WorldWideScience

Sample records for volumetric imaging tools

  1. Parallel imaging: is GRAPPA a useful acquisition tool for MR imaging intended for volumetric brain analysis?

    Directory of Open Access Journals (Sweden)

    Frank Anders

    2009-08-01

    Full Text Available Abstract Background The work presented here investigates parallel imaging applied to T1-weighted high resolution imaging for use in longitudinal volumetric clinical studies involving Alzheimer's disease (AD and Mild Cognitive Impairment (MCI patients. This was in an effort to shorten acquisition times to minimise the risk of motion artefacts caused by patient discomfort and disorientation. The principle question is, "Can parallel imaging be used to acquire images at 1.5 T of sufficient quality to allow volumetric analysis of patient brains?" Methods Optimisation studies were performed on a young healthy volunteer and the selected protocol (including the use of two different parallel imaging acceleration factors was then tested on a cohort of 15 elderly volunteers including MCI and AD patients. In addition to automatic brain segmentation, hippocampus volumes were manually outlined and measured in all patients. The 15 patients were scanned on a second occasion approximately one week later using the same protocol and evaluated in the same manner to test repeatability of measurement using images acquired with the GRAPPA parallel imaging technique applied to the MPRAGE sequence. Results Intraclass correlation tests show that almost perfect agreement between repeated measurements of both segmented brain parenchyma fraction and regional measurement of hippocampi. The protocol is suitable for both global and regional volumetric measurement dementia patients. Conclusion In summary, these results indicate that parallel imaging can be used without detrimental effect to brain tissue segmentation and volumetric measurement and should be considered for both clinical and research studies where longitudinal measurements of brain tissue volumes are of interest.

  2. Radiology resident MR and CT image analysis skill assessment using an interactive volumetric simulation tool - the RadioLOG project

    International Nuclear Information System (INIS)

    Gondim Teixeira, Pedro Augusto; Leplat, Christophe; Cendre, Romain; Hossu, Gabriela; Felblinger, Jacques; Blum, Alain; Braun, Marc

    2017-01-01

    Assess the use of a volumetric simulation tool for the evaluation of radiology resident MR and CT interpretation skills. Forty-three participants were evaluated with a software allowing the visualisation of multiple volumetric image series. There were 7 medical students, 28 residents and 8 senior radiologists among the participants. Residents were divided into two sub-groups (novice and advanced). The test was composed of 15 exercises on general radiology and lasted 45 min. Participants answered a questionnaire on their experience with the test using a 5-point Likert scale. This study was approved by the dean of the medical school and did not require ethics committee approval. The reliability of the test was good with a Cronbach alpha value of 0.9. Test scores were significantly different in all sub-groups studies (p < 0.0225). The relation between test scores and the year of residency was logarithmic (R"2 = 0.974). Participants agreed that the test reflected their radiological practice (3.9 ± 0.9 on a 5-point scale) and was better than the conventional evaluation methods (4.6 ± 0.5 on a 5-point scale). This software provides a high quality evaluation tool for the assessment of the interpretation skills in radiology residents. (orig.)

  3. Radiology resident MR and CT image analysis skill assessment using an interactive volumetric simulation tool - the RadioLOG project

    Energy Technology Data Exchange (ETDEWEB)

    Gondim Teixeira, Pedro Augusto; Leplat, Christophe [CHRU-Nancy Hopital Central, Service d' Imagerie Guilloz, Nancy (France); Universite de Lorraine, IADI U947, Nancy (France); Cendre, Romain [INSERM, CIC-IT 1433, Nancy (France); Hossu, Gabriela; Felblinger, Jacques [Universite de Lorraine, IADI U947, Nancy (France); INSERM, CIC-IT 1433, Nancy (France); Blum, Alain [CHRU-Nancy Hopital Central, Service d' Imagerie Guilloz, Nancy (France); Braun, Marc [CHRU-Nancy Hopital Central, Service de Neuroradiologie, Nancy (France)

    2017-02-15

    Assess the use of a volumetric simulation tool for the evaluation of radiology resident MR and CT interpretation skills. Forty-three participants were evaluated with a software allowing the visualisation of multiple volumetric image series. There were 7 medical students, 28 residents and 8 senior radiologists among the participants. Residents were divided into two sub-groups (novice and advanced). The test was composed of 15 exercises on general radiology and lasted 45 min. Participants answered a questionnaire on their experience with the test using a 5-point Likert scale. This study was approved by the dean of the medical school and did not require ethics committee approval. The reliability of the test was good with a Cronbach alpha value of 0.9. Test scores were significantly different in all sub-groups studies (p < 0.0225). The relation between test scores and the year of residency was logarithmic (R{sup 2} = 0.974). Participants agreed that the test reflected their radiological practice (3.9 ± 0.9 on a 5-point scale) and was better than the conventional evaluation methods (4.6 ± 0.5 on a 5-point scale). This software provides a high quality evaluation tool for the assessment of the interpretation skills in radiology residents. (orig.)

  4. Optimized T1- and T2-weighted volumetric brain imaging as a diagnostic tool in very preterm neonates

    International Nuclear Information System (INIS)

    Nossin-Manor, Revital; Chung, Andrew D.; Morris, Drew; Thomas, Bejoy; Shroff, Manohar M.; Soares-Fernandes, Joao P.; Cheng, Hai-Ling M.; Whyte, Hilary E.A.; Taylor, Margot J.; Sled, John G.

    2011-01-01

    T1- and T2-W MR sequences used for obtaining diagnostic information and morphometric measurements in the neonatal brain are frequently acquired using different imaging protocols. Optimizing one protocol for obtaining both kinds of information is valuable. To determine whether high-resolution T1- and T2-W volumetric sequences optimized for preterm brain imaging could provide both diagnostic and morphometric value. Thirty preterm neonates born between 24 and 32 weeks' gestational age were scanned during the first 2 weeks after birth. T1- and T2-W high-resolution sequences were optimized in terms of signal-to-noise ratio, contrast-to-noise ratio and scan time and compared to conventional spin-echo-based sequences. No differences were found between conventional and high-resolution T1-W sequences for diagnostic confidence, image quality and motion artifacts. A preference for conventional over high-resolution T2-W sequences for image quality was observed. High-resolution T1 images provided better delineation of thalamic myelination and the superior temporal sulcus. No differences were found for detection of myelination and sulcation using conventional and high-resolution T2-W images. High-resolution T1- and T2-W volumetric sequences can be used in clinical MRI in the very preterm brain to provide both diagnostic and morphometric information. (orig.)

  5. Interactive adaptation of a volumetric imaging radiotherapy treatment: development and validation of tools for its implementation in clinical routine

    International Nuclear Information System (INIS)

    Huger, Sandrine

    2013-01-01

    Changing anatomy during radiotherapy can lead to significant dosimetric consequences for organs at risk (OARs) and/or target volumes. Adaptive radiotherapy can compensate for these variations however its deployment for clinical work is hampered by the increased workload for the medical staff and there is still no commercialized software available for clinical use. We developed a simple in vivo dosimetric alert tool allowing rapid identification of patients who might benefit from an adaptive radiotherapy. Dosimetric evaluation of delivered treatment has been conducted onto 3D on board imaging (CBCT) whose dose calculation accuracy has been evaluated. The tool does not require a new volume of interest delineation. Tool alert is based on objectives and quantifiable criteria defined by the exceeding volumes of interest dose thresholds. Tool precision and detectability have been validated and applied in a retrospective study on 10 head and neck patients. The tool allows detecting patients where an adaptive treatment could have been considered. In its clinical implementation, adaptive radiotherapy process requires deformable matching algorithms to follow patient local's deformations occurring during treatment. Nevertheless, their use has not been validated. We conducted an evaluation of the Block Matching deformable algorithm, suitable for multimodality imaging (CT/CBCT), in comparison to rigid algorithm. A study has been conducted for 10 head and neck patients based on volume of interest contours comparison for 76 CBCT. Similarity parameters used consisted on Dice Similarity Index, Robust Hausdorff Distance (in mm) and the absolute volume difference (in cc). (author)

  6. Hologlyphics: volumetric image synthesis performance system

    Science.gov (United States)

    Funk, Walter

    2008-02-01

    This paper describes a novel volumetric image synthesis system and artistic technique, which generate moving volumetric images in real-time, integrated with music. The system, called the Hologlyphic Funkalizer, is performance based, wherein the images and sound are controlled by a live performer, for the purposes of entertaining a live audience and creating a performance art form unique to volumetric and autostereoscopic images. While currently configured for a specific parallax barrier display, the Hologlyphic Funkalizer's architecture is completely adaptable to various volumetric and autostereoscopic display technologies. Sound is distributed through a multi-channel audio system; currently a quadraphonic speaker setup is implemented. The system controls volumetric image synthesis, production of music and spatial sound via acoustic analysis and human gestural control, using a dedicated control panel, motion sensors, and multiple musical keyboards. Music can be produced by external acoustic instruments, pre-recorded sounds or custom audio synthesis integrated with the volumetric image synthesis. Aspects of the sound can control the evolution of images and visa versa. Sounds can be associated and interact with images, for example voice synthesis can be combined with an animated volumetric mouth, where nuances of generated speech modulate the mouth's expressiveness. Different images can be sent to up to 4 separate displays. The system applies many novel volumetric special effects, and extends several film and video special effects into the volumetric realm. Extensive and various content has been developed and shown to live audiences by a live performer. Real world applications will be explored, with feedback on the human factors.

  7. Volumetric CT-images improve testing of radiological image interpretation skills

    Energy Technology Data Exchange (ETDEWEB)

    Ravesloot, Cécile J., E-mail: C.J.Ravesloot@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Schaaf, Marieke F. van der, E-mail: M.F.vanderSchaaf@uu.nl [Department of Pedagogical and Educational Sciences at Utrecht University, Heidelberglaan 1, 3584 CS Utrecht (Netherlands); Schaik, Jan P.J. van, E-mail: J.P.J.vanSchaik@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Cate, Olle Th.J. ten, E-mail: T.J.tenCate@umcutrecht.nl [Center for Research and Development of Education at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Gijp, Anouk van der, E-mail: A.vanderGijp-2@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Mol, Christian P., E-mail: C.Mol@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Vincken, Koen L., E-mail: K.Vincken@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands)

    2015-05-15

    Rationale and objectives: Current radiology practice increasingly involves interpretation of volumetric data sets. In contrast, most radiology tests still contain only 2D images. We introduced a new testing tool that allows for stack viewing of volumetric images in our undergraduate radiology program. We hypothesized that tests with volumetric CT-images enhance test quality, in comparison with traditional completely 2D image-based tests, because they might better reflect required skills for clinical practice. Materials and methods: Two groups of medical students (n = 139; n = 143), trained with 2D and volumetric CT-images, took a digital radiology test in two versions (A and B), each containing both 2D and volumetric CT-image questions. In a questionnaire, they were asked to comment on the representativeness for clinical practice, difficulty and user-friendliness of the test questions and testing program. Students’ test scores and reliabilities, measured with Cronbach's alpha, of 2D and volumetric CT-image tests were compared. Results: Estimated reliabilities (Cronbach's alphas) were higher for volumetric CT-image scores (version A: .51 and version B: .54), than for 2D CT-image scores (version A: .24 and version B: .37). Participants found volumetric CT-image tests more representative of clinical practice, and considered them to be less difficult than volumetric CT-image questions. However, in one version (A), volumetric CT-image scores (M 80.9, SD 14.8) were significantly lower than 2D CT-image scores (M 88.4, SD 10.4) (p < .001). The volumetric CT-image testing program was considered user-friendly. Conclusion: This study shows that volumetric image questions can be successfully integrated in students’ radiology testing. Results suggests that the inclusion of volumetric CT-images might improve the quality of radiology tests by positively impacting perceived representativeness for clinical practice and increasing reliability of the test.

  8. Development and Evaluation of a Semi-automated Segmentation Tool and a Modified Ellipsoid Formula for Volumetric Analysis of the Kidney in Non-contrast T2-Weighted MR Images.

    Science.gov (United States)

    Seuss, Hannes; Janka, Rolf; Prümmer, Marcus; Cavallaro, Alexander; Hammon, Rebecca; Theis, Ragnar; Sandmair, Martin; Amann, Kerstin; Bäuerle, Tobias; Uder, Michael; Hammon, Matthias

    2017-04-01

    Volumetric analysis of the kidney parenchyma provides additional information for the detection and monitoring of various renal diseases. Therefore the purposes of the study were to develop and evaluate a semi-automated segmentation tool and a modified ellipsoid formula for volumetric analysis of the kidney in non-contrast T2-weighted magnetic resonance (MR)-images. Three readers performed semi-automated segmentation of the total kidney volume (TKV) in axial, non-contrast-enhanced T2-weighted MR-images of 24 healthy volunteers (48 kidneys) twice. A semi-automated threshold-based segmentation tool was developed to segment the kidney parenchyma. Furthermore, the three readers measured renal dimensions (length, width, depth) and applied different formulas to calculate the TKV. Manual segmentation served as a reference volume. Volumes of the different methods were compared and time required was recorded. There was no significant difference between the semi-automatically and manually segmented TKV (p = 0.31). The difference in mean volumes was 0.3 ml (95% confidence interval (CI), -10.1 to 10.7 ml). Semi-automated segmentation was significantly faster than manual segmentation, with a mean difference = 188 s (220 vs. 408 s); p T2-weighted MR data delivers accurate and reproducible results and was significantly faster than manual segmentation. Applying a modified ellipsoid formula quickly provides an accurate kidney volume.

  9. Volumetric image interpretation in radiology: scroll behavior and cognitive processes.

    Science.gov (United States)

    den Boer, Larissa; van der Schaaf, Marieke F; Vincken, Koen L; Mol, Chris P; Stuijfzand, Bobby G; van der Gijp, Anouk

    2018-05-16

    The interpretation of medical images is a primary task for radiologists. Besides two-dimensional (2D) images, current imaging technologies allow for volumetric display of medical images. Whereas current radiology practice increasingly uses volumetric images, the majority of studies on medical image interpretation is conducted on 2D images. The current study aimed to gain deeper insight into the volumetric image interpretation process by examining this process in twenty radiology trainees who all completed four volumetric image cases. Two types of data were obtained concerning scroll behaviors and think-aloud data. Types of scroll behavior concerned oscillations, half runs, full runs, image manipulations, and interruptions. Think-aloud data were coded by a framework of knowledge and skills in radiology including three cognitive processes: perception, analysis, and synthesis. Relating scroll behavior to cognitive processes showed that oscillations and half runs coincided more often with analysis and synthesis than full runs, whereas full runs coincided more often with perception than oscillations and half runs. Interruptions were characterized by synthesis and image manipulations by perception. In addition, we investigated relations between cognitive processes and found an overall bottom-up way of reasoning with dynamic interactions between cognitive processes, especially between perception and analysis. In sum, our results highlight the dynamic interactions between these processes and the grounding of cognitive processes in scroll behavior. It suggests, that the types of scroll behavior are relevant to describe how radiologists interact with and manipulate volumetric images.

  10. Parkinson's disease: diagnostic utility of volumetric imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wei-Che; Chen, Meng-Hsiang [Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Department of Diagnostic Radiology, Kaohsiung (China); Chou, Kun-Hsien [National Yang-Ming University, Brain Research Center, Taipei (China); Lee, Pei-Lin [National Yang-Ming University, Department of Biomedical Imaging and Radiological Sciences, Taipei (China); Tsai, Nai-Wen; Lu, Cheng-Hsien [Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Department of Neurology, Kaohsiung (China); Chen, Hsiu-Ling [Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Department of Diagnostic Radiology, Kaohsiung (China); National Yang-Ming University, Department of Biomedical Imaging and Radiological Sciences, Taipei (China); Hsu, Ai-Ling [National Taiwan University, Institute of Biomedical Electronics and Bioinformatics, Taipei (China); Huang, Yung-Cheng [Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Department of Nuclear Medicine, Kaohsiung (China); Lin, Ching-Po [National Yang-Ming University, Brain Research Center, Taipei (China); National Yang-Ming University, Department of Biomedical Imaging and Radiological Sciences, Taipei (China)

    2017-04-15

    This paper aims to examine the effectiveness of structural imaging as an aid in the diagnosis of Parkinson's disease (PD). High-resolution T{sub 1}-weighted magnetic resonance imaging was performed in 72 patients with idiopathic PD (mean age, 61.08 years) and 73 healthy subjects (mean age, 58.96 years). The whole brain was parcellated into 95 regions of interest using composite anatomical atlases, and region volumes were calculated. Three diagnostic classifiers were constructed using binary multiple logistic regression modeling: the (i) basal ganglion prior classifier, (ii) data-driven classifier, and (iii) basal ganglion prior/data-driven hybrid classifier. Leave-one-out cross validation was used to unbiasedly evaluate the predictive accuracy of imaging features. Pearson's correlation analysis was further performed to correlate outcome measurement using the best PD classifier with disease severity. Smaller volume in susceptible regions is diagnostic for Parkinson's disease. Compared with the other two classifiers, the basal ganglion prior/data-driven hybrid classifier had the highest diagnostic reliability with a sensitivity of 74%, specificity of 75%, and accuracy of 74%. Furthermore, outcome measurement using this classifier was associated with disease severity. Brain structural volumetric analysis with multiple logistic regression modeling can be a complementary tool for diagnosing PD. (orig.)

  11. Visualization and volumetric structures from MR images of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Parvin, B.; Johnston, W.; Robertson, D.

    1994-03-01

    Pinta is a system for segmentation and visualization of anatomical structures obtained from serial sections reconstructed from magnetic resonance imaging. The system approaches the segmentation problem by assigning each volumetric region to an anatomical structure. This is accomplished by satisfying constraints at the pixel level, slice level, and volumetric level. Each slice is represented by an attributed graph, where nodes correspond to regions and links correspond to the relations between regions. These regions are obtained by grouping pixels based on similarity and proximity. The slice level attributed graphs are then coerced to form a volumetric attributed graph, where volumetric consistency can be verified. The main novelty of our approach is in the use of the volumetric graph to ensure consistency from symbolic representations obtained from individual slices. In this fashion, the system allows errors to be made at the slice level, yet removes them when the volumetric consistency cannot be verified. Once the segmentation is complete, the 3D surfaces of the brain can be constructed and visualized.

  12. Volumetric Real-Time Imaging Using a CMUT Ring Array

    OpenAIRE

    Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N.; O’Donnell, Matthew; Sahn, David J.; Khuri-Yakub, Butrus T.

    2012-01-01

    A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device.

  13. In Vivo Real Time Volumetric Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Rasmussen, Morten Fischer; Brandt, Andreas Hjelm

    2015-01-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological....... This paper investigates the in vivo applicability and sensitivity of volumetric SA imaging. Utilizing the transmit events to generate a set of virtual point sources, a frame rate of 25 Hz for a 90° x 90° field-of-view was achieved. Data were obtained using a 3.5 MHz 32 x 32 elements 2-D phased array...... transducer connected to the experimental scanner (SARUS). Proper scaling is applied to the excitation signal such that intensity levels are in compliance with the U.S. Food and Drug Administration regulations for in vivo ultrasound imaging. The measured Mechanical Index and spatial-peak- temporal...

  14. Two-dimensional random arrays for real time volumetric imaging

    DEFF Research Database (Denmark)

    Davidsen, Richard E.; Jensen, Jørgen Arendt; Smith, Stephen W.

    1994-01-01

    real time volumetric imaging system, which employs a wide transmit beam and receive mode parallel processing to increase image frame rate. Depth-of-field comparisons were made from simulated on-axis and off-axis beamplots at ranges from 30 to 160 mm for both coaxial and offset transmit and receive......Two-dimensional arrays are necessary for a variety of ultrasonic imaging techniques, including elevation focusing, 2-D phase aberration correction, and real time volumetric imaging. In order to reduce system cost and complexity, sparse 2-D arrays have been considered with element geometries...... selected ad hoc, by algorithm, or by random process. Two random sparse array geometries and a sparse array with a Mills cross receive pattern were simulated and compared to a fully sampled aperture with the same overall dimensions. The sparse arrays were designed to the constraints of the Duke University...

  15. A feasibility study of digital tomosynthesis for volumetric dental imaging

    International Nuclear Information System (INIS)

    Cho, M K; Kim, H K; Youn, H; Kim, S S

    2012-01-01

    We present a volumetric dental tomography method that compensates for insufficient projection views obtained from limited-angle scans. The reconstruction algorithm is based on the backprojection filtering method which employs apodizing filters that reduce out-of-plane blur artifacts and suppress high-frequency noise. In order to accompolish this volumetric imaging two volume-reconstructed datasets are synthesized. These individual datasets provide two different limited-angle scans performed at orthogonal angles. The obtained reconstructed images, using less than 15% of the number of projection views needed for a full skull phantom scan, demonstrate the potential use of the proposed method in dental imaging applications. This method enables a much smaller radiation dose for the patient compared to conventional dental tomography.

  16. Reducing uncertainties in volumetric image based deformable organ registration

    International Nuclear Information System (INIS)

    Liang, J.; Yan, D.

    2003-01-01

    Applying volumetric image feedback in radiotherapy requires image based deformable organ registration. The foundation of this registration is the ability of tracking subvolume displacement in organs of interest. Subvolume displacement can be calculated by applying biomechanics model and the finite element method to human organs manifested on the multiple volumetric images. The calculation accuracy, however, is highly dependent on the determination of the corresponding organ boundary points. Lacking sufficient information for such determination, uncertainties are inevitable--thus diminishing the registration accuracy. In this paper, a method of consuming energy minimization was developed to reduce these uncertainties. Starting from an initial selection of organ boundary point correspondence on volumetric image sets, the subvolume displacement and stress distribution of the whole organ are calculated and the consumed energy due to the subvolume displacements is computed accordingly. The corresponding positions of the initially selected boundary points are then iteratively optimized to minimize the consuming energy under geometry and stress constraints. In this study, a rectal wall delineated from patient CT image was artificially deformed using a computer simulation and utilized to test the optimization. Subvolume displacements calculated based on the optimized boundary point correspondence were compared to the true displacements, and the calculation accuracy was thereby evaluated. Results demonstrate that a significant improvement on the accuracy of the deformable organ registration can be achieved by applying the consuming energy minimization in the organ deformation calculation

  17. Scanners and drillers: Characterizing expert visual search through volumetric images

    Science.gov (United States)

    Drew, Trafton; Vo, Melissa Le-Hoa; Olwal, Alex; Jacobson, Francine; Seltzer, Steven E.; Wolfe, Jeremy M.

    2013-01-01

    Modern imaging methods like computed tomography (CT) generate 3-D volumes of image data. How do radiologists search through such images? Are certain strategies more efficient? Although there is a large literature devoted to understanding search in 2-D, relatively little is known about search in volumetric space. In recent years, with the ever-increasing popularity of volumetric medical imaging, this question has taken on increased importance as we try to understand, and ultimately reduce, errors in diagnostic radiology. In the current study, we asked 24 radiologists to search chest CTs for lung nodules that could indicate lung cancer. To search, radiologists scrolled up and down through a “stack” of 2-D chest CT “slices.” At each moment, we tracked eye movements in the 2-D image plane and coregistered eye position with the current slice. We used these data to create a 3-D representation of the eye movements through the image volume. Radiologists tended to follow one of two dominant search strategies: “drilling” and “scanning.” Drillers restrict eye movements to a small region of the lung while quickly scrolling through depth. Scanners move more slowly through depth and search an entire level of the lung before moving on to the next level in depth. Driller performance was superior to the scanners on a variety of metrics, including lung nodule detection rate, percentage of the lung covered, and the percentage of search errors where a nodule was never fixated. PMID:23922445

  18. Computational assessment of visual search strategies in volumetric medical images.

    Science.gov (United States)

    Wen, Gezheng; Aizenman, Avigael; Drew, Trafton; Wolfe, Jeremy M; Haygood, Tamara Miner; Markey, Mia K

    2016-01-01

    When searching through volumetric images [e.g., computed tomography (CT)], radiologists appear to use two different search strategies: "drilling" (restrict eye movements to a small region of the image while quickly scrolling through slices), or "scanning" (search over large areas at a given depth before moving on to the next slice). To computationally identify the type of image information that is used in these two strategies, 23 naïve observers were instructed with either "drilling" or "scanning" when searching for target T's in 20 volumes of faux lung CTs. We computed saliency maps using both classical two-dimensional (2-D) saliency, and a three-dimensional (3-D) dynamic saliency that captures the characteristics of scrolling through slices. Comparing observers' gaze distributions with the saliency maps showed that search strategy alters the type of saliency that attracts fixations. Drillers' fixations aligned better with dynamic saliency and scanners with 2-D saliency. The computed saliency was greater for detected targets than for missed targets. Similar results were observed in data from 19 radiologists who searched five stacks of clinical chest CTs for lung nodules. Dynamic saliency may be superior to the 2-D saliency for detecting targets embedded in volumetric images, and thus "drilling" may be more efficient than "scanning."

  19. A spiral-based volumetric acquisition for MR temperature imaging.

    Science.gov (United States)

    Fielden, Samuel W; Feng, Xue; Zhao, Li; Miller, G Wilson; Geeslin, Matthew; Dallapiazza, Robert F; Elias, W Jeffrey; Wintermark, Max; Butts Pauly, Kim; Meyer, Craig H

    2018-06-01

    To develop a rapid pulse sequence for volumetric MR thermometry. Simulations were carried out to assess temperature deviation, focal spot distortion/blurring, and focal spot shift across a range of readout durations and maximum temperatures for Cartesian, spiral-out, and retraced spiral-in/out (RIO) trajectories. The RIO trajectory was applied for stack-of-spirals 3D imaging on a real-time imaging platform and preliminary evaluation was carried out compared to a standard 2D sequence in vivo using a swine brain model, comparing maximum and mean temperatures measured between the two methods, as well as the temporal standard deviation measured by the two methods. In simulations, low-bandwidth Cartesian trajectories showed substantial shift of the focal spot, whereas both spiral trajectories showed no shift while maintaining focal spot geometry. In vivo, the 3D sequence achieved real-time 4D monitoring of thermometry, with an update time of 2.9-3.3 s. Spiral imaging, and RIO imaging in particular, is an effective way to speed up volumetric MR thermometry. Magn Reson Med 79:3122-3127, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  20. Volumetric real-time imaging using a CMUT ring array.

    Science.gov (United States)

    Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N; O'Donnell, Matthew; Sahn, David J; Khuri-Yakub, Butrus T

    2012-06-01

    A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device. This paper presents simulated and experimental imaging results for the described CMUT ring array. Three different imaging methods--flash, classic phased array (CPA), and synthetic phased array (SPA)--were used in the study. For SPA imaging, two techniques to improve the image quality--Hadamard coding and aperture weighting--were also applied. The results show that SPA with Hadamard coding and aperture weighting is a good option for ring-array imaging. Compared with CPA, it achieves better image resolution and comparable signal-to-noise ratio at a much faster image acquisition rate. Using this method, a fast frame rate of up to 463 volumes per second is achievable if limited only by the ultrasound time of flight; with the described system we reconstructed three cross-sectional images in real-time at 10 frames per second, which was limited by the computation time in synthetic beamforming.

  1. Semiautomated volumetric response evaluation as an imaging biomarker in superior sulcus tumors

    International Nuclear Information System (INIS)

    Vos, C.G.; Paul, M.A.; Dahele, M.; Soernsen de Koste, J.R. van; Senan, S.; Bahce, I.; Smit, E.F.; Thunnissen, E.; Hartemink, K.J.

    2014-01-01

    Volumetric response to therapy has been suggested as a biomarker for patient-centered outcomes. The primary aim of this pilot study was to investigate whether the volumetric response to induction chemoradiotherapy was associated with pathological complete response (pCR) or survival in patients with superior sulcus tumors managed with trimodality therapy. The secondary aim was to evaluate a semiautomated method for serial volume assessment. In this retrospective study, treatment outcomes were obtained from a departmental database. The tumor was delineated on the computed tomography (CT) scan used for radiotherapy planning, which was typically performed during the first cycle of chemotherapy. These contours were transferred to the post-chemoradiotherapy diagnostic CT scan using deformable image registration (DIR) with/without manual editing. CT scans from 30 eligible patients were analyzed. Median follow-up was 51 months. Neither absolute nor relative reduction in tumor volume following chemoradiotherapy correlated with pCR or 2-year survival. The tumor volumes determined by DIR alone and DIR + manual editing correlated to a high degree (R 2 = 0.99, P < 0.01). Volumetric response to induction chemoradiotherapy was not correlated with pCR or survival in patients with superior sulcus tumors managed with trimodality therapy. DIR-based contour propagation merits further evaluation as a tool for serial volumetric assessment. (orig.)

  2. Quantitative volumetric Raman imaging of three dimensional cell cultures

    KAUST Repository

    Kallepitis, Charalambos

    2017-03-22

    The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell–material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy.

  3. Quantitative volumetric Raman imaging of three dimensional cell cultures

    Science.gov (United States)

    Kallepitis, Charalambos; Bergholt, Mads S.; Mazo, Manuel M.; Leonardo, Vincent; Skaalure, Stacey C.; Maynard, Stephanie A.; Stevens, Molly M.

    2017-03-01

    The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell-material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy.

  4. Volumetric image processing: A new technique for three-dimensional imaging

    International Nuclear Information System (INIS)

    Fishman, E.K.; Drebin, B.; Magid, D.; St Ville, J.A.; Zerhouni, E.A.; Siegelman, S.S.; Ney, D.R.

    1986-01-01

    Volumetric three-dimensional (3D) image processing was performed on CT scans of 25 normal hips, and image quality and potential diagnostic applications were assessed. In contrast to surface detection 3D techniques, volumetric processing preserves every pixel of transaxial CT data, replacing the gray scale with transparent ''gels'' and shading. Anatomically, accurate 3D images can be rotated and manipulated in real time, including simulated tissue layer ''peeling'' and mock surgery or disarticulation. This pilot study suggests that volumetric rendering is a major advance in signal processing of medical image data, producing a high quality, uniquely maneuverable image that is useful for fracture interpretation, soft-tissue analysis, surgical planning, and surgical rehearsal

  5. Volumetric Synthetic Aperture Imaging with a Piezoelectric 2-D Row-Column Probe

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Engholm, Mathias; Christiansen, Thomas Lehrmann

    2016-01-01

    The synthetic aperture (SA) technique can be used for achieving real-time volumetric ultrasound imaging using 2-D row-column addressed transducers. This paper investigates SA volumetric imaging performance of an in-house prototyped 3 MHz λ/2-pitch 62+62 element piezoelectric 2-D row-column addres......The synthetic aperture (SA) technique can be used for achieving real-time volumetric ultrasound imaging using 2-D row-column addressed transducers. This paper investigates SA volumetric imaging performance of an in-house prototyped 3 MHz λ/2-pitch 62+62 element piezoelectric 2-D row...

  6. Simplifying the Exploration of Volumetric Images: Development of a 3D User Interface for the Radiologist’s Workplace

    OpenAIRE

    Teistler, M.; Breiman, R. S.; Lison, T.; Bott, O. J.; Pretschner, D. P.; Aziz, A.; Nowinski, W. L.

    2007-01-01

    Volumetric imaging (computed tomography and magnetic resonance imaging) provides increased diagnostic detail but is associated with the problem of navigation through large amounts of data. In an attempt to overcome this problem, a novel 3D navigation tool has been designed and developed that is based on an alternative input device. A 3D mouse allows for simultaneous definition of position and orientation of orthogonal or oblique multiplanar reformatted images or slabs, which are presented wit...

  7. Semiautomatic segmentation of liver metastases on volumetric CT images

    International Nuclear Information System (INIS)

    Yan, Jiayong; Schwartz, Lawrence H.; Zhao, Binsheng

    2015-01-01

    Purpose: Accurate segmentation and quantification of liver metastases on CT images are critical to surgery/radiation treatment planning and therapy response assessment. To date, there are no reliable methods to perform such segmentation automatically. In this work, the authors present a method for semiautomatic delineation of liver metastases on contrast-enhanced volumetric CT images. Methods: The first step is to manually place a seed region-of-interest (ROI) in the lesion on an image. This ROI will (1) serve as an internal marker and (2) assist in automatically identifying an external marker. With these two markers, lesion contour on the image can be accurately delineated using traditional watershed transformation. Density information will then be extracted from the segmented 2D lesion and help determine the 3D connected object that is a candidate of the lesion volume. The authors have developed a robust strategy to automatically determine internal and external markers for marker-controlled watershed segmentation. By manually placing a seed region-of-interest in the lesion to be delineated on a reference image, the method can automatically determine dual threshold values to approximately separate the lesion from its surrounding structures and refine the thresholds from the segmented lesion for the accurate segmentation of the lesion volume. This method was applied to 69 liver metastases (1.1–10.3 cm in diameter) from a total of 15 patients. An independent radiologist manually delineated all lesions and the resultant lesion volumes served as the “gold standard” for validation of the method’s accuracy. Results: The algorithm received a median overlap, overestimation ratio, and underestimation ratio of 82.3%, 6.0%, and 11.5%, respectively, and a median average boundary distance of 1.2 mm. Conclusions: Preliminary results have shown that volumes of liver metastases on contrast-enhanced CT images can be accurately estimated by a semiautomatic segmentation

  8. Volumetric Spectroscopic Imaging of Glioblastoma Multiforme Radiation Treatment Volumes

    Energy Technology Data Exchange (ETDEWEB)

    Parra, N. Andres [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Maudsley, Andrew A. [Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida (United States); Gupta, Rakesh K. [Department of Radiology and Imaging, Fortis Memorial Research Institute, Gurgaon, Haryana (India); Ishkanian, Fazilat; Huang, Kris [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Walker, Gail R. [Biostatistics and Bioinformatics Core Resource, Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, Florida (United States); Padgett, Kyle [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida (United States); Roy, Bhaswati [Department of Radiology and Imaging, Fortis Memorial Research Institute, Gurgaon, Haryana (India); Panoff, Joseph; Markoe, Arnold [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Stoyanova, Radka, E-mail: RStoyanova@med.miami.edu [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States)

    2014-10-01

    Purpose: Magnetic resonance (MR) imaging and computed tomography (CT) are used almost exclusively in radiation therapy planning of glioblastoma multiforme (GBM), despite their well-recognized limitations. MR spectroscopic imaging (MRSI) can identify biochemical patterns associated with normal brain and tumor, predominantly by observation of choline (Cho) and N-acetylaspartate (NAA) distributions. In this study, volumetric 3-dimensional MRSI was used to map these compounds over a wide region of the brain and to evaluate metabolite-defined treatment targets (metabolic tumor volumes [MTV]). Methods and Materials: Volumetric MRSI with effective voxel size of ∼1.0 mL and standard clinical MR images were obtained from 19 GBM patients. Gross tumor volumes and edema were manually outlined, and clinical target volumes (CTVs) receiving 46 and 60 Gy were defined (CTV{sub 46} and CTV{sub 60}, respectively). MTV{sub Cho} and MTV{sub NAA} were constructed based on volumes with high Cho and low NAA relative to values estimated from normal-appearing tissue. Results: The MRSI coverage of the brain was between 70% and 76%. The MTV{sub NAA} were almost entirely contained within the edema, and the correlation between the 2 volumes was significant (r=0.68, P=.001). In contrast, a considerable fraction of MTV{sub Cho} was outside of the edema (median, 33%) and for some patients it was also outside of the CTV{sub 46} and CTV{sub 60}. These untreated volumes were greater than 10% for 7 patients (37%) in the study, and on average more than one-third (34.3%) of the MTV{sub Cho} for these patients were outside of CTV{sub 60}. Conclusions: This study demonstrates the potential usefulness of whole-brain MRSI for radiation therapy planning of GBM and revealed that areas of metabolically active tumor are not covered by standard RT volumes. The described integration of MTV into the RT system will pave the way to future clinical trials investigating outcomes in patients treated based on

  9. Blockwise conjugate gradient methods for image reconstruction in volumetric CT.

    Science.gov (United States)

    Qiu, W; Titley-Peloquin, D; Soleimani, M

    2012-11-01

    Cone beam computed tomography (CBCT) enables volumetric image reconstruction from 2D projection data and plays an important role in image guided radiation therapy (IGRT). Filtered back projection is still the most frequently used algorithm in applications. The algorithm discretizes the scanning process (forward projection) into a system of linear equations, which must then be solved to recover images from measured projection data. The conjugate gradients (CG) algorithm and its variants can be used to solve (possibly regularized) linear systems of equations Ax=b and linear least squares problems minx∥b-Ax∥2, especially when the matrix A is very large and sparse. Their applications can be found in a general CT context, but in tomography problems (e.g. CBCT reconstruction) they have not widely been used. Hence, CBCT reconstruction using the CG-type algorithm LSQR was implemented and studied in this paper. In CBCT reconstruction, the main computational challenge is that the matrix A usually is very large, and storing it in full requires an amount of memory well beyond the reach of commodity computers. Because of these memory capacity constraints, only a small fraction of the weighting matrix A is typically used, leading to a poor reconstruction. In this paper, to overcome this difficulty, the matrix A is partitioned and stored blockwise, and blockwise matrix-vector multiplications are implemented within LSQR. This implementation allows us to use the full weighting matrix A for CBCT reconstruction without further enhancing computer standards. Tikhonov regularization can also be implemented in this fashion, and can produce significant improvement in the reconstructed images. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Comparison of surface contour and volumetric three-dimensional imaging of the musculoskeletal system

    International Nuclear Information System (INIS)

    Guilford, W.B.; Ullrich, C.G.; Moore, T.

    1988-01-01

    Both surface contour and volumetric three-dimensional image processing from CT data can provide accurate demonstration of skeletal anatomy. While realistic, surface contour images may obscure fine detail such as nondisplaced fractures, and thin bone may disappear. Volumetric processing can provide high detail, but the transparency effect is unnatural and may yield a confusing image. Comparison of both three-dimensional modes is presented to demonstrate those findings best shown with each and to illustrate helpful techniques to improve volumetric display, such as disarticulation of unnecessary anatomy, short-angle repeating rotation (dithering), and image combination into overlay displays

  11. A Technique for Generating Volumetric Cine-Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Harris, Wendy; Ren, Lei; Cai, Jing; Zhang, You; Chang, Zheng; Yin, Fang-Fang

    2016-01-01

    Purpose: The purpose of this study was to develop a techique to generate on-board volumetric cine-magnetic resonance imaging (VC-MRI) using patient prior images, motion modeling, and on-board 2-dimensional cine MRI. Methods and Materials: One phase of a 4-dimensional MRI acquired during patient simulation is used as patient prior images. Three major respiratory deformation patterns of the patient are extracted from 4-dimensional MRI based on principal-component analysis. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI. The deformation field is represented as a linear combination of the 3 major deformation patterns. The coefficients of the deformation patterns are solved by the data fidelity constraint using the acquired on-board single 2-dimensional cine MRI. The method was evaluated using both digital extended-cardiac torso (XCAT) simulation of lung cancer patients and MRI data from 4 real liver cancer patients. The accuracy of the estimated VC-MRI was quantitatively evaluated using volume-percent-difference (VPD), center-of-mass-shift (COMS), and target tracking errors. Effects of acquisition orientation, region-of-interest (ROI) selection, patient breathing pattern change, and noise on the estimation accuracy were also evaluated. Results: Image subtraction of ground-truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground-truth with prior image. Agreement between normalized profiles in the estimated and ground-truth VC-MRI was achieved with less than 6% error for both XCAT and patient data. Among all XCAT scenarios, the VPD between ground-truth and estimated lesion volumes was, on average, 8.43 ± 1.52% and the COMS was, on average, 0.93 ± 0.58 mm across all time steps for estimation based on the ROI region in the sagittal cine images. Matching to ROI in the sagittal view achieved better accuracy when there was substantial breathing pattern change. The technique was robust against

  12. A Technique for Generating Volumetric Cine-Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Wendy [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Ren, Lei, E-mail: lei.ren@duke.edu [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Cai, Jing [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Zhang, You [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Chang, Zheng; Yin, Fang-Fang [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States)

    2016-06-01

    Purpose: The purpose of this study was to develop a techique to generate on-board volumetric cine-magnetic resonance imaging (VC-MRI) using patient prior images, motion modeling, and on-board 2-dimensional cine MRI. Methods and Materials: One phase of a 4-dimensional MRI acquired during patient simulation is used as patient prior images. Three major respiratory deformation patterns of the patient are extracted from 4-dimensional MRI based on principal-component analysis. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI. The deformation field is represented as a linear combination of the 3 major deformation patterns. The coefficients of the deformation patterns are solved by the data fidelity constraint using the acquired on-board single 2-dimensional cine MRI. The method was evaluated using both digital extended-cardiac torso (XCAT) simulation of lung cancer patients and MRI data from 4 real liver cancer patients. The accuracy of the estimated VC-MRI was quantitatively evaluated using volume-percent-difference (VPD), center-of-mass-shift (COMS), and target tracking errors. Effects of acquisition orientation, region-of-interest (ROI) selection, patient breathing pattern change, and noise on the estimation accuracy were also evaluated. Results: Image subtraction of ground-truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground-truth with prior image. Agreement between normalized profiles in the estimated and ground-truth VC-MRI was achieved with less than 6% error for both XCAT and patient data. Among all XCAT scenarios, the VPD between ground-truth and estimated lesion volumes was, on average, 8.43 ± 1.52% and the COMS was, on average, 0.93 ± 0.58 mm across all time steps for estimation based on the ROI region in the sagittal cine images. Matching to ROI in the sagittal view achieved better accuracy when there was substantial breathing pattern change. The technique was robust against

  13. System analysis of formation and perception processes of three-dimensional images in volumetric displays

    Science.gov (United States)

    Bolshakov, Alexander; Sgibnev, Arthur

    2018-03-01

    One of the promising devices is currently a volumetric display. Volumetric displays capable to visualize complex three-dimensional information as nearly as possible to its natural – volume form without the use of special glasses. The invention and implementation of volumetric display technology will expand opportunities of information visualization in various spheres of human activity. The article attempts to structure and describe the interrelation of the essential characteristics of objects in the area of volumetric visualization. Also there is proposed a method of calculation of estimate total number of voxels perceived by observers during the 3D demonstration, generated using a volumetric display with a rotating screen. In the future, it is planned to expand the described technique and implement a system for estimation the quality of generated images, depending on the types of biplanes and their initial characteristics.

  14. as-PSOCT: Volumetric microscopic imaging of human brain architecture and connectivity.

    Science.gov (United States)

    Wang, Hui; Magnain, Caroline; Wang, Ruopeng; Dubb, Jay; Varjabedian, Ani; Tirrell, Lee S; Stevens, Allison; Augustinack, Jean C; Konukoglu, Ender; Aganj, Iman; Frosch, Matthew P; Schmahmann, Jeremy D; Fischl, Bruce; Boas, David A

    2018-01-15

    Polarization sensitive optical coherence tomography (PSOCT) with serial sectioning has enabled the investigation of 3D structures in mouse and human brain tissue samples. By using intrinsic optical properties of back-scattering and birefringence, PSOCT reliably images cytoarchitecture, myeloarchitecture and fiber orientations. In this study, we developed a fully automatic serial sectioning polarization sensitive optical coherence tomography (as-PSOCT) system to enable volumetric reconstruction of human brain samples with unprecedented sample size and resolution. The 3.5 μm in-plane resolution and 50 μm through-plane voxel size allow inspection of cortical layers that are a single-cell in width, as well as small crossing fibers. We show the abilities of as-PSOCT in quantifying layer thicknesses of the cerebellar cortex and creating microscopic tractography of intricate fiber networks in the subcortical nuclei and internal capsule regions, all based on volumetric reconstructions. as-PSOCT provides a viable tool for studying quantitative cytoarchitecture and myeloarchitecture and mapping connectivity with microscopic resolution in the human brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Potential Applications of Flat-Panel Volumetric CT in Morphologic, Functional Small Animal Imaging

    Directory of Open Access Journals (Sweden)

    Susanne Greschus

    2005-08-01

    Full Text Available Noninvasive radiologic imaging has recently gained considerable interest in basic, preclinical research for monitoring disease progression, therapeutic efficacy. In this report, we introduce flat-panel volumetric computed tomography (fpVCT as a powerful new tool for noninvasive imaging of different organ systems in preclinical research. The three-dimensional visualization that is achieved by isotropic high-resolution datasets is illustrated for the skeleton, chest, abdominal organs, brain of mice. The high image quality of chest scans enables the visualization of small lung nodules in an orthotopic lung cancer model, the reliable imaging of therapy side effects such as lung fibrosis. Using contrast-enhanced scans, fpVCT displayed the vascular trees of the brain, liver, kidney down to the subsegmental level. Functional application of fpVCT in dynamic contrast-enhanced scans of the rat brain delivered physiologically reliable data of perfusion, tissue blood volume. Beyond scanning of small animal models as demonstrated here, fpVCT provides the ability to image animals up to the size of primates.

  16. Extended Kalman filtering for continuous volumetric MR-temperature imaging.

    Science.gov (United States)

    Denis de Senneville, Baudouin; Roujol, Sébastien; Hey, Silke; Moonen, Chrit; Ries, Mario

    2013-04-01

    Real time magnetic resonance (MR) thermometry has evolved into the method of choice for the guidance of high-intensity focused ultrasound (HIFU) interventions. For this role, MR-thermometry should preferably have a high temporal and spatial resolution and allow observing the temperature over the entire targeted area and its vicinity with a high accuracy. In addition, the precision of real time MR-thermometry for therapy guidance is generally limited by the available signal-to-noise ratio (SNR) and the influence of physiological noise. MR-guided HIFU would benefit of the large coverage volumetric temperature maps, including characterization of volumetric heating trajectories as well as near- and far-field heating. In this paper, continuous volumetric MR-temperature monitoring was obtained as follows. The targeted area was continuously scanned during the heating process by a multi-slice sequence. Measured data and a priori knowledge of 3-D data derived from a forecast based on a physical model were combined using an extended Kalman filter (EKF). The proposed reconstruction improved the temperature measurement resolution and precision while maintaining guaranteed output accuracy. The method was evaluated experimentally ex vivo on a phantom, and in vivo on a porcine kidney, using HIFU heating. On the in vivo experiment, it allowed the reconstruction from a spatio-temporally under-sampled data set (with an update rate for each voxel of 1.143 s) to a 3-D dataset covering a field of view of 142.5×285×54 mm(3) with a voxel size of 3×3×6 mm(3) and a temporal resolution of 0.127 s. The method also provided noise reduction, while having a minimal impact on accuracy and latency.

  17. Support for external validity of radiological anatomy tests using volumetric images

    NARCIS (Netherlands)

    Ravesloot, Cécile J.; van der Gijp, Anouk; van der Schaaf, Marieke F.; Huige, Josephine C B M; Vincken, Koen L.; Mol, Christian P.; Bleys, Ronald L A W; ten Cate, Olle T.; van Schaik, Jan P J

    2015-01-01

    Rationale and Objectives: Radiology practice has become increasingly based on volumetric images (VIs), but tests in medical education still mainly involve two-dimensional (2D) images. We created a novel, digital, VI test and hypothesized that scores on this test would better reflect radiological

  18. Support for external validity of radiological anatomy tests using volumetric images

    NARCIS (Netherlands)

    Ravesloot, Cecile J.; van der Gijp, Anouk; van der Schaaf, Marieke F; Huige, Josephine C B M; Vincken, Koen L; Mol, Christian P; Bleys, Ronald L A W; ten Cate, Olle T; van Schaik, JPJ

    2015-01-01

    RATIONALE AND OBJECTIVES: Radiology practice has become increasingly based on volumetric images (VIs), but tests in medical education still mainly involve two-dimensional (2D) images. We created a novel, digital, VI test and hypothesized that scores on this test would better reflect radiological

  19. Image processing. Volumetric analysis with a digital image processing system. [GAMMA]. Bildverarbeitung. Volumetrie mittels eines digitalen Bildverarbeitungssystems

    Energy Technology Data Exchange (ETDEWEB)

    Kindler, M; Radtke, F; Demel, G

    1986-01-01

    The book is arranged in seven sections, describing various applications of volumetric analysis using image processing systems, and various methods of diagnostic evaluation of images obtained by gamma scintigraphy, cardic catheterisation, and echocardiography. A dynamic ventricular phantom is explained that has been developed for checking and calibration for safe examination of patient, the phantom allowing extensive simulation of volumetric and hemodynamic conditions of the human heart: One section discusses the program development for image processing, referring to a number of different computer systems. The equipment described includes a small non-expensive PC system, as well as a standardized nuclear medical diagnostic system, and a computer system especially suited to image processing.

  20. Medical students' cognitive load in volumetric image interpretation : Insights from human-computer interaction and eye movements

    NARCIS (Netherlands)

    Stuijfzand, Bobby G.; Van Der Schaaf, Marieke F.; Kirschner, Femke C.; Ravesloot, Cécile J.; Van Der Gijp, Anouk; Vincken, Koen L.

    2016-01-01

    Medical image interpretation is moving from using 2D- to volumetric images, thereby changing the cognitive and perceptual processes involved. This is expected to affect medical students' experienced cognitive load, while learning image interpretation skills. With two studies this explorative

  1. Volumetric response analysis during chemoradiation as predictive tool for optimizing treatment strategy in locally advanced unresectable NSCLC

    International Nuclear Information System (INIS)

    Bral, Samuel; Duchateau, Michael; De Ridder, Mark; Everaert, Hendrik; Tournel, Koen; Schallier, Denis; Verellen, Dirk; Storme, Guy

    2009-01-01

    Purpose: To study the feasibility of measuring volumetric changes in the primary tumor on megavoltage-computed tomography (MVCT) during chemoradiation and to examine the correlation with local response. Patients and methods: Fifteen consecutive patients with stage III, inoperable, locally advanced non-small cell lung cancer (NSCLC) were treated in a prospective dose escalation study protocol of concurrent chemoradiation. They were monitored for acute toxicity and evaluated with daily MVCT imaging. The volumetric changes were fitted to a negative exponential resulting in a regression coefficient (RC). Local response evaluation was done with positron emission tomography using the radio-labeled glucose analogue F18 fluorodeoxyglucose (FDG-PET). Results: The mean volume decrease (±standard deviation) was 73% (±18%). With a mean treatment time of 42 days this treatment schedule resulted in a mean decrease of 1.74%/day. Of the 13 evaluable patients seven developed a metabolic complete remission (MCR). The mean RC of the patients with MCR is 0.050 versus a mean RC of 0.023 in non-responders (p = 0.0074). Using a proposed cut-off value for the RC of 0.03 80% of the non-responders will be detected correctly while misclassifying 16.4% of patients who will eventually achieve an MCR. The total cumulative percentage of esophageal grade 3 or more toxicity was 46.7%. Conclusion: The RC derived from volumetric analysis of daily MVCT is prognostic and predictive for local response in patients treated with chemoradiation for a locally advanced NSCLC. Because this treatment schedule is toxic in nearly half of the patient population, MVCT is a tool in the implementation of patient-individualized treatment strategies.

  2. X-ray volumetric imaging in image-guided radiotherapy: The new standard in on-treatment imaging

    International Nuclear Information System (INIS)

    McBain, Catherine A.; Henry, Ann M.; Sykes, Jonathan; Amer, Ali; Marchant, Tom; Moore, Christopher M.; Davies, Julie; Stratford, Julia; McCarthy, Claire; Porritt, Bridget; Williams, Peter; Khoo, Vincent S.; Price, Pat

    2006-01-01

    Purpose: X-ray volumetric imaging (XVI) for the first time allows for the on-treatment acquisition of three-dimensional (3D) kV cone beam computed tomography (CT) images. Clinical imaging using the Synergy System (Elekta, Crawley, UK) commenced in July 2003. This study evaluated image quality and dose delivered and assessed clinical utility for treatment verification at a range of anatomic sites. Methods and Materials: Single XVIs were acquired from 30 patients undergoing radiotherapy for tumors at 10 different anatomic sites. Patients were imaged in their setup position. Radiation doses received were measured using TLDs on the skin surface. The utility of XVI in verifying target volume coverage was qualitatively assessed by experienced clinicians. Results: X-ray volumetric imaging acquisition was completed in the treatment position at all anatomic sites. At sites where a full gantry rotation was not possible, XVIs were reconstructed from projection images acquired from partial rotations. Soft-tissue definition of organ boundaries allowed direct assessment of 3D target volume coverage at all sites. Individual image quality depended on both imaging parameters and patient characteristics. Radiation dose ranged from 0.003 Gy in the head to 0.03 Gy in the pelvis. Conclusions: On-treatment XVI provided 3D verification images with soft-tissue definition at all anatomic sites at acceptably low radiation doses. This technology sets a new standard in treatment verification and will facilitate novel adaptive radiotherapy techniques

  3. Volumetric Two-photon Imaging of Neurons Using Stereoscopy (vTwINS)

    Science.gov (United States)

    Song, Alexander; Charles, Adam S.; Koay, Sue Ann; Gauthier, Jeff L.; Thiberge, Stephan Y.; Pillow, Jonathan W.; Tank, David W.

    2017-01-01

    Two-photon laser scanning microscopy of calcium dynamics using fluorescent indicators is a widely used imaging method for large scale recording of neural activity in vivo. Here we introduce volumetric Two-photon Imaging of Neurons using Stereoscopy (vTwINS), a volumetric calcium imaging method that employs an elongated, V-shaped point spread function to image a 3D brain volume. Single neurons project to spatially displaced “image pairs” in the resulting 2D image, and the separation distance between images is proportional to depth in the volume. To demix the fluorescence time series of individual neurons, we introduce a novel orthogonal matching pursuit algorithm that also infers source locations within the 3D volume. We illustrate vTwINS by imaging neural population activity in mouse primary visual cortex and hippocampus. Our results demonstrate that vTwINS provides an effective method for volumetric two-photon calcium imaging that increases the number of neurons recorded while maintaining a high frame-rate. PMID:28319111

  4. A hand-held row-column addressed CMUT probe with integrated electronics for volumetric imaging

    DEFF Research Database (Denmark)

    Engholm, Mathias; Christiansen, Thomas Lehrmann; Beers, Christopher

    2015-01-01

    A 3 MHz, λ / 2-pitch 62+62 channel row-column addressed 2-D CMUT array designed to be mounted in a probe handle and connected to a commercial BK Medical scanner for real-time volumetric imaging is presented. It is mounted and wire-bonded on a flexible PCB, which is connected to two rigid PCBs...

  5. 3-D repositioning and differential images of volumetric CT measurements

    International Nuclear Information System (INIS)

    Muench, B.; Rueegsegger, P.

    1993-01-01

    In quantitative computed tomography (QCT), time serial measurements are performed to detect a global bone density loss or to identify localized bone density changes. A prerequisite for an unambiguous analysis is the comparison of identical bone volumes. Usually, manual repositioning is too coarse. The authors therefore developed a mathematical procedure that allows matching two three-dimensional image volumes. The algorithm is based on correlation techniques. The procedure has been optimized and applied to computer-tomographic 3-D images of the human knee. It has been tested with both artificially created and in vivo measured image data. Furthermore, typical results of differential images calculated from real bone measurements are presented

  6. Simplifying the exploration of volumetric images: development of a 3D user interface for the radiologist's workplace.

    Science.gov (United States)

    Teistler, M; Breiman, R S; Lison, T; Bott, O J; Pretschner, D P; Aziz, A; Nowinski, W L

    2008-10-01

    Volumetric imaging (computed tomography and magnetic resonance imaging) provides increased diagnostic detail but is associated with the problem of navigation through large amounts of data. In an attempt to overcome this problem, a novel 3D navigation tool has been designed and developed that is based on an alternative input device. A 3D mouse allows for simultaneous definition of position and orientation of orthogonal or oblique multiplanar reformatted images or slabs, which are presented within a virtual 3D scene together with the volume-rendered data set and additionally as 2D images. Slabs are visualized with maximum intensity projection, average intensity projection, or standard volume rendering technique. A prototype has been implemented based on PC technology that has been tested by several radiologists. It has shown to be easily understandable and usable after a very short learning phase. Our solution may help to fully exploit the diagnostic potential of volumetric imaging by allowing for a more efficient reading process compared to currently deployed solutions based on conventional mouse and keyboard.

  7. Nuclear imaging drug development tools

    International Nuclear Information System (INIS)

    Buchanan, L.; Jurek, P.; Redshaw, R.

    2007-01-01

    This article describes the development of nuclear imaging as an enabling technology in the pharmaceutical industry. Molecular imaging is maturing into an important tool with expanding applications from validating that a drug reaches the intended target through to market launch of a new drug. Molecular imaging includes anatomical imaging of organs or tissues, computerized tomography (CT), magnetic resonance imaging (MRI) and ultrasound.

  8. Feature-based Alignment of Volumetric Multi-modal Images

    Science.gov (United States)

    Toews, Matthew; Zöllei, Lilla; Wells, William M.

    2014-01-01

    This paper proposes a method for aligning image volumes acquired from different imaging modalities (e.g. MR, CT) based on 3D scale-invariant image features. A novel method for encoding invariant feature geometry and appearance is developed, based on the assumption of locally linear intensity relationships, providing a solution to poor repeatability of feature detection in different image modalities. The encoding method is incorporated into a probabilistic feature-based model for multi-modal image alignment. The model parameters are estimated via a group-wise alignment algorithm, that iteratively alternates between estimating a feature-based model from feature data, then realigning feature data to the model, converging to a stable alignment solution with few pre-processing or pre-alignment requirements. The resulting model can be used to align multi-modal image data with the benefits of invariant feature correspondence: globally optimal solutions, high efficiency and low memory usage. The method is tested on the difficult RIRE data set of CT, T1, T2, PD and MP-RAGE brain images of subjects exhibiting significant inter-subject variability due to pathology. PMID:24683955

  9. Rapid volumetric imaging with Bessel-Beam three-photon microscopy

    Science.gov (United States)

    Chen, Bingying; Huang, Xiaoshuai; Gou, Dongzhou; Zeng, Jianzhi; Chen, Guoqing; Pang, Meijun; Hu, Yanhui; Zhao, Zhe; Zhang, Yunfeng; Zhou, Zhuan; Wu, Haitao; Cheng, Heping; Zhang, Zhigang; Xu, Chris; Li, Yulong; Chen, Liangyi; Wang, Aimin

    2018-01-01

    Owing to its tissue-penetration ability, multi-photon fluorescence microscopy allows for the high-resolution, non-invasive imaging of deep tissue in vivo; the recently developed three-photon microscopy (3PM) has extended the depth of high-resolution, non-invasive functional imaging of mouse brains to beyond 1.0 mm. However, the low repetition rate of femtosecond lasers that are normally used in 3PM limits the temporal resolution of point-scanning three-photon microscopy. To increase the volumetric imaging speed of 3PM, we propose a combination of an axially elongated needle-like Bessel-beam with three-photon excitation (3PE) to image biological samples with an extended depth of focus. We demonstrate the higher signal-to-background ratio (SBR) of the Bessel-beam 3PM compared to the two-photon version both theoretically and experimentally. Finally, we perform simultaneous calcium imaging of brain regions at different axial locations in live fruit flies and rapid volumetric imaging of neuronal structures in live mouse brains. These results highlight the unique advantage of conducting rapid volumetric imaging with a high SBR in the deep brain in vivo using scanning Bessel-3PM.

  10. The establishment of the method of three dimension volumetric fusion of emission and transmission images for PET imaging

    International Nuclear Information System (INIS)

    Zhang Xiangsong; He Zuoxiang

    2004-01-01

    Objective: To establish the method of three dimension volumetric fusion of emission and transmission images for PET imaging. Methods: The volume data of emission and transmission images acquired with Siemens ECAT HR + PET scanner were transferred to PC computer by local area network. The PET volume data were converted into 8 bit byte type, and scaled to the range of 0-255. The data coordinates of emission and transmission images were normalized by three-dimensional coordinate conversion in the same way. The images were fused with the mode of alpha-blending. The accuracy of image fusion was confirmed by its clinical application in 13 cases. Results: The three dimension volumetric fusion of emission and transmission images clearly displayed the silhouette and anatomic configuration in chest, including chest wall, lung, heart, mediastinum, et al. Forty-eight lesions in chest in 13 cases were accurately located by the image fusion. Conclusions: The volume data of emission and transmission images acquired with Siemens ECAT HR + PET scanner have the same data coordinate. The three dimension fusion software can conveniently used for the three dimension volumetric fusion of emission and transmission images, and also can correctly locate the lesions in chest

  11. A method for volumetric retinal tissue oxygen tension imaging.

    Science.gov (United States)

    Felder, Anthony E; Wanek, Justin; Teng, Pang-Yu; Blair, Norman P; Shahidi, Mahnaz

    2018-01-01

    Inadequate retinal oxygenation occurs in many vision-threatening retinal diseases, including diabetic retinopathy, retinal vascular occlusions, and age-related macular degeneration. Therefore, techniques that assess retinal oxygenation are necessary to understand retinal physiology in health and disease. The purpose of the current study is to report a method for the three-dimensional (3D) imaging of retinal tissue oxygen tension (tPO 2 ) in rats. Imaging was performed in Long Evans pigmented rats under systemic normoxia (N = 6) or hypoxia (N = 3). A vertical laser line was horizontally scanned on the retina and a series of optical section phase-delayed phosphorescence images were acquired. From these images, phosphorescence volumes at each phase delay were constructed and a 3D retinal tPO 2 volume was generated. Retinal tPO 2 volumes were quantitatively analyzed by generating retinal depth profiles of mean tPO 2 (M tPO2 ) and the spatial variation of tPO 2 (SV tPO2 ). The effects of systemic condition (normoxia/hypoxia) and retinal depth on M tPO2 and SV tPO2 were determined by mixed linear model. Each 3D retinal tPO 2 volume was approximately 500 × 750 × 200 μm (horizontal × vertical × depth) and consisted of 45 en face tPO 2 images through the retinal depth. M tPO2 at the chorioretinal interface was significantly correlated with systemic arterial oxygen tension (P = 0.007; N = 9). There were significant effects of both systemic condition and retinal depth on M tPO2 and SV tPO2 , such that both were lower under hypoxia than normoxia and higher in the outer retina than inner retina (P < 0.001). For the first time, 3D imaging of retinal tPO 2 was demonstrated, with potential future application for assessment of physiological alterations in animal models of retinal diseases.

  12. WE-D-BRB-03: Current State of Volumetric Image Guidance for Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hua, C. [St. Jude Children’s Research Hospital (United States)

    2016-06-15

    The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. It introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.

  13. WE-D-BRB-03: Current State of Volumetric Image Guidance for Proton Therapy

    International Nuclear Information System (INIS)

    Hua, C.

    2016-01-01

    The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. It introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.

  14. Rapidly-steered single-element ultrasound for real-time volumetric imaging and guidance

    Science.gov (United States)

    Stauber, Mark; Western, Craig; Solek, Roman; Salisbury, Kenneth; Hristov, Dmitre; Schlosser, Jeffrey

    2016-03-01

    Volumetric ultrasound (US) imaging has the potential to provide real-time anatomical imaging with high soft-tissue contrast in a variety of diagnostic and therapeutic guidance applications. However, existing volumetric US machines utilize "wobbling" linear phased array or matrix phased array transducers which are costly to manufacture and necessitate bulky external processing units. To drastically reduce cost, improve portability, and reduce footprint, we propose a rapidly-steered single-element volumetric US imaging system. In this paper we explore the feasibility of this system with a proof-of-concept single-element volumetric US imaging device. The device uses a multi-directional raster-scan technique to generate a series of two-dimensional (2D) slices that were reconstructed into three-dimensional (3D) volumes. At 15 cm depth, 90° lateral field of view (FOV), and 20° elevation FOV, the device produced 20-slice volumes at a rate of 0.8 Hz. Imaging performance was evaluated using an US phantom. Spatial resolution was 2.0 mm, 4.7 mm, and 5.0 mm in the axial, lateral, and elevational directions at 7.5 cm. Relative motion of phantom targets were automatically tracked within US volumes with a mean error of -0.3+/-0.3 mm, -0.3+/-0.3 mm, and -0.1+/-0.5 mm in the axial, lateral, and elevational directions, respectively. The device exhibited a mean spatial distortion error of 0.3+/-0.9 mm, 0.4+/-0.7 mm, and -0.3+/-1.9 in the axial, lateral, and elevational directions. With a production cost near $1000, the performance characteristics of the proposed system make it an ideal candidate for diagnostic and image-guided therapy applications where form factor and low cost are paramount.

  15. Dedicated mobile volumetric cone-beam computed tomography for human brain imaging: A phantom study.

    Science.gov (United States)

    Ryu, Jong-Hyun; Kim, Tae-Hoon; Jeong, Chang-Won; Jun, Hong-Young; Heo, Dong-Woon; Lee, Jinseok; Kim, Kyong-Woo; Yoon, Kwon-Ha

    2015-01-01

    Mobile computed tomography (CT) with a cone-beam source is increasingly used in the clinical field. Mobile cone-beam CT (CBCT) has great merits; however, its clinical utility for brain imaging has been limited due to problems including scan time and image quality. The aim of this study was to develop a dedicated mobile volumetric CBCT for obtaining brain images, and to optimize the imaging protocol using a brain phantom. The mobile volumetric CBCT system was evaluated with regards to scan time and image quality, measured as signal-to-noise-ratio (SNR), contrast-to-noise-ratio (CNR), spatial resolution (10% MTF), and effective dose. Brain images were obtained using a CT phantom. The CT scan took 5.14 s at 360 projection views. SNR and CNR were 5.67 and 14.5 at 120 kV/10 mA. SNR and CNR values showed slight improvement as the x-ray voltage and current increased (p < 0.001). Effective dose and 10% MTF were 0.92 mSv and 360 μ m at 120 kV/10 mA. Various intracranial structures were clearly visible in the brain phantom images. Using this CBCT under optimal imaging acquisition conditions, it is possible to obtain human brain images with low radiation dose, reproducible image quality, and fast scan time.

  16. Tracking Energy Flow Using a Volumetric Acoustic Intensity Imager (VAIM)

    Science.gov (United States)

    Klos, Jacob; Williams, Earl G.; Valdivia, Nicolas P.

    2006-01-01

    A new measurement device has been invented at the Naval Research Laboratory which images instantaneously the intensity vector throughout a three-dimensional volume nearly a meter on a side. The measurement device consists of a nearly transparent spherical array of 50 inexpensive microphones optimally positioned on an imaginary spherical surface of radius 0.2m. Front-end signal processing uses coherence analysis to produce multiple, phase-coherent holograms in the frequency domain each related to references located on suspect sound sources in an aircraft cabin. The analysis uses either SVD or Cholesky decomposition methods using ensemble averages of the cross-spectral density with the fixed references. The holograms are mathematically processed using spherical NAH (nearfield acoustical holography) to convert the measured pressure field into a vector intensity field in the volume of maximum radius 0.4 m centered on the sphere origin. The utility of this probe is evaluated in a detailed analysis of a recent in-flight experiment in cooperation with Boeing and NASA on NASA s Aries 757 aircraft. In this experiment the trim panels and insulation were removed over a section of the aircraft and the bare panels and windows were instrumented with accelerometers to use as references for the VAIM. Results show excellent success at locating and identifying the sources of interior noise in-flight in the frequency range of 0 to 1400 Hz. This work was supported by NASA and the Office of Naval Research.

  17. Imaging-genomics reveals driving pathways of MRI derived volumetric tumor phenotype features in Glioblastoma

    International Nuclear Information System (INIS)

    Grossmann, Patrick; Gutman, David A.; Dunn, William D. Jr; Holder, Chad A.; Aerts, Hugo J. W. L.

    2016-01-01

    Glioblastoma (GBM) tumors exhibit strong phenotypic differences that can be quantified using magnetic resonance imaging (MRI), but the underlying biological drivers of these imaging phenotypes remain largely unknown. An Imaging-Genomics analysis was performed to reveal the mechanistic associations between MRI derived quantitative volumetric tumor phenotype features and molecular pathways. One hundred fourty one patients with presurgery MRI and survival data were included in our analysis. Volumetric features were defined, including the necrotic core (NE), contrast-enhancement (CE), abnormal tumor volume assessed by post-contrast T1w (tumor bulk or TB), tumor-associated edema based on T2-FLAIR (ED), and total tumor volume (TV), as well as ratios of these tumor components. Based on gene expression where available (n = 91), pathway associations were assessed using a preranked gene set enrichment analysis. These results were put into context of molecular subtypes in GBM and prognostication. Volumetric features were significantly associated with diverse sets of biological processes (FDR < 0.05). While NE and TB were enriched for immune response pathways and apoptosis, CE was associated with signal transduction and protein folding processes. ED was mainly enriched for homeostasis and cell cycling pathways. ED was also the strongest predictor of molecular GBM subtypes (AUC = 0.61). CE was the strongest predictor of overall survival (C-index = 0.6; Noether test, p = 4x10 −4 ). GBM volumetric features extracted from MRI are significantly enriched for information about the biological state of a tumor that impacts patient outcomes. Clinical decision-support systems could exploit this information to develop personalized treatment strategies on the basis of noninvasive imaging. The online version of this article (doi:10.1186/s12885-016-2659-5) contains supplementary material, which is available to authorized users

  18. WE-G-BRF-04: Robust Real-Time Volumetric Imaging Based On One Single Projection

    International Nuclear Information System (INIS)

    Xu, Y; Yan, H; Ouyang, L; Wang, J; Jiang, S; Jia, X; Zhou, L

    2014-01-01

    Purpose: Real-time volumetric imaging is highly desirable to provide instantaneous image guidance for lung radiation therapy. This study proposes a scheme to achieve this goal using one single projection by utilizing sparse learning and a principal component analysis (PCA) based lung motion model. Methods: A patient-specific PCA-based lung motion model is first constructed by analyzing deformable vector fields (DVFs) between a reference image and 4DCT images at each phase. At the training stage, we “learn” the relationship between the DVFs and the projection using sparse learning. Specifically, we first partition the projections into patches, and then apply sparse learning to automatically identify patches that best correlate with the principal components of the DVFs. Once the relationship is established, at the application stage, we first employ a patchbased intensity correction method to overcome the problem of different intensity scale between the calculated projection in the training stage and the measured projection in the application stage. The corrected projection image is then fed to the trained model to derive a DVF, which is applied to the reference image, yielding a volumetric image corresponding to the projection. We have validated our method through a NCAT phantom simulation case and one experiment case. Results: Sparse learning can automatically select those patches containing motion information, such as those around diaphragm. For the simulation case, over 98% of the lung region pass the generalized gamma test (10HU/1mm), indicating combined accuracy in both intensity and spatial domain. For the experimental case, the average tumor localization errors projected to the imager are 0.68 mm and 0.4 mm on the axial and tangential direction, respectively. Conclusion: The proposed method is capable of accurately generating a volumetric image using one single projection. It will potentially offer real-time volumetric image guidance to facilitate lung

  19. WE-G-BRF-04: Robust Real-Time Volumetric Imaging Based On One Single Projection

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y [UT Southwestern Medical Center, Dallas, TX (United States); Southern Medical University, Guangzhou (China); Yan, H; Ouyang, L; Wang, J; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States); Zhou, L [Southern Medical University, Guangzhou (China)

    2014-06-15

    Purpose: Real-time volumetric imaging is highly desirable to provide instantaneous image guidance for lung radiation therapy. This study proposes a scheme to achieve this goal using one single projection by utilizing sparse learning and a principal component analysis (PCA) based lung motion model. Methods: A patient-specific PCA-based lung motion model is first constructed by analyzing deformable vector fields (DVFs) between a reference image and 4DCT images at each phase. At the training stage, we “learn” the relationship between the DVFs and the projection using sparse learning. Specifically, we first partition the projections into patches, and then apply sparse learning to automatically identify patches that best correlate with the principal components of the DVFs. Once the relationship is established, at the application stage, we first employ a patchbased intensity correction method to overcome the problem of different intensity scale between the calculated projection in the training stage and the measured projection in the application stage. The corrected projection image is then fed to the trained model to derive a DVF, which is applied to the reference image, yielding a volumetric image corresponding to the projection. We have validated our method through a NCAT phantom simulation case and one experiment case. Results: Sparse learning can automatically select those patches containing motion information, such as those around diaphragm. For the simulation case, over 98% of the lung region pass the generalized gamma test (10HU/1mm), indicating combined accuracy in both intensity and spatial domain. For the experimental case, the average tumor localization errors projected to the imager are 0.68 mm and 0.4 mm on the axial and tangential direction, respectively. Conclusion: The proposed method is capable of accurately generating a volumetric image using one single projection. It will potentially offer real-time volumetric image guidance to facilitate lung

  20. Deep learning for automatic localization, identification, and segmentation of vertebral bodies in volumetric MR images

    Science.gov (United States)

    Suzani, Amin; Rasoulian, Abtin; Seitel, Alexander; Fels, Sidney; Rohling, Robert N.; Abolmaesumi, Purang

    2015-03-01

    This paper proposes an automatic method for vertebra localization, labeling, and segmentation in multi-slice Magnetic Resonance (MR) images. Prior work in this area on MR images mostly requires user interaction while our method is fully automatic. Cubic intensity-based features are extracted from image voxels. A deep learning approach is used for simultaneous localization and identification of vertebrae. The localized points are refined by local thresholding in the region of the detected vertebral column. Thereafter, a statistical multi-vertebrae model is initialized on the localized vertebrae. An iterative Expectation Maximization technique is used to register the vertebral body of the model to the image edges and obtain a segmentation of the lumbar vertebral bodies. The method is evaluated by applying to nine volumetric MR images of the spine. The results demonstrate 100% vertebra identification and a mean surface error of below 2.8 mm for 3D segmentation. Computation time is less than three minutes per high-resolution volumetric image.

  1. Image Matrix Processor for Volumetric Computations Final Report CRADA No. TSB-1148-95

    Energy Technology Data Exchange (ETDEWEB)

    Roberson, G. Patrick [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Browne, Jolyon [Advanced Research & Applications Corporation, Sunnyvale, CA (United States)

    2018-01-22

    The development of an Image Matrix Processor (IMP) was proposed that would provide an economical means to perform rapid ray-tracing processes on volume "Giga Voxel" data sets. This was a multi-phased project. The objective of the first phase of the IMP project was to evaluate the practicality of implementing a workstation-based Image Matrix Processor for use in volumetric reconstruction and rendering using hardware simulation techniques. Additionally, ARACOR and LLNL worked together to identify and pursue further funding sources to complete a second phase of this project.

  2. Very high frame rate volumetric integration of depth images on mobile devices.

    Science.gov (United States)

    Kähler, Olaf; Adrian Prisacariu, Victor; Yuheng Ren, Carl; Sun, Xin; Torr, Philip; Murray, David

    2015-11-01

    Volumetric methods provide efficient, flexible and simple ways of integrating multiple depth images into a full 3D model. They provide dense and photorealistic 3D reconstructions, and parallelised implementations on GPUs achieve real-time performance on modern graphics hardware. To run such methods on mobile devices, providing users with freedom of movement and instantaneous reconstruction feedback, remains challenging however. In this paper we present a range of modifications to existing volumetric integration methods based on voxel block hashing, considerably improving their performance and making them applicable to tablet computer applications. We present (i) optimisations for the basic data structure, and its allocation and integration; (ii) a highly optimised raycasting pipeline; and (iii) extensions to the camera tracker to incorporate IMU data. In total, our system thus achieves frame rates up 47 Hz on a Nvidia Shield Tablet and 910 Hz on a Nvidia GTX Titan XGPU, or even beyond 1.1 kHz without visualisation.

  3. Volumetric image-guidance: Does routine usage prompt adaptive re-planning? An institutional review

    International Nuclear Information System (INIS)

    Tanyi, James A.; Fuss, Martin H.

    2008-01-01

    Purpose. To investigate how the use of volumetric image-guidance using an on-board cone-beam computed tomography (CBCT) system impacts on the frequency of adaptive re-planning. Material and methods. Treatment courses of 146 patients who have undergone a course of external beam radiation therapy (EBRT) using volumetric CBCT image-guidance were analyzed. Target locations included the brain, head and neck, chest, abdomen, as well as prostate and non-prostate pelvis. The majority of patients (57.5%) were treated with hypo-fractionated treatment regimens (three to 15 fraction courses). The frequency of image-guidance ranged from daily (87.7%) to weekly or twice weekly. The underlying medical necessity for adaptive re-planning as well as frequency and consequences of plan adaptation to dose-volume parameters was assessed. Results. Radiation plans of 34 patients (23.3%) were adapted at least once (up to six time) during their course of EBRT as a result of image-guidance CBCT review. Most common causes for adaptive planning were: tumor change (mostly shrinkage: 10 patients; four patients more than one re-plan), change in abdominal girth (systematic change in hollow organ filling; n=7, two patients more than one re-plan), weight loss (n=5), and systematic target setup deviation from simulation (n=5). Adaptive re-plan was required mostly for conventionally fractionated courses; only 5 patient plans undergoing hypo-fractionated treatment were adjusted. In over 91% of adapted plans, the dose-volume parameters did deviate from the prescribed plan parameters by more than 5% for at least 10% of the target volume, or organs-at-risk in close proximity to the target volume. Discussion. Routine use of volumetric image-guidance has in our practice increased the demand for adaptive re-planning. Volumetric CBCT image-guidance provides sufficient imaging information to reliably predict the need for dose adjustment. In the vast majority of cases evaluated, the initial and adapted dose

  4. Volumetric BOLD fMRI simulation: from neurovascular coupling to multivoxel imaging

    International Nuclear Information System (INIS)

    Chen, Zikuan; Calhoun, Vince

    2012-01-01

    The blood oxygenation-level dependent (BOLD) functional magnetic resonance imaging (fMRI) modality has been numerically simulated by calculating single voxel signals. However, the observation on single voxel signals cannot provide information regarding the spatial distribution of the signals. Specifically, a single BOLD voxel signal simulation cannot answer the fundamental question: is the magnetic resonance (MR) image a replica of its underling magnetic susceptibility source? In this paper, we address this problem by proposing a multivoxel volumetric BOLD fMRI simulation model and a susceptibility expression formula for linear neurovascular coupling process, that allow us to examine the BOLD fMRI procedure from neurovascular coupling to MR image formation. Since MRI technology only senses the magnetism property, we represent a linear neurovascular-coupled BOLD state by a magnetic susceptibility expression formula, which accounts for the parameters of cortical vasculature, intravascular blood oxygenation level, and local neuroactivity. Upon the susceptibility expression of a BOLD state, we carry out volumetric BOLD fMRI simulation by calculating the fieldmap (established by susceptibility magnetization) and the complex multivoxel MR image (by intravoxel dephasing). Given the predefined susceptibility source and the calculated complex MR image, we compare the MR magnitude (phase, respectively) image with the predefined susceptibility source (the calculated fieldmap) by spatial correlation. The spatial correlation between the MR magnitude image and the magnetic susceptibility source is about 0.90 for the settings of T E = 30 ms, B 0 = 3 T, voxel size = 100 micron, vessel radius = 3 micron, and blood volume fraction = 2%. Using these parameters value, the spatial correlation between the MR phase image and the susceptibility-induced fieldmap is close to 1.00. Our simulation results show that the MR magnitude image is not an exact replica of the magnetic susceptibility

  5. Time-resolved computed tomography of the liver: retrospective, multi-phase image reconstruction derived from volumetric perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Michael A.; Kartalis, Nikolaos; Aspelin, Peter; Albiin, Nils; Brismar, Torkel B. [Karolinska University Hospital, Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm (Sweden); Leidner, Bertil; Svensson, Anders [Karolinska University Hospital, Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm (Sweden); Karolinska University Hospital Huddinge, Department of Radiology, Stockholm (Sweden)

    2014-01-15

    To assess feasibility and image quality (IQ) of a new post-processing algorithm for retrospective extraction of an optimised multi-phase CT (time-resolved CT) of the liver from volumetric perfusion imaging. Sixteen patients underwent clinically indicated perfusion CT using 4D spiral mode of dual-source 128-slice CT. Three image sets were reconstructed: motion-corrected and noise-reduced (MCNR) images derived from 4D raw data; maximum and average intensity projections (time MIP/AVG) of the arterial/portal/portal-venous phases and all phases (total MIP/ AVG) derived from retrospective fusion of dedicated MCNR split series. Two readers assessed the IQ, detection rate and evaluation time; one reader assessed image noise and lesion-to-liver contrast. Time-resolved CT was feasible in all patients. Each post-processing step yielded a significant reduction of image noise and evaluation time, maintaining lesion-to-liver contrast. Time MIPs/AVGs showed the highest overall IQ without relevant motion artefacts and best depiction of arterial and portal/portal-venous phases respectively. Time MIPs demonstrated a significantly higher detection rate for arterialised liver lesions than total MIPs/AVGs and the raw data series. Time-resolved CT allows data from volumetric perfusion imaging to be condensed into an optimised multi-phase liver CT, yielding a superior IQ and higher detection rate for arterialised liver lesions than the raw data series. (orig.)

  6. Volumetric Mammogram Assessment: A Helpful Tool in the Treatment of Breast Asymmetries.

    Science.gov (United States)

    Zimman, Oscar A; Butto, Carlos D; Rostagno, Román; Rostagno, Camila

    2017-12-01

    The surgical approach to breast asymmetry depends on several factors, including the surgeon's experience, the anatomy of the patient, and several methods that may help to choose a technique and define the size of the implant or the amount of breast tissue to be excised. The aim of this study is to assist in evaluation of breast volumes with the Quantra™ software application, intended for use with Hologic™ digital mammography systems. Twenty-eight women were studied with full-field digital mammography (FFDM) with the Quantra™ software application, for use with Hologic™ digital mammography systems preoperatively. The case diagnoses were as follows: breast hypertrophy, ptosis, hypoplasia, and reconstruction, and the surgeries included breast reduction, mastopexy, mastopexy and breast reduction, mastoplasty and breast augmentation, breast augmentation, and immediate or delayed breast reconstruction. Patients were evaluated from 6 to 18 months after surgery. Volumetric mammogram studies help to decide the amount of tissue to be excised, the size of the implants, and the combination of both. The results of this study were evaluated by surgeons and patients and found to be highly satisfactory. The use of full-field digital mammography with adequate software should be considered as another tool to assist in making decisions regarding the correction of breast asymmetries. Level of Evidence IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  7. An Improved Random Walker with Bayes Model for Volumetric Medical Image Segmentation

    Directory of Open Access Journals (Sweden)

    Chunhua Dong

    2017-01-01

    Full Text Available Random walk (RW method has been widely used to segment the organ in the volumetric medical image. However, it leads to a very large-scale graph due to a number of nodes equal to a voxel number and inaccurate segmentation because of the unavailability of appropriate initial seed point setting. In addition, the classical RW algorithm was designed for a user to mark a few pixels with an arbitrary number of labels, regardless of the intensity and shape information of the organ. Hence, we propose a prior knowledge-based Bayes random walk framework to segment the volumetric medical image in a slice-by-slice manner. Our strategy is to employ the previous segmented slice to obtain the shape and intensity knowledge of the target organ for the adjacent slice. According to the prior knowledge, the object/background seed points can be dynamically updated for the adjacent slice by combining the narrow band threshold (NBT method and the organ model with a Gaussian process. Finally, a high-quality image segmentation result can be automatically achieved using Bayes RW algorithm. Comparing our method with conventional RW and state-of-the-art interactive segmentation methods, our results show an improvement in the accuracy for liver segmentation (p<0.001.

  8. Methodological approaches to planar and volumetric scintigraphic imaging of small volume targets with high spatial resolution and sensitivity

    International Nuclear Information System (INIS)

    Mejia, J.; Galvis-Alonso, O.Y.; Braga, J.; Correa, R.; Leite, J.P.; Simoes, M.V.

    2009-01-01

    Single-photon emission computed tomography (SPECT) is a non-invasive imaging technique, which provides information reporting the functional states of tissues. SPECT imaging has been used as a diagnostic tool in several human disorders and can be used in animal models of diseases for physiopathological, genomic and drug discovery studies. However, most of the experimental models used in research involve rodents, which are at least one order of magnitude smaller in linear dimensions than man. Consequently, images of targets obtained with conventional gamma-cameras and collimators have poor spatial resolution and statistical quality. We review the methodological approaches developed in recent years in order to obtain images of small targets with good spatial resolution and sensitivity. Multi pinhole, coded mask- and slit-based collimators are presented as alternative approaches to improve image quality. In combination with appropriate decoding algorithms, these collimators permit a significant reduction of the time needed to register the projections used to make 3-D representations of the volumetric distribution of target's radiotracers. Simultaneously, they can be used to minimize artifacts and blurring arising when single pinhole collimators are used. Representation images are presented, which illustrate the use of these collimators. We also comment on the use of coded masks to attain tomographic resolution with a single projection, as discussed by some investigators since their introduction to obtain near-field images. We conclude this review by showing that the use of appropriate hardware and software tools adapted to conventional gamma-cameras can be of great help in obtaining relevant functional information in experiments using small animals. (author)

  9. Methodological approaches to planar and volumetric scintigraphic imaging of small volume targets with high spatial resolution and sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, J.; Galvis-Alonso, O.Y. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Faculdade de Medicina. Dept. de Biologia Molecular], e-mail: mejia_famerp@yahoo.com.br; Braga, J. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Div. de Astrofisica; Correa, R. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Ciencia Espacial e Atmosferica; Leite, J.P. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Neurologia, Psiquiatria e Psicologia Medica; Simoes, M.V. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Clinica Medica

    2009-08-15

    Single-photon emission computed tomography (SPECT) is a non-invasive imaging technique, which provides information reporting the functional states of tissues. SPECT imaging has been used as a diagnostic tool in several human disorders and can be used in animal models of diseases for physiopathological, genomic and drug discovery studies. However, most of the experimental models used in research involve rodents, which are at least one order of magnitude smaller in linear dimensions than man. Consequently, images of targets obtained with conventional gamma-cameras and collimators have poor spatial resolution and statistical quality. We review the methodological approaches developed in recent years in order to obtain images of small targets with good spatial resolution and sensitivity. Multi pinhole, coded mask- and slit-based collimators are presented as alternative approaches to improve image quality. In combination with appropriate decoding algorithms, these collimators permit a significant reduction of the time needed to register the projections used to make 3-D representations of the volumetric distribution of target's radiotracers. Simultaneously, they can be used to minimize artifacts and blurring arising when single pinhole collimators are used. Representation images are presented, which illustrate the use of these collimators. We also comment on the use of coded masks to attain tomographic resolution with a single projection, as discussed by some investigators since their introduction to obtain near-field images. We conclude this review by showing that the use of appropriate hardware and software tools adapted to conventional gamma-cameras can be of great help in obtaining relevant functional information in experiments using small animals. (author)

  10. Methodological approaches to planar and volumetric scintigraphic imaging of small volume targets with high spatial resolution and sensitivity

    Directory of Open Access Journals (Sweden)

    J. Mejia

    2009-08-01

    Full Text Available Single-photon emission computed tomography (SPECT is a non-invasive imaging technique, which provides information reporting the functional states of tissues. SPECT imaging has been used as a diagnostic tool in several human disorders and can be used in animal models of diseases for physiopathological, genomic and drug discovery studies. However, most of the experimental models used in research involve rodents, which are at least one order of magnitude smaller in linear dimensions than man. Consequently, images of targets obtained with conventional gamma-cameras and collimators have poor spatial resolution and statistical quality. We review the methodological approaches developed in recent years in order to obtain images of small targets with good spatial resolution and sensitivity. Multipinhole, coded mask- and slit-based collimators are presented as alternative approaches to improve image quality. In combination with appropriate decoding algorithms, these collimators permit a significant reduction of the time needed to register the projections used to make 3-D representations of the volumetric distribution of target’s radiotracers. Simultaneously, they can be used to minimize artifacts and blurring arising when single pinhole collimators are used. Representation images are presented, which illustrate the use of these collimators. We also comment on the use of coded masks to attain tomographic resolution with a single projection, as discussed by some investigators since their introduction to obtain near-field images. We conclude this review by showing that the use of appropriate hardware and software tools adapted to conventional gamma-cameras can be of great help in obtaining relevant functional information in experiments using small animals.

  11. Scene data fusion: Real-time standoff volumetric gamma-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Barnowski, Ross [Department of Nuclear Engineering, UC Berkeley, 4155 Etcheverry Hall, MC 1730, Berkeley, CA 94720, United States of America (United States); Haefner, Andrew; Mihailescu, Lucian [Lawrence Berkeley National Lab - Applied Nuclear Physics, 1 Cyclotron Road, Berkeley, CA 94720, United States of America (United States); Vetter, Kai [Department of Nuclear Engineering, UC Berkeley, 4155 Etcheverry Hall, MC 1730, Berkeley, CA 94720, United States of America (United States); Lawrence Berkeley National Lab - Applied Nuclear Physics, 1 Cyclotron Road, Berkeley, CA 94720, United States of America (United States)

    2015-11-11

    An approach to gamma-ray imaging has been developed that enables near real-time volumetric (3D) imaging of unknown environments thus improving the utility of gamma-ray imaging for source-search and radiation mapping applications. The approach, herein dubbed scene data fusion (SDF), is based on integrating mobile radiation imagers with real-time tracking and scene reconstruction algorithms to enable a mobile mode of operation and 3D localization of gamma-ray sources. A 3D model of the scene, provided in real-time by a simultaneous localization and mapping (SLAM) algorithm, is incorporated into the image reconstruction reducing the reconstruction time and improving imaging performance. The SDF concept is demonstrated in this work with a Microsoft Kinect RGB-D sensor, a real-time SLAM solver, and a cart-based Compton imaging platform comprised of two 3D position-sensitive high purity germanium (HPGe) detectors. An iterative algorithm based on Compton kinematics is used to reconstruct the gamma-ray source distribution in all three spatial dimensions. SDF advances the real-world applicability of gamma-ray imaging for many search, mapping, and verification scenarios by improving the tractiblity of the gamma-ray image reconstruction and providing context for the 3D localization of gamma-ray sources within the environment in real-time.

  12. Hybrid system for in vivo real-time planar fluorescence and volumetric optoacoustic imaging

    Science.gov (United States)

    Chen, Zhenyue; Deán-Ben, Xosé Luís.; Gottschalk, Sven; Razansky, Daniel

    2018-02-01

    Fluorescence imaging is widely employed in all fields of cell and molecular biology due to its high sensitivity, high contrast and ease of implementation. However, the low spatial resolution and lack of depth information, especially in strongly-scattering samples, restrict its applicability for deep-tissue imaging applications. On the other hand, optoacoustic imaging is known to deliver a unique set of capabilities such as high spatial and temporal resolution in three dimensions, deep penetration and spectrally-enriched imaging contrast. Since fluorescent substances can generate contrast in both modalities, simultaneous fluorescence and optoacoustic readings can provide new capabilities for functional and molecular imaging of living organisms. Optoacoustic images can further serve as valuable anatomical references based on endogenous hemoglobin contrast. Herein, we propose a hybrid system for in vivo real-time planar fluorescence and volumetric optoacoustic tomography, both operating in reflection mode, which synergistically combines the advantages of stand-alone systems. Validation of the spatial resolution and sensitivity of the system were first carried out in tissue mimicking phantoms while in vivo imaging was further demonstrated by tracking perfusion of an optical contrast agent in a mouse brain in the hybrid imaging mode. Experimental results show that the proposed system effectively exploits the contrast mechanisms of both imaging modalities, making it especially useful for accurate monitoring of fluorescence-based signal dynamics in highly scattering samples.

  13. Quantification of smoothing requirement for 3D optic flow calculation of volumetric images

    DEFF Research Database (Denmark)

    Bab-Hadiashar, Alireza; Tennakoon, Ruwan B.; de Bruijne, Marleen

    2013-01-01

    Complexities of dynamic volumetric imaging challenge the available computer vision techniques on a number of different fronts. This paper examines the relationship between the estimation accuracy and required amount of smoothness for a general solution from a robust statistics perspective. We show...... that a (surprisingly) small amount of local smoothing is required to satisfy both the necessary and sufficient conditions for accurate optic flow estimation. This notion is called 'just enough' smoothing, and its proper implementation has a profound effect on the preservation of local information in processing 3D...... dynamic scans. To demonstrate the effect of 'just enough' smoothing, a robust 3D optic flow method with quantized local smoothing is presented, and the effect of local smoothing on the accuracy of motion estimation in dynamic lung CT images is examined using both synthetic and real image sequences...

  14. A method for volumetric imaging in radiotherapy using single x-ray projection

    International Nuclear Information System (INIS)

    Xu, Yuan; Yan, Hao; Ouyang, Luo; Wang, Jing; Jiang, Steve B.; Jia, Xun; Zhou, Linghong; Cervino, Laura

    2015-01-01

    Purpose: It is an intriguing problem to generate an instantaneous volumetric image based on the corresponding x-ray projection. The purpose of this study is to develop a new method to achieve this goal via a sparse learning approach. Methods: To extract motion information hidden in projection images, the authors partitioned a projection image into small rectangular patches. The authors utilized a sparse learning method to automatically select patches that have a high correlation with principal component analysis (PCA) coefficients of a lung motion model. A model that maps the patch intensity to the PCA coefficients was built along with the patch selection process. Based on this model, a measured projection can be used to predict the PCA coefficients, which are then further used to generate a motion vector field and hence a volumetric image. The authors have also proposed an intensity baseline correction method based on the partitioned projection, in which the first and the second moments of pixel intensities at a patch in a simulated projection image are matched with those in a measured one via a linear transformation. The proposed method has been validated in both simulated data and real phantom data. Results: The algorithm is able to identify patches that contain relevant motion information such as the diaphragm region. It is found that an intensity baseline correction step is important to remove the systematic error in the motion prediction. For the simulation case, the sparse learning model reduced the prediction error for the first PCA coefficient to 5%, compared to the 10% error when sparse learning was not used, and the 95th percentile error for the predicted motion vector was reduced from 2.40 to 0.92 mm. In the phantom case with a regular tumor motion, the predicted tumor trajectory was successfully reconstructed with a 0.82 mm error for tumor center localization compared to a 1.66 mm error without using the sparse learning method. When the tumor motion

  15. Real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy.

    Science.gov (United States)

    Li, Ruijiang; Jia, Xun; Lewis, John H; Gu, Xuejun; Folkerts, Michael; Men, Chunhua; Jiang, Steve B

    2010-06-01

    To develop an algorithm for real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy. Given a set of volumetric images of a patient at N breathing phases as the training data, deformable image registration was performed between a reference phase and the other N-1 phases, resulting in N-1 deformation vector fields (DVFs). These DVFs can be represented efficiently by a few eigenvectors and coefficients obtained from principal component analysis (PCA). By varying the PCA coefficients, new DVFs can be generated, which, when applied on the reference image, lead to new volumetric images. A volumetric image can then be reconstructed from a single projection image by optimizing the PCA coefficients such that its computed projection matches the measured one. The 3D location of the tumor can be derived by applying the inverted DVF on its position in the reference image. The algorithm was implemented on graphics processing units (GPUs) to achieve real-time efficiency. The training data were generated using a realistic and dynamic mathematical phantom with ten breathing phases. The testing data were 360 cone beam projections corresponding to one gantry rotation, simulated using the same phantom with a 50% increase in breathing amplitude. The average relative image intensity error of the reconstructed volumetric images is 6.9% +/- 2.4%. The average 3D tumor localization error is 0.8 +/- 0.5 mm. On an NVIDIA Tesla C1060 GPU card, the average computation time for reconstructing a volumetric image from each projection is 0.24 s (range: 0.17 and 0.35 s). The authors have shown the feasibility of reconstructing volumetric images and localizing tumor positions in 3D in near real-time from a single x-ray image.

  16. Volumetric Medical Image Coding: An Object-based, Lossy-to-lossless and Fully Scalable Approach

    Science.gov (United States)

    Danyali, Habibiollah; Mertins, Alfred

    2011-01-01

    In this article, an object-based, highly scalable, lossy-to-lossless 3D wavelet coding approach for volumetric medical image data (e.g., magnetic resonance (MR) and computed tomography (CT)) is proposed. The new method, called 3DOBHS-SPIHT, is based on the well-known set partitioning in the hierarchical trees (SPIHT) algorithm and supports both quality and resolution scalability. The 3D input data is grouped into groups of slices (GOS) and each GOS is encoded and decoded as a separate unit. The symmetric tree definition of the original 3DSPIHT is improved by introducing a new asymmetric tree structure. While preserving the compression efficiency, the new tree structure allows for a small size of each GOS, which not only reduces memory consumption during the encoding and decoding processes, but also facilitates more efficient random access to certain segments of slices. To achieve more compression efficiency, the algorithm only encodes the main object of interest in each 3D data set, which can have any arbitrary shape, and ignores the unnecessary background. The experimental results on some MR data sets show the good performance of the 3DOBHS-SPIHT algorithm for multi-resolution lossy-to-lossless coding. The compression efficiency, full scalability, and object-based features of the proposed approach, beside its lossy-to-lossless coding support, make it a very attractive candidate for volumetric medical image information archiving and transmission applications. PMID:22606653

  17. Imaging tools in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Tan, York Kiat; Østergaard, Mikkel; Conaghan, Philip G

    2012-01-01

    As modern imaging tools such as US and MRI become increasingly available, rheumatologists now have access to highly sensitive measures to assist in the evaluation of both the inflammatory and structural damage components underlying various arthritides over the disease duration. Both US and MRI ha...

  18. VOLUMETRIC METHOD FOR EVALUATION OF BEACHES VARIABILITY BASED ON GIS-TOOLS

    Directory of Open Access Journals (Sweden)

    V. V. Dolotov

    2015-01-01

    Full Text Available In frame of cadastral beach evaluation the volumetric method of natural variability index is proposed. It base on spatial calculations with Cut-Fill method and volume accounting ofboththe common beach contour and specific areas for the each time.

  19. Assessment of pituitary adenoma volumetric change using longitudinal MR image registration

    Energy Technology Data Exchange (ETDEWEB)

    Ringstad, Geir Andre; Hald, John K. [Oslo University Hospital-Rikshospitalet, Clinic for Imaging and Intervention, Oslo (Norway); Emblem, Kyrre Eeg [Oslo University Hospital-Rikshospitalet, Department of Medical Physics, Oslo (Norway); Oslo University Hospital-Rikshospitalet, The Interventional Centre, Oslo (Norway); Holland, Dominic [University of California, Department of Neurosciences, San Diego, CA (United States); Dale, Anders M. [University of California, Department of Neurosciences, San Diego, CA (United States); University of California, Department of Radiology, San Diego, CA (United States); Bjornerud, Atle [Oslo University Hospital-Rikshospitalet, Department of Medical Physics, Oslo (Norway); University of Oslo, Department of Physics, Oslo (Norway)

    2012-05-15

    Change detection is a crucial factor in monitoring of slowly evolving pathologies. The objective of the study was to test a semi-automatic method applied on longitudinal MRI monitoring of volume change in pituitary macroadenomas. The proposed method is based on a visual comparison of geometrically corrected, co-registered, intensity-normalized contrast-enhanced (CE) 3D GRE T1-weighted images. Qualitative volume changes based on this applied method were compared with experts' readings of conventional pre- and post-CE 2D T1-weighted images. Magnetic resonance (MR) imaging was performed two to four times in 13 patients with a total combination of 29 time points. Compared to conventional 2D MR readings, a diagnosis of tumor growth (yes/no) was changed in 5 of 13 patients (38%) at 9 of the 29 combinations of time points (31%) using the 3D-based semi-automatic method. With manual tumor tracings as reference, McNemar's test showed a significant difference between the two methods. Visual comparison of geometrically corrected, intensity-normalized, and affine-aligned longitudinal 3D images may enable more accurate assessment of qualitative volumetric change in pituitary adenomas than conventional reading of 2D images. (orig.)

  20. Assessment of pituitary adenoma volumetric change using longitudinal MR image registration

    International Nuclear Information System (INIS)

    Ringstad, Geir Andre; Hald, John K.; Emblem, Kyrre Eeg; Holland, Dominic; Dale, Anders M.; Bjornerud, Atle

    2012-01-01

    Change detection is a crucial factor in monitoring of slowly evolving pathologies. The objective of the study was to test a semi-automatic method applied on longitudinal MRI monitoring of volume change in pituitary macroadenomas. The proposed method is based on a visual comparison of geometrically corrected, co-registered, intensity-normalized contrast-enhanced (CE) 3D GRE T1-weighted images. Qualitative volume changes based on this applied method were compared with experts' readings of conventional pre- and post-CE 2D T1-weighted images. Magnetic resonance (MR) imaging was performed two to four times in 13 patients with a total combination of 29 time points. Compared to conventional 2D MR readings, a diagnosis of tumor growth (yes/no) was changed in 5 of 13 patients (38%) at 9 of the 29 combinations of time points (31%) using the 3D-based semi-automatic method. With manual tumor tracings as reference, McNemar's test showed a significant difference between the two methods. Visual comparison of geometrically corrected, intensity-normalized, and affine-aligned longitudinal 3D images may enable more accurate assessment of qualitative volumetric change in pituitary adenomas than conventional reading of 2D images. (orig.)

  1. Statistical intensity variation analysis for rapid volumetric imaging of capillary network flux.

    Science.gov (United States)

    Lee, Jonghwan; Jiang, James Y; Wu, Weicheng; Lesage, Frederic; Boas, David A

    2014-04-01

    We present a novel optical coherence tomography (OCT)-based technique for rapid volumetric imaging of red blood cell (RBC) flux in capillary networks. Previously we reported that OCT can capture individual RBC passage within a capillary, where the OCT intensity signal at a voxel fluctuates when an RBC passes the voxel. Based on this finding, we defined a metric of statistical intensity variation (SIV) and validated that the mean SIV is proportional to the RBC flux [RBC/s] through simulations and measurements. From rapidly scanned volume data, we used Hessian matrix analysis to vectorize a segment path of each capillary and estimate its flux from the mean of the SIVs gathered along the path. Repeating this process led to a 3D flux map of the capillary network. The present technique enabled us to trace the RBC flux changes over hundreds of capillaries with a temporal resolution of ~1 s during functional activation.

  2. A feasibility study for image guided radiotherapy using low dose, high speed, cone beam X-ray volumetric imaging

    International Nuclear Information System (INIS)

    Sykes, Jonathan R.; Amer, Ali; Czajka, Jadwiga; Moore, Christopher J.

    2005-01-01

    Background and purpose: Image Guidance of patient set-up for radiotherapy can be achieved by acquiring X-ray volumetric images (XVI) with Elekta Synergy and registering these to the planning CT scan. This enables full 3D registration of structures from similar 3D imaging modalities and offers superior image quality, rotational set-up information and a large field of view. This study uses the head section of the Rando phantom to demonstrate a new paradigm of faster, lower dose XVI that still allows registration to high precision. Materials and methods: One high exposure XVI scan and one low exposure XVI scan were performed with a Rando Head Phantom. The second scan was used to simulate ultra low dose, fast acquisition, full and half scans by discarding a large number of projections before reconstruction. Dose measurements were performed using Thermo Luminescent Dosimeters (TLD) and an ion chamber. The reconstructed XVI scans were automatically registered with a helical CT scan of the Rando Head using the volumetric, grey-level, cross-correlation algorithm implemented in the Syntegra software package (Philips Medical Systems). Reproducibility of the registration process was investigated. Results: In both XVI scans the body surface, bone-tissue and tissue air interfaces were clearly visible. Although the subjective image quality of the low dose cone beam scan was reduced, registration of both cone beam scans with the planning CT scan agreed within 0.1 mm and 0.1 deg. Dose to the patient was reduced from 28 mGy to less than 1 mGy and the equivalent scan speed reduced to one minute or less. Conclusions: Automatic 3D registration of high speed, ultra low dose XVI scans with the planning CT scan can be used for precision 3D patient set-up verification/image guidance on a daily basis with out loss of accuracy when compared to higher dose XVI scans

  3. Single-Shot, Volumetrically Illuminated, Three-Dimensional, Tomographic Laser-Induced-Fluorescence Imaging in a Gaseous Free Jet

    Science.gov (United States)

    2016-04-28

    Single-shot, volumetrically illuminated, three- dimensional, tomographic laser-induced- fluorescence imaging in a gaseous free jet Benjamin R. Halls...acquisition; (110.6955) Tomographic imaging ; (110.6960) Tomography; (280.2490) Flow diagnostics; (300.2530) Fluorescence , laser-induced...84 (1983). 2. I. van Cruyningen, A. Lozano, and R. K. Hanson, “Quantitative imaging of concentration by planar laser-induced fluorescence ,” Exp

  4. Volumetric label-free imaging and 3D reconstruction of mammalian cochlea based on two-photon excitation fluorescence microscopy

    International Nuclear Information System (INIS)

    Zhang, Xianzeng; Zhan, Zhenlin; Xie, Shusen; Geng, Yang; Ye, Qing

    2013-01-01

    The visualization of the delicate structure and spatial relationship of intracochlear sensory cells has relied on the laborious procedures of tissue excision, fixation, sectioning and staining for light and electron microscopy. Confocal microscopy is advantageous for its high resolution and deep penetration depth, yet disadvantageous due to the necessity of exogenous labeling. In this study, we present the volumetric imaging of rat cochlea without exogenous dyes using a near-infrared femtosecond laser as the excitation mechanism and endogenous two-photon excitation fluorescence (TPEF) as the contrast mechanism. We find that TPEF exhibits strong contrast, allowing cellular and even subcellular resolution imaging of the cochlea, differentiating cell types, visualizing delicate structures and the radial nerve fiber. Our results further demonstrate that 3D reconstruction rendered with z-stacks of optical sections enables better revealment of fine structures and spatial relationships, and easily performed morphometric analysis. The TPEF-based optical biopsy technique provides great potential for new and sensitive diagnostic tools for hearing loss or hearing disorders, especially when combined with fiber-based microendoscopy. (paper)

  5. 3D Tendon Strain Estimation Using High-frequency Volumetric Ultrasound Images: A Feasibility Study.

    Science.gov (United States)

    Carvalho, Catarina; Slagmolen, Pieter; Bogaerts, Stijn; Scheys, Lennart; D'hooge, Jan; Peers, Koen; Maes, Frederik; Suetens, Paul

    2018-03-01

    Estimation of strain in tendons for tendinopathy assessment is a hot topic within the sports medicine community. It is believed that, if accurately estimated, existing treatment and rehabilitation protocols can be improved and presymptomatic abnormalities can be detected earlier. State-of-the-art studies present inaccurate and highly variable strain estimates, leaving this problem without solution. Out-of-plane motion, present when acquiring two-dimensional (2D) ultrasound (US) images, is a known problem and may be responsible for such errors. This work investigates the benefit of high-frequency, three-dimensional (3D) US imaging to reduce errors in tendon strain estimation. Volumetric US images were acquired in silico, in vitro, and ex vivo using an innovative acquisition approach that combines the acquisition of 2D high-frequency US images with a mechanical guided system. An affine image registration method was used to estimate global strain. 3D strain estimates were then compared with ground-truth values and with 2D strain estimates. The obtained results for in silico data showed a mean absolute error (MAE) of 0.07%, 0.05%, and 0.27% for 3D estimates along axial, lateral direction, and elevation direction and a respective MAE of 0.21% and 0.29% for 2D strain estimates. Although 3D could outperform 2D, this does not occur in in vitro and ex vivo settings, likely due to 3D acquisition artifacts. Comparison against the state-of-the-art methods showed competitive results. The proposed work shows that 3D strain estimates are more accurate than 2D estimates but acquisition of appropriate 3D US images remains a challenge.

  6. Novel Volumetric Size and Velocity Measurement of Particles Using Interferometric Laser Imaging

    Science.gov (United States)

    Gunawardana, R.; Zarzecki, M.; Diez, F. J.

    2008-11-01

    Global Sizing Velocimetry (GSV) is a recently developed technique for characterizing the particle size distribution and flow velocity in a plane and in this research we extend this measurement to a volume through a laser scanning system. In GSV, a LASER sheet is used to illuminate translucent particles in a spray or flow field and the camera image is de-focused a known distance to create interference patterns. The diameters of the particles in the flow field are calculated by measuring the inter-fringe spacing in the resulting interferogram. Particle Imaging Velocimetry (PIV) techniques are used to compute velocity by measuring the particle displacement over a known short time interval. Researchers have recently begun applying GSV techniques to characterize sprays in a plane as it offers a larger area of investigation than other well known techniques such as Phase Doppler Anemometry (PDA). In this paper we extend GSA techniques from the current planar measurements to a volumetric measurement. The approach uses a high speed camera to acquire GSA images by scanning multiple planes in a volume of the flow field within a short period of time and obtain particle size distribution and velocity measurements in the entire volume.

  7. Detection and Severity Scoring of Chronic Obstructive Pulmonary Disease Using Volumetric Analysis of Lung CT Images

    International Nuclear Information System (INIS)

    Hosseini, Mohammad Parsa; Soltanian-Zadeh, Hamid; Akhlaghpoor, Shahram

    2012-01-01

    Chronic obstructive pulmonary disease (COPD) is a devastating disease.While there is no cure for COPD and the lung damage associated with this disease cannot be reversed, it is still very important to diagnose it as early as possible. In this paper, we propose a novel method based on the measurement of air trapping in the lungs from CT images to detect COPD and to evaluate its severity. Twenty-five patients and twelve normal adults were included in this study. The proposed method found volumetric changes of the lungs from inspiration to expiration. To this end, trachea CT images at full inspiration and expiration were compared and changes in the areas and volumes of the lungs between inspiration and expiration were used to define quantitative measures (features). Using these features,the subjects were classified into two groups of normal and COPD patients using a Bayesian classifier. In addition, t-tests were applied to evaluate discrimination powers of the features for this classification. For the cases studied, the proposed method estimated air trapping in the lungs from CT images without human intervention. Based on the results, a mathematical model was developed to relate variations of lung volumes to the severity of the disease. As a computer aided diagnosis (CAD) system, the proposed method may assist radiologists in the detection of COPD. It quantifies air trapping in the lungs and thus may assist them with the scoring of the disease by quantifying the severity of the disease

  8. An initial study on the estimation of time-varying volumetric treatment images and 3D tumor localization from single MV cine EPID images

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Pankaj, E-mail: pankaj.mishra@varian.com; Mak, Raymond H.; Rottmann, Joerg; Bryant, Jonathan H.; Williams, Christopher L.; Berbeco, Ross I.; Lewis, John H. [Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Li, Ruijiang [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305 (United States)

    2014-08-15

    Purpose: In this work the authors develop and investigate the feasibility of a method to estimate time-varying volumetric images from individual MV cine electronic portal image device (EPID) images. Methods: The authors adopt a two-step approach to time-varying volumetric image estimation from a single cine EPID image. In the first step, a patient-specific motion model is constructed from 4DCT. In the second step, parameters in the motion model are tuned according to the information in the EPID image. The patient-specific motion model is based on a compact representation of lung motion represented in displacement vector fields (DVFs). DVFs are calculated through deformable image registration (DIR) of a reference 4DCT phase image (typically peak-exhale) to a set of 4DCT images corresponding to different phases of a breathing cycle. The salient characteristics in the DVFs are captured in a compact representation through principal component analysis (PCA). PCA decouples the spatial and temporal components of the DVFs. Spatial information is represented in eigenvectors and the temporal information is represented by eigen-coefficients. To generate a new volumetric image, the eigen-coefficients are updated via cost function optimization based on digitally reconstructed radiographs and projection images. The updated eigen-coefficients are then multiplied with the eigenvectors to obtain updated DVFs that, in turn, give the volumetric image corresponding to the cine EPID image. Results: The algorithm was tested on (1) Eight digital eXtended CArdiac-Torso phantom datasets based on different irregular patient breathing patterns and (2) patient cine EPID images acquired during SBRT treatments. The root-mean-squared tumor localization error is (0.73 ± 0.63 mm) for the XCAT data and (0.90 ± 0.65 mm) for the patient data. Conclusions: The authors introduced a novel method of estimating volumetric time-varying images from single cine EPID images and a PCA-based lung motion model

  9. Patient specific dynamic geometric models from sequential volumetric time series image data.

    Science.gov (United States)

    Cameron, B M; Robb, R A

    2004-01-01

    Generating patient specific dynamic models is complicated by the complexity of the motion intrinsic and extrinsic to the anatomic structures being modeled. Using a physics-based sequentially deforming algorithm, an anatomically accurate dynamic four-dimensional model can be created from a sequence of 3-D volumetric time series data sets. While such algorithms may accurately track the cyclic non-linear motion of the heart, they generally fail to accurately track extrinsic structural and non-cyclic motion. To accurately model these motions, we have modified a physics-based deformation algorithm to use a meta-surface defining the temporal and spatial maxima of the anatomic structure as the base reference surface. A mass-spring physics-based deformable model, which can expand or shrink with the local intrinsic motion, is applied to the metasurface, deforming this base reference surface to the volumetric data at each time point. As the meta-surface encompasses the temporal maxima of the structure, any extrinsic motion is inherently encoded into the base reference surface and allows the computation of the time point surfaces to be performed in parallel. The resultant 4-D model can be interactively transformed and viewed from different angles, showing the spatial and temporal motion of the anatomic structure. Using texture maps and per-vertex coloring, additional data such as physiological and/or biomechanical variables (e.g., mapping electrical activation sequences onto contracting myocardial surfaces) can be associated with the dynamic model, producing a 5-D model. For acquisition systems that may capture only limited time series data (e.g., only images at end-diastole/end-systole or inhalation/exhalation), this algorithm can provide useful interpolated surfaces between the time points. Such models help minimize the number of time points required to usefully depict the motion of anatomic structures for quantitative assessment of regional dynamics.

  10. A medical software system for volumetric analysis of cerebral pathologies in magnetic resonance imaging (MRI) data.

    Science.gov (United States)

    Egger, Jan; Kappus, Christoph; Freisleben, Bernd; Nimsky, Christopher

    2012-08-01

    In this contribution, a medical software system for volumetric analysis of different cerebral pathologies in magnetic resonance imaging (MRI) data is presented. The software system is based on a semi-automatic segmentation algorithm and helps to overcome the time-consuming process of volume determination during monitoring of a patient. After imaging, the parameter settings-including a seed point-are set up in the system and an automatic segmentation is performed by a novel graph-based approach. Manually reviewing the result leads to reseeding, adding seed points or an automatic surface mesh generation. The mesh is saved for monitoring the patient and for comparisons with follow-up scans. Based on the mesh, the system performs a voxelization and volume calculation, which leads to diagnosis and therefore further treatment decisions. The overall system has been tested with different cerebral pathologies-glioblastoma multiforme, pituitary adenomas and cerebral aneurysms- and evaluated against manual expert segmentations using the Dice Similarity Coefficient (DSC). Additionally, intra-physician segmentations have been performed to provide a quality measure for the presented system.

  11. Linking Neurons to Network Function and Behavior by Two-Photon Holographic Optogenetics and Volumetric Imaging.

    Science.gov (United States)

    Dal Maschio, Marco; Donovan, Joseph C; Helmbrecht, Thomas O; Baier, Herwig

    2017-05-17

    We introduce a flexible method for high-resolution interrogation of circuit function, which combines simultaneous 3D two-photon stimulation of multiple targeted neurons, volumetric functional imaging, and quantitative behavioral tracking. This integrated approach was applied to dissect how an ensemble of premotor neurons in the larval zebrafish brain drives a basic motor program, the bending of the tail. We developed an iterative photostimulation strategy to identify minimal subsets of channelrhodopsin (ChR2)-expressing neurons that are sufficient to initiate tail movements. At the same time, the induced network activity was recorded by multiplane GCaMP6 imaging across the brain. From this dataset, we computationally identified activity patterns associated with distinct components of the elicited behavior and characterized the contributions of individual neurons. Using photoactivatable GFP (paGFP), we extended our protocol to visualize single functionally identified neurons and reconstruct their morphologies. Together, this toolkit enables linking behavior to circuit activity with unprecedented resolution. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Development of an online radiology case review system featuring interactive navigation of volumetric image datasets using advanced visualization techniques

    International Nuclear Information System (INIS)

    Yang, Hyun Kyung; Kim, Boh Kyoung; Jung, Ju Hyun; Kang, Heung Sik; Lee, Kyoung Ho; Woo, Hyun Soo; Jo, Jae Min; Lee, Min Hee

    2015-01-01

    To develop an online radiology case review system that allows interactive navigation of volumetric image datasets using advanced visualization techniques. Our Institutional Review Board approved the use of the patient data and waived the need for informed consent. We determined the following system requirements: volumetric navigation, accessibility, scalability, undemanding case management, trainee encouragement, and simulation of a busy practice. The system comprised a case registry server, client case review program, and commercially available cloud-based image viewing system. In the pilot test, we used 30 cases of low-dose abdomen computed tomography for the diagnosis of acute appendicitis. In each case, a trainee was required to navigate through the images and submit answers to the case questions. The trainee was then given the correct answers and key images, as well as the image dataset with annotations on the appendix. After evaluation of all cases, the system displayed the diagnostic accuracy and average review time, and the trainee was asked to reassess the failed cases. The pilot system was deployed successfully in a hands-on workshop course. We developed an online radiology case review system that allows interactive navigation of volumetric image datasets using advanced visualization techniques

  13. Development of an online radiology case review system featuring interactive navigation of volumetric image datasets using advanced visualization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hyun Kyung; Kim, Boh Kyoung; Jung, Ju Hyun; Kang, Heung Sik; Lee, Kyoung Ho [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Woo, Hyun Soo [Dept. of Radiology, SMG-SNU Boramae Medical Center, Seoul (Korea, Republic of); Jo, Jae Min [Dept. of Computer Science and Engineering, Seoul National University, Seoul (Korea, Republic of); Lee, Min Hee [Dept. of Radiology, Soonchunhyang University Bucheon Hospital, Bucheon (Korea, Republic of)

    2015-11-15

    To develop an online radiology case review system that allows interactive navigation of volumetric image datasets using advanced visualization techniques. Our Institutional Review Board approved the use of the patient data and waived the need for informed consent. We determined the following system requirements: volumetric navigation, accessibility, scalability, undemanding case management, trainee encouragement, and simulation of a busy practice. The system comprised a case registry server, client case review program, and commercially available cloud-based image viewing system. In the pilot test, we used 30 cases of low-dose abdomen computed tomography for the diagnosis of acute appendicitis. In each case, a trainee was required to navigate through the images and submit answers to the case questions. The trainee was then given the correct answers and key images, as well as the image dataset with annotations on the appendix. After evaluation of all cases, the system displayed the diagnostic accuracy and average review time, and the trainee was asked to reassess the failed cases. The pilot system was deployed successfully in a hands-on workshop course. We developed an online radiology case review system that allows interactive navigation of volumetric image datasets using advanced visualization techniques.

  14. Intrafraction Bladder Motion in Radiation Therapy Estimated From Pretreatment and Posttreatment Volumetric Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Foroudi, Farshad, E-mail: farshad.foroudi@petermac.org [Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Pham, Daniel [Radiation Therapy Services, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Bressel, Mathias [Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Gill, Suki [Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Kron, Tomas [Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia)

    2013-05-01

    Purpose: The use of image guidance protocols using soft tissue anatomy identification before treatment can reduce interfractional variation. This makes intrafraction clinical target volume (CTV) to planning target volume (PTV) changes more important, including those resulting from intrafraction bladder filling and motion. The purpose of this study was to investigate the required intrafraction margins for soft tissue image guidance from pretreatment and posttreatment volumetric imaging. Methods and Materials: Fifty patients with muscle-invasive bladder cancer (T2-T4) underwent an adaptive radiation therapy protocol using daily pretreatment cone beam computed tomography (CBCT) with weekly posttreatment CBCT. A total of 235 pairs of pretreatment and posttreatment CBCT images were retrospectively contoured by a single radiation oncologist (CBCT-CTV). The maximum bladder displacement was measured according to the patient's bony pelvis movement during treatment, intrafraction bladder filling, and bladder centroid motion. Results: The mean time between pretreatment and posttreatment CBCT was 13 minutes, 52 seconds (range, 7 min 52 sec to 30 min 56 sec). Taking into account patient motion, bladder centroid motion, and bladder filling, the required margins to cover intrafraction changes from pretreatment to posttreatment in the superior, inferior, right, left, anterior, and posterior were 1.25 cm (range, 1.19-1.50 cm), 0.67 cm (range, 0.58-1.12 cm), 0.74 cm (range, 0.59-0.94 cm), 0.73 cm (range, 0.51-1.00 cm), 1.20 cm (range, 0.85-1.32 cm), and 0.86 cm (range, 0.73-0.99), respectively. Small bladders on pretreatment imaging had relatively the largest increase in pretreatment to posttreatment volume. Conclusion: Intrafraction motion of the bladder based on pretreatment and posttreatment bladder imaging can be significant particularly in the anterior and superior directions. Patient motion, bladder centroid motion, and bladder filling all contribute to changes between

  15. Prediction of the wear and evolution of cutting tools in a carbide / titanium-aluminum-vanadium machining tribosystem by volumetric tool wear characterization and modeling

    Science.gov (United States)

    Kuttolamadom, Mathew Abraham

    The objective of this research work is to create a comprehensive microstructural wear mechanism-based predictive model of tool wear in the tungsten carbide / Ti-6Al-4V machining tribosystem, and to develop a new topology characterization method for worn cutting tools in order to validate the model predictions. This is accomplished by blending first principle wear mechanism models using a weighting scheme derived from scanning electron microscopy (SEM) imaging and energy dispersive x-ray spectroscopy (EDS) analysis of tools worn under different operational conditions. In addition, the topology of worn tools is characterized through scanning by white light interferometry (WLI), and then application of an algorithm to stitch and solidify data sets to calculate the volume of the tool worn away. The methodology was to first combine and weight dominant microstructural wear mechanism models, to be able to effectively predict the tool volume worn away. Then, by developing a new metrology method for accurately quantifying the bulk-3D wear, the model-predicted wear was validated against worn tool volumes obtained from corresponding machining experiments. On analyzing worn crater faces using SEM/EDS, adhesion was found dominant at lower surface speeds, while dissolution wear dominated with increasing speeds -- this is in conformance with the lower relative surface speed requirement for micro welds to form and rupture, essentially defining the mechanical load limit of the tool material. It also conforms to the known dominance of high temperature-controlled wear mechanisms with increasing surface speed, which is known to exponentially increase temperatures especially when machining Ti-6Al-4V due to its low thermal conductivity. Thus, straight tungsten carbide wear when machining Ti-6Al-4V is mechanically-driven at low surface speeds and thermally-driven at high surface speeds. Further, at high surface speeds, craters were formed due to carbon diffusing to the tool surface and

  16. Probabilistic atlas-guided eigen-organ method for simultaneous bounding box estimation of multiple organs in volumetric CT images

    International Nuclear Information System (INIS)

    Yao, Cong; Wada, Takashige; Shimizu, Akinobu; Kobatake, Hidefumi; Nawano, Shigeru

    2006-01-01

    We propose an approach for the simultaneous bounding box estimation of multiple organs in volumetric CT images. Local eigen-organ spaces are constructed for different types of training organs, and a global eigen-space, which describes the spatial relationships between the organs, is also constructed. Each volume of interest in the abdominal CT image is projected into the local eigen-organ spaces, and several candidate locations are determined. The final selection of the organ locations is made by projecting the set of candidate locations into the global eigen-space. A probabilistic atlas of organs is used to eliminate locations with low probability and to guide the selection of candidate locations. Evaluation by the leave-one-out method using 10 volumetric abdominal CT images showed that the proposed method provided an average accuracy of 80.38% for 11 different organ types. (author)

  17. A novel image processing technique for 3D volumetric analysis of severely resorbed alveolar sockets with CBCT.

    Science.gov (United States)

    Manavella, Valeria; Romano, Federica; Garrone, Federica; Terzini, Mara; Bignardi, Cristina; Aimetti, Mario

    2017-06-01

    The aim of this study was to present and validate a novel procedure for the quantitative volumetric assessment of extraction sockets that combines cone-beam computed tomography (CBCT) and image processing techniques. The CBCT dataset of 9 severely resorbed extraction sockets was analyzed by means of two image processing software, Image J and Mimics, using manual and automated segmentation techniques. They were also applied on 5-mm spherical aluminum markers of known volume and on a polyvinyl chloride model of one alveolar socket scanned with Micro-CT to test the accuracy. Statistical differences in alveolar socket volume were found between the different methods of volumetric analysis (Psockets showed more accurate results, excellent inter-observer similarity and increased user friendliness. The clinical application of this method enables a three-dimensional evaluation of extraction socket healing after the reconstructive procedures and during the follow-up visits.

  18. Composite Match Index with Application of Interior Deformation Field Measurement from Magnetic Resonance Volumetric Images of Human Tissues

    Directory of Open Access Journals (Sweden)

    Penglin Zhang

    2012-01-01

    Full Text Available Whereas a variety of different feature-point matching approaches have been reported in computer vision, few feature-point matching approaches employed in images from nonrigid, nonuniform human tissues have been reported. The present work is concerned with interior deformation field measurement of complex human tissues from three-dimensional magnetic resonance (MR volumetric images. To improve the reliability of matching results, this paper proposes composite match index (CMI as the foundation of multimethod fusion methods to increase the reliability of these various methods. Thereinto, we discuss the definition, components, and weight determination of CMI. To test the validity of the proposed approach, it is applied to actual MR volumetric images obtained from a volunteer’s calf. The main result is consistent with the actual condition.

  19. Volumetric imaging of oral epithelial neoplasia by MPM-SHGM: epithelial connective tissue interface (Conference Presentation)

    Science.gov (United States)

    Pal, Rahul; Yang, Jinping; Qiu, Suimin; Resto, Vicente; McCammon, Susan; Vargas, Gracie

    2016-03-01

    The majority of oral cancers are comprised of oral squamous cell carcinoma in which neoplastic epithelial cells invade across the epithelial connective tissue interface (ECTI). Invasion is preceded by a multi-component process including epithelial hyperproliferation, loss of cell polarity, and remodeling of the extracellular matrix. Multiphoton Autofluorescence Microscopy (MPAM) and Second Harmonic Generation Microscopy (SHGM) show promise for revealing indicators of neoplasia. In particular, volumetric imaging by these methods can reveal aspects of the 3D microstructure that are not possible by other methods and which could both further our understanding of neoplastic transformation and be explored for development of diagnostic approaches in this disease having only 55% 5-year survival rate. MPAM-SHG were applied to reveal the 3D structure of the critical ECTI interface that plays an integral part toward invasion. Epithelial dysplasia was induced in an established hamster model. MPAM-SHGM was applied to lesion sites, using 780 nm excitation (450-600nm emission) for autofluroescence of cellular and extracellular components; 840 nm using 420 nm bandpass filter for SHG. The ECTI surface was identified as the interface at which SHG signal began following the epithelium and was modeled as a 3D surface using Matlab. ECTI surface area and cell features at sites of epithelial expansion where ECTI was altered were measured; Imaged sites were biopsied and processed for histology. ROC analysis using ECTI image metrics indicated the ability to delineate normal from neoplasia with high sensitivity and specificity and it is noteworthy that inflammation did not significantly alter diagnostic potential of MPAM-SHGM .

  20. A novel 3D volumetric voxel registration technique for volume-view-guided image registration of multiple imaging modalities

    International Nuclear Information System (INIS)

    Li Guang; Xie Huchen; Ning, Holly; Capala, Jacek; Arora, Barbara C.; Coleman, C. Norman; Camphausen, Kevin; Miller, Robert W.

    2005-01-01

    Purpose: To provide more clinically useful image registration with improved accuracy and reduced time, a novel technique of three-dimensional (3D) volumetric voxel registration of multimodality images is developed. Methods and Materials: This technique can register up to four concurrent images from multimodalities with volume view guidance. Various visualization effects can be applied, facilitating global and internal voxel registration. Fourteen computed tomography/magnetic resonance (CT/MR) image sets and two computed tomography/positron emission tomography (CT/PET) image sets are used. For comparison, an automatic registration technique using maximization of mutual information (MMI) and a three-orthogonal-planar (3P) registration technique are used. Results: Visually sensitive registration criteria for CT/MR and CT/PET have been established, including the homogeneity of color distribution. Based on the registration results of 14 CT/MR images, the 3D voxel technique is in excellent agreement with the automatic MMI technique and is indicatory of a global positioning error (defined as the means and standard deviations of the error distribution) using the 3P pixel technique: 1.8 deg ± 1.2 deg in rotation and 2.0 ± 1.3 (voxel unit) in translation. To the best of our knowledge, this is the first time that such positioning error has been addressed. Conclusion: This novel 3D voxel technique establishes volume-view-guided image registration of up to four modalities. It improves registration accuracy with reduced time, compared with the 3P pixel technique. This article suggests that any interactive and automatic registration should be safeguarded using the 3D voxel technique

  1. Utility of Early Post-operative High Resolution Volumetric MR Imaging after Transsphenoidal Pituitary Tumor Surgery

    Science.gov (United States)

    Patel, Kunal S.; Kazam, Jacob; Tsiouris, Apostolos J.; Anand, Vijay K.; Schwartz, Theodore H.

    2014-01-01

    Objective Controversy exists over the utility of early post-operative magnetic resonance imaging (MRI) after transsphenoidal pituitary surgery for macroadenomas. We investigate whether valuable information can be derived from current higher resolution scans. Methods Volumetric MRI scans were obtained in the early (30 days) post-operative periods in a series of patients undergoing transsphenoidal pituitary surgery. The volume of the residual tumor, resection cavity, and corresponding visual field tests were recorded at each time point. Statistical analyses of changes in tumor volume and cavity size were calculated using the late MRI as the gold standard. Results 40 patients met the inclusion criteria. Pre-operative tumor volume averaged 8.8 cm3. Early postoperative assessment of average residual tumor volume (1.18 cm3) was quite accurate and did not differ statistically from late post-operative volume (1.23 cm3, p=.64), indicating the utility of early scans to measure residual tumor. Early scans were 100% sensitive and 91% specific for predicting ≥ 98% resection (psurgery and a lack of decrease should alert the surgeon to possible persistent compression of the optic apparatus that may warrant re-operation. PMID:25045791

  2. Volumetric Magnetic Resonance Imaging Study of Brain and Cerebellum in Children with Cerebral Palsy.

    Science.gov (United States)

    Kułak, Piotr; Maciorkowska, Elżbieta; Gościk, Elżbieta

    2016-01-01

    Introduction. Quantitative magnetic resonance imaging (MRI) studies are rarely used in the diagnosis of patients with cerebral palsy. The aim of present study was to assess the relationships between the volumetric MRI and clinical findings in children with cerebral palsy compared to control subjects. Materials and Methods. Eighty-two children with cerebral palsy and 90 age- and sex-matched healthy controls were collected. Results. The dominant changes identified on MRI scans in children with cerebral palsy were periventricular leukomalacia (42%) and posthemorrhagic hydrocephalus (21%). The total brain and cerebellum volumes in children with cerebral palsy were significantly reduced in comparison to controls. Significant grey matter volume reduction was found in the total brain in children with cerebral palsy compared with the control subjects. Positive correlations between the age of the children of both groups and the grey matter volumes in the total brain were found. Negative relationship between width of third ventricle and speech development was found in the patients. Positive correlations were noted between the ventricles enlargement and motor dysfunction and mental retardation in children with cerebral palsy. Conclusions. By using the voxel-based morphometry, the total brain, cerebellum, and grey matter volumes were significantly reduced in children with cerebral palsy.

  3. AMIDE: A Free Software Tool for Multimodality Medical Image Analysis

    Directory of Open Access Journals (Sweden)

    Andreas Markus Loening

    2003-07-01

    Full Text Available Amide's a Medical Image Data Examiner (AMIDE has been developed as a user-friendly, open-source software tool for displaying and analyzing multimodality volumetric medical images. Central to the package's abilities to simultaneously display multiple data sets (e.g., PET, CT, MRI and regions of interest is the on-demand data reslicing implemented within the program. Data sets can be freely shifted, rotated, viewed, and analyzed with the program automatically handling interpolation as needed from the original data. Validation has been performed by comparing the output of AMIDE with that of several existing software packages. AMIDE runs on UNIX, Macintosh OS X, and Microsoft Windows platforms, and it is freely available with source code under the terms of the GNU General Public License.

  4. Z-Index Parameterization for Volumetric CT Image Reconstruction via 3-D Dictionary Learning.

    Science.gov (United States)

    Bai, Ti; Yan, Hao; Jia, Xun; Jiang, Steve; Wang, Ge; Mou, Xuanqin

    2017-12-01

    Despite the rapid developments of X-ray cone-beam CT (CBCT), image noise still remains a major issue for the low dose CBCT. To suppress the noise effectively while retain the structures well for low dose CBCT image, in this paper, a sparse constraint based on the 3-D dictionary is incorporated into a regularized iterative reconstruction framework, defining the 3-D dictionary learning (3-DDL) method. In addition, by analyzing the sparsity level curve associated with different regularization parameters, a new adaptive parameter selection strategy is proposed to facilitate our 3-DDL method. To justify the proposed method, we first analyze the distributions of the representation coefficients associated with the 3-D dictionary and the conventional 2-D dictionary to compare their efficiencies in representing volumetric images. Then, multiple real data experiments are conducted for performance validation. Based on these results, we found: 1) the 3-D dictionary-based sparse coefficients have three orders narrower Laplacian distribution compared with the 2-D dictionary, suggesting the higher representation efficiencies of the 3-D dictionary; 2) the sparsity level curve demonstrates a clear Z-shape, and hence referred to as Z-curve, in this paper; 3) the parameter associated with the maximum curvature point of the Z-curve suggests a nice parameter choice, which could be adaptively located with the proposed Z-index parameterization (ZIP) method; 4) the proposed 3-DDL algorithm equipped with the ZIP method could deliver reconstructions with the lowest root mean squared errors and the highest structural similarity index compared with the competing methods; 5) similar noise performance as the regular dose FDK reconstruction regarding the standard deviation metric could be achieved with the proposed method using (1/2)/(1/4)/(1/8) dose level projections. The contrast-noise ratio is improved by ~2.5/3.5 times with respect to two different cases under the (1/8) dose level compared

  5. Radiation Dose–Dependent Hippocampal Atrophy Detected With Longitudinal Volumetric Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, Tyler M.; Karunamuni, Roshan [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Bartsch, Hauke [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Kaifi, Samar [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Krishnan, Anitha Priya [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Dalia, Yoseph; Burkeen, Jeffrey; Murzin, Vyacheslav; Moiseenko, Vitali [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Kuperman, Joshua; White, Nathan S. [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Brewer, James B. [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Department of Neurosciences, University of California, San Diego, La Jolla, California (United States); Farid, Nikdokht [Department of Radiology, University of California, San Diego, La Jolla, California (United States); McDonald, Carrie R. [Department of Psychiatry, University of California, San Diego, La Jolla, California (United States); Hattangadi-Gluth, Jona A., E-mail: jhattangadi@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States)

    2017-02-01

    Purpose: After radiation therapy (RT) to the brain, patients often experience memory impairment, which may be partially mediated by damage to the hippocampus. Hippocampal sparing in RT planning is the subject of recent and ongoing clinical trials. Calculating appropriate hippocampal dose constraints would be improved by efficient in vivo measurements of hippocampal damage. In this study we sought to determine whether brain RT was associated with dose-dependent hippocampal atrophy. Methods and Materials: Hippocampal volume was measured with magnetic resonance imaging (MRI) in 52 patients who underwent fractionated, partial brain RT for primary brain tumors. Study patients had high-resolution, 3-dimensional volumetric MRI before and 1 year after RT. Images were processed using software with clearance from the US Food and Drug Administration and Conformité Européene marking for automated measurement of hippocampal volume. Automated results were inspected visually for accuracy. Tumor and surgical changes were censored. Mean hippocampal dose was tested for correlation with hippocampal atrophy 1 year after RT. Average hippocampal volume change was also calculated for hippocampi receiving high (>40 Gy) or low (<10 Gy) mean RT dose. A multivariate analysis was conducted with linear mixed-effects modeling to evaluate other potential predictors of hippocampal volume change, including patient (random effect), age, hemisphere, sex, seizure history, and baseline volume. Statistical significance was evaluated at α = 0.05. Results: Mean hippocampal dose was significantly correlated with hippocampal volume loss (r=−0.24, P=.03). Mean hippocampal volume was significantly reduced 1 year after high-dose RT (mean −6%, P=.009) but not after low-dose RT. In multivariate analysis, both RT dose and patient age were significant predictors of hippocampal atrophy (P<.01). Conclusions: The hippocampus demonstrates radiation dose–dependent atrophy after treatment for brain

  6. Comparision between Brain Atrophy and Subdural Volume to Predict Chronic Subdural Hematoma: Volumetric CT Imaging Analysis.

    Science.gov (United States)

    Ju, Min-Wook; Kim, Seon-Hwan; Kwon, Hyon-Jo; Choi, Seung-Won; Koh, Hyeon-Song; Youm, Jin-Young; Song, Shi-Hun

    2015-10-01

    Brain atrophy and subdural hygroma were well known factors that enlarge the subdural space, which induced formation of chronic subdural hematoma (CSDH). Thus, we identified the subdural volume that could be used to predict the rate of future CSDH after head trauma using a computed tomography (CT) volumetric analysis. A single institution case-control study was conducted involving 1,186 patients who visited our hospital after head trauma from January 1, 2010 to December 31, 2014. Fifty-one patients with delayed CSDH were identified, and 50 patients with age and sex matched for control. Intracranial volume (ICV), the brain parenchyme, and the subdural space were segmented using CT image-based software. To adjust for variations in head size, volume ratios were assessed as a percentage of ICV [brain volume index (BVI), subdural volume index (SVI)]. The maximum depth of the subdural space on both sides was used to estimate the SVI. Before adjusting for cranium size, brain volume tended to be smaller, and subdural space volume was significantly larger in the CSDH group (p=0.138, p=0.021, respectively). The BVI and SVI were significantly different (p=0.003, p=0.001, respectively). SVI [area under the curve (AUC), 77.3%; p=0.008] was a more reliable technique for predicting CSDH than BVI (AUC, 68.1%; p=0.001). Bilateral subdural depth (sum of subdural depth on both sides) increased linearly with SVI (pSubdural space volume was significantly larger in CSDH groups. SVI was a more reliable technique for predicting CSDH. Bilateral subdural depth was useful to measure SVI.

  7. SU-F-J-54: Towards Real-Time Volumetric Imaging Using the Treatment Beam and KV Beam

    Energy Technology Data Exchange (ETDEWEB)

    Chen, M; Rozario, T; Liu, A; Jiang, S; Lu, W [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: Existing real-time imaging uses dual (orthogonal) kV beam fluoroscopies and may result in significant amount of extra radiation to patients, especially for prolonged treatment cases. In addition, kV projections only provide 2D information, which is insufficient for in vivo dose reconstruction. We propose real-time volumetric imaging using prior knowledge of pre-treatment 4D images and real-time 2D transit data of treatment beam and kV beam. Methods: The pre-treatment multi-snapshot volumetric images are used to simulate 2D projections of both the treatment beam and kV beam, respectively, for each treatment field defined by the control point. During radiation delivery, the transit signals acquired by the electronic portal image device (EPID) are processed for every projection and compared with pre-calculation by cross-correlation for phase matching and thus 3D snapshot identification or real-time volumetric imaging. The data processing involves taking logarithmic ratios of EPID signals with respect to the air scan to reduce modeling uncertainties in head scatter fluence and EPID response. Simulated 2D projections are also used to pre-calculate confidence levels in phase matching. Treatment beam projections that have a low confidence level either in pre-calculation or real-time acquisition will trigger kV beams so that complementary information can be exploited. In case both the treatment beam and kV beam return low confidence in phase matching, a predicted phase based on linear regression will be generated. Results: Simulation studies indicated treatment beams provide sufficient confidence in phase matching for most cases. At times of low confidence from treatment beams, kV imaging provides sufficient confidence in phase matching due to its complementary configuration. Conclusion: The proposed real-time volumetric imaging utilizes the treatment beam and triggers kV beams for complementary information when the treatment beam along does not provide sufficient

  8. Megahertz rate, volumetric imaging of bubble clouds in sonothrombolysis using a sparse hemispherical receiver array

    Science.gov (United States)

    Acconcia, Christopher N.; Jones, Ryan M.; Goertz, David E.; O'Reilly, Meaghan A.; Hynynen, Kullervo

    2017-09-01

    It is well established that high intensity focused ultrasound can be used to disintegrate clots. This approach has the potential to rapidly and noninvasively resolve clot causing occlusions in cardiovascular diseases such as deep vein thrombosis (DVT). However, lack of an appropriate treatment monitoring tool is currently a limiting factor in its widespread adoption. Here we conduct cavitation imaging with a large aperture, sparse hemispherical receiver array during sonothrombolysis with multi-cycle burst exposures (0.1 or 1 ms burst lengths) at 1.51 MHz. It was found that bubble cloud generation on imaging correlated with the locations of clot degradation, as identified with high frequency (30 MHz) ultrasound following exposures. 3D images could be formed at integration times as short as 1 µs, revealing the initiation and rapid development of cavitation clouds. Equating to megahertz frame rates, this is an order of magnitude faster than any other imaging technique available for in vivo application. Collectively, these results suggest that the development of a device to perform DVT therapy procedures would benefit greatly from the integration of receivers tailored to bubble activity imaging.

  9. Automatic Prostate Tracking and Motion Assessment in Volumetric Modulated Arc Therapy With an Electronic Portal Imaging Device

    International Nuclear Information System (INIS)

    Azcona, Juan Diego; Li, Ruijiang; Mok, Edward; Hancock, Steven; Xing, Lei

    2013-01-01

    Purpose: To assess the prostate intrafraction motion in volumetric modulated arc therapy treatments using cine megavoltage (MV) images acquired with an electronic portal imaging device (EPID). Methods and Materials: Ten prostate cancer patients were treated with volumetric modulated arc therapy using a Varian TrueBeam linear accelerator equipped with an EPID for acquiring cine MV images during treatment. Cine MV images acquisition was scheduled for single or multiple treatment fractions (between 1 and 8). A novel automatic fiducial detection algorithm that can handle irregular multileaf collimator apertures, field edges, fast leaf and gantry movement, and MV image noise and artifacts in patient anatomy was used. All sets of images (approximately 25,000 images in total) were analyzed to measure the positioning accuracy of implanted fiducial markers and assess the prostate movement. Results: Prostate motion can vary greatly in magnitude among different patients. Different motion patterns were identified, showing its unpredictability. The mean displacement and standard deviation of the intrafraction motion was generally less than 2.0 ± 2.0 mm in each of the spatial directions. In certain patients, however, the percentage of the treatment time in which the prostate is displaced more than 5 mm from its planned position in at least 1 spatial direction was 10% or more. The maximum prostate displacement observed was 13.3 mm. Conclusion: Prostate tracking and motion assessment was performed with MV imaging and an EPID. The amount of prostate motion observed suggests that patients will benefit from its real-time monitoring. Megavoltage imaging can provide the basis for real-time prostate tracking using conventional linear accelerators

  10. MO-DE-210-06: Development of a Supercompounded 3D Volumetric Ultrasound Image Guidance System for Prone Accelerated Partial Breast Irradiation (APBI)

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, T; Hrycushko, B; Zhao, B; Jiang, S; Gu, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2015-06-15

    Purpose: For early-stage breast cancer, accelerated partial breast irradiation (APBI) is a cost-effective breast-conserving treatment. Irradiation in a prone position can mitigate respiratory induced breast movement and achieve maximal sparing of heart and lung tissues. However, accurate dose delivery is challenging due to breast deformation and lumpectomy cavity shrinkage. We propose a 3D volumetric ultrasound (US) image guidance system for accurate prone APBI Methods: The designed system, set beneath the prone breast board, consists of a water container, an US scanner, and a two-layer breast immobilization cup. The outer layer of the breast cup forms the inner wall of water container while the inner layer is attached to patient breast directly to immobilization. The US transducer scans is attached to the outer-layer of breast cup at the dent of water container. Rotational US scans in a transverse plane are achieved by simultaneously rotating water container and transducer, and multiple transverse scanning forms a 3D scan. A supercompounding-technique-based volumetric US reconstruction algorithm is developed for 3D image reconstruction. The performance of the designed system is evaluated with two custom-made gelatin phantoms containing several cylindrical inserts filled in with water (11% reflection coefficient between materials). One phantom is designed for positioning evaluation while the other is for scaling assessment. Results: In the positioning evaluation phantom, the central distances between the inserts are 15, 20, 30 and 40 mm. The distances on reconstructed images differ by −0.19, −0.65, −0.11 and −1.67 mm, respectively. In the scaling evaluation phantom, inserts are 12.7, 19.05, 25.40 and 31.75 mm in diameter. Measured inserts’ sizes on images differed by 0.23, 0.19, −0.1 and 0.22 mm, respectively. Conclusion: The phantom evaluation results show that the developed 3D volumetric US system can accurately localize target position and determine

  11. Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization

    Directory of Open Access Journals (Sweden)

    Gregor Strobbe

    2016-01-01

    Full Text Available Electrical source imaging of interictal spikes observed in EEG recordings of patients with refractory epilepsy provides useful information to localize the epileptogenic focus during the presurgical evaluation. However, the selection of the time points or time epochs of the spikes in order to estimate the origin of the activity remains a challenge. In this study, we consider a Bayesian EEG source imaging technique for distributed sources, i.e. the multiple volumetric sparse priors (MSVP approach. The approach allows to estimate the time courses of the intensity of the sources corresponding with a specific time epoch of the spike. Based on presurgical averaged interictal spikes in six patients who were successfully treated with surgery, we estimated the time courses of the source intensities for three different time epochs: (i an epoch starting 50 ms before the spike peak and ending at 50% of the spike peak during the rising phase of the spike, (ii an epoch starting 50 ms before the spike peak and ending at the spike peak and (iii an epoch containing the full spike time period starting 50 ms before the spike peak and ending 230 ms after the spike peak. To identify the primary source of the spike activity, the source with the maximum energy from 50 ms before the spike peak till 50% of the spike peak was subsequently selected for each of the time windows. For comparison, the activity at the spike peaks and at 50% of the peaks was localized using the LORETA inversion technique and an ECD approach. Both patient-specific spherical forward models and patient-specific 5-layered finite difference models were considered to evaluate the influence of the forward model. Based on the resected zones in each of the patients, extracted from post-operative MR images, we compared the distances to the resection border of the estimated activity. Using the spherical models, the distances to the resection border for the MSVP approach and each of the different time

  12. Comparison of the image quality between volumetric and conventional high-resolution CT with 64-slice row CT

    International Nuclear Information System (INIS)

    Gao Yanli; Zhang Lei; Zhao Xia; Ma Min; Zhai Renyou

    2008-01-01

    Objective: To compare the image quality between volumetric high-resolution CT (VHRCT) and conventional high-resolution CT (CHRCT), and investigate the feasibility of VHRCT. Methods: Catphan 412 phantom was scanned with protocols of CHRCT and VHRCT on a set of GE Lightspeed VCT. The spatial-resolution (LP/cm), noise (standard deviation in an ROI) and radiation close (CTDI) were recorded for each CT scan. Difference of noise between CHRCT and VHRCT were evaluated by paired t test. In clinical study, 32 patients were scanned with VHRCT and CHRCT protocols. The image quality of CHRCT and VHRCT was rated and compared. The quality difference between CHRCT and VHRCT was assessed by Wilcoxon paired signed rank sum test. Results: In phantom study, the in-plane spatial-resolution of both VHRCT and CHRCT was 11 LP/cm for axial images and 12 LP/cm for coronal reformatted images. The noise of VHRCT and CHRCT was (69.18±2.77)HU and (54.62±2.12) HU respectively (t=-15.929, P 0.05). The quality assessment scores of VHRCT coronal reformatted images and CHRCT coronal reformatted images were 3.05 and 1.88 respectively with significant difference (Z= -5.088, P<0.01). Conclusion: The image quality of VHRCT cross-sectional image is similar to that of CHRCT. Multiplanar images with high resolution of VHRCT are recommended. The radiation dose of VHRCT remains to be optimized. (authors)

  13. ImageParser: a tool for finite element generation from three-dimensional medical images

    Directory of Open Access Journals (Sweden)

    Yamada T

    2004-10-01

    Full Text Available Abstract Background The finite element method (FEM is a powerful mathematical tool to simulate and visualize the mechanical deformation of tissues and organs during medical examinations or interventions. It is yet a challenge to build up an FEM mesh directly from a volumetric image partially because the regions (or structures of interest (ROIs may be irregular and fuzzy. Methods A software package, ImageParser, is developed to generate an FEM mesh from 3-D tomographic medical images. This software uses a semi-automatic method to detect ROIs from the context of image including neighboring tissues and organs, completes segmentation of different tissues, and meshes the organ into elements. Results The ImageParser is shown to build up an FEM model for simulating the mechanical responses of the breast based on 3-D CT images. The breast is compressed by two plate paddles under an overall displacement as large as 20% of the initial distance between the paddles. The strain and tangential Young's modulus distributions are specified for the biomechanical analysis of breast tissues. Conclusion The ImageParser can successfully exact the geometry of ROIs from a complex medical image and generate the FEM mesh with customer-defined segmentation information.

  14. Sub-diffraction limit localization of proteins in volumetric space using Bayesian restoration of fluorescence images from ultrathin specimens.

    Directory of Open Access Journals (Sweden)

    Gordon Wang

    Full Text Available Photon diffraction limits the resolution of conventional light microscopy at the lateral focal plane to 0.61λ/NA (λ = wavelength of light, NA = numerical aperture of the objective and at the axial plane to 1.4nλ/NA(2 (n = refractive index of the imaging medium, 1.51 for oil immersion, which with visible wavelengths and a 1.4NA oil immersion objective is -220 nm and -600 nm in the lateral plane and axial plane respectively. This volumetric resolution is too large for the proper localization of protein clustering in subcellular structures. Here we combine the newly developed proteomic imaging technique, Array Tomography (AT, with its native 50-100 nm axial resolution achieved by physical sectioning of resin embedded tissue, and a 2D maximum likelihood deconvolution method, based on Bayes' rule, which significantly improves the resolution of protein puncta in the lateral plane to allow accurate and fast computational segmentation and analysis of labeled proteins. The physical sectioning of AT allows tissue specimens to be imaged at the physical optimum of modern high NA plan-apochormatic objectives. This translates to images that have little out of focus light, minimal aberrations and wave-front distortions. Thus, AT is able to provide images with truly invariant point spread functions (PSF, a property critical for accurate deconvolution. We show that AT with deconvolution increases the volumetric analytical fidelity of protein localization by significantly improving the modulation of high spatial frequencies up to and potentially beyond the spatial frequency cut-off of the objective. Moreover, we are able to achieve this improvement with no noticeable introduction of noise or artifacts and arrive at object segmentation and localization accuracies on par with image volumes captured using commercial implementations of super-resolution microscopes.

  15. Single-chip CMUT-on-CMOS front-end system for real-time volumetric IVUS and ICE imaging.

    Science.gov (United States)

    Gurun, Gokce; Tekes, Coskun; Zahorian, Jaime; Xu, Toby; Satir, Sarp; Karaman, Mustafa; Hasler, Jennifer; Degertekin, F Levent

    2014-02-01

    Intravascular ultrasound (IVUS) and intracardiac echography (ICE) catheters with real-time volumetric ultrasound imaging capability can provide unique benefits to many interventional procedures used in the diagnosis and treatment of coronary and structural heart diseases. Integration of capacitive micromachined ultrasonic transducer (CMUT) arrays with front-end electronics in single-chip configuration allows for implementation of such catheter probes with reduced interconnect complexity, miniaturization, and high mechanical flexibility. We implemented a single-chip forward-looking (FL) ultrasound imaging system by fabricating a 1.4-mm-diameter dual-ring CMUT array using CMUT-on-CMOS technology on a front-end IC implemented in 0.35-μm CMOS process. The dual-ring array has 56 transmit elements and 48 receive elements on two separate concentric annular rings. The IC incorporates a 25-V pulser for each transmitter and a low-noise capacitive transimpedance amplifier (TIA) for each receiver, along with digital control and smart power management. The final shape of the silicon chip is a 1.5-mm-diameter donut with a 430-μm center hole for a guide wire. The overall front-end system requires only 13 external connections and provides 4 parallel RF outputs while consuming an average power of 20 mW. We measured RF A-scans from the integrated single- chip array which show full functionality at 20.1 MHz with 43% fractional bandwidth. We also tested and demonstrated the image quality of the system on a wire phantom and an ex vivo chicken heart sample. The measured axial and lateral point resolutions are 92 μm and 251 μm, respectively. We successfully acquired volumetric imaging data from the ex vivo chicken heart at 60 frames per second without any signal averaging. These demonstrative results indicate that single-chip CMUT-on-CMOS systems have the potential to produce realtime volumetric images with image quality and speed suitable for catheter-based clinical applications.

  16. Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms.

    Science.gov (United States)

    Jin, Tian; Guo, Heng; Yao, Lei; Xie, Huikai; Jiang, Huabei; Xi, Lei

    2018-04-01

    Photoacoustic microscopy (PAM) provides a fundamentally new tool for a broad range of studies of biological structures and functions. However, the use of PAM has been largely limited to small vertebrates due to the large size/weight and the inconvenience of the equipment. Here, we describe a portable optical-resolution photoacoustic microscopy (pORPAM) system for 3-dimensional (3D) imaging of small-to-large rodents and humans with a high spatiotemporal resolution and a large field of view. We show extensive applications of pORPAM to multiscale animals including mice and rabbits. In addition, we image the 3D vascular networks of human lips, and demonstrate the feasibility of pORPAM to observe the recovery process of oral ulcer and cancer-associated capillary loops in human oral cavities. This technology is promising for broad biomedical studies from fundamental biology to clinical diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A comparative study of volumetric breast density estimation in digital mammography and magnetic resonance imaging: results from a high-risk population

    Science.gov (United States)

    Kontos, Despina; Xing, Ye; Bakic, Predrag R.; Conant, Emily F.; Maidment, Andrew D. A.

    2010-03-01

    We performed a study to compare methods for volumetric breast density estimation in digital mammography (DM) and magnetic resonance imaging (MRI) for a high-risk population of women. DM and MRI images of the unaffected breast from 32 women with recently detected abnormalities and/or previously diagnosed breast cancer (age range 31-78 yrs, mean 50.3 yrs) were retrospectively analyzed. DM images were analyzed using QuantraTM (Hologic Inc). The MRI images were analyzed using a fuzzy-C-means segmentation algorithm on the T1 map. Both methods were compared to Cumulus (Univ. Toronto). Volumetric breast density estimates from DM and MRI are highly correlated (r=0.90, pwomen with very low-density breasts (peffects in MRI and differences in the computational aspects of the image analysis methods in MRI and DM. The good correlation between the volumetric and the area-based measures, shown to correlate with breast cancer risk, suggests that both DM and MRI volumetric breast density measures can aid in breast cancer risk assessment. Further work is underway to fully-investigate the association between volumetric breast density measures and breast cancer risk.

  18. Integration and evaluation of a needle-positioning robot with volumetric microcomputed tomography image guidance for small animal stereotactic interventions

    International Nuclear Information System (INIS)

    Waspe, Adam C.; McErlain, David D.; Pitelka, Vasek; Holdsworth, David W.; Lacefield, James C.; Fenster, Aaron

    2010-01-01

    Purpose: Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. Methods: An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting a barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 μm tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. Results: Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 μm, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154±113 μm. Conclusions: The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.

  19. Integration and evaluation of a needle-positioning robot with volumetric microcomputed tomography image guidance for small animal stereotactic interventions

    Energy Technology Data Exchange (ETDEWEB)

    Waspe, Adam C.; McErlain, David D.; Pitelka, Vasek; Holdsworth, David W.; Lacefield, James C.; Fenster, Aaron [Biomedical Engineering Graduate Program and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Department of Medical Biophysics and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1 (Canada); Biomedical Engineering Graduate Program, Department of Medical Biophysics, Department of Medical Imaging, Department of Surgery, and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Biomedical Engineering Graduate Program, Department of Electrical and Computer Engineering, Department of Medical Biophysics, and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Biomedical Engineering Graduate Program, Department of Medical Biophysics, Department of Medical Imaging, and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada)

    2010-04-15

    Purpose: Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. Methods: An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting a barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 {mu}m tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. Results: Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 {mu}m, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154{+-}113 {mu}m. Conclusions: The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.

  20. Tooling Techniques Enhance Medical Imaging

    Science.gov (United States)

    2012-01-01

    They can release as much energy as tens of billions of hydrogen bombs exploding at the same time. They send protons and electrons rocketing at near the speed of light. They heat gas in the Sun s atmosphere to tens of millions of degrees Celsius. They send a blast of gas and particles toward Earth, posing a danger to spacecraft and astronauts outside the planet s magnetosphere, in rare cases even knocking out radio communications and power grids on the ground. They are so-called solar eruptive events, made up of solar flares and the often associated coronal mass ejections. Because of the scientific mystery of how these solar eruptions are produced on the Sun with such scale and force, and also the major role they play in space weather that can impact life on Earth, NASA researchers have innovated new methods of gathering information about these violent events. One NASA mission, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) has significantly advanced understanding of solar flares since its launch in 2002. RHESSI scientists use the spacecraft s imaging spectrometer to piece together pictures of solar flares from the high-energy X-ray and gamma-ray radiation they emit. While there is still much to be learned, data gathered by RHESSI has revealed how magnetic fields in the vast expanse of the solar atmosphere may be the force that drives the immense explosions. The instrument has imaged around 50,000 flares to date, providing information that may explain not only the workings of solar flares but also of much more massive energy releases from distant objects like black holes and quasars. We have been able to make images from X-rays with much finer resolution and greater sensitivity than have ever been made before, says Brian Dennis, RHESSI Mission Scientist and astrophysicist in the Solar Physics Laboratory at Goddard Space Flight Center. The key to RHESSI s unprecedented capabilities lie in a set of essential components a NASA partner created for the

  1. Prototype volumetric ultrasound tomography image guidance system for prone stereotactic partial breast irradiation: proof-of-concept

    Science.gov (United States)

    Chiu, Tsuicheng D.; Parsons, David; Zhang, Yue; Hrycushko, Brian; Zhao, Bo; Chopra, Rajiv; Kim, Nathan; Spangler, Ann; Rahimi, Asal; Timmerman, Robert; Jiang, Steve B.; Lu, Weiguo; Gu, Xuejun

    2018-03-01

    Accurate dose delivery in stereotactic partial breast irradiation (S-PBI) is challenging because of the target position uncertainty caused by breast deformation, the target volume changes caused by lumpectomy cavity shrinkage, and the target delineation uncertainty on simulation computed tomography (CT) images caused by poor soft tissue contrast. We have developed a volumetric ultrasound tomography (UST) image guidance system for prone position S-PBI. The system is composed of a novel 3D printed rotation water tank, a patient-specific resin breast immobilization cup, and a 1D array ultrasound transducer. Coronal 2D US images were acquired in 5° increments over a 360° range, and planes were acquired every 2 mm in elevation. A super-compounding technique was used to reconstruct the image volume. The image quality of UST was evaluated with a BB-1 breast phantom and BioZorb surgical marker, and the results revealed that UST offered better soft tissue contrast than CT and similar image quality to MR. In the evaluated plane, the size and location of five embedded objects were measured and compared to MR, which is considered as the ground truth. Objects’ diameters and the distances between objects in UST differ by approximately 1 to 2 mm from those in MR, which showed that UST offers the image quality required for S-PBI. In future work we will develop a robotic system that will be ultimately implemented in the clinic.

  2. Prediction of the microsurgical window for skull-base tumors by advanced three-dimensional multi-fusion volumetric imaging

    International Nuclear Information System (INIS)

    Oishi, Makoto; Fukuda, Masafumi; Saito, Akihiko; Hiraishi, Tetsuya; Fujii, Yukihiko; Ishida, Go

    2011-01-01

    The surgery of skull base tumors (SBTs) is difficult due to the complex and narrow surgical window that is restricted by the cranium and important structures. The utility of three-dimensional multi-fusion volumetric imaging (3-D MFVI) for visualizing the predicted window for SBTs was evaluated. Presurgical simulation using 3-D MFVI was performed in 32 patients with SBTs. Imaging data were collected from computed tomography, magnetic resonance imaging, and digital subtraction angiography. Skull data was processed to imitate actual bone resection and integrated with various structures extracted from appropriate imaging modalities by image-analyzing software. The simulated views were compared with the views obtained during surgery. All craniotomies and bone resections except opening of the acoustic canal in 2 patients were performed as simulated. The simulated window allowed observation of the expected microsurgical anatomies including tumors, vasculatures, and cranial nerves, through the predicted operative window. We could not achieve the planned tumor removal in only 3 patients. 3-D MFVI afforded high quality images of the relevant microsurgical anatomies during the surgery of SBTs. The intraoperative deja-vu effect of the simulation increased the confidence of the surgeon in the planned surgical procedures. (author)

  3. Selective plane illumination microscopy (SPIM) with time-domain fluorescence lifetime imaging microscopy (FLIM) for volumetric measurement of cleared mouse brain samples

    Science.gov (United States)

    Funane, Tsukasa; Hou, Steven S.; Zoltowska, Katarzyna Marta; van Veluw, Susanne J.; Berezovska, Oksana; Kumar, Anand T. N.; Bacskai, Brian J.

    2018-05-01

    We have developed an imaging technique which combines selective plane illumination microscopy with time-domain fluorescence lifetime imaging microscopy (SPIM-FLIM) for three-dimensional volumetric imaging of cleared mouse brains with micro- to mesoscopic resolution. The main features of the microscope include a wavelength-adjustable pulsed laser source (Ti:sapphire) (near-infrared) laser, a BiBO frequency-doubling photonic crystal, a liquid chamber, an electrically focus-tunable lens, a cuvette based sample holder, and an air (dry) objective lens. The performance of the system was evaluated with a lifetime reference dye and micro-bead phantom measurements. Intensity and lifetime maps of three-dimensional human embryonic kidney (HEK) cell culture samples and cleared mouse brain samples expressing green fluorescent protein (GFP) (donor only) and green and red fluorescent protein [positive Förster (fluorescence) resonance energy transfer] were acquired. The results show that the SPIM-FLIM system can be used for sample sizes ranging from single cells to whole mouse organs and can serve as a powerful tool for medical and biological research.

  4. The Brain of the Black (Diceros bicornis and White (Ceratotherium simum African Rhinoceroses: Morphology and Volumetrics from Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Adhil Bhagwandin

    2017-08-01

    Full Text Available The morphology and volumetrics of the understudied brains of two iconic large terrestrial African mammals: the black (Diceros bicornis and white (Ceratotherium simum rhinoceroses are described. The black rhinoceros is typically solitary whereas the white rhinoceros is social, and both are members of the Perissodactyl order. Here, we provide descriptions of the surface of the brain of each rhinoceros. For both species, we use magnetic resonance images (MRI to develop a description of the internal anatomy of the rhinoceros brain and to calculate the volume of the amygdala, cerebellum, corpus callosum, hippocampus, and ventricular system as well as to determine the gyrencephalic index. The morphology of both black and white rhinoceros brains is very similar to each other, although certain minor differences, seemingly related to diet, were noted, and both brains evince the general anatomy of the mammalian brain. The rhinoceros brains display no obvious neuroanatomical specializations in comparison to other mammals previously studied. In addition, the volumetric analyses indicate that the size of the various regions of the rhinoceros brain measured, as well as the extent of gyrification, are what would be predicted for a mammal with their brain mass when compared allometrically to previously published data. We conclude that the brains of the black and white rhinoceros exhibit a typically mammalian organization at a superficial level, but histological studies may reveal specializations of interest in relation to rhinoceros behavior.

  5. In vivo evaluation of biosensors volumetric bio-distribution for measurement of metabolic activity by X-ray correlation, fluorescence, Cerenkov image and radioisotope

    International Nuclear Information System (INIS)

    Ramirez N, G. J.

    2016-01-01

    The aim of this study was to characterize the in vivo volumetric distribution of three folate based biosensors by different imaging modalities (X-ray, fluorescence, Cerenkov luminescence and radioisotopic imaging) through the development of a tri dimensional (3D) image reconstruction algorithm. The preclinical and multimodal Xtreme imaging system, with a Multimodal Animal Rotation System (Mars), was used to acquire bidimensional (2D) images, which were processed to obtain the 3D reconstruction. Images of mice at different times (biosensor distribution) were simultaneously obtained from the four imaging modalities. The filtered backprojection and inverse Radon transformation were used as main image-processing techniques. In the first instance, the algorithm developed in Mat lab was able to reconstruct in the 3D form the skeleton of the mice under study. Subsequently, the algorithm was able to get the volumetric profiles of "9"9"mTc-Folate-Bombesin (radioisotopic image), "1"7"7Lu-Folate-Bombesin (Cerenkov image), and FolateRSense 680 (fluorescence image) in the tumors and kidneys of the mice. No significant differences were detected between the volumetric quantifications using the standard measurement techniques and the quantifications obtained with the proposal made in this study, nor between the volumetric uptakes in the structures of interest. With the structures reconstructed in the 3D form, the fusion of anatomical (as the skeleton) and functional structures derived from the images of the biosensors uptake was achieved The imaging 3D reconstruction algorithm can be easily extrapolated to different 2D acquisition-type images. This characteristic flexibility of the algorithm developed in this study is an advantage in comparison to similar reconstruction methods. (Author)

  6. Open source tools for fluorescent imaging.

    Science.gov (United States)

    Hamilton, Nicholas A

    2012-01-01

    As microscopy becomes increasingly automated and imaging expands in the spatial and time dimensions, quantitative analysis tools for fluorescent imaging are becoming critical to remove both bottlenecks in throughput as well as fully extract and exploit the information contained in the imaging. In recent years there has been a flurry of activity in the development of bio-image analysis tools and methods with the result that there are now many high-quality, well-documented, and well-supported open source bio-image analysis projects with large user bases that cover essentially every aspect from image capture to publication. These open source solutions are now providing a viable alternative to commercial solutions. More importantly, they are forming an interoperable and interconnected network of tools that allow data and analysis methods to be shared between many of the major projects. Just as researchers build on, transmit, and verify knowledge through publication, open source analysis methods and software are creating a foundation that can be built upon, transmitted, and verified. Here we describe many of the major projects, their capabilities, and features. We also give an overview of the current state of open source software for fluorescent microscopy analysis and the many reasons to use and develop open source methods. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. The approximate entropy concept extended to three dimensions for calibrated, single parameter structural complexity interrogation of volumetric images.

    Science.gov (United States)

    Moore, Christopher; Marchant, Thomas

    2017-07-12

    Reconstructive volumetric imaging permeates medical practice because of its apparently clear depiction of anatomy. However, the tell tale signs of abnormality and its delineation for treatment demand experts work at the threshold of visibility for hints of structure. Hitherto, a suitable assistive metric that chimes with clinical experience has been absent. This paper develops the complexity measure approximate entropy (ApEn) from its 1D physiological origin into a three-dimensional (3D) algorithm to fill this gap. The first 3D algorithm for this is presented in detail. Validation results for known test arrays are followed by a comparison of fan-beam and cone-beam x-ray computed tomography image volumes used in image guided radiotherapy for cancer. Results show the structural detail down to individual voxel level, the strength of which is calibrated by the ApEn process itself. The potential for application in machine assisted manual interaction and automated image processing and interrogation, including radiomics associated with predictive outcome modeling, is discussed.

  8. The approximate entropy concept extended to three dimensions for calibrated, single parameter structural complexity interrogation of volumetric images

    Science.gov (United States)

    Moore, Christopher; Marchant, Thomas

    2017-08-01

    Reconstructive volumetric imaging permeates medical practice because of its apparently clear depiction of anatomy. However, the tell tale signs of abnormality and its delineation for treatment demand experts work at the threshold of visibility for hints of structure. Hitherto, a suitable assistive metric that chimes with clinical experience has been absent. This paper develops the complexity measure approximate entropy (ApEn) from its 1D physiological origin into a three-dimensional (3D) algorithm to fill this gap. The first 3D algorithm for this is presented in detail. Validation results for known test arrays are followed by a comparison of fan-beam and cone-beam x-ray computed tomography image volumes used in image guided radiotherapy for cancer. Results show the structural detail down to individual voxel level, the strength of which is calibrated by the ApEn process itself. The potential for application in machine assisted manual interaction and automated image processing and interrogation, including radiomics associated with predictive outcome modeling, is discussed.

  9. An Overview of Downhole Imaging Tools

    Science.gov (United States)

    Luthi, S. M.

    In this presentation we give an overview of downhole imaging tools that can be used to image the borehole wall and its vicinity with a variety of physical methods. Among these are ultrasonic scans with a rotating transducer that performs a pulse-echo mea- surement in rapid succession. This gives a transit time and a reflected amplitude image of the borehole wall. Electrical imaging is done with a whole family of measurements that operate mostly in the low AC range. All of them feature a number of electrodes that is inversely proportional to the desired resolution and depth of investigation. They image layering, fracturing and other heterogeneities in the rocks traversed by the bore- hole. Some of these images can be recorded and transmitted to the surface in real-time while the well is being drilled. Imaging using nuclear methods is also possible, for ex- ample for the natural radioactivity, density, or neutron porosity of the rock. However, these devices have generally low spatial resolutions. Finally, optical imaging is pos- sible in translucent and slightly opaque muds with a downhole video camera. Recent developments have resulted in a device that can withstand high pressures and temper- atures and that transmits live video images to the surface in real-time. This method has the highest resolution but is of limited applicability in the oil industry where gener- ally opaque muds are used. These images can be successfully used to determined the structural and intrinsic properties of rock traversed by a borehole.

  10. SU-F-J-47: Inherent Uncertainty in the Positional Shifts Determined by a Volumetric Cone Beam Imaging System

    International Nuclear Information System (INIS)

    Giri, U; Ganesh, T; Saini, V; Munshi, A; Sarkar, B; Mohanti, B

    2016-01-01

    Purpose: To quantify inherent uncertainty associated with a volumetric imaging system in its determination of positional shifts. Methods: The study was performed on an Elekta Axesse™ linac’s XVI cone beam computed tomography (CBCT) system. A CT image data set of a Penta- Guide phantom was used as reference image by placing isocenter at the center of the phantom.The phantom was placed arbitrarily on the couch close to isocenter and CBCT images were obtained. The CBCT dataset was matched with the reference image using XVI software and the shifts were determined in 6-dimensions. Without moving the phantom, this process was repeated 20 times consecutively within 30 minutes on a single day. Mean shifts and their standard deviations in all 6-dimensions were determined for all the 20 instances of imaging. For any given day, the first set of shifts obtained was kept as reference and the deviations of the subsequent 19 sets from the reference set were scored. Mean differences and their standard deviations were determined. In this way, data were obtained for 30 consecutive working days. Results: Tabulating the mean deviations and their standard deviations observed on each day for the 30 measurement days, systematic and random errors in the determination of shifts by XVI software were calculated. The systematic errors were found to be 0.03, 0.04 and 0.03 mm while random errors were 0.05, 0.06 and 0.06 mm in lateral, craniocaudal and anterio-posterior directions respectively. For rotational shifts, the systematic errors were 0.02°, 0.03° and 0.03° and random errors were 0.06°, 0.05° and 0.05° in pitch, roll and yaw directions respectively. Conclusion: The inherent uncertainties in every image guidance system should be assessed and baseline values established at the time of its commissioning. These shall be periodically tested as part of the QA protocol.

  11. Efficient morphological tools for astronomical image processing

    NARCIS (Netherlands)

    Moschini, Ugo

    2016-01-01

    Nowadays, many applications rely on a huge quantity of images at high resolution and with high quantity of information per pixel, due either to the technological improvements of the instruments or to the type of measurement observed. This thesis is focused on exploring and developing tools and new

  12. Discrimination between benign and malignant breast lesions using volumetric quantitative dynamic contrast-enhanced MR imaging

    International Nuclear Information System (INIS)

    Cheng, Ziliang; Wu, Zhuo; Shen, Jun; Shi, Guangzi; Yi, Zhilong; Xie, Mingwei; Zeng, Weike; Song, Chao; Zheng, Chushan

    2018-01-01

    To determine the diagnostic performance of volumetric quantitative dynamic contrast-enhanced MRI (qDCE-MRI) in differentiation between malignant and benign breast lesions. DCE-MRI was performed in 124 patients with 136 breast lesions. Quantitative pharmacokinetic parameters K trans , K ep , V e , V p and semi-quantitative parameters TTP, MaxCon, MaxSlope, AUC were obtained by using a two-compartment extended Tofts model and three-dimensional volume of interest. Morphologic features (lesion size, margin, internal enhancement pattern) and time-signal intensity curve (TIC) type were also assessed. Logistic regression analysis was used to determine predictors of malignancy, followed by receiver operating characteristics (ROC) analysis to evaluate the diagnostic performance. qDCE parameters (K trans , K ep , V p , TTP, MaxCon, MaxSlope and AUC), morphological parameters and TIC type were significantly different between malignant and benign lesions (P≤0.001). Multivariate logistic regression analyses showed that K trans , K ep , MaxSlope, size, margin and TIC type were independent predictors of malignancy. The diagnostic accuracy of logistic models based on qDCE parameters alone, morphological features plus TIC type, and all parameters combined was 94.9%, 89.0%, and 95.6% respectively. qDCE-MRI can be used to improve diagnostic differentiation between benign and malignant breast lesions in relation to morphology and kinetic analysis. (orig.)

  13. Discrimination between benign and malignant breast lesions using volumetric quantitative dynamic contrast-enhanced MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Ziliang; Wu, Zhuo; Shen, Jun [Sun Yat-Sen University, Department of Radiology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong (China); Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Centre, Sun Yat-Sen Memorial Hospital, Guangzhou (China); Shi, Guangzi; Yi, Zhilong; Xie, Mingwei; Zeng, Weike; Song, Chao; Zheng, Chushan [Sun Yat-Sen University, Department of Radiology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong (China)

    2018-03-15

    To determine the diagnostic performance of volumetric quantitative dynamic contrast-enhanced MRI (qDCE-MRI) in differentiation between malignant and benign breast lesions. DCE-MRI was performed in 124 patients with 136 breast lesions. Quantitative pharmacokinetic parameters K{sup trans}, K{sub ep}, V{sub e}, V{sub p} and semi-quantitative parameters TTP, MaxCon, MaxSlope, AUC were obtained by using a two-compartment extended Tofts model and three-dimensional volume of interest. Morphologic features (lesion size, margin, internal enhancement pattern) and time-signal intensity curve (TIC) type were also assessed. Logistic regression analysis was used to determine predictors of malignancy, followed by receiver operating characteristics (ROC) analysis to evaluate the diagnostic performance. qDCE parameters (K{sup trans}, K{sub ep}, V{sub p}, TTP, MaxCon, MaxSlope and AUC), morphological parameters and TIC type were significantly different between malignant and benign lesions (P≤0.001). Multivariate logistic regression analyses showed that K{sup trans}, K{sub ep}, MaxSlope, size, margin and TIC type were independent predictors of malignancy. The diagnostic accuracy of logistic models based on qDCE parameters alone, morphological features plus TIC type, and all parameters combined was 94.9%, 89.0%, and 95.6% respectively. qDCE-MRI can be used to improve diagnostic differentiation between benign and malignant breast lesions in relation to morphology and kinetic analysis. (orig.)

  14. Impact of analyzing fewer image frames per segment during offline volumetric radiofrequency based intravascular ultrasound measurements of target lesions prior to percutaneous coronary interventions

    NARCIS (Netherlands)

    Huisman, J.; Hartmann, M.; Hartmann, M.; Mintz, G.S.; van Houwelingen, G.K.; Stoel, M.G.; de Man, F.H.; Louwerenburg, H.; von Birgelen, Clemens

    2012-01-01

    In the present study, we evaluated the impact of a 50% reduction in number of image frames (every second frame) on the analysis time and variability of offline volumetric radiofrequency-based intravascular ultrasound (RF-IVUS) measurements in target lesions prior to percutaneous coronary

  15. Volumetric spiral chemical shift imaging of hyperpolarized [2-(13) c]pyruvate in a rat c6 glioma model.

    Science.gov (United States)

    Park, Jae Mo; Josan, Sonal; Jang, Taichang; Merchant, Milton; Watkins, Ron; Hurd, Ralph E; Recht, Lawrence D; Mayer, Dirk; Spielman, Daniel M

    2016-03-01

    MRS of hyperpolarized [2-(13)C]pyruvate can be used to assess multiple metabolic pathways within mitochondria as the (13)C label is not lost with the conversion of pyruvate to acetyl-CoA. This study presents the first MR spectroscopic imaging of hyperpolarized [2-(13)C]pyruvate in glioma-bearing brain. Spiral chemical shift imaging with spectrally undersampling scheme (1042 Hz) and a hard-pulse excitation was exploited to simultaneously image [2-(13)C]pyruvate, [2-(13)C]lactate, and [5-(13)C]glutamate, the metabolites known to be produced in brain after an injection of hyperpolarized [2-(13)C]pyruvate, without chemical shift displacement artifacts. A separate undersampling scheme (890 Hz) was also used to image [1-(13)C]acetyl-carnitine. Healthy and C6 glioma-implanted rat brains were imaged at baseline and after dichloroacetate administration, a drug that modulates pyruvate dehydrogenase kinase activity. The baseline metabolite maps showed higher lactate and lower glutamate in tumor as compared to normal-appearing brain. Dichloroacetate led to an increase in glutamate in both tumor and normal-appearing brain. Dichloroacetate-induced %-decrease of lactate/glutamate was comparable to the lactate/bicarbonate decrease from hyperpolarized [1-(13)C]pyruvate studies. Acetyl-carnitine was observed in the muscle/fat tissue surrounding the brain. Robust volumetric imaging with hyperpolarized [2-(13)C]pyruvate and downstream products was performed in glioma-bearing rat brains, demonstrating changes in mitochondrial metabolism with dichloroacetate. © 2015 Wiley Periodicals, Inc.

  16. TDat: An Efficient Platform for Processing Petabyte-Scale Whole-Brain Volumetric Images.

    Science.gov (United States)

    Li, Yuxin; Gong, Hui; Yang, Xiaoquan; Yuan, Jing; Jiang, Tao; Li, Xiangning; Sun, Qingtao; Zhu, Dan; Wang, Zhenyu; Luo, Qingming; Li, Anan

    2017-01-01

    Three-dimensional imaging of whole mammalian brains at single-neuron resolution has generated terabyte (TB)- and even petabyte (PB)-sized datasets. Due to their size, processing these massive image datasets can be hindered by the computer hardware and software typically found in biological laboratories. To fill this gap, we have developed an efficient platform named TDat, which adopts a novel data reformatting strategy by reading cuboid data and employing parallel computing. In data reformatting, TDat is more efficient than any other software. In data accessing, we adopted parallelization to fully explore the capability for data transmission in computers. We applied TDat in large-volume data rigid registration and neuron tracing in whole-brain data with single-neuron resolution, which has never been demonstrated in other studies. We also showed its compatibility with various computing platforms, image processing software and imaging systems.

  17. The entire dural sinus tree is compressed in patients with idiopathic intracranial hypertension: a longitudinal, volumetric magnetic resonance imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Rohr, Axel; Bindeballe, Jan; Riedel, Christian; Jansen, Olav [University Clinic of Schleswig-Holstein Campus Kiel, Department of Neuroradiology, Kiel (Germany); Baalen, Andreas van [University Clinic of Schleswig-Holstein Campus Kiel, Department of Neuropediatrics, Kiel (Germany); Bartsch, Thorsten [University Clinic of Schleswig-Holstein Campus Kiel, Department of Neurology, Kiel (Germany); Doerner, Lutz [University Clinic of Schleswig-Holstein Campus Kiel, Department of Neurosurgery, Kiel (Germany)

    2012-01-15

    The objective of this study was to explore the volumetric alterations of dural sinuses in patients with idiopathic intracranial hypertension (IIH). Standardized cranial magnetic resonance imaging (MRI) was used in 17 patients prior to and following treatment of IIH and in seven controls. Magnetic resonance venographies (MRV) were employed for (a) judgement of circumscript dural sinus stenoses and (b) computation of sinus volumes. Cross-sectional areas (CSA) of the superior sagittal sinuses (SSS) were measured on T2-weighted images. Results of the initial MRIs were compared to those on follow-up MRIs and to results of controls. Stenoses of the transverse sinuses (TS) resulting in cranial venous outflow obstruction (CVOO) were present in 15/17 (88%) patients, normalizing in 7/15 cases (47%) after treatment of IIH. CVOO was not detected in the control group. Segmentation of MRV revealed decreased dural sinus volumes in patients with IIH as compared to controls (P = 0.018). Sinus volumes increased significantly with normalization of intracranial pressure independent from disappearing of TS stenoses (P = 0.007). The CSA of the SSS were normal on the initial MRIs of patients with IIH and increased on follow-up after treatment (P < 0.001). However, volumetries displayed overlap in patients and controls. Patients with IIH not only exhibit bilateral stenoses of the TS as has been reported, but volume changes of their entire dural sinus system also occur. The potential etiopathological and diagnostic roles of these changes are discussed. (orig.)

  18. Parity-Time Symmetric Nonlocal Metasurfaces: All-Angle Negative Refraction and Volumetric Imaging

    Science.gov (United States)

    Monticone, Francesco; Valagiannopoulos, Constantinos A.; Alù, Andrea

    2016-10-01

    Lens design for focusing and imaging has been optimized through centuries of developments; however, conventional lenses, even in their most ideal realizations, still suffer from fundamental limitations, such as limits in resolution and the presence of optical aberrations, which are inherent to the laws of refraction. In addition, volume-to-volume imaging of three-dimensional regions of space is not possible with systems based on conventional refractive optics, which are inherently limited to plane-to-plane imaging. Although some of these limitations have been at least theoretically relaxed with the advent of metamaterials, several challenges still stand in the way of ideal imaging of three-dimensional regions of space. Here, we show that the concept of parity-time symmetry, combined with tailored nonlocal responses, enables overcoming some of these challenges, and we propose the design of a loss-immune, linear, transversely invariant, planarized metamaterial lens, with reduced aberrations and the potential to realize volume-to-volume imaging.

  19. Parity-Time Symmetric Nonlocal Metasurfaces: All-Angle Negative Refraction and Volumetric Imaging

    Directory of Open Access Journals (Sweden)

    Francesco Monticone

    2016-10-01

    Full Text Available Lens design for focusing and imaging has been optimized through centuries of developments; however, conventional lenses, even in their most ideal realizations, still suffer from fundamental limitations, such as limits in resolution and the presence of optical aberrations, which are inherent to the laws of refraction. In addition, volume-to-volume imaging of three-dimensional regions of space is not possible with systems based on conventional refractive optics, which are inherently limited to plane-to-plane imaging. Although some of these limitations have been at least theoretically relaxed with the advent of metamaterials, several challenges still stand in the way of ideal imaging of three-dimensional regions of space. Here, we show that the concept of parity-time symmetry, combined with tailored nonlocal responses, enables overcoming some of these challenges, and we propose the design of a loss-immune, linear, transversely invariant, planarized metamaterial lens, with reduced aberrations and the potential to realize volume-to-volume imaging.

  20. Usefulness of dual echo volumetric isotropic turbo spin echo acquisition (VISTA) in MR imaging of the temporomandibular joint

    International Nuclear Information System (INIS)

    Sugimori, Yuko; Tanaka, Shigeko; Naito, Yukari; Nishimura, Tetsuya; Yamamoto, Akira; Miki, Yukio; Ohfuji, Satoko; Katsumata, Yasutomo

    2013-01-01

    We investigated the ability to detect the articular disk and joint effusion of the temporomandibular joint (TMJ) of a method of dual echo volumetric isotropic turbo spin echo acquisition (DE-VISTA) additional fusion images (AFI). DE-VISTA was performed in the 26 TMJ of 13 volunteers and 26 TMJ of 13 patients. Two-dimensional (2D) dual echo turbo spin echo was performed in the 26 TMJ of 13 volunteers. On a workstation, we added proton density-weighted images (PDWI) and T 2 weighted images (T 2 WI) of the DE-VISTA per voxel to reconstruct DE-VISTA-AFI. Two radiologists reviewed these images visually and quantitatively. Visual evaluation of the articular disk was equivalent between DE-VISTA-AFI and 2D-PDWI. The sliding thin-slab multiplanar reformation (MPR) method of DE-VISTA-AFI could detect all articular disks. The ratio of contrast (CR) of adipose tissue by the articular disk to that of the articular disk itself was significantly higher in DE-VISTA-AFI than DE-VISTA-PDWI (P 2 WI but in only 3 of those joints in 2D-T 2 WI. The CR of joint effusion to adipose tissue on DE-VISTA-AFI did not differ significantly from that on DE-VISTA-PDWI. However, using DE-VISTA-T 2 WI in addition to DE-VISTA-PDWI, we could visually identify joint effusion on DE-VISTA-AFI that could not be identified on DE-VISTA-PDWI alone. DE-VISTA-AFI can depict the articular disk and a small amount of joint effusion by the required plane of MPR using the sliding thin-slab MPR method. (author)

  1. Image fusion tool: Validation by phantom measurements

    International Nuclear Information System (INIS)

    Zander, A.; Geworski, L.; Richter, M.; Ivancevic, V.; Munz, D.L.; Muehler, M.; Ditt, H.

    2002-01-01

    Aim: Validation of a new image fusion tool with regard to handling, application in a clinical environment and fusion precision under different acquisition and registration settings. Methods: The image fusion tool investigated allows fusion of imaging modalities such as PET, CT, MRI. In order to investigate fusion precision, PET and MRI measurements were performed using a cylinder and a body contour-shaped phantom. The cylinder phantom (diameter and length 20 cm each) contained spheres (10 to 40 mm in diameter) which represented 'cold' or 'hot' lesions in PET measurements. The body contour-shaped phantom was equipped with a heart model containing two 'cold' lesions. Measurements were done with and without four external markers placed on the phantoms. The markers were made of plexiglass (2 cm diameter and 1 cm thickness) and contained a Ga-Ge-68 core for PET and Vitamin E for MRI measurements. Comparison of fusion results with and without markers was done visually and by computer assistance. This algorithm was applied to the different fusion parameters and phantoms. Results: Image fusion of PET and MRI data without external markers yielded a measured error of 0 resulting in a shift at the matrix border of 1.5 mm. Conclusion: The image fusion tool investigated allows a precise fusion of PET and MRI data with a translation error acceptable for clinical use. The error is further minimized by using external markers, especially in the case of missing anatomical orientation. Using PET the registration error depends almost only on the low resolution of the data

  2. User-guided segmentation for volumetric retinal optical coherence tomography images

    Science.gov (United States)

    Yin, Xin; Chao, Jennifer R.; Wang, Ruikang K.

    2014-01-01

    Abstract. Despite the existence of automatic segmentation techniques, trained graders still rely on manual segmentation to provide retinal layers and features from clinical optical coherence tomography (OCT) images for accurate measurements. To bridge the gap between this time-consuming need of manual segmentation and currently available automatic segmentation techniques, this paper proposes a user-guided segmentation method to perform the segmentation of retinal layers and features in OCT images. With this method, by interactively navigating three-dimensional (3-D) OCT images, the user first manually defines user-defined (or sketched) lines at regions where the retinal layers appear very irregular for which the automatic segmentation method often fails to provide satisfactory results. The algorithm is then guided by these sketched lines to trace the entire 3-D retinal layer and anatomical features by the use of novel layer and edge detectors that are based on robust likelihood estimation. The layer and edge boundaries are finally obtained to achieve segmentation. Segmentation of retinal layers in mouse and human OCT images demonstrates the reliability and efficiency of the proposed user-guided segmentation method. PMID:25147962

  3. A flexible and accurate digital volume correlation method applicable to high-resolution volumetric images

    Science.gov (United States)

    Pan, Bing; Wang, Bo

    2017-10-01

    Digital volume correlation (DVC) is a powerful technique for quantifying interior deformation within solid opaque materials and biological tissues. In the last two decades, great efforts have been made to improve the accuracy and efficiency of the DVC algorithm. However, there is still a lack of a flexible, robust and accurate version that can be efficiently implemented in personal computers with limited RAM. This paper proposes an advanced DVC method that can realize accurate full-field internal deformation measurement applicable to high-resolution volume images with up to billions of voxels. Specifically, a novel layer-wise reliability-guided displacement tracking strategy combined with dynamic data management is presented to guide the DVC computation from slice to slice. The displacements at specified calculation points in each layer are computed using the advanced 3D inverse-compositional Gauss-Newton algorithm with the complete initial guess of the deformation vector accurately predicted from the computed calculation points. Since only limited slices of interest in the reference and deformed volume images rather than the whole volume images are required, the DVC calculation can thus be efficiently implemented on personal computers. The flexibility, accuracy and efficiency of the presented DVC approach are demonstrated by analyzing computer-simulated and experimentally obtained high-resolution volume images.

  4. Development and clinical evaluation of automatic fiducial detection for tumor tracking in cine megavoltage images during volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Azcona, Juan Diego; Li Ruijiang; Mok, Edward; Hancock, Steven; Xing Lei

    2013-01-01

    Purpose: Real-time tracking of implanted fiducials in cine megavoltage (MV) imaging during volumetric modulated arc therapy (VMAT) delivery is complicated due to the inherent low contrast of MV images and potential blockage of dynamic leaves configurations. The purpose of this work is to develop a clinically practical autodetection algorithm for motion management during VMAT. Methods: The expected field-specific segments and the planned fiducial position from the Eclipse (Varian Medical Systems, Palo Alto, CA) treatment planning system were projected onto the MV images. The fiducials were enhanced by applying a Laplacian of Gaussian filter in the spatial domain for each image, with a blob-shaped object as the impulse response. The search of implanted fiducials was then performed on a region of interest centered on the projection of the fiducial when it was within an open field including the case when it was close to the field edge or partially occluded by the leaves. A universal template formula was proposed for template matching and normalized cross correlation was employed for its simplicity and computational efficiency. The search region for every image was adaptively updated through a prediction model that employed the 3D position of the fiducial estimated from the localized positions in previous images. This prediction model allowed the actual fiducial position to be tracked dynamically and was used to initialize the search region. The artifacts caused by electronic interference during the acquisition were effectively removed. A score map was computed by combining both morphological information and image intensity. The pixel location with the highest score was selected as the detected fiducial position. The sets of cine MV images taken during treatment were analyzed with in-house developed software written in MATLAB (The Mathworks, Inc., Natick, MA). Five prostate patients were analyzed to assess the algorithm performance by measuring their positioning

  5. Operating scheme for the light-emitting diode array of a volumetric display that exhibits multiple full-color dynamic images

    Science.gov (United States)

    Hirayama, Ryuji; Shiraki, Atsushi; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2017-07-01

    We designed and developed a control circuit for a three-dimensional (3-D) light-emitting diode (LED) array to be used in volumetric displays exhibiting full-color dynamic 3-D images. The circuit was implemented on a field-programmable gate array; therefore, pulse-width modulation, which requires high-speed processing, could be operated in real time. We experimentally evaluated the developed system by measuring the luminance of an LED with varying input and confirmed that the system works appropriately. In addition, we demonstrated that the volumetric display exhibits different full-color dynamic two-dimensional images in two orthogonal directions. Each of the exhibited images could be obtained only from the prescribed viewpoint. Such directional characteristics of the system are beneficial for applications, including digital signage, security systems, art, and amusement.

  6. An Algorithm for Fast Computation of 3D Zernike Moments for Volumetric Images

    Directory of Open Access Journals (Sweden)

    Khalid M. Hosny

    2012-01-01

    Full Text Available An algorithm was proposed for very fast and low-complexity computation of three-dimensional Zernike moments. The 3D Zernike moments were expressed in terms of exact 3D geometric moments where the later are computed exactly through the mathematical integration of the monomial terms over the digital image/object voxels. A new symmetry-based method was proposed to compute 3D Zernike moments with 87% reduction in the computational complexity. A fast 1D cascade algorithm was also employed to add more complexity reduction. The comparison with existing methods was performed, where the numerical experiments and the complexity analysis ensured the efficiency of the proposed method especially with image and objects of large sizes.

  7. Decoupled illumination detection in light sheet microscopy for fast volumetric imaging

    OpenAIRE

    Olarte, Omar; Andilla, Jordi; Artigas García, David; Loza-Alvarez, Pablo

    2015-01-01

    Current microscopy demands the visualization of large three-dimensional samples with increased sensitivity, higher resolution, and faster speed. Several imaging techniques based on widefield, point-scanning, and light-sheet strategies have been designed to tackle some of these demands. Although successful, all these require the illuminated volumes to be tightly coupled with the detection optics to accomplish efficient optical sectioning. Here, we break this paradigm and produce optical sectio...

  8. Handheld real-time volumetric 3-D gamma-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Haefner, Andrew, E-mail: ahaefner@lbl.gov [Lawrence Berkeley National Lab – Applied Nuclear Physics, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Barnowski, Ross [Department of Nuclear Engineering, UC Berkeley, 4155 Etcheverry Hall, MC 1730, Berkeley, CA 94720 (United States); Luke, Paul; Amman, Mark [Lawrence Berkeley National Lab – Applied Nuclear Physics, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Vetter, Kai [Department of Nuclear Engineering, UC Berkeley, 4155 Etcheverry Hall, MC 1730, Berkeley, CA 94720 (United States); Lawrence Berkeley National Lab – Applied Nuclear Physics, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2017-06-11

    This paper presents the concept of real-time fusion of gamma-ray imaging and visual scene data for a hand-held mobile Compton imaging system in 3-D. The ability to obtain and integrate both gamma-ray and scene data from a mobile platform enables improved capabilities in the localization and mapping of radioactive materials. This not only enhances the ability to localize these materials, but it also provides important contextual information of the scene which once acquired can be reviewed and further analyzed subsequently. To demonstrate these concepts, the high-efficiency multimode imager (HEMI) is used in a hand-portable implementation in combination with a Microsoft Kinect sensor. This sensor, in conjunction with open-source software, provides the ability to create a 3-D model of the scene and to track the position and orientation of HEMI in real-time. By combining the gamma-ray data and visual data, accurate 3-D maps of gamma-ray sources are produced in real-time. This approach is extended to map the location of radioactive materials within objects with unknown geometry.

  9. An Algorithm for Fast Computation of 3D Zernike Moments for Volumetric Images

    OpenAIRE

    Hosny, Khalid M.; Hafez, Mohamed A.

    2012-01-01

    An algorithm was proposed for very fast and low-complexity computation of three-dimensional Zernike moments. The 3D Zernike moments were expressed in terms of exact 3D geometric moments where the later are computed exactly through the mathematical integration of the monomial terms over the digital image/object voxels. A new symmetry-based method was proposed to compute 3D Zernike moments with 87% reduction in the computational complexity. A fast 1D cascade algorithm was also employed to add m...

  10. Volumetric MR imaging of the upper airway in obstructive sleep apnea syndrome

    International Nuclear Information System (INIS)

    Gefter, W.B.; Nordberg, J.E.; Hoffman, E.A.

    1989-01-01

    Structural abnormalities in the upper airway and surrounding soft tissues may contribute to the obstructive sleep apnea syndrome (OSAS). The authors have utilized MR imaging (3-mm contiguous T1-weighted sagittal images obtained with a local coil at 1.5 T) combined with a computer graphics-based analysis of three-dimensional geometry to study the upper airways of 10 awake, supine normal subjects (29--50 years-old), seven patients with OSAS (34--54 years old), and a nonapneic snorer (24 years old). Upper-airway anatomic segments were compared with regard to regional volumes, minimum cross-sectional areas, and pharyngeal wall thickness. Results to date show a smaller retropalatial airway volume in the patients with OSAS (1.8 cm 3 ± 0.8 [SEM]) and a smaller minimum cross-sectional retropalatal area in patients with OSAS (0.45 cm 2 ) than in the nonapneic snorer (0.9 cm 2 ) and the normal subjects (2.5 cm 2 ± 0.2)

  11. Joint volumetric extraction and enhancement of vasculature from low-SNR 3-D fluorescence microscopy images.

    Science.gov (United States)

    Almasi, Sepideh; Ben-Zvi, Ayal; Lacoste, Baptiste; Gu, Chenghua; Miller, Eric L; Xu, Xiaoyin

    2017-03-01

    To simultaneously overcome the challenges imposed by the nature of optical imaging characterized by a range of artifacts including space-varying signal to noise ratio (SNR), scattered light, and non-uniform illumination, we developed a novel method that segments the 3-D vasculature directly from original fluorescence microscopy images eliminating the need for employing pre- and post-processing steps such as noise removal and segmentation refinement as used with the majority of segmentation techniques. Our method comprises two initialization and constrained recovery and enhancement stages. The initialization approach is fully automated using features derived from bi-scale statistical measures and produces seed points robust to non-uniform illumination, low SNR, and local structural variations. This algorithm achieves the goal of segmentation via design of an iterative approach that extracts the structure through voting of feature vectors formed by distance, local intensity gradient, and median measures. Qualitative and quantitative analysis of the experimental results obtained from synthetic and real data prove the effcacy of this method in comparison to the state-of-the-art enhancing-segmenting methods. The algorithmic simplicity, freedom from having a priori probabilistic information about the noise, and structural definition gives this algorithm a wide potential range of applications where i.e. structural complexity significantly complicates the segmentation problem.

  12. Volumetric Image Guidance Using Carina vs Spine as Registration Landmarks for Conventionally Fractionated Lung Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lavoie, Caroline; Higgins, Jane; Bissonnette, Jean-Pierre [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada); Le, Lisa W. [Department of Biostatistics, Princess Margaret Hospital, Toronto, Ontario, M5G 2M9 (Canada); Sun, Alexander; Brade, Anthony; Hope, Andrew; Cho, John [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada); Bezjak, Andrea, E-mail: andrea.bezjak@rmp.uhn.on.ca [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada)

    2012-12-01

    Purpose: To compare the relative accuracy of 2 image guided radiation therapy methods using carina vs spine as landmarks and then to identify which landmark is superior relative to tumor coverage. Methods and Materials: For 98 lung patients, 2596 daily image-guidance cone-beam computed tomography scans were analyzed. Tattoos were used for initial patient alignment; then, spine and carina registrations were performed independently. A separate analysis assessed the adequacy of gross tumor volume, internal target volume, and planning target volume coverage on cone-beam computed tomography using the initial, middle, and final fractions of radiation therapy. Coverage was recorded for primary tumor (T), nodes (N), and combined target (T+N). Three scenarios were compared: tattoos alignment, spine registration, and carina registration. Results: Spine and carina registrations identified setup errors {>=}5 mm in 35% and 46% of fractions, respectively. The mean vector difference between spine and carina matching had a magnitude of 3.3 mm. Spine and carina improved combined target coverage, compared with tattoos, in 50% and 34% (spine) to 54% and 46% (carina) of the first and final fractions, respectively. Carina matching showed greater combined target coverage in 17% and 23% of fractions for the first and final fractions, respectively; with spine matching, this was only observed in 4% (first) and 6% (final) of fractions. Carina matching provided superior nodes coverage at the end of radiation compared with spine matching (P=.0006), without compromising primary tumor coverage. Conclusion: Frequent patient setup errors occur in locally advanced lung cancer patients. Spine and carina registrations improved combined target coverage throughout the treatment course, but carina matching provided superior combined target coverage.

  13. Volumetric Image Guidance Using Carina vs Spine as Registration Landmarks for Conventionally Fractionated Lung Radiotherapy

    International Nuclear Information System (INIS)

    Lavoie, Caroline; Higgins, Jane; Bissonnette, Jean-Pierre; Le, Lisa W.; Sun, Alexander; Brade, Anthony; Hope, Andrew; Cho, John; Bezjak, Andrea

    2012-01-01

    Purpose: To compare the relative accuracy of 2 image guided radiation therapy methods using carina vs spine as landmarks and then to identify which landmark is superior relative to tumor coverage. Methods and Materials: For 98 lung patients, 2596 daily image-guidance cone-beam computed tomography scans were analyzed. Tattoos were used for initial patient alignment; then, spine and carina registrations were performed independently. A separate analysis assessed the adequacy of gross tumor volume, internal target volume, and planning target volume coverage on cone-beam computed tomography using the initial, middle, and final fractions of radiation therapy. Coverage was recorded for primary tumor (T), nodes (N), and combined target (T+N). Three scenarios were compared: tattoos alignment, spine registration, and carina registration. Results: Spine and carina registrations identified setup errors ≥5 mm in 35% and 46% of fractions, respectively. The mean vector difference between spine and carina matching had a magnitude of 3.3 mm. Spine and carina improved combined target coverage, compared with tattoos, in 50% and 34% (spine) to 54% and 46% (carina) of the first and final fractions, respectively. Carina matching showed greater combined target coverage in 17% and 23% of fractions for the first and final fractions, respectively; with spine matching, this was only observed in 4% (first) and 6% (final) of fractions. Carina matching provided superior nodes coverage at the end of radiation compared with spine matching (P=.0006), without compromising primary tumor coverage. Conclusion: Frequent patient setup errors occur in locally advanced lung cancer patients. Spine and carina registrations improved combined target coverage throughout the treatment course, but carina matching provided superior combined target coverage.

  14. Free-breathing volumetric fat/water separation by combining radial sampling, compressed sensing, and parallel imaging.

    Science.gov (United States)

    Benkert, Thomas; Feng, Li; Sodickson, Daniel K; Chandarana, Hersh; Block, Kai Tobias

    2017-08-01

    Conventional fat/water separation techniques require that patients hold breath during abdominal acquisitions, which often fails and limits the achievable spatial resolution and anatomic coverage. This work presents a novel approach for free-breathing volumetric fat/water separation. Multiecho data are acquired using a motion-robust radial stack-of-stars three-dimensional GRE sequence with bipolar readout. To obtain fat/water maps, a model-based reconstruction is used that accounts for the off-resonant blurring of fat and integrates both compressed sensing and parallel imaging. The approach additionally enables generation of respiration-resolved fat/water maps by detecting motion from k-space data and reconstructing different respiration states. Furthermore, an extension is described for dynamic contrast-enhanced fat-water-separated measurements. Uniform and robust fat/water separation is demonstrated in several clinical applications, including free-breathing noncontrast abdominal examination of adults and a pediatric subject with both motion-averaged and motion-resolved reconstructions, as well as in a noncontrast breast exam. Furthermore, dynamic contrast-enhanced fat/water imaging with high temporal resolution is demonstrated in the abdomen and breast. The described framework provides a viable approach for motion-robust fat/water separation and promises particular value for clinical applications that are currently limited by the breath-holding capacity or cooperation of patients. Magn Reson Med 78:565-576, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  15. Imaging Three-Dimensional Myocardial Mechanics Using Navigator-gated Volumetric Spiral Cine DENSE MRI

    Science.gov (United States)

    Zhong, Xiaodong; Spottiswoode, Bruce S.; Meyer, Craig H.; Kramer, Christopher M.; Epstein, Frederick H.

    2010-01-01

    A navigator-gated 3D spiral cine displacement encoding with stimulated echoes (DENSE) pulse sequence for imaging 3D myocardial mechanics was developed. In addition, previously-described 2D post-processing algorithms including phase unwrapping, tissue tracking, and strain tensor calculation for the left ventricle (LV) were extended to 3D. These 3D methods were evaluated in 5 healthy volunteers, using 2D cine DENSE and historical 3D myocardial tagging as reference standards. With an average scan time of 20.5 ± 5.7 minutes, 3D data sets with a matrix size of 128 × 128 × 22, voxel size of 2.8 × 2.8 × 5.0 mm3, and temporal resolution of 32 ms were obtained with displacement encoding in three orthogonal directions. Mean values for end-systolic mid-ventricular mid-wall radial, circumferential, and longitudinal strain were 0.33 ± 0.10, −0.17 ± 0.02, and −0.16 ± 0.02, respectively. Transmural strain gradients were detected in the radial and circumferential directions, reflecting high spatial resolution. Good agreement by linear correlation and Bland-Altman analysis was achieved when comparing normal strains measured by 2D and 3D cine DENSE. Also, the 3D strains, twist, and torsion results obtained by 3D cine DENSE were in good agreement with historical values measured by 3D myocardial tagging. PMID:20574967

  16. Schizophrenia patients differentiation based on MR vascular perfusion and volumetric imaging

    Science.gov (United States)

    Spanier, A. B.; Joskowicz, L.; Moshel, S.; Israeli, D.

    2015-03-01

    Candecomp/Parafac Decomposition (CPD) has emerged as a framework for modeling N-way arrays (higher-order matrices). CPD is naturally well suited for the analysis of data sets comprised of observations of a function of multiple discrete indices. In this study we evaluate the prospects of using CPD for modeling MRI brain properties (i.e. brain volume and gray-level) for schizophrenia diagnosis. Taking into account that 3D imaging data consists of millions of pixels per patient, the diagnosis of a schizophrenia patient based on pixel analysis constitutes a methodological challenge (e.g. multiple comparison problem). We show that the CPD could potentially be used as a dimensionality redaction method and as a discriminator between schizophrenia patients and match control, using the gradient of pre- and post Gd-T1-weighted MRI data, which is strongly correlated with cerebral blood perfusion. Our approach was tested on 68 MRI scans: 40 first-episode schizophrenia patients and 28 matched controls. The CPD subject's scores exhibit statistically significant result (P schizophrenia with MRI, the results suggest that the CPD could potentially be used to discriminate between schizophrenia patients and matched control. In addition, the CPD model suggests for brain regions that might exhibit abnormalities in schizophrenia patients for future research.

  17. Microscopy image segmentation tool: Robust image data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Valmianski, Ilya, E-mail: ivalmian@ucsd.edu; Monton, Carlos; Schuller, Ivan K. [Department of Physics and Center for Advanced Nanoscience, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States)

    2014-03-15

    We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.

  18. Microscopy image segmentation tool: Robust image data analysis

    Science.gov (United States)

    Valmianski, Ilya; Monton, Carlos; Schuller, Ivan K.

    2014-03-01

    We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.

  19. Microscopy image segmentation tool: Robust image data analysis

    International Nuclear Information System (INIS)

    Valmianski, Ilya; Monton, Carlos; Schuller, Ivan K.

    2014-01-01

    We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy

  20. Effects of defect pixel correction algorithms for x-ray detectors on image quality in planar projection and volumetric CT data sets

    International Nuclear Information System (INIS)

    Kuttig, Jan; Steiding, Christian; Hupfer, Martin; Karolczak, Marek; Kolditz, Daniel

    2015-01-01

    In this study we compared various defect pixel correction methods for reducing artifact appearance within projection images used for computed tomography (CT) reconstructions.Defect pixel correction algorithms were examined with respect to their artifact behaviour within planar projection images as well as in volumetric CT reconstructions. We investigated four algorithms: nearest neighbour, linear and adaptive linear interpolation, and a frequency-selective spectral-domain approach.To characterise the quality of each algorithm in planar image data, we inserted line defects of varying widths and orientations into images. The structure preservation of each algorithm was analysed by corrupting and correcting the image of a slit phantom pattern and by evaluating its line spread function (LSF). The noise preservation was assessed by interpolating corrupted flat images and estimating the noise power spectrum (NPS) of the interpolated region.For the volumetric investigations, we examined the structure and noise preservation within a structured aluminium foam, a mid-contrast cone-beam phantom and a homogeneous Polyurethane (PUR) cylinder.The frequency-selective algorithm showed the best structure and noise preservation for planar data of the correction methods tested. For volumetric data it still showed the best noise preservation, whereas the structure preservation was outperformed by the linear interpolation.The frequency-selective spectral-domain approach in the correction of line defects is recommended for planar image data, but its abilities within high-contrast volumes are restricted. In that case, the application of a simple linear interpolation might be the better choice to correct line defects within projection images used for CT. (paper)

  1. WE-D-303-02: Applications of Volumetric Images Generated with a Respiratory Motion Model Based On An External Surrogate Signal

    International Nuclear Information System (INIS)

    Hurwitz, M; Williams, C; Dhou, S; Lewis, J; Mishra, P

    2015-01-01

    Purpose: Respiratory motion can vary significantly over the course of simulation and treatment. Our goal is to use volumetric images generated with a respiratory motion model to improve the definition of the internal target volume (ITV) and the estimate of delivered dose. Methods: Ten irregular patient breathing patterns spanning 35 seconds each were incorporated into a digital phantom. Ten images over the first five seconds of breathing were used to emulate a 4DCT scan, build the ITV, and generate a patient-specific respiratory motion model which correlated the measured trajectories of markers placed on the patients’ chests with the motion of the internal anatomy. This model was used to generate volumetric images over the subsequent thirty seconds of breathing. The increase in the ITV taking into account the full 35 seconds of breathing was assessed with ground-truth and model-generated images. For one patient, a treatment plan based on the initial ITV was created and the delivered dose was estimated using images from the first five seconds as well as ground-truth and model-generated images from the next 30 seconds. Results: The increase in the ITV ranged from 0.2 cc to 6.9 cc for the ten patients based on ground-truth information. The model predicted this increase in the ITV with an average error of 0.8 cc. The delivered dose to the tumor (D95) changed significantly from 57 Gy to 41 Gy when estimated using 5 seconds and 30 seconds, respectively. The model captured this effect, giving an estimated D95 of 44 Gy. Conclusion: A respiratory motion model generating volumetric images of the internal patient anatomy could be useful in estimating the increase in the ITV due to irregular breathing during simulation and in assessing delivered dose during treatment. This project was supported, in part, through a Master Research Agreement with Varian Medical Systems, Inc. and Radiological Society of North America Research Scholar Grant #RSCH1206

  2. Bone bruise in acute traumatic patellar dislocation: volumetric magnetic resonance imaging analysis with follow-up mean of 12 months

    Energy Technology Data Exchange (ETDEWEB)

    Paakkala, Antti; Paakkala, Timo [Tampere University Hospital, Department of Radiology, Tampere (Finland); Sillanpaeae, Petri; Maeenpaeae, Heikki [Tampere University Hospital, Department of Orthopaedics and Traumatology, Tampere (Finland); Huhtala, Heini [University of Tampere, School of Public Health, Tampere (Finland)

    2010-07-15

    The aim of the study was to assess volumetric analysis of bone bruises in acute primary traumatic patellar dislocation by magnetic resonance imaging (MRI) and resolving resolution of bruises in follow-up MRI. MRI was performed in 23 cases. A follow-up examination was done at a mean of 12 months after dislocation. Volumes of patellar and femur bruises for every patient were evaluated separately by two musculoskeletal radiologists, and mean values of the bruises were assessed. Other MRI findings were evaluated, together with agreement by consensus. Bone bruise volumes were compared with other MR findings. In the acute study 100% of patients showed bruising of the lateral femoral condyle and 96% bruising of the patella. The bruise was located at the medial femoral condyle in 30% and at the patellar median ridge in 74% of patients. The median volume of the femoral bruise was 25,831 mm{sup 3} and of the patellar bruise 2,832 mm{sup 3}. At the follow-up study 22% of patients showed bruising of the lateral femoral condyle and 39% bruising of the patella, the median volumes of the bruises being 5,062 mm{sup 3} and 1,380 mm{sup 3}, respectively. Larger patellar bruise volume correlated with larger femur bruise volume in the acute (r=0.389, P=0.074) and the follow-up (r=1.000, P<0.01) studies. Other MRI findings did not correlate significantly with bone bruise volumes. Bone bruising is the commonest finding in cases of acute patellar dislocation, being seen even 1 year after trauma and indicating significant bone trabecular injury in the patellofemoral joint. A large bruise volume may be associated with subsequent chondral lesion progression at the patella. We concluded that the measurement of bone bruise volume in patients with acute patellar dislocation is a reproducible method but requires further studies to evaluate its clinical use. (orig.)

  3. Bone bruise in acute traumatic patellar dislocation: volumetric magnetic resonance imaging analysis with follow-up mean of 12 months

    International Nuclear Information System (INIS)

    Paakkala, Antti; Paakkala, Timo; Sillanpaeae, Petri; Maeenpaeae, Heikki; Huhtala, Heini

    2010-01-01

    The aim of the study was to assess volumetric analysis of bone bruises in acute primary traumatic patellar dislocation by magnetic resonance imaging (MRI) and resolving resolution of bruises in follow-up MRI. MRI was performed in 23 cases. A follow-up examination was done at a mean of 12 months after dislocation. Volumes of patellar and femur bruises for every patient were evaluated separately by two musculoskeletal radiologists, and mean values of the bruises were assessed. Other MRI findings were evaluated, together with agreement by consensus. Bone bruise volumes were compared with other MR findings. In the acute study 100% of patients showed bruising of the lateral femoral condyle and 96% bruising of the patella. The bruise was located at the medial femoral condyle in 30% and at the patellar median ridge in 74% of patients. The median volume of the femoral bruise was 25,831 mm 3 and of the patellar bruise 2,832 mm 3 . At the follow-up study 22% of patients showed bruising of the lateral femoral condyle and 39% bruising of the patella, the median volumes of the bruises being 5,062 mm 3 and 1,380 mm 3 , respectively. Larger patellar bruise volume correlated with larger femur bruise volume in the acute (r=0.389, P=0.074) and the follow-up (r=1.000, P<0.01) studies. Other MRI findings did not correlate significantly with bone bruise volumes. Bone bruising is the commonest finding in cases of acute patellar dislocation, being seen even 1 year after trauma and indicating significant bone trabecular injury in the patellofemoral joint. A large bruise volume may be associated with subsequent chondral lesion progression at the patella. We concluded that the measurement of bone bruise volume in patients with acute patellar dislocation is a reproducible method but requires further studies to evaluate its clinical use. (orig.)

  4. A Study of volumetric variations of basal nuclei in the normal human brain by magnetic resonance imaging.

    Science.gov (United States)

    Elkattan, Amal; Mahdy, Amal; Eltomey, Mohamed; Ismail, Radwa

    2017-03-01

    Knowledge of the effects of healthy aging on brain structures is necessary to identify abnormal changes due to diseases. Many studies have demonstrated age-related volume changes in the brain using MRI. 60 healthy individuals who had normal MRI aged from 20 years to 80 years were examined and classified into three groups: Group I: 21 persons; nine males and 12 females aging between 20-39 years old. Group II: 22 persons; 11 males and 11 females aging between 40-59 years old. Group III: 17 persons; eight males and nine females aging between 60-80 years old. Volumetric analysis was done to evaluate the effect of age, gender and hemispheric difference in the caudate and putamen by the slicer 4.3.3.1 software using 3D T1-weighted images. Data were analyzed by student's unpaired t test, ANOVA and regression analysis. The volumes of the measured and corrected caudate nuclei and putamen significantly decreased with aging in males. There was a statistically insignificant relation between the age and the volume of the measured caudate nuclei and putamen in females but there was a statistically significant relation between the age and the corrected caudate nuclei and putamen. There was no significant difference on the caudate and putamen volumes between males and females. There was no significant difference between the right and left caudate nuclei volumes. There was a leftward asymmetry in the putamen volumes. The results can be considered as a base to track individual changes with time (aging and CNS diseases). Clin. Anat. 30:175-182, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Systematic Parameterization, Storage, and Representation of Volumetric DICOM Data

    OpenAIRE

    Fischer, Felix; Selver, M. Alper; Gezer, Sinem; Dicle, O?uz; Hillen, Walter

    2015-01-01

    Tomographic medical imaging systems produce hundreds to thousands of slices, enabling three-dimensional (3D) analysis. Radiologists process these images through various tools and techniques in order to generate 3D renderings for various applications, such as surgical planning, medical education, and volumetric measurements. To save and store these visualizations, current systems use snapshots or video exporting, which prevents further optimizations and requires the storage of significant addi...

  6. 3D tumor localization through real-time volumetric x-ray imaging for lung cancer radiotherapy.

    Science.gov (United States)

    Li, Ruijiang; Lewis, John H; Jia, Xun; Gu, Xuejun; Folkerts, Michael; Men, Chunhua; Song, William Y; Jiang, Steve B

    2011-05-01

    To evaluate an algorithm for real-time 3D tumor localization from a single x-ray projection image for lung cancer radiotherapy. Recently, we have developed an algorithm for reconstructing volumetric images and extracting 3D tumor motion information from a single x-ray projection [Li et al., Med. Phys. 37, 2822-2826 (2010)]. We have demonstrated its feasibility using a digital respiratory phantom with regular breathing patterns. In this work, we present a detailed description and a comprehensive evaluation of the improved algorithm. The algorithm was improved by incorporating respiratory motion prediction. The accuracy and efficiency of using this algorithm for 3D tumor localization were then evaluated on (1) a digital respiratory phantom, (2) a physical respiratory phantom, and (3) five lung cancer patients. These evaluation cases include both regular and irregular breathing patterns that are different from the training dataset. For the digital respiratory phantom with regular and irregular breathing, the average 3D tumor localization error is less than 1 mm which does not seem to be affected by amplitude change, period change, or baseline shift. On an NVIDIA Tesla C1060 graphic processing unit (GPU) card, the average computation time for 3D tumor localization from each projection ranges between 0.19 and 0.26 s, for both regular and irregular breathing, which is about a 10% improvement over previously reported results. For the physical respiratory phantom, an average tumor localization error below 1 mm was achieved with an average computation time of 0.13 and 0.16 s on the same graphic processing unit (GPU) card, for regular and irregular breathing, respectively. For the five lung cancer patients, the average tumor localization error is below 2 mm in both the axial and tangential directions. The average computation time on the same GPU card ranges between 0.26 and 0.34 s. Through a comprehensive evaluation of our algorithm, we have established its accuracy in 3D

  7. Web tools for large-scale 3D biological images and atlases

    Directory of Open Access Journals (Sweden)

    Husz Zsolt L

    2012-06-01

    Full Text Available Abstract Background Large-scale volumetric biomedical image data of three or more dimensions are a significant challenge for distributed browsing and visualisation. Many images now exceed 10GB which for most users is too large to handle in terms of computer RAM and network bandwidth. This is aggravated when users need to access tens or hundreds of such images from an archive. Here we solve the problem for 2D section views through archive data delivering compressed tiled images enabling users to browse through very-large volume data in the context of a standard web-browser. The system provides an interactive visualisation for grey-level and colour 3D images including multiple image layers and spatial-data overlay. Results The standard Internet Imaging Protocol (IIP has been extended to enable arbitrary 2D sectioning of 3D data as well a multi-layered images and indexed overlays. The extended protocol is termed IIP3D and we have implemented a matching server to deliver the protocol and a series of Ajax/Javascript client codes that will run in an Internet browser. We have tested the server software on a low-cost linux-based server for image volumes up to 135GB and 64 simultaneous users. The section views are delivered with response times independent of scale and orientation. The exemplar client provided multi-layer image views with user-controlled colour-filtering and overlays. Conclusions Interactive browsing of arbitrary sections through large biomedical-image volumes is made possible by use of an extended internet protocol and efficient server-based image tiling. The tools open the possibility of enabling fast access to large image archives without the requirement of whole image download and client computers with very large memory configurations. The system was demonstrated using a range of medical and biomedical image data extending up to 135GB for a single image volume.

  8. A three-dimensional-weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT-helical scanning

    International Nuclear Information System (INIS)

    Tang Xiangyang; Hsieh Jiang; Nilsen, Roy A; Dutta, Sandeep; Samsonov, Dmitry; Hagiwara, Akira

    2006-01-01

    Based on the structure of the original helical FDK algorithm, a three-dimensional (3D)-weighted cone beam filtered backprojection (CB-FBP) algorithm is proposed for image reconstruction in volumetric CT under helical source trajectory. In addition to its dependence on view and fan angles, the 3D weighting utilizes the cone angle dependency of a ray to improve reconstruction accuracy. The 3D weighting is ray-dependent and the underlying mechanism is to give a favourable weight to the ray with the smaller cone angle out of a pair of conjugate rays but an unfavourable weight to the ray with the larger cone angle out of the conjugate ray pair. The proposed 3D-weighted helical CB-FBP reconstruction algorithm is implemented in the cone-parallel geometry that can improve noise uniformity and image generation speed significantly. Under the cone-parallel geometry, the filtering is naturally carried out along the tangential direction of the helical source trajectory. By exploring the 3D weighting's dependence on cone angle, the proposed helical 3D-weighted CB-FBP reconstruction algorithm can provide significantly improved reconstruction accuracy at moderate cone angle and high helical pitches. The 3D-weighted CB-FBP algorithm is experimentally evaluated by computer-simulated phantoms and phantoms scanned by a diagnostic volumetric CT system with a detector dimension of 64 x 0.625 mm over various helical pitches. The computer simulation study shows that the 3D weighting enables the proposed algorithm to reach reconstruction accuracy comparable to that of exact CB reconstruction algorithms, such as the Katsevich algorithm, under a moderate cone angle (4 deg.) and various helical pitches. Meanwhile, the experimental evaluation using the phantoms scanned by a volumetric CT system shows that the spatial resolution along the z-direction and noise characteristics of the proposed 3D-weighted helical CB-FBP reconstruction algorithm are maintained very well in comparison to the FDK

  9. Mouse estrous cycle identification tool and images.

    Directory of Open Access Journals (Sweden)

    Shannon L Byers

    Full Text Available The efficiency of producing timed pregnant or pseudopregnant mice can be increased by identifying those in proestrus or estrus. Visual observation of the vagina is the quickest method, requires no special equipment, and is best used when only proestrus or estrus stages need to be identified. Strain to strain differences, especially in coat color can make it difficult to determine the stage of the estrous cycle accurately by visual observation. Presented here are a series of images of the vaginal opening at each stage of the estrous cycle for 3 mouse strains of different coat colors: black (C57BL/6J, agouti (CByB6F1/J and albino (BALB/cByJ. When all 4 stages (proestrus, estrus, metestrus, and diestrus need to be identified, vaginal cytology is regarded as the most accurate method. An identification tool is presented to aid the user in determining the stage of estrous when using vaginal cytology. These images and descriptions are an excellent resource for learning how to determine the stage of the estrous cycle by visual observation or vaginal cytology.

  10. Volumetric fluorescence retinal imaging in vivo over a 30-degree field of view by oblique scanning laser ophthalmoscopy (oSLO).

    Science.gov (United States)

    Zhang, Lei; Song, Weiye; Shao, Di; Zhang, Sui; Desai, Manishi; Ness, Steven; Roy, Sayon; Yi, Ji

    2018-01-01

    While fluorescent contrast is widely used in ophthalmology, three-dimensional (3D) fluorescence retinal imaging over a large field of view (FOV) has been challenging. In this paper, we describe a novel oblique scanning laser ophthalmoscopy (oSLO) technique that provides 3D volumetric fluorescence retinal imaging with only one raster scan. The technique utilizes scanned oblique illumination and angled detection to obtain fluorescent cross-sectional images, analogous to optical coherence tomography (OCT) line scans (or B-scans). By breaking the coaxial optical alignment used in conventional retinal imaging modalities, depth resolution is drastically improved. To demonstrate the capability of oSLO, we have performed in vivo volumetric fluorescein angiography (FA) of the rat retina with ~25μm depth resolution and over a 30° FOV. Using depth segmentation, oSLO can obtain high contrast images of the microvasculature down to single capillaries in 3D. The multi-modal nature of oSLO also allows for seamless combination with simultaneous OCT angiography.

  11. Registration-based assessment of regional lung function via volumetric CT images of normal subjects vs. severe asthmatics

    Science.gov (United States)

    Choi, Sanghun; Hoffman, Eric A.; Wenzel, Sally E.; Tawhai, Merryn H.; Yin, Youbing; Castro, Mario

    2013-01-01

    The purpose of this work was to explore the use of image registration-derived variables associated with computed tomographic (CT) imaging of the lung acquired at multiple volumes. As an evaluation of the utility of such an imaging approach, we explored two groups at the extremes of population ranging from normal subjects to severe asthmatics. A mass-preserving image registration technique was employed to match CT images at total lung capacity (TLC) and functional residual capacity (FRC) for assessment of regional air volume change and lung deformation between the two states. Fourteen normal subjects and thirty severe asthmatics were analyzed via image registration-derived metrics together with their pulmonary function test (PFT) and CT-based air-trapping. Relative to the normal group, the severely asthmatic group demonstrated reduced air volume change (consistent with air trapping) and more isotropic deformation in the basal lung regions while demonstrating increased air volume change associated with increased anisotropic deformation in the apical lung regions. These differences were found despite the fact that both PFT-derived TLC and FRC in the two groups were nearly 100% of predicted values. Data suggest that reduced basal-lung air volume change in severe asthmatics was compensated by increased apical-lung air volume change and that relative increase in apical-lung air volume change in severe asthmatics was accompanied by enhanced anisotropic deformation. These data suggest that CT-based deformation, assessed via inspiration vs. expiration scans, provides a tool for distinguishing differences in lung mechanics when applied to the extreme ends of a population range. PMID:23743399

  12. SU-E-I-10: Investigation On Detectability of a Small Target for Different Slice Direction of a Volumetric Cone Beam CT Image

    International Nuclear Information System (INIS)

    Lee, C; Han, M; Baek, J

    2015-01-01

    Purpose: To investigate the detectability of a small target for different slice direction of a volumetric cone beam CT image and its impact on dose reduction. Methods: Analytic projection data of a sphere object (1 mm diameter, 0.2/cm attenuation coefficient) were generated and reconstructed by FDK algorithm. In this work, we compared the detectability of the small target from four different backprojection Methods: hanning weighted ramp filter with linear interpolation (RECON 1), hanning weighted ramp filter with Fourier interpolation (RECON2), ramp filter with linear interpolation (RECON 3), and ramp filter with Fourier interpolation (RECON4), respectively. For noise simulation, 200 photons per measurement were used, and the noise only data were reconstructed using FDK algorithm. For each reconstructed volume, axial and coronal slice were extracted and detection-SNR was calculated using channelized Hotelling observer (CHO) with dense difference-of-Gaussian (D-DOG) channels. Results: Detection-SNR of coronal images varies for different backprojection methods, while axial images have a similar detection-SNR. Detection-SNR 2 ratios of coronal and axial images in RECON1 and RECON2 are 1.33 and 1.15, implying that the coronal image has a better detectability than axial image. In other words, using coronal slices for the small target detection can reduce the patient dose about 33% and 15% compared to using axial slices in RECON 1 and RECON 2. Conclusion: In this work, we investigated slice direction dependent detectability of a volumetric cone beam CT image. RECON 1 and RECON 2 produced the highest detection-SNR, with better detectability in coronal slices. These results indicate that it is more beneficial to use coronal slice to improve detectability of a small target in a volumetric cone beam CT image. This research was supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under the IT Consilience Creative Program (NIPA-2014-H0201

  13. SU-E-I-10: Investigation On Detectability of a Small Target for Different Slice Direction of a Volumetric Cone Beam CT Image

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C; Han, M; Baek, J [Yonsei University, Incheon (Korea, Republic of)

    2015-06-15

    Purpose: To investigate the detectability of a small target for different slice direction of a volumetric cone beam CT image and its impact on dose reduction. Methods: Analytic projection data of a sphere object (1 mm diameter, 0.2/cm attenuation coefficient) were generated and reconstructed by FDK algorithm. In this work, we compared the detectability of the small target from four different backprojection Methods: hanning weighted ramp filter with linear interpolation (RECON 1), hanning weighted ramp filter with Fourier interpolation (RECON2), ramp filter with linear interpolation (RECON 3), and ramp filter with Fourier interpolation (RECON4), respectively. For noise simulation, 200 photons per measurement were used, and the noise only data were reconstructed using FDK algorithm. For each reconstructed volume, axial and coronal slice were extracted and detection-SNR was calculated using channelized Hotelling observer (CHO) with dense difference-of-Gaussian (D-DOG) channels. Results: Detection-SNR of coronal images varies for different backprojection methods, while axial images have a similar detection-SNR. Detection-SNR{sup 2} ratios of coronal and axial images in RECON1 and RECON2 are 1.33 and 1.15, implying that the coronal image has a better detectability than axial image. In other words, using coronal slices for the small target detection can reduce the patient dose about 33% and 15% compared to using axial slices in RECON 1 and RECON 2. Conclusion: In this work, we investigated slice direction dependent detectability of a volumetric cone beam CT image. RECON 1 and RECON 2 produced the highest detection-SNR, with better detectability in coronal slices. These results indicate that it is more beneficial to use coronal slice to improve detectability of a small target in a volumetric cone beam CT image. This research was supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under the IT Consilience Creative Program (NIPA-2014-H0201

  14. Discrete pre-processing step effects in registration-based pipelines, a preliminary volumetric study on T1-weighted images.

    Science.gov (United States)

    Muncy, Nathan M; Hedges-Muncy, Ariana M; Kirwan, C Brock

    2017-01-01

    Pre-processing MRI scans prior to performing volumetric analyses is common practice in MRI studies. As pre-processing steps adjust the voxel intensities, the space in which the scan exists, and the amount of data in the scan, it is possible that the steps have an effect on the volumetric output. To date, studies have compared between and not within pipelines, and so the impact of each step is unknown. This study aims to quantify the effects of pre-processing steps on volumetric measures in T1-weighted scans within a single pipeline. It was our hypothesis that pre-processing steps would significantly impact ROI volume estimations. One hundred fifteen participants from the OASIS dataset were used, where each participant contributed three scans. All scans were then pre-processed using a step-wise pipeline. Bilateral hippocampus, putamen, and middle temporal gyrus volume estimations were assessed following each successive step, and all data were processed by the same pipeline 5 times. Repeated-measures analyses tested for a main effects of pipeline step, scan-rescan (for MRI scanner consistency) and repeated pipeline runs (for algorithmic consistency). A main effect of pipeline step was detected, and interestingly an interaction between pipeline step and ROI exists. No effect for either scan-rescan or repeated pipeline run was detected. We then supply a correction for noise in the data resulting from pre-processing.

  15. Image based method for aberration measurement of lithographic tools

    Science.gov (United States)

    Xu, Shuang; Tao, Bo; Guo, Yongxing; Li, Gongfa

    2018-01-01

    Information of lens aberration of lithographic tools is important as it directly affects the intensity distribution in the image plane. Zernike polynomials are commonly used for a mathematical description of lens aberrations. Due to the advantage of lower cost and easier implementation of tools, image based measurement techniques have been widely used. Lithographic tools are typically partially coherent systems that can be described by a bilinear model, which entails time consuming calculations and does not lend a simple and intuitive relationship between lens aberrations and the resulted images. Previous methods for retrieving lens aberrations in such partially coherent systems involve through-focus image measurements and time-consuming iterative algorithms. In this work, we propose a method for aberration measurement in lithographic tools, which only requires measuring two images of intensity distribution. Two linear formulations are derived in matrix forms that directly relate the measured images to the unknown Zernike coefficients. Consequently, an efficient non-iterative solution is obtained.

  16. Contrast-enhanced three-dimensional MR imaging using a volumetric interpolated breath-hold examination (VIBE): clinical utility in the evaluation of renal tumors

    International Nuclear Information System (INIS)

    Lee, Young Hwan; Kim, Chong Soo; Lee, Jeong Min

    2002-01-01

    To compare, in terms of technical feasibility, image quality and clinical efficacy, contrast-enhanced three-dimensional (3D) MR imaging using volumetric interpolated breath-hold examination (VIBE) with two-dimensional gradient-echo MR imaging for the evaluation of renal messes. Twenty-three patients with 25 renal masses underwent dynamic MR imaging using a 1.5-T MR system and the 3D VIBE, 2D fast low angle shot (FLASH), and combined fat saturation techniques after the injection of 20 ml of Gd-DTPA. We compared postcontrast 2D FLASH and 3D VIBE images with precontrast 2D FLASH images. For quantitative analysis, the signal-to-noise and lesion to kidney contrast-to-noise ratio of the images were calculated using the three different techniques. For qualitative analysis, two experienced radiologists analyzed the images in terms of artifacts, lesion conspicuity and delineation, and general image quality. Delineation of the anatomy of renal vasculature and pelvocalyceal systems on reconstructed 3D VIBE MIP images was also assessed. Quantitative analysis showed that the SNR of a renal mass was slightly higher at postcontrast 2D FLASG than at 3D VIBE imaging, and the SNR of renal cortex was higher at 3D VIBE than at postcontrast 2D FLASF imaging. The differences were, though, statistically insignificant (p>0.05). The CNR of al renal mass was, however, significantly higher at 3D VIBE than at 2D FLASH imaging (p<0.05). Qualitative analysis showed that general image quality was best at postcontrast 3D VIBE, followed by 2D FLASH and precontrast 2D FLASH imaging, and image artifacts were worst at post-contrast 2D FLASH image (p<0.05). In terms of lesion conspicuity and delineation, 3D VIBE gave the best results and postcontrast images were better than precontrast (p<0.05). Reconstructed angiographic and urographic images using the VIBE technique provided information about the anatomy of the renal vasculature and pelvocalyceal system. 3D VIBE MR imaging offers comparable or

  17. Contrast-enhanced three-dimensional MR imaging using a volumetric interpolated breath-hold examination (VIBE): clinical utility in the evaluation of renal tumors

    International Nuclear Information System (INIS)

    Lee, Young Hwan; Lee, Jeong Min; Kim, Chong Soo

    2002-01-01

    To compare, in terms of technical feasibility, image quality and clinical efficacy, contrast-enhanced three-dimensional (3D) MR imaging using volumetric interpolated breath-hold examination (VIBE) with two-dimensional gradient-echo MR imaging for the evaluation of renal masses. Twenty-three patients with 25 renal masses underwent dynamic MR imaging using a 1.5-T MR system and the 3D VIBE, 2D fast low angle shot (FLASH), and combined fat saturation techniques after the injection of 20 ml of Gd-DTPA. We compared postcontrast 2D FLASH and 3D VIBE images with precontrast 2D FLASH images. For quantitative analysis, the signal-to-noise and lesion to kidney contrast-to-noise ratio of the images were calculated using the three different techniques. For qualitative analysis, two experienced radiologists analyzed the images in terms of artifacts, lesion conspicuity and delineation, and general image quality. Delineation of the anatomy of renal vasculature and pelvocalyceal system on reconstructed 3D VIBE MIP images was also assessed. Quantitative analysis showed that the SNR of a renal mass was slightly higher at postcontrast 2D FLASH than at 3D VIBE imaging, and the SNR of renal cortex was higher at 3D VIBE than at postcontrast 2D FLASH imaging. The differences were, though, statistically insignificant (p>0.05). The CNR of a renal mass was, however, significantly higher at 3D VIBE than at 2D FLASH imaging (p<0.05). Qualitative analysis showed that general image quality was best at postcontrast 3D VIBE, followed by 2D FLASH and precontrast 2D FLASH imaging, and image artifacts were worst at post-contrast 2D FLASH image (p<0.05). In terms of lesion conspicuity and delineation, 3D VIBE gave the best results and postcontrast images were better than precontrast (p<0.05). Reconstructed angiographic and urographic images using the VIBE technique provided information about the anatomy of the renal vasculature and pelvocalyceal system. 3D VIBE MR imaging offers comparable or

  18. Contrast-enhanced three-dimensional MR imaging using a volumetric interpolated breath-hold examination (VIBE): clinical utility in the evaluation of renal tumors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Hwan; Kim, Chong Soo [Chonbuk National University Hospita, Chungju (Korea, Republic of); Lee, Jeong Min [Seoul National University Hospital, Seoul (Korea, Republic of)

    2002-12-01

    To compare, in terms of technical feasibility, image quality and clinical efficacy, contrast-enhanced three-dimensional (3D) MR imaging using volumetric interpolated breath-hold examination (VIBE) with two-dimensional gradient-echo MR imaging for the evaluation of renal messes. Twenty-three patients with 25 renal masses underwent dynamic MR imaging using a 1.5-T MR system and the 3D VIBE, 2D fast low angle shot (FLASH), and combined fat saturation techniques after the injection of 20 ml of Gd-DTPA. We compared postcontrast 2D FLASH and 3D VIBE images with precontrast 2D FLASH images. For quantitative analysis, the signal-to-noise and lesion to kidney contrast-to-noise ratio of the images were calculated using the three different techniques. For qualitative analysis, two experienced radiologists analyzed the images in terms of artifacts, lesion conspicuity and delineation, and general image quality. Delineation of the anatomy of renal vasculature and pelvocalyceal systems on reconstructed 3D VIBE MIP images was also assessed. Quantitative analysis showed that the SNR of a renal mass was slightly higher at postcontrast 2D FLASG than at 3D VIBE imaging, and the SNR of renal cortex was higher at 3D VIBE than at postcontrast 2D FLASF imaging. The differences were, though, statistically insignificant (p>0.05). The CNR of al renal mass was, however, significantly higher at 3D VIBE than at 2D FLASH imaging (p<0.05). Qualitative analysis showed that general image quality was best at postcontrast 3D VIBE, followed by 2D FLASH and precontrast 2D FLASH imaging, and image artifacts were worst at post-contrast 2D FLASH image (p<0.05). In terms of lesion conspicuity and delineation, 3D VIBE gave the best results and postcontrast images were better than precontrast (p<0.05). Reconstructed angiographic and urographic images using the VIBE technique provided information about the anatomy of the renal vasculature and pelvocalyceal system. 3D VIBE MR imaging offers comparable or

  19. A longitudinal observational study of brain atrophy rate reflecting four decades of multiple sclerosis: a comparison of serial 1D, 2D, and volumetric measurements from MRI images

    International Nuclear Information System (INIS)

    Martola, Juha; Zhang, Yi; Aspelin, Peter; Kristoffersen Wiberg, Maria; Bergstroem, Jakob; Fredrikson, Sten; Stawiarz, Leszek; Hillert, Jan; Flodmark, Olof; Lilja, Anders; Ekbom, Anders

    2010-01-01

    Multiple sclerosis (MS) has a variable progression with an early onset of atrophy. Individual longitudinal radiological evaluations (over decades) are difficult to perform due to the limited availability of magnetic resonance imaging (MRI) in the past, patients lost in follow-up, and the continuous updating of scanners. We studied a cohort with widespread disease duration at baseline. The observed individual atrophy rates over time of 10 years represented four decades of disease span. Thirty-seven MS patients (age range 24-65 years with disease duration 1-33 years) were consecutively selected and evaluated with MRI at baseline 1995 and in 1996. They were followed up for a decade (mean of 9.25 years, range 7.3-10 years) up to 2003-2005. Brain parenchymal volume and volumes of the supratentorial ventricles were analyzed with semi-automated volumetric measurements at three time points (1995, 1996, and 2003-2005). Volumetric differences were found over shorter periods of time (1-7 months); however, differences vanished by the end of follow-up. A uniform longitudinal decrease in brain volume and increase in ventricle volumes were found. Frontal horn width (1D) correlated strongest to 3D measures. No statistical differences of atrophy rates between MS courses were found. Supratentorial ventricular volumes were associated with disability and this association persisted during follow-up. Despite variable clinical courses, the degenerative effects of MS progression expressed in brain atrophy seem to uniformly progress over longer periods of time. These volumetric changes can be detected using 1D and 2D measurements performed on a routine PACS workstation. (orig.)

  20. Comparison of quality control software tools for diffusion tensor imaging.

    Science.gov (United States)

    Liu, Bilan; Zhu, Tong; Zhong, Jianhui

    2015-04-01

    Image quality of diffusion tensor imaging (DTI) is critical for image interpretation, diagnostic accuracy and efficiency. However, DTI is susceptible to numerous detrimental artifacts that may impair the reliability and validity of the obtained data. Although many quality control (QC) software tools are being developed and are widely used and each has its different tradeoffs, there is still no general agreement on an image quality control routine for DTIs, and the practical impact of these tradeoffs is not well studied. An objective comparison that identifies the pros and cons of each of the QC tools will be helpful for the users to make the best choice among tools for specific DTI applications. This study aims to quantitatively compare the effectiveness of three popular QC tools including DTI studio (Johns Hopkins University), DTIprep (University of North Carolina at Chapel Hill, University of Iowa and University of Utah) and TORTOISE (National Institute of Health). Both synthetic and in vivo human brain data were used to quantify adverse effects of major DTI artifacts to tensor calculation as well as the effectiveness of different QC tools in identifying and correcting these artifacts. The technical basis of each tool was discussed, and the ways in which particular techniques affect the output of each of the tools were analyzed. The different functions and I/O formats that three QC tools provide for building a general DTI processing pipeline and integration with other popular image processing tools were also discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Emerging imaging tools for use with traumatic brain injury research.

    Science.gov (United States)

    Hunter, Jill V; Wilde, Elisabeth A; Tong, Karen A; Holshouser, Barbara A

    2012-03-01

    This article identifies emerging neuroimaging measures considered by the inter-agency Pediatric Traumatic Brain Injury (TBI) Neuroimaging Workgroup. This article attempts to address some of the potential uses of more advanced forms of imaging in TBI as well as highlight some of the current considerations and unresolved challenges of using them. We summarize emerging elements likely to gain more widespread use in the coming years, because of 1) their utility in diagnosis, prognosis, and understanding the natural course of degeneration or recovery following TBI, and potential for evaluating treatment strategies; 2) the ability of many centers to acquire these data with scanners and equipment that are readily available in existing clinical and research settings; and 3) advances in software that provide more automated, readily available, and cost-effective analysis methods for large scale data image analysis. These include multi-slice CT, volumetric MRI analysis, susceptibility-weighted imaging (SWI), diffusion tensor imaging (DTI), magnetization transfer imaging (MTI), arterial spin tag labeling (ASL), functional MRI (fMRI), including resting state and connectivity MRI, MR spectroscopy (MRS), and hyperpolarization scanning. However, we also include brief introductions to other specialized forms of advanced imaging that currently do require specialized equipment, for example, single photon emission computed tomography (SPECT), positron emission tomography (PET), encephalography (EEG), and magnetoencephalography (MEG)/magnetic source imaging (MSI). Finally, we identify some of the challenges that users of the emerging imaging CDEs may wish to consider, including quality control, performing multi-site and longitudinal imaging studies, and MR scanning in infants and children.

  2. Borehole imaging tool detects well bore fractures

    International Nuclear Information System (INIS)

    Ma, T.A.; Bigelow, E.L.

    1993-01-01

    This paper reports on borehole imaging data which can provide high quality geological and petrophysical information to improve fracture identification, dip computations, and lithology determinations in a well bore. The ability to visually quantify the area of a borehole wall occupied by fractures and vugs enhances reservoir characterization and well completion operations. The circumferential borehole imaging log (CBIL) instrument is an acoustic logging device designed to produce a map of the entire borehole wall. The visual images can confirm computed dips and the geological features related to dip. Borehole geometry, including breakout, are accurately described by complete circumferential caliper measurements, which is important information for drilling and completion engineers. In may reservoirs, the images can identify porosity type, bedding characteristics, and petrophysical parameters

  3. Forensic imaging tools for law enforcement

    Energy Technology Data Exchange (ETDEWEB)

    SMITHPETER,COLIN L.; SANDISON,DAVID R.; VARGO,TIMOTHY D.

    2000-01-01

    Conventional methods of gathering forensic evidence at crime scenes are encumbered by difficulties that limit local law enforcement efforts to apprehend offenders and bring them to justice. Working with a local law-enforcement agency, Sandia National Laboratories has developed a prototype multispectral imaging system that can speed up the investigative search task and provide additional and more accurate evidence. The system, called the Criminalistics Light-imaging Unit (CLU), has demonstrated the capabilities of locating fluorescing evidence at crime scenes under normal lighting conditions and of imaging other types of evidence, such as untreated fingerprints, by direct white-light reflectance. CLU employs state of the art technology that provides for viewing and recording of the entire search process on videotape. This report describes the work performed by Sandia to design, build, evaluate, and commercialize CLU.

  4. Cone beam CT imaging with limited angle of projections and prior knowledge for volumetric verification of non-coplanar beam radiation therapy: a proof of concept study

    Science.gov (United States)

    Meng, Bowen; Xing, Lei; Han, Bin; Koong, Albert; Chang, Daniel; Cheng, Jason; Li, Ruijiang

    2013-11-01

    Non-coplanar beams are important for treatment of both cranial and noncranial tumors. Treatment verification of such beams with couch rotation/kicks, however, is challenging, particularly for the application of cone beam CT (CBCT). In this situation, only limited and unconventional imaging angles are feasible to avoid collision between the gantry, couch, patient, and on-board imaging system. The purpose of this work is to develop a CBCT verification strategy for patients undergoing non-coplanar radiation therapy. We propose an image reconstruction scheme that integrates a prior image constrained compressed sensing (PICCS) technique with image registration. Planning CT or CBCT acquired at the neutral position is rotated and translated according to the nominal couch rotation/translation to serve as the initial prior image. Here, the nominal couch movement is chosen to have a rotational error of 5° and translational error of 8 mm from the ground truth in one or more axes or directions. The proposed reconstruction scheme alternates between two major steps. First, an image is reconstructed using the PICCS technique implemented with total-variation minimization and simultaneous algebraic reconstruction. Second, the rotational/translational setup errors are corrected and the prior image is updated by applying rigid image registration between the reconstructed image and the previous prior image. The PICCS algorithm and rigid image registration are alternated iteratively until the registration results fall below a predetermined threshold. The proposed reconstruction algorithm is evaluated with an anthropomorphic digital phantom and physical head phantom. The proposed algorithm provides useful volumetric images for patient setup using projections with an angular range as small as 60°. It reduced the translational setup errors from 8 mm to generally <1 mm and the rotational setup errors from 5° to <1°. Compared with the PICCS algorithm alone, the integration of rigid

  5. Coaxial volumetric velocimetry

    Science.gov (United States)

    Schneiders, Jan F. G.; Scarano, Fulvio; Jux, Constantin; Sciacchitano, Andrea

    2018-06-01

    This study describes the working principles of the coaxial volumetric velocimeter (CVV) for wind tunnel measurements. The measurement system is derived from the concept of tomographic PIV in combination with recent developments of Lagrangian particle tracking. The main characteristic of the CVV is its small tomographic aperture and the coaxial arrangement between the illumination and imaging directions. The system consists of a multi-camera arrangement subtending only few degrees solid angle and a long focal depth. Contrary to established PIV practice, laser illumination is provided along the same direction as that of the camera views, reducing the optical access requirements to a single viewing direction. The laser light is expanded to illuminate the full field of view of the cameras. Such illumination and imaging conditions along a deep measurement volume dictate the use of tracer particles with a large scattering area. In the present work, helium-filled soap bubbles are used. The fundamental principles of the CVV in terms of dynamic velocity and spatial range are discussed. Maximum particle image density is shown to limit tracer particle seeding concentration and instantaneous spatial resolution. Time-averaged flow fields can be obtained at high spatial resolution by ensemble averaging. The use of the CVV for time-averaged measurements is demonstrated in two wind tunnel experiments. After comparing the CVV measurements with the potential flow in front of a sphere, the near-surface flow around a complex wind tunnel model of a cyclist is measured. The measurements yield the volumetric time-averaged velocity and vorticity field. The measurements of the streamlines in proximity of the surface give an indication of the skin-friction lines pattern, which is of use in the interpretation of the surface flow topology.

  6. SU-F-T-260: Using Portal Image Device for Pre-Treatment QA in Volumetric Modulated Arc Plans with Flattening Filter Free (FFF) Beams

    Energy Technology Data Exchange (ETDEWEB)

    Qu, H; Qi, P; Yu, N; Xia, P [The Cleveland Clinic Foundation, Cleveland, OH (United States)

    2016-06-15

    Purpose: To implement and validate a method of using electronic portal image device (EPID) for pre-treatment quality assurance (QA) of volumetric modulated arc therapy (VMAT) plans using flattering filter free (FFF) beams for stereotactic body radiotherapy (SBRT). Methods: On Varian Edge with 6MV FFF beam, open field (from 2×2 cm to 20×20 cm) EPID images were acquired with 200 monitor unit (MU) at the image device to radiation source distance of 150cm. With 10×10 open field and calibration unit (CU) provided by vendor to EPID image pixel, a dose conversion factor was determined by dividing the center dose calculated from the treatment planning system (TPS) to the corresponding CU readout on the image. Water phantom measured beam profile and the output factors for various field sizes were further correlated to those of EPID images. The dose conversion factor and correction factors were then used for converting the portal images to the planner dose distributions of clinical fields. A total of 28 VMAT fields of 14 SBRT plans (8 lung, 2 prostate, 2 liver and 2 spine) were measured. With 10% low threshold cutoff, the delivered dose distributions were compared to the reference doses calculated in water phantom from the TPS. A gamma index analysis was performed for the comparison in percentage dose difference/distance-to-agreement specifications. Results: The EPID device has a linear response to the open fields with increasing MU. For the clinical fields, the gamma indices between the converted EPID dose distributions and the TPS calculated 2D dose distributions were 98.7%±1.1%, 94.0%±3.4% and 70.3%±7.7% for the criteria of 3%/3mm, 2%/2mm and 1%/1mm, respectively. Conclusion: Using a portal image device, a high resolution and high accuracy portal dosimerty was achieved for pre-treatment QA verification for SBRT VMAT plans with FFF beams.

  7. Prospective assessment of urinary, gastrointestinal and sexual symptoms before, during and after image-guided volumetric modulated arc therapy for prostate cancer

    DEFF Research Database (Denmark)

    Sveistrup, Joen; Widmark, Anders; Fransson, Per

    2015-01-01

    OBJECTIVE: The aim of this study was to prospectively assess the development of 24 urinary, gastrointestinal and sexual symptoms in patients with prostate cancer (PCa) during and after image-guided volumetric modulated arc therapy (IG-VMAT). MATERIAL AND METHODS: A total of 87 patients with PCa......, planning of toilet visits, flatulence, mucus, gastrointestinal bleeding and impact of gastrointestinal bother on daily activities compared to baseline. All sexual symptoms increased significantly at all times compared to baseline. The use of ADT was associated with worse sexual symptoms. CONCLUSIONS: IG......-VMAT is a safe treatment for PCa, with few and mild changes in urinary and gastrointestinal symptoms 1 year after RT compared to baseline. Sexual symptoms deteriorated both during and after RT. The use of ADT was associated with worse sexual symptoms....

  8. A moving blocker-based strategy for simultaneous megavoltage and kilovoltage scatter correction in cone-beam computed tomography image acquired during volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Ouyang, Luo; Lee, Huichen Pam; Wang, Jing

    2015-01-01

    Purpose: To evaluate a moving blocker-based approach in estimating and correcting megavoltage (MV) and kilovoltage (kV) scatter contamination in kV cone-beam computed tomography (CBCT) acquired during volumetric modulated arc therapy (VMAT). Methods and materials: During the concurrent CBCT/VMAT acquisition, a physical attenuator (i.e., “blocker”) consisting of equally spaced lead strips was mounted and moved constantly between the CBCT source and patient. Both kV and MV scatter signals were estimated from the blocked region of the imaging panel, and interpolated into the unblocked region. A scatter corrected CBCT was then reconstructed from the unblocked projections after scatter subtraction using an iterative image reconstruction algorithm based on constraint optimization. Experimental studies were performed on a Catphan® phantom and an anthropomorphic pelvis phantom to demonstrate the feasibility of using a moving blocker for kV–MV scatter correction. Results: Scatter induced cupping artifacts were substantially reduced in the moving blocker corrected CBCT images. Quantitatively, the root mean square error of Hounsfield units (HU) in seven density inserts of the Catphan phantom was reduced from 395 to 40. Conclusions: The proposed moving blocker strategy greatly improves the image quality of CBCT acquired with concurrent VMAT by reducing the kV–MV scatter induced HU inaccuracy and cupping artifacts

  9. A novel tool for automated evaluation of radiographic weld images

    International Nuclear Information System (INIS)

    Rajagopalan, C.; Venkatraman, B.; Jayakumar, T.; Kalyanasundaram, P.; Raj, B.

    2004-01-01

    Radiography is one of the oldest and the most widely used NDT method for the detection of volumetric defects in welds and castings. Once a radiograph of a weld or a casting or an assembly is taken, the radiographer examines the same. The task of the radiographer consists of identifying the defects and quantitatively evaluating the same based on codes and specifications. Radiographic interpretation primarily depends on the expertise of the individual radiographer. To overcome the subjectivity involved in human interpretation, it is thus desirable to develop a computer based automated system to aid in the interpretation of radiographs. Towards this goal, the authors have developed a flowchart chalking out the various stages involved. Typical weld images of tube to tubesheet weld joints were digitised using high resolution digitiser. The images were segmented and 52 invariant moments were computed to be used as features. The results of these are presented in this paper. Once the features (invariant moments) are extracted and ranked, a neural network classifier based on error back-propagation has to classify the (top ranking) features and evaluate the image for acceptance or rejection. (author)

  10. RATIO_TOOL - SOFTWARE FOR COMPUTING IMAGE RATIOS

    Science.gov (United States)

    Yates, G. L.

    1994-01-01

    Geological studies analyze spectral data in order to gain information on surface materials. RATIO_TOOL is an interactive program for viewing and analyzing large multispectral image data sets that have been created by an imaging spectrometer. While the standard approach to classification of multispectral data is to match the spectrum for each input pixel against a library of known mineral spectra, RATIO_TOOL uses ratios of spectral bands in order to spot significant areas of interest within a multispectral image. Each image band can be viewed iteratively, or a selected image band of the data set can be requested and displayed. When the image ratios are computed, the result is displayed as a gray scale image. At this point a histogram option helps in viewing the distribution of values. A thresholding option can then be used to segment the ratio image result into two to four classes. The segmented image is then color coded to indicate threshold classes and displayed alongside the gray scale image. RATIO_TOOL is written in C language for Sun series computers running SunOS 4.0 and later. It requires the XView toolkit and the OpenWindows window manager (version 2.0 or 3.0). The XView toolkit is distributed with Open Windows. A color monitor is also required. The standard distribution medium for RATIO_TOOL is a .25 inch streaming magnetic tape cartridge in UNIX tar format. An electronic copy of the documentation is included on the program media. RATIO_TOOL was developed in 1992 and is a copyrighted work with all copyright vested in NASA. Sun, SunOS, and OpenWindows are trademarks of Sun Microsystems, Inc. UNIX is a registered trademark of AT&T Bell Laboratories.

  11. World-Wide Web Tools for Locating Planetary Images

    Science.gov (United States)

    Kanefsky, Bob; Deiss, Ron (Technical Monitor)

    1995-01-01

    The explosive growth of the World-Wide Web (WWW) in the past year has made it feasible to provide interactive graphical tools to assist scientists in locating planetary images. The highest available resolution images of any site of interest can be quickly found on a map or plot, and, if online, displayed immediately on nearly any computer equipped with a color screen, an Internet connection, and any of the free WWW browsers. The same tools may also be of interest to educators, students, and the general public. Image finding tools have been implemented covering most of the solar system: Earth, Mars, and the moons and planets imaged by Voyager. The Mars image-finder, which plots the footprints of all the high-resolution Viking Orbiter images and can be used to display any that are available online, also contains a complete scrollable atlas and hypertext gazetteer to help locating areas. The Earth image-finder is linked to thousands of Shuttle images stored at NASA/JSC, and displays them as red dots on a globe. The Voyager image-finder plots images as dots, by longitude and apparent target size, linked to online images. The locator (URL) for the top-level page is http: //ic-www.arc.nasa.gov/ic/projects/bayes-group/Atlas/. Through the efforts of the Planetary Data System and other organizations, hundreds of thousands of planetary images are now available on CD-ROM, and many of these have been made available on the WWW. However, locating images of a desired site is still problematic, in practice. For example, many scientists studying Mars use digital image maps, which are one third the resolution of Viking Orbiter survey images. When they douse Viking Orbiter images, they often work with photographically printed hardcopies, which lack the flexibility of digital images: magnification, contrast stretching, and other basic image-processing techniques offered by off-the-shelf software. From the perspective of someone working on an experimental image processing technique for

  12. Diffusion tensor and volumetric magnetic resonance imaging using an MR-compatible hand-induced robotic device suggests training-induced neuroplasticity in patients with chronic stroke.

    Science.gov (United States)

    Lazaridou, Asimina; Astrakas, Loukas; Mintzopoulos, Dionyssios; Khanicheh, Azadeh; Singhal, Aneesh B; Moskowitz, Michael A; Rosen, Bruce; Tzika, Aria A

    2013-11-01

    Stroke is the third leading cause of mortality and a frequent cause of long-term adult impairment. Improved strategies to enhance motor function in individuals with chronic disability from stroke are thus required. Post‑stroke therapy may improve rehabilitation and reduce long-term disability; however, objective methods for evaluating the specific impact of rehabilitation are rare. Brain imaging studies on patients with chronic stroke have shown evidence for reorganization of areas showing functional plasticity after a stroke. In this study, we hypothesized that brain mapping using a novel magnetic resonance (MR)-compatible hand device in conjunction with state‑of‑the‑art magnetic resonance imaging (MRI) can serve as a novel biomarker for brain plasticity induced by rehabilitative motor training in patients with chronic stroke. This hypothesis is based on the premises that robotic devices, by stimulating brain plasticity, can assist in restoring movement compromised by stroke-induced pathological changes in the brain and that these changes can then be monitored by advanced MRI. We serially examined 15 healthy controls and 4 patients with chronic stroke. We employed a combination of diffusion tensor imaging (DTI) and volumetric MRI using a 3-tesla (3T) MRI system using a 12-channel Siemens Tim coil and a novel MR-compatible hand‑induced robotic device. DTI data revealed that the number of fibers and the average tract length significantly increased after 8 weeks of hand training by 110% and 64%, respectively (probotics in the molecular medicine era.

  13. Full 3D internal strain measurement for device packaging materials using synchrotron laminography and volumetric digital image correlation method

    International Nuclear Information System (INIS)

    Asada, Takashi; Kimura, Hidehiko; Yamaguchi, Satoshi; Kano, Taiki; Kajiwara, Kentaro

    2014-01-01

    In order to measure full 3D internal strain field of resin molding compound specimens, synchrotron computed tomography and laminography at SPring-8 were performed. Then the reconstructed images were applied to 3D digital image correlation method to compute internal strain field. The results showed that internal strains in resin molding compound could be visualized in this way. (author)

  14. Bladder dose accumulation based on a biomechanical deformable image registration algorithm in volumetric modulated arc therapy for prostate cancer

    DEFF Research Database (Denmark)

    Andersen, E S; Muren, L P; Sørensen, T S

    2012-01-01

    Variations in bladder position, shape and volume cause uncertainties in the doses delivered to this organ during a course of radiotherapy for pelvic tumors. The purpose of this study was to evaluate the potential of dose accumulation based on repeat imaging and deformable image registration (DIR)...

  15. Functional image guided radiation therapy planning in volumetric modulated arc therapy for patients with malignant pleural mesothelioma

    Directory of Open Access Journals (Sweden)

    Yoshiko Doi, MD

    2017-04-01

    Conclusions: Significant reductions in fV5, fV10, fMLD, V5, and MLD were achieved with the functional image guided VMAT plan without negative effects on other factors. LAA-based functional image guided radiation therapy planning in VMAT is a feasible method to spare the functional lung in patients with MPM.

  16. Volumetric flow imaging reveals the importance of vortex ring formation in squid swimming tail-first and arms-first.

    Science.gov (United States)

    Bartol, Ian K; Krueger, Paul S; Jastrebsky, Rachel A; Williams, Sheila; Thompson, Joseph T

    2016-02-01

    Squids use a pulsed jet and fin movements to swim both arms-first (forward) and tail-first (backward). Given the complexity of the squid multi-propulsor system, 3D velocimetry techniques are required for the comprehensive study of wake dynamics. Defocusing digital particle tracking velocimetry, a volumetric velocimetry technique, and high-speed videography were used to study arms-first and tail-first swimming of brief squid Lolliguncula brevis over a broad range of speeds [0-10 dorsal mantle lengths (DML) s(-1)] in a swim tunnel. Although there was considerable complexity in the wakes of these multi-propulsor swimmers, 3D vortex rings and their derivatives were prominent reoccurring features during both tail-first and arms-first swimming, with the greatest jet and fin flow complexity occurring at intermediate speeds (1.5-3.0 DML s(-1)). The jet generally produced the majority of thrust during rectilinear swimming, increasing in relative importance with speed, and the fins provided no thrust at speeds >4.5 DML s(-1). For both swimming orientations, the fins sometimes acted as stabilizers, producing negative thrust (drag), and consistently provided lift at low/intermediate speeds (swimming orientation, and η for swimming sequences with clear isolated jet vortex rings was significantly greater (η=78.6±7.6%, mean±s.d.) than that for swimming sequences with clear elongated regions of concentrated jet vorticity (η=67.9±19.2%). This study reveals the complexity of 3D vortex wake flows produced by nekton with hydrodynamically distinct propulsors. © 2016. Published by The Company of Biologists Ltd.

  17. Volumetric modulated arc therapy and breath-hold in image-guided locoregional left-sided breast irradiation

    International Nuclear Information System (INIS)

    Osman, Sarah O.S.; Hol, Sandra; Poortmans, Philip M.; Essers, Marion

    2014-01-01

    Purpose: To investigate the effects of using volumetric modulated arc therapy (VMAT) and/or voluntary moderate deep inspiration breath-hold (vmDIBH) in the radiation therapy (RT) of left-sided breast cancer including the regional lymph nodes. Materials and methods: For 13 patients, four treatment combinations were compared; 3D-conformal RT (i.e., forward IMRT) in free-breathing 3D-CRT(FB), 3D-CRT(vmDIBH), 2 partial arcs VMAT(FB), and VMAT(vmDIBH). Prescribed dose was 42.56 Gy in 16 fractions. For 10 additional patients, 3D-CRT and VMAT in vmDIBH only were also compared. Results: Dose conformity, PTV coverage, ipsilateral and total lung doses were significantly better for VMAT plans compared to 3D-CRT. Mean heart dose (D mean,heart ) reduction in 3D-CRT(vmDIBH) was between 0.9 and 8.6 Gy, depending on initial D mean,heart (in 3D-CRT(FB) plans). VMAT(vmDIBH) reduced the D mean,heart further when D mean,heart was still >3.2 Gy in 3D-CRT(vmDIBH). Mean contralateral breast dose was higher for VMAT plans (2.7 Gy) compared to 3DCRT plans (0.7 Gy). Conclusions: VMAT and 3D-CRT(vmDIBH) significantly reduced heart dose for patients treated with locoregional RT of left-sided breast cancer. When D mean,heart exceeded 3.2 Gy in 3D-CRT(vmDIBH) plans, VMAT(vmDIBH) resulted in a cumulative heart dose reduction. VMAT also provided better target coverage and reduced ipsilateral lung dose, at the expense of a small increase in the dose to the contralateral breast

  18. X-Ray, Digital Imaging with Volumetric Density Measurement and Profiling, Applied to the Characterization of Waste Drums

    International Nuclear Information System (INIS)

    Huhtiniemi, I.; Gupta, N.; Halliwell, S.

    2006-01-01

    The European Commission's Joint Research Centre Ispra Site (JRC-Ispra) has initiated a decommissioning and waste management program that will span about two decades. The program includes a requirement to characterize the contents of about 6,500 radioactive, 220 litre waste drums whose documented history is incomplete. To render the characterization process more efficient, the drums will be initially divided into homogeneous groups, an activity that will be based on existing documentation and non-destructive examination (NDE) by X-ray digital imaging. This paper describes the X-ray imaging techniques chosen, and the planned performance validation of the equipment. (authors)

  19. Assessment of COTS IR image simulation tools for ATR development

    Science.gov (United States)

    Seidel, Heiko; Stahl, Christoph; Bjerkeli, Frode; Skaaren-Fystro, Paal

    2005-05-01

    Following the tendency of increased use of imaging sensors in military aircraft, future fighter pilots will need onboard artificial intelligence e.g. ATR for aiding them in image interpretation and target designation. The European Aeronautic Defence and Space Company (EADS) in Germany has developed an advanced method for automatic target recognition (ATR) which is based on adaptive neural networks. This ATR method can assist the crew of military aircraft like the Eurofighter in sensor image monitoring and thereby reduce the workload in the cockpit and increase the mission efficiency. The EADS ATR approach can be adapted for imagery of visual, infrared and SAR sensors because of the training-based classifiers of the ATR method. For the optimal adaptation of these classifiers they have to be trained with appropriate and sufficient image data. The training images must show the target objects from different aspect angles, ranges, environmental conditions, etc. Incomplete training sets lead to a degradation of classifier performance. Additionally, ground truth information i.e. scenario conditions like class type and position of targets is necessary for the optimal adaptation of the ATR method. In Summer 2003, EADS started a cooperation with Kongsberg Defence & Aerospace (KDA) from Norway. The EADS/KDA approach is to provide additional image data sets for training-based ATR through IR image simulation. The joint study aims to investigate the benefits of enhancing incomplete training sets for classifier adaptation by simulated synthetic imagery. EADS/KDA identified the requirements of a commercial-off-the-shelf IR simulation tool capable of delivering appropriate synthetic imagery for ATR development. A market study of available IR simulation tools and suppliers was performed. After that the most promising tool was benchmarked according to several criteria e.g. thermal emission model, sensor model, targets model, non-radiometric image features etc., resulting in a

  20. Recent Trends in PET Image Interpretations Using Volumetric and Texture-based Quantification Methods in Nuclear Oncology

    Energy Technology Data Exchange (ETDEWEB)

    Rahim, Muhammad Kashif; Kim, Sung Eun; So, Hyeongryul; Kim, Hyung Jun; Cheon, Gi Jeong; Lee, Eun Seong; Kang, Keon Wook; Lee, Dong Soo [Seoul National Univ., Seoul (Korea, Republic of)

    2014-03-15

    Image quantification studies in positron emission tomography/computed tomography (PET/CT) are of immense importance in the diagnosis and follow-up of variety of cancers. In this review we have described the current image quantification methodologies employed in {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) PET in major oncological conditions with particular emphasis on tumor heterogeneity studies. We have described various quantitative parameters being used in PET image analysis. The main contemporary methodology is to measure tumor metabolic activity; however, analysis of other image-related parameters is also increasing. Primarily, we have identified the existing role of tumor heterogeneity studies in major cancers using {sup 18}F-FDG PET. We have also described some newer radiopharmaceuticals other than {sup 18}F-FDG being studied/used in the management of these cancers. Tumor heterogeneity studies are being performed in almost all major oncological conditions using {sup 18}F-FDG PET. The role of these studies is very promising in the management of these conditions.

  1. Digital Rocks Portal: a Sustainable Platform for Data Management, Analysis and Remote Visualization of Volumetric Images of Porous Media

    Science.gov (United States)

    Prodanovic, M.; Esteva, M.; Ketcham, R. A.

    2017-12-01

    Nanometer to centimeter-scale imaging such as (focused ion beam) scattered electron microscopy, magnetic resonance imaging and X-ray (micro)tomography has since 1990s introduced 2D and 3D datasets of rock microstructure that allow investigation of nonlinear flow and mechanical phenomena on the length scales that are otherwise impervious to laboratory measurements. The numerical approaches that use such images produce various upscaled parameters required by subsurface flow and deformation simulators. All of this has revolutionized our knowledge about grain scale phenomena. However, a lack of data-sharing infrastructure among research groups makes it difficult to integrate different length scales. We have developed a sustainable, open and easy-to-use repository called the Digital Rocks Portal (https://www.digitalrocksportal.org), that (1) organizes images and related experimental measurements of different porous materials, (2) improves access to them for a wider community of engineering or geosciences researchers not necessarily trained in computer science or data analysis. Digital Rocks Portal (NSF EarthCube Grant 1541008) is the first repository for imaged porous microstructure data. It is implemented within the reliable, 24/7 maintained High Performance Computing Infrastructure supported by the Texas Advanced Computing Center (University of Texas at Austin). Long-term storage is provided through the University of Texas System Research Cyber-infrastructure initiative. We show how the data can be documented, referenced in publications via digital object identifiers (see Figure below for examples), visualized, searched for and linked to other repositories. We show recently implemented integration of the remote parallel visualization, bulk upload for large datasets as well as preliminary flow simulation workflow with the pore structures currently stored in the repository. We discuss the issues of collecting correct metadata, data discoverability and repository

  2. Impact of errors in recorded compressed breast thickness measurements on volumetric density classification using volpara v1.5.0 software

    OpenAIRE

    Waade, G; Highnam, R; Hauge, I; McEntee, M; Hofvind, S; Denton, E; Kelly, J; Sarwar, J; Hogg, P

    2016-01-01

    Purpose: Mammographic density has been demonstrated to predict breast cancer risk. It has been proposed that it could be used for stratifying screening pathways and recommending additional imaging. Volumetric density tools use the recorded compressed breast thickness (CBT) of the breast measured at the x-ray unit in their calculation, however the accuracy of the recorded thickness can vary. The aim of this study was to investigate whether inaccuracies in recorded CBT impact upon volumetric de...

  3. LittleQuickWarp: an ultrafast image warping tool.

    Science.gov (United States)

    Qu, Lei; Peng, Hanchuan

    2015-02-01

    Warping images into a standard coordinate space is critical for many image computing related tasks. However, for multi-dimensional and high-resolution images, an accurate warping operation itself is often very expensive in terms of computer memory and computational time. For high-throughput image analysis studies such as brain mapping projects, it is desirable to have high performance image warping tools that are compatible with common image analysis pipelines. In this article, we present LittleQuickWarp, a swift and memory efficient tool that boosts 3D image warping performance dramatically and at the same time has high warping quality similar to the widely used thin plate spline (TPS) warping. Compared to the TPS, LittleQuickWarp can improve the warping speed 2-5 times and reduce the memory consumption 6-20 times. We have implemented LittleQuickWarp as an Open Source plug-in program on top of the Vaa3D system (http://vaa3d.org). The source code and a brief tutorial can be found in the Vaa3D plugin source code repository. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Bladder dose accumulation based on a biomechanical deformable image registration algorithm in volumetric modulated arc therapy for prostate cancer

    International Nuclear Information System (INIS)

    Andersen, E S; Muren, L P; Thor, M; Petersen, J B; Tanderup, K; Sørensen, T S; Noe, K Ø; Høyer, M; Bentzen, L

    2012-01-01

    Variations in bladder position, shape and volume cause uncertainties in the doses delivered to this organ during a course of radiotherapy for pelvic tumors. The purpose of this study was to evaluate the potential of dose accumulation based on repeat imaging and deformable image registration (DIR) to improve the accuracy of bladder dose assessment. For each of nine prostate cancer patients, the initial treatment plan was re-calculated on eight to nine repeat computed tomography (CT) scans. The planned bladder dose–volume histogram (DVH) parameters were compared to corresponding parameters derived from DIR-based accumulations as well as DVH summation based on dose re-calculations. It was found that the deviations between the DIR-based accumulations and the planned treatment were substantial and ranged (−0.5–2.3) Gy and (−9.4–13.5) Gy for D 2% and D mean , respectively, whereas the deviations between DIR-based accumulations and DVH summation were small and well within 1 Gy. For the investigated treatment scenario, DIR-based bladder dose accumulation did not result in substantial improvement of dose estimation as compared to the straightforward DVH summation. Large variations were found in individual patients between the doses from the initial treatment plan and the accumulated bladder doses. Hence, the use of repeat imaging has a potential for improved accuracy in treatment dose reporting. (paper)

  5. The cumulative verification image analysis tool for offline evaluation of portal images

    International Nuclear Information System (INIS)

    Wong, John; Yan Di; Michalski, Jeff; Graham, Mary; Halverson, Karen; Harms, William; Purdy, James

    1995-01-01

    Purpose: Daily portal images acquired using electronic portal imaging devices contain important information about the setup variation of the individual patient. The data can be used to evaluate the treatment and to derive correction for the individual patient. The large volume of images also require software tools for efficient analysis. This article describes the approach of cumulative verification image analysis (CVIA) specifically designed as an offline tool to extract quantitative information from daily portal images. Methods and Materials: The user interface, image and graphics display, and algorithms of the CVIA tool have been implemented in ANSCI C using the X Window graphics standards. The tool consists of three major components: (a) definition of treatment geometry and anatomical information; (b) registration of portal images with a reference image to determine setup variation; and (c) quantitative analysis of all setup variation measurements. The CVIA tool is not automated. User interaction is required and preferred. Successful alignment of anatomies on portal images at present remains mostly dependent on clinical judgment. Predefined templates of block shapes and anatomies are used for image registration to enhance efficiency, taking advantage of the fact that much of the tool's operation is repeated in the analysis of daily portal images. Results: The CVIA tool is portable and has been implemented on workstations with different operating systems. Analysis of 20 sequential daily portal images can be completed in less than 1 h. The temporal information is used to characterize setup variation in terms of its systematic, random and time-dependent components. The cumulative information is used to derive block overlap isofrequency distributions (BOIDs), which quantify the effective coverage of the prescribed treatment area throughout the course of treatment. Finally, a set of software utilities is available to facilitate feedback of the information for

  6. Clinical validation of semi-automated software for volumetric and dynamic contrast enhancement analysis of soft tissue venous malformations on magnetic resonance imaging examination

    Energy Technology Data Exchange (ETDEWEB)

    Caty, Veronique [Hopital Maisonneuve-Rosemont, Universite de Montreal, Department of Radiology, Montreal, QC (Canada); Kauffmann, Claude; Giroux, Marie-France; Oliva, Vincent; Therasse, Eric [Centre Hospitalier de l' Universite de Montreal (CHUM), Universite de Montreal and Research Centre, CHUM (CRCHUM), Department of Radiology, Montreal, QC (Canada); Dubois, Josee [Centre Hospitalier Universitaire Sainte-Justine et Universite de Montreal, Department of Radiology, Montreal, QC (Canada); Mansour, Asmaa [Institut de Cardiologie de Montreal, Heart Institute Coordinating Centre, Montreal, QC (Canada); Piche, Nicolas [Object Research System, Montreal, QC (Canada); Soulez, Gilles [Centre Hospitalier de l' Universite de Montreal (CHUM), Universite de Montreal and Research Centre, CHUM (CRCHUM), Department of Radiology, Montreal, QC (Canada); CHUM - Hopital Notre-Dame, Department of Radiology, Montreal, Quebec (Canada)

    2014-02-15

    To evaluate venous malformation (VM) volume and contrast-enhancement analysis on magnetic resonance imaging (MRI) compared with diameter evaluation. Baseline MRI was undertaken in 44 patients, 20 of whom were followed by MRI after sclerotherapy. All patients underwent short-tau inversion recovery (STIR) acquisitions and dynamic contrast assessment. VM diameters in three orthogonal directions were measured to obtain the largest and mean diameters. Volumetric reconstruction of VM was generated from two orthogonal STIR sequences and fused with acquisitions after contrast medium injection. Reproducibility (interclass correlation coefficients [ICCs]) of diameter and volume measurements was estimated. VM size variations in diameter and volume after sclerotherapy and contrast enhancement before sclerotherapy were compared in patients with clinical success or failure. Inter-observer ICCs were similar for diameter and volume measurements at baseline and follow-up (range 0.87-0.99). Higher percentages of size reduction after sclerotherapy were observed with volume (32.6 ± 30.7 %) than with diameter measurements (14.4 ± 21.4 %; P = 0.037). Contrast enhancement values were estimated at 65.3 ± 27.5 % and 84 ± 13 % in patients with clinical failure and success respectively (P = 0.056). Venous malformation volume was as reproducible as diameter measurement and more sensitive in detecting therapeutic responses. Patients with better clinical outcome tend to have stronger malformation enhancement. (orig.)

  7. Method for the calculation of volumetric fraction of retained austenite through the software for analysis of digital images

    International Nuclear Information System (INIS)

    Lombardo, S.; Costa, F.H.; Hashimoto, T.M.; Pereira, M.S.; Abdalla, A.J.

    2010-01-01

    In order to calculate the volume fraction of the retained austenite in aeronautic multiphase steels, it was used a digital analysis software for image processing. The materials studied were steels AISI 43XX with carbon content between 30, 40 and 50%, heat treated by conventional quenching and isothermal cooling in bainitic and intercritical region, characterized by optical microscopy, etching by reagent Sodium Metabisulfite (10%) for 30 seconds, with forced drying. The results were compared with the methods of X-Ray Diffraction and Magnetic Saturation through photomicrographs, showing that with this technic it is possible to quantify the percentage of retained austenite in the martensitic matrix, in the different types of steels. (author)

  8. An image-guided system for optimized volumetric treatment planning and execution for radiofrequency ablation of liver tumors

    Energy Technology Data Exchange (ETDEWEB)

    Banovac, F.; Popa, T.; Cheng, P.; Cleary, K. [Computer Aided Interventions and Medical Robotics (CAIMR), Imaging Science and Information Systems (ISIS) Center, Georgetown Univ. Medical Center, Washington, DC (United States); Abeledo, H.; Campos-Nanez, E. [Dept. of Engineering Management and System Engineering, George Washington Univ., Washington, DC (United States); Wood, B.J. [Diagnostic Radiology Dept., NIH Clinical Center, Bethesda, MD (United States)

    2007-06-15

    Radiofrequency ablation of liver tumors is becoming an increasingly popular option for the treatment of cancer. However, the procedure has several technical challenges, mostly associated with precision targeting of the tumor and ensuring complete ablation coverage. In this paper we describe an image-guided system that we are developing for improved visualization and probe placement during these procedures. The system will include a pre-procedure optimization module and an intra-procedure guidance component. The system concept is explained and some preliminary results are given. While this system is designed for radiofrequency ablation of liver tumors, the methods are applicable to other organs and treatment methods. (orig.)

  9. Towards an automatic tool for resolution evaluation of mammographic images

    Energy Technology Data Exchange (ETDEWEB)

    De Oliveira, J. E. E. [FUMEC, Av. Alfonso Pena 3880, CEP 30130-009 Belo Horizonte - MG (Brazil); Nogueira, M. S., E-mail: juliae@fumec.br [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Pte. Antonio Carlos 6627, 31270-901, Belo Horizonte - MG (Brazil)

    2014-08-15

    Quality of Mammographies from the Public and Private Services of the State. With an essentially educational character, an evaluation of the image quality is monthly held from a breast phantom in each mammographic equipment. In face of this, this work proposes to develop a protocol for automatic evaluation of image quality of mammograms so that the radiological protection and image quality requirements are met in the early detection of breast cancer. Specifically, image resolution will be addressed and evaluated, as a part of the program of image quality evaluation. Results show that for the fourth resolution and using 28 phantom images with the ground truth settled, the computer analysis of the resolution is promising and may be used as a tool for the assessment of the image quality. (Author)

  10. Towards an automatic tool for resolution evaluation of mammographic images

    International Nuclear Information System (INIS)

    De Oliveira, J. E. E.; Nogueira, M. S.

    2014-08-01

    Quality of Mammographies from the Public and Private Services of the State. With an essentially educational character, an evaluation of the image quality is monthly held from a breast phantom in each mammographic equipment. In face of this, this work proposes to develop a protocol for automatic evaluation of image quality of mammograms so that the radiological protection and image quality requirements are met in the early detection of breast cancer. Specifically, image resolution will be addressed and evaluated, as a part of the program of image quality evaluation. Results show that for the fourth resolution and using 28 phantom images with the ground truth settled, the computer analysis of the resolution is promising and may be used as a tool for the assessment of the image quality. (Author)

  11. Tools for automating the imaging of zebrafish larvae.

    Science.gov (United States)

    Pulak, Rock

    2016-03-01

    The VAST BioImager system is a set of tools developed for zebrafish researchers who require the collection of images from a large number of 2-7 dpf zebrafish larvae. The VAST BioImager automates larval handling, positioning and orientation tasks. Color images at about 10 μm resolution are collected from the on-board camera of the system. If images of greater resolution and detail are required, this system is mounted on an upright microscope, such as a confocal or fluorescence microscope, to utilize their capabilities. The system loads a larvae, positions it in view of the camera, determines orientation using pattern recognition analysis, and then more precisely positions to user-defined orientation for optimal imaging of any desired tissue or organ system. Multiple images of the same larva can be collected. The specific part of each larva and the desired orientation and position is identified by the researcher and an experiment defining the settings and a series of steps can be saved and repeated for imaging of subsequent larvae. The system captures images, then ejects and loads another larva from either a bulk reservoir, a well of a 96 well plate using the LP Sampler, or individually targeted larvae from a Petri dish or other container using the VAST Pipettor. Alternative manual protocols for handling larvae for image collection are tedious and time consuming. The VAST BioImager automates these steps to allow for greater throughput of assays and screens requiring high-content image collection of zebrafish larvae such as might be used in drug discovery and toxicology studies. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  12. SU-D-18A-02: Towards Real-Time On-Board Volumetric Image Reconstruction for Intrafraction Target Verification in Radiation Therapy

    International Nuclear Information System (INIS)

    Xu, X; Iliopoulos, A; Zhang, Y; Pitsianis, N; Sun, X; Yin, F; Ren, L

    2014-01-01

    Purpose: To expedite on-board volumetric image reconstruction from limited-angle kV—MV projections for intrafraction verification. Methods: A limited-angle intrafraction verification (LIVE) system has recently been developed for real-time volumetric verification of moving targets, using limited-angle kV—MV projections. Currently, it is challenged by the intensive computational load of the prior-knowledge-based reconstruction method. To accelerate LIVE, we restructure the software pipeline to make it adaptable to model and algorithm parameter changes, while enabling efficient utilization of rapidly advancing, modern computer architectures. In particular, an innovative two-level parallelization scheme has been designed: At the macroscopic level, data and operations are adaptively partitioned, taking into account algorithmic parameters and the processing capacity or constraints of underlying hardware. The control and data flows of the pipeline are scheduled in such a way as to maximize operation concurrency and minimize total processing time. At the microscopic level, the partitioned functions act as independent modules, operating on data partitions in parallel. Each module is pre-parallelized and optimized for multi-core processors (CPUs) and graphics processing units (GPUs). Results: We present results from a parallel prototype, where most of the controls and module parallelization are carried out via Matlab and its Parallel Computing Toolbox. The reconstruction is 5 times faster on a data-set of twice the size, compared to recently reported results, without compromising on algorithmic optimization control. Conclusion: The prototype implementation and its results have served to assess the efficacy of our system concept. While a production implementation will yield much higher processing rates by approaching full-capacity utilization of CPUs and GPUs, some mutual constraints between algorithmic flow and architecture specifics remain. Based on a careful analysis

  13. Volumetric Single-Beat Coronary Computed Tomography Angiography: Relationship of Image Quality, Heart Rate, and Body Mass Index. Initial Patient Experience With a New Computed Tomography Scanner.

    Science.gov (United States)

    Latif, Muhammad Aamir; Sanchez, Frank W; Sayegh, Karl; Veledar, Emir; Aziz, Muhammad; Malik, Rehan; Haider, Imran; Agatston, Arthur S; Batlle, Juan C; Janowitz, Warren; Peña, Constantino; Ziffer, Jack A; Nasir, Khurram; Cury, Ricardo C

    2016-01-01

    Cardiac computed tomography (CT) image quality (IQ) is very important for accurate diagnosis. We propose to evaluate IQ expressed as Likert scale, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) from coronary CT angiography images acquired with a new volumetric single-beat CT scanner on consecutive patients and assess the IQ dependence on heart rate (HR) and body mass index (BMI). We retrospectively analyzed the data of the first 439 consecutive patients (mean age, 55.13 [SD, 12.1] years; 51.47% male), who underwent noninvasive coronary CT angiography in a new single-beat volumetric CT scanner (Revolution CT) to evaluate chest pain at West Kendall Baptist Hospital. Based on patient BMI (mean, 29.43 [SD, 5.81] kg/m), the kVp (kilovolt potential) value and tube current were adjusted within a range of 80 to 140 kVp and 122 to 720 mA, respectively. Each scan was performed in a single-beat acquisition within 1 cardiac cycle, regardless of the HR. Motion correction software (SnapShot Freeze) was used for correcting motion artifacts in patients with higher HRs. Autogating was used to automatically acquire systolic and diastolic phases for higher HRs with electrocardiographic milliampere dose modulation. Image quality was assessed qualitatively by Likert scale and quantitatively by SNR and CNR for the 4 major vessels right coronary, left main, left anterior descending, and left circumflex arteries on axial and multiplanar reformatted images. Values for Likert scale were as follows: 1, nondiagnostic; 2, poor; 3, good; 4, very good; and 5, excellent. Signal-to-noise ratio and CNR were calculated from the average 2 CT attenuation values within regions of interest placed in the proximal left main and proximal right coronary artery. For contrast comparison, a region of interest was selected from left ventricular wall at midcavity level using a dedicated workstation. We divided patients in 2 groups related to the HR: less than or equal to 70 beats/min (bpm) and

  14. Imaging tools to measure treatment response in gout.

    Science.gov (United States)

    Dalbeth, Nicola; Doyle, Anthony J

    2018-01-01

    Imaging tests are in clinical use for diagnosis, assessment of disease severity and as a marker of treatment response in people with gout. Various imaging tests have differing properties for assessing the three key disease domains in gout: urate deposition (including tophus burden), joint inflammation and structural joint damage. Dual-energy CT allows measurement of urate deposition and bone damage, and ultrasonography allows assessment of all three domains. Scoring systems have been described that allow radiological quantification of disease severity and these scoring systems may play a role in assessing the response to treatment in gout. This article reviews the properties of imaging tests, describes the available scoring systems for quantification of disease severity and discusses the challenges and controversies regarding the use of imaging tools to measure treatment response in gout. © The Author 2018. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. GANALYZER: A TOOL FOR AUTOMATIC GALAXY IMAGE ANALYSIS

    International Nuclear Information System (INIS)

    Shamir, Lior

    2011-01-01

    We describe Ganalyzer, a model-based tool that can automatically analyze and classify galaxy images. Ganalyzer works by separating the galaxy pixels from the background pixels, finding the center and radius of the galaxy, generating the radial intensity plot, and then computing the slopes of the peaks detected in the radial intensity plot to measure the spirality of the galaxy and determine its morphological class. Unlike algorithms that are based on machine learning, Ganalyzer is based on measuring the spirality of the galaxy, a task that is difficult to perform manually, and in many cases can provide a more accurate analysis compared to manual observation. Ganalyzer is simple to use, and can be easily embedded into other image analysis applications. Another advantage is its speed, which allows it to analyze ∼10,000,000 galaxy images in five days using a standard modern desktop computer. These capabilities can make Ganalyzer a useful tool in analyzing large data sets of galaxy images collected by autonomous sky surveys such as SDSS, LSST, or DES. The software is available for free download at http://vfacstaff.ltu.edu/lshamir/downloads/ganalyzer, and the data used in the experiment are available at http://vfacstaff.ltu.edu/lshamir/downloads/ganalyzer/GalaxyImages.zip.

  16. Ganalyzer: A Tool for Automatic Galaxy Image Analysis

    Science.gov (United States)

    Shamir, Lior

    2011-08-01

    We describe Ganalyzer, a model-based tool that can automatically analyze and classify galaxy images. Ganalyzer works by separating the galaxy pixels from the background pixels, finding the center and radius of the galaxy, generating the radial intensity plot, and then computing the slopes of the peaks detected in the radial intensity plot to measure the spirality of the galaxy and determine its morphological class. Unlike algorithms that are based on machine learning, Ganalyzer is based on measuring the spirality of the galaxy, a task that is difficult to perform manually, and in many cases can provide a more accurate analysis compared to manual observation. Ganalyzer is simple to use, and can be easily embedded into other image analysis applications. Another advantage is its speed, which allows it to analyze ~10,000,000 galaxy images in five days using a standard modern desktop computer. These capabilities can make Ganalyzer a useful tool in analyzing large data sets of galaxy images collected by autonomous sky surveys such as SDSS, LSST, or DES. The software is available for free download at http://vfacstaff.ltu.edu/lshamir/downloads/ganalyzer, and the data used in the experiment are available at http://vfacstaff.ltu.edu/lshamir/downloads/ganalyzer/GalaxyImages.zip.

  17. Open source tools for standardized privacy protection of medical images

    Science.gov (United States)

    Lien, Chung-Yueh; Onken, Michael; Eichelberg, Marco; Kao, Tsair; Hein, Andreas

    2011-03-01

    In addition to the primary care context, medical images are often useful for research projects and community healthcare networks, so-called "secondary use". Patient privacy becomes an issue in such scenarios since the disclosure of personal health information (PHI) has to be prevented in a sharing environment. In general, most PHIs should be completely removed from the images according to the respective privacy regulations, but some basic and alleviated data is usually required for accurate image interpretation. Our objective is to utilize and enhance these specifications in order to provide reliable software implementations for de- and re-identification of medical images suitable for online and offline delivery. DICOM (Digital Imaging and Communications in Medicine) images are de-identified by replacing PHI-specific information with values still being reasonable for imaging diagnosis and patient indexing. In this paper, this approach is evaluated based on a prototype implementation built on top of the open source framework DCMTK (DICOM Toolkit) utilizing standardized de- and re-identification mechanisms. A set of tools has been developed for DICOM de-identification that meets privacy requirements of an offline and online sharing environment and fully relies on standard-based methods.

  18. Compression-Based Tools for Navigation with an Image Database

    Directory of Open Access Journals (Sweden)

    Giovanni Motta

    2012-01-01

    Full Text Available We present tools that can be used within a larger system referred to as a passive assistant. The system receives information from a mobile device, as well as information from an image database such as Google Street View, and employs image processing to provide useful information about a local urban environment to a user who is visually impaired. The first stage acquires and computes accurate location information, the second stage performs texture and color analysis of a scene, and the third stage provides specific object recognition and navigation information. These second and third stages rely on compression-based tools (dimensionality reduction, vector quantization, and coding that are enhanced by knowledge of (approximate location of objects.

  19. An online database for plant image analysis software tools

    OpenAIRE

    Lobet, Guillaume; Draye, Xavier; Périlleux, Claire

    2013-01-01

    Background: Recent years have seen an increase in methods for plant phenotyping using image analyses. These methods require new software solutions for data extraction and treatment. These solutions are instrumental in supporting various research pipelines, ranging from the localisation of cellular compounds to the quantification of tree canopies. However, due to the variety of existing tools and the lack of central repository, it is challenging for researchers to identify the software that is...

  20. Imaging tools to study pharmacology: functional MRI on small rodents

    OpenAIRE

    Elisabeth eJonckers; Disha eShah; Julie eHamaide; Marleen eVerhoye; Annemie eVan Der Linden

    2015-01-01

    Functional Magnetic Resonance Imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sensory stimu...

  1. Democratization of Nanoscale Imaging and Sensing Tools Using Photonics.

    Science.gov (United States)

    McLeod, Euan; Wei, Qingshan; Ozcan, Aydogan

    2015-07-07

    Providing means for researchers and citizen scientists in the developing world to perform advanced measurements with nanoscale precision can help to accelerate the rate of discovery and invention as well as improve higher education and the training of the next generation of scientists and engineers worldwide. Here, we review some of the recent progress toward making optical nanoscale measurement tools more cost-effective, field-portable, and accessible to a significantly larger group of researchers and educators. We divide our review into two main sections: label-based nanoscale imaging and sensing tools, which primarily involve fluorescent approaches, and label-free nanoscale measurement tools, which include light scattering sensors, interferometric methods, photonic crystal sensors, and plasmonic sensors. For each of these areas, we have primarily focused on approaches that have either demonstrated operation outside of a traditional laboratory setting, including for example integration with mobile phones, or exhibited the potential for such operation in the near future.

  2. Adaptive controller for volumetric display of neuroimaging studies

    Science.gov (United States)

    Bleiberg, Ben; Senseney, Justin; Caban, Jesus

    2014-03-01

    Volumetric display of medical images is an increasingly relevant method for examining an imaging acquisition as the prevalence of thin-slice imaging increases in clinical studies. Current mouse and keyboard implementations for volumetric control provide neither the sensitivity nor specificity required to manipulate a volumetric display for efficient reading in a clinical setting. Solutions to efficient volumetric manipulation provide more sensitivity by removing the binary nature of actions controlled by keyboard clicks, but specificity is lost because a single action may change display in several directions. When specificity is then further addressed by re-implementing hardware binary functions through the introduction of mode control, the result is a cumbersome interface that fails to achieve the revolutionary benefit required for adoption of a new technology. We address the specificity versus sensitivity problem of volumetric interfaces by providing adaptive positional awareness to the volumetric control device by manipulating communication between hardware driver and existing software methods for volumetric display of medical images. This creates a tethered effect for volumetric display, providing a smooth interface that improves on existing hardware approaches to volumetric scene manipulation.

  3. Magnetic Resonance Imaging and Volumetric Analysis: Novel Tools to Study Thyroid Hormone Disruption and Its Effect on White Matter Development

    Science.gov (United States)

    Humans and wildlife are exposed to environmental pollutants that have been shown to interfere with the thyroid hormone system and thus may affect brain development. Our goal was to expose pregnant rats to propylthiouracil (PTU) to measure the effects of a goitrogen on white matte...

  4. The Insight ToolKit Image Registration Framework

    Directory of Open Access Journals (Sweden)

    Brian eAvants

    2014-04-01

    Full Text Available Publicly available scientific resources help establish evaluation standards, provide a platform for teaching and improve reproducibility. Version 4 of the Insight ToolKit ( ITK4 seeks to es- tablish new standards in publicly available image registration methodology. ITK4 makes severaladvances in comparison to previous versions of ITK. ITK4 supports both multivariate images and objective functions; it also unifies high-dimensional (deformation field and low-dimensional (affine transformations with metrics that are reusable across transform types and with com- posite transforms that allow arbitrary series of geometric mappings to be chained together seamlessly. Metrics and optimizers take advantage of multi-core resources, when available.Furthermore, ITK4 reduces the parameter optimization burden via principled heuristics that automatically set scaling across disparate parameter types (rotations versus translations. A related approach also constrains steps sizes for gradient-based optimizers. The result is that tuning for different metrics and/or image pairs is rarely necessary allowing the researcher tomore easily focus on design/comparison of registration strategies. In total, the ITK4 contribu- tion is intended as a structure to support reproducible research practices, will provide a more extensive foundation against which to evaluate new work in image registration and also enable application level programmers a broad suite of tools on which to build. Finally, we contextu- alize this work with a reference registration evaluation study with application to pediatric brainlabeling.

  5. Diffuse reflectance imaging: a tool for guided biopsy

    Science.gov (United States)

    Jayanthi, Jayaraj L.; Subhash, Narayanan; Manju, Stephen; Nisha, Unni G.; Beena, Valappil T.

    2012-01-01

    Accurate diagnosis of premalignant or malignant oral lesions depends on the quality of the biopsy, adequate clinical information and correct interpretation of the biopsy results. The major clinical challenge is to precisely locate the biopsy site in a clinically suspicious lesion. Dips due to oxygenated hemoglobin absorption have been noticed at 545 and 575 nm in the diffusely reflected white light spectra of oral mucosa and the intensity ratio R545/R575 has been found suited for early detection of oral pre-cancers. A multi-spectral diffuse reflectance (DR) imaging system has been developed consisting of an electron multiplying charge coupled device (EMCCD) camera and a liquid crystal tunable filter for guiding the clinician to an optimal biopsy site. Towards this DR images were recorded from 27 patients with potentially malignant lesions on their tongue (dorsal, lateral and ventral sides) and from 44 healthy controls at 545 and 575 nm with the DR imaging system. False colored ratio image R545/R575 of the lesion provides a visual discerning capability that helps in locating the most malignant site for biopsy. Histopathological report of guided biopsy showed that out of the 27 patients 16 were cancers, 9 pre-cancers and 2 lichen planus. In this clinical trial DR imaging has correctly guided 25 biopsy sites, yielding a sensitivity of 93% and a specificity of 98%, thereby establishing the potential of DR imaging as a tool for guided biopsy.

  6. Quantification of the volumetric benefit of image-guided radiotherapy (I.G.R.T.) in prostate cancer: Margins and presence probability map

    International Nuclear Information System (INIS)

    Cazoulat, G.; Crevoisier, R. de; Simon, A.; Louvel, G.; Manens, J.P.; Haigron, P.; Crevoisier, R. de; Louvel, G.; Manens, J.P.; Lafond, C.

    2009-01-01

    Purpose: To quantify the prostate and seminal vesicles (S.V.) anatomic variations in order to choose appropriate margins including intrapelvic anatomic variations. To quantify volumetric benefit of image-guided radiotherapy (I.G.R.T.). Patients and methods: Twenty patients, receiving a total dose of 70 Gy in the prostate, had a planning CT scan and eight weekly CT scans during treatment. Prostate and S.V. were manually contoured. Each weekly CT scan was registered to the planning CT scan according to three modalities: radiopaque skin marks, pelvis bone or prostate. For each patient, prostate and S.V. displacements were quantified. 3-dimensional maps of prostate and S.V. presence probability were established. Volumes including minimal presence probabilities were compared between the three modalities of registration. Result: For the prostate intrapelvic displacements, systematic and random variations and maximal displacements for the entire population were: 5 mm, 2.7 mm and 16.5 mm in anteroposterior axis; 2.7 mm, 2.4 mm and 11.4 mm in supero-inferior axis and 0.5 mm, 0.8 mm and 3.3 mm laterally. Margins according to van Herk recipe (to cover the prostate for 90% of the patients with the 95% isodose) were: 8 mm, 8.3 mm and 1.9 mm, respectively. The 100% prostate presence probability volumes correspond to 37%, 50% and 61% according to the registration modality. For the S.V., these volumes correspond to 8%, 14% and 18% of the S.V. volume. Conclusions: Without I.G.R.T., 5 mm prostate posterior margins are insufficient and should be at least 8 mm, to account for intrapelvic anatomic variations. Prostate registration almost doubles the 100% presence probability volume compared to skin registration. Deformation of S.V. will require either to increase dramatically margins (simple) or new planning (not realistic). (authors)

  7. Histomorphometric analysis of nuclear and cellular volumetric alterations in oral lichen planus, lichenoid lesions and normal oral mucosa using image analysis software.

    Science.gov (United States)

    Venkatesiah, Sowmya S; Kale, Alka D; Hallikeremath, Seema R; Kotrashetti, Vijayalakshmi S

    2013-01-01

    Lichen planus is a chronic inflammatory mucocutaneous disease that clinically and histologically resembles lichenoid lesions, although the latter has a different etiology. Though criteria have been suggested for differentiating oral lichen planus from lichenoid lesions, confusion still prevails. To study the cellular and nuclear volumetric features in the epithelium of normal mucosa, lichen planus, and lichenoid lesions to determine variations if any. A retrospective study was done on 25 histologically diagnosed cases each of oral lichen planus, oral lichenoid lesions, and normal oral mucosa. Cellular and nuclear morphometric measurements were assessed on hematoxylin and eosin sections using image analysis software. Analysis of variance test (ANOVA) and Tukey's post-hoc test. The basal cells of oral lichen planus showed a significant increase in the mean nuclear and cellular areas, and in nuclear volume; there was a significant decrease in the nuclear-cytoplasmic ratio as compared to normal mucosa. The suprabasal cells showed a significant increase in nuclear and cellular areas, nuclear diameter, and nuclear and cellular volumes as compared to normal mucosa. The basal cells of oral lichenoid lesions showed significant difference in the mean cellular area and the mean nuclear-cytoplasmic ratio as compared to normal mucosa, whereas the suprabasal cells differed significantly from normal mucosa in the mean nuclear area and the nuclear and cellular volumes. Morphometry can differentiate lesions of oral lichen planus and oral lichenoid lesions from normal oral mucosa. Thus, morphometry may serve to discriminate between normal and premalignant lichen planus and lichenoid lesions. These lesions might have a high risk for malignant transformation and may behave in a similar manner with respect to malignant transformation.

  8. Antibiogramj: A tool for analysing images from disk diffusion tests.

    Science.gov (United States)

    Alonso, C A; Domínguez, C; Heras, J; Mata, E; Pascual, V; Torres, C; Zarazaga, M

    2017-05-01

    Disk diffusion testing, known as antibiogram, is widely applied in microbiology to determine the antimicrobial susceptibility of microorganisms. The measurement of the diameter of the zone of growth inhibition of microorganisms around the antimicrobial disks in the antibiogram is frequently performed manually by specialists using a ruler. This is a time-consuming and error-prone task that might be simplified using automated or semi-automated inhibition zone readers. However, most readers are usually expensive instruments with embedded software that require significant changes in laboratory design and workflow. Based on the workflow employed by specialists to determine the antimicrobial susceptibility of microorganisms, we have designed a software tool that, from images of disk diffusion tests, semi-automatises the process. Standard computer vision techniques are employed to achieve such an automatisation. We present AntibiogramJ, a user-friendly and open-source software tool to semi-automatically determine, measure and categorise inhibition zones of images from disk diffusion tests. AntibiogramJ is implemented in Java and deals with images captured with any device that incorporates a camera, including digital cameras and mobile phones. The fully automatic procedure of AntibiogramJ for measuring inhibition zones achieves an overall agreement of 87% with an expert microbiologist; moreover, AntibiogramJ includes features to easily detect when the automatic reading is not correct and fix it manually to obtain the correct result. AntibiogramJ is a user-friendly, platform-independent, open-source, and free tool that, up to the best of our knowledge, is the most complete software tool for antibiogram analysis without requiring any investment in new equipment or changes in the laboratory. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Volumetric expiratory high-resolution CT of the lung

    International Nuclear Information System (INIS)

    Nishino, Mizuki; Hatabu, Hiroto

    2004-01-01

    We developed a volumetric expiratory high-resolution CT (HRCT) protocol that provides combined inspiratory and expiratory volumetric imaging of the lung without increasing radiation exposure, and conducted a preliminary feasibility assessment of this protocol to evaluate diffuse lung disease with small airway abnormalities. The volumetric expiratory high-resolution CT increased the detectability of the conducting airway to the areas of air trapping (P<0.0001), and added significant information about extent and distribution of air trapping (P<0.0001)

  10. Monitoring Active Volcanos Using Aerial Images and the Orthoview Tool

    Directory of Open Access Journals (Sweden)

    Maria Marsella

    2014-12-01

    Full Text Available In volcanic areas, where it can be difficult to perform direct surveys, digital photogrammetry techniques are rarely adopted for routine volcano monitoring. Nevertheless, they have remarkable potentialities for observing active volcanic features (e.g., fissures, lava flows and the connected deformation processes. The ability to obtain accurate quantitative data of definite accuracy in short time spans makes digital photogrammetry a suitable method for controlling the evolution of rapidly changing large-area volcanic phenomena. The systematic acquisition of airborne photogrammetric datasets can be adopted for implementing a more effective procedure aimed at long-term volcano monitoring and hazard assessment. In addition, during the volcanic crisis, the frequent acquisition of oblique digital images from helicopter allows for quasi-real-time monitoring to support mitigation actions by civil protection. These images are commonly used to update existing maps through a photo-interpretation approach that provide data of unknown accuracy. This work presents a scientific tool (Orthoview that implements a straightforward photogrammetric approach to generate digital orthophotos from single-view oblique images provided that at least four Ground Control Points (GCP and current Digital Elevation Models (DEM are available. The influence of the view geometry, of sparse and not-signalized GCP and DEM inaccuracies is analyzed for evaluating the performance of the developed tool in comparison with other remote sensing techniques. Results obtained with datasets from Etna and Stromboli volcanoes demonstrate that 2D features measured on the produced orthophotos can reach sub-meter-level accuracy.

  11. Semi-automated volumetric analysis of artificial lymph nodes in a phantom study

    International Nuclear Information System (INIS)

    Fabel, M.; Biederer, J.; Jochens, A.; Bornemann, L.; Soza, G.; Heller, M.; Bolte, H.

    2011-01-01

    Purpose: Quantification of tumour burden in oncology requires accurate and reproducible image evaluation. The current standard is one-dimensional measurement (e.g. RECIST) with inherent disadvantages. Volumetric analysis is discussed as an alternative for therapy monitoring of lung and liver metastases. The aim of this study was to investigate the accuracy of semi-automated volumetric analysis of artificial lymph node metastases in a phantom study. Materials and methods: Fifty artificial lymph nodes were produced in a size range from 10 to 55 mm; some of them enhanced using iodine contrast media. All nodules were placed in an artificial chest phantom (artiCHEST ® ) within different surrounding tissues. MDCT was performed using different collimations (1–5 mm) at varying reconstruction kernels (B20f, B40f, B60f). Volume and RECIST measurements were performed using Oncology Software (Siemens Healthcare, Forchheim, Germany) and were compared to reference volume and diameter by calculating absolute percentage errors. Results: The software performance allowed a robust volumetric analysis in a phantom setting. Unsatisfying segmentation results were frequently found for native nodules within surrounding muscle. The absolute percentage error (APE) for volumetric analysis varied between 0.01 and 225%. No significant differences were seen between different reconstruction kernels. The most unsatisfactory segmentation results occurred in higher slice thickness (4 and 5 mm). Contrast enhanced lymph nodes showed better segmentation results by trend. Conclusion: The semi-automated 3D-volumetric analysis software tool allows a reliable and convenient segmentation of artificial lymph nodes in a phantom setting. Lymph nodes adjacent to tissue of similar density cause segmentation problems. For volumetric analysis of lymph node metastases in clinical routine a slice thickness of ≤3 mm and a medium soft reconstruction kernel (e.g. B40f for Siemens scan systems) may be a suitable

  12. Daily Megavoltage Computed Tomography in Lung Cancer Radiotherapy: Correlation Between Volumetric Changes and Local Outcome

    International Nuclear Information System (INIS)

    Bral, Samuel; De Ridder, Mark; Duchateau, Michael; Gevaert, Thierry; Engels, Benedikt; Schallier, Denis; Storme, Guy

    2011-01-01

    Purpose: To assess the predictive or comparative value of volumetric changes, measured on daily megavoltage computed tomography during radiotherapy for lung cancer. Patients and Methods: We included 80 patients with locally advanced non-small-cell lung cancer treated with image-guided intensity-modulated radiotherapy. The radiotherapy was combined with concurrent chemotherapy, combined with induction chemotherapy, or given as primary treatment. Patients entered two parallel studies with moderately hypofractionated radiotherapy. Tumor volume contouring was done on the daily acquired images. A regression coefficient was derived from the volumetric changes on megavoltage computed tomography, and its predictive value was validated. Logarithmic or polynomial fits were applied to the intratreatment changes to compare the different treatment schedules radiobiologically. Results: Regardless of the treatment type, a high regression coefficient during radiotherapy predicted for a significantly prolonged cause-specific local progression free-survival (p = 0.05). Significant differences were found in the response during radiotherapy. The significant difference in volumetric treatment response between radiotherapy with concurrent chemotherapy and radiotherapy plus induction chemotherapy translated to a superior long-term local progression-free survival for concurrent chemotherapy (p = 0.03). An enhancement ratio of 1.3 was measured for the used platinum/taxane doublet in comparison with radiotherapy alone. Conclusion: Contouring on daily megavoltage computed tomography images during radiotherapy enabled us to predict the efficacy of a given treatment. The significant differences in volumetric response between treatment strategies makes it a possible tool for future schedule comparison.

  13. Synchrotron radiation imaging is a powerful tool to image brain microvasculature

    International Nuclear Information System (INIS)

    Zhang, Mengqi; Sun, Danni; Xie, Yuanyuan; Xia, Jian; Long, Hongyu; Hu, Kai; Xiao, Bo; Peng, Guanyun

    2014-01-01

    Synchrotron radiation (SR) imaging is a powerful experimental tool for micrometer-scale imaging of microcirculation in vivo. This review discusses recent methodological advances and findings from morphological investigations of cerebral vascular networks during several neurovascular pathologies. In particular, it describes recent developments in SR microangiography for real-time assessment of the brain microvasculature under various pathological conditions in small animal models. It also covers studies that employed SR-based phase-contrast imaging to acquire 3D brain images and provide detailed maps of brain vasculature. In addition, a brief introduction of SR technology and current limitations of SR sources are described in this review. In the near future, SR imaging could transform into a common and informative imaging modality to resolve subtle details of cerebrovascular function

  14. Synchrotron radiation imaging is a powerful tool to image brain microvasculature

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Mengqi; Sun, Danni; Xie, Yuanyuan; Xia, Jian; Long, Hongyu; Hu, Kai; Xiao, Bo, E-mail: csuxiaobo123456@163.com [Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Peng, Guanyun [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2014-03-15

    Synchrotron radiation (SR) imaging is a powerful experimental tool for micrometer-scale imaging of microcirculation in vivo. This review discusses recent methodological advances and findings from morphological investigations of cerebral vascular networks during several neurovascular pathologies. In particular, it describes recent developments in SR microangiography for real-time assessment of the brain microvasculature under various pathological conditions in small animal models. It also covers studies that employed SR-based phase-contrast imaging to acquire 3D brain images and provide detailed maps of brain vasculature. In addition, a brief introduction of SR technology and current limitations of SR sources are described in this review. In the near future, SR imaging could transform into a common and informative imaging modality to resolve subtle details of cerebrovascular function.

  15. Comparison of radiation dose estimates, image noise, and scan duration in pediatric body imaging for volumetric and helical modes on 320-detector CT and helical mode on 64-detector CT

    International Nuclear Information System (INIS)

    Johnston, Jennifer H.; Podberesky, Daniel J.; Larson, David B.; Alsip, Christopher; Yoshizumi, Terry T.; Angel, Erin; Barelli, Alessandra; Toncheva, Greta; Egelhoff, John C.; Anderson-Evans, Colin; Nguyen, Giao B.; Frush, Donald P.; Salisbury, Shelia R.

    2013-01-01

    Advanced multidetector CT systems facilitate volumetric image acquisition, which offers theoretic dose savings over helical acquisition with shorter scan times. Compare effective dose (ED), scan duration and image noise using 320- and 64-detector CT scanners in various acquisition modes for clinical chest, abdomen and pelvis protocols. ED and scan durations were determined for 64-detector helical, 160-detector helical and volume modes under chest, abdomen and pelvis protocols on 320-detector CT with adaptive collimation and 64-detector helical mode on 64-detector CT without adaptive collimation in a phantom representing a 5-year-old child. Noise was measured as standard deviation of Hounsfield units. Compared to 64-detector helical CT, all acquisition modes on 320-detector CT resulted in lower ED and scan durations. Dose savings were greater for chest (27-46%) than abdomen/pelvis (18-28%) and chest/abdomen/pelvis imaging (8-14%). Noise was similar across scanning modes, although some protocols on 320-detector CT produced slightly higher noise. Dose savings can be achieved for chest, abdomen/pelvis and chest/abdomen/pelvis examinations on 320-detector CT compared to helical acquisition on 64-detector CT, with shorter scan durations. Although noise differences between some modes reached statistical significance, this is of doubtful diagnostic significance and will be studied further in a clinical setting. (orig.)

  16. Magnetic imaging: a new tool for UK national nuclear security.

    Science.gov (United States)

    Darrer, Brendan J; Watson, Joe C; Bartlett, Paul; Renzoni, Ferruccio

    2015-01-22

    Combating illicit trafficking of Special Nuclear Material may require the ability to image through electromagnetic shields. This is the case when the trafficking involves cargo containers. Thus, suitable detection techniques are required to penetrate a ferromagnetic enclosure. The present study considers techniques that employ an electromagnetic based principle of detection. It is generally assumed that a ferromagnetic metallic enclosure will effectively act as a Faraday cage to electromagnetic radiation and therefore screen any form of interrogating electromagnetic radiation from penetrating, thus denying the detection of any eventual hidden material. In contrast, we demonstrate that it is actually possible to capture magnetic images of a conductive object through a set of metallic ferromagnetic enclosures. This validates electromagnetic interrogation techniques as a potential detection tool for National Nuclear Security applications.

  17. Magnetic Imaging: a New Tool for UK National Nuclear Security

    Science.gov (United States)

    Darrer, Brendan J.; Watson, Joe C.; Bartlett, Paul; Renzoni, Ferruccio

    2015-01-01

    Combating illicit trafficking of Special Nuclear Material may require the ability to image through electromagnetic shields. This is the case when the trafficking involves cargo containers. Thus, suitable detection techniques are required to penetrate a ferromagnetic enclosure. The present study considers techniques that employ an electromagnetic based principle of detection. It is generally assumed that a ferromagnetic metallic enclosure will effectively act as a Faraday cage to electromagnetic radiation and therefore screen any form of interrogating electromagnetic radiation from penetrating, thus denying the detection of any eventual hidden material. In contrast, we demonstrate that it is actually possible to capture magnetic images of a conductive object through a set of metallic ferromagnetic enclosures. This validates electromagnetic interrogation techniques as a potential detection tool for National Nuclear Security applications.

  18. Image quality, radiation dose and diagnostic accuracy of 70 kVp whole brain volumetric CT perfusion imaging: a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xiao Kun; Ni, Qian Qian; Zhou, Chang Sheng; Chen, Guo Zhong; Luo, Song; Zhang, Long Jiang; Lu, Guang Ming [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Schoepf, U.J. [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Medical University of South Carolina, Ashley River Tower, Division of Cardiovascular Imaging, Charleston, SC (United States); Fuller, Stephen R.; De Cecco, Carlo N. [Medical University of South Carolina, Ashley River Tower, Division of Cardiovascular Imaging, Charleston, SC (United States)

    2016-11-15

    To evaluate image quality and diagnostic accuracy for acute infarct detection and radiation dose of 70 kVp whole brain CT perfusion (CTP) and CT angiography (CTA) reconstructed from CTP source data. Patients were divided into three groups (n = 50 each): group A, 80 kVp, 21 scanning time points; groups B, 70 kVp, 21 scanning time points; group C, 70 kVp, 17 scanning time points. Objective and subjective image quality of CTP and CTA were compared. Diagnostic accuracy for detecting acute infarct and cerebral artery stenosis ≥ 50 % was calculated for CTP and CTA with diffusion weighted imaging and digital subtraction angiography as reference standards. Effective radiation dose was compared. There were no differences in any perfusion parameter value between three groups (P > 0.05). No difference was found in subjective image quality between three groups (P > 0.05). Diagnostic accuracy for detecting acute infarct and vascular stenosis showed no difference between three groups (P > 0.05). Compared with group A, radiation doses of groups B and C were decreased by 28 % and 37 % (both P < 0.001), respectively. Compared with 80 kVp protocol, 70 kVp brain CTP allows comparable vascular and perfusion assessment and lower radiation dose while maintaining high diagnostic accuracy in detecting acute infarct. (orig.)

  19. Techniques for virtual lung nodule insertion: volumetric and morphometric comparison of projection-based and image-based methods for quantitative CT

    Science.gov (United States)

    Robins, Marthony; Solomon, Justin; Sahbaee, Pooyan; Sedlmair, Martin; Choudhury, Kingshuk Roy; Pezeshk, Aria; Sahiner, Berkman; Samei, Ehsan

    2017-09-01

    Virtual nodule insertion paves the way towards the development of standardized databases of hybrid CT images with known lesions. The purpose of this study was to assess three methods (an established and two newly developed techniques) for inserting virtual lung nodules into CT images. Assessment was done by comparing virtual nodule volume and shape to the CT-derived volume and shape of synthetic nodules. 24 synthetic nodules (three sizes, four morphologies, two repeats) were physically inserted into the lung cavity of an anthropomorphic chest phantom (KYOTO KAGAKU). The phantom was imaged with and without nodules on a commercial CT scanner (SOMATOM Definition Flash, Siemens) using a standard thoracic CT protocol at two dose levels (1.4 and 22 mGy CTDIvol). Raw projection data were saved and reconstructed with filtered back-projection and sinogram affirmed iterative reconstruction (SAFIRE, strength 5) at 0.6 mm slice thickness. Corresponding 3D idealized, virtual nodule models were co-registered with the CT images to determine each nodule’s location and orientation. Virtual nodules were voxelized, partial volume corrected, and inserted into nodule-free CT data (accounting for system imaging physics) using two methods: projection-based Technique A, and image-based Technique B. Also a third Technique C based on cropping a region of interest from the acquired image of the real nodule and blending it into the nodule-free image was tested. Nodule volumes were measured using a commercial segmentation tool (iNtuition, TeraRecon, Inc.) and deformation was assessed using the Hausdorff distance. Nodule volumes and deformations were compared between the idealized, CT-derived and virtual nodules using a linear mixed effects regression model which utilized the mean, standard deviation, and coefficient of variation (Mea{{n}RHD} , ST{{D}RHD} and C{{V}RHD}{) }~ of the regional Hausdorff distance. Overall, there was a close concordance between the volumes of the CT-derived and

  20. Short-term mechanisms influencing volumetric brain dynamics

    Directory of Open Access Journals (Sweden)

    Nikki Dieleman

    2017-01-01

    Full Text Available With the use of magnetic resonance imaging (MRI and brain analysis tools, it has become possible to measure brain volume changes up to around 0.5%. Besides long-term brain changes caused by atrophy in aging or neurodegenerative disease, short-term mechanisms that influence brain volume may exist. When we focus on short-term changes of the brain, changes may be either physiological or pathological. As such determining the cause of volumetric dynamics of the brain is essential. Additionally for an accurate interpretation of longitudinal brain volume measures by means of neurodegeneration, knowledge about the short-term changes is needed. Therefore, in this review, we discuss the possible mechanisms influencing brain volumes on a short-term basis and set-out a framework of MRI techniques to be used for volumetric changes as well as the used analysis tools. 3D T1-weighted images are the images of choice when it comes to MRI of brain volume. These images are excellent to determine brain volume and can be used together with an analysis tool to determine the degree of volume change. Mechanisms that decrease global brain volume are: fluid restriction, evening MRI measurements, corticosteroids, antipsychotics and short-term effects of pathological processes like Alzheimer's disease, hypertension and Diabetes mellitus type II. Mechanisms increasing the brain volume include fluid intake, morning MRI measurements, surgical revascularization and probably medications like anti-inflammatory drugs and anti-hypertensive medication. Exercise was found to have no effect on brain volume on a short-term basis, which may imply that dehydration caused by exercise differs from dehydration by fluid restriction. In the upcoming years, attention should be directed towards studies investigating physiological short-term changes within the light of long-term pathological changes. Ultimately this may lead to a better understanding of the physiological short-term effects of

  1. Three-Dimensional Volumetric Assessment of Diastolic Function by Cardiac Magnetic Resonance Imaging: The Multi-Ethnic Study of Atherosclerosis (MESA).

    Science.gov (United States)

    Nacif, Marcelo S; Almeida, Andre L C; Young, Alistair A; Cowan, Brett R; Armstrong, Anderson C; Yang, Eunice; Sibley, Christopher T; Hundley, W Gregory; Liu, Songtao; Lima, Joao Ac; Bluemke, David A

    2017-01-01

    Cardiac Magnetic Resonance is in need of a simple and robust method for diastolic function assessment that can be done with routine protocol sequences. To develop and validate a three-dimensional (3D) model-based volumetric assessment of diastolic function using cardiac magnetic resonance (CMR) imaging and compare the results obtained with the model with those obtained by echocardiography. The study participants provided written informed consent and were included if having undergone both echocardiography and cine steady-state free precession (SSFP) CMR on the same day. Guide points at the septal and lateral mitral annulus were used to define the early longitudinal relaxation rate (E'), while a time-volume curve from the 3D model was used to assess diastolic filling parameters. We determined the correlation between 3D CMR and echocardiography and the accuracy of CMR in classifying the diastolic function grade. The study included 102 subjects. The E/A ratio by CMR was positively associated with the E/A ratio by echocardiography (r = 0.71, p deslocamento do anel mitral lateral (p = 0,007), bem como a razão entre E/e' por Doppler e E/E' pela RMC (p = 0,01). A velocidade normalizada de pico de enchimento (EM) determinada pela RMC e o tempo de desaceleração (TD) foram capazes de predizer a disfunção diastólica (áreas sob a curva [AUCs] = 0,70 e 0,72, respectivamente). Além disso, a razão E/E' lateral mostrou boa utilidade para a identificação da disfunção diastólica (AUC = 0,80). No geral, a ecocardiografia e a RMC apresentaram excelente concordância interobservador e intraobservador (coeficiente de correlação intraclasse 0,72 - 0,97). Uma modelagem 3D de imagens padrões de cine RMC foi capaz de identificar os indivíduos do estudo com função diastólica reduzida e mostrou uma boa reprodutibilidade, sugerindo ter potencial na avaliação rotineira da função diastólica por RMC.

  2. Volumetric, dashboard-mounted augmented display

    Science.gov (United States)

    Kessler, David; Grabowski, Christopher

    2017-11-01

    The optical design of a compact volumetric display for drivers is presented. The system displays a true volume image with realistic physical depth cues, such as focal accommodation, parallax and convergence. A large eyebox is achieved with a pupil expander. The windshield is used as the augmented reality combiner. A freeform windshield corrector is placed at the dashboard.

  3. Image Processing Tools for Improved Visualization and Analysis of Remotely Sensed Images for Agriculture and Forest Classifications

    OpenAIRE

    SINHA G. R.

    2017-01-01

    This paper suggests Image Processing tools for improved visualization and better analysis of remotely sensed images. There are methods already available in literature for the purpose but the most important challenge among the limitations is lack of robustness. We propose an optimal method for image enhancement of the images using fuzzy based approaches and few optimization tools. The segmentation images subsequently obtained after de-noising will be classified into distinct information and th...

  4. Image-Guided Localization Accuracy of Stereoscopic Planar and Volumetric Imaging Methods for Stereotactic Radiation Surgery and Stereotactic Body Radiation Therapy: A Phantom Study

    International Nuclear Information System (INIS)

    Kim, Jinkoo; Jin, Jian-Yue; Walls, Nicole; Nurushev, Teamour; Movsas, Benjamin; Chetty, Indrin J.; Ryu, Samuel

    2011-01-01

    Purpose: To evaluate the positioning accuracies of two image-guided localization systems, ExacTrac and On-Board Imager (OBI), in a stereotactic treatment unit. Methods and Materials: An anthropomorphic pelvis phantom with eight internal metal markers (BBs) was used. The center of one BB was set as plan isocenter. The phantom was set up on a treatment table with various initial setup errors. Then, the errors were corrected using each of the investigated systems. The residual errors were measured with respect to the radiation isocenter using orthogonal portal images with field size 3 x 3 cm 2 . The angular localization discrepancies of the two systems and the correction accuracy of the robotic couch were also studied. A pair of pre- and post-cone beam computed tomography (CBCT) images was acquired for each angular correction. Then, the correction errors were estimated by using the internal BBs through fiducial marker-based registrations. Results: The isocenter localization errors (μ ±σ) in the left/right, posterior/anterior, and superior/inferior directions were, respectively, -0.2 ± 0.2 mm, -0.8 ± 0.2 mm, and -0.8 ± 0.4 mm for ExacTrac, and 0.5 ± 0.7 mm, 0.6 ± 0.5 mm, and 0.0 ± 0.5 mm for OBI CBCT. The registration angular discrepancy was 0.1 ± 0.2 o between the two systems, and the maximum angle correction error of the robotic couch was 0.2 o about all axes. Conclusion: Both the ExacTrac and the OBI CBCT systems showed approximately 1 mm isocenter localization accuracies. The angular discrepancy of two systems was minimal, and the robotic couch angle correction was accurate. These positioning uncertainties should be taken as a lower bound because the results were based on a rigid dosimetry phantom.

  5. Volumetric optoacoustic monitoring of endovenous laser treatments

    Science.gov (United States)

    Fehm, Thomas F.; Deán-Ben, Xosé L.; Schaur, Peter; Sroka, Ronald; Razansky, Daniel

    2016-03-01

    Chronic venous insufficiency (CVI) is one of the most common medical conditions with reported prevalence estimates as high as 30% in the adult population. Although conservative management with compression therapy may improve the symptoms associated with CVI, healing often demands invasive procedures. Besides established surgical methods like vein stripping or bypassing, endovenous laser therapy (ELT) emerged as a promising novel treatment option during the last 15 years offering multiple advantages such as less pain and faster recovery. Much of the treatment success hereby depends on monitoring of the treatment progression using clinical imaging modalities such as Doppler ultrasound. The latter however do not provide sufficient contrast, spatial resolution and three-dimensional imaging capacity which is necessary for accurate online lesion assessment during treatment. As a consequence, incidence of recanalization, lack of vessel occlusion and collateral damage remains highly variable among patients. In this study, we examined the capacity of volumetric optoacoustic tomography (VOT) for real-time monitoring of ELT using an ex-vivo ox foot model. ELT was performed on subcutaneous veins while optoacoustic signals were acquired and reconstructed in real-time and at a spatial resolution in the order of 200μm. VOT images showed spatio-temporal maps of the lesion progression, characteristics of the vessel wall, and position of the ablation fiber's tip during the pull back. It was also possible to correlate the images with the temperature elevation measured in the area adjacent to the ablation spot. We conclude that VOT is a promising tool for providing online feedback during endovenous laser therapy.

  6. Quantitative Image Feature Engine (QIFE): an Open-Source, Modular Engine for 3D Quantitative Feature Extraction from Volumetric Medical Images.

    Science.gov (United States)

    Echegaray, Sebastian; Bakr, Shaimaa; Rubin, Daniel L; Napel, Sandy

    2017-10-06

    The aim of this study was to develop an open-source, modular, locally run or server-based system for 3D radiomics feature computation that can be used on any computer system and included in existing workflows for understanding associations and building predictive models between image features and clinical data, such as survival. The QIFE exploits various levels of parallelization for use on multiprocessor systems. It consists of a managing framework and four stages: input, pre-processing, feature computation, and output. Each stage contains one or more swappable components, allowing run-time customization. We benchmarked the engine using various levels of parallelization on a cohort of CT scans presenting 108 lung tumors. Two versions of the QIFE have been released: (1) the open-source MATLAB code posted to Github, (2) a compiled version loaded in a Docker container, posted to DockerHub, which can be easily deployed on any computer. The QIFE processed 108 objects (tumors) in 2:12 (h/mm) using 1 core, and 1:04 (h/mm) hours using four cores with object-level parallelization. We developed the Quantitative Image Feature Engine (QIFE), an open-source feature-extraction framework that focuses on modularity, standards, parallelism, provenance, and integration. Researchers can easily integrate it with their existing segmentation and imaging workflows by creating input and output components that implement their existing interfaces. Computational efficiency can be improved by parallelizing execution at the cost of memory usage. Different parallelization levels provide different trade-offs, and the optimal setting will depend on the size and composition of the dataset to be processed.

  7. Low-cost Volumetric Ultrasound by Augmentation of 2D Systems: Design and Prototype.

    Science.gov (United States)

    Herickhoff, Carl D; Morgan, Matthew R; Broder, Joshua S; Dahl, Jeremy J

    2018-01-01

    Conventional two-dimensional (2D) ultrasound imaging is a powerful diagnostic tool in the hands of an experienced user, yet 2D ultrasound remains clinically underutilized and inherently incomplete, with output being very operator dependent. Volumetric ultrasound systems can more fully capture a three-dimensional (3D) region of interest, but current 3D systems require specialized transducers, are prohibitively expensive for many clinical departments, and do not register image orientation with respect to the patient; these systems are designed to provide improved workflow rather than operator independence. This work investigates whether it is possible to add volumetric 3D imaging capability to existing 2D ultrasound systems at minimal cost, providing a practical means of reducing operator dependence in ultrasound. In this paper, we present a low-cost method to make 2D ultrasound systems capable of quality volumetric image acquisition: we present the general system design and image acquisition method, including the use of a probe-mounted orientation sensor, a simple probe fixture prototype, and an offline volume reconstruction technique. We demonstrate initial results of the method, implemented using a Verasonics Vantage research scanner.

  8. A comparison of substantia nigra T1 hyperintensity in Parkinson's disease dementia, Alzheimer's disease and age-matched controls: Volumetric analysis of neuromelanin imaging

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Won Jin; Park, Ju Yeon; Yun, Won Sung; Jeon, Ji Yeong; Moon, Yeon Sil; Kim, Hee Jin; Han, Seol Heui [Konkuk University School of Medicine, Seoul (Korea, Republic of); Kwak, Ki Chang; Lee, Jong Min [Dept. of Biomedical Engineering, Hanyang University, Seoul (Korea, Republic of)

    2016-09-15

    Neuromelanin loss of substantia nigra (SN) can be visualized as a T1 signal reduction on T1-weighted high-resolution imaging. We investigated whether volumetric analysis of T1 hyperintensity for SN could be used to differentiate between Parkinson's disease dementia (PDD), Alzheimer's disease (AD) and age-matched controls. This retrospective study enrolled 10 patients with PDD, 18 patients with AD, and 13 age-matched healthy elderly controls. MR imaging was performed at 3 tesla. To measure the T1 hyperintense area of SN, we obtained an axial thin section high-resolution T1-weighted fast spin echo sequence. The volumes of interest for the T1 hyperintense SN were drawn onto heavily T1-weighted FSE sequences through midbrain level, using the MIPAV software. The measurement differences were tested using the Kruskal-Wallis test followed by a post hoc comparison. A comparison of the three groups showed significant differences in terms of volume of T1 hyperintensity (p < 0.001, Bonferroni corrected). The volume of T1 hyperintensity was significantly lower in PDD than in AD and normal controls (p < 0.005, Bonferroni corrected). However, the volume of T1 hyperintensity was not different between AD and normal controls (p = 0.136, Bonferroni corrected). The volumetric measurement of the T1 hyperintensity of SN can be an imaging marker for evaluating neuromelanin loss in neurodegenerative diseases and a differential in PDD and AD cases.

  9. Spectrum image analysis tool - A flexible MATLAB solution to analyze EEL and CL spectrum images.

    Science.gov (United States)

    Schmidt, Franz-Philipp; Hofer, Ferdinand; Krenn, Joachim R

    2017-02-01

    Spectrum imaging techniques, gaining simultaneously structural (image) and spectroscopic data, require appropriate and careful processing to extract information of the dataset. In this article we introduce a MATLAB based software that uses three dimensional data (EEL/CL spectrum image in dm3 format (Gatan Inc.'s DigitalMicrograph ® )) as input. A graphical user interface enables a fast and easy mapping of spectral dependent images and position dependent spectra. First, data processing such as background subtraction, deconvolution and denoising, second, multiple display options including an EEL/CL moviemaker and, third, the applicability on a large amount of data sets with a small work load makes this program an interesting tool to visualize otherwise hidden details. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Magnetic Resonance Imaging: A Tool for Pork Pie Development

    Science.gov (United States)

    Gaunt, Adam P.; Morris, Robert H.; Newton, Michael I.

    2013-01-01

    The traditional British pork pie consists of roughly chopped pork cooked in a hot water pastry crust. Due to shrinkage of the meat during cooking, the gap formed around the meat is usually sealed using a gelatin based jelly to exclude air and thus help to preserve the pie. The properties of the jelly are such that it will ingress into the pastry crust causing undesirable softening. The jelly is traditionally produced by simmering pig trotters with seasoning for several hours. In this work we demonstrate the potential of magnetic resonance imaging (MRI) as a tool for investigating the conditions required for producing jellies with different properties and present two examples of this use. Firstly we demonstrate that MRI can determine the ability of water to diffuse through the jelly which is critical in minimizing the amount of moisture moving from the jelly to the crust. Secondly, the impact of jelly temperature on the penetration length into the crust is investigated. These examples highlight the power of MRI as a tool for food assessment. PMID:28239124

  11. Image edge detection based tool condition monitoring with morphological component analysis.

    Science.gov (United States)

    Yu, Xiaolong; Lin, Xin; Dai, Yiquan; Zhu, Kunpeng

    2017-07-01

    The measurement and monitoring of tool condition are keys to the product precision in the automated manufacturing. To meet the need, this study proposes a novel tool wear monitoring approach based on the monitored image edge detection. Image edge detection has been a fundamental tool to obtain features of images. This approach extracts the tool edge with morphological component analysis. Through the decomposition of original tool wear image, the approach reduces the influence of texture and noise for edge measurement. Based on the target image sparse representation and edge detection, the approach could accurately extract the tool wear edge with continuous and complete contour, and is convenient in charactering tool conditions. Compared to the celebrated algorithms developed in the literature, this approach improves the integrity and connectivity of edges, and the results have shown that it achieves better geometry accuracy and lower error rate in the estimation of tool conditions. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Processing and evaluation of image matching tools in radiotherapy

    International Nuclear Information System (INIS)

    Bondiau, P.Y.

    2004-11-01

    Cancer is a major problem of public health. Treatment can be done in a general or loco-regional way, in this last case medical images are important as they specify the localization of the tumour. The objective of the radiotherapy is to deliver a curative dose of radiation in the target volume while sparing the organs at risks (O.A.R.). The determination of the accurate localization of the targets volume as well as O.A.R. make it possible to define the ballistic of irradiation beams. After the description of the principles of radiotherapy and cancers treatment, we specify the clinical stakes of ocular, cerebral and prostatic tumours. We present a state of the art of image matching, the various techniques reviewed with an aim of being didactic with respect to the medical community. The results of matching are presented within the framework of the planning of the cerebral and prostatic radiotherapy in order to specify the types of applicable matching in oncology and more particularly in radiotherapy. Then, we present the prospects for this type of application according to various anatomical areas. Applications of automatic segmentation and the evaluation of the results in the framework of brain tumour are described after a review of the various segmentation methods according to anatomical localizations. We will see an original application: the digital simulation of the virtual tumoral growth and the comparison with the real growth of a cerebral tumour presented by a patient. Lastly, we will expose the future developments possible of the tools for image processing in radiotherapy as well as the tracks of research to be explored in oncology. (author)

  13. Volumetric display using a roof mirror grid array

    Science.gov (United States)

    Miyazaki, Daisuke; Hirano, Noboru; Maeda, Yuuki; Ohno, Keisuke; Maekawa, Satoshi

    2010-02-01

    A volumetric display system using a roof mirror grid array (RMGA) is proposed. The RMGA consists of a two-dimensional array of dihedral corner reflectors and forms a real image at a plane-symmetric position. A two-dimensional image formed with a RMGA is moved at thigh speed by a mirror scanner. Cross-sectional images of a three-dimensional object are displayed in accordance with the position of the image plane. A volumetric image can be observed as a stack of the cross-sectional images by high-speed scanning. Image formation by a RMGA is free from aberrations. Moreover, a compact optical system can be constructed because a RMGA doesn't have a focal length. An experimental volumetric display system using a galvanometer mirror and a digital micromirror device was constructed. The formation of a three-dimensional image consisting of 1024 × 768 × 400 voxels is confirmed by the experimental system.

  14. Exploring interaction with 3D volumetric displays

    Science.gov (United States)

    Grossman, Tovi; Wigdor, Daniel; Balakrishnan, Ravin

    2005-03-01

    Volumetric displays generate true volumetric 3D images by actually illuminating points in 3D space. As a result, viewing their contents is similar to viewing physical objects in the real world. These displays provide a 360 degree field of view, and do not require the user to wear hardware such as shutter glasses or head-trackers. These properties make them a promising alternative to traditional display systems for viewing imagery in 3D. Because these displays have only recently been made available commercially (e.g., www.actuality-systems.com), their current use tends to be limited to non-interactive output-only display devices. To take full advantage of the unique features of these displays, however, it would be desirable if the 3D data being displayed could be directly interacted with and manipulated. We investigate interaction techniques for volumetric display interfaces, through the development of an interactive 3D geometric model building application. While this application area itself presents many interesting challenges, our focus is on the interaction techniques that are likely generalizable to interactive applications for other domains. We explore a very direct style of interaction where the user interacts with the virtual data using direct finger manipulations on and around the enclosure surrounding the displayed 3D volumetric image.

  15. Volumetric fat-water separated T2-weighted MRI

    International Nuclear Information System (INIS)

    Vasanawala, Shreyas S.; Sonik, Arvind; Madhuranthakam, Ananth J.; Venkatesan, Ramesh; Lai, Peng; Brau, Anja C.S.

    2011-01-01

    Pediatric body MRI exams often cover multiple body parts, making the development of broadly applicable protocols and obtaining uniform fat suppression a challenge. Volumetric T2 imaging with Dixon-type fat-water separation might address this challenge, but it is a lengthy process. We develop and evaluate a faster two-echo approach to volumetric T2 imaging with fat-water separation. A volumetric spin-echo sequence was modified to include a second shifted echo so two image sets are acquired. A region-growing reconstruction approach was developed to decompose separate water and fat images. Twenty-six children were recruited with IRB approval and informed consent. Fat-suppression quality was graded by two pediatric radiologists and compared against conventional fat-suppressed fast spin-echo T2-W images. Additionally, the value of in- and opposed-phase images was evaluated. Fat suppression on volumetric images had high quality in 96% of cases (95% confidence interval of 80-100%) and were preferred over or considered equivalent to conventional two-dimensional fat-suppressed FSE T2 imaging in 96% of cases (95% confidence interval of 78-100%). In- and opposed-phase images had definite value in 12% of cases. Volumetric fat-water separated T2-weighted MRI is feasible and is likely to yield improved fat suppression over conventional fat-suppressed T2-weighted imaging. (orig.)

  16. Visual tool for estimating the fractal dimension of images

    Science.gov (United States)

    Grossu, I. V.; Besliu, C.; Rusu, M. V.; Jipa, Al.; Bordeianu, C. C.; Felea, D.

    2009-10-01

    This work presents a new Visual Basic 6.0 application for estimating the fractal dimension of images, based on an optimized version of the box-counting algorithm. Following the attempt to separate the real information from "noise", we considered also the family of all band-pass filters with the same band-width (specified as parameter). The fractal dimension can be thus represented as a function of the pixel color code. The program was used for the study of paintings cracks, as an additional tool which can help the critic to decide if an artistic work is original or not. Program summaryProgram title: Fractal Analysis v01 Catalogue identifier: AEEG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 29 690 No. of bytes in distributed program, including test data, etc.: 4 967 319 Distribution format: tar.gz Programming language: MS Visual Basic 6.0 Computer: PC Operating system: MS Windows 98 or later RAM: 30M Classification: 14 Nature of problem: Estimating the fractal dimension of images. Solution method: Optimized implementation of the box-counting algorithm. Use of a band-pass filter for separating the real information from "noise". User friendly graphical interface. Restrictions: Although various file-types can be used, the application was mainly conceived for the 8-bit grayscale, windows bitmap file format. Running time: In a first approximation, the algorithm is linear.

  17. Resting functional imaging tools (MRS, SPECT, PET and PCT)

    NARCIS (Netherlands)

    van der Naalt, Joukje; Grafman, Jordan; Salazar, Andres M

    2015-01-01

    Functional imaging includes imaging techniques that provide information about the metabolic and hemodynamic status of the brain. Most commonly applied functional imaging techniques in patients with traumatic brain injury (TBI) include magnetic resonance spectroscopy (MRS), single photon emission

  18. Image analysis using reflected light: an underutilized tool for interpreting magnetic fabrics

    Science.gov (United States)

    Waters-Tormey, C. L.; Liner, T.; Miller, B.; Kelso, P. R.

    2010-12-01

    Grain shape fabric analysis is one of the most common tools used to compare magnetic fabric and handsample scale rock fabric. Usually, this image analysis uses photomicrographs taken under plane or polarized light, which may be problematic if there are several dominant magnetic carriers (e.g., magnetite and pyrrhotite). The method developed for this study uses reflected light photomicrographs, and is effective in assessing the relative contribution of different phases to the opaque mineral shape-preferred orientation (SPO). Mosaics of high-resolution photomicrographs are first assembled and processed in Adobe Photoshop®. The Adobe Illustrator® “Live Trace” tool, whose settings can be optimized for reflected light images, completes initial automatic grain tracing and phase separation. Checking and re-classification of phases using reflected light properties and trace editing occurs manually. Phase identification is confirmed by microprobe or quantitative EDS, after which grain traces are easily reclassified as needed. Traces are imported into SPO2003 (Launeau and Robin, 2005) for SPO analysis. The combination of image resolution and magnification used here includes grains down to 10 microns. This work is part of an ongoing study examining fabric development across strain gradients in the granulite facies Capricorn ridge shear zone exposed in the Mt. Hay block of central Australia (Waters-Tormey et al., 2009). Strain marker shape fabrics, mesoscale structures, and strain localization adjacent to major lithologic boundaries all indicate that the deformation involved flattening, but that components of the deformation have been partitioned into different lithological domains. Thin sections were taken from the two gabbroic map units which volumetrically dominate the shear zone (northern and southern) using samples with similar outcrop fabric intensity. Prior thermomagnetic analyses indicate these units contain magnetite ± titanomagnetite ± ilmenite ± pyrrhotite

  19. Three-Dimensional Volumetric Changes in Severely Resorbed Alveolar Sockets After Ridge Augmentation with Bovine-Derived Xenograft and Resorbable Barrier: A Preliminary Study on CBCT Imaging.

    Science.gov (United States)

    Manavella, Valeria; Romano, Federica; Corano, Lisa; Bignardi, Cristina; Aimetti, Mario

    The primary aim of the study was to describe a novel technique to evaluate volumetric hard tissue dimensional changes after ridge augmentation procedures. The secondary aim was to apply this newly developed measuring method to compromised alveolar sockets grafted with a slowly resorbing biomaterial covered with a collagen membrane. Eleven patients (6 men and 5 women, mean age 52.7 ± 8.3 years) requiring extraction of one hopeless tooth for severe periodontitis in the maxillary anterior area were consecutively treated with a ridge augmentation procedure. All experimental sockets showed advanced buccal bone plate deficiency and were grafted with deproteinized bovine bone mineral with 10% collagen covered with a collagen membrane. Sockets healed by secondary intention. Three-dimensional volumetric alveolar bone changes were calculated by superimposing cone beam computed tomography scans obtained before and 12 months after the augmentation procedure. After 12 months, the alveolar mineralized tissue filled 91.20% ± 7.96% of the maximum volume for regeneration. The augmentation procedure appeared not only to compensate for bone remodeling in most alveolar regions but also to repair a significant portion of the buccal wall. The most significant ridge width changes occurred 1 mm apical to the bone crest (2.33 ± 1.46 mm, P socket volume. A ridge preservation technique performed with collagenated bovine bone and a collagen membrane was able to improve ridge shape and dimensions in compromised alveolar sockets.

  20. Volumetric composition of nanocomposites

    DEFF Research Database (Denmark)

    Madsen, Bo; Lilholt, Hans; Mannila, Juha

    2015-01-01

    is presented, using cellulose/epoxy and aluminosilicate/polylactate nanocomposites as case materials. The buoyancy method is used for the accurate measurements of materials density. The accuracy of the method is determined to be high, allowing the measured nanocomposite densities to be reported with 5...... significant figures. The plotting of the measured nanocomposite density as a function of the nanofibre weight content is shown to be a first good approach of assessing the porosity content of the materials. The known gravimetric composition of the nanocomposites is converted into a volumetric composition...

  1. BlobFinder, a tool for fluorescence microscopy image cytometry

    OpenAIRE

    Allalou, Amin; Wählby, Carolina

    2009-01-01

    Images can be acquired at high rates with modern fluorescence microscopy hardware, giving rise to a demand for high-speed analysis of image data. Digital image cytometry, i.e., automated measurements and extraction of quantitative data from images of cells, provides valuable information for many types of biomedical analysis. There exists a number of different image analysis software packages that can be programmed to perform a wide array of useful measurements. However, the multi-application ...

  2. Imaging tools to study pharmacology: functional MRI on small rodents

    Directory of Open Access Journals (Sweden)

    Elisabeth eJonckers

    2015-10-01

    Full Text Available Functional Magnetic Resonance Imaging (fMRI is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD fMRI techniques, including resting state (rsfMRI, stimulus-evoked (st-fMRI, and pharmacological MRI (phMRI. Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sensory stimulation and/or a pharmacological challenge. The first part of this review describes the physiological basis of BOLD fMRI and the hemodynamic response on which the MRI contrast is based. Specific emphasis goes to possible effects of anaesthesia and the animal’s physiological conditions on neural activity and the hemodynamic response. The second part of this review describes applications of the aforementioned techniques in pharmacologically-induced, as well as in traumatic and transgenic disease models and illustrates how multiple fMRI methods can be applied successfully to evaluate different aspects of a specific disorder. For example, fMRI techniques can be used to pinpoint the neural substrate of a disease beyond previously defined hypothesis-driven regions-of-interest (ROIs. In addition, fMRI techniques allow one to dissect how specific modifications (e.g. treatment, lesion etc. modulate the functioning of specific brain areas (st-fMRI, phMRI and how functional connectivity (rsfMRI between several brain regions is affected, both in acute and extended time frames. Furthermore, fMRI techniques can be used to assess/explore the efficacy of novel treatments in depth, both in fundamental research as well as in preclinical settings. In conclusion, by describing several exemplary studies, we aim to highlight the advantages of functional MRI in exploring the acute and long-term effects of pharmacological substances and/or pathology on brain functioning along with

  3. In vivo evaluation of biosensors volumetric bio-distribution for measurement of metabolic activity by X-ray correlation, fluorescence, Cerenkov image and radioisotope; Evaluacion in vivo de la biodistribucion volumetrica de biosensores para medicion de la actividad metabolica por correlacion de rayos X, fluorescencia, imagen Cerenkov y radioisotopica

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez N, G. J.

    2016-07-01

    The aim of this study was to characterize the in vivo volumetric distribution of three folate based biosensors by different imaging modalities (X-ray, fluorescence, Cerenkov luminescence and radioisotopic imaging) through the development of a tri dimensional (3D) image reconstruction algorithm. The preclinical and multimodal Xtreme imaging system, with a Multimodal Animal Rotation System (Mars), was used to acquire bidimensional (2D) images, which were processed to obtain the 3D reconstruction. Images of mice at different times (biosensor distribution) were simultaneously obtained from the four imaging modalities. The filtered backprojection and inverse Radon transformation were used as main image-processing techniques. In the first instance, the algorithm developed in Mat lab was able to reconstruct in the 3D form the skeleton of the mice under study. Subsequently, the algorithm was able to get the volumetric profiles of {sup 99m}Tc-Folate-Bombesin (radioisotopic image), {sup 177}Lu-Folate-Bombesin (Cerenkov image), and FolateRSense 680 (fluorescence image) in the tumors and kidneys of the mice. No significant differences were detected between the volumetric quantifications using the standard measurement techniques and the quantifications obtained with the proposal made in this study, nor between the volumetric uptakes in the structures of interest. With the structures reconstructed in the 3D form, the fusion of anatomical (as the skeleton) and functional structures derived from the images of the biosensors uptake was achieved The imaging 3D reconstruction algorithm can be easily extrapolated to different 2D acquisition-type images. This characteristic flexibility of the algorithm developed in this study is an advantage in comparison to similar reconstruction methods. (Author)

  4. Biofilm imaging in porous media by laboratory X-Ray tomography: Combining a non-destructive contrast agent with propagation-based phase-contrast imaging tools.

    Science.gov (United States)

    Carrel, Maxence; Beltran, Mario A; Morales, Verónica L; Derlon, Nicolas; Morgenroth, Eberhard; Kaufmann, Rolf; Holzner, Markus

    2017-01-01

    X-ray tomography is a powerful tool giving access to the morphology of biofilms, in 3D porous media, at the mesoscale. Due to the high water content of biofilms, the attenuation coefficient of biofilms and water are very close, hindering the distinction between biofilms and water without the use of contrast agents. Until now, the use of contrast agents such as barium sulfate, silver-coated micro-particles or 1-chloronaphtalene added to the liquid phase allowed imaging the biofilm 3D morphology. However, these contrast agents are not passive and potentially interact with the biofilm when injected into the sample. Here, we use a natural inorganic compound, namely iron sulfate, as a contrast agent progressively bounded in dilute or colloidal form into the EPS matrix during biofilm growth. By combining a very long source-to-detector distance on a X-ray laboratory source with a Lorentzian filter implemented prior to tomographic reconstruction, we substantially increase the contrast between the biofilm and the surrounding liquid, which allows revealing the 3D biofilm morphology. A comparison of this new method with the method proposed by Davit et al (Davit et al., 2011), which uses barium sulfate as a contrast agent to mark the liquid phase was performed. Quantitative evaluations between the methods revealed substantial differences for the volumetric fractions obtained from both methods. Namely, contrast agent-biofilm interactions (e.g. biofilm detachment) occurring during barium sulfate injection caused a reduction of the biofilm volumetric fraction of more than 50% and displacement of biofilm patches elsewhere in the column. Two key advantages of the newly proposed method are that passive addition of iron sulfate maintains the integrity of the biofilm prior to imaging, and that the biofilm itself is marked by the contrast agent, rather than the liquid phase as in other available methods. The iron sulfate method presented can be applied to understand biofilm development

  5. Semi-automated volumetric analysis of lymph node metastases in patients with malignant melanoma stage III/IV-A feasibility study

    International Nuclear Information System (INIS)

    Fabel, M.; Tengg-Kobligk, H. von; Giesel, F.L.; Delorme, S.; Kauczor, H.-U.; Bornemann, L.; Dicken, V.; Kopp-Schneider, A.; Moser, C.

    2008-01-01

    Therapy monitoring in oncological patient care requires accurate and reliable imaging and post-processing methods. RECIST criteria are the current standard, with inherent disadvantages. The aim of this study was to investigate the feasibility of semi-automated volumetric analysis of lymph node metastases in patients with malignant melanoma compared to manual volumetric analysis and RECIST. Multislice CT was performed in 47 patients, covering the chest, abdomen and pelvis. In total, 227 suspicious, enlarged lymph nodes were evaluated retrospectively by two radiologists regarding diameters (RECIST), manually measured volume by placement of ROIs and semi-automated volumetric analysis. Volume (ml), quality of segmentation (++/-) and time effort (s) were evaluated in the study. The semi-automated volumetric analysis software tool was rated acceptable to excellent in 81% of all cases (reader 1) and 79% (reader 2). Median time for the entire segmentation process and necessary corrections was shorter with the semi-automated software than by manual segmentation. Bland-Altman plots showed a significantly lower interobserver variability for semi-automated volumetric than for RECIST measurements. The study demonstrated feasibility of volumetric analysis of lymph node metastases. The software allows a fast and robust segmentation in up to 80% of all cases. Ease of use and time needed are acceptable for application in the clinical routine. Variability and interuser bias were reduced to about one third of the values found for RECIST measurements. (orig.)

  6. Volumetric Visualization of Human Skin

    Science.gov (United States)

    Kawai, Toshiyuki; Kurioka, Yoshihiro

    We propose a modeling and rendering technique of human skin, which can provide realistic color, gloss and translucency for various applications in computer graphics. Our method is based on volumetric representation of the structure inside of the skin. Our model consists of the stratum corneum and three layers of pigments. The stratum corneum has also layered structure in which the incident light is reflected, refracted and diffused. Each layer of pigment has carotene, melanin or hemoglobin. The density distributions of pigments which define the color of each layer can be supplied as one of the voxel values. Surface normals of upper-side voxels are fluctuated to produce bumps and lines on the skin. We apply ray tracing approach to this model to obtain the rendered image. Multiple scattering in the stratum corneum, reflective and absorptive spectrum of pigments are considered. We also consider Fresnel term to calculate the specular component for glossy surface of skin. Some examples of rendered images are shown, which can successfully visualize a human skin.

  7. Volume-editing tools for three-dimensional imaging of CT data

    International Nuclear Information System (INIS)

    Ney, D.R.; Fishman, E.K.

    1989-01-01

    Three-dimensional imaging of complex structures relies heavily on the ability to edit the routine CT scans to provide an optimal view of the area in question. The authors present a series of strategies for defining the volume editing tools. The authors have developed a series of editing tools that allow the operator to edit critical areas out of an image. The tools are based on a variety of imaging strategies that are implemented depending on the difficulty of separating two structures. The tools combine rectangular masking, threshold base filling, arbitrary curve-based masking, masking, threshold base filling, arbitrary curve-based masking, and object definition via edge detection

  8. DIFET: DISTRIBUTED FEATURE EXTRACTION TOOL FOR HIGH SPATIAL RESOLUTION REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    S. Eken

    2017-11-01

    Full Text Available In this paper, we propose distributed feature extraction tool from high spatial resolution remote sensing images. Tool is based on Apache Hadoop framework and Hadoop Image Processing Interface. Two corner detection (Harris and Shi-Tomasi algorithms and five feature descriptors (SIFT, SURF, FAST, BRIEF, and ORB are considered. Robustness of the tool in the task of feature extraction from LandSat-8 imageries are evaluated in terms of horizontal scalability.

  9. Difet: Distributed Feature Extraction Tool for High Spatial Resolution Remote Sensing Images

    Science.gov (United States)

    Eken, S.; Aydın, E.; Sayar, A.

    2017-11-01

    In this paper, we propose distributed feature extraction tool from high spatial resolution remote sensing images. Tool is based on Apache Hadoop framework and Hadoop Image Processing Interface. Two corner detection (Harris and Shi-Tomasi) algorithms and five feature descriptors (SIFT, SURF, FAST, BRIEF, and ORB) are considered. Robustness of the tool in the task of feature extraction from LandSat-8 imageries are evaluated in terms of horizontal scalability.

  10. Evaluation of an in-line particle imaging tool for monitoring twin-screw granulation performance

    DEFF Research Database (Denmark)

    Kumar, Ashish; Dhondt, Jens; De Leersnyder, Fien

    2015-01-01

    system. Off-line sieving was used as reference particle size analysis method. A twin-screw granulator which is part of the Consigma system was used to granulate a placebo formulation composed of lactose and polyvinylpyrrolidone (PVP; 97.5:2.5% w/w). PVP was dissolvedin water, which was used......). The volumetric size distribution obtained from the in-line measurements of the granules leaving the twin-screw granulator using the Eyecon™ camera was compared with the off-line measurements obtainedby sieving of the granule samples collected before and after the drying unit operation. For the intermediate size...... range (diameter 250–1000 μm), the Eyecon™ measurements showed to be promising as they were in agreement with off-line measurement results obtained before the drying unit. However, the image analysis algorithm and data post-processing of the Eyecon™ images for the fines and oversized ranges require...

  11. Analysis of live cell images: Methods, tools and opportunities.

    Science.gov (United States)

    Nketia, Thomas A; Sailem, Heba; Rohde, Gustavo; Machiraju, Raghu; Rittscher, Jens

    2017-02-15

    Advances in optical microscopy, biosensors and cell culturing technologies have transformed live cell imaging. Thanks to these advances live cell imaging plays an increasingly important role in basic biology research as well as at all stages of drug development. Image analysis methods are needed to extract quantitative information from these vast and complex data sets. The aim of this review is to provide an overview of available image analysis methods for live cell imaging, in particular required preprocessing image segmentation, cell tracking and data visualisation methods. The potential opportunities recent advances in machine learning, especially deep learning, and computer vision provide are being discussed. This review includes overview of the different available software packages and toolkits. Copyright © 2017. Published by Elsevier Inc.

  12. Synthesis and Development of Diagnostic Tools for Medical Imaging

    DEFF Research Database (Denmark)

    Schaarup-Jensen, Henrik

    was the synthesis of different materials. The first project introduces the development of injectable fiducial markers within the field of image-guided radiotherapy. Fiducial markers for computed tomography (CT)-imaging are today needed in order to correlate the positioning of the tumor to provide a more precise...... loading of liposomes. Long circulating contrast agents for blood pool imaging by CT-imaging are of interest due to the current limitations of short retention times and the considerable amounts needed to achieve a proper contrast. A small library of contrast agents designed for remote loading of liposomes...

  13. MR volumetric assessment of endolymphatic hydrops

    International Nuclear Information System (INIS)

    Guerkov, R.; Berman, A.; Jerin, C.; Krause, E.; Dietrich, O.; Flatz, W.; Ertl-Wagner, B.; Keeser, D.

    2015-01-01

    We aimed to volumetrically quantify endolymph and perilymph spaces of the inner ear in order to establish a methodological basis for further investigations into the pathophysiology and therapeutic monitoring of Meniere's disease. Sixteen patients (eight females, aged 38-71 years) with definite unilateral Meniere's disease were included in this study. Magnetic resonance (MR) cisternography with a T2-SPACE sequence was combined with a Real reconstruction inversion recovery (Real-IR) sequence for delineation of inner ear fluid spaces. Machine learning and automated local thresholding segmentation algorithms were applied for three-dimensional (3D) reconstruction and volumetric quantification of endolymphatic hydrops. Test-retest reliability was assessed by the intra-class coefficient; correlation of cochlear endolymph volume ratio with hearing function was assessed by the Pearson correlation coefficient. Endolymph volume ratios could be reliably measured in all patients, with a mean (range) value of 15 % (2-25) for the cochlea and 28 % (12-40) for the vestibulum. Test-retest reliability was excellent, with an intra-class coefficient of 0.99. Cochlear endolymphatic hydrops was significantly correlated with hearing loss (r = 0.747, p = 0.001). MR imaging after local contrast application and image processing, including machine learning and automated local thresholding, enable the volumetric quantification of endolymphatic hydrops. This allows for a quantitative assessment of the effect of therapeutic interventions on endolymphatic hydrops. (orig.)

  14. MR volumetric assessment of endolymphatic hydrops

    Energy Technology Data Exchange (ETDEWEB)

    Guerkov, R.; Berman, A.; Jerin, C.; Krause, E. [University of Munich, Department of Otorhinolaryngology Head and Neck Surgery, Grosshadern Medical Centre, Munich (Germany); University of Munich, German Centre for Vertigo and Balance Disorders, Grosshadern Medical Centre, Marchioninistr. 15, 81377, Munich (Germany); Dietrich, O.; Flatz, W.; Ertl-Wagner, B. [University of Munich, Institute of Clinical Radiology, Grosshadern Medical Centre, Munich (Germany); Keeser, D. [University of Munich, Institute of Clinical Radiology, Grosshadern Medical Centre, Munich (Germany); University of Munich, German Centre for Vertigo and Balance Disorders, Grosshadern Medical Centre, Marchioninistr. 15, 81377, Munich (Germany); University of Munich, Department of Psychiatry and Psychotherapy, Innenstadtkliniken Medical Centre, Munich (Germany)

    2014-10-16

    We aimed to volumetrically quantify endolymph and perilymph spaces of the inner ear in order to establish a methodological basis for further investigations into the pathophysiology and therapeutic monitoring of Meniere's disease. Sixteen patients (eight females, aged 38-71 years) with definite unilateral Meniere's disease were included in this study. Magnetic resonance (MR) cisternography with a T2-SPACE sequence was combined with a Real reconstruction inversion recovery (Real-IR) sequence for delineation of inner ear fluid spaces. Machine learning and automated local thresholding segmentation algorithms were applied for three-dimensional (3D) reconstruction and volumetric quantification of endolymphatic hydrops. Test-retest reliability was assessed by the intra-class coefficient; correlation of cochlear endolymph volume ratio with hearing function was assessed by the Pearson correlation coefficient. Endolymph volume ratios could be reliably measured in all patients, with a mean (range) value of 15 % (2-25) for the cochlea and 28 % (12-40) for the vestibulum. Test-retest reliability was excellent, with an intra-class coefficient of 0.99. Cochlear endolymphatic hydrops was significantly correlated with hearing loss (r = 0.747, p = 0.001). MR imaging after local contrast application and image processing, including machine learning and automated local thresholding, enable the volumetric quantification of endolymphatic hydrops. This allows for a quantitative assessment of the effect of therapeutic interventions on endolymphatic hydrops. (orig.)

  15. An Ensemble of Classifiers based Approach for Prediction of Alzheimer's Disease using fMRI Images based on Fusion of Volumetric, Textural and Hemodynamic Features

    Directory of Open Access Journals (Sweden)

    MALIK, F.

    2018-02-01

    Full Text Available Alzheimer's is a neurodegenerative disease caused by the destruction and death of brain neurons resulting in memory loss, impaired thinking ability, and in certain behavioral changes. Alzheimer disease is a major cause of dementia and eventually death all around the world. Early diagnosis of the disease is crucial which can help the victims to maintain their level of independence for comparatively longer time and live a best life possible. For early detection of Alzheimer's disease, we are proposing a novel approach based on fusion of multiple types of features including hemodynamic, volumetric and textural features of the brain. Our approach uses non-invasive fMRI with ensemble of classifiers, for the classification of the normal controls and the Alzheimer patients. For performance evaluation, ten-fold cross validation is used. Individual feature sets and fusion of features have been investigated with ensemble classifiers for successful classification of Alzheimer's patients from normal controls. It is observed that fusion of features resulted in improved results for accuracy, specificity and sensitivity.

  16. Digital image technology and a measurement tool in physical models

    CSIR Research Space (South Africa)

    Phelp, David

    2006-05-01

    Full Text Available Advances in digital image technology has allowed us to use accurate, but relatively cost effective technology to measure a number of varied activities in physical models. The capturing and manipulation of high resolution digital images can be used...

  17. Democratization of Nanoscale Imaging and Sensing Tools Using Photonics

    Science.gov (United States)

    2015-06-12

    impact, personal healthcare can be improved via consumer-level health monitoring and diagnostics technologies and especially by new tools that are...medical evaluation and care. One opportune area for increased democratization is that of nanoscience and nanotechnology tools, which in general have been...rather costly and bulky, limiting their use to well- resourced institutions. For many laypeople, nanoscience and nanotechnology can elicit awe or

  18. Supervised learning of tools for content-based search of image databases

    Science.gov (United States)

    Delanoy, Richard L.

    1996-03-01

    A computer environment, called the Toolkit for Image Mining (TIM), is being developed with the goal of enabling users with diverse interests and varied computer skills to create search tools for content-based image retrieval and other pattern matching tasks. Search tools are generated using a simple paradigm of supervised learning that is based on the user pointing at mistakes of classification made by the current search tool. As mistakes are identified, a learning algorithm uses the identified mistakes to build up a model of the user's intentions, construct a new search tool, apply the search tool to a test image, display the match results as feedback to the user, and accept new inputs from the user. Search tools are constructed in the form of functional templates, which are generalized matched filters capable of knowledge- based image processing. The ability of this system to learn the user's intentions from experience contrasts with other existing approaches to content-based image retrieval that base searches on the characteristics of a single input example or on a predefined and semantically- constrained textual query. Currently, TIM is capable of learning spectral and textural patterns, but should be adaptable to the learning of shapes, as well. Possible applications of TIM include not only content-based image retrieval, but also quantitative image analysis, the generation of metadata for annotating images, data prioritization or data reduction in bandwidth-limited situations, and the construction of components for larger, more complex computer vision algorithms.

  19. A Tool for Interactive Data Visualization: Application to Over 10,000 Brain Imaging and Phantom MRI Data Sets

    Directory of Open Access Journals (Sweden)

    Sandeep R Panta

    2016-03-01

    Full Text Available In this paper we propose a web-based approach for quick visualization of big data from brain magnetic resonance imaging (MRI scans using a combination of an automated image capture and processing system, nonlinear embedding, and interactive data visualization tools. We draw upon thousands of MRI scans captured via the COllaborative Imaging and Neuroinformatics Suite (COINS. We then interface the output of several analysis pipelines based on structural and functional data to a t-distributed stochastic neighbor embedding (t-SNE algorithm which reduces the number of dimensions for each scan in the input data set to two dimensions while preserving the local structure of data sets. Finally, we interactively display the output of this approach via a web-page, based on data driven documents (D3 JavaScript library. Two distinct approaches were used to visualize the data. In the first approach, we computed multiple quality control (QC values from pre-processed data, which were used as inputs to the t-SNE algorithm. This approach helps in assessing the quality of each data set relative to others. In the second case, computed variables of interest (e.g. brain volume or voxel values from segmented gray matter images were used as inputs to the t-SNE algorithm. This approach helps in identifying interesting patterns in the data sets. We demonstrate these approaches using multiple examples including 1 quality control measures calculated from phantom data over time, 2 quality control data from human functional MRI data across various studies, scanners, sites, 3 volumetric and density measures from human structural MRI data across various studies, scanners and sites. Results from (1 and (2 show the potential of our approach to combine t-SNE data reduction with interactive color coding of variables of interest to quickly identify visually unique clusters of data (i.e. data sets with poor QC, clustering of data by site quickly. Results from (3 demonstrate

  20. Volumetric velocimetry for fluid flows

    Science.gov (United States)

    Discetti, Stefano; Coletti, Filippo

    2018-04-01

    In recent years, several techniques have been introduced that are capable of extracting 3D three-component velocity fields in fluid flows. Fast-paced developments in both hardware and processing algorithms have generated a diverse set of methods, with a growing range of applications in flow diagnostics. This has been further enriched by the increasingly marked trend of hybridization, in which the differences between techniques are fading. In this review, we carry out a survey of the prominent methods, including optical techniques and approaches based on medical imaging. An overview of each is given with an example of an application from the literature, while focusing on their respective strengths and challenges. A framework for the evaluation of velocimetry performance in terms of dynamic spatial range is discussed, along with technological trends and emerging strategies to exploit 3D data. While critical challenges still exist, these observations highlight how volumetric techniques are transforming experimental fluid mechanics, and that the possibilities they offer have just begun to be explored.

  1. Magnetic resonance imaging as a tool for extravehicular activity analysis

    Science.gov (United States)

    Dickenson, R.; Lorenz, C.; Peterson, S.; Strauss, A.; Main, J.

    1992-01-01

    The purpose of this research is to examine the value of magnetic resonance imaging (MRI) as a means of conducting kinematic studies of the hand for the purpose of EVA capability enhancement. After imaging the subject hand using a magnetic resonance scanner, the resulting 2D slices were reconstructed into a 3D model of the proximal phalanx of the left hand. Using the coordinates of several landmark positions, one is then able to decompose the motion of the rigid body. MRI offers highly accurate measurements due to its tomographic nature without the problems associated with other imaging modalities for in vivo studies.

  2. Population Pharmacokinetics of Tracers: A New Tool for Medical Imaging?

    Science.gov (United States)

    Gandia, Peggy; Jaudet, Cyril; Chatelut, Etienne; Concordet, Didier

    2017-02-01

    Positron emission tomography-computed tomography is a medical imaging method measuring the activity of a radiotracer chosen to accumulate in cancer cells. A recent trend of medical imaging analysis is to account for the radiotracer's pharmacokinetic properties at a voxel (three-dimensional-pixel) level to separate the different tissues. These analyses are closely linked to population pharmacokinetic-pharmacodynamic modelling. Kineticists possess the cultural background to improve medical imaging analysis. This article stresses the common points with population pharmacokinetics and highlights the methodological locks that need to be lifted.

  3. The Use of an On-Board MV Imager for Plan Verification of Intensity Modulated Radiation Therapy and Volumetrically Modulated Arc Therapy

    Science.gov (United States)

    Walker, Justin A.

    The introduction of complex treatment modalities such as IMRT and VMAT has led to the development of many devices for plan verification. One such innovation in this field is the repurposing of the portal imager to not only be used for tumor localization but for recording dose distributions as well. Several advantages make portal imagers attractive options for this purpose. Very high spatial resolution allows for better verification of small field plans than may be possible with commercially available devices. Because the portal imager is attached to the gantry set up is simpler than any other method available, requiring no additional accessories, and often can be accomplished from outside the treatment room. Dose images capture by the portal imager are in digital format make permanent records that can be analyzed immediately. Portal imaging suffers from a few limitations however that must be overcome. Images captured contain dose information and a calibration must be maintained for image to dose conversion. Dose images can only be taken perpendicular to the treatment beam allowing only for planar dose comparison. Planar dose files are themself difficult to obtain for VMAT treatments and an in-house script had to be developed to create such a file before analysis could be performed. Using the methods described in this study, excellent agreement between planar dose files generated and dose images taken were found. The average agreement for IMRT field analyzed being greater than 97% for non-normalized images at 3mm and 3%. Comparable agreement for VAMT plans was found as well with the average agreement being greater than 98%.

  4. Compton scatter imaging: A tool for historical exploration

    International Nuclear Information System (INIS)

    Harding, G.; Harding, E.

    2010-01-01

    This review discusses the principles and technological realisation of a technique, termed Compton scatter imaging (CSI), which is based on spatially resolved detection of Compton scattered X-rays. The applicational focus of this review is to objects of historical interest. Following a historical survey of CSI, a description is given of the major characteristics of Compton X-ray scatter. In particular back-scattered X-rays allow massive objects to be imaged, which would otherwise be too absorbing for the conventional transmission X-ray technique. The ComScan (an acronym for Compton scatter scanner) is a commercially available backscatter imaging system, which is discussed here in some detail. ComScan images from some artefacts of historical interest, namely a fresco, an Egyptian mummy and a mediaeval clasp are presented and their use in historical analysis is indicated. The utility of scientific and technical advance for not only exploring history, but also restoring it, is briefly discussed.

  5. Molecular Imaging: A Promising Tool to Monitor Islet Transplantation

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2011-01-01

    Full Text Available Replacement of insulin production by pancreatic islet transplantation has great potential as a therapy for type 1 diabetes mellitus. At present, the lack of an effective approach to islet grafts assessment limits the success of this treatment. The development of molecular imaging techniques has the potential to fulfill the goal of real-time noninvasive monitoring of the functional status and viability of the islet grafts. We review the application of a variety of imaging modalities for detecting endogenous and transplanted beta-cell mass. The review also explores the various molecular imaging strategies for assessing islet delivery, the metabolic effects on the islet grafts as well as detection of immunorejection. Here, we highlight the use of combined imaging and therapeutic interventions in islet transplantation and the in vivo monitoring of stem cells differentiation into insulin-producing cells.

  6. Review of free software tools for image analysis of fluorescence cell micrographs.

    Science.gov (United States)

    Wiesmann, V; Franz, D; Held, C; Münzenmayer, C; Palmisano, R; Wittenberg, T

    2015-01-01

    An increasing number of free software tools have been made available for the evaluation of fluorescence cell micrographs. The main users are biologists and related life scientists with no or little knowledge of image processing. In this review, we give an overview of available tools and guidelines about which tools the users should use to segment fluorescence micrographs. We selected 15 free tools and divided them into stand-alone, Matlab-based, ImageJ-based, free demo versions of commercial tools and data sharing tools. The review consists of two parts: First, we developed a criteria catalogue and rated the tools regarding structural requirements, functionality (flexibility, segmentation and image processing filters) and usability (documentation, data management, usability and visualization). Second, we performed an image processing case study with four representative fluorescence micrograph segmentation tasks with figure-ground and cell separation. The tools display a wide range of functionality and usability. In the image processing case study, we were able to perform figure-ground separation in all micrographs using mainly thresholding. Cell separation was not possible with most of the tools, because cell separation methods are provided only by a subset of the tools and are difficult to parametrize and to use. Most important is that the usability matches the functionality of a tool. To be usable, specialized tools with less functionality need to fulfill less usability criteria, whereas multipurpose tools need a well-structured menu and intuitive graphical user interface. © 2014 Fraunhofer-Institute for Integrated Circuits IIS Journal of Microscopy © 2014 Royal Microscopical Society.

  7. Prototyping and Testing a New Volumetric Curvature Tool for Modeling Reservoir Compartments and Leakage Pathways in the Arbuckle Saline Aquifer: Reducing Uncertainty in CO2 Storage and Permanence

    Energy Technology Data Exchange (ETDEWEB)

    Rush, Jason [Univ. of Kansas and Kansas Geological Survey, Lawrence, KS (United States); Holubnyak, Yevhen [Univ. of Kansas and Kansas Geological Survey, Lawrence, KS (United States); Watney, Willard [Univ. of Kansas and Kansas Geological Survey, Lawrence, KS (United States)

    2016-12-09

    This DOE-funded project evaluates the utility of seismic volumetric curvature (VC) for predicting stratal and structural architecture diagnostic of paleokarst reservoirs. Of special interest are applications geared toward carbon capture, utilization, and storage (CCUS). VC has been championed for identifying faults (offset <¼ λ) that cannot be imaged by conventional 3-D seismic attributes such as coherence. The objective of this research was to evaluate VC-techniques for reducing uncertainties in reservoir compartmentalization studies and seal risk assessments especially for saline aquifers. A 2000-ft horizontal lateral was purposefully drilled across VC-imaged lineaments—interpreted to record a fractured and a fault-bounded doline—to physically confirm their presence. The 15-mi² study area is located in southeastern Bemis-Shutts Field, which is situated along the crest of the Central Kansas Uplift (CKU) in Ellis County, Kansas. The uppermost Arbuckle (200+ ft) has extensive paleokarst including collapsed paleocaverns and dolines related to exceedingly prolonged pre-Simpson (Sauk–Tippecanoe) and/or pre-Pennsylvanian subaerial exposure. A lateral borehole was successfully drilled across the full extent (~1100 ft) of a VC-inferred paleokarst doline. Triple combo (GR-neutron/density-resistivity), full-wave sonic, and borehole micro-imager logs were successfully run to TD on drill-pipe. Results from the formation evaluation reveal breccias (e.g., crackle, mosaic, chaotic), fractures, faults, vugs (1-6"), and unaffected host strata consistent with the pre-spud interpretation. Well-rounded pebbles were also observed on the image log. VC-inferred lineaments coincide with 20–80-ft wide intervals of high GR values (100+ API), matrix-rich breccias, and faults. To further demonstrate their utility, VC attributes are integrated into a geocellular modeling workflow: 1) to constrain the structural model; 2) to generate facies probability grids, and; 3) to collocate

  8. Intravascular photoacoustic imaging: a new tool for vulnerable plaque identification.

    Science.gov (United States)

    Jansen, Krista; van Soest, Gijs; van der Steen, Antonius F W

    2014-06-01

    The vulnerable atherosclerotic plaque is believed to be at the root of the majority of acute coronary events. Even though the exact origins of plaque vulnerability remain elusive, the thin-cap fibroatheroma, characterized by a lipid-rich necrotic core covered by a thin fibrous cap, is considered to be the most prominent type of vulnerable plaque. No clinically available imaging technique can characterize atherosclerotic lesions to the extent needed to determine plaque vulnerability prognostically. Intravascular photoacoustic imaging (IVPA) has the potential to take a significant step in that direction by imaging both plaque structure and composition. IVPA is a natural extension of intravascular ultrasound that adds tissue type specificity to the images. IVPA utilizes the optical contrast provided by the differences in the absorption spectra of plaque components to image composition. Its capability to image lipids in human coronary atherosclerosis has been shown extensively ex vivo and has recently been translated to an in vivo animal model. Other disease markers that have been successfully targeted are calcium and inflammatory markers, such as macrophages and matrix metalloproteinase; the latter two through application of exogenous contrast agents. By simultaneously displaying plaque morphology and composition, IVPA can provide a powerful prognostic marker for disease progression, and as such has the potential to transform the current practice in percutaneous coronary intervention. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. A volumetric data system for environmental robotics

    International Nuclear Information System (INIS)

    Tourtellott, J.

    1994-01-01

    A three-dimensional, spatially organized or volumetric data system provides an effective means for integrating and presenting environmental sensor data to robotic systems and operators. Because of the unstructed nature of environmental restoration applications, new robotic control strategies are being developed that include environmental sensors and interactive data interpretation. The volumetric data system provides key features to facilitate these new control strategies including: integrated representation of surface, subsurface and above-surface data; differentiation of mapped and unmapped regions in space; sculpting of regions in space to best exploit data from line-of-sight sensors; integration of diverse sensor data (for example, dimensional, physical/geophysical, chemical, and radiological); incorporation of data provided at different spatial resolutions; efficient access for high-speed visualization and analysis; and geometric modeling tools to update a open-quotes world modelclose quotes of an environment. The applicability to underground storage tank remediation and buried waste site remediation are demonstrated in several examples. By integrating environmental sensor data into robotic control, the volumetric data system will lead to safer, faster, and more cost-effective environmental cleanup

  10. MatchGUI: A Graphical MATLAB-Based Tool for Automatic Image Co-Registration

    Science.gov (United States)

    Ansar, Adnan I.

    2011-01-01

    MatchGUI software, based on MATLAB, automatically matches two images and displays the match result by superimposing one image on the other. A slider bar allows focus to shift between the two images. There are tools for zoom, auto-crop to overlap region, and basic image markup. Given a pair of ortho-rectified images (focused primarily on Mars orbital imagery for now), this software automatically co-registers the imagery so that corresponding image pixels are aligned. MatchGUI requires minimal user input, and performs a registration over scale and inplane rotation fully automatically

  11. Resting functional imaging tools (MRS, SPECT, PET and PCT).

    Science.gov (United States)

    Van Der Naalt, J

    2015-01-01

    Functional imaging includes imaging techniques that provide information about the metabolic and hemodynamic status of the brain. Most commonly applied functional imaging techniques in patients with traumatic brain injury (TBI) include magnetic resonance spectroscopy (MRS), single photon emission computed tomography (SPECT), positron emission tomography (PET) and perfusion CT (PCT). These imaging modalities are used to determine the extent of injury, to provide information for the prediction of outcome, and to assess evidence of cerebral ischemia. In TBI, secondary brain damage mainly comprises ischemia and is present in more than 80% of fatal cases with traumatic brain injury (Graham et al., 1989; Bouma et al., 1991; Coles et al., 2004). In particular, while SPECT measures cerebral perfusion and MRS determines metabolism, PET is able to assess both perfusion and cerebral metabolism. This chapter will describe the application of these techniques in traumatic brain injury separately for the major groups of severity comprising the mild and moderate to severe group. The application in TBI and potential difficulties of each technique is described. The use of imaging techniques in children will be separately outlined. © 2015 Elsevier B.V. All rights reserved.

  12. 3-D interactive visualisation tools for Hi spectral line imaging

    NARCIS (Netherlands)

    van der Hulst, J. M.; Punzo, D.; Roerdink, J. B. T. M.

    2016-01-01

    Upcoming HI surveys will deliver such large datasets that automated processing using the full 3-D information to find and characterize HI objects is unavoidable. Full 3-D visualization is an essential tool for enabling qualitative and quantitative inspection and analysis of the 3-D data, which is

  13. From printed color to image appearance: tool for advertising assessment

    Science.gov (United States)

    Bonanomi, Cristian; Marini, Daniele; Rizzi, Alessandro

    2012-07-01

    We present a methodology to calculate the color appearance of advertising billboards set in indoor and outdoor environments, printed on different types of paper support and viewed under different illuminations. The aim is to simulate the visual appearance of an image printed on a specific support, observed in a certain context and illuminated with a specific source of light. Knowing in advance the visual rendering of an image in different conditions can avoid problems related to its visualization. The proposed method applies a sequence of transformations to convert a four channels image (CMYK) into a spectral one, considering the paper support, then it simulates the chosen illumination, and finally computes an estimation of the appearance.

  14. AGREEMENT BETWEEN THE WHITE MATTER CONNECTIVITY BASED ON THE TENSOR-BASED MORPHOMETRY AND THE VOLUMETRIC WHITE MATTER PARCELLATIONS BASED ON DIFFUSION TENSOR IMAGING

    OpenAIRE

    Kim, Seung-Goo; Lee, Hyekyoung; Chung, Moo K.; Hanson, Jamie L.; Avants, Brian B.; Gee, James C.; Davidson, Richard J.; Pollak, Seth D.

    2012-01-01

    We are interested in investigating white matter connectivity using a novel computational framework that does not use diffusion tensor imaging (DTI) but only uses T1-weighted magnetic resonance imaging. The proposed method relies on correlating Jacobian determinants across different voxels based on the tensor-based morphometry (TBM) framework. In this paper, we show agreement between the TBM-based white matter connectivity and the DTI-based white matter atlas. As an application, altered white ...

  15. Image decomposition as a tool for validating stress analysis models

    Directory of Open Access Journals (Sweden)

    Mottershead J.

    2010-06-01

    Full Text Available It is good practice to validate analytical and numerical models used in stress analysis for engineering design by comparison with measurements obtained from real components either in-service or in the laboratory. In reality, this critical step is often neglected or reduced to placing a single strain gage at the predicted hot-spot of stress. Modern techniques of optical analysis allow full-field maps of displacement, strain and, or stress to be obtained from real components with relative ease and at modest cost. However, validations continued to be performed only at predicted and, or observed hot-spots and most of the wealth of data is ignored. It is proposed that image decomposition methods, commonly employed in techniques such as fingerprinting and iris recognition, can be employed to validate stress analysis models by comparing all of the key features in the data from the experiment and the model. Image decomposition techniques such as Zernike moments and Fourier transforms have been used to decompose full-field distributions for strain generated from optical techniques such as digital image correlation and thermoelastic stress analysis as well as from analytical and numerical models by treating the strain distributions as images. The result of the decomposition is 101 to 102 image descriptors instead of the 105 or 106 pixels in the original data. As a consequence, it is relatively easy to make a statistical comparison of the image descriptors from the experiment and from the analytical/numerical model and to provide a quantitative assessment of the stress analysis.

  16. Imaging as tool to investigate psychoses and antipsychotics

    NARCIS (Netherlands)

    Booij, Jan; van Amelsvoort, Thérèse

    2012-01-01

    The results of imaging studies have played an important role in the formulation of hypotheses regarding the etiology of psychosis and schizophrenia, as well as in our understanding of the mechanisms of action of antipsychotics. Since this volume is primarily directed to molecular aspects of

  17. Pathological and 3 Tesla Volumetric Magnetic Resonance Imaging Predictors of Biochemical Recurrence after Robotic Assisted Radical Prostatectomy: Correlation with Whole Mount Histopathology.

    Science.gov (United States)

    Tan, Nelly; Shen, Luyao; Khoshnoodi, Pooria; Alcalá, Héctor E; Yu, Weixia; Hsu, William; Reiter, Robert E; Lu, David Y; Raman, Steven S

    2018-05-01

    We sought to identify the clinical and magnetic resonance imaging variables predictive of biochemical recurrence after robotic assisted radical prostatectomy in patients who underwent multiparametric 3 Tesla prostate magnetic resonance imaging. We performed an institutional review board approved, HIPAA (Health Insurance Portability and Accountability Act) compliant, single arm observational study of 3 Tesla multiparametric magnetic resonance imaging prior to robotic assisted radical prostatectomy from December 2009 to March 2016. Clinical, magnetic resonance imaging and pathological information, and clinical outcomes were compiled. Biochemical recurrence was defined as prostate specific antigen 0.2 ng/cc or greater. Univariate and multivariate regression analysis was performed. Biochemical recurrence had developed in 62 of the 255 men (24.3%) included in the study at a median followup of 23.5 months. Compared to the subcohort without biochemical recurrence the subcohort with biochemical recurrence had a greater proportion of patients with a high grade biopsy Gleason score, higher preoperative prostate specific antigen (7.4 vs 5.6 ng/ml), intermediate and high D'Amico classifications, larger tumor volume on magnetic resonance imaging (0.66 vs 0.30 ml), higher PI-RADS® (Prostate Imaging-Reporting and Data System) version 2 category lesions, a greater proportion of intermediate and high grade radical prostatectomy Gleason score lesions, higher pathological T3 stage (all p <0.01) and a higher positive surgical margin rate (19.3% vs 7.8%, p = 0.016). On multivariable analysis only tumor volume on magnetic resonance imaging (adjusted OR 1.57, p = 0.016), pathological T stage (adjusted OR 2.26, p = 0.02), positive surgical margin (adjusted OR 5.0, p = 0.004) and radical prostatectomy Gleason score (adjusted OR 2.29, p = 0.004) predicted biochemical recurrence. In this cohort tumor volume on magnetic resonance imaging and pathological variables, including Gleason score

  18. Tool for the verification of geometrical parameters and constancy of image quality in radiology equipment

    International Nuclear Information System (INIS)

    Mayo, P.; Verdu Martin, G.; Rodenas Escriba, F.; Marin Peinado, B.; Camapyo Esteban Nogueira, J. M.; Diez Domingo, S.; Villaescusa Blanca, J. I.; Hernando Gonzalez, I.; Ruiz Manzano, P.; Rivas Ballarin, M. A.; Melcho Iniguez, M.; Asensio Martinez, M. I.

    2013-01-01

    This paper presents the application of an innovative tool developed for the detailed quality control of diagnostic equipment. We have tried to validate such a tool for verification of geometrical parameters and the evaluation of the constancy of the image quality in radiology equipment, evaluating their usefulness by various services of Radio physics and radiation protection of different hospitals. (Author)

  19. P2-37: Processing Affordance Information from Invisible Tool Images

    Directory of Open Access Journals (Sweden)

    Shinho Cho

    2012-10-01

    Full Text Available A recent study showed that viewing manipulable objects such as images of tools induces the neural activation of posterior parietal areas. This neural activation is observed even when visual awareness of the image is visually suppressed. (Fang and He, 2005 Nature Neuroscience 10 1380–1385; Almeida et al, 2010 Psychological Science 21 772–778. However, the specific visuomotor information in tool images that drives the activation of dorsal areas is still unclear. We measured priming effect of invisible tool prime (left or right handed orientation. Observers distinguished the orientation of target tools (appropriate for left vs right handed grip briefly presented following visually suppressed primes (Experiment1. Also we measured the suppression time of tool images whose handle direction was presented in a left- or right-handed orientation. A dynamic noise pattern was presented to one of the observer's eyes at full contrast, while images of tools (left or right handed were simultaneously presented to the left or right visual field of the other eye. The subjects were asked to respond to the appearance of any partial or full part of the test image (Experiment 2. Results showed that (1 observers responded faster in the congruent condition (the same orientation between prime and target and (2 tool images shown in the right visual field took less time to gain dominance against the dynamic noise. These results suggest that even without overt recognition of presented tools, an object's affordance can be registered and processed in the brain. A recent study showed that viewing manipulable objects such as images of tools induces the neural activation of posterior parietal areas. This neural activation is observed even when visual awareness of the image is visually suppressed (Almeida et al., 2010 Psychological Science 21 772–778; Fang and He, 2005 Nature Neuroscience 10 1380–1385. However, the specific visuomotor information in tool images that

  20. AGREEMENT BETWEEN THE WHITE MATTER CONNECTIVITY BASED ON THE TENSOR-BASED MORPHOMETRY AND THE VOLUMETRIC WHITE MATTER PARCELLATIONS BASED ON DIFFUSION TENSOR IMAGING.

    Science.gov (United States)

    Kim, Seung-Goo; Lee, Hyekyoung; Chung, Moo K; Hanson, Jamie L; Avants, Brian B; Gee, James C; Davidson, Richard J; Pollak, Seth D

    2012-01-01

    We are interested in investigating white matter connectivity using a novel computational framework that does not use diffusion tensor imaging (DTI) but only uses T1-weighted magnetic resonance imaging. The proposed method relies on correlating Jacobian determinants across different voxels based on the tensor-based morphometry (TBM) framework. In this paper, we show agreement between the TBM-based white matter connectivity and the DTI-based white matter atlas. As an application, altered white matter connectivity in a clinical population is determined.

  1. An image-guided tool to prevent hospital acquired infections

    Science.gov (United States)

    Nagy, Melinda; Szilágyi, László; Lehotsky, Ákos; Haidegger, Tamás; Benyó, Balázs

    2011-03-01

    Hospital Acquired Infections (HAI) represent the fourth leading cause of death in the United States, and claims hundreds of thousands of lives annually in the rest of the world. This paper presents a novel low-cost mobile device|called Stery-Hand|that helps to avoid HAI by improving hand hygiene control through providing an objective evaluation of the quality of hand washing. The use of the system is intuitive: having performed hand washing with a soap mixed with UV re ective powder, the skin appears brighter in UV illumination on the disinfected surfaces. Washed hands are inserted into the Stery-Hand box, where a digital image is taken under UV lighting. Automated image processing algorithms are employed in three steps to evaluate the quality of hand washing. First, the contour of the hand is extracted in order to distinguish the hand from the background. Next, a semi-supervised clustering algorithm classies the pixels of the hand into three groups, corresponding to clean, partially clean and dirty areas. The clustering algorithm is derived from the histogram-based quick fuzzy c-means approach, using a priori information extracted from reference images, evaluated by experts. Finally, the identied areas are adjusted to suppress shading eects, and quantied in order to give a verdict on hand disinfection quality. The proposed methodology was validated through tests using hundreds of images recorded in our laboratory. The proposed system was found robust and accurate, producing correct estimation for over 98% of the test cases. Stery-Hand may be employed in general practice, and it may also serve educational purposes.

  2. Accuracy and Reliability of Cone-Beam Computed Tomography for Linear and Volumetric Mandibular Condyle Measurements. A Human Cadaver Study.

    Science.gov (United States)

    García-Sanz, Verónica; Bellot-Arcís, Carlos; Hernández, Virginia; Serrano-Sánchez, Pedro; Guarinos, Juan; Paredes-Gallardo, Vanessa

    2017-09-20

    The accuracy of Cone-Beam Computed Tomography (CBCT) on linear and volumetric measurements on condyles has only been assessed on dry skulls. The aim of this study was to evaluate the reliability and accuracy of linear and volumetric measurements of mandibular condyles in the presence of soft tissues using CBCT. Six embalmed cadaver heads were used. CBCT scans were taken, followed by the extraction of the condyles. The water displacement technique was used to calculate the volumes of the condyles and three linear measurements were made using a digital caliper, these measurements serving as the gold standard. Surface models of the condyles were obtained using a 3D scanner, and superimposed onto the CBCT images. Condyles were isolated on the CBCT render volume using the surface models as reference and volumes were measured. Linear measurements were made on CBCT slices. The CBCT method was found to be reliable for both volumetric and linear measurements (CV  0.90). Highly accurate values were obtained for the three linear measurements and volume. CBCT is a reliable and accurate method for taking volumetric and linear measurements on mandibular condyles in the presence of soft tissue, and so a valid tool for clinical diagnosis.

  3. Enhancements to the Image Analysis Tool for Core Punch Experiments and Simulations (vs. 2014)

    Energy Technology Data Exchange (ETDEWEB)

    Hogden, John Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Unal, Cetin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-06

    A previous paper (Hogden & Unal, 2012, Image Analysis Tool for Core Punch Experiments and Simulations) described an image processing computer program developed at Los Alamos National Laboratory. This program has proven useful so developement has been continued. In this paper we describe enhacements to the program as of 2014.

  4. Visualization: A Tool for Enhancing Students' Concept Images of Basic Object-Oriented Concepts

    Science.gov (United States)

    Cetin, Ibrahim

    2013-01-01

    The purpose of this study was twofold: to investigate students' concept images about class, object, and their relationship and to help them enhance their learning of these notions with a visualization tool. Fifty-six second-year university students participated in the study. To investigate his/her concept images, the researcher developed a survey…

  5. Predicting tool life in turning operations using neural networks and image processing

    Science.gov (United States)

    Mikołajczyk, T.; Nowicki, K.; Bustillo, A.; Yu Pimenov, D.

    2018-05-01

    A two-step method is presented for the automatic prediction of tool life in turning operations. First, experimental data are collected for three cutting edges under the same constant processing conditions. In these experiments, the parameter of tool wear, VB, is measured with conventional methods and the same parameter is estimated using Neural Wear, a customized software package that combines flank wear image recognition and Artificial Neural Networks (ANNs). Second, an ANN model of tool life is trained with the data collected from the first two cutting edges and the subsequent model is evaluated on two different subsets for the third cutting edge: the first subset is obtained from the direct measurement of tool wear and the second is obtained from the Neural Wear software that estimates tool wear using edge images. Although the complete-automated solution, Neural Wear software for tool wear recognition plus the ANN model of tool life prediction, presented a slightly higher error than the direct measurements, it was within the same range and can meet all industrial requirements. These results confirm that the combination of image recognition software and ANN modelling could potentially be developed into a useful industrial tool for low-cost estimation of tool life in turning operations.

  6. Volumetric imaging of rod and cone photoreceptor structure with a combined adaptive optics-optical coherence tomography-scanning laser ophthalmoscope

    Science.gov (United States)

    Wells-Gray, Elaine M.; Choi, Stacey S.; Zawadzki, Robert J.; Finn, Susanna C.; Greiner, Cherry; Werner, John S.; Doble, Nathan

    2018-03-01

    We have designed and implemented a dual-mode adaptive optics (AO) imaging system that combines spectral domain optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) for in vivo imaging of the human retina. The system simultaneously acquires SLO frames and OCT B-scans at 60 Hz with an OCT volume acquisition time of 4.2 s. Transverse eye motion measured from the SLO is used to register the OCT B-scans to generate three-dimensional (3-D) volumes. Key optical design considerations include: minimizing system aberrations through the use of off-axis relay telescopes, conjugate pupil plane requirements, and the use of dichroic beam splitters to separate and recombine the OCT and SLO beams around the nonshared horizontal scanning mirrors. To demonstrate system performance, AO-OCT-SLO images and measurements are taken from three normal human subjects ranging in retinal eccentricity from the fovea out to 15-deg temporal and 20-deg superior. Also presented are en face OCT projections generated from the registered 3-D volumes. The ability to acquire high-resolution 3-D images of the human retina in the midperiphery and beyond has clinical importance in diseases, such as retinitis pigmentosa and cone-rod dystrophy.

  7. Systematic Parameterization, Storage, and Representation of Volumetric DICOM Data.

    Science.gov (United States)

    Fischer, Felix; Selver, M Alper; Gezer, Sinem; Dicle, Oğuz; Hillen, Walter

    Tomographic medical imaging systems produce hundreds to thousands of slices, enabling three-dimensional (3D) analysis. Radiologists process these images through various tools and techniques in order to generate 3D renderings for various applications, such as surgical planning, medical education, and volumetric measurements. To save and store these visualizations, current systems use snapshots or video exporting, which prevents further optimizations and requires the storage of significant additional data. The Grayscale Softcopy Presentation State extension of the Digital Imaging and Communications in Medicine (DICOM) standard resolves this issue for two-dimensional (2D) data by introducing an extensive set of parameters, namely 2D Presentation States (2DPR), that describe how an image should be displayed. 2DPR allows storing these parameters instead of storing parameter applied images, which cause unnecessary duplication of the image data. Since there is currently no corresponding extension for 3D data, in this study, a DICOM-compliant object called 3D presentation states (3DPR) is proposed for the parameterization and storage of 3D medical volumes. To accomplish this, the 3D medical visualization process is divided into four tasks, namely pre-processing, segmentation, post-processing, and rendering. The important parameters of each task are determined. Special focus is given to the compression of segmented data, parameterization of the rendering process, and DICOM-compliant implementation of the 3DPR object. The use of 3DPR was tested in a radiology department on three clinical cases, which require multiple segmentations and visualizations during the workflow of radiologists. The results show that 3DPR can effectively simplify the workload of physicians by directly regenerating 3D renderings without repeating intermediate tasks, increase efficiency by preserving all user interactions, and provide efficient storage as well as transfer of visualized data.

  8. Novel Super-Resolution Approach to Time-Resolved Volumetric 4-Dimensional Magnetic Resonance Imaging With High Spatiotemporal Resolution for Multi-Breathing Cycle Motion Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guang, E-mail: lig2@mskcc.org [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Wei, Jie [Department of Computer Science, City College of New York, New York, New York (United States); Kadbi, Mo [Philips Healthcare, MR Therapy Cleveland, Ohio (United States); Moody, Jason; Sun, August; Zhang, Shirong; Markova, Svetlana; Zakian, Kristen; Hunt, Margie; Deasy, Joseph O. [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States)

    2017-06-01

    Purpose: To develop and evaluate a super-resolution approach to reconstruct time-resolved 4-dimensional magnetic resonance imaging (TR-4DMRI) with a high spatiotemporal resolution for multi-breathing cycle motion assessment. Methods and Materials: A super-resolution approach was developed to combine fast 3-dimensional (3D) cine MRI with low resolution during free breathing (FB) and high-resolution 3D static MRI during breath hold (BH) using deformable image registration. A T1-weighted, turbo field echo sequence, coronal 3D cine acquisition, partial Fourier approximation, and SENSitivity Encoding parallel acceleration were used. The same MRI pulse sequence, field of view, and acceleration techniques were applied in both FB and BH acquisitions; the intensity-based Demons deformable image registration method was used. Under an institutional review board–approved protocol, 7 volunteers were studied with 3D cine FB scan (voxel size: 5 × 5 × 5 mm{sup 3}) at 2 Hz for 40 seconds and a 3D static BH scan (2 × 2 × 2 mm{sup 3}). To examine the image fidelity of 3D cine and super-resolution TR-4DMRI, a mobile gel phantom with multi-internal targets was scanned at 3 speeds and compared with the 3D static image. Image similarity among 3D cine, 4DMRI, and 3D static was evaluated visually using difference image and quantitatively using voxel intensity correlation and Dice index (phantom only). Multi-breathing-cycle waveforms were extracted and compared in both phantom and volunteer images using the 3D cine as the references. Results: Mild imaging artifacts were found in the 3D cine and TR-4DMRI of the mobile gel phantom with a Dice index of >0.95. Among 7 volunteers, the super-resolution TR-4DMRI yielded high voxel-intensity correlation (0.92 ± 0.05) and low voxel-intensity difference (<0.05). The detected motion differences between TR-4DMRI and 3D cine were −0.2 ± 0.5 mm (phantom) and −0.2 ± 1.9 mm (diaphragms). Conclusion: Super-resolution TR-4

  9. Novel Super-Resolution Approach to Time-Resolved Volumetric 4-Dimensional Magnetic Resonance Imaging With High Spatiotemporal Resolution for Multi-Breathing Cycle Motion Assessment

    International Nuclear Information System (INIS)

    Li, Guang; Wei, Jie; Kadbi, Mo; Moody, Jason; Sun, August; Zhang, Shirong; Markova, Svetlana; Zakian, Kristen; Hunt, Margie; Deasy, Joseph O.

    2017-01-01

    Purpose: To develop and evaluate a super-resolution approach to reconstruct time-resolved 4-dimensional magnetic resonance imaging (TR-4DMRI) with a high spatiotemporal resolution for multi-breathing cycle motion assessment. Methods and Materials: A super-resolution approach was developed to combine fast 3-dimensional (3D) cine MRI with low resolution during free breathing (FB) and high-resolution 3D static MRI during breath hold (BH) using deformable image registration. A T1-weighted, turbo field echo sequence, coronal 3D cine acquisition, partial Fourier approximation, and SENSitivity Encoding parallel acceleration were used. The same MRI pulse sequence, field of view, and acceleration techniques were applied in both FB and BH acquisitions; the intensity-based Demons deformable image registration method was used. Under an institutional review board–approved protocol, 7 volunteers were studied with 3D cine FB scan (voxel size: 5 × 5 × 5 mm"3) at 2 Hz for 40 seconds and a 3D static BH scan (2 × 2 × 2 mm"3). To examine the image fidelity of 3D cine and super-resolution TR-4DMRI, a mobile gel phantom with multi-internal targets was scanned at 3 speeds and compared with the 3D static image. Image similarity among 3D cine, 4DMRI, and 3D static was evaluated visually using difference image and quantitatively using voxel intensity correlation and Dice index (phantom only). Multi-breathing-cycle waveforms were extracted and compared in both phantom and volunteer images using the 3D cine as the references. Results: Mild imaging artifacts were found in the 3D cine and TR-4DMRI of the mobile gel phantom with a Dice index of >0.95. Among 7 volunteers, the super-resolution TR-4DMRI yielded high voxel-intensity correlation (0.92 ± 0.05) and low voxel-intensity difference (<0.05). The detected motion differences between TR-4DMRI and 3D cine were −0.2 ± 0.5 mm (phantom) and −0.2 ± 1.9 mm (diaphragms). Conclusion: Super-resolution TR-4DMRI has been

  10. International Youth Diplomacy as a Tool of Russian Image Formation

    Directory of Open Access Journals (Sweden)

    Asadov Babek Rashid ogly

    2014-03-01

    Full Text Available In the modern world forming and using the positive image of state actors can be considered among the most important elements of their actions on the international stage. Today it becomes obvious that the efficient use of social mechanisms as new forms of international cooperation, especially in the humanitarian field, is carried out by means of public diplomacy, which actively forms the target audience and creates the basis for the formation of country’s positive image. The targeted actions of world politics centers aimed at expanding the scope of their humanitarian presence on the international stage determine the relevance of wider use of the Institute for Public Diplomacy as a mechanism of foreign cultural policy development. Today, public diplomacy is becoming the demanded mechanism in international youth environment where there is a growth of involvement of active representatives of nongovernmental organizations who have specific knowledge and skills in international communication. These aspects of public diplomacy determine the need to address issues related to the qualitative characteristics of youth diplomacy, especially with the criteria of its effectiveness. This article analyzes one of the modern forms of aggravated international youth activity, which represents the significant mechanism in the formation of a positive image of Russia in the international youth sector. In fact, it is the first attempt to understand the role of diplomacy in organized youth sector, for which new opportunities of interaction with their peers from other countries are opened. The author refers to the history of the emergence of the term “international youth diplomacy” and offers the author’s version occurrences of the term in the scientific and journalistic usage. The article identifies some problematic aspects and main directions of its development in the context of youth organizations activity with a number of public institutions. “Small” part

  11. Brain Volume Estimation Enhancement by Morphological Image Processing Tools

    Directory of Open Access Journals (Sweden)

    Zeinali R.

    2017-12-01

    Full Text Available Background: Volume estimation of brain is important for many neurological applications. It is necessary in measuring brain growth and changes in brain in normal/ abnormal patients. Thus, accurate brain volume measurement is very important. Magnetic resonance imaging (MRI is the method of choice for volume quantification due to excellent levels of image resolution and between-tissue contrast. Stereology method is a good method for estimating volume but it requires to segment enough MRI slices and have a good resolution. In this study, it is desired to enhance stereology method for volume estimation of brain using less MRI slices with less resolution. Methods: In this study, a program for calculating volume using stereology method has been introduced. After morphologic method, dilation was applied and the stereology method enhanced. For the evaluation of this method, we used T1-wighted MR images from digital phantom in BrainWeb which had ground truth. Results: The volume of 20 normal brain extracted from BrainWeb, was calculated. The volumes of white matter, gray matter and cerebrospinal fluid with given dimension were estimated correctly. Volume calculation from Stereology method in different cases was made. In three cases, Root Mean Square Error (RMSE was measured. Case I with T=5, d=5, Case II with T=10, D=10 and Case III with T=20, d=20 (T=slice thickness, d=resolution as stereology parameters. By comparing these results of two methods, it is obvious that RMSE values for our proposed method are smaller than Stereology method. Conclusion: Using morphological operation, dilation allows to enhance the estimation volume method, Stereology. In the case with less MRI slices and less test points, this method works much better compared to Stereology method.

  12. Scipion web tools: Easy to use cryo-EM image processing over the web.

    Science.gov (United States)

    Conesa Mingo, Pablo; Gutierrez, José; Quintana, Adrián; de la Rosa Trevín, José Miguel; Zaldívar-Peraza, Airén; Cuenca Alba, Jesús; Kazemi, Mohsen; Vargas, Javier; Del Cano, Laura; Segura, Joan; Sorzano, Carlos Oscar S; Carazo, Jose María

    2018-01-01

    Macromolecular structural determination by Electron Microscopy under cryogenic conditions is revolutionizing the field of structural biology, interesting a large community of potential users. Still, the path from raw images to density maps is complex, and sophisticated image processing suites are required in this process, often demanding the installation and understanding of different software packages. Here, we present Scipion Web Tools, a web-based set of tools/workflows derived from the Scipion image processing framework, specially tailored to nonexpert users in need of very precise answers at several key stages of the structural elucidation process. © 2017 The Protein Society.

  13. Ratsnake: A Versatile Image Annotation Tool with Application to Computer-Aided Diagnosis

    Directory of Open Access Journals (Sweden)

    D. K. Iakovidis

    2014-01-01

    Full Text Available Image segmentation and annotation are key components of image-based medical computer-aided diagnosis (CAD systems. In this paper we present Ratsnake, a publicly available generic image annotation tool providing annotation efficiency, semantic awareness, versatility, and extensibility, features that can be exploited to transform it into an effective CAD system. In order to demonstrate this unique capability, we present its novel application for the evaluation and quantification of salient objects and structures of interest in kidney biopsy images. Accurate annotation identifying and quantifying such structures in microscopy images can provide an estimation of pathogenesis in obstructive nephropathy, which is a rather common disease with severe implication in children and infants. However a tool for detecting and quantifying the disease is not yet available. A machine learning-based approach, which utilizes prior domain knowledge and textural image features, is considered for the generation of an image force field customizing the presented tool for automatic evaluation of kidney biopsy images. The experimental evaluation of the proposed application of Ratsnake demonstrates its efficiency and effectiveness and promises its wide applicability across a variety of medical imaging domains.

  14. The relationship of age, gender, and IQ with the brainstem and thalamus in healthy children and adolescents: a magnetic resonance imaging volumetric study.

    Science.gov (United States)

    Xie, Yuhuan; Chen, Yian Ann; De Bellis, Michael D

    2012-03-01

    In healthy children, there is a paucity of information on the growth of the brainstem and thalamus measured anatomically magnetic resonance imaging. The relations of age, gender, and age by gender with brainstem and thalamus volumes were analyzed from magnetic resonance brain images of 122 healthy children and adolescents (62 males, 60 females; ages 4 to 17). Results showed that age is a significant predictor of brainstem and thalamus volumes. The volume of the brainstem increases with age, while thalamus volume declines with age. The volume of the right thalamus is significantly larger than that of the left in both genders, with greater rightward asymmetry and greater thalamus to grey matter ratio in females. Males have larger brainstems, but these differences are not significant when covarying for cerebral volume. Larger thalami were associated with higher Verbal IQ. These normative pediatric data are of value to researchers who study these regions in neurodevelopmental disorders.

  15. Rapid MR venography in children using a blood pool contrast agent and multi-station fat-water-separated volumetric imaging

    International Nuclear Information System (INIS)

    Ghanouni, Pejman; Walters, Shannon G.; Vasanawala, Shreyas S.

    2012-01-01

    A rapid, reliable radiation-free method of pediatric body venography might complement US by evaluating veins in the abdomen and pelvis and by providing a global depiction of venous anatomy. We describe a MR venography technique utilizing gadofosveset, a blood pool contrast agent, in children. The technique allows high-spatial-resolution imaging of the veins from the diaphragm to the knees in less than 15 min of total exam time. (orig.)

  16. DSA volumetric 3D reconstructions of intracranial aneurysms: A pictorial essay

    Science.gov (United States)

    Cieściński, Jakub; Serafin, Zbigniew; Strześniewski, Piotr; Lasek, Władysław; Beuth, Wojciech

    2012-01-01

    Summary A gold standard of cerebral vessel imaging remains the digital subtraction angiography (DSA) performed in three projections. However, in specific clinical cases, many additional projections are required, or a complete visualization of a lesion may even be impossible with 2D angiography. Three-dimensional (3D) reconstructions of rotational angiography were reported to improve the performance of DSA significantly. In this pictorial essay, specific applications of this technique are presented in the management of intracranial aneurysms, including: preoperative aneurysm evaluation, intraoperative imaging, and follow-up. Volumetric reconstructions of 3D DSA are a valuable tool for cerebral vessels imaging. They play a vital role in the assessment of intracranial aneurysms, especially in evaluation of the aneurysm neck and the aneurysm recanalization. PMID:22844309

  17. Short linear shadows connecting pulmonary segmental arteries to oblique fissures in volumetric thin-section CT images: comparing CT, micro-CT and histopathology

    International Nuclear Information System (INIS)

    Guan, Chun-Shuang; Ma, Da-Qing; Chen, Jiang-Hong; Chen, Bu-Dong; Cui, Dun; Zhang, Yan-Song; Liu, Wei-Hua

    2016-01-01

    To retrospectively evaluate short linear shadows connecting pulmonary segmental arteries to oblique fissures in thin-section CT images and determine their anatomical basis. CT scanning was performed on 108 patients and 11 lung specimens with no lung diseases around the oblique fissures or hilar. Two radiologists evaluated the imaging. The parameters included length, thickness of short linear shadows, pulmonary segmental artery variations, and traction interlobar fissures, etc. The short linear shadows were not related to sex, age, or smoking history. The lengths of the short linear shadows were generally within 10 mm. The thicknesses of the short linear shadows ranged from 1 to 2 mm. Of the patients, 26.9 % showed pulmonary segmental artery variations; 66.7 % of short linear shadows pulled oblique fissures. In three-dimensional images, the short linear shadows appeared as arc planes, with one side edge connected to the oblique fissure, one side edge connected to a pulmonary segmental artery. On the tissue slices, the short linear shadow exhibited a band structure composed of connective tissues, small blood vessels, and small lymphatic vessels. Short linear shadows are a type of normal intrapulmonary membranes and can maintain the integrity of the oblique fissures and hilar structure. (orig.)

  18. Multifunctional Magnetic and Upconverting Nanobeads as Dual Modal Imaging Tools.

    Science.gov (United States)

    Materia, Maria Elena; Pernia Leal, Manuel; Scotto, Marco; Balakrishnan, Preethi Bala; Kumar Avugadda, Sahitya; García-Martín, María L; Cohen, Bruce E; Chan, Emory M; Pellegrino, Teresa

    2017-11-15

    We report the fabrication of aqueous multimodal imaging nanocomposites based on superparamagnetic nanoparticles (MNPs) and two different sizes of photoluminescent upconverting nanoparticles (UCNPs). The controlled and simultaneous incorporation of both types of nanoparticles (NPs) was obtained by controlling the solvent composition and the addition rate of the destabilizing solvent. The magnetic properties of the MNPs remained unaltered after their encapsulation into the polymeric beads as shown by the T2 relaxivity measurements. The UCNPs maintain photoluminescent properties even when embedded with the MNPs into the polymer bead. Moreover, the light emitted by the magnetic and upconverting nanobeads (MUCNBs) under NIR excitation (λ exc = 980 nm) was clearly observed through different thicknesses of agarose gel or through a mouse skin layer. The comparison with magnetic and luminescent nanobeads based on red-emitting quantum dots (QDs) demonstrated that while the QD-based beads show significant autofluorescence background from the skin, the signal obtained by the MUCNBs allows a decrease in this background. In summary, these results indicate that MUCNBs are good magnetic and optical probes for in vivo multimodal imaging sensors.

  19. Pharmacological imaging as a tool to visualise dopaminergic neurotoxicity.

    Science.gov (United States)

    Schrantee, A; Reneman, L

    2014-09-01

    Dopamine abnormalities underlie a wide variety of psychopathologies, including ADHD and schizophrenia. A new imaging technique, pharmacological magnetic resonance imaging (phMRI), is a promising non-invasive technique to visualize the dopaminergic system in the brain. In this review we explore the clinical potential of phMRI in detecting dopamine dysfunction or neurotoxicity, assess its strengths and weaknesses and identify directions for future research. Preclinically, phMRI is able to detect severe dopaminergic abnormalities quite similar to conventional techniques such as PET and SPECT. phMRI benefits from its high spatial resolution and the possibility to visualize both local and downstream effects of dopaminergic neurotransmission. In addition, it allows for repeated measurements and assessments in vulnerable populations. The major challenge is the complex interpretation of phMRI results. Future studies in patients with dopaminergic abnormalities need to confirm the currently reviewed preclinical findings to validate the technique in a clinical setting. Eventually, based on the current review we expect that phMRI can be of use in a clinical setting involving vulnerable populations (such as children and adolescents) for diagnosis and monitoring treatment efficacy. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Establishing magnetic resonance imaging as an accurate and reliable tool to diagnose and monitor esophageal cancer in a rat model.

    Directory of Open Access Journals (Sweden)

    Juliann E Kosovec

    Full Text Available OBJECTIVE: To assess the reliability of magnetic resonance imaging (MRI for detection of esophageal cancer in the Levrat model of end-to-side esophagojejunostomy. BACKGROUND: The Levrat model has proven utility in terms of its ability to replicate Barrett's carcinogenesis by inducing gastroduodenoesophageal reflux (GDER. Due to lack of data on the utility of non-invasive methods for detection of esophageal cancer, treatment efficacy studies have been limited, as adenocarcinoma histology has only been validated post-mortem. It would therefore be of great value if the validity and reliability of MRI could be established in this setting. METHODS: Chronic GDER reflux was induced in 19 male Sprague-Dawley rats using the modified Levrat model. At 40 weeks post-surgery, all animals underwent endoscopy, MRI scanning, and post-mortem histological analysis of the esophagus and anastomosis. With post-mortem histology serving as the gold standard, assessment of presence of esophageal cancer was made by five esophageal specialists and five radiologists on endoscopy and MRI, respectively. RESULTS: The accuracy of MRI and endoscopic analysis to correctly identify cancer vs. no cancer was 85.3% and 50.5%, respectively. ROC curves demonstrated that MRI rating had an AUC of 0.966 (p<0.001 and endoscopy rating had an AUC of 0.534 (p = 0.804. The sensitivity and specificity of MRI for identifying cancer vs. no-cancer was 89.1% and 80% respectively, as compared to 45.5% and 57.5% for endoscopy. False positive rates of MRI and endoscopy were 20% and 42.5%, respectively. CONCLUSIONS: MRI is a more reliable diagnostic method than endoscopy in the Levrat model. The non-invasiveness of the tool and its potential to volumetrically quantify the size and number of tumors likely makes it even more useful in evaluating novel agents and their efficacy in treatment studies of esophageal cancer.

  1. 3D Volumetric Analysis of Fluid Inclusions Using Confocal Microscopy

    Science.gov (United States)

    Proussevitch, A.; Mulukutla, G.; Sahagian, D.; Bodnar, B.

    2009-05-01

    Fluid inclusions preserve valuable information regarding hydrothermal, metamorphic, and magmatic processes. The molar quantities of liquid and gaseous components in the inclusions can be estimated from their volumetric measurements at room temperatures combined with knowledge of the PVTX properties of the fluid and homogenization temperatures. Thus, accurate measurements of inclusion volumes and their two phase components are critical. One of the greatest advantages of the Laser Scanning Confocal Microscopy (LSCM) in application to fluid inclsion analsyis is that it is affordable for large numbers of samples, given the appropriate software analysis tools and methodology. Our present work is directed toward developing those tools and methods. For the last decade LSCM has been considered as a potential method for inclusion volume measurements. Nevertheless, the adequate and accurate measurement by LSCM has not yet been successful for fluid inclusions containing non-fluorescing fluids due to many technical challenges in image analysis despite the fact that the cost of collecting raw LSCM imagery has dramatically decreased in recent years. These problems mostly relate to image analysis methodology and software tools that are needed for pre-processing and image segmentation, which enable solid, liquid and gaseous components to be delineated. Other challenges involve image quality and contrast, which is controlled by fluorescence of the material (most aqueous fluid inclusions do not fluoresce at the appropriate laser wavelengths), material optical properties, and application of transmitted and/or reflected confocal illumination. In this work we have identified the key problems of image analysis and propose some potential solutions. For instance, we found that better contrast of pseudo-confocal transmitted light images could be overlayed with poor-contrast true-confocal reflected light images within the same stack of z-ordered slices. This approach allows one to narrow

  2. Multiple-animal MR imaging using a 3T clinical scanner and multi-channel coil for volumetric analysis in a mouse tumor model

    International Nuclear Information System (INIS)

    Mitsuda, Minoru; Yamaguchi, Masayuki; Furuta, Toshihiro; Fujii, Hirofumi; Nabetani, Akira; Hirayama, Akira; Nozaki, Atsushi; Niitsu, Mamoru

    2011-01-01

    Multiple small-animal magnetic resonance (MR) imaging to measure tumor volume may increase the throughput of preclinical cancer research assessing tumor response to novel therapies. We used a clinical scanner and multi-channel coil to evaluate the usefulness of this imaging to assess experimental tumor volume in mice. We performed a phantom study to assess 2-dimensional (2D) geometric distortion using 9-cm spherical and 32-cell (8 x 4 one-cm 2 grids) phantoms using a 3-tesla clinical MR scanner and dedicated multi-channel coil composed of 16 5-cm circular coils. Employing the multi-channel coil, we simultaneously scanned 6 or 8 mice bearing sarcoma 180 tumors. We estimated tumor volume from the sum of the product of tumor area and slice thickness on 2D spin-echo images (repetition time/echo time, 3500/16 ms; in-plane resolution, 0.195 x 0.195 x 1 mm 3 ). After MR acquisition, we excised and weighed tumors, calculated reference tumor volumes from actual tumor weight assuming a density of 1.05 g/cm 3 , and assessed the correlation between the estimated and reference volumes using Pearson's test. Two-dimensional geometric distortion was acceptable below 5% in the 9-cm spherical phantom and in every cell in the 32-cell phantom. We scanned up to 8 mice simultaneously using the multi-channel coil and found 11 tumors larger than 0.1 g in 12 mice. Tumor volumes were 1.04±0.73 estimated by MR imaging and 1.04±0.80 cm 3 by reference volume (average±standard deviation) and highly correlated (correlation coefficient, 0.995; P<0.01, Pearson's test). Use of multiple small-animal MR imaging employing a clinical scanner and multi-channel coil enabled accurate assessment of experimental tumor volume in a large number of mice and may facilitate high throughput monitoring of tumor response to therapy in preclinical research. (author)

  3. MO-PIS-Exhibit Hall-01: Tools for TG-142 Linac Imaging QA I

    Energy Technology Data Exchange (ETDEWEB)

    Clements, M [RAD Image, Colorado Springs, CO (United States); Wiesmeyer, M [Standard Imaging, Inc., Middleton, WI (United States)

    2014-06-15

    Partners in Solutions is an exciting new program in which AAPM partners with our vendors to present practical “hands-on” information about the equipment and software systems that we use in our clinics. The therapy topic this year is solutions for TG-142 recommendations for linear accelerator imaging QA. Note that the sessions are being held in a special purpose room built on the Exhibit Hall Floor, to encourage further interaction with the vendors. Automated Imaging QA for TG-142 with RIT Presentation Time: 2:45 – 3:15 PM This presentation will discuss software tools for automated imaging QA and phantom analysis for TG-142. All modalities used in radiation oncology will be discussed, including CBCT, planar kV imaging, planar MV imaging, and imaging and treatment coordinate coincidence. Vendor supplied phantoms as well as a variety of third-party phantoms will be shown, along with appropriate analyses, proper phantom setup procedures and scanning settings, and a discussion of image quality metrics. Tools for process automation will be discussed which include: RIT Cognition (machine learning for phantom image identification), RIT Cerberus (automated file system monitoring and searching), and RunQueueC (batch processing of multiple images). In addition to phantom analysis, tools for statistical tracking, trending, and reporting will be discussed. This discussion will include an introduction to statistical process control, a valuable tool in analyzing data and determining appropriate tolerances. An Introduction to TG-142 Imaging QA Using Standard Imaging Products Presentation Time: 3:15 – 3:45 PM Medical Physicists want to understand the logic behind TG-142 Imaging QA. What is often missing is a firm understanding of the connections between the EPID and OBI phantom imaging, the software “algorithms” that calculate the QA metrics, the establishment of baselines, and the analysis and interpretation of the results. The goal of our brief presentation will be to

  4. MO-PIS-Exhibit Hall-01: Tools for TG-142 Linac Imaging QA I

    International Nuclear Information System (INIS)

    Clements, M; Wiesmeyer, M

    2014-01-01

    Partners in Solutions is an exciting new program in which AAPM partners with our vendors to present practical “hands-on” information about the equipment and software systems that we use in our clinics. The therapy topic this year is solutions for TG-142 recommendations for linear accelerator imaging QA. Note that the sessions are being held in a special purpose room built on the Exhibit Hall Floor, to encourage further interaction with the vendors. Automated Imaging QA for TG-142 with RIT Presentation Time: 2:45 – 3:15 PM This presentation will discuss software tools for automated imaging QA and phantom analysis for TG-142. All modalities used in radiation oncology will be discussed, including CBCT, planar kV imaging, planar MV imaging, and imaging and treatment coordinate coincidence. Vendor supplied phantoms as well as a variety of third-party phantoms will be shown, along with appropriate analyses, proper phantom setup procedures and scanning settings, and a discussion of image quality metrics. Tools for process automation will be discussed which include: RIT Cognition (machine learning for phantom image identification), RIT Cerberus (automated file system monitoring and searching), and RunQueueC (batch processing of multiple images). In addition to phantom analysis, tools for statistical tracking, trending, and reporting will be discussed. This discussion will include an introduction to statistical process control, a valuable tool in analyzing data and determining appropriate tolerances. An Introduction to TG-142 Imaging QA Using Standard Imaging Products Presentation Time: 3:15 – 3:45 PM Medical Physicists want to understand the logic behind TG-142 Imaging QA. What is often missing is a firm understanding of the connections between the EPID and OBI phantom imaging, the software “algorithms” that calculate the QA metrics, the establishment of baselines, and the analysis and interpretation of the results. The goal of our brief presentation will be to

  5. Polyene-lipids: a new tool to image lipids

    DEFF Research Database (Denmark)

    Kuerschner, Lars; Ejsing, Christer S.; Ekroos, Kim

    2005-01-01

    conjugated double bonds as a new type of lipid tag. Polyene-lipids exhibit a unique structural similarity to natural lipids, which results in minimal effects on the lipid properties. Analyzing membrane phase partitioning, an important biophysical and biological property of lipids, we demonstrated......Microscopy of lipids in living cells is currently hampered by a lack of adequate fluorescent tags. The most frequently used tags, NBD and BODIPY, strongly influence the properties of lipids, yielding analogs with quite different characteristics. Here, we introduce polyene-lipids containing five...... the superiority of polyene-lipids to both NBD- and BODIPY-tagged lipids. Cells readily take up various polyene-lipid precursors and generate the expected end products with no apparent disturbance by the tag. Applying two-photon excitation microscopy, we imaged the distribution of polyene-lipids in living...

  6. Hyperspectral imaging as a diagnostic tool for chronic skin ulcers

    Science.gov (United States)

    Denstedt, Martin; Pukstad, Brita S.; Paluchowski, Lukasz A.; Hernandez-Palacios, Julio E.; Randeberg, Lise L.

    2013-03-01

    The healing process of chronic wounds is complex, and the complete pathogenesis is not known. Diagnosis is currently based on visual inspection, biopsies and collection of samples from the wound surface. This is often time consuming, expensive and to some extent subjective procedures. Hyperspectral imaging has been shown to be a promising modality for optical diagnostics. The main objective of this study was to identify a suitable technique for reproducible classification of hyperspectral data from a wound and the surrounding tissue. Two statistical classification methods have been tested and compared to the performance of a dermatologist. Hyperspectral images (400-1000 nm) were collected from patients with venous leg ulcers using a pushbroom-scanning camera (VNIR 1600, Norsk Elektro Optikk AS).Wounds were examined regularly over 4 - 6 weeks. The patients were evaluated by a dermatologist at every appointment. One patient has been selected for presentation in this paper (female, age 53 years). The oxygen saturation of the wound area was determined by wavelength ratio metrics. Spectral angle mapping (SAM) and k-means clustering were used for classification. Automatic extraction of endmember spectra was employed to minimize human interaction. A comparison of the methods shows that k-means clustering is the most stable method over time, and shows the best overlap with the dermatologist's assessment of the wound border. The results are assumed to be affected by the data preprocessing and chosen endmember extraction algorithm. Results indicate that it is possible to develop an automated method for reliable classification of wounds based on hyperspectral data.

  7. SU-G-IeP2-08: Investigation On Signal Detectability in Volumetric Cone Beam CT Images with Anatomical Background

    International Nuclear Information System (INIS)

    Han, M; Baek, J

    2016-01-01

    Purpose: To investigate the slice direction dependent detectability in cone beam CT images with anatomical background. Methods: We generated 3D anatomical background images using breast anatomy model. To generate 3D breast anatomy, we filtered 3D Gaussian noise with a square root of 1/f"3, and then assigned the attenuation coefficient of glandular (0.8cm"−"1) and adipose (0.46 cm"−"1) tissues based on voxel values. Projections were acquired by forward projection, and quantum noise was added to the projection data. The projection data were reconstructed by FDK algorithm. We compared the detectability of a 3 mm spherical signal in the image reconstructed from four different backprojection Methods: Hanning weighted ramp filter with linear interpolation (RECON1), Hanning weighted ramp filter with Fourier interpolation (RECON2), ramp filter with linear interpolation (RECON3), and ramp filter with Fourier interpolation (RECON4), respectively. We computed task SNR of the spherical signal in transverse and longitudinal planes using channelized Hotelling observer with Laguerre-Gauss channels. Results: Transverse plane has similar task SNR values for different backprojection methods, while longitudinal plane has a maximum task SNR value in RECON1. For all backprojection methods, longitudinal plane has higher task SNR than transverse plane. Conclusion: In this work, we investigated detectability for different slice direction in cone beam CT images with anatomical background. Longitudinal plane has a higher task SNR than transverse plane, and backprojection with hanning weighted ramp filter with linear interpolation method (i.e., RECON1) produced the highest task SNR among four different backprojection methods. This research was supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under the IT Consilience Creative Programs(IITP-2015-R0346-15-1008) supervised by the IITP (Institute for Information & Communications Technology Promotion), Basic Science

  8. SU-G-IeP2-08: Investigation On Signal Detectability in Volumetric Cone Beam CT Images with Anatomical Background

    Energy Technology Data Exchange (ETDEWEB)

    Han, M; Baek, J [Yonsei University, Incheon (Korea, Republic of)

    2016-06-15

    Purpose: To investigate the slice direction dependent detectability in cone beam CT images with anatomical background. Methods: We generated 3D anatomical background images using breast anatomy model. To generate 3D breast anatomy, we filtered 3D Gaussian noise with a square root of 1/f{sup 3}, and then assigned the attenuation coefficient of glandular (0.8cm{sup −1}) and adipose (0.46 cm{sup −1}) tissues based on voxel values. Projections were acquired by forward projection, and quantum noise was added to the projection data. The projection data were reconstructed by FDK algorithm. We compared the detectability of a 3 mm spherical signal in the image reconstructed from four different backprojection Methods: Hanning weighted ramp filter with linear interpolation (RECON1), Hanning weighted ramp filter with Fourier interpolation (RECON2), ramp filter with linear interpolation (RECON3), and ramp filter with Fourier interpolation (RECON4), respectively. We computed task SNR of the spherical signal in transverse and longitudinal planes using channelized Hotelling observer with Laguerre-Gauss channels. Results: Transverse plane has similar task SNR values for different backprojection methods, while longitudinal plane has a maximum task SNR value in RECON1. For all backprojection methods, longitudinal plane has higher task SNR than transverse plane. Conclusion: In this work, we investigated detectability for different slice direction in cone beam CT images with anatomical background. Longitudinal plane has a higher task SNR than transverse plane, and backprojection with hanning weighted ramp filter with linear interpolation method (i.e., RECON1) produced the highest task SNR among four different backprojection methods. This research was supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under the IT Consilience Creative Programs(IITP-2015-R0346-15-1008) supervised by the IITP (Institute for Information & Communications Technology Promotion

  9. Kalisphera: an analytical tool to reproduce the partial volume effect of spheres imaged in 3D

    International Nuclear Information System (INIS)

    Tengattini, Alessandro; Andò, Edward

    2015-01-01

    In experimental mechanics, where 3D imaging is having a profound effect, spheres are commonly adopted for their simplicity and for the ease of their modeling. In this contribution we develop an analytical tool, ‘kalisphera’, to produce 3D raster images of spheres including their partial volume effect. This allows us to evaluate the metrological performance of existing image-based measurement techniques (knowing a priori the ground truth). An advanced application of ‘kalisphera’ is developed here to identify and accurately characterize spheres in real 3D x-ray tomography images with the objective of improving trinarization and contact detection. The effect of the common experimental imperfections is assessed and the overall performance of the tool tested on real images. (paper)

  10. Three-dimensional volumetric display by inclined-plane scanning

    Science.gov (United States)

    Miyazaki, Daisuke; Eto, Takuma; Nishimura, Yasuhiro; Matsushita, Kenji

    2003-05-01

    A volumetric display system based on three-dimensional (3-D) scanning that uses an inclined two-dimensional (2-D) image is described. In the volumetric display system a 2-D display unit is placed obliquely in an imaging system into which a rotating mirror is inserted. When the mirror is rotated, the inclined 2-D image is moved laterally. A locus of the moving image can be observed by persistence of vision as a result of the high-speed rotation of the mirror. Inclined cross-sectional images of an object are displayed on the display unit in accordance with the position of the image plane to observe a 3-D image of the object by persistence of vision. Three-dimensional images formed by this display system satisfy all the criteria for stereoscopic vision. We constructed the volumetric display systems using a galvanometer mirror and a vector-scan display unit. In addition, we constructed a real-time 3-D measurement system based on a light section method. Measured 3-D images can be reconstructed in the 3-D display system in real time.

  11. [Radar as imaging tool in ecology and conservation biology].

    Science.gov (United States)

    Matyjasiak, Piotr

    2017-01-01

    Migrations and dispersal are among the most important ecological processes that shape ecosystems and influence our economy, health and safety. Movements of birds, bats and insects occur in a large spatial scale - regional, continental, or intercontinental. However, studies of these phenomena using classic methods are usually local. Breakthrough came with the development of radar technology, which enabled researchers to study animal movements in the atmosphere in a large spatial and temporal scale. The aim of this article was to present the radar imaging methods used in the research of aerial movements of birds, bats and insects. The types of radars used in research are described, and examples of the use of radar in basic research and in conservation biology are discussed. Radar visualizations are used in studies on the effect of meteorological conditions on bird migration, on spatial and temporal dynamics of movements of birds, bats and insects, and on the mechanism of orientation of migrating birds and insects. In conservation biology research radars are used in the monitoring of endangered species of birds and bats, to monitor bird activity at airports, as well as in assessing the impact of high constructions on flying birds and bats.

  12. Functional imaging - a new tool for X-ray functional diagnostics

    International Nuclear Information System (INIS)

    Boehm, M.; Erbe, W.; Sonne, B.; Hoehne, K.H.; Nicolae, G.C.; Pfeiffer, G.

    1978-05-01

    The method of functional imaging is applied to X-ray angiograms. Functional images are generated by inserting at each point of an X-ray image a computed grey value proportional to a dynamic parameter (such as blood velocity) instead of the recorded X-ray absorption value. For this purpose a new system for angiographic image processing has been developed. First results show that the method is a tool to extract more information about the blood dynamics in organs in an easier and faster way than with the conventional angiographic technique. (orig.)

  13. Volumetric Arterial Wall Shear Stress Calculation Based on Cine Phase Contrast MRI

    NARCIS (Netherlands)

    Potters, Wouter V.; van Ooij, Pim; Marquering, Henk; VanBavel, Ed; Nederveen, Aart J.

    2015-01-01

    PurposeTo assess the accuracy and precision of a volumetric wall shear stress (WSS) calculation method applied to cine phase contrast magnetic resonance imaging (PC-MRI) data. Materials and MethodsVolumetric WSS vectors were calculated in software phantoms. WSS algorithm parameters were optimized

  14. New tools for digital medical image processing implemented in DIP software

    International Nuclear Information System (INIS)

    Araujo, Erica A.C.; Santana, Ivan E.; Lima, Fernando R.A.; Viera, Jose W.

    2011-01-01

    The anthropomorphic models used in computational dosimetry, also called phantoms, are mostly built from stacks of images CT (Computed Tomography) or MRI (Magnetic Resonance Imaging) obtained from scans of patients or volunteers. The construction of voxel phantoms requires computational processing for transforming image formats, dimensional image compression (2D) to form three-dimensional arrays (3D), quantization, resampling, enhancement, restoration and image segmentation, among others. Hardly the computational dosimetry researcher finds all these skills into a single software and often it results in a decreased development of their research or inadequate use of alternative tools. The need to integrate the various tasks of the original digital image processing to obtain an image that can be used in a computational model of exposure led to the development of software DIP (Digital Image Processing). This software reads, writes and edits binary files containing the 3D matrix corresponding to a stack of cross-sectional images of a given geometry that can be a human body or other volume of interest. It can also read any type of computer image and do conversions. When the task involves only one output image, it is saved in the JPEG standard Windows. When it involves a stack of images, the binary output file is called SGI (Interactive Graphic Simulations, a symbol already used in other publications of the Research Group in Numerical Dosimetry). The following paper presents the third version of the DIP software and emphasizes the new tools it implemented. Currently it has the menus Basics, Views, Spatial Domain, Frequency Domain, Segmentations and Study. Each menu contains items and subitems with features that generally require an image as input and produce an image or an attribute in the output. (author)

  15. Computerized assessment of body image in anorexia nervosa and bulimia nervosa: comparison with standardized body image assessment tool.

    Science.gov (United States)

    Caspi, Asaf; Amiaz, Revital; Davidson, Noa; Czerniak, Efrat; Gur, Eitan; Kiryati, Nahum; Harari, Daniel; Furst, Miriam; Stein, Daniel

    2017-02-01

    Body image disturbances are a prominent feature of eating disorders (EDs). Our aim was to test and evaluate a computerized assessment of body image (CABI), to compare the body image disturbances in different ED types, and to assess the factors affecting body image. The body image of 22 individuals undergoing inpatient treatment with restricting anorexia nervosa (AN-R), 22 with binge/purge AN (AN-B/P), 20 with bulimia nervosa (BN), and 41 healthy controls was assessed using the Contour Drawing Rating Scale (CDRS), the CABI, which simulated the participants' self-image in different levels of weight changes, and the Eating Disorder Inventory-2-Body Dissatisfaction (EDI-2-BD) scale. Severity of depression and anxiety was also assessed. Significant differences were found among the three scales assessing body image, although most of their dimensions differentiated between patients with EDs and controls. Our findings support the use of the CABI in the comparison of body image disturbances in patients with EDs vs. Moreover, the use of different assessment tools allows for a better understanding of the differences in body image disturbances in different ED types.

  16. Image quality in conventional chest radiography. Evaluation using the postprocessing tool Diamond View

    International Nuclear Information System (INIS)

    Niemann, Tilo; Reisinger, Clemens; Rau, Philipp; Schwarz, Jochen; Ruis-Lopez, Laura; Bongartz, Georg

    2010-01-01

    The objective of this work was to evaluate the influence of the postprocessing tool Diamond View (Siemens AG Medical Solutions, Germany) on image quality in conventional chest radiography. Evaluation of image quality remains a challenge in conventional radiography. Based on the European Commission quality criteria we evaluated the improvement of image quality when applying the new postprocessing tool Diamond View (Siemens AG Medical solutions, Germany) to conventional chest radiographs. Three different readers prospectively evaluated 102 digital image pairs of chest radiographs. Statistical analysis was performed with a p value <0.05 considered as significant. Images were evaluated on basis of the modified imaging Quality Criteria by the Commission of the European Communities. Each of the 11 image quality criteria was evaluated separately using a five point classification. Statistical analysis showed an overall tendency for improved image quality for Diamond View (DV) for all criteria. Significant differences could be found in most of the criteria. In conclusion DV improves image quality in conventional chest radiographs.

  17. Reliability of Three Dimentional Pseudo-continuous Arterial Spin Labeling: A Volumetric Cerebral Perfusion Imaging with Different Post-labeling Time and Functional State in Health Adults.

    Science.gov (United States)

    Liu, Meng-Qi; Chen, Zhi-Ye; Ma, Lin

    2018-03-30

    Objective To evaluate the reliability of three dimensional spiral fast spin echo pseudo-continuous arterial spin labeling (3D pc-ASL) in measuring cerebral blood flow (CBF) with different post-labeling delay time (PLD) in the resting state and the right finger taping state. Methods 3D pc-ASL and three dimensional T1-weighted fast spoiled gradient recalled echo (3D T1-FSPGR) sequence were applied to eight healthy subjects twice at the same time each day for one week interval. ASL data acquisition was performed with post-labeling delay time (PLD) 1.5 seconds and 2.0 seconds in the resting state and the right finger taping state respectively. CBF mapping was calculated and CBF value of both the gray matter (GM) and white matter (WM) was automatically extracted. The reliability was evaluated using the intraclass correlation coefficient (ICC) and Bland and Altman plot. Results ICC of the GM (0.84) and WM (0.92) was lower at PLD 1.5 seconds than that (GM, 0.88; WM, 0.94) at PLD 2.0 seconds in the resting state, and ICC of GM (0.88) was higher in the right finger taping state than that in the resting state at PLD 1.5 seconds. ICC of the GM and WM was 0.71 and 0.78 for PLD 1.5 seconds and PLD 2.0 seconds in the resting state at the first scan, and ICC of the GM and WM was 0.83 and 0.79 at the second scan, respectively. Conclusion This work demonstrated that 3D pc-ASL might be a reliable imaging technique to measure CBF over the whole brain at different PLD in the resting state or controlled state.

  18. Dual PET and Near-Infrared Fluorescence Imaging Probes as Tools for Imaging in Oncology

    Science.gov (United States)

    An, Fei-Fei; Chan, Mark; Kommidi, Harikrishna; Ting, Richard

    2016-01-01

    OBJECTIVE The purpose of this article is to summarize advances in PET fluorescence resolution, agent design, and preclinical imaging that make a growing case for clinical PET fluorescence imaging. CONCLUSION Existing SPECT, PET, fluorescence, and MRI contrast imaging techniques are already deeply integrated into the management of cancer, from initial diagnosis to the observation and management of metastases. Combined positron-emitting fluorescent contrast agents can convey new or substantial benefits that improve on these proven clinical contrast agents. PMID:27223168

  19. Systems Biology-Driven Hypotheses Tested In Vivo: The Need to Advancing Molecular Imaging Tools.

    Science.gov (United States)

    Verma, Garima; Palombo, Alessandro; Grigioni, Mauro; La Monaca, Morena; D'Avenio, Giuseppe

    2018-01-01

    Processing and interpretation of biological images may provide invaluable insights on complex, living systems because images capture the overall dynamics as a "whole." Therefore, "extraction" of key, quantitative morphological parameters could be, at least in principle, helpful in building a reliable systems biology approach in understanding living objects. Molecular imaging tools for system biology models have attained widespread usage in modern experimental laboratories. Here, we provide an overview on advances in the computational technology and different instrumentations focused on molecular image processing and analysis. Quantitative data analysis through various open source software and algorithmic protocols will provide a novel approach for modeling the experimental research program. Besides this, we also highlight the predictable future trends regarding methods for automatically analyzing biological data. Such tools will be very useful to understand the detailed biological and mathematical expressions under in-silico system biology processes with modeling properties.

  20. A Quantitative Three-Dimensional Image Analysis Tool for Maximal Acquisition of Spatial Heterogeneity Data.

    Science.gov (United States)

    Allenby, Mark C; Misener, Ruth; Panoskaltsis, Nicki; Mantalaris, Athanasios

    2017-02-01

    Three-dimensional (3D) imaging techniques provide spatial insight into environmental and cellular interactions and are implemented in various fields, including tissue engineering, but have been restricted by limited quantification tools that misrepresent or underutilize the cellular phenomena captured. This study develops image postprocessing algorithms pairing complex Euclidean metrics with Monte Carlo simulations to quantitatively assess cell and microenvironment spatial distributions while utilizing, for the first time, the entire 3D image captured. Although current methods only analyze a central fraction of presented confocal microscopy images, the proposed algorithms can utilize 210% more cells to calculate 3D spatial distributions that can span a 23-fold longer distance. These algorithms seek to leverage the high sample cost of 3D tissue imaging techniques by extracting maximal quantitative data throughout the captured image.

  1. Web based tools for visualizing imaging data and development of XNATView, a zero footprint image viewer.

    Science.gov (United States)

    Gutman, David A; Dunn, William D; Cobb, Jake; Stoner, Richard M; Kalpathy-Cramer, Jayashree; Erickson, Bradley

    2014-01-01

    Advances in web technologies now allow direct visualization of imaging data sets without necessitating the download of large file sets or the installation of software. This allows centralization of file storage and facilitates image review and analysis. XNATView is a light framework recently developed in our lab to visualize DICOM images stored in The Extensible Neuroimaging Archive Toolkit (XNAT). It consists of a PyXNAT-based framework to wrap around the REST application programming interface (API) and query the data in XNAT. XNATView was developed to simplify quality assurance, help organize imaging data, and facilitate data sharing for intra- and inter-laboratory collaborations. Its zero-footprint design allows the user to connect to XNAT from a web browser, navigate through projects, experiments, and subjects, and view DICOM images with accompanying metadata all within a single viewing instance.

  2. Plenoptic Flow Imaging for Ground Testing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Instantaneous volumetric flow imaging is crucial to aerodynamic development and testing. Simultaneous volumetric measurement of flow parameters enables accurate...

  3. An image guidance system for positioning robotic cochlear implant insertion tools

    Science.gov (United States)

    Bruns, Trevor L.; Webster, Robert J.

    2017-03-01

    Cochlear implants must be inserted carefully to avoid damaging the delicate anatomical structures of the inner ear. This has motivated several approaches to improve the safety and efficacy of electrode array insertion by automating the process with specialized robotic or manual insertion tools. When such tools are used, they must be positioned at the entry point to the cochlea and aligned with the desired entry vector. This paper presents an image guidance system capable of accurately positioning a cochlear implant insertion tool. An optical tracking system localizes the insertion tool in physical space while a graphical user interface incorporates this with patient- specific anatomical data to provide error information to the surgeon in real-time. Guided by this interface, novice users successfully aligned the tool with an mean accuracy of 0.31 mm.

  4. Image Montaging for Creating a Virtual Pathology Slide: An Innovative and Economical Tool to Obtain a Whole Slide Image.

    Science.gov (United States)

    Banavar, Spoorthi Ravi; Chippagiri, Prashanthi; Pandurangappa, Rohit; Annavajjula, Saileela; Rajashekaraiah, Premalatha Bidadi

    2016-01-01

    Background . Microscopes are omnipresent throughout the field of biological research. With microscopes one can see in detail what is going on at the cellular level in tissues. Though it is a ubiquitous tool, the limitation is that with high magnification there is a small field of view. It is often advantageous to see an entire sample at high magnification. Over the years technological advancements in optics have helped to provide solutions to this limitation of microscopes by creating the so-called dedicated "slide scanners" which can provide a "whole slide digital image." These scanners can provide seamless, large-field-of-view, high resolution image of entire tissue section. The only disadvantage of such complete slide imaging system is its outrageous cost, thereby hindering their practical use by most laboratories, especially in developing and low resource countries. Methods . In a quest for their substitute, we tried commonly used image editing software Adobe Photoshop along with a basic image capturing device attached to a trinocular microscope to create a digital pathology slide. Results . The seamless image created using Adobe Photoshop maintained its diagnostic quality. Conclusion . With time and effort photomicrographs obtained from a basic camera-microscope set up can be combined and merged in Adobe Photoshop to create a whole slide digital image of practically usable quality at a negligible cost.

  5. Virtual reality in advanced medical immersive imaging: a workflow for introducing virtual reality as a supporting tool in medical imaging

    KAUST Repository

    Knodel, Markus M.

    2018-02-27

    Radiologic evaluation of images from computed tomography (CT) or magnetic resonance imaging for diagnostic purposes is based on the analysis of single slices, occasionally supplementing this information with 3D reconstructions as well as surface or volume rendered images. However, due to the complexity of anatomical or pathological structures in biomedical imaging, innovative visualization techniques are required to display morphological characteristics three dimensionally. Virtual reality is a modern tool of representing visual data, The observer has the impression of being “inside” a virtual surrounding, which is referred to as immersive imaging. Such techniques are currently being used in technical applications, e.g. in the automobile industry. Our aim is to introduce a workflow realized within one simple program which processes common image stacks from CT, produces 3D volume and surface reconstruction and rendering, and finally includes the data into a virtual reality device equipped with a motion head tracking cave automatic virtual environment system. Such techniques have the potential to augment the possibilities in non-invasive medical imaging, e.g. for surgical planning or educational purposes to add another dimension for advanced understanding of complex anatomical and pathological structures. To this end, the reconstructions are based on advanced mathematical techniques and the corresponding grids which we can export are intended to form the basis for simulations of mathematical models of the pathogenesis of different diseases.

  6. EpiTools: An Open-Source Image Analysis Toolkit for Quantifying Epithelial Growth Dynamics.

    Science.gov (United States)

    Heller, Davide; Hoppe, Andreas; Restrepo, Simon; Gatti, Lorenzo; Tournier, Alexander L; Tapon, Nicolas; Basler, Konrad; Mao, Yanlan

    2016-01-11

    Epithelia grow and undergo extensive rearrangements to achieve their final size and shape. Imaging the dynamics of tissue growth and morphogenesis is now possible with advances in time-lapse microscopy, but a true understanding of their complexities is limited by automated image analysis tools to extract quantitative data. To overcome such limitations, we have designed a new open-source image analysis toolkit called EpiTools. It provides user-friendly graphical user interfaces for accurately segmenting and tracking the contours of cell membrane signals obtained from 4D confocal imaging. It is designed for a broad audience, especially biologists with no computer-science background. Quantitative data extraction is integrated into a larger bioimaging platform, Icy, to increase the visibility and usability of our tools. We demonstrate the usefulness of EpiTools by analyzing Drosophila wing imaginal disc growth, revealing previously overlooked properties of this dynamic tissue, such as the patterns of cellular rearrangements. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Mesoscale brain explorer, a flexible python-based image analysis and visualization tool.

    Science.gov (United States)

    Haupt, Dirk; Vanni, Matthieu P; Bolanos, Federico; Mitelut, Catalin; LeDue, Jeffrey M; Murphy, Tim H

    2017-07-01

    Imaging of mesoscale brain activity is used to map interactions between brain regions. This work has benefited from the pioneering studies of Grinvald et al., who employed optical methods to image brain function by exploiting the properties of intrinsic optical signals and small molecule voltage-sensitive dyes. Mesoscale interareal brain imaging techniques have been advanced by cell targeted and selective recombinant indicators of neuronal activity. Spontaneous resting state activity is often collected during mesoscale imaging to provide the basis for mapping of connectivity relationships using correlation. However, the information content of mesoscale datasets is vast and is only superficially presented in manuscripts given the need to constrain measurements to a fixed set of frequencies, regions of interest, and other parameters. We describe a new open source tool written in python, termed mesoscale brain explorer (MBE), which provides an interface to process and explore these large datasets. The platform supports automated image processing pipelines with the ability to assess multiple trials and combine data from different animals. The tool provides functions for temporal filtering, averaging, and visualization of functional connectivity relations using time-dependent correlation. Here, we describe the tool and show applications, where previously published datasets were reanalyzed using MBE.

  8. Towards a Systematic Screening Tool for Quality Assurance and Semiautomatic Fraud Detection for Images in the Life Sciences

    OpenAIRE

    Koppers, Lars; Wormer, Holger; Ickstadt, Katja

    2016-01-01

    The quality and authenticity of images is essential for data presentation, especially in the life sciences. Questionable images may often be a first indicator for questionable results, too. Therefore, a tool that uses mathematical methods to detect suspicious images in large image archives can be a helpful instrument to improve quality assurance in publications. As a first step towards a systematic screening tool, especially for journal editors and other staff members who are responsible for ...

  9. An MRI-based semiautomated volumetric quantification of hip osteonecrosis

    International Nuclear Information System (INIS)

    Malizos, K.N.; Siafakas, M.S.; Karachalios, T.S.; Fotiadis, D.I.; Soucacos, P.N.

    2001-01-01

    Objective: To objectively and precisely define the spatial distribution of osteonecrosis and to investigate the influence of various factors including etiology. Design: A volumetric method is presented to describe the size and spatial distribution of necrotic lesions of the femoral head, using MRI scans. The technique is based on the definition of an equivalent sphere model for the femoral head. Patients: The gender, age, number of hips involved, disease duration, pain intensity, limping disability and etiology were correlated with the distribution of the pathologic bone. Seventy-nine patients with 122 hips affected by osteonecrosis were evaluated. Results: The lesion size ranged from 7% to 73% of the sphere equivalent. The lateral octants presented considerable variability, ranging from wide lateral lesions extending beyond the lip of the acetabulum, to narrow medial lesions, leaving a lateral supporting pillar of intact bone. Patients with sickle cell disease and steroid administration presented the largest lesions. The extent of the posterior superior medial octant involvement correlated with the symptom intensity, a younger age and male gender. Conclusion: The methodology presented here has proven a reliable and straightforward imaging tool for precise assessment of necrotic lesions. It also enables us to target accurately the drilling and grafting procedures. (orig.)

  10. Clinical Implementation of a Model-Based In Vivo Dose Verification System for Stereotactic Body Radiation Therapy–Volumetric Modulated Arc Therapy Treatments Using the Electronic Portal Imaging Device

    Energy Technology Data Exchange (ETDEWEB)

    McCowan, Peter M., E-mail: pmccowan@cancercare.mb.ca [Medical Physics Department, CancerCare Manitoba, Winnipeg, Manitoba (Canada); Asuni, Ganiyu [Medical Physics Department, CancerCare Manitoba, Winnipeg, Manitoba (Canada); Van Uytven, Eric [Medical Physics Department, CancerCare Manitoba, Winnipeg, Manitoba (Canada); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba (Canada); VanBeek, Timothy [Medical Physics Department, CancerCare Manitoba, Winnipeg, Manitoba (Canada); McCurdy, Boyd M.C. [Medical Physics Department, CancerCare Manitoba, Winnipeg, Manitoba (Canada); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba (Canada); Department of Radiology, University of Manitoba, Winnipeg, Manitoba (Canada); Loewen, Shaun K. [Department of Oncology, University of Calgary, Calgary, Alberta (Canada); Ahmed, Naseer; Bashir, Bashir; Butler, James B.; Chowdhury, Amitava; Dubey, Arbind; Leylek, Ahmet; Nashed, Maged [CancerCare Manitoba, Winnipeg, Manitoba (Canada)

    2017-04-01

    Purpose: To report findings from an in vivo dosimetry program implemented for all stereotactic body radiation therapy patients over a 31-month period and discuss the value and challenges of utilizing in vivo electronic portal imaging device (EPID) dosimetry clinically. Methods and Materials: From December 2013 to July 2016, 117 stereotactic body radiation therapy–volumetric modulated arc therapy patients (100 lung, 15 spine, and 2 liver) underwent 602 EPID-based in vivo dose verification events. A developed model-based dose reconstruction algorithm calculates the 3-dimensional dose distribution to the patient by back-projecting the primary fluence measured by the EPID during treatment. The EPID frame-averaging was optimized in June 2015. For each treatment, a 3%/3-mm γ comparison between our EPID-derived dose and the Eclipse AcurosXB–predicted dose to the planning target volume (PTV) and the ≥20% isodose volume were performed. Alert levels were defined as γ pass rates <85% (lung and liver) and <80% (spine). Investigations were carried out for all fractions exceeding the alert level and were classified as follows: EPID-related, algorithmic, patient setup, anatomic change, or unknown/unidentified errors. Results: The percentages of fractions exceeding the alert levels were 22.6% for lung before frame-average optimization and 8.0% for lung, 20.0% for spine, and 10.0% for liver after frame-average optimization. Overall, mean (± standard deviation) planning target volume γ pass rates were 90.7% ± 9.2%, 87.0% ± 9.3%, and 91.2% ± 3.4% for the lung, spine, and liver patients, respectively. Conclusions: Results from the clinical implementation of our model-based in vivo dose verification method using on-treatment EPID images is reported. The method is demonstrated to be valuable for routine clinical use for verifying delivered dose as well as for detecting errors.

  11. iScreen: Image-Based High-Content RNAi Screening Analysis Tools.

    Science.gov (United States)

    Zhong, Rui; Dong, Xiaonan; Levine, Beth; Xie, Yang; Xiao, Guanghua

    2015-09-01

    High-throughput RNA interference (RNAi) screening has opened up a path to investigating functional genomics in a genome-wide pattern. However, such studies are often restricted to assays that have a single readout format. Recently, advanced image technologies have been coupled with high-throughput RNAi screening to develop high-content screening, in which one or more cell image(s), instead of a single readout, were generated from each well. This image-based high-content screening technology has led to genome-wide functional annotation in a wider spectrum of biological research studies, as well as in drug and target discovery, so that complex cellular phenotypes can be measured in a multiparametric format. Despite these advances, data analysis and visualization tools are still largely lacking for these types of experiments. Therefore, we developed iScreen (image-Based High-content RNAi Screening Analysis Tool), an R package for the statistical modeling and visualization of image-based high-content RNAi screening. Two case studies were used to demonstrate the capability and efficiency of the iScreen package. iScreen is available for download on CRAN (http://cran.cnr.berkeley.edu/web/packages/iScreen/index.html). The user manual is also available as a supplementary document. © 2014 Society for Laboratory Automation and Screening.

  12. An overview of the web-based Google Earth coincident imaging tool

    Science.gov (United States)

    Chander, Gyanesh; Kilough, B.; Gowda, S.

    2010-01-01

    The Committee on Earth Observing Satellites (CEOS) Visualization Environment (COVE) tool is a browser-based application that leverages Google Earth web to display satellite sensor coverage areas. The analysis tool can also be used to identify near simultaneous surface observation locations for two or more satellites. The National Aeronautics and Space Administration (NASA) CEOS System Engineering Office (SEO) worked with the CEOS Working Group on Calibration and Validation (WGCV) to develop the COVE tool. The CEOS member organizations are currently operating and planning hundreds of Earth Observation (EO) satellites. Standard cross-comparison exercises between multiple sensors to compare near-simultaneous surface observations and to identify corresponding image pairs are time-consuming and labor-intensive. COVE is a suite of tools that have been developed to make such tasks easier.

  13. Impact of errors in recorded compressed breast thickness measurements on volumetric density classification using volpara v1.5.0 software.

    Science.gov (United States)

    Waade, Gunvor Gipling; Highnam, Ralph; Hauge, Ingrid H R; McEntee, Mark F; Hofvind, Solveig; Denton, Erika; Kelly, Judith; Sarwar, Jasmine J; Hogg, Peter

    2016-06-01

    Mammographic density has been demonstrated to predict breast cancer risk. It has been proposed that it could be used for stratifying screening pathways and recommending additional imaging. Volumetric density tools use the recorded compressed breast thickness (CBT) of the breast measured at the x-ray unit in their calculation; however, the accuracy of the recorded thickness can vary. The aim of this study was to investigate whether inaccuracies in recorded CBT impact upon volumetric density classification and to examine whether the current quality control (QC) standard is sufficient for assessing mammographic density. Raw data from 52 digital screening mammograms were included in the study. For each image, the clinically recorded CBT was artificially increased and decreased in increments of 1 mm to simulate measurement error, until ±15% from the recorded CBT was reached. New images were created for each 1 mm step in thickness resulting in a total of 974 images which then had volpara density grade (VDG) and volumetric density percentage assigned. A change in VDG was observed in 38.5% (n = 20) of mammograms when applying ±15% error to the recorded CBT and 11.5% (n = 6) was within the QC standard prescribed error of ±5 mm. The current QC standard of ±5 mm error in recorded CBT creates the potential for error in mammographic density measurement. This may lead to inaccurate classification of mammographic density. The current QC standard for assessing mammographic density should be reconsidered.

  14. Creation of a simple natural language processing tool to support an imaging utilization quality dashboard.

    Science.gov (United States)

    Swartz, Jordan; Koziatek, Christian; Theobald, Jason; Smith, Silas; Iturrate, Eduardo

    2017-05-01

    Testing for venous thromboembolism (VTE) is associated with cost and risk to patients (e.g. radiation). To assess the appropriateness of imaging utilization at the provider level, it is important to know that provider's diagnostic yield (percentage of tests positive for the diagnostic entity of interest). However, determining diagnostic yield typically requires either time-consuming, manual review of radiology reports or the use of complex and/or proprietary natural language processing software. The objectives of this study were twofold: 1) to develop and implement a simple, user-configurable, and open-source natural language processing tool to classify radiology reports with high accuracy and 2) to use the results of the tool to design a provider-specific VTE imaging dashboard, consisting of both utilization rate and diagnostic yield. Two physicians reviewed a training set of 400 lower extremity ultrasound (UTZ) and computed tomography pulmonary angiogram (CTPA) reports to understand the language used in VTE-positive and VTE-negative reports. The insights from this review informed the arguments to the five modifiable parameters of the NLP tool. A validation set of 2,000 studies was then independently classified by the reviewers and by the tool; the classifications were compared and the performance of the tool was calculated. The tool was highly accurate in classifying the presence and absence of VTE for both the UTZ (sensitivity 95.7%; 95% CI 91.5-99.8, specificity 100%; 95% CI 100-100) and CTPA reports (sensitivity 97.1%; 95% CI 94.3-99.9, specificity 98.6%; 95% CI 97.8-99.4). The diagnostic yield was then calculated at the individual provider level and the imaging dashboard was created. We have created a novel NLP tool designed for users without a background in computer programming, which has been used to classify venous thromboembolism reports with a high degree of accuracy. The tool is open-source and available for download at http

  15. Volumetric visualization of anatomy for treatment planning

    International Nuclear Information System (INIS)

    Pelizzari, Charles A.; Grzeszczuk, Robert; Chen, George T. Y.; Heimann, Ruth; Haraf, Daniel J.; Vijayakumar, Srinivasan; Ryan, Martin J.

    1996-01-01

    Purpose: Delineation of volumes of interest for three-dimensional (3D) treatment planning is usually performed by contouring on two-dimensional sections. We explore the usage of segmentation-free volumetric rendering of the three-dimensional image data set for tumor and normal tissue visualization. Methods and Materials: Standard treatment planning computed tomography (CT) studies, with typically 5 to 10 mm slice thickness, and spiral CT studies with 3 mm slice thickness were used. The data were visualized using locally developed volume-rendering software. Similar to the method of Drebin et al., CT voxels are automatically assigned an opacity and other visual properties (e.g., color) based on a probabilistic classification into tissue types. Using volumetric compositing, a projection into the opacity-weighted volume is produced. Depth cueing, perspective, and gradient-based shading are incorporated to achieve realistic images. Unlike surface-rendered displays, no hand segmentation is required to produce detailed renditions of skin, muscle, or bony anatomy. By suitable manipulation of the opacity map, tissue classes can be made transparent, revealing muscle, vessels, or bone, for example. Manually supervised tissue masking allows irrelevant tissues overlying tumors or other structures of interest to be removed. Results: Very high-quality renditions are produced in from 5 s to 1 min on midrange computer workstations. In the pelvis, an anteroposterior (AP) volume rendered view from a typical planning CT scan clearly shows the skin and bony anatomy. A muscle opacity map permits clear visualization of the superficial thigh muscles, femoral veins, and arteries. Lymph nodes are seen in the femoral triangle. When overlying muscle and bone are cut away, the prostate, seminal vessels, bladder, and rectum are seen in 3D perspective. Similar results are obtained for thorax and for head and neck scans. Conclusion: Volumetric visualization of anatomy is useful in treatment

  16. Technical Review: Microscopy and Image Processing Tools to Analyze Plant Chromatin: Practical Considerations.

    Science.gov (United States)

    Baroux, Célia; Schubert, Veit

    2018-01-01

    In situ nucleus and chromatin analyses rely on microscopy imaging that benefits from versatile, efficient fluorescent probes and proteins for static or live imaging. Yet the broad choice in imaging instruments offered to the user poses orientation problems. Which imaging instrument should be used for which purpose? What are the main caveats and what are the considerations to best exploit each instrument's ability to obtain informative and high-quality images? How to infer quantitative information on chromatin or nuclear organization from microscopy images? In this review, we present an overview of common, fluorescence-based microscopy systems and discuss recently developed super-resolution microscopy systems, which are able to bridge the resolution gap between common fluorescence microscopy and electron microscopy. We briefly present their basic principles and discuss their possible applications in the field, while providing experience-based recommendations to guide the user toward best-possible imaging. In addition to raw data acquisition methods, we discuss commercial and noncommercial processing tools required for optimal image presentation and signal evaluation in two and three dimensions.

  17. PyElph - a software tool for gel images analysis and phylogenetics

    Directory of Open Access Journals (Sweden)

    Pavel Ana Brânduşa

    2012-01-01

    Full Text Available Abstract Background This paper presents PyElph, a software tool which automatically extracts data from gel images, computes the molecular weights of the analyzed molecules or fragments, compares DNA patterns which result from experiments with molecular genetic markers and, also, generates phylogenetic trees computed by five clustering methods, using the information extracted from the analyzed gel image. The software can be successfully used for population genetics, phylogenetics, taxonomic studies and other applications which require gel image analysis. Researchers and students working in molecular biology and genetics would benefit greatly from the proposed software because it is free, open source, easy to use, has a friendly Graphical User Interface and does not depend on specific image acquisition devices like other commercial programs with similar functionalities do. Results PyElph software tool is entirely implemented in Python which is a very popular programming language among the bioinformatics community. It provides a very friendly Graphical User Interface which was designed in six steps that gradually lead to the results. The user is guided through the following steps: image loading and preparation, lane detection, band detection, molecular weights computation based on a molecular weight marker, band matching and finally, the computation and visualization of phylogenetic trees. A strong point of the software is the visualization component for the processed data. The Graphical User Interface provides operations for image manipulation and highlights lanes, bands and band matching in the analyzed gel image. All the data and images generated in each step can be saved. The software has been tested on several DNA patterns obtained from experiments with different genetic markers. Examples of genetic markers which can be analyzed using PyElph are RFLP (Restriction Fragment Length Polymorphism, AFLP (Amplified Fragment Length Polymorphism, RAPD

  18. Oxygen octahedra picker: A software tool to extract quantitative information from STEM images

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi, E-mail: y.wang@fkf.mpg.de; Salzberger, Ute; Sigle, Wilfried; Eren Suyolcu, Y.; Aken, Peter A. van

    2016-09-15

    In perovskite oxide based materials and hetero-structures there are often strong correlations between oxygen octahedral distortions and functionality. Thus, atomistic understanding of the octahedral distortion, which requires accurate measurements of atomic column positions, will greatly help to engineer their properties. Here, we report the development of a software tool to extract quantitative information of the lattice and of BO{sub 6} octahedral distortions from STEM images. Center-of-mass and 2D Gaussian fitting methods are implemented to locate positions of individual atom columns. The precision of atomic column distance measurements is evaluated on both simulated and experimental images. The application of the software tool is demonstrated using practical examples. - Highlights: • We report a software tool for mapping atomic positions from HAADF and ABF images. • It enables quantification of both crystal lattice and oxygen octahedral distortions. • We test the measurement accuracy and precision on simulated and experimental images. • It works well for different orientations of perovskite structures and interfaces.

  19. A software tool for automatic classification and segmentation of 2D/3D medical images

    International Nuclear Information System (INIS)

    Strzelecki, Michal; Szczypinski, Piotr; Materka, Andrzej; Klepaczko, Artur

    2013-01-01

    Modern medical diagnosis utilizes techniques of visualization of human internal organs (CT, MRI) or of its metabolism (PET). However, evaluation of acquired images made by human experts is usually subjective and qualitative only. Quantitative analysis of MR data, including tissue classification and segmentation, is necessary to perform e.g. attenuation compensation, motion detection, and correction of partial volume effect in PET images, acquired with PET/MR scanners. This article presents briefly a MaZda software package, which supports 2D and 3D medical image analysis aiming at quantification of image texture. MaZda implements procedures for evaluation, selection and extraction of highly discriminative texture attributes combined with various classification, visualization and segmentation tools. Examples of MaZda application in medical studies are also provided

  20. A software tool for automatic classification and segmentation of 2D/3D medical images

    Energy Technology Data Exchange (ETDEWEB)

    Strzelecki, Michal, E-mail: michal.strzelecki@p.lodz.pl [Institute of Electronics, Technical University of Lodz, Wolczanska 211/215, 90-924 Lodz (Poland); Szczypinski, Piotr; Materka, Andrzej; Klepaczko, Artur [Institute of Electronics, Technical University of Lodz, Wolczanska 211/215, 90-924 Lodz (Poland)

    2013-02-21

    Modern medical diagnosis utilizes techniques of visualization of human internal organs (CT, MRI) or of its metabolism (PET). However, evaluation of acquired images made by human experts is usually subjective and qualitative only. Quantitative analysis of MR data, including tissue classification and segmentation, is necessary to perform e.g. attenuation compensation, motion detection, and correction of partial volume effect in PET images, acquired with PET/MR scanners. This article presents briefly a MaZda software package, which supports 2D and 3D medical image analysis aiming at quantification of image texture. MaZda implements procedures for evaluation, selection and extraction of highly discriminative texture attributes combined with various classification, visualization and segmentation tools. Examples of MaZda application in medical studies are also provided.

  1. Design, Implementation and Characterization of a Quantum-Dot-Based Volumetric Display

    Science.gov (United States)

    Hirayama, Ryuji; Naruse, Makoto; Nakayama, Hirotaka; Tate, Naoya; Shiraki, Atsushi; Kakue, Takashi; Shimobaba, Tomoyoshi; Ohtsu, Motoichi; Ito, Tomoyoshi

    2015-02-01

    In this study, we propose and experimentally demonstrate a volumetric display system based on quantum dots (QDs) embedded in a polymer substrate. Unlike conventional volumetric displays, our system does not require electrical wiring; thus, the heretofore unavoidable issue of occlusion is resolved because irradiation by external light supplies the energy to the light-emitting voxels formed by the QDs. By exploiting the intrinsic attributes of the QDs, the system offers ultrahigh definition and a wide range of colours for volumetric displays. In this paper, we discuss the design, implementation and characterization of the proposed volumetric display's first prototype. We developed an 8 × 8 × 8 display comprising two types of QDs. This display provides multicolour three-type two-dimensional patterns when viewed from different angles. The QD-based volumetric display provides a new way to represent images and could be applied in leisure and advertising industries, among others.

  2. THE IMAGE OF PIRACY AND MARITIME TERRORISM. THE MEDIA AS A TOOL FOR ITS DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Piotr Gawliczek

    2016-10-01

    Full Text Available The subject of the article was the issue of shaping the image of piracy and maritime terrorism. Emphasis was put on the media, including those using information and communication technologies. The answers to problem questions were sought: (1 Who and why forms that image (2 what tools are used for its construction. The article presents the trends and development tendencies of the analyzed phenomena, based on the report of the United Nations Conference on Trade and Development (UNCTAD. Furthermore, the results of surveys, conducted among students of military academies, on perception of piracy and maritime terrorism, are cited.

  3. PET in tumor imaging: research only or a cost effective clinical tool?

    International Nuclear Information System (INIS)

    Wahl, R.L.

    1997-01-01

    PET imaging has for many years been a versatile tool for non-invasive imaging of neuro-physiology and, indeed, whole body physiology. Quantitative PET imaging of trace amounts of radioactivity is scientifically elegant and can be very complex. This lecture focuses on whether and where this test is clinically useful. Because of the research tradition, PET imaging has been perceived as an 'expensive' test, as it costs more per scan than CT and MRI scans at most institutions. Such a superficial analysis is incorrect, however, as it is increasingly recognized that imaging costs, which in some circumstances will be increased by the use of PET, are only a relatively small component of patient care costs. Thus, PET may raise imaging costs and the number of imaging procedures in some settings, though PET may reduce imaging test numbers in other settings. However, the analysis must focus on the total costs of patient management. Analyses focused on total patient care costs, including cost of hospitalization and cost surgery as well as imaging costs, have shown that PET can substantially reduce total patient care costs in several settings. This is achieved by providing a more accurate diagnosis, and thus having fewer instances of an incorrect diagnosis resulting in subsequent inappropriate surgery or investigations. Several institutions have shown scenarios in which PET for tumor imaging is cost effective. While the specific results of the analyses vary based on disease prevalence and cost input values for each procedure, as well as the projected performance of PET, the similar results showing total care cost savings in the management of several common cancers, strongly supports the rational for the use of PET in cancer management. In addition, promising clinical results are forthcoming in several other illnesses, suggesting PET will have broader utility than these uses, alone. Thus, while PET is an 'expensive' imaging procedure and has considerable utility as a research

  4. Image Navigation and Registration Performance Assessment Tool Set for the GOES-R Advanced Baseline Imager and Geostationary Lightning Mapper

    Science.gov (United States)

    De Luccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.

    2016-01-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99.73rd percentile of the errors accumulated over a 24-hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24-hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.

  5. Molecular Imaging: A Useful Tool for the Development of Natural Killer Cell-Based Immunotherapies

    Directory of Open Access Journals (Sweden)

    Prakash Gangadaran

    2017-09-01

    Full Text Available Molecular imaging is a relatively new discipline that allows visualization, characterization, and measurement of the biological processes in living subjects, including humans, at a cellular and molecular level. The interaction between cancer cells and natural killer (NK cells is complex and incompletely understood. Despite our limited knowledge, progress in the search for immune cell therapies against cancer could be significantly improved by dynamic and non-invasive visualization and tracking of immune cells and by visualization of the response of cancer cells to therapies in preclinical and clinical studies. Molecular imaging is an essential tool for these studies, and a multimodal molecular imaging approach can be applied to monitor immune cells in vivo, for instance, to visualize therapeutic effects. In this review, we discuss the usefulness of NK cells in cancer therapies and the preclinical and clinical usefulness of molecular imaging in NK cell-based therapies. Furthermore, we discuss different molecular imaging modalities for use with NK cell-based therapies, and their preclinical and clinical applications in animal and human subjects. Molecular imaging has contributed to the development of NK cell-based therapies against cancers in animal models and to the refinement of current cell-based cancer immunotherapies. Developing sensitive and reproducible non-invasive molecular imaging technologies for in vivo NK cell monitoring and for real-time assessment of therapeutic effects will accelerate the development of NK cell therapies.

  6. Volumetric 3D display using a DLP projection engine

    Science.gov (United States)

    Geng, Jason

    2012-03-01

    In this article, we describe a volumetric 3D display system based on the high speed DLPTM (Digital Light Processing) projection engine. Existing two-dimensional (2D) flat screen displays often lead to ambiguity and confusion in high-dimensional data/graphics presentation due to lack of true depth cues. Even with the help of powerful 3D rendering software, three-dimensional (3D) objects displayed on a 2D flat screen may still fail to provide spatial relationship or depth information correctly and effectively. Essentially, 2D displays have to rely upon capability of human brain to piece together a 3D representation from 2D images. Despite the impressive mental capability of human visual system, its visual perception is not reliable if certain depth cues are missing. In contrast, volumetric 3D display technologies to be discussed in this article are capable of displaying 3D volumetric images in true 3D space. Each "voxel" on a 3D image (analogous to a pixel in 2D image) locates physically at the spatial position where it is supposed to be, and emits light from that position toward omni-directions to form a real 3D image in 3D space. Such a volumetric 3D display provides both physiological depth cues and psychological depth cues to human visual system to truthfully perceive 3D objects. It yields a realistic spatial representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them.

  7. Volumetric full-range magnetomotive optical coherence tomography

    Science.gov (United States)

    Ahmad, Adeel; Kim, Jongsik; Shemonski, Nathan D.; Marjanovic, Marina; Boppart, Stephen A.

    2014-01-01

    Abstract. Magnetomotive optical coherence tomography (MM-OCT) can be utilized to spatially localize the presence of magnetic particles within tissues or organs. These magnetic particle-containing regions are detected by using the capability of OCT to measure small-scale displacements induced by the activation of an external electromagnet coil typically driven by a harmonic excitation signal. The constraints imposed by the scanning schemes employed and tissue viscoelastic properties limit the speed at which conventional MM-OCT data can be acquired. Realizing that electromagnet coils can be designed to exert MM force on relatively large tissue volumes (comparable or larger than typical OCT imaging fields of view), we show that an order-of-magnitude improvement in three-dimensional (3-D) MM-OCT imaging speed can be achieved by rapid acquisition of a volumetric scan during the activation of the coil. Furthermore, we show volumetric (3-D) MM-OCT imaging over a large imaging depth range by combining this volumetric scan scheme with full-range OCT. Results with tissue equivalent phantoms and a biological tissue are shown to demonstrate this technique. PMID:25472770

  8. Terahertz Pulsed Imaging and Magnetic Resonance Imaging as Tools to Probe Formulation Stability

    Science.gov (United States)

    Zhang, Qilei; Gladden, Lynn F.; Avalle, Paolo; Zeitler, J. Axel; Mantle, Michael D.

    2013-01-01

    Dissolution stability over the entire shelf life duration is of critical importance to ensure the quality of solid dosage forms. Changes in the drug release profile during storage may affect the bioavailability of drug products. This study investigated the stability of a commercial tablet (Lescol® XL) when stored under accelerated conditions (40 °C/75% r.h.). Terahertz pulsed imaging (TPI) was used to investigate the structure of the tablet coating before and after the accelerated aging process. The results indicate that the coating was reduced in thickness and exhibited a higher density after being stored under accelerated conditions for four weeks. In situ magnetic resonance imaging (MRI) of the water penetration processes during tablet dissolution in a USP-IV dissolution cell equipped with an in-line UV-vis analyzer was carried out to study local differences in water uptake into the tablet matrix between the stressed and unstressed state. The drug release profiles of the Lescol® XL tablet before and after the accelerated storage stability testing were compared using a “difference” factor f1 and a “similarity” factor f2. The results reveal that even though the physical properties of the coating layers changed significantly during the stress testing, the coating protected the tablet matrix and the densification of the coating polymer had no adverse effect on the drug release performance. PMID:24300564

  9. Multispectral analysis tools can increase utility of RGB color images in histology

    Science.gov (United States)

    Fereidouni, Farzad; Griffin, Croix; Todd, Austin; Levenson, Richard

    2018-04-01

    Multispectral imaging (MSI) is increasingly finding application in the study and characterization of biological specimens. However, the methods typically used come with challenges on both the acquisition and the analysis front. MSI can be slow and photon-inefficient, leading to long imaging times and possible phototoxicity and photobleaching. The resulting datasets can be large and complex, prompting the development of a number of mathematical approaches for segmentation and signal unmixing. We show that under certain circumstances, just three spectral channels provided by standard color cameras, coupled with multispectral analysis tools, including a more recent spectral phasor approach, can efficiently provide useful insights. These findings are supported with a mathematical model relating spectral bandwidth and spectral channel number to achievable spectral accuracy. The utility of 3-band RGB and MSI analysis tools are demonstrated on images acquired using brightfield and fluorescence techniques, as well as a novel microscopy approach employing UV-surface excitation. Supervised linear unmixing, automated non-negative matrix factorization and phasor analysis tools all provide useful results, with phasors generating particularly helpful spectral display plots for sample exploration.

  10. MCID: A Software Tool to Provide Monte Carlo Driven Dosimetric Calculations Using Multimodality NM Images

    International Nuclear Information System (INIS)

    Vergara Gil, Alex; Torres Aroche, Leonel A; Coca Péreza, Marco A; Pacilio, Massimiliano; Botta, Francesca; Cremonesi, Marta

    2016-01-01

    Aim: In this work, a new software tool (named MCID) to calculate patient specific absorbed dose in molecular radiotherapy, based on Monte Carlo simulation, is presented. Materials & Methods: The inputs for MCID are two co-registered medical images containing anatomical (CT) and functional (PET or SPECT) information of the patient. The anatomical image is converted to a density map, and tissues segmentation is provided considering compositions and densities from ICRU 44 and ICRP; the functional image provides the cumulative activity map at voxel level (figure 1). MCID creates an input file for Monte Carlo (MC) codes such as MCNP5 and GATE, and converts the MC outputs into an absorbed dose image. Results: The developed tool allows estimating dose distributions for non-uniform activities distributions and non-homogeneous tissues. It includes tools for delineation of volumes of interest, and dosimetric data analysis. Procedures to decrease the calculation time are implemented in order to allow its use in clinical settings. Dose–volume histograms are computed and presented from the obtained dosimetric maps as well as dose statistics such as mean, minimum and maximum dose values; the results can be saved in common medical image formats (Interfile, DICOM, Analyze, MetaImage). The MCID was validated by comparing estimated dose values versus reference data, such as gold standards phantoms (OLINDA´s spheres) and other MC simulations of non-homogeneous phantoms. A good agreement was obtained in spheres ranged 1g to 1kg of mass and in non-homogeneous phantoms. Clinical studies were also examined. Dosimetric evaluations in patients undergoing 153Sm-EDTMP therapy for osseous metastases showed non-significant differences with calculations performed by traditional methods. The possibility of creating input files to perform the simulations using the Gate Code has increased the MCID applications and improved its functionality, Different clinical situations including PET and SPECT

  11. 3D Volumetric Modeling and Microvascular Reconstruction of Irradiated Lumbosacral Defects After Oncologic Resection

    Directory of Open Access Journals (Sweden)

    Emilio Garcia-Tutor

    2016-12-01

    Full Text Available Background: Locoregional flaps are sufficient in most sacral reconstructions. However, large sacral defects due to malignancy necessitate a different reconstructive approach, with local flaps compromised by radiation and regional flaps inadequate for broad surface areas or substantial volume obliteration. In this report, we present our experience using free muscle transfer for volumetric reconstruction in such cases, and demonstrate 3D haptic models of the sacral defect to aid preoperative planning.Methods: Five consecutive patients with irradiated sacral defects secondary to oncologic resections were included, surface area ranging from 143-600cm2. Latissimus dorsi-based free flap sacral reconstruction was performed in each case, between 2005 and 2011. Where the superior gluteal artery was compromised, the subcostal artery was used as a recipient vessel. Microvascular technique, complications and outcomes are reported. The use of volumetric analysis and 3D printing is also demonstrated, with imaging data converted to 3D images suitable for 3D printing with Osirix software (Pixmeo, Geneva, Switzerland. An office-based, desktop 3D printer was used to print 3D models of sacral defects, used to demonstrate surface area and contour and produce a volumetric print of the dead space needed for flap obliteration. Results: The clinical series of latissimus dorsi free flap reconstructions is presented, with successful transfer in all cases, and adequate soft-tissue cover and volume obliteration achieved. The original use of the subcostal artery as a recipient vessel was successfully achieved. All wounds healed uneventfully. 3D printing is also demonstrated as a useful tool for 3D evaluation of volume and dead-space.Conclusion: Free flaps offer unique benefits in sacral reconstruction where local tissue is compromised by irradiation and tumor recurrence, and dead-space requires accurate volumetric reconstruction. We describe for the first time the use of

  12. Susceptibility weighted imaging: a new tool in magnetic resonance imaging of stroke

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh, K. [Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum (India); Kesavadas, C. [Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum (India)], E-mail: chandkesav@yahoo.com; Thomas, B.; Gupta, A.K.; Thamburaj, K.; Kapilamoorthy, T. Raman [Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum (India)

    2009-01-15

    Susceptibility weighted imaging (SWI) is a magnetic resonance (MR) technique that is exquisitely sensitive to paramagnetic substances, such as deoxygenated blood, blood products, iron, and calcium. This sequence allows detection of haemorrhage as early as 6 h and can reliably detect acute intracerebral parenchymal, as well as subarachnoid haemorrhage. It detects early haemorrhagic transformation within an infarct and provides insight into the cerebral haemodynamics following stroke. It helps in the diagnosis of cerebral venous thrombosis. It also has applications in the work-up of stroke patients. The sequence helps in detecting microbleeds in various conditions, such as vasculitis, cerebral autosomal dominant arteriopathy, subacute infarcts and leucoencephalopathy (CADASIL), amyloid angiopathy, and Binswanger's disease. The sequence also aids in the diagnosis of vascular malformations and perinatal cerebrovascular injuries. This review briefly illustrates the utility of this MR technique in various aspects of stroke diagnosis and management.

  13. Web tools for effective retrieval, visualization, and evaluation of cardiology medical images and records

    Science.gov (United States)

    Masseroli, Marco; Pinciroli, Francesco

    2000-12-01

    To provide easy retrieval, integration and evaluation of multimodal cardiology images and data in a web browser environment, distributed application technologies and java programming were used to implement a client-server architecture based on software agents. The server side manages secure connections and queries to heterogeneous remote databases and file systems containing patient personal and clinical data. The client side is a Java applet running in a web browser and providing a friendly medical user interface to perform queries on patient and medical test dat and integrate and visualize properly the various query results. A set of tools based on Java Advanced Imaging API enables to process and analyze the retrieved cardiology images, and quantify their features in different regions of interest. The platform-independence Java technology makes the developed prototype easy to be managed in a centralized form and provided in each site where an intranet or internet connection can be located. Giving the healthcare providers effective tools for querying, visualizing and evaluating comprehensively cardiology medical images and records in all locations where they can need them- i.e. emergency, operating theaters, ward, or even outpatient clinics- the developed prototype represents an important aid in providing more efficient diagnoses and medical treatments.

  14. Interdisciplinary Approach to Tool-Handle Design Based on Medical Imaging

    Directory of Open Access Journals (Sweden)

    G. Harih

    2013-01-01

    Full Text Available Products are becoming increasingly complex; therefore, designers are faced with a challenging task to incorporate new functionality, higher performance, and optimal shape design. Traditional user-centered design techniques such as designing with anthropometric data do not incorporate enough subject data to design products with optimal shape for best fit to the target population. To overcome these limitations, we present an interdisciplinary approach with medical imaging. The use of this approach is being presented on the development of an optimal sized and shaped tool handle where the hand is imaged using magnetic resonance imaging machine. The obtained images of the hand are reconstructed and imported into computer-aided design software, where optimal shape of the handle is obtained with Boolean operations. Methods can be used to develop fully customized products with optimal shape to provide best fit to the target population. This increases subjective comfort rating, performance and can prevent acute and cumulative trauma disorders. Provided methods are especially suited for products where high stresses and exceptional performance is expected (high performance tools, professional sports, and military equipment, etc.. With the use of these interdisciplinary methods, the value of the product is increased, which also increases the competitiveness of the product on the market.

  15. Images as tools. On visual epistemic practices in the biological sciences.

    Science.gov (United States)

    Samuel, Nina

    2013-06-01

    Contemporary visual epistemic practices in the biological sciences raise new questions of how to transform an iconic data measurements into images, and how the process of an imaging technique may change the material it is 'depicting'. This case-oriented study investigates microscopic imagery, which is used by system and synthetic biologists alike. The core argument is developed around the analysis of two recent methods, developed between 2003 and 2006: localization microscopy and photo-induced cell death. Far from functioning merely as illustrations of work done by other means, images can be determined as tools for discovery in their own right and as objects of investigation. Both methods deploy different constellations of intended and unintended interactions between visual appearance and underlying biological materiality. To characterize these new ways of interaction, the article introduces the notions of 'operational images' and 'operational agency'. Despite all their novelty, operational images are still subject to conventions of seeing and depicting: Phenomena emerging with the new method of localization microscopy have to be designed according to image traditions of older, conventional fluorescence microscopy to function properly as devices for communication between physicists and biologists. The article emerged from a laboratory study based on interviews conducted with researchers from the Kirchhoff-Institute for Physics and German Cancer Research Center (DKFZ) at Bioquant, Heidelberg, in 2011. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. OpenComet: An automated tool for comet assay image analysis

    Directory of Open Access Journals (Sweden)

    Benjamin M. Gyori

    2014-01-01

    Full Text Available Reactive species such as free radicals are constantly generated in vivo and DNA is the most important target of oxidative stress. Oxidative DNA damage is used as a predictive biomarker to monitor the risk of development of many diseases. The comet assay is widely used for measuring oxidative DNA damage at a single cell level. The analysis of comet assay output images, however, poses considerable challenges. Commercial software is costly and restrictive, while free software generally requires laborious manual tagging of cells. This paper presents OpenComet, an open-source software tool providing automated analysis of comet assay images. It uses a novel and robust method for finding comets based on geometric shape attributes and segmenting the comet heads through image intensity profile analysis. Due to automation, OpenComet is more accurate, less prone to human bias, and faster than manual analysis. A live analysis functionality also allows users to analyze images captured directly from a microscope. We have validated OpenComet on both alkaline and neutral comet assay images as well as sample images from existing software packages. Our results show that OpenComet achieves high accuracy with significantly reduced analysis time.

  17. A novel image toggle tool for comparison of serial mammograms: automatic density normalization and alignment-development of the tool and initial experience.

    Science.gov (United States)

    Honda, Satoshi; Tsunoda, Hiroko; Fukuda, Wataru; Saida, Yukihisa

    2014-12-01

    The purpose is to develop a new image toggle tool with automatic density normalization (ADN) and automatic alignment (AA) for comparing serial digital mammograms (DMGs). We developed an ADN and AA process to compare the images of serial DMGs. In image density normalization, a linear interpolation was applied by taking two points of high- and low-brightness areas. The alignment was calculated by determining the point of the greatest correlation while shifting the alignment between the current and prior images. These processes were performed on a PC with a 3.20-GHz Xeon processor and 8 GB of main memory. We selected 12 suspected breast cancer patients who had undergone screening DMGs in the past. Automatic processing was retrospectively performed on these images. Two radiologists subjectively evaluated them. The process of the developed algorithm took approximately 1 s per image. In our preliminary experience, two images could not be aligned approximately. When they were aligned, image toggling allowed detection of differences between examinations easily. We developed a new tool to facilitate comparative reading of DMGs on a mammography viewing system. Using this tool for toggling comparisons might improve the interpretation efficiency of serial DMGs.

  18. Volumetric capnography: In the diagnostic work-up of chronic thromboembolic disease

    Directory of Open Access Journals (Sweden)

    Marcos Mello Moreira

    2010-05-01

    Full Text Available Marcos Mello Moreira1, Renato Giuseppe Giovanni Terzi1, Laura Cortellazzi2, Antonio Luis Eiras Falcão1, Heitor Moreno Junior2, Luiz Cláudio Martins2, Otavio Rizzi Coelho21Department of Surgery, 2Department of Internal Medicine, State University of Campinas, School of Medical Sciences, Campinas, Sao Paulo, BrazilAbstract: The morbidity and mortality of pulmonary embolism (PE have been found to be related to early diagnosis and appropriate treatment. The examinations used to diagnose PE are expensive and not always easily accessible. These options include noninvasive examinations, such as clinical pretests, ELISA D-dimer (DD tests, and volumetric capnography (VCap. We report the case of a patient whose diagnosis of PE was made via pulmonary arteriography. The clinical pretest revealed a moderate probability of the patient having PE, and the DD result was negative; however, the VCap associated with arterial blood gases result was positive. The patient underwent all noninvasive exams following admission to hospital and again eight months after discharge. Results gained from invasive tests were similar to those produced by image exams, highlighting the importance of VCap as an important noninvasive tool.Keywords: pulmonary embolism, pulmonary hypertension, volumetric capnography, d-dimers, pretest probability

  19. Visualization of volumetric seismic data

    Science.gov (United States)

    Spickermann, Dela; Böttinger, Michael; Ashfaq Ahmed, Khawar; Gajewski, Dirk

    2015-04-01

    Mostly driven by demands of high quality subsurface imaging, highly specialized tools and methods have been developed to support the processing, visualization and interpretation of seismic data. 3D seismic data acquisition and 4D time-lapse seismic monitoring are well-established techniques in academia and industry, producing large amounts of data to be processed, visualized and interpreted. In this context, interactive 3D visualization methods proved to be valuable for the analysis of 3D seismic data cubes - especially for sedimentary environments with continuous horizons. In crystalline and hard rock environments, where hydraulic stimulation techniques may be applied to produce geothermal energy, interpretation of the seismic data is a more challenging problem. Instead of continuous reflection horizons, the imaging targets are often steep dipping faults, causing a lot of diffractions. Without further preprocessing these geological structures are often hidden behind the noise in the data. In this PICO presentation we will present a workflow consisting of data processing steps, which enhance the signal-to-noise ratio, followed by a visualization step based on the use the commercially available general purpose 3D visualization system Avizo. Specifically, we have used Avizo Earth, an extension to Avizo, which supports the import of seismic data in SEG-Y format and offers easy access to state-of-the-art 3D visualization methods at interactive frame rates, even for large seismic data cubes. In seismic interpretation using visualization, interactivity is a key requirement for understanding complex 3D structures. In order to enable an easy communication of the insights gained during the interactive visualization process, animations of the visualized data were created which support the spatial understanding of the data.

  20. Reduction of radiation exposure and image quality using dose reduction tool on computed tomography fluoroscopy

    International Nuclear Information System (INIS)

    Sakabe, Daisuke; Tochihara, Syuichi; Ono, Michiaki; Tokuda, Masaki; Kai, Noriyuki; Nakato, Kengo; Hashida, Masahiro; Funama, Yoshinori; Murazaki, Hiroo

    2012-01-01

    The purpose of our study was to measure the reduction rate of radiation dose and variability of image noise using the angular beam modulation (ABM) on computed tomography (CT) fluoroscopy. The Alderson-Rando phantom and the homemade phantom were used in our study. These phantoms were scanned at on-center and off-center positions at -12 cm along y-axis with and without ABM technique. Regarding the technique, the x-ray tube is turned off in a 100-degree angle sector at the center of 12 o'clock, 10 o'clock, and 2 o'clock positions during CT fluoroscopy. CT fluoroscopic images were obtained with tube voltages, 120 kV; tube current-time product per reconstructed image, 30 mAs; rotation time, 0.5 s/rot; slice thickness, 4.8 mm; and reconstruction kernel B30s in each scanning. After CT scanning, radiation exposure and image noise were measured and the image artifacts were evaluated with and without the technique. The reduction rate for radiation exposure was 75-80% with and without the technique at on-center position regardless of each angle position. In the case of the off-center position at -12 cm, the reduction rate was 50% with and without the technique. In contrast, image noise remained constant with and without the technique. Visual inspection for image artifacts almost have the same scores with and without the technique and no statistical significance was found in both techniques (p>0.05). ABM is an appropriate tool for reducing radiation exposure and maintaining image-noise and artifacts during CT fluoroscopy. (author)

  1. Evaluation of an Automated Analysis Tool for Prostate Cancer Prediction Using Multiparametric Magnetic Resonance Imaging.

    Directory of Open Access Journals (Sweden)

    Matthias C Roethke

    Full Text Available To evaluate the diagnostic performance of an automated analysis tool for the assessment of prostate cancer based on multiparametric magnetic resonance imaging (mpMRI of the prostate.A fully automated analysis tool was used for a retrospective analysis of mpMRI sets (T2-weighted, T1-weighted dynamic contrast-enhanced, and diffusion-weighted sequences. The software provided a malignancy prediction value for each image pixel, defined as Malignancy Attention Index (MAI that can be depicted as a colour map overlay on the original images. The malignancy maps were compared to histopathology derived from a combination of MRI-targeted and systematic transperineal MRI/TRUS-fusion biopsies.In total, mpMRI data of 45 patients were evaluated. With a sensitivity of 85.7% (with 95% CI of 65.4-95.0, a specificity of 87.5% (with 95% CI of 69.0-95.7 and a diagnostic accuracy of 86.7% (with 95% CI of 73.8-93.8 for detection of prostate cancer, the automated analysis results corresponded well with the reported diagnostic accuracies by human readers based on the PI-RADS system in the current literature.The study revealed comparable diagnostic accuracies for the detection of prostate cancer of a user-independent MAI-based automated analysis tool and PI-RADS-scoring-based human reader analysis of mpMRI. Thus, the analysis tool could serve as a detection support system for less experienced readers. The results of the study also suggest the potential of MAI-based analysis for advanced lesion assessments, such as cancer extent and staging prediction.

  2. A volumetric three-dimensional digital light photoactivatable dye display

    Science.gov (United States)

    Patel, Shreya K.; Cao, Jian; Lippert, Alexander R.

    2017-07-01

    Volumetric three-dimensional displays offer spatially accurate representations of images with a 360° view, but have been difficult to implement due to complex fabrication requirements. Herein, a chemically enabled volumetric 3D digital light photoactivatable dye display (3D Light PAD) is reported. The operating principle relies on photoactivatable dyes that become reversibly fluorescent upon illumination with ultraviolet light. Proper tuning of kinetics and emission wavelengths enables the generation of a spatial pattern of fluorescent emission at the intersection of two structured light beams. A first-generation 3D Light PAD was fabricated using the photoactivatable dye N-phenyl spirolactam rhodamine B, a commercial picoprojector, an ultraviolet projector and a custom quartz imaging chamber. The system displays a minimum voxel size of 0.68 mm3, 200 μm resolution and good stability over repeated `on-off' cycles. A range of high-resolution 3D images and animations can be projected, setting the foundation for widely accessible volumetric 3D displays.

  3. Liver imaging at 3.0 T: Diffusion-induced black-blood echo-planar imaging with large anatomic volumetric coverage as an alternative for specific absorption rate-intensive echo-train spin-echo sequences: Feasibility study

    NARCIS (Netherlands)

    I.C. van den Bos (Indra); S.M. Hussain (Shahid); G.P. Krestin (Gabriel); P.A. Wielopolski (Piotr)

    2008-01-01

    textabstractInstitutional Review Board approval and signed informed consent were obtained by all participants for an ongoing sequence optimization project at 3.0 T. The purpose of this study was to evaluate breath-hold diffusion-induced blackblood echo-planar imaging (BBEPI) as a potential

  4. Identifying biological landmarks using a novel cell measuring image analysis tool: Cell-o-Tape

    Directory of Open Access Journals (Sweden)

    French Andrew P

    2012-03-01

    Full Text Available Abstract Background The ability to quantify the geometry of plant organs at the cellular scale can provide novel insights into their structural organization. Hitherto manual methods of measurement provide only very low throughput and subjective solutions, and often quantitative measurements are neglected in favour of a simple cell count. Results We present a tool to count and measure individual neighbouring cells along a defined file in confocal laser scanning microscope images. The tool allows the user to extract this generic information in a flexible and intuitive manner, and builds on the raw data to detect a significant change in cell length along the file. This facility can be used, for example, to provide an estimate of the position of transition into the elongation zone of an Arabidopsis root, traditionally a location sensitive to the subjectivity of the experimenter. Conclusions Cell-o-tape is shown to locate cell walls with a high degree of accuracy and estimate the location of the transition feature point in good agreement with human experts. The tool is an open source ImageJ/Fiji macro and is available online.

  5. Comparative Study of the Volumetric Methods Calculation Using GNSS Measurements

    Science.gov (United States)

    Şmuleac, Adrian; Nemeş, Iacob; Alina Creţan, Ioana; Sorina Nemeş, Nicoleta; Şmuleac, Laura

    2017-10-01

    This paper aims to achieve volumetric calculations for different mineral aggregates using different methods of analysis and also comparison of results. To achieve these comparative studies and presentation were chosen two software licensed, namely TopoLT 11.2 and Surfer 13. TopoLT program is a program dedicated to the development of topographic and cadastral plans. 3D terrain model, level courves and calculation of cut and fill volumes, including georeferencing of images. The program Surfer 13 is produced by Golden Software, in 1983 and is active mainly used in various fields such as agriculture, construction, geophysical, geotechnical engineering, GIS, water resources and others. It is also able to achieve GRID terrain model, to achieve the density maps using the method of isolines, volumetric calculations, 3D maps. Also, it can read different file types, including SHP, DXF and XLSX. In these paper it is presented a comparison in terms of achieving volumetric calculations using TopoLT program by two methods: a method where we choose a 3D model both for surface as well as below the top surface and a 3D model in which we choose a 3D terrain model for the bottom surface and another 3D model for the top surface. The comparison of the two variants will be made with data obtained from the realization of volumetric calculations with the program Surfer 13 generating GRID terrain model. The topographical measurements were performed with equipment from Leica GPS 1200 Series. Measurements were made using Romanian position determination system - ROMPOS which ensures accurate positioning of reference and coordinates ETRS through the National Network of GNSS Permanent Stations. GPS data processing was performed with the program Leica Geo Combined Office. For the volumetric calculating the GPS used point are in 1970 stereographic projection system and for the altitude the reference is 1975 the Black Sea projection system.

  6. Remote control of an MR imaging study via tele-collaboration tools

    Science.gov (United States)

    Sullivan, John M., Jr.; Mullen, Julia S.; Benz, Udo A.; Schmidt, Karl F.; Murugavel, Murali; Chen, Wei; Ghadyani, Hamid

    2005-04-01

    In contrast to traditional 'video conferencing' the Access Grid (AG), developed by Argonne National Laboratory, is a collaboration of audio, video and shared application tools which provide the 'persistent presence' of each participant. Among the shared application tools are the ability to share viewing and control of presentations, browsers, images and movies. When used in conjunction with Virtual Network Computing (VNC) software, an investigator can interact with colleagues at a remote site, and control remote systems via local keyboard and mouse commands. This combination allows for effective viewing and discussion of information, i.e. data, images, and results. It is clear that such an approach when applied to the medical sciences will provide a means by which a team of experts can not only access, but interact and control medical devices for the purpose of experimentation, diagnosis, surgery and therapy. We present the development of an application node at our 4.7 Tesla MR magnet facility, and a demonstration of remote investigator control of the magnet. A local magnet operator performs manual tasks such as loading the test subject into the magnet and administering the stimulus associated with the functional MRI study. The remote investigator has complete control of the magnet console. S/he can adjust the gradient coil settings, the pulse sequence, image capture frequency, etc. A geographically distributed audience views and interacts with the remote investigator and local MR operator. This AG demonstration of MR magnet control illuminates the potential of untethered medical experiments, procedures and training.

  7. SPECT Imaging as a Tool for Testing and Challenging Assumptions About Transport in Porous Media

    Science.gov (United States)

    Moysey, S. M.; DeVol, T. A.; Tornai, M. P.

    2014-12-01

    Medical imaging has shown promise for unraveling the influence of physical, chemical and biological processes on contaminant transport. Micro-CT scans, for instance, are increasingly utilized to image the pore-scale structure of rocks and soils, which can subsequently be used within modeling studies. A disadvantage of micro-CT, however, is that this imaging modality does not directly detect contaminants. In contrast, Single Photon Emission Computed Tomography (SPECT) can provide the three-dimensional distribution of gamma emitting materials and is thus ideal for imaging the transport of radionuclides. SPECT is of particular interest as a tool for both directly imaging the behavior of long-lived radionuclides of interest, e.g., 99Tc and 137Cs, as well as monitoring shorter-lived isotopes as in-situ tracers of flow and biogeochemical processes. We demonstrate the potential of combining CT and SPECT imaging to improve the mechanistic understanding of flow and transport processes within a heterogeneous porous medium. In the experiment, a column was packed with 0.2mm glass beads with a cylindrical zone of 2mm glass beads embedded near the outlet; this region could be readily identified within the CT images. The column was injected with a pulse of NaCl solution spiked with 99mTcO4- and monitored using SPECT while aliquots of the effluent were used to analyze the breakthrough of both solutes. The breakthrough curves could be approximately replicated by a one-dimensional transport model, but the SPECT data revealed that the tracers migrated around the inclusion of larger beads. Although the zone of large-diameter beads was expected to act as a preferential pathway, the observed behavior could only be replicated in numerical transport simulations if this region was treated as a low-permeability zone relative to the rest of the column. This simple experiment demonstrates the potential of SPECT for investigating flow and transport phenomena within a porous medium.

  8. High-volume image quality assessment systems: tuning performance with an interactive data visualization tool

    Science.gov (United States)

    Bresnahan, Patricia A.; Pukinskis, Madeleine; Wiggins, Michael

    1999-03-01

    Image quality assessment systems differ greatly with respect to the number and types of mags they need to evaluate, and their overall architectures. Managers of these systems, however, all need to be able to tune and evaluate system performance, requirements often overlooked or under-designed during project planning. Performance tuning tools allow users to define acceptable quality standards for image features and attributes by adjusting parameter settings. Performance analysis tools allow users to evaluate and/or predict how well a system performs in a given parameter state. While image assessment algorithms are becoming quite sophisticated, duplicating or surpassing the human decision making process in their speed and reliability, they often require a greater investment in 'training' or fine tuning of parameters in order to achieve optimum performance. This process may involve the analysis of hundreds or thousands of images, generating a large database of files and statistics that can be difficult to sort through and interpret. Compounding the difficulty is the fact that personnel charged with tuning and maintaining the production system may not have the statistical or analytical background required for the task. Meanwhile, hardware innovations have greatly increased the volume of images that can be handled in a given time frame, magnifying the consequences of running a production site with an inadequately tuned system. In this paper, some general requirements for a performance evaluation and tuning data visualization system are discussed. A custom engineered solution to the tuning and evaluation problem is then presented, developed within the context of a high volume image quality assessment, data entry, OCR, and image archival system. A key factor influencing the design of the system was the context-dependent definition of image quality, as perceived by a human interpreter. This led to the development of a five-level, hierarchical approach to image quality

  9. Tool development for organ dose optimization taking into account the image quality in Computed Tomography

    International Nuclear Information System (INIS)

    Adrien-Decoene, Camille

    2015-01-01

    Due to the significant rise of computed tomography (CT) exams in the past few years and the increase of the collective dose due to medical exams, dose estimation in CT imaging has become a major public health issue. However dose optimization cannot be considered without taking into account the image quality which has to be good enough for radiologists. In clinical practice, optimization is obtained through empirical index and image quality using measurements performed on specific phantoms like the CATPHAN. Based on this kind of information, it is thus difficult to correctly optimize protocols regarding organ doses and radiologist criteria. Therefore our goal is to develop a tool allowing the optimization of the patient dose while preserving the image quality needed for diagnosis. The work is divided into two main parts: (i) the development of a Monte Carlo dose simulator based on the PENELOPE code, and (ii) the assessment of an objective image quality criterion. For that purpose, the GE Lightspeed VCT 64 CT tube was modelled with information provided by the manufacturer technical note and by adapting the method proposed by Turner et al (Med. Phys. 36: 2154-2164). The axial and helical movements of the X-ray tube were then implemented into the MC tool. To improve the efficiency of the simulation, two variance reduction techniques were used: a circular and a translational splitting. The splitting algorithms allow a uniform particle distribution along the gantry path to simulate the continuous gantry motion in a discrete way. Validations were performed in homogeneous conditions using a home-made phantom and the well-known CTDI phantoms. Then, dose values were measured in CIRS ATOM anthropomorphic phantom using both optically stimulated luminescence dosimeters for point doses and XR-QA Gafchromic films for relative dose maps. Comparisons between measured and simulated values enabled us to validate the MC tool used for dosimetric purposes. Finally, organ doses for

  10. Segmentation and volumetric analysis of the caudate nucleus in Alzheimer's disease

    International Nuclear Information System (INIS)

    Jiji, Sudevan; Smitha, Karavallil Achuthan; Gupta, Arun Kumar; Pillai, Vellara Pappukutty Mahadevan; Jayasree, Ramapurath S.

    2013-01-01

    Objectives: A quantitative volumetric analysis of caudate nucleus can provide valuable information in early diagnosis and prognosis of patients with Alzheimer's diseases (AD). Purpose of the study is to estimate the volume of segmented caudate nucleus from MR images and to correlate the variation in the segmented volume with respect to the total brain volume. We have also tried to evaluate the caudate nucleus atrophy with the age related atrophy of white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) in a group of Alzheimer's disease patients. Methods: 3D fast low angle shot (3D FLASH) brain MR images of 15 AD patients, 15 normal volunteers and 15 patients who had normally diagnosed MR images were included in the study. Brain tissue and caudate nuclei were segmented using the statistical parametric mapping package and a semi-automatic tool, respectively and the volumes were estimated. Volume of segmented caudate nucleus is correlated with respect to the total brain volume. Further, the caudate nucleus atrophy is estimated with the age related atrophy of WM, GM and CSF in a group of AD patients. Results: Significant reduction in the caudate volume of AD patients was observed compared to that of the normal volunteers. Statistical analysis also showed significant variation in the volume of GM and CSF of AD patients. Among the patients who had normal appearing brain, 33% showed significant changes in the caudate volume. We hypothesize that these changes can be considered as an indication of early AD. Conclusion: The method of volumetric analysis of brain structures is simple and effective way of early diagnosis of neurological disorders like Alzheimer's disease. We have illustrated this with the observed changes in the volume of caudate nucleus in a group of patients. A detailed study with more subjects will be useful in correlating these results for early diagnosis of AD

  11. Imaging techniques in clay sciences: a key tool to go a step further

    International Nuclear Information System (INIS)

    Robinet, J.C.; Michau, N.; Schaefer, T.

    2012-01-01

    the need to study microstructure of clay-rocks and clay based materials from multi-scale techniques and multiple scientific disciplines. Nevertheless at the end of the 90's, several scientific and/or technological bottlenecks, like the imaging the clays in 3D, limited our capacity to bridge small scale processes to macro-scale behaviors and properties. Over the last decade, R and D programs on nuclear waste disposal have tackled many issues to go further in our understanding of clays. Through different results and current studies, we have reviewed various developments and improvements on imaging techniques and their applications on clay-rocks and clay based materials currently under investigations. The presentation will address successively the different questions asked at each step, from the acquisition to the use of the data: - improvement and development of sampling and microstructure preservation methods to image undisturbed samples, - emergence of 3D techniques (X-ray microtomography, FIB/SEM...) and their application to clay based materials and clay rocks, - improvement of image acquisition and treatment of 2D/3D images, - development of multi-scale methodologies, - cross-cutting between imaging and analytical techniques to get quantitative information on pore and mineral spatial distribution, - imaging in 2D/3D the microstructure of clay materials under THMC conditions and environmental conditions, - extraction of quantitative information from image analysis using statistical approaches or cross-correlation to quantitative techniques, - correlation between microstructure characteristic parameters and macroscopic properties, - modeling of multi-scale THMC processes using data extracted from images. Conclusions drawn up from this review show up that imaging techniques have progressively turned into an essential tool to support THMC experimental or numerical studies in a sense that they have gradually evolved from a qualitative observation mean to a quantitative

  12. PUBLIC DIPLOMACY AS A TOOL TO CHANGE THE IMAGE OF A COUNTRY IN CRISIS

    Directory of Open Access Journals (Sweden)

    Maria Vaxevanidou

    2016-12-01

    Full Text Available The aim of this study is to explore the means, the methods, and the techniques of public diplomacy that a country in crisis, such as Greece, should use. The paper addresses the very issues of whether a country in crisis can conduct public diplomacy and whether it should be recognized as a legitimate and powerful actor in the field. In a broader sense, it focuses on the processes that a country should follow and how a better understanding and framing of its situation, principles, and policy can be provided. A crucial factor for such countries is the choice of communication channels, which includes traditional tools like press releases, letters to editor, editorials, interviews, or more active tools like social media, events, campaigns, and networking. In this paper, three dimensions of public diplomacy are examined, and appropriate tools to be developed in the short, medium and long-term are proposed. The results of the study are based on case studies, methods, and tools employed by Greece during the last years that the country has faced a huge economic crisis. There is a short presentation on the methods that Greece tries to adopt in order to enhance its image worldwide. Keywords: reactive public diplomacy, proactive public diplomacy, relationship building

  13. Fast scattering simulation tool for multi-energy x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sossin, A., E-mail: artur.sossin@cea.fr [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Tabary, J.; Rebuffel, V. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Létang, J.M.; Freud, N. [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard (France); Verger, L. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France)

    2015-12-01

    A combination of Monte Carlo (MC) and deterministic approaches was employed as a means of creating a simulation tool capable of providing energy resolved x-ray primary and scatter images within a reasonable time interval. Libraries of Sindbad, a previously developed x-ray simulation software, were used in the development. The scatter simulation capabilities of the tool were validated through simulation with the aid of GATE and through experimentation by using a spectrometric CdTe detector. A simple cylindrical phantom with cavities and an aluminum insert was used. Cross-validation with GATE showed good agreement with a global spatial error of 1.5% and a maximum scatter spectrum error of around 6%. Experimental validation also supported the accuracy of the simulations obtained from the developed software with a global spatial error of 1.8% and a maximum error of around 8.5% in the scatter spectra.

  14. Digital tool for detecting diabetic retinopathy in retinography image using gabor transform

    Science.gov (United States)

    Morales, Y.; Nuñez, R.; Suarez, J.; Torres, C.

    2017-01-01

    Diabetic retinopathy is a chronic disease and is the leading cause of blindness in the population. The fundamental problem is that diabetic retinopathy is usually asymptomatic in its early stage and, in advanced stages, it becomes incurable, hence the importance of early detection. To detect diabetic retinopathy, the ophthalmologist examines the fundus by ophthalmoscopy, after sends the patient to get a Retinography. Sometimes, these retinography are not of good quality. This paper show the implementation of a digital tool that facilitates to ophthalmologist provide better patient diagnosis suffering from diabetic retinopathy, informing them that type of retinopathy has and to what degree of severity is find . This tool develops an algorithm in Matlab based on Gabor transform and in the application of digital filters to provide better and higher quality of retinography. The performance of algorithm has been compared with conventional methods obtaining resulting filtered images with better contrast and higher.

  15. Extending the XNAT archive tool for image and analysis management in ophthalmology research

    Science.gov (United States)

    Wahle, Andreas; Lee, Kyungmoo; Harding, Adam T.; Garvin, Mona K.; Niemeijer, Meindert; Sonka, Milan; Abràmoff, Michael D.

    2013-03-01

    In ophthalmology, various modalities and tests are utilized to obtain vital information on the eye's structure and function. For example, optical coherence tomography (OCT) is utilized to diagnose, screen, and aid treatment of eye diseases like macular degeneration or glaucoma. Such data are complemented by photographic retinal fundus images and functional tests on the visual field. DICOM isn't widely used yet, though, and frequently images are encoded in proprietary formats. The eXtensible Neuroimaging Archive Tool (XNAT) is an open-source NIH-funded framework for research PACS and is in use at the University of Iowa for neurological research applications. Its use for ophthalmology was hence desirable but posed new challenges due to data types thus far not considered and the lack of standardized formats. We developed custom tools for data types not natively recognized by XNAT itself using XNAT's low-level REST API. Vendor-provided tools can be included as necessary to convert proprietary data sets into valid DICOM. Clients can access the data in a standardized format while still retaining the original format if needed by specific analysis tools. With respective project-specific permissions, results like segmentations or quantitative evaluations can be stored as additional resources to previously uploaded datasets. Applications can use our abstract-level Python or C/C++ API to communicate with the XNAT instance. This paper describes concepts and details of the designed upload script templates, which can be customized to the needs of specific projects, and the novel client-side communication API which allows integration into new or existing research applications.

  16. Mobile Phones Democratize and Cultivate Next-Generation Imaging, Diagnostics and Measurement Tools

    Science.gov (United States)

    Ozcan, Aydogan

    2014-01-01

    In this article, I discuss some of the emerging applications and the future opportunities and challenges created by the use of mobile phones and their embedded components for the development of next-generation imaging, sensing, diagnostics and measurement tools. The massive volume of mobile phone users, which has now reached ~7 billion, drives the rapid improvements of the hardware, software and high-end imaging and sensing technologies embedded in our phones, transforming the mobile phone into a cost-effective and yet extremely powerful platform to run e.g., biomedical tests and perform scientific measurements that would normally require advanced laboratory instruments. This rapidly evolving and continuing trend will help us transform how medicine, engineering and sciences are practiced and taught globally. PMID:24647550

  17. Fluorescence spectral imaging as a tool for locating uranium deposited on surfaces - 16089

    International Nuclear Information System (INIS)

    Monts, David L.; Wang, Guangjun; Su, Yi; Jang, Ping-Rey; Waggoner, Charles A.

    2009-01-01

    In the environment, metallic uranium readily oxidizes to form uranium compounds that contain the uranyl (UO 2 +2 ) moiety. For more than a hundred and fifty years, it has been known that when illuminated with ultraviolet (UV) light, uranyl compounds exhibit characteristic fluorescence in the visible region (450-650 nm). We report our efforts to develop a transportable, quantitative Fluorescence Spectral Imaging (FSI) system as a tool for locating and quantifying uranyl compounds dispersed in soils and on other surfaces. A project is underway to develop a set of sensors to locate expended depleted uranium (DU) rounds and to process soil and debris to recover the material from domestic firing ranges. The FSI system can also be utilized to monitor excavation of DU munitions and separation of uranyl compounds from soils. FSI images are acquired by illuminating a surface with a UV light and using a narrow band pass filter on a camera, recording an image of the resulting fluorescence. The FSI image provides both spatial and spectral information. The FSI system is described and its performance characterized using field samples. (authors)

  18. Rapid development of medical imaging tools with open-source libraries.

    Science.gov (United States)

    Caban, Jesus J; Joshi, Alark; Nagy, Paul

    2007-11-01

    Rapid prototyping is an important element in researching new imaging analysis techniques and developing custom medical applications. In the last ten years, the open source community and the number of open source libraries and freely available frameworks for biomedical research have grown significantly. What they offer are now considered standards in medical image analysis, computer-aided diagnosis, and medical visualization. A cursory review of the peer-reviewed literature in imaging informatics (indeed, in almost any information technology-dependent scientific discipline) indicates the current reliance on open source libraries to accelerate development and validation of processes and techniques. In this survey paper, we review and compare a few of the most successful open source libraries and frameworks for medical application development. Our dual intentions are to provide evidence that these approaches already constitute a vital and essential part of medical image analysis, diagnosis, and visualization and to motivate the reader to use open source libraries and software for rapid prototyping of medical applications and tools.

  19. Patients setup verification tool for RT (PSVTs): DRR, simulation, portal and digital images

    International Nuclear Information System (INIS)

    Lee, Suk; Seong, Jin Sil; Chu, Sung Sil; Lee, Chang Geol; Suh, Chang Ok; Kwon, Soo Il

    2003-01-01

    To develop a patients' setup verification tool (PSVT) to verify the alignment of the machine and the target isocenters, and the reproducibility of patients' setup for three dimensional conformal radiotherapy (3DCRT) and intensity modulated radiotherapy (MRT). The utilization of this system is evaluated through phantom and patient case studies. We developed and clinically tested a new method for patients' setup verification, using digitally reconstructed radiography (DRR), simulation, portal and digital images. The PSVT system was networked to a Pentium PC for the transmission of the acquired images to the PC for analysis. To verify the alignment of the machine and target isocenters, orthogonal pairs of simulation images were used as verification images. Errors in the isocenter alignment were measured by comparing the verification images with DRR of CT images. Orthogonal films were taken of all the patients once a week. These verification films were compared with the DRR were used for the treatment setup. By performing this procedure every treatment, using humanoid phantom and patient cases, the errors of localization can be analyzed, with adjustments made from the translation. The reproducibility of the patients' setup was verified using portal and digital images. The PSVT system was developed to verify the alignment of the machine and the target isocenters, and the reproducibility of the patients' setup for 3DCRT and IMRT The results show that the localization errors are 0.8±0.2 mm (AP) and 1.0±0.3 mm (Lateral) in the cases relating to the brain and 1.1± 0.5 mm (AP) and 1.0±0.6 mm (Lateral) in the cases relating to the pelvis. The reproducibility of the patients' setup was verified by visualization, using real-time image acquisition, leading to the practical utilization of our software. A PSVT system was developed for the verification of the alignment between machine and the target isocenters, and the reproducibility of the patients' setup in 3DCRT and IMRT

  20. Real-time volumetric scintillation dosimetry

    International Nuclear Information System (INIS)

    Beddar, S

    2015-01-01

    The goal of this brief review is to review the current status of real-time 3D scintillation dosimetry and what has been done so far in this area. The basic concept is to use a large volume of a scintillator material (liquid or solid) to measure or image the dose distributions from external radiation therapy (RT) beams in three dimensions. In this configuration, the scintillator material fulfills the dual role of being the detector and the phantom material in which the measurements are being performed. In this case, dose perturbations caused by the introduction of a detector within a phantom will not be at issue. All the detector configurations that have been conceived to date used a Charge-Coupled Device (CCD) camera to measure the light produced within the scintillator. In order to accurately measure the scintillation light, one must correct for various optical artefacts that arise as the light propagates from the scintillating centers through the optical chain to the CCD chip. Quenching, defined in its simplest form as a nonlinear response to high-linear energy transfer (LET) charged particles, is one of the disadvantages when such systems are used to measure the absorbed dose from high-LET particles such protons. However, correction methods that restore the linear dose response through the whole proton range have been proven to be effective for both liquid and plastic scintillators. Volumetric scintillation dosimetry has the potential to provide fast, high-resolution and accurate 3D imaging of RT dose distributions. Further research is warranted to optimize the necessary image reconstruction methods and optical corrections needed to achieve its full potential

  1. Serial volumetric registration of pulmonary CT studies

    Science.gov (United States)

    Silva, José Silvestre; Silva, Augusto; Sousa Santos, Beatriz

    2008-03-01

    Detailed morphological analysis of pulmonary structures and tissue, provided by modern CT scanners, is of utmost importance as in the case of oncological applications both for diagnosis, treatment, and follow-up. In this case, a patient may go through several tomographic studies throughout a period of time originating volumetric sets of image data that must be appropriately registered in order to track suspicious radiological findings. The structures or regions of interest may change their position or shape in CT exams acquired at different moments, due to postural, physiologic or pathologic changes, so, the exams should be registered before any follow-up information can be extracted. Postural mismatching throughout time is practically impossible to avoid being particularly evident when imaging is performed at the limiting spatial resolution. In this paper, we propose a method for intra-patient registration of pulmonary CT studies, to assist in the management of the oncological pathology. Our method takes advantage of prior segmentation work. In the first step, the pulmonary segmentation is performed where trachea and main bronchi are identified. Then, the registration method proceeds with a longitudinal alignment based on morphological features of the lungs, such as the position of the carina, the pulmonary areas, the centers of mass and the pulmonary trans-axial principal axis. The final step corresponds to the trans-axial registration of the corresponding pulmonary masked regions. This is accomplished by a pairwise sectional registration process driven by an iterative search of the affine transformation parameters leading to optimal similarity metrics. Results with several cases of intra-patient, intra-modality registration, up to 7 time points, show that this method provides accurate registration which is needed for quantitative tracking of lesions and the development of image fusion strategies that may effectively assist the follow-up process.

  2. 3D printing of patient-specific anatomy: A tool to improve patient consent and enhance imaging interpretation by trainees.

    Science.gov (United States)

    Liew, Yaoren; Beveridge, Erin; Demetriades, Andreas K; Hughes, Mark A

    2015-01-01

    We report the use of three-dimensional or 3D printed, patient-specific anatomy as a tool to improve informed patient consent and patient understanding in a case of posterior lumbar fixation. Next, we discuss its utility as an educational tool to enhance imaging interpretation by neurosurgery trainees.

  3. ABISM: an interactive image quality assessment tool for adaptive optics instruments

    Science.gov (United States)

    Girard, Julien H.; Tourneboeuf, Martin

    2016-07-01

    ABISM (Automatic Background Interactive Strehl Meter) is a interactive tool to evaluate the image quality of astronomical images. It works on seeing-limited point spread functions (PSF) but was developed in particular for diffraction-limited PSF produced by adaptive optics (AO) systems. In the VLT service mode (SM) operations framework, ABISM is designed to help support astronomers or telescope and instruments operators (TIOs) to quickly measure the Strehl ratio (SR) during or right after an observing block (OB) to evaluate whether it meets the requirements/predictions or whether is has to be repeated and will remain in the SM queue. It's a Python-based tool with a graphical user interface (GUI) that can be used with little AO knowledge. The night astronomer (NA) or Telescope and Instrument Operator (TIO) can launch ABISM in one click and the program is able to read keywords from the FITS header to avoid mistakes. A significant effort was also put to make ABISM as robust (and forgiven) with a high rate of repeatability. As a matter of fact, ABISM is able to automatically correct for bad pixels, eliminate stellar neighbours and estimate/fit properly the background, etc.

  4. Tools for Generating Useful Time-series Data from PhenoCam Images

    Science.gov (United States)

    Milliman, T. E.; Friedl, M. A.; Frolking, S.; Hufkens, K.; Klosterman, S.; Richardson, A. D.; Toomey, M. P.

    2012-12-01

    phenological studies so that the details of processing the image series can be avoided. Our goal is to provide access to both the original time-series images and the derived ROI time-series data. The software tools for our processing chains and a description of their use will be made available to the wider scientific community.

  5. Optimizing parameter choice for FSL-Brain Extraction Tool (BET) on 3D T1 images in multiple sclerosis

    DEFF Research Database (Denmark)

    Popescu, Valeriu; Battaglini, M; Hoogstrate, W S

    2012-01-01

    Brain atrophy studies often use FSL-BET (Brain Extraction Tool) as the first step of image processing. Default BET does not always give satisfactory results on 3DT1 MR images, which negatively impacts atrophy measurements. Finding the right alternative BET settings can be a difficult and time-con...

  6. Towards a Systematic Screening Tool for Quality Assurance and Semiautomatic Fraud Detection for Images in the Life Sciences.

    Science.gov (United States)

    Koppers, Lars; Wormer, Holger; Ickstadt, Katja

    2017-08-01

    The quality and authenticity of images is essential for data presentation, especially in the life sciences. Questionable images may often be a first indicator for questionable results, too. Therefore, a tool that uses mathematical methods to detect suspicious images in large image archives can be a helpful instrument to improve quality assurance in publications. As a first step towards a systematic screening tool, especially for journal editors and other staff members who are responsible for quality assurance, such as laboratory supervisors, we propose a basic classification of image manipulation. Based on this classification, we developed and explored some simple algorithms to detect copied areas in images. Using an artificial image and two examples of previously published modified images, we apply quantitative methods such as pixel-wise comparison, a nearest neighbor and a variance algorithm to detect copied-and-pasted areas or duplicated images. We show that our algorithms are able to detect some simple types of image alteration, such as copying and pasting background areas. The variance algorithm detects not only identical, but also very similar areas that differ only by brightness. Further types could, in principle, be implemented in a standardized scanning routine. We detected the copied areas in a proven case of image manipulation in Germany and showed the similarity of two images in a retracted paper from the Kato labs, which has been widely discussed on sites such as pubpeer and retraction watch.

  7. HPASubC: A suite of tools for user subclassification of human protein atlas tissue images

    Directory of Open Access Journals (Sweden)

    Toby C Cornish

    2015-01-01

    Full Text Available Background: The human protein atlas (HPA is a powerful proteomic tool for visualizing the distribution of protein expression across most human tissues and many common malignancies. The HPA includes immunohistochemically-stained images from tissue microarrays (TMAs that cover 48 tissue types and 20 common malignancies. The TMA data are used to provide expression information at the tissue, cellular, and occasionally, subcellular level. The HPA also provides subcellular data from confocal immunofluorescence data on three cell lines. Despite the availability of localization data, many unique patterns of cellular and subcellular expression are not documented. Materials and Methods: To get at this more granular data, we have developed a suite of Python scripts, HPASubC, to aid in subcellular, and cell-type specific classification of HPA images. This method allows the user to download and optimize specific HPA TMA images for review. Then, using a playstation-style video game controller, a trained observer can rapidly step through 10′s of 1000′s of images to identify patterns of interest. Results: We have successfully used this method to identify 703 endothelial cell (EC and/or smooth muscle cell (SMCs specific proteins discovered within 49,200 heart TMA images. This list will assist us in subdividing cardiac gene or protein array data into expression by one of the predominant cell types of the myocardium: Myocytes, SMCs or ECs. Conclusions: The opportunity to further characterize unique staining patterns across a range of human tissues and malignancies will accelerate our understanding of disease processes and point to novel markers for tissue evaluation in surgical pathology.

  8. HPASubC: A suite of tools for user subclassification of human protein atlas tissue images.

    Science.gov (United States)

    Cornish, Toby C; Chakravarti, Aravinda; Kapoor, Ashish; Halushka, Marc K

    2015-01-01

    The human protein atlas (HPA) is a powerful proteomic tool for visualizing the distribution of protein expression across most human tissues and many common malignancies. The HPA includes immunohistochemically-stained images from tissue microarrays (TMAs) that cover 48 tissue types and 20 common malignancies. The TMA data are used to provide expression information at the tissue, cellular, and occasionally, subcellular level. The HPA also provides subcellular data from confocal immunofluorescence data on three cell lines. Despite the availability of localization data, many unique patterns of cellular and subcellular expression are not documented. To get at this more granular data, we have developed a suite of Python scripts, HPASubC, to aid in subcellular, and cell-type specific classification of HPA images. This method allows the user to download and optimize specific HPA TMA images for review. Then, using a playstation-style video game controller, a trained observer can rapidly step through 10's of 1000's of images to identify patterns of interest. We have successfully used this method to identify 703 endothelial cell (EC) and/or smooth muscle cell (SMCs) specific proteins discovered within 49,200 heart TMA images. This list will assist us in subdividing cardiac gene or protein array data into expression by one of the predominant cell types of the myocardium: Myocytes, SMCs or ECs. The opportunity to further characterize unique staining patterns across a range of human tissues and malignancies will accelerate our understanding of disease processes and point to novel markers for tissue evaluation in surgical pathology.

  9. HPASubC: A suite of tools for user subclassification of human protein atlas tissue images

    Science.gov (United States)

    Cornish, Toby C.; Chakravarti, Aravinda; Kapoor, Ashish; Halushka, Marc K.

    2015-01-01

    Background: The human protein atlas (HPA) is a powerful proteomic tool for visualizing the distribution of protein expression across most human tissues and many common malignancies. The HPA includes immunohistochemically-stained images from tissue microarrays (TMAs) that cover 48 tissue types and 20 common malignancies. The TMA data are used to provide expression information at the tissue, cellular, and occasionally, subcellular level. The HPA also provides subcellular data from confocal immunofluorescence data on three cell lines. Despite the availability of localization data, many unique patterns of cellular and subcellular expression are not documented. Materials and Methods: To get at this more granular data, we have developed a suite of Python scripts, HPASubC, to aid in subcellular, and cell-type specific classification of HPA images. This method allows the user to download and optimize specific HPA TMA images for review. Then, using a playstation-style video game controller, a trained observer can rapidly step through 10's of 1000's of images to identify patterns of interest. Results: We have successfully used this method to identify 703 endothelial cell (EC) and/or smooth muscle cell (SMCs) specific proteins discovered within 49,200 heart TMA images. This list will assist us in subdividing cardiac gene or protein array data into expression by one of the predominant cell types of the myocardium: Myocytes, SMCs or ECs. Conclusions: The opportunity to further characterize unique staining patterns across a range of human tissues and malignancies will accelerate our understanding of disease processes and point to novel markers for tissue evaluation in surgical pathology. PMID:26167380

  10. Volumetric three-dimensional display system with rasterization hardware

    Science.gov (United States)

    Favalora, Gregg E.; Dorval, Rick K.; Hall, Deirdre M.; Giovinco, Michael; Napoli, Joshua

    2001-06-01

    An 8-color multiplanar volumetric display is being developed by Actuality Systems, Inc. It will be capable of utilizing an image volume greater than 90 million voxels, which we believe is the greatest utilizable voxel set of any volumetric display constructed to date. The display is designed to be used for molecular visualization, mechanical CAD, e-commerce, entertainment, and medical imaging. As such, it contains a new graphics processing architecture, novel high-performance line- drawing algorithms, and an API similar to a current standard. Three-dimensional imagery is created by projecting a series of 2-D bitmaps ('image slices') onto a diffuse screen that rotates at 600 rpm. Persistence of vision fuses the slices into a volume-filling 3-D image. A modified three-panel Texas Instruments projector provides slices at approximately 4 kHz, resulting in 8-color 3-D imagery comprised of roughly 200 radially-disposed slices which are updated at 20 Hz. Each slice has a resolution of 768 by 768 pixels, subtending 10 inches. An unusual off-axis projection scheme incorporating tilted rotating optics is used to maintain good focus across the projection screen. The display electronics includes a custom rasterization architecture which converts the user's 3- D geometry data into image slices, as well as 6 Gbits of DDR SDRAM graphics memory.

  11. A Tool for Interactive Data Visualization: Application to Over 10,000 Brain Imaging and Phantom MRI Data Sets

    OpenAIRE

    Panta, Sandeep R.; Wang, Runtang; Fries, Jill; Kalyanam, Ravi; Speer, Nicole; Banich, Marie; Kiehl, Kent; King, Margaret; Milham, Michael; Wager, Tor D.; Turner, Jessica A.; Plis, Sergey M.; Calhoun, Vince D.

    2016-01-01

    In this paper we propose a web-based approach for quick visualization of big data from brain magnetic resonance imaging (MRI) scans using a combination of an automated image capture and processing system, nonlinear embedding, and interactive data visualization tools. We draw upon thousands of MRI scans captured via the COllaborative Imaging and Neuroinformatics Suite (COINS). We then interface the output of several analysis pipelines based on structural and functional data to a t-distributed ...

  12. (19)F-heptuloses as tools for the non-invasive imaging of GLUT2-expressing cells

    DEFF Research Database (Denmark)

    Malaisse, Willy J; Zhang, Ying; Louchami, Karim

    2012-01-01

    Suitable analogs of d-mannoheptulose are currently considered as possible tools for the non-invasive imaging of pancreatic islet insulin-producing cells. Here, we examined whether (19)F-heptuloses could be used for non-invasive imaging of GLUT2-expressing cells. After 20 min incubation, the uptake......-mannoheptulose in inhibiting insulin release. The 1-deoxy-1-fluoro-d-mannoheptulose and 3-deoxy-3-fluoro-d-mannoheptulose only marginally affected INS-1 cell viability. These findings are compatible with the view that selected (19)F-heptuloses may represent suitable tools for the non-invasive imaging of hepatocytes...

  13. Inkjet printing-based volumetric display projecting multiple full-colour 2D patterns

    Science.gov (United States)

    Hirayama, Ryuji; Suzuki, Tomotaka; Shimobaba, Tomoyoshi; Shiraki, Atsushi; Naruse, Makoto; Nakayama, Hirotaka; Kakue, Takashi; Ito, Tomoyoshi

    2017-04-01

    In this study, a method to construct a full-colour volumetric display is presented using a commercially available inkjet printer. Photoreactive luminescence materials are minutely and automatically printed as the volume elements, and volumetric displays are constructed with high resolution using easy-to-fabricate means that exploit inkjet printing technologies. The results experimentally demonstrate the first prototype of an inkjet printing-based volumetric display composed of multiple layers of transparent films that yield a full-colour three-dimensional (3D) image. Moreover, we propose a design algorithm with 3D structures that provide multiple different 2D full-colour patterns when viewed from different directions and experimentally demonstrate prototypes. It is considered that these types of 3D volumetric structures and their fabrication methods based on widely deployed existing printing technologies can be utilised as novel information display devices and systems, including digital signage, media art, entertainment and security.

  14. Homogeneous Canine Chest Phantom Construction: A Tool for Image Quality Optimization.

    Directory of Open Access Journals (Sweden)

    Ana Luiza Menegatti Pavan

    Full Text Available Digital radiographic imaging is increasing in veterinary practice. The use of radiation demands responsibility to maintain high image quality. Low doses are necessary because workers are requested to restrain the animal. Optimizing digital systems is necessary to avoid unnecessary exposure, causing the phenomenon known as dose creep. Homogeneous phantoms are widely used to optimize image quality and dose. We developed an automatic computational methodology to classify and quantify tissues (i.e., lung tissue, adipose tissue, muscle tissue, and bone in canine chest computed tomography exams. The thickness of each tissue was converted to simulator materials (i.e., Lucite, aluminum, and air. Dogs were separated into groups of 20 animals each according to weight. Mean weights were 6.5 ± 2.0 kg, 15.0 ± 5.0 kg, 32.0 ± 5.5 kg, and 50.0 ± 12.0 kg, for the small, medium, large, and giant groups, respectively. The one-way analysis of variance revealed significant differences in all simulator material thicknesses (p < 0.05 quantified between groups. As a result, four phantoms were constructed for dorsoventral and lateral views. In conclusion, the present methodology allows the development of phantoms of the canine chest and possibly other body regions and/or animals. The proposed phantom is a practical tool that may be employed in future work to optimize veterinary X-ray procedures.

  15. Algorithms and programming tools for image processing on the MPP:3

    Science.gov (United States)

    Reeves, Anthony P.

    1987-01-01

    This is the third and final report on the work done for NASA Grant 5-403 on Algorithms and Programming Tools for Image Processing on the MPP:3. All the work done for this grant is summarized in the introduction. Work done since August 1986 is reported in detail. Research for this grant falls under the following headings: (1) fundamental algorithms for the MPP; (2) programming utilities for the MPP; (3) the Parallel Pascal Development System; and (4) performance analysis. In this report, the results of two efforts are reported: region growing, and performance analysis of important characteristic algorithms. In each case, timing results from MPP implementations are included. A paper is included in which parallel algorithms for region growing on the MPP is discussed. These algorithms permit different sized regions to be merged in parallel. Details on the implementation and peformance of several important MPP algorithms are given. These include a number of standard permutations, the FFT, convolution, arbitrary data mappings, image warping, and pyramid operations, all of which have been implemented on the MPP. The permutation and image warping functions have been included in the standard development system library.

  16. PHIV-RootCell: a supervised image analysis tool for rice root anatomical parameter quantification

    Directory of Open Access Journals (Sweden)

    Marc eLartaud

    2015-01-01

    Full Text Available We developed the PHIV-RootCell software to quantify anatomical traits of rice roots transverse section images. Combined with an efficient root sample processing method for image acquisition, this program permits supervised measurements of areas (those of whole root section, stele, cortex and central metaxylem vessels, number of cell layers and number of cells per cell layer. The PHIV-RootCell toolset runs under ImageJ, an independent operating system that has a license-free status. To demonstrate the usefulness of PHIV-RootCell, we conducted a genetic diversity study and an analysis of salt-stress responses of root anatomical parameters in rice (Oryza sativa L.. Using 16 cultivars, we showed that we could discriminate between some of the varieties even at the 6 day-old stage, and that tropical japonica varieties had larger root sections due to an increase in cell number. We observed, as described previously, that root sections become enlarged under salt stress. However, our results show an increase in cell number in ground tissues (endodermis and cortex but a decrease in external (peripheral tissues (sclerenchyma, exodermis and epidermis. Thus, the PHIV-RootCell program is a user-friendly tool that will be helpful for future genetic and physiological studies that investigate root anatomical trait variations.

  17. Volumetric 3D Display System with Static Screen

    Science.gov (United States)

    Geng, Jason

    2011-01-01

    Current display technology has relied on flat, 2D screens that cannot truly convey the third dimension of visual information: depth. In contrast to conventional visualization that is primarily based on 2D flat screens, the volumetric 3D display possesses a true 3D display volume, and places physically each 3D voxel in displayed 3D images at the true 3D (x,y,z) spatial position. Each voxel, analogous to a pixel in a 2D image, emits light from that position to form a real 3D image in the eyes of the viewers. Such true volumetric 3D display technology provides both physiological (accommodation, convergence, binocular disparity, and motion parallax) and psychological (image size, linear perspective, shading, brightness, etc.) depth cues to human visual systems to help in the perception of 3D objects. In a volumetric 3D display, viewers can watch the displayed 3D images from a completely 360 view without using any special eyewear. The volumetric 3D display techniques may lead to a quantum leap in information display technology and can dramatically change the ways humans interact with computers, which can lead to significant improvements in the efficiency of learning and knowledge management processes. Within a block of glass, a large amount of tiny dots of voxels are created by using a recently available machining technique called laser subsurface engraving (LSE). The LSE is able to produce tiny physical crack points (as small as 0.05 mm in diameter) at any (x,y,z) location within the cube of transparent material. The crack dots, when illuminated by a light source, scatter the light around and form visible voxels within the 3D volume. The locations of these tiny voxels are strategically determined such that each can be illuminated by a light ray from a high-resolution digital mirror device (DMD) light engine. The distribution of these voxels occupies the full display volume within the static 3D glass screen. This design eliminates any moving screen seen in previous

  18. Portfolio: a prototype workstation for development and evaluation of tools for analysis and management of digital portal images

    International Nuclear Information System (INIS)

    Boxwala, Aziz A.; Chaney, Edward L.; Fritsch, Daniel S.; Friedman, Charles P.; Rosenman, Julian G.

    1998-01-01

    Purpose: The purpose of this investigation was to design and implement a prototype physician workstation, called PortFolio, as a platform for developing and evaluating, by means of controlled observer studies, user interfaces and interactive tools for analyzing and managing digital portal images. The first observer study was designed to measure physician acceptance of workstation technology, as an alternative to a view box, for inspection and analysis of portal images for detection of treatment setup errors. Methods and Materials: The observer study was conducted in a controlled experimental setting to evaluate physician acceptance of the prototype workstation technology exemplified by PortFolio. PortFolio incorporates a windows user interface, a compact kit of carefully selected image analysis tools, and an object-oriented data base infrastructure. The kit evaluated in the observer study included tools for contrast enhancement, registration, and multimodal image visualization. Acceptance was measured in the context of performing portal image analysis in a structured protocol designed to simulate clinical practice. The acceptability and usage patterns were measured from semistructured questionnaires and logs of user interactions. Results: Radiation oncologists, the subjects for this study, perceived the tools in PortFolio to be acceptable clinical aids. Concerns were expressed regarding user efficiency, particularly with respect to the image registration tools. Conclusions: The results of our observer study indicate that workstation technology is acceptable to radiation oncologists as an alternative to a view box for clinical detection of setup errors from digital portal images. Improvements in implementation, including more tools and a greater degree of automation in the image analysis tasks, are needed to make PortFolio more clinically practical

  19. New tools for comparing microscopy images: quantitative analysis of cell types in Bacillus subtilis.

    Science.gov (United States)

    van Gestel, Jordi; Vlamakis, Hera; Kolter, Roberto

    2015-02-15

    Fluorescence microscopy is a method commonly used to examine individual differences between bacterial cells, yet many studies still lack a quantitative analysis of fluorescence microscopy data. Here we introduce some simple tools that microbiologists can use to analyze and compare their microscopy images. We show how image data can be converted to distribution data. These data can be subjected to a cluster analysis that makes it possible to objectively compare microscopy images. The distribution data can further be analyzed using distribution fitting. We illustrate our methods by scrutinizing two independently acquired data sets, each containing microscopy images of a doubly labeled Bacillus subtilis strain. For the first data set, we examined the expression of srfA and tapA, two genes which are expressed in surfactin-producing and matrix-producing cells, respectively. For the second data set, we examined the expression of eps and tapA; these genes are expressed in matrix-producing cells. We show that srfA is expressed by all cells in the population, a finding which contrasts with a previously reported bimodal distribution of srfA expression. In addition, we show that eps and tapA do not always have the same expression profiles, despite being expressed in the same cell type: both operons are expressed in cell chains, while single cells mainly express eps. These findings exemplify that the quantification and comparison of microscopy data can yield insights that otherwise would go unnoticed. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Technical Note: PLASTIMATCH MABS, an open source tool for automatic image segmentation

    International Nuclear Information System (INIS)

    Zaffino, Paolo; Spadea, Maria Francesca; Raudaschl, Patrik; Fritscher, Karl; Sharp, Gregory C.

    2016-01-01

    Purpose: Multiatlas based segmentation is largely used in many clinical and research applications. Due to its good performances, it has recently been included in some commercial platforms for radiotherapy planning and surgery guidance. Anyway, to date, a software with no restrictions about the anatomical district and image modality is still missing. In this paper we introduce PLASTIMATCH MABS, an open source software that can be used with any image modality for automatic segmentation. Methods: PLASTIMATCH MABS workflow consists of two main parts: (1) an offline phase, where optimal registration and voting parameters are tuned and (2) an online phase, where a new patient is labeled from scratch by using the same parameters as identified in the former phase. Several registration strategies, as well as different voting criteria can be selected. A flexible atlas selection scheme is also available. To prove the effectiveness of the proposed software across anatomical districts and image modalities, it was tested on two very different scenarios: head and neck (H&N) CT segmentation for radiotherapy application, and magnetic resonance image brain labeling for neuroscience investigation. Results: For the neurological study, minimum dice was equal to 0.76 (investigated structures: left and right caudate, putamen, thalamus, and hippocampus). For head and neck case, minimum dice was 0.42 for the most challenging structures (optic nerves and submandibular glands) and 0.62 for the other ones (mandible, brainstem, and parotid glands). Time required to obtain the labels was compatible with a real clinical workflow (35 and 120 min). Conclusions: The proposed software fills a gap in the multiatlas based segmentation field, since all currently available tools (both for commercial and for research purposes) are restricted to a well specified application. Furthermore, it can be adopted as a platform for exploring MABS parameters and as a reference implementation for comparing against

  1. Technical Note: PLASTIMATCH MABS, an open source tool for automatic image segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Zaffino, Paolo; Spadea, Maria Francesca [Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro 88100 (Italy); Raudaschl, Patrik; Fritscher, Karl [Institute for Biomedical Image Analysis, Private University of Health Sciences, Medical Informatics and Technology, Hall in Tirol 6060 (Austria); Sharp, Gregory C. [Department for Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States)

    2016-09-15

    Purpose: Multiatlas based segmentation is largely used in many clinical and research applications. Due to its good performances, it has recently been included in some commercial platforms for radiotherapy planning and surgery guidance. Anyway, to date, a software with no restrictions about the anatomical district and image modality is still missing. In this paper we introduce PLASTIMATCH MABS, an open source software that can be used with any image modality for automatic segmentation. Methods: PLASTIMATCH MABS workflow consists of two main parts: (1) an offline phase, where optimal registration and voting parameters are tuned and (2) an online phase, where a new patient is labeled from scratch by using the same parameters as identified in the former phase. Several registration strategies, as well as different voting criteria can be selected. A flexible atlas selection scheme is also available. To prove the effectiveness of the proposed software across anatomical districts and image modalities, it was tested on two very different scenarios: head and neck (H&N) CT segmentation for radiotherapy application, and magnetic resonance image brain labeling for neuroscience investigation. Results: For the neurological study, minimum dice was equal to 0.76 (investigated structures: left and right caudate, putamen, thalamus, and hippocampus). For head and neck case, minimum dice was 0.42 for the most challenging structures (optic nerves and submandibular glands) and 0.62 for the other ones (mandible, brainstem, and parotid glands). Time required to obtain the labels was compatible with a real clinical workflow (35 and 120 min). Conclusions: The proposed software fills a gap in the multiatlas based segmentation field, since all currently available tools (both for commercial and for research purposes) are restricted to a well specified application. Furthermore, it can be adopted as a platform for exploring MABS parameters and as a reference implementation for comparing against

  2. MultiSpec—a tool for multispectral hyperspectral image data analysis

    Science.gov (United States)

    Biehl, Larry; Landgrebe, David

    2002-12-01

    MultiSpec is a multispectral image data analysis software application. It is intended to provide a fast, easy-to-use means for analysis of multispectral image data, such as that from the Landsat, SPOT, MODIS or IKONOS series of Earth observational satellites, hyperspectral data such as that from the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) and EO-1 Hyperion satellite system or the data that will be produced by the next generation of Earth observational sensors. The primary purpose for the system was to make new, otherwise complex analysis tools available to the general Earth science community. It has also found use in displaying and analyzing many other types of non-space related digital imagery, such as medical image data and in K-12 and university level educational activities. MultiSpec has been implemented for both the Apple Macintosh ® and Microsoft Windows ® operating systems (OS). The effort was first begun on the Macintosh OS in 1988. The GLOBE ( http://www.globe.gov) program supported the development of a subset of MultiSpec for the Windows OS in 1995. Since then most (but not all) of the features in the Macintosh OS version have been ported to the Windows OS version. Although copyrighted, MultiSpec with its documentation is distributed without charge. The Macintosh and Windows versions and documentation on its use are available from the World Wide Web at URL: http://dynamo.ecn.purdue.edu/˜biehl/MultiSpec/ MultiSpec is copyrighted (1991-2001) by Purdue Research Foundation, West Lafayette, Indiana 47907.

  3. Influence of Cobb Angle and ISIS2 Surface Topography Volumetric Asymmetry on Scoliosis Research Society-22 Outcome Scores in Scoliosis.

    Science.gov (United States)

    Brewer, Paul; Berryman, Fiona; Baker, De; Pynsent, Paul; Gardner, Adrian

    2013-11-01

    Retrospective sequential patient series. To establish the relationship between the magnitude of the deformity in scoliosis and patients' perception of their condition, as measured with Scoliosis Research Society-22 scores. A total of 93 untreated patients with adolescent idiopathic scoliosis were included retrospectively. The Cobb angle was measured from a plain radiograph, and volumetric asymmetry was measured by ISIS2 surface topography. The association between Scoliosis Research Society scores for function, pain, self-image, and mental health against Cobb angle and volumetric asymmetry was investigated using the Pearson correlation coefficient. Correlation of both Cobb angle and volumetric asymmetry with function and pain was weak (all self-image, was higher, although still moderate (-.37 for Cobb angle and -.44 for volumetric asymmetry). Both were statistically significant (Cobb angle, p = .0002; volumetric asymmetry; p = .00001). Cobb angle contributed 13.8% to the linear relationship with self-image, whereas volumetric asymmetry contributed 19.3%. For mental health, correlation was statistically significant with Cobb angle (p = .011) and volumetric asymmetry (p = .0005), but the correlation was low to moderate (-.26 and -.35, respectively). Cobb angle contributed 6.9% to the linear relationship with mental health, whereas volumetric asymmetry contributed 12.4%. Volumetric asymmetry correlates better with both mental health and self-image compared with Cobb angle, but the correlation was only moderate. This study suggests that a patient's own perception of self-image and mental health is multifactorial and not completely explained through present objective measurements of the size of the deformity. This helps to explain the difficulties in any objective analysis of a problem with multifactorial perception issues. Further study is required to investigate other physical aspects of the deformity that may have a role in how patients view themselves. Copyright

  4. The x-ray laser as a tool for imaging plasmas

    International Nuclear Information System (INIS)

    Libby, S.B.; Da Silva, L.B.; Barbee, T.W. Jr.

    1995-07-01

    The x-ray laser is now being used at LLNL as a tool for measuring the behaviors of hot dense plasmas. In particular, we have used the 155 Angstrom yttrium laser to study transient plasmas by both radiography and moire deflectrometry. These techniques have been used to probe long scale length plasmas at electron densities exceeding 10 22 cm -3 . Recent advances in multilayer technology have made it possible to directly image ion densities in directly driven thin foils to an accuracy of 1--2 μm. In addition, we have constructed an x-ray laser Mach-Zehnder interferometer using multilayer beam-splitters. This interferometer yields direct 2D projections of electron densities in plasmas with micron spatial resolution. In addition, this interferometer can be used to measure spectral line shapes to high accuracy. Among the subject plasmas under study are laser irradiated planar targets, gold hohlraums, and x-ray lasers themselves

  5. MALDI TOF imaging mass spectrometry in clinical pathology: a valuable tool for cancer diagnostics (review).

    Science.gov (United States)

    Kriegsmann, Jörg; Kriegsmann, Mark; Casadonte, Rita

    2015-03-01

    Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) imaging mass spectrometry (IMS) is an evolving technique in cancer diagnostics and combines the advantages of mass spectrometry (proteomics), detection of numerous molecules, and spatial resolution in histological tissue sections and cytological preparations. This method allows the detection of proteins, peptides, lipids, carbohydrates or glycoconjugates and small molecules.Formalin-fixed paraffin-embedded tissue can also be investigated by IMS, thus, this method seems to be an ideal tool for cancer diagnostics and biomarker discovery. It may add information to the identification of tumor margins and tumor heterogeneity. The technique allows tumor typing, especially identification of the tumor of origin in metastatic tissue, as well as grading and may provide prognostic information. IMS is a valuable method for the identification of biomarkers and can complement histology, immunohistology and molecular pathology in various fields of histopathological diagnostics, especially with regard to identification and grading of tumors.

  6. Magnetic resonance imaging-a diagnostic tool for postoperative evaluation of dental implants: a case report.

    Science.gov (United States)

    Wanner, Laura; Ludwig, Ute; Hövener, Jan-Bernd; Nelson, Katja; Flügge, Tabea

    2018-04-01

    Compared with cone beam computed tomography (CBCT), magnetic resonance imaging (MRI) might be superior for the diagnosis of nerve lesions associated with implant placement. A patient presented with unilateral pain associated with dysesthesia in the region of the right lower lip and chin after implant placement. Conventional orthopantomography could not identify an association between the position of the inferior alveolar nerve and the implant. For 3-dimensional display of the implant in relation to the surrounding anatomy, CBCT was compared with MRI. MRI enabled the precise depiction of the implant position and its spatial relation to the inferior alveolar nerve, whereas the nerve position and its exact course within the mandible could not be directly displayed in CBCT. MRI may be a valuable, radiation-free diagnostic tool for the visualization of intraoral hard and soft tissues, offering an objective assessment of nerve injuries by a direct visualization of the inferior alveolar neurovascular bundle. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. An image-guided radiotherapy decision support framework incorporating a Bayesian network and visualization tool.

    Science.gov (United States)

    Hargrave, Catriona; Deegan, Timothy; Bednarz, Tomasz; Poulsen, Michael; Harden, Fiona; Mengersen, Kerrie

    2018-05-17

    To describe a Bayesian network (BN) and complementary visualization tool that aim to support decision-making during online cone-beam computed tomography (CBCT)-based image-guided radiotherapy (IGRT) for prostate cancer patients. The BN was created to represent relationships between observed prostate, proximal seminal vesicle (PSV), bladder and rectum volume variations, an image feature alignment score (FAS TV _ OAR ), delivered dose, and treatment plan compliance (TPC). Variables influencing tumor volume (TV) targeting accuracy such as intrafraction motion, and contouring and couch shift errors were also represented. A score of overall TPC (FAS global ) and factors such as image quality were used to inform the BN output node providing advice about proceeding with treatment. The BN was quantified using conditional probabilities generated from published studies, FAS TV _ OAR /global modeling, and a survey of IGRT decision-making practices. A new IGRT visualization tool (IGRT REV ), in the form of Mollweide projection plots, was developed to provide a global summary of residual errors after online CBCT-planning CT registration. Sensitivity and scenario analyses were undertaken to evaluate the performance of the BN and the relative influence of the network variables on TPC and the decision to proceed with treatment. The IGRT REV plots were evaluated in conjunction with the BN scenario testing, using additional test data generated from retrospective CBCT-planning CT soft-tissue registrations for 13/36 patients whose data were used in the FAS TV _ OAR /global modeling. Modeling of the TV targeting errors resulted in a very low probability of corrected distances between the CBCT and planning CT prostate or PSV volumes being within their thresholds. Strength of influence evaluation with and without the BN TV targeting error nodes indicated that rectum- and bladder-related network variables had the highest relative importance. When the TV targeting error nodes were excluded

  8. Software development for dynamic position emission tomography: Dynamic image analysis (DIA) tool

    International Nuclear Information System (INIS)

    Pyeon, Do Yeong; Jung, Young Jin; Kim, Jung Su

    2016-01-01

    Positron Emission Tomography(PET) is nuclear medical tests which is a combination of several compounds with a radioactive isotope that can be injected into body to quantitatively measure the metabolic rate (in the body). Especially, Phenomena that increase (sing) glucose metabolism in cancer tissue using the 18F-FDG (Fluorodeoxyglucose) is utilized widely in cancer diagnosis. And then, Numerous studies have been reported that incidence seems high availability even in the modern diagnosis of dementia and Parkinson's (disease) in brain disease. When using a dynamic PET image including the time information in the static information that is provided for the diagnosis many can increase the accuracy of diagnosis. For this reason, clinical researchers getting great attention but, it is the lack of tools to conduct research. And, it interfered complex mathematical algorithm and programming skills for activation of research. In this study, in order to easy to use and enable research dPET, we developed the software based graphic user interface(GUI). In the future, by many clinical researcher using DIA-Tool is expected to be of great help to dPET research

  9. Software development for dynamic position emission tomography: Dynamic image analysis (DIA) tool

    Energy Technology Data Exchange (ETDEWEB)

    Pyeon, Do Yeong; Jung, Young Jin [Dongseo University, Busan (Korea, Republic of); Kim, Jung Su [Dept. of Radilogical Science, Dongnam Health University, Suwon (Korea, Republic of)

    2016-09-15

    Positron Emission Tomography(PET) is nuclear medical tests which is a combination of several compounds with a radioactive isotope that can be injected into body to quantitatively measure the metabolic rate (in the body). Especially, Phenomena that increase (sing) glucose metabolism in cancer tissue using the 18F-FDG (Fluorodeoxyglucose) is utilized widely in cancer diagnosis. And then, Numerous studies have been reported that incidence seems high availability even in the modern diagnosis of dementia and Parkinson's (disease) in brain disease. When using a dynamic PET image including the time information in the static information that is provided for the diagnosis many can increase the accuracy of diagnosis. For this reason, clinical researchers getting great attention but, it is the lack of tools to conduct research. And, it interfered complex mathematical algorithm and programming skills for activation of research. In this study, in order to easy to use and enable research dPET, we developed the software based graphic user interface(GUI). In the future, by many clinical researcher using DIA-Tool is expected to be of great help to dPET research.

  10. A Current Review of the Meniscus Imaging: Proposition of a Useful Tool for Its Radiologic Analysis

    Directory of Open Access Journals (Sweden)

    Nicolas Lefevre

    2016-01-01

    Full Text Available The main objective of this review was to present a synthesis of the current literature in order to provide a useful tool to clinician in radiologic analysis of the meniscus. All anatomical descriptions were clearly illustrated by MRI, arthroscopy, and/or drawings. The value of standard radiography is extremely limited for the assessment of meniscal injuries but may be indicated to obtain a differential diagnosis such as osteoarthritis. Ultrasound is rarely used as a diagnostic tool for meniscal pathologies and its accuracy is operator-dependent. CT arthrography with multiplanar reconstructions can detect meniscus tears that are not visible on MRI. This technique is also useful in case of MRI contraindications, in postoperative assessment of meniscal sutures and the condition of cartilage covering the articular surfaces. MRI is the most accurate and less invasive method for diagnosing meniscal lesions. MRI allows confirming and characterizing the meniscal lesion, the type, the extension, its association with a cyst, the meniscal extrusion, and assessing cartilage and subchondral bone. New 3D-MRI in three dimensions with isotropic resolution allows the creation of multiplanar reformatted images to obtain from an acquisition in one sectional plane reconstructions in other spatial planes. 3D MRI should further improve the diagnosis of meniscal tears.

  11. A Current Review of the Meniscus Imaging: Proposition of a Useful Tool for Its Radiologic Analysis

    Science.gov (United States)

    Lefevre, Nicolas; Naouri, Jean Francois; Herman, Serge; Gerometta, Antoine; Klouche, Shahnaz; Bohu, Yoann

    2016-01-01

    The main objective of this review was to present a synthesis of the current literature in order to provide a useful tool to clinician in radiologic analysis of the meniscus. All anatomical descriptions were clearly illustrated by MRI, arthroscopy, and/or drawings. The value of standard radiography is extremely limited for the assessment of meniscal injuries but may be indicated to obtain a differential diagnosis such as osteoarthritis. Ultrasound is rarely used as a diagnostic tool for meniscal pathologies and its accuracy is operator-dependent. CT arthrography with multiplanar reconstructions can detect meniscus tears that are not visible on MRI. This technique is also useful in case of MRI contraindications, in postoperative assessment of meniscal sutures and the condition of cartilage covering the articular surfaces. MRI is the most accurate and less invasive method for diagnosing meniscal lesions. MRI allows confirming and characterizing the meniscal lesion, the type, the extension, its association with a cyst, the meniscal extrusion, and assessing cartilage and subchondral bone. New 3D-MRI in three dimensions with isotropic resolution allows the creation of multiplanar reformatted images to obtain from an acquisition in one sectional plane reconstructions in other spatial planes. 3D MRI should further improve the diagnosis of meniscal tears. PMID:27057352

  12. Preliminary clinical results: an analyzing tool for 2D optical imaging in detection of active inflammation in rheumatoid arthritis

    Science.gov (United States)

    Adi Aizudin Bin Radin Nasirudin, Radin; Meier, Reinhard; Ahari, Carmen; Sievert, Matti; Fiebich, Martin; Rummeny, Ernst J.; No"l, Peter B.

    2011-03-01

    Optical imaging (OI) is a relatively new method in detecting active inflammation of hand joints of patients suffering from rheumatoid arthritis (RA). With the high number of people affected by this disease especially in western countries, the availability of OI as an early diagnostic imaging method is clinically highly relevant. In this paper, we present a newly in-house developed OI analyzing tool and a clinical evaluation study. Our analyzing tool extends the capability of existing OI tools. We include many features in the tool, such as region-based image analysis, hyper perfusion curve analysis, and multi-modality image fusion to aid clinicians in localizing and determining the intensity of inflammation in joints. Additionally, image data management options, such as the full integration of PACS/RIS, are included. In our clinical study we demonstrate how OI facilitates the detection of active inflammation in rheumatoid arthritis. The preliminary clinical results indicate a sensitivity of 43.5%, a specificity of 80.3%, an accuracy of 65.7%, a positive predictive value of 76.6%, and a negative predictive value of 64.9% in relation to clinical results from MRI. The accuracy of inflammation detection serves as evidence to the potential of OI as a useful imaging modality for early detection of active inflammation in patients with rheumatoid arthritis. With our in-house developed tool we extend the usefulness of OI imaging in the clinical arena. Overall, we show that OI is a fast, inexpensive, non-invasive and nonionizing yet highly sensitive and accurate imaging modality.-

  13. Image analysis: a tool characterising and modelling the microstructure of the MOX fuel

    International Nuclear Information System (INIS)

    Charollais, F.

    1997-01-01

    The MOX nuclear fuel, made up of about 3 to 10 % of plutonium oxide mixed with uranium oxide, is elaborated by an original manufacturing method (MIMAS process). The MOX pellets feature a singular and complex microstructure, including enriched plutonium zones dispersed in a low plutonium content matrix. Their properties as well as their performances levels are strongly linked with this microstructure. Tools, found in the literature, allowing to quantify with relevant parameters the microstructural images from different analytical equipment (optical microscopy, electron probe micro-analyser and autoradiography) have been adapted and used in order to characterize these nuclear fuels. Taking into account the heterogeneity of the MOX microstructure, we turn our's attention, at the beginning of this study, to the analysis conditions: choice of the magnification, sampling and statistical analysis of the measurements. An improvement of the ceramographic preparation of the samples, required for an automatic image analysis (of the granular structure), has been realised by thermal etching under oxidizing gas. This method enables the strong content plutonium zones to be revealed distinctly. The first part of the study concerns the characterization of the three-dimensional structure of uranium oxide and MOX fuels by average variables using the principles of mathematical morphology and stereology. The second part introduces probabilistic models, in particular the Boolean scheme, in order to improve and complete the three-dimensional characterization of the MOX fuel and more specifically the enriched plutonium islands dispersion in the pellet. [fr

  14. MultiSpec: A Desktop and Online Geospatial Image Data Processing Tool

    Science.gov (United States)

    Biehl, L. L.; Hsu, W. K.; Maud, A. R. M.; Yeh, T. T.

    2017-12-01

    MultiSpec is an easy to learn and use, freeware image processing tool for interactively analyzing a broad spectrum of geospatial image data, with capabilities such as image display, unsupervised and supervised classification, feature extraction, feature enhancement, and several other functions. Originally developed for Macintosh and Windows desktop computers, it has a community of several thousand users worldwide, including researchers and educators, as a practical and robust solution for analyzing multispectral and hyperspectral remote sensing data in several different file formats. More recently MultiSpec was adapted to run in the HUBzero collaboration platform so that it can be used within a web browser, allowing new user communities to be engaged through science gateways. MultiSpec Online has also been extended to interoperate with other components (e.g., data management) in HUBzero through integration with the geospatial data building blocks (GABBs) project. This integration enables a user to directly launch MultiSpec Online from data that is stored and/or shared in a HUBzero gateway and to save output data from MultiSpec Online to hub storage, allowing data sharing and multi-step workflows without having to move data between different systems. MultiSpec has also been used in K-12 classes for which one example is the GLOBE program (www.globe.gov) and in outreach material such as that provided by the USGS (eros.usgs.gov/educational-activities). MultiSpec Online now provides teachers with another way to use MultiSpec without having to install the desktop tool. Recently MultiSpec Online was used in a geospatial data session with 30-35 middle school students at the Turned Onto Technology and Leadership (TOTAL) Camp in the summers of 2016 and 2017 at Purdue University. The students worked on a flood mapping exercise using Landsat 5 data to learn about land remote sensing using supervised classification techniques. Online documentation is available for Multi

  15. In vivo MRI volumetric measurement of prostate regression and growth in mice

    Directory of Open Access Journals (Sweden)

    Nalcioglu Orhan

    2007-07-01

    Full Text Available Abstract Background Mouse models for treatment of late-stage prostate cancer are valuable tools, but assessing the extent of growth of the prostate and particularly its regression due to therapeutic intervention or castration is difficult due to the location, small size and interdigitated anatomy of the prostate gland in situ. Temporal monitoring of mouse prostate regression requires multiple animals and examination of histological sections. Methods Initially, T2-weighted magnetic resonance imaging (MRI was performed on normal year-old C57/BL6 mice. Individual mice were repeatedly imaged using inhalation anesthesia to establish the reproducibility of the method and to follow hormone manipulation of the prostate volume. Subsequently, MRI fat signal was suppressed using a chemical shift-selective (CHESS pulse to avoid signal contamination and enhance discrimination of the prostate. Results High field (7T MRI provides high resolution (117 × 117 μm in plane, highly reproducible images of the normal mouse prostate. Despite long imaging times, animals can be imaged repeatedly to establish reliability of volume measurements. Prostate volume declines following castration and subsequently returns to normal with androgen administration in the same animal. CHESS imaging allowed discrimination of both the margins of the prostate and the dorsal-lateral lobes of the prostate (DLP from the ventral lobes (VP. Castration results in a 40% reduction in the volume of the DLP and a 75% reduction in the volume of the VP. Conclusion MRI assessment of the volume of the mouse prostate is precise and reproducible. MRI improves volumetric determination of the extent of regression and monitoring of the same mouse over time during the course of treatment is possible. Since assessing groups of animals at each time point is avoided, this improves the accuracy of the measurement of any manipulation effect and reduces the number of animals required.

  16. Temporal Coding of Volumetric Imagery

    Science.gov (United States)

    Llull, Patrick Ryan

    'Image volumes' refer to realizations of images in other dimensions such as time, spectrum, and focus. Recent advances in scientific, medical, and consumer applications demand improvements in image volume capture. Though image volume acquisition continues to advance, it maintains the same sampling mechanisms that have been used for decades; every voxel must be scanned and is presumed independent of its neighbors. Under these conditions, improving performance comes at the cost of increased system complexity, data rates, and power consumption. This dissertation explores systems and methods capable of efficiently improving sensitivity and performance for image volume cameras, and specifically proposes several sampling strategies that utilize temporal coding to improve imaging system performance and enhance our awareness for a variety of dynamic applications. Video cameras and camcorders sample the video volume (x,y,t) at fixed intervals to gain understanding of the volume's temporal evolution. Conventionally, one must reduce the spatial resolution to increase the framerate of such cameras. Using temporal coding via physical translation of an optical element known as a coded aperture, the compressive temporal imaging (CACTI) camera emonstrates a method which which to embed the temporal dimension of the video volume into spatial (x,y) measurements, thereby greatly improving temporal resolution with minimal loss of spatial resolution. This technique, which is among a family of compressive sampling strategies developed at Duke University, temporally codes the exposure readout functions at the pixel level. Since video cameras nominally integrate the remaining image volume dimensions (e.g. spectrum and focus) at capture time, spectral (x,y,t,lambda) and focal (x,y,t,z) image volumes are traditionally captured via sequential changes to the spectral and focal state of the system, respectively. The CACTI camera's ability to embed video volumes into images leads to exploration

  17. Prototyping the DARPA Image Understanding Environment (IUE) and Tools to Facilitate Its Use

    National Research Council Canada - National Science Library

    Lawton, Daryl

    1999-01-01

    ...) and Tools to Facilitate Its Use. The major objectives of this project were to support the design and development of the IUE, to prototype the IUE user interface and data exploration tools, and to develop tools for documentation...

  18. Prototyping the DARPA Image Understanding Environment and Tools to Facilitate Its Use

    National Research Council Canada - National Science Library

    Lawton, Daryl

    1998-01-01

    ...) and Tools to Facilitate Its Use. The major objectives of this project are to support the design and development of the IUE, to prototype the IUE user interface and data exploration tools, and to develop tools for documentation...

  19. Automatic brain matter segmentation of computed tomography images using a statistical model: A tool to gain working time!

    Science.gov (United States)

    Bertè, Francesco; Lamponi, Giuseppe; Bramanti, Placido; Calabrò, Rocco S

    2015-10-01

    Brain computed tomography (CT) is useful diagnostic tool for the evaluation of several neurological disorders due to its accuracy, reliability, safety and wide availability. In this field, a potentially interesting research topic is the automatic segmentation and recognition of medical regions of interest (ROIs). Herein, we propose a novel automated method, based on the use of the active appearance model (AAM) for the segmentation of brain matter in CT images to assist radiologists in the evaluation of the images. The method described, that was applied to 54 CT images coming from a sample of outpatients affected by cognitive impairment, enabled us to obtain the generation of a model overlapping with the original image with quite good precision. Since CT neuroimaging is in widespread use for detecting neurological disease, including neurodegenerative conditions, the development of automated tools enabling technicians and physicians to reduce working time and reach a more accurate diagnosis is needed. © The Author(s) 2015.

  20. Digital image processing based mass flow rate measurement of gas/solid two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Song Ding; Peng Lihui; Lu Geng; Yang Shiyuan [Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing, 100084 (China); Yan Yong, E-mail: lihuipeng@tsinghua.edu.c [University of Kent, Canterbury, Kent CT2 7NT (United Kingdom)

    2009-02-01

    With the rapid growth of the process industry, pneumatic conveying as a tool for the transportation of a wide variety of pulverized and granular materials has become widespread. In order to improve plant control and operational efficiency, it is essential to know the parameters of the particle flow. This paper presents a digital imaging based method which is capable of measuring multiple flow parameters, including volumetric concentration, velocity and mass flow rate of particles in the gas/solid two phase flow. The measurement system consists of a solid state laser for illumination, a low-cost CCD camera for particle image acquisition and a microcomputer with bespoke software for particle image processing. The measurements of particle velocity and volumetric concentration share the same sensing hardware but use different exposure time and different image processing methods. By controlling the exposure time of the camera a clear image and a motion blurred image are obtained respectively. The clear image is thresholded by OTSU method to identify the particles from the dark background so that the volumetric concentration is determined by calculating the ratio between the particle area and the total area. Particle velocity is derived from the motion blur length, which is estimated from the motion blurred images by using the travelling wave equation method. The mass flow rate of particles is calculated by combining the particle velocity and volumetric concentration. Simulation and experiment results indicate that the proposed method is promising for the measurement of multiple parameters of gas/solid two-phase flow.

  1. Digital image processing based mass flow rate measurement of gas/solid two-phase flow

    International Nuclear Information System (INIS)

    Song Ding; Peng Lihui; Lu Geng; Yang Shiyuan; Yan Yong

    2009-01-01

    With the rapid growth of the process industry, pneumatic conveying as a tool for the transportation of a wide variety of pulverized and granular materials has become widespread. In order to improve plant control and operational efficiency, it is essential to know the parameters of the particle flow. This paper presents a digital imaging based method which is capable of measuring multiple flow parameters, including volumetric concentration, velocity and mass flow rate of particles in the gas/solid two phase flow. The measurement system consists of a solid state laser for illumination, a low-cost CCD camera for particle image acquisition and a microcomputer with bespoke software for particle image processing. The measurements of particle velocity and volumetric concentration share the same sensing hardware but use different exposure time and different image processing methods. By controlling the exposure time of the camera a clear image and a motion blurred image are obtained respectively. The clear image is thresholded by OTSU method to identify the particles from the dark background so that the volumetric concentration is determined by calculating the ratio between the particle area and the total area. Particle velocity is derived from the motion blur length, which is estimated from the motion blurred images by using the travelling wave equation method. The mass flow rate of particles is calculated by combining the particle velocity and volumetric concentration. Simulation and experiment results indicate that the proposed method is promising for the measurement of multiple parameters of gas/solid two-phase flow.

  2. The analysis of colour uniformity for a volumetric display based on a rotating LED array

    International Nuclear Information System (INIS)

    Wu, Jiang; Liu, Xu; Yan, Caijie; Xia, XinXing; Li, Haifeng

    2011-01-01

    There is a colour nonuniformity zone existing in three-dimensional (3D) volumetric displays which is based on the rotating colour light-emitting diode (LED) array. We analyse the reason for the colour nonuniformity zone by measuring the light intensity distribution and chromaticity coordinates of the LED in the volumetric display. Two boundaries of the colour nonuniformity zone are calcula