilitate use of the tool in a multiuser, multiplatform environment and provide support for the documentation of anatomic delineation protocols. In addition to providing direct estimates of structure volumes, areas, and lengths, the tool allows contoured boundaries to be exported for more sophisticated analyses. The tool also provides support for manual editing of image volumes to remove confounding structures and for manual correction of image volumes that have been inaccurately edited. In addition to its research utility, the tool also has potential value in education, allowing students to interact with volumetric data and structural boundaries in three dimensions.

  12. Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images.

    Science.gov (United States)

    Chen, Weijie; Giger, Maryellen L; Li, Hui; Bick, Ulrich; Newstead, Gillian M

    2007-09-01

    Automated image analysis aims to extract relevant information from contrast-enhanced magnetic resonance images (CE-MRI) of the breast and improve the accuracy and consistency of image interpretation. In this work, we extend the traditional 2D gray-level co-occurrence matrix (GLCM) method to investigate a volumetric texture analysis approach and apply it for the characterization of breast MR lesions. Our database of breast MR images was obtained using a T1-weighted 3D spoiled gradient echo sequence and consists of 121 biopsy-proven lesions (77 malignant and 44 benign). A fuzzy c-means clustering (FCM) based method is employed to automatically segment 3D breast lesions on CE-MR images. For each 3D lesion, a nondirectional GLCM is then computed on the first postcontrast frame by summing 13 directional GLCMs. Texture features are extracted from the nondirectional GLCMs and the performance of each texture feature in the task of distinguishing between malignant and benign breast lesions is assessed by receiver operating characteristics (ROC) analysis. Our results show that the classification performance of volumetric texture features is significantly better than that based on 2D analysis. Our investigations of the effects of various of parameters on the diagnostic accuracy provided means for the optimal use of the approach.

  13. Medical alert bracelet (image)

    Science.gov (United States)

    People with diabetes should always wear a medical alert bracelet or necklace that emergency medical workers will be able to find. Medical identification products can help ensure proper treatment in an ...

  14. [Change in condylar and mandibular morphology in juvenile idiopathic arthritis: cone beam volumetric imaging].

    Science.gov (United States)

    Garagiola, Umberto; Mercatali, Lorenzo; Bellintani, Claudio; Fodor, Attila; Farronato, Giampietro; Lőrincz, Adám

    2013-03-01

    The aim of this study is to show the importance of Cone Beam Computerized Tomography to volumetrically quantify TMJ damage in patients with JIA, measuring condylar and mandibular real volumes. 34 children with temporomandibular involvement by Juvenile Idiopathic Arthritis were observed by Cone Beam Computerized Tomography. 4 were excluded because of several imaging noises. The mandible was isolated from others craniofacial structures; the whole mandibular volume and its components' volumes (condyle, ramus, hemibody, hemisymphysis on right side and on left side) has been calculated by a 3D volume rendering technique. The results show a highly significant statistical difference between affected side volumetric values versus normal side volumetric values above all on condyle region (P < 0.01), while they don't show any statistical differences between right side versus left side. The Cone Beam Computerized Tomography represents a huge improvement in understanding of the condyle and mandibular morphological changes, even in the early stages of the Juvenile Idiopathic Arthritis. The JIA can lead in children to temporomandibular joint damage with facial development and growth alterations.

  15. Intelligent distributed medical image management

    Science.gov (United States)

    Garcia, Hong-Mei C.; Yun, David Y.

    1995-05-01

    The rapid advancements in high performance global communication have accelerated cooperative image-based medical services to a new frontier. Traditional image-based medical services such as radiology and diagnostic consultation can now fully utilize multimedia technologies in order to provide novel services, including remote cooperative medical triage, distributed virtual simulation of operations, as well as cross-country collaborative medical research and training. Fast (efficient) and easy (flexible) retrieval of relevant images remains a critical requirement for the provision of remote medical services. This paper describes the database system requirements, identifies technological building blocks for meeting the requirements, and presents a system architecture for our target image database system, MISSION-DBS, which has been designed to fulfill the goals of Project MISSION (medical imaging support via satellite integrated optical network) -- an experimental high performance gigabit satellite communication network with access to remote supercomputing power, medical image databases, and 3D visualization capabilities in addition to medical expertise anywhere and anytime around the country. The MISSION-DBS design employs a synergistic fusion of techniques in distributed databases (DDB) and artificial intelligence (AI) for storing, migrating, accessing, and exploring images. The efficient storage and retrieval of voluminous image information is achieved by integrating DDB modeling and AI techniques for image processing while the flexible retrieval mechanisms are accomplished by combining attribute- based and content-based retrievals.

  16. Aberration-free volumetric high-speed imaging of in vivo retina

    CERN Document Server

    Hillmann, Dierck; Hain, Carola; Sudkamp, Helge; Franke, Gesa; Pfäffle, Clara; Winter, Christian; Hüttmann, Gereon

    2016-01-01

    Research and medicine rely on non-invasive optical techniques to image living tissue with high resolution in space and time. But so far a single data acquisition could not provide entirely diffraction-limited tomographic volumes of rapidly moving or changing targets, which additionally becomes increasingly difficult in the presence of aberrations, e.g., when imaging retina in vivo. We show, that a simple interferometric setup based on parallelized optical coherence tomography acquires volumetric data with 10 billion voxels per second, exceeding previous imaging speeds by an order of magnitude. This allows us to computationally obtain and correct defocus and aberrations resulting in entirely diffraction-limited volumes. As demonstration, we imaged living human retina with clearly visible nerve fiber layer, small capillary networks, and photoreceptor cells, but the technique is also applicable to obtain phase-sensitive volumes of other scattering structures at unprecedented acquisition speeds.

  17. Integrated circuits for volumetric ultrasound imaging with 2-D CMUT arrays.

    Science.gov (United States)

    Bhuyan, Anshuman; Choe, Jung Woo; Lee, Byung Chul; Wygant, Ira O; Nikoozadeh, Amin; Oralkan, Ömer; Khuri-Yakub, Butrus T

    2013-12-01

    Real-time volumetric ultrasound imaging systems require transmit and receive circuitry to generate ultrasound beams and process received echo signals. The complexity of building such a system is high due to requirement of the front-end electronics needing to be very close to the transducer. A large number of elements also need to be interfaced to the back-end system and image processing of a large dataset could affect the imaging volume rate. In this work, we present a 3-D imaging system using capacitive micromachined ultrasonic transducer (CMUT) technology that addresses many of the challenges in building such a system. We demonstrate two approaches in integrating the transducer and the front-end electronics. The transducer is a 5-MHz CMUT array with an 8 mm × 8 mm aperture size. The aperture consists of 1024 elements (32 × 32) with an element pitch of 250 μm. An integrated circuit (IC) consists of a transmit beamformer and receive circuitry to improve the noise performance of the overall system. The assembly was interfaced with an FPGA and a back-end system (comprising of a data acquisition system and PC). The FPGA provided the digital I/O signals for the IC and the back-end system was used to process the received RF echo data (from the IC) and reconstruct the volume image using a phased array imaging approach. Imaging experiments were performed using wire and spring targets, a ventricle model and a human prostrate. Real-time volumetric images were captured at 5 volumes per second and are presented in this paper.

  18. Desktop supercomputers. Advance medical imaging.

    Science.gov (United States)

    Frisiello, R S

    1991-02-01

    Medical imaging tools that radiologists as well as a wide range of clinicians and healthcare professionals have come to depend upon are emerging into the next phase of functionality. The strides being made in supercomputing technologies--including reduction of size and price--are pushing medical imaging to a new level of accuracy and functionality.

  19. From medical imaging data to 3D printed anatomical models.

    Science.gov (United States)

    Bücking, Thore M; Hill, Emma R; Robertson, James L; Maneas, Efthymios; Plumb, Andrew A; Nikitichev, Daniil I

    2017-01-01

    Anatomical models are important training and teaching tools in the clinical environment and are routinely used in medical imaging research. Advances in segmentation algorithms and increased availability of three-dimensional (3D) printers have made it possible to create cost-efficient patient-specific models without expert knowledge. We introduce a general workflow that can be used to convert volumetric medical imaging data (as generated by Computer Tomography (CT)) to 3D printed physical models. This process is broken up into three steps: image segmentation, mesh refinement and 3D printing. To lower the barrier to entry and provide the best options when aiming to 3D print an anatomical model from medical images, we provide an overview of relevant free and open-source image segmentation tools as well as 3D printing technologies. We demonstrate the utility of this streamlined workflow by creating models of ribs, liver, and lung using a Fused Deposition Modelling 3D printer.

  20. Constrained reverse diffusion for thick slice interpolation of 3D volumetric MRI images.

    Science.gov (United States)

    Neubert, Aleš; Salvado, Olivier; Acosta, Oscar; Bourgeat, Pierrick; Fripp, Jurgen

    2012-03-01

    Due to physical limitations inherent in magnetic resonance imaging scanners, three dimensional volumetric scans are often acquired with anisotropic voxel resolution. We investigate several interpolation approaches to reduce the anisotropy and present a novel approach - constrained reverse diffusion for thick slice interpolation. This technique was compared to common methods: linear and cubic B-Spline interpolation and a technique based on non-rigid registration of neighboring slices. The methods were evaluated on artificial MR phantoms and real MR scans of human brain. The constrained reverse diffusion approach delivered promising results and provides an alternative for thick slice interpolation, especially for higher anisotropy factors.

  1. Cellular resolution volumetric in vivo retinal imaging with adaptive optics–optical coherence tomography◊

    Science.gov (United States)

    Zawadzki, Robert J.; Choi, Stacey S.; Fuller, Alfred R.; Evans, Julia W.; Hamann, Bernd; Werner, John S.

    2009-01-01

    Ultrahigh-resolution adaptive optics–optical coherence tomography (UHR-AO-OCT) instrumentation allowing monochromatic and chromatic aberration correction was used for volumetric in vivo retinal imaging of various retinal structures including the macula and optic nerve head (ONH). Novel visualization methods that simplify AO-OCT data viewing are presented, and include co-registration of AO-OCT volumes with fundus photography and stitching of multiple AO-OCT sub-volumes to create a large field of view (FOV) high-resolution volume. Additionally, we explored the utility of Interactive Science Publishing by linking all presented AO-OCT datasets with the OSA ISP software. PMID:19259248

  2. Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography.

    Science.gov (United States)

    Zawadzki, Robert J; Choi, Stacey S; Fuller, Alfred R; Evans, Julia W; Hamann, Bernd; Werner, John S

    2009-03-02

    Ultrahigh-resolution adaptive optics-optical coherence tomography (UHR-AO-OCT) instrumentation allowing monochromatic and chromatic aberration correction was used for volumetric in vivo retinal imaging of various retinal structures including the macula and optic nerve head (ONH). Novel visualization methods that simplify AO-OCT data viewing are presented, and include co-registration of AO-OCT volumes with fundus photography and stitching of multiple AO-OCT sub-volumes to create a large field of view (FOV) high-resolution volume. Additionally, we explored the utility of Interactive Science Publishing by linking all presented AO-OCT datasets with the OSA ISP software.

  3. Distributed Object Medical Imaging Model

    CERN Document Server

    Noor, Ahmad Shukri Mohd

    2009-01-01

    Digital medical informatics and images are commonly used in hospitals today,. Because of the interrelatedness of the radiology department and other departments, especially the intensive care unit and emergency department, the transmission and sharing of medical images has become a critical issue. Our research group has developed a Java-based Distributed Object Medical Imaging Model(DOMIM) to facilitate the rapid development and deployment of medical imaging applications in a distributed environment that can be shared and used by related departments and mobile physiciansDOMIM is a unique suite of multimedia telemedicine applications developed for the use by medical related organizations. The applications support realtime patients' data, image files, audio and video diagnosis annotation exchanges. The DOMIM enables joint collaboration between radiologists and physicians while they are at distant geographical locations. The DOMIM environment consists of heterogeneous, autonomous, and legacy resources. The Common...

  4. Time-resolved computed tomography of the liver: retrospective, multi-phase image reconstruction derived from volumetric perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Michael A.; Kartalis, Nikolaos; Aspelin, Peter; Albiin, Nils; Brismar, Torkel B. [Karolinska University Hospital, Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm (Sweden); Leidner, Bertil; Svensson, Anders [Karolinska University Hospital, Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm (Sweden); Karolinska University Hospital Huddinge, Department of Radiology, Stockholm (Sweden)

    2014-01-15

    To assess feasibility and image quality (IQ) of a new post-processing algorithm for retrospective extraction of an optimised multi-phase CT (time-resolved CT) of the liver from volumetric perfusion imaging. Sixteen patients underwent clinically indicated perfusion CT using 4D spiral mode of dual-source 128-slice CT. Three image sets were reconstructed: motion-corrected and noise-reduced (MCNR) images derived from 4D raw data; maximum and average intensity projections (time MIP/AVG) of the arterial/portal/portal-venous phases and all phases (total MIP/ AVG) derived from retrospective fusion of dedicated MCNR split series. Two readers assessed the IQ, detection rate and evaluation time; one reader assessed image noise and lesion-to-liver contrast. Time-resolved CT was feasible in all patients. Each post-processing step yielded a significant reduction of image noise and evaluation time, maintaining lesion-to-liver contrast. Time MIPs/AVGs showed the highest overall IQ without relevant motion artefacts and best depiction of arterial and portal/portal-venous phases respectively. Time MIPs demonstrated a significantly higher detection rate for arterialised liver lesions than total MIPs/AVGs and the raw data series. Time-resolved CT allows data from volumetric perfusion imaging to be condensed into an optimised multi-phase liver CT, yielding a superior IQ and higher detection rate for arterialised liver lesions than the raw data series. (orig.)

  5. Scene data fusion: Real-time standoff volumetric gamma-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Barnowski, Ross [Department of Nuclear Engineering, UC Berkeley, 4155 Etcheverry Hall, MC 1730, Berkeley, CA 94720, United States of America (United States); Haefner, Andrew; Mihailescu, Lucian [Lawrence Berkeley National Lab - Applied Nuclear Physics, 1 Cyclotron Road, Berkeley, CA 94720, United States of America (United States); Vetter, Kai [Department of Nuclear Engineering, UC Berkeley, 4155 Etcheverry Hall, MC 1730, Berkeley, CA 94720, United States of America (United States); Lawrence Berkeley National Lab - Applied Nuclear Physics, 1 Cyclotron Road, Berkeley, CA 94720, United States of America (United States)

    2015-11-11

    An approach to gamma-ray imaging has been developed that enables near real-time volumetric (3D) imaging of unknown environments thus improving the utility of gamma-ray imaging for source-search and radiation mapping applications. The approach, herein dubbed scene data fusion (SDF), is based on integrating mobile radiation imagers with real-time tracking and scene reconstruction algorithms to enable a mobile mode of operation and 3D localization of gamma-ray sources. A 3D model of the scene, provided in real-time by a simultaneous localization and mapping (SLAM) algorithm, is incorporated into the image reconstruction reducing the reconstruction time and improving imaging performance. The SDF concept is demonstrated in this work with a Microsoft Kinect RGB-D sensor, a real-time SLAM solver, and a cart-based Compton imaging platform comprised of two 3D position-sensitive high purity germanium (HPGe) detectors. An iterative algorithm based on Compton kinematics is used to reconstruct the gamma-ray source distribution in all three spatial dimensions. SDF advances the real-world applicability of gamma-ray imaging for many search, mapping, and verification scenarios by improving the tractiblity of the gamma-ray image reconstruction and providing context for the 3D localization of gamma-ray sources within the environment in real-time.

  6. Quantification of smoothing requirement for 3D optic flow calculation of volumetric images

    DEFF Research Database (Denmark)

    Bab-Hadiashar, Alireza; Tennakoon, Ruwan B.; de Bruijne, Marleen

    2013-01-01

    that a (surprisingly) small amount of local smoothing is required to satisfy both the necessary and sufficient conditions for accurate optic flow estimation. This notion is called 'just enough' smoothing, and its proper implementation has a profound effect on the preservation of local information in processing 3D...... dynamic scans. To demonstrate the effect of 'just enough' smoothing, a robust 3D optic flow method with quantized local smoothing is presented, and the effect of local smoothing on the accuracy of motion estimation in dynamic lung CT images is examined using both synthetic and real image sequences......Complexities of dynamic volumetric imaging challenge the available computer vision techniques on a number of different fronts. This paper examines the relationship between the estimation accuracy and required amount of smoothness for a general solution from a robust statistics perspective. We show...

  7. Medical hyperspectral imaging: a review

    Science.gov (United States)

    Lu, Guolan; Fei, Baowei

    2014-01-01

    Abstract. Hyperspectral imaging (HSI) is an emerging imaging modality for medical applications, especially in disease diagnosis and image-guided surgery. HSI acquires a three-dimensional dataset called hypercube, with two spatial dimensions and one spectral dimension. Spatially resolved spectral imaging obtained by HSI provides diagnostic information about the tissue physiology, morphology, and composition. This review paper presents an overview of the literature on medical hyperspectral imaging technology and its applications. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application. PMID:24441941

  8. Automated medical image segmentation techniques

    Directory of Open Access Journals (Sweden)

    Sharma Neeraj

    2010-01-01

    Full Text Available Accurate segmentation of medical images is a key step in contouring during radiotherapy planning. Computed topography (CT and Magnetic resonance (MR imaging are the most widely used radiographic techniques in diagnosis, clinical studies and treatment planning. This review provides details of automated segmentation methods, specifically discussed in the context of CT and MR images. The motive is to discuss the problems encountered in segmentation of CT and MR images, and the relative merits and limitations of methods currently available for segmentation of medical images.

  9. Medical hyperspectral imaging: a review.

    Science.gov (United States)

    Lu, Guolan; Fei, Baowei

    2014-01-01

    Hyperspectral imaging (HSI) is an emerging imaging modality for medical applications, especially in disease diagnosis and image-guided surgery. HSI acquires a three-dimensional dataset called hypercube, with two spatial dimensions and one spectral dimension. Spatially resolved spectral imaging obtained by HSI provides diagnostic information about the tissue physiology, morphology, and composition. This review paper presents an overview of the literature on medical hyperspectral imaging technology and its applications. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application.

  10. Sub-Nyquist Sampling and Fourier Domain Beamforming in Volumetric Ultrasound Imaging.

    Science.gov (United States)

    Burshtein, Amir; Birk, Michael; Chernyakova, Tanya; Eilam, Alon; Kempinski, Arcady; Eldar, Yonina C

    2016-05-01

    A key step in ultrasound image formation is digital beamforming of signals sampled by several transducer elements placed upon an array. High-resolution digital beamforming introduces the demand for sampling rates significantly higher than the signals' Nyquist rate, which greatly increases the volume of data that must be transmitted from the system's front end. In 3-D ultrasound imaging, 2-D transducer arrays rather than 1-D arrays are used, and more scan lines are needed. This implies that the amount of sampled data is vastly increased with respect to 2-D imaging. In this work, we show that a considerable reduction in data rate can be achieved by applying the ideas of Xampling and frequency domain beamforming (FDBF), leading to a sub-Nyquist sampling rate, which uses only a portion of the bandwidth of the ultrasound signals to reconstruct the image. We extend previous work on FDBF for 2-D ultrasound imaging to accommodate the geometry imposed by volumetric scanning and a 2-D grid of transducer elements. High image quality from low-rate samples is demonstrated by simulation of a phantom image composed of several small reflectors. Our technique is then applied to raw data of a heart ventricle phantom obtained by a commercial 3-D ultrasound system. We show that by performing 3-D beamforming in the frequency domain, sub-Nyquist sampling and low processing rate are achievable, while maintaining adequate image quality.

  11. Medical imaging technology and applications

    CERN Document Server

    Iniewski, Krzysztof

    2014-01-01

    The book has two intentions. First, it assembles the latest research in the field of medical imaging technology in one place. Detailed descriptions of current state-of-the-art medical imaging systems (comprised of x-ray CT, MRI, ultrasound, and nuclear medicine) and data processing techniques are discussed. Information is provided that will give interested engineers and scientists a solid foundation from which to build with additional resources. Secondly, it exposes the reader to myriad applications that medical imaging technology has enabled.

  12. 3D imaging provides a high-resolution, volumetric approach for analyzing biofouling.

    Science.gov (United States)

    First, Matthew R; Policastro, Steven A; Strom, Matthew J; Riley, Scott C; Robbins-Wamsley, Stephanie H; Drake, Lisa A

    2014-01-01

    A volumetric approach for determining the fouling burden on surfaces is presented, consisting of a 3D camera imaging system with fine (5 μm) resolution. Panels immersed in an estuary on the southwest coast of Florida, USA were imaged and the data were used to quantify seasonal changes in the biofouling community. Test panels, which were submerged in seawater for up to one year, were analyzed before and after gentle scrubbing to quantify the biovolume of the total fouling community (ie soft and hard organisms) and the hard fouling community. Total biofouling ranged from 0.01 to 1.16 cm(3) cm(-2) throughout the immersion period; soft fouling constituted 22-87% of the total biovolume. In the future, this approach may be used to inform numerical models of fluid-surface interfaces and to evaluate, with high resolution, the morphology of fouling organisms in response to antifouling technologies.

  13. Medical image processing

    CERN Document Server

    Dougherty, Geoff

    2011-01-01

    This book is designed for end users in the field of digital imaging, who wish to update their skills and understanding with the latest techniques in image analysis. This book emphasizes the conceptual framework of image analysis and the effective use of image processing tools. It uses applications in a variety of fields to demonstrate and consolidate both specific and general concepts, and to build intuition, insight and understanding. Although the chapters are essentially self-contained they reference other chapters to form an integrated whole. Each chapter employs a pedagogical approach to e

  14. Optimization of element length for imaging small volumetric reflectors with linear ultrasonic arrays

    Science.gov (United States)

    Barber, T. S.; Wilcox, P. D.; Nixon, A. D.

    2016-02-01

    A 3D ultrasonic simulation study is presented, aimed at understanding the effect of element length for imaging small volumetric flaws with linear arrays in ultrasonically noisy materials. The geometry of a linear array can be described by the width, pitch and total number of the elements along with the length perpendicular to imaging plane. This paper is concerned with the latter parameter, which tends to be ignored in array optimization studies and is often chosen arbitrarily for industrial array inspections. A 3D analytical model based on imaging a point target is described, validated and used to make calculations of relative Signal-to-Noise Ratio (SNR) as a function of element length. SNR is found to be highly sensitive to element length with a 12dB variation observed over the length range investigated. It is then demonstrated that the optimal length can be predicted directly from the Point Spread Function (PSF) of the imaging system as well as the natural focal point of the array element from 2D beam profiles perpendicular to the imaging plane. This result suggests that the optimal length for any imaging position can be predicted without the need for a full 3D model and is independent of element pitch and the number of elements. Array element design guidelines are then described with respect to wavelength and extensions of these results are discussed for application to realistically-sized defects and coarse-grained materials.

  15. Machine Learning for Medical Imaging.

    Science.gov (United States)

    Erickson, Bradley J; Korfiatis, Panagiotis; Akkus, Zeynettin; Kline, Timothy L

    2017-01-01

    Machine learning is a technique for recognizing patterns that can be applied to medical images. Although it is a powerful tool that can help in rendering medical diagnoses, it can be misapplied. Machine learning typically begins with the machine learning algorithm system computing the image features that are believed to be of importance in making the prediction or diagnosis of interest. The machine learning algorithm system then identifies the best combination of these image features for classifying the image or computing some metric for the given image region. There are several methods that can be used, each with different strengths and weaknesses. There are open-source versions of most of these machine learning methods that make them easy to try and apply to images. Several metrics for measuring the performance of an algorithm exist; however, one must be aware of the possible associated pitfalls that can result in misleading metrics. More recently, deep learning has started to be used; this method has the benefit that it does not require image feature identification and calculation as a first step; rather, features are identified as part of the learning process. Machine learning has been used in medical imaging and will have a greater influence in the future. Those working in medical imaging must be aware of how machine learning works. (©)RSNA, 2017.

  16. Compressive sensing in medical imaging.

    Science.gov (United States)

    Graff, Christian G; Sidky, Emil Y

    2015-03-10

    The promise of compressive sensing, exploitation of compressibility to achieve high quality image reconstructions with less data, has attracted a great deal of attention in the medical imaging community. At the Compressed Sensing Incubator meeting held in April 2014 at OSA Headquarters in Washington, DC, presentations were given summarizing some of the research efforts ongoing in compressive sensing for x-ray computed tomography and magnetic resonance imaging systems. This article provides an expanded version of these presentations. Sparsity-exploiting reconstruction algorithms that have gained popularity in the medical imaging community are studied, and examples of clinical applications that could benefit from compressive sensing ideas are provided. The current and potential future impact of compressive sensing on the medical imaging field is discussed.

  17. Assessment of pituitary adenoma volumetric change using longitudinal MR image registration

    Energy Technology Data Exchange (ETDEWEB)

    Ringstad, Geir Andre; Hald, John K. [Oslo University Hospital-Rikshospitalet, Clinic for Imaging and Intervention, Oslo (Norway); Emblem, Kyrre Eeg [Oslo University Hospital-Rikshospitalet, Department of Medical Physics, Oslo (Norway); Oslo University Hospital-Rikshospitalet, The Interventional Centre, Oslo (Norway); Holland, Dominic [University of California, Department of Neurosciences, San Diego, CA (United States); Dale, Anders M. [University of California, Department of Neurosciences, San Diego, CA (United States); University of California, Department of Radiology, San Diego, CA (United States); Bjornerud, Atle [Oslo University Hospital-Rikshospitalet, Department of Medical Physics, Oslo (Norway); University of Oslo, Department of Physics, Oslo (Norway)

    2012-05-15

    Change detection is a crucial factor in monitoring of slowly evolving pathologies. The objective of the study was to test a semi-automatic method applied on longitudinal MRI monitoring of volume change in pituitary macroadenomas. The proposed method is based on a visual comparison of geometrically corrected, co-registered, intensity-normalized contrast-enhanced (CE) 3D GRE T1-weighted images. Qualitative volume changes based on this applied method were compared with experts' readings of conventional pre- and post-CE 2D T1-weighted images. Magnetic resonance (MR) imaging was performed two to four times in 13 patients with a total combination of 29 time points. Compared to conventional 2D MR readings, a diagnosis of tumor growth (yes/no) was changed in 5 of 13 patients (38%) at 9 of the 29 combinations of time points (31%) using the 3D-based semi-automatic method. With manual tumor tracings as reference, McNemar's test showed a significant difference between the two methods. Visual comparison of geometrically corrected, intensity-normalized, and affine-aligned longitudinal 3D images may enable more accurate assessment of qualitative volumetric change in pituitary adenomas than conventional reading of 2D images. (orig.)

  18. Potential Applications of Flat-Panel Volumetric CT in Morphologic, Functional Small Animal Imaging

    Directory of Open Access Journals (Sweden)

    Susanne Greschus

    2005-08-01

    Full Text Available Noninvasive radiologic imaging has recently gained considerable interest in basic, preclinical research for monitoring disease progression, therapeutic efficacy. In this report, we introduce flat-panel volumetric computed tomography (fpVCT as a powerful new tool for noninvasive imaging of different organ systems in preclinical research. The three-dimensional visualization that is achieved by isotropic high-resolution datasets is illustrated for the skeleton, chest, abdominal organs, brain of mice. The high image quality of chest scans enables the visualization of small lung nodules in an orthotopic lung cancer model, the reliable imaging of therapy side effects such as lung fibrosis. Using contrast-enhanced scans, fpVCT displayed the vascular trees of the brain, liver, kidney down to the subsegmental level. Functional application of fpVCT in dynamic contrast-enhanced scans of the rat brain delivered physiologically reliable data of perfusion, tissue blood volume. Beyond scanning of small animal models as demonstrated here, fpVCT provides the ability to image animals up to the size of primates.

  19. Image quality assessment of a pre-clinical flat-panel volumetric micro-CT scanner

    Science.gov (United States)

    Du, Louise Y.; Lee, Ting-Yim; Holdsworth, David W.

    2006-03-01

    Small animal imaging has recently become an area of increased interest because more human diseases can be modeled in transgenic and knockout rodents. Current micro-CT systems are capable of achieving spatial resolution on the order of 10 μm, giving highly detailed anatomical information. However, the speed of data acquisition of these systems is relatively slow, when compared with clinical CT systems. Dynamic CT perfusion imaging has proven to be a powerful tool clinically in detecting and diagnosing cancer, stroke, pulmonary and ischemic heart diseases. In order to perform this technique in mice and rats, quantitative CT images must be acquired at a rate of at least 1 Hz. Recently, a research pre-clinical CT scanner (eXplore Ultra, GE Healthcare) has been designed specifically for dynamic perfusion imaging in small animals. Using an amorphous silicon flat-panel detector and a clinical slip-ring gantry, this system is capable of acquiring volumetric image data at a rate of 1 Hz, with in-plane resolution of 150 μm, while covering the entire thoracic region of a mouse or whole organs of a rat. The purpose of this study was to evaluate the principal imaging performance of the micro-CT system, in terms of spatial resolution, image uniformity, linearity, dose and voxel noise for the feasibility of imaging mice and rats. Our investigations show that 3D images can be obtained with a limiting spatial resolution of 2.7 line pairs per mm and noise of 42 HU, using an acquisition interval of 8 seconds at an entrance dose of 6.4 cGy.

  20. Introduction to Medical Image Analysis

    DEFF Research Database (Denmark)

    Paulsen, Rasmus Reinhold; Moeslund, Thomas B.

    2011-01-01

    of the book is to present the fascinating world of medical image analysis in an easy and interesting way. Compared to many standard books on image analysis, the approach we have chosen is less mathematical and more casual. Some of the key algorithms are exemplified in C-code. Please note that the code...

  1. Introduction to Medical Image Analysis

    DEFF Research Database (Denmark)

    Paulsen, Rasmus Reinhold; Moeslund, Thomas B.

    of the book is to present the fascinating world of medical image analysis in an easy and interesting way. Compared to many standard books on image analysis, the approach we have chosen is less mathematical and more casual. Some of the key algorithms are exemplified in C-code. Please note that the code...

  2. Distributed Object Medical Imaging Model

    Directory of Open Access Journals (Sweden)

    Ahmad Shukri Mohd Noor

    2009-09-01

    Full Text Available Digital medical informatics and images are commonly used in hospitals today. Because of the interrelatedness of the radiology department and other departments, especially the intensive care unit and emergency department, the transmission and sharing of medical images has become a critical issue. Our research group has developed a Java-based Distributed Object Medical Imaging Model(DOMIM to facilitate the rapid development and deployment of medical imaging applications in a distributed environment that can be shared and used by related departments and mobile physiciansDOMIM is a unique suite of multimedia telemedicine applications developed for the use by medical related organizations. The applications support realtime patients' data, image files, audio and video diagnosis annotation exchanges. The DOMIM enables joint collaboration between radiologists and physicians while they are at distant geographical locations. The DOMIM environment consists of heterogeneous, autonomous, and legacy resources. The Common Object Request Broker Architecture (CORBA, Java Database Connectivity (JDBC, and Java language provide the capability to combine the DOMIM resources into an integrated, interoperable, and scalable system. The underneath technology, including IDL ORB, Event Service, IIOP JDBC/ODBC, legacy system wrapping and Java implementation are explored. This paper explores a distributed collaborative CORBA/JDBC based framework that will enhance medical information management requirements and development. It encompasses a new paradigm for the delivery of health services that requires process reengineering, cultural changes, as well as organizational changes.

  3. Medical Imaging Informatics.

    Science.gov (United States)

    Hsu, William; El-Saden, Suzie; Taira, Ricky K

    2016-01-01

    Imaging is one of the most important sources of clinically observable evidence that provides broad coverage, can provide insight on low-level scale properties, is noninvasive, has few side effects, and can be performed frequently. Thus, imaging data provides a viable observable that can facilitate the instantiation of a theoretical understanding of a disease for a particular patient context by connecting imaging findings to other biologic parameters in the model (e.g., genetic, molecular, symptoms, and patient survival). These connections can help inform their possible states and/or provide further coherent evidence. The field of radiomics is particularly dedicated to this task and seeks to extract quantifiable measures wherever possible. Example properties of investigation include genotype characterization, histopathology parameters, metabolite concentrations, vascular proliferation, necrosis, cellularity, and oxygenation. Important issues within the field include: signal calibration, spatial calibration, preprocessing methods (e.g., noise suppression, motion correction, and field bias correction), segmentation of target anatomic/pathologic entities, extraction of computed features, and inferencing methods connecting imaging features to biological states.

  4. Quantifying distortions in two-photon remote focussing images using a volumetric calibration specimen

    Directory of Open Access Journals (Sweden)

    Alexander David Corbett

    2014-10-01

    Full Text Available Remote focussing microscopy allows sharp, in-focus images to be acquired at speed from outside of the focal plane of an objective lens without any agitation of the specimen. However, without careful optical alignment, the advantages of remote focussing microscopy could be compromised by the introduction of depth-dependent scaling artefacts. To achieve an ideal alignment in a point-scanning remote focussing microscope, the lateral (XY scan mirror pair must be imaged onto the back focal plane of both the reference and imaging objectives, in a telecentric arrangement. However, for many commercial objective lenses, it can be difficult to accurately locate the position of the back focal plane. This paper investigates the impact of this limitation on the fidelity of three-dimensional data sets of living cardiac tissue, specifically the introduction of distortions. These distortions limit the accuracy of sarcomere measurements taken directly from raw volumetric data. The origin of the distortion is first identified through simulation of a remote focussing microscope. Using a novel three-dimensional calibration specimen it was then possible to quantify experimentally the size of the distortion as a function of objective misalignment. Finally, by first approximating and then compensating the distortion in imaging data from whole heart rodent studies, the variance of sarcomere length measurements was reduced by almost 50%.

  5. Generative Interpretation of Medical Images

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille

    2004-01-01

    This thesis describes, proposes and evaluates methods for automated analysis and quantification of medical images. A common theme is the usage of generative methods, which draw inference from unknown images by synthesising new images having shape, pose and appearance similar to the analysed image...... fraction from 4D cardiac cine MRI, myocardial perfusion in bolus passage cardiac perfusion MRI, corpus callosum shape and area in mid-sagittal brain MRI, and finally, lung, heart, clavicle location and cardiothoracic ratio in anterior-posterior chest radiographs....

  6. Image processing in medical ultrasound

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian

    as a double blinded study. The result of the pre-clinical trialmotivated for a larger scale clinical trial. Each of the two clinical trials were performed in collaboration with Copenhagen University Hospital, Rigshospitalet, and Copenhagen University, Department of Biostatistic. Evaluations were performed...... by medical doctors and experts in ultrasound, using the developed Image Quality assessment program (IQap). The study concludes that the image quality in terms of spatial resolution, contrast and unwanted artifacts is statistically better using SASB imaging than conventional imaging. The third and final...

  7. Volumetric vessel reconstruction method for absolute blood flow velocity measurement in Doppler OCT images

    Science.gov (United States)

    Qi, Li; Zhu, Jiang; Hancock, Aneeka M.; Dai, Cuixia; Zhang, Xuping; Frostig, Ron D.; Chen, Zhongping

    2017-02-01

    Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it not only relates to the properties of the laser and the scattering particles, but also relates to the geometry of both directions of the laser beam and the flow. In this paper, focusing on the analysis of cerebral hemodynamics, we presents a method to quantify the total absolute blood flow velocity in middle cerebral artery (MCA) based on volumetric vessel reconstruction from pure DOCT images. A modified region growing segmentation method is first used to localize the MCA on successive DOCT B-scan images. Vessel skeletonization, followed by an averaging gradient angle calculation method, is then carried out to obtain Doppler angles along the entire MCA. Once the Doppler angles are determined, the absolute blood flow velocity of each position on the MCA is easily found. Given a seed point position on the MCA, our approach could achieve automatic quantification of the fully distributed absolute BFV. Based on experiments conducted using a swept-source optical coherence tomography system, our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches in the rodent brain.

  8. An initial study on the estimation of time-varying volumetric treatment images and 3D tumor localization from single MV cine EPID images.

    Science.gov (United States)

    Mishra, Pankaj; Li, Ruijiang; Mak, Raymond H; Rottmann, Joerg; Bryant, Jonathan H; Williams, Christopher L; Berbeco, Ross I; Lewis, John H

    2014-08-01

    In this work the authors develop and investigate the feasibility of a method to estimate time-varying volumetric images from individual MV cine electronic portal image device (EPID) images. The authors adopt a two-step approach to time-varying volumetric image estimation from a single cine EPID image. In the first step, a patient-specific motion model is constructed from 4DCT. In the second step, parameters in the motion model are tuned according to the information in the EPID image. The patient-specific motion model is based on a compact representation of lung motion represented in displacement vector fields (DVFs). DVFs are calculated through deformable image registration (DIR) of a reference 4DCT phase image (typically peak-exhale) to a set of 4DCT images corresponding to different phases of a breathing cycle. The salient characteristics in the DVFs are captured in a compact representation through principal component analysis (PCA). PCA decouples the spatial and temporal components of the DVFs. Spatial information is represented in eigenvectors and the temporal information is represented by eigen-coefficients. To generate a new volumetric image, the eigen-coefficients are updated via cost function optimization based on digitally reconstructed radiographs and projection images. The updated eigen-coefficients are then multiplied with the eigenvectors to obtain updated DVFs that, in turn, give the volumetric image corresponding to the cine EPID image. The algorithm was tested on (1) Eight digital eXtended CArdiac-Torso phantom datasets based on different irregular patient breathing patterns and (2) patient cine EPID images acquired during SBRT treatments. The root-mean-squared tumor localization error is (0.73 ± 0.63 mm) for the XCAT data and (0.90 ± 0.65 mm) for the patient data. The authors introduced a novel method of estimating volumetric time-varying images from single cine EPID images and a PCA-based lung motion model. This is the first method to estimate

  9. An initial study on the estimation of time-varying volumetric treatment images and 3D tumor localization from single MV cine EPID images

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Pankaj, E-mail: pankaj.mishra@varian.com; Mak, Raymond H.; Rottmann, Joerg; Bryant, Jonathan H.; Williams, Christopher L.; Berbeco, Ross I.; Lewis, John H. [Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Li, Ruijiang [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305 (United States)

    2014-08-15

    Purpose: In this work the authors develop and investigate the feasibility of a method to estimate time-varying volumetric images from individual MV cine electronic portal image device (EPID) images. Methods: The authors adopt a two-step approach to time-varying volumetric image estimation from a single cine EPID image. In the first step, a patient-specific motion model is constructed from 4DCT. In the second step, parameters in the motion model are tuned according to the information in the EPID image. The patient-specific motion model is based on a compact representation of lung motion represented in displacement vector fields (DVFs). DVFs are calculated through deformable image registration (DIR) of a reference 4DCT phase image (typically peak-exhale) to a set of 4DCT images corresponding to different phases of a breathing cycle. The salient characteristics in the DVFs are captured in a compact representation through principal component analysis (PCA). PCA decouples the spatial and temporal components of the DVFs. Spatial information is represented in eigenvectors and the temporal information is represented by eigen-coefficients. To generate a new volumetric image, the eigen-coefficients are updated via cost function optimization based on digitally reconstructed radiographs and projection images. The updated eigen-coefficients are then multiplied with the eigenvectors to obtain updated DVFs that, in turn, give the volumetric image corresponding to the cine EPID image. Results: The algorithm was tested on (1) Eight digital eXtended CArdiac-Torso phantom datasets based on different irregular patient breathing patterns and (2) patient cine EPID images acquired during SBRT treatments. The root-mean-squared tumor localization error is (0.73 ± 0.63 mm) for the XCAT data and (0.90 ± 0.65 mm) for the patient data. Conclusions: The authors introduced a novel method of estimating volumetric time-varying images from single cine EPID images and a PCA-based lung motion model

  10. Quantification of coronary microvascular resistance using angiographic images for volumetric blood flow measurement: in vivo validation.

    Science.gov (United States)

    Zhang, Zhang; Takarada, Shigeho; Molloi, Sabee

    2011-06-01

    Structural coronary microcirculation abnormalities are important prognostic determinants in clinical settings. However, an assessment of microvascular resistance (MR) requires a velocity wire. A first-pass distribution analysis technique to measure volumetric blood flow has been previously validated. The aim of this study was the in vivo validation of the MR measurement technique using first-pass distribution analysis. Twelve anesthetized swine were instrumented with a transit-time ultrasound flow probe on the proximal segment of the left anterior descending coronary artery (LAD). Microspheres were injected into the LAD to create a model of microvascular dysfunction. Adenosine (400 μg·kg(-1)·min(-1)) was used to produce maximum hyperemia. A region of interest in the LAD arterial bed was drawn to generate time-density curves using angiographic images. Volumetric blood flow measurements (Q(a)) were made using a time-density curve and the assumption that blood was momentarily replaced with contrast agent during the injection. Blood flow from the flow probe (Q(p)), coronary pressure (P(a)), and right atrium pressure (P(v)) were continuously recorded. Flow probe-based normalized MR (NMR(p)) and angiography-based normalized MR (NMR(a)) were calculated using Q(p) and Q(a), respectively. In 258 measurements, Q(a) showed a strong correlation with the gold standard Q(p) (Q(a) = 0.90 Q(p) + 6.6 ml/min, r(2) = 0.91, P measure NMR without using a velocity wire, which can potentially be used to evaluate microvascular conditions during coronary arteriography.

  11. Mammographic Breast Density Assessment Using Automated Volumetric Software and Breast Imaging Reporting and Data System (BIRADS) Categorization by Expert Radiologists.

    Science.gov (United States)

    Damases, Christine N; Brennan, Patrick C; Mello-Thoms, Claudia; McEntee, Mark F

    2016-01-01

    To investigate agreement on mammographic breast density (MD) assessment between automated volumetric software and Breast Imaging Reporting and Data System (BIRADS) categorization by expert radiologists. Forty cases of left craniocaudal and mediolateral oblique mammograms from 20 women were used. All images had their volumetric density classified using Volpara density grade (VDG) and average volumetric breast density percentage. The same images were then classified into BIRADS categories (I-IV) by 20 American Board of Radiology examiners. The results demonstrated a moderate agreement (κ = 0.537; 95% CI = 0.234-0.699) between VDG classification and radiologists' BIRADS density assessment. Interreader agreement using BIRADS also demonstrated moderate agreement (κ = 0.565; 95% CI = 0.519-0.610) ranging from 0.328 to 0.669. Radiologists' average BIRADS was lower than average VDG scores by 0.33, with their mean being 2.13, whereas the mean VDG was 2.48 (U = -3.742; P BIRADS showed a very strong positive correlation (ρ = 0.91; P BIRADS and average volumetric breast density percentage (ρ = 0.94; P BIRADS; interreader variations still exist within BIRADS. Because of the increasing importance of MD measurement in clinical management of patients, widely accepted, reproducible, and accurate measures of MD are required. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  12. Real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy

    CERN Document Server

    Li, Ruijiang; Lewis, John H; Gu, Xuejun; Folkerts, Michael; Men, Chunhua; Jiang, Steve B

    2010-01-01

    Purpose: To develop an algorithm for real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy. Methods: Given a set of volumetric images of a patient at N breathing phases as the training data, we perform deformable image registration between a reference phase and the other N-1 phases, resulting in N-1 deformation vector fields (DVFs). These DVFs can be represented efficiently by a few eigenvectors and coefficients obtained from principal component analysis (PCA). By varying the PCA coefficients, we can generate new DVFs, which, when applied on the reference image, lead to new volumetric images. We then can reconstruct a volumetric image from a single projection image by optimizing the PCA coefficients such that its computed projection matches the measured one. The 3D location of the tumor can be derived by applying the inverted DVF on its position in the reference image. Our algorithm was implemented on graphics processing units...

  13. Needle Segmentation in Volumetric Optical Coherence Tomography Images for Ophthalmic Microsurgery

    Directory of Open Access Journals (Sweden)

    Mingchuan Zhou

    2017-07-01

    Full Text Available Needle segmentation is a fundamental step for needle reconstruction and image-guided surgery. Although there has been success stories in needle segmentation for non-microsurgeries, the methods cannot be directly extended to ophthalmic surgery due to the challenges bounded to required spatial resolution. As the ophthalmic surgery is performed by finer and smaller surgical instruments in micro-structural anatomies, specifically in retinal domains, difficulties are raised for delicate operation and sensitive perception. To address these challenges, in this paper we investigate needle segmentation in ophthalmic operation on 60 Optical Coherence Tomography (OCT cubes captured during needle injection surgeries on ex-vivo pig eyes. Furthermore, we developed two different approaches, a conventional method based on morphological features (MF and a specifically designed full convolution neural networks (FCN method, moreover, we evaluate them on the benchmark for needle segmentation in the volumetric OCT images. The experimental results show that FCN method has a better segmentation performance based on four evaluation metrics while MF method has a short inference time, which provides valuable reference for future works.

  14. Volumetric magnetic resonance imaging classification for Alzheimer's disease based on kernel density estimation of local features

    Institute of Scientific and Technical Information of China (English)

    YAN Hao; WANG Hu; WANG Yong-hui; ZHANG Yu-mei

    2013-01-01

    Background The classification of Alzheimer's disease (AD) from magnetic resonance imaging (MRI) has been challenged by lack of effective and reliable biomarkers due to inter-subject variability.This article presents a classification method for AD based on kernel density estimation (KDE) of local features.Methods First,a large number of local features were extracted from stable image blobs to represent various anatomical patterns for potential effective biomarkers.Based on distinctive descriptors and locations,the local features were robustly clustered to identify correspondences of the same underlying patterns.Then,the KDE was used to estimate distribution parameters of the correspondences by weighting contributions according to their distances.Thus,biomarkers could be reliably quantified by reducing the effects of further away correspondences which were more likely noises from inter-subject variability.Finally,the Bayes classifier was applied on the distribution parameters for the classification of AD.Results Experiments were performed on different divisions of a publicly available database to investigate the accuracy and the effects of age and AD severity.Our method achieved an equal error classification rate of 0.85 for subject aged 60-80 years exhibiting mild AD and outperformed a recent local feature-based work regardless of both effects.Conclusions We proposed a volumetric brain MRI classification method for neurodegenerative disease based on statistics of local features using KDE.The method may be potentially useful for the computer-aided diagnosis in clinical settings.

  15. Development of an online radiology case review system featuring interactive navigation of volumetric image datasets using advanced visualization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hyun Kyung; Kim, Boh Kyoung; Jung, Ju Hyun; Kang, Heung Sik; Lee, Kyoung Ho [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Woo, Hyun Soo [Dept. of Radiology, SMG-SNU Boramae Medical Center, Seoul (Korea, Republic of); Jo, Jae Min [Dept. of Computer Science and Engineering, Seoul National University, Seoul (Korea, Republic of); Lee, Min Hee [Dept. of Radiology, Soonchunhyang University Bucheon Hospital, Bucheon (Korea, Republic of)

    2015-11-15

    To develop an online radiology case review system that allows interactive navigation of volumetric image datasets using advanced visualization techniques. Our Institutional Review Board approved the use of the patient data and waived the need for informed consent. We determined the following system requirements: volumetric navigation, accessibility, scalability, undemanding case management, trainee encouragement, and simulation of a busy practice. The system comprised a case registry server, client case review program, and commercially available cloud-based image viewing system. In the pilot test, we used 30 cases of low-dose abdomen computed tomography for the diagnosis of acute appendicitis. In each case, a trainee was required to navigate through the images and submit answers to the case questions. The trainee was then given the correct answers and key images, as well as the image dataset with annotations on the appendix. After evaluation of all cases, the system displayed the diagnostic accuracy and average review time, and the trainee was asked to reassess the failed cases. The pilot system was deployed successfully in a hands-on workshop course. We developed an online radiology case review system that allows interactive navigation of volumetric image datasets using advanced visualization techniques.

  16. Discrete volumetric digital image correlation for the investigation of granular type media at microscale: accuracy assessment

    Directory of Open Access Journals (Sweden)

    Bornert M.

    2010-06-01

    Full Text Available The recent development of efficient 3D imaging tools such as X-Rays computed microtomography combined with the extension to volumetric images of Digital Image Correlation (DIC techniques provide new insights on the analysis of materials and structures. Among many other possible fields of application, geomaterials are good candidates for such investigations, owing to their relative transparency to X-rays and the presence in many samples of a natural contrast suitable for deformation mapping. However, these materials often deform discontinuously at microscale, for instance in the form of the development of a networks of microcracks. Discontinuity is even the dominant rule in granular-type materials such as sand in which the contribution to overall deformation of the microcontinuous phenomena -elastic strains inside grains- are negligible. To investigate deformation at the scale of these discontinuous mechanisms, specific DIC algorithms are required, which override the assumption of continuity of the transformation at the scale of the correlation windows. The recent so-called Discrete-DIC procedure (Hall et al, 2010 is a possible answer. We recall here its general principles and focus on its potential accuracy, from both theoretical and practical points of view. We show that the position and the rotation of individual grains with an average diameter of 500µm can be determined from images recorded with a laboratory microCT scanner, with a 15µm voxel size, with an accuracy of the order of 1µm and 0,1 degree, respectively.

  17. Classification of Medical Brain Images

    Institute of Scientific and Technical Information of China (English)

    Pan Haiwei(潘海为); Li Jianzhong; Zhang Wei

    2003-01-01

    Since brain tumors endanger people's living quality and even their lives, the accuracy of classification becomes more important. Conventional classifying techniques are used to deal with those datasets with characters and numbers. It is difficult, however, to apply them to datasets that include brain images and medical history (alphanumeric data), especially to guarantee the accuracy. For these datasets, this paper combines the knowledge of medical field and improves the traditional decision tree. The new classification algorithm with the direction of the medical knowledge not only adds the interaction with the doctors, but also enhances the quality of classification. The algorithm has been used on real brain CT images and a precious rule has been gained from the experiments. This paper shows that the algorithm works well for real CT data.

  18. Composite Match Index with Application of Interior Deformation Field Measurement from Magnetic Resonance Volumetric Images of Human Tissues

    Directory of Open Access Journals (Sweden)

    Penglin Zhang

    2012-01-01

    Full Text Available Whereas a variety of different feature-point matching approaches have been reported in computer vision, few feature-point matching approaches employed in images from nonrigid, nonuniform human tissues have been reported. The present work is concerned with interior deformation field measurement of complex human tissues from three-dimensional magnetic resonance (MR volumetric images. To improve the reliability of matching results, this paper proposes composite match index (CMI as the foundation of multimethod fusion methods to increase the reliability of these various methods. Thereinto, we discuss the definition, components, and weight determination of CMI. To test the validity of the proposed approach, it is applied to actual MR volumetric images obtained from a volunteer’s calf. The main result is consistent with the actual condition.

  19. In Vivo Three-Dimensional Velocity Vector Imaging and Volumetric Flow Rate Measurements

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes; Stuart, Matthias Bo; Tomov, Borislav Gueorguiev

    2013-01-01

    scanner SARUS. Measurements are conducted on a carotid artery flow phantom from Danish Phantom Design, and 20 frames are acquired with a constant flow rate of 16.7±0.17 mL/s provided by a Shelley Medical Imaging Technologies CompuFlow 1000 system. The peak velocity magnitude in the vessel is found...

  20. Volumetric imaging of oral epithelial neoplasia by MPM-SHGM: epithelial connective tissue interface (Conference Presentation)

    Science.gov (United States)

    Pal, Rahul; Yang, Jinping; Qiu, Suimin; Resto, Vicente; McCammon, Susan; Vargas, Gracie

    2016-03-01

    The majority of oral cancers are comprised of oral squamous cell carcinoma in which neoplastic epithelial cells invade across the epithelial connective tissue interface (ECTI). Invasion is preceded by a multi-component process including epithelial hyperproliferation, loss of cell polarity, and remodeling of the extracellular matrix. Multiphoton Autofluorescence Microscopy (MPAM) and Second Harmonic Generation Microscopy (SHGM) show promise for revealing indicators of neoplasia. In particular, volumetric imaging by these methods can reveal aspects of the 3D microstructure that are not possible by other methods and which could both further our understanding of neoplastic transformation and be explored for development of diagnostic approaches in this disease having only 55% 5-year survival rate. MPAM-SHG were applied to reveal the 3D structure of the critical ECTI interface that plays an integral part toward invasion. Epithelial dysplasia was induced in an established hamster model. MPAM-SHGM was applied to lesion sites, using 780 nm excitation (450-600nm emission) for autofluroescence of cellular and extracellular components; 840 nm using 420 nm bandpass filter for SHG. The ECTI surface was identified as the interface at which SHG signal began following the epithelium and was modeled as a 3D surface using Matlab. ECTI surface area and cell features at sites of epithelial expansion where ECTI was altered were measured; Imaged sites were biopsied and processed for histology. ROC analysis using ECTI image metrics indicated the ability to delineate normal from neoplasia with high sensitivity and specificity and it is noteworthy that inflammation did not significantly alter diagnostic potential of MPAM-SHGM .

  1. Volumetric Magnetic Resonance Imaging Study of Brain and Cerebellum in Children with Cerebral Palsy

    Science.gov (United States)

    Maciorkowska, Elżbieta; Gościk, Elżbieta

    2016-01-01

    Introduction. Quantitative magnetic resonance imaging (MRI) studies are rarely used in the diagnosis of patients with cerebral palsy. The aim of present study was to assess the relationships between the volumetric MRI and clinical findings in children with cerebral palsy compared to control subjects. Materials and Methods. Eighty-two children with cerebral palsy and 90 age- and sex-matched healthy controls were collected. Results. The dominant changes identified on MRI scans in children with cerebral palsy were periventricular leukomalacia (42%) and posthemorrhagic hydrocephalus (21%). The total brain and cerebellum volumes in children with cerebral palsy were significantly reduced in comparison to controls. Significant grey matter volume reduction was found in the total brain in children with cerebral palsy compared with the control subjects. Positive correlations between the age of the children of both groups and the grey matter volumes in the total brain were found. Negative relationship between width of third ventricle and speech development was found in the patients. Positive correlations were noted between the ventricles enlargement and motor dysfunction and mental retardation in children with cerebral palsy. Conclusions. By using the voxel-based morphometry, the total brain, cerebellum, and grey matter volumes were significantly reduced in children with cerebral palsy. PMID:27579318

  2. Adaptive Cell Segmentation and Tracking for Volumetric Confocal Microscopy Images of a Developing Plant Meristem

    Institute of Scientific and Technical Information of China (English)

    Min Liu; Anirban Chakraborty; Damanpreet Singh; Ram Kishor Yadav; Gopi Meenakshisundaram; G. Venugopala Reddy; Amit Roy-Chowdhury

    2011-01-01

    Automated segmentation and tracking of cells in actively developing tissues can provide high-throughput and quantitative spatiotemporal measurements of a range of cell behaviors; cell expansion and cell-division kinetics leading to a better understanding of the underlying dynamics of morphogenesis.Here,we have studied the problem of constructing cell lineages in time-lapse volumetric image stacks obtained using Confocal Laser Scanning Microscopy (CLSM).The novel contribution of the work lies in its ability to segment and track cells in densely packed tissue,the shoot apical meristem (SAM),through the use of a close-loop,adaptive segmentation,and tracking approach.The tracking output acts as an indicator of the quality of segmentation and,in turn,the segmentation can be improved to obtain better tracking results.We construct an optimization function that minimizes the segmentation error,which is,in turn,estimated from the tracking results.This adaptive approach significantly improves both tracking and segmentation when compared to an open loop framework in which segmentation and tracking modules operate separately.

  3. TME12/400: Application Oriented Wavelet-based Coding of Volumetric Medical Data

    Science.gov (United States)

    Menegaz, G; Grewe, L; Lozano, A; Thiran, J-Ph

    1999-01-01

    Introduction While medical data are increasingly acquired in a multidimensional space, in clinical practice they are mainly still analyzed as images. We propose a wavelet-based coding technique exploiting the full dimensionality of the data distribution while allowing to recover a single image without any need to decode the whole volume. The proposed compression scheme is based on the Layered Zero Coding (LZC) method. Two modes are considered. In the progressive (PROG) mode, the volume is processed as a whole, while in the layer-per-layer (LPL) one each layer of each sub-band is encoded independently. The three-dimensional extension of the Embedded Zerotree Wavelet (EZW) coder is used as reference for coding efficiency. All working modalities provide a fully embedded bit-stream allowing a progressive by quality recovering of the encoded information. Methods The 3D DWT is performed mapping integers to integers thus allowing lossless compression. Two different coding systems have been considered: EZW and LZC. LZC models the expected statistical dependencies among coefficients by defining some conditional terms (contexts) which summarize the significance state of the samples belonging to a generalized neighborhood of the coefficient being encoded. Such terms are then used by a context adaptive arithmetic coder. The LPL mode has been designed in order to be able to independently decode any image of the dataset, and it is derived from the PROG mode by over-constraining the system. The sub-bands are quantized and encoded according to a sequence of uniform quantizers with decreasing step-size. This ensures progressiveness capabilities when decoding both the whole volume and a single image. Results Performances have been evaluated on two datasets: DSR and ANGIO, an opthalmologic angiographic sequence. For each mode the best context has been retained. Results show that the proposed system is competitive with EZW, and PROG mode is the more performant. The main factors

  4. Medical imaging, PACS, and imaging informatics: retrospective.

    Science.gov (United States)

    Huang, H K

    2014-01-01

    Historical reviews of PACS (picture archiving and communication system) and imaging informatics development from different points of view have been published in the past (Huang in Euro J Radiol 78:163-176, 2011; Lemke in Euro J Radiol 78:177-183, 2011; Inamura and Jong in Euro J Radiol 78:184-189, 2011). This retrospective attempts to look at the topic from a different angle by identifying certain basic medical imaging inventions in the 1960s and 1970s which had conceptually defined basic components of PACS guiding its course of development in the 1980s and 1990s, as well as subsequent imaging informatics research in the 2000s. In medical imaging, the emphasis was on the innovations at Georgetown University in Washington, DC, in the 1960s and 1970s. During the 1980s and 1990s, research and training support from US government agencies and public and private medical imaging manufacturers became available for training of young talents in biomedical physics and for developing the key components required for PACS development. In the 2000s, computer hardware and software as well as communication networks advanced by leaps and bounds, opening the door for medical imaging informatics to flourish. Because many key components required for the PACS operation were developed by the UCLA PACS Team and its collaborative partners in the 1980s, this presentation is centered on that aspect. During this period, substantial collaborative research efforts by many individual teams in the US and in Japan were highlighted. Credits are due particularly to the Pattern Recognition Laboratory at Georgetown University, and the computed radiography (CR) development at the Fuji Electric Corp. in collaboration with Stanford University in the 1970s; the Image Processing Laboratory at UCLA in the 1980s-1990s; as well as the early PACS development at the Hokkaido University, Sapporo, Japan, in the late 1970s, and film scanner and digital radiography developed by Konishiroku Photo Ind. Co. Ltd

  5. AMIDE: A Free Software Tool for Multimodality Medical Image Analysis

    Directory of Open Access Journals (Sweden)

    Andreas Markus Loening

    2003-07-01

    Full Text Available Amide's a Medical Image Data Examiner (AMIDE has been developed as a user-friendly, open-source software tool for displaying and analyzing multimodality volumetric medical images. Central to the package's abilities to simultaneously display multiple data sets (e.g., PET, CT, MRI and regions of interest is the on-demand data reslicing implemented within the program. Data sets can be freely shifted, rotated, viewed, and analyzed with the program automatically handling interpolation as needed from the original data. Validation has been performed by comparing the output of AMIDE with that of several existing software packages. AMIDE runs on UNIX, Macintosh OS X, and Microsoft Windows platforms, and it is freely available with source code under the terms of the GNU General Public License.

  6. Fundamental mathematics and physics of medical imaging

    CERN Document Server

    Lancaster, Jack

    2016-01-01

    Authored by a leading educator, this book is ideal for medical imaging courses. Rather than focus on imaging modalities the book delves into the mechanisms of image formation and image quality common to all imaging systems: contrast mechanisms, noise, and spatial and temporal resolution. This is an extensively revised new edition of The Physics of Medical X-Ray Imaging by Bruce Hasegawa (Medical Physics Publishing, 1991). A wide range of modalities are covered including X-ray CT, MRI and SPECT.

  7. Semi-automatic segmentation of vertebral bodies in volumetric MR images using a statistical shape+pose model

    Science.gov (United States)

    Suzani, Amin; Rasoulian, Abtin; Fels, Sidney; Rohling, Robert N.; Abolmaesumi, Purang

    2014-03-01

    Segmentation of vertebral structures in magnetic resonance (MR) images is challenging because of poor con­trast between bone surfaces and surrounding soft tissue. This paper describes a semi-automatic method for segmenting vertebral bodies in multi-slice MR images. In order to achieve a fast and reliable segmentation, the method takes advantage of the correlation between shape and pose of different vertebrae in the same patient by using a statistical multi-vertebrae anatomical shape+pose model. Given a set of MR images of the spine, we initially reduce the intensity inhomogeneity in the images by using an intensity-correction algorithm. Then a 3D anisotropic diffusion filter smooths the images. Afterwards, we extract edges from a relatively small region of the pre-processed image with a simple user interaction. Subsequently, an iterative Expectation Maximization tech­nique is used to register the statistical multi-vertebrae anatomical model to the extracted edge points in order to achieve a fast and reliable segmentation for lumbar vertebral bodies. We evaluate our method in terms of speed and accuracy by applying it to volumetric MR images of the spine acquired from nine patients. Quantitative and visual results demonstrate that the method is promising for segmentation of vertebral bodies in volumetric MR images.

  8. Volumetric Synthetic Aperture Imaging with a Piezoelectric 2-D Row-Column Probe

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Engholm, Mathias; Christiansen, Thomas Lehrmann

    2016-01-01

    to 32 dB is measured on the beamformed images of a tissue mimicking phantom with attenuation of 0.5 dB cm−1 MHz−1, from the surface of the probe to the penetration depth of 300λ. Measured lateral resolution as Full-Width-at-Half-Maximum (FWHM) is between 4λ and 10λ for 18 % to 65 % of the penetration...... depth from the surface of the probe. The averaged contrast is 13 dB for the same range. The imaging performance assessment results may represent a reference guide for possible applications of such an array in different medical fields...

  9. Archimedes, an archive of medical images.

    Science.gov (United States)

    Tahmoush, Dave; Samet, Hanan

    2006-01-01

    We present a medical image and medical record database for the storage, research, transmission, and evaluation of medical images. Medical images from any source that supports the DICOM standard can be stored and accessed, as well as associated analysis and annotations. Retrieval is based on patient info, date, doctor's annotations, features in the images, or a spatial combination. This database supports the secure transmission of sensitive data for tele-medicine and follows all HIPPA regulations.

  10. Medical image retrieval based on plaque appearance and image registration.

    Science.gov (United States)

    Amores, Jaume; Radeva, Petia

    2005-01-01

    The increasing amount of medical images produced and stored daily in hospitals needs a datrabase management system that organizes them in a meaningful way, without the necessity of time-consuming textual annotations for each image. One of the basic ways to organize medical images in taxonomies consists of clustering them depending of plaque appearance (for example, intravascular ultrasound images). Although lately, there has been a lot of research in the field of Content-Based Image Retrieval systems, mostly these systems are designed for dealing a wide range of images but not medical images. Medical image retrieval by content is still an emerging field, and few works are presented in spite of the obvious applications and the complexity of the images demanding research studies. In this chapter, we overview the work on medical image retrieval and present a general framework of medical image retrieval based on plaque appearance. We stress on two basic features of medical image retrieval based on plaque appearance: plaque medical images contain complex information requiring not only local and global descriptors but also context determined by image features and their spatial relations. Additionally, given that most objects in medical images usually have high intra- and inter-patient shape variance, retrieval based on plaque should be invariant to a family of transformations predetermined by the application domain. To illustrate the medical image retrieval based on plaque appearance, we consider a specific image modality: intravascular ultrasound images and present extensive results on the retrieval performance.

  11. Cloud computing in medical imaging.

    Science.gov (United States)

    Kagadis, George C; Kloukinas, Christos; Moore, Kevin; Philbin, Jim; Papadimitroulas, Panagiotis; Alexakos, Christos; Nagy, Paul G; Visvikis, Dimitris; Hendee, William R

    2013-07-01

    Over the past century technology has played a decisive role in defining, driving, and reinventing procedures, devices, and pharmaceuticals in healthcare. Cloud computing has been introduced only recently but is already one of the major topics of discussion in research and clinical settings. The provision of extensive, easily accessible, and reconfigurable resources such as virtual systems, platforms, and applications with low service cost has caught the attention of many researchers and clinicians. Healthcare researchers are moving their efforts to the cloud, because they need adequate resources to process, store, exchange, and use large quantities of medical data. This Vision 20/20 paper addresses major questions related to the applicability of advanced cloud computing in medical imaging. The paper also considers security and ethical issues that accompany cloud computing.

  12. Optimized T1- and T2-weighted volumetric brain imaging as a diagnostic tool in very preterm neonates

    Energy Technology Data Exchange (ETDEWEB)

    Nossin-Manor, Revital [Neurosciences and Mental Health, Research Institute, Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto (Canada); Chung, Andrew D.; Morris, Drew; Thomas, Bejoy; Shroff, Manohar M. [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Soares-Fernandes, Joao P. [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Hospital de S. Marcos, Neuroradiology Department, Braga (Portugal); Cheng, Hai-Ling M. [The Hospital for Sick Children, Department of Diagnostic Imaging, Physiology Experimental Medicine, Research Institute, Toronto (Canada); University of Toronto, Medical Biophysics Department, Toronto (Canada); Whyte, Hilary E.A. [Neurosciences and Mental Health, Research Institute, Neonatology Department, The Hospital for Sick Children, Toronto (Canada); Taylor, Margot J. [The Hospital for Sick Children, Neurosciences and Mental Health, Research Institute, Department of Diagnostic Imaging, Toronto (Canada); University of Toronto, Medical Imaging, Toronto (Canada); Sled, John G. [University of Toronto, Physiology Experimental Medicine, Research Institute, The Hospital for Sick Children, Medical Biophysics, Toronto (Canada)

    2011-06-15

    T1- and T2-W MR sequences used for obtaining diagnostic information and morphometric measurements in the neonatal brain are frequently acquired using different imaging protocols. Optimizing one protocol for obtaining both kinds of information is valuable. To determine whether high-resolution T1- and T2-W volumetric sequences optimized for preterm brain imaging could provide both diagnostic and morphometric value. Thirty preterm neonates born between 24 and 32 weeks' gestational age were scanned during the first 2 weeks after birth. T1- and T2-W high-resolution sequences were optimized in terms of signal-to-noise ratio, contrast-to-noise ratio and scan time and compared to conventional spin-echo-based sequences. No differences were found between conventional and high-resolution T1-W sequences for diagnostic confidence, image quality and motion artifacts. A preference for conventional over high-resolution T2-W sequences for image quality was observed. High-resolution T1 images provided better delineation of thalamic myelination and the superior temporal sulcus. No differences were found for detection of myelination and sulcation using conventional and high-resolution T2-W images. High-resolution T1- and T2-W volumetric sequences can be used in clinical MRI in the very preterm brain to provide both diagnostic and morphometric information. (orig.)

  13. Frontal-subcortical volumetric deficits in single episode, medication-naive depressed patients and the effects of 8 weeks fluoxetine treatment: a VBM-DARTEL study.

    Directory of Open Access Journals (Sweden)

    Lingtao Kong

    Full Text Available BACKGROUND: Convergent studies suggest that morphological abnormalities of frontal-subcortical circuits which involved with emotional and cognitive processing may contribute to the pathophysiology of major depressive disorder (MDD. Antidepressant treatment which has been reported to reverse the functional abnormalities of frontal-subcortical circuits in MDD may have treating effects to related brain morphological abnormalities. In this study, we used voxel-based morphometry method to investigate whole brain structural abnormalities in single episode, medication-naïve MDD patients. Furthermore, we investigated the effects of an 8 weeks pharmacotherapy with fluoxetine. METHODS: 28 single episode, medication-naïve MDD participants and 28 healthy controls (HC acquired the baseline high-resolution structural magnetic resonance imaging (sMRI scan. 24 MDD participants acquired a follow-up sMRI scan after 8 weeks antidepressant treatment. Gray matter volumetric (GMV difference between groups was examined. RESULTS: Medication-naïve MDD had significantly decreased GMV in the right dorsolateral prefrontal cortex and left middle frontal gyrus as well as increased GMV in the left thalamus and right insula compared to HC (P<0.05, corrected. Moreover, treated MDD had significantly increased GMV in the left middle frontal gyrus and right orbitofrontal cortex compared to HC (P<0.05, corrected. No difference on GMV was detected between medication-naïve MDD group and treated MDD group. CONCLUSIONS: This study of single episode, medication-naïve MDD subjects demonstrated structural abnormalities of frontal-subcortical circuitsin the early stage of MDD and the effects of 8 weeks successful antidepressant treatment, suggesting these abnormalities may play an important role in the neuropathophysiology of MDD at its onset.

  14. Innovations of wide-field optical-sectioning fluorescence microscopy: toward high-speed volumetric bio-imaging with simplicity

    Science.gov (United States)

    Yu, Jiun-Yann

    Optical microscopy has become an indispensable tool for biological researches since its invention, mostly owing to its sub-cellular spatial resolutions, non-invasiveness, instrumental simplicity, and the intuitive observations it provides. Nonetheless, obtaining reliable, quantitative spatial information from conventional wide-field optical microscopy is not always intuitive as it appears to be. This is because in the acquired images of optical microscopy the information about out-of-focus regions is spatially blurred and mixed with in-focus information. In other words, conventional wide-field optical microscopy transforms the three-dimensional spatial information, or volumetric information about the objects into a two-dimensional form in each acquired image, and therefore distorts the spatial information about the object. Several fluorescence holography-based methods have demonstrated the ability to obtain three-dimensional information about the objects, but these methods generally rely on decomposing stereoscopic visualizations to extract volumetric information and are unable to resolve complex 3-dimensional structures such as a multi-layer sphere. The concept of optical-sectioning techniques, on the other hand, is to detect only two-dimensional information about an object at each acquisition. Specifically, each image obtained by optical-sectioning techniques contains mainly the information about an optically thin layer inside the object, as if only a thin histological section is being observed at a time. Using such a methodology, obtaining undistorted volumetric information about the object simply requires taking images of the object at sequential depths. Among existing methods of obtaining volumetric information, the practicability of optical sectioning has made it the most commonly used and most powerful one in biological science. However, when applied to imaging living biological systems, conventional single-point-scanning optical-sectioning techniques often

  15. ImageParser: a tool for finite element generation from three-dimensional medical images

    Directory of Open Access Journals (Sweden)

    Yamada T

    2004-10-01

    Full Text Available Abstract Background The finite element method (FEM is a powerful mathematical tool to simulate and visualize the mechanical deformation of tissues and organs during medical examinations or interventions. It is yet a challenge to build up an FEM mesh directly from a volumetric image partially because the regions (or structures of interest (ROIs may be irregular and fuzzy. Methods A software package, ImageParser, is developed to generate an FEM mesh from 3-D tomographic medical images. This software uses a semi-automatic method to detect ROIs from the context of image including neighboring tissues and organs, completes segmentation of different tissues, and meshes the organ into elements. Results The ImageParser is shown to build up an FEM model for simulating the mechanical responses of the breast based on 3-D CT images. The breast is compressed by two plate paddles under an overall displacement as large as 20% of the initial distance between the paddles. The strain and tangential Young's modulus distributions are specified for the biomechanical analysis of breast tissues. Conclusion The ImageParser can successfully exact the geometry of ROIs from a complex medical image and generate the FEM mesh with customer-defined segmentation information.

  16. Medical Image Retrieval: A Multimodal Approach.

    Science.gov (United States)

    Cao, Yu; Steffey, Shawn; He, Jianbiao; Xiao, Degui; Tao, Cui; Chen, Ping; Müller, Henning

    2014-01-01

    Medical imaging is becoming a vital component of war on cancer. Tremendous amounts of medical image data are captured and recorded in a digital format during cancer care and cancer research. Facing such an unprecedented volume of image data with heterogeneous image modalities, it is necessary to develop effective and efficient content-based medical image retrieval systems for cancer clinical practice and research. While substantial progress has been made in different areas of content-based image retrieval (CBIR) research, direct applications of existing CBIR techniques to the medical images produced unsatisfactory results, because of the unique characteristics of medical images. In this paper, we develop a new multimodal medical image retrieval approach based on the recent advances in the statistical graphic model and deep learning. Specifically, we first investigate a new extended probabilistic Latent Semantic Analysis model to integrate the visual and textual information from medical images to bridge the semantic gap. We then develop a new deep Boltzmann machine-based multimodal learning model to learn the joint density model from multimodal information in order to derive the missing modality. Experimental results with large volume of real-world medical images have shown that our new approach is a promising solution for the next-generation medical imaging indexing and retrieval system.

  17. Volumetric structural magnetic resonance imaging findings in pediatric posttraumatic stress disorder and obsessive-compulsive disorder: a systematic review

    Directory of Open Access Journals (Sweden)

    Fatima eAhmed

    2012-12-01

    Full Text Available Objectives: Structural magnetic resonance imaging (sMRI studies of anxiety disorders in children and adolescents are limited. Posttraumatic stress disorder (PTSD and obsessive-compulsive disorder (OCD have been best studied in this regard. We systematically reviewed structural neuroimaging findings in pediatric PTSD and OCD. Methods: The literature was reviewed for all sMRI studies examining volumetric parameters using PubMed, ScienceDirect and PsychInfo databases, with no limit on the time frame of publication. Nine studies in pediatric PTSD and 6 in OCD were suitable for inclusion. Results: Volumetric findings were inconsistent in both disorders. In PTSD, findings suggest increased as well as decreased volumes of the prefrontal cortex (PFC and corpus callosum; whilst in OCD studies indicate volumetric increase of the putamen, with inconsistent findings for the anterior cingulate cortex (ACC and frontal regions. Conclusions: Methodological differences may account for some of this inconsistency and additional volume-based studies in pediatric anxiety disorders using more uniform approaches are needed.

  18. Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization

    Directory of Open Access Journals (Sweden)

    Gregor Strobbe

    2016-01-01

    Full Text Available Electrical source imaging of interictal spikes observed in EEG recordings of patients with refractory epilepsy provides useful information to localize the epileptogenic focus during the presurgical evaluation. However, the selection of the time points or time epochs of the spikes in order to estimate the origin of the activity remains a challenge. In this study, we consider a Bayesian EEG source imaging technique for distributed sources, i.e. the multiple volumetric sparse priors (MSVP approach. The approach allows to estimate the time courses of the intensity of the sources corresponding with a specific time epoch of the spike. Based on presurgical averaged interictal spikes in six patients who were successfully treated with surgery, we estimated the time courses of the source intensities for three different time epochs: (i an epoch starting 50 ms before the spike peak and ending at 50% of the spike peak during the rising phase of the spike, (ii an epoch starting 50 ms before the spike peak and ending at the spike peak and (iii an epoch containing the full spike time period starting 50 ms before the spike peak and ending 230 ms after the spike peak. To identify the primary source of the spike activity, the source with the maximum energy from 50 ms before the spike peak till 50% of the spike peak was subsequently selected for each of the time windows. For comparison, the activity at the spike peaks and at 50% of the peaks was localized using the LORETA inversion technique and an ECD approach. Both patient-specific spherical forward models and patient-specific 5-layered finite difference models were considered to evaluate the influence of the forward model. Based on the resected zones in each of the patients, extracted from post-operative MR images, we compared the distances to the resection border of the estimated activity. Using the spherical models, the distances to the resection border for the MSVP approach and each of the different time

  19. Cherenkov imaging during volumetric modulated arc therapy for real-time radiation beam tracking and treatment response monitoring

    Science.gov (United States)

    Andreozzi, Jacqueline M.; Zhang, Rongxiao; Glaser, Adam K.; Gladstone, David J.; Jarvis, Lesley A.; Pogue, Brian W.

    2016-03-01

    External beam radiotherapy utilizes high energy radiation to target cancer with dynamic, patient-specific treatment plans. The otherwise invisible radiation beam can be observed via the optical Cherenkov photons emitted from interaction between the high energy beam and tissue. Using a specialized camera-system, the Cherenkov emission can thus be used to track the radiation beam on the surface of the patient in real-time, even for complex cases such as volumetric modulated arc therapy (VMAT). Two patients undergoing VMAT of the head and neck were imaged and analyzed, and the viability of the system to provide clinical feedback was established.

  20. Tooling Techniques Enhance Medical Imaging

    Science.gov (United States)

    2012-01-01

    mission. The manufacturing techniques developed to create the components have yielded innovations advancing medical imaging, transportation security, and even energy efficiency.

  1. A Semi-automated Approach to Improve the Efficiency of Medical Imaging Segmentation for Haptic Rendering.

    Science.gov (United States)

    Banerjee, Pat; Hu, Mengqi; Kannan, Rahul; Krishnaswamy, Srinivasan

    2017-08-01

    The Sensimmer platform represents our ongoing research on simultaneous haptics and graphics rendering of 3D models. For simulation of medical and surgical procedures using Sensimmer, 3D models must be obtained from medical imaging data, such as magnetic resonance imaging (MRI) or computed tomography (CT). Image segmentation techniques are used to determine the anatomies of interest from the images. 3D models are obtained from segmentation and their triangle reduction is required for graphics and haptics rendering. This paper focuses on creating 3D models by automating the segmentation of CT images based on the pixel contrast for integrating the interface between Sensimmer and medical imaging devices, using the volumetric approach, Hough transform method, and manual centering method. Hence, automating the process has reduced the segmentation time by 56.35% while maintaining the same accuracy of the output at ±2 voxels.

  2. Morphological Techniques for Medical Images: A Review

    Directory of Open Access Journals (Sweden)

    Isma Irum

    2012-08-01

    Full Text Available Image processing is playing a very important role in medical imaging with its versatile applications and features towards the development of computer aided diagnostic systems, automatic detections of abnormalities and enhancement in ultrasonic, computed tomography, magnetic resonance images and lots more applications. Medical images morphology is a field of study where the medical images are observed and processed on basis of geometrical and changing structures. Medical images morphological techniques has been reviewed in this study underlying the some human organ images, the associated diseases and processing techniques to address some anatomical problem detection. Images of Human brain, bone, heart, carotid, iris, lesion, liver and lung have been discussed in this study.

  3. Mesh Processing in Medical Image Analysis

    DEFF Research Database (Denmark)

    The following topics are dealt with: mesh processing; medical image analysis; interactive freeform modeling; statistical shape analysis; clinical CT images; statistical surface recovery; automated segmentation; cerebral aneurysms; and real-time particle-based representation....

  4. PERFORMANCE EVALUATION OF CONTENT BASED IMAGE RETRIEVAL FOR MEDICAL IMAGES

    Directory of Open Access Journals (Sweden)

    SASI KUMAR. M

    2013-04-01

    Full Text Available Content-based image retrieval (CBIR technology benefits not only large image collections management, but also helps clinical care, biomedical research, and education. Digital images are found in X-Rays, MRI, CT which are used for diagnosing and planning treatment schedules. Thus, visual information management is challenging as the data quantity available is huge. Currently, available medical databases utilization is limited image retrieval issues. Archived digital medical images retrieval is always challenging and this is being researched more as images are of great importance in patient diagnosis, therapy, medical reference, and medical training. In this paper, an image matching scheme using Discrete Sine Transform for relevant feature extraction is presented. The efficiency of different algorithm for classifying the features to retrieve medical images is investigated.

  5. Watermarking patient data in encrypted medical images

    Indian Academy of Sciences (India)

    A Lavanya; V Natarajan

    2012-12-01

    In this paper, we propose a method for watermarking medical images for data integrity which consists of image encryption, data embedding and image-recovery phases. Data embedding can be completely recovered from the watermarked image after the watermark has been extracted. In the proposed method, we utilize standard stream cipher for image encryption and selecting non-region of interest tile to embed patient data. We show that the lower bound of the PSNR (peak-signal-to-noise-ratio) values for medical images is about 48 dB. Experimental results demonstrate that the proposed scheme can embed a large amount of data while keeping high visual quality of test images.

  6. Sub-diffraction limit localization of proteins in volumetric space using Bayesian restoration of fluorescence images from ultrathin specimens.

    Directory of Open Access Journals (Sweden)

    Gordon Wang

    Full Text Available Photon diffraction limits the resolution of conventional light microscopy at the lateral focal plane to 0.61λ/NA (λ = wavelength of light, NA = numerical aperture of the objective and at the axial plane to 1.4nλ/NA(2 (n = refractive index of the imaging medium, 1.51 for oil immersion, which with visible wavelengths and a 1.4NA oil immersion objective is -220 nm and -600 nm in the lateral plane and axial plane respectively. This volumetric resolution is too large for the proper localization of protein clustering in subcellular structures. Here we combine the newly developed proteomic imaging technique, Array Tomography (AT, with its native 50-100 nm axial resolution achieved by physical sectioning of resin embedded tissue, and a 2D maximum likelihood deconvolution method, based on Bayes' rule, which significantly improves the resolution of protein puncta in the lateral plane to allow accurate and fast computational segmentation and analysis of labeled proteins. The physical sectioning of AT allows tissue specimens to be imaged at the physical optimum of modern high NA plan-apochormatic objectives. This translates to images that have little out of focus light, minimal aberrations and wave-front distortions. Thus, AT is able to provide images with truly invariant point spread functions (PSF, a property critical for accurate deconvolution. We show that AT with deconvolution increases the volumetric analytical fidelity of protein localization by significantly improving the modulation of high spatial frequencies up to and potentially beyond the spatial frequency cut-off of the objective. Moreover, we are able to achieve this improvement with no noticeable introduction of noise or artifacts and arrive at object segmentation and localization accuracies on par with image volumes captured using commercial implementations of super-resolution microscopes.

  7. Mesh Processing in Medical Image Analysis

    DEFF Research Database (Denmark)

    The following topics are dealt with: mesh processing; medical image analysis; interactive freeform modeling; statistical shape analysis; clinical CT images; statistical surface recovery; automated segmentation; cerebral aneurysms; and real-time particle-based representation.......The following topics are dealt with: mesh processing; medical image analysis; interactive freeform modeling; statistical shape analysis; clinical CT images; statistical surface recovery; automated segmentation; cerebral aneurysms; and real-time particle-based representation....

  8. Single-chip CMUT-on-CMOS front-end system for real-time volumetric IVUS and ICE imaging.

    Science.gov (United States)

    Gurun, Gokce; Tekes, Coskun; Zahorian, Jaime; Xu, Toby; Satir, Sarp; Karaman, Mustafa; Hasler, Jennifer; Degertekin, F Levent

    2014-02-01

    Intravascular ultrasound (IVUS) and intracardiac echography (ICE) catheters with real-time volumetric ultrasound imaging capability can provide unique benefits to many interventional procedures used in the diagnosis and treatment of coronary and structural heart diseases. Integration of capacitive micromachined ultrasonic transducer (CMUT) arrays with front-end electronics in single-chip configuration allows for implementation of such catheter probes with reduced interconnect complexity, miniaturization, and high mechanical flexibility. We implemented a single-chip forward-looking (FL) ultrasound imaging system by fabricating a 1.4-mm-diameter dual-ring CMUT array using CMUT-on-CMOS technology on a front-end IC implemented in 0.35-μm CMOS process. The dual-ring array has 56 transmit elements and 48 receive elements on two separate concentric annular rings. The IC incorporates a 25-V pulser for each transmitter and a low-noise capacitive transimpedance amplifier (TIA) for each receiver, along with digital control and smart power management. The final shape of the silicon chip is a 1.5-mm-diameter donut with a 430-μm center hole for a guide wire. The overall front-end system requires only 13 external connections and provides 4 parallel RF outputs while consuming an average power of 20 mW. We measured RF A-scans from the integrated single- chip array which show full functionality at 20.1 MHz with 43% fractional bandwidth. We also tested and demonstrated the image quality of the system on a wire phantom and an ex vivo chicken heart sample. The measured axial and lateral point resolutions are 92 μm and 251 μm, respectively. We successfully acquired volumetric imaging data from the ex vivo chicken heart at 60 frames per second without any signal averaging. These demonstrative results indicate that single-chip CMUT-on-CMOS systems have the potential to produce realtime volumetric images with image quality and speed suitable for catheter-based clinical applications.

  9. Integration and evaluation of a needle-positioning robot with volumetric microcomputed tomography image guidance for small animal stereotactic interventions

    Energy Technology Data Exchange (ETDEWEB)

    Waspe, Adam C.; McErlain, David D.; Pitelka, Vasek; Holdsworth, David W.; Lacefield, James C.; Fenster, Aaron [Biomedical Engineering Graduate Program and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Department of Medical Biophysics and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1 (Canada); Biomedical Engineering Graduate Program, Department of Medical Biophysics, Department of Medical Imaging, Department of Surgery, and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Biomedical Engineering Graduate Program, Department of Electrical and Computer Engineering, Department of Medical Biophysics, and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Biomedical Engineering Graduate Program, Department of Medical Biophysics, Department of Medical Imaging, and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada)

    2010-04-15

    Purpose: Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. Methods: An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting a barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 {mu}m tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. Results: Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 {mu}m, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154{+-}113 {mu}m. Conclusions: The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.

  10. Integration and evaluation of a needle-positioning robot with volumetric microcomputed tomography image guidance for small animal stereotactic interventions.

    Science.gov (United States)

    Waspe, Adam C; McErlain, David D; Pitelka, Vasek; Holdsworth, David W; Lacefield, James C; Fenster, Aaron

    2010-04-01

    Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting a barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 microm tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 microm, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154 +/- 113 microm. The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.

  11. The Computational Challenges of Medical Imaging

    Science.gov (United States)

    2004-02-01

    JASON will undertake a study for the DOE and the NIH National Institute for Bio- medical Imaging and Bio-engineering on the role of computation...broadly defined to include raw computational capabilities, mass storage needs, and connectivity) for medical imaging . This study will address the

  12. The Pediatric Urinary Tract and Medical Imaging.

    Science.gov (United States)

    Penny, Steven M

    2016-01-01

    The pediatric urinary tract often is assessed with medical imaging. Consequently, it is essential for medical imaging professionals to have a fundamental understanding of pediatric anatomy, physiology, and common pathology of the urinary tract to provide optimal patient care. This article provides an overview of fetal development, pediatric urinary anatomy and physiology, and common diseases and conditions of the pediatric urinary tract.

  13. Image analysis in medical imaging: recent advances in selected examples

    Science.gov (United States)

    Dougherty, G

    2010-01-01

    Medical imaging has developed into one of the most important fields within scientific imaging due to the rapid and continuing progress in computerised medical image visualisation and advances in analysis methods and computer-aided diagnosis. Several research applications are selected to illustrate the advances in image analysis algorithms and visualisation. Recent results, including previously unpublished data, are presented to illustrate the challenges and ongoing developments. PMID:21611048

  14. [Medical imaging: its medical economics and recent situation in Japan.].

    Science.gov (United States)

    Imai, Keiko

    2006-01-01

    Two fields of radiology, medical imaging and radiation therapy, are coded separately in medical fee system, and the health care statistics of 2003 shows that expenditure on the former was 5.2% of the whole medical cost and the latter 0.28%. Introduction of DPC, an abbreviation of Diagnostic Procedure Combination, was carried out in 2003, which was an essential reform of medical fee payment system that have been managed on fee-for-service base throughout, and 22% of beds for acute patients care are under the control of DPC payment in 2006. As medical imaging procedures are basically classified in inclusive payment in DPC system, their accurate statistics cannot be figured out because of the lack of description of individual procedures in DPC bills. Policy-making of medical economics will suffer a great loss from the deficiency of detailed data in published statistics. Important role in clinical diagnoses of CT and MR results an increase of fee paid for them up to more than half of total expenditure on medical imaging. So, dominant reduction of examination fee has been done for MR imaging, especially in 2002, to reduce the total cost of medical imaging. Follows could be featured as major topics of medical imaging in health insurance system, (a) fee is newly assigned for electronic handling of CT-and-MR images, and nuclear medicine, and (b) there is still a mismatch between actual payment and quality of medical facilities. As matters related to medical imaging, the followings should be stressed; (a) numbers of CT and MR units per population are dominantly high among OECD countries, but, those controlled by qualified radiologists are at the average level of those countries, (b) there is a big difference of MR examination quality among medical facilities, and (c) 76% of newly-installed high-end MR units are supplied by foreign industries. Hopefully, there will be an increase in the concern to medical fee payment system and health care cost because they possibly

  15. A cloud solution for medical image processing

    Directory of Open Access Journals (Sweden)

    Ali Mirarab,

    2014-07-01

    Full Text Available The rapid growth in the use of Electronic Health Records across the globe along with the rich mix of multimedia held within an EHR combined with the increasing level of detail due to advances in diagnostic medical imaging means increasing amounts of data can be stored for each patient. Also lack of image processing and analysis tools for handling the large image datasets has compromised researchers and practitioner‟s outcome. Migrating medical imaging applications and data to the Cloud can allow healthcare organizations to realize significant cost savings relating to hardware, software, buildings, power and staff, in addition to greater scalability, higher performance and resilience. This paper reviews medical image processing and its challenges, states cloud computing and cloud computing benefits due to medical image processing. Also, this paper introduces tools and methods for medical images processing using the cloud. Finally a method is provided for medical images processing based on Eucalyptus cloud infrastructure with image processing software “ImageJ” and using improved genetic algorithm for the allocation and distribution of resources. Based on conducted simulations and experimental results, the proposed method brings high scalability, simplicity, flexibility and fully customizability in addition to 40% cost reduction and twice increase in speed.

  16. A survey of medical diagnostic imaging technologies

    Energy Technology Data Exchange (ETDEWEB)

    Heese, V.; Gmuer, N.; Thomlinson, W.

    1991-10-01

    The fields of medical imaging and medical imaging instrumentation are increasingly important. The state-of-the-art continues to advance at a very rapid pace. In fact, various medical imaging modalities are under development at the National Synchrotron Light Source (such as MECT and Transvenous Angiography.) It is important to understand how these techniques compare with today's more conventional imaging modalities. The purpose of this report is to provide some basic information about the various medical imaging technologies currently in use and their potential developments as a basis for this comparison. This report is by no means an in-depth study of the physics and instrumentation of the various imaging modalities; instead, it is an attempt to provide an explanation of the physical bases of these techniques and their principal clinical and research capabilities.

  17. A survey of medical diagnostic imaging technologies

    Energy Technology Data Exchange (ETDEWEB)

    Heese, V.; Gmuer, N.; Thomlinson, W.

    1991-10-01

    The fields of medical imaging and medical imaging instrumentation are increasingly important. The state-of-the-art continues to advance at a very rapid pace. In fact, various medical imaging modalities are under development at the National Synchrotron Light Source (such as MECT and Transvenous Angiography.) It is important to understand how these techniques compare with today`s more conventional imaging modalities. The purpose of this report is to provide some basic information about the various medical imaging technologies currently in use and their potential developments as a basis for this comparison. This report is by no means an in-depth study of the physics and instrumentation of the various imaging modalities; instead, it is an attempt to provide an explanation of the physical bases of these techniques and their principal clinical and research capabilities.

  18. Image registration method for medical image sequences

    Science.gov (United States)

    Gee, Timothy F.; Goddard, James S.

    2013-03-26

    Image registration of low contrast image sequences is provided. In one aspect, a desired region of an image is automatically segmented and only the desired region is registered. Active contours and adaptive thresholding of intensity or edge information may be used to segment the desired regions. A transform function is defined to register the segmented region, and sub-pixel information may be determined using one or more interpolation methods.

  19. Volumetric imaging of shark tail hydrodynamics reveals a three-dimensional dual-ring vortex wake structure.

    Science.gov (United States)

    Flammang, Brooke E; Lauder, George V; Troolin, Daniel R; Strand, Tyson

    2011-12-22

    Understanding how moving organisms generate locomotor forces is fundamental to the analysis of aerodynamic and hydrodynamic flow patterns that are generated during body and appendage oscillation. In the past, this has been accomplished using two-dimensional planar techniques that require reconstruction of three-dimensional flow patterns. We have applied a new, fully three-dimensional, volumetric imaging technique that allows instantaneous capture of wake flow patterns, to a classic problem in functional vertebrate biology: the function of the asymmetrical (heterocercal) tail of swimming sharks to capture the vorticity field within the volume swept by the tail. These data were used to test a previous three-dimensional reconstruction of the shark vortex wake estimated from two-dimensional flow analyses, and show that the volumetric approach reveals a different vortex wake not previously reconstructed from two-dimensional slices. The hydrodynamic wake consists of one set of dual-linked vortex rings produced per half tail beat. In addition, we use a simple passive shark-tail model under robotic control to show that the three-dimensional wake flows of the robotic tail differ from the active tail motion of a live shark, suggesting that active control of kinematics and tail stiffness plays a substantial role in the production of wake vortical patterns.

  20. Medical imaging in new drug clinical development.

    Science.gov (United States)

    Wang, Yi-Xiang; Deng, Min

    2010-12-01

    Medical imaging can help answer key questions that arise during the drug development process. The role of medical imaging in new drug clinical trials includes identification of likely responders; detection and diagnosis of lesions and evaluation of their severity; and therapy monitoring and follow-up. Nuclear imaging techniques such as PET can be used to monitor drug pharmacokinetics and distribution and study specific molecular endpoints. In assessing drug efficacy, imaging biomarkers and imaging surrogate endpoints can be more objective and faster to measure than clinical outcomes, and allow small group sizes, quick results and good statistical power. Imaging also has important role in drug safety monitoring, particularly when there is no other suitable biomarkers available. Despite the long history of radiological sciences, its application to the drug development process is relatively recent. This review highlights the processes, opportunities, and challenges of medical imaging in new drug development.

  1. Machine learning approaches in medical image analysis

    DEFF Research Database (Denmark)

    de Bruijne, Marleen

    2016-01-01

    Machine learning approaches are increasingly successful in image-based diagnosis, disease prognosis, and risk assessment. This paper highlights new research directions and discusses three main challenges related to machine learning in medical imaging: coping with variation in imaging protocols......, learning from weak labels, and interpretation and evaluation of results....

  2. Medical image analysis with artificial neural networks.

    Science.gov (United States)

    Jiang, J; Trundle, P; Ren, J

    2010-12-01

    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Medical image libraries: ICoS project

    Science.gov (United States)

    Honniball, John; Thomas, Peter

    1999-08-01

    FOr use of digital techniques for the production, manipulation and storage of images has resulted in the creation of digital image libraries. These libraries often store many thousands of images. While provision of storage media for such large amounts of data has been straightforward, provision of effective searching and retrieval tools has not. Medicine relies heavily on images as a diagnostic tool. The most obvious example is the x-ray, but many other image forms are in everyday use. Advances in technology are affecting the ways medical images are generated, stored and retrieved. The paper describes the work of the Image COding and Segmentation to Support Variable Rate Transmission Channels and Variable Resolution Platforms (ICoS) research project currently under way in Bristol, UK. ICoS is a project of the Mobile of England and Hewlett-Packard Research Laboratories Europe. Funding is provided by the Engineering and PHysical Sciences Research Council. The aim of the ICoS project is to demonstrate the practical application of computer networking to medical image libraries. Work at the University of the West of England concentrates on user interface and indexing issues. Metadata is used to organize the images, coded using the WWW Consortium standard Resource Description Framework. We are investigating the application of such standards to medical images, one outcome being to implement a metadata-based image library. This paper describes the ICoS project in detail and discuses both metadata system and user interfaces in the context of medical applications.

  4. Semantic annotation of medical images

    Science.gov (United States)

    Seifert, Sascha; Kelm, Michael; Moeller, Manuel; Mukherjee, Saikat; Cavallaro, Alexander; Huber, Martin; Comaniciu, Dorin

    2010-03-01

    Diagnosis and treatment planning for patients can be significantly improved by comparing with clinical images of other patients with similar anatomical and pathological characteristics. This requires the images to be annotated using common vocabulary from clinical ontologies. Current approaches to such annotation are typically manual, consuming extensive clinician time, and cannot be scaled to large amounts of imaging data in hospitals. On the other hand, automated image analysis while being very scalable do not leverage standardized semantics and thus cannot be used across specific applications. In our work, we describe an automated and context-sensitive workflow based on an image parsing system complemented by an ontology-based context-sensitive annotation tool. An unique characteristic of our framework is that it brings together the diverse paradigms of machine learning based image analysis and ontology based modeling for accurate and scalable semantic image annotation.

  5. Blind integrity verification of medical images.

    Science.gov (United States)

    Huang, Hui; Coatrieux, Gouenou; Shu, Huazhong; Luo, Limin; Roux, Christian

    2012-11-01

    This work presents the first method of digital blind forensics within the medical imaging field with the objective to detect whether an image has been modified by some processing (e.g. filtering, lossy compression and so on). It compares two image features: the Histogram statistics of Reorganized Block-based Discrete cosine transform coefficients (HRBD), originally proposed for steganalysis purposes, and the Histogram statistics of Reorganized Block-based Tchebichef moments (HRBT). Both features serve as input of a set of SVM classifiers built in order to discriminate tampered images from original ones as well as to identify the nature of the global modification one image may have undergone. Performance evaluation, conducted in application to different medical image modalities, shows that these image features can help, independently or jointly, to blindly distinguish image processing or modifications with a detection rate greater than 70%. They also underline the complementarity of these features.

  6. An efficient medical image compression scheme.

    Science.gov (United States)

    Li, Xiaofeng; Shen, Yi; Ma, Jiachen

    2005-01-01

    In this paper, a fast lossless compression scheme is presented for the medical image. This scheme consists of two stages. In the first stage, a Differential Pulse Code Modulation (DPCM) is used to decorrelate the raw image data, therefore increasing the compressibility of the medical image. In the second stage, an effective scheme based on the Huffman coding method is developed to encode the residual image. This newly proposed scheme could reduce the cost for the Huffman coding table while achieving high compression ratio. With this algorithm, a compression ratio higher than that of the lossless JPEG method for image can be obtained. At the same time, this method is quicker than the lossless JPEG2000. In other words, the newly proposed algorithm provides a good means for lossless medical image compression.

  7. THz Medical Imaging: in vivo Hydration Sensing

    Science.gov (United States)

    Taylor, Zachary D.; Singh, Rahul S.; Bennett, David B.; Tewari, Priyamvada; Kealey, Colin P.; Bajwa, Neha; Culjat, Martin O.; Stojadinovic, Alexander; Lee, Hua; Hubschman, Jean-Pierre; Brown, Elliott R.; Grundfest, Warren S.

    2015-01-01

    The application of THz to medical imaging is experiencing a surge in both interest and federal funding. A brief overview of the field is provided along with promising and emerging applications and ongoing research. THz imaging phenomenology is discussed and tradeoffs are identified. A THz medical imaging system, operating at ~525 GHz center frequency with ~125 GHz of response normalized bandwidth is introduced and details regarding principles of operation are provided. Two promising medical applications of THz imaging are presented: skin burns and cornea. For burns, images of second degree, partial thickness burns were obtained in rat models in vivo over an 8 hour period. These images clearly show the formation and progression of edema in and around the burn wound area. For cornea, experimental data measuring the hydration of ex vivo porcine cornea under drying is presented demonstrating utility in ophthalmologic applications. PMID:26085958

  8. 3D tumor localization through real-time volumetric x-ray imaging for lung cancer radiotherapy

    CERN Document Server

    Li, Ruijiang; Jia, Xun; Gu, Xuejun; Folkerts, Michael; Men, Chunhua; Song, William Y; Jiang, Steve B

    2011-01-01

    Recently we have developed an algorithm for reconstructing volumetric images and extracting 3D tumor motion information from a single x-ray projection. We have demonstrated its feasibility using a digital respiratory phantom with regular breathing patterns. In this work, we present a detailed description and a comprehensive evaluation of the improved algorithm. The algorithm was improved by incorporating respiratory motion prediction. The accuracy and efficiency were then evaluated on 1) a digital respiratory phantom, 2) a physical respiratory phantom, and 3) five lung cancer patients. These evaluation cases include both regular and irregular breathing patterns that are different from the training dataset. For the digital respiratory phantom with regular and irregular breathing, the average 3D tumor localization error is less than 1 mm. On an NVIDIA Tesla C1060 GPU card, the average computation time for 3D tumor localization from each projection ranges between 0.19 and 0.26 seconds, for both regular and irreg...

  9. Medical imaging technology reviews and computational applications

    CERN Document Server

    Dewi, Dyah

    2015-01-01

    This book presents the latest research findings and reviews in the field of medical imaging technology, covering ultrasound diagnostics approaches for detecting osteoarthritis, breast carcinoma and cardiovascular conditions, image guided biopsy and segmentation techniques for detecting lung cancer, image fusion, and simulating fluid flows for cardiovascular applications. It offers a useful guide for students, lecturers and professional researchers in the fields of biomedical engineering and image processing.

  10. Adaptive Beamforming for Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund

    This dissertation investigates the application of adaptive beamforming for medical ultrasound imaging. The investigations have been concentrated primarily on the Minimum Variance (MV) beamformer. A broadband implementation of theMV beamformer is described, and simulated data have been used...... to demonstrate the performance. The MV beamformer has been applied to different sets of ultrasound imaging sequences; synthetic aperture ultrasound imaging and plane wave ultrasound imaging. And an approach for applying MV optimized apodization weights on both the transmitting and the receiving apertures...

  11. Multi-detector CT (MDCT) evaluation in interstitial lung disease (ILD): Comparison of MinIP and volumetric high resolution CT (HRCT) images

    OpenAIRE

    Youssriah Y. Sabri; Iman M. Hamdy Ibrahim; Shady Mohamed Tarek Gamal; Hebatallah H. Assal

    2017-01-01

    The aim of the study: Is to compare the role of minimum intensity projection (MinIP) images with that of volumetric high resolution computed tomography (HRCT) images in the diagnosis of interstitial lung diseases (ILD). Patients and methods: 180 patients (149 females and 31 males) were included in this prospective study that took place over a duration of two and half years. All patients underwent HRCT and MinIP images. The positive findings were compared recording which technique was bette...

  12. Live dynamic OCT imaging of cardiac structure and function in mouse embryos with 43 Hz direct volumetric data acquisition

    Science.gov (United States)

    Wang, Shang; Singh, Manmohan; Lopez, Andrew L.; Wu, Chen; Raghunathan, Raksha; Schill, Alexander; Li, Jiasong; Larin, Kirill V.; Larina, Irina V.

    2016-03-01

    Efficient phenotyping of cardiac dynamics in live mouse embryos has significant implications on understanding of early mammalian heart development and congenital cardiac defects. Recent studies established optical coherence tomography (OCT) as a powerful tool for live embryonic heart imaging in various animal models. However, current four-dimensional (4D) OCT imaging of the beating embryonic heart largely relies on gated data acquisition or postacquisition synchronization, which brings errors when cardiac cycles lack perfect periodicity and is time consuming and computationally expensive. Here, we report direct 4D OCT imaging of the structure and function of cardiac dynamics in live mouse embryos achieved by employing a Fourier domain mode-locking swept laser source that enables ~1.5 MHz A-line rate. Through utilizing both forward and backward scans of a resonant mirror, we obtained a ~6.4 kHz frame rate, which allows for a direct volumetric data acquisition speed of ~43 Hz, around 20 times of the early-stage mouse embryonic heart rate. Our experiments were performed on mouse embryos at embryonic day 9.5. Time-resolved 3D cardiodynamics clearly shows the heart structure in motion. We present analysis of cardiac wall movement and its velocity from the primitive atrium and ventricle. Our results suggest that the combination of ultrahigh-speed OCT imaging with live embryo culture could be a useful embryonic heart phenotyping approach for mouse mutants modeling human congenital heart diseases.

  13. Special Issue on “Medical Imaging and Image Processing”

    Directory of Open Access Journals (Sweden)

    Yudong Zhang

    2014-12-01

    Full Text Available Over the last decade, Medical Imaging has become an essential component in many fields of bio-medical research and clinical practice. Biologists study cells and generate 3D confocal microscopy data sets, virologists generate 3D reconstructions of viruses from micrographs, radiologists identify and quantify tumors from MRI and CT scans, and neuroscientists detect regional metabolic brain activity from PET and functional MRI scans. On the other hand, Image Processing includes the analysis, enhancement, and display of images captured via various medical imaging technologies. Image reconstruction and modeling techniques allow instant processing of 2D signals to create 3D images. In addition, image processing and analysis can be used to determine the diameter, volume, and vasculature of a tumor or organ, flow parameters of blood or other fluids, and microscopic changes that have not previously been discernible.[...

  14. ENVISION, from particle detectors to medical imaging

    CERN Multimedia

    2013-01-01

    Technologies developed for particle physics detectors are increasingly used in medical imaging tools like Positron Emission Tomography (PET). Produced by: CERN KT/Life Sciences and ENVISION Project Management: Manuela Cirilli 3D animation: Jeroen Huijben, Nymus3d

  15. Methodological approaches to planar and volumetric scintigraphic imaging of small volume targets with high spatial resolution and sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, J.; Galvis-Alonso, O.Y. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Faculdade de Medicina. Dept. de Biologia Molecular], e-mail: mejia_famerp@yahoo.com.br; Braga, J. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Div. de Astrofisica; Correa, R. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Ciencia Espacial e Atmosferica; Leite, J.P. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Neurologia, Psiquiatria e Psicologia Medica; Simoes, M.V. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Clinica Medica

    2009-08-15

    Single-photon emission computed tomography (SPECT) is a non-invasive imaging technique, which provides information reporting the functional states of tissues. SPECT imaging has been used as a diagnostic tool in several human disorders and can be used in animal models of diseases for physiopathological, genomic and drug discovery studies. However, most of the experimental models used in research involve rodents, which are at least one order of magnitude smaller in linear dimensions than man. Consequently, images of targets obtained with conventional gamma-cameras and collimators have poor spatial resolution and statistical quality. We review the methodological approaches developed in recent years in order to obtain images of small targets with good spatial resolution and sensitivity. Multi pinhole, coded mask- and slit-based collimators are presented as alternative approaches to improve image quality. In combination with appropriate decoding algorithms, these collimators permit a significant reduction of the time needed to register the projections used to make 3-D representations of the volumetric distribution of target's radiotracers. Simultaneously, they can be used to minimize artifacts and blurring arising when single pinhole collimators are used. Representation images are presented, which illustrate the use of these collimators. We also comment on the use of coded masks to attain tomographic resolution with a single projection, as discussed by some investigators since their introduction to obtain near-field images. We conclude this review by showing that the use of appropriate hardware and software tools adapted to conventional gamma-cameras can be of great help in obtaining relevant functional information in experiments using small animals. (author)

  16. Medical image segmentation by MDP model

    Science.gov (United States)

    Lu, Yisu; Chen, Wufan

    2011-11-01

    MDP (Dirichlet Process Mixtures) model is applied to segment medical images in this paper. Segmentation can been automatically done without initializing segmentation class numbers. The MDP model segmentation algorithm is used to segment natural images and MR (Magnetic Resonance) images in the paper. To demonstrate the accuracy of the MDP model segmentation algorithm, many compared experiments, such as EM (Expectation Maximization) image segmentation algorithm, K-means image segmentation algorithm and MRF (Markov Field) image segmentation algorithm, have been done to segment medical MR images. All the methods are also analyzed quantitatively by using DSC (Dice Similarity Coefficients). The experiments results show that DSC of MDP model segmentation algorithm of all slices exceed 90%, which show that the proposed method is robust and accurate.

  17. Applied medical image processing a basic course

    CERN Document Server

    Birkfellner, Wolfgang

    2014-01-01

    A widely used, classroom-tested text, Applied Medical Image Processing: A Basic Course delivers an ideal introduction to image processing in medicine, emphasizing the clinical relevance and special requirements of the field. Avoiding excessive mathematical formalisms, the book presents key principles by implementing algorithms from scratch and using simple MATLAB®/Octave scripts with image data and illustrations on an accompanying CD-ROM or companion website. Organized as a complete textbook, it provides an overview of the physics of medical image processing and discusses image formats and data storage, intensity transforms, filtering of images and applications of the Fourier transform, three-dimensional spatial transforms, volume rendering, image registration, and tomographic reconstruction.

  18. A Methodological Evaluation of Volumetric Measurement Techniques including Three-Dimensional Imaging in Breast Surgery

    Directory of Open Access Journals (Sweden)

    H. Hoeffelin

    2014-01-01

    Full Text Available Breast surgery currently remains very subjective and each intervention depends on the ability and experience of the operator. To date, no objective measurement of this anatomical region can codify surgery. In this light, we wanted to compare and validate a new technique for 3D scanning (LifeViz 3D and its clinical application. We tested the use of the 3D LifeViz system (Quantificare to perform volumetric calculations in various settings (in situ in cadaveric dissection, of control prostheses, and in clinical patients and we compared this system to other techniques (CT scanning and Archimedes’ principle under the same conditions. We were able to identify the benefits (feasibility, safety, portability, and low patient stress and limitations (underestimation of the in situ volume, subjectivity of contouring, and patient selection of the LifeViz 3D system, concluding that the results are comparable with other measurement techniques. The prospects of this technology seem promising in numerous applications in clinical practice to limit the subjectivity of breast surgery.

  19. A methodological evaluation of volumetric measurement techniques including three-dimensional imaging in breast surgery.

    Science.gov (United States)

    Hoeffelin, H; Jacquemin, D; Defaweux, V; Nizet, J L

    2014-01-01

    Breast surgery currently remains very subjective and each intervention depends on the ability and experience of the operator. To date, no objective measurement of this anatomical region can codify surgery. In this light, we wanted to compare and validate a new technique for 3D scanning (LifeViz 3D) and its clinical application. We tested the use of the 3D LifeViz system (Quantificare) to perform volumetric calculations in various settings (in situ in cadaveric dissection, of control prostheses, and in clinical patients) and we compared this system to other techniques (CT scanning and Archimedes' principle) under the same conditions. We were able to identify the benefits (feasibility, safety, portability, and low patient stress) and limitations (underestimation of the in situ volume, subjectivity of contouring, and patient selection) of the LifeViz 3D system, concluding that the results are comparable with other measurement techniques. The prospects of this technology seem promising in numerous applications in clinical practice to limit the subjectivity of breast surgery.

  20. White matter development in early puberty: a longitudinal volumetric and diffusion tensor imaging twin study.

    Science.gov (United States)

    Brouwer, Rachel M; Mandl, René C W; Schnack, Hugo G; van Soelen, Inge L C; van Baal, G Caroline; Peper, Jiska S; Kahn, René S; Boomsma, Dorret I; Hulshoff Pol, H E

    2012-01-01

    White matter microstructure and volume show synchronous developmental patterns in children. White matter volume increases considerably during development. Fractional anisotropy, a measure for white matter microstructural directionality, also increases with age. Development of white matter volume and development of white matter microstructure seem to go hand in hand. The extent to which the same or different genetic and/or environmental factors drive these two aspects of white matter maturation is currently unknown. We mapped changes in white matter volume, surface area and diffusion parameters in mono- and dizygotic twins who were scanned at age 9 (203 individuals) and again at age 12 (126 individuals). Over the three-year interval, white matter volume (+6.0%) and surface area (+1.7%) increased, fiber bundles expanded (most pronounced in the left arcuate fasciculus and splenium), and fractional anisotropy increased (+3.0%). Genes influenced white matter volume (heritability ~85%), surface area (~85%), and fractional anisotropy (locally 7% to 50%) at both ages. Finally, volumetric white matter growth was negatively correlated with fractional anisotropy increase (r = -0.62) and this relationship was driven by environmental factors. In children who showed the most pronounced white matter growth, fractional anisotropy increased the least and vice-versa. Thus, white matter development in childhood may reflect a process of both expansion and fiber optimization.

  1. White matter development in early puberty: a longitudinal volumetric and diffusion tensor imaging twin study.

    Directory of Open Access Journals (Sweden)

    Rachel M Brouwer

    Full Text Available White matter microstructure and volume show synchronous developmental patterns in children. White matter volume increases considerably during development. Fractional anisotropy, a measure for white matter microstructural directionality, also increases with age. Development of white matter volume and development of white matter microstructure seem to go hand in hand. The extent to which the same or different genetic and/or environmental factors drive these two aspects of white matter maturation is currently unknown. We mapped changes in white matter volume, surface area and diffusion parameters in mono- and dizygotic twins who were scanned at age 9 (203 individuals and again at age 12 (126 individuals. Over the three-year interval, white matter volume (+6.0% and surface area (+1.7% increased, fiber bundles expanded (most pronounced in the left arcuate fasciculus and splenium, and fractional anisotropy increased (+3.0%. Genes influenced white matter volume (heritability ~85%, surface area (~85%, and fractional anisotropy (locally 7% to 50% at both ages. Finally, volumetric white matter growth was negatively correlated with fractional anisotropy increase (r = -0.62 and this relationship was driven by environmental factors. In children who showed the most pronounced white matter growth, fractional anisotropy increased the least and vice-versa. Thus, white matter development in childhood may reflect a process of both expansion and fiber optimization.

  2. MULTIWAVELET TRANSFORM IN COMPRESSION OF MEDICAL IMAGES

    Directory of Open Access Journals (Sweden)

    V. K. Sudha

    2013-05-01

    Full Text Available This paper analyses performance of multiwavelets - a variant of wavelet transform on compression of medical images. To do so, two processes namely, transformation for decorrelation and encoding are done. In transformation stage medical images are subjected to multiwavelet transform using multiwavelets such as Geronimo- Hardin-Massopust, Chui Lian, Cardinal 2 Balanced (Cardbal2 and orthogonal symmetric/antsymmetric multiwavelet (SA4. Set partitioned Embedded Block Coder is used as a common platform for encoding the transformed coefficients. Peak Signal to noise ratio, bit rate and Structural Similarity Index are used as metrics for performance analysis. For experiment we have used various medical images such as Magnetic Resonance Image, Computed Tomography and X-ray images.

  3. I2Cnet medical image annotation service.

    Science.gov (United States)

    Chronaki, C E; Zabulis, X; Orphanoudakis, S C

    1997-01-01

    I2Cnet (Image Indexing by Content network) aims to provide services related to the content-based management of images in healthcare over the World-Wide Web. Each I2Cnet server maintains an autonomous repository of medical images and related information. The annotation service of I2Cnet allows specialists to interact with the contents of the repository, adding comments or illustrations to medical images of interest. I2Cnet annotations may be communicated to other users via e-mail or posted to I2Cnet for inclusion in its local repositories. This paper discusses the annotation service of I2Cnet and argues that such services pave the way towards the evolution of active digital medical image libraries.

  4. Research imaging in an academic medical center.

    Science.gov (United States)

    Armato, Samuel G; Gruszauskas, Nicholas P; Macmahon, Heber; Torno, Michael D; Li, Feng; Engelmann, Roger M; Starkey, Adam; Pudela, Caileigh L; Marino, Jonathan S; Santiago, Faustino; Chang, Paul J; Giger, Maryellen L

    2012-06-01

    Managing and supervising the complex imaging examinations performed for clinical research in an academic medical center can be a daunting task. Coordinating with both radiology and research staff to ensure that the necessary imaging is performed, analyzed, and delivered in accordance with the research protocol is nontrivial. The purpose of this communication is to report on the establishment of a new Human Imaging Research Office (HIRO) at our institution that provides a dedicated infrastructure to assist with these issues and improve collaborations between radiology and research staff. The HIRO was created with three primary responsibilities: 1) coordinate the acquisition of images for clinical research per the study protocol, 2) facilitate reliable and consistent assessment of disease response for clinical research, and 3) manage and distribute clinical research images in a compliant manner. The HIRO currently provides assistance for 191 clinical research studies from 14 sections and departments within our medical center and performs quality assessment of image-based measurements for six clinical research studies. The HIRO has fulfilled 1806 requests for medical images, delivering 81,712 imaging examinations (more than 44.1 million images) and related reports to investigators for research purposes. The ultimate goal of the HIRO is to increase the level of satisfaction and interaction among investigators, research subjects, radiologists, and other imaging professionals. Clinical research studies that use the HIRO benefit from a more efficient and accurate imaging process. The HIRO model could be adopted by other academic medical centers to support their clinical research activities; the details of implementation may differ among institutions, but the need to support imaging in clinical research through a dedicated, centralized initiative should apply to most academic medical centers. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.

  5. Overview of deep learning in medical imaging.

    Science.gov (United States)

    Suzuki, Kenji

    2017-07-08

    The use of machine learning (ML) has been increasing rapidly in the medical imaging field, including computer-aided diagnosis (CAD), radiomics, and medical image analysis. Recently, an ML area called deep learning emerged in the computer vision field and became very popular in many fields. It started from an event in late 2012, when a deep-learning approach based on a convolutional neural network (CNN) won an overwhelming victory in the best-known worldwide computer vision competition, ImageNet Classification. Since then, researchers in virtually all fields, including medical imaging, have started actively participating in the explosively growing field of deep learning. In this paper, the area of deep learning in medical imaging is overviewed, including (1) what was changed in machine learning before and after the introduction of deep learning, (2) what is the source of the power of deep learning, (3) two major deep-learning models: a massive-training artificial neural network (MTANN) and a convolutional neural network (CNN), (4) similarities and differences between the two models, and (5) their applications to medical imaging. This review shows that ML with feature input (or feature-based ML) was dominant before the introduction of deep learning, and that the major and essential difference between ML before and after deep learning is the learning of image data directly without object segmentation or feature extraction; thus, it is the source of the power of deep learning, although the depth of the model is an important attribute. The class of ML with image input (or image-based ML) including deep learning has a long history, but recently gained popularity due to the use of the new terminology, deep learning. There are two major models in this class of ML in medical imaging, MTANN and CNN, which have similarities as well as several differences. In our experience, MTANNs were substantially more efficient in their development, had a higher performance, and required a

  6. Physics for Medical Imaging Applications

    CERN Document Server

    Caner, Alesssandra; Rahal, Ghita

    2007-01-01

    The book introduces the fundamental aspects of digital imaging and covers four main themes: Ultrasound techniques and imaging applications; Magnetic resonance and MPJ in hospital; Digital imaging with X-rays; and Emission tomography (PET and SPECT). Each of these topics is developed by analysing the underlying physics principles and their implementation, quality and safety aspects, clinical performance and recent advancements in the field. Some issues specific to the individual techniques are also treated, e.g. choice of radioisotopes or contrast agents, optimisation of data acquisition and st

  7. Medical imaging principles and practices

    CERN Document Server

    Bronzino, Joseph D; Peterson, Donald R

    2013-01-01

    This book offers a selective review of key imaging modalities focusing on modalities with established clinical utilization. It provides a detailed overview of x-ray imaging and computed tomography, fundamental concepts in signal acquisition and processes, followed by an overview of functional MRI (fMRI) and chemical shift imaging. It also covers topics in Magnetic Resonance Microcopy, the physics of instrumentation and signal collection, and their application in clinical practice. The selection of topics provides readers with an appreciation of the depth and breadth of the field and the challenges ahead of the technical and clinical community of researchers and practitioners.

  8. 21 CFR 892.2030 - Medical image digitizer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a digital...

  9. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Mozzo, P. [Dept. of Medical Physics, University Hospital, Verona (Italy); Procacci, C.; Tacconi, A.; Tinazzi Martini, P.; Bergamo Andreis, I.A. [Dept. of Radiology, University Hospital, Verona (Italy)

    1998-12-01

    The objective of this paper is to present a new type of volumetric CT which uses the cone-beam technique instead of traditional fan-beam technique. The machine is dedicated to the dento-maxillo-facial imaging, particularly for planning in the field of implantology. The main characteristics of the unit are presented with reference to the technical parameters as well as the software performance. Images obtained are reported as various 2D sections of a volume reconstruction. Also, measurements of the geometric accuracy and the radiation dose absorbed by the patient are obtained using specific phantoms. Absorbed dose is compared with that given off by spiral CT. Geometric accuracy, evaluated with reference to various reconstruction modalities and different spatial orientations, is 0.8-1 % for width measurements and 2.2 % for height measurements. Radiation dose absorbed during the scan shows different profiles in central and peripheral axes. As regards the maximum value of the central profile, dose from the new unit is approximately one sixth that of traditional spiral CT. The new system appears to be very promising in dento-maxillo-facial imaging and, due to the good ratio between performance and low cost, together with low radiation dose, very interesting in view of large-scale use of the CT technique in such diagnostic applications. (orig.) With 10 figs., 3 tabs., 15 refs.

  10. Multispectral imaging for medical diagnosis

    Science.gov (United States)

    Anselmo, V. J.

    1977-01-01

    Photography technique determines amount of morbidity present in tissue. Imaging apparatus incorporates numerical filtering. Overall system operates in near-real time. Information gained from this system enables physician to understand extent of injury and leads to accelerated treatment.

  11. Multi-channel medical imaging system

    Science.gov (United States)

    Frangioni, John V

    2013-12-31

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in the subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.

  12. Multi-channel medical imaging system

    Science.gov (United States)

    Frangioni, John V.

    2016-05-03

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.

  13. Multi-channel medical imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Frangioni, John V.

    2016-05-03

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.

  14. Segmentation of elongated structures in medical images

    NARCIS (Netherlands)

    Staal, Jozef Johannes

    2004-01-01

    The research described in this thesis concerns the automatic detection, recognition and segmentation of elongated structures in medical images. For this purpose techniques have been developed to detect subdimensional pointsets (e.g. ridges, edges) in images of arbitrary dimension. These pointsets ar

  15. Intuitionistic fuzzy segmentation of medical images.

    Science.gov (United States)

    Chaira, Tamalika

    2010-06-01

    This paper proposes a novel and probably the first method, using Attanassov intuitionistic fuzzy set theory to segment blood vessels and also the blood cells in pathological images. This type of segmentation is very important in detecting different types of human diseases, e.g., an increase in the number of vessels may lead to cancer in prostates, mammary, etc. The medical images are not properly illuminated, and segmentation in that case becomes very difficult. A novel image segmentation approach using intuitionistic fuzzy set theory and a new membership function is proposed using restricted equivalence function from automorphisms, for finding the membership values of the pixels of the image. An intuitionistic fuzzy image is constructed using Sugeno type intuitionistic fuzzy generator. Local thresholding is applied to threshold medical images. The results showed a much better performance on poor contrast medical images, where almost all the blood vessels and blood cells are visible properly. There are several fuzzy and intuitionistic fuzzy thresholding methods, but these methods are not related to the medical images. To make a comparison with the proposed method with other thresholding methods, the method is compared with six nonfuzzy, fuzzy, and intuitionistic fuzzy methods.

  16. Detection of cerebral involvement in patients with active neuropsychiatric systemic lupus erythematosus by the use of volumetric magnetization transfer imaging.

    Science.gov (United States)

    Bosma, G P; Rood, M J; Huizinga, T W; de Jong, B A; Bollen, E L; van Buchem, M A

    2000-11-01

    To determine whether volumetric magnetization transfer imaging (MTI) histogram analysis can detect abnormalities in patients with active neuropsychiatric systemic lupus erythematosus (NPSLE) and to compare the MTI findings in patients with active NPSLE, chronic NPSLE, and multiple sclerosis (MS), as well as in normal control subjects. Eight female and 1 male patient with active nonthromboembolic NPSLE (mean +/- SD age 39 +/- 9 years), 10 female patients with chronic NPSLE (age 33 +/- 11 years), 10 female patients with SLE and no history of NPSLE (non-NPSLE; age 34 +/- 11 years), 10 female patients with inactive MS (age 41 +/- 6 years), and 10 healthy control subjects (age 33 +/- 11 years) underwent MTL. Using the MTI scans, histograms were composed from which we derived a variety of parameters that quantitatively reflect the uniformity of the brain parenchyma as well as the ratio of cerebrospinal fluid to intracranial volume, which reflects atrophy. The magnetization transfer ratio (MTR) histograms in the non-NPSLE group and the healthy control group were similar, whereas those in the chronic NPSLE and MS groups were flatter. There was also flattening of the histograms in the active NPSLE group, but with a shift toward higher MTRs. Our results indicate that volumetric MTI analysis detects cerebral changes in the active phase of NPSLE. The abnormalities in the brain parenchyma of patients with chronic NPSLE produced MTI values that were the same as those in patients with inactive MS. MTI values in the active phase of NPSLE differed from those in the chronic phase, which might reflect the presence of inflammation. These preliminary results suggest that MTI might provide evidence for the presence of active NPSLE. MTI might also prove to be a valuable technique for monitoring treatment trials.

  17. Real-time volumetric lipid imaging in vivo by intravascular photoacoustics at 20 frames per second

    Science.gov (United States)

    Wu, Min; Springeling, Geert; Lovrak, Matija; Mastik, Frits; Iskander-Rizk, Sophinese; Wang, Tianshi; van Beusekom, Heleen M. M.; van der Steen, A. F. W.; Van Soest, Gijs

    2017-01-01

    Lipid deposition can be assessed with combined intravascular photoacoustic/ultrasound (IVPA/US) imaging. To date, the clinical translation of IVPA/US imaging has been stalled by a low imaging speed and catheter complexity. In this paper, we demonstrate imaging of lipid targets in swine coronary arteries in vivo, at a clinically useful frame rate of 20 s−1. We confirmed image contrast for atherosclerotic plaque in human samples ex vivo. The system is on a mobile platform and provides real-time data visualization during acquisition. We achieved an IVPA signal-to-noise ratio of 20 dB. These data show that clinical translation of IVPA is possible in principle. PMID:28270995

  18. Improved Interactive Medical-Imaging System

    Science.gov (United States)

    Ross, Muriel D.; Twombly, Ian A.; Senger, Steven

    2003-01-01

    An improved computational-simulation system for interactive medical imaging has been invented. The system displays high-resolution, three-dimensional-appearing images of anatomical objects based on data acquired by such techniques as computed tomography (CT) and magnetic-resonance imaging (MRI). The system enables users to manipulate the data to obtain a variety of views for example, to display cross sections in specified planes or to rotate images about specified axes. Relative to prior such systems, this system offers enhanced capabilities for synthesizing images of surgical cuts and for collaboration by users at multiple, remote computing sites.

  19. CLASSIFYING MEDICAL IMAGES USING MORPHOLOGICAL APPEARANCE MANIFOLDS

    OpenAIRE

    Varol, Erdem; Gaonkar, Bilwaj; Davatzikos, Christos

    2013-01-01

    Input features for medical image classification algorithms are extracted from raw images using a series of pre processing steps. One common preprocessing step in computational neuroanatomy and functional brain mapping is the nonlinear registration of raw images to a common template space. Typically, the registration methods used are parametric and their output varies greatly with changes in parameters. Most results reported previously perform registration using a fixed parameter setting and u...

  20. Cerenkov luminescence imaging of medical isotopes

    OpenAIRE

    Ruggiero, Alessandro; Holland, Jason P.; Lewis, Jason S.; Grimm, Jan

    2010-01-01

    The development of novel multimodality imaging agents and techniques represents the current frontier of research in the field of medical imaging science. However, the combination of nuclear tomography with optical techniques has yet to be established. Here, we report the use of the inherent optical emissions from the decay of radiopharmaceuticals for Cerenkov luminescence imaging (CLI) of tumors in vivo and correlate the results with those obtained from concordant immuno-PET studies.

  1. Deep Learning in Medical Image Analysis.

    Science.gov (United States)

    Shen, Dinggang; Wu, Guorong; Suk, Heung-Il

    2017-03-09

    This review covers computer-assisted analysis of images in the field of medical imaging. Recent advances in machine learning, especially with regard to deep learning, are helping to identify, classify, and quantify patterns in medical images. At the core of these advances is the ability to exploit hierarchical feature representations learned solely from data, instead of features designed by hand according to domain-specific knowledge. Deep learning is rapidly becoming the state of the art, leading to enhanced performance in various medical applications. We introduce the fundamentals of deep learning methods and review their successes in image registration, detection of anatomical and cellular structures, tissue segmentation, computer-aided disease diagnosis and prognosis, and so on. We conclude by discussing research issues and suggesting future directions for further improvement. Expected final online publication date for the Annual Review of Biomedical Engineering Volume 19 is June 4, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  2. Radiology and Enterprise Medical Imaging Extensions (REMIX).

    Science.gov (United States)

    Erdal, Barbaros S; Prevedello, Luciano M; Qian, Songyue; Demirer, Mutlu; Little, Kevin; Ryu, John; O'Donnell, Thomas; White, Richard D

    2017-08-24

    Radiology and Enterprise Medical Imaging Extensions (REMIX) is a platform originally designed to both support the medical imaging-driven clinical and clinical research operational needs of Department of Radiology of The Ohio State University Wexner Medical Center. REMIX accommodates the storage and handling of "big imaging data," as needed for large multi-disciplinary cancer-focused programs. The evolving REMIX platform contains an array of integrated tools/software packages for the following: (1) server and storage management; (2) image reconstruction; (3) digital pathology; (4) de-identification; (5) business intelligence; (6) texture analysis; and (7) artificial intelligence. These capabilities, along with documentation and guidance, explaining how to interact with a commercial system (e.g., PACS, EHR, commercial database) that currently exists in clinical environments, are to be made freely available.

  3. Photoacoustic Imaging: Opening New Frontiers in Medical Imaging

    Directory of Open Access Journals (Sweden)

    Keerthi S Valluru

    2011-01-01

    Full Text Available In today′s world, technology is advancing at an exponential rate and medical imaging is no exception. During the last hundred years, the field of medical imaging has seen a tremendous technological growth with the invention of imaging modalities including but not limited to X-ray, ultrasound, computed tomography, magnetic resonance imaging, positron emission tomography, and single-photon emission computed tomography. These tools have led to better diagnosis and improved patient care. However, each of these modalities has its advantages as well as disadvantages and none of them can reveal all the information a physician would like to have. In the last decade, a new diagnostic technology called photoacoustic imaging has evolved which is moving rapidly from the research phase to the clinical trial phase. This article outlines the basics of photoacoustic imaging and describes our hands-on experience in developing a comprehensive photoacoustic imaging system to detect tissue abnormalities.

  4. Medical Image Feature, Extraction, Selection And Classification

    Directory of Open Access Journals (Sweden)

    M.VASANTHA,

    2010-06-01

    Full Text Available Breast cancer is the most common type of cancer found in women. It is the most frequent form of cancer and one in 22 women in India is likely to suffer from breast cancer. This paper proposes a image classifier to classify the mammogram images. Mammogram image is classified into normal image, benign image and malignant image. Totally 26 features including histogram intensity features and GLCM features are extracted from mammogram image. A hybrid approach of feature selection is proposed in this paper which reduces 75% of the features. Decision tree algorithms are applied to mammography lassification by using these reduced features. Experimental results have been obtained for a data set of 113 images taken from MIAS of different types. This technique of classification has not been attempted before and it reveals the potential of Data mining in medical treatment.

  5. Use of mobile devices for medical imaging.

    Science.gov (United States)

    Hirschorn, David S; Choudhri, Asim F; Shih, George; Kim, Woojin

    2014-12-01

    Mobile devices have fundamentally changed personal computing, with many people forgoing the desktop and even laptop computer altogether in favor of a smaller, lighter, and cheaper device with a touch screen. Doctors and patients are beginning to expect medical images to be available on these devices for consultative viewing, if not actual diagnosis. However, this raises serious concerns with regard to the ability of existing mobile devices and networks to quickly and securely move these images. Medical images often come in large sets, which can bog down a network if not conveyed in an intelligent manner, and downloaded data on a mobile device are highly vulnerable to a breach of patient confidentiality should that device become lost or stolen. Some degree of regulation is needed to ensure that the software used to view these images allows all relevant medical information to be visible and manipulated in a clinically acceptable manner. There also needs to be a quality control mechanism to ensure that a device's display accurately conveys the image content without loss of contrast detail. Furthermore, not all mobile displays are appropriate for all types of images. The smaller displays of smart phones, for example, are not well suited for viewing entire chest radiographs, no matter how small and numerous the pixels of the display may be. All of these factors should be taken into account when deciding where, when, and how to use mobile devices for the display of medical images.

  6. Gold nanoflowers for 3D volumetric molecular imaging of tumors by photoacoustic tomography

    Institute of Scientific and Technical Information of China (English)

    Yuanyuan Jiang[1,4; Zijian Deng[2,4; Dan Yang[3; Xin Deng[1; Qi Li[1; Yinlin Sha[3; Changhui Li[2; Dongsheng Xu[1

    2015-01-01

    By binding molecular probes that target tumor cells, gold nanoparticles (AuNPs) with superior characteristics have shown great potential in tumor molecular imaging studies. The non-invasive, high-resolution, and three-dimensional imaging of the targeted AuNPs within the tumor is desirable for both diagnosis and therapy. In this study, gold nanoflowers (AuNFs) are presented as a novel contrast agent for photoacoustic tomography (PAT). By binding to folic acid, the molecular probe, the tail-vein injected AuNFs concentrated within the tumor site in mice; this was clearly visualized by three-dimensional (3D) PAT imaging. In addition, toxicity assay proved that AuNFs were harmless to living cells and animals. Our results demonstrate that AuNFs have great potential in tumor molecular imaging.

  7. A three-dimensional weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT under a circular source trajectory

    Science.gov (United States)

    Tang, Xiangyang; Hsieh, Jiang; Hagiwara, Akira; Nilsen, Roy A.; Thibault, Jean-Baptiste; Drapkin, Evgeny

    2005-08-01

    The original FDK algorithm proposed for cone beam (CB) image reconstruction under a circular source trajectory has been extensively employed in medical and industrial imaging applications. With increasing cone angle, CB artefacts in images reconstructed by the original FDK algorithm deteriorate, since the circular trajectory does not satisfy the so-called data sufficiency condition (DSC). A few 'circular plus' trajectories have been proposed in the past to help the original FDK algorithm to reduce CB artefacts by meeting the DSC. However, the circular trajectory has distinct advantages over other scanning trajectories in practical CT imaging, such as head imaging, breast imaging, cardiac, vascular and perfusion applications. In addition to looking into the DSC, another insight into the CB artefacts existing in the original FDK algorithm is the inconsistency between conjugate rays that are 180° apart in view angle (namely conjugate ray inconsistency). The conjugate ray inconsistency is pixel dependent, varying dramatically over pixels within the image plane to be reconstructed. However, the original FDK algorithm treats all conjugate rays equally, resulting in CB artefacts that can be avoided if appropriate weighting strategies are exercised. Along with an experimental evaluation and verification, a three-dimensional (3D) weighted axial cone beam filtered backprojection (CB-FBP) algorithm is proposed in this paper for image reconstruction in volumetric CT under a circular source trajectory. Without extra trajectories supplemental to the circular trajectory, the proposed algorithm applies 3D weighting on projection data before 3D backprojection to reduce conjugate ray inconsistency by suppressing the contribution from one of the conjugate rays with a larger cone angle. Furthermore, the 3D weighting is dependent on the distance between the reconstruction plane and the central plane determined by the circular trajectory. The proposed 3D weighted axial CB-FBP algorithm

  8. Volumetric label-free imaging and 3D reconstruction of mammalian cochlea based on two-photon excitation fluorescence microscopy

    Science.gov (United States)

    Zhang, Xianzeng; Geng, Yang; Ye, Qing; Zhan, Zhenlin; Xie, Shusen

    2013-11-01

    The visualization of the delicate structure and spatial relationship of intracochlear sensory cells has relied on the laborious procedures of tissue excision, fixation, sectioning and staining for light and electron microscopy. Confocal microscopy is advantageous for its high resolution and deep penetration depth, yet disadvantageous due to the necessity of exogenous labeling. In this study, we present the volumetric imaging of rat cochlea without exogenous dyes using a near-infrared femtosecond laser as the excitation mechanism and endogenous two-photon excitation fluorescence (TPEF) as the contrast mechanism. We find that TPEF exhibits strong contrast, allowing cellular and even subcellular resolution imaging of the cochlea, differentiating cell types, visualizing delicate structures and the radial nerve fiber. Our results further demonstrate that 3D reconstruction rendered with z-stacks of optical sections enables better revealment of fine structures and spatial relationships, and easily performed morphometric analysis. The TPEF-based optical biopsy technique provides great potential for new and sensitive diagnostic tools for hearing loss or hearing disorders, especially when combined with fiber-based microendoscopy.

  9. Alpha shape theory for 3D visualization and volumetric measurement of brain tumor progression using magnetic resonance images.

    Science.gov (United States)

    Hamoud Al-Tamimi, Mohammed Sabbih; Sulong, Ghazali; Shuaib, Ibrahim Lutfi

    2015-07-01

    Resection of brain tumors is a tricky task in surgery due to its direct influence on the patients' survival rate. Determining the tumor resection extent for its complete information via-à-vis volume and dimensions in pre- and post-operative Magnetic Resonance Images (MRI) requires accurate estimation and comparison. The active contour segmentation technique is used to segment brain tumors on pre-operative MR images using self-developed software. Tumor volume is acquired from its contours via alpha shape theory. The graphical user interface is developed for rendering, visualizing and estimating the volume of a brain tumor. Internet Brain Segmentation Repository dataset (IBSR) is employed to analyze and determine the repeatability and reproducibility of tumor volume. Accuracy of the method is validated by comparing the estimated volume using the proposed method with that of gold-standard. Segmentation by active contour technique is found to be capable of detecting the brain tumor boundaries. Furthermore, the volume description and visualization enable an interactive examination of tumor tissue and its surrounding. Admirable features of our results demonstrate that alpha shape theory in comparison to other existing standard methods is superior for precise volumetric measurement of tumor.

  10. The entire dural sinus tree is compressed in patients with idiopathic intracranial hypertension: a longitudinal, volumetric magnetic resonance imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Rohr, Axel; Bindeballe, Jan; Riedel, Christian; Jansen, Olav [University Clinic of Schleswig-Holstein Campus Kiel, Department of Neuroradiology, Kiel (Germany); Baalen, Andreas van [University Clinic of Schleswig-Holstein Campus Kiel, Department of Neuropediatrics, Kiel (Germany); Bartsch, Thorsten [University Clinic of Schleswig-Holstein Campus Kiel, Department of Neurology, Kiel (Germany); Doerner, Lutz [University Clinic of Schleswig-Holstein Campus Kiel, Department of Neurosurgery, Kiel (Germany)

    2012-01-15

    The objective of this study was to explore the volumetric alterations of dural sinuses in patients with idiopathic intracranial hypertension (IIH). Standardized cranial magnetic resonance imaging (MRI) was used in 17 patients prior to and following treatment of IIH and in seven controls. Magnetic resonance venographies (MRV) were employed for (a) judgement of circumscript dural sinus stenoses and (b) computation of sinus volumes. Cross-sectional areas (CSA) of the superior sagittal sinuses (SSS) were measured on T2-weighted images. Results of the initial MRIs were compared to those on follow-up MRIs and to results of controls. Stenoses of the transverse sinuses (TS) resulting in cranial venous outflow obstruction (CVOO) were present in 15/17 (88%) patients, normalizing in 7/15 cases (47%) after treatment of IIH. CVOO was not detected in the control group. Segmentation of MRV revealed decreased dural sinus volumes in patients with IIH as compared to controls (P = 0.018). Sinus volumes increased significantly with normalization of intracranial pressure independent from disappearing of TS stenoses (P = 0.007). The CSA of the SSS were normal on the initial MRIs of patients with IIH and increased on follow-up after treatment (P < 0.001). However, volumetries displayed overlap in patients and controls. Patients with IIH not only exhibit bilateral stenoses of the TS as has been reported, but volume changes of their entire dural sinus system also occur. The potential etiopathological and diagnostic roles of these changes are discussed. (orig.)

  11. Non-invasive volumetric optoacoustic imaging of cardiac cycles in acute myocardial infarction model in real-time

    Science.gov (United States)

    Lin, Hasiao-Chun Amy; Déan-Ben, Xosé Luís.; Kimm, Melanie; Kosanke, Katja; Haas, Helena; Meier, Reinhard; Lohöfer, Fabian; Wildgruber, Moritz; Razansky, Daniel

    2017-03-01

    Extraction of murine cardiac functional parameters on a beat-by-beat basis remains challenging with the existing imaging modalities. Novel methods enabling in vivo characterization of functional parameters at a high temporal resolution are poised to advance cardiovascular research and provide a better understanding of the mechanisms underlying cardiac diseases. We present a new approach based on analyzing contrast-enhanced optoacoustic (OA) images acquired at high volumetric frame rate without using cardiac gating or other approaches for motion correction. Acute myocardial infarction was surgically induced in murine models, and the method was modified to optimize for acquisition of artifact-free optoacoustic data. Infarcted hearts could be differentiated from healthy controls based on a significantly higher pulmonary transit time (PTT: infarct 2.07 s vs. healthy 1.34 s), while no statistically significant difference was observed in the heart rate (318 bpm vs. 309 bpm). In combination with the proven ability of optoacoustics to track targeted probes within the injured myocardium, our method is capable of depicting cardiac anatomy, function, and molecular signatures on a beat-by-beat basis, both with high spatial and temporal resolution, thus providing new insights into the study of myocardial ischemia.

  12. A lossless encryption method for medical images using edge maps.

    Science.gov (United States)

    Zhou, Yicong; Panetta, Karen; Agaian, Sos

    2009-01-01

    Image encryption is an effective approach for providing security and privacy protection for medical images. This paper introduces a new lossless approach, called EdgeCrypt, to encrypt medical images using the information contained within an edge map. The algorithm can fully protect the selected objects/regions within medical images or the entire medical images. It can also encrypt other types of images such as grayscale images or color images. The algorithm can be used for privacy protection in the real-time medical applications such as wireless medical networking and mobile medical services.

  13. Quantitative imaging features: extension of the oncology medical image database

    Science.gov (United States)

    Patel, M. N.; Looney, P. T.; Young, K. C.; Halling-Brown, M. D.

    2015-03-01

    Radiological imaging is fundamental within the healthcare industry and has become routinely adopted for diagnosis, disease monitoring and treatment planning. With the advent of digital imaging modalities and the rapid growth in both diagnostic and therapeutic imaging, the ability to be able to harness this large influx of data is of paramount importance. The Oncology Medical Image Database (OMI-DB) was created to provide a centralized, fully annotated dataset for research. The database contains both processed and unprocessed images, associated data, and annotations and where applicable expert determined ground truths describing features of interest. Medical imaging provides the ability to detect and localize many changes that are important to determine whether a disease is present or a therapy is effective by depicting alterations in anatomic, physiologic, biochemical or molecular processes. Quantitative imaging features are sensitive, specific, accurate and reproducible imaging measures of these changes. Here, we describe an extension to the OMI-DB whereby a range of imaging features and descriptors are pre-calculated using a high throughput approach. The ability to calculate multiple imaging features and data from the acquired images would be valuable and facilitate further research applications investigating detection, prognosis, and classification. The resultant data store contains more than 10 million quantitative features as well as features derived from CAD predictions. Theses data can be used to build predictive models to aid image classification, treatment response assessment as well as to identify prognostic imaging biomarkers.

  14. Multi-scale volumetric cell and tissue imaging based on optical projection tomography (Conference Presentation)

    Science.gov (United States)

    Ban, Sungbea; Cho, Nam Hyun; Ryu, Yongjae; Jung, Sunwoo; Vavilin, Andrey; Min, Eunjung; Jung, Woonggyu

    2016-04-01

    Optical projection tomography is a new optical imaging method for visualizing small biological specimens in three dimension. The most important advantage of OPT is to fill the gap between MRI and confocal microscope for the specimen having the range of 1-10 mm. Thus, it has been mainly used for whole-mount small animals and developmental study since this imaging modality was developed. The ability of OPT delivering anatomical and functional information of relatively large tissue in 3D has made it a promising platform in biomedical research. Recently, the potential of OPT spans its coverage to cellular scale. Even though there are increasing demand to obtain better understanding of cellular dynamics, only few studies to visualize cellular structure, shape, size and functional morphology over tissue has been investigated in existing OPT system due to its limited field of view. In this study, we develop a novel optical imaging system for 3D cellular imaging with OPT integrated with dynamic focusing technique. Our tomographic setup has great potential to be used for identifying cell characteristic in tissue because it can provide selective contrast on dynamic focal plane allowing for fluorescence as well as absorption. While the dominant contrast of optical imaging technique is to use the fluorescence for detecting certain target only, the newly developed OPT system will offer considerable advantages over currently available method when imaging cellar molecular dynamics by permitting contrast variation. By achieving multi-contrast, it is expected for this new imaging system to play an important role in delivering better cytological information to pathologist.

  15. Radiation biology of medical imaging

    CERN Document Server

    Kelsey, Charles A; Sandoval, Daniel J; Chambers, Gregory D; Adolphi, Natalie L; Paffett, Kimberly S

    2014-01-01

    This book provides a thorough yet concise introduction to quantitative radiobiology and radiation physics, particularly the practical and medical application. Beginning with a discussion of the basic science of radiobiology, the book explains the fast processes that initiate damage in irradiated tissue and the kinetic patterns in which such damage is expressed at the cellular level. The final section is presented in a highly practical handbook style and offers application-based discussions in radiation oncology, fractionated radiotherapy, and protracted radiation among others. The text is also supplemented by a Web site.

  16. Perspectives of medical X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Freudenberger, J. E-mail: joerg.freudenberger@med.siemens.de; Hell, E.; Knuepfer, W

    2001-06-21

    While X-ray image intensifiers (XII), storage phosphor screens and film-screen systems are still the work horses of medical imaging, large flat panel solid state detectors using either scintillators and amorphous silicon photo diode arrays (FD-Si), or direct X-ray conversion in amorphous selenium are reaching maturity. The main advantage with respect to image quality and low patient dose of the XII and FD-Si systems is caused by the rise of the Detector Quantum Efficiency originating from the application of thick needle-structured phosphor X-ray absorbers. With the detectors getting closer to an optimal state, further progress in medical X-ray imaging requires an improvement of the usable source characteristics. The development of clinical monochromatic X-ray sources of high power would not only allow an improved contrast-to-dose ratio by allowing smaller average photon energies in applications but would also lead to new imaging techniques.

  17. Perspectives of medical X-ray imaging

    Science.gov (United States)

    Freudenberger, J.; Hell, E.; Knüpfer, W.

    2001-06-01

    While X-ray image intensifiers (XII), storage phosphor screens and film-screen systems are still the work horses of medical imaging, large flat panel solid state detectors using either scintillators and amorphous silicon photo diode arrays (FD-Si), or direct X-ray conversion in amorphous selenium are reaching maturity. The main advantage with respect to image quality and low patient dose of the XII and FD-Si systems is caused by the rise of the Detector Quantum Efficiency originating from the application of thick needle-structured phosphor X-ray absorbers. With the detectors getting closer to an optimal state, further progress in medical X-ray imaging requires an improvement of the usable source characteristics. The development of clinical monochromatic X-ray sources of high power would not only allow an improved contrast-to-dose ratio by allowing smaller average photon energies in applications but would also lead to new imaging techniques.

  18. Nonreference Medical Image Edge Map Measure

    Directory of Open Access Journals (Sweden)

    Karen Panetta

    2014-01-01

    Full Text Available Edge detection is a key step in medical image processing. It is widely used to extract features, perform segmentation, and further assist in diagnosis. A poor quality edge map can result in false alarms and misses in cancer detection algorithms. Therefore, it is necessary to have a reliable edge measure to assist in selecting the optimal edge map. Existing reference based edge measures require a ground truth edge map to evaluate the similarity between the generated edge map and the ground truth. However, the ground truth images are not available for medical images. Therefore, a nonreference edge measure is ideal for medical image processing applications. In this paper, a nonreference reconstruction based edge map evaluation (NREM is proposed. The theoretical basis is that a good edge map keeps the structure and details of the original image thus would yield a good reconstructed image. The NREM is based on comparing the similarity between the reconstructed image with the original image using this concept. The edge measure is used for selecting the optimal edge detection algorithm and optimal parameters for the algorithm. Experimental results show that the quantitative evaluations given by the edge measure have good correlations with human visual analysis.

  19. Megahertz rate, volumetric imaging of bubble clouds in sonothrombolysis using a sparse hemispherical receiver array

    Science.gov (United States)

    Acconcia, Christopher N.; Jones, Ryan M.; Goertz, David E.; O’Reilly, Meaghan A.; Hynynen, Kullervo

    2017-09-01

    It is well established that high intensity focused ultrasound can be used to disintegrate clots. This approach has the potential to rapidly and noninvasively resolve clot causing occlusions in cardiovascular diseases such as deep vein thrombosis (DVT). However, lack of an appropriate treatment monitoring tool is currently a limiting factor in its widespread adoption. Here we conduct cavitation imaging with a large aperture, sparse hemispherical receiver array during sonothrombolysis with multi-cycle burst exposures (0.1 or 1 ms burst lengths) at 1.51 MHz. It was found that bubble cloud generation on imaging correlated with the locations of clot degradation, as identified with high frequency (30 MHz) ultrasound following exposures. 3D images could be formed at integration times as short as 1 µs, revealing the initiation and rapid development of cavitation clouds. Equating to megahertz frame rates, this is an order of magnitude faster than any other imaging technique available for in vivo application. Collectively, these results suggest that the development of a device to perform DVT therapy procedures would benefit greatly from the integration of receivers tailored to bubble activity imaging.

  20. Parity-Time Symmetric Nonlocal Metasurfaces: All-Angle Negative Refraction and Volumetric Imaging

    Science.gov (United States)

    Monticone, Francesco; Valagiannopoulos, Constantinos A.; Alù, Andrea

    2016-10-01

    Lens design for focusing and imaging has been optimized through centuries of developments; however, conventional lenses, even in their most ideal realizations, still suffer from fundamental limitations, such as limits in resolution and the presence of optical aberrations, which are inherent to the laws of refraction. In addition, volume-to-volume imaging of three-dimensional regions of space is not possible with systems based on conventional refractive optics, which are inherently limited to plane-to-plane imaging. Although some of these limitations have been at least theoretically relaxed with the advent of metamaterials, several challenges still stand in the way of ideal imaging of three-dimensional regions of space. Here, we show that the concept of parity-time symmetry, combined with tailored nonlocal responses, enables overcoming some of these challenges, and we propose the design of a loss-immune, linear, transversely invariant, planarized metamaterial lens, with reduced aberrations and the potential to realize volume-to-volume imaging.

  1. Volumetric Ultrasound Imaging with Row-Column Addressed 2-D Arrays Using Spatial Matched Filter Beamforming

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Engholm, Mathias; Christiansen, Thomas Lehrmann;

    2015-01-01

    For 3-D ultrasound imaging with row-column addressed 2-D arrays, the two orthogonal 1-D transmit and receive arrays are both used for one-way focusing in the lateral and elevation directions separately and since they are not in the same plane, the two-way focusing is the same as one-way focusing....

  2. 21 CFR 892.2040 - Medical image hardcopy device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image hardcopy device. 892.2040 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2040 Medical image hardcopy device. (a) Identification. A medical image hardcopy device is a device that produces a visible printed record of a medical...

  3. A Trimodality Comparison of Volumetric Bone Imaging Technologies. Part I: Short-term Precision and Validity

    Science.gov (United States)

    Wong, Andy K. O.; Beattie, Karen A.; Min, Kevin K. H.; Webber, Colin E.; Gordon, Christopher L.; Papaioannou, Alexandra; Cheung, Angela M. W.; Adachi, Jonathan D.

    2016-01-01

    In vivo peripheral quantitative computed tomography (pQCT) and peripheral magnetic resonance imaging (pMRI) modalities can measure apparent bone microstructure at resolutions 200 μm or higher. However, validity and in vivo test-retest reproducibility of apparent bone microstructure have yet to be determined on 1.0 T pMRI (196 μm) and pQCT (200 μm). This study examined 67 women with a mean age of 74 ± 9 yr and body mass index of 27.65 ± 5.74 kg/m2, demonstrating validity for trabecular separation from pMRI, cortical thickness, and bone volume fraction from pQCT images compared with high-resolution pQCT (hr-pQCT), with slopes close to unity. However, because of partial volume effects, cortical and trabecular thickness of bone derived from pMRI and pQCT images matched hr-pQCT more only when values were small. Short-term reproducibility of bone outcomes was highest for bone volume fraction (BV/TV) and densitometric variables and lowest for trabecular outcomes measuring microstructure. Measurements at the tibia for pQCT images were more precise than at the radius. In part I of this 3-part series focused on trimodality comparisons of precision and validity, it is shown that pQCT images can yield valid and reproducible apparent bone structural outcomes, but because of longer scan time and potential for more motion, the pMRI protocol examined here remains limited in achieving reliable values. PMID:25129405

  4. Shape analysis in medical image analysis

    CERN Document Server

    Tavares, João

    2014-01-01

    This book contains thirteen contributions from invited experts of international recognition addressing important issues in shape analysis in medical image analysis, including techniques for image segmentation, registration, modelling and classification, and applications in biology, as well as in cardiac, brain, spine, chest, lung and clinical practice. This volume treats topics such as, anatomic and functional shape representation and matching; shape-based medical image segmentation; shape registration; statistical shape analysis; shape deformation; shape-based abnormity detection; shape tracking and longitudinal shape analysis; machine learning for shape modeling and analysis; shape-based computer-aided-diagnosis; shape-based medical navigation; benchmark and validation of shape representation, analysis and modeling algorithms. This work will be of interest to researchers, students, and manufacturers in the fields of artificial intelligence, bioengineering, biomechanics, computational mechanics, computationa...

  5. Medical Image Steganography: Study of Medical Image Quality Degradation when Embedding Data in the Frequency Domain

    Directory of Open Access Journals (Sweden)

    M.I.Khalil

    2017-02-01

    Full Text Available Steganography is the discipline of invisible communication by hiding the exchanged secret information (message in another digital information media (image, video or audio. The existence of the message is kept indiscernible in sense that no one, other than the intended recipient, suspects the existence of the message. The majority of steganography techniques are implemented either in spatial domain or in frequency domain of the digital images while the embedded information can be in the form of plain or cipher message. Medical image steganography is classified as a distinctive case of image steganography in such a way that both the image and the embedded information have special requirements such as achieving utmost clarity reading of the medical images and the embedded messages. There is a contention between the amount of hidden information and the caused detectable distortion of image. The current paper studies the degradation of the medical image when undergoes the steganography process in the frequency domain.

  6. 2-D IMAGE-BASED VOLUMETRIC MODELING FOR PARTICLE OF RANDOM SHAPE

    Institute of Scientific and Technical Information of China (English)

    Chen Ken; Larry E. Banta; Jiang Gangyi

    2006-01-01

    In this paper, an approach to predicting randomly-shaped particle volume based on its twoDimensional (2-D) digital image is explored. Conversion of gray-scale image of the particles to its binary counterpart is first performed using backlighting technique. The silhouette of particle is thus obtained, and consequently, informative features such as particle area, centroid and shape-related descriptors are collected. Several dimensionless parameters are defined, and used as regressor variables in a multiple linear regression model to predict particle volume. Regressor coefficients are found by fitting to a randomly selected sample of 501 particles ranging in size from 4.75mm to 25mm. The model testing experiment is conducted against a different aggregate sample of the similar statistical properties, the errors of the model-predicted volume of the batch is within ±2%.

  7. Automatic mitral annulus tracking in volumetric ultrasound using non-rigid image registration.

    Science.gov (United States)

    De Veene, Henri; Bertrand, Philippe B; Popovic, Natasa; Vandervoort, Pieter M; Claus, Piet; De Beule, Matthieu; Heyde, Brecht

    2015-01-01

    Analysis of mitral annular dynamics plays an important role in the diagnosis and selection of optimal valve repair strategies, but remains cumbersome and time-consuming if performed manually. In this paper we propose non-rigid image registration to automatically track the annulus in 3D ultrasound images for both normal and pathological valves, and compare the performance against manual tracing. Relevant clinical properties such as annular area, circumference and excursion could be extracted reliably by the tracking algorithm. The root-mean-square error, calculated as the difference between the manually traced landmarks (18 in total) and the automatic tracking, was 1.96 ± 0.46 mm over 10 valves (5 healthy and 5 diseased) which is within the clinically acceptable error range.

  8. APES Beamforming Applied to Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Blomberg, Ann E. A.; Holfort, Iben Kraglund; Austeng, Andreas

    2009-01-01

    Recently, adaptive beamformers have been introduced to medical ultrasound imaging. The primary focus has been on the minimum variance (MV) (or Capon) beamformer. This work investigates an alternative but closely related beamformer, the Amplitude and Phase Estimation (APES) beamformer. APES offers...... added robustness at the expense of a slightly lower resolution. The purpose of this study was to evaluate the performance of the APES beamformer on medical imaging data, since correct amplitude estimation often is just as important as spatial resolution. In our simulations we have used a 3.5 MHz, 96...... element linear transducer array. When imaging two closely spaced point targets, APES displays nearly the same resolution as the MV, and at the same time improved amplitude control. When imaging cysts in speckle, APES offers speckle statistics similar to that of the DAS, without the need for temporal...

  9. Image Processing in Intelligent Medical Robotic Systems

    Directory of Open Access Journals (Sweden)

    Shashev Dmitriy

    2016-01-01

    Full Text Available The paper deals with the use of high-performance computing systems with the parallel-operation architecture in intelligent medical systems, such as medical robotic systems, based on a computer vision system, is an automatic control system with the strict requirements, such as high reliability, accuracy and speed of performance. It shows the basic block-diagram of an automatic control system based on a computer vision system. The author considers the possibility of using a reconfigurable computing environment in such systems. The design principles of the reconfigurable computing environment allows to improve a reliability, accuracy and performance of whole system many times. The article contains the brief overview and the theory of the research, demonstrates the use of reconfigurable computing environments for the image preprocessing, namely morphological image processing operations. Present results of the successful simulation of the reconfigurable computing environment and implementation of the morphological image processing operations on the test image in the MATLAB Simulink.

  10. High definition ultrasound imaging for battlefield medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, K.S.; Morimoto, A.K.; Kozlowski, D.M.; Krumm, J.C.; Dickey, F.M. [Sandia National Labs., Albuquerque, NM (United States); Rogers, B; Walsh, N. [Texas Univ. Health Science Center, San Antonio, TX (United States)

    1996-06-23

    A team has developed an improved resolution ultrasound system for low cost diagnostics. This paper describes the development of an ultrasound based imaging system capable of generating 3D images showing surface and subsurface tissue and bone structures. We include results of a comparative study between images obtained from X-Ray Computed Tomography (CT) and ultrasound. We found that the quality of ultrasound images compares favorably with those from CT. Volumetric and surface data extracted from these images were within 7% of the range between ultrasound and CT scans. We also include images of porcine abdominal scans from two different sets of animal trials.

  11. A comparison of 1D and 1.5D arrays for imaging volumetric flaws in small bore pipework

    Science.gov (United States)

    Barber, T. S.; Wilcox, P. D.; Nixon, A. D.

    2015-03-01

    1.5D arrays can be seen as a potentially ideal compromise between 1D arrays and 2D matrix arrays in terms of focusing capability, element density, weld coverage and data processing time. This paper presents an initial study of 1D and 1.5D arrays for high frequency (15MHz) imaging of volumetric flaws in small-bore (30-60mm outer diameter) thin-walled (3-8mm) pipework. A combination of 3D modelling and experimental work is used to determine Signal to Noise Ratio (SNR) improvement with a strong relationship between SNR and the longer dimension of element size observed. Similar behavior is demonstrated experimentally rendering a 1mm diameter Flat Bottom Hole (FBH) in Copper-Nickel alloy undetectable using a larger array element. A 3-5dB SNR increase is predicted when using a 1.5D array assuming a spherical reflector and a 2dB increase was observed on experimental trials with a FBH. It is argued that this improvement is likely to be a lower bound estimate due to the specular behavior of a FBH with future trials planned on welded samples with realistic flaws.

  12. Volumetric alterations in the nucleus accumbens and caudate nucleus in bulimia nervosa: a structural magnetic resonance imaging study.

    Science.gov (United States)

    Coutinho, Joana; Ramos, Ana Filipa; Maia, Liliana; Castro, Liliana; Conceição, Eva; Geliebter, Allan; Machado, Paulo P P; Gonçalves, Óscar; Sampaio, Adriana

    2015-03-01

    Bulimia nervosa (BN) is an eating disorder characterized by recurrent episodes of binge eating and inappropriate compensatory behaviors (such as purging, fasting, or excessive exercise) to prevent weight gain. BN has been associated with deficits in inhibitory control processes. The basal ganglia specifically, the nucleus accumbens (NAc) and the caudate nucleus (CN) are part of the frontostriatal circuits involved in inhibitory control. The main goal of this study was to investigate the presence of morphological alterations in the NAc and the CN in a sample of patients diagnosed with BN. Forty-one female participants, 21 diagnosed with BN and 20 healthy matched controls (HC), underwent a structural magnetic resonance imaging (MRI) acquisition and clinical assessment. The NAc and the CN were manually segmented using the software Slicer 3D. The results reveal a significant volumetric decrease in the CN and a preserved NAc volume in BN compared to the control group. These findings suggest a contributory role of the caudate nucleus part of the dorsal striatum in the psychopathology of BN. © 2014 Wiley Periodicals, Inc.

  13. Medical image segmentation using improved FCM

    Institute of Scientific and Technical Information of China (English)

    ZHANG XiaoFeng; ZHANG CaiMing; TANG WenJing; WEI ZhenWen

    2012-01-01

    Image segmentation is one of the most important problems in medical image processing,and the existence of partial volume effect and other phenomena makes the problem much more complex. Fuzzy Cmeans,as an effective tool to deal with PVE,however,is faced with great challenges in efficiency.Aiming at this,this paper proposes one improved FCM algorithm based on the histogram of the given image,which will be denoted as HisFCM and divided into two phases.The first phase will retrieve several intervals on which to compute cluster centroids,and the second one will perform image segmentation based on improved FCM algorithm.Compared with FCM and other improved algorithms,HisFCM is of much higher efficiency with satisfying results.Experiments on medical images show that HisFCM can achieve good segmentation results in less than 0.1 second,and can satisfy real-time requirements of medical image processing.

  14. Medical image registration using sparse coding of image patches.

    Science.gov (United States)

    Afzali, Maryam; Ghaffari, Aboozar; Fatemizadeh, Emad; Soltanian-Zadeh, Hamid

    2016-06-01

    Image registration is a basic task in medical image processing applications like group analysis and atlas construction. Similarity measure is a critical ingredient of image registration. Intensity distortion of medical images is not considered in most previous similarity measures. Therefore, in the presence of bias field distortions, they do not generate an acceptable registration. In this paper, we propose a sparse based similarity measure for mono-modal images that considers non-stationary intensity and spatially-varying distortions. The main idea behind this measure is that the aligned image is constructed by an analysis dictionary trained using the image patches. For this purpose, we use "Analysis K-SVD" to train the dictionary and find the sparse coefficients. We utilize image patches to construct the analysis dictionary and then we employ the proposed sparse similarity measure to find a non-rigid transformation using free form deformation (FFD). Experimental results show that the proposed approach is able to robustly register 2D and 3D images in both simulated and real cases. The proposed method outperforms other state-of-the-art similarity measures and decreases the transformation error compared to the previous methods. Even in the presence of bias field distortion, the proposed method aligns images without any preprocessing.

  15. Resolution enhancement in medical ultrasound imaging.

    Science.gov (United States)

    Ploquin, Marie; Basarab, Adrian; Kouamé, Denis

    2015-01-01

    Image resolution enhancement is a problem of considerable interest in all medical imaging modalities. Unlike general purpose imaging or video processing, for a very long time, medical image resolution enhancement has been based on optimization of the imaging devices. Although some recent works purport to deal with image postprocessing, much remains to be done regarding medical image enhancement via postprocessing, especially in ultrasound imaging. We face a resolution improvement issue in the case of medical ultrasound imaging. We propose to investigate this problem using multidimensional autoregressive (AR) models. Noting that the estimation of the envelope of an ultrasound radio frequency (RF) signal is very similar to the estimation of classical Fourier-based power spectrum estimation, we theoretically show that a domain change and a multidimensional AR model can be used to achieve super-resolution in ultrasound imaging provided the order is estimated correctly. Here, this is done by means of a technique that simultaneously estimates the order and the parameters of a multidimensional model using relevant regression matrix factorization. Doing so, the proposed method specifically fits ultrasound imaging and provides an estimated envelope. Moreover, an expression that links the theoretical image resolution to both the image acquisition features (such as the point spread function) and a postprocessing feature (the AR model) order is derived. The overall contribution of this work is threefold. First, it allows for automatic resolution improvement. Through a simple model and without any specific manual algorithmic parameter tuning, as is used in common methods, the proposed technique simply and exclusively uses the ultrasound RF signal as input and provides the improved B-mode as output. Second, it allows for the a priori prediction of the improvement in resolution via the knowledge of the parametric model order before actual processing. Finally, to achieve the

  16. Multimodality medical image database for temporal lobe epilepsy

    Science.gov (United States)

    Siadat, Mohammad-Reza; Soltanian-Zadeh, Hamid; Fotouhi, Farshad A.; Elisevich, Kost

    2003-05-01

    This paper presents the development of a human brain multi-modality database for surgical candidacy determination in temporal lobe epilepsy. The focus of the paper is on content-based image management, navigation and retrieval. Several medical image-processing methods including our newly developed segmentation method are utilized for information extraction/correlation and indexing. The input data includes T1-, T2-Weighted and FLAIR MRI and ictal/interictal SPECT modalities with associated clinical data and EEG data analysis. The database can answer queries regarding issues such as the correlation between the attribute X of the entity Y and the outcome of a temporal lobe epilepsy surgery. The entity Y can be a brain anatomical structure such as the hippocampus. The attribute X can be either a functionality feature of the anatomical structure Y, calculated with SPECT modalities, such as signal average, or a volumetric/morphological feature of the entity Y such as volume or average curvature. The outcome of the surgery can be any surgery assessment such as non-verbal Wechsler memory quotient. A determination is made regarding surgical candidacy by analysis of both textual and image data. The current database system suggests a surgical determination for the cases with relatively small hippocampus and high signal intensity average on FLAIR images within the hippocampus. This indication matches the neurosurgeons expectations/observations. Moreover, as the database gets more populated with patient profiles and individual surgical outcomes, using data mining methods one may discover partially invisible correlations between the contents of different modalities of data and the outcome of the surgery.

  17. Medical Image Protection using steganography by crypto-image as cover Image

    Directory of Open Access Journals (Sweden)

    Vinay Pandey

    2012-09-01

    Full Text Available This paper presents securing the transmission of medical images. The presented algorithms will be applied to images. This work presents a new method that combines image cryptography, data hiding and Steganography technique for denoised and safe image transmission purpose. In This method we encrypt the original image with two shares mechanism encryption algorithm then embed the encrypted image with patient information by using lossless data embedding technique with data hiding method after that for more security. We apply steganography by encrypted image of any other medical image as cover image and embedded images as secrete image with the private key. In receiver side when the message is arrived then we apply the inverse methods in reverse order to get the original image and patient information and to remove noise we extract the image before the decryption of message. We have applied and showed the results of our method to medical images.

  18. Mapping high-fidelity volume rendering for medical imaging to CPU, GPU and many-core architectures.

    Science.gov (United States)

    Smelyanskiy, Mikhail; Holmes, David; Chhugani, Jatin; Larson, Alan; Carmean, Douglas M; Hanson, Dennis; Dubey, Pradeep; Augustine, Kurt; Kim, Daehyun; Kyker, Alan; Lee, Victor W; Nguyen, Anthony D; Seiler, Larry; Robb, Richard

    2009-01-01

    Medical volumetric imaging requires high fidelity, high performance rendering algorithms. We motivate and analyze new volumetric rendering algorithms that are suited to modern parallel processing architectures. First, we describe the three major categories of volume rendering algorithms and confirm through an imaging scientist-guided evaluation that ray-casting is the most acceptable. We describe a thread- and data-parallel implementation of ray-casting that makes it amenable to key architectural trends of three modern commodity parallel architectures: multi-core, GPU, and an upcoming many-core Intel architecture code-named Larrabee. We achieve more than an order of magnitude performance improvement on a number of large 3D medical datasets. We further describe a data compression scheme that significantly reduces data-transfer overhead. This allows our approach to scale well to large numbers of Larrabee cores.

  19. Model observers in medical imaging research.

    Science.gov (United States)

    He, Xin; Park, Subok

    2013-10-04

    Model observers play an important role in the optimization and assessment of imaging devices. In this review paper, we first discuss the basic concepts of model observers, which include the mathematical foundations and psychophysical considerations in designing both optimal observers for optimizing imaging systems and anthropomorphic observers for modeling human observers. Second, we survey a few state-of-the-art computational techniques for estimating model observers and the principles of implementing these techniques. Finally, we review a few applications of model observers in medical imaging research.

  20. Volumetric Image Guidance Using Carina vs Spine as Registration Landmarks for Conventionally Fractionated Lung Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lavoie, Caroline; Higgins, Jane; Bissonnette, Jean-Pierre [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada); Le, Lisa W. [Department of Biostatistics, Princess Margaret Hospital, Toronto, Ontario, M5G 2M9 (Canada); Sun, Alexander; Brade, Anthony; Hope, Andrew; Cho, John [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada); Bezjak, Andrea, E-mail: andrea.bezjak@rmp.uhn.on.ca [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada)

    2012-12-01

    Purpose: To compare the relative accuracy of 2 image guided radiation therapy methods using carina vs spine as landmarks and then to identify which landmark is superior relative to tumor coverage. Methods and Materials: For 98 lung patients, 2596 daily image-guidance cone-beam computed tomography scans were analyzed. Tattoos were used for initial patient alignment; then, spine and carina registrations were performed independently. A separate analysis assessed the adequacy of gross tumor volume, internal target volume, and planning target volume coverage on cone-beam computed tomography using the initial, middle, and final fractions of radiation therapy. Coverage was recorded for primary tumor (T), nodes (N), and combined target (T+N). Three scenarios were compared: tattoos alignment, spine registration, and carina registration. Results: Spine and carina registrations identified setup errors {>=}5 mm in 35% and 46% of fractions, respectively. The mean vector difference between spine and carina matching had a magnitude of 3.3 mm. Spine and carina improved combined target coverage, compared with tattoos, in 50% and 34% (spine) to 54% and 46% (carina) of the first and final fractions, respectively. Carina matching showed greater combined target coverage in 17% and 23% of fractions for the first and final fractions, respectively; with spine matching, this was only observed in 4% (first) and 6% (final) of fractions. Carina matching provided superior nodes coverage at the end of radiation compared with spine matching (P=.0006), without compromising primary tumor coverage. Conclusion: Frequent patient setup errors occur in locally advanced lung cancer patients. Spine and carina registrations improved combined target coverage throughout the treatment course, but carina matching provided superior combined target coverage.

  1. Beat-Frequency/Microsphere Medical Ultrasonic Imaging

    Science.gov (United States)

    Yost, William T.; Cantrell, John H.; Pretlow, Robert A., III

    1995-01-01

    Medical ultrasonic imaging system designed to provide quantitative data on various flows of blood in chambers, blood vessels, muscles, and tissues of heart. Sensitive enough to yield readings on flows of blood in heart even when microspheres used as ultrasonic contrast agents injected far from heart and diluted by circulation of blood elsewhere in body.

  2. Curve Matching with Applications in Medical Imaging

    DEFF Research Database (Denmark)

    Bauer, Martin; Bruveris, Martins; Harms, Philipp

    2015-01-01

    In the recent years, Riemannian shape analysis of curves and surfaces has found several applications in medical image analysis. In this paper we present a numerical discretization of second order Sobolev metrics on the space of regular curves in Euclidean space. This class of metrics has several...

  3. [Promoting "well-treatment" in medical imaging].

    Science.gov (United States)

    Renouf, Nicole; Llop, Marc

    2012-12-01

    A project to promote "well-treatment" has been initiated in the medical imaging department of a Parisian hospital. With the aim of promoting the well-being of the patient and developing shared values of empathy and respect, the members of this medico-technical team have undertaken to build a culture of "well-treatment" which respects the patient's dignity and rights.

  4. Medical Imaging with Ultrasound: Some Basic Physics.

    Science.gov (United States)

    Gosling, R.

    1989-01-01

    Discussed are medical applications of ultrasound. The physics of the wave nature of ultrasound including its propagation and production, return by the body, spatial and contrast resolution, attenuation, image formation using pulsed echo ultrasound techniques, measurement of velocity and duplex scanning are described. (YP)

  5. Gestalt descriptions embodiments and medical image interpretation

    DEFF Research Database (Denmark)

    Friis, Jan Kyrre Berg Olsen

    2017-01-01

    In this paper I will argue that medical specialists interpret and diagnose through technological mediations like X-ray and fMRI images, and by actualizing embodied skills tacitly they are determining the identity of objects in the perceptual field. The initial phase of human interpretation of vis...

  6. Lesion Contrast Enhancement in Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Stetson, Paul F.; Sommer, F.G.; Macovski, A.

    1997-01-01

    Methods for improving the contrast-to-noise ratio (CNR) of low-contrast lesions in medical ultrasound imaging are described. Differences in the frequency spectra and amplitude distributions of the lesion and its surroundings can be used to increase the CNR of the lesion relative to the background...

  7. Scale-Specific Multifractal Medical Image Analysis

    Directory of Open Access Journals (Sweden)

    Boris Braverman

    2013-01-01

    irregular complex tissue structures that do not lend themselves to straightforward analysis with traditional Euclidean geometry. In this study, we treat the nonfractal behaviour of medical images over large-scale ranges by considering their box-counting fractal dimension as a scale-dependent parameter rather than a single number. We describe this approach in the context of the more generalized Rényi entropy, in which we can also compute the information and correlation dimensions of images. In addition, we describe and validate a computational improvement to box-counting fractal analysis. This improvement is based on integral images, which allows the speedup of any box-counting or similar fractal analysis algorithm, including estimation of scale-dependent dimensions. Finally, we applied our technique to images of invasive breast cancer tissue from 157 patients to show a relationship between the fractal analysis of these images over certain scale ranges and pathologic tumour grade (a standard prognosticator for breast cancer. Our approach is general and can be applied to any medical imaging application in which the complexity of pathological image structures may have clinical value.

  8. Estimating fractal dimension of medical images

    Science.gov (United States)

    Penn, Alan I.; Loew, Murray H.

    1996-04-01

    Box counting (BC) is widely used to estimate the fractal dimension (fd) of medical images on the basis of a finite set of pixel data. The fd is then used as a feature to discriminate between healthy and unhealthy conditions. We show that BC is ineffective when used on small data sets and give examples of published studies in which researchers have obtained contradictory and flawed results by using BC to estimate the fd of data-limited medical images. We present a new method for estimating fd of data-limited medical images. In the new method, fractal interpolation functions (FIFs) are used to generate self-affine models of the underlying image; each model, upon discretization, approximates the original data points. The fd of each FIF is analytically evaluated. The mean of the fds of the FIFs is the estimate of the fd of the original data. The standard deviation of the fds of the FIFs is a confidence measure of the estimate. The goodness-of-fit of the discretized models to the original data is a measure of self-affinity of the original data. In a test case, the new method generated a stable estimate of fd of a rib edge in a standard chest x-ray; box counting failed to generate a meaningful estimate of the same image.

  9. CLASSIFYING MEDICAL IMAGES USING MORPHOLOGICAL APPEARANCE MANIFOLDS.

    Science.gov (United States)

    Varol, Erdem; Gaonkar, Bilwaj; Davatzikos, Christos

    2013-12-31

    Input features for medical image classification algorithms are extracted from raw images using a series of pre processing steps. One common preprocessing step in computational neuroanatomy and functional brain mapping is the nonlinear registration of raw images to a common template space. Typically, the registration methods used are parametric and their output varies greatly with changes in parameters. Most results reported previously perform registration using a fixed parameter setting and use the results as input to the subsequent classification step. The variation in registration results due to choice of parameters thus translates to variation of performance of the classifiers that depend on the registration step for input. Analogous issues have been investigated in the computer vision literature, where image appearance varies with pose and illumination, thereby making classification vulnerable to these confounding parameters. The proposed methodology addresses this issue by sampling image appearances as registration parameters vary, and shows that better classification accuracies can be obtained this way, compared to the conventional approach.

  10. Neural networks: Application to medical imaging

    Science.gov (United States)

    Clarke, Laurence P.

    1994-01-01

    The research mission is the development of computer assisted diagnostic (CAD) methods for improved diagnosis of medical images including digital x-ray sensors and tomographic imaging modalities. The CAD algorithms include advanced methods for adaptive nonlinear filters for image noise suppression, hybrid wavelet methods for feature segmentation and enhancement, and high convergence neural networks for feature detection and VLSI implementation of neural networks for real time analysis. Other missions include (1) implementation of CAD methods on hospital based picture archiving computer systems (PACS) and information networks for central and remote diagnosis and (2) collaboration with defense and medical industry, NASA, and federal laboratories in the area of dual use technology conversion from defense or aerospace to medicine.

  11. Imaging Three-Dimensional Myocardial Mechanics Using Navigator-gated Volumetric Spiral Cine DENSE MRI

    Science.gov (United States)

    Zhong, Xiaodong; Spottiswoode, Bruce S.; Meyer, Craig H.; Kramer, Christopher M.; Epstein, Frederick H.

    2010-01-01

    A navigator-gated 3D spiral cine displacement encoding with stimulated echoes (DENSE) pulse sequence for imaging 3D myocardial mechanics was developed. In addition, previously-described 2D post-processing algorithms including phase unwrapping, tissue tracking, and strain tensor calculation for the left ventricle (LV) were extended to 3D. These 3D methods were evaluated in 5 healthy volunteers, using 2D cine DENSE and historical 3D myocardial tagging as reference standards. With an average scan time of 20.5 ± 5.7 minutes, 3D data sets with a matrix size of 128 × 128 × 22, voxel size of 2.8 × 2.8 × 5.0 mm3, and temporal resolution of 32 ms were obtained with displacement encoding in three orthogonal directions. Mean values for end-systolic mid-ventricular mid-wall radial, circumferential, and longitudinal strain were 0.33 ± 0.10, −0.17 ± 0.02, and −0.16 ± 0.02, respectively. Transmural strain gradients were detected in the radial and circumferential directions, reflecting high spatial resolution. Good agreement by linear correlation and Bland-Altman analysis was achieved when comparing normal strains measured by 2D and 3D cine DENSE. Also, the 3D strains, twist, and torsion results obtained by 3D cine DENSE were in good agreement with historical values measured by 3D myocardial tagging. PMID:20574967

  12. Schizophrenia patients differentiation based on MR vascular perfusion and volumetric imaging

    Science.gov (United States)

    Spanier, A. B.; Joskowicz, L.; Moshel, S.; Israeli, D.

    2015-03-01

    Candecomp/Parafac Decomposition (CPD) has emerged as a framework for modeling N-way arrays (higher-order matrices). CPD is naturally well suited for the analysis of data sets comprised of observations of a function of multiple discrete indices. In this study we evaluate the prospects of using CPD for modeling MRI brain properties (i.e. brain volume and gray-level) for schizophrenia diagnosis. Taking into account that 3D imaging data consists of millions of pixels per patient, the diagnosis of a schizophrenia patient based on pixel analysis constitutes a methodological challenge (e.g. multiple comparison problem). We show that the CPD could potentially be used as a dimensionality redaction method and as a discriminator between schizophrenia patients and match control, using the gradient of pre- and post Gd-T1-weighted MRI data, which is strongly correlated with cerebral blood perfusion. Our approach was tested on 68 MRI scans: 40 first-episode schizophrenia patients and 28 matched controls. The CPD subject's scores exhibit statistically significant result (P schizophrenia with MRI, the results suggest that the CPD could potentially be used to discriminate between schizophrenia patients and matched control. In addition, the CPD model suggests for brain regions that might exhibit abnormalities in schizophrenia patients for future research.

  13. Generation of 3D ultrasound biomicroscopic images: technique validation and in vivo volumetric imaging of rat lateral gastrocnemius

    Directory of Open Access Journals (Sweden)

    Natália Santos da Fonseca Martins

    Full Text Available Introduction Ultrasound biomicroscopy (UBM is a technique for generating high-resolution images, with frequencies from 20 MHz to 100 MHz. For example, it has been used in animal research related to models of injury and diseases that mimic human conditions. With a three-dimensional ultrasound (3D image system, an organ can be viewed at various angles and the volume estimated, contributing to an accurate diagnosis. This work refers to the generation of 3D-UBM images, employing a 35 MHz ultrasound system, from multiple two-dimensional (2D images. Phantoms were used to validate the technique and to determine its reliability of volume measurements. Additionally, the technique was used to obtain 3D images of the rat gastrocnemius muscle. Methods Four different phantoms were used and ten acquisition sequences of 2D-images acquired for each one. Thereafter, 5 volume segmentations were performed for each acquisition sequence, resulting in 50 measured volumes for each phantom. The physical volumes of all phantoms were used to validate the technique based on the coefficient of variation (CV and the intraclass correlation coefficient (ICC. Images of the gastrocnemius muscle were acquired and the partial volume quantified. Results The CV and ICC confirmed the reliability of volume measurements obtained by segmentation. Moreover, cross-sectional 2D images of rat hindlimb were obtained, allowing to identify the gastrocnemius muscle and to partially quantify the muscle volume from 3D images. Conclusion The results indicated that the technique is valid to generate 3D images and quantify the volume of a muscle compatible with the dimensions of a small animal.

  14. Massive Medical Images Retrieval System Based on Hadoop

    Directory of Open Access Journals (Sweden)

    Qing-An YAO

    2014-02-01

    Full Text Available In order to improve the efficiency of massive medical images retrieval, against the defects of the single-node medical image retrieval system, a massive medical images retrieval system based on Hadoop is put forward. Brushlet transform and Local binary patterns algorithm are introduced firstly to extract characteristics of the medical example image, and store the image feature library in the HDFS. Then using the Map to match the example image features with the features in the feature library, while the Reduce to receive the calculation results of each Map task and ranking the results according to the size of the similarity. At the end, find the optimal retrieval results of the medical images according to the ranking results. The experimental results show that compared with other medical image retrieval systems, the Hadoop based medical image retrieval system can reduce the time of image storage and retrieval, and improve the image retrieval speed.

  15. Volumetric assessment of tumour response using functional MR imaging in patients with hepatocellular carcinoma treated with a combination of doxorubicin-eluting beads and sorafenib

    Energy Technology Data Exchange (ETDEWEB)

    Corona-Villalobos, Celia Pamela [Johns Hopkins University, School of Medicine, The Russell H. Morgan Department of Radiology and Radiological Sciences, Baltimore, MD (United States); Halappa, Vivek Gowdra; Bonekamp, Susanne; Kamel, Ihab R. [Johns Hopkins University, The Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Baltimore, MD (United States); Geschwind, Jean-Francois H.; Reyes, Diane [Johns Hopkins University, Department of Vascular and Interventional Radiology, School of Medicine, Baltimore, MD (United States); Cosgrove, David [Johns Hopkins University, School of Medicine, Department of Oncology, Baltimore, MD (United States); Pawlik, Timothy M. [Johns Hopkins University, School of Medicine, Department of Surgical Oncology, Baltimore, MD (United States)

    2014-09-17

    To prospectively assess treatment response using volumetric functional magnetic resonance imaging (MRI) metrics in patients with hepatocellular carcinoma (HCC) treated with the combination of doxorubicin-eluting bead-transarterial chemoembolization (DEB TACE) and sorafenib. A single center study enrolled 41 patients treated with systemic sorafenib, 400 mg twice a day, combined with DEB TACE. All patients had a pre-treatment and 3-4 week post-treatment MRI. Anatomic response criteria (RECIST, mRECIST and EASL) and volumetric functional response (ADC, enhancement) were assessed. Statistical analyses included paired Student's t-test, Kaplan-Meier curves, Cohen's Kappa, and multivariate cox proportional hazard model. Median tumour size by RECIST remained unchanged post-treatment (8.3 ± 4.1 cm vs. 8.1 ± 4.3 cm, p = 0.44). There was no significant survival difference for early response by RECIST (p = 0.93). EASL and mRECIST could not be analyzed in 12 patients. Volumetric ADC increased significantly (1.32 x 10{sup -3} mm{sup 2}/sec to 1.60 x 10{sup -3} mm{sup 2}/sec, p < 0.001), and volumetric enhancement decreased significantly in HAP (38.2 % to 17.6 %, p < 0.001) and PVP (76.6 % to 41.2 %, p < 0.005). Patients who demonstrated ≥ 65 % decrease PVP enhancement had significantly improved overall survival compared to non-responders (p < 0.005). Volumetric PVP enhancement was demonstrated to be significantly correlated with survival in the combination of DEB TACE and sorafenib for patients with HCC, enabling precise stratification of responders and non-responders. (orig.)

  16. Medical Imaging Informatics: Towards a Personalized Computational Patient.

    Science.gov (United States)

    Ayache, N

    2016-05-20

    Medical Imaging Informatics has become a fast evolving discipline at the crossing of Informatics, Computational Sciences, and Medicine that is profoundly changing medical practices, for the patients' benefit.

  17. Trabecular bone characterization on the continuum of plates and rods using in vivo MR imaging and volumetric topological analysis.

    Science.gov (United States)

    Chen, Cheng; Jin, Dakai; Liu, Yinxiao; Wehrli, Felix W; Chang, Gregory; Snyder, Peter J; Regatte, Ravinder R; Saha, Punam K

    2016-09-21

    Osteoporosis is associated with increased risk of fractures, which is clinically defined by low bone mineral density. Increasing evidence suggests that trabecular bone (TB) micro-architecture is an important determinant of bone strength and fracture risk. We present an improved volumetric topological analysis algorithm based on fuzzy skeletonization, results of its application on in vivo MR imaging, and compare its performance with digital topological analysis. The new VTA method eliminates data loss in the binarization step and yields accurate and robust measures of local plate-width for individual trabeculae, which allows classification of TB structures on the continuum between perfect plates and rods. The repeat-scan reproducibility of the method was evaluated on in vivo MRI of distal femur and distal radius, and high intra-class correlation coefficients between 0.93 and 0.97 were observed. The method's ability to detect treatment effects on TB micro-architecture was examined in a 2 years testosterone study on hypogonadal men. It was observed from experimental results that average plate-width and plate-to-rod ratio significantly improved after 6 months and the improvement was found to continue at 12 and 24 months. The bone density of plate-like trabeculae was found to increase by 6.5% (p  =  0.06), 7.2% (p  =  0.07) and 16.2% (p  =  0.003) at 6, 12, 24 months, respectively. While the density of rod-like trabeculae did not change significantly, even at 24 months. A comparative study showed that VTA has enhanced ability to detect treatment effects in TB micro-architecture as compared to conventional method of digital topological analysis for plate/rod characterization in terms of both percent change and effect-size.

  18. Automated Breast Volumetric Sonography Compared with Magnetic Resonance Imaging in Jewish BRCA 1/2 Mutation Carriers.

    Science.gov (United States)

    Halshtok Neiman, Osnat; Erlich, Zippy; Friedman, Eitan; Rundstein, Arie; Shalmon, Anat; Servadio, Yael; Sklair Levy, Miri

    2016-10-01

    Automated breast volumetric sonography (ABVS) is a new technology with various possible applications. To compare ABVS and breast magnetic resonance imaging (MRI) in the surveillance of women with BRCA1/2 gene mutation carriers. We conducted a prospective study in Jewish female BRCA1/2 mutation carriers who underwent breast MRI and ABVS. The results of both exams performed 6 months apart or less, and relevant clinical data, were reviewed. The BIRADS results were divided into three subgroups according to subsequent expected management: BIRADS 1-2 (normal study), BIRADS 3 (probably benign finding), and BIRADS 4 and 5 (suspicious findings). BIRADS 0 and 6 scores were excluded from the study. Distribution of ABVS and MRI BIRADS scores were compared using McNemar's test, and concordance was calculated using the Cohen kappa test. Overall, 68 women, 40 BRCA1 and 28 BRCA2 mutation carriers, age range 26-69 (mean 44.55 ± 12.1 years), underwent 79 paired ABVS and MRI examinations. McNemar's test calculations showed no significant difference between MRI and ABVS BIRADS score distribution. Cohen's kappa test resulted in k = 0.158, an agreement that can be described as only "slight agreement" between both modalities. Of 14 discordant cases there was one cancer, revealed by MRI and not by ABVS performed 6 months prior to MRI. ABVS showed slight agreement with MRI in BRCA1/2 mutation carriers. These preliminary results on a small group of healthy high risk patients suggest that the diagnostic abilities of ABVS are inferior to MRI. Further studies encompassing larger groups are needed.

  19. Bone bruise in acute traumatic patellar dislocation: volumetric magnetic resonance imaging analysis with follow-up mean of 12 months

    Energy Technology Data Exchange (ETDEWEB)

    Paakkala, Antti; Paakkala, Timo [Tampere University Hospital, Department of Radiology, Tampere (Finland); Sillanpaeae, Petri; Maeenpaeae, Heikki [Tampere University Hospital, Department of Orthopaedics and Traumatology, Tampere (Finland); Huhtala, Heini [University of Tampere, School of Public Health, Tampere (Finland)

    2010-07-15

    The aim of the study was to assess volumetric analysis of bone bruises in acute primary traumatic patellar dislocation by magnetic resonance imaging (MRI) and resolving resolution of bruises in follow-up MRI. MRI was performed in 23 cases. A follow-up examination was done at a mean of 12 months after dislocation. Volumes of patellar and femur bruises for every patient were evaluated separately by two musculoskeletal radiologists, and mean values of the bruises were assessed. Other MRI findings were evaluated, together with agreement by consensus. Bone bruise volumes were compared with other MR findings. In the acute study 100% of patients showed bruising of the lateral femoral condyle and 96% bruising of the patella. The bruise was located at the medial femoral condyle in 30% and at the patellar median ridge in 74% of patients. The median volume of the femoral bruise was 25,831 mm{sup 3} and of the patellar bruise 2,832 mm{sup 3}. At the follow-up study 22% of patients showed bruising of the lateral femoral condyle and 39% bruising of the patella, the median volumes of the bruises being 5,062 mm{sup 3} and 1,380 mm{sup 3}, respectively. Larger patellar bruise volume correlated with larger femur bruise volume in the acute (r=0.389, P=0.074) and the follow-up (r=1.000, P<0.01) studies. Other MRI findings did not correlate significantly with bone bruise volumes. Bone bruising is the commonest finding in cases of acute patellar dislocation, being seen even 1 year after trauma and indicating significant bone trabecular injury in the patellofemoral joint. A large bruise volume may be associated with subsequent chondral lesion progression at the patella. We concluded that the measurement of bone bruise volume in patients with acute patellar dislocation is a reproducible method but requires further studies to evaluate its clinical use. (orig.)

  20. Application of Medical Imaging Software to 3D Visualization of Astronomical Data

    CERN Document Server

    Borkin, M; Halle, M; Alan, D; Borkin, Michelle; Goodman, Alyssa; Halle, Michael; Alan, Douglas

    2006-01-01

    The AstroMed project at Harvard University's Initiative in Innovative Computing (IIC) is working on improved visualization and data sharing solutions applicable to the fields of both astronomy and medicine. The current focus is on the application of medical imaging visualization and analysis techniques to three-dimensional astronomical data. The 3D Slicer and OsiriX medical imaging tools have been used to make isosurface and volumetric models in RA-DEC-velocity space of the Perseus star forming region from the COMPLETE Survey of Star Forming Region's spectral line maps. 3D Slicer, a brain imaging and visualization computer application developed at Brigham and Women's Hospital's Surgical Planning Lab, is capable of displaying volumes (i.e. data cubes), displaying slices in any direction through the volume, generating 3D isosurface models from the volume which can be viewed and rotated in 3D space, and making 3D models of label maps (for example CLUMPFIND output). OsiriX is able to generate volumetric models fr...

  1. HEP technologies to address medical imaging challenges

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Developments in detector technologies aimed at solving challenges in present and future CERN experiments, particularly at the LHC, have triggered exceptional advances in the performance of medical imaging devices, allowing for a spectacular progress in in-vivo molecular imaging procedures, which are opening the way for tailored therapies of major diseases. This talk will briefly review the recent history of this prime example of technology transfer from HEP experiments to society, will describe the technical challenges being addressed by some ongoing projects, and will present a few new ideas for further developments and their foreseeable impact.

  2. Instrumentation of the ESRF medical imaging facility

    CERN Document Server

    Elleaume, H; Berkvens, P; Berruyer, G; Brochard, T; Dabin, Y; Domínguez, M C; Draperi, A; Fiedler, S; Goujon, G; Le Duc, G; Mattenet, M; Nemoz, C; Pérez, M; Renier, M; Schulze, C; Spanne, P; Suortti, P; Thomlinson, W; Estève, F; Bertrand, B; Le Bas, J F

    1999-01-01

    At the European Synchrotron Radiation Facility (ESRF) a beamport has been instrumented for medical research programs. Two facilities have been constructed for alternative operation. The first one is devoted to medical imaging and is focused on intravenous coronary angiography and computed tomography (CT). The second facility is dedicated to pre-clinical microbeam radiotherapy (MRT). This paper describes the instrumentation for the imaging facility. Two monochromators have been designed, both are based on bent silicon crystals in the Laue geometry. A versatile scanning device has been built for pre-alignment and scanning of the patient through the X-ray beam in radiography or CT modes. An intrinsic germanium detector is used together with large dynamic range electronics (16 bits) to acquire the data. The beamline is now at the end of its commissioning phase; intravenous coronary angiography is intended to start in 1999 with patients and the CT pre-clinical program is underway on small animals. The first in viv...

  3. Deep Learning in Medical Imaging: General Overview

    Science.gov (United States)

    Lee, June-Goo; Jun, Sanghoon; Cho, Young-Won; Lee, Hyunna; Kim, Guk Bae

    2017-01-01

    The artificial neural network (ANN)–a machine learning technique inspired by the human neuronal synapse system–was introduced in the 1950s. However, the ANN was previously limited in its ability to solve actual problems, due to the vanishing gradient and overfitting problems with training of deep architecture, lack of computing power, and primarily the absence of sufficient data to train the computer system. Interest in this concept has lately resurfaced, due to the availability of big data, enhanced computing power with the current graphics processing units, and novel algorithms to train the deep neural network. Recent studies on this technology suggest its potentially to perform better than humans in some visual and auditory recognition tasks, which may portend its applications in medicine and healthcare, especially in medical imaging, in the foreseeable future. This review article offers perspectives on the history, development, and applications of deep learning technology, particularly regarding its applications in medical imaging. PMID:28670152

  4. Deep Learning in Medical Imaging: General Overview.

    Science.gov (United States)

    Lee, June-Goo; Jun, Sanghoon; Cho, Young-Won; Lee, Hyunna; Kim, Guk Bae; Seo, Joon Beom; Kim, Namkug

    2017-01-01

    The artificial neural network (ANN)-a machine learning technique inspired by the human neuronal synapse system-was introduced in the 1950s. However, the ANN was previously limited in its ability to solve actual problems, due to the vanishing gradient and overfitting problems with training of deep architecture, lack of computing power, and primarily the absence of sufficient data to train the computer system. Interest in this concept has lately resurfaced, due to the availability of big data, enhanced computing power with the current graphics processing units, and novel algorithms to train the deep neural network. Recent studies on this technology suggest its potentially to perform better than humans in some visual and auditory recognition tasks, which may portend its applications in medicine and healthcare, especially in medical imaging, in the foreseeable future. This review article offers perspectives on the history, development, and applications of deep learning technology, particularly regarding its applications in medical imaging.

  5. Deep learning in medical imaging: General overview

    Energy Technology Data Exchange (ETDEWEB)

    Lee, June Goo; Jun, Sang Hoon; Cho, Young Won; Lee, Hyun Na; KIm, Guk Bae; Seo, Joon Beom; Kim, Nam Kug [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2017-08-01

    The artificial neural network (ANN)–a machine learning technique inspired by the human neuronal synapse system–was introduced in the 1950s. However, the ANN was previously limited in its ability to solve actual problems, due to the vanishing gradient and overfitting problems with training of deep architecture, lack of computing power, and primarily the absence of sufficient data to train the computer system. Interest in this concept has lately resurfaced, due to the availability of big data, enhanced computing power with the current graphics processing units, and novel algorithms to train the deep neural network. Recent studies on this technology suggest its potentially to perform better than humans in some visual and auditory recognition tasks, which may portend its applications in medicine and health care, especially in medical imaging, in the foreseeable future. This review article offers perspectives on the history, development, and applications of deep learning technology, particularly regarding its applications in medical imaging.

  6. Medical Image Registration and Surgery Simulation

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten

    1996-01-01

    This thesis explores the application of physical models in medical image registration and surgery simulation. The continuum models of elasticity and viscous fluids are described in detail, and this knowledge is used as a basis for most of the methods described here. Real-time deformable models......, and the use of selective matrix vector multiplication. Fluid medical image registration A new and faster algorithm for non-rigid registration using viscous fluid models is presented. This algorithm replaces the core part of the original algorithm with multi-resolution convolution using a new filter, which...... for surgery simulation Real-time deformable models, using finite element models of linear elasticity, have been developed for surgery simulation. The time consumption of the finite element method is reduced dramaticly, by the use of condensation techniques, explicit inversion of the stiffness matrix...

  7. An Improved Medical Image Fusion Algorithm for Anatomical and Functional Medical Images

    Institute of Scientific and Technical Information of China (English)

    CHEN Mei-ling; TAO Ling; QIAN Zhi-yu

    2009-01-01

    In recent years,many medical image fusion methods had been exploited to derive useful information from multimodality medical image data,but,not an appropriate fusion algorithm for anatomical and functional medical images.In this paper,the traditional method of wavelet fusion is improved and a new fusion algorithm of anatomical and functional medical images,in which high-frequency and low-frequency coefficients are studied respectively.When choosing high-frequency coefficients,the global gradient of each sub-image is calculated to realize adaptive fusion,so that the fused image can reserve the functional information;while choosing the low coefficients is based on the analysis of the neighborbood region energy,so that the fused image can reserve the anatomical image's edge and texture feature.Experimental results and the quality evaluation parameters show that the improved fusion algorithm can enhance the edge and texture feature and retain the function information and anatomical information effectively.

  8. Machine learning for medical images analysis.

    Science.gov (United States)

    Criminisi, A

    2016-10-01

    This article discusses the application of machine learning for the analysis of medical images. Specifically: (i) We show how a special type of learning models can be thought of as automatically optimized, hierarchically-structured, rule-based algorithms, and (ii) We discuss how the issue of collecting large labelled datasets applies to both conventional algorithms as well as machine learning techniques. The size of the training database is a function of model complexity rather than a characteristic of machine learning methods.

  9. CERN crystals used in medical imaging

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    This crystal is a type of material known as a scintillator. When a high energy charged particle or photon passes through a scintillator it glows. These materials are widely used in particle physics for particle detection, but their uses are being realized in further fields, such as Positron Emission Tomography (PET), an area of medical imaging that monitors the regions of energy use in the body.

  10. Survey on Digital Watermarking on Medical Images

    Directory of Open Access Journals (Sweden)

    Kavitha K J

    2013-12-01

    Full Text Available The rapid growth in information and communication technologies has advances the medical data management systems immensely. In this regard, many different techniques and also the advanced equipment like Magnetic Resonance Imaging (MRI Scanner, Computer Tomography (CT scanner, Positron Emission of Tomography (PET, mammography, ultrasound, radiography etc. are used. Nowadays there is a rise of various diseases, for which several diagnoses are insufficient; therefore to achieve a correct diagnostic, there is need to exchange the data over Internet, but the main problem is while exchanging the data over Internet, we need to maintain their authenticity, integrity and confidentiality. Therefore, we need a system for effective storage, transmission, controlled manipulation and access of medical data keeping its authenticity, integrity and confidentiality. In this article, we discuss various water marking techniques used for effective storage, transmission, controlled manipulation and access of medical data keeping its authenticity, integrity and confidentiality.

  11. Quantitative volumetric analysis of the optic radiation in the normal human brain using diffusion tensor magnetic resonance imaging-based tractography

    Institute of Scientific and Technical Information of China (English)

    Dong-Hoon Lee; Ji-Won Park; Cheol-Pyo Hong

    2014-01-01

    To attain the volumetric information of the optic radiation in normal human brains, we per-formed diffusion tensor imaging examination in 13 healthy volunteers. Simultaneously, we used a brain normalization method to reduce individual brain variation and increase the accuracy of volumetric information analysis. In addition, tractography-based group mapping method was also used to investigate the probability and distribution of the optic radiation pathways. Our results showed that the measured optic radiation ifber tract volume was a range of about 0.16%and that the fractional anisotropy value was about 0.53. Moreover, the optic radiation probability ifber pathway that was determined with diffusion tensor tractography-based group mapping was able to detect the location relatively accurately. We believe that our methods and results are help-ful in the study of optic radiation ifber tract information.

  12. SU-E-J-73: Generation of Volumetric Images with a Respiratory Motion Model Based On An External Surrogate Signal

    Energy Technology Data Exchange (ETDEWEB)

    Hurwitz, M; Williams, C; Mishra, P; Dhou, S; Lewis, J [Brigham and Women' s Hospital, Dana-Farber Cancer Center, Harvard Medical School, Boston, MA, Boston, MA (United States)

    2014-06-01

    Purpose: Respiratory motion during radiotherapy treatment can differ significantly from motion observed during imaging for treatment planning. Our goal is to use an initial 4DCT scan and the trace of an external surrogate marker to generate 3D images of patient anatomy during treatment. Methods: Deformable image registration is performed on images from an initial 4DCT scan. The deformation vectors are used to develop a patient-specific linear relationship between the motion of each voxel and the trajectory of an external surrogate signal. Correlations in motion are taken into account with principal component analysis, reducing the number of free parameters. This model is tested with digital phantoms reproducing the breathing patterns of ten measured patient tumor trajectories, using five seconds of data to develop the model and the subsequent thirty seconds to test its predictions. The model is also tested with a breathing physical anthropomorphic phantom programmed to reproduce a patient breathing pattern. Results: The error (mean absolute, 95th percentile) over 30 seconds in the predicted tumor centroid position ranged from (0.8, 1.3) mm to (2.2, 4.3) mm for the ten patient breathing patterns. The model reproduced changes in both phase and amplitude of the breathing pattern. Agreement between prediction and truth over the entire image was confirmed by assessing the global voxel intensity RMS error. In the physical phantom, the error in the tumor centroid position was less than 1 mm for all images. Conclusion: We are able to reconstruct 3D images of patient anatomy with a model correlating internal respiratory motion with motion of an external surrogate marker, reproducing the expected tumor centroid position with an average accuracy of 1.4 mm. The images generated by this model could be used to improve dose calculations for treatment planning and delivered dose estimates. This work was partially funded by a research grant from Varian Medical Systems.

  13. WebMedSA: a web-based framework for segmenting and annotating medical images using biomedical ontologies

    Science.gov (United States)

    Vega, Francisco; Pérez, Wilson; Tello, Andrés.; Saquicela, Victor; Espinoza, Mauricio; Solano-Quinde, Lizandro; Vidal, Maria-Esther; La Cruz, Alexandra

    2015-12-01

    Advances in medical imaging have fostered medical diagnosis based on digital images. Consequently, the number of studies by medical images diagnosis increases, thus, collaborative work and tele-radiology systems are required to effectively scale up to this diagnosis trend. We tackle the problem of the collaborative access of medical images, and present WebMedSA, a framework to manage large datasets of medical images. WebMedSA relies on a PACS and supports the ontological annotation, as well as segmentation and visualization of the images based on their semantic description. Ontological annotations can be performed directly on the volumetric image or at different image planes (e.g., axial, coronal, or sagittal); furthermore, annotations can be complemented after applying a segmentation technique. WebMedSA is based on three main steps: (1) RDF-ization process for extracting, anonymizing, and serializing metadata comprised in DICOM medical images into RDF/XML; (2) Integration of different biomedical ontologies (using L-MOM library), making this approach ontology independent; and (3) segmentation and visualization of annotated data which is further used to generate new annotations according to expert knowledge, and validation. Initial user evaluations suggest that WebMedSA facilitates the exchange of knowledge between radiologists, and provides the basis for collaborative work among them.

  14. Fuzzy Wavenet (FWN classifier for medical images

    Directory of Open Access Journals (Sweden)

    Entather Mahos

    2005-01-01

    Full Text Available The combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet networks are feed-forward neural networks using wavelets as activation function. Wavelets networks have been used in classification and identification problems with some success. In this work we proposed a fuzzy wavenet network (FWN, which learns by common back-propagation algorithm to classify medical images. The library of medical image has been analyzed, first. Second, Two experimental tables’ rules provide an excellent opportunity to test the ability of fuzzy wavenet network due to the high level of information variability often experienced with this type of images. We have known that the wavelet transformation is more accurate in small dimension problem. But image processing is large dimension problem then we used neural network. Results are presented on the application on the three layer fuzzy wavenet to vision system. They demonstrate a considerable improvement in performance by proposed two table’s rule for fuzzy and deterministic dilation and translation in wavelet transformation techniques.

  15. Quantification of Structure from Medical Images

    DEFF Research Database (Denmark)

    Qazi, Arish Asif

    In this thesis, we present automated methods that quantify information from medical images; information that is intended to assist and enable clinicians gain a better understanding of the underlying pathology. The first part of the thesis presents methods that analyse the articular cartilage......, segmented from MR images of the knee. The cartilage tissue is considered to be a key determinant in the onset of Osteoarthritis (OA), a degenerative joint disease, with no known cure. The primary obstacle has been the dependence on radiography as the ‘gold standard’ for detecting the manifestation...... of cartilage changes. This is an indirect assessment, since the cartilage is not visible on xrays. We propose Cartilage Homogeneity, quantified from MR images, as a marker for detection of the early biochemical alterations in the articular cartilage. We show that homogeneity provides accuracy, sensitivity...

  16. Multiphase Systems for Medical Image Region Classification

    Science.gov (United States)

    Garamendi, J. F.; Malpica, N.; Schiavi, E.

    2009-05-01

    Variational methods for region classification have shown very promising results in medical image analysis. The Chan-Vese model is one of the most popular methods, but its numerical resolution is slow and it has serious drawbacks for most multiphase applications. In this work, we extend the link, stablished by Chambolle, between the two classes binary Chan-Vese model and the Rudin-Osher-Fatemi (ROF) model to a multiphase four classes minimal partition problem. We solve the ROF image restoration model and then we threshold the image by means of a genetic algorithm. This strategy allows for a more efficient algorithm due to the fact that only one well posed elliptic problem is solved instead of solving the coupled parabolic equations arising in the original multiphase Chan-Vese model.

  17. Cardiac imaging with multi-sector data acquisition in volumetric CT: variation of effective temporal resolution and its potential clinical consequences

    Science.gov (United States)

    Tang, Xiangyang; Hsieh, Jiang; Taha, Basel H.; Vass, Melissa L.; Seamans, John L.; Okerlund, Darin R.

    2009-02-01

    With increasing longitudinal detector dimension available in diagnostic volumetric CT, step-and-shoot scan is becoming popular for cardiac imaging. In comparison to helical scan, step-and-shoot scan decouples patient table movement from cardiac gating/triggering, which facilitates the cardiac imaging via multi-sector data acquisition, as well as the administration of inter-cycle heart beat variation (arrhythmia) and radiation dose efficiency. Ideally, a multi-sector data acquisition can improve temporal resolution at a factor the same as the number of sectors (best scenario). In reality, however, the effective temporal resolution is jointly determined by gantry rotation speed and patient heart beat rate, which may significantly lower than the ideal or no improvement (worst scenario). Hence, it is clinically relevant to investigate the behavior of effective temporal resolution in cardiac imaging with multi-sector data acquisition. In this study, a 5-second cine scan of a porcine heart, which cascades 6 porcine cardiac cycles, is acquired. In addition to theoretical analysis and motion phantom study, the clinical consequences due to the effective temporal resolution variation are evaluated qualitative or quantitatively. By employing a 2-sector image reconstruction strategy, a total of 15 (the permutation of P(6, 2)) cases between the best and worst scenarios are studied, providing informative guidance for the design and optimization of CT cardiac imaging in volumetric CT with multi-sector data acquisition.

  18. Medical images of patients in voxel structures in high resolution for Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Boia, Leonardo S.; Menezes, Artur F.; Silva, Ademir X., E-mail: lboia@con.ufrj.b, E-mail: ademir@con.ufrj.b [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Nuclear; Salmon Junior, Helio A. [Clinicas Oncologicas Integradas (COI), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    This work aims to present a computational process of conversion of tomographic and MRI medical images from patients in voxel structures to an input file, which will be manipulated in Monte Carlo Simulation code for tumor's radiotherapic treatments. The problem's scenario inherent to the patient is simulated by such process, using the volume element (voxel) as a unit of computational tracing. The head's voxel structure geometry has voxels with volumetric dimensions around 1 mm{sup 3} and a population of millions, which helps - in that way, for a realistic simulation and a decrease in image's digital process techniques for adjustments and equalizations. With such additional data from the code, a more critical analysis can be developed in order to determine the volume of the tumor, and the protection, beside the patients' medical images were borrowed by Clinicas Oncologicas Integradas (COI/RJ), joined to the previous performed planning. In order to execute this computational process, SAPDI computational system is used in a digital image process for optimization of data, conversion program Scan2MCNP, which manipulates, processes, and converts the medical images into voxel structures to input files and the graphic visualizer Moritz for the verification of image's geometry placing. (author)

  19. Survey: interpolation methods in medical image processing.

    Science.gov (United States)

    Lehmann, T M; Gönner, C; Spitzer, K

    1999-11-01

    Image interpolation techniques often are required in medical imaging for image generation (e.g., discrete back projection for inverse Radon transform) and processing such as compression or resampling. Since the ideal interpolation function spatially is unlimited, several interpolation kernels of finite size have been introduced. This paper compares 1) truncated and windowed sinc; 2) nearest neighbor; 3) linear; 4) quadratic; 5) cubic B-spline; 6) cubic; g) Lagrange; and 7) Gaussian interpolation and approximation techniques with kernel sizes from 1 x 1 up to 8 x 8. The comparison is done by: 1) spatial and Fourier analyses; 2) computational complexity as well as runtime evaluations; and 3) qualitative and quantitative interpolation error determinations for particular interpolation tasks which were taken from common situations in medical image processing. For local and Fourier analyses, a standardized notation is introduced and fundamental properties of interpolators are derived. Successful methods should be direct current (DC)-constant and interpolators rather than DC-inconstant or approximators. Each method's parameters are tuned with respect to those properties. This results in three novel kernels, which are introduced in this paper and proven to be within the best choices for medical image interpolation: the 6 x 6 Blackman-Harris windowed sinc interpolator, and the C2-continuous cubic kernels with N = 6 and N = 8 supporting points. For quantitative error evaluations, a set of 50 direct digital X rays was used. They have been selected arbitrarily from clinical routine. In general, large kernel sizes were found to be superior to small interpolation masks. Except for truncated sinc interpolators, all kernels with N = 6 or larger sizes perform significantly better than N = 2 or N = 3 point methods (p cubic 6 x 6 interpolator with continuous second derivatives, as defined in (24), can be recommended for most common interpolation tasks. It appears to be the fastest

  20. A study for watermark methods appropriate to medical images.

    Science.gov (United States)

    Cho, Y; Ahn, B; Kim, J S; Kim, I Y; Kim, S I

    2001-06-01

    The network system, including the picture archiving and communication system (PACS), is essential in hospital and medical imaging fields these days. Many medical images are accessed and processed on the web, as well as in PACS. Therefore, any possible accidents caused by the illegal modification of medical images must be prevented. Digital image watermark techniques have been proposed as a method to protect against illegal copying or modification of copyrighted material. Invisible signatures made by a digital image watermarking technique can be a solution to these problems. However, medical images have some different characteristics from normal digital images in that one must not corrupt the information contained in the original medical images. In this study, we suggest modified watermark methods appropriate for medical image processing and communication system that prevent clinically important data contained in original images from being corrupted.

  1. Do medical images aid understanding and recall of medical information? An experimental study comparing the experience of viewing no image, a 2D medical image and a 3D medical image alongside a diagnosis.

    Science.gov (United States)

    Phelps, Emma Elizabeth; Wellings, Richard; Griffiths, Frances; Hutchinson, Charles; Kunar, Melina

    2017-06-01

    This study compared the experience of viewing 3D medical images, 2D medical images and no image presented alongside a diagnosis. We conducted two laboratory experiments, each with 126 healthy participants. Participants heard three diagnoses; one accompanied by 3D medical images, one accompanied by 2D medical images and one with no image. Participants completed a questionnaire after each diagnosis rating their experience. In Experiment 2, half of the participants were informed that image interpretation can be susceptible to errors. Participants preferred to view 3D images alongside a diagnosis (pmedical images may aid patient understanding, recall and trust in medical information. Medical images may be a powerful resource for patients that could be utilised by clinicians during consultations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Volumetric modulated arc therapy and breath-hold in image-guided locoregional left-sided breast irradiation

    NARCIS (Netherlands)

    Osman, S.O.; Hol, S.; Poortmans, P.M.P.; Essers, M.

    2014-01-01

    PURPOSE: To investigate the effects of using volumetric modulated arc therapy (VMAT) and/or voluntary moderate deep inspiration breath-hold (vmDIBH) in the radiation therapy (RT) of left-sided breast cancer including the regional lymph nodes. MATERIALS AND METHODS: For 13 patients, four treatment co

  3. Volumetric modulated arc therapy and breath-hold in image-guided locoregional left-sided breast irradiation

    NARCIS (Netherlands)

    Osman, S.O.; Hol, S.; Poortmans, P.M.P.; Essers, M.

    2014-01-01

    PURPOSE: To investigate the effects of using volumetric modulated arc therapy (VMAT) and/or voluntary moderate deep inspiration breath-hold (vmDIBH) in the radiation therapy (RT) of left-sided breast cancer including the regional lymph nodes. MATERIALS AND METHODS: For 13 patients, four treatment

  4. Free-breathing radial volumetric interpolated breathhold examination vs breath-hold cartesian volumetric interpolated breath-hold examination magnetic resonance imaging of the liver at 1.5T

    Institute of Scientific and Technical Information of China (English)

    Sireesha Yedururi; HyunSeon C Kang; Wei Wei; Nicolaus A Wagner-Bartak; Leonardo P Marcal; R Jason Stafford; Brandy J Willis; Janio Szklaruk

    2016-01-01

    AIM: To compare breath-hold cartesian volumetric interpolated breath-hold examination(cVIBE) and freebreathing radial VIBE(rVIBE) and determine whether rVIBE could replace cVIBE in routine liver magnetic resonance imaging(MRI).METHODS: In this prospective study, 15 consecutive patients scheduled for routine MRI of the abdomen underwent pre- and post-contrast breath-hold cVIBE imaging(19 s acquisition time) and free-breathing rVIBE imaging(111 s acquisition time) on a 1.5T Siemens scanner. Three radiologists with 2, 4, and 8 years post-fellowship experience in abdominal imaging evaluated all images. The radiologists were blinded to the sequence types, which were presented in a random order for each patient. For each sequence, the radiologists scored the cVIBE and rVIBE images for liver edge sharpness, hepatic vessel clarity, presence of artifacts, lesion conspicuity, fat saturation, and overall image quality using a five-point scale. RESULTS: Compared to rVIBE, cVIBE yielded significantly(P < 0.001) higher scores for liver edge sharpness(mean score, 3.87 vs 3.37), hepatic-vessel clarity(3.71 vs 3.18), artifacts(3.74 vs 3.06), lesion conspicuity(3.81 vs 3.2), and overall image quality(3.91 vs 3.24). cVIBE and rVIBE did not significantly differ in quality of fat saturation(4.12 vs 4.03, P = 0.17). The inter-observer variability with respect to differences between rVIBE and cVIBE scores was close to zero compared to random error and inter-patient variation. Quality of rVIBE images was rated as acceptable for all parameters. CONCLUSION: rVIBE cannot replace cVIBE in routine liver MRI. At 1.5T, free-breathing rVIBE yields acceptable, although slightly inferior image quality compared to breath-hold cVIBE.

  5. Lossless wavelet compression on medical image

    Science.gov (United States)

    Zhao, Xiuying; Wei, Jingyuan; Zhai, Linpei; Liu, Hong

    2006-09-01

    An increasing number of medical imagery is created directly in digital form. Such as Clinical image Archiving and Communication Systems (PACS), as well as telemedicine networks require the storage and transmission of this huge amount of medical image data. Efficient compression of these data is crucial. Several lossless and lossy techniques for the compression of the data have been proposed. Lossless techniques allow exact reconstruction of the original imagery, while lossy techniques aim to achieve high compression ratios by allowing some acceptable degradation in the image. Lossless compression does not degrade the image, thus facilitating accurate diagnosis, of course at the expense of higher bit rates, i.e. lower compression ratios. Various methods both for lossy (irreversible) and lossless (reversible) image compression are proposed in the literature. The recent advances in the lossy compression techniques include different methods such as vector quantization. Wavelet coding, neural networks, and fractal coding. Although these methods can achieve high compression ratios (of the order 50:1, or even more), they do not allow reconstructing exactly the original version of the input data. Lossless compression techniques permit the perfect reconstruction of the original image, but the achievable compression ratios are only of the order 2:1, up to 4:1. In our paper, we use a kind of lifting scheme to generate truly loss-less non-linear integer-to-integer wavelet transforms. At the same time, we exploit the coding algorithm producing an embedded code has the property that the bits in the bit stream are generated in order of importance, so that all the low rate codes are included at the beginning of the bit stream. Typically, the encoding process stops when the target bit rate is met. Similarly, the decoder can interrupt the decoding process at any point in the bit stream, and still reconstruct the image. Therefore, a compression scheme generating an embedded code can

  6. Segmentation of Medical Image using Clustering and Watershed Algorithms

    OpenAIRE

    M. C.J. Christ; R.M.S Parvathi

    2011-01-01

    Problem statement: Segmentation plays an important role in medical imaging. Segmentation of an image is the division or separation of the image into dissimilar regions of similar attribute. In this study we proposed a methodology that integrates clustering algorithm and marker controlled watershed segmentation algorithm for medical image segmentation. The use of the conservative watershed algorithm for medical image analysis is pervasive because of its advantages, such as always being able to...

  7. A comparative study on medical image segmentation methods

    OpenAIRE

    Praylin Selva Blessy SELVARAJ ASSLEY; Helen Sulochana CHELLAKKON

    2014-01-01

    Image segmentation plays an important role in medical images. It has been a relevant research area in computer vision and image analysis. Many segmentation algorithms have been proposed for medical images. This paper makes a review on segmentation methods for medical images. In this survey, segmentation methods are divided into five categories: region based, boundary based, model based, hybrid based and atlas based. The five different categories with their principle ideas, advantages and disa...

  8. Medical image archive node simulation and architecture

    Science.gov (United States)

    Chiang, Ted T.; Tang, Yau-Kuo

    1996-05-01

    It is a well known fact that managed care and new treatment technologies are revolutionizing the health care provider world. Community Health Information Network and Computer-based Patient Record projects are underway throughout the United States. More and more hospitals are installing digital, `filmless' radiology (and other imagery) systems. They generate a staggering amount of information around the clock. For example, a typical 500-bed hospital might accumulate more than 5 terabytes of image data in a period of 30 years for conventional x-ray images and digital images such as Magnetic Resonance Imaging and Computer Tomography images. With several hospitals contributing to the archive, the storage required will be in the hundreds of terabytes. Systems for reliable, secure, and inexpensive storage and retrieval of digital medical information do not exist today. In this paper, we present a Medical Image Archive and Distribution Service (MIADS) concept. MIADS is a system shared by individual and community hospitals, laboratories, and doctors' offices that need to store and retrieve medical images. Due to the large volume and complexity of the data, as well as the diversified user access requirement, implementation of the MIADS will be a complex procedure. One of the key challenges to implementing a MIADS is to select a cost-effective, scalable system architecture to meet the ingest/retrieval performance requirements. We have performed an in-depth system engineering study, and developed a sophisticated simulation model to address this key challenge. This paper describes the overall system architecture based on our system engineering study and simulation results. In particular, we will emphasize system scalability and upgradability issues. Furthermore, we will discuss our simulation results in detail. The simulations study the ingest/retrieval performance requirements based on different system configurations and architectures for variables such as workload, tape

  9. Adaptive textural segmentation of medical images

    Science.gov (United States)

    Kuklinski, Walter S.; Frost, Gordon S.; MacLaughlin, Thomas

    1992-06-01

    A number of important problems in medical imaging can be described as segmentation problems. Previous fractal-based image segmentation algorithms have used either the local fractal dimension alone or the local fractal dimension and the corresponding image intensity as features for subsequent pattern recognition algorithms. An image segmentation algorithm that utilized the local fractal dimension, image intensity, and the correlation coefficient of the local fractal dimension regression analysis computation, to produce a three-dimension feature space that was partitioned to identify specific pixels of dental radiographs as being either bone, teeth, or a boundary between bone and teeth also has been reported. In this work we formulated the segmentation process as a configurational optimization problem and discuss the application of simulated annealing optimization methods to the solution of this specific optimization problem. The configurational optimization method allows information about both, the degree of correspondence between a candidate segment and an assumed textural model, and morphological information about the candidate segment to be used in the segmentation process. To apply this configurational optimization technique with a fractal textural model however, requires the estimation of the fractal dimension of an irregularly shaped candidate segment. The potential utility of a discrete Gerchberg-Papoulis bandlimited extrapolation algorithm to the estimation of the fractal dimension of an irregularly shaped candidate segment is also discussed.

  10. Medical image information system 2001. Development of the medical image information system to risk management- Medical exposure management

    Energy Technology Data Exchange (ETDEWEB)

    Kuranishi, Makoto; Kumagai, Michitomo; Shintani, Mitsuo [Toyama Medical and Pharmaceutical Univ. (Japan). Hospital

    2000-12-01

    This paper discusses the methods and systems for optimizing the following supplements 10 and 17 for national health and medical care. The supplements 10 and 17 of DICOM (digital imaging and communications in medicine) system, which is now under progress for the purpose to keep compatibility within medical image information system as an international standard, are important for making the cooperation between HIS (hospital information system)/RIS (radiation information system) and modality (imaging instruments). Supplement 10 concerns the system to send the information of patients and their orders through HIS/RIS to modality and 17, the information of modality performed procedure step (MPPS) to HIS/RIS. The latter defines to document patients' exposure, a part of which has not been recognized in Japan. Thus the medical information system can be useful for risk-management of medical exposure in future. (K.H.)

  11. [Tattoos and medical imaging: issues and myths].

    Science.gov (United States)

    Kluger, Nicolas

    2014-05-01

    Tattooing is characterized by the introduction in the dermis of exogenous pigments to obtain a permanent design. Whether it is a traditional tattoo applied on the skin or a cosmetic one (permanent make-up), its prevalence has boomed for the past 20 years. The increased prevalence of tattooed patients along with medical progresses, in the field of therapeutics or diagnostic means have lead to the discovery of "new" complications and unexpected issues. Medical imaging world has also been affected by the tattoo craze. It has been approximately 20 years when the first issues related to tattooing and permanent make-up aroused. However, cautions and questions as well as anecdotal severe case reports have sometimes led to an over-exaggerated response by some physicians such as the systematic avoidance of RMN imaging for tattooed individuals. This review is intended to summarize the risks but also the "myths" associated with tattoo in the daily practice of the radiologist for RMN, CT scan, mammography, Pet-scan and ultrasound imaging.

  12. Mining knowledge in medical image databases

    Science.gov (United States)

    Perner, Petra

    2000-04-01

    Availability of digital data within picture archiving and communication systems raises a possibility of health care and research enhancement associated with manipulation, processing and handling of data by computers. That is the basis for computer-assisted radiology development. Further development of computer-assisted radiology is associated with the use of new intelligent capabilities such as multimedia support and data mining in order to discover the relevant knowledge for diagnosis. In this paper, we present our work on data mining in medical picture archiving systems. We use decision tree induction in order to learn the knowledge for computer- assisted image analysis. We are applying our method to interpretation of x-ray images for lung cancer diagnosis. We are describing our methodology on how to perform data mining on picture archiving systems and our tool for data mining. Results are given. The method has shown very good results so that we are going on to apply it to other medical image diagnosis tasks such as lymph node diagnosis in MRI and investigation of breast MRI.

  13. Cerenkov luminescence imaging of medical isotopes.

    Science.gov (United States)

    Ruggiero, Alessandro; Holland, Jason P; Lewis, Jason S; Grimm, Jan

    2010-07-01

    The development of novel multimodality imaging agents and techniques represents the current frontier of research in the field of medical imaging science. However, the combination of nuclear tomography with optical techniques has yet to be established. Here, we report the use of the inherent optical emissions from the decay of radiopharmaceuticals for Cerenkov luminescence imaging (CLI) of tumors in vivo and correlate the results with those obtained from concordant immuno-PET studies. In vitro phantom studies were used to validate the visible light emission observed from a range of radionuclides including the positron emitters (18)F, (64)Cu, (89)Zr, and (124)I; beta-emitter (131)I; and alpha-particle emitter (225)Ac for potential use in CLI. The novel radiolabeled monoclonal antibody (89)Zr-desferrioxamine B [DFO]-J591 for immuno-PET of prostate-specific membrane antigen (PSMA) expression was used to coregister and correlate the CLI signal observed with the immuno-PET images and biodistribution studies. Phantom studies confirmed that Cerenkov radiation can be observed from a range of positron-, beta-, and alpha-emitting radionuclides using standard optical imaging devices. The change in light emission intensity versus time was concordant with radionuclide decay and was also found to correlate linearly with both the activity concentration and the measured PET signal (percentage injected dose per gram). In vivo studies conducted in male severe combined immune deficient mice bearing PSMA-positive, subcutaneous LNCaP tumors demonstrated that tumor-specific uptake of (89)Zr-DFO-J591 could be visualized by both immuno-PET and CLI. Optical and immuno-PET signal intensities were found to increase over time from 24 to 96 h, and biodistribution studies were found to correlate well with both imaging modalities. These studies represent the first, to our knowledge, quantitative assessment of CLI for measuring radiotracer uptake in vivo. Many radionuclides common to both nuclear

  14. Three-dimensional full-range complex Fourier domain optical coherence tomography for in-vivo volumetric imaging of human skin

    Science.gov (United States)

    Nan, Nan; Bu, Peng; Guo, Xin; Wang, Xiangzhao

    2012-03-01

    A three dimensional full-range complex Fourier domain optical coherence tomography (complex FDOCT) system based on sinusoidal phase-modulating method is proposed. With the system, the range of imaging depth is doubled and the sensitivity degradation with the lateral scan distance is avoided. Fourier analysis of B-scan data along lateral scan distance is used for reconstructing the complex spectral interferograms. The B-scan based Fourier method improves the system tolerance of sample movement and makes data processing less time consuming. In vivo volumetric imaging of human skin with the proposed full-range FDOCT system is demonstrated. The mirror image rejection ratio is about 30 dB. The stratum corneum, the epidermis and the upper dermis of skin can be clearly identified in the reconstructed three dimensional FDOCT images.

  15. Surface imaging, laser positioning or volumetric imaging for breast cancer with nodal involvement treated by helical TomoTherapy.

    Science.gov (United States)

    Crop, Frederik; Pasquier, David; Baczkiewic, Amandine; Doré, Julie; Bequet, Lena; Steux, Emeline; Gadroy, Anne; Bouillon, Jacqueline; Florence, Clement; Muszynski, Laurence; Lacour, Mathilde; Lartigau, Eric

    2016-09-08

    A surface imaging system, Catalyst (C-Rad), was compared with laser-based positioning and daily mega voltage computed tomography (MVCT) setup for breast patients with nodal involvement treated by helical TomoTherapy. Catalyst-based positioning performed better than laser-based positioning. The respective modalities resulted in a standard deviation (SD), 68% confidence interval (CI) of positioning of left-right, craniocaudal, anterior-posterior, roll: 2.4 mm, 2.7 mm, 2.4 mm, 0.9° for Catalyst positioning, and 6.1 mm, 3.8 mm, 4.9 mm, 1.1° for laser-based positioning, respectively. MVCT-based precision is a combination of the interoperator variability for MVCT fusion and the patient movement during the time it takes for MVCT and fusion. The MVCT fusion interoperator variability for breast patients was evaluated at one SD left-right, craniocaudal, ant-post, roll as: 1.4 mm, 1.8 mm, 1.3 mm, 1.0°. There was no statistically significant difference between the automatic MVCT registration result and the manual adjustment; the automatic fusion results were within the 95% CI of the mean result of 10 users, except for one specific case where the patient was positioned with large yaw. We found that users add variability to the roll correction as the automatic registration was more consistent. The patient position uncertainty confidence interval was evaluated as 1.9 mm, 2.2 mm, 1.6 mm, 0.9° after 4 min, and 2.3 mm, 2.8 mm, 2.2 mm, 1° after 10 min. The combination of this patient movement with MVCT fusion interoperator variability results in total standard deviations of patient posi-tion when treatment starts 4 or 10 min after initial positioning of, respectively: 2.3 mm, 2.8 mm, 2.0 mm, 1.3° and 2.7 mm, 3.3 mm, 2.6 mm, 1.4°. Surface based positioning arrives at the same precision when taking into account the time required for MVCT imaging and fusion. These results can be used on a patient-per-patient basis to decide which positioning system performs the best after the

  16. Tumoral tracing and reconstruction of doses with images of MV acquired during treatment arco therapy volumetric; Seguimiento tumoral y reconstruccion de dosis con imagenes de MV adquiridas durante tratamientos de arcoterapia volumetrica

    Energy Technology Data Exchange (ETDEWEB)

    Azcona Armendariz, J. D.; Li, R.; Xing, L.

    2015-07-01

    Develop a strategy of tracking MV tumor on images acquired with flat panel and apply it to the characterization of the movement and dose reconstruction The research was conducted using a linear accelerator Varian True Beam, equipped with imaging system by Megavoltage. used images of patients with prostate cancer treated with volumetric arcotheraphy. (Author)

  17. Fast fluid registration of medical images

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten; Gramkow, Claus

    1996-01-01

    This paper offers a new fast algorithm for non-rigid viscous fluid registration of medical images that is at least an order of magnitude faster than the previous method by (Christensen et al., 1994). The core algorithm in the fluid registration method is based on a linear elastic deformation...... of the velocity field of the fluid. Using the linearity of this deformation we derive a convolution filter which we use in a scale-space framework. We also demonstrate that the `demon'-based registration method of (Thirion, 1996) can be seen as an approximation to the fluid registration method and point...

  18. Osiris: a medical image-manipulation system.

    Science.gov (United States)

    Ligier, Y; Ratib, O; Logean, M; Girard, C

    1994-01-01

    We designed a general-purpose computer program, Osiris, for the display, manipulation, and analysis of digital medical images. The program offers an intuitive, window-based interface with direct access to generic tools. Characterized by user-friendliness, portability, and extensibility, Osiris is compatible with both Unix-based and Macintosh-based platforms. It is readily modified and can be used to develop new tools. It is able to monitor the entries made during a work session and thus provide data on its use. Osiris and its source code are being distributed, free of charge, to universities and research groups around the world.

  19. Viewpoints on Medical Image Processing: From Science to Application

    Science.gov (United States)

    Deserno (né Lehmann), Thomas M.; Handels, Heinz; Maier-Hein (né Fritzsche), Klaus H.; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas

    2013-01-01

    Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment. PMID:24078804

  20. Medical imaging projects meet at CERN

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    ENTERVISION, the Research Training Network in 3D Digital Imaging for Cancer Radiation Therapy, successfully passed its mid-term review held at CERN on 11 January. This multidisciplinary project aims at qualifying experts in medical imaging techniques for improved hadron therapy.   ENTERVISION provides training in physics, medicine, electronics, informatics, radiobiology and engineering, as well as a wide range of soft skills, to 16 researchers of different backgrounds and nationalities. The network is funded by the European Commission within the Marie Curie Initial Training Network, and relies on the EU-funded research project ENVISION to provide a training platform for the Marie Curie researchers. The two projects hold their annual meetings jointly, allowing the young researchers to meet senior scientists and to have a full picture of the latest developments in the field beyond their individual research project. ENVISION and ENTERVISION are both co-ordinated by CERN, and the Laboratory hosts t...

  1. A comparative study on medical image segmentation methods

    Directory of Open Access Journals (Sweden)

    Praylin Selva Blessy SELVARAJ ASSLEY

    2014-03-01

    Full Text Available Image segmentation plays an important role in medical images. It has been a relevant research area in computer vision and image analysis. Many segmentation algorithms have been proposed for medical images. This paper makes a review on segmentation methods for medical images. In this survey, segmentation methods are divided into five categories: region based, boundary based, model based, hybrid based and atlas based. The five different categories with their principle ideas, advantages and disadvantages in segmenting different medical images are discussed.

  2. MMSPix - A multimedia service (MMS) medical images weblog.

    Science.gov (United States)

    Fontelo, Paul; Liu, Fang; Muin, Michael; Ducut, Erick; Ackerman, Michael; Paalan-Vasquez, Franciene

    2007-01-01

    Smartphones with cameras have added a new dimension to augmenting medical image collections for education and teleconsultation. It allows healthcare personnel to instantly capture and send images through the multimedia messaging service (MMS) protocol. We developed a searchable archive, a mobile images Weblog of camera phone images for medical education. Registered users can view and comment on uploaded images. The archive is compartmentalized to allow sharing images with all viewers and by clinical specialty groups.

  3. SU-E-I-10: Investigation On Detectability of a Small Target for Different Slice Direction of a Volumetric Cone Beam CT Image

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C; Han, M; Baek, J [Yonsei University, Incheon (Korea, Republic of)

    2015-06-15

    Purpose: To investigate the detectability of a small target for different slice direction of a volumetric cone beam CT image and its impact on dose reduction. Methods: Analytic projection data of a sphere object (1 mm diameter, 0.2/cm attenuation coefficient) were generated and reconstructed by FDK algorithm. In this work, we compared the detectability of the small target from four different backprojection Methods: hanning weighted ramp filter with linear interpolation (RECON 1), hanning weighted ramp filter with Fourier interpolation (RECON2), ramp filter with linear interpolation (RECON 3), and ramp filter with Fourier interpolation (RECON4), respectively. For noise simulation, 200 photons per measurement were used, and the noise only data were reconstructed using FDK algorithm. For each reconstructed volume, axial and coronal slice were extracted and detection-SNR was calculated using channelized Hotelling observer (CHO) with dense difference-of-Gaussian (D-DOG) channels. Results: Detection-SNR of coronal images varies for different backprojection methods, while axial images have a similar detection-SNR. Detection-SNR{sup 2} ratios of coronal and axial images in RECON1 and RECON2 are 1.33 and 1.15, implying that the coronal image has a better detectability than axial image. In other words, using coronal slices for the small target detection can reduce the patient dose about 33% and 15% compared to using axial slices in RECON 1 and RECON 2. Conclusion: In this work, we investigated slice direction dependent detectability of a volumetric cone beam CT image. RECON 1 and RECON 2 produced the highest detection-SNR, with better detectability in coronal slices. These results indicate that it is more beneficial to use coronal slice to improve detectability of a small target in a volumetric cone beam CT image. This research was supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under the IT Consilience Creative Program (NIPA-2014-H0201

  4. Medical Image Retrieval Based on Multi-Layer Resampling Template

    Institute of Scientific and Technical Information of China (English)

    WANG Xin-rui; YANG Yun-feng

    2014-01-01

    Medical image application in clinical diagnosis and treatment is becoming more and more widely, How to use a large number of images in the image management system and it is a very important issue how to assist doctors to analyze and diagnose. This paper studies the medical image retrieval based on multi-layer resampling template under the thought of the wavelet decomposition, the image retrieval method consists of two retrieval process which is coarse and fine retrieval. Coarse retrieval process is the medical image retrieval process based on the image contour features. Fine retrieval process is the medical image retrieval process based on multi-layer resampling template, a multi-layer sampling operator is employed to extract image resampling images each layer, then these resampling images are retrieved step by step to finish the process from coarse to fine retrieval.

  5. A novel 3D shape descriptor for automatic retrieval of anatomical structures from medical images

    Science.gov (United States)

    Nunes, Fátima L. S.; Bergamasco, Leila C. C.; Delmondes, Pedro H.; Valverde, Miguel A. G.; Jackowski, Marcel P.

    2017-03-01

    Content-based image retrieval (CBIR) aims at retrieving from a database objects that are similar to an object provided by a query, by taking into consideration a set of extracted features. While CBIR has been widely applied in the two-dimensional image domain, the retrieval of3D objects from medical image datasets using CBIR remains to be explored. In this context, the development of descriptors that can capture information specific to organs or structures is desirable. In this work, we focus on the retrieval of two anatomical structures commonly imaged by Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) techniques, the left ventricle of the heart and blood vessels. Towards this aim, we developed the Area-Distance Local Descriptor (ADLD), a novel 3D local shape descriptor that employs mesh geometry information, namely facet area and distance from centroid to surface, to identify shape changes. Because ADLD only considers surface meshes extracted from volumetric medical images, it substantially diminishes the amount of data to be analyzed. A 90% precision rate was obtained when retrieving both convex (left ventricle) and non-convex structures (blood vessels), allowing for detection of abnormalities associated with changes in shape. Thus, ADLD has the potential to aid in the diagnosis of a wide range of vascular and cardiac diseases.

  6. Machine Learning Interface for Medical Image Analysis.

    Science.gov (United States)

    Zhang, Yi C; Kagen, Alexander C

    2016-10-11

    TensorFlow is a second-generation open-source machine learning software library with a built-in framework for implementing neural networks in wide variety of perceptual tasks. Although TensorFlow usage is well established with computer vision datasets, the TensorFlow interface with DICOM formats for medical imaging remains to be established. Our goal is to extend the TensorFlow API to accept raw DICOM images as input; 1513 DaTscan DICOM images were obtained from the Parkinson's Progression Markers Initiative (PPMI) database. DICOM pixel intensities were extracted and shaped into tensors, or n-dimensional arrays, to populate the training, validation, and test input datasets for machine learning. A simple neural network was constructed in TensorFlow to classify images into normal or Parkinson's disease groups. Training was executed over 1000 iterations for each cross-validation set. The gradient descent optimization and Adagrad optimization algorithms were used to minimize cross-entropy between the predicted and ground-truth labels. Cross-validation was performed ten times to produce a mean accuracy of 0.938 ± 0.047 (95 % CI 0.908-0.967). The mean sensitivity was 0.974 ± 0.043 (95 % CI 0.947-1.00) and mean specificity was 0.822 ± 0.207 (95 % CI 0.694-0.950). We extended the TensorFlow API to enable DICOM compatibility in the context of DaTscan image analysis. We implemented a neural network classifier that produces diagnostic accuracies on par with excellent results from previous machine learning models. These results indicate the potential role of TensorFlow as a useful adjunct diagnostic tool in the clinical setting.

  7. [Consistent presentation of medical images based on CPI integration profile].

    Science.gov (United States)

    Jiang, Tao; An, Ji-ye; Chen, Zhong-yong; Lu, Xu-dong; Duan, Hui-long

    2007-11-01

    Because of different display parameters and other factors, digital medical images present different display states in different section offices of a hospital. Based on CPI integration profile of IHE, this paper implements the consistent presentation of medical images, and it is helpful for doctors to carry out medical treatments of teamwork.

  8. Crystal diffraction lens for medical imaging

    Science.gov (United States)

    Smither, Robert K.; Roa, Dante E.

    2000-04-01

    A crystal diffraction lens for focusing energetic gamma rays has been developed at Argonne National Laboratory for use in medical imaging of radioactivity in the human body. A common method for locating possible cancerous growths in the body is to inject radioactivity into the blood stream of the patient and then look for any concentration of radioactivity that could be associated with the fast growing cancer cells. Often there are borderline indications of possible cancers that could be due to statistical functions in the measured counting rates. In order to determine if these indications are false or real, one must resort to surgical means and take tissue samples in the suspect area. We are developing a system of crystal diffraction lenses that will be incorporated into a 3- D imaging system with better sensitivity (factors of 10 to 20) and better spatial resolution (a few mm in both vertical and horizontal directions) than most systems presently in use. The use of this new imaging system will allow one to eliminate 90 percent of the false indications and both locate and determine the size of the cancer with mm precision. The lens consists of 900 single crystals of copper, 4 mm X 4 mm on a side and 2 - 4 mm thick, mounted in 13 concentric rings.

  9. A New Medical Image Enhancement Based on Human Visual Characteristics

    Institute of Scientific and Technical Information of China (English)

    DONG Ai-bin; HE Jun

    2013-01-01

    Study of image enhancement shows that the quality of image heavily relies on human visual system. In this paper, we apply this fact effectively to design a new image enhancement method for medical images that improves the detail regions. First, the eye region of interest (ROI) is segmented; then the Un-sharp Masking (USM) is used to enhance the detail regions. Experiments show that the proposed method can effectively improve the accuracy of medical image enhancement and has a significant effect.

  10. Rough sets and near sets in medical imaging: a review.

    Science.gov (United States)

    Hassanien, Aboul Ella; Abraham, Ajith; Peters, James F; Schaefer, Gerald; Henry, Christopher

    2009-11-01

    This paper presents a review of the current literature on rough-set- and near-set-based approaches to solving various problems in medical imaging such as medical image segmentation, object extraction, and image classification. Rough set frameworks hybridized with other computational intelligence technologies that include neural networks, particle swarm optimization, support vector machines, and fuzzy sets are also presented. In addition, a brief introduction to near sets and near images with an application to MRI images is given. Near sets offer a generalization of traditional rough set theory and a promising approach to solving the medical image correspondence problem as well as an approach to classifying perceptual objects by means of features in solving medical imaging problems. Other generalizations of rough sets such as neighborhood systems, shadowed sets, and tolerance spaces are also briefly considered in solving a variety of medical imaging problems. Challenges to be addressed and future directions of research are identified and an extensive bibliography is also included.

  11. An online interactive simulation system for medical imaging education.

    Science.gov (United States)

    Dikshit, Aditya; Wu, Dawei; Wu, Chunyan; Zhao, Weizhao

    2005-09-01

    This report presents a recently developed web-based medical imaging simulation system for teaching students or other trainees who plan to work in the medical imaging field. The increased importance of computer and information technology widely applied to different imaging techniques in clinics and medical research necessitates a comprehensive medical imaging education program. A complete tutorial of simulations introducing popular imaging modalities, such as X-ray, MRI, CT, ultrasound and PET, forms an essential component of such an education. Internet technologies provide a vehicle to carry medical imaging education online. There exist a number of internet-based medical imaging hyper-books or online documentations. However, there are few providing interactive computational simulations. We focus on delivering knowledge of the physical principles and engineering implementation of medical imaging techniques through an interactive website environment. The online medical imaging simulation system presented in this report outlines basic principles underlying different imaging techniques and image processing algorithms and offers trainees an interactive virtual laboratory. For education purposes, this system aims to provide general understanding of each imaging modality with comprehensive explanations, ample illustrations and copious references as its thrust, rather than complex physics or detailed math. This report specifically describes the development of the tutorial for commonly used medical imaging modalities. An internet-accessible interface is used to simulate various imaging algorithms with user-adjustable parameters. The tutorial is under the MATLAB Web Server environment. Macromedia Director MX is used to develop interactive animations integrating theory with graphic-oriented simulations. HTML and JavaScript are used to enable a user to explore these modules online in a web browser. Numerous multiple choice questions, links and references for advanced study are

  12. Algorithms in radiology and medical imaging.

    Science.gov (United States)

    Athanasoulis, C A; Lee, A K

    1987-08-01

    As a tool in clinical decision making, algorithms deserve careful consideration. The potential use or abuse of algorithms in rationing health care renders such consideration essential. In radiology and medical imaging, algorithms have been applied as teaching tools in the conference room setting. These teaching decision trees, however, may not be applicable in the clinical situation. If an algorithmic approach to clinical radiology is pursued, several issues should be considered. Specifically, the application, design, designer, economics, and universality of the algorithms must be addressed. As an alternative to the wide dissemination of clinical algorithms, the authors propose the development of consensus opinions among specialists and the promulgation of the principle of radiologist-consultant-decision maker. A decision team is preferable to a decision tree.

  13. MO-DE-210-06: Development of a Supercompounded 3D Volumetric Ultrasound Image Guidance System for Prone Accelerated Partial Breast Irradiation (APBI)

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, T; Hrycushko, B; Zhao, B; Jiang, S; Gu, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2015-06-15

    Purpose: For early-stage breast cancer, accelerated partial breast irradiation (APBI) is a cost-effective breast-conserving treatment. Irradiation in a prone position can mitigate respiratory induced breast movement and achieve maximal sparing of heart and lung tissues. However, accurate dose delivery is challenging due to breast deformation and lumpectomy cavity shrinkage. We propose a 3D volumetric ultrasound (US) image guidance system for accurate prone APBI Methods: The designed system, set beneath the prone breast board, consists of a water container, an US scanner, and a two-layer breast immobilization cup. The outer layer of the breast cup forms the inner wall of water container while the inner layer is attached to patient breast directly to immobilization. The US transducer scans is attached to the outer-layer of breast cup at the dent of water container. Rotational US scans in a transverse plane are achieved by simultaneously rotating water container and transducer, and multiple transverse scanning forms a 3D scan. A supercompounding-technique-based volumetric US reconstruction algorithm is developed for 3D image reconstruction. The performance of the designed system is evaluated with two custom-made gelatin phantoms containing several cylindrical inserts filled in with water (11% reflection coefficient between materials). One phantom is designed for positioning evaluation while the other is for scaling assessment. Results: In the positioning evaluation phantom, the central distances between the inserts are 15, 20, 30 and 40 mm. The distances on reconstructed images differ by −0.19, −0.65, −0.11 and −1.67 mm, respectively. In the scaling evaluation phantom, inserts are 12.7, 19.05, 25.40 and 31.75 mm in diameter. Measured inserts’ sizes on images differed by 0.23, 0.19, −0.1 and 0.22 mm, respectively. Conclusion: The phantom evaluation results show that the developed 3D volumetric US system can accurately localize target position and determine

  14. Application of stereo-imaging technology to medical field.

    Science.gov (United States)

    Nam, Kyoung Won; Park, Jeongyun; Kim, In Young; Kim, Kwang Gi

    2012-09-01

    There has been continuous development in the area of stereoscopic medical imaging devices, and many stereoscopic imaging devices have been realized and applied in the medical field. In this article, we review past and current trends pertaining to the application stereo-imaging technologies in the medical field. We describe the basic principles of stereo vision and visual issues related to it, including visual discomfort, binocular disparities, vergence-accommodation mismatch, and visual fatigue. We also present a brief history of medical applications of stereo-imaging techniques, examples of recently developed stereoscopic medical devices, and patent application trends as they pertain to stereo-imaging medical devices. Three-dimensional (3D) stereo-imaging technology can provide more realistic depth perception to the viewer than conventional two-dimensional imaging technology. Therefore, it allows for a more accurate understanding and analysis of the morphology of an object. Based on these advantages, the significance of stereoscopic imaging in the medical field increases in accordance with the increase in the number of laparoscopic surgeries, and stereo-imaging technology plays a key role in the diagnoses of the detailed morphologies of small biological specimens. The application of 3D stereo-imaging technology to the medical field will help improve surgical accuracy, reduce operation times, and enhance patient safety. Therefore, it is important to develop more enhanced stereoscopic medical devices.

  15. Medical Image Analysis by Cognitive Information Systems - a Review.

    Science.gov (United States)

    Ogiela, Lidia; Takizawa, Makoto

    2016-10-01

    This publication presents a review of medical image analysis systems. The paradigms of cognitive information systems will be presented by examples of medical image analysis systems. The semantic processes present as it is applied to different types of medical images. Cognitive information systems were defined on the basis of methods for the semantic analysis and interpretation of information - medical images - applied to cognitive meaning of medical images contained in analyzed data sets. Semantic analysis was proposed to analyzed the meaning of data. Meaning is included in information, for example in medical images. Medical image analysis will be presented and discussed as they are applied to various types of medical images, presented selected human organs, with different pathologies. Those images were analyzed using different classes of cognitive information systems. Cognitive information systems dedicated to medical image analysis was also defined for the decision supporting tasks. This process is very important for example in diagnostic and therapy processes, in the selection of semantic aspects/features, from analyzed data sets. Those features allow to create a new way of analysis.

  16. Comparison of Two Distance Based Alignment Method in Medical Imaging

    Science.gov (United States)

    2001-10-25

    very helpful to register large datasets of contours or surfaces, commonly encountered in medical imaging . They do not require special ordering or...COMPARISON OF TWO DISTANCE BASED ALIGNMENT METHOD IN MEDICAL IMAGING G. Bulan, C. Ozturk Institute of Biomedical Engineering, Bogazici University...Two Distance Based Alignment Method in Medical Imaging Contract Number Grant Number Program Element Number Author(s) Project Number Task Number

  17. The Mutual Beneficial Effect between Medical Imaging and Nanomedicine

    Directory of Open Access Journals (Sweden)

    Huiting Qiao

    2013-01-01

    Full Text Available The reports on medical imaging and nanomedicine are getting more and more prevalent. Many nanoparticles entering into the body act as contrast agents, or probes in medical imaging, which are parts of nanomedicines. The application extent and the quality of imaging have been improved by nanotechnique. On one hand, nanomedicines advance the sensitivity and specificity of molecular imaging. On the other hand, the biodistribution of nanomedicine can also be studied in vivo by medical imaging, which is necessary in the toxicological research. The toxicity of nanomedicine is a concern which may slow down the application of nanomedical. The quantitative description of the kinetic process is significant. Based on metabolic study on radioactivity tracer, a scheme of pharmacokinetic research of nanomedicine is proposed. In this review, we will discuss the potential advantage of medical imaging in toxicology of nanomedicine, as well as the advancement of medical imaging prompted by nanomedicine.

  18. A longitudinal observational study of brain atrophy rate reflecting four decades of multiple sclerosis: a comparison of serial 1D, 2D, and volumetric measurements from MRI images

    Energy Technology Data Exchange (ETDEWEB)

    Martola, Juha; Zhang, Yi; Aspelin, Peter; Kristoffersen Wiberg, Maria [Karolinska Institutet, Division of Radiology, Department of Clinical Science, Intervention, and Technology, Stockholm (Sweden); Bergstroem, Jakob [Karolinska Institutet, The Medical Statistics Unit, Department of Learning, Informatics, Management and Ethics (LIME), Stockholm (Sweden); Fredrikson, Sten; Stawiarz, Leszek; Hillert, Jan [Karolinska Institutet, Division of Neurology, Department of Clinical Neuroscience, Stockholm (Sweden); Flodmark, Olof; Lilja, Anders [Karolinska University Hospital, Department of Neuroradiology, Department of Clinical Neuroscience, Stockholm (Sweden); Ekbom, Anders [Karolinska Institutet, Clinical Epidemiology Unit, Stockholm (Sweden)

    2010-02-15

    Multiple sclerosis (MS) has a variable progression with an early onset of atrophy. Individual longitudinal radiological evaluations (over decades) are difficult to perform due to the limited availability of magnetic resonance imaging (MRI) in the past, patients lost in follow-up, and the continuous updating of scanners. We studied a cohort with widespread disease duration at baseline. The observed individual atrophy rates over time of 10 years represented four decades of disease span. Thirty-seven MS patients (age range 24-65 years with disease duration 1-33 years) were consecutively selected and evaluated with MRI at baseline 1995 and in 1996. They were followed up for a decade (mean of 9.25 years, range 7.3-10 years) up to 2003-2005. Brain parenchymal volume and volumes of the supratentorial ventricles were analyzed with semi-automated volumetric measurements at three time points (1995, 1996, and 2003-2005). Volumetric differences were found over shorter periods of time (1-7 months); however, differences vanished by the end of follow-up. A uniform longitudinal decrease in brain volume and increase in ventricle volumes were found. Frontal horn width (1D) correlated strongest to 3D measures. No statistical differences of atrophy rates between MS courses were found. Supratentorial ventricular volumes were associated with disability and this association persisted during follow-up. Despite variable clinical courses, the degenerative effects of MS progression expressed in brain atrophy seem to uniformly progress over longer periods of time. These volumetric changes can be detected using 1D and 2D measurements performed on a routine PACS workstation. (orig.)

  19. A Volume Rendering Algorithm for Sequential 2D Medical Images%序列二维医学图象的体绘制法

    Institute of Scientific and Technical Information of China (English)

    吕忆松; 陈亚珠

    2002-01-01

    Volume rendering of 3D data sets composed of sequential 2D medical images has become an important branch in image processing and computer graphics. To help physicians fully understand deep-seated human organs and focuses (e. g. a tumnout) as 3D structures, in this paper, we present a modified volume rendering algorithm to render volumetric data. Using this method, the projection images of structures of interest from different viewing directions can be obtained satisfactorily. By rotating the light source and the observer eyepoint, this method avoids rotates the whole volumetric data in main memory and thus reduces computational complexity and rendering time. Experiments on CT images suggest that the proposed method is useful and efficient for rendering 3D data sets.

  20. Developments in medical image processing and computational vision

    CERN Document Server

    Jorge, Renato

    2015-01-01

    This book presents novel and advanced topics in Medical Image Processing and Computational Vision in order to solidify knowledge in the related fields and define their key stakeholders. It contains extended versions of selected papers presented in VipIMAGE 2013 – IV International ECCOMAS Thematic Conference on Computational Vision and Medical Image, which took place in Funchal, Madeira, Portugal, 14-16 October 2013.  The twenty-two chapters were written by invited experts of international recognition and address important issues in medical image processing and computational vision, including: 3D vision, 3D visualization, colour quantisation, continuum mechanics, data fusion, data mining, face recognition, GPU parallelisation, image acquisition and reconstruction, image and video analysis, image clustering, image registration, image restoring, image segmentation, machine learning, modelling and simulation, object detection, object recognition, object tracking, optical flow, pattern recognition, pose estimat...

  1. Topics in medical image processing and computational vision

    CERN Document Server

    Jorge, Renato

    2013-01-01

      The sixteen chapters included in this book were written by invited experts of international recognition and address important issues in Medical Image Processing and Computational Vision, including: Object Recognition, Object Detection, Object Tracking, Pose Estimation, Facial Expression Recognition, Image Retrieval, Data Mining, Automatic Video Understanding and Management, Edges Detection, Image Segmentation, Modelling and Simulation, Medical thermography, Database Systems, Synthetic Aperture Radar and Satellite Imagery.   Different applications are addressed and described throughout the book, comprising: Object Recognition and Tracking, Facial Expression Recognition, Image Database, Plant Disease Classification, Video Understanding and Management, Image Processing, Image Segmentation, Bio-structure Modelling and Simulation, Medical Imaging, Image Classification, Medical Diagnosis, Urban Areas Classification, Land Map Generation.   The book brings together the current state-of-the-art in the various mul...

  2. Organizing and accessing methods for massive medical microscopic image data

    Science.gov (United States)

    Deng, Yan; Tang, Lixin

    2007-12-01

    The development of electronic medical archives requests to mosaic the medical microscopic images to a whole one, and the stitching result is usually a massive file hard to be stored or accessed. The paper proposes a file format named Medical TIFF to organize the massive microscopic image data. The Medical TIFF organizes the massive image data in tiles, appends the thumbnail of the result image at the end of the file, and offers the way to add medical information into the image file. Then the paper designs a three-layer system to access the file: the Physical Layer gathers the Medical TIFF components dispersed over the file and organizes them hierarchically, the Logical Layer uses a two dimensional dynamic array to deal with the tiles, and the Application Layer provides the interfaces for the applications developed on the basis of the system.

  3. Volumetric Virtual Environments

    Institute of Scientific and Technical Information of China (English)

    HE Taosong

    2000-01-01

    Driven by fast development of both virtual reality and volume visualization, we discuss some critical techniques towards building a volumetric VR system, specifically the modeling, rendering, and manipulations of a volumetric scene.Techniques such as voxel-based object simplification, accelerated volume rendering,fast stereo volume rendering, and volumetric "collision detection" are introduced and improved, with the idea of demonstrating the possibilities and potential benefits of incorporating volumetric models into VR systems.

  4. Method for Surface Scanning in Medical Imaging and Related Apparatus

    DEFF Research Database (Denmark)

    2015-01-01

    A method and apparatus for surface scanning in medical imaging is provided. The surface scanning apparatus comprises an image source, a first optical fiber bundle comprising first optical fibers having proximal ends and distal ends, and a first optical coupler for coupling an image from the image...

  5. Smaller right amygdala in Caucasian alcohol-dependent male patients with a history of intimate partner violence: a volumetric imaging study.

    Science.gov (United States)

    Zhang, Lishu; Kerich, Mike; Schwandt, Melanie L; Rawlings, Robert R; McKellar, Joshua D; Momenan, Reza; Hommer, Daniel W; George, David T

    2013-05-01

    Studies have shown that various brain structure abnormalities are associated with chronic alcohol abuse and impulsive aggression. However, few imaging studies have focused on violent individuals with a diagnosis of alcohol dependence. The present study used volumetric magnetic resonance imaging (MRI) to compare the volumes of different structural components of prefrontal cortex and six subcortical structures in perpetrators of intimate partner violence with alcohol dependence (IPV-ADs), non-violent alcohol-dependent patients (non-violent ADs) and healthy controls (HCs). Caucasian men (n = 54), ages 24-55, who had participated in National Institutes of Alcohol Abuse and Alcoholism treatment programs, were grouped together as IPV-ADs (n = 27), non-violent ADs (n = 14) and HCs (n = 13). The MRI scan was performed at least 3 weeks from the participant's last alcohol use. T1-weighted images were used to measure the volumes of intracranial space, gray and white matter, orbitofrontal cortex, medial prefrontal cortex, lateral prefrontal cortex, and six subcortical structures. Results revealed that IPV-ADs, compared with non-violent ADs and HCs, had a significant volume reduction in the right amygdala. No significant volumetric difference was found in other structures. This finding suggests that structural deficits in the right amygdala may underlie impulsive types of aggression often seen in alcohol-dependent patients with a history of IPV. It adds to a growing literature suggesting that there are fundamental differences between alcohol-dependent patients with and without IPV. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction.

  6. Medical image compression with embedded-wavelet transform

    Science.gov (United States)

    Cheng, Po-Yuen; Lin, Freddie S.; Jannson, Tomasz

    1997-10-01

    The need for effective medical image compression and transmission techniques continues to grow because of the huge volume of radiological images captured each year. The limited bandwidth and efficiency of current networking systems cannot meet this need. In response, Physical Optics Corporation devised an efficient medical image management system to significantly reduce the storage space and transmission bandwidth required for digitized medical images. The major functions of this system are: (1) compressing medical imagery, using a visual-lossless coder, to reduce the storage space required; (2) transmitting image data progressively, to use the transmission bandwidth efficiently; and (3) indexing medical imagery according to image characteristics, to enable automatic content-based retrieval. A novel scalable wavelet-based image coder was developed to implement the system. In addition to its high compression, this approach is scalable in both image size and quality. The system provides dramatic solutions to many medical image handling problems. One application is the efficient storage and fast transmission of medical images over picture archiving and communication systems. In addition to reducing costs, the potential impact on improving the quality and responsiveness of health care delivery in the US is significant.

  7. An Improved FCM Medical Image Segmentation Algorithm Based on MMTD

    Directory of Open Access Journals (Sweden)

    Ningning Zhou

    2014-01-01

    Full Text Available Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM is one of the popular clustering algorithms for medical image segmentation. But FCM is highly vulnerable to noise due to not considering the spatial information in image segmentation. This paper introduces medium mathematics system which is employed to process fuzzy information for image segmentation. It establishes the medium similarity measure based on the measure of medium truth degree (MMTD and uses the correlation of the pixel and its neighbors to define the medium membership function. An improved FCM medical image segmentation algorithm based on MMTD which takes some spatial features into account is proposed in this paper. The experimental results show that the proposed algorithm is more antinoise than the standard FCM, with more certainty and less fuzziness. This will lead to its practicable and effective applications in medical image segmentation.

  8. Synthetic Aperture Imaging in Medical Ultrasound

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Gammelmark, Kim; Pedersen, Morten

    2004-01-01

    with high precision, and the imaging is easily extended to real-time 3D scanning. This paper presents the work done at the Center for Fast Ultrasound Imaging in the area of SA imaging. Three areas that benefit from SA imaging are described. Firstly a preliminary in-vivo evaluation comparing conventional B......Synthetic Aperture (SA) ultrasound imaging is a relatively new and unexploited imaging technique. The images are perfectly focused both in transmit and receive, and have a better resolution and higher dynamic range than conventional ultrasound images. The blood flow can be estimated from SA images...

  9. Implementation of Novel Medical Image Compression Using Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Mohammad Al-Rababah

    2016-05-01

    Full Text Available The medical image processing process is one of the most important areas of research in medical applications in digitized medical information. A medical images have a large sizes. Since the coming of digital medical information, the important challenge is to care for the conduction and requirements of huge data, including medical images. Compression is considered as one of the necessary algorithm to explain this problem. A large amount of medical images must be compressed using lossless compression. This paper proposes a new medical image compression algorithm founded on lifting wavelet transform CDF 9/7 joined with SPIHT coding algorithm, this algorithm applied the lifting composition to confirm the benefit of the wavelet transform. To develop the proposed algorithm, the outcomes compared with other compression algorithm like JPEG codec. Experimental results proves that the anticipated algorithm is superior to another algorithm in both lossy and lossless compression for all medical images tested. The Wavelet-SPIHT algorithm provides PSNR very important values for MRI images.

  10. Glasses-free 3D viewing systems for medical imaging

    Science.gov (United States)

    Magalhães, Daniel S. F.; Serra, Rolando L.; Vannucci, André L.; Moreno, Alfredo B.; Li, Li M.

    2012-04-01

    In this work we show two different glasses-free 3D viewing systems for medical imaging: a stereoscopic system that employs a vertically dispersive holographic screen (VDHS) and a multi-autostereoscopic system, both used to produce 3D MRI/CT images. We describe how to obtain a VDHS in holographic plates optimized for this application, with field of view of 7 cm to each eye and focal length of 25 cm, showing images done with the system. We also describe a multi-autostereoscopic system, presenting how it can generate 3D medical imaging from viewpoints of a MRI or CT image, showing results of a 3D angioresonance image.

  11. Medical image of the week: pneumomediastinum

    Directory of Open Access Journals (Sweden)

    Franco R Jr

    2014-01-01

    Full Text Available No abstract available. Article truncated at 150 words. A 65 year old man presented with mild increase in shortness of breath. He had a past medical history of diabetes mellitus, hypertension, and severe malnutrition with percutaneous endoscopic gastrostomy (PEG placement after a colectomy and end ileostomy for sigmoid volvulus. CXR (Figure 1 suggested a pneumomediastinum with subsequent chest CT (Figure 2 confirming moderate sized pneumomediastinum. He had a chronic cough from chronic obstructive pulmonary disease (COPD as well as aspiration and chest CT also demonstrated emphysema with small blebs. He denied any significant chest pain. He was followed conservatively with imaging and discharged in stable condition. Pneumomediastinum can be caused by trauma, esophageal rupture after vomiting (Boerhaave’s syndrome and can be a spontaneous event if no obvious precipitating cause is identified (1. Valsalva maneuvers such as cough, sneeze, vomiting and childbirth, can all cause pneumomediastinum. Risk factors include asthma, COPD, interstitial lung disease and inhalational recreational drug use. …

  12. Medical image of the week: purpura fulminans

    Directory of Open Access Journals (Sweden)

    Power EP

    2016-12-01

    Full Text Available No abstract available. Article truncated at 150 words. A 54-year-old man with coronary artery disease, fibromyalgia and chronic sacral ulcers was brought to the emergency department due to acute changes in mentation and hypotension. He suffered a cardiac arrest shortly after arrival to the emergency department during emergent airway management. After successful resuscitation, he was admitted to the medical intensive care unit and treated for septic shock with fluid resuscitation, vasopressors and broad spectrum antibiotics. Laboratory results were significant for disseminated intravascular coagulopathy (DIC- thrombocytopenia, decreased fibrinogen and elevated PT, PTT and D-dimer levels. Profound metabolic acidosis and lactate elevation was also seen. Blood Cultures later revealed a multi-drug resistant E. coli bacteremia. Images of the lower extremities (Figure 1 were obtained at initial assessment and are consistent with purpura fulminans. He did not survive the stay. Purpura fulminans, also referred to as skin mottling, is an evolving skin condition which is characterized by an acutely worsening reticular …

  13. Medical image of the week: disseminated coccidioidomycosis

    Directory of Open Access Journals (Sweden)

    Ynosencio T

    2017-02-01

    Full Text Available No abstract available. Article truncated at 150 words. A 67-year-old African American man with no significant past medical history presented with shortness of breath and flu-like symptoms. On exam, he was noted to be profoundly hypoxemic with imaging showing diffuse thoracic changes (Figure 1 and a diffuse papular rash (Figure 2. Initial workup included coccidioidomycosis serologies which returned positive with a titer of 1:128. While exposure to coccidioidomycosis is very common in southern Arizona, dissemination is a rare occurrence. The incidence is estimated between 0.2 and 4.7 percent. Patients at highest risk include those that are immunosuppressed or that are of African or Filipino ancestry. Common extra-pulmonary sites include skin or subcutaneous tissue, meninges of brain or spinal cord, and bones. Even rarer sites include the eyes, liver, prostate, mediastinum, and kidneys. Treatment is usually the same as with pulmonary infection which is an azole agent. However, if the patient’s symptoms are severe or if the lesions involve …

  14. Medical image of the week: focal myopericaditis

    Directory of Open Access Journals (Sweden)

    Meenakshisundaram C

    2015-07-01

    Full Text Available No abstract available. Article truncated at 150 words. A 44-year-old man with no significant past medical history was admitted with a history of two episodes of substernal chest pain unrelated to exertion which had resolved spontaneously. Admission vital signs were within normal limits and physical examination was unremarkable. Basic lab tests were normal and urine toxicology was negative. Electrocardiogram was unremarkable with no ST/T changes. Troponin I was elevated at 4.19 which trended up to 6.57. An urgent cardiac angiogram was done which revealed normal patent coronaries. His transthoracic echocardiogram was also reported to be normal. He continued to have intermittent episodes of chest pain that was partially relieved by morphine. Erythrocyte sedimentation rate and C-reactive protein were elevated. Work up for autoimmune diseases, vasculitis, myocarditis panel were insignificant. Later, magnetic resonance imaging (MRI with gadolinium enhanced contrast (Figure 1 was obtained which showed abnormal epicardial/subepicardial myocardial enhancement within the inferolateral wall and cardiac apex consistent with focal ...

  15. A Survey on Deep Learning in Medical Image Analysis

    NARCIS (Netherlands)

    Litjens, G.J.; Kooi, T.; Ehteshami Bejnordi, B.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Laak, J.A.W.M. van der; Ginneken, B. van; Sanchez, C.I.

    2017-01-01

    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared

  16. A framework for integration of heterogeneous medical imaging networks.

    Science.gov (United States)

    Viana-Ferreira, Carlos; Ribeiro, Luís S; Costa, Carlos

    2014-01-01

    Medical imaging is increasing its importance in matters of medical diagnosis and in treatment support. Much is due to computers that have revolutionized medical imaging not only in acquisition process but also in the way it is visualized, stored, exchanged and managed. Picture Archiving and Communication Systems (PACS) is an example of how medical imaging takes advantage of computers. To solve problems of interoperability of PACS and medical imaging equipment, the Digital Imaging and Communications in Medicine (DICOM) standard was defined and widely implemented in current solutions. More recently, the need to exchange medical data between distinct institutions resulted in Integrating the Healthcare Enterprise (IHE) initiative that contains a content profile especially conceived for medical imaging exchange: Cross Enterprise Document Sharing for imaging (XDS-i). Moreover, due to application requirements, many solutions developed private networks to support their services. For instance, some applications support enhanced query and retrieve over DICOM objects metadata. This paper proposes anintegration framework to medical imaging networks that provides protocols interoperability and data federation services. It is an extensible plugin system that supports standard approaches (DICOM and XDS-I), but is also capable of supporting private protocols. The framework is being used in the Dicoogle Open Source PACS.

  17. Numerical Inversion of Integral Equations for Medical Imaging and Geophysics

    Science.gov (United States)

    1988-12-13

    Equations for Medical Imaging and Geophysics (Unclassified) 12 PERSONAL AUTHOR(S) Frank Stenger 13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT...9r~S NUMERICAL INVERSION OF INTEGRAL EQUATIONS FOR MEDICAL IMAGING AND GEOPHYSICS FINAL REPORT AUTHOR OF REPORT: Frank Stenger December 13, 1988

  18. Improved Strategies for Parallel Medical Image Processing Applications

    Institute of Scientific and Technical Information of China (English)

    WANG Kun; WANG Xiao-ying; LI San-li; CHEN Ying

    2008-01-01

    In order to meet the demands of high efficient and real-time computer assisted diagnosis as well as screening in medical area, to improve the efficacy of parallel medical image processing is of great importance. This article proposes improved strategies for parallel medical image processing applications,which is categorized into two genera. For each genus individual strategy is devised, including the theoretic algorithm for minimizing the exertion time. Experiment using mammograms not only justifies the validity of the theoretic analysis, with reasonable difference between the theoretic and measured value, but also shows that when adopting the improved strategies, efficacy of medical image parallel processing is improved greatly.

  19. Prospective assessment of urinary, gastrointestinal and sexual symptoms before, during and after image-guided volumetric modulated arc therapy for prostate cancer

    DEFF Research Database (Denmark)

    Sveistrup, Joen; Widmark, Anders; Fransson, Per

    2015-01-01

    . One year after RT, there was no longer any difference compared to baseline for any of the urinary symptoms. All gastrointestinal symptoms except for nausea increased significantly at the end of RT. One year after RT, patients also reported slightly higher degrees of stool frequency, bowel leakage......OBJECTIVE: The aim of this study was to prospectively assess the development of 24 urinary, gastrointestinal and sexual symptoms in patients with prostate cancer (PCa) during and after image-guided volumetric modulated arc therapy (IG-VMAT). MATERIAL AND METHODS: A total of 87 patients with PCa...... RT compared to baseline were analysed by a mixed model analysis of repeated measurements with the following covariates: age, comorbidity, smoking and androgen deprivation therapy (ADT). RESULTS: All urinary problems except for haematuria increased significantly at the end of RT compared to baseline...

  20. Current trends in medical image registration and fusion

    Directory of Open Access Journals (Sweden)

    Fatma El-Zahraa Ahmed El-Gamal

    2016-03-01

    Full Text Available Recently, medical image registration and fusion processes are considered as a valuable assistant for the medical experts. The role of these processes arises from their ability to help the experts in the diagnosis, following up the diseases’ evolution, and deciding the necessary therapies regarding the patient’s condition. Therefore, the aim of this paper is to focus on medical image registration as well as medical image fusion. In addition, the paper presents a description of the common diagnostic images along with the main characteristics of each of them. The paper also illustrates most well-known toolkits that have been developed to help the working with the registration and fusion processes. Finally, the paper presents the current challenges associated with working with medical image registration and fusion through illustrating the recent diseases/disorders that were addressed through such an analyzing process.

  1. [Managing digital medical imaging projects in healthcare services: lessons learned].

    Science.gov (United States)

    Rojas de la Escalera, D

    2013-01-01

    Medical imaging is one of the most important diagnostic instruments in clinical practice. The technological development of digital medical imaging has enabled healthcare services to undertake large scale projects that require the participation and collaboration of many professionals of varied backgrounds and interests as well as substantial investments in infrastructures. Rather than focusing on systems for dealing with digital medical images, this article deals with the management of projects for implementing these systems, reviewing various organizational, technological, and human factors that are critical to ensure the success of these projects and to guarantee the compatibility and integration of digital medical imaging systems with other health information systems. To this end, the author relates several lessons learned from a review of the literature and the author's own experience in the technical coordination of digital medical imaging projects. Copyright © 2012 SERAM. Published by Elsevier Espana. All rights reserved.

  2. Medical image processing on the GPU - past, present and future.

    Science.gov (United States)

    Eklund, Anders; Dufort, Paul; Forsberg, Daniel; LaConte, Stephen M

    2013-12-01

    Graphics processing units (GPUs) are used today in a wide range of applications, mainly because they can dramatically accelerate parallel computing, are affordable and energy efficient. In the field of medical imaging, GPUs are in some cases crucial for enabling practical use of computationally demanding algorithms. This review presents the past and present work on GPU accelerated medical image processing, and is meant to serve as an overview and introduction to existing GPU implementations. The review covers GPU acceleration of basic image processing operations (filtering, interpolation, histogram estimation and distance transforms), the most commonly used algorithms in medical imaging (image registration, image segmentation and image denoising) and algorithms that are specific to individual modalities (CT, PET, SPECT, MRI, fMRI, DTI, ultrasound, optical imaging and microscopy). The review ends by highlighting some future possibilities and challenges.

  3. Digital Signal Processing for Medical Imaging Using Matlab

    CERN Document Server

    Gopi, E S

    2013-01-01

    This book describes medical imaging systems, such as X-ray, Computed tomography, MRI, etc. from the point of view of digital signal processing. Readers will see techniques applied to medical imaging such as Radon transformation, image reconstruction, image rendering, image enhancement and restoration, and more. This book also outlines the physics behind medical imaging required to understand the techniques being described. The presentation is designed to be accessible to beginners who are doing research in DSP for medical imaging. Matlab programs and illustrations are used wherever possible to reinforce the concepts being discussed.  ·         Acts as a “starter kit” for beginners doing research in DSP for medical imaging; ·         Uses Matlab programs and illustrations throughout to make content accessible, particularly with techniques such as Radon transformation and image rendering; ·         Includes discussion of the basic principles behind the various medical imaging tec...

  4. A New Method of CT MedicalImages Contrast Enhancement

    Institute of Scientific and Technical Information of China (English)

    SUNFeng-rong; LIUWei; WANGChang-yu; MEILiang-mo

    2004-01-01

    A new method of contrast enhancement is proposed in the paper using multiscale edge representation of images, and is applied to the field of CT medical image processing. Comparing to the traditional Window technique, our method is adaptive and meets the demand of radiology clinics more better. The clinical experiment results show the practicality and the potential applied value of our methodin the field of CT medical images contrast enhancement.

  5. Multiview locally linear embedding for effective medical image retrieval.

    Directory of Open Access Journals (Sweden)

    Hualei Shen

    Full Text Available Content-based medical image retrieval continues to gain attention for its potential to assist radiological image interpretation and decision making. Many approaches have been proposed to improve the performance of medical image retrieval system, among which visual features such as SIFT, LBP, and intensity histogram play a critical role. Typically, these features are concatenated into a long vector to represent medical images, and thus traditional dimension reduction techniques such as locally linear embedding (LLE, principal component analysis (PCA, or laplacian eigenmaps (LE can be employed to reduce the "curse of dimensionality". Though these approaches show promising performance for medical image retrieval, the feature-concatenating method ignores the fact that different features have distinct physical meanings. In this paper, we propose a new method called multiview locally linear embedding (MLLE for medical image retrieval. Following the patch alignment framework, MLLE preserves the geometric structure of the local patch in each feature space according to the LLE criterion. To explore complementary properties among a range of features, MLLE assigns different weights to local patches from different feature spaces. Finally, MLLE employs global coordinate alignment and alternating optimization techniques to learn a smooth low-dimensional embedding from different features. To justify the effectiveness of MLLE for medical image retrieval, we compare it with conventional spectral embedding methods. We conduct experiments on a subset of the IRMA medical image data set. Evaluation results show that MLLE outperforms state-of-the-art dimension reduction methods.

  6. Study on the Medical Image Distributed Dynamic Processing Method

    Institute of Scientific and Technical Information of China (English)

    张全海; 施鹏飞

    2003-01-01

    To meet the challenge of implementing rapidly advanced, time-consuming medical image processing algorithms,it is necessary to develop a medical image processing technology to process a 2D or 3D medical image dynamically on the web. But in a premier system, only static image processing can be provided with the limitation of web technology. The development of Java and CORBA (common object request broker architecture) overcomes the shortcoming of the web static application and makes the dynamic processing of medical images on the web available. To develop an open solution of distributed computing, we integrate the Java, and web with the CORBA and present a web-based medical image dynamic processing methed, which adopts Java technology as the language to program application and components of the web and utilies the CORBA architecture to cope with heterogeneous property of a complex distributed system. The method also provides a platform-independent, transparent processing architecture to implement the advanced image routines and enable users to access large dataset and resources according to the requirements of medical applications. The experiment in this paper shows that the medical image dynamic processing method implemented on the web by using Java and the CORBA is feasible.

  7. Medical physics personnel for medical imaging: requirements, conditions of involvement and staffing levels-French recommendations.

    Science.gov (United States)

    Isambert, Aurélie; Le Du, Dominique; Valéro, Marc; Guilhem, Marie-Thérèse; Rousse, Carole; Dieudonné, Arnaud; Blanchard, Vincent; Pierrat, Noëlle; Salvat, Cécile

    2015-04-01

    The French regulations concerning the involvement of medical physicists in medical imaging procedures are relatively vague. In May 2013, the ASN and the SFPM issued recommendations regarding Medical Physics Personnel for Medical Imaging: Requirements, Conditions of Involvement and Staffing Levels. In these recommendations, the various areas of activity of medical physicists in radiology and nuclear medicine have been identified and described, and the time required to perform each task has been evaluated. Criteria for defining medical physics staffing levels are thus proposed. These criteria are defined according to the technical platform, the procedures and techniques practised on it, the number of patients treated and the number of persons in the medical and paramedical teams requiring periodic training. The result of this work is an aid available to each medical establishment to determine their own needs in terms of medical physics. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Nonrigid Medical Image Registration Based on Mesh Deformation Constraints

    Directory of Open Access Journals (Sweden)

    XiangBo Lin

    2013-01-01

    Full Text Available Regularizing the deformation field is an important aspect in nonrigid medical image registration. By covering the template image with a triangular mesh, this paper proposes a new regularization constraint in terms of connections between mesh vertices. The connection relationship is preserved by the spring analogy method. The method is evaluated by registering cerebral magnetic resonance imaging (MRI image data obtained from different individuals. Experimental results show that the proposed method has good deformation ability and topology-preserving ability, providing a new way to the nonrigid medical image registration.

  9. Intrasubject registration for change analysis in medical imaging

    NARCIS (Netherlands)

    Staring, M.

    2008-01-01

    Image matching is important for the comparison of medical images. Comparison is of clinical relevance for the analysis of differences due to changes in the health of a patient. For example, when a disease is imaged at two time points, then one wants to know if it is stable, has regressed, or

  10. Mesh Processing in Medical-Image Analysis-a Tutorial

    DEFF Research Database (Denmark)

    Levine, Joshua A.; Paulsen, Rasmus Reinhold; Zhang, Yongjie

    2012-01-01

    Medical-image analysis requires an understanding of sophisticated scanning modalities, constructing geometric models, building meshes to represent domains, and downstream biological applications. These four steps form an image-to-mesh pipeline. For research in this field to progress, the imaging...

  11. Anatomy, variants, and pathologies of the superior glenohumeral ligament: Magnetic resonance imaging with three-dimensional volumetric interpolated breath-hold examination sequence and conventional magnetic resonance arthrography

    Energy Technology Data Exchange (ETDEWEB)

    Ogul, Hayri; Karaca, Leyla; Emre, Cahit; Pirimoglu, Berhan; Tuncer, Kutsi; Topai, Murat; Okur, Aylin; Kantarci, Mecit [Medical Faculty, Ataturk University, Erzurum (Turkmenistan)

    2014-08-15

    The purpose of this review was to demonstrate magnetic resonance (MR) arthrography findings of anatomy, variants, and pathologic conditions of the superior glenohumeral ligament (SGHL). This review also demonstrates the applicability of a new MR arthrography sequence in the anterosuperior portion of the glenohumeral joint. The SGHL is a very important anatomical structure in the rotator interval that is responsible for stabilizing the long head of the biceps tendon. Therefore, a torn SGHL can result in pain and instability. Observation of the SGHL is difficult when using conventional MR imaging, because the ligament may be poorly visualized. Shoulder MR arthrography is the most accurately established imaging technique for identifying pathologies of the SGHL and associated structures. The use of three dimensional (3D) volumetric interpolated breath-hold examination (VIBE) sequences produces thinner image slices and enables a higher in-plane resolution than conventional MR arthrography sequences. Therefore, shoulder MR arthrography using 3D VIBE sequences may contribute to evaluating of the smaller intraarticular structures such as the SGHL.

  12. A survey of GPU-based medical image computing techniques.

    Science.gov (United States)

    Shi, Lin; Liu, Wen; Zhang, Heye; Xie, Yongming; Wang, Defeng

    2012-09-01

    Medical imaging currently plays a crucial role throughout the entire clinical applications from medical scientific research to diagnostics and treatment planning. However, medical imaging procedures are often computationally demanding due to the large three-dimensional (3D) medical datasets to process in practical clinical applications. With the rapidly enhancing performances of graphics processors, improved programming support, and excellent price-to-performance ratio, the graphics processing unit (GPU) has emerged as a competitive parallel computing platform for computationally expensive and demanding tasks in a wide range of medical image applications. The major purpose of this survey is to provide a comprehensive reference source for the starters or researchers involved in GPU-based medical image processing. Within this survey, the continuous advancement of GPU computing is reviewed and the existing traditional applications in three areas of medical image processing, namely, segmentation, registration and visualization, are surveyed. The potential advantages and associated challenges of current GPU-based medical imaging are also discussed to inspire future applications in medicine.

  13. An overview of medical image processing methods

    African Journals Online (AJOL)

    USER

    2010-06-14

    Jun 14, 2010 ... theoretical subjects about methods and algorithms used are explained. In the forth section, ... image processing techniques such as image segmentation, compression .... A convolution mask like -1 | 0 | 1 could be used in each.

  14. Study of inter-fraction movements of tongue during radiation therapy in cases of tongue malignancy using volumetric cone beam computed tomography (CBCT imaging

    Directory of Open Access Journals (Sweden)

    Mirza Athar Ali

    2015-12-01

    Full Text Available Purpose: Tongue is a mobile organ in head and neck region predisposing it for geographic miss during the course of fractionated radiotherapy for tongue malignancy. This study analyses movement of tongue during the course of radiotherapy using volumetric KV-cone beam computed tomography (KV-CBCT imaging for patients of tongue malignancy treated without using tongue bite. Methods: We analysed 100 KV-cone beam CTs performed on 10 patients with carcinoma of tongue undergoing fractionated radiotherapy. All the patients underwent thermoplastic mask immobilisation and CT simulation. During the course of radiotherapy, all patients underwent volumetric KV-CBCT imaging to assess the movements of tongue. Five arbitrary reference points were used to analyse the movements of tongue in 3-dimensions: 1 Point A: Tip of tongue; 2 Point B: Point over right lateral border, 4 cm posterior to the tip of tongue; 3 Point C: Point over left lateral border, 4 cm posterior to the tip of tongue; 4 Point D: Point over superior most part (dorsum of tongue, 4 cm posterior to the tip of tongue; 5 Point E: Point over the surface of base of tongue at the level of tip of epiglottis. Results: Mean movements of point A: +0.21 cm (SD: 0.12 and -0.23 cm (SD: 0.14, point B: +0.14 cm (SD: 0.04 and -0.19 cm (SD: 0.1, point C: +0.12 cm (SD: 0.05 and -0.14 cm (SD: 0.06, point D: +0.15 cm (SD: 0.07 and -0.29 cm (SD: 0.22 and point E: +0.23 cm (SD: 0.15 and -0.23 cm (SD: 0.14. Conclusion: Organ movement is one of the great challenges encountered during radiotherapy. Tongue is one such organ in head and neck region. Concept of internal target volume (ITV margin which takes into account the internal organ movements should be considered for tongue malignancies. ITV to PTV margin will depend on the setup accuracy, immobilization device and imaging modality utilised for setup verification. In an IGRT (Image Guided Radio Therapy setup, a PTV margin of 0.3 to 0.5 cm from ITV would be safe.

  15. Intravascular ultrasonic-photoacoustic (IVUP) endoscope with 2.2-mm diameter catheter for medical imaging.

    Science.gov (United States)

    Bui, Nhat Quang; Hlaing, Kyu Kyu; Nguyen, Van Phuc; Nguyen, Trung Hau; Oh, Yun-Ok; Fan, Xiao Feng; Lee, Yong Wook; Nam, Seung Yun; Kang, Hyun Wook; Oh, Junghwan

    2015-10-01

    Intravascular ultrasound (IVUS) imaging is extremely important for detection and characterization of high-risk atherosclerotic plaques as well as gastrointestinal diseases. Recently, intravascular photoacoustic (IVPA) imaging has been used to differentiate the composition of biological tissues with high optical contrast and ultrasonic resolution. The combination of these imaging techniques could provide morphological information and molecular screening to characterize abnormal tissues, which would help physicians to ensure vital therapeutic value and prognostic significance for patients before commencing therapy. In this study, integration of a high-frequency IVUS imaging catheter (45MHz, single-element, unfocused, 0.7mm in diameter) with a multi-mode optical fiber (0.6mm in core diameter, 0.22 NA), an integrated intravascular ultrasonic-photoacoustic (IVUP) imaging catheter, was developed to provide spatial and functional information on light distribution in a turbid sample. Simultaneously, IVUS imaging was co-registered to IVPA imaging to construct 3D volumetric sample images. In a phantom study, a polyvinyl alcohol (PVA) tissue-mimicking arterial vessel phantom with indocyanine green (ICG) and methylene blue (MB) inclusion was used to demonstrate the feasibility of mapping the biological dyes, which are used in cardiovascular and cancer diagnostics. For the ex vivo study, an excised sample of pig intestine with ICG was utilized to target the biomarkers present in the gastrointestinal tumors or the atherosclerotic plaques with the proposed hybrid technique. The results indicated that IVUP endoscope with the 2.2-mm diameter catheter could be a useful tool for medical imaging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Client-side Medical Image Colorization in a Collaborative Environment.

    Science.gov (United States)

    Virag, Ioan; Stoicu-Tivadar, Lăcrămioara; Crişan-Vida, Mihaela

    2015-01-01

    The paper presents an application related to collaborative medicine using a browser based medical visualization system with focus on the medical image colorization process and the underlying open source web development technologies involved. Browser based systems allow physicians to share medical data with their remotely located counterparts or medical students, assisting them during patient diagnosis, treatment monitoring, surgery planning or for educational purposes. This approach brings forth the advantage of ubiquity. The system can be accessed from a any device, in order to process the images, assuring the independence towards having a specific proprietary operating system. The current work starts with processing of DICOM (Digital Imaging and Communications in Medicine) files and ends with the rendering of the resulting bitmap images on a HTML5 (fifth revision of the HyperText Markup Language) canvas element. The application improves the image visualization emphasizing different tissue densities.

  17. A New Approach To Embed Medical Information Into Medical Images

    Directory of Open Access Journals (Sweden)

    Esra Ayça Güzeldereli

    2013-08-01

    Full Text Available In recent years, under the light of developments in the field of computer, there has been an increasing demand for data processing in the health sector. Many different methods are being used to connect the personal information or diagnosis with the patient. These methods can differ from each other according to imaging techniques. In this thesis, this kind of data hiding/embedding techniques are mostly prefered in order to provide a privacy for patients. Also, useful to use compression techniques with data compressing for preserving the originality of the image which is damaged by large size of personal information saved in memory.

  18. Volumetric flow imaging reveals the importance of vortex ring formation in squid swimming tail-first and arms-first.

    Science.gov (United States)

    Bartol, Ian K; Krueger, Paul S; Jastrebsky, Rachel A; Williams, Sheila; Thompson, Joseph T

    2016-02-01

    Squids use a pulsed jet and fin movements to swim both arms-first (forward) and tail-first (backward). Given the complexity of the squid multi-propulsor system, 3D velocimetry techniques are required for the comprehensive study of wake dynamics. Defocusing digital particle tracking velocimetry, a volumetric velocimetry technique, and high-speed videography were used to study arms-first and tail-first swimming of brief squid Lolliguncula brevis over a broad range of speeds [0-10 dorsal mantle lengths (DML) s(-1)] in a swim tunnel. Although there was considerable complexity in the wakes of these multi-propulsor swimmers, 3D vortex rings and their derivatives were prominent reoccurring features during both tail-first and arms-first swimming, with the greatest jet and fin flow complexity occurring at intermediate speeds (1.5-3.0 DML s(-1)). The jet generally produced the majority of thrust during rectilinear swimming, increasing in relative importance with speed, and the fins provided no thrust at speeds >4.5 DML s(-1). For both swimming orientations, the fins sometimes acted as stabilizers, producing negative thrust (drag), and consistently provided lift at low/intermediate speeds (swimming orientation, and η for swimming sequences with clear isolated jet vortex rings was significantly greater (η=78.6±7.6%, mean±s.d.) than that for swimming sequences with clear elongated regions of concentrated jet vorticity (η=67.9±19.2%). This study reveals the complexity of 3D vortex wake flows produced by nekton with hydrodynamically distinct propulsors.

  19. An information gathering system for medical image inspection

    Science.gov (United States)

    Lee, Young-Jin; Bajcsy, Peter

    2005-04-01

    We present an information gathering system for medical image inspection that consists of software tools for capturing computer-centric and human-centric information. Computer-centric information includes (1) static annotations, such as (a) image drawings enclosing any selected area, a set of areas with similar colors, a set of salient points, and (b) textual descriptions associated with either image drawings or links between pairs of image drawings, and (2) dynamic (or temporal) information, such as mouse movements, zoom level changes, image panning and frame selections from an image stack. Human-centric information is represented by video and audio signals that are acquired by computer-mounted cameras and microphones. The short-term goal of the presented system is to facilitate learning of medical novices from medical experts, while the long-term goal is to data mine all information about image inspection for assisting in making diagnoses. In this work, we built basic software functionality for gathering computer-centric and human-centric information of the aforementioned variables. Next, we developed the information playback capabilities of all gathered information for educational purposes. Finally, we prototyped text-based and image template-based search engines to retrieve information from recorded annotations, for example, (a) find all annotations containing the word "blood vessels", or (b) search for similar areas to a selected image area. The information gathering system for medical image inspection reported here has been tested with images from the Histology Atlas database.

  20. Real Time Medical Image Consultation System Through Internet

    Directory of Open Access Journals (Sweden)

    D. Durga Prasad

    2010-01-01

    Full Text Available Teleconsultation among doctors using a telemedicine system typically involves dealing with and sharing medical images of the patients. This paper describes a software tool written in Java which enables the participating doctors to view medical images such as blood slides, X-Ray, USG, ECG etc. online and even allows them to mark and/or zoom specific areas. It is a multi-party secure image communication system tool that can be used by doctors and medical consultants over the Internet.

  1. Population Pharmacokinetics of Tracers: A New Tool for Medical Imaging?

    Science.gov (United States)

    Gandia, Peggy; Jaudet, Cyril; Chatelut, Etienne; Concordet, Didier

    2017-02-01

    Positron emission tomography-computed tomography is a medical imaging method measuring the activity of a radiotracer chosen to accumulate in cancer cells. A recent trend of medical imaging analysis is to account for the radiotracer's pharmacokinetic properties at a voxel (three-dimensional-pixel) level to separate the different tissues. These analyses are closely linked to population pharmacokinetic-pharmacodynamic modelling. Kineticists possess the cultural background to improve medical imaging analysis. This article stresses the common points with population pharmacokinetics and highlights the methodological locks that need to be lifted.

  2. [A medical image semantic modeling based on hierarchical Bayesian networks].

    Science.gov (United States)

    Lin, Chunyi; Ma, Lihong; Yin, Junxun; Chen, Jianyu

    2009-04-01

    A semantic modeling approach for medical image semantic retrieval based on hierarchical Bayesian networks was proposed, in allusion to characters of medical images. It used GMM (Gaussian mixture models) to map low-level image features into object semantics with probabilities, then it captured high-level semantics through fusing these object semantics using a Bayesian network, so that it built a multi-layer medical image semantic model, aiming to enable automatic image annotation and semantic retrieval by using various keywords at different semantic levels. As for the validity of this method, we have built a multi-level semantic model from a small set of astrocytoma MRI (magnetic resonance imaging) samples, in order to extract semantics of astrocytoma in malignant degree. Experiment results show that this is a superior approach.

  3. Backpropagation Neural Network Implementation for Medical Image Compression

    Directory of Open Access Journals (Sweden)

    Kamil Dimililer

    2013-01-01

    Full Text Available Medical images require compression, before transmission or storage, due to constrained bandwidth and storage capacity. An ideal image compression system must yield high-quality compressed image with high compression ratio. In this paper, Haar wavelet transform and discrete cosine transform are considered and a neural network is trained to relate the X-ray image contents to their ideal compression method and their optimum compression ratio.

  4. Signal and image processing in medical applications

    CERN Document Server

    Kumar, Amit; Rahim, B Abdul; Kumar, D Sravan

    2016-01-01

    This book highlights recent findings on and analyses conducted on signals and images in the area of medicine. The experimental investigations involve a variety of signals and images and their methodologies range from very basic to sophisticated methods. The book explains how signal and image processing methods can be used to detect and forecast abnormalities in an easy-to-follow manner, offering a valuable resource for researchers, engineers, physicians and bioinformatics researchers alike.

  5. Pairwise Latent Semantic Association for Similarity Computation in Medical Imaging.

    Science.gov (United States)

    Zhang, Fan; Song, Yang; Cai, Weidong; Liu, Sidong; Liu, Siqi; Pujol, Sonia; Kikinis, Ron; Xia, Yong; Fulham, Michael J; Feng, David Dagan; Alzheimers Disease Neuroimaging Initiative

    2016-05-01

    Retrieving medical images that present similar diseases is an active research area for diagnostics and therapy. However, it can be problematic given the visual variations between anatomical structures. In this paper, we propose a new feature extraction method for similarity computation in medical imaging. Instead of the low-level visual appearance, we design a CCA-PairLDA feature representation method to capture the similarity between images with high-level semantics. First, we extract the PairLDA topics to represent an image as a mixture of latent semantic topics in an image pair context. Second, we generate a CCA-correlation model to represent the semantic association between an image pair for similarity computation. While PairLDA adjusts the latent topics for all image pairs, CCA-correlation helps to associate an individual image pair. In this way, the semantic descriptions of an image pair are closely correlated, and naturally correspond to similarity computation between images. We evaluated our method on two public medical imaging datasets for image retrieval and showed improved performance.

  6. A New Approach To Embed Medical Information Into Medical Images

    OpenAIRE

    Güzeldereli, Esra Ayça; Doğan, Ferdi; Çetin, Özdemir

    2013-01-01

    In recent years, under the light of developments in the field of computer, there has been an increasing demand for data processing in the health sector. Many different methods are being used to connect the personal information or diagnosis with the patient. These methods can differ from each other according to imaging techniques. In this thesis, this kind of data hiding/embedding techniques are mostly prefered in order to provide a privacy for patients. Also, useful to use compression techniq...

  7. MEDICAL IMAGE SEGMENTATION BASED ON A MODIFIED LEVEL SET ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    Yang Yong; Lin Pan; Zheng Chongxun; Gu Jianwen

    2005-01-01

    Objective To present a novel modified level set algorithm for medical image segmentation. Methods The algorithm is developed by substituting the speed function of level set algorithm with the region and gradient information of the image instead of the conventional gradient information. This new algorithm has been tested by a series of different modality medical images. Results We present various examples and also evaluate and compare the performance of our method with the classical level set method on weak boundaries and noisy images. Conclusion Experimental results show the proposed algorithm is effective and robust.

  8. Medical Image Compression using Wavelet Decomposition for Prediction Method

    CERN Document Server

    Ramesh, S M

    2010-01-01

    In this paper offers a simple and lossless compression method for compression of medical images. Method is based on wavelet decomposition of the medical images followed by the correlation analysis of coefficients. The correlation analyses are the basis of prediction equation for each sub band. Predictor variable selection is performed through coefficient graphic method to avoid multicollinearity problem and to achieve high prediction accuracy and compression rate. The method is applied on MRI and CT images. Results show that the proposed approach gives a high compression rate for MRI and CT images comparing with state of the art methods.

  9. Medical image fusion using the convolution of Meridian distributions.

    Science.gov (United States)

    Agrawal, Mayank; Tsakalides, Panagiotis; Achim, Alin

    2010-01-01

    The aim of this paper is to introduce a novel non-Gaussian statistical model-based approach for medical image fusion based on the Meridian distribution. The paper also includes a new approach to estimate the parameters of generalized Cauchy distribution. The input images are first decomposed using the Dual-Tree Complex Wavelet Transform (DT-CWT) with the subband coefficients modelled as Meridian random variables. Then, the convolution of Meridian distributions is applied as a probabilistic prior to model the fused coefficients, and the weights used to combine the source images are optimised via Maximum Likelihood (ML) estimation. The superior performance of the proposed method is demonstrated using medical images.

  10. A cloud collaborative medical image platform oriented by social network

    Science.gov (United States)

    Muniz, Frederico B.; Araújo, Luciano V.; Nunes, Fátima L. S.

    2017-03-01

    Computer-aided diagnosis systems using medical images and three-dimensional models as input data have greatly expanded and developed, but in terms of building suitable image databases to assess them, the challenge remains. Although there are some image databases available for this purpose, they are generally limited to certain types of exams or contain a limited number of medical cases. The objective of this work is to present the concepts and the development of a collaborative platform for sharing medical images and three-dimensional models, providing a resource to share and increase the number of images available for researchers. The collaborative cloud platform, called CATALYZER, aims to increase the availability and sharing of graphic objects, including 3D images, and their reports that are essential for research related to medical images. A survey conducted with researchers and health professionals indicated that this could be an innovative approach in the creation of medical image databases, providing a wider variety of cases together with a considerable amount of shared information among its users.

  11. Four challenges in medical image analysis from an industrial perspective.

    Science.gov (United States)

    Weese, Jürgen; Lorenz, Cristian

    2016-10-01

    Today's medical imaging systems produce a huge amount of images containing a wealth of information. However, the information is hidden in the data and image analysis algorithms are needed to extract it, to make it readily available for medical decisions and to enable an efficient work flow. Advances in medical image analysis over the past 20 years mean there are now many algorithms and ideas available that allow to address medical image analysis tasks in commercial solutions with sufficient performance in terms of accuracy, reliability and speed. At the same time new challenges have arisen. Firstly, there is a need for more generic image analysis technologies that can be efficiently adapted for a specific clinical task. Secondly, efficient approaches for ground truth generation are needed to match the increasing demands regarding validation and machine learning. Thirdly, algorithms for analyzing heterogeneous image data are needed. Finally, anatomical and organ models play a crucial role in many applications, and algorithms to construct patient-specific models from medical images with a minimum of user interaction are needed. These challenges are complementary to the on-going need for more accurate, more reliable and faster algorithms, and dedicated algorithmic solutions for specific applications.

  12. Tele-medical imaging conference system based on the Web.

    Science.gov (United States)

    Choi, Heung-Kook; Park, Se-Myung; Kang, Jae-Hyo; Kim, Sang-Kyoon; Choi, Hang-Mook

    2002-06-01

    In this paper, a medical imaging conference system is presented, which is carried out in the Web environment using the distributed object technique, CORBA. Independent of platforms and different developing languages, the CORBA-based medical imaging conference system is very powerful for system development, extension and maintenance. With this Web client/server, one could easily execute a medical imaging conference using Applets on the Web. The Java language, which is object-oriented and independent of platforms, has the advantage of free usage wherever the Web browser is. By using the proposed system, we envisage being able to open a tele-conference using medical images, e.g. CT, MRI, X-ray etc., easily and effectively among remote hospitals.

  13. Lossy Compression Color Medical Image Using CDF Wavelet Lifting Scheme

    Directory of Open Access Journals (Sweden)

    M. beladghem

    2013-09-01

    Full Text Available As the coming era is that of digitized medical information, an important challenge to deal with is the storage and transmission requirements of enormous data, including color medical images. Compression is one of the indispensable techniques to solve this problem. In this work, we propose an algorithm for color medical image compression based on a biorthogonal wavelet transform CDF 9/7 coupled with SPIHT coding algorithm, of which we applied the lifting structure to improve the drawbacks of wavelet transform. In order to enhance the compression by our algorithm, we have compared the results obtained with wavelet based filters bank. Experimental results show that the proposed algorithm is superior to traditional methods in both lossy and lossless compression for all tested color images. Our algorithm provides very important PSNR and MSSIM values for color medical images.

  14. 3D thermal medical image visualization tool: Integration between MRI and thermographic images.

    Science.gov (United States)

    Abreu de Souza, Mauren; Chagas Paz, André Augusto; Sanches, Ionildo Jóse; Nohama, Percy; Gamba, Humberto Remigio

    2014-01-01

    Three-dimensional medical image reconstruction using different images modalities require registration techniques that are, in general, based on the stacking of 2D MRI/CT images slices. In this way, the integration of two different imaging modalities: anatomical (MRI/CT) and physiological information (infrared image), to generate a 3D thermal model, is a new methodology still under development. This paper presents a 3D THERMO interface that provides flexibility for the 3D visualization: it incorporates the DICOM parameters; different color scale palettes at the final 3D model; 3D visualization at different planes of sections; and a filtering option that provides better image visualization. To summarize, the 3D thermographc medical image visualization provides a realistic and precise medical tool. The merging of two different imaging modalities allows better quality and more fidelity, especially for medical applications in which the temperature changes are clinically significant.

  15. An introduction to medical imaging with coherent terahertz frequency radiation.

    Science.gov (United States)

    Fitzgerald, A J; Berry, E; Zinovev, N N; Walker, G C; Smith, M A; Chamberlain, J M

    2002-04-07

    Methods have recently been developed that make use of electromagnetic radiation at terahertz (THz) frequencies, the region of the spectrum between millimetre wavelengths and the infrared, for imaging purposes. Radiation at these wavelengths is non-ionizing and subject to far less Rayleigh scatter than visible or infrared wavelengths, making it suitable for medical applications. This paper introduces THz pulsed imaging and discusses its potential for in vivo medical applications in comparison with existing modalities.

  16. Accuracy Validation for Medical Image Registration Algorithms: a Review

    Institute of Scientific and Technical Information of China (English)

    Zhe Liu; Xiang Deng; Guang-zhi Wang

    2012-01-01

    Accuracy validation is essential to clinical application of medical image registration techniques.Registration validation remains a challenging problem in practice mainly due to lack of 'ground truth'.In this paper,an overview of current validation methods for medical image registration is presented with detailed discussion of their benefits and drawbacks.Special focus is on non-rigid registration validation.Promising solution is also discussed.

  17. Optimal Embedding for Shape Indexing in Medical Image Databases

    OpenAIRE

    Qian, Xiaoning; Tagare, Hemant D.; Fulbright, Robert K.; Long, Rodney; Antani, Sameer

    2010-01-01

    This paper addresses the problem of indexing shapes in medical image databases. Shapes of organs are often indicative of disease, making shape similarity queries important in medical image databases. Mathematically, shapes with landmarks belong to shape spaces which are curved manifolds with a well defined metric. The challenge in shape indexing is to index data in such curved spaces. One natural indexing scheme is to use metric trees, but metric trees are prone to inefficiency. This paper pr...

  18. Adaptive geometric tessellation for 3D reconstruction of anisotropically developing cells in multilayer tissues from sparse volumetric microscopy images.

    Directory of Open Access Journals (Sweden)

    Anirban Chakraborty

    Full Text Available The need for quantification of cell growth patterns in a multilayer, multi-cellular tissue necessitates the development of a 3D reconstruction technique that can estimate 3D shapes and sizes of individual cells from Confocal Microscopy (CLSM image slices. However, the current methods of 3D reconstruction using CLSM imaging require large number of image slices per cell. But, in case of Live Cell Imaging of an actively developing tissue, large depth resolution is not feasible in order to avoid damage to cells from prolonged exposure to laser radiation. In the present work, we have proposed an anisotropic Voronoi tessellation based 3D reconstruction framework for a tightly packed multilayer tissue with extreme z-sparsity (2-4 slices/cell and wide range of cell shapes and sizes. The proposed method, named as the 'Adaptive Quadratic Voronoi Tessellation' (AQVT, is capable of handling both the sparsity problem and the non-uniformity in cell shapes by estimating the tessellation parameters for each cell from the sparse data-points on its boundaries. We have tested the proposed 3D reconstruction method on time-lapse CLSM image stacks of the Arabidopsis Shoot Apical Meristem (SAM and have shown that the AQVT based reconstruction method can correctly estimate the 3D shapes of a large number of SAM cells.

  19. A similarity-based data warehousing environment for medical images.

    Science.gov (United States)

    Teixeira, Jefferson William; Annibal, Luana Peixoto; Felipe, Joaquim Cezar; Ciferri, Ricardo Rodrigues; Ciferri, Cristina Dutra de Aguiar

    2015-11-01

    A core issue of the decision-making process in the medical field is to support the execution of analytical (OLAP) similarity queries over images in data warehousing environments. In this paper, we focus on this issue. We propose imageDWE, a non-conventional data warehousing environment that enables the storage of intrinsic features taken from medical images in a data warehouse and supports OLAP similarity queries over them. To comply with this goal, we introduce the concept of perceptual layer, which is an abstraction used to represent an image dataset according to a given feature descriptor in order to enable similarity search. Based on this concept, we propose the imageDW, an extended data warehouse with dimension tables specifically designed to support one or more perceptual layers. We also detail how to build an imageDW and how to load image data into it. Furthermore, we show how to process OLAP similarity queries composed of a conventional predicate and a similarity search predicate that encompasses the specification of one or more perceptual layers. Moreover, we introduce an index technique to improve the OLAP query processing over images. We carried out performance tests over a data warehouse environment that consolidated medical images from exams of several modalities. The results demonstrated the feasibility and efficiency of our proposed imageDWE to manage images and to process OLAP similarity queries. The results also demonstrated that the use of the proposed index technique guaranteed a great improvement in query processing.

  20. A survey of medical image registration - under review.

    Science.gov (United States)

    Viergever, Max A; Maintz, J B Antoine; Klein, Stefan; Murphy, Keelin; Staring, Marius; Pluim, Josien P W

    2016-10-01

    A retrospective view on the past two decades of the field of medical image registration is presented, guided by the article "A survey of medical image registration" (Maintz and Viergever, 1998). It shows that the classification of the field introduced in that article is still usable, although some modifications to do justice to advances in the field would be due. The main changes over the last twenty years are the shift from extrinsic to intrinsic registration, the primacy of intensity-based registration, the breakthrough of nonlinear registration, the progress of inter-subject registration, and the availability of generic image registration software packages. Two problems that were called urgent already 20 years ago, are even more urgent nowadays: Validation of registration methods, and translation of results of image registration research to clinical practice. It may be concluded that the field of medical image registration has evolved, but still is in need of further development in various aspects.

  1. Contributions in compression of 3D medical images and 2D images; Contributions en compression d'images medicales 3D et d'images naturelles 2D

    Energy Technology Data Exchange (ETDEWEB)

    Gaudeau, Y

    2006-12-15

    The huge amounts of volumetric data generated by current medical imaging techniques in the context of an increasing demand for long term archiving solutions, as well as the rapid development of distant radiology make the use of compression inevitable. Indeed, if the medical community has sided until now with compression without losses, most of applications suffer from compression ratios which are too low with this kind of compression. In this context, compression with acceptable losses could be the most appropriate answer. So, we propose a new loss coding scheme based on 3D (3 dimensional) Wavelet Transform and Dead Zone Lattice Vector Quantization 3D (DZLVQ) for medical images. Our algorithm has been evaluated on several computerized tomography (CT) and magnetic resonance image volumes. The main contribution of this work is the design of a multidimensional dead zone which enables to take into account correlations between neighbouring elementary volumes. At high compression ratios, we show that it can out-perform visually and numerically the best existing methods. These promising results are confirmed on head CT by two medical patricians. The second contribution of this document assesses the effect with-loss image compression on CAD (Computer-Aided Decision) detection performance of solid lung nodules. This work on 120 significant lungs images shows that detection did not suffer until 48:1 compression and still was robust at 96:1. The last contribution consists in the complexity reduction of our compression scheme. The first allocation dedicated to 2D DZLVQ uses an exponential of the rate-distortion (R-D) functions. The second allocation for 2D and 3D medical images is based on block statistical model to estimate the R-D curves. These R-D models are based on the joint distribution of wavelet vectors using a multidimensional mixture of generalized Gaussian (MMGG) densities. (author)

  2. A review of m-health in medical imaging.

    Science.gov (United States)

    Perera, Chandrashan Mahendra; Chakrabarti, Rahul

    2015-02-01

    The increasing capabilities of camera-equipped mobile phones have led to a growing body of evidence regarding their use in medical imaging across a broad range of medical specialties. This article reviews the current evidence for the use of mobile health (m-health) in medical imaging. We performed a structured review of the published literature regarding m-health in medical imaging using the Medline, PubMed, and Web of Science databases (January 2002-August 2013). The two authors independently extracted data regarding type of specialty, purpose, and study design of publications. In total, 235 articles were identified. The majority of studies were case reports or noncomparative product validation studies. The greatest volume of publications originated in the fields of radiology (21%), dermatology (15%), laboratory techniques (15%), and plastic surgery (12%). Among these studies, m-health was used as diagnostic aids, for patient monitoring, and to improve communication between health practitioners. With the growing use of mobile phones for medical imaging, considerations need to be given to informed consent, privacy, image storage and transfer, and guidelines for healthcare workers and patients. There are several novel uses of mobile devices for medical imaging that show promise across a variety of areas and subspecialties of healthcare. Currently, studies are mostly exploratory in nature. To validate these devices, studies with higher methodological rigor are required.

  3. Ontology modularization to improve semantic medical image annotation.

    Science.gov (United States)

    Wennerberg, Pinar; Schulz, Klaus; Buitelaar, Paul

    2011-02-01

    Searching for medical images and patient reports is a significant challenge in a clinical setting. The contents of such documents are often not described in sufficient detail thus making it difficult to utilize the inherent wealth of information contained within them. Semantic image annotation addresses this problem by describing the contents of images and reports using medical ontologies. Medical images and patient reports are then linked to each other through common annotations. Subsequently, search algorithms can more effectively find related sets of documents on the basis of these semantic descriptions. A prerequisite to realizing such a semantic search engine is that the data contained within should have been previously annotated with concepts from medical ontologies. One major challenge in this regard is the size and complexity of medical ontologies as annotation sources. Manual annotation is particularly time consuming labor intensive in a clinical environment. In this article we propose an approach to reducing the size of clinical ontologies for more efficient manual image and text annotation. More precisely, our goal is to identify smaller fragments of a large anatomy ontology that are relevant for annotating medical images from patients suffering from lymphoma. Our work is in the area of ontology modularization, which is a recent and active field of research. We describe our approach, methods and data set in detail and we discuss our results.

  4. Computing support for advanced medical data analysis and imaging

    CERN Document Server

    Wiślicki, W; Białas, P; Czerwiński, E; Kapłon, Ł; Kochanowski, A; Korcyl, G; Kowal, J; Kowalski, P; Kozik, T; Krzemień, W; Molenda, M; Moskal, P; Niedźwiecki, S; Pałka, M; Pawlik, M; Raczyński, L; Rudy, Z; Salabura, P; Sharma, N G; Silarski, M; Słomski, A; Smyrski, J; Strzelecki, A; Wieczorek, A; Zieliński, M; Zoń, N

    2014-01-01

    We discuss computing issues for data analysis and image reconstruction of PET-TOF medical scanner or other medical scanning devices producing large volumes of data. Service architecture based on the grid and cloud concepts for distributed processing is proposed and critically discussed.

  5. 21 CFR 892.2010 - Medical image storage device.

    Science.gov (United States)

    2010-04-01

    ....2010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a..., and digital memory. (b) Classification. Class I (general controls). The device is exempt from the...

  6. Volumetric soft tissue brain imaging on xCAT, a mobile flat-panel x-ray CT system

    Science.gov (United States)

    Zbijewski, Wojciech; Stayman, J. Webster

    2009-02-01

    We discuss the ongoing development of soft-tissue imaging capabilities on xCAT, a highly portable, flat-panel based cone-beam X-ray CT platform. By providing the ability to rapidly detect intra-cranial bleeds and other symptoms of stroke directly at the patient's bedside, our new system can potentially significantly improve the management of neurological emergency and intensive care patients. The paper reports on the design of our system, as well as on the methods used to combat artifacts due to scatter, non-linear detector response and scintillator glare. Images of cadaveric head samples are also presented and compared with conventional CT scans.

  7. Compressive Deconvolution in Medical Ultrasound Imaging.

    Science.gov (United States)

    Chen, Zhouye; Basarab, Adrian; Kouamé, Denis

    2016-03-01

    The interest of compressive sampling in ultrasound imaging has been recently extensively evaluated by several research teams. Following the different application setups, it has been shown that the RF data may be reconstructed from a small number of measurements and/or using a reduced number of ultrasound pulse emissions. Nevertheless, RF image spatial resolution, contrast and signal to noise ratio are affected by the limited bandwidth of the imaging transducer and the physical phenomenon related to US wave propagation. To overcome these limitations, several deconvolution-based image processing techniques have been proposed to enhance the ultrasound images. In this paper, we propose a novel framework, named compressive deconvolution, that reconstructs enhanced RF images from compressed measurements. Exploiting an unified formulation of the direct acquisition model, combining random projections and 2D convolution with a spatially invariant point spread function, the benefit of our approach is the joint data volume reduction and image quality improvement. The proposed optimization method, based on the Alternating Direction Method of Multipliers, is evaluated on both simulated and in vivo data.

  8. Laser Based 3D Volumetric Display System

    Science.gov (United States)

    1993-03-01

    Literature, Costa Mesa, CA July 1983. 3. "A Real Time Autostereoscopic Multiplanar 3D Display System", Rodney Don Williams, Felix Garcia, Jr., Texas...8217 .- NUMBERS LASER BASED 3D VOLUMETRIC DISPLAY SYSTEM PR: CD13 0. AUTHOR(S) PE: N/AWIU: DN303151 P. Soltan, J. Trias, W. Robinson, W. Dahlke 7...laser generated 3D volumetric images on a rotating double helix, (where the 3D displays are computer controlled for group viewing with the naked eye

  9. Volumetric analysis of the hypothalamus in Huntington Disease using 3T MRI: the IMAGE-HD Study.

    Directory of Open Access Journals (Sweden)

    Sanaz Gabery

    Full Text Available Huntington disease (HD is a fatal neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin gene. Non-motor symptoms and signs such as psychiatric disturbances, sleep problems and metabolic dysfunction are part of the disease manifestation. These aspects may relate to changes in the hypothalamus, an area of the brain involved in the regulation of emotion, sleep and metabolism. Neuropathological and imaging studies using both voxel-based morphometry (VBM of magnetic resonance imaging (MRI as well as positron emission tomography (PET have demonstrated pathological changes in the hypothalamic region during early stages in symptomatic HD. In this investigation, we aimed to establish a robust method for measurements of the hypothalamic volume in MRI in order to determine whether the hypothalamic dysfunction in HD is associated with the volume of this region. Using T1-weighted imaging, we describe a reproducible delineation procedure to estimate the hypothalamic volume which was based on the same landmarks used in histologically processed postmortem hypothalamic tissue. Participants included 36 prodromal HD (pre-HD, 33 symptomatic HD (symp-HD and 33 control participants who underwent MRI scanning at baseline and 18 months follow-up as part of the IMAGE-HD study. We found no evidence of cross-sectional or longitudinal changes between groups in hypothalamic volume. Our results suggest that hypothalamic pathology in HD is not associated with volume changes.

  10. Volumetric Analysis of the Hypothalamus in Huntington Disease Using 3T MRI: The IMAGE-HD Study

    Science.gov (United States)

    Gabery, Sanaz; Georgiou-Karistianis, Nellie; Lundh, Sofia Hult; Cheong, Rachel Y.; Churchyard, Andrew; Chua, Phyllis; Stout, Julie C.; Egan, Gary F.; Kirik, Deniz; Petersén, Åsa

    2015-01-01

    Huntington disease (HD) is a fatal neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin gene. Non-motor symptoms and signs such as psychiatric disturbances, sleep problems and metabolic dysfunction are part of the disease manifestation. These aspects may relate to changes in the hypothalamus, an area of the brain involved in the regulation of emotion, sleep and metabolism. Neuropathological and imaging studies using both voxel-based morphometry (VBM) of magnetic resonance imaging (MRI) as well as positron emission tomography (PET) have demonstrated pathological changes in the hypothalamic region during early stages in symptomatic HD. In this investigation, we aimed to establish a robust method for measurements of the hypothalamic volume in MRI in order to determine whether the hypothalamic dysfunction in HD is associated with the volume of this region. Using T1-weighted imaging, we describe a reproducible delineation procedure to estimate the hypothalamic volume which was based on the same landmarks used in histologically processed postmortem hypothalamic tissue. Participants included 36 prodromal HD (pre-HD), 33 symptomatic HD (symp-HD) and 33 control participants who underwent MRI scanning at baseline and 18 months follow-up as part of the IMAGE-HD study. We found no evidence of cross-sectional or longitudinal changes between groups in hypothalamic volume. Our results suggest that hypothalamic pathology in HD is not associated with volume changes. PMID:25659157

  11. Principal Components Analysis In Medical Imaging

    Science.gov (United States)

    Weaver, J. B.; Huddleston, A. L.

    1986-06-01

    Principal components analysis, PCA, is basically a data reduction technique. PCA has been used in several problems in diagnostic radiology: processing radioisotope brain scans (Ref.1), automatic alignment of radionuclide images (Ref. 2), processing MRI images (Ref. 3,4), analyzing first-pass cardiac studies (Ref. 5) correcting for attenuation in bone mineral measurements (Ref. 6) and in dual energy x-ray imaging (Ref. 6,7). This paper will progress as follows; a brief introduction to the mathematics of PCA will be followed by two brief examples of how PCA has been used in the literature. Finally my own experience with PCA in dual-energy x-ray imaging will be given.

  12. Medical Imaging of Mummies and Bog Bodies

    DEFF Research Database (Denmark)

    Lynnerup, Niels

    2010-01-01

    focused on the development and application of non-destructive methods for examining mummies, especially radiography and CT scanning with advanced 3D visualizations. Indeed, the development of commercially available CT scanners in the 1970s meant that for the first time the 3D internal structure of mummies...... severely degraded, bone is quite readily visualized, but accurate imaging of preserved soft tissues, and pathological lesions therein, may require considerable post-image capture processing of CT data....

  13. Model Observers in Medical Imaging Research

    OpenAIRE

    He, Xin; Park, Subok

    2013-01-01

    Model observers play an important role in the optimization and assessment of imaging devices. In this review paper, we first discuss the basic concepts of model observers, which include the mathematical foundations and psychophysical considerations in designing both optimal observers for optimizing imaging systems and anthropomorphic observers for modeling human observers. Second, we survey a few state-of-the-art computational techniques for estimating model observers and the principles of im...

  14. Multi-scale visual words for hierarchical medical image categorisation

    Science.gov (United States)

    Markonis, Dimitrios; Seco de Herrera, Alba G.; Eggel, Ivan; Müller, Henning

    2012-02-01

    The biomedical literature published regularly has increased strongly in past years and keeping updated even in narrow domains is difficult. Images represent essential information of their articles and can help to quicker browse through large volumes of articles in connection with keyword search. Content-based image retrieval is helping the retrieval of visual content. To facilitate retrieval of visual information, image categorisation can be an important first step. To represent scientific articles visually, medical images need to be separated from general images such as flowcharts or graphs to facilitate browsing, as graphs contain little information. Medical modality classification is a second step to focus search. The techniques described in this article first classify images into broad categories. In a second step the images are further classified into the exact medical modalities. The system combines the Scale-Invariant Feature Transform (SIFT) and density-based clustering (DENCLUE). Visual words are first created globally to differentiate broad categories and then within each category a new visual vocabulary is created for modality classification. The results show the difficulties to differentiate between some modalities by visual means alone. On the other hand the improvement of the accuracy of the two-step approach shows the usefulness of the method. The system is currently being integrated into the Goldminer image search engine of the ARRS (American Roentgen Ray Society) as a web service, allowing concentrating image search onto clinically relevant images automatically.

  15. A scanned beam THz imaging system for medical applications

    Science.gov (United States)

    Taylor, Zachary D.; Li, Wenzao; Suen, Jon; Tewari, Priyamvada; Bennett, David; Bajwa, Neha; Brown, Elliott; Culjat, Martin; Grundfest, Warren; Singh, Rahul

    2011-10-01

    THz medical imaging has been a topic of increased interest recently due largely to improvements in source and detector technology and the identification of suitable applications. One aspect of THz medical imaging research not often adequately addressed is pixel acquisition rate and phenomenology. The majority of active THz imaging systems use translation stages to raster scan a sample beneath a fixed THz beam. While these techniques have produced high resolution images of characterization targets and animal models they do not scale well to human imaging where clinicians are unwilling to place patients on large translation stages. This paper presents a scanned beam THz imaging system that can acquire a 1 cm2 area with 1 mm2 pixels and a per-pixel SNR of 40 dB in less than 5 seconds. The system translates a focused THz beam across a stationary target using a spinning polygonal mirror and HDPE objective lens. The illumination is centered at 525 GHz with ~ 125 GHz of response normalized bandwidth and the component layout is designed to optically co-locate the stationary source and detector ensuring normal incidence across a 50 mm × 50 mm field of view at standoff of 190 mm. Component characterization and images of a test target are presented. These results are some of the first ever reported for a short standoff, high resolution, scanned beam THz imaging system and represent an important step forward for practical integration of THz medical imaging where fast image acquisition times and stationary targets (patients) are requisite.

  16. Student Perspectives of Imaging Anatomy in Undergraduate Medical Education

    Science.gov (United States)

    Machado, Jorge Americo Dinis; Barbosa, Joselina Maria Pinto; Ferreira, Maria Amelia Duarte

    2013-01-01

    Radiological imaging is gaining relevance in the acquisition of competencies in clinical anatomy. The aim of this study was to evaluate the perceptions of medical students on teaching/learning of imaging anatomy as an integrated part of anatomical education. A questionnaire was designed to evaluate the perceptions of second-year students…

  17. Automatic medical X-ray image classification using annotation.

    Science.gov (United States)

    Zare, Mohammad Reza; Mueen, Ahmed; Seng, Woo Chaw

    2014-02-01

    The demand for automatically classification of medical X-ray images is rising faster than ever. In this paper, an approach is presented to gain high accuracy rate for those classes of medical database with high ratio of intraclass variability and interclass similarities. The classification framework was constructed via annotation using the following three techniques: annotation by binary classification, annotation by probabilistic latent semantic analysis, and annotation using top similar images. Next, final annotation was constructed by applying ranking similarity on annotated keywords made by each technique. The final annotation keywords were then divided into three levels according to the body region, specific bone structure in body region as well as imaging direction. Different weights were given to each level of the keywords; they are then used to calculate the weightage for each category of medical images based on their ground truth annotation. The weightage computed from the generated annotation of query image was compared with the weightage of each category of medical images, and then the query image would be assigned to the category with closest weightage to the query image. The average accuracy rate reported is 87.5 %.

  18. The Application of Partial Differential Equations in Medical Image Processing

    Directory of Open Access Journals (Sweden)

    Mohammad Madadpour Inallou

    2013-10-01

    Full Text Available Mathematical models are the foundation of biomedical computing. Partial Differential Equations (PDEs in Medical Imaging is concerned with acquiring images of the body for research, diagnosis and treatment. Biomedical Image Processing and its influence has undergoing a revolution in the past decade. Image processing has become an important component in contemporary science and technology and has been an interdisciplinary research field attracting expertise from applied mathematics, biology, computer sciences, engineering, statistics, microscopy, radiologic sciences, physics, medicine and etc. Medical imaging equipment is taking on an increasingly critical role in healthcare as the industry strives to lower patient costs and achieve earlier disease prediction using noninvasive means. The subsections of medical imaging are categorized to two: Conventional (X-Ray and Ultrasound and Computed (CT, MRI, fMRI, SPECT, PET and etc. This paper is organized as fallow: First section describes some kind of image processing. Second section is about techniques and requirements, and in the next sections the proceeding of Analyzing, Smoothing, Segmentation, De-noising and Registration in Medical Image Processing Equipment by PDEs Framework will be regarded

  19. Diffusion tensor and volumetric magnetic resonance imaging using an MR-compatible hand-induced robotic device suggests training-induced neuroplasticity in patients with chronic stroke.

    Science.gov (United States)

    Lazaridou, Asimina; Astrakas, Loukas; Mintzopoulos, Dionyssios; Khanicheh, Azadeh; Singhal, Aneesh B; Moskowitz, Michael A; Rosen, Bruce; Tzika, Aria A

    2013-11-01

    Stroke is the third leading cause of mortality and a frequent cause of long-term adult impairment. Improved strategies to enhance motor function in individuals with chronic disability from stroke are thus required. Post‑stroke therapy may improve rehabilitation and reduce long-term disability; however, objective methods for evaluating the specific impact of rehabilitation are rare. Brain imaging studies on patients with chronic stroke have shown evidence for reorganization of areas showing functional plasticity after a stroke. In this study, we hypothesized that brain mapping using a novel magnetic resonance (MR)-compatible hand device in conjunction with state‑of‑the‑art magnetic resonance imaging (MRI) can serve as a novel biomarker for brain plasticity induced by rehabilitative motor training in patients with chronic stroke. This hypothesis is based on the premises that robotic devices, by stimulating brain plasticity, can assist in restoring movement compromised by stroke-induced pathological changes in the brain and that these changes can then be monitored by advanced MRI. We serially examined 15 healthy controls and 4 patients with chronic stroke. We employed a combination of diffusion tensor imaging (DTI) and volumetric MRI using a 3-tesla (3T) MRI system using a 12-channel Siemens Tim coil and a novel MR-compatible hand‑induced robotic device. DTI data revealed that the number of fibers and the average tract length significantly increased after 8 weeks of hand training by 110% and 64%, respectively (pstroke than previously thought, showing that structural plasticity is possible even after 6 months due to retained neuroplasticity. Our study is an example of personalized medicine using advanced neuroimaging methods in conjunction with robotics in the molecular medicine era.

  20. Oncological image analysis: medical and molecular image analysis

    Science.gov (United States)

    Brady, Michael

    2007-03-01

    This paper summarises the work we have been doing on joint projects with GE Healthcare on colorectal and liver cancer, and with Siemens Molecular Imaging on dynamic PET. First, we recall the salient facts about cancer and oncological image analysis. Then we introduce some of the work that we have done on analysing clinical MRI images of colorectal and liver cancer, specifically the detection of lymph nodes and segmentation of the circumferential resection margin. In the second part of the paper, we shift attention to the complementary aspect of molecular image analysis, illustrating our approach with some recent work on: tumour acidosis, tumour hypoxia, and multiply drug resistant tumours.

  1. A computationally efficient method for automatic registration of orthogonal x-ray images with volumetric CT data

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xin [ADSIP Research Centre, University of Central Lancashire, Preston (United Kingdom); Varley, Martin R [ADSIP Research Centre, University of Central Lancashire, Preston (United Kingdom); Shark, Lik-Kwan [ADSIP Research Centre, University of Central Lancashire, Preston (United Kingdom); Shentall, Glyn S [Rosemere Cancer Centre, Royal Preston Hospital, Preston (United Kingdom); Kirby, Mike C [Satellite Centres, Christie Hospital NHS Foundation Trust, Manchester (United Kingdom)

    2008-02-21

    The paper presents a computationally efficient 3D-2D image registration algorithm for automatic pre-treatment validation in radiotherapy. The novel aspects of the algorithm include (a) a hybrid cost function based on partial digitally reconstructed radiographs (DRRs) generated along projected anatomical contours and a level set term for similarity measurement; and (b) a fast search method based on parabola fitting and sensitivity-based search order. Using CT and orthogonal x-ray images from a skull and a pelvis phantom, the proposed algorithm is compared with the conventional ray-casting full DRR based registration method. Not only is the algorithm shown to be computationally more efficient with registration time being reduced by a factor of 8, but also the algorithm is shown to offer 50% higher capture range allowing the initial patient displacement up to 15 mm (measured by mean target registration error). For the simulated data, high registration accuracy with average errors of 0.53 mm {+-} 0.12 mm for translation and 0.61 deg, {+-} 0.29 deg. for rotation within the capture range has been achieved. For the tested phantom data, the algorithm has also shown to be robust without being affected by artificial markers in the image.

  2. A computationally efficient method for automatic registration of orthogonal x-ray images with volumetric CT data

    Science.gov (United States)

    Chen, Xin; Varley, Martin R.; Shark, Lik-Kwan; Shentall, Glyn S.; Kirby, Mike C.

    2008-02-01

    The paper presents a computationally efficient 3D-2D image registration algorithm for automatic pre-treatment validation in radiotherapy. The novel aspects of the algorithm include (a) a hybrid cost function based on partial digitally reconstructed radiographs (DRRs) generated along projected anatomical contours and a level set term for similarity measurement; and (b) a fast search method based on parabola fitting and sensitivity-based search order. Using CT and orthogonal x-ray images from a skull and a pelvis phantom, the proposed algorithm is compared with the conventional ray-casting full DRR based registration method. Not only is the algorithm shown to be computationally more efficient with registration time being reduced by a factor of 8, but also the algorithm is shown to offer 50% higher capture range allowing the initial patient displacement up to 15 mm (measured by mean target registration error). For the simulated data, high registration accuracy with average errors of 0.53 mm ± 0.12 mm for translation and 0.61° ± 0.29° for rotation within the capture range has been achieved. For the tested phantom data, the algorithm has also shown to be robust without being affected by artificial markers in the image.

  3. An interactive, stereoscopic virtual environment for medical imaging visualization, simulation and training

    Science.gov (United States)

    Krueger, Evan; Messier, Erik; Linte, Cristian A.; Diaz, Gabriel

    2017-03-01

    Recent advances in medical image acquisition allow for the reconstruction of anatomies with 3D, 4D, and 5D renderings. Nevertheless, standard anatomical and medical data visualization still relies heavily on the use of traditional 2D didactic tools (i.e., textbooks and slides), which restrict the presentation of image data to a 2D slice format. While these approaches have their merits beyond being cost effective and easy to disseminate, anatomy is inherently three-dimensional. By using 2D visualizations to illustrate more complex morphologies, important interactions between structures can be missed. In practice, such as in the planning and execution of surgical interventions, professionals require intricate knowledge of anatomical complexities, which can be more clearly communicated and understood through intuitive interaction with 3D volumetric datasets, such as those extracted from high-resolution CT or MRI scans. Open source, high quality, 3D medical imaging datasets are freely available, and with the emerging popularity of 3D display technologies, affordable and consistent 3D anatomical visualizations can be created. In this study we describe the design, implementation, and evaluation of one such interactive, stereoscopic visualization paradigm for human anatomy extracted from 3D medical images. A stereoscopic display was created by projecting the scene onto the lab floor using sequential frame stereo projection and viewed through active shutter glasses. By incorporating a PhaseSpace motion tracking system, a single viewer can navigate an augmented reality environment and directly manipulate virtual objects in 3D. While this paradigm is sufficiently versatile to enable a wide variety of applications in need of 3D visualization, we designed our study to work as an interactive game, which allows users to explore the anatomy of various organs and systems. In this study we describe the design, implementation, and evaluation of an interactive and stereoscopic

  4. 3D/2D Registration of medical images

    OpenAIRE

    Tomaževič, D.

    2008-01-01

    The topic of this doctoral dissertation is registration of 3D medical images to corresponding projective 2D images, referred to as 3D/2D registration. There are numerous possible applications of 3D/2D registration in image-aided diagnosis and treatment. In most of the applications, 3D/2D registration provides the location and orientation of the structures in a preoperative 3D CT or MR image with respect to intraoperative 2D X-ray images. The proposed doctoral dissertation tries to find origin...

  5. Research on medical image encryption in telemedicine systems.

    Science.gov (United States)

    Dai, Yin; Wang, Huanzhen; Zhou, Zixia; Jin, Ziyi

    2016-04-29

    Recently, advances in computers and high-speed communication tools have led to enhancements in remote medical consultation research. Laws in some localities require hospitals to encrypt patient information (including images of the patient) before transferring the data over a network. Therefore, developing suitable encryption algorithms is quite important for modern medicine. This paper demonstrates a digital image encryption algorithm based on chaotic mapping, which uses the no-period and no-convergence properties of a chaotic sequence to create image chaos and pixel averaging. Then, the chaotic sequence is used to encrypt the image, thereby improving data security. With this method, the security of data and images can be improved.

  6. User Oriented Platform for Data Analytics in Medical Imaging Repositories.

    Science.gov (United States)

    Valerio, Miguel; Godinho, Tiago Marques; Costa, Carlos

    2016-01-01

    The production of medical imaging studies and associated data has been growing in the last decades. Their primary use is to support medical diagnosis and treatment processes. However, the secondary use of the tremendous amount of stored data is generally more limited. Nowadays, medical imaging repositories have turned into rich databanks holding not only the images themselves, but also a wide range of metadata related to the medical practice. Exploring these repositories through data analysis and business intelligence techniques has the potential of increasing the efficiency and quality of the medical practice. Nevertheless, the continuous production of tremendous amounts of data makes their analysis difficult by conventional approaches. This article proposes a novel automated methodology to derive knowledge from medical imaging repositories that does not disrupt the regular medical practice. Our method is able to apply statistical analysis and business intelligence techniques directly on top of live institutional repositories. It is a Web-based solution that provides extensive dashboard capabilities, including complete charting and reporting options, combined with data mining components. Moreover, it enables the operator to set a wide multitude of query parameters and operators through the use of an intuitive graphical interface.

  7. Medical Imaging in Differentiating the Diabetic Charcot Foot from Osteomyelitis.

    Science.gov (United States)

    Short, Daniel J; Zgonis, Thomas

    2017-01-01

    Diabetic Charcot neuroarthropathy (DCN) poses a great challenge to diagnose in the early stages and when plain radiographs do not depict any initial signs of osseous fragmentation or dislocation in a setting of a high clinical index of suspicion. Medical imaging, including magnetic resonance imaging, computed tomography, and advanced bone scintigraphy, has its own unique clinical indications when treating the DCN with or without concomitant osteomyelitis. This article reviews different clinical case scenarios for choosing the most accurate medical imaging in differentiating DCN from osteomyelitis. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Lossless compression of medical images using Hilbert scan

    Science.gov (United States)

    Sun, Ziguang; Li, Chungui; Liu, Hao; Zhang, Zengfang

    2007-12-01

    The effectiveness of Hilbert scan in lossless medical images compression is discussed. In our methods, after coding of intensities, the pixels in a medical images have been decorrelated with differential pulse code modulation, then the error image has been rearranged using Hilbert scan, finally we implement five coding schemes, such as Huffman coding, RLE, lZW coding, Arithmetic coding, and RLE followed by Huffman coding. The experiments show that the case, which applies DPCM followed by Hilbert scan and then compressed by the Arithmetic coding scheme, has the best compression result, also indicate that Hilbert scan can enhance pixel locality, and increase the compression ratio effectively.

  9. Deep Transfer Learning for Modality Classification of Medical Images

    Directory of Open Access Journals (Sweden)

    Yuhai Yu

    2017-07-01

    Full Text Available Medical images are valuable for clinical diagnosis and decision making. Image modality is an important primary step, as it is capable of aiding clinicians to access required medical image in retrieval systems. Traditional methods of modality classification are dependent on the choice of hand-crafted features and demand a clear awareness of prior domain knowledge. The feature learning approach may detect efficiently visual characteristics of different modalities, but it is limited to the number of training datasets. To overcome the absence of labeled data, on the one hand, we take deep convolutional neural networks (VGGNet, ResNet with different depths pre-trained on ImageNet, fix most of the earlier layers to reserve generic features of natural images, and only train their higher-level portion on ImageCLEF to learn domain-specific features of medical figures. Then, we train from scratch deep CNNs with only six weight layers to capture more domain-specific features. On the other hand, we employ two data augmentation methods to help CNNs to give the full scope to their potential characterizing image modality features. The final prediction is given by our voting system based on the outputs of three CNNs. After evaluating our proposed model on the subfigure classification task in ImageCLEF2015 and ImageCLEF2016, we obtain new, state-of-the-art results—76.87% in ImageCLEF2015 and 87.37% in ImageCLEF2016—which imply that CNNs, based on our proposed transfer learning methods and data augmentation skills, can identify more efficiently modalities of medical images.

  10. Active index for content-based medical image retrieval.

    Science.gov (United States)

    Chang, S K

    1996-01-01

    This paper introduces the active index for content-based medical image retrieval. The dynamic nature of the active index is its most important characteristic. With an active index, we can effectively and efficiently handle smart images that respond to accessing, probing and other actions. The main applications of the active index are to prefetch image and multimedia data, and to facilitate similarity retrieval. The experimental active index system is described.

  11. Processing of hyperspectral medical images applications in dermatology using Matlab

    CERN Document Server

    Koprowski, Robert

    2017-01-01

    This book presents new methods of analyzing and processing hyperspectral medical images, which can be used in diagnostics, for example for dermatological images. The algorithms proposed are fully automatic and the results obtained are fully reproducible. Their operation was tested on a set of several thousands of hyperspectral images and they were implemented in Matlab. The presented source code can be used without licensing restrictions. This is a valuable resource for computer scientists, bioengineers, doctoral students, and dermatologists interested in contemporary analysis methods.

  12. Advanced techniques in medical image segmentation of the liver

    OpenAIRE

    López Mir, Fernando

    2016-01-01

    [EN] Image segmentation is, along with multimodal and monomodal registration, the operation with the greatest applicability in medical image processing. There are many operations and filters, as much as applications and cases, where the segmentation of an organic tissue is the first step. The case of liver segmentation in radiological images is, after the brain, that on which the highest number of scientific publications can be found. This is due, on the one hand, to the need to continue inno...

  13. FAST: framework for heterogeneous medical image computing and visualization.

    Science.gov (United States)

    Smistad, Erik; Bozorgi, Mohammadmehdi; Lindseth, Frank

    2015-11-01

    Computer systems are becoming increasingly heterogeneous in the sense that they consist of different processors, such as multi-core CPUs and graphic processing units. As the amount of medical image data increases, it is crucial to exploit the computational power of these processors. However, this is currently difficult due to several factors, such as driver errors, processor differences, and the need for low-level memory handling. This paper presents a novel FrAmework for heterogeneouS medical image compuTing and visualization (FAST). The framework aims to make it easier to simultaneously process and visualize medical images efficiently on heterogeneous systems. FAST uses common image processing programming paradigms and hides the details of memory handling from the user, while enabling the use of all processors and cores on a system. The framework is open-source, cross-platform and available online. Code examples and performance measurements are presented to show the simplicity and efficiency of FAST. The results are compared to the insight toolkit (ITK) and the visualization toolkit (VTK) and show that the presented framework is faster with up to 20 times speedup on several common medical imaging algorithms. FAST enables efficient medical image computing and visualization on heterogeneous systems. Code examples and performance evaluations have demonstrated that the toolkit is both easy to use and performs better than existing frameworks, such as ITK and VTK.

  14. COCHLEAR LENGTH DETERMINATION IN TEMPORAL BONE SPECIMENS USING HISTOLOGICAL SERIAL MICRO GRINDING IMAGING, MICRO COMPUTED TOMOGRAPHY AND FLAT-PANEL VOLUMETRIC COMPUTED TOMOGRAPHY

    Directory of Open Access Journals (Sweden)

    Waldemar Würfel

    2015-04-01

    Full Text Available The cochlear length virtually describes the length of the cochlea in a straight line. Several theoretical options for measuring the length of the cochlea are conceivable. In choosing the type of cochlear implant electrode, this can play a crucial role. A wide range of electrodes is available, especially among the models designed to preserve residual hearing and structural integrity. It is believed that the depth of cochlear implant electrode insertion has an influence on the functional hearing based on the area of the cochlea that is electrically stimulated. Method: Imaging of nine human temporal bone specimens was performed using histological serial microgrinding imaging, micro computed tomography (microCT and experimental flat-panel volumetric computed tomography (fpVCT. Measurements were then performed by outlining the cochlea in OsiriX (Pixmeo, Los Angeles USA. Results: The cochlear length of 9 human temporal bones was determined in each histological serial microgrinding imaging, fpVCT and microCT. Cochlear length ranges in histological serial grinding imaging from 45.3 mm to 38.7 mm, in microCT from 46.1 mm to 39.3 mm and in fpVCT from 45.8 mm to 39.8 mm. Significant inter- and intraindividual differences in the cochlear length were observed. The presented methodology is capable of determining the cochlear length in each imaging modality. Discussion: A methodology to experimentally determine the cochlear length is interesting from both clinical and preclinical perspectives. Insertion studies are highly relevant to the development and evaluation of new electrode arrays. This study presents a measurement methodology that allows for individualized cochlear length measurement based on three established imaging modalities. The data presented here confirm differences in cochlear length. The method described here can be used to evaluate a cochlea in an experimental setting. This allows an individualized, pre-interventional evaluation of the

  15. Diagonal queue medical image steganography with Rabin cryptosystem.

    Science.gov (United States)

    Jain, Mamta; Lenka, Saroj Kumar

    2016-03-01

    The main purpose of this work is to provide a novel and efficient method to the image steganography area of research in the field of biomedical, so that the security can be given to the very precious and confidential sensitive data of the patient and at the same time with the implication of the highly reliable algorithms will explode the high security to the precious brain information from the intruders. The patient information such as patient medical records with personal identification information of patients can be stored in both storage and transmission. This paper describes a novel methodology for hiding medical records like HIV reports, baby girl fetus, and patient's identity information inside their Brain disease medical image files viz. scan image or MRI image using the notion of obscurity with respect to a diagonal queue least significant bit substitution. Data structure queue plays a dynamic role in resource sharing between multiple communication parties and when secret medical data are transferred asynchronously (secret medical data not necessarily received at the same rate they were sent). Rabin cryptosystem is used for secret medical data writing, since it is computationally secure against a chosen-plaintext attack and shows the difficulty of integer factoring. The outcome of the cryptosystem is organized in various blocks and equally distributed sub-blocks. In steganography process, various Brain disease cover images are organized into various blocks of diagonal queues. The secret cipher blocks and sub-blocks are assigned dynamically to selected diagonal queues for embedding. The receiver gets four values of medical data plaintext corresponding to one ciphertext, so only authorized receiver can identify the correct medical data. Performance analysis was conducted using MSE, PSNR, maximum embedding capacity as well as by histogram analysis between various Brain disease stego and cover images.

  16. Optical medical imaging: from glass to man

    Science.gov (United States)

    Bradley, Mark

    2016-11-01

    A formidable challenge in modern respiratory healthcare is the accurate and timely diagnosis of lung infection and inflammation. The EPSRC Interdisciplinary Research Collaboration (IRC) `Proteus' seeks to address this challenge by developing an optical fibre based healthcare technology platform that combines physiological sensing with multiplexed optical molecular imaging. This technology will enable in situ measurements deep in the human lung allowing the assessment of tissue function and characterization of the unique signatures of pulmonary disease and is illustrated here with our in-man application of Optical Imaging SmartProbes and our first device Versicolour.

  17. Quantification of Structure from Medical Images

    DEFF Research Database (Denmark)

    Qazi, Arish Asif

    , segmented from MR images of the knee. The cartilage tissue is considered to be a key determinant in the onset of Osteoarthritis (OA), a degenerative joint disease, with no known cure. The primary obstacle has been the dependence on radiography as the ‘gold standard’ for detecting the manifestation...... based on diffusion tensor imaging, a technique widely used for analysis of the white matter of the central nervous system in the living human brain. An inherent drawback of the traditional diffusion tensor model is its limited ability to provide detailed information about multi-directional fiber...

  18. Medical Images Watermarking Algorithm Based on Improved DCT

    Directory of Open Access Journals (Sweden)

    Yv-fan SHANG

    2013-12-01

    Full Text Available Targeting at the incessant securities problems of digital information management system in modern medical system, this paper presents the robust watermarking algorithm for medical images based on Arnold transformation and DCT. The algorithm first deploys the scrambling technology to encrypt the watermark information and then combines it with the visual feature vector of the image to generate a binary logic series through the hash function. The sequence as taken as keys and stored in the third party to obtain ownership of the original image. Having no need for artificial selection of a region of interest, no capacity constraint, no participation of the original medical image, such kind of watermark extracting solves security and speed problems in the watermark embedding and extracting. The simulation results also show that the algorithm is simple in operation and excellent in robustness and invisibility. In a word, it is more practical compared with other algorithms

  19. Medical image segmentation based on SLIC superpixels model

    Science.gov (United States)

    Chen, Xiang-ting; Zhang, Fan; Zhang, Ruo-ya

    2017-01-01

    Medical imaging has been widely used in clinical practice. It is an important basis for medical experts to diagnose the disease. However, medical images have many unstable factors such as complex imaging mechanism, the target displacement will cause constructed defect and the partial volume effect will lead to error and equipment wear, which increases the complexity of subsequent image processing greatly. The segmentation algorithm which based on SLIC (Simple Linear Iterative Clustering, SLIC) superpixels is used to eliminate the influence of constructed defect and noise by means of the feature similarity in the preprocessing stage. At the same time, excellent clustering effect can reduce the complexity of the algorithm extremely, which provides an effective basis for the rapid diagnosis of experts.

  20. Three-Dimensional Volumetric Assessment of Diastolic Function by Cardiac Magnetic Resonance Imaging: The Multi-Ethnic Study of Atherosclerosis (MESA).

    Science.gov (United States)

    Nacif, Marcelo S; Almeida, Andre L C; Young, Alistair A; Cowan, Brett R; Armstrong, Anderson C; Yang, Eunice; Sibley, Christopher T; Hundley, W Gregory; Liu, Songtao; Lima, Joao Ac; Bluemke, David A

    2017-01-01

    Cardiac Magnetic Resonance is in need of a simple and robust method for diastolic function assessment that can be done with routine protocol sequences. To develop and validate a three-dimensional (3D) model-based volumetric assessment of diastolic function using cardiac magnetic resonance (CMR) imaging and compare the results obtained with the model with those obtained by echocardiography. The study participants provided written informed consent and were included if having undergone both echocardiography and cine steady-state free precession (SSFP) CMR on the same day. Guide points at the septal and lateral mitral annulus were used to define the early longitudinal relaxation rate (E'), while a time-volume curve from the 3D model was used to assess diastolic filling parameters. We determined the correlation between 3D CMR and echocardiography and the accuracy of CMR in classifying the diastolic function grade. The study included 102 subjects. The E/A ratio by CMR was positively associated with the E/A ratio by echocardiography (r = 0.71, p potencial na avaliação rotineira da função diastólica por RMC.

  1. Aliphatic polyesters for medical imaging and theranostic applications.

    Science.gov (United States)

    Nottelet, Benjamin; Darcos, Vincent; Coudane, Jean

    2015-11-01

    Medical imaging is a cornerstone of modern medicine. In that context the development of innovative imaging systems combining biomaterials and contrast agents (CAs)/imaging probes (IPs) for improved diagnostic and theranostic applications focuses intense research efforts. In particular, the classical aliphatic (co)polyesters poly(lactide) (PLA), poly(lactide-co-glycolide) (PLGA) and poly(ɛ-caprolactone) (PCL), attract much attention due to their long track record in the medical field. This review aims therefore at providing a state-of-the-art of polyester-based imaging systems. In a first section a rapid description of the various imaging modalities, including magnetic resonance imaging (MRI), optical imaging, computed tomography (CT), ultrasound (US) and radionuclide imaging (SPECT, PET) will be given. Then, the two main strategies used to combine the CAs/IPs and the polyesters will be discussed. In more detail we will first present the strategies relying on CAs/IPs encapsulation in nanoparticles, micelles, dendrimers or capsules. We will then present chemical modifications of polyesters backbones and/or polyester surfaces to yield macromolecular imaging agents. Finally, opportunities offered by these innovative systems will be illustrated with some recent examples in the fields of cell labeling, diagnostic or theranostic applications and medical devices. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Medical image of the week: polysomnogram artifact

    Directory of Open Access Journals (Sweden)

    Bartell J

    2015-02-01

    Full Text Available A 54 year-old man with a past medical history of attention deficit hyperactivity disorder (ADHD, low back pain, and paroxysmal supraventricular tachycardia presented to the sleep laboratory for evaluation of sleep disordered breathing. Pertinent medications include fluoxetine, ambien, and clonazepam. His Epworth sleepiness score was 18. He had a total sleep time of 12 min. On the night of his sleep study, the patient was restless and repeatedly changed positions in bed. Figures 1 and 2 show the artifact determined to be lead displacement of O1M2 after the patient shifted in bed, inadvertently removing one of his scalp electrodes. The sine waves are 60 Hz in frequency. Once the problem was identified, the lead was quickly replaced to its proper position.

  3. Medical image of the week: aspergilloma

    Directory of Open Access Journals (Sweden)

    Hsu W

    2014-05-01

    Full Text Available No abstract available. Article truncated after 150 words. A 69-year-old woman, a current smoker, with very severe chronic obstructive pulmonary disease and prior atypical mycobacterium, was found unresponsive by her family and intubated in the field by emergency medical services for respiratory distress. Her CT thorax showed severe emphysematous disease, apical bullous disease, and a large left upper lobe cavitation with debris (Figure 1. She was treated with broad-spectrum antibiotics and anti-fungal medications. Hemoptysis was never seen. Sputum cultures over a span of two weeks repeatedly showed Aspergillus fumigatus and outside medical records confirmed the patient had a known history of stable aspergilloma not requiring therapy. Aspergillomas usually arises in cavitary areas of the lung damaged by previous infections. The fungus ball is a combination of colonization by Aspergillus hyphae and cellular debris. Individuals with aspergillomas are usually asymptomatic or have mild symptoms (chronic cough and do not require treatment unless it begins to invade into the cavity ...

  4. SVM for density estimation and application to medical image segmentation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhao; ZHANG Su; ZHANG Chen-xi; CHEN Ya-zhu

    2006-01-01

    A method of medical image segmentation based on support vector machine (SVM) for density estimation is presented. We used this estimator to construct a prior model of the image intensity and curvature profile of the structure from training images. When segmenting a novel image similar to the training images, the technique of narrow level set method is used. The higher dimensional surface evolution metric is defined by the prior model instead of by energy minimization function. This method offers several advantages. First, SVM for density estimation is consistent and its solution is sparse. Second, compared to the traditional level set methods, this method incorporates shape information on the object to be segmented into the segmentation process.Segmentation results are demonstrated on synthetic images, MR images and ultrasonic images.

  5. Authentication of digital medical images with digital signature technology.

    Science.gov (United States)

    Smith, J P

    1995-03-01

    To determine whether digital signature technology (DST) can authenticate digital medical images to the same level of authenticity required for interbank electronic transfer of funds. Message digests were computed for two magnetic resonance images that differed only by the value of a single bit. RSA (Rivest, Shamir, and Adleman) public key cryptography was used to encrypt each message digest to form a digital signature for each image, a process analogous to the established use of RSA DST for electronic funds transfer. The process was then reversed to authenticate the original image from its digital signature. Although the images differed by less than 0.000095%, their message digests differed at 94% of their characters. The digital signature of the original image proved that it was authentic and that the altered image was not authentic. RSA DST can establish the authenticity of images to at least the level of confidence required for interbank electronic transfer of funds.

  6. Registering multiple medical images using the shared chain mutual information

    Institute of Scientific and Technical Information of China (English)

    Jing Jin; Qiang Wang; Yi Shen

    2007-01-01

    @@ A new approach to the simultaneous registration of multiple medical images is proposed using shared chain mutual information (SCMI) as the matching measure. The presented method applies SCMI to measure the shared information between the multiple images. Registration is achieved by adjusting the relative position of the floating image until the SCMI between all the images is maximized. Using this measure, we registered three and four simulated magnetic resonance imaging (MRI) images using downhill simplex optimization to search for the optimal transformation parameters. Accuracy and validity of the proposed method for multiple-image registration are testified by comparing the results with that of twoimage registration. Furthermore, the performance of the proposed method is validated by registering the real ultrasonic image sequence.

  7. Automatic medical image annotation and keyword-based image retrieval using relevance feedback.

    Science.gov (United States)

    Ko, Byoung Chul; Lee, JiHyeon; Nam, Jae-Yeal

    2012-08-01

    This paper presents novel multiple keywords annotation for medical images, keyword-based medical image retrieval, and relevance feedback method for image retrieval for enhancing image retrieval performance. For semantic keyword annotation, this study proposes a novel medical image classification method combining local wavelet-based center symmetric-local binary patterns with random forests. For keyword-based image retrieval, our retrieval system use the confidence score that is assigned to each annotated keyword by combining probabilities of random forests with predefined body relation graph. To overcome the limitation of keyword-based image retrieval, we combine our image retrieval system with relevance feedback mechanism based on visual feature and pattern classifier. Compared with other annotation and relevance feedback algorithms, the proposed method shows both improved annotation performance and accurate retrieval results.

  8. Nonlocal Means-Based Denoising for Medical Images

    Directory of Open Access Journals (Sweden)

    Ke Lu

    2012-01-01

    Full Text Available Medical images often consist of low-contrast objects corrupted by random noise arising in the image acquisition process. Thus, image denoising is one of the fundamental tasks required by medical imaging analysis. Nonlocal means (NL-means method provides a powerful framework for denoising. In this work, we investigate an adaptive denoising scheme based on the patch NL-means algorithm for medical imaging denoising. In contrast with the traditional NL-means algorithm, the proposed adaptive NL-means denoising scheme has three unique features. First, we use a restricted local neighbourhood where the true intensity for each noisy pixel is estimated from a set of selected neighbouring pixels to perform the denoising process. Second, the weights used are calculated thanks to the similarity between the patch to denoise and the other patches candidates. Finally, we apply the steering kernel to preserve the details of the images. The proposed method has been compared with similar state-of-art methods over synthetic and real clinical medical images showing an improved performance in all cases analyzed.

  9. MEDICAL IMAGE SEGMENTATION FOR ANATOMICAL KNOWLEDGE EXTRACTION

    Directory of Open Access Journals (Sweden)

    Ms Maya Eapen

    2014-01-01

    Full Text Available Computed Tomography-Angiography (CTA images of the abdomen, followed by precise segmentation and subsequent computation of shape based features of liver play an important role in hepatic surgery, patient/donor diagnosis during liver transplantation and at various treatment stages. Nevertheless, the issues like intensity similarity and Partial Volume Effect (PVE between the neighboring organs; left the task of liver segmentation critical. The accurate segmentation of liver helps the surgeons to perfectly classify the patients based on their liver anatomy which in turn helps them in the treatment decision phase. In this study, we propose an effective Advanced Region Growing (ARG algorithm for segmentation of liver from CTA images. The performance of the proposed technique was tested with several CTA images acquired across a wide range of patients. The proposed ARG algorithm identifies the liver regions on the images based on the statistical features (intensity distribution and orientation value. The proposed technique addressed the aforementioned issues and been evaluated both quantitatively and qualitatively. For quantitative analysis proposed method was compared with manual segmentation (gold standard. The method was also compared with standard region growing.

  10. Digital holographic microscopy for longitudinal volumetric imaging of growth and treatment response in three-dimensional tumor models

    Science.gov (United States)

    Li, Yuyu; Petrovic, Ljubica; La, Jeffrey; Celli, Jonathan P.; Yelleswarapu, Chandra S.

    2014-11-01

    We report the use of digital holographic microscopy (DHM) as a viable microscopy approach for quantitative, nondestructive longitudinal imaging of in vitro three-dimensional (3-D) tumor models. Following established methods, we prepared 3-D cultures of pancreatic cancer cells in overlay geometry on extracellular matrix beds and obtained digital holograms at multiple time points throughout the duration of growth. The holograms were digitally processed and the unwrapped phase images were obtained to quantify the nodule thickness over time under normal growth and in cultures subject to chemotherapy treatment. In this manner, total nodule volumes are rapidly estimated and demonstrated here to show contrasting time-dependent changes during growth and in response to treatment. This work suggests the utility of DHM to quantify changes in 3-D structure over time and suggests the further development of this approach for time-lapse monitoring of 3-D morphological changes during growth and in response to treatment that would otherwise be impractical to visualize.

  11. Volumetric three-dimensional display system with rasterization hardware

    Science.gov (United States)

    Favalora, Gregg E.; Dorval, Rick K.; Hall, Deirdre M.; Giovinco, Michael; Napoli, Joshua

    2001-06-01

    An 8-color multiplanar volumetric display is being developed by Actuality Systems, Inc. It will be capable of utilizing an image volume greater than 90 million voxels, which we believe is the greatest utilizable voxel set of any volumetric display constructed to date. The display is designed to be used for molecular visualization, mechanical CAD, e-commerce, entertainment, and medical imaging. As such, it contains a new graphics processing architecture, novel high-performance line- drawing algorithms, and an API similar to a current standard. Three-dimensional imagery is created by projecting a series of 2-D bitmaps ('image slices') onto a diffuse screen that rotates at 600 rpm. Persistence of vision fuses the slices into a volume-filling 3-D image. A modified three-panel Texas Instruments projector provides slices at approximately 4 kHz, resulting in 8-color 3-D imagery comprised of roughly 200 radially-disposed slices which are updated at 20 Hz. Each slice has a resolution of 768 by 768 pixels, subtending 10 inches. An unusual off-axis projection scheme incorporating tilted rotating optics is used to maintain good focus across the projection screen. The display electronics includes a custom rasterization architecture which converts the user's 3- D geometry data into image slices, as well as 6 Gbits of DDR SDRAM graphics memory.

  12. Conversion of a Surface Model of a Structure of Interest into a Volume Model for Medical Image Retrieval

    Directory of Open Access Journals (Sweden)

    Sarmad ISTEPHAN

    2015-06-01

    Full Text Available Volumetric medical image datasets contain vital information for noninvasive diagnosis, treatment planning and prognosis. However, direct and unlimited query of such datasets is hindered due to the unstructured nature of the imaging data. This study is a step towards the unlimited query of medical image datasets by focusing on specific Structures of Interest (SOI. A requirement in achieving this objective is having both the surface and volume models of the SOI. However, typically, only the surface model is available. Therefore, this study focuses on creating a fast method to convert a surface model to a volume model. Three methods (1D, 2D and 3D are proposed and evaluated using simulated and real data of Deep Perisylvian Area (DPSA within the human brain. The 1D method takes 80 msec for DPSA model; about 4 times faster than 2D method and 7.4 fold faster than 3D method, with over 97% accuracy. The proposed 1D method is feasible for surface to volume conversion in computer aided diagnosis, treatment planning and prognosis systems containing large amounts of unstructured medical images.

  13. Fast volumetric imaging of bound and pore water in cortical bone using three-dimensional ultrashort-TE (UTE) and inversion recovery UTE sequences.

    Science.gov (United States)

    Chen, Jun; Carl, Michael; Ma, Yajun; Shao, Hongda; Lu, Xing; Chen, Bimin; Chang, Eric Y; Wu, Zhihong; Du, Jiang

    2016-10-01

    We report the three-dimensional ultrashort-TE (3D UTE) and adiabatic inversion recovery UTE (IR-UTE) sequences employing a radial trajectory with conical view ordering for bi-component T2 * analysis of bound water (T2 *(BW) ) and pore water (T2 *(PW) ) in cortical bone. An interleaved dual-echo 3D UTE acquisition scheme was developed for fast bi-component analysis of bound and pore water in cortical bone. A 3D IR-UTE acquisition scheme employing multiple spokes per IR was developed for bound water imaging. Two-dimensional UTE (2D UTE) and IR-UTE sequences were employed for comparison. The sequences were applied to bovine bone samples (n = 6) and volunteers (n = 6) using a 3-T scanner. Bi-component fitting of 3D UTE images of bovine samples showed a mean T2 *(BW) of 0.26 ± 0.04 ms and T2 *(PW) of 4.16 ± 0.35 ms, with fractions of 21.5 ± 3.6% and 78.5 ± 3.6%, respectively. The 3D IR-UTE signal showed a single-component decay with a mean T2 *(BW) of 0.29 ± 0.05 ms, suggesting selective imaging of bound water. Similar results were achieved with the 2D UTE and IR-UTE sequences. Bi-component fitting of 3D UTE images of the tibial midshafts of healthy volunteers showed a mean T2 *(BW) of 0.32 ± 0.08 ms and T2 *(PW) of 5.78 ± 1.24 ms, with fractions of 34.2 ± 7.4% and 65.8 ± 7.4%, respectively. Single-component fitting of 3D IR-UTE images showed a mean T2 *(BW) of 0.35 ± 0.09 ms. The 3D UTE and 3D IR-UTE techniques allow fast volumetric mapping of bound and pore water in cortical bone. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Bladder dose accumulation based on a biomechanical deformable image registration algorithm in volumetric modulated arc therapy for prostate cancer

    DEFF Research Database (Denmark)

    Andersen, E S; Muren, L P; Sørensen, T S

    2012-01-01

    ) to improve the accuracy of bladder dose assessment. For each of nine prostate cancer patients, the initial treatment plan was re-calculated on eight to nine repeat computed tomography (CT) scans. The planned bladder dose–volume histogram (DVH) parameters were compared to corresponding parameters derived from...... DIR-based accumulations and DVH summation were small and well within 1 Gy. For the investigated treatment scenario, DIR- based bladder dose accumulation did not result in substantial improvement of dose estimation as compared to the straightforward DVH summation. Large variations were found...... in individual patients between the doses from the initial treatment plan and the accumulated bladder doses. Hence, the use of repeat imaging has a potential for improved accuracy in treatment dose reporting....

  15. Volumetric rendering and metrology of spherical gradient refractive index lens imaged by angular scan optical coherence tomography system.

    Science.gov (United States)

    Yao, Jianing; Thompson, Kevin P; Ma, Bin; Ponting, Michael; Rolland, Jannick P

    2016-08-22

    In this paper, we develop the methodology, including the refraction correction, geometrical thickness correction, coordinate transformation, and layer segmentation algorithms, for 3D rendering and metrology of a layered spherical gradient refractive index (S-GRIN) lens based on the imaging data collected by an angular scan optical coherence tomography (OCT) system. The 3D mapping and rendering enables direct 3D visualization and internal defect inspection of the lens. The metrology provides assessment of the surface geometry, the lens thickness, the radii of curvature of the internal layer interfaces, and the misalignment of the internal S-GRIN distribution with respect to the lens surface. The OCT metrology results identify the manufacturing defects, and enable targeted process development for optimizing the manufacturing parameters. The newly fabricated S-GRIN lenses show up to a 7x spherical aberration reduction that allows a significantly increased utilizable effective aperture.

  16. The library without walls: images, medical dictionaries, atlases, medical encyclopedias free on web.

    Science.gov (United States)

    Giglia, E

    2008-09-01

    The aim of this article was to present the ''reference room'' of the Internet, a real library without walls. The reader will find medical encyclopedias, dictionaries, atlases, e-books, images, and will also learn something useful about the use and reuse of images in a text and in a web site, according to the copyright law.

  17. Medical image of the week: tracheal perforation

    Directory of Open Access Journals (Sweden)

    Parsa N

    2014-12-01

    Full Text Available A 45 year old Caucasian man with a history of HIV/AIDS was admitted for septic shock secondary to right lower lobe community acquired pneumonia. The patient’s respiratory status continued to decline requiring emergency intubation in a non-ICU setting. Four laryngoscope intubation attempts were made including an inadvertent esophageal intubation. Subsequent CT imaging revealed a tracheal defect (Figure 1, red arrow with communication to the mediastinum and air around the trachea consistent with pneumomediastinum (Figure 2, orange arrow and figure 3, yellow arrow. Pneumopericardium (figure 4, blue arrow was also evident post-intubation. The patient’s hemodynamic status remained stable. Two days following respiratory intubation subsequent chest imaging revealed resolution of the pneumomediastinum and pneumopericardium and patient continued to do well without hemodynamic compromise or presence of subcutaneous emphysema. Post-intubation tracheal perforation is a rare complication of traumatic intubation and may be managed with surgical intervention or conservative treatment (1.

  18. Watermarking techniques used in medical images: a survey.

    Science.gov (United States)

    Mousavi, Seyed Mojtaba; Naghsh, Alireza; Abu-Bakar, S A R

    2014-12-01

    The ever-growing numbers of medical digital images and the need to share them among specialists and hospitals for better and more accurate diagnosis require that patients' privacy be protected. As a result of this, there is a need for medical image watermarking (MIW). However, MIW needs to be performed with special care for two reasons. Firstly, the watermarking procedure cannot compromise the quality of the image. Secondly, confidential patient information embedded within the image should be flawlessly retrievable without risk of error after image decompressing. Despite extensive research undertaken in this area, there is still no method available to fulfill all the requirements of MIW. This paper aims to provide a useful survey on watermarking and offer a clear perspective for interested researchers by analyzing the strengths and weaknesses of different existing methods.

  19. Congenital heart defects and medical imaging.

    Science.gov (United States)

    Gehin, Connie; Ragsdale, Lisa

    2013-01-01

    Radiologic technologists perform imaging studies that are useful in the diagnosis of congenital heart defects in infants and adults. These studies also help to monitor congenital heart defect repairs in adults. This article describes the development and functional anatomy of the heart, along with the epidemiology and anatomy of congenital heart defects. It also discusses the increasing population of adults who have congenital heart defects and the most effective modalities for diagnosing, evaluating, and monitoring congenital heart defects.

  20. Association of metabolic dysregulation with volumetric brain magnetic resonance imaging and cognitive markers of subclinical brain aging in middle-aged adults: the Framingham Offspring Study

    National Research Council Canada - National Science Library

    Tan, Zaldy S; Beiser, Alexa S; Fox, Caroline S; Au, Rhoda; Himali, Jayandra J; Debette, Stephanie; Decarli, Charles; Vasan, Ramachandran S; Wolf, Philip A; Seshadri, Sudha

    2011-01-01

    ...) in middle-aged adults. Framingham Offspring participants who underwent volumetric MRI and detailed cognitive testing and were free of clinical stroke and dementia during examination 7 (1998-2001...

  1. Blackboard architecture for medical image interpretation

    Science.gov (United States)

    Davis, Darryl N.; Taylor, Christopher J.

    1991-06-01

    There is a growing interest in using sophisticated knowledge-based systems for biomedical image interpretation. We present a principled attempt to use artificial intelligence methodologies in interpreting lateral skull x-ray images. Such radiographs are routinely used in cephalometric analysis to provide quantitative measurements useful to clinical orthodontists. Manual and interactive methods of analysis are known to be error prone and previous attempts to automate this analysis typically fail to capture the expertise and adaptability required to cope with the variability in biological structure and image quality. An integrated model-based system has been developed which makes use of a blackboard architecture and multiple knowledge sources. A model definition interface allows quantitative models, of feature appearance and location, to be built from examples as well as more qualitative modelling constructs. Visual task definition and blackboard control modules allow task-specific knowledge sources to act on information available to the blackboard in a hypothesise and test reasoning cycle. Further knowledge-based modules include object selection, location hypothesis, intelligent segmentation, and constraint propagation systems. Alternative solutions to given tasks are permitted.

  2. Medical image of the week: Boerhaave syndrome

    Directory of Open Access Journals (Sweden)

    Parsa N

    2016-06-01

    Full Text Available No abstract available. Article truncated at 150 words. A 41-year-old woman with a history of gastroesophageal reflux disease (GERD, asthma and iron deficiency anemia presented with complaints of right sided chest pain, nausea and emesis for several days prior to hospital presentation. She had also been experiencing progressive dysphagia to solids for a month preceding admission. CT chest imaging revealed mega-esophagus (Figure 1A with rupture into the right lung parenchyma and resultant abscess formation (Figure 1B and 1C. A subsequent echocardiogram also confirmed mitral valve endocarditis. An image-guided chest tube was placed in the abscess for drainage. Endoscopy was attempted but visualization was difficult due to the presence of retained food. Given her low albumin and poor nutritional state, a jejunostomy tube was placed. Follow up CT imaging with contrast through a nasogastric tube confirmed extravasation of esophageal contrast into the right lung parenchyma (Figure 1D. Blood and sputum cultures grew Candida glabrata. She was initially started on ...

  3. Medical image of the week: sleep bruxism

    Directory of Open Access Journals (Sweden)

    Bartell J

    2015-03-01

    Full Text Available No abstract available. Article truncated at 150 words. A 42 year-old man with a past medical history of insomnia, post-traumatic stress disorder, depression and both migraine and tension headaches was referred for an overnight sleep study. He had presented to the sleep clinic with symptoms of obstructive sleep apnea. Medications included sumatriptan, amitryptiline, sertraline, and trazodone. His sleep study showed: sleep efficiency of 58.2%, apnea-hypopnea index of 33 events per hour, and arousal index of 14.5/hr. Periodic limb movement index was 29.2/hr. The time spent in the sleep stages included N1 (3.6%, N2 (72.5%, N3 (12.9%, and REM (10.9%. Figure 1 is representative of the several brief waveforms seen on his EEG and chin EMG. Sleep bruxism (SB is a type of sleep-related movement disorder that is characterized by involuntary masticatory muscle contraction resulting in grinding and clenching of the teeth and typically associated with arousals from sleep (1,2. The American academy of sleep medicine (AASM criteria for ...

  4. Pneumatization of the temporal portion of the zygomatic arch: The contribution of computed tomography to the reconstruction in volumetric two-dimensional and three-dimensional, with the aid of image rendering protocols

    Directory of Open Access Journals (Sweden)

    C M Romano-Sousa

    2015-01-01

    Full Text Available Pneumatization refers to the asymptomatic development of cavities containing air within them. There is great variability in the extent of temporal bone pneumatization. Nevertheless, in a few cases it extends to the zygomatic process. Images are presented in which the panoramic radiograph and hypocycloidal tomography reveal this variation from the norm, to which professionals must be alert, since the images may simulate the presence of pathology. In this case report we describe the presence of pneumatization of the petrous and zygomatic portions of the temporal bone, demonstrating the contribution of CT to reconstruction in volumetric 2D and 3D, with the aid of image rendering protocols.

  5. Resource estimation in high performance medical image computing.

    Science.gov (United States)

    Banalagay, Rueben; Covington, Kelsie Jade; Wilkes, D M; Landman, Bennett A

    2014-10-01

    Medical imaging analysis processes often involve the concatenation of many steps (e.g., multi-stage scripts) to integrate and realize advancements from image acquisition, image processing, and computational analysis. With the dramatic increase in data size for medical imaging studies (e.g., improved resolution, higher throughput acquisition, shared databases), interesting study designs are becoming intractable or impractical on individual workstations and servers. Modern pipeline environments provide control structures to distribute computational load in high performance computing (HPC) environments. However, high performance computing environments are often shared resources, and scheduling computation across these resources necessitates higher level modeling of resource utilization. Submission of 'jobs' requires an estimate of the CPU runtime and memory usage. The resource requirements for medical image processing algorithms are difficult to predict since the requirements can vary greatly between different machines, different execution instances, and different data inputs. Poor resource estimates can lead to wasted resources in high performance environments due to incomplete executions and extended queue wait times. Hence, resource estimation is becoming a major hurdle for medical image processing algorithms to efficiently leverage high performance computing environments. Herein, we present our implementation of a resource estimation system to overcome these difficulties and ultimately provide users with the ability to more efficiently utilize high performance computing resources.

  6. A New Method for Medical Image Clustering Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Akbar Shahrzad Khashandarag

    2013-01-01

    Full Text Available Segmentation is applied in medical images when the brightness of the images becomes weaker so that making different in recognizing the tissues borders. Thus, the exact segmentation of medical images is an essential process in recognizing and curing an illness. Thus, it is obvious that the purpose of clustering in medical images is the recognition of damaged areas in tissues. Different techniques have been introduced for clustering in different fields such as engineering, medicine, data mining and so on. However, there is no standard technique of clustering to present ideal results for all of the imaging applications. In this paper, a new method combining genetic algorithm and k-means algorithm is presented for clustering medical images. In this combined technique, variable string length genetic algorithm (VGA is used for the determination of the optimal cluster centers. The proposed algorithm has been compared with the k-means clustering algorithm. The advantage of the proposed method is the accuracy in selecting the optimal cluster centers compared with the above mentioned technique.

  7. Radial volumetric imaging breath-hold examination (VIBE) with k-space weighted image contrast (KWIC) for dynamic gadoxetic acid (Gd-EOB-DTPA)-enhanced MRI of the liver: advantages over Cartesian VIBE in the arterial phase

    Energy Technology Data Exchange (ETDEWEB)

    Fujinaga, Yasunari; Ohya, Ayumi; Tokoro, Hirokazu; Yamada, Akira; Ueda, Kazuhiko; Kadoya, Masumi [Shinshu University School of Medicine, Department of Radiology, Matsumoto (Japan); Ueda, Hitoshi; Kitou, Yoshihiro; Adachi, Yasuo; Shiobara, Aya; Tamaru, Naomichi [Radiology Division of Shinshu University Hospital, Matsumoto (Japan); Nickel, Marcel D. [Siemens AG Healthcare Sector, H IM MR PI TIO Oncology, Erlangen (Germany); Maruyama, Katsuya [Siemens Japan. K. K., Imaging and Therapy Systems Division, Shinagawa, Tokyo (Japan)

    2014-06-15

    To compare radial volumetric imaging breath-hold examination with k-space weighted image contrast reconstruction (r-VIBE-KWIC) to Cartesian VIBE (c-VIBE) in arterial phase dynamic gadoxetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (DCE-MRI) of the liver. We reviewed 53 consecutive DCE-MRI studies performed on a 3-T unit using c-VIBE and 53 consecutive cases performed using r-VIBE-KWIC with full-frame image subset (r-VIBE{sub full}) and sub-frame image subsets (r-VIBE{sub sub}; temporal resolution, 2.5-3 s). All arterial phase images were scored by two readers on: (1) contrast-enhancement ratio (CER) in the abdominal aorta; (2) scan timing; (3) artefacts; (4) visualisation of the common, right, and left hepatic arteries. Mean abdominal aortic CERs for c-VIBE, r-VIBE{sub full}, and r-VIBE{sub sub} were 3.2, 4.3 and 6.5, respectively. There were significant differences between each group (P < 0.0001). The mean score for c-VIBE was significantly lower than that for r-VIBE{sub full} and r-VIBE{sub sub} in all factors except for visualisation of the common hepatic artery (P < 0.05). The mean score of all factors except for scan timing for r-VIBE{sub sub} was not significantly different from that for r-VIBE{sub full}. Radial VIBE-KWIC provides higher image quality than c-VIBE, and r-VIBE{sub sub} features high temporal resolution without image degradation in arterial phase DCE-MRI. circle Radial VIBE-KWIC minimised artefact and produced high-quality and high-temporal-resolution images. circle Maximum abdominal aortic enhancement was observed on sub-frame images of r-VIBE-KWIC. (orig.)

  8. Light-field camera-based 3D volumetric particle image velocimetry with dense ray tracing reconstruction technique

    Science.gov (United States)

    Shi, Shengxian; Ding, Junfei; New, T. H.; Soria, Julio

    2017-07-01

    This paper presents a dense ray tracing reconstruction technique for a single light-field camera-based particle image velocimetry. The new approach pre-determines the location of a particle through inverse dense ray tracing and reconstructs the voxel value using multiplicative algebraic reconstruction technique (MART). Simulation studies were undertaken to identify the effects of iteration number, relaxation factor, particle density, voxel-pixel ratio and the effect of the velocity gradient on the performance of the proposed dense ray tracing-based MART method (DRT-MART). The results demonstrate that the DRT-MART method achieves higher reconstruction resolution at significantly better computational efficiency than the MART method (4-50 times faster). Both DRT-MART and MART approaches were applied to measure the velocity field of a low speed jet flow which revealed that for the same computational cost, the DRT-MART method accurately resolves the jet velocity field with improved precision, especially for the velocity component along the depth direction.

  9. Plane Wave Medical Ultrasound Imaging Using Adaptive Beamforming

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund; Gran, Fredrik; Jensen, Jørgen Arendt

    2008-01-01

    In this paper, the adaptive, minimum variance (MV) beamformer is applied to medical ultrasound imaging. The Significant resolution and contrast gain provided by the adaptive, minimum variance (MV) beamformer, introduces the possibility of plane wave (PW) ultrasound imaging. Data is obtained using...... Field H and a 7 MHz, 128-elements, linear array transducer with lambda/2-spacing. MV is compared to the conventional delay-and-sum (DS) beamformer with Boxcar and Hanning weights. Furthermore, the PW images are compared to the a conventional ultrasound image, obtained from a linear scan sequence...

  10. Medical Image distribution and visualization in a hospital using CORBA.

    Science.gov (United States)

    Moreno, Ramon Alfredo; do Santos, Marcelo; Bertozzo, Nivaldo; de Sa Rebelo, Marina; Furuie, Sergio S; Gutierrez, Marco A

    2008-01-01

    In this work it is presented the solution adopted by the Heart Institute (InCor) of Sao Paulo for medical image distribution and visualization inside the hospital's intranet as part of the PACS system. A CORBA-based image server was developed to distribute DICOM images across the hospital together with the images' report. The solution adopted allows the decoupling of the server implementation and the client. This gives the advantage of reusing the same solution in different implementation sites. Currently, the PACS system is being used on two different hospitals each one with three different environments: development, prototype and production.

  11. Comment on "Perspectives of medical X-ray imaging"

    CERN Document Server

    Taibi, A; Tuffanelli, A; Gambaccini, M

    2002-01-01

    In the paper 'Perspectives of medical X-ray imaging' (Nucl. Instr. and Meth. A 466 (2001) 99) the infer, from simple approximations, that the use of HOPG monochromator has no advantage in mammography compared to existing systems. We show that in order to compare imaging properties of different X-ray sources it is necessary to evaluate the spectra after the attenuation of the tissue to be imaged. Indeed, quasi-monochromatic X-ray sources have the potential to enhance image contrast and to reduce patient dose.

  12. Comment on ``Perspectives of medical X-ray imaging''

    Science.gov (United States)

    Taibi, A.; Baldelli, P.; Tuffanelli, A.; Gambaccini, M.

    2002-07-01

    In the paper "Perspectives of medical X-ray imaging" (Nucl. Instr. and Meth. A 466 (2001) 99) the authors infer, from simple approximations, that the use of HOPG monochromator has no advantage in mammography compared to existing systems. We show that in order to compare imaging properties of different X-ray sources it is necessary to evaluate the spectra after the attenuation of the tissue to be imaged. Indeed, quasi-monochromatic X-ray sources have the potential to enhance image contrast and to reduce patient dose.

  13. Microelectronics technologies for new detectors in medical imaging

    CERN Document Server

    Heijne, Erik H M

    2007-01-01

    The use of silicon chips for instrumentation developments in elementary particle physics serves as an example for other applications and digital imaging detectors could find use in medical and molecular imaging. Attractive features are direct quantum conversion in a semiconductor matrix, innovative three-dimensional modular detector construction, multilayer devices, very fast signal processing, on-line data pre-processing and massive parallelism at the system level. Cost aspects of such semiconductor imager options have to be taken into account in the R&D phase. With the integrated electronics and high density interconnects in the Medipix development as an example, the ultimate aim of single photon imaging comes within reach.

  14. Trends in the Use of Medical Imaging to Diagnose Appendicitis at an Academic Medical Center.

    Science.gov (United States)

    Repplinger, Michael D; Weber, Andrew C; Pickhardt, Perry J; Rajamanickam, Victoria P; Svenson, James E; Ehlenbach, William J; Westergaard, Ryan P; Reeder, Scott B; Jacobs, Elizabeth A

    2016-09-01

    To quantify the trends in imaging use for the diagnosis of appendicitis. A retrospective study covering a 22-year period was conducted at an academic medical center. Patients were identified by International Classification of Diseases-9 diagnosis code for appendicitis. Medical record data extraction of these patients included imaging test used (ultrasound, CT, or MRI), gender, age, and body mass index (BMI). The proportion of patients undergoing each scan was calculated by year. Regression analysis was performed to determine whether age, gender, or BMI affected imaging choice. The study included a total of 2,108 patients, including 967 (43.5%) females and 599 (27%) children (imaging used for the diagnosis of appendicitis decreased over time (P medical center, CT use increased more than 20-fold. However, no statistically significant trend was found for increased use of ultrasound or MRI. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  15. Medical Image Dynamic Collaborative Processing on the Distributed Environment

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new trend in the development of medical image processing systems is to enhance the sharing of medical resources and the collaborative processing of medical specialists. This paper presents an architecture of medical image dynamic collaborative processing on the distributed environment by combining the JAVA, CORBA (Common Object Request and Broker Architecture) and the MAS (Multi-Agents System) collaborative mechanism. The architecture allows medical specialists or applications to share records and communicate with each other on the web by overcoming the shortcut of traditional approach using Common Gateway Interface (CGI) and client/server architecture, and can support the remote heterogeneous systems collaboration. The new approach improves the collaborative processing of medical data and applications and is able to enhance the interoperation among heterogeneous system. Research on the system will help the collaboration and cooperation among medical application systems distributed on the web, thus supply high quality medical service such as diagnosis and therapy to practicing specialists regardless of their actual geographic location.

  16. Medical image of the week: sarcoidosis

    Directory of Open Access Journals (Sweden)

    Knox KS

    2013-02-01

    Full Text Available A 42 year old African-American man from Indianapolis presented with cough and skin lesions. ACE level was elevated at 86 μg/L. Spirometry was normal except for a diffusing capacity 52% of predicted. Imaging was suggestive of sarcoidosis versus granulomatous infection. Bronchoscopy with bronchoalveolar lavage cytospin revealed a lymphocytic alveolitis (27% lymphocytes with a CD4:CD8 ratio of 6.2:1 by flow cytometry. Biopsy showed classic noncaseating granulomas and no organisms supporting the diagnosis of sarcoidosis. The patient’s symptoms and radiographic findings improved with 20 mg prednisone every other day for 3 months duration.

  17. Flexible medical image management using service-oriented architecture.

    Science.gov (United States)

    Shaham, Oded; Melament, Alex; Barak-Corren, Yuval; Kostirev, Igor; Shmueli, Noam; Peres, Yardena

    2012-01-01

    Management of medical images increasingly involves the need for integration with a variety of information systems. To address this need, we developed Content Management Offering (CMO), a platform for medical image management supporting interoperability through compliance with standards. CMO is based on the principles of service-oriented architecture, implemented with emphasis on three areas: clarity of business process definition, consolidation of service configuration management, and system scalability. Owing to the flexibility of this platform, a small team is able to accommodate requirements of customers varying in scale and in business needs. We describe two deployments of CMO, highlighting the platform's value to customers. CMO represents a flexible approach to medical image management, which can be applied to a variety of information technology challenges in healthcare and life sciences organizations.

  18. Oral antioxidants for radioprotection during medical imaging examinations

    Science.gov (United States)

    Velauthapillai, Nivethan

    The oncogenic effect of ionizing radiation (IR) is clearly established and occurs in response to DNA damage. Many diagnostic imaging exams make use of IR and the oncogenic risk of IR-based imaging has been calculated. We hypothesized that the DNA damage sustained from IR exposure during medical imaging exams could be reduced by pre-medicating patients with antioxidants. First, we tested and validated a method for measuring DNA double-strand breaks (DSBs) in peripheral blood mononuclear cells (PBMCs) exposed to low doses of ionizing radiation. Afterwards, we conducted a pilot clinical study in which we administered oral antioxidants to patients undergoing bone scans, prior to radiotracer injection. We showed that oral antioxidant pre-medication reduced the number of DSBs in PBMCs induced by radiotracer injection. Our study shows proof-of-principle for this simple and inexpensive approach to radioprotection in the clinical setting.

  19. Creating New Medical Ontologies for Image Annotation A Case Study

    CERN Document Server

    Stanescu, Liana; Brezovan, Marius; Mihai, Cristian Gabriel

    2012-01-01

    Creating New Medical Ontologies for Image Annotation focuses on the problem of the medical images automatic annotation process, which is solved in an original manner by the authors. All the steps of this process are described in detail with algorithms, experiments and results. The original algorithms proposed by authors are compared with other efficient similar algorithms. In addition, the authors treat the problem of creating ontologies in an automatic way, starting from Medical Subject Headings (MESH). They have presented some efficient and relevant annotation models and also the basics of the annotation model used by the proposed system: Cross Media Relevance Models. Based on a text query the system will retrieve the images that contain objects described by the keywords.

  20. Medical imaging in occupational and environmental lung disease.

    Science.gov (United States)

    Cox, Christian W; Lynch, David A

    2015-03-01

    The purpose of this review is to provide an up-to-date summary of developments in medical imaging in the diagnosis, surveillance, treatment, and screening of occupational and environmental lung diseases, focusing on articles published within the past 2 years. Many new exposures resulting in lung disease have been described worldwide; medical imaging, particularly computed tomography (CT), is often pivotal in recognition and characterization of these new patterns of lung injury. Chest radiography remains important to surveillance studies tracking the long-term evolution of disease and effectiveness of air quality regulation. Finally, studies are proving the utility of screening with low-dose CT, and technical advances offer the prospect of further CT dose reduction with ultra-low-dose CT. In understanding the best practices and new developments in medical imaging, the occupational and environmental medicine clinician can optimize diagnosis and management of related lung diseases.

  1. Directive Antenna for Ultrawideband Medical Imaging Systems

    Directory of Open Access Journals (Sweden)

    Amin M. Abbosh

    2008-01-01

    Full Text Available A compact and directive ultrawideband antenna is presented in this paper. The antenna is in the form of an antipodal tapered slot with resistive layers to improve its directivity and to reduce its backward radiation. The antenna operates over the frequency band from 3.1 GHz to more than 10.6 GHz. It features a directive radiation with a peak gain which is between 4 dBi and 11 dBi in the specified band. The time domain performance of the antenna shows negligible distortion. This makes it suitable for the imaging systems which require a very short pulse for transmission/reception. The effect of the multilayer human body on the performance of the antenna is also studied. The breast model is used for this purpose. It is shown that the antenna has more than 90% fidelity factor when it works in free space, whereas the fidelity factor decreases as the signal propagates inside the human body. However, even inside the human body, the fidelity factor is still larger than 70% revealing the possibility of using the proposed antenna in biomedical imaging systems.

  2. Teaching medical anatomy: what is the role of imaging today?

    Science.gov (United States)

    Grignon, Bruno; Oldrini, Guillaume; Walter, Frédéric

    2016-03-01

    Medical anatomy instruction has been an important issue of debate for many years and imaging anatomy has become an increasingly important component in the field, the role of which has not yet been clearly defined. The aim of the paper was to assess the current deployment of medical imaging in the teaching of anatomy by means of a review of the literature. A systematic search was performed using the electronic database PubMed, ScienceDirect and various publisher databases, with combinations of the relevant MeSH terms. A manual research was added. In most academic curricula, imaging anatomy has been integrated as a part of anatomical education, taught using a very wide variety of strategies. Considerable variation in the time allocation, content and delivery of medical imaging in teaching human anatomy was identified. Given this considerable variation, an objective assessment remains quite difficult. In most publications, students' perceptions regarding anatomical courses including imaging anatomy were investigated by means of questionnaires and, regardless of the method of teaching, it was globally concluded that imaging anatomy enhanced the quality and efficiency of instruction in human anatomy. More objective evaluation based on an increase in students' performance on course examinations or on specific tests performed before and after teaching sessions showed positive results in numerous cases, while mixed results were also indicated by other studies. A relative standardization could be useful in improving the teaching of imaging anatomy, to facilitate its assessment and reinforce its effectiveness.

  3. MIRMAID: A Content Management System for Medical Image Analysis Research.

    Science.gov (United States)

    Korfiatis, Panagiotis D; Kline, Timothy L; Blezek, Daniel J; Langer, Steve G; Ryan, William J; Erickson, Bradley J

    2015-01-01

    Today, a typical clinical study can involve thousands of participants, with imaging data acquired over several time points across multiple institutions. The additional associated information (metadata) accompanying these data can cause data management to be a study-hindering bottleneck. Consistent data management is crucial for large-scale modern clinical imaging research studies. If the study is to be used for regulatory submissions, such systems must be able to meet regulatory compliance requirements for systems that manage clinical image trials, including protecting patient privacy. Our aim was to develop a system to address these needs by leveraging the capabilities of an open-source content management system (CMS) that has a highly configurable workflow; has a single interface that can store, manage, and retrieve imaging-based studies; and can handle the requirement for data auditing and project management. We developed a Web-accessible CMS for medical images called Medical Imaging Research Management and Associated Information Database (MIRMAID). From its inception, MIRMAID was developed to be highly flexible and to meet the needs of diverse studies. It fulfills the need for a complete system for medical imaging research management.

  4. An adaptive nonlocal means scheme for medical image denoising

    Science.gov (United States)

    Thaipanich, Tanaphol; Kuo, C.-C. Jay

    2010-03-01

    Medical images often consist of low-contrast objects corrupted by random noise arising in the image acquisition process. Thus, image denoising is one of the fundamental tasks required by medical imaging analysis. In this work, we investigate an adaptive denoising scheme based on the nonlocal (NL)-means algorithm for medical imaging applications. In contrast with the traditional NL-means algorithm, the proposed adaptive NL-means (ANL-means) denoising scheme has three unique features. First, it employs the singular value decomposition (SVD) method and the K-means clustering (K-means) technique for robust classification of blocks in noisy images. Second, the local window is adaptively adjusted to match the local property of a block. Finally, a rotated block matching algorithm is adopted for better similarity matching. Experimental results from both additive white Gaussian noise (AWGN) and Rician noise are given to demonstrate the superior performance of the proposed ANL denoising technique over various image denoising benchmarks in term of both PSNR and perceptual quality comparison.

  5. Software Agent with Reinforcement Learning Approach for Medical Image Segmentation

    Institute of Scientific and Technical Information of China (English)

    Mahsa Chitsaz; Chaw Seng Woo

    2011-01-01

    Many image segmentation solutions are problem-based. Medical images have very similar grey level and texture among the interested objects. Therefore, medical image segmentation requires improvements although there have been researches done since the last few decades. We design a self-learning framework to extract several objects of interest simultaneously from Computed Tomography (CT) images. Our segmentation method has a learning phase that is based on reinforcement learning (RL) system. Each RL agent works on a particular sub-image of an input image to find a suitable value for each object in it. The RL system is define by state, action and reward. We defined some actions for each state in the sub-image. A reward function computes reward for each action of the RL agent. Finally, the valuable information, from discovering all states of the interest objects, will be stored in a Q-matrix and the final result can be applied in segmentation of similar images. The experimental results for cranial CT images demonstrated segmentation accuracy above 95%.

  6. Technical challenges for the construction of a medical image database

    Science.gov (United States)

    Ring, Francis J.; Ammer, Kurt; Wiecek, Boguslaw; Plassmann, Peter; Jones, Carl D.; Jung, Anna; Murawski, Piotr

    2005-10-01

    Infrared thermal imaging was first made available to medicine in the early 1960's. Despite a large number of research publications on the clinical application of the technique, the images have been largely qualitative. This is in part due to the imaging technology itself, and the problem of data exchange between different medical users, with different hardware. An Anglo Polish collaborative study was set up in 2001 to identify and resolve the sources of error and problems in medical thermal imaging. Standardisation of the patient preparation, imaging hardware, image capture and analysis has been studied and developed by the group. A network of specialist centres in Europe is planned to work to establish the first digital reference atlas of quantifiable images of the normal healthy human body. Further processing techniques can then be used to classify abnormalities found in disease states. The follow up of drug treatment has been successfully monitored in clinical trials with quantitative thermal imaging. The collection of normal reference images is in progress. This paper specifies the areas found to be the source of unwanted variables, and the protocols to overcome them.

  7. Medical Image Classification Using Genetic Optimized Elman Network

    Directory of Open Access Journals (Sweden)

    T. Baranidharan

    2012-01-01

    Full Text Available Problem statement: Advancements in the internet and digital images have resulted in a huge database of images. Most of the current search engines found in the web depends only on images that can be retrieved using metadata, which generates a lot of unwanted results in the results got. Content-Based Image Retrieval (CBIR system is the utilization of computer vision techniques in the predicament of image retrieval. In other words, it is used for searching and retrieving of the right digital image among a huge database using query image. CBIR finds extensive applications in the field of medicine as it helps medical professionals in diagnosis and plan treatment. Approach: Various methods have been proposed for CBIR using the images low level features like histogram, color, texture and shape. Similarly various classification algorithms like Naive Bayes classifier, Support Vector Machine, Decision tree induction algorithms and Neural Network based classifiers have been studied extensively. In this study it is proposed to extract global features using Hilbert Transform (HT, select features based on the correlation of the extracted vectors with respect to the class label and propose a enhanced Elman Neural Network Genetic Algorithm Optimized Elman (GAOE Neural Network. Results and Conclusion: The proposed method for feature extraction and the classification algorithm was tested on a dataset consisting of 180 medical images. The classification accuracy of 92.22% was obtained in the proposed method.

  8. SU-E-T-237: Deformable Image Registration and Deformed Dose Composite for Volumetric Evaluation of Multimodal Gynecological Cancer Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Albani, D; Sherertz, T; Ellis, R; Podder, T [Seidman Cancer Center University Hospitals Case Medical Center, Cleveland, OH (United States); Cantley, J [Case Western Reserve University, Cleveland, OH (United States); Herrmann, K [University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH (United States)

    2015-06-15

    Purpose: Radiotherapy plans for patients with cervical cancer treated with EBRT followed by HDR brachytherapy are optimized by constraining dose to organs at risk (OARs). Risk of treatment related toxicities is estimated based on the dose received to the hottest 2cc (D2cc) of the bladder, bowel, rectum, and sigmoid. To account for intrafractional variation in OAR volume and positioning, a dose deformation method is proposed for more accurate evaluation of dose distribution for these patients. Methods: Radiotherapy plans from five patients who received 50.4Gy pelvic EBRT followed by 30Gy in five fractions of HDR brachytherapy, using split-ring and tandem applicators, were retrospectively evaluated using MIM Software version 6.0. Dose accumulation workflows were used for initial deformation of EBRT and HDR planning CTs onto a common HDR planning CT. The Reg Refine tool was applied with user-specified local alignments to refine the deformation. Doses from the deformed images were transferred to the common planning CT. Deformed doses were scaled to the EQD2, following the linear-quadratic BED model (considered α/β ratio for tumor as 10, and 3 for rest of the tissues), and then combined to create the dose composite. MIM composite doses were compared to the clinically-reported plan assessments based upon the American Brachytherapy Society (ABS) guidelines for cervical HDR brachytherapy treatment. Results: Bladder D2cc exhibited significant reduction (−11.4%±3.85%, p< 0.02) when evaluated using MIM deformable dose composition. Differences observed for bowel, rectum, and sigmoid D2cc were not significant (−0.58±7.37%, −4.13%±13.7%, and 8.58%±4.71%, respectively and p>0.05 for all) relative to the calculated values used clinically. Conclusion: Application of deformable dose composite techniques may lead to more accurate total dose reporting and can allow for elevated dose to target structures with the assurance of not exceeding dose to OARs. Further study into

  9. Diagnostic Medical Imaging in Pediatric Patients and Subsequent Cancer Risk.

    Science.gov (United States)

    Mulvihill, David J; Jhawar, Sachin; Kostis, John B; Goyal, Sharad

    2017-06-20

    The use of diagnostic medical imaging is becoming increasingly more commonplace in the pediatric setting. However, many medical imaging modalities expose pediatric patients to ionizing radiation, which has been shown to increase the risk of cancer development in later life. This review article provides a comprehensive overview of the available data regarding the risk of cancer development following exposure to ionizing radiation from diagnostic medical imaging. Attention is paid to modalities such as computed tomography scans and fluoroscopic procedures that can expose children to radiation doses orders of magnitude higher than standard diagnostic x-rays. Ongoing studies that seek to more precisely determine the relationship of diagnostic medical radiation in children and subsequent cancer development are discussed, as well as modern strategies to better quantify this risk. Finally, as cardiovascular imaging and intervention contribute substantially to medical radiation exposure, we discuss strategies to enhance radiation safety in these areas. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  10. Spatio-Temporal Encoding in Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Gran, Fredrik

    2005-01-01

    In this dissertation two methods for spatio-temporal encoding in medical ultrasound imaging are investigated. The first technique is based on a frequency division approach. Here, the available spectrum of the transducer is divided into a set of narrow bands. A waveform is designed for each band...... the signal to noise ratio and simultaneously the penetration depth so that the medical doctor can image deeper lying structures. The method is tested both experimentally and in simulation and has also evaluated for the purpose of blood flow estimation. The work presented is based on four papers which...

  11. Secure public cloud platform for medical images sharing.

    Science.gov (United States)

    Pan, Wei; Coatrieux, Gouenou; Bouslimi, Dalel; Prigent, Nicolas

    2015-01-01

    Cloud computing promises medical imaging services offering large storage and computing capabilities for limited costs. In this data outsourcing framework, one of the greatest issues to deal with is data security. To do so, we propose to secure a public cloud platform devoted to medical image sharing by defining and deploying a security policy so as to control various security mechanisms. This policy stands on a risk assessment we conducted so as to identify security objectives with a special interest for digital content protection. These objectives are addressed by means of different security mechanisms like access and usage control policy, partial-encryption and watermarking.

  12. Medical Imaging of Neglected Tropical Diseases of the Americas.

    Science.gov (United States)

    Jones, Patrick; Mazal, Jonathan

    2016-01-01

    Neglected tropical diseases are a group of protozoan, parasitic, bacterial, and viral diseases endemic in 149 countries causing substantial illness globally. Extreme poverty and warm tropical climates are the 2 most potent forces promoting the spread of neglected tropical diseases. These forces are prevalent in Central and South America, as well as the U.S. Gulf Coast. Advanced cases often require specialized medical imaging for diagnosis, disease staging, and follow-up. This article offers a review of epidemiology, pathophysiology, clinical manifestations, diagnosis (with special attention to medical imaging), and treatment of neglected tropical diseases specific to the Americas.

  13. Medical image of the week: azygous lobe

    Directory of Open Access Journals (Sweden)

    Bhupinder Natt

    2013-12-01

    Full Text Available No abstract available. Article truncated at 150 words. A 59 year old man underwent chest radiography for evaluation of fever and cough. Imaging showed an accessory azygous lobe. An azygos lobe is found in 1% of anatomic specimens and forms when the right posterior cardinal vein, one of the precursors of the azygos vein, fails to migrate over the apex of the lung (1. Instead, the vein penetrates the lung carrying along pleural layers that entrap a portion of the right upper lobe. The vein appears to run within the lung, but is actually surrounded by both parietal and visceral pleura. The azygos fissure therefore consists of four layers of pleura, two parietal layers and two visceral layers, which wrap around the vein giving the appearance of a tadpole. Apart from an interesting incidental radiological finding, it is of limited clinical importance except that its presence should be recognized during thoracoscopic procedures. This patient was found to have …

  14. Establishing advanced practice for medical imaging in New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Yielder, Jill, E-mail: j.yielder@auckland.ac.nz [University of Auckland, Auckland (New Zealand); Young, Adrienne; Park, Shelley; Coleman, Karen [University of Otago, Wellington (New Zealand); University of Auckland, Auckland (New Zealand)

    2014-02-15

    Introduction: This article presents the outcome and recommendations following the second stage of a role development project conducted on behalf of the New Zealand Institute of Medical Radiation Technology (NZIMRT). The study sought to support the development of profiles and criteria that may be used to formulate Advanced Scopes of Practice for the profession. It commenced in 2011, following on from initial research that occurred between 2005 and 2008 investigating role development and a possible career structure for medical radiation technologists (MRTs) in New Zealand (NZ). Methods: The study sought to support the development of profiles and criteria that could be used to develop Advanced Scopes of Practice for the profession through inviting 12 specialist medical imaging groups in NZ to participate in a survey. Results: Findings showed strong agreement on potential profiles and on generic criteria within them; however, there was less agreement on specific skills criteria within specialist areas. Conclusions: The authors recommend that one Advanced Scope of Practice be developed for Medical Imaging, with the establishment of generic and specialist criteria. Systems for approval of the overall criteria package for any individual Advanced Practitioner (AP) profile, audit and continuing professional development requirements need to be established by the Medical Radiation Technologists Board (MRTB) to meet the local needs of clinical departments. It is further recommended that the NZIMRT and MRTB promote and support the need for an AP pathway for medical imaging in NZ.

  15. Establishing advanced practice for medical imaging in New Zealand.

    Science.gov (United States)

    Yielder, Jill; Young, Adrienne; Park, Shelley; Coleman, Karen

    2014-02-01

    IntroductionThis article presents the outcome and recommendations following the second stage of a role development project conducted on behalf of the New Zealand Institute of Medical Radiation Technology (NZIMRT). The study sought to support the development of profiles and criteria that may be used to formulate Advanced Scopes of Practice for the profession. It commenced in 2011, following on from initial research that occurred between 2005 and 2008 investigating role development and a possible career structure for medical radiation technologists (MRTs) in New Zealand (NZ). MethodsThe study sought to support the development of profiles and criteria that could be used to develop Advanced Scopes of Practice for the profession through inviting 12 specialist medical imaging groups in NZ to participate in a survey. ResultsFindings showed strong agreement on potential profiles and on generic criteria within them; however, there was less agreement on specific skills criteria within specialist areas. ConclusionsThe authors recommend that one Advanced Scope of Practice be developed for Medical Imaging, with the establishment of generic and specialist criteria. Systems for approval of the overall criteria package for any individual Advanced Practitioner (AP) profile, audit and continuing professional development requirements need to be established by the Medical Radiation Technologists Board (MRTB) to meet the local needs of clinical departments. It is further recommended that the NZIMRT and MRTB promote and support the need for an AP pathway for medical imaging in NZ.

  16. Imaging requirements for medical applications of additive manufacturing.

    Science.gov (United States)

    Huotilainen, Eero; Paloheimo, Markku; Salmi, Mika; Paloheimo, Kaija-Stiina; Björkstrand, Roy; Tuomi, Jukka; Markkola, Antti; Mäkitie, Antti

    2014-02-01

    Additive manufacturing (AM), formerly known as rapid prototyping, is steadily shifting its focus from industrial prototyping to medical applications as AM processes, bioadaptive materials, and medical imaging technologies develop, and the benefits of the techniques gain wider knowledge among clinicians. This article gives an overview of the main requirements for medical imaging affected by needs of AM, as well as provides a brief literature review from existing clinical cases concentrating especially on the kind of radiology they required. As an example application, a pair of CT images of the facial skull base was turned into 3D models in order to illustrate the significance of suitable imaging parameters. Additionally, the model was printed into a preoperative medical model with a popular AM device. Successful clinical cases of AM are recognized to rely heavily on efficient collaboration between various disciplines - notably operating surgeons, radiologists, and engineers. The single main requirement separating tangible model creation from traditional imaging objectives such as diagnostics and preoperative planning is the increased need for anatomical accuracy in all three spatial dimensions, but depending on the application, other specific requirements may be present as well. This article essentially intends to narrow the potential communication gap between radiologists and engineers who work with projects involving AM by showcasing the overlap between the two disciplines.

  17. elastix: a toolbox for intensity-based medical image registration.

    Science.gov (United States)

    Klein, Stefan; Staring, Marius; Murphy, Keelin; Viergever, Max A; Pluim, Josien P W

    2010-01-01

    Medical image registration is an important task in medical image processing. It refers to the process of aligning data sets, possibly from different modalities (e.g., magnetic resonance and computed tomography), different time points (e.g., follow-up scans), and/or different subjects (in case of population studies). A large number of methods for image registration are described in the literature. Unfortunately, there is not one method that works for all applications. We have therefore developed elastix, a publicly available computer program for intensity-based medical image registration. The software consists of a collection of algorithms that are commonly used to solve medical image registration problems. The modular design of elastix allows the user to quickly configure, test, and compare different registration methods for a specific application. The command-line interface enables automated processing of large numbers of data sets, by means of scripting. The usage of elastix for comparing different registration methods is illustrated with three example experiments, in which individual components of the registration method are varied.

  18. Radiation dose from medical imaging: a primer for emergency physicians.

    Science.gov (United States)

    Jones, Jesse G A; Mills, Christopher N; Mogensen, Monique A; Lee, Christoph I

    2012-05-01

    Medical imaging now accounts for most of the US population's exposure to ionizing radiation. A substantial proportion of this medical imaging is ordered in the emergency setting. We aim to provide a general overview of radiation dose from medical imaging with a focus on computed tomography, as well as a literature review of recent efforts to decrease unnecessary radiation exposure to patients in the emergency department setting. We conducted a literature review through calendar year 2010 for all published articles pertaining to the emergency department and radiation exposure. The benefits of imaging usually outweigh the risks of eventual radiation-induced cancer in most clinical scenarios encountered by emergency physicians. However, our literature review identified 3 specific clinical situations in the general adult population in which the lifetime risks of cancer may outweigh the benefits to the patient: rule out pulmonary embolism, flank pain, and recurrent abdominal pain in inflammatory bowel disease. For these specific clinical scenarios, a physician-patient discussion about such risks and benefits may be warranted. Emergency physicians, now at the front line of patients' exposure to ionizing radiation, should have a general understanding of the magnitude of radiation dose from advanced medical imaging procedures and their associated risks. Future areas of research should include the development of protocols and guidelines that limit unnecessary patient radiation exposure.

  19. Medical image of the week: lung entrapment

    Directory of Open Access Journals (Sweden)

    Natt B

    2016-07-01

    Full Text Available No abstract available. Article truncated at 150 words. A 74-year-old woman with a history of breast cancer 10 years ago treated with lumpectomy and radiation presented for evaluation of shortness of breath. She was diagnosed with left sided pleural effusion which was recurrent requiring multiple thoracenteses. There was increased pleural fludeoxyglucose (FDG uptake on PET-CT indicative of recurrent metastatic disease. She underwent a medical pleuroscopy since the pleural effusion analysis did not reveal malignant cells although the suspicion was high and tunneled pleural catheter placement as adjuvant chemotherapy was initiated. Figure 1 shows a pleurscopic view of the collapsed left lung and the effusion in the left hemi thorax. Figure 2 shows extensive involvement of the visceral pleura with metastatic disease preventing complete lung inflation. Figure 3 shows persistent pneumothorax-ex-vacuo despite pleural catheter placement confirming the diagnosis of entrapment. Incomplete lung inflation can be due to pleural disease, endobronchial lesions or chronic telecasts. Lung entrapment and trapped lung ...

  20. Medical image of the week: eosphageal perforation

    Directory of Open Access Journals (Sweden)

    Bilal J

    2015-04-01

    Full Text Available No abstract available. Article truncated after 150 words. A 74 year old man with a past medical history of esophageal strictures status post dilatation, coronary artery disease status post CABG, and atrial fibrillation presented to hospital with complaints of severe chest pain that began after the consumption of tortilla chips one hour prior to presentation. Electrocardiogram and cardiac enzymes were not consistent with acute coronary syndrome. Chest X-ray was consistent with a widened mediastinal silhouette. Contrast esophogram was negative for extra luminal extravasation. CT scan of the chest with oral contrast demonstrated thickening of the mid-thoracic esophagus with an extra-luminal focus of gas in the mediastinum along with fluid along the inferior aspect of the esophagus (Figures 1 and 2. These findings were concerning for esophageal perforation. The patient was taken to the operating room for endoscopy which showed micro perforation in mid-esophagus. Esophageal perforation remains a highly morbid condition. Mortality rates are based predominantly on time of ...

  1. Medical image of the week: fungus ball

    Directory of Open Access Journals (Sweden)

    Rosen S

    2015-04-01

    Full Text Available No abstract available. Article truncated at 150 words. A 69 year-old Asian woman living in Arizona with a past medical history of nephrotic syndrome on high-dose steroids had worsening pulmonary symptoms. A computed tomography (CT of the chest (Figure 1 showed a 4.7 cm thin walled cavitary lesion in the right middle lobe compatible with mycetoma. She underwent thoracotomy for mycetoma resection. Surgical pathology confirmed an epithelial-lined cavity containing dense mycelia (Figure 2. Given the patient lived in an endemic area; the cavity was thought to be likely due to coccidioidomycosis. However, the mycetoma was of unclear etiology. No spherules were noted on GMS stain and tissue culture was negative. While of unclear clinical significance which fungus colonizes a pre-existing cavity, a Coccidioides PCR was performed and no Coccidioides genes were amplified making a Coccidioides mycetoma very unlikely. Pulmonary mycetoma or “fungus ball” consists of dense fungal elements and amorphous cellular material within a pre-existing pulmonary cavity. Classically ...

  2. Medical image of the week: splenic infarction

    Directory of Open Access Journals (Sweden)

    Casey DJ

    2016-08-01

    Full Text Available No abstract available. Article truncated after 150 words. A 52-year-old Hispanic woman with a past medical history significant for Type 1 Diabetes Mellitus, hypertension, and rheumatoid arthritis presented with left upper quadrant pain for one day. Her review of systems was positive for bloating, severe epigastric and left upper quadrant tenderness that radiated to the back and left shoulder, nausea with non-bilious emesis, and diarrhea for one day prior to admission. Physical exam only revealed epigastric and left upper quadrant tenderness to light palpation without rebound or guarding. Abdominal computed tomography of the abdomen demonstrated a new acute or subacute splenic infarct with no clear evidence of an embolic source in the abdomen or pelvis (Figure 1. Echocardiogram with bubble study and contrast did not demonstrate valve abnormalities, cardiac mass, vegetation, valve or wall motion abnormalities and no evidence of patent foramen ovale. Splenic infarction should be suspected when patients present with sharp, acute left upper quadrant pain ...

  3. Medical image of the week: panloubular emphysema

    Directory of Open Access Journals (Sweden)

    Mathur A

    2015-08-01

    Full Text Available No abstract available. Article truncated after 150 words. A 60 year old female, non-smoker with a past medical history of chronic rhinosinusitis with nasal polyps presented with an eight year history of productive cough and dyspnea. Previous treatment with inhaled corticosteroids, courses of systemic corticosteroids and antibiotics provided modest improvement in her symptoms. Pulmonary function testing revealed a severe obstructive ventilatory defect without significant bronchodilator response and reduced diffusing capacity (DLCO. Chest x-ray surprisingly revealed lower lobe predominant emphysematous changes (Figure 1. Alpha-1-antitrypsin level was within normal range at 137 mg/dL. Panlobular emphysema represents permanent destruction of the entire acinus distal to the respiratory bronchioles and is more likely to affect the lower lobes compared to centrilobular emphysema (1. Panlobular emphysema is associated with alpha-1-antitrypsin deficiency, intravenous drug abuse specifically with methylphenidate and methadone, Swyer-James syndrome, and obliterative bronchiolitis. Whether this pattern is seen as part of normal senescence in non-smoking individuals remains controversial (2. Panlobular emphysema may ...

  4. Medical image of the week: bronchopleural fistula

    Directory of Open Access Journals (Sweden)

    Desai H

    2016-09-01

    Full Text Available No abstract available. Article truncated at 150 words. A 58-year-old man with past medical history significant for chronic smoking and seizures was referred to the emergency room after a chest x-ray done by his primary care physician for evaluation of cough showed a hydropneumothorax. His symptoms included dry cough for past 2 months without fever, chills or other associated symptoms. He did not have any thoracic procedures performed and had no past history of recurrent infections. He was hemodynamically stable. Physical examination was only significant with decreased breath sounds on the right side of the chest. Thoracic CT with contrast was performed which showed complete collapse of the right lower lobe, near complete collapse of right middle lobe as well as an air-fluid level. There was a suspicion of a direct communication between bronchi and pleural space at the posterior lateral margin of the collapsed right lower lobe (Figure 1. The presence of bronchopleural fistula (BPF was confirmed ...

  5. Medical image of the week: acute epiglottitis

    Directory of Open Access Journals (Sweden)

    Desai C

    2013-09-01

    Full Text Available No abstract available. Article truncated after 150 words. A 24 year old man without a significant past medical history presented with a 3 day history of sore throat, fever and less than 24 hour history of pain with breathing and swallowing secretions. He was intubated using fiberoptic nasopharyngoscopy in the emergency department due to stridor with a 6.0 mm endotracheal tube until successfully extubated five days later. Initially he was treated with broad spectrum antibiotics and methylprednisolone 40 mg intravenously every 12 hours. A CT scan of the neck did not show an epiglottic abscess. Acute epiglottitis in adults appears to have a rising incidence with an associated mortality of 7% that is related to Haemophilus influenzae type b, as well as other miscellaneous pathogens, mechanical injury or smoke inhalation. Risk factors associated with obstruction are drooling, rapid onset of symptoms, evidence of abscess formation and a history of diabetes mellitus. Epiglottic abscess is infrequent sequelae of acute …

  6. Medical image of the week: arachnoid cyst

    Directory of Open Access Journals (Sweden)

    Erisman M

    2016-10-01

    Full Text Available No abstract available. Article truncated at 150 words. A 40 year-old woman with adult attention deficit hyperactive and bipolar 1 disorder presents with an altered mental status. Per her family, she had been non-verbal, with reduced oral intake, confusion and sedated for the past three days. Per her husband, she had episodes of diarrhea and abdominal discomfort. She was on multiple medications including ramelteon 8mg nightly, atomoxetine 40mg daily, hydroxyzine 25mg twice daily, bupropion 75mg twice daily and risperidone 2mg daily with recent addition of lithium ER 1200mg/daily started one month prior to presentation with unknown adherence. Upon arrival, vital signs were within normal limits. Physical exam revealed an overweight Caucasian woman with a significant coarse tremor visible at rest, restlessness and diaphoresis. Neurological examination was limited by patient hesitancy, however, it did not demonstrate focal deficits except for altered consciousness with Glasgow Coma Scale of 10. Notable laboratory findings were Na+ 134 mEq/L, K+ 3.2 mEq/L, and ...

  7. Medical image of the week: phytobezoar

    Directory of Open Access Journals (Sweden)

    Hansra A

    2016-01-01

    Full Text Available No abstract available. Article truncated after 150 words. A 10-year-old boy with a history of non-verbal autism presented to the hospital with symptoms of chronic malnourishment. He was recently started on a specific carbohydrate rich diet, as outlined by a popular mainstream nutrition book, with hopes of improvement in adverse behavior. Prior to the start of this new diet, he consistently demonstrated an increased craving for food and was described to have an insatiable appetite. Though he was relatively non-verbal at baseline, he intermittently voiced his hunger and associated abdominal pain. A supine abdominal radiograph obtained immediately after admission showed a moderate gastric distension with a significant stool burden. Follow-up radiographs of the abdomen were obtained after two days of medical attempts to clear out the gastrointestinal system. The supine frontal radiograph at this time showed a massively distended stomach with a mottled appearance and considerable mass effect on the transverse colon (Figure 1. The interpreting pediatric radiologist ...

  8. Detectors for medical radioisotope imaging: demands and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M.I. E-mail: isabel@lipc.fis.uc.pt; Chepel, V

    2004-11-01

    Radioisotope imaging is used to obtain information on biochemical processes in living organisms, being a tool of increasing importance for medical diagnosis. The improvement and expansion of these techniques depend on the progress attained in several areas, such as radionuclide production, radiopharmaceuticals, radiation detectors and image reconstruction algorithms. This review paper will be concerned only with the detector technology. We will review in general terms the present status of medical radioisotope imaging instrumentation with the emphasis put on the developments of high-resolution gamma cameras and PET detector systems for scinti-mammography and animal imaging. The present trend to combine two or more modalities in a single machine in order to obtain complementary information will also be considered.

  9. Detectors for medical radioisotope imaging: demands and perspectives

    Science.gov (United States)

    Lopes, M. I.; Chepel, V.

    2004-10-01

    Radioisotope imaging is used to obtain information on biochemical processes in living organisms, being a tool of increasing importance for medical diagnosis. The improvement and expansion of these techniques depend on the progress attained in several areas, such as radionuclide production, radiopharmaceuticals, radiation detectors and image reconstruction algorithms. This review paper will be concerned only with the detector technology. We will review in general terms the present status of medical radioisotope imaging instrumentation with the emphasis put on the developments of high-resolution gamma cameras and PET detector systems for scinti-mammography and animal imaging. The present trend to combine two or more modalities in a single machine in order to obtain complementary information will also be considered.

  10. Infrared medical image visualization and anomalies analysis method

    Science.gov (United States)

    Gong, Jing; Chen, Zhong; Fan, Jing; Yan, Liang

    2015-12-01

    Infrared medical examination finds the diseases through scanning the overall human body temperature and obtaining the temperature anomalies of the corresponding parts with the infrared thermal equipment. In order to obtain the temperature anomalies and disease parts, Infrared Medical Image Visualization and Anomalies Analysis Method is proposed in this paper. Firstly, visualize the original data into a single channel gray image: secondly, turn the normalized gray image into a pseudo color image; thirdly, a method of background segmentation is taken to filter out background noise; fourthly, cluster those special pixels with the breadth-first search algorithm; lastly, mark the regions of the temperature anomalies or disease parts. The test is shown that it's an efficient and accurate way to intuitively analyze and diagnose body disease parts through the temperature anomalies.

  11. Novel medical imaging technologies for disease diagnosis and treatment

    Science.gov (United States)

    Olego, Diego

    2009-03-01

    New clinical approaches for disease diagnosis, treatment and monitoring will rely on the ability of simultaneously obtaining anatomical, functional and biological information. Medical imaging technologies in combination with targeted contrast agents play a key role in delivering with ever increasing temporal and spatial resolution structural and functional information about conditions and pathologies in cardiology, oncology and neurology fields among others. This presentation will review the clinical motivations and physics challenges in on-going developments of new medical imaging techniques and the associated contrast agents. Examples to be discussed are: *The enrichment of computer tomography with spectral sensitivity for the diagnosis of vulnerable sclerotic plaque. *Time of flight positron emission tomography for improved resolution in metabolic characterization of pathologies. *Magnetic particle imaging -a novel imaging modality based on in-vivo measurement of the local concentration of iron oxide nano-particles - for blood perfusion measurement with better sensitivity, spatial resolution and 3D real time acquisition. *Focused ultrasound for therapy delivery.

  12. Spatial Information Based Medical Image Registration using Mutual Information

    Directory of Open Access Journals (Sweden)

    Benzheng Wei

    2011-06-01

    Full Text Available Image registration is a valuable technique for medical diagnosis and treatment. Due to the inferiority of image registration using maximum mutual information, a new hybrid method of multimodality medical image registration based on mutual information of spatial information is proposed. The new measure that combines mutual information, spatial information and feature characteristics, is proposed. Edge points are used as features, obtained from a morphology gradient detector. Feature characteristics like location, edge strength and orientation are taken into account to compute a joint probability distribution of corresponding edge points in two images. Mutual information based on this function is minimized to find the best alignment parameters. Finally, the translation parameters are calculated by using a modified Particle Swarm Optimization (MPSO algorithm. The experimental results demonstrate the effectiveness of the proposed registration scheme.

  13. In-office rapid volumetric ablation of uterine fibroids under ultrasound imaging guidance: Preclinical and early clinical experience with the Mirabilis transabdominal HIFU treatment system

    Science.gov (United States)

    Leal, José G. Garza; León, Ivan Hernandez; Sáenz, Lorena Castillo; Aguirre, Juan M. Aguilar; Lagos, Joel J. Islas; Parsons, Jessica E.; Darlington, Gregory P.; Lau, Michael P. H.

    2017-03-01

    Mirabilis Medica, Inc. (Bothell, WA, USA) has developed a high-intensity focused ultrasound (HIFU) system for producing rapid transabdominal volumetric ablation of uterine fibroids in an office-based setting. The Mirabilis HIFU Treatment System utilizes integrated ultrasound imaging guidance and short treatment times under 15 minutes. Treatment with the Mirabilis system is generally well tolerated using only oral analgesia without anesthesia or sedation. This paper summarizes certain technical aspects of the Mirabilis HIFU technology, the preclinical development process, and the results of the first in-human clinical study using the Mirabilis system. During preclinical studies, an in vivo transcutaneous porcine lower extremity model was used in a total of 180 adult swine to develop the HIFU treatment regimen parameters. Additionally, 108 excised human uteri with fibroids obtained from scheduled hysterectomies were treated in an ex vivo experimental setup and evaluated. These preclinical activities resulted in a HIFU treatment technique referred to as Mirabilis Shell Ablation, which enables rapid volumetric fibroid ablation by directing the HIFU energy to the outer perimeter of the target volume (the `shell') without insonating its core. This method results in efficient fibroid treatment through a synergistic combination of direct tissue ablation, cooperative heating effects, and indirect ischemic necrosis in the interior of the volume. After refining this technique and performing safety testing in the in vivo porcine model, a clinical pilot study was conducted to assess the initial safety and performance of the Mirabilis HIFU Treatment System for transabdominal treatment of uterine fibroids in eligible women who were scheduled to undergo hysterectomy following treatment with the device. A total of 37 women meeting certain eligibility criteria were treated at two clinical sites in Mexico. Twenty-nine (29) of these 37 women received only prophylactic sublingual

  14. Medical Image Digitalization and Archiving Information System in Serbia

    Science.gov (United States)

    Sajfert, Vjekoslav; Milićević, Vladimir; Jevtić, Vesna; Jovanović, Višnja

    2007-04-01

    The paper gives a brief presentation of digital and archiving imaging system (PACS) with a survey of the main characteristics and development of the system worldwide as well as the possibilities and the area of its implementation in our conditions. We have given a proposition for digitalization and archiving of both the existing and future medical imaging in accordance with our possibilities for world standards implementation.

  15. 76 FR 77834 - Scientific Information Request on Intravascular Diagnostic and Imaging Medical Devices

    Science.gov (United States)

    2011-12-14

    ... Intravascular Diagnostic and Imaging Medical Devices AGENCY: Agency for Healthcare Research and Quality (AHRQ... intravascular diagnostic and imaging medical devices, including: Fractional Flow Reserve (FFR), Coronary Flow... Resonance Imaging (MRI), Elastrography, and Thermography. Scientific information is being solicited to...

  16. Medical Imaging for Understanding Sleep Regulation

    Science.gov (United States)

    Wong, Kenneth

    2011-10-01

    Sleep is essential for the health of the nervous system. Lack of sleep has a profound negative effect on cognitive ability and task performance. During sustained military operations, soldiers often suffer from decreased quality and quantity of sleep, increasing their susceptibility to neurological problems and limiting their ability to perform the challenging mental tasks that their missions require. In the civilian sector, inadequate sleep and overt sleep pathology are becoming more common, with many detrimental impacts. There is a strong need for new, in vivo studies of human brains during sleep, particularly the initial descent from wakefulness. Our research team is investigating sleep using a combination of magnetic resonance imaging (MRI), positron emission tomography (PET), and electroencephalography (EEG). High resolution MRI combined with PET enables localization of biochemical processes (e.g., metabolism) to anatomical structures. MRI methods can also be used to examine functional connectivity among brain regions. Neural networks are dynamically reordered during different sleep stages, reflecting the disconnect with the waking world and the essential yet unconscious brain activity that occurs during sleep.[4pt] In collaboration with Linda Larson-Prior, Washington University; Alpay Ozcan, Virginia Tech; Seong Mun, Virginia Tech; and Zang-Hee Cho, Gachon University.

  17. Medical image of the week: scleroderma

    Directory of Open Access Journals (Sweden)

    Arteaga VA

    2015-04-01

    Full Text Available No abstract available. Article truncated at 150 words. A 56-year-old man presents with cough and dyspnea. Pertinent history is significant for scleroderma. A complete blood count and differential count were unremarkable. A chest radiograph was obtained (Figure 1. Based on overall imaging and clinical history, the chest x-ray findings are highly suggest interstitial lung disease likely related to scleroderma and a recommendation for high resolution chest CT was made. Progressive systemic sclerosis (scleroderma is an autoimmune connective tissue disease that affects 30-50 year old women more often than men and is characterized by the overproduction of collagen which can lead to fibrosis which includes the lungs, skin, and may also affect visceral organs (1. In the hands, vasculitis and Raynaud's phenomenon may lead to distal tapering (2. Although acro-osteolysis or distal tuft resorption can be seen in a wide variety of disorders, it may be present in up to 80% of patients with scleroderma. High-resolution chest CT is ...

  18. [Application of medical imaging to general thoracic surgery].

    Science.gov (United States)

    Oizumi, Hiroyuki

    2014-07-01

    Medical imaging technology is rapidly progressing. Positron emission tomography (PET) has played major role in the staging and choice of treatment modality in lung cancer patients. Magnetic resonance imaging (MRI) is now routinely used for mediastinal tumors and the use of diffusion-weighted images (DWI) may help in the diagnosis of malignancies including lung cancers. The benefits of medical imaging technology are not limited to diagnostics, and include simulation or navigation for complex lung resection and other procedures. Multidetector row computed tomography (MDCT) shortens imaging time to obtain detailed and precise volume data, which improves diagnosis of small-sized lung cancers. 3-dimensional reconstruction of the volume data allows the safe performance of thoracoscopic surgery. For lung lobectomy, identification of the branching structures, diameter, and length of the arteries is useful in selecting the procedure for blood vessel treatment. For lung segmentectomy, visualization of venous branches in the affected segments and intersegmental veins has facilitated the preoperative determination of the anatomical intersegmental plane. Therefore, the application of medical imaging technology is useful in general thoracic surgery.

  19. Adapting smartphones for low-cost optical medical imaging

    Science.gov (United States)

    Pratavieira, Sebastião.; Vollet-Filho, José D.; Carbinatto, Fernanda M.; Blanco, Kate; Inada, Natalia M.; Bagnato, Vanderlei S.; Kurachi, Cristina

    2015-06-01

    Optical images have been used in several medical situations to improve diagnosis of lesions or to monitor treatments. However, most systems employ expensive scientific (CCD or CMOS) cameras and need computers to display and save the images, usually resulting in a high final cost for the system. Additionally, this sort of apparatus operation usually becomes more complex, requiring more and more specialized technical knowledge from the operator. Currently, the number of people using smartphone-like devices with built-in high quality cameras is increasing, which might allow using such devices as an efficient, lower cost, portable imaging system for medical applications. Thus, we aim to develop methods of adaptation of those devices to optical medical imaging techniques, such as fluorescence. Particularly, smartphones covers were adapted to connect a smartphone-like device to widefield fluorescence imaging systems. These systems were used to detect lesions in different tissues, such as cervix and mouth/throat mucosa, and to monitor ALA-induced protoporphyrin-IX formation for photodynamic treatment of Cervical Intraepithelial Neoplasia. This approach may contribute significantly to low-cost, portable and simple clinical optical imaging collection.

  20. Role of phantoms in progress of medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tanada, Shuji [National Inst. of Radiological Sciences, Chiba (Japan)

    1998-09-01

    Importance of phantoms in medical imaging was discussed from the aspect of quality control/assurance which consisting of accuracy management and performance assessment of the imaging apparatuses. Phantoms have played significant roles in progress of nuclear medicine. Medical images would be classified in the two: morphological ones as represented by X-ray CT and MRI and functional ones by PET and SPECT. The roles of phantoms played are those for evaluation of organ/tissue exposure dose due to the administered radiopharmaceuticals, for evaluation of accuracy management and performance assessment of apparatuses (I.e., homogeneity and stability of the sensitivity, linearity between measured value and radioactivity and assessment of spacial resolution in the reconstructed images), for evaluation of reconstructed images as quantitatively-assessed functional ones, for evaluation of cross calibration among multiple apparatuses and for validation of tracer kinetic model analysis. In summary, phantoms in medical imaging are useful in the assessment of accurate performance, in the assurance of reliability of results, in the comparison of quantitative repeated or inter-individual examination results and in the quantitative evaluation of the function of small structures like the basal ganglia and thalamus. (K.H.)