WorldWideScience

Sample records for volumetric heating mask

  1. Using Volumetric Breast Density to Quantify the Potential Masking Risk of Mammographic Density.

    Science.gov (United States)

    Destounis, Stamatia; Johnston, Lisa; Highnam, Ralph; Arieno, Andrea; Morgan, Renee; Chan, Ariane

    2017-01-01

    The purposes of this study were to compare BI-RADS density categories with quantitative volumetric breast density (VBD) for the reporting of mammographic sensitivity and to identify which patient factors are most predictive of a diagnosis of interval cancer of the breast versus screen-detected cancer. This retrospective study included screen-detected cancers (n = 652) and interval cancers (n = 119) identified between January 2009 and December 2012. Multivariate logistic regression analysis was used to determine which patient factors are predictive of a diagnosis of interval cancer. Sensitivity (screen-detected cancer / [screen-detected cancer + interval cancer]) was determined with the BI-RADS 4th edition density categories and an automated equivalent density grade obtained with a proprietary tool. Sensitivity changes within automated density grade categories were investigated by use of quantitative thresholds at the midpoints of each category. In univariate analysis, age, menopausal status, and breast density were associated with a diagnosis of interval cancer. Of these risk factors, breast density was the only independent factor whether it was assessed by visual BI-RADS category (odds ratio, 3.54; 95% CI, 1.55-8.10), automated density grade (odds ratio, 4.68; 95% CI, 2.26-9.67), or VBD (odds ratio, 4.51; 95% CI, 1.92-10.61). Sensitivity decreased consistently across increasing automated density grade categories from fatty to extremely dense (95%, 89%, 83%, 65%) and less so for visual BI-RADS (82%, 90%, 84%, 66%). Further dichotomization with VBD cutoffs showed a striking linear relation between VBD and sensitivity (R(2) = 0.959). In this study, breast density was the only risk factor significantly associated with a diagnosis of interval cancer versus screen-detected cancer. Quantitative VBD captures the potential masking risk of breast density more precisely than does the widely used visual BI-RADS density classification system.

  2. Transient refractory material dissolution by a volumetrically-heated melt

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, Jean Marie, E-mail: jean-marie.seiler@cea.fr [CEA, DEN, DTN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Ratel, Gilles [CEA, DEN, DTN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Combeau, Hervé [Institut Jean Lamour, UMR 7198, Lorraine University, Ecole des Mines de Nancy, Parc de Saurupt, 54042 Nancy Cedex (France); Gaus-Liu, Xiaoyang; Kretzschmar, Frank; Miassoedov, Alexei [Karlsruhe Institut of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-15

    Highlights: • We describe a test investigating ceramic dissolution by a molten non-eutectic melt. • The evolution of the interface temperature between melt and refractory is measured. • A theoretical model describing dissolution kinetics is proposed. • When dissolution stops, interface temperature is the liquidus temperature of the melt. - Abstract: The present work addresses the question of corium–ceramic interaction in a core catcher during a core-melt accident in a nuclear power plant. It provides an original insight into transient aspects concerning dissolution of refractory material by a volumetrically heated pool. An experiment with simulant material (LIVECERAM) is presented. Test results clearly show that dissolution of solid refractory material can occur in a non-eutectic melt at a temperature which is lower than the melting temperature of the refractory material. During the dissolution transient, the interface temperature rises above the liquidus temperature, corresponding to the instantaneous average composition of the melt pool. With constant power dissipation in the melt and external cooling of the core-catcher, a final steady-state situation is reached. Dissolution stops when the heat flux (delivered by the melt to the refractory) can be removed by conduction through the residual thickness of the ceramic, with T{sub interface} = T{sub liquidus} (calculated for the average composition of the final liquid pool). The final steady state corresponds to a uniform pool composition and uniform interface temperature distribution. Convection in the pool is governed by natural thermal convection and the heat flux distribution is therefore similar to what would be obtained for a single component pool. An interpretation of the experiment with two model-based approaches (0D and 1D) is presented. The mass transfer kinetics between the interface and the bulk is controlled by a diffusion sublayer within the boundary layer. During the dissolution transient

  3. Light masking of circadian rhythms of heat production, heat loss, and body temperature in squirrel monkeys

    Science.gov (United States)

    Robinson, E. L.; Fuller, C. A.

    1999-01-01

    Whole body heat production (HP) and heat loss (HL) were examined to determine their relative contributions to light masking of the circadian rhythm in body temperature (Tb). Squirrel monkey metabolism (n = 6) was monitored by both indirect and direct calorimetry, with telemetered measurement of body temperature and activity. Feeding was also measured. Responses to an entraining light-dark (LD) cycle (LD 12:12) and a masking LD cycle (LD 2:2) were compared. HP and HL contributed to both the daily rhythm and the masking changes in Tb. All variables showed phase-dependent masking responses. Masking transients at L or D transitions were generally greater during subjective day; however, L masking resulted in sustained elevation of Tb, HP, and HL during subjective night. Parallel, apparently compensatory, changes of HL and HP suggest action by both the circadian timing system and light masking on Tb set point. Furthermore, transient HL increases during subjective night suggest that gain change may supplement set point regulation of Tb.

  4. Study of Volumetrically Heated Ultra-High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rocca, Jorge J. [Colorado State Univ., Fort Collins, CO (United States)

    2016-10-27

    Heating dense matter to millions of degrees is important for applications, but requires complex and expensive methods. The major goal of the project was to demonstrate using a compact laser the creation of a new ultra-high energy density plasma regime characterized by simultaneous extremely high temperature and high density, and to study it combining experimental measurements and advanced simulations. We have demonstrated that trapping of intense femtosecond laser pulses deep within ordered nanowire arrays can heat near solid density matter into a new ultra hot plasma regime. Extreme electron densities, and temperatures of several tens of million degrees were achieved using laser pulses of only 0.5 J energy from a compact laser. Our x-ray spectra and simulations showed that extremely highly ionized plasma volumes several micrometers in depth are generated by irradiation of gold and Nickel nanowire arrays with femtosecond laser pulses of relativistic intensities. We obtained extraordinarily high degrees of ionization (e.g. we peeled 52 electrons from gold atoms, and up to 26 electrons from nickel atoms). In the process we generated Gigabar pressures only exceeded in the central hot spot of highly compressed thermonuclear fusion plasmas.. The plasma created after the dissolved wires expand, collide, and thermalize, is computed to have a thermal energy density of 0.3 GJ cm-3 and a pressure of 1-2 Gigabar. These are pressures only exceeded in highly compressed thermonuclear fusion plasmas. Scaling these results to higher laser intensities promises to create plasmas with temperatures and pressures exceeding those in the center of the sun.

  5. Correlation dependence of the volumetric thermal expansion coefficient of metallic aluminum on its heat capacity

    Science.gov (United States)

    Bodryakov, V. Yu.; Bykov, A. A.

    2016-05-01

    The correlation between the volumetric thermal expansion coefficient β( T) and the heat capacity C( T) of aluminum is considered in detail. It is shown that a clear correlation is observed in a significantly wider temperature range, up to the melting temperature of the metal, along with the low-temperature range where it is linear. The significant deviation of dependence β( C) from the low-temperature linear behavior is observed up to the point where the heat capacity achieves the classical Dulong-Petit limit of 3 R ( R is the universal gas constant).

  6. Model-based mask data preparation (MB-MDP) and its impact on resist heating

    Science.gov (United States)

    Fujimura, Aki; Kamikubo, Takashi; Bork, Ingo

    2011-04-01

    Complex mask shapes will be required on critical layer masks for 20nm logic node, threatening to explode the mask write times. Model-Based Mask Data Preparation (MB-MDP) has been introduced to reduce the shot count required to write complex masks while simultaneously improving resolution and dose margin of sub-100nm features. For production use of MB-MDP, a number of questions have been raised and answered. This paper summarizes these potential issues and their resolutions. In particular, the paper takes an in-depth look at one of the questions: impact of overlapping shots on heating effect. The paper concludes that while heating effect is an important issue for all e-beam writing even with conventional non-overlapping shots, overall dose density per unit time over microns of space is the principal driver behind heating effects. Highly local shot density and shot sequencing does not affect heating significantly, particularly for smaller shots. MB-MDP does not introduce any additional concerns.

  7. Integral transform solution of natural convection in a square cavity with volumetric heat generation

    Directory of Open Access Journals (Sweden)

    C. An

    2013-12-01

    Full Text Available The generalized integral transform technique (GITT is employed to obtain a hybrid numerical-analytical solution of natural convection in a cavity with volumetric heat generation. The hybrid nature of this approach allows for the establishment of benchmark results in the solution of non-linear partial differential equation systems, including the coupled set of heat and fluid flow equations that govern the steady natural convection problem under consideration. Through performing the GITT, the resulting transformed ODE system is then numerically solved by making use of the subroutine DBVPFD from the IMSL Library. Therefore, numerical results under user prescribed accuracy are obtained for different values of Rayleigh numbers, and the convergence behavior of the proposed eigenfunction expansions is illustrated. Critical comparisons against solutions produced by ANSYS CFX 12.0 are then conducted, which demonstrate excellent agreement. Several sets of reference results for natural convection with volumetric heat generation in a bi-dimensional square cavity are also provided for future verification of numerical results obtained by other researchers.

  8. Finite element analysis of volumetrically heated fluids in an axisymmetric enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Gartling, D.K.

    1979-01-01

    A general purpose finite element computer code has been used to analyze the steady state and transient response of a confined fluid that is heated volumetrically. The numerical procedure is demonstrated to be capable of resolving flow fields of considerable complexity without undue computational expense. Results are discussed for a Grashof number range (4.0 x 10/sup 4/ to 4.0 x 10/sup 6/) in which the flow varies from a steady, single cell configuration to a multiple cell configuration that includes a periodic interaction.

  9. Dimensioning of ducts for maximal volumetric heat transfer taking both laminar and turbulent flow possibilities into consideration

    Science.gov (United States)

    Yilmaz, Alper

    2015-04-01

    It is intended to design compact heat exchangers which can transfer high heat flow for a given volume and temperature difference with high efficiency. This work presents the optimal design of heat exchangers for a given length or hydraulic diameter with a constraint of a certain pressure loss and constant wall temperature. Both volumetric heat transfer and heat transfer efficiency are taken into consideration for the design in laminar or turbulent flow regions. Equations are derived which easily enable optimal design for all shapes of ducts and for all Pr numbers. It is found that optimum conditions for turbulent flow is possible for all duct hydraulic diameters; however, it is possible to have optimum conditions till a certain dimensionless duct hydraulic diameter for laminar flow. Besides maximal volumetric heat flow, heat transfer efficiency should be taken into consideration in turbulent flow for optimum design.

  10. Effects of gas bubble production on heat transfer from a volumetrically heated liquid pool

    Science.gov (United States)

    Bull, Geoffrey R.

    Aqueous solutions of uranium salts may provide a new supply chain to fill potential shortfalls in the availability of the most common radiopharmaceuticals currently in use worldwide, including Tc99m which is a decay product of Mo99. The fissioning of the uranium in these solutions creates Mo99 but also generates large amounts of hydrogen and oxygen from the radiolysis of the water. When the dissolved gases reach a critical concentration, bubbles will form in the solution. Bubbles in the solution affect both the fission power and the heat transfer out of the solution. As a result, for safety and production calculations, the effects of the bubbles on heat transfer must be understood. A high aspect ratio tank was constructed to simulate a section of an annulus with heat exchangers on the inner and outer steel walls to provide cooling. Temperature measurements via thermocouples inside the tank and along the outside of the steel walls allowed the calculation of overall and local heat transfer coefficients. Different air injection manifolds allowed the exploration of various bubble characteristics and patterns on heat transfer from the pool. The manifold type did not appear to have significant impact on the bubble size distributions in water. However, air injected into solutions of magnesium sulfate resulted in smaller bubble sizes and larger void fractions than those in water at the same injection rates. One dimensional calculations provide heat transfer coefficient values as functions of the superficial gas velocity in the pool.

  11. Pulse Mask Controlled HFAC Resonant Converter for high efficiency Industrial Induction Heating with less harmonic distortion

    Directory of Open Access Journals (Sweden)

    Nagarajan Booma

    2016-04-01

    Full Text Available This paper discusses about the fixed frequency pulse mask control based high frequency AC conversion circuit for industrial induction heating applications. Conventionally, for induction heating load, the output power control is achieved using the pulse with modulation based converters. The conventional converters do not guarantee the zero voltage switching condition required for the minimization of the switching losses. In this paper, pulse mask control scheme for the power control of induction heating load is proposed. This power control strategy allows the inverter to operate closer to the resonant frequency, to obtain zero voltage switching condition. The proposed high frequency AC power conversion circuit has lesser total harmonic distortion in the supply side. Modeling of the IH load, design of conversion circuit and principle of the control scheme and its implementation using low cost PIC controller are briefly discussed. Simulation results obtained using the Matlab environment are presented to illustrate the effectiveness of the pulse mask scheme. The obtained results indicate the reduction in losses, improvement in the output power and lesser harmonic distortion in the supply side by the proposed converter. The hardware results are in good agreement with the simulation results.

  12. A Stable Carbon Nanotube Nanofluid for Latent Heat-Driven Volumetric Absorption Solar Heating Applications

    OpenAIRE

    Nathan Hordy; Delphine Rabilloud; Jean-Luc Meunier; Sylvain Coulombe

    2015-01-01

    Recently, direct solar collection through the use of broadly absorbing nanoparticle suspensions (known as nanofluids) has been shown as a promising method to improve efficiencies in solar thermal devices. By utilizing a volatile base fluid, this concept could also be applied to the development of a direct absorption heat pipe for an evacuated tube solar collector. However, for this to happen or for any other light-induced vapor production applications, the nanofluid must remain stable over ex...

  13. A Stable Carbon Nanotube Nanofluid for Latent Heat-Driven Volumetric Absorption Solar Heating Applications

    Directory of Open Access Journals (Sweden)

    Nathan Hordy

    2015-01-01

    Full Text Available Recently, direct solar collection through the use of broadly absorbing nanoparticle suspensions (known as nanofluids has been shown as a promising method to improve efficiencies in solar thermal devices. By utilizing a volatile base fluid, this concept could also be applied to the development of a direct absorption heat pipe for an evacuated tube solar collector. However, for this to happen or for any other light-induced vapor production applications, the nanofluid must remain stable over extended periods of time at high temperatures and throughout repetitive evaporation/condensation cycles. In this work, we report for the first time a nanofluid consisting of plasma-functionalized multiwalled carbon nanotubes (MWCNTs suspended in denatured alcohol, which achieves this required stability. In addition, optical characterization of the nanofluid demonstrates that close to 100% of solar irradiation can be absorbed over a relatively small nanofluid thickness.

  14. Correction of resist heating effect on variable shaped beam mask writer

    Science.gov (United States)

    Nakayamada, Noriaki; Suganuma, Mizuna; Nomura, Haruyuki; Kato, Yasuo; Kamikubo, Takashi; Ogasawara, Munehiro; Zable, Harold; Masuda, Yukihiro; Fujimura, Aki

    2016-04-01

    The specifications for critical dimension (CD) accuracy and line edge roughness are getting tighter to promote every photomask manufacturer to choose electron beam resists of lower sensitivity. When the resist is exposed by too many electrons, it is excessively heated up to have higher sensitivity at a higher temperature, which results in degraded CD uniformity. This effect is called "resist heating effect" and is now the most critical error source in CD control on a variable shaped beam (VSB) mask writer. We have developed an on-tool, real-time correction system for the resist heating effect. The system is composed of correction software based on a simple thermal diffusion model and computational hardware equipped with more than 100 graphical processing unit chips. We have demonstrated that the designed correction accuracy was obtained and the runtime of correction was sufficiently shorter than the writing time. The system is ready to be deployed for our VSB mask writers to retain the writing time as short as possible for lower sensitivity resists by removing the need for increased pass count.

  15. Does hydrologic circulation mask frictional heat on faults after large earthquakes?

    Science.gov (United States)

    Fulton, Patrick M.; Harris, Robert N.; Saffer, Demian M.; Brodsky, Emily E.

    2010-09-01

    Knowledge of frictional resistance along faults is important for understanding the mechanics of earthquakes and faulting. The clearest in situ measure of fault friction potentially comes from temperature measurements in boreholes crossing fault zones within a few years of rupture. However, large temperature signals from frictional heating on faults have not been observed. Unambiguously interpreting the coseismic frictional resistance from small thermal perturbations observed in borehole temperature profiles requires assessing the impact of other potentially confounding thermal processes. We address several issues associated with quantifying the temperature signal of frictional heating including transient fluid flow associated with the earthquake, thermal disturbance caused by borehole drilling, and heterogeneous thermal physical rock properties. Transient fluid flow is investigated using a two-dimensional coupled fluid flow and heat transport model to evaluate the temperature field following an earthquake. Simulations for a range of realistic permeability, frictional heating, and pore pressure scenarios show that high permeabilities (>10-14 m2) are necessary for significant advection within the several years after an earthquake and suggest that transient fluid flow is unlikely to mask frictional heat anomalies. We illustrate how disturbances from circulating fluids during drilling diffuse quickly leaving a robust signature of frictional heating. Finally, we discuss the utility of repeated borehole temperature profiles for discriminating between different interpretations of thermal perturbations. Our results suggest that temperature anomalies from even low friction should be detectable at depths >1 km 1 to 2 years after a large earthquake and that interpretations of low friction from existing data are likely robust.

  16. Eddy current pulsed phase thermography considering volumetric induction heating for delamination evaluation in carbon fiber reinforced polymers

    Science.gov (United States)

    Yang, Ruizhen; He, Yunze

    2015-06-01

    Anisotropy and inhomogeneity of carbon fiber reinforced polymers (CFRPs) result in that many traditional non-destructive inspection techniques are inapplicable on the delamination evaluation. This letter introduces eddy current pulsed phase thermography (ECPPT) for CFRPs evaluation considering volumetric induction heating due to small electrical conductivity, abnormal thermal wave propagation, and Fourier analysis. The proposed methods were verified through experimental studies under transmission and reflection modes. Using ECPPT, the influence of the non-uniform heating effect and carbon fiber structures can be suppressed, and then delamination detectability can be improved dramatically over eddy current pulsed thermography.

  17. Heat capacities and volumetric changes in the glass transition range: a constitutive approach based on the standard linear solid

    Science.gov (United States)

    Lion, Alexander; Mittermeier, Christoph; Johlitz, Michael

    2017-09-01

    A novel approach to represent the glass transition is proposed. It is based on a physically motivated extension of the linear viscoelastic Poynting-Thomson model. In addition to a temperature-dependent damping element and two linear springs, two thermal strain elements are introduced. In order to take the process dependence of the specific heat into account and to model its characteristic behaviour below and above the glass transition, the Helmholtz free energy contains an additional contribution which depends on the temperature history and on the current temperature. The model describes the process-dependent volumetric and caloric behaviour of glass-forming materials, and defines a functional relationship between pressure, volumetric strain, and temperature. If a model for the isochoric part of the material behaviour is already available, for example a model of finite viscoelasticity, the caloric and volumetric behaviour can be represented with the current approach. The proposed model allows computing the isobaric and isochoric heat capacities in closed form. The difference c_p -c_v is process-dependent and tends towards the classical expression in the glassy and equilibrium ranges. Simulations and theoretical studies demonstrate the physical significance of the model.

  18. Volumetric initiation of gaseous detonation by radiant heating of suspended microparticles

    Science.gov (United States)

    Efremov, V. P.; Ivanov, M. F.; Kiverin, A. D.; Yakovenko, I. S.

    2016-02-01

    The concept of detonation wave initiation in the local volume of a fuel-gas mixture containing suspended chemically neutral microparticles heated by radiant energy from an external source is proposed. Mechanisms of initiation of the combustion and detonation waves in a region of accumulation of the radiation- heated microparticles have been studied by numerical simulation methods. Criteria that determine geometric dimensions of a region of the two-phase medium, which are necessary for the initiation of detonation waves, are formulated.

  19. Direct initiation of gaseous detonation via radiative heating of microparticles volumetrically suspended in the gas

    Science.gov (United States)

    Efremov, V. P.; Ivanov, M. F.; Kiverin, A. D.; Yakovenko, I. S.

    2015-11-01

    We propose a new conceptual approach for direct detonation initiation in the gaseous mixtures seeded with micro particles via the radiative heating from the external energy source. The basic mechanisms of energy absorption, ignition and detonation formation are analyzed numerically on the example of hydrogen-oxygen mixture. Obtained data is very promising and allows us to formulate conditions for the source power to ignite detonation in certain system geometry.

  20. Indian Ocean heat content changes masked by multi-decadal variability: Is the Indian Ocean warming or not?

    Science.gov (United States)

    Ummenhofer, Caroline; Biastoch, Arne; Böning, Claus

    2015-04-01

    The Indian Ocean has sustained robust surface warming in recent decades, with warming rates exceeding those of other tropical ocean basins. Significant, non-uniform trends in Indian Ocean sea surface temperatures - both in observations and projections for the 21st Century - have the potential to impact regional climate, through variations in the monsoon circulation, characteristics of Indian Ocean Dipole events, and the associated hydroclimate across the wider Indo-Pacific. However, it remains unclear what role decadal to multi-decadal variability in upper-ocean Indian Ocean thermal characteristics play in these trends. Using high-resolution ocean model hindcasts building on the ocean/sea-ice numerical Nucleus for European Modelling of the Ocean (NEMO) framework forced with atmospheric forcing fields of the Coordinated Ocean Reference Experiments (CORE), the characteristics of Indian Ocean temperature changes are explored. Sensitivity experiments, where interannual atmospheric forcing variability is restricted to thermal or wind-stress forcing only, support the interpretation of forcing mechanisms for the evolution of temperature characteristics across the Indian Ocean, focusing on the top 700m. Simulated temperature changes across the Indian Ocean in the hindcasts are consistent with those recorded in observational products, as well as ocean reanalyses. Assessment of Indian Ocean heat content since the 1950s suggests extensive (subsurface) cooling for much of the tropical Indian Ocean. The presence of substantial multi-decadal variability in its heat content further implies caution in interpreting linear trends in thermal properties, as long-term trends can be masked. The sensitivity experiments reveal that cooling trends in Indian Ocean heat content since the mid-1960s to the late 1990s are largely driven by wind-stress forcing, likely due to remote Pacific wind forcing associated with the Pacific Decadal Oscillation (PDO). As such, multi-decadal wind-forcing has

  1. Study on modeling of resist heating effect correction in EB mask writer EBM-9000

    Science.gov (United States)

    Nomura, Haruyuki; Kamikubo, Takashi; Suganuma, Mizuna; Kato, Yasuo; Yashima, Jun; Nakayamada, Noriaki; Anze, Hirohito; Ogasawara, Munehiro

    2015-07-01

    Resist heating effect which is caused in electron beam lithography by rise in substrate temperature of a few tens or hundreds of degrees changes resist sensitivity and leads to degradation of local critical dimension uniformity (LCDU). Increasing writing pass count and reducing dose per pass is one way to avoid the resist heating effect, but it worsens writing throughput. As an alternative way, NuFlare Technology is developing a heating effect correction system which corrects CD deviation induced by resist heating effect and mitigates LCDU degradation even in high dose per pass conditions. Our developing correction model is based on a dose modulation method. Therefore, a kind of conversion equation to modify the dose corresponding to CD change by temperature rise is necessary. For this purpose, a CD variation model depending on local pattern density was introduced and its validity was confirmed by experiments and temperature simulations. And then the dose modulation rate which is a parameter to be used in the heating effect correction system was defined as ideally irrelevant to the local pattern density, and the actual values were also determined with the experimental results for several resist types. The accuracy of the heating effect correction was also discussed. Even when deviations depending on the pattern density slightly remains in the dose modulation rates (i.e., not ideal in actual), the estimated residual errors in the correction are sufficiently small and acceptable for practical 2 pass writing with the constant dose modulation rates. In these results, it is demonstrated that the CD variation model is effective for the heating effect correction system.

  2. A reduced volumetric expansion factor plot

    Science.gov (United States)

    Hendricks, R. C.

    1979-01-01

    A reduced volumetric expansion factor plot has been constructed for simple fluids which is suitable for engineering computations in heat transfer. Volumetric expansion factors have been found useful in correlating heat transfer data over a wide range of operating conditions including liquids, gases and the near critical region.

  3. Volumetric Virtual Environments

    Institute of Scientific and Technical Information of China (English)

    HE Taosong

    2000-01-01

    Driven by fast development of both virtual reality and volume visualization, we discuss some critical techniques towards building a volumetric VR system, specifically the modeling, rendering, and manipulations of a volumetric scene.Techniques such as voxel-based object simplification, accelerated volume rendering,fast stereo volume rendering, and volumetric "collision detection" are introduced and improved, with the idea of demonstrating the possibilities and potential benefits of incorporating volumetric models into VR systems.

  4. Clay Mask Workshop

    Science.gov (United States)

    Gamble, David L.

    2012-01-01

    Masks can represent so many things, such as emotions (happy, sad, fearful) and power. The familiar "comedy and tragedy" masks, derived from ancient Greek theater, are just one example from mask history. Death masks from the ancient Egyptians influenced the ancient Romans into creating similar masks for their departed. Masks can represent many…

  5. Clay Mask Workshop

    Science.gov (United States)

    Gamble, David L.

    2012-01-01

    Masks can represent so many things, such as emotions (happy, sad, fearful) and power. The familiar "comedy and tragedy" masks, derived from ancient Greek theater, are just one example from mask history. Death masks from the ancient Egyptians influenced the ancient Romans into creating similar masks for their departed. Masks can represent many…

  6. Thermal effusivity measurement based on analysis of 3D heat flow by modulated spot heating using a phase lag matrix with a combination of thermal effusivity and volumetric heat capacity

    Science.gov (United States)

    Ohta, Hiromichi; Hatori, Kimihito; Matsui, Genzou; Yagi, Takashi; Miyake, Shugo; Okamura, Takeo; Endoh, Ryo; Okada, Ryo; Morishita, Keisuke; Yokoyama, Shinichiro; Taguchi, Kohei; Kato, Hideyuki

    2016-11-01

    The study goal was to establish a standard industrial procedure for the measurement of thermal effusivity by a thermal microscope (TM), using a periodic heating method with a thermoreflectance (TR) technique. To accomplish this goal, a working group was organized that included four research institutes. Each institute followed the same procedure: a molybdenum (Mo) film was sputtered on the surface of Pyrex, yttria-stabilized zirconia (YSZ), alumina (Al2O3), Germanium (Ge), and silicon (Si) samples, and then the phase lag of the laser intensity modulation was measured by the resultant surface temperature. A procedure was proposed to calibrate the effect of 3D heat flow, based on the analytical solution of the heat conduction equation, and thermal effusivity was measured. The derived values show good agreement with literature values. As a result, the TM calibration procedure can be recommended for practical use in measuring the thermal effusivity in a small region of the materials.

  7. Volumetric Heat Generation and Consequence Raise in Temperature Due to Absorption of Neutrons from Thermal up to 14.9 MeV Energies

    CERN Document Server

    Massoud, E

    2003-01-01

    In this work, the heat generation rate and the consequence rise in temperature due to absorption of all neutrons from thermal energies (E<0.025) up to 14.9 MeV in water, paraffin wax, ordinary concrete and heavy concrete and heavy concrete as some selected hydrogenous materials are investigated. The neutron flux distributions are calculated by both ANISN-code and three group method in which the fast neutrons are expressed by the removal cross section concept while the other two groups (epithermal and thermal) are treated by the diffusion equation. The heat generation can be calculated from the neutron macroscopic absorption of each material or mixture multiplied by the corresponding neutron fluxes. The rise in temperature is then calculated by using both of the heat generation and the thermal conductivity of the selected materials. Some results are compared with the available experimental and theoretical data and a good agreement is achieved.

  8. Visual masking & schizophrenia

    Directory of Open Access Journals (Sweden)

    Michael H. Herzog

    2015-06-01

    Full Text Available Visual masking is a frequently used tool in schizophrenia research. Visual masking has a very high sensitivity and specificity and masking paradigms have been proven to be endophenotypes. Whereas masking is a powerful technique to study schizophrenia, the underlying mechanisms are discussed controversially. For example, for more than 25 years, masking deficits of schizophrenia patients were mainly attributed to a deficient magno-cellular system (M-system. Here, we show that there is very little evidence that masking deficits are magno-cellular deficits. We will discuss the magno-cellular and other approaches in detail and highlight their pros and cons.

  9. Volumetric composition of nanocomposites

    DEFF Research Database (Denmark)

    Madsen, Bo; Lilholt, Hans; Mannila, Juha

    2015-01-01

    Detailed characterisation of the properties of composite materials with nanoscale fibres is central for the further progress in optimization of their manufacturing and properties. In the present study, a methodology for the determination and analysis of the volumetric composition of nanocomposites...... is presented, using cellulose/epoxy and aluminosilicate/polylactate nanocomposites as case materials. The buoyancy method is used for the accurate measurements of materials density. The accuracy of the method is determined to be high, allowing the measured nanocomposite densities to be reported with 5...... significant figures. The plotting of the measured nanocomposite density as a function of the nanofibre weight content is shown to be a first good approach of assessing the porosity content of the materials. The known gravimetric composition of the nanocomposites is converted into a volumetric composition...

  10. Mask degradation monitoring with aerial mask inspector

    Science.gov (United States)

    Tseng, Wen-Jui; Fu, Yung-Ying; Lu, Shih-Ping; Jiang, Ming-Sian; Lin, Jeffrey; Wu, Clare; Lifschitz, Sivan; Tam, Aviram

    2013-06-01

    As design rule continues to shrink, microlithography is becoming more challenging and the photomasks need to comply with high scanner laser energy, low CDU, and ever more aggressive RETs. This give rise to numerous challenges in the semiconductor wafer fabrication plants. Some of these challenges being contamination (mainly haze and particles), mask pattern degradation (MoSi oxidation, chrome migration, etc.) and pellicle degradation. Fabs are constantly working to establish an efficient methodology to manage these challenges mainly using mask inspection, wafer inspection, SEM review and CD SEMs. Aerial technology offers a unique opportunity to address the above mask related challenges using one tool. The Applied Materials Aera3TM system has the inherent ability to inspect for defects (haze, particles, etc.), and track mask degradation (e.g. CDU). This paper focuses on haze monitoring, which is still a significant challenge in semiconductor manufacturing, and mask degradation effects that are starting to emerge as the next challenge for high volume semiconductor manufacturers. The paper describes Aerial inspector (Aera3) early haze methodology and mask degradation tracking related to high volume manufacturing. These will be demonstrated on memory products. At the end of the paper we take a brief look on subsequent work currently conducted on the more general issue of photo mask degradation monitoring by means of an Aerial inspector.

  11. Mask industry assessment: 2004

    Science.gov (United States)

    Shelden, Gilbert V.; Hector, Scott D.

    2004-12-01

    Microelectronics industry leaders routinely name mask cost and cycle time as top issues of concern. A survey was created with support from International SEMATECH (ISMT) and administered by SEMI North America to gather information about the mask industry as an objective assessment of its overall condition. The survey is designed with the input of mask technologists from semiconductor manufacturers, merchant mask suppliers, and makers of equipment for mask fabrication. This year's assessment is the third in the current series of annual reports and is intended to be used as a baseline for the mask industry and the microelectronics industry to gain a perspective on the technical and business status of the mask industry. This report will continue to serve as a valuable reference to identify the strengths and opportunities of the mask industry. The results may be used to guide future investments on critical path issues. This year's survey builds upon the 2003 survey to provide an ongoing database using the same questions as a baseline with only a few minor changes or additions. Questions are grouped into categories: general business profile information, data processing, yields and yield loss mechanisms, delivery times, returns and services. Within each category are a many questions that create a detailed profile of both the business and technical status of the mask industry. This assessment includes inputs from ten major global merchant and captive mask manufacturers whose revenue represents approximately 85% of the global mask market.

  12. 2013 mask industry survey

    Science.gov (United States)

    Malloy, Matt

    2013-09-01

    A comprehensive survey was sent to merchant and captive mask shops to gather information about the mask industry as an objective assessment of its overall condition. 2013 marks the 12th consecutive year for this process. Historical topics including general mask profile, mask processing, data and write time, yield and yield loss, delivery times, maintenance, and returns were included and new topics were added. Within each category are multiple questions that result in a detailed profile of both the business and technical status of the mask industry. While each year's survey includes minor updates based on feedback from past years and the need to collect additional data on key topics, the bulk of the survey and reporting structure have remained relatively constant. A series of improvements is being phased in beginning in 2013 to add value to a wider audience, while at the same time retaining the historical content required for trend analyses of the traditional metrics. Additions in 2013 include topics such as top challenges, future concerns, and additional details in key aspects of mask masking, such as the number of masks per mask set per ground rule, minimum mask resolution shipped, and yield by ground rule. These expansions beyond the historical topics are aimed at identifying common issues, gaps, and needs. They will also provide a better understanding of real-life mask requirements and capabilities for comparison to the International Technology Roadmap for Semiconductors (ITRS).

  13. Analyzing EUV mask costs

    Science.gov (United States)

    Lercel, Michael; Kasprowicz, Bryan

    2016-10-01

    The introduction of Extreme Ultraviolet Lithography (EUV) as a replacement for multiple patterning is based on improvements of cycle time, yield, and cost. Earlier cost studies have assumed a simple assumption that EUV masks (being more complex with the multilayer coated blank) are not more than three times as expensive as advanced ArFi (ArF immersion) masks. EUV masks are expected to be more expensive during the ramp of the technology because of the added cost of the complex mask blank, the use of EUV specific mask tools, and a ramp of yield learning relative to the more mature technologies. This study concludes that, within a range of scenarios, the hypothesis that EUV mask costs are not more than three times that of advanced ArFi masks is valid and conservative.

  14. High quality mask storage in an advanced Logic-Fab

    Science.gov (United States)

    Jähnert, Carmen; Fritsche, Silvio

    2012-02-01

    temperature, humidity, AMC (Airborne Molecular Contamination) and particles are controlled online within the system and monitored via the Cleanroom Monitoring System and iCADA RSM. The storage system is well conditioned, based on a fine adjusted heating and cooling concept whereby the desired temperature and humidity values are kept very stable even under high frequent mask transactions. The in-house developed RFID system and traceability of masks within the Infineon Dresden Lithotool landscape is a new and complex logistics improvement, decoupling masks from boxes, saving costs and time and reducing particles. The presented hardware and software solution shows how the potential of automation and improved production efficiency can be increased by such adapted systems even in a mature 200mm waferfab.

  15. Modeling and Experimental Validation of a Volumetric Expander Suitable for Waste Heat Recovery from an Automotive Internal Combustion Engine Using an Organic Rankine Cycle with Ethanol

    Directory of Open Access Journals (Sweden)

    José Galindo

    2016-04-01

    Full Text Available Waste heat recovery (WHR in exhaust gas flow of automotive engines has proved to be a useful path to increase the overall efficiency of internal combustion engines (ICE. Recovery potentials of up to 7% are shown in several works in the literature. However, most of them are theoretical estimations. Some present results from prototypes fed by steady flows generated in an auxiliary gas tank and not with actual engine exhaust gases. This paper deals with the modeling and experimental validation of an organic Rankine cycle (ORC with a swash-plate expander integrated in a 2 L turbocharged petrol engine using ethanol as working fluid. A global simulation model of the ORC was developed with a maximum difference of 5%, validated with experimental results. Considering the swash-plate as the main limiting factor, an additional specific submodel was implemented to model the physical phenomena in this element. This model allows simulating the fluid dynamic behavior of the swash-plate expander using a 0D model (Amesim. Differences up to 10.5% between tests and model results were found.

  16. 酒石酸络合掩蔽锑-氢醌容量法测定锑矿石样品中的常量金%Determination of Gold in Antimony Ores by Hydroquinone Volumetric Method with Antimony Tartrate as Complexing and Masking Agent

    Institute of Scientific and Technical Information of China (English)

    张志刚; 刘凯; 陈泓; 冯瑞; 黄劲; 魏晶晶; 詹宝

    2015-01-01

    The traditional method of determining gold in antimony ores commonly includes sample digestion by aqua regia,preconcentration of gold by activated carbon,and measurement by hydroquinone volumetric technique. The traditional method suffers from the high contents of antimony,sulfur,arsenic,and mercury. Sulfur,arsenic, mercury,and carbon can be removed by stepwise heat,but antimony cannot be removed. In this study,tartaric acid is added to eliminate the interference of antimony. Adding tartaric acid to aqua regia during sample digestion can prevent proteolysis of antimony compounds as the acidity or temperature decreases. This step can ensure that the antimony quantity is less than 0. 3 mg after the ashing of activated carbon that has adsorbed gold. After being ashed,tartaric acid is again added in aqua regia to dissolve gold,eliminating the interference of antimony on gold during hydroquinone volumetric determination of gold. The proposed method suggests adding tartaric acid at the sample digestion stage is simple and rapid relative to the method of antimony elimination by hydrobromic acid and hydrochloric acid. The relative standard deviation of natural sample analysis is less than 5% and standard-addition recovery is 92 . 0% -107 . 0%.%应用王水溶样-活性炭富集金-氢醌容量法测定高品位锑矿石的金量时,通常受到较高含量的锑硫砷汞等元素的干扰,硫砷汞碳及有机质可以通过阶梯升温焙烧去除,但是对锑则无明显去除作用。本研究在相关实验环节通过加入酒石酸使锑的干扰问题得到解决,包括:王水溶矿时加入酒石酸络合锑,防止锑的化合物在酸度或温度降低时水解,保证吸附金的活性炭灰化后的锑量小于0.3 mg;活性炭灰化除碳后,用王水溶解金时再加入酒石酸,消除了氢醌容量法滴定过程中少量锑的干扰。本方法只需在溶矿时加入一定量酒石酸,与氢溴酸除锑、盐酸等除锑方

  17. Flexible Volumetric Structure

    Science.gov (United States)

    Cagle, Christopher M. (Inventor); Schlecht, Robin W. (Inventor)

    2014-01-01

    A flexible volumetric structure has a first spring that defines a three-dimensional volume and includes a serpentine structure elongatable and compressible along a length thereof. A second spring is coupled to at least one outboard edge region of the first spring. The second spring is a sheet-like structure capable of elongation along an in-plane dimension thereof. The second spring is oriented such that its in-plane dimension is aligned with the length of the first spring's serpentine structure.

  18. Binary Masking & Speech Intelligibility

    DEFF Research Database (Denmark)

    Boldt, Jesper

    The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either experime...... mask using a directional system and a method for correcting errors in the target binary mask. The last part of the thesis, proposes a new method for objective evaluation of speech intelligibility....

  19. Mask industry assessment: 2003

    Science.gov (United States)

    Kimmel, Kurt R.

    2003-12-01

    Microelectronics industry leaders routinely name mask technology and mask supply issues of cost and cycle time as top issues of concern. A survey was initiated in 2002 with support from International SEMATECH (ISMT) and administered by SEMI North America to gather information about the mask industry as an objective assessment of its overall condition.1 This paper presents the results of the second annual survey which is an enhanced version of the inaugural survey building upon its strengths and improving the weak points. The original survey was designed with the input of member company mask technologists, merchant mask suppliers, and industry equipment makers. The assessment is intended to be used as a baseline for the mask industry and the microelectronics industry to gain a perspective on the technical and business status of the critical mask industry. An objective is to create a valuable reference to identify strengths and opportunities and to guide investments on critical-path issues. As subsequent years are added, historical profiles can also be created. This assessment includes inputs from ten major global merchant and captive mask manufacturers representing approximately 80% of the global mask market (using revenue as the measure) and making this the most comprehensive mask industry survey ever. The participating companies are: Compugraphics, Dai Nippon Printing, Dupont Photomask, Hoya, IBM, Infineon, Intel, Taiwan Mask Company, Toppan, and TSMC. Questions are grouped into five categories: General Business Profile Information; Data Processing; Yields and Yield loss Mechanisms; Delivery Time; and Returns and Services. Within each category are a multitude of questions that create a detailed profile of both the business and technical status of the mask industry.

  20. Binary mask programmable hologram.

    Science.gov (United States)

    Tsang, P W M; Poon, T-C; Zhou, Changhe; Cheung, K W K

    2012-11-19

    We report, for the first time, the concept and generation of a novel Fresnel hologram called the digital binary mask programmable hologram (BMPH). A BMPH is comprised of a static, high resolution binary grating that is overlaid with a lower resolution binary mask. The reconstructed image of the BMPH can be programmed to approximate a target image (including both intensity and depth information) by configuring the pattern of the binary mask with a simple genetic algorithm (SGA). As the low resolution binary mask can be realized with less stringent display technology, our method enables the development of simple and economical holographic video display.

  1. Mask industry assessment: 2005

    Science.gov (United States)

    Shelden, Gilbert; Hector, Scott

    2005-11-01

    Microelectronics industry leaders routinely name mask cost and cycle time as top issues of concern. A survey was created with support from International SEMATECH (ISMT) and administered by SEMI North America to gather information about the mask industry as an objective assessment of its overall condition. The survey is designed with the input of mask technologists from semiconductor manufacturers, merchant mask suppliers, and makers of equipment for mask fabrication. This year's assessment is the fourth in the current series of annual reports and is intended to be used as a baseline for the mask industry and the microelectronics industry to gain a perspective on the technical and business status of the mask industry. This report will continue to serve as a valuable reference to identify the strengths and opportunities of the mask industry. The results may be used to guide future investments on critical path issues. This year's survey contains all of the 2004 survey questions to provide an ongoing database. Additional questions were added to the survey covering operating cost factors and equipment utilization. Questions are grouped into categories: general business profile information, data processing, yields and yield loss mechanisms, delivery times, returns and services, operating cost factors and equipment utilization. Within each category are a many questions that create a detailed profile of both the business and technical status of the mask industry. This assessment includes inputs from eight major global merchant and captive mask manufacturers whose revenue represents approximately 85% of the global mask market. This participation rate is reduced by one captive from 2004. Note: Toppan, DuPont Photomasks Inc and AMTC (new) were consolidated into one input therefore the 2004 and 2005 surveys are basically equivalent.

  2. Thermal management of masks for deep x-ray lithography.

    Energy Technology Data Exchange (ETDEWEB)

    Khounsary, A.; Chojnowski, D.; Mancini, D.C.; Lai, B.; Dejus, R.

    1997-11-18

    This paper addresses some options and techniques in the thermal management of masks used in deep x-ray lithography. The x-ray masks are thin plates made of low-atomic-number materials on which a patterned thin film of a high-atomic-number metal has been deposited. When they are exposed to an x-ray beam, part of the radiation is transmitted to replicate the pattern on a downstream photoresist, and the remainder is absorbed in the mask in the form of heat. This heat load can cause deformation of the mask and thus image distortion in the lithography process. The mask geometry considered in the present study is 100 mm x 100 mm in area, and about 0.1 to 2 mm thick. The incident radiation is a bending magnet x-ray beam having a footprint of 60 mm x 4 mm at the mask. The mask is scanned vertically about {+-} 30 mm so that a 60 mm x 60 mm area is exposed. the maximum absorbed heat load in the mask is 80 W, which is significantly greater than a few watts encountered in previous systems. In this paper, cooling techniques, substrate material selection, transient and steady state thermal and structural behavior, and other thermo-mechanical aspects of mask design are discussed. It is shown that, while diamond and graphite remain attractive candidates, at present beryllium is a more suitable material for this purpose and, when properly cooled, can provide the necessary dimensional tolerance.

  3. How the global layout of the mask influences masking strength.

    Science.gov (United States)

    Ghose, Tandra; Hermens, Frouke; Herzog, Michael H

    2012-12-10

    In visual backward masking, the perception of a target is influenced by a trailing mask. Masking is usually explained by local interactions between the target and the mask representations. However, recently it has been shown that the global spatial layout of the mask rather than its local structure determines masking strength (Hermens & Herzog, 2007). Here, we varied the mask layout by spatial, luminance, and temporal cues. We presented a vernier target followed by a mask with 25 elements. Performance deteriorated when the length of the two mask elements neighboring the target vernier was doubled. However, when the length of every second mask element was doubled, performance improved. When the luminance of the neighboring elements was doubled, performance also deteriorated but no improvement in performance was observed when every second element had a double luminance. For temporal manipulations, a complex nonmonotonic masking function was observed. Hence, changes in the mask layout by spatial, luminance, and temporal cues lead to highly different results.

  4. Mask Phenomenon in Communication

    Institute of Scientific and Technical Information of China (English)

    郎丽璇

    2013-01-01

    People sometimes wear masks. Abusive expression may be used to convey love while polite words can be exchanged among enemies. This essay describes and discusses this special phenomenon in communication and analyzes the elements that con-tribute to the success of a mask communication.

  5. Hybrid mask for deep etching

    KAUST Repository

    Ghoneim, Mohamed T.

    2017-08-10

    Deep reactive ion etching is essential for creating high aspect ratio micro-structures for microelectromechanical systems, sensors and actuators, and emerging flexible electronics. A novel hybrid dual soft/hard mask bilayer may be deposited during semiconductor manufacturing for deep reactive etches. Such a manufacturing process may include depositing a first mask material on a substrate; depositing a second mask material on the first mask material; depositing a third mask material on the second mask material; patterning the third mask material with a pattern corresponding to one or more trenches for transfer to the substrate; transferring the pattern from the third mask material to the second mask material; transferring the pattern from the second mask material to the first mask material; and/or transferring the pattern from the first mask material to the substrate.

  6. Gilded Silver Mask

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    This gilded silver mask from the Liao Dynasty is 31 cm long and 22.2 cm wide. The plump oval face was designed with a protruding brow ridge, narrow eyes, high-bridged nose and closed mouth. The chin is slightly round against a thin neck, the ears are long and the hair can be clearly seen from the finely carved lines. The use of masks was recorded as

  7. New mask technology challenges

    Science.gov (United States)

    Kimmel, Kurt R.

    2001-09-01

    Mask technology development has accelerated dramatically in recent years from the glacial pace of the last three decades to the rapid and sometimes simultaneous introductions of new wavelengths and mask-based resolution enhancement techniques. The nature of the semiconductor business has also become one driven by time-to-market as an overwhelming factor in capturing market share and profit. These are among the factors that have created enormous stress on the mask industry to produce masks with enhanced capabilities, such as phase-shifting attenuators, sub-resolution assist bars, and optical proximity correction (OPC) features, while maintaining or reducing cost and cycle time. The mask can no longer be considered a commodity item that is purchased form the lowest-cost supplier. Instead, it must now be promoted as an integral part of the technical and business case for a total lithographic solution. Improving partnership between designer, mask-maker, and wafer lithographer will be the harbinger of success in finding a profitable balance of capability, cost, and cycle time. Likewise for equipment infrastructure development, stronger partnership on the international level is necessary to control development cost and mitigate schedule and technical risks.

  8. Mask Blank Defect Detection

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M A; Sommargren, G E

    2000-02-04

    Mask blanks are the substrates that hold the master patterns for integrated circuits. Integrated circuits are semiconductor devices, such as microprocessors (mPs), dynamic random access memory (DRAMs), and application specific integrated circuits (ASICs) that are central to the computer, communication, and electronics industries. These devices are fabricated using a set of master patterns that are sequentially imaged onto light-sensitive coated silicon wafers and processed to form thin layers of insulating and conductive materials on top of the wafer. These materials form electrical paths and transistors that control the flow of electricity through the device. For the past forty years the semiconductor industry has made phenomenal improvements in device functionality, compactness, speed, power, and cost. This progress is principally due to the exponential decrease in the minimum feature size of integrated circuits, which has been reduced by a factor of {radical}2 every three years. Since 1992 the Semiconductor Industry Association (SIA) has coordinated the efforts of producing a technology roadmap for semiconductors. In the latest document, ''The International Technology Roadmap for Semiconductors: 1999'', future technology nodes (minimum feature sizes) and targeted dates were specified and are summarized in Table 1. Lithography is the imaging technology for producing a de-magnified image of the mask on the wafer. A typical de-magnification factor is 4. Mask blank defects as small as one-eighth the equivalent minimum feature size are printable and may cause device failure. Defects might be the result of the surface preparation, such as polishing, or contamination due to handling or the environment. Table 2 shows the maximum tolerable defect sizes on the mask blank for each technology node. This downward trend puts a tremendous burden on mask fabrication, particularly in the area of defect detection and reduction. A new infrastructure for mask

  9. Volumetric Combustion Diagnostics

    Science.gov (United States)

    2017-01-03

    example involved a measurement campaign in collaboration with researchers at the Air Force Research Laboratory (Drs. Timothy Ombrello and Campbell ...its impact and promote AFOSR’s vision and mission. In this project, the PI has collaborated with Drs. Campbell Carter and Tim Ombrello to perform...Thermal-Fluid Systems, Heat Transfer Engineering, 37(3-4), 359-368, (2016) [9] Y.W. Lin Ma, Qingchun Lei, Wenjiang Xu, Campbell D. Carter, 3D Flame

  10. Overview of Mask Metrology

    Science.gov (United States)

    Rice, Bryan J.; Jindal, Vibhu; Lin, C. C.; Harris-Jones, Jenah; Kwon, Hyuk Joo; Ma, Hsing-Chien; Goldstein, Michael; Chan, Yau-Wai; Goodwin, Frank

    2011-11-01

    Extreme ultraviolet (EUV) lithography is the successor to optical lithography and will enable advanced patterning in semiconductor manufacturing processes down to the 8 nm half pitch technology node and beyond. However, before EUV can successfully be inserted into high volume manufacturing a few challenges must be overcome. Central among these remaining challenges is the requirement to produce "defect free" EUV masks. Mask blank defects have been one of the top challenges in the commercialization of extreme ultraviolet (EUV) lithography. To determine defect sources and devise mitigation solutions, detailed characterization of defects is critical. However, small defects pose challenges in metrology scale-up. SEMATECH has a comprehensive metrology strategy to address any defect larger than a 20 nm core size to obtain solutions for defect-free EUV mask blanks. SEMATECH's Mask Blank Development Center has been working since 2003 to develop the technology to support defect free EUV mask blanks. Since 2003, EUV mask blank defects have been reduced from 10000 of size greater than 100 nm to about a few tens at size 70 nm. Unfortunately, today's state of the art defect levels are still about 10 to 100 times higher than needed. Closing this gap requires progress in the various processes associated with glass substrate creation and multilayer deposition. That process development improvement in turn relies upon the availability of metrology equipment that can resolve and chemically characterize defects as small as 30 nm. The current defect reduction efforts at SEMATECH have intensively included a focus on inspection and characterization. The facility boasts nearly 100M of metrology hardware, including an FEI Titan TEM, Lasertec M1350 and M7360 tools, an actinic inspection tool, AFM, SPM, and scanning auger capabilities. The newly established Auger tool at SEMATECH can run a standard 6-inch mask blank and is already providing important information on sub-100 nm defects on EUV

  11. [The laryngeal mask].

    Science.gov (United States)

    Poltroniéri, J

    1990-01-01

    A new type of airway has been widely used for two years, throughout hospitals in the United Kingdom. Designed and created since 1983 by Dr AIJ Brain, the Laryngeal Mask Airway (LMA) is a compromise between the endotracheal tube and the face-mask. Blindly inserted in an anaesthetized patient, without either a laryngoscope or neuromuscular blockade, it provides a good airway in almost all cases. It is often able to offer an effective alternative to difficult intubation. The LMA can be used with either spontaneous or positive pressure ventilation. Because it doesn't provide a reliable protection of the airway from aspiration, it should never be used in the patient with a full stomach. The spontaneously breathing patient, undergoing elective surgery for 15 to 60 minutes, in supine position, who would ordinarily be managed with a face-mask is the more likely candidate for the LMA. But, longer procedures, in lateral or prone position, with controlled ventilation can usually be carried out using the Brain's device. More effective and less demanding than the facial-mask, much less hurtful than the endotracheal tube, the Laryngeal Mask is potentially an important and valuable addition to anaesthetic care.

  12. Orion Emergency Mask Approach

    Science.gov (United States)

    Tuan, George C.; Graf, John C.

    2009-01-01

    Emergency mask approach on Orion poses a challenge to the traditional Shuttle or Station approaches. Currently, in the case of a fire or toxic spill event, the crew utilizes open loop oxygen masks that provide the crew with oxygen to breath, but also dumps the exhaled oxygen into the cabin. For Orion, with a small cabin volume, the extra oxygen will exceed the flammability limit within a short period of time, unless a nitrogen purge is also provided. Another approach to a fire or toxic spill event is the use of a filtering emergency masks. These masks utilize some form of chemical beds to scrub the air clean of toxic providing the crew safe breathing air for a period without elevating the oxygen level in the cabin. Using the masks and a form of smoke-eater filter, it may be possible to clean the cabin completely or to a level for safe transition to a space suit to perform a cabin purge. Issues with filters in the past have been the reaction time, breakthroughs, and high breathing resistance. Development in a new form of chemical filters has shown promise to make the filtering approach feasible.

  13. Quantitative Techniques in Volumetric Analysis

    Science.gov (United States)

    Zimmerman, John; Jacobsen, Jerrold J.

    1996-12-01

    Quantitative Techniques in Volumetric Analysis is a visual library of techniques used in making volumetric measurements. This 40-minute VHS videotape is designed as a resource for introducing students to proper volumetric methods and procedures. The entire tape, or relevant segments of the tape, can also be used to review procedures used in subsequent experiments that rely on the traditional art of quantitative analysis laboratory practice. The techniques included are: Quantitative transfer of a solid with a weighing spoon Quantitative transfer of a solid with a finger held weighing bottle Quantitative transfer of a solid with a paper strap held bottle Quantitative transfer of a solid with a spatula Examples of common quantitative weighing errors Quantitative transfer of a solid from dish to beaker to volumetric flask Quantitative transfer of a solid from dish to volumetric flask Volumetric transfer pipet A complete acid-base titration Hand technique variations The conventional view of contemporary quantitative chemical measurement tends to focus on instrumental systems, computers, and robotics. In this view, the analyst is relegated to placing standards and samples on a tray. A robotic arm delivers a sample to the analysis center, while a computer controls the analysis conditions and records the results. In spite of this, it is rare to find an analysis process that does not rely on some aspect of more traditional quantitative analysis techniques, such as careful dilution to the mark of a volumetric flask. Figure 2. Transfer of a solid with a spatula. Clearly, errors in a classical step will affect the quality of the final analysis. Because of this, it is still important for students to master the key elements of the traditional art of quantitative chemical analysis laboratory practice. Some aspects of chemical analysis, like careful rinsing to insure quantitative transfer, are often an automated part of an instrumental process that must be understood by the

  14. Test Facility for Volumetric Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, M.; Dibowski, G.; Pfander, M.; Sack, J. P.; Schwarzbozl, P.; Ulmer, S.

    2006-07-01

    Long-time testing of volumetric absorber modules is an inevitable measure to gain the experience and reliability required for the commercialization of the open volumetric receiver technology. While solar tower test facilities are necessary for performance measurements of complete volumetric receivers, the long-term stability of individual components can be tested in less expensive test setups. For the qualification of the aging effects of operating cycles on single elements of new absorber materials and designs, a test facility was developed and constructed in the framework of the KOSMOSOL project. In order to provide the concentrated solar radiation level, the absorber test facility is integrated into a parabolic dish system at the Plataforma Solar de Almeria (PSA) in Spain. Several new designs of ceramic absorbers were developed and tested during the last months. (Author)

  15. Volumetric Light-field Encryption at the Microscopic Scale

    Science.gov (United States)

    Li, Haoyu; Guo, Changliang; Muniraj, Inbarasan; Schroeder, Bryce C.; Sheridan, John T.; Jia, Shu

    2017-01-01

    We report a light-field based method that allows the optical encryption of three-dimensional (3D) volumetric information at the microscopic scale in a single 2D light-field image. The system consists of a microlens array and an array of random phase/amplitude masks. The method utilizes a wave optics model to account for the dominant diffraction effect at this new scale, and the system point-spread function (PSF) serves as the key for encryption and decryption. We successfully developed and demonstrated a deconvolution algorithm to retrieve both spatially multiplexed discrete data and continuous volumetric data from 2D light-field images. Showing that the method is practical for data transmission and storage, we obtained a faithful reconstruction of the 3D volumetric information from a digital copy of the encrypted light-field image. The method represents a new level of optical encryption, paving the way for broad industrial and biomedical applications in processing and securing 3D data at the microscopic scale.

  16. Volumetric Light-field Encryption at the Microscopic Scale

    Science.gov (United States)

    Li, Haoyu; Guo, Changliang; Muniraj, Inbarasan; Schroeder, Bryce C.; Sheridan, John T.; Jia, Shu

    2017-01-01

    We report a light-field based method that allows the optical encryption of three-dimensional (3D) volumetric information at the microscopic scale in a single 2D light-field image. The system consists of a microlens array and an array of random phase/amplitude masks. The method utilizes a wave optics model to account for the dominant diffraction effect at this new scale, and the system point-spread function (PSF) serves as the key for encryption and decryption. We successfully developed and demonstrated a deconvolution algorithm to retrieve both spatially multiplexed discrete data and continuous volumetric data from 2D light-field images. Showing that the method is practical for data transmission and storage, we obtained a faithful reconstruction of the 3D volumetric information from a digital copy of the encrypted light-field image. The method represents a new level of optical encryption, paving the way for broad industrial and biomedical applications in processing and securing 3D data at the microscopic scale. PMID:28059149

  17. Volumetric Light-field Encryption at the Microscopic Scale

    CERN Document Server

    Li, Haoyu; Muniraj, Inbarasan; Schroeder, Bryce C; Sheridan, John T; Jia, Shu

    2016-01-01

    We report a light-field based method that allows the optical encryption of three-dimensional (3D) volumetric information at the microscopic scale in a single 2D light-field image. The system consists of a microlens array and an array of random phase/amplitude masks. The method utilizes a wave optics model to account for the dominant diffraction effect at this new scale, and the system point-spread function (PSF) serves as the key for encryption and decryption. We successfully developed and demonstrated a deconvolution algorithm to retrieve spatially multiplexed discrete and continuous volumetric data from 2D light-field images. Showing that the method is practical for data transmission and storage, we obtained a faithful reconstruction of the 3D volumetric information from a digital copy of the encrypted light-field image. The method represents a new level of optical encryption, paving the way for broad industrial and biomedical applications in processing and securing 3D data at the microscopic scale.

  18. Volumetric Light-field Encryption at the Microscopic Scale.

    Science.gov (United States)

    Li, Haoyu; Guo, Changliang; Muniraj, Inbarasan; Schroeder, Bryce C; Sheridan, John T; Jia, Shu

    2017-01-06

    We report a light-field based method that allows the optical encryption of three-dimensional (3D) volumetric information at the microscopic scale in a single 2D light-field image. The system consists of a microlens array and an array of random phase/amplitude masks. The method utilizes a wave optics model to account for the dominant diffraction effect at this new scale, and the system point-spread function (PSF) serves as the key for encryption and decryption. We successfully developed and demonstrated a deconvolution algorithm to retrieve both spatially multiplexed discrete data and continuous volumetric data from 2D light-field images. Showing that the method is practical for data transmission and storage, we obtained a faithful reconstruction of the 3D volumetric information from a digital copy of the encrypted light-field image. The method represents a new level of optical encryption, paving the way for broad industrial and biomedical applications in processing and securing 3D data at the microscopic scale.

  19. COAs: Behind the Masks.

    Science.gov (United States)

    Birke, Szifra

    1993-01-01

    Provides information on alcoholism and codependency to help teachers identify and respond to children of alcoholics (COAs). Discusses characteristics of alcoholic homes and problems encountered by children and adult COAs. Examines survival "masks" of COAs, including hero, rebel, adjustor, clown, and caretaker. Lists organizational,…

  20. COAs: Behind the Masks.

    Science.gov (United States)

    Birke, Szifra

    1993-01-01

    Provides information on alcoholism and codependency to help teachers identify and respond to children of alcoholics (COAs). Discusses characteristics of alcoholic homes and problems encountered by children and adult COAs. Examines survival "masks" of COAs, including hero, rebel, adjustor, clown, and caretaker. Lists organizational,…

  1. Masked mycotoxins: a review.

    Science.gov (United States)

    Berthiller, Franz; Crews, Colin; Dall'Asta, Chiara; Saeger, Sarah De; Haesaert, Geert; Karlovsky, Petr; Oswald, Isabelle P; Seefelder, Walburga; Speijers, Gerrit; Stroka, Joerg

    2013-01-01

    The aim of this review is to give a comprehensive overview of the current knowledge on plant metabolites of mycotoxins, also called masked mycotoxins. Mycotoxins are secondary fungal metabolites, toxic to human and animals. Toxigenic fungi often grow on edible plants, thus contaminating food and feed. Plants, as living organisms, can alter the chemical structure of mycotoxins as part of their defence against xenobiotics. The extractable conjugated or non-extractable bound mycotoxins formed remain present in the plant tissue but are currently neither routinely screened for in food nor regulated by legislation, thus they may be considered masked. Fusarium mycotoxins (deoxynivalenol, zearalenone, fumonisins, nivalenol, fusarenon-X, T-2 toxin, HT-2 toxin, fusaric acid) are prone to metabolisation or binding by plants, but transformation of other mycotoxins by plants (ochratoxin A, patulin, destruxins) has also been described. Toxicological data are scarce, but several studies highlight the potential threat to consumer safety from these substances. In particular, the possible hydrolysis of masked mycotoxins back to their toxic parents during mammalian digestion raises concerns. Dedicated chapters of this article address plant metabolism as well as the occurrence of masked mycotoxins in food, analytical aspects for their determination, toxicology and their impact on stakeholders.

  2. CADAT integrated circuit mask analysis

    Science.gov (United States)

    1981-01-01

    CADAT System Mask Analysis Program (MAPS2) is automated software tool for analyzing integrated-circuit mask design. Included in MAPS2 functions are artwork verification, device identification, nodal analysis, capacitance calculation, and logic equation generation.

  3. The VIRMOS mask manufacturing tools; 2, Mask manufacturing and handling

    CERN Document Server

    Conti, G; Mattaini, E; MacCagni, D; Lefèvre, O; Saisse, M; Vettolani, G

    1999-01-01

    We describe the VIRMOS Mask Manufacturing Unit (MMU) configuration, composed of two units:the Mask Manufacturing Machine (with its Control Unit) and the Mask Handling Unit (inclusive of Control Unit, Storage Cabinets and robot for loading of the Instrument Cabinets). For both VIMOS and NIRMOS instruments, on the basis of orders received by the Mask Preparation Software (see paper (a) in same proceedings), the function of the MMU is to perform an off-line mask cutting and identification, followed by mask storing and subsequent filling of the Instrument Cabinets (IC). We describe the characteristics of the LPKF laser cutting machine and the work done to support the choice of this equipment. We also describe the remaining of the hardware configuration and the Mask Handling Software.

  4. Phase shifting mask modulated laser patterning on graphene

    Science.gov (United States)

    Gao, Fan; Liu, Fengyuan; Ye, Ziran; Sui, Chenghua; Yan, Bo; Cai, Pinggen; Lv, Bin; Li, Yun; Chen, Naibo; Zheng, Youdou; Shi, Yi

    2017-01-01

    A one-step graphene patterning method is developed in this paper. A phase shifting mask is used to modulate incident laser beam spatially and generate graphene patterns by laser heating. Periodic graphene nanoribbon and nanomesh structures are fabricated by employing 1D and 2D phase shifting masks, respectively. The noncontact, simple procedure, easy handling and economic properties of this method make it promising towards graphene-based device fabrication.

  5. Mask industry quality assessment

    Science.gov (United States)

    Strott, Al; Bassist, Larry

    1994-12-01

    Product quality and timely delivery are two of the most important parameters in determining the success of a mask manufacturing facility. Because of the sensitivity of this data, very little was known about industry performance in these areas until an assessment was authored and presented at the 1993 BACUS Symposium by Larry Regis of Intel Corporation, Neil Paulsen of Intel Corporation, and James A. Reynolds of Reynolds Consulting. This data has been updated and will be published and presented at this year's BACUS Symposium. Contributor identities will again remain protected by utilizing Arthur Andersen & Company to compile the submittals. Participation was consistent with last year's representation of over 75% of the total merchant and captive mask volume in the United States. The data compiled includes shipments, customer return rate, customer return reasons from 1988 through Q2, 1994, performance to schedule, plate survival yield, and throughput time (TPT).

  6. Masked multichannel analyzer

    Science.gov (United States)

    Winiecki, A.L.; Kroop, D.C.; McGee, M.K.; Lenkszus, F.R.

    1984-01-01

    An analytical instrument and particularly a time-of-flight-mass spectrometer for processing a large number of analog signals irregularly spaced over a spectrum, with programmable masking of portions of the spectrum where signals are unlikely in order to reduce memory requirements and/or with a signal capturing assembly having a plurality of signal capturing devices fewer in number than the analog signals for use in repeated cycles within the data processing time period.

  7. Mask strategy at International SEMATECH

    Science.gov (United States)

    Kimmel, Kurt R.

    2002-08-01

    International SEMATECH (ISMT) is a consortium consisting of 13 leading semiconductor manufacturers from around the globe. Its objective is to develop the infrastructure necessary for its member companies to realize the International Technology Roadmap for Semiconductors (ITRS) through efficiencies of shared development resources and knowledge. The largest area of effort is lithography, recognized as a crucial enabler for microelectronics technology progress. Within the Lithography Division, most of the efforts center on mask-related issues. The development strategy at International SEMATCH will be presented and the interlock of lithography projects clarified. Because of the limited size of the mask production equipment market, the business case is weak for aggressive investment commensurate with the pace of the International Technology Roadmap for Semiconductors. With masks becoming the overwhelming component of lithography cost, new ways of reducing or eliminating mask costs are being explored. Will mask technology survive without a strong business case? Will the mask industry limit the growth of the semiconductor industry? Are advanced masks worth their escalating cost? An analysis of mask cost from the perspective of mask value imparted to the user is presented with examples and generic formulas for the reader to apply independently. A key part to the success for both International SEMATECH and the industry globally will be partnerships on both the local level between mask-maker and mask-user, and the macro level where global collaborations will be necessary to resolve technology development cost challenges.

  8. BIRD FLU MASKS

    Directory of Open Access Journals (Sweden)

    YASAR KESKIN

    2006-08-01

    Full Text Available Avian influenza (bird flu is a disease of birds caused by influenza viruses closely related to human influenza viruses. The potential for transformation of avian influenza into a form that both causes severe disease in humans and spreads easily from person to person is a great concern for world health. The main purpose of a mask is to help prevent particles (droplets being expelled into the environment by the wearer. Masks are also resistant to fluids, and help protect the wearer from splashes of blood or other potentially infectious substances. They are not necessarily designed for filtration efficiency, or to seal tightly to the face. Masks and respirators are components of a number of infection control measures intended to protect healthcare workers, and prevent the spread of diseases. All healthcare workers who come into contact with a possible or probable case of any respiratory track infections should wear a respirator conforming to at least EN149:2001 FFP3. [TAF Prev Med Bull 2006; 5(4.000: 296-306

  9. Serial volumetric registration of pulmonary CT studies

    Science.gov (United States)

    Silva, José Silvestre; Silva, Augusto; Sousa Santos, Beatriz

    2008-03-01

    Detailed morphological analysis of pulmonary structures and tissue, provided by modern CT scanners, is of utmost importance as in the case of oncological applications both for diagnosis, treatment, and follow-up. In this case, a patient may go through several tomographic studies throughout a period of time originating volumetric sets of image data that must be appropriately registered in order to track suspicious radiological findings. The structures or regions of interest may change their position or shape in CT exams acquired at different moments, due to postural, physiologic or pathologic changes, so, the exams should be registered before any follow-up information can be extracted. Postural mismatching throughout time is practically impossible to avoid being particularly evident when imaging is performed at the limiting spatial resolution. In this paper, we propose a method for intra-patient registration of pulmonary CT studies, to assist in the management of the oncological pathology. Our method takes advantage of prior segmentation work. In the first step, the pulmonary segmentation is performed where trachea and main bronchi are identified. Then, the registration method proceeds with a longitudinal alignment based on morphological features of the lungs, such as the position of the carina, the pulmonary areas, the centers of mass and the pulmonary trans-axial principal axis. The final step corresponds to the trans-axial registration of the corresponding pulmonary masked regions. This is accomplished by a pairwise sectional registration process driven by an iterative search of the affine transformation parameters leading to optimal similarity metrics. Results with several cases of intra-patient, intra-modality registration, up to 7 time points, show that this method provides accurate registration which is needed for quantitative tracking of lesions and the development of image fusion strategies that may effectively assist the follow-up process.

  10. Mask alignment system for semiconductor processing

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Aaron P.; Carlson, Charles T.; Weaver, William T.; Grant, Christopher N.

    2017-02-14

    A mask alignment system for providing precise and repeatable alignment between ion implantation masks and workpieces. The system includes a mask frame having a plurality of ion implantation masks loosely connected thereto. The mask frame is provided with a plurality of frame alignment cavities, and each mask is provided with a plurality of mask alignment cavities. The system further includes a platen for holding workpieces. The platen may be provided with a plurality of mask alignment pins and frame alignment pins configured to engage the mask alignment cavities and frame alignment cavities, respectively. The mask frame can be lowered onto the platen, with the frame alignment cavities moving into registration with the frame alignment pins to provide rough alignment between the masks and workpieces. The mask alignment cavities are then moved into registration with the mask alignment pins, thereby shifting each individual mask into precise alignment with a respective workpiece.

  11. Assessing EUV mask defectivity

    Science.gov (United States)

    Okoroanyanwu, Uzodinma; Tchikoulaeva, Anna; Ackmann, Paul; Wood, Obert; La Fontaine, Bruno; Bubke, Karsten; Holfeld, Christian; Peters, Jan Hendrik; Kini, Sumanth; Watson, Sterling; Lee, Isaac; Mu, Bo; Lim, Phillip; Raghunathan, Sudhar; Boye, Carol

    2010-04-01

    This paper assesses the readiness of EUV masks for pilot line production. The printability of well characterized reticle defects, with particular emphasis on those reticle defects that cause electrical errors on wafer test chips, is investigated. The reticles are equipped with test marks that are inspected in a die-to-die mode (using DUV inspection tool) and reviewed (using a SEM tool), and which also comprise electrically testable patterns. The reticles have three modules comprising features with 32 nm ground rules in 104 nm pitch, 22 nm ground rules with 80 nm pitch, and 16 nm ground rules with 56 nm pitch (on the wafer scale). In order to determine whether specific defects originate from the substrate, the multilayer film, the absorber stack, or from the patterning process, the reticles were inspected after each fabrication step. Following fabrication, the reticles were used to print wafers on a 0.25 NA full-field ASML EUV exposure tool. The printed wafers were inspected with state of the art bright-field and Deep UV inspection tools. It is observed that the printability of EUV mask defects down to a pitch of 56 nm shows a trend of increased printability as the pitch of the printed pattern gets smaller - a well established trend at larger pitches of 80 nm and 104 nm, respectively. The sensitivity of state-of-the-art reticle inspection tools is greatly improved over that of the previous generation of tools. There appears to be no apparent decline in the sensitivity of these state-of-the-art reticle inspection tools for higher density (smaller) patterns on the mask, even down to 56nm pitch (1x). Preliminary results indicate that a blank defect density of the order of 0.25 defects/cm2 can support very early learning on EUV pilot line production at the 16nm node.

  12. Volumetric Properties of the Mixture Tetrachloromethane CCl4 + CHCl3 Trichloromethane (VMSD1212, LB4576_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Tetrachloromethane CCl4 + CHCl3 Trichloromethane (VMSD1212, LB4576_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  13. Volumetric Three-Dimensional Display Systems

    Science.gov (United States)

    Blundell, Barry G.; Schwarz, Adam J.

    2000-03-01

    A comprehensive study of approaches to three-dimensional visualization by volumetric display systems This groundbreaking volume provides an unbiased and in-depth discussion on a broad range of volumetric three-dimensional display systems. It examines the history, development, design, and future of these displays, and considers their potential for application to key areas in which visualization plays a major role. Drawing substantially on material that was previously unpublished or available only in patent form, the authors establish the first comprehensive technical and mathematical formalization of the field, and examine a number of different volumetric architectures. System level design strategies are presented, from which proposals for the next generation of high-definition predictable volumetric systems are developed. To ensure that researchers will benefit from work already completed, they provide: * Descriptions of several recent volumetric display systems prepared from material supplied by the teams that created them * An abstract volumetric display system design paradigm * An historical summary of 90 years of development in volumetric display system technology * An assessment of the strengths and weaknesses of many of the systems proposed to date * A unified presentation of the underlying principles of volumetric display systems * A comprehensive bibliography Beautifully supplemented with 17 color plates that illustrate volumetric images and prototype displays, Volumetric Three-Dimensional Display Systems is an indispensable resource for professionals in imaging systems development, scientific visualization, medical imaging, computer graphics, aerospace, military planning, and CAD/CAE.

  14. Trends in mask data preparation

    Science.gov (United States)

    Fujimura, Aki; Pang, Liyong; Su, Bo; Choi, Yohan

    2014-10-01

    Whether for VSB mask writing or for multibeam mask writing, the shapes we need to write on masks are increasingly complex, increasingly curvilinear, and smaller in minimum width and space. The overwhelming trend in mask data preparation (MDP) is the shift from deterministic, rule-based, geometric, context-independent, shape-modulated, rectangular processing to statistical, simulation-based, context-dependent, dose- and shape-modulated any-shape processing. The paper briefly surveys the history of MDP, and explains through a simulation-based study that 50nm line and space is the tipping point where rule-based processing gives away to simulation-based processing.

  15. Masked hypertension: a systematic review.

    Science.gov (United States)

    Bobrie, Guillaume; Clerson, Pierre; Ménard, Joël; Postel-Vinay, Nicolas; Chatellier, Gilles; Plouin, Pierre-François

    2008-09-01

    The purpose of this research was to review the literature on masked hypertension. Studies, reviews and editorials on masked hypertension were identified by PubMed, Pascal BioMed and Cochrane literature systematic searches. Then, we carried out a meta-analysis of the six cohort studies reporting quantitative data for masked hypertension prognosis. There is still no clear consensus definition of masked hypertension and the reproducibility of the phenomenon is unknown. Nevertheless, the prevalence of masked hypertension seems to lie between 8 and 20%, and can be up to 50% in treated hypertensive patients. Subjects with masked hypertension have a higher risk of cardiovascular accidents [hazard ratios: 1.92 (1.51-2.44)] than normotensive subjects. This is due to a possible failure to recognize and appropriately manage this particular form of hypertension, the frequent association with other risk factors and coexisting target organ damage. The remaining unresolved questions are as follows: is masked hypertension a clinical entity that requires identification and characterization or a statistical phenomenon linked to the variability of blood pressure measurements?; because screening of the entire population is not feasible, how to identify individuals with masked hypertension?; and, in the absence of randomized trial, how to treat masked hypertension?

  16. What Is Being Masked in Object Substitution Masking?

    Science.gov (United States)

    Gellatly, Angus; Pilling, Michael; Cole, Geoff; Skarratt, Paul

    2006-01-01

    Object substitution masking (OSM) is said to occur when a perceptual object is hypothesized that is mismatched by subsequent sensory evidence, leading to a new hypothesized object being substituted for the first. For example, when a brief target is accompanied by a longer lasting display of nonoverlapping mask elements, reporting of target…

  17. SEMATECH EUVL mask program status

    Science.gov (United States)

    Yun, Henry; Goodwin, Frank; Huh, Sungmin; Orvek, Kevin; Cha, Brian; Rastegar, Abbas; Kearney, Patrick

    2009-04-01

    As we approach the 22nm half-pitch (hp) technology node, the industry is rapidly running out of patterning options. Of the several lithography techniques highlighted in the International Technology Roadmap for Semiconductors (ITRS), the leading contender for the 22nm hp insertion is extreme ultraviolet lithography (EUVL). Despite recent advances with EUV resist and improvements in source power, achieving defect free EUV mask blank and enabling the EUV mask infrastructure still remain critical issues. To meet the desired EUV high volume manufacturing (HVM) insertion target date of 2013, these obstacles must be resolved on a timely bases. Many of the EUV mask related challenges remain in the pre-competitive stage and a collaborative industry based consortia, such as SEMATECH can play an important role to enable the EUVL landscape. SEMATECH based in Albany, NY is an international consortium representing several of the largest manufacturers in the semiconductor market. Full members include Intel, Samsung, AMD, IBM, Panasonic, HP, TI, UMC, CNSE (College of Nanoscience and Engineering), and Fuller Road Management. Within the SEMATECH lithography division a major thrust is centered on enabling the EUVL ecosystem from mask development, EUV resist development and addressing EUV manufacturability concerns. An important area of focus for the SEMATECH mask program has been the Mask Blank Development Center (MBDC). At the MBDC key issues in EUV blank development such as defect reduction and inspection capabilities are actively pursued together with research partners, key suppliers and member companies. In addition the mask program continues a successful track record of working with the mask community to manage and fund critical mask tools programs. This paper will highlight recent status of mask projects and longer term strategic direction at the MBDC. It is important that mask technology be ready to support pilot line development HVM by 2013. In several areas progress has been

  18. Masked Repetition Priming Using Magnetoencephalography

    Science.gov (United States)

    Monahan, Philip J.; Fiorentino, Robert; Poeppel, David

    2008-01-01

    Masked priming is used in psycholinguistic studies to assess questions about lexical access and representation. We present two masked priming experiments using MEG. If the MEG signal elicited by words reflects specific aspects of lexical retrieval, then one expects to identify specific neural correlates of retrieval that are sensitive to priming.…

  19. Masked hypertension in diabetes mellitus

    DEFF Research Database (Denmark)

    Franklin, Stanley S; Thijs, Lutgarde; Li, Yan

    2013-01-01

    Although distinguishing features of masked hypertension in diabetics are well known, the significance of antihypertensive treatment on clinical practice decisions has not been fully explored. We analyzed 9691 subjects from the population-based 11-country International Database on Ambulatory Blood...... Pressure in Relation to Cardiovascular Outcomes. Prevalence of masked hypertension in untreated normotensive participants was higher (P...

  20. Biological Activity of Masked Endotoxin

    Science.gov (United States)

    Schwarz, Harald; Gornicec, Jan; Neuper, Theresa; Parigiani, Maria Alejandra; Wallner, Michael; Duschl, Albert; Horejs-Hoeck, Jutta

    2017-01-01

    Low endotoxin recovery (LER) is a recently discovered phenomenon describing the inability of limulus amebocyte lysate (LAL)-based assays to detect lipopolysaccharide (LPS) because of a “masking effect” caused by chelators or detergents commonly used in buffer formulations for medical products and recombinant proteins. This study investigates the masking capacities of different buffer formulations and whether masked endotoxin is biologically active. We show that both naturally occurring endotoxin as well as control standard endotoxin can be affected by LER. Furthermore, whereas masked endotoxin cannot be detected in Factor C based assays, it is still detectable in a cell-based TLR4-NF-κB-luciferase reporter gene assay. Moreover, in primary human monocytes, masked LPS induces the expression of pro-inflammatory cytokines and surface activation markers even at very low concentrations. We therefore conclude that masked LPS is a potent trigger of immune responses, which emphasizes the potential danger of masked LPS, as it may pose a health threat in pharmaceutical products or compromise experimental results. PMID:28317862

  1. Hg-Mask Coronagraph

    Science.gov (United States)

    Bourget, P.; Veiga, C. H.; Vieira Martins, R.; Assus, P.; Colas, F.

    In order to optimize the occulting process of a Lyot coronagraph and to provide a high dynamic range imaging, a new kind of occulting disk has been developed at the National Observatory of Rio de Janeiro. A mercury (Hg) drop glued onto an optical window by molecular cohesion and compressed by a pellicle film is used as the occulting disk. The minimum of the superficial tension potential function provides an optical precision (lambda/100) of the toric free surface of the mercury. This process provides a size control for the adaptation to the seeing conditions and to the apparent diameter of a resolved object, and in the case of adaptive optics, to the Airy diameter fraction needed. The occultation is a three dimensional process near the focal plane on the toric free surface that provides an apodization of the occultation. The Hg-Mask coronagraph has been projected for astrometric observations of faint satellites near to Jovian planets and works since 2000 at the 1.6 m telescope of the Pico dos Dias Observatory (OPD - Brazil).

  2. Mechanical alignment of substrates to a mask

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Aaron P.; Carlson, Charles T.; Honan, Michael; Amato, Luigi G.; Grant, Christopher Neil; Strassner, James D.

    2016-11-08

    A plurality of masks is attached to the underside of a mask frame. This attachment is made such that each mask can independently move relative to the mask frame in three directions. This relative movement allows each mask to adjust its position to align with respective alignment pins disposed on a working surface. In one embodiment, each mask is attached to the mask frame using fasteners, where the fasteners have a shaft with a diameter smaller than the diameter of the mounting hole disposed on the mask. A bias element may be used to allow relative movement between the mask and the mask frame in the vertical direction. Each mask may also have kinematic features to mate with the respective alignment pins on the working surface.

  3. Vibrotactile masking through the body.

    Science.gov (United States)

    D'Amour, Sarah; Harris, Laurence R

    2014-09-01

    Touches on one hand or forearm can affect tactile sensitivity at contralateral locations on the opposite side of the body. These interactions suggest an intimate connection between the two sides of the body. Here, we explore the effect of masking not across the body but through the body by measuring the effect of a masking stimulus on the back on the tactile sensitivity of the corresponding point on the front. Tactile sensitivity was measured on each side of the stomach, while vibrotactile masking stimulation was applied to one side of the front and to points on the back including the point directly behind the test point on the front. Results were compared to sensitivity, while vibrotactile stimulation was applied to a control site on the shoulder. A reduction in sensitivity of about .8 dB was found that required the masking stimulus to be within about 2 cm of the corresponding point on the back.

  4. Volumetric properties of human islet amyloid polypeptide in liquid water.

    Science.gov (United States)

    Brovchenko, I; Andrews, M N; Oleinikova, A

    2010-04-28

    The volumetric properties of human islet amyloid polypeptide (hIAPP) in water were studied in a wide temperature range by computer simulations. The intrinsic density rho(p) and the intrinsic thermal expansion coefficient alpha(p) of hIAPP were evaluated by taking into account the difference between the volumetric properties of hydration and bulk water. The density of hydration water rho(h) was found to decrease almost linearly with temperature upon heating and its thermal expansion coefficient was found to be notably higher than that of bulk water. The peptide surface exposed to water is more hydrophobic and its rho(h) is smaller in conformation with a larger number of intrapeptide hydrogen bonds. The two hIAPP peptides studied (with and without disulfide bridge) show negative alpha(p), which is close to zero at 250 K and decreases to approximately -1.5 x 10(-3) K(-1) upon heating to 450 K. The analysis of various structural properties of peptides shows a correlation between the intrinsic peptide volumes and the number of intrapeptide hydrogen bonds. The obtained negative values of alpha(p) can be attributed to the shrinkage of the inner voids of the peptides upon heating.

  5. Surfactant enhanced volumetric sweep efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Harwell, J.H.; Scamehorn, J.F.

    1989-10-01

    Surfactant-enhanced waterflooding is a novel EOR method aimed to improve the volumetric sweep efficiencies in reservoirs. The technique depends upon the ability to induce phase changes in surfactant solutions by mixing with surfactants of opposite charge or with salts of appropriate type. One surfactant or salt solution is injected into the reservoir. It is followed later by injection of another surfactant or salt solution. The sequence of injections is arranged so that the two solutions do not mix until they are into the permeable regions well away from the well bore. When they mix at this point, by design they form a precipitate or gel-like coacervate phase, plugging this permeable region, forcing flow through less permeable regions of the reservoir, improving sweep efficiency. The selectivity of the plugging process is demonstrated by achieving permeability reductions in the high permeable regions of Berea sandstone cores. Strategies were set to obtain a better control over the plug placement and the stability of plugs. A numerical simulator has been developed to investigate the potential increases in oil production of model systems. Furthermore, the hardness tolerance of anionic surfactant solutions is shown to be enhanced by addition of monovalent electrolyte or nonionic surfactants. 34 refs., 32 figs., 8 tabs.

  6. Mask specification guidelines in spacer patterning technology

    Science.gov (United States)

    Hashimoto, Kohji; Mukai, Hidefumi; Miyoshi, Seiro; Yamaguchi, Shinji; Mashita, Hiromitsu; Kobayashi, Yuuji; Kawano, Kenji; Hirano, Takashi

    2008-11-01

    We have studied both the mask CD specification and the mask defect specification for spacer patterning technology (SPT). SPT has the possibility of extending optical lithography to below 40nm half-pitch devices. Since SPT necessitates somewhat more complicated wafer process flow, the CD error and mask defect printability on wafers involve more process factors compared with conventional single-exposure process (SEP). This feature of SPT implies that it is very important to determine mask-related specifications for SPT in order to select high-end mask fabrication strategies; those are for mask writing tools, mask process development, materials, inspection tools, and so on. Our experimental studies reveal that both mask CD specification and mask defect specification are somehow relaxed from those in ITRS2007. This is most likely because SPT reduces mask CD error enhanced factor (MEF) and the reduction of line-width roughness (LWR).

  7. Laser Based 3D Volumetric Display System

    Science.gov (United States)

    1993-03-01

    Literature, Costa Mesa, CA July 1983. 3. "A Real Time Autostereoscopic Multiplanar 3D Display System", Rodney Don Williams, Felix Garcia, Jr., Texas...8217 .- NUMBERS LASER BASED 3D VOLUMETRIC DISPLAY SYSTEM PR: CD13 0. AUTHOR(S) PE: N/AWIU: DN303151 P. Soltan, J. Trias, W. Robinson, W. Dahlke 7...laser generated 3D volumetric images on a rotating double helix, (where the 3D displays are computer controlled for group viewing with the naked eye

  8. Contralateral tactile masking between forearms.

    Science.gov (United States)

    D'Amour, Sarah; Harris, Laurence R

    2014-03-01

    Masking effects have been demonstrated in which tactile sensitivity is affected when one touch is close to another on the body surface. Such effects are likely a result of local lateral inhibitory circuits that sharpen the spatial tuning of a given tactile receptor. Mutually inhibitory pathways have also been demonstrated between cortical tactile maps of the two halves of the body. Occasional reports have indicated that touches on one hand or forearm can affect tactile sensitivity at contralateral locations. Here, we measure the spatial tuning and effect of posture on this contralateral masking effect. Tactile sensitivity was measured on one forearm, while vibrotactile masking stimulation was applied to the opposite arm. Results were compared to sensitivity while vibrotactile stimulation was applied to a control site on the right shoulder. Sensitivity on the forearm was reduced by over 3 dB when the arms were touching and by 0.52 dB when they were held parallel. The masking effect depended on the position of the masking stimulus. Its effectiveness fell off by 1 STD when the stimulus was 29 % of arm length from the corresponding contralateral point. This long-range inhibitory effect in the tactile system suggests a surprisingly intimate relationship between the two sides of the body.

  9. Self-Rescue Mask Training

    CERN Multimedia

    2013-01-01

    Nine new self-rescue mask instructors have been trained since early 2013, which provides CERN with a total of 26 self-rescue mask instructors to date. This will allow us to meet the increasing training needs caused by the Long Shut Down LS1.   The self-rescue mask instructors have trained 1650 persons in 2012 and about 500 persons since the beginning of the year on how to wear the masks properly. We thank all the instructors and all the persons that made this training possible. Please remember that the self-rescue masks training sessions are scheduled as follows: Basic course: Tuesday and Thursday mornings (2 sessions – 8.30 AM and 10.30 AM), duration:  1.30 hour, in French and English – registration via CERN online training catalogue – Course code 077Y00. Refresher training : Monday mornings (2 sessions – 8.30 AM and 10.30 AM), duration: 1.30 hour , in French and English – registration via CERN online training catalogue &...

  10. Transient Simulation Of A Solar-Hybrid Tower Power Plant With Open Volumetric Receiver At The Location Barstow

    OpenAIRE

    2013-01-01

    In this work the transient simulations of four hybrid solar tower power plant concepts with open-volumetric receiver technology for a location in Barstow-Daggett, USA, are presented. The open-volumetric receiver uses ambient air as heat transfer fluid and the hybridization is realized with a gas turbine. The Rankine cycle is heated by solar-heated air and/or by the gas turbine’s flue gases. The plant can be operated in solar-only, hybrid parallel or combined cycle-only mode as well a...

  11. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C4H10O Diethyl ether (VMSD1211, LB3412_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C4H10O Diethyl ether (VMSD1211, LB3412_V)' providing data from direct low-pressure dilatometric measurement of molar excess volume at variable mole fraction and constant temperature.

  12. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C8H16 Cyclooctane (VMSD1211, LB3565_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C8H16 Cyclooctane (VMSD1211, LB3565_V)' providing data from direct low-pressure dilatometric measurement of molar excess volume at variable mole fraction and constant temperature.

  13. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C5H10O Oxane (VMSD1212, LB3577_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C5H10O Oxane (VMSD1212, LB3577_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  14. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C4H8O Oxolane (VMSD1212, LB3576_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C4H8O Oxolane (VMSD1212, LB3576_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  15. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C6H14 Hexane (VMSD1211, LB4339_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C6H14 Hexane (VMSD1211, LB4339_V)' providing data from direct low-pressure dilatometric measurement of molar excess volume at variable mole fraction and constant temperature.

  16. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C6H12 Cyclohexane (VMSD1211, LB3566_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C6H12 Cyclohexane (VMSD1211, LB3566_V)' providing data from direct low-pressure dilatometric measurement of molar excess volume at variable mole fraction and constant temperature.

  17. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C6H7N Aniline (VMSD1211, LB4340_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C6H7N Aniline (VMSD1211, LB4340_V)' providing data from direct low-pressure dilatometric measurement of molar excess volume at variable mole fraction and constant temperature.

  18. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C5H10 Cyclopentane (VMSD1211, LB3567_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C5H10 Cyclopentane (VMSD1211, LB3567_V)' providing data from direct low-pressure dilatometric measurement of molar excess volume at variable mole fraction and constant temperature.

  19. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C2H6S 2-Thiapropane (VMSD1211, LB3233_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C2H6S 2-Thiapropane (VMSD1211, LB3233_V)' providing data from direct low-pressure dilatometric measurement of molar excess volume at variable mole fraction and constant temperature.

  20. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C2H6OS Dimethyl sulfoxide (VMSD1211, LB3256_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C2H6OS Dimethyl sulfoxide (VMSD1211, LB3256_V)' providing data from direct low-pressure dilatometric measurement of molar excess volume at variable mole fraction and constant temperature.

  1. Volumetric Properties of the Mixture Trichloromethane CHCl3 + CH2Cl2 Dichloromethane (VMSD1212, LB4574_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + CH2Cl2 Dichloromethane (VMSD1212, LB4574_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  2. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C6H6 Benzene (VMSD1212, LB3207_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C6H6 Benzene (VMSD1212, LB3207_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  3. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C2H3N Ethanenitrile (VMSD1212, LB4352_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C2H3N Ethanenitrile (VMSD1212, LB4352_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  4. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C4H10S 3-Thiapentane (VMSD1211, LB3237_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C4H10S 3-Thiapentane (VMSD1211, LB3237_V)' providing data from direct low-pressure dilatometric measurement of molar excess volume at variable mole fraction and constant temperature.

  5. Impact of turbocharger non-adiabatic operation on engine volumetric efficiency and turbo lag

    OpenAIRE

    S. Shaaban; Seume, J.

    2012-01-01

    Turbocharger performance significantly affects the thermodynamic properties of the working fluid at engine boundaries and hence engine performance. Heat transfer takes place under all circumstances during turbocharger operation. This heat transfer affects the power produced by the turbine, the power consumed by the compressor, and the engine volumetric efficiency. Therefore, non-adiabatic turbocharger performance can restrict the engine charging process and hence engine performance. The prese...

  6. Impact of Turbocharger Non-Adiabatic Operation on Engine Volumetric Efficiency and Turbo Lag

    OpenAIRE

    S. Shaaban; Seume, J.

    2012-01-01

    Turbocharger performance significantly affects the thermodynamic properties of the working fluid at engine boundaries and hence engine performance. Heat transfer takes place under all circumstances during turbocharger operation. This heat transfer affects the power produced by the turbine, the power consumed by the compressor, and the engine volumetric efficiency. Therefore, non-adiabatic turbocharger performance can restrict the engine charging process and hence engine performance. The prese...

  7. Production mask composition checking flow

    Science.gov (United States)

    Ma, Shou-Yuan; Yang, Chuen-Huei; Tsai, Joe; Wang, Alice; Lin, Roger; Lee, Rachel; Deng, Erwin; Lin, Ling-Chieh; Liao, Hung-Yueh; Tsai, Jenny; Bowhill, Amanda; Vu, Hien; Russell, Gordon

    2016-05-01

    The mask composition checking flow is an evolution of the traditional mask rule check (MRC). In order to differentiate the flow from MRC, we call it Mask Data Correctness Check (MDCC). The mask house does MRC only to identify process limitations including writing, etching, metrology, etc. There still exist many potential errors that could occur when the frame, main circuit and dummies all together form a whole reticle. The MDCC flow combines the design rule check (DRC) and MRC concepts to adapt to the complex patterns in today's wafer production technologies. Although photomask data has unique characteristics, the MRC tool in Calibre® MDP can easily achieve mask composition by using the Extended MEBES job deck (EJB) format. In EJB format, we can customize the combination of any input layers in an IC design layout format, such as OASIS. Calibre MDP provides section-based processing for many standard verification rule format (SVRF) commands that support DRC-like checks on mask data. Integrating DRC-like checking with EJB for layer composition, we actually perform reticle-level DRC, which is the essence of MDCC. The flow also provides an early review environment before the photomask pattern files are available. Furthermore, to incorporate the MDCC in our production flow, runtime is one of the most important indexes we consider. When the MDCC is included in the tape-out flow, the runtime impact is very limited. Calibre, with its multi-threaded processes and good scalability, is the key to achieving acceptable runtime. In this paper, we present real case runtime data for 28nm and 14nm technology nodes, and prove the practicability of placing MDCC into mass production.

  8. Masked Hypertension in Diabetes Mellitus

    Science.gov (United States)

    Franklin, Stanley S.; Thijs, Lutgarde; Li, Yan; Hansen, Tine W.; Boggia, José; Liu, Yanping; Asayama, Kei; Björklund-Bodegård, Kristina; Ohkubo, Takayoshi; Jeppesen, Jørgen; Torp-Pedersen, Christian; Dolan, Eamon; Kuznetsova, Tatiana; Stolarz-Skrzypek, Katarzyna; Tikhonoff, Valérie; Malyutina, Sofia; Casiglia, Edoardo; Nikitin, Yuri; Lind, Lars; Sandoya, Edgardo; Kawecka-Jaszcz, Kalina; Filipovský, Jan; Imai, Yutaka; Wang, Jiguang; Ibsen, Hans; O’Brien, Eoin; Staessen, Jan A.

    2013-01-01

    Although distinguishing features of masked hypertension in diabetics are well known, the significance of antihypertensive treatment on clinical practice decisions has not been fully explored. We analyzed 9691 subjects from the population-based 11-country International Database on Ambulatory Blood Pressure in Relation to Cardiovascular Outcomes. Prevalence of masked hypertension in untreated normotensive participants was higher (Phypertensives tended to be higher than in normotensives (hazard rate [HR], 1.96; 95% confidence interval [CI], 0.97–3.97; P=0.059), similar to untreated stage 1 hypertensives (HR, 1.07; CI, 0.58–1.98; P=0.82), but less than stage 2 hypertensives (HR, 0.53; CI, 0.29–0.99; P=0.048). In contrast, cardiovascular risk was not significantly different in antihypertensive-treated diabetic-masked hypertensives, as compared with the normotensive comparator group (HR, 1.13; CI, 0.54–2.35; P=0.75), stage 1 hypertensives (HR, 0.91; CI, 0.49–1.69; P=0.76), and stage 2 hypertensives (HR, 0.65; CI, 0.35–1.20; P=0.17). In the untreated diabetic-masked hypertensive population, mean conventional systolic/diastolic blood pressure was 129.2±8.0/76.0±7.3 mm Hg, and mean daytime systolic/diastolic blood pressure 141.5±9.1/83.7±6.5 mm Hg. In conclusion, masked hypertension occurred in 29% of untreated diabetics, had comparable cardiovascular risk as stage 1 hypertension, and would require considerable reduction in conventional blood pressure to reach daytime ambulatory treatment goal. Importantly, many hypertensive diabetics when receiving antihypertensive therapy can present with normalized conventional and elevated ambulatory blood pressure that mimics masked hypertension. PMID:23478096

  9. Informational masking and musical training.

    Science.gov (United States)

    Oxenham, Andrew J; Fligor, Brian J; Mason, Christine R; Kidd, Gerald

    2003-09-01

    The relationship between musical training and informational masking was studied for 24 young adult listeners with normal hearing. The listeners were divided into two groups based on musical training. In one group, the listeners had little or no musical training; the other group was comprised of highly trained, currently active musicians. The hypothesis was that musicians may be less susceptible to informational masking, which is thought to reflect central, rather than peripheral, limitations on the processing of sound. Masked thresholds were measured in two conditions, similar to those used by Kidd et al. [J. Acoust. Soc. Am. 95, 3475-3480 (1994)]. In both conditions the signal was comprised of a series of repeated tone bursts at 1 kHz. The masker was comprised of a series of multitone bursts, gated with the signal. In one condition the frequencies of the masker were selected randomly for each burst; in the other condition the masker frequencies were selected randomly for the first burst of each interval and then remained constant throughout the interval. The difference in thresholds between the two conditions was taken as a measure of informational masking. Frequency selectivity, using the notched-noise method, was also estimated in the two groups. The results showed no difference in frequency selectivity between the two groups, but showed a large and significant difference in the amount of informational masking between musically trained and untrained listeners. This informational masking task, which requires no knowledge specific to musical training (such as note or interval names) and is generally not susceptible to systematic short- or medium-term training effects, may provide a basis for further studies of analytic listening abilities in different populations.

  10. "The Mask Who Wasn't There": Visual Masking Effect with the Perceptual Absence of the Mask

    Science.gov (United States)

    Rey, Amandine Eve; Riou, Benoit; Muller, Dominique; Dabic, Stéphanie; Versace, Rémy

    2015-01-01

    Does a visual mask need to be perceptually present to disrupt processing? In the present research, we proposed to explore the link between perceptual and memory mechanisms by demonstrating that a typical sensory phenomenon (visual masking) can be replicated at a memory level. Experiment 1 highlighted an interference effect of a visual mask on the…

  11. 21 CFR 868.5580 - Oxygen mask.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oxygen mask. 868.5580 Section 868.5580 Food and... ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5580 Oxygen mask. (a) Identification. An oxygen mask is a device placed over a patient's nose, mouth, or tracheostomy to administer oxygen or aerosols. (b)...

  12. Mask qualification strategies in a wafer fab

    Science.gov (United States)

    Jaehnert, Carmen; Kunowski, Angela

    2007-02-01

    Having consistent high quality photo masks is one of the key factors in lithography in the wafer fab. Combined with stable exposure- and resist processes, it ensures yield increases in production and fast learning cycles for technology development and design evaluation. Preventive controlling of incoming masks and quality monitoring while using the mask in production is essential for the fab to avoid yield loss or technical problems caused by mask issues, which eventually result in delivery problems to the customer. In this paper an overview of the procedures used for mask qualification and production release, for both logic and DRAM, at Infineon Dresden is presented. Incoming qualification procedures, such as specification checks, incoming inspection, and inline litho process window evaluation, are described here. Pinching and electrical tests, including compatibility tests for mask copies for high volume products on optimized litho processes, are also explained. To avoid mask degradation over lifetime, re-inspection checks are done for re-qualification while using the mask in production. The necessity of mask incoming inspection and re-qualification, due to the repeater printing from either the processing defects of the original mask or degrading defects of being used in the fab (i.e. haze, ESD, and moving particles, etc.), is demonstrated. The need and impact of tight mask specifications, such as CD uniformity signatures and corresponding electrical results, are shown with examples of mask-wafer CD correlation.

  13. Sinusoidal masks for single channel speech separation

    DEFF Research Database (Denmark)

    Mowlaee, Pejman; Christensen, Mads Græsbøll; Jensen, Søren Holdt

    2010-01-01

    In this paper we present a new approach for binary and soft masks used in single-channel speech separation. We present a novel approach called the sinusoidal mask (binary mask and Wiener filter) in a sinusoidal space. Theoretical analysis is presented for the proposed method, and we show...

  14. Nonequilibrium volumetric response of shocked polymers

    Energy Technology Data Exchange (ETDEWEB)

    Clements, B E [Los Alamos National Laboratory

    2009-01-01

    Polymers are well known for their non-equilibrium deviatoric behavior. However, investigations involving both high rate shock experiments and equilibrium measured thermodynamic quantities remind us that the volumetric behavior also exhibits a non-equilibrium response. Experiments supporting the notion of a non-equilibrium volumetric behavior will be summarized. Following that discussion, a continuum-level theory is proposed that will account for both the equilibrium and non-equilibrium response. Upon finding agreement with experiment, the theory is used to study the relaxation of a shocked polymer back towards its shocked equilibrium state.

  15. Automatic masking for robust 3D-2D image registration in image-guided spine surgery

    Science.gov (United States)

    Ketcha, M. D.; De Silva, T.; Uneri, A.; Kleinszig, G.; Vogt, S.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2016-03-01

    During spinal neurosurgery, patient-specific information, planning, and annotation such as vertebral labels can be mapped from preoperative 3D CT to intraoperative 2D radiographs via image-based 3D-2D registration. Such registration has been shown to provide a potentially valuable means of decision support in target localization as well as quality assurance of the surgical product. However, robust registration can be challenged by mismatch in image content between the preoperative CT and intraoperative radiographs, arising, for example, from anatomical deformation or the presence of surgical tools within the radiograph. In this work, we develop and evaluate methods for automatically mitigating the effect of content mismatch by leveraging the surgical planning data to assign greater weight to anatomical regions known to be reliable for registration and vital to the surgical task while removing problematic regions that are highly deformable or often occluded by surgical tools. We investigated two approaches to assigning variable weight (i.e., "masking") to image content and/or the similarity metric: (1) masking the preoperative 3D CT ("volumetric masking"); and (2) masking within the 2D similarity metric calculation ("projection masking"). The accuracy of registration was evaluated in terms of projection distance error (PDE) in 61 cases selected from an IRB-approved clinical study. The best performing of the masking techniques was found to reduce the rate of gross failure (PDE > 20 mm) from 11.48% to 5.57% in this challenging retrospective data set. These approaches provided robustness to content mismatch and eliminated distinct failure modes of registration. Such improvement was gained without additional workflow and has motivated incorporation of the masking methods within a system under development for prospective clinical studies.

  16. Shadows alter facial expressions of Noh masks.

    Science.gov (United States)

    Kawai, Nobuyuki; Miyata, Hiromitsu; Nishimura, Ritsuko; Okanoya, Kazuo

    2013-01-01

    A Noh mask, worn by expert actors during performance on the Japanese traditional Noh drama, conveys various emotional expressions despite its fixed physical properties. How does the mask change its expressions? Shadows change subtly during the actual Noh drama, which plays a key role in creating elusive artistic enchantment. We here describe evidence from two experiments regarding how attached shadows of the Noh masks influence the observers' recognition of the emotional expressions. In Experiment 1, neutral-faced Noh masks having the attached shadows of the happy/sad masks were recognized as bearing happy/sad expressions, respectively. This was true for all four types of masks each of which represented a character differing in sex and age, even though the original characteristics of the masks also greatly influenced the evaluation of emotions. Experiment 2 further revealed that frontal Noh mask images having shadows of upward/downward tilted masks were evaluated as sad/happy, respectively. This was consistent with outcomes from preceding studies using actually tilted Noh mask images. Results from the two experiments concur that purely manipulating attached shadows of the different types of Noh masks significantly alters the emotion recognition. These findings go in line with the mysterious facial expressions observed in Western paintings, such as the elusive qualities of Mona Lisa's smile. They also agree with the aesthetic principle of Japanese traditional art "yugen (profound grace and subtlety)", which highly appreciates subtle emotional expressions in the darkness.

  17. Shadows alter facial expressions of Noh masks.

    Directory of Open Access Journals (Sweden)

    Nobuyuki Kawai

    Full Text Available BACKGROUND: A Noh mask, worn by expert actors during performance on the Japanese traditional Noh drama, conveys various emotional expressions despite its fixed physical properties. How does the mask change its expressions? Shadows change subtly during the actual Noh drama, which plays a key role in creating elusive artistic enchantment. We here describe evidence from two experiments regarding how attached shadows of the Noh masks influence the observers' recognition of the emotional expressions. METHODOLOGY/PRINCIPAL FINDINGS: In Experiment 1, neutral-faced Noh masks having the attached shadows of the happy/sad masks were recognized as bearing happy/sad expressions, respectively. This was true for all four types of masks each of which represented a character differing in sex and age, even though the original characteristics of the masks also greatly influenced the evaluation of emotions. Experiment 2 further revealed that frontal Noh mask images having shadows of upward/downward tilted masks were evaluated as sad/happy, respectively. This was consistent with outcomes from preceding studies using actually tilted Noh mask images. CONCLUSIONS/SIGNIFICANCE: Results from the two experiments concur that purely manipulating attached shadows of the different types of Noh masks significantly alters the emotion recognition. These findings go in line with the mysterious facial expressions observed in Western paintings, such as the elusive qualities of Mona Lisa's smile. They also agree with the aesthetic principle of Japanese traditional art "yugen (profound grace and subtlety", which highly appreciates subtle emotional expressions in the darkness.

  18. Spatial release from informational masking

    Science.gov (United States)

    Rakerd, Brad; Aaronson, Neil L.

    2001-05-01

    A new method for investigating spatial release from informational masking was developed and employed in two experiments. The new method is computer controlled and efficient. It employs the versatile coordinate response measure speech stimulus set [Bolia et al., J. Acoust. Soc. Am. 107, 1065 (2000)]. The experiments were conducted in an anechoic room, with a primary loudspeaker in front of the listener and a secondary loudspeaker at 60 deg to the right. Target messages were presented from the primary speaker only. For a standard, distractor messages, simultaneous with the target, were also presented from the primary speaker only. Spatial release was measured by presenting the distractors from both primary and secondary speakers with a temporal offset. Experiment 1 fixed the offset (secondary leading, +4 ms) and varied the number of distractors (1 to 3) and the target-to-distractor ratio (-12 to +4 dB). Masking release, sometimes as large as 10 dB, was found for all combinations of these variables. Experiment 2 varied the offset over a wide range of values. Substantial release from masking was found for both positive and negative offsets, but only in the range in which speech echoes are suppressed (<50 ms). [Work supported by NIDCD grant DC 00181.

  19. Process conditions and volumetric composition in composites

    DEFF Research Database (Denmark)

    Madsen, Bo

    2013-01-01

    The obtainable volumetric composition in composites is linked to the gravimetric composition, and it is influenced by the conditions of the manufacturing process. A model for the volumetric composition is presented, where the volume fractions of fibers, matrix and porosity are calculated as a fun...... is increased. Altogether, the model is demonstrated to be a valuable tool for a quantitative analysis of the effect of process conditions. Based on the presented findings and considerations, examples of future work are mentioned for the further improvement of the model.......The obtainable volumetric composition in composites is linked to the gravimetric composition, and it is influenced by the conditions of the manufacturing process. A model for the volumetric composition is presented, where the volume fractions of fibers, matrix and porosity are calculated...... as a function of the fiber weight fraction, and where parameters are included for the composite microstructure, and the fiber assembly compaction behavior. Based on experimental data of composites manufactured with different process conditions, together with model predictions, different types of process related...

  20. Indexing Volumetric Shapes with Matching and Packing.

    Science.gov (United States)

    Koes, David Ryan; Camacho, Carlos J

    2015-04-01

    We describe a novel algorithm for bulk-loading an index with high-dimensional data and apply it to the problem of volumetric shape matching. Our matching and packing algorithm is a general approach for packing data according to a similarity metric. First an approximate k-nearest neighbor graph is constructed using vantage-point initialization, an improvement to previous work that decreases construction time while improving the quality of approximation. Then graph matching is iteratively performed to pack related items closely together. The end result is a dense index with good performance. We define a new query specification for shape matching that uses minimum and maximum shape constraints to explicitly specify the spatial requirements of the desired shape. This specification provides a natural language for performing volumetric shape matching and is readily supported by the geometry-based similarity search (GSS) tree, an indexing structure that maintains explicit representations of volumetric shape. We describe our implementation of a GSS tree for volumetric shape matching and provide a comprehensive evaluation of parameter sensitivity, performance, and scalability. Compared to previous bulk-loading algorithms, we find that matching and packing can construct a GSS-tree index in the same amount of time that is denser, flatter, and better performing, with an observed average performance improvement of 2X.

  1. High performance mask fabrication process for the next-generation mask production

    Science.gov (United States)

    Yagawa, Keisuke; Ugajin, Kunihiro; Suenaga, Machiko; Kobayashi, Yoshihito; Motokawa, Takeharu; Hagihara, Kazuki; Saito, Masato; Itoh, Masamitsu

    2014-07-01

    ArF immersion lithography combined with double patterning has been used for fabricating below half pitch 40nm devices. However, when pattern size shrinks below 20nm, we must use new technology like quadruple patterning process or next generation lithography (NGL) solutions. Moreover, with change in lithography tool, next generation mask production will be needed. According to ITRS 2013, fabrication of finer patterns less than 15nm will be required on mask plate in NGL mask production 5 years later [1]. In order to fabricate finer patterns on mask, higher resolution EB mask writer and high performance fabrication process will be required. In a previous study, we investigated a potential of mask fabrication process for finer patterning and achieved 17nm dense line pattern on mask plate by using VSB (Variable Shaped Beam) type EB mask writer and chemically amplified resist [2][3]. After a further investigation, we constructed higher performance mask process by using new EB mask writer EBM9000. EBM9000 is the equipment supporting hp16nm generation's photomask production and has high accuracy and high throughput. As a result, we achieved 15.5nm pattern on mask with high productivity. Moreover, from evaluation of isolated pattern, we proved that current mask process has the capability for sub-10nm pattern. These results show that the performance of current mask fabrication process have the potential to fabricate the next-generation mask.

  2. Effects of a Mask on Breathing Impairment During a Fencing Assault: A Case Series Study

    Directory of Open Access Journals (Sweden)

    Passali

    2015-09-01

    Full Text Available Background Fencers often complain of progressive difficulty in breathing during matches, which is generally attributed to restricted air, light and heat circulation from wearing a mask. Physiologically, the nasal structure generates airflow resistance that can reach -50% of the total respiratory resistance. Objectives This study aims to investigate the presence of nasal obstruction in fencers and the relationship with the use of mask. Materials and Methods An observational study on 40 fencers (18 males, 22 females was conducted. Fencers perform a usual assault, wearing the mask and standardized physical exercises (running, sprints and obstacles without the mask. ENT examination with a nasal flexible fiberscope, Anterior Active Rhinomanometry (AAR and Peak Nasal Inspiratory Flow (PNIF measurement before and after physical activity with or without the mask was recorded. Results Before physical exercise, the total nasal airway resistance mean value for AAR was 0.33 ± 0.17 Pa/cm3/s at 150 Pa. After a match with the mask, the mean value was 0.28 ± 0.16 Pa/cm3/s. After normal physical exercises without mask, the mean value was 0.24 ± 0.15 Pa/cm3/s. Using t tests, statistically significant difference between nasal resistance before and after physical activity (P < 0.05 was observed, but no significant difference in nasal resistance between the basal value and that taken after a match wearing the masks (P = 0.1265. PNIF values significantly increase with exercise (P < 0.05. Conclusions Our study shows that wearing the mask causes increased breathing impairment in fencers, when compared with similar physical activity without the mask.

  3. Mask data volume: explosion or damp squib?

    Science.gov (United States)

    Spence, Chris; Goad, Scott; Buck, Peter; Gladhill, Richard; Cinque, Russell

    2005-11-01

    Mask data file sizes are increasing as we move from technology generation to generation. The historical 30% linear shrink every 2-3 years that has been called Moore's Law, has driven a doubling of the transistor budget and hence feature count. The transition from steppers to step-and-scan tools has increased the area of the mask that needs to be patterned. At the 130nm node and below, Optical Proximity Correction (OPC) has become prevalent, and the edge fragmentation required to implement OPC leads to an increase in the number of polygons required to define the layout. Furthermore, Resolution Enhancement Techniques (RETs) such as Sub-Resolution Assist Features (SRAFs) or tri-tone Phase Shift Masks (PSM) require additional features to be defined on the mask which do not resolve on the wafer, further increasing masks volumes. In this paper we review historical data on mask file sizes for microprocessor designs. We consider the consequences of this increase in file size on Mask Data Prep (MDP) activities, both within the Integrated Device Manufacturer (IDM) and Mask Shop, namely: computer resources, storage and networks (for file transfer). The impact of larger file sizes on mask writing times is also reviewed. Finally we consider, based on the trends that have been observed over the last 5 technology nodes, what will be required to maintain reasonable MDP and mask manufacturing cycle times.

  4. Numerical evaluation of an innovative cup layout for open volumetric solar air receivers

    Science.gov (United States)

    Cagnoli, Mattia; Savoldi, Laura; Zanino, Roberto; Zaversky, Fritz

    2016-05-01

    This paper proposes an innovative volumetric solar absorber design to be used in high-temperature air receivers of solar power tower plants. The innovative absorber, a so-called CPC-stacked-plate configuration, applies the well-known principle of a compound parabolic concentrator (CPC) for the first time in a volumetric solar receiver, heating air to high temperatures. The proposed absorber configuration is analyzed numerically, applying first the open-source ray-tracing software Tonatiuh in order to obtain the solar flux distribution on the absorber's surfaces. Next, a Computational Fluid Dynamic (CFD) analysis of a representative single channel of the innovative receiver is performed, using the commercial CFD software ANSYS Fluent. The solution of the conjugate heat transfer problem shows that the behavior of the new absorber concept is promising, however further optimization of the geometry will be necessary in order to exceed the performance of the classical absorber designs.

  5. Water content influence on thermal and volumetric properties of wheat starch gelatinization under 10 MPa.

    Science.gov (United States)

    Orlowska, Marta; Randzio, Stanislaw L

    2010-02-01

    A transitiometric in situ analysis of wheat starch aqueous suspensions heated over a temperature range from 285 K to 415 K under isobaric conditions of 10 MPa is presented. Measurements were performed at four selected water concentrations: 56.0%, 64.7%, 73.5%, and 82.4% weight/water. Thermal and volumetric properties and their water content dependencies have been determined for three successive starch phase transformations occurred during wheat starch gelatinization.

  6. Helical apodizers for tunable hyper Gaussian masks

    Science.gov (United States)

    Ojeda-Castañeda, J.; Ledesma, Sergio; Gómez-Sarabia, Cristina M.

    2013-09-01

    We discuss an optical method for controlling the half-width of Gaussian like transmittance windows, by using a pair of absorption masks that have both radial and helical amplitude variations. For describing the radial part of the proposed masks, we employ amplitude transmittance profiles of the form T(ρ) = exp(- ρ s ). For s = 2, one has an amplitude transmittance that is proportional to a Gaussian function. A sub Gaussian mask is defined by a value of s 2, one has super Gaussian masks. Our discussion considers that any of these radially varying masks has also helical modulations. We show that by using a suitable pair of this type of masks, one can control the halfwidth of Gaussian like windows.

  7. Fabrication of complex oxide microstructures by combinatorial chemical beam vapour deposition through stencil masks

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, E. [3D-OXIDES, 70 rue Gustave Eiffel, Saint Genis Pouilly 01630 (France); Sandu, C.S., E-mail: cosmin.sandu@3d-oxides.com [3D-OXIDES, 70 rue Gustave Eiffel, Saint Genis Pouilly 01630 (France); Laboratoire de Céramique, Ecole Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne (Switzerland); Harada, S.; Benvenuti, G. [3D-OXIDES, 70 rue Gustave Eiffel, Saint Genis Pouilly 01630 (France); Savu, V. [Laboratoire de Microsystèmes 1, Ecole Polytechnique Fédérale de Lausanne, Station 17, CH-1015 Lausanne (Switzerland); Muralt, P. [Laboratoire de Céramique, Ecole Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne (Switzerland)

    2015-07-01

    Chemical Beam Vapour Deposition is a gas phase deposition technique, operated under high vacuum conditions, in which evaporated chemical precursors are thermally decomposed on heated substrates to form a film. In the particular equipment used in this work, different chemical beams effuse from a plurality of punctual precursor sources with line of sight trajectory to the substrate. A shadow mask is used to produce 3D-structures in a single step, replicating the apertures of a stencil as deposits on the substrate. The small gap introduced between substrate and mask induces a temperature difference between both surfaces and is used to deposit selectively solely on the substrate without modifying the mask, taking advantage of the deposition rate dependency on temperature. This small gap also enables the deposition of complex patterned structures resulting from the superposition of many patterns obtained using several precursor beams from different directions through a single mask aperture. A suitable process parameter window for precursor flow and substrate temperature is evidenced to maximize resolution. - Highlights: • Micro-feature growth with stencil mask by Chemical Beam Vapour Deposition • Growth of complex structured oxide films in one step • The gap between substrate and mask avoids deposition on the stencil. • Fabrication of 3D structures by superposing deposits from several beams • The versatile setup combines few chemical beams, variable geometry and stencil mask patterns.

  8. 1-D diffusion based solidification model with volumetric expansion and shrinkage effect: A semi-analytical approach

    Science.gov (United States)

    Monde, Aniket D.; Chakraborty, Prodyut R.

    2017-10-01

    Volumetric expansion and shrinkage due to different densities of solid and liquid phases are common phenomena during solidification process. Simple analytical models addressing effect of volumetric expansion/shrinkage during solidification are rarely found. The few existing 1-D solidification models are valid only for semi-infinite domain with limitations of their application for finite domain size. The focus of the present work is to develop a 1-D semi-analytical solidification model addressing effects of volumetric expansion/shrinkage in a finite domain. The proposed semi-analytical scheme involves finding simultaneous solution of transient 1-D heat diffusion equations at solid and liquid domain coupled at the interface by Stefan condition. The change of the total domain length during solidification due to volumetric expansion/shrinkage is addressed by using mass conservation. For validation of the proposed model, solidification of water in a finite domain is studied without considering volumetric expansion/shrinkage effect and results are compared with those obtained from existing enthalpy updating based numerical model. After validation, case studies pertaining to volumetric expansion and shrinkage are performed considering solidification of water and paraffin respectively and physically consistent results are obtained. The study is relevant for understanding unidirectional crystal growth under the effect of controlled boundary condition.

  9. Combined surface and volumetric occlusion shading

    KAUST Repository

    Schott, Matthias O.

    2012-02-01

    In this paper, a method for interactive direct volume rendering is proposed that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The proposed algorithm extends the recently proposed Directional Occlusion Shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry. © 2012 IEEE.

  10. MR volumetric assessment of endolymphatic hydrops

    Energy Technology Data Exchange (ETDEWEB)

    Guerkov, R.; Berman, A.; Jerin, C.; Krause, E. [University of Munich, Department of Otorhinolaryngology Head and Neck Surgery, Grosshadern Medical Centre, Munich (Germany); University of Munich, German Centre for Vertigo and Balance Disorders, Grosshadern Medical Centre, Marchioninistr. 15, 81377, Munich (Germany); Dietrich, O.; Flatz, W.; Ertl-Wagner, B. [University of Munich, Institute of Clinical Radiology, Grosshadern Medical Centre, Munich (Germany); Keeser, D. [University of Munich, Institute of Clinical Radiology, Grosshadern Medical Centre, Munich (Germany); University of Munich, German Centre for Vertigo and Balance Disorders, Grosshadern Medical Centre, Marchioninistr. 15, 81377, Munich (Germany); University of Munich, Department of Psychiatry and Psychotherapy, Innenstadtkliniken Medical Centre, Munich (Germany)

    2014-10-16

    We aimed to volumetrically quantify endolymph and perilymph spaces of the inner ear in order to establish a methodological basis for further investigations into the pathophysiology and therapeutic monitoring of Meniere's disease. Sixteen patients (eight females, aged 38-71 years) with definite unilateral Meniere's disease were included in this study. Magnetic resonance (MR) cisternography with a T2-SPACE sequence was combined with a Real reconstruction inversion recovery (Real-IR) sequence for delineation of inner ear fluid spaces. Machine learning and automated local thresholding segmentation algorithms were applied for three-dimensional (3D) reconstruction and volumetric quantification of endolymphatic hydrops. Test-retest reliability was assessed by the intra-class coefficient; correlation of cochlear endolymph volume ratio with hearing function was assessed by the Pearson correlation coefficient. Endolymph volume ratios could be reliably measured in all patients, with a mean (range) value of 15 % (2-25) for the cochlea and 28 % (12-40) for the vestibulum. Test-retest reliability was excellent, with an intra-class coefficient of 0.99. Cochlear endolymphatic hydrops was significantly correlated with hearing loss (r = 0.747, p = 0.001). MR imaging after local contrast application and image processing, including machine learning and automated local thresholding, enable the volumetric quantification of endolymphatic hydrops. This allows for a quantitative assessment of the effect of therapeutic interventions on endolymphatic hydrops. (orig.)

  11. Computational defect review for actinic mask inspections

    Science.gov (United States)

    Morgan, Paul; Rost, Daniel; Price, Daniel; Corcoran, Noel; Satake, Masaki; Hu, Peter; Peng, Danping; Yonenaga, Dean; Tolani, Vikram

    2013-04-01

    As optical lithography continues to extend into low-k1 regime, resolution of mask patterns continues to diminish. The limitation of 1.35 NA posed by water-based lithography has led to the application of various resolution enhancement techniques (RET), for example, use of strong phase-shifting masks, aggressive OPC and sub-resolution assist features, customized illuminators, etc. The adoption of these RET techniques combined with the requirements to detect even smaller defects on masks due to increasing MEEF, poses considerable challenges for a mask inspection engineer. Inspecting masks under their actinic-aerial image conditions would detect defects that are more likely to print under those exposure conditions. However, this also makes reviewing such defects in their low-contrast aerial images very challenging. On the other hand, inspecting masks under higher resolution inspection optics would allow for better viewing of defects post-inspection. However, such inspections generally would also detect many more defects, including printable and nuisance, thereby making it difficult to judge which are of real concern for printability on wafer. Often, an inspection engineer may choose to use Aerial and/or high resolution inspection modes depending on where in the process flow the mask is and the specific device-layer characteristics of the mask. Hence, a comprehensive approach is needed in handling defects both post-aerial and post-high resolution inspections. This analysis system is designed for the Applied Materials Aera™ mask inspection platform, all data reported was collected using the Aera.

  12. X-ray lithography masking

    Science.gov (United States)

    Smith, Henry I. (Inventor); Lim, Michael (Inventor); Carter, James (Inventor); Schattenburg, Mark (Inventor)

    1998-01-01

    X-ray masking apparatus includes a frame having a supporting rim surrounding an x-ray transparent region, a thin membrane of hard inorganic x-ray transparent material attached at its periphery to the supporting rim covering the x-ray transparent region and a layer of x-ray opaque material on the thin membrane inside the x-ray transparent region arranged in a pattern to selectively transmit x-ray energy entering the x-ray transparent region through the membrane to a predetermined image plane separated from the layer by the thin membrane. A method of making the masking apparatus includes depositing back and front layers of hard inorganic x-ray transparent material on front and back surfaces of a substrate, depositing back and front layers of reinforcing material on the back and front layers, respectively, of the hard inorganic x-ray transparent material, removing the material including at least a portion of the substrate and the back layers of an inside region adjacent to the front layer of hard inorganic x-ray transparent material, removing a portion of the front layer of reinforcing material opposite the inside region to expose the surface of the front layer of hard inorganic x-ray transparent material separated from the inside region by the latter front layer, and depositing a layer of x-ray opaque material on the surface of the latter front layer adjacent to the inside region.

  13. SU-E-T-65: A Prospective Trial of Open Face Masks for Head and Neck Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiant, D; Squire, S; Maurer, J; Liu, H; Hayes, L; Sintay, B [Cone Health Cancer Center, Greensboro, NC (United States)

    2015-06-15

    Purpose: Open face head and neck masks allow for active patient monitoring during treatment and may reduced claustrophobia and anxiety compared to closed masks. The ability of open masks to limit intrafraction motion and to preserve the patient shape/position from simulation over protracted treatments should be considered. Methods: Thirty-two head and neck patients were prospectively randomized to treatment in a closed mask or a novel open face mask. All patients received daily volumetric imaging. The daily images were automatically rigidly registered to the planning CT’s offline using a commercial image processing tool. The shifts needed to optimize the registration, the mutual information coefficient (MI), and the Pearson correlation (PC) coefficients were recorded to evaluate shape preservation. The open group was set-up and monitored with surface imaging at treatment. The real time surface imaging information was recorded to evaluate intrafraction motion. Results: Sixteen patients were included in each group. Evaluations were made over a total of 984 fractions. The mean MI and PC showed significantly higher shape preservation for the open group than for the closed group (p = 0). The mean rotations for the open group were smaller or < 0.15° larger versus the closed group. The mean intrafraction motion for the open group was 0.93 +/−0.99 mm (2 SD). The maximum single fraction displacement was 3.2 mm. Fourteen of 16 patients showed no significant correlation of motion with fraction number (p > 0.05). Conclusion: The open masks preserved shape as well as the closed masks, and they limited motion to < 2 mm for 95% of the treated fractions. These results are consistent over treatment courses of up to 35 fractions. The open mask is suitable for treatment with or without active monitoring. This work was partially supported by Qfix.

  14. Alternating phase-shifted mask for logic gate levels, design, and mask manufacturing

    Science.gov (United States)

    Liebmann, Lars W.; Graur, Ioana C.; Leipold, William C.; Oberschmidt, James M.; O'Grady, David S.; Regaill, Denis

    1999-07-01

    While the benefits of alternating phase shifted masks in improving lithographic process windows at increased resolution are well known throughout the lithography community, broad implementation of this potentially powerful technique has been slow due to the inherent complexity of the layout design and mask manufacturing process. This paper will review a project undertaken at IBM's Semiconductor Research and Development Center and Mask Manufacturing and Development facility to understand the technical and logistical issues associated with the application of alternating phase shifted mask technology to the gate level of a full microprocessor chip. The work presented here depicts an important milestone toward integration of alternating phase shifted masks into the manufacturing process by demonstrating an automated design solution and yielding a functional alternating phase shifted mask. The design conversion of the microprocessor gate level to a conjugate twin shifter alternating phase shift layout was accomplished with IBM's internal design system that automatically scaled the design, added required phase regions, and resolved phase conflicts. The subsequent fabrication of a nearly defect free phase shifted mask, as verified by SEM based die to die inspection, highlights the maturity of the alternating phase shifted mask manufacturing process in IBM's internal mask facility. Well defined and recognized challenges in mask inspection and repair remain and the layout of alternating phase shifted masks present a design and data preparation overhead, but the data presented here demonstrate the feasibility of designing and building manufacturing quality alternating phase shifted masks for the gate level of a microprocessor.

  15. Model-based mask verification on critical 45nm logic masks

    Science.gov (United States)

    Sundermann, F.; Foussadier, F.; Takigawa, T.; Wiley, J.; Vacca, A.; Depre, L.; Chen, G.; Bai, S.; Wang, J.-S.; Howell, R.; Arnoux, V.; Hayano, K.; Narukawa, S.; Kawashima, S.; Mohri, H.; Hayashi, N.; Miyashita, H.; Trouiller, Y.; Robert, F.; Vautrin, F.; Kerrien, G.; Planchot, J.; Martinelli, C.; Di-Maria, J. L.; Farys, V.; Vandewalle, B.; Perraud, L.; Le Denmat, J. C.; Villaret, A.; Gardin, C.; Yesilada, E.; Saied, M.

    2008-05-01

    In the continuous battle to improve critical dimension (CD) uniformity, especially for 45-nanometer (nm) logic advanced products, one important recent advance is the ability to accurately predict the mask CD uniformity contribution to the overall global wafer CD error budget. In most wafer process simulation models, mask error contribution is embedded in the optical and/or resist models. We have separated the mask effects, however, by creating a short-range mask process model (MPM) for each unique mask process and a long-range CD uniformity mask bias map (MBM) for each individual mask. By establishing a mask bias map, we are able to incorporate the mask CD uniformity signature into our modelling simulations and measure the effects on global wafer CD uniformity and hotspots. We also have examined several ways of proving the efficiency of this approach, including the analysis of OPC hot spot signatures with and without the mask bias map (see Figure 1) and by comparing the precision of the model contour prediction to wafer SEM images. In this paper we will show the different steps of mask bias map generation and use for advanced 45nm logic node layers, along with the current results of this new dynamic application to improve hot spot verification through Brion Technologies' model-based mask verification loop.

  16. Shadows Alter Facial Expressions of Noh Masks

    Science.gov (United States)

    Kawai, Nobuyuki; Miyata, Hiromitsu; Nishimura, Ritsuko; Okanoya, Kazuo

    2013-01-01

    Background A Noh mask, worn by expert actors during performance on the Japanese traditional Noh drama, conveys various emotional expressions despite its fixed physical properties. How does the mask change its expressions? Shadows change subtly during the actual Noh drama, which plays a key role in creating elusive artistic enchantment. We here describe evidence from two experiments regarding how attached shadows of the Noh masks influence the observers’ recognition of the emotional expressions. Methodology/Principal Findings In Experiment 1, neutral-faced Noh masks having the attached shadows of the happy/sad masks were recognized as bearing happy/sad expressions, respectively. This was true for all four types of masks each of which represented a character differing in sex and age, even though the original characteristics of the masks also greatly influenced the evaluation of emotions. Experiment 2 further revealed that frontal Noh mask images having shadows of upward/downward tilted masks were evaluated as sad/happy, respectively. This was consistent with outcomes from preceding studies using actually tilted Noh mask images. Conclusions/Significance Results from the two experiments concur that purely manipulating attached shadows of the different types of Noh masks significantly alters the emotion recognition. These findings go in line with the mysterious facial expressions observed in Western paintings, such as the elusive qualities of Mona Lisa’s smile. They also agree with the aesthetic principle of Japanese traditional art “yugen (profound grace and subtlety)”, which highly appreciates subtle emotional expressions in the darkness. PMID:23940748

  17. Mask process correction (MPC) modeling and its application to EUV mask for electron beam mask writer EBM-7000

    Science.gov (United States)

    Kamikubo, Takashi; Ohnishi, Takayuki; Hara, Shigehiro; Anze, Hirohito; Hattori, Yoshiaki; Tamamushi, Shuichi; Bai, Shufeng; Wang, Jen-Shiang; Howell, Rafael; Chen, George; Li, Jiangwei; Tao, Jun; Wiley, Jim; Kurosawa, Terunobu; Saito, Yasuko; Takigawa, Tadahiro

    2010-09-01

    In electron beam writing on EUV mask, it has been reported that CD linearity does not show simple signatures as observed with conventional COG (Cr on Glass) masks because they are caused by scattered electrons form EUV mask itself which comprises stacked heavy metals and thick multi-layers. To resolve this issue, Mask Process Correction (MPC) will be ideally applicable. Every pattern is reshaped in MPC. Therefore, the number of shots would not increase and writing time will be kept within reasonable range. In this paper, MPC is extended to modeling for correction of CD linearity errors on EUV mask. And its effectiveness is verified with simulations and experiments through actual writing test.

  18. Buoyancy Driven Mixing with Continuous Volumetric Energy Deposition

    Science.gov (United States)

    Wachtor, Adam J.; Jebrail, Farzaneh F.; Dennisen, Nicholas A.; Andrews, Malcolm J.; Gore, Robert A.

    2014-11-01

    An experiment involving a miscible fluid pair is presented which transitioned from a Rayleigh-Taylor (RT) stable to RT unstable configuration through continuous volumetric energy deposition (VED) by microwave radiation. Initially a light, low microwave absorbing fluid rested above a heavier, more absorbing fluid. The alignment of the density gradient with gravity made the system stable, and the Atwood number (At) for the initial setup was approximately -0.12. Exposing the fluid pair to microwave radiation preferentially heated the bottom fluid, and caused its density to drop due to thermal expansion. As heating of the bottom fluid continued, the At varied from negative to positive, and after the system passed through the neutral stability point, At = 0, buoyancy driven mixing ensued. Continuous VED caused the At to continue increasing and further drive the mixing process. Successful VED mixing required careful design of the fluid pair used in the experiment. Therefore, fluid selection is discussed, along with challenges and limitations of data collection using the experimental microwave facility. Experimental and model predictions of the neutral stability point, and onset of buoyancy driven mixing, are compared, and differences with classical, constant At RT driven turbulence are discussed.

  19. Masking the Feeling of Being Stupid.

    Science.gov (United States)

    Smith, Sally L.

    1988-01-01

    Teaching experience at The Lab School of Washington has shown that learning-disabled children and adults cope with their lack of self-esteem and feelings of stupidity by developing masks to hide their hurt. These include masks of super-competence, helplessness, invisibility, clowning, injustice collecting, indifference, boredom, outrageousness,…

  20. Masked hypertension, a review of the literature.

    NARCIS (Netherlands)

    Verberk, W.J.; Thien, Th.; Leeuw, P.W. de

    2007-01-01

    Masked hypertension (blood pressure that is normal in the physicians' office but elevated elsewhere) is a common phenomenon as prevalence among studies varies from 8 to 45% and is seen at all ages. large discrepancies, however, exist between studies that have dealt with masked hypertension. It is of

  1. Computing Challenges in Coded Mask Imaging

    Science.gov (United States)

    Skinner, Gerald

    2009-01-01

    This slide presaentation reviews the complications and challenges in developing computer systems for Coded Mask Imaging telescopes. The coded mask technique is used when there is no other way to create the telescope, (i.e., when there are wide fields of view, high energies for focusing or low energies for the Compton/Tracker Techniques and very good angular resolution.) The coded mask telescope is described, and the mask is reviewed. The coded Masks for the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) instruments are shown, and a chart showing the types of position sensitive detectors used for the coded mask telescopes is also reviewed. Slides describe the mechanism of recovering an image from the masked pattern. The correlation with the mask pattern is described. The Matrix approach is reviewed, and other approaches to image reconstruction are described. Included in the presentation is a review of the Energetic X-ray Imaging Survey Telescope (EXIST) / High Energy Telescope (HET), with information about the mission, the operation of the telescope, comparison of the EXIST/HET with the SWIFT/BAT and details of the design of the EXIST/HET.

  2. A facial mask comprising Dead Sea mud.

    Science.gov (United States)

    Abu-Jdayil, Basim; Mohameed, Hazim A

    2006-01-01

    Many investigators have proved that Dead Sea salt and mud are useful in treating skin disorders and skin diseases. Therefore, the black mud has been extensively used as a base for the preparation of soaps, creams, and unguents for skin care. This study concerns a facial mask made mainly of Dead Sea mud. The effects of temperature and shearing conditions on the rheological behavior of the facial mask were investigated. The mud facial mask exhibited a shear thinning behavior with a yield stress. It was found that the apparent viscosity of the mask has a strong dependence on the shear rate as well as on the temperature. The facial mask exhibited a maximum yield stress and very shear thinning behavior at 40 degrees C, which is attributed to the gelatinization of the polysaccharide used to stabilize the mud particles. On the other hand, the mud mask exhibited a time-independent behavior at low temperatures and shear rates and changed to a thixotropic behavior upon increasing both the temperature and the shear rate. The shear thinning and thixotropic behaviors have a significant importance in the ability of the facial mask to spread on the skin: the Dead Sea mud mask can break down for easy spreading, and the applied film can gain viscosity instantaneously to resist running. Moreover, particle sedimentation, which in this case would negatively affect consumer acceptance of the product, occurs slowly due to high viscosity at rest conditions.

  3. [Use of respiratory masks in healthcare workers].

    Science.gov (United States)

    Ciotti, C; Bouvet, E; Abiteboul, D

    2008-08-01

    Two different types of filtering respiratory masks are available in healthcare settings. The first ones are used to protect patients from droplets coming from the mouth of healthcare workers (HCW) and the second ones are protective masks. For the moment, we lack information regarding application of Ministry of Health recommendations and on adherence of HCW to mask use. Geres, the HCW exposure risk study group, and the INRS, are now conducting a survey in several hospitals in France to evaluate the use of respiratory masks in healthcare settings. Two phases are planned. Phase I is a self survey using a questionnaire for occupational doctors and hygienists and phase II includes three steps on HCW behavior: evaluation of knowledge and practice concerning respiratory masks, evaluation of respiratory mask use, evaluation of wear and fit test in a context of airborne isolation with a FFP1 and FFP2 respiratory mask. Phase I is finished and phase II is beginning. The first phase I data show that the Ministry's recommendations are observed: respiratory masks are available, written recommendations are present; information and training are organized for healthcare workers. Phase II results are not available yet.

  4. EUV mask pilot line at Intel Corporation

    Science.gov (United States)

    Stivers, Alan R.; Yan, Pei-Yang; Zhang, Guojing; Liang, Ted; Shu, Emily Y.; Tejnil, Edita; Lieberman, Barry; Nagpal, Rajesh; Hsia, Kangmin; Penn, Michael; Lo, Fu-Chang

    2004-12-01

    The introduction of extreme ultraviolet (EUV) lithography into high volume manufacturing requires the development of a new mask technology. In support of this, Intel Corporation has established a pilot line devoted to encountering and eliminating barriers to manufacturability of EUV masks. It concentrates on EUV-specific process modules and makes use of the captive standard photomask fabrication capability of Intel Corporation. The goal of the pilot line is to accelerate EUV mask development to intersect the 32nm technology node. This requires EUV mask technology to be comparable to standard photomask technology by the beginning of the silicon wafer process development phase for that technology node. The pilot line embodies Intel's strategy to lead EUV mask development in the areas of the mask patterning process, mask fabrication tools, the starting material (blanks) and the understanding of process interdependencies. The patterning process includes all steps from blank defect inspection through final pattern inspection and repair. We have specified and ordered the EUV-specific tools and most will be installed in 2004. We have worked with International Sematech and others to provide for the next generation of EUV-specific mask tools. Our process of record is run repeatedly to ensure its robustness. This primes the supply chain and collects information needed for blank improvement.

  5. Extinction controlled adaptive phase-mask coronagraph

    CERN Document Server

    Bourget, P; Mawet, D; Haguenauer, P

    2012-01-01

    Context. Phase-mask coronagraphy is advantageous in terms of inner working angle and discovery space. It is however still plagued by drawbacks such as sensitivity to tip-tilt errors and chromatism. A nulling stellar coronagraph based on the adaptive phase-mask concept using polarization interferometry is presented in this paper. Aims. Our concept aims at dynamically and achromatically optimizing the nulling efficiency of the coronagraph, making it more immune to fast low-order aberrations (tip-tilt errors, focus, ...). Methods. We performed numerical simulations to demonstrate the value of the proposed method. The active control system will correct for the detrimental effects of image instabilities on the destructive interference. The mask adaptability both in size, phase and amplitude also compensates for manufacturing errors of the mask itself, and potentially for chromatic effects. Liquid-crystal properties are used to provide variable transmission of an annulus around the phase mask, but also to achieve t...

  6. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C2H3N Ethanenitrile (VMSD1111, LB4349_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C2H3N Ethanenitrile (VMSD1111, LB4349_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  7. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C4H9Cl 1-Chlorobutane (VMSD1212, LB4573_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C4H9Cl 1-Chlorobutane (VMSD1212, LB4573_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  8. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C6H6 Benzene (VMSD1111, LB3208_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C6H6 Benzene (VMSD1111, LB3208_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  9. Volumetric polymerization shrinkage of contemporary composite resins

    Directory of Open Access Journals (Sweden)

    Halim Nagem Filho

    2007-10-01

    Full Text Available The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (a or = 0.05 was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01 and Definite (1.89±0.01 shrank significantly less than the other composite resins. SureFil (2.01±0.06, Filtek Z250 (1.99±0.03, and Fill Magic (2.02±0.02 presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation.

  10. A SUBDIVISION SCHEME FOR VOLUMETRIC MODELS

    Institute of Scientific and Technical Information of China (English)

    GhulamMustafa; LiuXuefeng

    2005-01-01

    In this paper, a subdivision scheme which generalizes a surface scheme in previous papers to volume meshes is designed. The scheme exhibits significant control over shrink-age/size of volumetric models. It also has the ability to conveniently incorporate boundaries and creases into a smooth limit shape of models. The method presented here is much simpler and easier as compared to MacCracken and Joy's. This method makes no restrictions on the local topology of meshes. Particularly, it can be applied without any change to meshes of nonmanifold topology.

  11. Volumetric composition in composites and historical data

    DEFF Research Database (Denmark)

    Lilholt, Hans; Madsen, Bo

    2013-01-01

    guidance to the optimal combination of fibre content, matrix content and porosity content, in order to achieve the best obtainable properties. Several composite materials systems have been shown to be handleable with this model. An extensive series of experimental data for the system of cellulose fibres...... and polymer (resin) was produced in 1942 – 1944, and these data have been (re-)analysed by the volumetric composition model, and the property values for density, stiffness and strength have been evaluated. Good agreement has been obtained and some further observations have been extracted from the analysis....

  12. IMITATION OF STANDARD VOLUMETRIC ACTIVITY METAL SAMPLES

    Directory of Open Access Journals (Sweden)

    A. I. Zhukouski

    2016-01-01

    Full Text Available Due to the specific character of problems in the field of ionizing radiation spectroscopy, the R&D and making process of standard volumetric activity metal samples (standard samples for calibration and verification of spectrometric equipment is not only expensive, but also requires the use of highly qualified experts and a unique specific equipment. Theoretical and experimental studies performed have shown the possibility to use imitators as a set of alternating point sources of gamma radiation and metal plates and their use along with standard volumetric activity metal samples for calibration of scintillation-based detectors used in radiation control in metallurgy. Response functions or instrumental spectra of such spectrometer to radionuclides like 137Cs, 134Cs, 152Eu, 154Eu, 60Co, 54Mn, 232Th, 226Ra, 65Zn, 125Sb+125mTe, 106Ru+106Rh, 94Nb, 110mAg, 233U, 234U, 235U and 238U are required for calibration in a given measurement geometry. Standard samples in the form of a probe made of melt metal of a certain diameter and height are used in such measurements. However, the production of reference materials is costly and even problematic for such radionuclides as 94Nb, 125Sb+125mTe, 234U, 235U  etc. A recognized solution to solve this problem is to use the Monte-Carlo simulation method. Instrumental experimental and theoretical spectra obtained by using standard samples and their imitators show a high compliance between experimental spectra of real samples and the theoretical ones of their Monte-Carlo models, between spectra of real samples and the ones of their imitators and finally, between experimental spectra of real sample imitators and the theoretical ones of their Monte-Carlo models. They also have shown the adequacy and consistency of the approach in using a combination of metal scattering layers and reference point gamma-ray sources instead of standard volumetric activity metal samples. As for using several reference point gamma-ray sources

  13. Magnetic volumetric hologram memory with magnetic garnet.

    Science.gov (United States)

    Nakamura, Yuichi; Takagi, Hiroyuki; Lim, Pang Boey; Inoue, Mitsuteru

    2014-06-30

    Holographic memory is a promising next-generation optical memory that has a higher recording density and a higher transfer rate than other types of memory. In holographic memory, magnetic garnet films can serve as rewritable holographic memory media by use of magneto-optical effect. We have now demonstrated that a magnetic hologram can be recorded volumetrically in a ferromagnetic garnet film and that the signal image can be reconstructed from it for the first time. In addition, multiplicity of the magnetic hologram was also confirmed; the image could be reconstructed from a spot overlapped by other spots.

  14. On-line measurement of heat of combustion

    Science.gov (United States)

    Chaturvedi, S. K.; Chegini, H.

    1988-01-01

    An experimental method for an on-line measurement of heat of combustion of a gaseous hydrocarbon fuel mixture of unknown composition is developed. It involves combustion of a test gas with a known quantity of air to achieve a predetermined oxygen concentration level in the combustion products. This is accomplished by a feedback controller which maintains the gas volumetric flow rate at a level consistent with the desired oxygen concentration in the products. The heat of combustion is determined from a known correlation with the gas volumetric flow rate. An on-line microcomputer accesses the gas volumetric flow data, and displays the heat of combustion values at desired time intervals.

  15. A Solar Volumetric Receiver: Influence of Absorbing Cells Configuration on Device Thermal Performance

    Science.gov (United States)

    Yilbas, B. S.; Shuja, S. Z.

    2017-01-01

    Thermal performance of a solar volumetric receiver incorporating the different cell geometric configurations is investigated. Triangular, hexagonal, and rectangular absorbing cells are incorporated in the analysis. The fluid volume fraction, which is the ratio of the volume of the working fluid over the total volume of solar volumetric receiver, is introduced to assess the effect of cell size on the heat transfer rates in the receiver. In this case, reducing the fluid volume fraction corresponds to increasing cell size in the receiver. SiC is considered as the cell material, and air is used as the working fluid in the receiver. The Lambert's Beer law is incorporated to account for the solar absorption in the receiver. A finite element method is used to solve the governing equation of flow and heat transfer. It is found that the fluid volume fraction has significant effect on the flow field in the solar volumetric receiver, which also modifies thermal field in the working fluid. The triangular absorbing cell gives rise to improved effectiveness of the receiver and then follows the hexagonal and rectangular cells. The second law efficiency of the receiver remains high when hexagonal cells are used. This occurs for the fluid volume fraction ratio of 0.5.

  16. Mask tuning for process window improvement

    Science.gov (United States)

    Buttgereit, Ute; Birkner, Robert; Graitzer, Erez; Cohen, Avi; Triulzi, Benedetta; Romeo, Carmelo

    2011-03-01

    For the next years optical lithography stays at 193nm with a numerical aperture of 1.35. Mask design becomes more complex, mask and lithography specifications tighten. The k1 factor comes close to 0.25 which leads to a tremendously increased Mask Error Enhancement Factor (MEEF). This means that CD errors on mask are getting highly amplified on wafer. Process control becomes more important than ever. Accurate process control is a key factor to success to maintain a high yield in chip production. One key parameter to ensure a high and reliable functionality for any integrated circuit is the critical dimension uniformity (CDU). There are different contributors which impact the intra-field CD performance at wafer such as mask CD uniformity, scanner fingerprint, resist process etc. In the present work we focus on improvement of mask CD signature which is one of the main contributors to intra-field CD uniformity. The mask CD uniformity has been measured by WLCD32 which measures the CD based on proven aerial image technology. Based on this CD input the CD uniformity was corrected by CDC200TM and afterwards verified by WLCD32 measurement. The CDC200TM tool utilizes an ultrafast femto-second laser to write intra-volume shading elements (Shade-In ElementsTM) inside the bulk material of the mask. By adjusting the density of the shading elements, the light transmission through the mask is locally changed in a manner that improves wafer CDU when the corrected mask is printed. Additionally, the impact of the improved CD uniformity on the lithography process window was investigated. Goal of the work is to establish a process flow for mask CD uniformity improvement based on mask CD metrology by WLCD32 and mask CD uniformity control by CDC200TM and to verify its impact on the lithography process window. The proposed process flow will be validated by wafer prints. It was shown that the WLCD32 has an excellent correlation to wafer data and an outstanding CD repeatability. It provides

  17. Masking property of quantum random cipher with phase mask encryption

    Science.gov (United States)

    Sohma, Masaki; Hirota, Osamu

    2014-10-01

    The security analysis of physical encryption protocol based on coherent pulse position modulation (CPPM) originated by Yuen is one of the most interesting topics in the study of cryptosystem with a security level beyond the Shannon limit. Although the implementation of CPPM scheme has certain difficulty, several methods have been proposed recently. This paper deals with the CPPM encryption in terms of symplectic transformation, which includes a phase mask encryption as a special example, and formulates a unified security analysis for such encryption schemes. Specifically, we give a lower bound of Eve's symbol error probability using reliability function theory to ensure that our proposed system exceeds the Shannon limit. Then we assume the secret key is given to Eve after her heterodyne measurement. Since this assumption means that Eve has a great advantage in the sense of the conventional cryptography, the lower bound of her error indeed ensures the security level beyond the Shannon limit. In addition, we show some numerical examples of the security performance.

  18. [Rare problem with the insertion of a Supreme™ laryngeal mask airway device. Case of the trimester].

    Science.gov (United States)

    2014-03-01

    A breast tumor was resected under general anesthesia. After induction, the airway was managed with a Supreme™ laryngeal mask airway device. The insertion of the laryngeal mask airway device, the insertion of the orogastric tube through the drain tube, as well as the mechanical ventilation, were very difficult from the beginning. On removing the laryngeal mask airway device to solve the problem, it was observed that the drain tube was broken, and the orogastric tube had passed into the anterior, laryngeal part of the device through the split. It was later found out that the laryngeal mask airway device, as well as the whole manufacturing batch, had suffered a design modification: the cuff was constructed with a softer material without reinforcement in the tip, and the drain tube had a heat-sealing defect that facilitated the break. The incident was reported to the local supplier and the manufacturer, and the defective batch of laryngeal mask airway devices was recalled. The incident was also reported to other hospitals via SENSAR, to warn other users of the potential dangers of the design modification in the Supreme™ laryngeal mask airway. Copyright © 2013 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Published by Elsevier España. All rights reserved.

  19. Space and time in masking and crowding.

    Science.gov (United States)

    Lev, Maria; Polat, Uri

    2015-01-01

    Masking and crowding are major phenomena associated with contextual modulations, but the relationship between them remains unclear. We have recently shown that crowding is apparent in the fovea when the time available for processing is limited, pointing to the strong relationship between crowding in the spatial and temporal domains. Models of crowding emphasize the size (acuity) of the target and the spacing between the target and flankers as the main determinants that predict crowding. Our model, which is based on lateral interactions, posits that masking and crowding are related in the spatial and temporal domains at the fovea and periphery and that both can be explained by the increasing size of the human perceptive field (PF) with increasing eccentricity. We explored the relations between masking and crowding using letter identification and contrast detection by correlating the crowding effect with the estimated size of the PF and with masking under different spatiotemporal conditions. We found that there is a large variability in PF size and crowding effects across observers. Nevertheless, masking and crowding were both correlated with the estimated size of the PF in the fovea and periphery under a specific range of spatiotemporal parameters. Our results suggest that under certain conditions, crowding and masking share common neural mechanisms that underlie the spatiotemporal properties of these phenomena in both the fovea and periphery. These results could explain the transfer of training gains from spatiotemporal Gabor masking to letter acuity, reading, and reduced crowding.

  20. Intact crowding and temporal masking in dyslexia.

    Science.gov (United States)

    Doron, Adi; Manassi, Mauro; Herzog, Michael H; Ahissar, Merav

    2015-01-01

    Phonological deficits in dyslexia are well documented. However, there is an ongoing discussion about whether visual deficits limit the reading skills of people with dyslexia. Here, we investigated visual crowding and backward masking. We presented a Vernier (i.e., two vertical bars slightly offset to the left or right) and asked observers to indicate the offset direction. Vernier stimuli are visually similar to letters and are strongly affected by crowding, even in the fovea. To increase task difficulty, Verniers are often followed by a mask (i.e., backward masking). We measured Vernier offset discrimination thresholds for the basic Vernier task, under crowding, and under backward masking, in students with dyslexia (n = 19) and age and intelligence matched students (n = 27). We found no group differences in any of these conditions. Controls with fast visual processing (good backward masking performance), were faster readers. By contrast, no such correlation was found among the students with dyslexia, suggesting that backward masking does not limit their reading efficiency. These findings indicate that neither elevated crowding nor elevated backward masking pose a bottleneck to reading skills of people with dyslexia.

  1. Pupil Masks for Spectrophotometry of Transiting Exoplanets

    Science.gov (United States)

    Itoh, Satoshi; Matsuo, Taro; Goda, Shohei; Shibai, Hiroshi; Sumi, Takahiro

    2017-09-01

    Spectrophotometric stability, which is crucial in the spectral characterization of transiting exoplanets, is affected by photometric variations arising from field-stop loss in space telescopes with pointing jitter or primary mirror deformation. This paper focuses on a new method for removing slit-loss or field-stop-loss photometric variation through the use of a pupil mask. Two types of pupil function are introduced: the first uses conventional (e.g., Gaussian or hyper-Gaussian) apodizing patterns; whereas the second, which we call a block-shaped mask, employs a new type of pupil mask designed for high photometric stability. A methodology for the optimization of a pupil mask for transit observations is also developed. The block-shaped mask can achieve a photometric stability of 10-5 for a nearly arbitrary field-stop radius when the pointing jitter is smaller than approximately 0.7λ /D and a photometric stability of 10-6 at a pointing jitter smaller than approximately 0.5λ /D. The impact of optical aberrations and mask imperfections upon mask performance is also discussed.

  2. Mask industry assessment trend analysis: 2012

    Science.gov (United States)

    Chan, Y. David

    2012-02-01

    Microelectronics industry leaders consistently cite the cost and cycle time of mask technology and mask supply among the top critical issues for lithography. A survey was designed by SEMATECH with input from semiconductor company mask technologists and merchant mask suppliers to objectively assess the overall conditions of the mask industry. With the continued support of the industry, this year's assessment was the tenth in the current series of annual reports. This year's survey is basically the same as the 2005 through 2011 surveys. Questions are grouped into six categories: General Business Profile Information, Data Processing, Yields and Yield Loss Mechanisms, Delivery Times, Returns, and Services. Within each category is a multitude of questions that ultimately produce a detailed profile of both the business and technical status of the critical mask industry. We received data from 11 companies this year, which was a record high since the beginning of the series. The responding companies represented more than 96% of the volume shipped and about 90% of the 2011 revenue for the photomask industry. These survey reports are often used as a baseline to gain perspective on the technical and business status of the mask and microelectronics industries. They will continue to serve as a valuable reference to identify strengths and opportunities. Results can also be used to guide future investments in critical path issues.

  3. Neopuff T-piece mask resuscitator: is mask leak related to watching the pressure dial?

    Science.gov (United States)

    Tracy, Mark B; Klimek, J; Shingde, V; Hinder, M; Maheshwari, R; Tracy, S K

    2010-09-01

    The aim of the study is to compare mask leak and delivered ventilation during Neopuff (NP) mask ventilation in two modes: (i) with NP pressure dial hidden and resuscitator watching chest wall (CW) rise with, (ii) CW movement hidden and resuscitator watching NP pressure dial. Thirty-six participants gave mask ventilation to a modified manikin designed to measure mask leak and delivered ventilation for two minutes in each mode randomly assigned. Paired t-tests were used to analyse differences in mean values. Linear regression was used to determine the association of mask leak with delivered ventilation. Of 7277 inflations analysed, 3621 were observing chest wall mode (CWM) and 3656 observing NP mode (NPM). Mask leak was similar between the groups; 31.6% for CWM and 31.5% (p = 0.56) for NPM. There were no significant differences in airways pressures and expired tidal volumes (TVe) between modes. Mask leak was strongly associated with TVe (R = -0.86 p mask leak is not greater when resuscitators watch the NP pressure dial. Mask leak is related to TVe. Mask ventilation training with manikins should include tidal volume measurements. © 2010 The Author(s)/Journal Compilation © 2010 Foundation Acta Paediatrica.

  4. Printed shadow masks for organic transistors

    Science.gov (United States)

    Noguchi, Yoshiaki; Sekitani, Tsuyoshi; Someya, Takao

    2007-09-01

    We have manufactured organic field-effect transistors by using shadow masks that are patterned by a screen printing system. The 50-nm-thick pentacene layer is sublimed as a channel in the vacuum system through the shadow mask on the base film with a multilayer patterned by ink-jet. After the deposition of the pentacene layer, the shadow mask is peeled off from the base film without any mechanical damages to the lower structures. The mobility in the saturation regime is 0.4cm2/Vs and the on-off ratio exceeds 105.

  5. A new laboratory-scale experimental facility for detailed aerothermal characterizations of volumetric absorbers

    Science.gov (United States)

    Gomez-Garcia, Fabrisio; Santiago, Sergio; Luque, Salvador; Romero, Manuel; Gonzalez-Aguilar, Jose

    2016-05-01

    This paper describes a new modular laboratory-scale experimental facility that was designed to conduct detailed aerothermal characterizations of volumetric absorbers for use in concentrating solar power plants. Absorbers are generally considered to be the element with the highest potential for efficiency gains in solar thermal energy systems. The configu-ration of volumetric absorbers enables concentrated solar radiation to penetrate deep into their solid structure, where it is progressively absorbed, prior to being transferred by convection to a working fluid flowing through the structure. Current design trends towards higher absorber outlet temperatures have led to the use of complex intricate geometries in novel ceramic and metallic elements to maximize the temperature deep inside the structure (thus reducing thermal emission losses at the front surface and increasing efficiency). Although numerical models simulate the conjugate heat transfer mechanisms along volumetric absorbers, they lack, in many cases, the accuracy that is required for precise aerothermal validations. The present work aims to aid this objective by the design, development, commissioning and operation of a new experimental facility which consists of a 7 kWe (1.2 kWth) high flux solar simulator, a radiation homogenizer, inlet and outlet collector modules and a working section that can accommodate volumetric absorbers up to 80 mm × 80 mm in cross-sectional area. Experimental measurements conducted in the facility include absorber solid temperature distributions along its depth, inlet and outlet air temperatures, air mass flow rate and pressure drop, incident radiative heat flux, and overall thermal efficiency. In addition, two windows allow for the direct visualization of the front and rear absorber surfaces, thus enabling full-coverage surface temperature measurements by thermal imaging cameras. This paper presents the results from the aerothermal characterization of a siliconized silicon

  6. Tom Pickering as a clinical scientist: masked hypertension.

    Science.gov (United States)

    Eguchi, Kazuo

    2010-04-01

    Masked hypertension has been 'unmasked' by the use of the out-of-office measurement of blood pressure, as home BP monitoring or ambulatory blood pressure monitoring has become available. The term masked hypertension could be used more widely than the original version of masked hypertension; morning hypertension, stress-induced hypertension, and nocturnal hypertension are all classified as subtypes of masked hypertension. Masked hypertension can also be seen in patients with diabetes, that could change clinical practice in diabetes. Masked hypertension is associated with cardiovascular events, but most of the outcome studies are on antihypertensive medications. Therefore, masked hypertension includes insufficient treatment of hypertension. In Dr Pickering's latest review of masked hypertension, prehypertension or high normal blood pressure was stressed as an associating factor with masked hypertension. The biggest theme in the field of hypertension is how we can detect masked hypertension. I present two interesting cases of possible masked hypertension in this commentary.

  7. Segmentation of teeth in CT volumetric dataset by panoramic projection and variational level set

    Energy Technology Data Exchange (ETDEWEB)

    Hosntalab, Mohammad [Islamic Azad University, Faculty of Engineering, Science and Research Branch, Tehran (Iran); Aghaeizadeh Zoroofi, Reza [University of Tehran, Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, Tehran (Iran); Abbaspour Tehrani-Fard, Ali [Islamic Azad University, Faculty of Engineering, Science and Research Branch, Tehran (Iran); Sharif University of Technology, Department of Electrical Engineering, Tehran (Iran); Shirani, Gholamreza [Faculty of Dentistry Medical Science of Tehran University, Oral and Maxillofacial Surgery Department, Tehran (Iran)

    2008-09-15

    Quantification of teeth is of clinical importance for various computer assisted procedures such as dental implant, orthodontic planning, face, jaw and cosmetic surgeries. In this regard, segmentation is a major step. In this paper, we propose a method for segmentation of teeth in volumetric computed tomography (CT) data using panoramic re-sampling of the dataset in the coronal view and variational level set. The proposed method consists of five steps as follows: first, we extract a mask in a CT images using Otsu thresholding. Second, the teeth are segmented from other bony tissues by utilizing anatomical knowledge of teeth in the jaws. Third, the proposed method is followed by estimating the arc of the upper and lower jaws and panoramic re-sampling of the dataset. Separation of upper and lower jaws and initial segmentation of teeth are performed by employing the horizontal and vertical projections of the panoramic dataset, respectively. Based the above mentioned procedures an initial mask for each tooth is obtained. Finally, we utilize the initial mask of teeth and apply a Variational level set to refine initial teeth boundaries to final contours. The proposed algorithm was evaluated in the presence of 30 multi-slice CT datasets including 3,600 images. Experimental results reveal the effectiveness of the proposed method. In the proposed algorithm, the variational level set technique was utilized to trace the contour of the teeth. In view of the fact that, this technique is based on the characteristic of the overall region of the teeth image, it is possible to extract a very smooth and accurate tooth contour using this technique. In the presence of the available datasets, the proposed technique was successful in teeth segmentation compared to previous techniques. (orig.)

  8. A study of defects on EUV mask using blank inspection, patterned mask inspection, and wafer inspection

    Energy Technology Data Exchange (ETDEWEB)

    Huh, S.; Ren, L.; Chan, D.; Wurm, S.; Goldberg, K. A.; Mochi, I.; Nakajima, T.; Kishimoto, M.; Ahn, B.; Kang, I.; Park, J.-O.; Cho, K.; Han, S.-I.; Laursen, T.

    2010-03-12

    The availability of defect-free masks remains one of the key challenges for inserting extreme ultraviolet lithography (EUVL) into high volume manufacturing. yet link data is available for understanding native defects on real masks. In this paper, a full-field EUV mask is fabricated to investigate the printability of various defects on the mask. The printability of defects and identification of their source from mask fabrication to handling were studied using wafer inspection. The printable blank defect density excluding particles and patterns is 0.63 cm{sup 2}. Mask inspection is shown to have better sensitivity than wafer inspection. The sensitivity of wafer inspection must be improved using through-focus analysis and a different wafer stack.

  9. Polishing Your Transparencies: Mounting, Masking, Overlays.

    Science.gov (United States)

    Jobe, Holly; Cannon, Glenn

    This brief guide discusses the mounting of overhead transparencies on frames, the types of mounts, the proper masking for presentation, and the use of overlays. Numerous line drawings provide the reader with a helpful visual reference. (RAO)

  10. Masking of aluminum surface against anodizing

    Science.gov (United States)

    Crawford, G. B.; Thompson, R. E.

    1969-01-01

    Masking material and a thickening agent preserve limited unanodized areas when aluminum surfaces are anodized with chromic acid. For protection of large areas it combines well with a certain self-adhesive plastic tape.

  11. Disentangling volumetric and hydrational properties of proteins.

    Science.gov (United States)

    Voloshin, Vladimir P; Medvedev, Nikolai N; Smolin, Nikolai; Geiger, Alfons; Winter, Roland

    2015-02-05

    We used molecular dynamics simulations of a typical monomeric protein, SNase, in combination with Voronoi-Delaunay tessellation to study and analyze the temperature dependence of the apparent volume, Vapp, of the solute. We show that the void volume, VB, created in the boundary region between solute and solvent, determines the temperature dependence of Vapp to a major extent. The less pronounced but still significant temperature dependence of the molecular volume of the solute, VM, is essentially the result of the expansivity of its internal voids, as the van der Waals contribution to VM is practically independent of temperature. Results for polypeptides of different chemical nature feature a similar temperature behavior, suggesting that the boundary/hydration contribution seems to be a universal part of the temperature dependence of Vapp. The results presented here shine new light on the discussion surrounding the physical basis for understanding and decomposing the volumetric properties of proteins and biomolecules in general.

  12. All Photons Imaging Through Volumetric Scattering

    Science.gov (United States)

    Satat, Guy; Heshmat, Barmak; Raviv, Dan; Raskar, Ramesh

    2016-01-01

    Imaging through thick highly scattering media (sample thickness ≫ mean free path) can realize broad applications in biomedical and industrial imaging as well as remote sensing. Here we propose a computational “All Photons Imaging” (API) framework that utilizes time-resolved measurement for imaging through thick volumetric scattering by using both early arrived (non-scattered) and diffused photons. As opposed to other methods which aim to lock on specific photons (coherent, ballistic, acoustically modulated, etc.), this framework aims to use all of the optical signal. Compared to conventional early photon measurements for imaging through a 15 mm tissue phantom, our method shows a two fold improvement in spatial resolution (4db increase in Peak SNR). This all optical, calibration-free framework enables widefield imaging through thick turbid media, and opens new avenues in non-invasive testing, analysis, and diagnosis. PMID:27683065

  13. Role of mask in asian shamanism

    OpenAIRE

    POVALYASHKO GALINA; ABAYEVA SABINA

    2015-01-01

    In the article there is considered a phenomena of shamanism as a cultural universal. Analysis object is a clay mask of National Museum of the Republic of Kazakhstan. It was found in Keder settlement (Kuiryktobe), located in Otrar Oasis at one of the most busy part of the Silk Road. The mask as shamanistic ritual attribute is considered as an obligatory condition for meditative function of shaman.

  14. A Technique for Volumetric CSG Based on Morphology

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Christensen, Niels Jørgen

    2001-01-01

    In this paper, a new technique for volumetric CSG is presented. The technique requires the input volumes to correspond to solids which fulfill a voxelization suitability criterion. Assume the CSG operation is union. The volumetric union of two such volumes is defined in terms of the voxelization...

  15. No masking between test and mask components in perceptually different depth planes.

    Science.gov (United States)

    Hibbeler, Patrick J; Olzak, Lynn A

    2011-01-01

    2-D cues to perceived depth organization have been used to segregate test and mask stimulus components in a discrimination task. Observers made either spatial-frequency or orientation judgments on a rectangular test component by itself or in the presence of constant rectangular masks. There were two basic masking conditions: same-plane or different-plane. In the same-plane conditions, the test components and masks are perceived as existing in the same depth plane. In the different-plane conditions, the test and mask components are perceived to exist in different depth planes. The perception of different depth planes was achieved by using perceived occlusion, which could place either component closer or further from the observer. The results suggest that when test and mask components are separated into different depth planes they no longer influence one another. This effect could be observed in either depth organization, test components in front of the masks or mask components in front of the test. These results indicate that the figure-ground organization of components is not important. Only the designation as existing in the same or different depth planes affects whether or not a mask is effective.

  16. Masked Uncontrolled Hypertension in CKD.

    Science.gov (United States)

    Agarwal, Rajiv; Pappas, Maria K; Sinha, Arjun D

    2016-03-01

    Masked uncontrolled hypertension (MUCH) is diagnosed in patients treated for hypertension who are normotensive in the clinic but hypertensive outside. In this study of 333 veterans with CKD, we prospectively evaluated the prevalence of MUCH as determined by ambulatory BP monitoring using three definitions of hypertension (daytime hypertension ≥135/85 mmHg; either nighttime hypertension ≥120/70 mmHg or daytime hypertension; and 24-hour hypertension ≥130/80 mmHg) or by home BP monitoring (hypertension ≥135/85 mmHg). The prevalence of MUCH was 26.7% by daytime ambulatory BP, 32.8% by 24-hour ambulatory BP, 56.1% by daytime or night-time ambulatory BP, and 50.8% by home BP. To assess the reproducibility of the diagnosis, we repeated these measurements after 4 weeks. Agreement in MUCH diagnosis by ambulatory BP was 75-78% (κ coefficient for agreement, 0.44-0.51), depending on the definition used. In contrast, home BP showed an agreement of only 63% and a κ coefficient of 0.25. Prevalence of MUCH increased with increasing clinic systolic BP: 2% in the 90-110 mmHg group, 17% in the 110-119 mmHg group, 34% in the 120-129 mmHg group, and 66% in the 130-139 mmHg group. Clinic BP was a good determinant of MUCH (receiver operating characteristic area under the curve 0.82; 95% confidence interval 0.76-0.87). In diagnosing MUCH, home BP was not different from clinic BP. In conclusion, among people with CKD, MUCH is common and reproducible, and should be suspected when clinic BP is in the prehypertensive range. Confirmation of MUCH diagnosis should rely on ambulatory BP monitoring.

  17. Phase mask coronagraphy at JPL and Palomar

    Directory of Open Access Journals (Sweden)

    Serabyn E.

    2011-07-01

    Full Text Available For the imaging of faint companions, phase mask coronagraphy has the dual advantages of a small inner working angle and high throughput. This paper summarizes our recent work in developing phase masks and in demonstrating their capabilities at JPL. Four-quadrant phase masks have been manufactured at JPL by means of both evaporation and etching, and we have been developing liquid crystal vortex phase masks in partnership with a commercial vendor. Both types of mask have been used with our extreme adaptive optics well-corrected subaperture at Palomar to detect known brown dwarf companions as close as ~ 2.5 λ/D to stars. Moreover, our recent vortex masks perform very well in laboratory tests, with a demonstrated infrared contrast of about 10−6 at 3 λ/D, and contrasts of a few 10−7 with an initial optical wavelength device. The demonstrated performance already meets the needs of ground-based extreme adaptive optics coronagraphy, and further planned improvements are aimed at reaching the 10−10 contrast needed for terrestrial exoplanet detection with a space-based coronagraph.

  18. Claude Levi-Strauss: Mask and Myth

    Directory of Open Access Journals (Sweden)

    Senka Kovač

    2016-02-01

    Full Text Available This paper discuss a relationship between mask and myth and how the appropriate analysis by Claude Levi-Strauss may make clearer a complex field of masks in the part of North America. Claude Levi-Strauss stressed the multi- layered character of myth structure. Similar multi-layered character can be seen at the level of expression, content and meaning of Salish, Kwakiutl and other unique masks of this part of North America. Claude Levi-Strauss analysed certain myths trying to explain ‘the path’ of the masks that belong to the people with similar languages, or those who lived nearby. The mythology of Tsimshian, Tlingit and Haïda people have certain common characteristics that point to the similarities with the nearby groups (Kwakiutl. Despite differences that exist at the level of meanings of the masks, there is also common ‘mythological heritage’ of the people who used to live in the Northern Pacific Coast. Claude Levi-Strauss showed that there is no final solution in the myth analysis, and that there is no possibility that the dissection of the problem will reveal some hidden unity. "As mythical though does not want to start clearly somewhere and come somewhere, it never goes through its whole trajectory: there is always something waiting to be fullfield. The same way as rituals, myths are infinite." It seems that Levi-Strauss explanation of the Path of masks goes in that direction.

  19. VSP wave separation by adaptive masking filters

    Science.gov (United States)

    Rao, Ying; Wang, Yanghua

    2016-06-01

    In vertical seismic profiling (VSP) data processing, the first step might be to separate the down-going wavefield from the up-going wavefield. When using a masking filter for VSP wave separation, there are difficulties associated with two termination ends of the up-going waves. A critical challenge is how the masking filter can restore the energy tails, the edge effect associated with these terminations uniquely exist in VSP data. An effective strategy is to implement masking filters in both τ-p and f-k domain sequentially. Meanwhile it uses a median filter, producing a clean but smooth version of the down-going wavefield, used as a reference data set for designing the masking filter. The masking filter is implemented adaptively and iteratively, gradually restoring the energy tails cut-out by any surgical mute. While the τ-p and the f-k domain masking filters target different depth ranges of VSP, this combination strategy can accurately perform in wave separation from field VSP data.

  20. Uncertainty and confusion in temporal masking

    Science.gov (United States)

    Formby, C.; Zhang, T.

    2001-05-01

    In a landmark study, Wright et al. [Nature 387, 176-178 (1997)] reported an apparent backward-masking deficit in language-impaired children. Subsequently, these controversial results have been influential in guiding treatments for childhood language problems. In this study we revisited Wright et al.'s temporal-masking paradigm to evaluate listener uncertainty effects. Masked detection was measured for 20-ms sinusoids (480, 1000, or 1680 Hz) presented at temporal positions before, during, or after a gated narrowband (W=600-1400 Hz) masker. Listener uncertainty was investigated by cueing various stimulus temporal properties with a 6000-Hz sinusoid presented either ipsi- or contra-lateral to the test ear or bilaterally. The primary cueing effect was measured in the backward-masking condition for a contralateral cue gated simultaneously with the on-frequency 1000-Hz signal. The resulting cued masked-detection threshold was reduced to quiet threshold. No significant cueing effects were obtained for other signal temporal positions in the masker nor for any off-frequency signal conditions. These results indicate that (1) uncertainty can be reduced or eliminated for on-frequency backward masking by cueing the signal and (2) the deficit reported by Wright et al. for language-impaired children may reflect uncertainty and confusion rather than a temporal-processing deficit per se. [Research supported by NIDCD.

  1. Clean induced feature CD shift of EUV mask

    Science.gov (United States)

    Nesládek, Pavel; Schedel, Thorsten; Bender, Markus

    2016-05-01

    EUV developed in the last decade to the most promising Second contributor is the fact that EUV mask is currently in contrary to optical mask not yet equipped with sealed pellicle, leading to much higher risk of mask contamination. Third reason is use of EUV mask in vacuum, possibly leading to deposition of vacuum contaminants on the EUV mask surface. Latter reason in combination with tight requirements on backside cleanliness lead to the request of frequent recleaning of the EUV mask, in order to sustain mask lifetime similar to that of optical mask. Mask cleaning process alters slightly the surface of any mask - binary COG mask, as well as phase shift mask of any type and naturally also of the EUV mask as well. In case of optical masks the changes are almost negligible, as the mask is exposed to max. 10-20 re-cleans within its life time. These modifications can be expressed in terms of different specified parameters, e.g. CD shift, phase/trans shift, change of the surface roughness etc. The CD shift, expressed as thinning (or exceptionally thickening) of the dark features on the mask is typically in order of magnitude 0.1nm per process run, which is completely acceptable for optical mask. Projected on the lifetime of EUV mask, assuming 100 clean process cycles, this will lead to CD change of about 10nm. For this reason the requirements for EUV mask cleaning are significantly tighter, << 0.1 nm per process run. This task will look even more challenging, when considering, that the tools for CD measurement at the EUV mask are identical as for optical mask. There is one aspect influencing the CD shift, which demands attention. The mask composition of the EUV mask is significantly different from the optical mask. More precisely there are 2 materials influencing the estimated CD in case of EUV mask, whereas there is one material only in case of optical masks, in first approximation. For optical masks, the CD changes can be attributed to modification of the absorber

  2. Template-assisted low temperature synthesis of functionalized graphene for ultrahigh volumetric performance supercapacitors.

    Science.gov (United States)

    Yan, Jun; Wang, Qian; Wei, Tong; Jiang, Lili; Zhang, Milin; Jing, Xiaoyan; Fan, Zhuangjun

    2014-05-27

    We demonstrated the fabrication of functionalized graphene nanosheets via low temperature (300 °C) treatment of graphite oxide with a slow heating rate using Mg(OH)2 nanosheets as template. Because of its dented sheet with high surface area, a certain amount of oxygen-containing groups, and low pore volume, the as-obtained graphene delivers both ultrahigh specific gravimetric and volumetric capacitances of 456 F g(-1) and 470 F cm(-3), almost 3.7 times and 3.3 times higher than hydrazine reduced graphene, respectively. Especially, the obtained volumetric capacitance is the highest value so far reported for carbon materials in aqueous electrolytes. More importantly, the assembled supercapacitor exhibits an ultrahigh volumetric energy density of 27.2 Wh L(-1), which is among the highest values for carbon materials in aqueous electrolytes, as well as excellent cycling stability with 134% of its initial capacitance after 10,000 cycles. Therefore, the present work holds a great promise for future design and large-scale production of high performance graphene electrodes for portable energy storage devices.

  3. Optical inspection of EPL stencil masks

    Science.gov (United States)

    Lee, Po-Tung; Engelstad, Roxann L.; Lovell, Edward G.; Kawata, Shintaro; Hirayanagi, Noriyuki; Sogard, Michael R.

    2003-06-01

    We are now at a major junction in lithography where non-optical lithographies, such as Electron Projection Lithography (EPL) [1], are being introduced. The mask used in EPL is a non-transparent silicon substrate with a thin silicon (~2μm) membrane with openings for electrons to pass through acting as a scatterer. This must be inspected as defects may cause printable defects. Initial mask inspection work has used SEM inspection to find these defects. However, we have historically used optical mask inspection tools, utilising wavelengths at or above what we are using for imaging, to qualify masks. This technology has been increasingly difficult to sustain as we have moved from imaging using mercury lamp based sources to pulsed excimer laser based sources that are not very suited to the inspection imaging. Indeed, review of defects found has moved from optical microscopes to SEM based tools. Inspection tools have also evolved, with the first SEM based mask inspection tools being developed to find the smallest defects, however these have the penalty of very low throughput. We will show the potential of using optical systems for the transmissive inspection of these EPL masks. The high potential of existing tools will be shown together with the need for a next generation of inspection tools. We will show that simulations indicate that an inspection source with 193nm wavelength would be required for the detection of 50nm defects on a mask used to print 70nm dense lines. It will also be shown how the position of the defect within the membrane greatly influences detection as well as the implications of moving to a thinner silicon membrane.

  4. Impact of Turbocharger Non-Adiabatic Operation on Engine Volumetric Efficiency and Turbo Lag

    Directory of Open Access Journals (Sweden)

    S. Shaaban

    2012-01-01

    Full Text Available Turbocharger performance significantly affects the thermodynamic properties of the working fluid at engine boundaries and hence engine performance. Heat transfer takes place under all circumstances during turbocharger operation. This heat transfer affects the power produced by the turbine, the power consumed by the compressor, and the engine volumetric efficiency. Therefore, non-adiabatic turbocharger performance can restrict the engine charging process and hence engine performance. The present research work investigates the effect of turbocharger non-adiabatic performance on the engine charging process and turbo lag. Two passenger car turbochargers are experimentally and theoretically investigated. The effect of turbine casing insulation is also explored. The present investigation shows that thermal energy is transferred to the compressor under all circumstances. At high rotational speeds, thermal energy is first transferred to the compressor and latter from the compressor to the ambient. Therefore, the compressor appears to be “adiabatic” at high rotational speeds despite the complex heat transfer processes inside the compressor. A tangible effect of turbocharger non-adiabatic performance on the charging process is identified at turbocharger part load operation. The turbine power is the most affected operating parameter, followed by the engine volumetric efficiency. Insulating the turbine is recommended for reducing the turbine size and the turbo lag.

  5. The Intervenor Effect in Masked Priming: How Does Masked Priming Survive across an Intervening Word?

    Science.gov (United States)

    Forster, Kenneth I.

    2009-01-01

    Four masked priming experiments are reported investigating the effect of inserting an unrelated word between the masked prime and the target. When the intervening word is visible, identity priming is reduced to the level of one-letter-different form priming, but form priming is largely unaffected. However, when the intervening word is itself…

  6. An etching mask and a method to produce an etching mask

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to an etching mask comprising silicon containing block copolymers produced by self-assembly techniques onto silicon or graphene substrate. Through the use of the etching mask, nanostructures having long linear features having sub-10 nm width can be produced....

  7. The Intervenor Effect in Masked Priming: How Does Masked Priming Survive across an Intervening Word?

    Science.gov (United States)

    Forster, Kenneth I.

    2009-01-01

    Four masked priming experiments are reported investigating the effect of inserting an unrelated word between the masked prime and the target. When the intervening word is visible, identity priming is reduced to the level of one-letter-different form priming, but form priming is largely unaffected. However, when the intervening word is itself…

  8. Electron beam mask writer EBM-9500 for logic 7nm node generation

    Science.gov (United States)

    Matsui, Hideki; Kamikubo, Takashi; Nakahashi, Satoshi; Nomura, Haruyuki; Nakayamada, Noriaki; Suganuma, Mizuna; Kato, Yasuo; Yashima, Jun; Katsap, Victor; Saito, Kenichi; Kobayashi, Ryoei; Miyamoto, Nobuo; Ogasawara, Munehiro

    2016-10-01

    Semiconductor scaling is slowing down because of difficulties of device manufacturing below logic 7nm node generation. Various lithography candidates which include ArF immersion with resolution enhancement technology (like Inversed Lithography technology), Extreme Ultra Violet lithography and Nano Imprint lithography are being developed to address the situation. In such advanced lithography, shot counts of mask patterns are estimated to increase explosively in critical layers, and then it is hoped that multi beam mask writer (MBMW) is released to handle them within realistic write time. However, ArF immersion technology with multiple patterning will continue to be a mainstream lithography solution for most of the layers. Then, the shot counts in less critical layers are estimated to be stable because of the limitation of resolution in ArF immersion technology. Therefore, single beam mask writer (SBMW) can play an important role for mask production still, relative to MBMW. Also the demand of SBMW seems actually strong for the logic 7nm node. To realize this, we have developed a new SBMW, EBM-9500 for mask fabrication in this generation. A newly introduced electron beam source enables higher current density of 1200A/cm2. Heating effect correction function has also been newly introduced to satisfy the requirements for both pattern accuracy and throughput. In this paper, we will report the configuration and performance of EBM-9500.

  9. The SomnuSeal Oral Mask Is Reasonably Tolerated by Otherwise CPAP Noncompliant Patients with OSA

    Directory of Open Access Journals (Sweden)

    N. Katz

    2013-01-01

    Full Text Available Compliance with CPAP is the major limiting factor in treating patients with OSA. The novel SomnuSeal mask is an oral self-adaptable mask located between the teeth and the lips ensuring that there are no air leaks or skin abrasions. Fifty patients with AHI>20, who failed previous CPAP trials, were asked to sleep with the mask for one month. In all patients, the mask was connected to an AutoPAP machine with a heated humidifier. Efficacy, convenience, and compliance (average usage for 4 or more hours per night were monitored. Fifty patients (41 m and 9 f, mean age 57±12 years, BMI 33.6±4.9 kg/m2, and AHI 47±23/h participated. Eleven were classified as compliant (average mask usage of 26 nights, 4.7 hours per night, five were only partially compliant (average usage of 13 nights, 2.9 hours per night, and 34 could not comply with it. In all patients who slept with it, the efficacy (assessed by residual AHI derived from the CPAP device was good with an AHI of less than 8/hour. Interestingly, the required optimal pressure decreased from an average of 9.3 cmH2O to 4.6 cmH2O. The SomnuSeal oral interface is effective and may result in converting noncompliant untreated patients with OSA into well-treated ones.

  10. Metrology on phase-shift masks

    Science.gov (United States)

    Roeth, Klaus-Dieter; Maurer, Wilhelm; Blaesing-Bangert, Carola

    1992-06-01

    In the evaluation of new manufacturing processes, metrology is a key function, beginning with the first step of process development through the final step of everyday mass production at the fabrication floor level. RIM-type phase shift masks are expected to be the first application of phase shift masks in high volume production, since they provide improved lithography process capability at the expense of only moderate complexity in their manufacturing. Measurements of critical dimension (CD) and pattern position (overlay) on experimental rim-type and chromeless phase shift masks are reported. Pattern placement (registration) was measured using the Leitz LMS 2000. The overall design and important components were already described. The pattern placement of the RIM type phase shift structures on the photomask described above was determined within a tolerance of 25 nm (3s); nominal accuracy was within 45 nm (3s). On the chromeless phase shift mask the measurement results were easily obtained using a wafer intensity algorithm available with the system. The measurement uncertainties were less than 25 nm and 50 nm for precision and nominal accuracy respectively. The measurement results from the Leitz CD 200 using transmitted light were: a CD- distribution of 135 nm (3s) on a typical 6 micrometers structure all over the mask; the 0.9 micrometers RIM structure had a distribution of 43 nm (3s). Typical long term precision performance values for the CD 200 on both chrome and phase shift structures have been less than 15 nm.

  11. EUV mask process specifics and development challenges

    Science.gov (United States)

    Nesladek, Pavel

    2014-07-01

    EUV lithography is currently the favorite and most promising candidate among the next generation lithography (NGL) technologies. Decade ago the NGL was supposed to be used for 45 nm technology node. Due to introduction of immersion 193nm lithography, double/triple patterning and further techniques, the 193 nm lithography capabilities was greatly improved, so it is expected to be used successfully depending on business decision of the end user down to 10 nm logic. Subsequent technology node will require EUV or DSA alternative technology. Manufacturing and especially process development for EUV technology requires significant number of unique processes, in several cases performed at dedicated tools. Currently several of these tools as e.g. EUV AIMS or actinic reflectometer are not available on site yet. The process development is done using external services /tools with impact on the single unit process development timeline and the uncertainty of the process performance estimation, therefore compromises in process development, caused by assumption about similarities between optical and EUV mask made in experiment planning and omitting of tests are further reasons for challenges to unit process development. Increased defect risk and uncertainty in process qualification are just two examples, which can impact mask quality / process development. The aim of this paper is to identify critical aspects of the EUV mask manufacturing with respect to defects on the mask with focus on mask cleaning and defect repair and discuss the impact of the EUV specific requirements on the experiments needed.

  12. OPC aware mask and wafer metrology

    Science.gov (United States)

    Maurer, Wilhelm; Wiaux, Vincent; Jonckheere, Rik M.; Philipsen, Vicky; Hoffmann, Thomas; Verhaegen, Staf; Ronse, Kurt G.; England, Jonathan G.; Howard, William B.

    2002-08-01

    Lithography at its limit of resolution is a highly non- linear pattern transfer process. Typically the shapes of printed features deviate considerably from their corresponding features in the layout. This deviation is known as Optical Proximity Effect, and its correction Optical Proximity effect Correction or OPC. Although many other so-called optical enhancement technologies are applied to cope with the issues of lithography at its limit of resolution, almost none of these can re-store the linearity of the pattern transfer. Hence fully functional OPC has become a very basic requirement for current and future lithography processes. In general, proximity effects are two-dimensional (2d) effects. Thus any measurement of proximity effects or any characterization of the effectiveness of OPC has to be two- dimensional. As OPC modifies shapes in the data for mask writing in a way to compensate for the expected proximity effects of the following processing steps, parameters describing the particular OPC-mask quality is a major concern. One-dimensional mask specifications, such as linewidth mean-to-target and uniformity, pattern placement, and maximum size of a tolerable defect, are not sufficient anymore to completely describe the functionality of a given mask for OPC. Two-dimensional mask specifications need to be evaluated. We present in this paper a basic concept for 2d metrology. Examples for 2d measurements to assess the effectiveness of OPC are given by the application of an SEM Image Analysis tool to an advanced 130nm process.

  13. Malone-Brayton Cycle Engine/Heat Pump.

    Science.gov (United States)

    A machine, such as a heat pump , and having an all liquid heat exchange fluid, operates over a more nearly ideal thermodynamic cycle by adjustment of...difference in axial lengths of rotary pumps of the gear or vane type to achieve the adjustment of volumetric capacity. Adjustment of the heat pump system

  14. Not All Masks Are Created Equal: Masking Success in Clinical Trials of Children and Adolescents.

    Science.gov (United States)

    Jones, Lauren; Black, Sarah R; Arnold, L Eugene; Fristad, Mary A

    2017-07-17

    The current study assessed the success of masking omega-3 (Ω3) and psychotherapy in clinical trials of youth with depression or bipolar spectrum disorder. Participants were youth ages 7-14 with DSM-IV-TR diagnosed depressive (n = 72) or bipolar spectrum (n = 23) disorders. Inclusion diagnoses were depressive disorder, cyclothymic disorder, or bipolar disorder not otherwise specified. Exclusion diagnoses included bipolar I or II disorder, chronic medical condition or autism. Youth participated in 2 × 2 randomized controlled trials, in which they received Ω3 or placebo (PBO) and psychoeducational psychotherapy (PEP) or active monitoring (AM). Participants and study staff (including independent interviewers) were masked to Ω3/PBO allocation. Besides the masked independent interviewers, one coprincipal investigator (Co-PI) was fully masked to both conditions and completed all consensus conference ratings postrandomization. At the endpoint assessment or last completed interview, interviewers and the masked Co-PI guessed whether each child was assigned to Ω3 or PBO and to PEP or AM. Masking failure was calculated using the degree of correct guesses above chance level using binomial tests across all participants for Ω3 versus PBO and PEP versus AM. For all guessers, Ω3 allocation was guessed correctly approximately half the time (50%-52.5%). Rates of correct guessing were higher for PEP, but only the interviewer guesses were correct significantly more often (58.5%-68.7%) than chance. Reporting of masking success should be an essential element of RCTs. Psychotherapy is generally more difficult to mask, but with attentive masking procedures reasonable masking can be achieved.

  15. Soil volumetric water content measurements using TDR technique

    Directory of Open Access Journals (Sweden)

    S. Vincenzi

    1996-06-01

    Full Text Available A physical model to measure some hydrological and thermal parameters in soils will to be set up. The vertical profiles of: volumetric water content, matric potential and temperature will be monitored in different soils. The volumetric soil water content is measured by means of the Time Domain Reflectometry (TDR technique. The result of a test to determine experimentally the reproducibility of the volumetric water content measurements is reported together with the methodology and the results of the analysis of the TDR wave forms. The analysis is based on the calculation of the travel time of the TDR signal in the wave guide embedded in the soil.

  16. Iterative reconstruction of volumetric particle distribution

    Science.gov (United States)

    Wieneke, Bernhard

    2013-02-01

    For tracking the motion of illuminated particles in space and time several volumetric flow measurement techniques are available like 3D-particle tracking velocimetry (3D-PTV) recording images from typically three to four viewing directions. For higher seeding densities and the same experimental setup, tomographic PIV (Tomo-PIV) reconstructs voxel intensities using an iterative tomographic reconstruction algorithm (e.g. multiplicative algebraic reconstruction technique, MART) followed by cross-correlation of sub-volumes computing instantaneous 3D flow fields on a regular grid. A novel hybrid algorithm is proposed here that similar to MART iteratively reconstructs 3D-particle locations by comparing the recorded images with the projections calculated from the particle distribution in the volume. But like 3D-PTV, particles are represented by 3D-positions instead of voxel-based intensity blobs as in MART. Detailed knowledge of the optical transfer function and the particle image shape is mandatory, which may differ for different positions in the volume and for each camera. Using synthetic data it is shown that this method is capable of reconstructing densely seeded flows up to about 0.05 ppp with similar accuracy as Tomo-PIV. Finally the method is validated with experimental data.

  17. Communication masking in marine mammals: A review and research strategy.

    Science.gov (United States)

    Erbe, Christine; Reichmuth, Colleen; Cunningham, Kane; Lucke, Klaus; Dooling, Robert

    2016-02-15

    Underwater noise, whether of natural or anthropogenic origin, has the ability to interfere with the way in which marine mammals receive acoustic signals (i.e., for communication, social interaction, foraging, navigation, etc.). This phenomenon, termed auditory masking, has been well studied in humans and terrestrial vertebrates (in particular birds), but less so in marine mammals. Anthropogenic underwater noise seems to be increasing in parts of the world's oceans and concerns about associated bioacoustic effects, including masking, are growing. In this article, we review our understanding of masking in marine mammals, summarise data on marine mammal hearing as they relate to masking (including audiograms, critical ratios, critical bandwidths, and auditory integration times), discuss masking release processes of receivers (including comodulation masking release and spatial release from masking) and anti-masking strategies of signalers (e.g. Lombard effect), and set a research framework for improved assessment of potential masking in marine mammals.

  18. Coherent Diffractive Imaging Using Randomly Coded Masks

    CERN Document Server

    Seaberg, Matthew H; Turner, Joshua J

    2015-01-01

    Coherent diffractive imaging (CDI) provides new opportunities for high resolution X-ray imaging with simultaneous amplitude and phase contrast. Extensions to CDI broaden the scope of the technique for use in a wide variety of experimental geometries and physical systems. Here, we experimentally demonstrate a new extension to CDI that encodes additional information through the use of a series of randomly coded masks. The information gained from the few additional diffraction measurements removes the need for typical object-domain constraints; the algorithm uses prior information about the masks instead. The experiment is performed using a laser diode at 532.2 nm, enabling rapid prototyping for future X-ray synchrotron and even free electron laser experiments. Diffraction patterns are collected with up to 15 different masks placed between a CCD detector and a single sample. Phase retrieval is performed using a convex relaxation routine known as "PhaseCut" followed by a variation on Fienup's input-output algorit...

  19. Polymer Masks for nanostructuring of graphene

    DEFF Research Database (Denmark)

    Shvets, Violetta

    This PhD project is a part of Center for Nanostructured Graphene (CNG) activities. The aim of the project is to develop a new lithography method for creation of highly ordered nanostructures with as small as possible feature and period sizes. The method should be applicable for graphene...... polymer masks is developed. Mask fabrication is realized by microtoming of 30-60 nm thin sections from pre-aligned polymer monoliths with different morphologies. The resulting polymer masks are then transferred to both silicon and graphene substrates. Hexagonally packed hole patterns with 10 nm hole...... diameter and 20 nm periodicity are successfully transferred to both substrates. The method allowed to realize the first ever transfer of moiré patterns to silicon. Furthermore, in collaboration with CNG, device with nanostructured graphene are fabricated and electrical measurements made on these devices...

  20. Improved Mask Protected DES using RSA Algorithm

    Directory of Open Access Journals (Sweden)

    Asha Latha S.

    2016-01-01

    Full Text Available The data encryption standard is a pioneering and farsighted standard which helped to set a new paradigm for encryption standards. But now DES is considered to be insecure for some application. Asymmetric mask protected DES is an advanced encryption method for effectively protecting the advanced DES. There are still probabilities to improve its security. This paper propose a method, which introduce a RSA key generation scheme in mask protected DES instead of plain key, which result in enhancement in the security of present asymmetric mask protected DES. We further propose a Vedic mathematical method of RSA implementation which reduce the complexity of computation in RSA block thereby resulting in reduced delay (four timesthat improves the performance of overall system. The software implementation was performed using Xilinx 13.2 and Model-Sim was used for the simulation environment.

  1. Metacontrast masking is processed before grapheme-color synesthesia.

    Science.gov (United States)

    Bacon, Michael Patrick; Bridgeman, Bruce; Ramachandran, Vilayanur S

    2013-01-01

    We investigated the physiological mechanism of grapheme-color synesthesia using metacontrast masking. A metacontrast target is rendered invisible by a mask that is delayed by about 60 ms; the target and mask do not overlap in space or time. Little masking occurs, however, if the target and mask are simultaneous. This effect must be cortical, because it can be obtained dichoptically. To compare the data for synesthetes and controls, we developed a metacontrast design in which nonsynesthete controls showed weaker dichromatic masking (i.e., the target and mask were in different colors) than monochromatic masking. We accomplished this with an equiluminant target, mask, and background for each observer. If synesthetic color affected metacontrast, synesthetes should show monochromatic masking more similar to the weak dichromatic masking among controls, because synesthetes could add their synesthetic color to the monochromatic condition. The target-mask pairs used for each synesthete were graphemes that elicited strong synesthetic colors. We found stronger monochromatic than dichromatic U-shaped metacontrast for both synesthetes and controls, with optimal masking at an asynchrony of 66 ms. The difference in performance between the monochromatic and dichromatic conditions in the synesthetes indicates that synesthesia occurs at a later processing stage than does metacontrast masking.

  2. Further beyond: registration and overlay control enhancements for optical masks

    Science.gov (United States)

    Gorhad, Kujan; Cohen, Avi; Avizemer, Dan; Dmitriev, Vladimir; Beyer, Dirk; Degel, Wolfgang; Kirsch, Markus

    2014-10-01

    Mask registration control is one of the key performance specifications during the mask qualification process. It is becoming an important factor for yield improvement with the continuously tightening registration specs driven by tight wafer overlay specs. Understanding the impact of miss classified masks on the final wafer yield is gaining more and more attention, especially with the appearance of Multiple Patterning Technologies, where mask to mask overlay effect on wafer is heavily influenced by mask registration. ZEISS has established a promising closed loop solution implemented in the mask house, where the PROVE® system - a highly accurate mask registration and overlay metrology measurement tool, is being used to feed the RegC® - a registration and mask to mask overlay correction tool that can also accurately predict the correction potential in advance. The well-established RegC® process typically reaches 40-70% improvement of the mask registration/overlay error standard deviation. The PROVE® - RegC® closed loop solution has several advantages over alternative registration control methods apart of the mask re-write saving. Among the advantages is the capability to correct for pellicle mounting registration effects without the need to remove the pellicle. This paper will demonstrate improved method for enhanced mask to mask overlay control based on a new scheme of data acquisition and performance validation by the PROVE®. The mask registration data as well as additional mask information will be used to feed the RegC® correction process. Significantly improved mask to mask overlay correction results will be discussed and presented in details.

  3. Heat pumps in combined heat and power systems

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    2014-01-01

    of the considered cases. When considering a case where the heat pump is located at a CHP (combined heat and power) plant, a configuration that increases the DH return temperature proposes the lowest operation cost, as low as 12 EUR MWh-1 for a 90 °C e 40 °C DH network. Considering the volumetric heating capacity......Heat pumps have previously been proposed as a way to integrate higher amounts of renewable energy in DH (district heating) networks by integrating, e.g., wind power. The paper identifies and compares five generic configurations of heat pumps in DH systems. The operational performance......, a third configuration is superior in all cases. Finally, the three most promising heat pump configurations are integrated in a modified PQ-diagram of the CHP plant. Each show individual advantages, and for two, also disadvantages in order to achieve flexible operation....

  4. Characterizing volumetric deformation behavior of naturally occuring bituminous sand materials

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2009-05-01

    Full Text Available newly proposed hydrostatic compression test procedure. The test procedure applies field loading conditions of off-road construction and mining equipment to closely simulate the volumetric deformation and stiffness behaviour of oil sand materials. Based...

  5. Hyperspectral image classification based on volumetric texture and dimensionality reduction

    Science.gov (United States)

    Su, Hongjun; Sheng, Yehua; Du, Peijun; Chen, Chen; Liu, Kui

    2015-06-01

    A novel approach using volumetric texture and reduced-spectral features is presented for hyperspectral image classification. Using this approach, the volumetric textural features were extracted by volumetric gray-level co-occurrence matrices (VGLCM). The spectral features were extracted by minimum estimated abundance covariance (MEAC) and linear prediction (LP)-based band selection, and a semi-supervised k-means (SKM) clustering method with deleting the worst cluster (SKMd) bandclustering algorithms. Moreover, four feature combination schemes were designed for hyperspectral image classification by using spectral and textural features. It has been proven that the proposed method using VGLCM outperforms the gray-level co-occurrence matrices (GLCM) method, and the experimental results indicate that the combination of spectral information with volumetric textural features leads to an improved classification performance in hyperspectral imagery.

  6. Designing remote web-based mechanical-volumetric flow meter ...

    African Journals Online (AJOL)

    ... remote web-based mechanical-volumetric flow meter reading systems based on ... damage and also provides the ability to control and manage consumption. ... existing infrastructure of the telecommunications is used in data transmission.

  7. Advances in mask fabrication and alignment for masked ion-beam lithography

    Science.gov (United States)

    Stumbo, David P.; Damm, George A.; Engler, D. W.; Fong, F. O.; Sen, S.; Wolfe, John C.; Randall, John N.; Mauger, Phillip E.; Shimkunas, Alex R.; Loeschne, Hans

    1990-05-01

    This paper describes recent developments in three areas ofmasked ion beam lithography (MIBL). These are 1) fabrication oflarge area, low distortion, silicon stencilmasks for demagnifying ion projection lithography, 2) fabrication ofstencil masks with nanometer scale resolution for 1:1 proximity printing, and 3) development of a direct method of alignment using the ion beam induced fluorescence of Si02. These topics are discussed below. Demagnifying ion projection masks: We describe the fabrication of stencil masks in large area, low stress (10 MPa), n-type silicon membranes. The projection masks have a silicon foil area 95 mm in diameter, thicknesses between 1.5-5 and resolution of0.6um. Measured distortion (3a) in the IPL masks ranges between 0.23gm and 0.65,um, with an experimental error of 0.20 1um. Proximity printing masks: A process is described for fabricating stencil masks with 50 nm resolution in low stress, n-type silicon membranes. Membranes less than 0.5 ,ttm thick are shown to be free of the sidewall taper that limits resolution in thicker masks. These thin membranes show a slightly flared profile due to the imperfectly collimated etching ions. Alignment: A direct method of alignment is being developed which uses the ion beam induced fluorescence of Si02 marks. Fluorescence yield is characterized as a function of ion energy and resist coating thickness. The yield for Si02 is in the range between 0.1-1.0 photons/proton, while the yields for Si, Al, and photoresist are negligibly small. Thus, a simple alignment technique can be implemented where registration of a grating in the mask with a corresponding oxide pattern is detected as a fluorescence maximum. A simple model predicts that 50 nm alignment can be accomplished, following a 1 im prealignment, in 2 seconds.

  8. Cosmic Ballet or Devil's Mask?

    Science.gov (United States)

    2004-04-01

    Stars like our Sun are members of galaxies, and most galaxies are themselves members of clusters of galaxies. In these, they move around among each other in a mostly slow and graceful ballet. But every now and then, two or more of the members may get too close for comfort - the movements become hectic, sometimes indeed dramatic, as when galaxies end up colliding. ESO PR Photo 12/04 shows an example of such a cosmic tango. This is the superb triple system NGC 6769-71, located in the southern Pavo constellation (the Peacock) at a distance of 190 million light-years. This composite image was obtained on April 1, 2004, the day of the Fifth Anniversary of ESO's Very Large Telescope (VLT). It was taken in the imaging mode of the VIsible Multi-Object Spectrograph (VIMOS) on Melipal, one of the four 8.2-m Unit Telescopes of the VLT at the Paranal Observatory (Chile). The two upper galaxies, NGC 6769 (upper right) and NGC 6770 (upper left), are of equal brightness and size, while NGC 6771 (below) is about half as bright and slightly smaller. All three galaxies possess a central bulge of similar brightness. They consist of elderly, reddish stars and that of NGC 6771 is remarkable for its "boxy" shape, a rare occurrence among galaxies. Gravitational interaction in a small galaxy group NGC 6769 is a spiral galaxy with very tightly wound spiral arms, while NGC 6770 has two major spiral arms, one of which is rather straight and points towards the outer disc of NGC 6769. NGC 6770 is also peculiar in that it presents two comparatively straight dark lanes and a fainter arc that curves towards the third galaxy, NGC 6771 (below). It is also obvious from this new VLT photo that stars and gas have been stripped off NGC 6769 and NGC 6770, starting to form a common envelope around them, in the shape of a Devil's Mask. There is also a weak hint of a tenuous bridge between NGC 6769 and NGC 6771. All of these features testify to strong gravitational interaction between the three galaxies

  9. Increasing the volumetric efficiency of Diesel engines by intake pipes

    Science.gov (United States)

    List, Hans

    1933-01-01

    Development of a method for calculating the volumetric efficiency of piston engines with intake pipes. Application of this method to the scavenging pumps of two-stroke-cycle engines with crankcase scavenging and to four-stroke-cycle engines. The utility of the method is demonstrated by volumetric-efficiency tests of the two-stroke-cycle engines with crankcase scavenging. Its practical application to the calculation of intake pipes is illustrated by example.

  10. Volumetric optoacoustic monitoring of endovenous laser treatments

    Science.gov (United States)

    Fehm, Thomas F.; Deán-Ben, Xosé L.; Schaur, Peter; Sroka, Ronald; Razansky, Daniel

    2016-03-01

    Chronic venous insufficiency (CVI) is one of the most common medical conditions with reported prevalence estimates as high as 30% in the adult population. Although conservative management with compression therapy may improve the symptoms associated with CVI, healing often demands invasive procedures. Besides established surgical methods like vein stripping or bypassing, endovenous laser therapy (ELT) emerged as a promising novel treatment option during the last 15 years offering multiple advantages such as less pain and faster recovery. Much of the treatment success hereby depends on monitoring of the treatment progression using clinical imaging modalities such as Doppler ultrasound. The latter however do not provide sufficient contrast, spatial resolution and three-dimensional imaging capacity which is necessary for accurate online lesion assessment during treatment. As a consequence, incidence of recanalization, lack of vessel occlusion and collateral damage remains highly variable among patients. In this study, we examined the capacity of volumetric optoacoustic tomography (VOT) for real-time monitoring of ELT using an ex-vivo ox foot model. ELT was performed on subcutaneous veins while optoacoustic signals were acquired and reconstructed in real-time and at a spatial resolution in the order of 200μm. VOT images showed spatio-temporal maps of the lesion progression, characteristics of the vessel wall, and position of the ablation fiber's tip during the pull back. It was also possible to correlate the images with the temperature elevation measured in the area adjacent to the ablation spot. We conclude that VOT is a promising tool for providing online feedback during endovenous laser therapy.

  11. Treatment planning for volumetric modulated arc therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bedford, James L. [Joint Department of Physics, Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom)

    2009-11-15

    Purpose: Volumetric modulated arc therapy (VMAT) is a specific type of intensity-modulated radiation therapy (IMRT) in which the gantry speed, multileaf collimator (MLC) leaf position, and dose rate vary continuously during delivery. A treatment planning system for VMAT is presented. Methods: Arc control points are created uniformly throughout one or more arcs. An iterative least-squares algorithm is used to generate a fluence profile at every control point. The control points are then grouped and all of the control points in a given group are used to approximate the fluence profiles. A direct-aperture optimization is then used to improve the solution, taking into account the allowed range of leaf motion of the MLC. Dose is calculated using a fast convolution algorithm and the motion between control points is approximated by 100 interpolated dose calculation points. The method has been applied to five cases, consisting of lung, rectum, prostate and seminal vesicles, prostate and pelvic lymph nodes, and head and neck. The resulting plans have been compared with segmental (step-and-shoot) IMRT and delivered and verified on an Elekta Synergy to ensure practicality. Results: For the lung, prostate and seminal vesicles, and rectum cases, VMAT provides a plan of similar quality to segmental IMRT but with faster delivery by up to a factor of 4. For the prostate and pelvic nodes and head-and-neck cases, the critical structure doses are reduced with VMAT, both of these cases having a longer delivery time than IMRT. The plans in general verify successfully, although the agreement between planned and measured doses is not very close for the more complex cases, particularly the head-and-neck case. Conclusions: Depending upon the emphasis in the treatment planning, VMAT provides treatment plans which are higher in quality and/or faster to deliver than IMRT. The scheme described has been successfully introduced into clinical use.

  12. Segmentation of retinal layers in volumetric OCT scans of normal and glaucomatous subjects

    Science.gov (United States)

    Vermeer, K. A.; van der Schoot, J.; Lemij, H. G.; de Boer, J. F.

    2011-03-01

    Volumetric scans of current SD-OCT devices can contain on the order of 50 million pixels. Due to this size and because quantitative measurements in these scans are often needed, automatic segmentation of these scans is required. In this paper, a fully automatic retinal layer segmentation algorithm is presented, based on pixel-classification. First, each pixel is augmented by intensity and gradient data from a local neighborhood, thereby producing a feature vector. These feature vectors are used as inputs for a support vector machine, which classifies each pixel as above or below each interface. Finally, a level set method regularizes the result, producing a smooth surface within the three-dimensional space. Volumetric scans of 10 healthy and 8 glaucomatous subjects were acquired with a Spectralis OCT. Each scan consisted of 193 B-scans, 512 A-lines per B-scan (5 times averaging) and 496 pixels per A-line. Two B-scans of each healthy subject were manually segmented and used to train the support vector machine. One B-scan of each glaucomatous subjects was manually segmented and used only for performance assessment of the algorithm. The root-mean-square errors for the normal eyes were 3.7, 15.4, 15.0 and 5.5 μm for the vitreous/retinal nerve fiber layer (RNFL), RNFL/ganglion cell layer, inner plexiform layer/inner nuclear layer and retinal pigment epithelium/choroid interfaces, respectively, and 5.5, 11.5, 9.5 and 6.2 μm for the glaucomatous eyes. Based on the segmentation, retinal and RNFL thickness maps and blood vessel masks were produced.

  13. Visualization and volumetric structures from MR images of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Parvin, B.; Johnston, W.; Robertson, D.

    1994-03-01

    Pinta is a system for segmentation and visualization of anatomical structures obtained from serial sections reconstructed from magnetic resonance imaging. The system approaches the segmentation problem by assigning each volumetric region to an anatomical structure. This is accomplished by satisfying constraints at the pixel level, slice level, and volumetric level. Each slice is represented by an attributed graph, where nodes correspond to regions and links correspond to the relations between regions. These regions are obtained by grouping pixels based on similarity and proximity. The slice level attributed graphs are then coerced to form a volumetric attributed graph, where volumetric consistency can be verified. The main novelty of our approach is in the use of the volumetric graph to ensure consistency from symbolic representations obtained from individual slices. In this fashion, the system allows errors to be made at the slice level, yet removes them when the volumetric consistency cannot be verified. Once the segmentation is complete, the 3D surfaces of the brain can be constructed and visualized.

  14. Soft bilateral filtering volumetric shadows using cube shadow maps

    Science.gov (United States)

    Ali, Hatam H.; Sunar, Mohd Shahrizal; Kolivand, Hoshang

    2017-01-01

    Volumetric shadows often increase the realism of rendered scenes in computer graphics. Typical volumetric shadows techniques do not provide a smooth transition effect in real-time with conservation on crispness of boundaries. This research presents a new technique for generating high quality volumetric shadows by sampling and interpolation. Contrary to conventional ray marching method, which requires extensive time, this proposed technique adopts downsampling in calculating ray marching. Furthermore, light scattering is computed in High Dynamic Range buffer to generate tone mapping. The bilateral interpolation is used along a view rays to smooth transition of volumetric shadows with respect to preserving-edges. In addition, this technique applied a cube shadow map to create multiple shadows. The contribution of this technique isreducing the number of sample points in evaluating light scattering and then introducing bilateral interpolation to improve volumetric shadows. This contribution is done by removing the inherent deficiencies significantly in shadow maps. This technique allows obtaining soft marvelous volumetric shadows, having a good performance and high quality, which show its potential for interactive applications. PMID:28632740

  15. Adaptation to different noninvasive ventilation masks in critically ill patients

    Directory of Open Access Journals (Sweden)

    Renata Matos da Silva

    2013-06-01

    Full Text Available OBJECTIVE: To identify which noninvasive ventilation (NIV masks are most commonly used and the problems related to the adaptation to such masks in critically ill patients admitted to a hospital in the city of São Paulo, Brazil. METHODS: An observational study involving patients ≥ 18 years of age admitted to intensive care units and submitted to NIV. The reason for NIV use, type of mask, NIV regimen, adaptation to the mask, and reasons for non-adaptation to the mask were investigated. RESULTS: We evaluated 245 patients, with a median age of 82 years. Acute respiratory failure was the most common reason for NIV use (in 71.3%. Total face masks were the most commonly used (in 74.7%, followed by full face masks and near-total face masks (in 24.5% and 0.8%, respectively. Intermittent NIV was used in 82.4% of the patients. Adequate adaptation to the mask was found in 76% of the patients. Masks had to be replaced by another type of mask in 24% of the patients. Adequate adaptation to total face masks and full face masks was found in 75.5% and 80.0% of the patients, respectively. Non-adaptation occurred in the 2 patients using near-total facial masks. The most common reason for non-adaptation was the shape of the face, in 30.5% of the patients. CONCLUSIONS: In our sample, acute respiratory failure was the most common reason for NIV use, and total face masks were the most commonly used. The most common reason for non-adaptation to the mask was the shape of the face, which was resolved by changing the type of mask employed.

  16. A new approach for defect inspection on large area masks

    Science.gov (United States)

    Scheuring, Gerd; Döbereiner, Stefan; Hillmann, Frank; Falk, Günther; Brück, Hans-Jürgen

    2007-02-01

    Besides the mask market for IC manufacturing, which mainly uses 6 inch sized masks, the market for the so called large area masks is growing very rapidly. Typical applications of these masks are mainly wafer bumping for current packaging processes, color filters on TFTs, and Flip Chip manufacturing. To expose e.g. bumps and similar features on 200 mm wafers under proximity exposure conditions 9 inch masks are used, while in 300 mm wafer bumping processes (Fig. 1) 14 inch masks are handled. Flip Chip manufacturing needs masks up to 28 by 32 inch. This current maximum mask dimension is expected to hold for the next 5 years in industrial production. On the other hand shrinking feature sizes, just as in case of the IC masks, demand enhanced sensitivity of the inspection tools. A defect inspection tool for those masks is valuable for both the mask maker, who has to deliver a defect free mask to his customer, and for the mask user to supervise the mask behavior conditions during its lifetime. This is necessary because large area masks are mainly used for proximity exposures. During this process itself the mask is vulnerable by contacting the resist on top of the wafers. Therefore a regular inspection of the mask after 25, 50, or 100 exposures has to be done during its whole lifetime. Thus critical resist contamination and other defects, which lead to yield losses, can be recognized early. In the future shrinking feature dimensions will require even more sensitive and reliable defect inspection methods than they do presently. Besides the sole inspection capability the tools should also provide highly precise measurement capabilities and extended review options.

  17. Optimal spacing within a tubed, volumetric, cavity receiver suitable for modular molten salt solar towers

    Science.gov (United States)

    Turner, Peter

    2016-05-01

    A 2-dimensional radiation analysis has been developed to analyse the radiative efficiency of an arrangement of heat transfer tubes distributed in layers but spaced apart to form a tubed, volumetric receiver. Such an arrangement could be suitable for incorporation into a cavity receiver. Much of the benefit of this volumetric approach is gained after using 5 layers although improvements do continue with further layers. The radiation analysis splits each tube into multiple segments in which each segment surface can absorb, reflect and radiate rays depending on its surface temperature. An iterative technique is used to calculate appropriate temperatures depending on the distribution of the net energy absorbed and assuming that the cool heat transfer fluid (molten salt) starts at the front layer and flows back through successive layers to the rear of the cavity. Modelling the finite diameter of each layer of tubes increases the ability of a layer to block radiation scattered at acute angles and this effect is shown to reduce radiation losses by nearly 25% compared to the earlier 1-d analysis. Optimum efficient designs tend to occur when the blockage factor is 0.2 plus the inverse of the number of tube layers. It is beneficial if the distance between successive layers is ≥ 2 times the diameter of individual tubes and in this situation, if the incoming radiation is spread over a range of angles, the performance is insensitive to the degree of any tube positional offset or stagger between layers.

  18. Numerical Validation and Comparison of Three Solar Wind Heating Methods by the SIP-CESE MHD Model

    Institute of Scientific and Technical Information of China (English)

    YANG Li-Ping; FENG Xue-Shang; XIANG Chang-Qing; JIANG Chao-Wei

    2011-01-01

    We conduct simulations using the three-dimensional(3D) solar-interplanetary conservation element/solution element(SIP-CESE) maguetohydrodynamic(MHD) model and magnetogram data from a Carrington rotation (CR) 1897 to compare the three commonly used heating methods, I.e. The Wentzel-Kramers-Brillouin(WKB)Alfvén wave heating method, the turbulence heating method and the volumetric heating method. Our results show that all three heating models can basically reproduce the bimodal structure of the solar wind observed near the solar minimum. The results also demonstrate that the major acceleration interval terminates about 4Rs for the turbulence heating method and 1ORs for both the WKB Alfvén wave heating method and the volumetric heating method. The turbulence heating and the volumetric heating methods can capture the observed changing trends by the WIND satellite, while the WKB Alfvén wave heating method does not.

  19. Defect printability in CPL mask technology

    Science.gov (United States)

    Kuijten, Jan-Pieter; Verhappen, Arjan; Pijnenburg, Wil; Conley, Will; Litt, Lloyd C.; Wu, Wei; Montgomery, Patrick; Roman, Bernard J.; Kasprowicz, Bryan S.; Progler, Christopher J.; Socha, Robert J.; Van Den Broeke, Douglas J.; Schaefer, Erika; Cook, Pat

    2004-05-01

    Each generation of semiconductor device technology drive new and interesting resolution enhancement technology (RET"s). The race to smaller and smaller geometry"s has forced device manufacturers to k1"s approaching 0.40. The authors have been investigating the use of Chromeless phase-shifting masks (CPL) exposed with ArF, high numerical aperture (NA), and off-axis illumination (OAI) has been shown to produce production worthy sub-100nm resist patterns with acceptable overlapped process window across feature pitch. These new reticle technologies have many issues that are similar to simple binary masks. The authors have investigated the printability of defects in CPL mask technology. Programmed defects of various sizes and types have been simulated and printed for sub 100nm imaging. High resolution scanning electron microscopy has been used to characterize these defects and develop an understanding of size and type that prints. In this paper the authors will focus on image line end shortening and the impact of through dose and focus performance for very high NA ArF imaging. The authors have built a number of test structures that require superior 2D control for SRAM gate structures. Various types of line ends have been evaluated for either straight CPL mask or hybrid type builds.

  20. A new mask exposure and analysis facility

    NARCIS (Netherlands)

    Sligte, E. te; Koster, N.B.; Deutz, A.F.; Staring, W.P.M.

    2014-01-01

    The introduction of ever higher source powers in EUV systems causes increased risks for contamination and degradation of EUV masks and pellicles. Appropriate testing can help to inventory and mitigate these risks. To this end, we propose EBL2: a laboratory EUV exposure system capable of operating at

  1. The fastest saccadic responses escape visual masking.

    Directory of Open Access Journals (Sweden)

    Sébastien M Crouzet

    Full Text Available Object-substitution masking (OSM occurs when a briefly presented target in a search array is surrounded by small dots that remain visible after the target disappears. The reduction of target visibility occurring after OSM has been suggested to result from a specific interference with reentrant visual processing while the initial feedforward processing is thought to be left intact. We tested a prediction derived from this hypothesis: the fastest responses, being triggered before the beginning of reentrant processing, should escape the OSM interference. In a saccadic choice reaction time task, which gives access to very early stages of visual processing, target visibility was reduced either by OSM, conventional backward masking, or low stimulus contrast. A general reduction of performance was observed in all three conditions. However, the fastest saccades did not show any sign of interference under either OSM or backward masking, as they did under the low-contrast condition. This finding supports the hypothesis that masking interferes mostly with reentrant processing at later stages, while leaving early feedforward processing largely intact.

  2. The laryngeal mask airway at altitude.

    Science.gov (United States)

    Wilson, Grant D; Sittig, Steven E; Schears, Gregory J

    2008-02-01

    The Laryngeal Mask Airway (LMA) is an accepted adjunct for airway management in emergency patients. There are a number of case reports describing its use in transport medicine for infant to adult patients, including during flight. Although studies of the effect altitude has on air-filled tracheal tubes exists, we were unable to find documentation of the effect of altitude on laryngeal mask airways. Our objective was to assess the effect of altitude on the LMA in both fixed wing and rotary wing models. We performed an in vitro study of the effect of altitude on the LMA cuff. Infant and adult airway trainer mannequins with properly sized and inserted LMA-Classic laryngeal mask airways were monitored for cuff pressure changes while flown at altitudes commonly encountered during air medical transport. Both models demonstrated that LMA cuff pressures may exceed manufacturer recommended levels for safe use even at the relatively low altitudes experienced during rotor wing flight. Properly inserted and inflated laryngeal mask airways at ground level may result in overinflated LMA cuffs when flown to altitudes commonly used for rotor and fixed wing medical transport unless monitored and corrected.

  3. Posleslovije k "Zolotoi maske" / Boris Tuch

    Index Scriptorium Estoniae

    Tuch, Boris, 1946-

    2005-01-01

    Vene draamafestivali "Kuldne mask Eestis" lavastusest : "September.doc", lav. Mihhail Ugarov, I. Võrõpajevi "Hapnik" lav. Viktor Rõzhakov Teatr.doc esituses, Sophoklese "Kuningas Oidipus" lav. Andrei Prikotenko Peterburi Teatri Liteinõi esituses, M. Ugarovi lavastus "OblomOFF"

  4. Testing Tactile Masking between the Forearms.

    Science.gov (United States)

    D'Amour, Sarah; Harris, Laurence R

    2016-02-10

    Masking, in which one stimulus affects the detection of another, is a classic technique that has been used in visual, auditory, and tactile research, usually using stimuli that are close together to reveal local interactions. Masking effects have also been demonstrated in which a tactile stimulus alters the perception of a touch at a distant location. Such effects can provide insight into how components of the body's representations in the brain may be linked. Occasional reports have indicated that touches on one hand or forearm can affect tactile sensitivity at corresponding contralateral locations. To explore the matching of corresponding points across the body, we can measure the spatial tuning and effect of posture on contralateral masking. Careful controls are required to rule out direct effects of the remote stimulus, for example by mechanical transmission, and also attention effects in which thresholds may be altered by the participant's attention being drawn away from the stimulus of interest. The use of this technique is beneficial as a behavioural measure for exploring which parts of the body are functionally connected and whether the two sides of the body interact in a somatotopic representation. This manuscript describes a behavioural protocol that can be used for studying contralateral tactile masking.

  5. Chromium Contamination in Army Face Masks.

    Science.gov (United States)

    1989-01-01

    containing carbon particles by inhalation when wearing face masks. Other potential health effects are chrome allergies and nonneoplastic lesions of...chronic inflammation—have been reported in chrome -platers and other workers exposed to aerosols of chromium (VI) compounds. Chronic pharyngitis...monochromates and dichromates of sodium, potassium , ammonium, lithium, cesium, and rubidium. ACGIH includes chromium in its list of known human

  6. TASTE MASKING IN PHARMACEUTICAL: AN UPDATE

    Directory of Open Access Journals (Sweden)

    Srivastava Saurabh

    2012-08-01

    Full Text Available Taste is an important factor in the development of dosage form. Nevertheless it is that arena of product development that has been overlooked and undermined for its importance. The problem of bitter and obnoxious taste of is a challenge to the pharmacist in the present scenario. Taste is an important parameter governing compliance. Several oral pharmaceuticals and bulking agents have unpleasant, bitter-tasting components. In numerous cases, the bitter taste modality is an undesirable trait of the product or formulations and can considerably affect its acceptability by consumers. Bitter characteristics found in such systems have been eliminated or minimized by various known processes, but no universally applicable technology for bitterness inhibition has ever been recognized. The desire of improved palatability in these products has prompted the development of numerous formulations with improved performance and acceptability Taste masking technologies offer a great scope for invention and patents. Several approaches like adding flavors and sweeteners, use of coating polymers for inhibiting bitterness, microencapsulation, prodrug formation, formation of inclusion and molecular complexes, solid dispersion system, addition of effervescent agents and application of ion exchange resins have been tried by the formulators to mask the unpleasant taste of the bitter drugs. The present review attempts to give a brief account of different technologies of taste masking with respect to dosage form and novel methods of evaluation of taste masking effect.

  7. Mask cycle time reduction for foundry projects

    Science.gov (United States)

    Balasinski, A.

    2011-11-01

    One of key deliverables of foundry based manufacturing is low cycletime. Building new and enhancing existing products by mask changes involves significant logistical effort, which could be reduced by standardizing data management and communication procedures among design house, mask shop, and foundry (fab) [1]. As an example, a typical process of taping out can take up to two weeks in addition to technical effort, for database handling, mask form completion, management approval, PO signoff and JDV review, translating into loss of revenue. In order to reduce this delay, we are proposing to develop a unified online system which should assist with the following functions: database edits, final verifications, document approvals, mask order entries, and JDV review with engineering signoff as required. This would help a growing number of semiconductor products to be flexibly manufactured at different manufacturing sites. We discuss how the data architecture based on a non-relational database management system (NRDMBS) extracted into a relational one (RDMBS) should provide quality information [2], to reduce cycle time significantly beyond 70% for an example 2 week tapeout schedule.

  8. Masked object registration in the Fourier domain.

    Science.gov (United States)

    Padfield, Dirk

    2012-05-01

    Registration is one of the most common tasks of image analysis and computer vision applications. The requirements of most registration algorithms include large capture range and fast computation so that the algorithms are robust to different scenarios and can be computed in a reasonable amount of time. For these purposes, registration in the Fourier domain using normalized cross-correlation is well suited and has been extensively studied in the literature. Another common requirement is masking, which is necessary for applications where certain regions of the image that would adversely affect the registration result should be ignored. To address these requirements, we have derived a mathematical model that describes an exact form for embedding the masking step fully into the Fourier domain so that all steps of translation registration can be computed efficiently using Fast Fourier Transforms. We provide algorithms and implementation details that demonstrate the correctness of our derivations. We also demonstrate how this masked FFT registration approach can be applied to improve the Fourier-Mellin algorithm that calculates translation, rotation, and scale in the Fourier domain. We demonstrate the computational efficiency, advantages, and correctness of our algorithm on a number of images from real-world applications. Our framework enables fast, global, parameter-free registration of images with masked regions.

  9. A new mask exposure and analysis facility

    NARCIS (Netherlands)

    Sligte, E. te; Koster, N.B.; Deutz, A.F.; Staring, W.P.M.

    2014-01-01

    The introduction of ever higher source powers in EUV systems causes increased risks for contamination and degradation of EUV masks and pellicles. Appropriate testing can help to inventory and mitigate these risks. To this end, we propose EBL2: a laboratory EUV exposure system capable of operating at

  10. Masks, Performing Traditions, and Cultural Diversity: Exploring African Culture through African Masks.

    Science.gov (United States)

    Cotto-Escalera, Brenda L.

    1991-01-01

    Explores the mask and masquerade traditions, focusing specifically on African culture as a source of exciting and varied materials that can help theater arts teachers and specialists who are in search of culturally diverse materials. Offers a classroom application. (PRA)

  11. Green binary and phase shifting mask

    Science.gov (United States)

    Shy, S. L.; Hong, Chao-Sin; Wu, Cheng-San; Chen, S. J.; Wu, Hung-Yu; Ting, Yung-Chiang

    2009-12-01

    SixNy/Ni thin film green mask blanks were developed , and are now going to be used to replace general chromium film used for binary mask as well as to replace molydium silicide embedded material for AttPSM for I-line (365 nm), KrF (248 nm), ArF (193 nm) and Contact/Proximity lithography. A bilayer structure of a 1 nm thick opaque, conductive nickel layer and a SixNy layer is proposed for binary and phase-shifting mask. With the good controlling of plasma CVD of SixNy under silane (50 sccm), ammonia (5 sccm) and nitrogen (100 sccm), the pressure is 250 mTorr. and RF frequency 13.56 MHz and power 50 W. SixNy has enough deposition latitude to meet the requirements as an embedded layer for required phase shift 180 degree, and the T% in 193, 248 and 365 nm can be adjusted between 2% to 20% for binary and phase shifting mask usage. Ni can be deposited by E-gun, its sheet resistance Rs is less than 1.435 kΩ/square. Jeol e-beam system and I-line stepper are used to evaluate these thin film green mask blanks, feature size less than 200 nm half pitch pattern and 0.558 μm pitch contact hole can be printed. Transmission spectrums of various thickness of SixNy film are inspected by using UV spectrometer and FTIR. Optical constants of the SixNy film are measured by n & k meter and surface roughness is inspected by using Atomic Force Microscope (AFM).

  12. Lithographic performance evaluation of a contaminated EUV mask after cleaning

    Energy Technology Data Exchange (ETDEWEB)

    George, Simi; Naulleau, Patrick; Okoroanyanwu, Uzodinma; Dittmar, Kornelia; Holfeld, Christian; Wuest, Andrea

    2009-11-16

    The effect of surface contamination and subsequent mask surface cleaning on the lithographic performance of a EUV mask is investigated. SEMATECH's Berkeley micro-field exposure tool (MET) printed 40 nm and 50 nm line and space (L/S) patterns are evaluated to compare the performance of a contaminated and cleaned mask to an uncontaminated mask. Since the two EUV masks have distinct absorber architectures, optical imaging models and aerial image calculations were completed to determine any expected differences in performance. Measured and calculated Bossung curves, process windows, and exposure latitudes for the two sets of L/S patterns are compared to determine how the contamination and cleaning impacts the lithographic performance of EUV masks. The observed differences in mask performance are shown to be insignificant, indicating that the cleaning process did not appreciably affect mask performance.

  13. Task-Dependent Masked Priming Effects in Visual Word Recognition

    OpenAIRE

    Sachiko eKinoshita; Dennis eNorris

    2012-01-01

    A method used widely to study the first 250 ms of visual word recognition is masked priming: These studies have yielded a rich set of data concerning the processes involved in recognizing letters and words. In these studies, there is an implicit assumption that the early processes in word recognition tapped by masked priming are automatic, and masked priming effects should therefore be invariant across tasks. Contrary to this assumption, masked priming effects are modulated by the task goal...

  14. Effects of the combination of mask preconditioning with midazolam pretreatment on anxiety and mask acceptance during pediatric inhalational induction and postoperative mask fear in children

    Institute of Scientific and Technical Information of China (English)

    LAN Yun-ping; HUANG Zhen-hua; G.Allen Finley; ZUO Yun-xia

    2012-01-01

    Background Anxiety and fear frequently causes an aversion to applying a face mask and increases difficulty during pediatric induction.There is at present little study of this problem.Therefore,the aim of this study was to investigate the effect of the combination of mask preconditioning and midazolam pretrealment on mask acceptance during pediatric induction and on postoperative mask fear.Methods One hundred and sixty children were randomly assigned into four groups:the mask preconditioning group (MaG),the midazolam pretreatment group (MiG),the mask/midazolam combination group (Ma/MiG),and the saline group (SaG).The Modified Yale Preoperative Anxiety Scale (m-YPAS) was employed to assess the anxiety in the operation room (OR).A Mask Acceptance Score (MAS) was measured during inhalational induction and the incidence of mask fear (MAS ≤2) was evaluated postoperatively.Results The MaG and Ma/MiG groups had the highest mask acceptance scores but there were no differences between these two groups (P <0.05).The average anxiety level of children entering the OR was much lower in the MaG and Ma/MiG groups than in the SaG group (P <0.05).During induction,the anxiety level increased in the SaG and MaG groups but decreased in the MiG and Ma/MiG groups (P <0.05).At the postoperative third day,the incidence of mask fears was as high as 23% in the SaG group,15% in the MiG group,but only 2.5% in the MaG and Ma/MiG groups.Conclusions The single use of mask preconditioning has a better influence than midazolam for increasing mask acceptance during inhalational induction and reducing postoperative mask fear,reducing the anxiety level during induction,improving induction compliance and shortening the total mask time.A mask preconditioning and midazolam combination did not increase mask acceptance during inhalational induction,reduce mask fears postoperatively,improve induction compliance,nor shorten the total mask time.But it can better reduce the anxiety level during

  15. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C5H10O Pentan-3-one (VMSD1212, LB4605_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C5H10O Pentan-3-one (VMSD1212, LB4605_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  16. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C5H10O Pentan-3-one (VMSD1111, LB4603_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C5H10O Pentan-3-one (VMSD1111, LB4603_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  17. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C6H14O Hexan-1-ol (VMSD1212, LB5052_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C6H14O Hexan-1-ol (VMSD1212, LB5052_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  18. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C4H10O Butan-1-ol (VMSD1511, LB5192_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C4H10O Butan-1-ol (VMSD1511, LB5192_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  19. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C3H8O Propan-1-ol (VMSD1212, LB5190_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C3H8O Propan-1-ol (VMSD1212, LB5190_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  20. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C6H14O Hexan-1-ol (VMSD1511, LB5055_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C6H14O Hexan-1-ol (VMSD1511, LB5055_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  1. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C7H16O Heptan-1-ol (VMSD1111, LB5050_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C7H16O Heptan-1-ol (VMSD1111, LB5050_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  2. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C3H8O Propan-1-ol (VMSD1412, LB5193_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C3H8O Propan-1-ol (VMSD1412, LB5193_V)' providing data by calculation of isentropic compressibility from low-pressure density and thermodynamic speed of sound data at variable mole fraction and constant temperature, in the single-phase region(s).

  3. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C4H8O2 1,4-Dioxane (VMSD1211, LB3413_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C4H8O2 1,4-Dioxane (VMSD1211, LB3413_V)' providing data from direct low-pressure dilatometric measurement of molar excess volume at variable mole fraction and constant temperature.

  4. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C3H7NO N-Methylethanamide (VMSD1211, LB4401_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C3H7NO N-Methylethanamide (VMSD1211, LB4401_V)' providing data from direct low-pressure dilatometric measurement of molar excess volume at variable mole fraction and constant temperature.

  5. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C4H10O Butan-1-ol (VMSD1111, LB5188_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C4H10O Butan-1-ol (VMSD1111, LB5188_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  6. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C3H6O2 1,3-Dioxolane (VMSD1212, LB3578_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C3H6O2 1,3-Dioxolane (VMSD1212, LB3578_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  7. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C3H6O Propan-2-one (VMSD1211, LB3410_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C3H6O Propan-2-one (VMSD1211, LB3410_V)' providing data from direct low-pressure dilatometric measurement of molar excess volume at variable mole fraction and constant temperature.

  8. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C4H8O2 Ethyl ethanoate (VMSD1212, LB4146_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C4H8O2 Ethyl ethanoate (VMSD1212, LB4146_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  9. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C6H12O 4-Methylpentan-2-one (VMSD1212, LB4040_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C6H12O 4-Methylpentan-2-one (VMSD1212, LB4040_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  10. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C2H4Cl2 1,2-Dichloroethane (VMSD1212, LB4575_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C2H4Cl2 1,2-Dichloroethane (VMSD1212, LB4575_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  11. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C7H16O Heptan-1-ol (VMSD1212, LB5053_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C7H16O Heptan-1-ol (VMSD1212, LB5053_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  12. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C7H16O Heptan-1-ol (VMSD1511, LB5056_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C7H16O Heptan-1-ol (VMSD1511, LB5056_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  13. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C4H10O Butan-1-ol (VMSD1412, LB5194_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C4H10O Butan-1-ol (VMSD1412, LB5194_V)' providing data by calculation of isentropic compressibility from low-pressure density and thermodynamic speed of sound data at variable mole fraction and constant temperature, in the single-phase region(s).

  14. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C5H12O Pentan-1-ol (VMSD1511, LB5054_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C5H12O Pentan-1-ol (VMSD1511, LB5054_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  15. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C3H8O Propan-1-ol (VMSD1511, LB5191_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C3H8O Propan-1-ol (VMSD1511, LB5191_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  16. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C6H12O 4-Methylpentan-2-one (VMSD1111, LB4039_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C6H12O 4-Methylpentan-2-one (VMSD1111, LB4039_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  17. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C5H12O Pentan-1-ol (VMSD1212, LB5051_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C5H12O Pentan-1-ol (VMSD1212, LB5051_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  18. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C6H14O Hexan-1-ol (VMSD1111, LB5049_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C6H14O Hexan-1-ol (VMSD1111, LB5049_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  19. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C4H8O2 1,4-Dioxane (VMSD1212, LB3579_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C4H8O2 1,4-Dioxane (VMSD1212, LB3579_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  20. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C7H16O Heptan-1-ol (VMSD1412, LB5059_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C7H16O Heptan-1-ol (VMSD1412, LB5059_V)' providing data by calculation of isentropic compressibility from low-pressure density and thermodynamic speed of sound data at variable mole fraction and constant temperature, in the single-phase region(s).

  1. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C4H10O Butan-1-ol (VMSD1212, LB5189_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C4H10O Butan-1-ol (VMSD1212, LB5189_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  2. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C5H12O Pentan-1-ol (VMSD1412, LB5057_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C5H12O Pentan-1-ol (VMSD1412, LB5057_V)' providing data by calculation of isentropic compressibility from low-pressure density and thermodynamic speed of sound data at variable mole fraction and constant temperature, in the single-phase region(s).

  3. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C2H2Cl4 1,1,2,2-Tetrachloroethane (VMSD1212, LB4572_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C2H2Cl4 1,1,2,2-Tetrachloroethane (VMSD1212, LB4572_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  4. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C3H8O Propan-1-ol (VMSD1111, LB5187_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C3H8O Propan-1-ol (VMSD1111, LB5187_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  5. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C6H14O Hexan-1-ol (VMSD1412, LB5058_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C6H14O Hexan-1-ol (VMSD1412, LB5058_V)' providing data by calculation of isentropic compressibility from low-pressure density and thermodynamic speed of sound data at variable mole fraction and constant temperature, in the single-phase region(s).

  6. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C4H8O2 Ethyl ethanoate (VMSD1111, LB4144_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C4H8O2 Ethyl ethanoate (VMSD1111, LB4144_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  7. Volumetric Properties of the Mixture Trichloromethane CHCl3 + C5H12O Pentan-1-ol (VMSD1111, LB5048_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloromethane CHCl3 + C5H12O Pentan-1-ol (VMSD1111, LB5048_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  8. Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8 Toluene (VMSD1511, LB4831_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8 Toluene (VMSD1511, LB4831_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  9. Volumetric Properties of the Mixture Benzene C6H6 + C6H10O Cyclohexanone (VMSD1511, LB4829_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Benzene C6H6 + C6H10O Cyclohexanone (VMSD1511, LB4829_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  10. Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8 Toluene (VMSD1111, LB4820_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8 Toluene (VMSD1111, LB4820_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  11. Volumetric Properties of the Mixture Cyclohexanone C6H10O + C9H12 1,3,5-Trimethylbenzene (VMSD1212, LB4827_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexanone C6H10O + C9H12 1,3,5-Trimethylbenzene (VMSD1212, LB4827_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  12. Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8 Toluene (VMSD1212, LB4826_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8 Toluene (VMSD1212, LB4826_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  13. Volumetric Properties of the Mixture Cyclohexanone C6H10O + C8H10 1,4-Dimethylbenzene (VMSD1212, LB4825_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexanone C6H10O + C8H10 1,4-Dimethylbenzene (VMSD1212, LB4825_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  14. Volumetric Properties of the Mixture Oxolane C4H8O + C6H10O Cyclohexanone (VMSD1212, LB3919_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Oxolane C4H8O + C6H10O Cyclohexanone (VMSD1212, LB3919_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  15. Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H14 Methylcyclohexane (VMSD1112, LB3138_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H14 Methylcyclohexane (VMSD1112, LB3138_V)' providing data by calculation of mass density in the single-phase region(s) from low-pressure dilatometric measurements of the molar excess volume at variable mole fraction and constant temperature.

  16. Volumetric Properties of the Mixture Ethane-1,2-diol C2H6O2 + C6H10O Cyclohexanone (VMSD1111, LB4980_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Ethane-1,2-diol C2H6O2 + C6H10O Cyclohexanone (VMSD1111, LB4980_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  17. Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8O Methyl phenyl ether (VMSD1511, LB4833_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8O Methyl phenyl ether (VMSD1511, LB4833_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  18. Volumetric Properties of the Mixture Ethane-1,2-diol C2H6O2 + C6H10O Cyclohexanone (VMSD1212, LB4988_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Ethane-1,2-diol C2H6O2 + C6H10O Cyclohexanone (VMSD1212, LB4988_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  19. Volumetric Properties of the Mixture Oxolane C4H8O + C6H10O Cyclohexanone (VMSD1111, LB3912_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Oxolane C4H8O + C6H10O Cyclohexanone (VMSD1111, LB3912_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  20. Volumetric Properties of the Mixture Cyclohexanone C6H10O + C8H10 1,4-Dimethylbenzene (VMSD1111, LB4821_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexanone C6H10O + C8H10 1,4-Dimethylbenzene (VMSD1111, LB4821_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  1. Volumetric Properties of the Mixture Cyclohexanone C6H10O + C8H10 1,4-Dimethylbenzene (VMSD1511, LB4830_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexanone C6H10O + C8H10 1,4-Dimethylbenzene (VMSD1511, LB4830_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  2. Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8O Methyl phenyl ether (VMSD1212, LB4828_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8O Methyl phenyl ether (VMSD1212, LB4828_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  3. Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H14 Methylcyclohexane (VMSD1211, LB3134_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H14 Methylcyclohexane (VMSD1211, LB3134_V)' providing data from direct low-pressure dilatometric measurement of molar excess volume at variable mole fraction and constant temperature.

  4. Volumetric Properties of the Mixture Benzene C6H6 + C6H10O Cyclohexanone (VMSD1212, LB4824_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Benzene C6H6 + C6H10O Cyclohexanone (VMSD1212, LB4824_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  5. Volumetric Properties of the Mixture Cyclohexanone C6H10O + C9H12 1,3,5-Trimethylbenzene (VMSD1511, LB4832_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexanone C6H10O + C9H12 1,3,5-Trimethylbenzene (VMSD1511, LB4832_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  6. Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8O Methyl phenyl ether (VMSD1111, LB4823_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8O Methyl phenyl ether (VMSD1111, LB4823_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  7. Volumetric Properties of the Mixture Cyclohexanone C6H10O + C9H12 1,3,5-Trimethylbenzene (VMSD1111, LB4822_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexanone C6H10O + C9H12 1,3,5-Trimethylbenzene (VMSD1111, LB4822_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  8. Volumetric Properties of the Mixture Benzene C6H6 + C6H10O Cyclohexanone (VMSD1111, LB4819_V0029

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Benzene C6H6 + C6H10O Cyclohexanone (VMSD1111, LB4819_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  9. Volumetric Properties of the Mixture Diethyl carbonate C5H10O3 + C7H8 Toluene (VMSD1212, LB5158_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Diethyl carbonate C5H10O3 + C7H8 Toluene (VMSD1212, LB5158_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  10. Volumetric Properties of the Mixture 2-Methoxyethanol C3H8O2 + C5H10O3 Diethyl carbonate (VMSD1111, LB4682_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture 2-Methoxyethanol C3H8O2 + C5H10O3 Diethyl carbonate (VMSD1111, LB4682_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  11. Volumetric Properties of the Mixture 2-Ethoxyethanol C4H10O2 + C5H10O3 Diethyl carbonate (VMSD1212, LB4692_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture 2-Ethoxyethanol C4H10O2 + C5H10O3 Diethyl carbonate (VMSD1212, LB4692_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  12. Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C5H10O3 Diethyl carbonate (VMSD1212, LB5137_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C5H10O3 Diethyl carbonate (VMSD1212, LB5137_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  13. Volumetric Properties of the Mixture 2-Ethoxyethanol C4H10O2 + C5H10O3 Diethyl carbonate (VMSD1111, LB4686_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture 2-Ethoxyethanol C4H10O2 + C5H10O3 Diethyl carbonate (VMSD1111, LB4686_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  14. Volumetric Properties of the Mixture 2-Methoxyethanol C3H8O2 + C5H10O3 Diethyl carbonate (VMSD1212, LB4691_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture 2-Methoxyethanol C3H8O2 + C5H10O3 Diethyl carbonate (VMSD1212, LB4691_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  15. Volumetric Properties of the Mixture Diethyl carbonate C5H10O3 + C7H8 Toluene (VMSD1111, LB5155_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Diethyl carbonate C5H10O3 + C7H8 Toluene (VMSD1111, LB5155_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  16. Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C5H10O3 Diethyl carbonate (VMSD1111, LB5134_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C5H10O3 Diethyl carbonate (VMSD1111, LB5134_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  17. Does "Darkness" Lead to "Happiness"? Masked Suffix Priming Effects

    Science.gov (United States)

    Dunabeitia, Jon Andoni; Perea, Manuel; Carreiras, Manuel

    2008-01-01

    Masked affix priming effects have usually been obtained for words sharing the initial affix (e.g., "reaction"-"REFORM"). However, prior evidence on masked suffix priming effects (e.g., "baker"-"WALKER") is inconclusive. In the present series of masked priming lexical decision experiments, a target word was…

  18. How color, regularity, and good Gestalt determine backward masking.

    Science.gov (United States)

    Sayim, Bilge; Manassi, Mauro; Herzog, Michael

    2014-06-18

    The strength of visual backward masking depends on the stimulus onset asynchrony (SOA) between target and mask. Recently, it was shown that the conjoint spatial layout of target and mask is as crucial as SOA. Particularly, masking strength depends on whether target and mask group with each other. The same is true in crowding where the global spatial layout of the flankers and target-flanker grouping determine crowding strength. Here, we presented a vernier target followed by different flanker configurations at varying SOAs. Similar to crowding, masking of a red vernier target was strongly reduced for arrays of 10 green compared with 10 red flanking lines. Unlike crowding, single green lines flanking the red vernier showed strong masking. Irregularly arranged flanking lines yielded stronger masking than did regularly arranged lines, again similar to crowding. While cuboid flankers reduced crowding compared with single lines, this was not the case in masking. We propose that, first, masking is reduced when the flankers are part of a larger spatial structure. Second, spatial factors counteract color differences between the target and the flankers. Third, complex Gestalts, such as cuboids, seem to need longer processing times to show ungrouping effects as observed in crowding. Strong parallels between masking and crowding suggest similar underlying mechanism; however, temporal factors in masking additionally modulate performance, acting as an additional grouping cue. © 2014 ARVO.

  19. Fabrication of rectangular cross-sectional microchannels on PMMA with a CO2 laser and underwater fabricated copper mask

    Science.gov (United States)

    Prakash, Shashi; Kumar, Subrata

    2017-09-01

    CO2 lasers are commonly used for fabricating polymer based microfluidic devices. Despite several key advantages like low cost, time effectiveness, easy to operate and no requirement of clean room facility, CO2 lasers suffer from few disadvantages like thermal bulging, improper dimensional control, difficulty to produce microchannels of other than Gaussian cross sectional shapes and inclined surface walls. Many microfluidic devices require square or rectangular cross-sections which are difficult to produce using normal CO2 laser procedures. In this work, a thin copper sheet of 40 μm was used as a mask above the PMMA (Polymethyl-methacrylate) substrate while fabricating the microchannels utilizing the raster scanning feature of the CO2 lasers. Microchannels with different width dimensions were fabricated utilizing a CO2 laser in with mask and without-mask conditions. A comparison of both the fabricating process has been made. It was found that microchannels with U shape cross section and rectangular cross-section can efficiently be produced using the with mask technique. In addition to this, this technique can provide perfect dimensional control and better surface quality of the microchannel walls. Such a microchannel fabrication process do not require any post-processing. The fabrication of mask using a nanosecond fiber laser has been discussed in details. An underwater laser fabrication method was adopted to overcome heat related defects in mask preparation. Overall, the technique was found to be easy to adopt and significant improvements were observed in microchannel fabrication.

  20. Model-based mask data preparation (MB-MDP) for ArF and EUV mask process correction

    Science.gov (United States)

    Hagiwara, Kazuyuki; Bork, Ingo; Fujimura, Aki

    2011-05-01

    Using Model-Based Mask Data Preparation (MB-MDP) complex masks with complex sub-resolution assist features (SRAFs) can be written in practical write times with today's leading-edge production VSB machines by allowing overlapping VSB shots. This simulation-based approach reduces shot count by taking advantage of the added flexibility in being able to overlap shots. The freedom to overlap shots, it turns out, also increases mask fidelity, CDU on the mask, and CDU on the wafer by writing sub-100nm mask features more accurately, and with better dose margin. This paper describes how overlapping shots enhance mask and wafer quality for various sub-100nm features on ArF masks. In addition, this paper describes how EUV mask accuracy can be enhanced uniquely by allowing overlapping shots.

  1. Improved volumetric imaging in tomosynthesis using combined multiaxial sweeps.

    Science.gov (United States)

    Gersh, Jacob A; Wiant, David B; Best, Ryan C M; Bennett, Marcus C; Munley, Michael T; King, June D; McKee, Mahta M; Baydush, Alan H

    2010-09-03

    This study explores the volumetric reconstruction fidelity attainable using tomosynthesis with a kV imaging system which has a unique ability to rotate isocentrically and with multiple degrees of mechanical freedom. More specifically, we seek to investigate volumetric reconstructions by combining multiple limited-angle rotational image acquisition sweeps. By comparing these reconstructed images with those of a CBCT reconstruction, we can gauge the volumetric fidelity of the reconstructions. In surgical situations, the described tomosynthesis-based system could provide high-quality volumetric imaging without requiring patient motion, even with rotational limitations present. Projections were acquired using the Digital Integrated Brachytherapy Unit, or IBU-D. A phantom was used which contained several spherical objects of varying contrast. Using image projections acquired during isocentric sweeps around the phantom, reconstructions were performed by filtered backprojection. For each image acquisition sweep configuration, a contrasting sphere is analyzed using two metrics and compared to a gold standard CBCT reconstruction. Since the intersection of a reconstructed sphere and an imaging plane is ideally a circle with an eccentricity of zero, the first metric presented compares the effective eccentricity of intersections of reconstructed volumes and imaging planes. As another metric of volumetric reconstruction fidelity, the volume of one of the contrasting spheres was determined using manual contouring. By comparing these manually delineated volumes with a CBCT reconstruction, we can gauge the volumetric fidelity of reconstructions. The configuration which yielded the highest overall volumetric reconstruction fidelity, as determined by effective eccentricities and volumetric contouring, consisted of two orthogonally-offset 60° L-arm sweeps and a single C-arm sweep which shared a pivot point with one the L-arm sweeps. When compared to a similar configuration that

  2. Aspects of volumetric efficiency measurement for reciprocating engines

    Directory of Open Access Journals (Sweden)

    Pešić Radivoje B.

    2013-01-01

    Full Text Available The volumetric efficiency significantly influences engine output. Both design and dimensions of an intake and exhaust system have large impact on volumetric efficiency. Experimental equipment for measuring of airflow through the engine, which is placed in the intake system, may affect the results of measurements and distort the real picture of the impact of individual structural factors. This paper deals with the problems of experimental determination of intake airflow using orifice plates and the influence of orifice plate diameter on the results of the measurements. The problems of airflow measurements through a multi-process Otto/Diesel engine were analyzed. An original method for determining volumetric efficiency was developed based on in-cylinder pressure measurement during motored operation, and appropriate calibration of the experimental procedure was performed. Good correlation between the results of application of the original method for determination of volumetric efficiency and the results of theoretical model used in research of influence of the intake pipe length on volumetric efficiency was determined. [Acknowledgments. The paper is the result of the research within the project TR 35041 financed by the Ministry of Science and Technological Development of the Republic of Serbia

  3. Volumetric cutaneous microangiography of human skin in vivo by VCSEL swept-source optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Woo June Choi; Wang, R K [University of Washington, Department of Bioengineering, Seattle, Washington 98195 (United States)

    2014-08-31

    We demonstrate volumetric cutaneous microangiography of the human skin in vivo that utilises 1.3-μm high-speed sweptsource optical coherence tomography (SS-OCT). The swept source is based on a micro-electro-mechanical (MEMS)-tunable vertical cavity surface emission laser (VCSEL) that is advantageous in terms of long coherence length over 50 mm and 100 nm spectral bandwidth, which enables the visualisation of microstructures within a few mm from the skin surface. We show that the skin microvasculature can be delineated in 3D SS-OCT images using ultrahigh-sensitive optical microangiography (UHS-OMAG) with a correlation mapping mask, providing a contrast enhanced blood perfusion map with capillary flow sensitivity. 3D microangiograms of a healthy human finger are shown with distinct cutaneous vessel architectures from different dermal layers and even within hypodermis. These findings suggest that the OCT microangiography could be a beneficial biomedical assay to assess cutaneous vascular functions in clinic. (laser biophotonics)

  4. ILT Approach for Compensating 3-D Mask Effects

    Institute of Scientific and Technical Information of China (English)

    XIONG Wei; ZHANG Jinyu; MinChun; WANG Yan; YU Zhiping

    2009-01-01

    As mask features scale to smaller dimensions,the so-called "3-D mask effects" which have mostly been neglected before,become important.This paper properly models the 3-D thick mask effects,and then analyses the object-based inverse lithography technique using a simulated annealing algorithm to determine the mask shapes that produce the desired on-wafer results.Evaluations against rigorous simulations show that the synthesized masks provide good image fidelity up to 0.94,and this approach gives improved accuracy and faster results than existing methods.

  5. The Fastest Saccadic Responses Escape Visual Masking

    DEFF Research Database (Denmark)

    M. Crouzet, Sébastien; Overgaard, Morten; Busch, Niko A.

    2014-01-01

    , which gives access to very early stages of visual processing, target visibility was reduced either by OSM, conventional backward masking, or low stimulus contrast. A general reduction of performance was observed in all three conditions. However, the fastest saccades did not show any sign of interference......Object-substitution masking (OSM) occurs when a briefly presented target in a search array is surrounded by small dots that remain visible after the target disappears. The reduction of target visibility occurring after OSM has been suggested to result from a specific interference with reentrant...... visual processing while the initial feedforward processing is thought to be left intact. We tested a prediction derived from this hypothesis: the fastest responses, being triggered before the beginning of reentrant processing, should escape the OSM interference. In a saccadic choice reaction time task...

  6. Reduced basis method for source mask optimization

    CERN Document Server

    Pomplun, J; Burger, S; Schmidt, F; Tyminski, J; Flagello, D; Toshiharu, N; 10.1117/12.866101

    2010-01-01

    Image modeling and simulation are critical to extending the limits of leading edge lithography technologies used for IC making. Simultaneous source mask optimization (SMO) has become an important objective in the field of computational lithography. SMO is considered essential to extending immersion lithography beyond the 45nm node. However, SMO is computationally extremely challenging and time-consuming. The key challenges are due to run time vs. accuracy tradeoffs of the imaging models used for the computational lithography. We present a new technique to be incorporated in the SMO flow. This new approach is based on the reduced basis method (RBM) applied to the simulation of light transmission through the lithography masks. It provides a rigorous approximation to the exact lithographical problem, based on fully vectorial Maxwell's equations. Using the reduced basis method, the optimization process is divided into an offline and an online steps. In the offline step, a RBM model with variable geometrical param...

  7. Multi-part mask for implanting workpieces

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Aaron P.; Carlson, Charles T.

    2016-05-10

    A multi-part mask has a pattern plate, which includes a planar portion that has the desired aperture pattern to be used during workpiece processing. The multi-part mask also has a mounting frame, which is used to hold the pattern plate. Prior to assembly, the pattern plate has an aligning portion, which has one or more holes through which reusable alignment pins are inserted. These alignment pins enter kinematic joints disposed on the mounting frame, which serve to precisely align the pattern plate to the mounting frame. After the pattern plate has been secured to the mounting frame, the aligning portion can be detached from the pattern plate. The alignment pins can be reused at a later time. In some embodiments, the pattern plate can later be removed from the mounting frame, so that the mounting frame may be reused.

  8. Masking mediated print defect visibility predictor

    Science.gov (United States)

    Jing, Xiaochen; Nachlieli, Hila; Shaked, Doron; Shiffman, Smadar; Allebach, Jan P.

    2012-01-01

    Banding is a well-known artifact produced by printing systems. It usually appears as lines perpendicular to the process direction of the print. Therefore, banding is an important print quality issue which has been analyzed and assessed by many researchers. However, little literature has focused on the study of the masking effect of content for this kind of print quality issue. Compared with other image and print quality research, our work is focused on the print quality of typical documents printed on a digital commercial printing press. In this paper, we propose a Masking Mediated Print Defect Visibility Predictor (MMPDVP) to predict the visibility of defects in the presence of customer content. The parameters of the algorithm are trained from ground-truth images that have been marked by subjects. The MMPDVP could help the press operator decide whether the print quality is acceptable for specific customer requirements. Ultimately, this model can be used to optimize the print-shop workflow.

  9. Latent inhibition in human adults without masking.

    Science.gov (United States)

    Escobar, Martha; Arcediano, Francisco; Miller, Ralph R

    2003-09-01

    Latent inhibition refers to attenuated responding to Cue X observed when the X-outcome pairings are preceded by X-alone presentations. It has proven difficult to obtain in human adults unless the preexposure (X-alone) presentations are embedded within a masking (i.e., distracting) task. The authors hypothesized that the difficulty in obtaining latent inhibition with unmasked tasks is related to the usual training procedures, in which the preexposure and conditioning experiences are separated by a set of instructions. Experiment 1 reports latent inhibition without masking in a task in which preexposure and conditioning occur without interruption. Experiments 2 and 3 demonstrate that this attenuation in responding to target Cue X does not pass a summation test for conditioned inhibition and is context specific, thereby confirming that it is latent inhibition. Experiments 3 and 4 confirm that introducing instructions between preexposure and conditioning disrupts latent inhibition.

  10. Contrast Gain Control Model Fits Masking Data

    Science.gov (United States)

    Watson, Andrew B.; Solomon, Joshua A.; Null, Cynthia H. (Technical Monitor)

    1994-01-01

    We studied the fit of a contrast gain control model to data of Foley (JOSA 1994), consisting of thresholds for a Gabor patch masked by gratings of various orientations, or by compounds of two orientations. Our general model includes models of Foley and Teo & Heeger (IEEE 1994). Our specific model used a bank of Gabor filters with octave bandwidths at 8 orientations. Excitatory and inhibitory nonlinearities were power functions with exponents of 2.4 and 2. Inhibitory pooling was broad in orientation, but narrow in spatial frequency and space. Minkowski pooling used an exponent of 4. All of the data for observer KMF were well fit by the model. We have developed a contrast gain control model that fits masking data. Unlike Foley's, our model accepts images as inputs. Unlike Teo & Heeger's, our model did not require multiple channels for different dynamic ranges.

  11. Extreme ultraviolet lithography: reflective mask technology

    Science.gov (United States)

    Walton, Christopher C.; Kearney, Patrick A.; Mirkarimi, Paul B.; Bowers, Joel M.; Cerjan, Charles J.; Warrick, Abbie L.; Wilhelmsen, Karl C.; Fought, Eric R.; Moore, Craig E.; Larson, Cindy C.; Baker, Sherry L.; Burkhart, Scott C.; Hector, Scott D.

    2000-07-01

    EUVL mask blanks consist of a distributed Bragg reflector made of 6.7 nm-pitch bi-layers of Mo and Si deposited upon a precision Si or glass substrate. The layer deposition process has been optimized for low defects, by application of a vendor-supplied but highly modified ion-beam sputter deposition system. This system is fully automated using SMIF technology to obtain the lowest possible environmental- and handling-added defect levels. Originally designed to coat 150 mm substrates, it was upgraded in July 1999 to 200 mm and has coated runs of over 50 substrates at a time with median added defects > 100 nm below 0.05/cm2. These improvements have resulted from a number of ion-beam sputter deposition system modifications, upgrades, and operational changes, which will be discussed. Success in defect reduction is highly dependent upon defect detection, characterization, and cross- platform positional registration. We have made significant progress in adapting and extending commercial tools to this purpose, and have identified the surface scanner detection limits for different defect classes, and the signatures of false counts and non-printable scattering anomalies on the mask blank. We will present key results and how they have helped reduce added defects. The physics of defect reduction and mitigation is being investigated by a program on multilayer growth over deliberately placed perturbations (defects) of varying size. This program includes modeling of multilayer growth and modeling of defect printability. We developed a technique for depositing uniformly sized gold spheres on EUVL substrates, and have studied the suppression of the perturbations during multilayer growth under varying conditions. This work is key to determining the lower limit of critical defect size for EUV Lithography. We present key aspects of this work. We will summarize progress in all aspects of EUVL mask blank development, and present detailed results on defect reduction and mask blank

  12. Nablus mask-like facial syndrome

    DEFF Research Database (Denmark)

    Allanson, Judith; Smith, Amanda; Hare, Heather

    2012-01-01

    Nablus mask-like facial syndrome (NMLFS) has many distinctive phenotypic features, particularly tight glistening skin with reduced facial expression, blepharophimosis, telecanthus, bulky nasal tip, abnormal external ear architecture, upswept frontal hairline, and sparse eyebrows. Over the last few...... heterozygous deletions significantly overlapping the region associated with NMLFS. Notably, while one mother and child were said to have mild tightening of facial skin, none of these individuals exhibited reduced facial expression or the classical facial phenotype of NMLFS. These findings indicate...

  13. Masking a Compact AES S-box

    Science.gov (United States)

    2007-08-07

    Lecture Notes in Computer Science , pages 309–18, 2001. [2] D. Canright. A very compact S-box for AES. In CHES2005, volume 3659 of Lecture Notes in Computer Science , pages...et al., editor, CHES2003, volume 2779 of Lecture Notes in Computer Science , pages 319–333. Springer, 2003. [4] Jovan Dj. Golić and Christophe Tymen...Multiplicative masking and power analysis of AES. In CHES 2002, volume 2523 of Lecture

  14. Extreme Ultraviolet Lithography - Reflective Mask Technology

    Energy Technology Data Exchange (ETDEWEB)

    Walton, C.C.; Kearney, P.A.; Mirkarimi, P.B.; Bowers, J.M.; Cerjan, C.; Warrick, A.L.; Wilhelmsen, K.; Fought, E.; Moore, C.; Larson, C.; Baker, S.; Burkhart, S.C.; Hector, S.D.

    2000-05-09

    EUVL mask blanks consist of a distributed Bragg reflector made of 6.7nm-pitch bi-layers of MO and Si deposited upon a precision Si or glass substrate. The layer deposition process has been optimized for low defects, by application of a vendor-supplied but highly modified ion-beam sputter deposition system. This system is fully automated using SMIF technology to obtain the lowest possible environmental- and handling-added defect levels. Originally designed to coat 150mm substrates, it was upgraded in July, 1999 to 200 mm and has coated runs of over 50 substrates at a time with median added defects >100nm below 0.05/cm{sup 2}. These improvements have resulted from a number of ion-beam sputter deposition system modifications, upgrades, and operational changes, which will be discussed. Success in defect reduction is highly dependent upon defect detection, characterization, and cross-platform positional registration. We have made significant progress in adapting and extending commercial tools to this purpose, and have identified the surface scanner detection limits for different defect classes, and the signatures of false counts and non-printable scattering anomalies on the mask blank. We will present key results and how they have helped reduce added defects. The physics of defect reduction and mitigation is being investigated by a program on multilayer growth over deliberately placed perturbations (defects) of varying size. This program includes modeling of multilayer growth and modeling of defect printability. We developed a technique for depositing uniformly sized gold spheres on EUVL substrates, and have studied the suppression of the perturbations during multilayer growth under varying conditions. This work is key to determining the lower limit of critical defect size for EUV Lithography. We present key aspects of this work. We will summarize progress in all aspects of EUVL mask blank development, and present detailed results on defect reduction and mask blank

  15. Mask image position correction for double patterning lithography

    Science.gov (United States)

    Saito, Masato; Itoh, Masamitsu; Ikenaga, Osamu; Ishigo, Kazutaka

    2008-05-01

    Application of double patterning technique has been discussed for lithography of HP 3X nm device generation. In this case, overlay budget for lithography becomes so hard that it is difficult to achieve it with only improvement of photomask's position accuracy. One of the factors of overlay error will be induced by distortion of photomask after chucking on the mask stage of exposure tool, because photomasks are bended by the force of vacuum chucking. Recently, mask flatness prediction technique was developed. This technique is simulating the surface shape of mask when it is on the mask stage by using the flatness data of free-standing state blank and the information of mask chucking stage. To use this predicted flatness data, it is possible to predict a pattern position error after exposed and it is possible to correct it on the photomask. A blank supplier developed the flatness data transfer system to mask vender. Every blanks are distinguished individually by 2D barcode mark on blank which including serial number. The flatness data of each blank is linked with this serial number, and mask vender can use this serial number as a key code to mask flatness data. We developed mask image position correction system by using 2D barcode mark linked to predicted flatness data, and position accuracy assurance system for these masks. And with these systems, we made some masks actually.

  16. Dose masking feature for BNCT radiotherapy planning

    Science.gov (United States)

    Cook, Jeremy L.; Wessol, Daniel E.; Wheeler, Floyd J.

    2000-01-01

    A system for displaying an accurate model of isodoses to be used in radiotherapy so that appropriate planning can be performed prior to actual treatment on a patient. The nature of the simulation of the radiotherapy planning for BNCT and Fast Neutron Therapy, etc., requires that the doses be computed in the entire volume. The "entire volume" includes the patient and beam geometries as well as the air spaces in between. Isodoses derived from the computed doses will therefore extend into the air regions between the patient and beam geometries and thus depict the unrealistic possibility that radiation deposition occurs in regions containing no physical media. This problem is solved by computing the doses for the entire geometry and then masking the physical and air regions along with the isodose contours superimposed over the patient image at the corresponding plane. The user is thus able to mask out (remove) the contour lines from the unwanted areas of the image by selecting the appropriate contour masking region from the raster image.

  17. A high volume, high throughput volumetric sorption analyzer

    Science.gov (United States)

    Soo, Y. C.; Beckner, M.; Romanos, J.; Wexler, C.; Pfeifer, P.; Buckley, P.; Clement, J.

    2011-03-01

    In this talk we will present an overview of our new Hydrogen Test Fixture (HTF) constructed by the Midwest Research Institute for The Alliance for Collaborative Research in Alternative Fuel Technology to test activated carbon monoliths for hydrogen gas storage. The HTF is an automated, computer-controlled volumetric instrument for rapid screening and manipulation of monoliths under an inert atmosphere (to exclude degradation of carbon from exposure to oxygen). The HTF allows us to measure large quantity (up to 500 g) of sample in a 0.5 l test tank, making our results less sensitive to sample inhomogeneity. The HTF can measure isotherms at pressures ranging from 1 to 300 bar at room temperature. For comparison, other volumetric instruments such as Hiden Isochema's HTP-1 Volumetric Analyser can only measure carbon samples up to 150 mg at pressures up to 200 bar. Work supported by the US DOD Contract # N00164-08-C-GS37.

  18. Volumetric (3D) compressive sensing spectral domain optical coherence tomography.

    Science.gov (United States)

    Xu, Daguang; Huang, Yong; Kang, Jin U

    2014-11-01

    In this work, we proposed a novel three-dimensional compressive sensing (CS) approach for spectral domain optical coherence tomography (SD OCT) volumetric image acquisition and reconstruction. Instead of taking a spectral volume whose size is the same as that of the volumetric image, our method uses a sub set of the original spectral volume that is under-sampled in all three dimensions, which reduces the amount of spectral measurements to less than 20% of that required by the Shan-non/Nyquist theory. The 3D image is recovered from the under-sampled spectral data dimension-by-dimension using the proposed three-step CS reconstruction strategy. Experimental results show that our method can significantly reduce the sampling rate required for a volumetric SD OCT image while preserving the image quality.

  19. Direct 3D printed shadow mask on Silicon

    Science.gov (United States)

    Rahiminejad, S.; Köhler, E.; Enoksson, P.

    2016-10-01

    A 3D printed shadow mask method is presented. The 3D printer prints ABS plastic directly on the wafer, thus avoiding gaps between the wafer and the shadow mask, and deformation during the process. The wafer together with the 3D printed shadow mask was sputtered with Ti and Au. The shadow mask was released by immersion in acetone. The sputtered patches through the shadow mask were compared to the opening of the 3D printed shadow mask and the design dimensions. The patterned Au patches were larger than the printed apertures, however they were smaller than the design widths. The mask was printed in 4 min, the cost is less than one euro cent, and the process is a low temperature process suitable for temperature sensitive components.

  20. Mask design rules (45 nm): time for standardization

    Science.gov (United States)

    Mason, Mark; Progler, Christopher J.; Martin, Patrick; Ham, Young-Mog; Dillon, Brian; Pack, Robert; Heins, Mitch; Gookassian, John; Garcia, John; Boksha, Victor

    2005-11-01

    Time-to-mask (ttm) has been growing exponentially in the subwavelength era with the increased application of advanced RET's (Resolution Enhancement Technology). Not only are a greater number of design/mask layers impacted but more-and-more layers also have more severe restrictions on critical dimension uniformity (CDU) despite operating at a very low k1 factors necessitating rigorous but practical tolerancing. Furthermore, designs are also more complex, may be built up from blocks spanning different design styles, and occupy increasingly-large Rayleigh field areas. Given these factors and scales, it's no wonder that the cycle time for verification of a design following RET, is growing however it is doing so exponentially and that this is a critical factor impeding ttm. Until an unambiguously interprable and standard Mask Design Rule (MaskDR) set is created, neither the designer nor the mask supplier can reliably verify manufacturability of the mask for the simple reason that ambiguity and inter-rule conflict are at the source of the problem and that the problem increasingly requires cooperation spanning a large ecosystem of tool, IP, and mask suppliers all needing to essentially speak the same language. Since the 130 nm node, Texas Instruments has enforced a strict set of mask rule checks (MRCs) in their mask data preparation (MDP) flow based on MaskDRs negotiated with their mask suppliers. The purpose of this effort has been to provide an a-priori guarantee that the data shipped to the mask shop can be used to manufacture a mask reliably and with high yield both from a mask standpoint and from the silicon standpoint. As has been reported earlier, mask manufacturing rules are usually determined from assumed or experimentally acquired/validated mask-manufacturing limits. These rules are then applied during RET/MDP data treatment to guide and/or limit pattern correction strategies. With increasing RET and low-k1 lithography challenges, the importance of MRCs

  1. Contact printed masks for 3D microfabrication in negative resists

    DEFF Research Database (Denmark)

    Häfliger, Daniel; Boisen, Anja

    2005-01-01

    We present a process based on contact printed shadow masks for three dimensional microfabrication of soft and sensitive overhanging membranes in SU-8. A metal mask is transferred onto unexposed SU-8 from an elastomer stamp made of polydimethylsiloxane. This mask is subsequently embedded into the ......We present a process based on contact printed shadow masks for three dimensional microfabrication of soft and sensitive overhanging membranes in SU-8. A metal mask is transferred onto unexposed SU-8 from an elastomer stamp made of polydimethylsiloxane. This mask is subsequently embedded...... into the negative resist to protect buried material from UV-exposure. Unlike direct evaporation-deposition of a mask onto the SU-8, printing avoids high stress and radiation, thus preventing resist wrinkling and prepolymerization. We demonstrate effective monolithic fabrication of soft, 4-μm thick and 100-μm long...

  2. Multiple sparse volumetric priors for distributed EEG source reconstruction.

    Science.gov (United States)

    Strobbe, Gregor; van Mierlo, Pieter; De Vos, Maarten; Mijović, Bogdan; Hallez, Hans; Van Huffel, Sabine; López, José David; Vandenberghe, Stefaan

    2014-10-15

    We revisit the multiple sparse priors (MSP) algorithm implemented in the statistical parametric mapping software (SPM) for distributed EEG source reconstruction (Friston et al., 2008). In the present implementation, multiple cortical patches are introduced as source priors based on a dipole source space restricted to a cortical surface mesh. In this note, we present a technique to construct volumetric cortical regions to introduce as source priors by restricting the dipole source space to a segmented gray matter layer and using a region growing approach. This extension allows to reconstruct brain structures besides the cortical surface and facilitates the use of more realistic volumetric head models including more layers, such as cerebrospinal fluid (CSF), compared to the standard 3-layered scalp-skull-brain head models. We illustrated the technique with ERP data and anatomical MR images in 12 subjects. Based on the segmented gray matter for each of the subjects, cortical regions were created and introduced as source priors for MSP-inversion assuming two types of head models. The standard 3-layered scalp-skull-brain head models and extended 4-layered head models including CSF. We compared these models with the current implementation by assessing the free energy corresponding with each of the reconstructions using Bayesian model selection for group studies. Strong evidence was found in favor of the volumetric MSP approach compared to the MSP approach based on cortical patches for both types of head models. Overall, the strongest evidence was found in favor of the volumetric MSP reconstructions based on the extended head models including CSF. These results were verified by comparing the reconstructed activity. The use of volumetric cortical regions as source priors is a useful complement to the present implementation as it allows to introduce more complex head models and volumetric source priors in future studies.

  3. Volumetric measurements of a spatially growing dust acoustic wave

    Science.gov (United States)

    Williams, Jeremiah D.

    2012-11-01

    In this study, tomographic particle image velocimetry (tomo-PIV) techniques are used to make volumetric measurements of the dust acoustic wave (DAW) in a weakly coupled dusty plasma system in an argon, dc glow discharge plasma. These tomo-PIV measurements provide the first instantaneous volumetric measurement of a naturally occurring propagating DAW. These measurements reveal over the measured volume that the measured wave mode propagates in all three spatial dimensional and exhibits the same spatial growth rate and wavelength in each spatial direction.

  4. Volumetric measurements of a spatially growing dust acoustic wave

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Jeremiah D. [Physics Department, Wittenberg University, Springfield, Ohio 45504 (United States)

    2012-11-15

    In this study, tomographic particle image velocimetry (tomo-PIV) techniques are used to make volumetric measurements of the dust acoustic wave (DAW) in a weakly coupled dusty plasma system in an argon, dc glow discharge plasma. These tomo-PIV measurements provide the first instantaneous volumetric measurement of a naturally occurring propagating DAW. These measurements reveal over the measured volume that the measured wave mode propagates in all three spatial dimensional and exhibits the same spatial growth rate and wavelength in each spatial direction.

  5. Volumetric Pricing of Agricultural Water Supplies: A Case Study

    Science.gov (United States)

    Griffin, Ronald C.; Perry, Gregory M.

    1985-07-01

    Models of water consumption by rice producers are conceptualized and then estimated using cross-sectional time series data obtained from 16 Texas canal operators for the years 1977-1982. Two alternative econometric models demonstrate that both volumetric and flat rate water charges are strongly and inversely related to agricultural water consumption. Nonprice conservation incentives accompanying flat rates are hypothesized to explain the negative correlation of flat rate charges and water consumption. Application of these results suggests that water supply organizations in the sample population converting to volumetric pricing will generally reduce water consumption.

  6. Size-based emphysema cluster analysis on low attenuation area in 3D volumetric CT: comparison with pulmonary functional test

    Science.gov (United States)

    Lee, Minho; Kim, Namkug; Lee, Sang Min; Seo, Joon Beom; Oh, Sang Young

    2015-03-01

    To quantify low attenuation area (LAA) of emphysematous regions according to cluster size in 3D volumetric CT data of chronic obstructive pulmonary disease (COPD) patients and to compare these indices with their pulmonary functional test (PFT). Sixty patients with COPD were scanned by a more than 16-multi detector row CT scanner (Siemens Sensation 16 and 64) within 0.75mm collimation. Based on these LAA masks, a length scale analysis to estimate each emphysema LAA's size was performed as follows. At first, Gaussian low pass filter from 30mm to 1mm kernel size with 1mm interval on the mask was performed from large to small size, iteratively. Centroid voxels resistant to the each filter were selected and dilated by the size of the kernel, which was regarded as the specific size emphysema mask. The slopes of area and number of size based LAA (slope of semi-log plot) were analyzed and compared with PFT. PFT parameters including DLco, FEV1, and FEV1/FVC were significantly (all p-value< 0.002) correlated with the slopes (r-values; -0.73, 0.54, 0.69, respectively) and EI (r-values; -0.84, -0.60, -0.68, respectively). In addition, the D independently contributed regression for FEV1 and FEV1/FVC (adjust R sq. of regression study: EI only, 0.70, 0.45; EI and D, 0.71, 0.51, respectively). By the size based LAA segmentation and analysis, we evaluated the Ds of area, number, and distribution of size based LAA, which would be independent factors for predictor of PFT parameters.

  7. Numerical analysis of radiation propagation in innovative volumetric receivers based on selective laser melting techniques

    Science.gov (United States)

    Alberti, Fabrizio; Santiago, Sergio; Roccabruna, Mattia; Luque, Salvador; Gonzalez-Aguilar, Jose; Crema, Luigi; Romero, Manuel

    2016-05-01

    Volumetric absorbers constitute one of the key elements in order to achieve high thermal conversion efficiencies in concentrating solar power plants. Regardless of the working fluid or thermodynamic cycle employed, design trends towards higher absorber output temperatures are widespread, which lead to the general need of components of high solar absorptance, high conduction within the receiver material, high internal convection, low radiative and convective heat losses and high mechanical durability. In this context, the use of advanced manufacturing techniques, such as selective laser melting, has allowed for the fabrication of intricate geometries that are capable of fulfilling the previous requirements. This paper presents a parametric design and analysis of the optical performance of volumetric absorbers of variable porosity conducted by means of detailed numerical ray tracing simulations. Sections of variable macroscopic porosity along the absorber depth were constructed by the fractal growth of single-cell structures. Measures of performance analyzed include optical reflection losses from the absorber front and rear faces, penetration of radiation inside the absorber volume, and radiation absorption as a function of absorber depth. The effects of engineering design parameters such as absorber length and wall thickness, material reflectance and porosity distribution on the optical performance of absorbers are discussed, and general design guidelines are given.

  8. The masked priming toolbox: an open-source MATLAB toolbox for masked priming researchers.

    Science.gov (United States)

    Wilson, Andrew D; Tresilian, James; Schlaghecken, Friederike

    2011-03-01

    The Masked Priming Toolbox is an open-source collection of MATLAB functions that utilizes the free third-party PsychToolbox-3 (PTB3: Brainard, Spatial Vision, 10, 433-436, 1997; Kleiner, Brainard & Pelli, Perception, 36, 2007; Pelli, Spatial Vision, 10, 437-442, 1997). It is designed to allow a researcher to run masked (and unmasked) priming experiments using a variety of response devices (including keyboards, graphics tablets and force transducers). Very little knowledge of MATLAB is required; experiments are generated by creating a text file with the required parameters, and raw and analyzed data are output to Excel (as well as MATLAB) files for further analysis. The toolbox implements a variety of stimuli for use as primes and targets, as well as a variety of masks. Timing, size, location, and orientation of stimuli are all parameterizable. The code is open-source and made available on the Web under a Creative Commons License.

  9. Noninvasive CPAP with face mask: comparison among new air-entrainment masks and the Boussignac valve.

    Science.gov (United States)

    Mistraletti, Giovanni; Giacomini, Matteo; Sabbatini, Giovanni; Pinciroli, Riccardo; Mantovani, Elena S; Umbrello, Michele; Palmisano, Debora; Formenti, Paolo; Destrebecq, Anne L L; Iapichino, Gaetano

    2013-02-01

    The performances of 2 noninvasive CPAP systems (high flow and low flow air-entrainment masks) were compared to the Boussignac valve in 3 different scenarios. Scenario 1: pneumatic lung simulator with a tachypnea pattern (tidal volume 800 mL at 40 breaths/min). Scenario 2: Ten healthy subjects studied during tidal breaths and tachypnea. Scenario 3: Twenty ICU subjects enrolled for a noninvasive CPAP session. Differences between set and effective CPAP level and F(IO(2)), as well as the lowest airway pressure and the pressure swing around the imposed CPAP level, were analyzed. The lowest airway pressure and swing were correlated to the pressure-time product (area of the airway pressure curve below the CPAP level) measured with the simulator. P(aO(2)) was a subject's further performance index. Lung simulator: Boussignac F(IO(2)) was 0.54, even if supplied with pure oxygen. The air-entrainment masks had higher swing than the Boussignac (P = .007). Pressure-time product correlated better with pressure swing (Spearman correlation coefficient [ρ] = 0.97) than with lowest airway pressure (ρ = 0.92). In healthy subjects, the high-flow air-entrainment mask showed lower difference between set and effective F(IO(2)) (P high-flow mask had lower swing than the Boussignac valve (P = .03) with similar P(aO(2)) increase. High-flow air-entrainment mask showed the best performance in human subjects. During high flow demand, the Boussignac valve delivered lower than expected F(IO(2)) and showed higher dynamic hyper-pressurization than the air-entrainment masks. © 2013 Daedalus Enterprises.

  10. Strategy optimization for mask rule check in wafer fab

    Science.gov (United States)

    Yang, Chuen Huei; Lin, Shaina; Lin, Roger; Wang, Alice; Lee, Rachel; Deng, Erwin

    2015-07-01

    Photolithography process is getting more and more sophisticated for wafer production following Moore's law. Therefore, for wafer fab, consolidated and close cooperation with mask house is a key to achieve silicon wafer success. However, generally speaking, it is not easy to preserve such partnership because many engineering efforts and frequent communication are indispensable. The inattentive connection is obvious in mask rule check (MRC). Mask houses will do their own MRC at job deck stage, but the checking is only for identification of mask process limitation including writing, etching, inspection, metrology, etc. No further checking in terms of wafer process concerned mask data errors will be implemented after data files of whole mask are composed in mask house. There are still many potential data errors even post-OPC verification has been done for main circuits. What mentioned here are the kinds of errors which will only occur as main circuits combined with frame and dummy patterns to form whole reticle. Therefore, strategy optimization is on-going in UMC to evaluate MRC especially for wafer fab concerned errors. The prerequisite is that no impact on mask delivery cycle time even adding this extra checking. A full-mask checking based on job deck in gds or oasis format is necessary in order to secure acceptable run time. Form of the summarized error report generated by this checking is also crucial because user friendly interface will shorten engineers' judgment time to release mask for writing. This paper will survey the key factors of MRC in wafer fab.

  11. Gender difference in mask ventilation training of anesthesia residents.

    Science.gov (United States)

    Koga, Tomomichi; Kawamoto, Masashi

    2009-05-01

    To investigate whether gender difference has an effect on an anesthesia resident's ability to perform successful mask ventilation. Cohort study. Surgical operation theater of a university-affiliated hospital. 839 ASA physical status I, II, and III patients undergoing general anesthesia performed by residents. Mask ventilation was performed by 21 different anesthesia residents. Difficult mask ventilation was defined as the inability of an unassisted resident to maintain oxygen saturation, significant gas flow leakage beneath the face mask, need to increase gas flow, no perceptible chest movement, assistance required using a two-handed mask ventilation technique, or use of the oxygen flush valve more than twice. Instances of difficult mask ventilation were observed in 210 patients (25.0%), though all were adequately ventilated with a face mask. Difficult mask ventilation was observed significantly more often with female (29.8%) than male (20.0%) residents. Residents' gender was shown to be an independent risk factor for difficult mask ventilation. Gender difference has an effect on the mask ventilation learning process, as it was more difficult for female residents to provide a tight air seal in the early stage of training.

  12. Mask data volume: historical perspective and future requirements

    Science.gov (United States)

    Spence, Chris; Goad, Scott; Buck, Peter; Gladhill, Richard; Cinque, Russell; Preuninger, Jürgen; Griesinger, Üwe; Blöcker, Martin

    2006-06-01

    Mask data file sizes are increasing as we move from technology generation to generation. The historical 30% linear shrink every 2-3 years that has been called Moore's Law, has driven a doubling of the transistor budget and hence feature count. The transition from steppers to step-and-scan tools has increased the area of the mask that needs to be patterned. At the 130nm node and below, Optical Proximity Correction (OPC) has become prevalent, and the edge fragmentation required to implement OPC leads to an increase in the number of polygons required to define the layout. Furthermore, Resolution Enhancement Techniques (RETs) such as Sub-Resolution Assist Features (SRAFs) or tri-tone Phase Shift Masks (PSM) require additional features to be defined on the mask which do not resolve on the wafer, further increasing masks volumes. In this paper we review historical data on mask file sizes for microprocessor, DRAM and Flash memory designs. We consider the consequences of this increase in file size on Mask Data Prep (MDP) activities, both within the Integrated Device Manufacturer (IDM) and Mask Shop, namely: computer resources, storage and networks (for file transfer). The impact of larger file sizes on mask writing times is also reviewed. Finally we consider, based on the trends that have been observed over the last 5 technology nodes, what will be required to maintain reasonable MDP and mask manufacturing cycle times.

  13. Source mask optimization using 3D mask and compact resist models

    Science.gov (United States)

    El-Sewefy, Omar; Chen, Ao; Lafferty, Neal; Meiring, Jason; Chung, Angeline; Foong, Yee Mei; Adam, Kostas; Sturtevant, John

    2016-03-01

    Source Mask Optimization (SMO) has played an important role in technology setup and ground rule definition since the 2x nm technology node. While improvements in SMO algorithms have produced higher quality and more consistent results, the accuracy of the overall solution is critically linked to how faithfully the entire patterning system is modeled, from mask down to substrate. Fortunately, modeling technology has continued to advance to provide greater accuracy in modeling 3D mask effects, 3D resist behavior, and resist phenomena. Specifically, the Domain Decomposition Method (DDM) approximates the 3D mask response as a superposition of edge-responses.1 The DDM can be applied to a sectorized illumination source based on Hybrid-Hopkins Abbe approximation,2 which provides an accurate and fast solution for the modeling of 3D mask effects and has been widely used in OPC modeling. The implementation of DDM in the SMO flow, however, is more challenging because the shape and intensity of the source, unlike the case in OPC modeling, is evolving along the optimization path. As a result, it gets more complicated. It is accepted that inadequate pupil sectorization results in reduced accuracy in any application, however in SMO the required uniformity and density of pupil sampling is higher than typical OPC and modeling cases. In this paper, we describe a novel method to implement DDM in the SMO flow. The source sectorization is defined by following the universal pixel sizes used in SMO. Fast algorithms are developed to enable computation of edge signals from each fine pixel of the source. In this case, each pixel has accurate information to describe its contribution to imaging and the overall objective function. A more continuous angular spectrum from 3D mask scattering is thus captured, leading to accurate modeling of 3D mask effects throughout source optimization. This method is applied on a 2x nm middle-of-line layer test case. The impact of the 3D mask model accuracy on

  14. Women and trauma: transformation of self through mask making and action-based mask work

    OpenAIRE

    Birch, June Elizabeth

    2011-01-01

    This secondary analysis study examined the stories of six women who were impacted by trauma. These women attended a ten-week counselling group in which they participated in the construction of masks and in action-based mask work as a means of expressing and working through their trauma experiences. Based on a constructivist approach, the methodology employed in this study was a narrative inquiry centred on the work of Lieblich, Tuval-Mashiach, and Zilber (1998). The data were generated from o...

  15. Practical use of the repeating patterns in mask writing

    Science.gov (United States)

    Shoji, Masahiro; Inoue, Tadao; Yamabe, Masaki

    2010-03-01

    In May 2006, the Mask Design, Drawing, and Inspection Technology Research Department (Mask D2I) at the Association of Super-Advanced Electronics Technologies (ASET) launched a 4-year program for reducing mask manufacturing cost and TAT by concurrent optimization of MDP, mask writing, and mask inspection. As one of the tasks being pursued at the Mask Design Data Technology Research Laboratory, we have evaluated the effect of reducing the drawing shot counts by utilizing the repeating patterns, and showed positive impact on mask making by using CP drawing. During the past four years, we have developed a software to extract repeating patterns from fractured OPCed mask data which can be used to minimize the shot counts. In this evaluation, we have used an actual device production data obtained from the member companies of MaskD2I. To the extraction software we added new functions for extracting common repeating patterns from a set of multiple masks, and studied how this step can reduce the counts in comparison to the shot counts required during the conventional mask writing techniques. We have also developed software that uses the extraction result of repeating patterns and prepares drawing-data for the MCC/CP drawing system, which has been developed at the Mask Writing Equipment Technology Research Laboratory. With this software, we have simulated EB proximity effect on CP writing and examined how it affect the shot count reduction where CP shots with large CD errors are to be divided into VSB shots. In this paper, we will report the evaluation result of the practical application of repeating patterns in mask writing with this software.

  16. Space-Time Transfinite Interpolation of Volumetric Material Properties.

    Science.gov (United States)

    Sanchez, Mathieu; Fryazinov, Oleg; Adzhiev, Valery; Comninos, Peter; Pasko, Alexander

    2015-02-01

    The paper presents a novel technique based on extension of a general mathematical method of transfinite interpolation to solve an actual problem in the context of a heterogeneous volume modelling area. It deals with time-dependent changes to the volumetric material properties (material density, colour, and others) as a transformation of the volumetric material distributions in space-time accompanying geometric shape transformations such as metamorphosis. The main idea is to represent the geometry of both objects by scalar fields with distance properties, to establish in a higher-dimensional space a time gap during which the geometric transformation takes place, and to use these scalar fields to apply the new space-time transfinite interpolation to volumetric material attributes within this time gap. The proposed solution is analytical in its nature, does not require heavy numerical computations and can be used in real-time applications. Applications of this technique also include texturing and displacement mapping of time-variant surfaces, and parametric design of volumetric microstructures.

  17. In Vivo Real Time Volumetric Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Rasmussen, Morten Fischer; Brandt, Andreas Hjelm;

    2015-01-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological...

  18. Automatic segmentation of pulmonary segments from volumetric chest CT scans.

    NARCIS (Netherlands)

    Rikxoort, E.M. van; Hoop, B. de; Vorst, S. van de; Prokop, M.; Ginneken, B. van

    2009-01-01

    Automated extraction of pulmonary anatomy provides a foundation for computerized analysis of computed tomography (CT) scans of the chest. A completely automatic method is presented to segment the lungs, lobes and pulmonary segments from volumetric CT chest scans. The method starts with lung segmenta

  19. Volumetric T-spline Construction Using Boolean Operations

    Science.gov (United States)

    2013-07-01

    15213, USA 2 Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA 3 Department of Civil and...and S. Yau. Volumetric harmonic map. Communications in Information and Systems, 3(3):191–202, 2003. 12. C.A.R. Guerra . Simultaneous untangling and

  20. Volumetric motion quantification by 3D tissue phase mapped CMR

    Directory of Open Access Journals (Sweden)

    Lutz Anja

    2012-10-01

    Full Text Available Abstract Background The objective of this study was the quantification of myocardial motion from 3D tissue phase mapped (TPM CMR. Recent work on myocardial motion quantification by TPM has been focussed on multi-slice 2D acquisitions thus excluding motion information from large regions of the left ventricle. Volumetric motion assessment appears an important next step towards the understanding of the volumetric myocardial motion and hence may further improve diagnosis and treatments in patients with myocardial motion abnormalities. Methods Volumetric motion quantification of the complete left ventricle was performed in 12 healthy volunteers and two patients applying a black-blood 3D TPM sequence. The resulting motion field was analysed regarding motion pattern differences between apical and basal locations as well as for asynchronous motion pattern between different myocardial segments in one or more slices. Motion quantification included velocity, torsion, rotation angle and strain derived parameters. Results All investigated motion quantification parameters could be calculated from the 3D-TPM data. Parameters quantifying hypokinetic or asynchronous motion demonstrated differences between motion impaired and healthy myocardium. Conclusions 3D-TPM enables the gapless volumetric quantification of motion abnormalities of the left ventricle, which can be applied in future application as additional information to provide a more detailed analysis of the left ventricular function.

  1. Video-rate volumetric optical coherence tomography-based microangiography

    Science.gov (United States)

    Baran, Utku; Wei, Wei; Xu, Jingjiang; Qi, Xiaoli; Davis, Wyatt O.; Wang, Ruikang K.

    2016-04-01

    Video-rate volumetric optical coherence tomography (vOCT) is relatively young in the field of OCT imaging but has great potential in biomedical applications. Due to the recent development of the MHz range swept laser sources, vOCT has started to gain attention in the community. Here, we report the first in vivo video-rate volumetric OCT-based microangiography (vOMAG) system by integrating an 18-kHz resonant microelectromechanical system (MEMS) mirror with a 1.6-MHz FDML swept source operating at ˜1.3 μm wavelength. Because the MEMS scanner can offer an effective B-frame rate of 36 kHz, we are able to engineer vOMAG with a video rate up to 25 Hz. This system was utilized for real-time volumetric in vivo visualization of cerebral microvasculature in mice. Moreover, we monitored the blood perfusion dynamics during stimulation within mouse ear in vivo. We also discussed this system's limitations. Prospective MEMS-enabled OCT probes with a real-time volumetric functional imaging capability can have a significant impact on endoscopic imaging and image-guided surgery applications.

  2. Generic hierarchical engine for mask data preparation

    Science.gov (United States)

    Kalus, Christian K.; Roessl, Wolfgang; Schnitker, Uwe; Simecek, Michal

    2002-07-01

    Electronic layouts are usually flattened on their path from the hierarchical source downstream to the wafer. Mask data preparation has certainly been identified as a severe bottleneck since long. Data volumes are not only doubling every year along the ITRS roadmap. With the advent of optical proximity correction and phase-shifting masks data volumes are escalating up to non-manageable heights. Hierarchical treatment is one of the most powerful means to keep memory and CPU consumption in reasonable ranges. Only recently, however, has this technique acquired more public attention. Mask data preparation is the most critical area calling for a sound infrastructure to reduce the handling problem. Gaining more and more attention though, are other applications such as large area simulation and manufacturing rule checking (MRC). They all would profit from a generic engine capable to efficiently treat hierarchical data. In this paper we will present a generic engine for hierarchical treatment which solves the major problem, steady transitions along cell borders. Several alternatives exist how to walk through the hierarchy tree. They have, to date, not been thoroughly investigated. One is a bottom-up attempt to treat cells starting with the most elementary cells. The other one is a top-down approach which lends itself to creating a new hierarchy tree. In addition, since the variety, degree of hierarchy and quality of layouts extends over a wide range a generic engine has to take intelligent decisions when exploding the hierarchy tree. Several applications will be shown, in particular how far the limits can be pushed with the current hierarchical engine.

  3. Early diagnosis of masked hypertension in adolescents

    Directory of Open Access Journals (Sweden)

    Ledyaev M.Ya.

    2016-12-01

    Full Text Available Objective: to improve diagnosis of latent arterial hypertension by studying the characteristics of hemodynamics and the rigidity of the vascular walls of the arteries in adolescents with this phenomenon. Material and Methods. The study involved 147 children aged 11 to 18 years who did not have heart rhythm disorders, congenital heart defects, endocrine diseases and diseases of the kidneys. They were divided into three groups on the basis of blood pressure values (BP obtained during three measurements of blood pressure according to the method of N. S. Korotkov and when conducting 24-hours ambulatory blood pressure monitoring (ABPM. Group 1 included children with blood pressure values in the range from 5 to 95 percentile. Group 2 was composed children with masked hypertension (values of office blood pressure in the range from 5 to 95 percentile but indicators of ABPM of blood pressure is greater than 95 percentile. Group 3 included children with stable arterial hypertension (blood pressure values exceeded the 95 percentile. The study was a comparative analysis of the hemodynamic and rigidity (stiffness of the arteries. Results: Most hemodynamic parameters in children with masked hypertension were higher than in children of group 1. However, these figures were lower than in children with stable arterial hypertension. Among the indicators of the rigidity of the arteries, the most sensitive indicator (dP/dt max was maximum rate of pressure rise. Children with masked hypertension had increased arterial stiffness, however it was lower than in children with stable arterial hypertension. Conclusion: The use of BPLab monitor with technology Vasotens allows physicians to evaluate the daily profile of arterial pressure, the hemodynamics and stiffness of blood vessels, which is an important step for early diagnostics of latent arterial hypertension in children

  4. Masking properties of ceramics for veneer restorations.

    Science.gov (United States)

    Skyllouriotis, Andreas L; Yamamoto, Hideo L; Nathanson, Dan

    2017-10-01

    The translucency and opacity of ceramics play a significant role in emulating the natural color of teeth, but studies of the masking properties and limitations of dental ceramics when used as monolayer restorations are lacking. The purpose of this in vitro study was to determine the translucency of 6 materials used for veneer restorations by assessing their translucency parameters (TPs), contrast ratios (CRs), and potential to mask dark tooth colors. Ten square- or disk-shaped specimens (0.5-mm thickness, shade A2) were fabricated from Vitablocks Mark II (VMII; Vita Zahnfabrik), IPS e.max CAD LT (EMXC LT; Ivoclar Vivadent AG), IPS e.max CAD HT (EMXC HT; Ivoclar Vivadent AG), IPS Empress CAD LT (EMP LT; Ivoclar Vivadent AG), IPS e.max Press LT (EMXP LT; Ivoclar Vivadent AG), and CZR (CZR; Kuraray Noritake Dental Inc). Their luminance (Y) values over black and over white tiles were measured, followed by their color (CIELab) over black tiles and white tiles and shaded A2 (control group), A3.5, A4, and B4 acrylic resin blocks. All measurements were performed using a spectrophotometer in 2 different areas on each specimen. Then CRs, TPs, and color differences (over shaded backgrounds) were determined. Data were subjected to 1-way and 2-way ANOVA (α=.05) for analysis. Mean CR values of EMXP LT were significantly higher than those of the other tested materials, whereas VMII and EMXC HT had the lowest values (Pceramic materials, whereas shade B4 demonstrated the lowest mean background effect (Pceramics were revealed (Pceramics exhibited poor masking properties against the A4 background. The color differences of most tested ceramics were more acceptable when tested against the B4 background (ΔE*≤3.3). Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. Crowding is unlike ordinary masking: distinguishing feature integration from detection.

    Science.gov (United States)

    Pelli, Denis G; Palomares, Melanie; Majaj, Najib J

    2004-12-30

    A letter in the peripheral visual field is much harder to identify in the presence of nearby letters. This is "crowding." Both crowding and ordinary masking are special cases of "masking," which, in general, refers to any effect of a "mask" pattern on the discriminability of a signal. Here we characterize crowding, and propose a diagnostic test to distinguish it from ordinary masking. In ordinary masking, the signal disappears. In crowding, it remains visible, but is ambiguous, jumbled with its neighbors. Masks are usually effective only if they overlap the signal, but the crowding effect extends over a large region. The width of that region is proportional to signal eccentricity from the fovea and independent of signal size, mask size, mask contrast, signal and mask font, and number of masks. At 4 deg eccentricity, the threshold contrast for identification of a 0.32 deg signal letter is elevated (up to six-fold) by mask letters anywhere in a 2.3 deg region, 7 times wider than the signal. In ordinary masking, threshold contrast rises as a power function of mask contrast, with a shallow log-log slope of 0.5 to 1, whereas, in crowding, threshold is a sigmoidal function of mask contrast, with a steep log-log slope of 2 at close spacing. Most remarkably, although the threshold elevation decreases exponentially with spacing, the threshold and saturation contrasts of crowding are independent of spacing. Finally, ordinary masking is similar for detection and identification, but crowding occurs only for identification, not detection. More precisely, crowding occurs only in tasks that cannot be done based on a single detection by coarsely coded feature detectors. These results (and observers' introspections) suggest that ordinary masking blocks feature detection, so the signal disappears, while crowding (like "illusory conjunction") is excessive feature integration - detected features are integrated over an inappropriately large area because there are no smaller integration

  6. Transient thermal camouflage and heat signature control

    Science.gov (United States)

    Yang, Tian-Zhi; Su, Yishu; Xu, Weikai; Yang, Xiao-Dong

    2016-09-01

    Thermal metamaterials have been proposed to manipulate heat flux as a new way to cloak or camouflage objects in the infrared world. To date, however, thermal metamaterials only operate in the steady-state and exhibit detectable, transient heat signatures. In this letter, the theoretical basis for a thermal camouflaging technique with controlled transient diffusion is presented. This technique renders an object invisible in real time. More importantly, the thermal camouflaging device instantaneously generates a pre-designed heat signature and behaves as a perfect thermal illusion device. A metamaterial coating with homogeneous and isotropic thermal conductivity, density, and volumetric heat capacity was fabricated and very good camouflaging performance was achieved.

  7. Model-based virtual VSB mask writer verification for efficient mask error checking and optimization prior to MDP

    Science.gov (United States)

    Pack, Robert C.; Standiford, Keith; Lukanc, Todd; Ning, Guo Xiang; Verma, Piyush; Batarseh, Fadi; Chua, Gek Soon; Fujimura, Akira; Pang, Linyong

    2014-10-01

    A methodology is described wherein a calibrated model-based `Virtual' Variable Shaped Beam (VSB) mask writer process simulator is used to accurately verify complex Optical Proximity Correction (OPC) and Inverse Lithography Technology (ILT) mask designs prior to Mask Data Preparation (MDP) and mask fabrication. This type of verification addresses physical effects which occur in mask writing that may impact lithographic printing fidelity and variability. The work described here is motivated by requirements for extreme accuracy and control of variations for today's most demanding IC products. These extreme demands necessitate careful and detailed analysis of all potential sources of uncompensated error or variation and extreme control of these at each stage of the integrated OPC/ MDP/ Mask/ silicon lithography flow. The important potential sources of variation we focus on here originate on the basis of VSB mask writer physics and other errors inherent in the mask writing process. The deposited electron beam dose distribution may be examined in a manner similar to optical lithography aerial image analysis and image edge log-slope analysis. This approach enables one to catch, grade, and mitigate problems early and thus reduce the likelihood for costly long-loop iterations between OPC, MDP, and wafer fabrication flows. It moreover describes how to detect regions of a layout or mask where hotspots may occur or where the robustness to intrinsic variations may be improved by modification to the OPC, choice of mask technology, or by judicious design of VSB shots and dose assignment.

  8. Defectivity and particle reduction for mask life extension, and imprint mask replication for high-volume semiconductor manufacturing

    Science.gov (United States)

    Emoto, Keiji; Sakai, Fumio; Sato, Chiaki; Takabayashi, Yukio; Nakano, Hitoshi; Takabayashi, Tsuneo; Yamamoto, Kiyohito; Hattori, Tadashi; Hiura, Mitsuru; Ando, Toshiaki; Kawanobe, Yoshio; Azuma, Hisanobu; Iwanaga, Takehiko; Choi, Jin; Aghili, Ali; Jones, Chris; Irving, J. W.; Fletcher, Brian; Ye, Zhengmao

    2016-03-01

    Imprint lithography has been shown to be an effective technique for replication of nano-scale features. Jet and Flash* Imprint Lithography (J-FIL*) involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed, leaving a patterned resist on the substrate. Criteria specific to any lithographic process for the semiconductor industry include overlay, throughput and defectivity. The purpose of this paper is to describe the technology advancements made in the reduction of particle adders in an imprint tool and introduce the new mask replication tool that will enable the fabrication of replica masks with added residual image placement errors suitable for memory devices with half pitches smaller than 15nm. Hard particles on a wafer or mask create the possibility of creating a permanent defect on the mask that can impact device yield and mask life. By using material methods to reduce particle shedding and by introducing an air curtain system, test stand results demonstrate the potential for extending mask life to better than 1000 wafers. Additionally, a new replication tool, the FPA-1100 NR2 is introduced. Mask chuck flatness simulation results were also performed and demonstrate that residual image placement errors can be reduced to as little as 1nm.

  9. EBM-9000: EB mask writer for product mask fabrication of 16nm half-pitch generation and beyond

    Science.gov (United States)

    Takekoshi, Hidekazu; Nakayama, Takahito; Saito, Kenichi; Ando, Hiroyoshi; Inoue, Hideo; Nakayamada, Noriaki; Kamikubo, Takashi; Nishimura, Rieko; Kojima, Yoshinori; Yashima, Jun; Anpo, Akihito; Nakazawa, Seiichi; Iijima, Tomohiro; Ohtoshi, Kenji; Anze, Hirohito; Katsap, Victor; Golladay, Steven; Kendall, Rodney

    2014-10-01

    In the half pitch (hp) 16nm generation, the shot count on a mask is expected to become bipolar. The multi-patterning technology in lithography seems to maintain the shot count around 300G shots instead of increase in the number of masks needed for one layer. However, as a result of mask multiplication, the better positional accuracy would be required especially in Mask-to-Mask overlay. On the other hand, in complex OPC, the shot count on a mask is expected to exceed 1T shots. In addition, regardless of the shot count forecast, the resist sensitivity needs to be lower to reduce the shot noise effect so as to get better LER. In other words, slow resist would appear on main stream, in near future. Hence, such trend would result in longer write time than that of the previous generations. At the same time, most mask makers request masks to be written within 24 hours. Thus, a faster mask writer with better writing accuracy than those of previous generations is needed. With this background, a new electron beam mask writing system, EBM- 9000, has been developed to satisfy such requirements of the hp 16nm generation. The development of EBM-9000 has focused on improving throughput for larger shot counts and improving the writing accuracy.

  10. Revolution with and without the mask

    Directory of Open Access Journals (Sweden)

    Milanko Vladan

    2010-01-01

    Full Text Available This paper is an attempt to provide a certain “second reading” of those commonplaces which imply that a particular, personal interest always lies behind the mask of objectivity, necessity and truth. As a paradigmatic example of this kind of structure that implies “hidden truths”, here will be taken that of a revolution, whether it is a fascist, a liberal-democratic or a communist revolution. By reexamining how this motif of “truth-behind-the-mask” figures in those regimes, we will try to say something about each of them, and also about the specific kind of subject that is produced under them.

  11. Computer-assisted area detector masking.

    Science.gov (United States)

    Wright, Christopher J; Zhou, Xiao Dong

    2017-03-01

    Area detectors have become the predominant type of detector for the rapid acquisition of X-ray diffraction, small-angle scattering and total scattering. These detectors record the scattering for a large area, giving each shot good statistical significance to the resulting scattered intensity I(Q) pattern. However, many of these detectors have pixel level defects, which cause error in the resulting one-dimensional patterns. In this work, new software to automatically find and mask these dead pixels and other defects is presented. This algorithm is benchmarked with both ideal simulated and experimental datasets.

  12. Silicon germanium mask for deep silicon etching

    KAUST Repository

    Serry, Mohamed

    2014-07-29

    Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF.sub.6/O.sub.2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from -80 degrees Celsius to -140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.

  13. Analysis of Changing Swarm Rate using Volumetric Strain

    Science.gov (United States)

    Kumazawa, T.; Ogata, Y.; Kimura, K.; Maeda, K.; Kobayashi, A.

    2015-12-01

    Near the eastern coast of Izu peninsula is an active submarine volcanic region in Japan, where magma intrusions have been observed many times. The forecast of earthquake swarm activities and eruptions are serious concern particularly in nearby hot spring resort areas. It is well known that temporal durations of the swarm activities have been correlated with early volumetric strain changes at a certain observation station of about 20 km distance apart. Therefore the Earthquake Research Committee (2010) investigated some empirical statistical relations to predict sizes of the swarm activity. Here we looked at the background seismicity rate changes during these swarm periods using the non-stationary ETAS model (Kumazawa and Ogata, 2013, 2014), and have found the followings. The modified volumetric strain data, by removing the effect of earth tides, precipitation and coseismic jumps, have significantly higher cross-correlations to the estimated background rates of the ETAS model than to the swarm rate-changes. Specifically, the background seismicity rate synchronizes clearer to the strain change by the lags around a half day. These relations suggest an enhanced prediction of earthquakes in this region using volumetric strain measurements. Hence we propose an extended ETAS model where the background rate is modulated by the volumetric strain data. We have also found that the response function to the strain data can be well approximated by an exponential functions with the same decay rate, but that their intersects are inversely proportional to the distances between the volumetric strain-meter and the onset location of the swarm. Our numerical results by the same proposed model show consistent outcomes for the various major swarms in this region.

  14. On the relations between crowding and visual masking.

    Science.gov (United States)

    Huckauf, Anke; Heller, Dieter

    2004-05-01

    To study the question of which processes contribute to crowding and whether these are comparable to those of visual temporal masking, we varied the stimulus onset asynchrony (SOA) between target and flankers in a crowding setting. Monotonically increasing Type A masking functions observedfor small spacings and large eccentricities indicate that the integration of information from target and flankers underlies crowding. Decreasing masking functions obtained for large spacings and small eccentricities relate processes of crowding to those contributing to Type B masking. In addition, Type B masking was more frequent with letter-like nonletter flankers than with letter flankers, suggesting that Type B masking, just like crowding over large areas, is due to higher level interactions. The rapid decrease of the effects of interletter spacing and eccentricity with increasing SOA indicates that positional information is transient.

  15. Constellation-masked secure communication technique for OFDM-PON.

    Science.gov (United States)

    Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Yu, Jianjun

    2012-10-22

    This paper proposes a novel secure communication technique using constellation masking for applications in orthogonal frequency division multiplexing passive optical network (OFDM-PON). The constellation masking is applied both on each subcarrier and among different subcarriers. The Arnold mapping is utilized as the parameter function for the mask factors. A interleave length is employed to provide a scalable masking granularity for different ONUs. A 15.54 Gb/s constellation-masked 32QAM-OFDM signal has been successfully transmitted over 25-km single mode fiber in the experiment. Experimental results show that the proposed scheme can effectively protect the system from illegal ONU without wasting the bandwidth. The constellation-masked technique suggests an effective solution for the physical secure communication in future OFDM access network.

  16. Characterizing the monaural and binaural processes underlying reflection masking

    DEFF Research Database (Denmark)

    Buchholz, Jörg

    2007-01-01

    Reflection masked thresholds (RMTs) for the simple scenario of a test reflection masked by the direct sound (200 ms long broadband noise) were measured as a function of reflection delay for diotic and dichotic stimulus presentations. In order to discriminate between contributions to reflection...... masking from simultaneous versus forward masking, the simultaneous RMT was measured in addition to the traditional RMT. Simultaneous RM was realized by truncating the offset of the test reflection such that the test reflection and the direct sound had a common offset. By comparing the experimental results...... for the two RMTs, it is shown that forward masking effects only have a significant effect on reflection masking for delays above 7–10 ms. Moreover, binaural mechanisms were revealed which deteriorate auditory detection of test reflections for delays below 7–10 ms and enhance detection for larger delays...

  17. Mask manufacturing improvement through capability definition and bottleneck line management

    Science.gov (United States)

    Strott, Al

    1994-02-01

    In 1989, Intel's internal mask operation limited itself to research and development activities and re-inspection and pellicle application of externally manufactured masks. Recognizing the rising capital cost of mask manufacturing at the leading edge, Intel's Mask Operation management decided to offset some of these costs by manufacturing more masks internally. This was the beginning of the challenge they set to manufacture at least 50% of Intel's mask volume internally, at world class performance levels. The first step in responding to this challenge was the completion of a comprehensive operation capability analysis. A series of bottleneck improvements by focus teams resulted in an average cycle time improvement to less than five days on all product and less than two days on critical products.

  18. Exoplanet Coronagraph Shaped Pupil Masks and Laboratory Scale Star Shade Masks: Design, Fabrication and Characterization

    Science.gov (United States)

    Balasubramanian, Kunjithapatha; White, Victor; Yee, Karl; Echternach, Pierre; Muller, Richard; Dickie, Matthew; Cady, Eric; Mejia Prada, Camilo; Ryan, Daniel; Poberezhskiy, Ilya; hide

    2015-01-01

    Star light suppression technologies to find and characterize faint exoplanets include internal coronagraph instruments as well as external star shade occulters. Currently, the NASA WFIRST-AFTA mission study includes an internal coronagraph instrument to find and characterize exoplanets. Various types of masks could be employed to suppress the host star light to about 10 -9 level contrast over a broad spectrum to enable the coronagraph mission objectives. Such masks for high contrast internal coronagraphic imaging require various fabrication technologies to meet a wide range of specifications, including precise shapes, micron scale island features, ultra-low reflectivity regions, uniformity, wave front quality, achromaticity, etc. We present the approaches employed at JPL to produce pupil plane and image plane coronagraph masks by combining electron beam, deep reactive ion etching, and black silicon technologies with illustrative examples of each, highlighting milestone accomplishments from the High Contrast Imaging Testbed (HCIT) at JPL and from the High Contrast Imaging Lab (HCIL) at Princeton University. We also present briefly the technologies applied to fabricate laboratory scale star shade masks.

  19. Volume Phase Masks in Photo-Thermo-Refractive Glass

    Science.gov (United States)

    2014-10-06

    2014 Approved for public release; distribution is unlimited. Volume phase masks in photo- thermo -refractive glass The views, opinions and/or findings...in photo- thermo -refractive glass Report Title In many applications such as beam shaping, mode conversion, and phase encoding it is necessary to alter...requiring a new means of producing phase masks. In this dissertation a method for producing robust phase masks in the bulk of photo- thermo - refractive

  20. Electron optical mask projector with a photocathode for miniaturization

    Science.gov (United States)

    Moellenstedt, G.; Speidel, R.; Dostmann, M.; Martin, F.; Mayr, M.

    1981-06-01

    The projector was developed with an image converter consisting of a masked photocathode and a plane anode grid. The mask structure to be demagnified is on a quartz glass plate in a thin layer of Ti02 strongly absorbing ultraviolet light. A photoemissive layer is deposited by evaporation on the whole front side of the plate. For the demagnification of the electron image of the mask, a system is used consisting of two geometrically similar magnetic lenses in a telescopic arrangement.

  1. Airflow-Restricting Mask Reduces Acute Performance in Resistance Exercise

    OpenAIRE

    Yuri L. Motoyama; Gustavo B. Joel; Paulo E. A. Pereira; Gilmar J. Esteves; Azevedo, Paulo H.S.M.

    2016-01-01

    Background: The aim of this study was to compare the number of repetitions to volitional failure, the blood lactate concentration, and the perceived exertion to resistance training with and without an airflow-restricting mask. Methods: Eight participants participated in a randomized, counterbalanced, crossover study. Participants were assigned to an airflow-restricting mask group (MASK) or a control group (CONT) and completed five sets of chest presses and parallel squats until failure at 75%...

  2. OSIRIS Multi-Object Spectroscopy: Mask Design Process

    Science.gov (United States)

    Gómez-Velarde, G.; García-Alvarez, D.; Cabrerra-Lavers, A.

    2016-10-01

    The OSIRIS (Optical System for Imaging and Low-Intermediate Resolution Integrated Spectroscopy) instrument at the 10.4 m GTC has offered a multi-object spectroscopic mode since March 2014. In this paper we describe the detailed process of designing a MOS mask for OSIRIS by using the Mask Designer Tool, and give some numbers on the accuracy of the mask manufacture achievable at the telescope for its scientific use.

  3. Waste Heat to Power Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Elson, Amelia [ICF International, Fairfax, VA (United States); Tidball, Rick [ICF International, Fairfax, VA (United States); Hampson, Anne [ICF International, Fairfax, VA (United States)

    2015-03-01

    Waste heat to power (WHP) is the process of capturing heat discarded by an existing process and using that heat to generate electricity. In the industrial sector, waste heat streams are generated by kilns, furnaces, ovens, turbines, engines, and other equipment. In addition to processes at industrial plants, waste heat streams suitable for WHP are generated at field locations, including landfills, compressor stations, and mining sites. Waste heat streams are also produced in the residential and commercial sectors, but compared to industrial sites these waste heat streams typically have lower temperatures and much lower volumetric flow rates. The economic feasibility for WHP declines as the temperature and flow rate decline, and most WHP technologies are therefore applied in industrial markets where waste heat stream characteristics are more favorable. This report provides an assessment of the potential market for WHP in the industrial sector in the United States.

  4. Quality enhancement of parallel MDP flows with mask suppliers

    Science.gov (United States)

    Deng, Erwin; Lee, Rachel; Lee, Chun Der

    2013-06-01

    For many maskshops, designed parallel mask data preparation (MDP) flows accompanying with a final data comparison are viewed as a reliable method that could reduce quality risks caused by mis-operation. However, in recent years, more and more mask data mistakes have shown that present parallel MDP flows could not capture all mask data errors yet. In this paper, we will show major failure models of parallel MDP flows from analyzing MDP quality accidents and share our approaches to achieve further improvement with mask suppliers together.

  5. Practical mask inspection system with printability and pattern priority verification

    Science.gov (United States)

    Tsuchiya, Hideo; Ozaki, Fumio; Takahara, Kenichi; Inoue, Takafumi; Kikuiri, Nobutaka

    2011-05-01

    Through the four years of study in Association of Super-Advanced Electronics Technologies (ASET) on reducing mask manufacturing Turn Around Time (TAT) and cost, we have been able to establish a technology to improve the efficiency of the review process by applying a printability verification function that utilizes computational lithography simulations to analyze defects detected by a high-resolution mask inspection system. With the advent of Source-Mask Optimization (SMO) and other technologies that extend the life of existing optical lithography, it is becoming extremely difficult to judge a defect only by the shape of a mask pattern, while avoiding pseudo-defects. Thus, printability verification is indispensable for filtering out nuisance defects from high-resolution mask inspection results. When using computational lithography simulations to verify printability with high precision, the image captured by the inspection system must be prepared with extensive care. However, for practical applications, this preparation process needs to be simplified. In addition, utilizing Mask Data Rank (MDR) to vary the defect detection sensitivity according to the patterns is also useful for simultaneously inspecting minute patterns and avoiding pseudo-defects. Combining these two technologies, we believe practical mask inspection for next generation lithography is achievable. We have been improving the estimation accuracy of the printability verification function through discussion with several customers and evaluation of their masks. In this report, we will describe the progress of these practical mask verification functions developed through customers' evaluations.

  6. Estimation of the Ideal Binary Mask using Directional Systems

    DEFF Research Database (Denmark)

    Boldt, Jesper; Kjems, Ulrik; Pedersen, Michael Syskind

    2008-01-01

    and the requirements to enable calculations of the ideal binary mask using a directional system without the availability of the unmixed signals. The proposed method has a low complexity and is verified using computer simulation in both ideal and non-ideal setups showing promising results.......The ideal binary mask is often seen as a goal for time-frequency masking algorithms trying to increase speech intelligibility, but the required availability of the unmixed signals makes it difficult to calculate the ideal binary mask in any real-life applications. In this paper we derive the theory...

  7. Recent advances in CZT strip detectors and coded mask imagers

    Science.gov (United States)

    Matteson, J. L.; Gruber, D. E.; Heindl, W. A.; Pelling, M. R.; Peterson, L. E.; Rothschild, R. E.; Skelton, R. T.; Hink, P. L.; Slavis, K. R.; Binns, W. R.; Tumer, T.; Visser, G.

    1999-09-01

    The UCSD, WU, UCR and Nova collaboration has made significant progress on the necessary techniques for coded mask imaging of gamma-ray bursts: position sensitive CZT detectors with good energy resolution, ASIC readout, coded mask imaging, and background properties at balloon altitudes. Results on coded mask imaging techniques appropriate for wide field imaging and localization of gamma-ray bursts are presented, including a shadowgram and deconvolved image taken with a prototype detector/ASIC and MURA mask. This research was supported by NASA Grants NAG5-5111, NAG5-5114, and NGT5-50170.

  8. Recent patents and patented technology platforms for pharmaceutical taste masking.

    Science.gov (United States)

    Kaushik, Deepak; Dureja, Harish

    2014-04-01

    Taste masking is an important factor in the development of oral dosage forms containing bitter active pharmaceutical ingredients. Currently numerous techniques are being applied to overcome this problem. Realizing this, several researchers and pharmaceutical companies are now engaged in developing novel techniques to address the problem of taste masking evident by numerous patents filed in this area in recent times. In this review the most recent patents for taste masking are discussed and how these patents overcome the limitations of conventional approaches of taste masking is also highlighted. Novel techniques based on some recent patents such as nanohybrid, melt extrusion, non-complex cyclodextrin compositions and off taste masking are providing new realms to taste masking of bitter drugs. The present article also provides an overview of various patented platform technologies based on different techniques/mechanisms employed for taste masking. The unique features and principles of taste-masking approaches used in various patented technologies are also discussed. A better understanding of these new patents and patented technologies will help researchers and pharmaceutical industries to select the appropriate platform, or to develop innovative products with improved taste masking properties.

  9. Actinic inspection of multilayer defects on EUV masks

    Energy Technology Data Exchange (ETDEWEB)

    Barty, A; Liu, Y; Gullikson, E; Taylor, J S; Wood, O

    2005-03-24

    The production of defect-free mask blanks, and the development of techniques for inspecting and qualifying EUV mask blanks, remains a key challenge for EUV lithography. In order to ensure a reliable supply of defect-free mask blanks, it is necessary to develop techniques to reliably and accurately detect defects on un-patterned mask blanks. These inspection tools must be able to accurately detect all critical defects whilst simultaneously having the minimum possible false-positive detection rate. There continues to be improvement in high-speed non-actinic mask blank inspection tools, and it is anticipated that these tools can and will be used by industry to qualify EUV mask blanks. However, the outstanding question remains one of validating that non-actinic inspection techniques are capable of detecting all printable EUV defects. To qualify the performance of non-actinic inspection tools, a unique dual-mode EUV mask inspection system has been installed at the Advanced Light Source (ALS) synchrotron at Lawrence Berkeley National Laboratory. In high-speed inspection mode, whole mask blanks are scanned for defects using 13.5-nm wavelength light to identify and map all locations on the mask that scatter a significant amount of EUV light. In imaging, or defect review mode, a zone plate is placed in the reflected beam path to image a region of interest onto a CCD detector with an effective resolution on the mask of 100-nm or better. Combining the capabilities of the two inspection tools into one system provides the unique capability to determine the coordinates of native defects that can be used to compare actinic defect inspection with visible light defect inspection tools under commercial development, and to provide data for comparing scattering models for EUV mask defects.

  10. Theoretical study of heat pump system using CO2/dimethylether as refrigerant

    Directory of Open Access Journals (Sweden)

    Fan Xiao-Wei

    2013-01-01

    Full Text Available Nowadays, HCFC22 is widely used in heat pump systems in China, which should be phased out in the future. Thus, eco-friendly mixture CO2/dimethylether is proposed to replace HCFC22. Compared with pure CO2 and pure dimethylether, the mixture can reduce the heat rejection pressure, and suppress the flammability and explosivity of pure dimethylether. According to the Chinese National Standards on heat pump water heater and space heating system, performances of the subcritical heat pump system are discussed and compared with those of the HCFC22 system. It can be concluded that CO2 /dimethylether mixture works efficiently as a refrigerant for heat pumps with a large heat-sink temperature rise. When mass fraction of dimethylether is increased, the heat rejection pressure is reduced. Under the nominal working condition, there is an optimal mixture mass fraction of 28/72 of CO2/dimethylether for water heater application under conventional condensation pressure, 3/97 for space heating application. For water heater application, both the heating coefficient of performance and volumetric heating capacity increase by 17.90% and 2.74%, respectively, compared with those of HCFC22 systems. For space heating application, the heating coefficient of performance increases by 8.44% while volumetric heating capacity decreases by 34.76%, compared with those of HCFC22 systems. As the superheat degree increases, both the heating coefficient of performance and volumetric heating capacity tend to decrease.

  11. Pulse sequence for dynamic volumetric imaging of hyperpolarized metabolic products

    Science.gov (United States)

    Cunningham, Charles H.; Chen, Albert P.; Lustig, Michael; Hargreaves, Brian A.; Lupo, Janine; Xu, Duan; Kurhanewicz, John; Hurd, Ralph E.; Pauly, John M.; Nelson, Sarah J.; Vigneron, Daniel B.

    2008-07-01

    Dynamic nuclear polarization and dissolution of a 13C-labeled substrate enables the dynamic imaging of cellular metabolism. Spectroscopic information is typically acquired, making the acquisition of dynamic volumetric data a challenge. To enable rapid volumetric imaging, a spectral-spatial excitation pulse was designed to excite a single line of the carbon spectrum. With only a single resonance present in the signal, an echo-planar readout trajectory could be used to resolve spatial information, giving full volume coverage of 32 × 32 × 16 voxels every 3.5 s. This high frame rate was used to measure the different lactate dynamics in different tissues in a normal rat model and a mouse model of prostate cancer.

  12. Nonrigid registration of volumetric images using ranked order statistics

    DEFF Research Database (Denmark)

    Tennakoon, Ruwan; Bab-Hadiashar, Alireza; Cao, Zhenwei

    2014-01-01

    Non-rigid image registration techniques using intensity based similarity measures are widely used in medical imaging applications. Due to high computational complexities of these techniques, particularly for volumetric images, finding appropriate registration methods to both reduce the computation...... burden and increase the registration accuracy has become an intensive area of research. In this paper we propose a fast and accurate non-rigid registration method for intra-modality volumetric images. Our approach exploits the information provided by an order statistics based segmentation method, to find...... the important regions for registration and use an appropriate sampling scheme to target those areas and reduce the registration computation time. A unique advantage of the proposed method is its ability to identify the point of diminishing returns and stop the registration process. Our experiments...

  13. Volumetric characterization of delamination fields via angle longitudinal wave ultrasound

    Science.gov (United States)

    Wertz, John; Wallentine, Sarah; Welter, John; Dierken, Josiah; Aldrin, John

    2017-02-01

    The volumetric characterization of delaminations necessarily precedes rigorous composite damage progression modeling. Yet, inspection of composite structures for subsurface damage remains largely focused on detection, resulting in a capability gap. In response to this need, angle longitudinal wave ultrasound was employed to characterize a composite surrogate containing a simulated three-dimensional delamination field with distinct regions of occluded features (shadow regions). Simple analytical models of the specimen were developed to guide subsequent experimentation through identification of optimal scanning parameters. The ensuing experiments provided visual evidence of the complete delamination field, including indications of features within the shadow regions. The results of this study demonstrate proof-of-principle for the use of angle longitudinal wave ultrasonic inspection for volumetric characterization of three-dimensional delamination fields. Furthermore, the techniques developed herein form the foundation of succeeding efforts to characterize impact delaminations within inhomogeneous laminar materials such as polymer matrix composites.

  14. Magnetic Resonance Image Segmentation and its Volumetric Measurement

    Directory of Open Access Journals (Sweden)

    Rahul R. Ambalkar

    2013-02-01

    Full Text Available Image processing techniques make it possible to extract meaningful information from medical images. Magnetic resonance (MR imaging has been widely applied in biological research and diagnostics because of its excellent soft tissue contrast, non-invasive character, high spatial resolution and easy slice selection at any orientation. The MRI-based brain volumetric is concerned with the analysis of volumes and shapes of the structural components of the human brain. It also provides a criterion, by which we recognize the presence of degenerative diseases and characterize their rates of progression to make the diagnosis and treatments as a easy task. In this paper we have proposed an automated method for volumetric measurement of Magnetic Resonance Imaging and used Self Organized Map (SOM clustering method for their segmentations. We have used the MRI data set of 61 slices of 256×256 pixels in DICOM standard format

  15. Two-dimensional random arrays for real time volumetric imaging

    DEFF Research Database (Denmark)

    Davidsen, Richard E.; Jensen, Jørgen Arendt; Smith, Stephen W.

    1994-01-01

    Two-dimensional arrays are necessary for a variety of ultrasonic imaging techniques, including elevation focusing, 2-D phase aberration correction, and real time volumetric imaging. In order to reduce system cost and complexity, sparse 2-D arrays have been considered with element geometries...... real time volumetric imaging system, which employs a wide transmit beam and receive mode parallel processing to increase image frame rate. Depth-of-field comparisons were made from simulated on-axis and off-axis beamplots at ranges from 30 to 160 mm for both coaxial and offset transmit and receive...... selected ad hoc, by algorithm, or by random process. Two random sparse array geometries and a sparse array with a Mills cross receive pattern were simulated and compared to a fully sampled aperture with the same overall dimensions. The sparse arrays were designed to the constraints of the Duke University...

  16. In Vivo Real Time Volumetric Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Rasmussen, Morten Fischer; Brandt, Andreas Hjelm

    2015-01-01

    . This paper investigates the in vivo applicability and sensitivity of volumetric SA imaging. Utilizing the transmit events to generate a set of virtual point sources, a frame rate of 25 Hz for a 90° x 90° field-of-view was achieved. Data were obtained using a 3.5 MHz 32 x 32 elements 2-D phased array......Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological...... transducer connected to the experimental scanner (SARUS). Proper scaling is applied to the excitation signal such that intensity levels are in compliance with the U.S. Food and Drug Administration regulations for in vivo ultrasound imaging. The measured Mechanical Index and spatial-peak- temporal...

  17. COMPARISON OF VOLUMETRIC REGISTRATION ALGORITHMS FOR TENSOR-BASED MORPHOMETRY

    Science.gov (United States)

    Villalon, Julio; Joshi, Anand A.; Toga, Arthur W.; Thompson, Paul M.

    2015-01-01

    Nonlinear registration of brain MRI scans is often used to quantify morphological differences associated with disease or genetic factors. Recently, surface-guided fully 3D volumetric registrations have been developed that combine intensity-guided volume registrations with cortical surface constraints. In this paper, we compare one such algorithm to two popular high-dimensional volumetric registration methods: large-deformation viscous fluid registration, formulated in a Riemannian framework, and the diffeomorphic “Demons” algorithm. We performed an objective morphometric comparison, by using a large MRI dataset from 340 young adult twin subjects to examine 3D patterns of correlations in anatomical volumes. Surface-constrained volume registration gave greater effect sizes for detecting morphometric associations near the cortex, while the other two approaches gave greater effects sizes subcortically. These findings suggest novel ways to combine the advantages of multiple methods in the future. PMID:26925198

  18. Volumetric 3D display using a DLP projection engine

    Science.gov (United States)

    Geng, Jason

    2012-03-01

    In this article, we describe a volumetric 3D display system based on the high speed DLPTM (Digital Light Processing) projection engine. Existing two-dimensional (2D) flat screen displays often lead to ambiguity and confusion in high-dimensional data/graphics presentation due to lack of true depth cues. Even with the help of powerful 3D rendering software, three-dimensional (3D) objects displayed on a 2D flat screen may still fail to provide spatial relationship or depth information correctly and effectively. Essentially, 2D displays have to rely upon capability of human brain to piece together a 3D representation from 2D images. Despite the impressive mental capability of human visual system, its visual perception is not reliable if certain depth cues are missing. In contrast, volumetric 3D display technologies to be discussed in this article are capable of displaying 3D volumetric images in true 3D space. Each "voxel" on a 3D image (analogous to a pixel in 2D image) locates physically at the spatial position where it is supposed to be, and emits light from that position toward omni-directions to form a real 3D image in 3D space. Such a volumetric 3D display provides both physiological depth cues and psychological depth cues to human visual system to truthfully perceive 3D objects. It yields a realistic spatial representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them.

  19. Using surface heave to estimate reservoir volumetric strain

    Energy Technology Data Exchange (ETDEWEB)

    Nanayakkara, A.S.; Wong, R.C.K. [Calgary Univ., AB (Canada)

    2008-07-01

    This paper presented a newly developed numerical tool for estimating reservoir volumetric strain distribution using surface vertical displacements and solving an inverse problem. Waterflooding, steam injection, carbon dioxide sequestration and aquifer storage recovery are among the subsurface injection operations that are responsible for reservoir dilations which propagate to the surrounding formations and extend to the surface resulting in surface heaves. Global positioning systems and surface tiltmeters are often used to measure the characteristics of these surface heaves and to derive valuable information regarding reservoir deformation and flow characteristics. In this study, Tikhonov regularization techniques were adopted to solve the ill-posed inversion problem commonly found in standard inversion techniques such as Gaussian elimination and least squares methods. Reservoir permeability was then estimated by inverting the volumetric strain distribution. Results of the newly developed numerical tool were compared with results from fully-coupled finite element simulation of fluid injection problems. The reservoir volumetric strain distribution was successfully estimated along with an approximate value for reservoir permeability.

  20. Multivariate refinement equation with nonnegative masks

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper is concerned with multivariate refinement equations of the type ψ = ∑α∈Zs a(α)ψ(Mx - α),where ψ is the unknown function defined on the s-dimensional Euclidean space Rs, a is a finitely supported nonnegative sequence on Zs, and M is an s × s dilation matrix with m := |detM|. We characterize the existence of L2-solution of refinement equation in terms of spectral radius of a certain finite matrix or transition operator associated with refinement mask a and dilation matrix M. For s = 1 and M = 2, the sufficient and necessary conditions are obtained to characterize the existence of continuous solution of this refinement equation.

  1. Predicting masking release of lateralized speech

    DEFF Research Database (Denmark)

    Chabot-Leclerc, Alexandre; MacDonald, Ewen; Dau, Torsten

    2016-01-01

    al., 2013, J. Acoust. Soc. Am. 130], which uses a short-term equalization-cancellation process to model binaural unmasking. In the conditions where informational masking (IM) was involved, the predicted SRTs were lower than the measured values because the model is blind to confusions experienced......Locsei et al. (2015) [Speech in Noise Workshop, Copenhagen, 46] measured ˝ speech reception thresholds (SRTs) in anechoic conditions where the target speech and the maskers were lateralized using interaural time delays. The maskers were speech-shaped noise (SSN) and reversed babble with 2, 4, or 8...... talkers. For a given interferer type, the number of maskers presented on the target’s side was varied, such that none, some, or all maskers were presented on the same side as the target. In general, SRTs did not vary significantly when at least one masker was presented on the same side as the target...

  2. Coherent diffractive imaging using randomly coded masks

    Energy Technology Data Exchange (ETDEWEB)

    Seaberg, Matthew H., E-mail: seaberg@slac.stanford.edu [CNRS and D.I., UMR 8548, École Normale Supérieure, 45 Rue d' Ulm, 75005 Paris (France); Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); D' Aspremont, Alexandre [CNRS and D.I., UMR 8548, École Normale Supérieure, 45 Rue d' Ulm, 75005 Paris (France); Turner, Joshua J. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States)

    2015-12-07

    We experimentally demonstrate an extension to coherent diffractive imaging that encodes additional information through the use of a series of randomly coded masks, removing the need for typical object-domain constraints while guaranteeing a unique solution to the phase retrieval problem. Phase retrieval is performed using a numerical convex relaxation routine known as “PhaseCut,” an iterative algorithm known for its stability and for its ability to find the global solution, which can be found efficiently and which is robust to noise. The experiment is performed using a laser diode at 532.2 nm, enabling rapid prototyping for future X-ray synchrotron and even free electron laser experiments.

  3. Bunch Profiling Using a Rotating Mask

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Mitchell; /SLAC /IIT, Chicago

    2012-08-24

    The current method for measuring profiles of proton bunches in accelerators is severely lacking. One must dedicate a great deal of time and expensive equipment to achieve meaningful results. A new method to complete this task uses a rotating mask with slots of three different orientations to collect this data. By scanning over the beam in three different directions, a complete profile for each bunch is built in just seconds, compared to the hours necessary for the previous method. This design was successfully tested using synchrotron radiation emitted by SPEAR3. The profile of the beam was measured in each of the three desired directions. Due to scheduled beam maintenance, only one set of data was completed and more are necessary to solve any remaining issues. The data collected was processed and all of the RMS sizes along the major and minor axes, as well as the tilt of the beam ellipse were measured.

  4. Masked emotional priming beyond global valence activations.

    Science.gov (United States)

    Rohr, Michaela; Degner, Juliane; Wentura, Dirk

    2012-01-01

    An immense body of research demonstrates that emotional facial expressions can be processed unconsciously. However, it has been assumed that such processing takes place solely on a global valence-based level, allowing individuals to disentangle positive from negative emotions but not the specific emotion. In three studies, we investigated the specificity of emotion processing under conditions of limited awareness using a modified variant of an affective priming task. Faces with happy, angry, sad, fearful, and neutral expressions were presented as masked primes for 33 ms (Study 1) or 14 ms (Studies 2 and 3) followed by emotional target faces (Studies 1 and 2) or emotional adjectives (Study 3). Participants' task was to categorise the target emotion. In all three studies, discrimination of targets was significantly affected by the emotional primes beyond a simple positive versus negative distinction. Results indicate that specific aspects of emotions might be automatically disentangled in addition to valence, even under conditions of subjective unawareness.

  5. GABAa agonist reduces visual awareness: a masking-EEG experiment

    NARCIS (Netherlands)

    van Loon, A.M.; Scholte, H.S.; van Gaal, S.; van der Hoort, B.J.J.; Lamme, V.A.F.

    2012-01-01

    Consciousness can be manipulated in many ways. Here, we seek to understand whether two such ways, visual masking and pharmacological intervention, share a common pathway in manipulating visual consciousness. We recorded EEG from human participants who performed a backward-masking task in which they

  6. Mechanisms of Masked Priming: Testing the Entry Opening Model

    Science.gov (United States)

    Wu, Hongmei

    2012-01-01

    Since it was introduced in Forster and Davis (1984), masked priming has been widely adopted in the psycholinguistic research on visual word recognition, but there has been little consensus on its actual mechanisms, i.e. how it occurs and how it should be interpreted. This dissertation addresses two different interpretations of masked priming, one…

  7. Prevalence and persistence of masked hypertension in treated hypertensive patients

    NARCIS (Netherlands)

    Verberk, Willem J.; Thien, Theo; Kroon, Abraham A.; Lenders, Jacques W. M.; van Montfrans, Gert A.; Smit, Andries J.; de Leeuw, Peter W.

    2007-01-01

    Background: Masked hypertension (MH) is defined as a normal blood pressure in the physician's office and an elevated blood pressure when measured out-of-office. The cause of MH may be termed the masked hypertension effect (MHE), and is not restricted to blood-pressure (BP) values around the threshol

  8. General Projective Synchronization and Fractional Order Chaotic Masking Scheme

    Institute of Scientific and Technical Information of China (English)

    Shi-Quan Shao

    2008-01-01

    In this paper, a fractional order chaotic masking scheme used for secure communication is introduced. Based on the general projective synchronization of two coupled fractional Chert systems, a popular masking scheme is designed. Numerical example is given to demonstrate the effectiveness of the proposed method.

  9. Optical vortex coronagraphy from soft spin-orbit masks

    CERN Document Server

    Aleksanyan, Artur

    2016-01-01

    We report on a soft route towards optical vortex coronagraphy based on self-engineered electrically tunable vortex masks based on liquid crystal topological defects. These results suggest that a Nature-assisted technological approach to the fabrication of complex phase masks could be useful in optical imaging whenever optical phase singularities are at play.

  10. 3D Rigorous simulation of mask induced polarization

    NARCIS (Netherlands)

    Wei, X.; Urbach, H.P.; Wachters, A.; Aksenov, Y.

    2005-01-01

    The polarization induced by the mask is studied by using a 3D rigorous model, wich solves Maxwell equations using the finite element method. Teh aerial image depends strongly on the change of polarization induced by the materials, thickness of the layer and pitch of the periodic masks.

  11. Mask Design for the Space Interferometry Mission Internal Metrology

    Science.gov (United States)

    Marx, David; Zhao, Feng; Korechoff, Robert

    2005-01-01

    This slide presentation reviews the mask design used for the internal metrology of the Space Interferometry Mission (SIM). Included is information about the project, the method of measurements with SIM, the internal metrology, numerical model of internal metrology, wavefront examples, performance metrics, and mask design

  12. Silver-palladium braze alloy recovered from masking materials

    Science.gov (United States)

    Cierniak, R.; Colman, G.; De Carlo, F.

    1966-01-01

    Method for recovering powdered silver-palladium braze alloy from an acrylic spray binder and rubber masking adhesive used in spray brazing is devised. The process involves agitation and dissolution of masking materials and recovery of suspended precious metal particles on a filter.

  13. Mask Making: The Use of Expressive Arts with Leadership Development.

    Science.gov (United States)

    Jones, Angela Thomas

    The process of making one's own mask and having one's mask made was offered as an experiential exercise for a group of Outward Bound students training to be Outward Bound instructors. The integration of expressive arts with outdoor experiential education was an attempt to encourage balance between the technical and interpersonal skill development…

  14. Respiratory Protection Provided by Five New Contagion Masks

    Science.gov (United States)

    Guyton, H. Gerald; Decker, Herbert M.

    1963-01-01

    The effectiveness of five recently developed contagion masks in filtering air-borne particles (1 to 5 μ diam) has been reported. One mask, available in four sizes, was 99% efficient. This mask can be reused after sterilization. The other four masks are available in only one size and are intended to be used one time only. Two of these four disposable types were more than 90% efficient but the variability of their respective test results was much greater than that for the reusable mask. The two remaining disposable types were less than 80% efficient. Two of these contagion-mask types were worn by hospital personnel for periods of up to 8 hr to determine the effect of such prolonged use on aerosol filtration efficiency. No significant decrease in filtration efficiency was noted. Physicians, nurses, and other hospital personnel who wear masks will benefit from the increased individual respiratory protection afforded by improved contagion masks. Concurrently, the incidence of hospital patient air-borne infections should be greatly reduced. Images FIG. 1 PMID:13951516

  15. Masking interrupts figure-ground signals in V1

    NARCIS (Netherlands)

    Lamme, V.A.F.; Zipser, K.; Spekreijse, H.

    2002-01-01

    In a backward masking paradigm, a target stimulus is rapidly (<100 msec) followed by a second Stimulus. This typically results in a dramatic decrease in the visibility of the target stimulus. It has been shown that masking reduces responses in V1. It is not known, however, which process in V1 is aff

  16. Mechanisms of Masked Priming: Testing the Entry Opening Model

    Science.gov (United States)

    Wu, Hongmei

    2012-01-01

    Since it was introduced in Forster and Davis (1984), masked priming has been widely adopted in the psycholinguistic research on visual word recognition, but there has been little consensus on its actual mechanisms, i.e. how it occurs and how it should be interpreted. This dissertation addresses two different interpretations of masked priming, one…

  17. Migration from full-head mask to "open-face" mask for immobilization of patients with head and neck cancer.

    Science.gov (United States)

    Li, Guang; Lovelock, D Michael; Mechalakos, James; Rao, Shyam; Della-Biancia, Cesar; Amols, Howard; Lee, Nancy

    2013-09-06

    To provide an alternative device for immobilization of the head while easing claustrophobia and improving comfort, an "open-face" thermoplastic mask was evaluated using video-based optical surface imaging (OSI) and kilovoltage (kV) X-ray radiography. A three-point thermoplastic head mask with a precut opening and reinforced strips was developed. After molding, it provided sufficient visible facial area as the region of interest for OSI. Using real-time OSI, the head motion of ten volunteers in the new mask was evaluated during mask locking and 15minutes lying on the treatment couch. Using a nose mark with reference to room lasers, forced head movement in open-face and full-head masks (with a nose hole) was compared. Five patients with claustrophobia were immobilized with open-face masks, set up using OSI and kV, and treated in 121 fractions, in which 61 fractions were monitored during treatment using real-time OSI. With the open-face mask, head motion was found to be 1.0 ± 0.6 mm and 0.4° ± 0.2° in volunteers during the experiment, and 0.8 ± 0.3 mm and 0.4° ± 0.2° in patients during treatment. These agree with patient motion calculated from pre-/post-treatment OSI and kV data using different anatomical landmarks. In volunteers, the head shift induced by mask-locking was 2.3 ± 1.7 mm and 1.8° ± 0.6°, and the range of forced movements in the open-face and full-head masks were found to be similar. Most (80%) of the volunteers preferred the open-face mask to the full-head mask, while claustrophobic patients could only tolerate the open-face mask. The open-face mask is characterized for its immobilization capability and can immobilize patients sufficiently (< 2 mm) during radiotherapy. It provides a clinical solution to the immobilization of patients with head and neck (HN) cancer undergoing radiotherapy, and is particularly beneficial for claustrophobic patients. This new open-face mask is readily adopted in radiotherapy clinic as a superior alternative to

  18. Antireflective surface patterned by rolling mask lithography

    Science.gov (United States)

    Seitz, Oliver; Geddes, Joseph B.; Aryal, Mukti; Perez, Joseph; Wassei, Jonathan; McMackin, Ian; Kobrin, Boris

    2014-03-01

    A growing number of commercial products such as displays, solar panels, light emitting diodes (LEDs and OLEDs), automotive and architectural glass are driving demand for glass with high performance surfaces that offer anti-reflective, self-cleaning, and other advanced functions. State-of-the-art coatings do not meet the desired performance characteristics or cannot be applied over large areas in a cost-effective manner. "Rolling Mask Lithography" (RML™) enables highresolution lithographic nano-patterning over large-areas at low-cost and high-throughput. RML is a photolithographic process performed using ultraviolet (UV) illumination transmitted through a soft cylindrical mask as it rolls across a substrate. Subsequent transfer of photoresist patterns into the substrate is achieved using an etching process, which creates a nanostructured surface. The current generation exposure tool is capable of patterning one-meter long substrates with a width of 300 mm. High-throughput and low-cost are achieved using continuous exposure of the resist by the cylindrical photomask. Here, we report on significant improvements in the application of RML™ to fabricate anti-reflective surfaces. Briefly, an optical surface can be made antireflective by "texturing" it with a nano-scale pattern to reduce the discontinuity in the index of refraction between the air and the bulk optical material. An array of cones, similar to the structure of a moth's eye, performs this way. Substrates are patterned using RML™ and etched to produce an array of cones with an aspect ratio of 3:1, which decreases the reflectivity below 0.1%.

  19. Preparation and evaluation of taste masked oral suspension of arbidol hydrochloride

    Directory of Open Access Journals (Sweden)

    Ling Wang

    2015-02-01

    Full Text Available The purpose of this study was to cover the bitter taste of arbidol hydrochloride (ARB and develop dry suspension with combination of solid dispersion and flavors. Taste masking was successfully done by solid dispersion using octadecanol as the carrier by fusion method. Suspending agents, carriers and other excipients were selected. Differential scanning calorimetry (DSC and Fourier transform infrared spectroscopy (FTIR were performed to identify the physicochemical interaction between drug and carrier, DSC analysis indicated that ARB was amorphous in the solid dispersion, FTIR spectroscopy showed no interaction between drug and carrier. Taste masking was evaluated on six volunteers with a score of 4.9. The results demonstrated successful taste masking. Water was used to study the in vitro dissolution performance of the three formulations of commercial tablet, capsule and self-made suspension. The self-made suspension showed a lower and slower release, the insoluble carrier octadecanol blocked the drug dissolving from the solid dispersion. It was indicated from the primary stability study, the self-made suspensions were sensitive to high temperature, high humidity and strong light conditions, they should be stored in sealed containers away from heat, light and humidity.

  20. Task-Dependent Masked Priming Effects in Visual Word Recognition

    Science.gov (United States)

    Kinoshita, Sachiko; Norris, Dennis

    2012-01-01

    A method used widely to study the first 250 ms of visual word recognition is masked priming: These studies have yielded a rich set of data concerning the processes involved in recognizing letters and words. In these studies, there is an implicit assumption that the early processes in word recognition tapped by masked priming are automatic, and masked priming effects should therefore be invariant across tasks. Contrary to this assumption, masked priming effects are modulated by the task goal: For example, only word targets show priming in the lexical decision task, but both words and non-words do in the same-different task; semantic priming effects are generally weak in the lexical decision task but are robust in the semantic categorization task. We explain how such task dependence arises within the Bayesian Reader account of masked priming (Norris and Kinoshita, 2008), and how the task dissociations can be used to understand the early processes in lexical access. PMID:22675316

  1. Task-dependent masked priming effects in visual word recognition.

    Science.gov (United States)

    Kinoshita, Sachiko; Norris, Dennis

    2012-01-01

    A method used widely to study the first 250 ms of visual word recognition is masked priming: These studies have yielded a rich set of data concerning the processes involved in recognizing letters and words. In these studies, there is an implicit assumption that the early processes in word recognition tapped by masked priming are automatic, and masked priming effects should therefore be invariant across tasks. Contrary to this assumption, masked priming effects are modulated by the task goal: For example, only word targets show priming in the lexical decision task, but both words and non-words do in the same-different task; semantic priming effects are generally weak in the lexical decision task but are robust in the semantic categorization task. We explain how such task dependence arises within the Bayesian Reader account of masked priming (Norris and Kinoshita, 2008), and how the task dissociations can be used to understand the early processes in lexical access.

  2. Optical image encryption using Kronecker product and hybrid phase masks

    Science.gov (United States)

    Kumar, Ravi; Bhaduri, Basanta

    2017-10-01

    In this paper, we propose a new technique for security enhancement in optical image encryption system. In this technique we have used the Kronecker product of two random matrices along with the double random phase encoding (DRPE) scheme in the Fresnel domain for optical image encryption. The phase masks used here are different than the random masks used in conventional DRPE scheme. These hybrid phase masks are generated by using the combination of random phase masks and a secondary image. For encryption, the input image is first randomized and then the DRPE in the Fresnel domain is performed using the hybrid phase masks. Secondly, the Kronecker product of two random matrices is multiplied with the DRPE output to get the final encoded image for transmission. The proposed technique consists of more unknown keys for enhanced security and robust against various attacks. The simulation results along with effects under various attacks are presented in support of the proposed technique.

  3. Masked Hypertension: How to Identify and When to Treat?

    Science.gov (United States)

    Rizzoni, Damiano

    2016-09-01

    Approximately one out of 7-8 individuals with normal blood pressure (BP) in the clinic or doctor's office and one third of patients with chronic kidney disease with normal clinic BP have elevated ambulatory BP (masked hypertension). Patients with masked hypertension have an increased risk for target organ damage and a two-fold increased risk for cardiovascular events compared to patients with normal clinic and ambulatory BP. Despite this elevated risk for adverse outcomes, patients with masked hypertension have been excluded from hypertension trials because of their normal clinic BP. It is still unknown whether the reduction in target organ damage and adverse cardiovascular outcomes associated with treatment of hypertension extends to patients with masked hypertension. Ongoing and planned interventional studies will provide an answer to this crucial question in a few years. At present, it seems reasonable to follow the suggestion of current European guidelines, that lifestyle measures and drug treatment should be considered in the presence of masked hypertension.

  4. Study of critical dimension uniformity (CDU) using a mask inspector

    Science.gov (United States)

    Lin, Mei-Chun; Yu, Ching-Fang; Lai, Mei-Tsu; Hsu, Luke T. H.; Chin, Angus; Yen, Anthony

    2012-11-01

    This paper studies the repeatability and the reliability of CDUs from a mask inspector and their correlation with CD SEM measurements on various pattern attributes such as feature sizes, tones, and orientations. Full-mask image analysis with a mask inspector is one of potential solutions for overcoming the sampling rate limitation of a mask CD SEM. By comparing the design database with the inspected dimension, the complete CDU behavior of specific patterns can be obtained without extra work and tool time. These measurements can be mapped and averaged over various spatial lengths to determine changes in relative CDU across the mask. Eventually, success of this methodology relies on the optical system of the inspector being highly stable.

  5. [Clark's head tent or "small mask"? Value of high oxygen flows administered through a mask].

    Science.gov (United States)

    Landrieu, J P; Milhaud, A; Brille, P; Hermant, A; Tinturier, F

    1991-01-01

    The measurement of transcutaneous PtcO2 in eight normal adults prove a comparable efficacy of 50 l.min-1 O2 through facial "small mask" (61.5 kPa; 463 mmHg) and 20 l.min-1 O2 through head tent (65.1 kPa; 490 mmHg). First procedure, inexpensive, is very simple to use.

  6. The influence of masked hypertension on the right ventricle: is everything really masked?

    Science.gov (United States)

    Tadic, Marijana; Cuspidi, Cesare; Vukomanovic, Vladan; Celic, Vera; Pavlovic, Tatjana; Kocijancic, Vesna

    2016-04-01

    We sought to investigate right ventricular (RV) structure, function, and mechanics in subjects with masked hypertension (MH), normotensive, and sustained hypertensive patients. This cross-sectional study included 186 untreated subjects who underwent 24-hour ambulatory blood pressure (BP) monitoring and complete two-dimensional echocardiographic (2DE) examination including multilayer strain analysis. MH was diagnosed if clinic BP was normal (subjects with sustained hypertension. RV structure, function, and deformation are significantly changed in subjects with MH and sustained hypertension.

  7. A prototype erodible mask delivery system for the excimer laser.

    Science.gov (United States)

    Maloney, R K; Friedman, M; Harmon, T; Hayward, M; Hagen, K; Gailitis, R P; Waring, G O

    1993-04-01

    The authors developed an erodible mask delivery system for the argon-fluoride 193-nm excimer laser, which offers the possibility of correcting hyperopia and astigmatism as well as myopia. Masks were made of polymethylmethacrylate on a quartz window, with intended corrections for myopia and hyperopia of 2.5 and 5 diopters (D). Ablations using the mask and control ablations using an expanding diaphragm were performed in 30 eyes of 15 pigmented rabbits with an Excimed UV200 laser (Summit Technology, Inc, Waltham, MA). The rabbits were followed for 134 days with regular biomicroscopy and retinoscopic examination by two observers. Ablations with the mask to correct myopia were successful and produced stable corrections, although the higher-power mask produced undercorrections. Hyperopic masks produced paradoxic myopic corrections, possibly due to the lack of a transition zone at the edge of the mask. Corneas ablated with the mask had less sub-epithelial haze than those ablated with the diaphragm at all examinations. Results of histopathologic examination showed epithelial hyperplasia over the ablation zone in all eyes. Dichlorotriazinyl aminofluorescein collagen staining showed subepithelial new collagen in all eyes, but there was no relation between the depth of ablation at any point on the cornea and the amount of new collagen deposited there. Myopic ablations are feasible with the erodible mask, although additional calibration is needed. Hyperopic ablations were unsuccessful with the current design. Corneas ablated with the mask may be clearer than corneas ablated with the diaphragm, possibly due to a smoother ablated surface. Regression of effect after laser ablation in the rabbit model is likely due more to epithelial hyperplasia than to stromal remodeling.

  8. New method of 2-dimensional metrology using mask contouring

    Science.gov (United States)

    Matsuoka, Ryoichi; Yamagata, Yoshikazu; Sugiyama, Akiyuki; Toyoda, Yasutaka

    2008-10-01

    We have developed a new method of accurately profiling and measuring of a mask shape by utilizing a Mask CD-SEM. The method is intended to realize high accuracy, stability and reproducibility of the Mask CD-SEM adopting an edge detection algorithm as the key technology used in CD-SEM for high accuracy CD measurement. In comparison with a conventional image processing method for contour profiling, this edge detection method is possible to create the profiles with much higher accuracy which is comparable with CD-SEM for semiconductor device CD measurement. This method realizes two-dimensional metrology for refined pattern that had been difficult to measure conventionally by utilizing high precision contour profile. In this report, we will introduce the algorithm in general, the experimental results and the application in practice. As shrinkage of design rule for semiconductor device has further advanced, an aggressive OPC (Optical Proximity Correction) is indispensable in RET (Resolution Enhancement Technology). From the view point of DFM (Design for Manufacturability), a dramatic increase of data processing cost for advanced MDP (Mask Data Preparation) for instance and surge of mask making cost have become a big concern to the device manufacturers. This is to say, demands for quality is becoming strenuous because of enormous quantity of data growth with increasing of refined pattern on photo mask manufacture. In the result, massive amount of simulated error occurs on mask inspection that causes lengthening of mask production and inspection period, cost increasing, and long delivery time. In a sense, it is a trade-off between the high accuracy RET and the mask production cost, while it gives a significant impact on the semiconductor market centered around the mask business. To cope with the problem, we propose the best method of a DFM solution using two-dimensional metrology for refined pattern.

  9. Objective measures of binaural masking level differences and comodulation masking release based on late auditory evoked potentials

    DEFF Research Database (Denmark)

    Epp, Bastian; Yasin, Ifat; Verhey, Jesko L.

    2013-01-01

    The audibility of important sounds is often hampered due to the presence of other masking sounds. The present study investigates if a correlate of the audibility of a tone masked by noise is found in late auditory evoked potentials measured from human listeners. The audibility of the target sound...

  10. The difficult business model for mask equipment makers and mask infrastructure development support from consortia and governments

    Science.gov (United States)

    Hector, Scott

    2005-11-01

    The extension of optical projection lithography through immersion to patterning features with half pitch cash flow models to predict the affordable R&D while maintaining industry accepted internal rates of return. The results have been compared to estimates of the total R&D cost to bring a new generation of mask equipment to market for various types of tools. The analysis revealed that affordability of the required R&D is a significant problem for many suppliers of mask-making equipment. Consortia such as SEMATECH and Selete have played an important role in cost sharing selected mask equipment and material development projects. Governments in the United States, in Europe and in Japan have also helped equipment suppliers with support for R&D. This paper summarizes the challenging business model for mask equipment suppliers and highlight government support for mask equipment and materials development.

  11. Challenges of the mask manufacturing approaching physical limits

    Science.gov (United States)

    Nesladek, Pavel

    2007-05-01

    Over the past 25 years, following the International Technology Roadmap for Semiconductors , 2006 [1], the main feature size of integrated circuits has decreased from approximately 3 μm to 70 nm. With feature sizes well below the exposure wavelength of the stepper, resolution enhancement features such as serifs, scatter-bars, and hammer heads are added to the mask design. Given a 4:1 reduction from mask to wafer, the resolution enhancement features, such as scatter bars, are roughly the same size as main features on the wafer. Recently, with the reduction of mask feature size, mask-manufacturing technology faces several problems in satisfying customer needs for resolution, CD uniformity, and CD linearity. The problems result, in part, as the legacy of material and process choices made in the early days of mask making. For example, the use of chrome as an absorber was suitable material choice for wet etch binary mask processes, but this material is now seen as problematic current dry etch process. Another general source of problems for the mask industry is its small size relative to wafer manufacturing. As a result, vendors focus material and equipment development efforts on wafer, and then make adaptations to fit mask-making requirements. Nowadays the patterns of high-end lithographic masks are written by variable shaped beam 50 kV e-beam writers with minimum beam size of as little as few nm. However, the latent pattern after writing differs significantly from the final pattern on the mask due to interactions during post exposure bake, resist development, and etch processes so the final pattern is a convolution of these effects. The parameters of interest are resolution, critical dimension uniformity (CDU), pattern fidelity, CD linearity, iso-dense as well as clear-dark bias, transmission of the transparent substrate and absorber, and birefringence. Besides these requirements, there are implicit, not specified, expectations that the mask has to fulfill. To this

  12. Methodological approaches to planar and volumetric scintigraphic imaging of small volume targets with high spatial resolution and sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, J.; Galvis-Alonso, O.Y. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Faculdade de Medicina. Dept. de Biologia Molecular], e-mail: mejia_famerp@yahoo.com.br; Braga, J. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Div. de Astrofisica; Correa, R. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Ciencia Espacial e Atmosferica; Leite, J.P. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Neurologia, Psiquiatria e Psicologia Medica; Simoes, M.V. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Clinica Medica

    2009-08-15

    Single-photon emission computed tomography (SPECT) is a non-invasive imaging technique, which provides information reporting the functional states of tissues. SPECT imaging has been used as a diagnostic tool in several human disorders and can be used in animal models of diseases for physiopathological, genomic and drug discovery studies. However, most of the experimental models used in research involve rodents, which are at least one order of magnitude smaller in linear dimensions than man. Consequently, images of targets obtained with conventional gamma-cameras and collimators have poor spatial resolution and statistical quality. We review the methodological approaches developed in recent years in order to obtain images of small targets with good spatial resolution and sensitivity. Multi pinhole, coded mask- and slit-based collimators are presented as alternative approaches to improve image quality. In combination with appropriate decoding algorithms, these collimators permit a significant reduction of the time needed to register the projections used to make 3-D representations of the volumetric distribution of target's radiotracers. Simultaneously, they can be used to minimize artifacts and blurring arising when single pinhole collimators are used. Representation images are presented, which illustrate the use of these collimators. We also comment on the use of coded masks to attain tomographic resolution with a single projection, as discussed by some investigators since their introduction to obtain near-field images. We conclude this review by showing that the use of appropriate hardware and software tools adapted to conventional gamma-cameras can be of great help in obtaining relevant functional information in experiments using small animals. (author)

  13. Effect of volumetric concentration of MWCNTs on the stability and thermal conductivity of nanofluids

    Science.gov (United States)

    Rehman, Wajid Ur; Bhat, A. H.; Suliamon, A. A.; Khan, Ihsan Ullah; Ullah, Hafeez

    2016-11-01

    Environmental concerns and running down of the fossil fuel deposits which are generally being used as base oil in Drilling Fluid/Mud have attended worldwide attention and thereby, researchers have focused on using environmentally friendly drilling fluids. This study demonstrates the preparation of drilling fluids and to explore the effect of increase in the volumetric concentration of nanoparticles on the stability and thermal conductivity of nanofluids. In this research, for the formation of nanofluids, Jatropha Seed Oil was used as the base oil with the addition of multi-walled carbon nanotubes as the nanoparticles using sonication technique. The raw multi-walled carbon nanotubes were characterized by using SEM for morphological examination. The prepared drilling fluid were characterized by using UV-Visible spectroscopic technique for analyzing the stability. Thermal Conductivity measurements were also carried out for heat transfer efficiency. It was observed that the heat transfer capability of the nanofluid ameliorates with the increase in the loading percentage of multi-walled carbon nanotubes.

  14. Supercrowding: weakly masking a target expands the range of crowding.

    Science.gov (United States)

    Vickery, Timothy J; Shim, Won Mok; Chakravarthi, Ramakrishna; Jiang, Yuhong V; Luedeman, Robert

    2009-02-10

    Crowding is impairment of peripheral object identification by nearby objects. Critical spacing (the minimum target-flanker distance that does not produce crowding) scales with target eccentricity and is consistently reported as roughly equal to or less than 50% of target eccentricity (0.5e). This study demonstrates that crowding occurs far beyond the typical critical spacing when the target is weakly masked by a surrounding contour or backwards pattern mask. A target was presented at a peripheral location on every trial and participants reported its orientation. Flankers appeared at target-flanker distances of 0.3-0.7e, or were absent. The target was presented with or without a mask. When flankers were absent, the masks only mildly impaired performance. When flankers were present but the mask was absent, target identification was nearly perfect at wide target-flanker distances (0.5e-0.7e). However, when flankers were present and the target was masked, performance dropped significantly, even when target-flanker distances far exceeded the typical crowding range. This phenomenon ("supercrowding") shares critical features with standard crowding: flankers similar to the target impair performance more than dissimilar flankers, and the characteristic anisotropic profile of crowding is preserved. Supercrowding may reflect a general interaction between crowding and other forms of masking.

  15. Achromatic Focal Plane Mask for Exoplanet Imaging Coronagraphy

    Science.gov (United States)

    Newman, Kevin Edward; Belikov, Ruslan; Guyon, Olivier; Balasubramanian, Kunjithapatham; Wilson, Dan

    2013-01-01

    Recent advances in coronagraph technologies for exoplanet imaging have achieved contrasts close to 1e10 at 4 lambda/D and 1e-9 at 2 lambda/D in monochromatic light. A remaining technological challenge is to achieve high contrast in broadband light; a challenge that is largely limited by chromaticity of the focal plane mask. The size of a star image scales linearly with wavelength. Focal plane masks are typically the same size at all wavelengths, and must be sized for the longest wavelength in the observational band to avoid starlight leakage. However, this oversized mask blocks useful discovery space from the shorter wavelengths. We present here the design, development, and testing of an achromatic focal plane mask based on the concept of optical filtering by a diffractive optical element (DOE). The mask consists of an array of DOE cells, the combination of which functions as a wavelength filter with any desired amplitude and phase transmission. The effective size of the mask scales nearly linearly with wavelength, and allows significant improvement in the inner working angle of the coronagraph at shorter wavelengths. The design is applicable to almost any coronagraph configuration, and enables operation in a wider band of wavelengths than would otherwise be possible. We include initial results from a laboratory demonstration of the mask with the Phase Induced Amplitude Apodization coronagraph.

  16. Application of DBM tool for detection of EUV mask defect

    Science.gov (United States)

    Yoo, Gyun; Kim, Jungchan; Park, Chanha; Lee, Taehyeong; Ji, Sunkeun; Yang, Hyunjo; Yim, Donggyu; Park, Byeongjun; Maruyama, Kotaro; Yamamoto, Masahiro

    2013-04-01

    Extreme ultraviolet lithography (EUVL) is one of the most leading lithography technologies for high volume manufacturing. The EUVL is based on reflective optic system therefore critical patterning issues are arisen from the surface of photomask. Defects below and inside of the multilayer or absorber of EUV photomask is one of the most critical issues to implement EUV lithography in mass production. It is very important to pick out and repair printable mask defects. Unfortunately, however, infrastructure for securing the defect free photomask such as inspection tool is still under development furthermore it does not seem to be ready soon. In order to overcome the lack of infrastructures for EUV mask inspection, we will discuss an alternative methodology which is based on wafer inspection results using DBM (Design Based Metrology) tool. It is very challenging for metrology to quantify real mask defect from wafer inspection result since various sources are possible contributor. One of them is random defect comes from poor CD uniformity. It is probable that those random defects are majority of a defect list including real mask defects. It is obvious that CD uniformity should be considered to pick out only a real mask defect. In this paper, the methodology to determine real mask defect from the wafer inspection results will be discussed. Experiments are carried out on contact layer and on metal layer using mask defect inspection tool, Teron(KLA6xx) and DBM (Design Based Metrology) tool, NGR2170™.

  17. Airflow-Restricting Mask Reduces Acute Performance in Resistance Exercise

    Directory of Open Access Journals (Sweden)

    Yuri L. Motoyama

    2016-09-01

    Full Text Available Background: The aim of this study was to compare the number of repetitions to volitional failure, the blood lactate concentration, and the perceived exertion to resistance training with and without an airflow-restricting mask. Methods: Eight participants participated in a randomized, counterbalanced, crossover study. Participants were assigned to an airflow-restricting mask group (MASK or a control group (CONT and completed five sets of chest presses and parallel squats until failure at 75% one-repetition-maximum test (1RM with 60 s of rest between sets. Ratings of perceived exertion (RPEs, blood lactate concentrations (Lac−, and total repetitions were taken after the training session. Results: MASK total repetitions were lower than those of the CONT, and (Lac− and MASK RPEs were higher than those of the CONT in both exercises. Conclusions: We conclude that an airflow-restricting mask in combination with resistance training increase perceptions of exertion and decrease muscular performance and lactate concentrations when compared to resistance training without this accessory. This evidence shows that the airflow-restricting mask may change the central nervous system and stop the exercise beforehand to prevent some biological damage.

  18. Masked areas in shear peak statistics. A forward modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Bard, D.; Kratochvil, J. M.; Dawson, W.

    2016-03-09

    The statistics of shear peaks have been shown to provide valuable cosmological information beyond the power spectrum, and will be an important constraint of models of cosmology in forthcoming astronomical surveys. Surveys include masked areas due to bright stars, bad pixels etc., which must be accounted for in producing constraints on cosmology from shear maps. We advocate a forward-modeling approach, where the impacts of masking and other survey artifacts are accounted for in the theoretical prediction of cosmological parameters, rather than correcting survey data to remove them. We use masks based on the Deep Lens Survey, and explore the impact of up to 37% of the survey area being masked on LSST and DES-scale surveys. By reconstructing maps of aperture mass the masking effect is smoothed out, resulting in up to 14% smaller statistical uncertainties compared to simply reducing the survey area by the masked area. We show that, even in the presence of large survey masks, the bias in cosmological parameter estimation produced in the forward-modeling process is ≈1%, dominated by bias caused by limited simulation volume. We also explore how this potential bias scales with survey area and evaluate how much small survey areas are impacted by the differences in cosmological structure in the data and simulated volumes, due to cosmic variance.

  19. Leak and obstruction with mask ventilation during simulated neonatal resuscitation.

    Science.gov (United States)

    Schilleman, Kim; Witlox, Ruben S; Lopriore, Enrico; Morley, Colin J; Walther, Frans J; te Pas, Arjan B

    2010-11-01

    To evaluate mask technique during simulated neonatal resuscitation and test the effectiveness of training in optimal mask handling. Seventy participants(consultants, registrars and nurses) from neonatal units were asked to administer positive pressure ventilation at a flow of 8 l/min and a frequency of 40-60/min to a modified leak free, term newborn manikin (lung compliance 0.5 ml/cm H(2)O) using a Neopuff T-piece device. Recordings were made (1) before training, (2) after training in mask handling and (3) 3 weeks later. Leak was calculated. Obstruction (tidal volume training, 10% (5-37%) directly after training and 15% (4-33%) 3 weeks later (ptraining and 3 weeks later in 46%, 42% and 37% of inflations, respectively. Severe obstruction did not occur. Mask ventilation during simulated neonatal resuscitation was often hampered by large leaks at the face mask. Moderate airway obstruction occurred frequently when effort was taken to minimise leak. Training in mask ventilation reduced mask leak but should also focus on preventing airway obstruction.

  20. GUSTATORY SYSTEM AND MASKING THE TASTE OF BITTER HERBS

    Directory of Open Access Journals (Sweden)

    Vinita Kale, Chetan Tapre and Abhay Ittadwar

    2013-11-01

    Full Text Available The oral route is the most easy and favorable route of drug administration. The development of oral formulations containing bitter herbs has widely been required in pharmaceutical and herbal industry. The human gustatory system is capable of identifying five major taste qualities: sweet, sour, salty, bitter and umami (savory. Different receptors and transduction mechanisms are involved in the detection of each taste quality. Many efforts have been focused to improve the palatability in these products that has prompted in the development of numerous techniques of taste masking. Once a method for taste masking is adopted, it becomes apparent to evaluate the effectiveness of the taste masked product. The major hurdle in evaluation of measuring the effectiveness of taste masking is that the taste is a highly subjective property and it varies demographically and with the age and gender. This communication gives a brief account of gustatory system, the receptor and transduction mechanism of bitter taste and various techniques used in taste masking of the bitters. The review also reveals the in-vitro and in-vivo methods for evaluating taste masked efficiency of developed product. Finally, the review concludes that proper choice of method for taste masking method is essential and it might depend on the properties of the herbs.

  1. Do Plant-Bound Masked Mycotoxins Contribute to Toxicity?

    Directory of Open Access Journals (Sweden)

    Silvia W. Gratz

    2017-02-01

    Full Text Available Masked mycotoxins are plant metabolites of mycotoxins which co-contaminate common cereal crops. Since their discovery, the question has arisen if they contribute to toxicity either directly or indirectly through the release of the parent mycotoxins. Research in this field is rapidly emerging and the aim of this review is to summarize the latest knowledge on the fate of masked mycotoxins upon ingestion. Fusarium mycotoxins are the most prevalent masked mycotoxins and evidence is mounting that DON3Glc and possibly other masked trichothecenes are stable in conditions prevailing in the upper gut and are not absorbed intact. DON3Glc is also not toxic per se, but is hydrolyzed by colonic microbes and further metabolized to DOM-1 in some individuals. Masked zearalenone is rather more bio-reactive with some evidence on gastric and small intestinal hydrolysis as well as hydrolysis by intestinal epithelium and components of blood. Microbial hydrolysis of ZEN14Glc is almost instantaneous and further metabolism also occurs. Identification of zearalenone metabolites and their fate in the colon are still missing as is further clarification on whether or not masked zearalenone is hydrolyzed by mammalian cells. New masked mycotoxins continuously emerge and it is crucial that we gain detailed understanding of their individual metabolic fate in the body before we can assess synergistic effects and extrapolate the additive risk of all mycotoxins present in food.

  2. Volumetric CT-images improve testing of radiological image interpretation skills

    Energy Technology Data Exchange (ETDEWEB)

    Ravesloot, Cécile J., E-mail: C.J.Ravesloot@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Schaaf, Marieke F. van der, E-mail: M.F.vanderSchaaf@uu.nl [Department of Pedagogical and Educational Sciences at Utrecht University, Heidelberglaan 1, 3584 CS Utrecht (Netherlands); Schaik, Jan P.J. van, E-mail: J.P.J.vanSchaik@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Cate, Olle Th.J. ten, E-mail: T.J.tenCate@umcutrecht.nl [Center for Research and Development of Education at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Gijp, Anouk van der, E-mail: A.vanderGijp-2@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Mol, Christian P., E-mail: C.Mol@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Vincken, Koen L., E-mail: K.Vincken@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands)

    2015-05-15

    Rationale and objectives: Current radiology practice increasingly involves interpretation of volumetric data sets. In contrast, most radiology tests still contain only 2D images. We introduced a new testing tool that allows for stack viewing of volumetric images in our undergraduate radiology program. We hypothesized that tests with volumetric CT-images enhance test quality, in comparison with traditional completely 2D image-based tests, because they might better reflect required skills for clinical practice. Materials and methods: Two groups of medical students (n = 139; n = 143), trained with 2D and volumetric CT-images, took a digital radiology test in two versions (A and B), each containing both 2D and volumetric CT-image questions. In a questionnaire, they were asked to comment on the representativeness for clinical practice, difficulty and user-friendliness of the test questions and testing program. Students’ test scores and reliabilities, measured with Cronbach's alpha, of 2D and volumetric CT-image tests were compared. Results: Estimated reliabilities (Cronbach's alphas) were higher for volumetric CT-image scores (version A: .51 and version B: .54), than for 2D CT-image scores (version A: .24 and version B: .37). Participants found volumetric CT-image tests more representative of clinical practice, and considered them to be less difficult than volumetric CT-image questions. However, in one version (A), volumetric CT-image scores (M 80.9, SD 14.8) were significantly lower than 2D CT-image scores (M 88.4, SD 10.4) (p < .001). The volumetric CT-image testing program was considered user-friendly. Conclusion: This study shows that volumetric image questions can be successfully integrated in students’ radiology testing. Results suggests that the inclusion of volumetric CT-images might improve the quality of radiology tests by positively impacting perceived representativeness for clinical practice and increasing reliability of the test.

  3. Thermal and volumetric properties of complex aqueous electrolyte solutions using the Pitzer formalism - The PhreeSCALE code

    Science.gov (United States)

    Lach, Adeline; Boulahya, Faïza; André, Laurent; Lassin, Arnault; Azaroual, Mohamed; Serin, Jean-Paul; Cézac, Pierre

    2016-07-01

    The thermal and volumetric properties of complex aqueous solutions are described according to the Pitzer equation, explicitly taking into account the speciation in the aqueous solutions. The thermal properties are the apparent relative molar enthalpy (Lϕ) and the apparent molar heat capacity (Cp,ϕ). The volumetric property is the apparent molar volume (Vϕ). Equations describing these properties are obtained from the temperature or pressure derivatives of the excess Gibbs energy and make it possible to calculate the dilution enthalpy (∆HD), the heat capacity (cp) and the density (ρ) of aqueous solutions up to high concentrations. Their implementation in PHREEQC V.3 (Parkhurst and Appelo, 2013) is described and has led to a new numerical tool, called PhreeSCALE. It was tested first, using a set of parameters (specific interaction parameters and standard properties) from the literature for two binary systems (Na2SO4-H2O and MgSO4-H2O), for the quaternary K-Na-Cl-SO4 system (heat capacity only) and for the Na-K-Ca-Mg-Cl-SO4-HCO3 system (density only). The results obtained with PhreeSCALE are in agreement with the literature data when the same standard solution heat capacity (Cp0) and volume (V0) values are used. For further applications of this improved computation tool, these standard solution properties were calculated independently, using the Helgeson-Kirkham-Flowers (HKF) equations. By using this kind of approach, most of the Pitzer interaction parameters coming from literature become obsolete since they are not coherent with the standard properties calculated according to the HKF formalism. Consequently a new set of interaction parameters must be determined. This approach was successfully applied to the Na2SO4-H2O and MgSO4-H2O binary systems, providing a new set of optimized interaction parameters, consistent with the standard solution properties derived from the HKF equations.

  4. Fabrication of a microfluidic paper-based analytical device by silanization of filter cellulose using a paper mask for glucose assay.

    Science.gov (United States)

    Cai, Longfei; Wang, Yong; Wu, Yunying; Xu, Chunxiu; Zhong, Minghua; Lai, Heyun; Huang, Junsheng

    2014-09-21

    We developed a novel, low-cost and simple method for the fabrication of microfluidic paper-based analytical devices (μPADs) by silanization of filter cellulose using a paper mask having a specific pattern. The paper mask was penetrated with trimethoxyoctadecylsilane (TMOS) by immersing into TMOS-heptane solution. By heating the filter paper sandwiched between the paper mask and glass slides, TMOS was immobilized onto the filter cellulose via the reaction between cellulose OH and TMOS, while the hydrophilic area was not silanized because it was not in contact with the paper mask penetrated with TMOS. The effects of some factors including TMOS concentration, heating temperature and time on the fabrication of μPADs were studied. This method is free of any expensive equipment and metal masks, and could be performed by untrained personnel. These features are very attractive for the fabrication and applications of μPADs in developing countries or resource-limited settings. A flower-shaped μPAD was fabricated and used to determine glucose in human serum samples. The contents determined by this method agreed well with those determined by a standard method.

  5. New method of contour-based mask-shape compiler

    Science.gov (United States)

    Matsuoka, Ryoichi; Sugiyama, Akiyuki; Onizawa, Akira; Sato, Hidetoshi; Toyoda, Yasutaka

    2007-10-01

    We have developed a new method of accurately profiling a mask shape by utilizing a Mask CD-SEM. The method is intended to realize high accuracy, stability and reproducibility of the Mask CD-SEM adopting an edge detection algorithm as the key technology used in CD-SEM for high accuracy CD measurement. In comparison with a conventional image processing method for contour profiling, it is possible to create the profiles with much higher accuracy which is comparable with CD-SEM for semiconductor device CD measurement. In this report, we will introduce the algorithm in general, the experimental results and the application in practice. As shrinkage of design rule for semiconductor device has further advanced, an aggressive OPC (Optical Proximity Correction) is indispensable in RET (Resolution Enhancement Technology). From the view point of DFM (Design for Manufacturability), a dramatic increase of data processing cost for advanced MDP (Mask Data Preparation) for instance and surge of mask making cost have become a big concern to the device manufacturers. In a sense, it is a trade-off between the high accuracy RET and the mask production cost, while it gives a significant impact on the semiconductor market centered around the mask business. To cope with the problem, we propose the best method for a DFM solution in which two dimensional data are extracted for an error free practical simulation by precise reproduction of a real mask shape in addition to the mask data simulation. The flow centering around the design data is fully automated and provides an environment where optimization and verification for fully automated model calibration with much less error is available. It also allows complete consolidation of input and output functions with an EDA system by constructing a design data oriented system structure. This method therefore is regarded as a strategic DFM approach in the semiconductor metrology.

  6. Simulation of AIMS measurements using rigorous mask 3D modeling

    Science.gov (United States)

    Chou, Chih-Shiang; Huang, Hsu-Ting; Chu, Fu-Sheng; Chu, Yuan-Chih; Huang, Wen-Chun; Liu, Ru-Gun; Gau, Tsai-Sheng

    2015-03-01

    Aerial image measurement system (AIMSTM) has been widely used for wafer level inspection of mask defects. Reported inspection flows include die-to-die (D2D) and die-to-database (D2DB) methods. For patterns that do not repeat in another die, only the D2DB approach is applicable. The D2DB method requires accurate simulation of AIMS measurements for a mask pattern. An optical vectorial model is needed to depict the mask diffraction effect in this simulation. To accurately simulate the imaging results, a rigorous electro-magnetic field (EMF) model is essential to correctly take account of the EMF scattering induced by the mask topography, which is usually called the mask 3D effect. In this study, the mask 3D model we use is rigorous coupled-wave analysis (RCWA), which calculates the diffraction fields from a single plane wave incidence. A hybrid Hopkins-Abbe method with RCWA is used to calculate the EMF diffraction at a desired accuracy level while keeping the computation time practical. We will compare the speed of the hybrid Hopkins-Abbe method to the rigorous Abbe method. The matching between simulation and experiment is more challenging for AIMS than CD-SEM because its measurements provide full intensity information. Parameters in the mask 3D model such as film stack thickness or film optical properties, is optimized during the fitting process. We will report the fitting results of AIMS images for twodimensional structures with various pitches. By accurately simulating the AIMS measurements, it provides a necessary tool to perform the mask inspection using the D2DB approach and to accurately predict the mask defects.

  7. Potential of mask production process for finer pattern fabrication

    Science.gov (United States)

    Yagawa, Keisuke; Ugajin, Kunihiro; Suenaga, Machiko; Kobayashi, Yoshihito; Motokawa, Takeharu; Hagihara, Kazuki; Saito, Masato; Itoh, Masamitsu

    2013-09-01

    Photomask used for optical lithography has been developed for purpose of fabrication a pattern along with finer designed rules and increase the productivity. With regard to pattern fabrication on mask, EB (Electron beam) mask writer has been used because it has high resolution beam. But in producing photomask, minimum pattern size on mask is hits a peak around 40nm by the resolution limit of ArF immersion systems. This value is easy to achieve by current EB writer. So, photomask process with EB writer has gotten attached to increase turnaround time. In next generation lithography such as EUV (Extreme ultraviolet) lithography and Nano-imprint lithography, it is enable to fabricate finer pattern beyond the resolution limit of ArF immersion systems. Thereby the pattern on a mask becomes finer rapidly. According to ITRS 2012, fabrication of finer patterns less than 20nm will be required on EUV mask and on NIL template. Especially in NIL template, less than 15nm pattern will be required half a decade later. But today's development of EB writer is aiming to increase photomask's productivity, so we will face a difficulty to fabricate finer pattern in near future. In this paper, we examined a potential of mask production process with EB writer from the view of finer pattern fabrication performances. We succeeded to fabricate hp (half-pitch) 17nm pattern on mask plate by using VSB (Variable Shaped Beam) type EB mask writer with CAR (Chemically Amplified Resist). This result suggests that the photomask fabrication process has the potential for sub-20nm generation mask production.

  8. Developing and modelling of ohmic heating for solid food products

    DEFF Research Database (Denmark)

    Feyissa, Aberham Hailu; Frosch, Stina

    such as meat and seafood is not industrially utilized yet. Therefore, the aim of the current work is to model and develop the ohmic heating technology for heating of solid meat and seafood. A 3D mathematical model of coupled heat transfer and electric field during ohmic heating of meat products has been......Heating of solid foods using the conventional technologies is time-consuming due to the fact that heat transfer is limited by internal conduction within the product. This is a big challenge to food manufactures who wish to heat the product faster to the desired core temperature and to ensure more...... uniform quality across the product. Ohmic heating is one of the novel technologies potentially solving this problem by allowing volumetric heating of the product and thereby reducing or eliminating temperature gradients within the product. However, the application of ohmic heating for solid food products...

  9. Integration of mask and silicon metrology in DFM

    Science.gov (United States)

    Matsuoka, Ryoichi; Mito, Hiroaki; Sugiyama, Akiyuki; Toyoda, Yasutaka

    2009-03-01

    We have developed a highly integrated method of mask and silicon metrology. The method adopts a metrology management system based on DBM (Design Based Metrology). This is the high accurate contouring created by an edge detection algorithm used in mask CD-SEM and silicon CD-SEM. We have inspected the high accuracy, stability and reproducibility in the experiments of integration. The accuracy is comparable with that of the mask and silicon CD-SEM metrology. In this report, we introduce the experimental results and the application. As shrinkage of design rule for semiconductor device advances, OPC (Optical Proximity Correction) goes aggressively dense in RET (Resolution Enhancement Technology). However, from the view point of DFM (Design for Manufacturability), the cost of data process for advanced MDP (Mask Data Preparation) and mask producing is a problem. Such trade-off between RET and mask producing is a big issue in semiconductor market especially in mask business. Seeing silicon device production process, information sharing is not completely organized between design section and production section. Design data created with OPC and MDP should be linked to process control on production. But design data and process control data are optimized independently. Thus, we provided a solution of DFM: advanced integration of mask metrology and silicon metrology. The system we propose here is composed of followings. 1) Design based recipe creation: Specify patterns on the design data for metrology. This step is fully automated since they are interfaced with hot spot coordinate information detected by various verification methods. 2) Design based image acquisition: Acquire the images of mask and silicon automatically by a recipe based on the pattern design of CD-SEM.It is a robust automated step because a wide range of design data is used for the image acquisition. 3) Contour profiling and GDS data generation: An image profiling process is applied to the acquired image based

  10. Comodulation masking release in bit-rate reduction systems

    DEFF Research Database (Denmark)

    Vestergaard, Martin D.; Rasmussen, Karsten Bo; Poulsen, Torben

    1999-01-01

    It has been suggested that the level dependence of the upper masking slopebe utilised in perceptual models in bit-rate reduction systems. However,comodulation masking release (CMR) phenomena lead to a reduction of themasking effect when a masker and a probe signal are amplitude modulated withthe...... same frequency. In bit-rate reduction systems the masker would be theaudio signal and the probe signal would represent the quantization noise.Masking curves have been determined for sinusoids and 1-Bark-wide noisemaskers in order to investigate the risk of CMR, when quantizing depths arefixed...

  11. Volumetric Properties of the Mixture Diethyl carbonate C5H10O3 + C8H18O3 3,6,9-Trioxaundecane (VMSD1211, LB4034_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Diethyl carbonate C5H10O3 + C8H18O3 3,6,9-Trioxaundecane (VMSD1211, LB4034_V)' providing data from direct low-pressure dilatometric measurement of molar excess volume at variable mole fraction and constant temperature.

  12. Volumetric Properties of the Mixture Diethyl carbonate C5H10O3 + C6H12O3 2,4,6-Trimethyl-1,3,5-trioxane (VMSD1511, LB4522_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Diethyl carbonate C5H10O3 + C6H12O3 2,4,6-Trimethyl-1,3,5-trioxane (VMSD1511, LB4522_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  13. Volumetric Properties of the Mixture Diethyl carbonate C5H10O3 + C6H12O3 2,4,6-Trimethyl-1,3,5-trioxane (VMSD1212, LB4520_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Diethyl carbonate C5H10O3 + C6H12O3 2,4,6-Trimethyl-1,3,5-trioxane (VMSD1212, LB4520_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  14. Volumetric Properties of the Mixture Diethyl carbonate C5H10O3 + C8H18O3 3,6,9-Trioxaundecane (VMSD1112, LB4038_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Diethyl carbonate C5H10O3 + C8H18O3 3,6,9-Trioxaundecane (VMSD1112, LB4038_V)' providing data by calculation of mass density in the single-phase region(s) from low-pressure dilatometric measurements of the molar excess volume at variable mole fraction and constant temperature.

  15. Volumetric Properties of the Mixture Diethyl carbonate C5H10O3 + C10H22O5 2,5,8,11,14-Pentaoxapentadecane (VMSD1211, LB4863_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Diethyl carbonate C5H10O3 + C10H22O5 2,5,8,11,14-Pentaoxapentadecane (VMSD1211, LB4863_V)' providing data from direct low-pressure dilatometric measurement of molar excess volume at variable mole fraction and constant temperature.

  16. Volumetric Properties of the Mixture Diethyl carbonate C5H10O3 + C6H12O3 2,4,6-Trimethyl-1,3,5-trioxane (VMSD1111, LB4521_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Diethyl carbonate C5H10O3 + C6H12O3 2,4,6-Trimethyl-1,3,5-trioxane (VMSD1111, LB4521_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  17. Volumetric Properties of the Mixture Diethyl carbonate C5H10O3 + C10H22O5 2,5,8,11,14-Pentaoxapentadecane (VMSD1112, LB4866_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Diethyl carbonate C5H10O3 + C10H22O5 2,5,8,11,14-Pentaoxapentadecane (VMSD1112, LB4866_V)' providing data by calculation of mass density in the single-phase region(s) from low-pressure dilatometric measurements of the molar excess volume at variable mole fraction and constant temperature.

  18. Personalized heterogeneous deformable model for fast volumetric registration.

    Science.gov (United States)

    Si, Weixin; Liao, Xiangyun; Wang, Qiong; Heng, Pheng Ann

    2017-02-20

    Biomechanical deformable volumetric registration can help improve safety of surgical interventions by ensuring the operations are extremely precise. However, this technique has been limited by the accuracy and the computational efficiency of patient-specific modeling. This study presents a tissue-tissue coupling strategy based on penalty method to model the heterogeneous behavior of deformable body, and estimate the personalized tissue-tissue coupling parameters in a data-driven way. Moreover, considering that the computational efficiency of biomechanical model is highly dependent on the mechanical resolution, a practical coarse-to-fine scheme is proposed to increase runtime efficiency. Particularly, a detail enrichment database is established in an offline fashion to represent the mapping relationship between the deformation results of high-resolution hexahedral mesh extracted from the raw medical data and a newly constructed low-resolution hexahedral mesh. At runtime, the mechanical behavior of human organ under interactions is simulated with this low-resolution hexahedral mesh, then the microstructures are synthesized in virtue of the detail enrichment database. The proposed method is validated by volumetric registration in an abdominal phantom compression experiments. Our personalized heterogeneous deformable model can well describe the coupling effects between different tissues of the phantom. Compared with high-resolution heterogeneous deformable model, the low-resolution deformable model with our detail enrichment database can achieve 9.4× faster, and the average target registration error is 3.42 mm, which demonstrates that the proposed method shows better volumetric registration performance than state-of-the-art. Our framework can well balance the precision and efficiency, and has great potential to be adopted in the practical augmented reality image-guided robotic systems.

  19. Volumetric measurements of pulmonary nodules: variability in automated analysis tools

    Science.gov (United States)

    Juluru, Krishna; Kim, Woojin; Boonn, William; King, Tara; Siddiqui, Khan; Siegel, Eliot

    2007-03-01

    Over the past decade, several computerized tools have been developed for detection of lung nodules and for providing volumetric analysis. Incidentally detected lung nodules have traditionally been followed over time by measurements of their axial dimensions on CT scans to ensure stability or document progression. A recently published article by the Fleischner Society offers guidelines on the management of incidentally detected nodules based on size criteria. For this reason, differences in measurements obtained by automated tools from various vendors may have significant implications on management, yet the degree of variability in these measurements is not well understood. The goal of this study is to quantify the differences in nodule maximum diameter and volume among different automated analysis software. Using a dataset of lung scans obtained with both "ultra-low" and conventional doses, we identified a subset of nodules in each of five size-based categories. Using automated analysis tools provided by three different vendors, we obtained size and volumetric measurements on these nodules, and compared these data using descriptive as well as ANOVA and t-test analysis. Results showed significant differences in nodule maximum diameter measurements among the various automated lung nodule analysis tools but no significant differences in nodule volume measurements. These data suggest that when using automated commercial software, volume measurements may be a more reliable marker of tumor progression than maximum diameter. The data also suggest that volumetric nodule measurements may be relatively reproducible among various commercial workstations, in contrast to the variability documented when performing human mark-ups, as is seen in the LIDC (lung imaging database consortium) study.

  20. Rheumatic masks of plasma cell dyscrasias

    Directory of Open Access Journals (Sweden)

    Vladimir Ivanovich Vasilyev

    2012-01-01

    Full Text Available Objective: to consider clinical practice problems in the differential diagnosis of different types of plasma cell dyscrasias (PCD. Subjects and methods. Fourteen patients (8 men and 6 women aged 52±12 years, in whom rheumatic diseases (RD were ruled out and who were diagnosed as having primary PCD: different types of myeloma in 7 patients, myeloma + AL-amyloidosis in 2, AL-amyloidosis in 3, and Waldenstrom’s macroglobulinemia in 2, were examined. Results and discussion. The most common maldiagnosed RDs in patients with PCD were seronegative rheumatoid arthritis (RA, systemic lupus erythematosus, Sjogren’s disease, and different forms of vasculitis. The most frequent masks of RD were kidney (78% and osteoarticular system (64% lesions, vascular disorders (36%, peripheral polyneuropathies (36%, and enlarged salivary glands with xerostomia (28.5%. Serum and urine immunochemical study should be performed in all patients who have clinical manifestations of seropositive RA, spondyloarthritis, intensive bone pain syndrome, ulceronecrotic vasculitis, enlarged submandibular salivary glands with macroglossia in the absence of markers of autoimmune disease for the timely diagnosis of PCD and the exclusion of RD. The paper estimates the sensitivity and specificity of main methods used to diagnose different types of PCD.

  1. Surround-Masking Affects Visual Estimation Ability

    Science.gov (United States)

    Jastrzebski, Nicola R.; Hugrass, Laila E.; Crewther, Sheila G.; Crewther, David P.

    2017-01-01

    Visual estimation of numerosity involves the discrimination of magnitude between two distributions or perceptual sets that vary in number of elements. How performance on such estimation depends on peripheral sensory stimulation is unclear, even in typically developing adults. Here, we varied the central and surround contrast of stimuli that comprised a visual estimation task in order to determine whether mechanisms involved with the removal of unessential visual input functionally contributes toward number acuity. The visual estimation judgments of typically developed adults were significantly impaired for high but not low contrast surround stimulus conditions. The center and surround contrasts of the stimuli also differentially affected the accuracy of numerosity estimation depending on whether fewer or more dots were presented. Remarkably, observers demonstrated the highest mean percentage accuracy across stimulus conditions in the discrimination of more elements when the surround contrast was low and the background luminance of the central region containing the elements was dark (black center). Conversely, accuracy was severely impaired during the discrimination of fewer elements when the surround contrast was high and the background luminance of the central region was mid level (gray center). These findings suggest that estimation ability is functionally related to the quality of low-order filtration of unessential visual information. These surround masking results may help understanding of the poor visual estimation ability commonly observed in developmental dyscalculia.

  2. Volumetric hemispheric ratio as a useful tool in personality psychology.

    Science.gov (United States)

    Montag, Christian; Schoene-Bake, Jan-Christoph; Wagner, Jan; Reuter, Martin; Markett, Sebastian; Weber, Bernd; Quesada, Carlos M

    2013-02-01

    The present study investigates the link between volumetric hemispheric ratios (VHRs) and personality measures in N=267 healthy participants using Eysenck's Personality Inventory-Revised (EPQ-R) and the BIS/BAS scales. A robust association between extraversion and VHRs was observed for gray matter in males but not females. Higher gray matter volume in the left than in the right hemisphere was associated with higher extraversion in males. The results are discussed in the context of positive emotionality and laterality of the human brain.

  3. AN ATTRIBUTION OF CAVITATION RESONANCE: VOLUMETRIC OSCILLATIONS OF CLOUD

    Institute of Scientific and Technical Information of China (English)

    ZUO Zhi-gang; LI Sheng-cai; LIU Shu-hong; LI Shuang; CHEN Hui

    2009-01-01

    In order to further verify the proposed theory of cavitation resonance, as well as to proceed the investigations into microscopic level, a series of studies are being carried out on the Warwick venturi. The analysis of the oscillation characteristics of the cavitation resonance has conclusively verified the macro-mechanism proposed through previous studies on other cavitating flows by the authors. The initial observations using high-speed photographic approach have revealed a new attribution of cavitation resonance. That is, the volumetric oscillation of cavitation cloud is associated with the cavitation resonance, which is a collective behaviour of the bubbles in the cloud.

  4. Synthesis of Volumetric Ring Antenna Array for Terrestrial Coverage Pattern

    Directory of Open Access Journals (Sweden)

    Alberto Reyna

    2014-01-01

    Full Text Available This paper presents a synthesis of a volumetric ring antenna array for a terrestrial coverage pattern. This synthesis regards the spacing among the rings on the planes X-Y, the positions of the rings on the plane X-Z, and uniform and concentric excitations. The optimization is carried out by implementing the particle swarm optimization. The synthesis is compared with previous designs by resulting with proper performance of this geometry to provide an accurate coverage to be applied in satellite applications with a maximum reduction of the antenna hardware as well as the side lobe level reduction.

  5. Synthesis of Volumetric Ring Antenna Array for Terrestrial Coverage Pattern

    Science.gov (United States)

    Reyna, Alberto; Panduro, Marco A.; Del Rio Bocio, Carlos

    2014-01-01

    This paper presents a synthesis of a volumetric ring antenna array for a terrestrial coverage pattern. This synthesis regards the spacing among the rings on the planes X-Y, the positions of the rings on the plane X-Z, and uniform and concentric excitations. The optimization is carried out by implementing the particle swarm optimization. The synthesis is compared with previous designs by resulting with proper performance of this geometry to provide an accurate coverage to be applied in satellite applications with a maximum reduction of the antenna hardware as well as the side lobe level reduction. PMID:24701150

  6. Estimation of volumetric breast density for breast cancer risk prediction

    Science.gov (United States)

    Pawluczyk, Olga; Yaffe, Martin J.; Boyd, Norman F.; Jong, Roberta A.

    2000-04-01

    Mammographic density (MD) has been shown to be a strong risk predictor for breast cancer. Compared to subjective assessment by a radiologist, computer-aided analysis of digitized mammograms provides a quantitative and more reproducible method for assessing breast density. However, the current methods of estimating breast density based on the area of bright signal in a mammogram do not reflect the true, volumetric quantity of dense tissue in the breast. A computerized method to estimate the amount of radiographically dense tissue in the overall volume of the breast has been developed to provide an automatic, user-independent tool for breast cancer risk assessment. The procedure for volumetric density estimation consists of first correcting the image for inhomogeneity, then performing a volume density calculation. First, optical sensitometry is used to convert all images to the logarithm of relative exposure (LRE), in order to simplify the image correction operations. The field non-uniformity correction, which takes into account heel effect, inverse square law, path obliquity and intrinsic field and grid non- uniformity is obtained by imaging a spherical section PMMA phantom. The processed LRE image of the phantom is then used as a correction offset for actual mammograms. From information about the thickness and placement of the breast, as well as the parameters of a breast-like calibration step wedge placed in the mammogram, MD of the breast is calculated. Post processing and a simple calibration phantom enable user- independent, reliable and repeatable volumetric estimation of density in breast-equivalent phantoms. Initial results obtained on known density phantoms show the estimation to vary less than 5% in MD from the actual value. This can be compared to estimated mammographic density differences of 30% between the true and non-corrected values. Since a more simplistic breast density measurement based on the projected area has been shown to be a strong indicator

  7. Volumetric 3D Display System with Static Screen

    Science.gov (United States)

    Geng, Jason

    2011-01-01

    Current display technology has relied on flat, 2D screens that cannot truly convey the third dimension of visual information: depth. In contrast to conventional visualization that is primarily based on 2D flat screens, the volumetric 3D display possesses a true 3D display volume, and places physically each 3D voxel in displayed 3D images at the true 3D (x,y,z) spatial position. Each voxel, analogous to a pixel in a 2D image, emits light from that position to form a real 3D image in the eyes of the viewers. Such true volumetric 3D display technology provides both physiological (accommodation, convergence, binocular disparity, and motion parallax) and psychological (image size, linear perspective, shading, brightness, etc.) depth cues to human visual systems to help in the perception of 3D objects. In a volumetric 3D display, viewers can watch the displayed 3D images from a completely 360 view without using any special eyewear. The volumetric 3D display techniques may lead to a quantum leap in information display technology and can dramatically change the ways humans interact with computers, which can lead to significant improvements in the efficiency of learning and knowledge management processes. Within a block of glass, a large amount of tiny dots of voxels are created by using a recently available machining technique called laser subsurface engraving (LSE). The LSE is able to produce tiny physical crack points (as small as 0.05 mm in diameter) at any (x,y,z) location within the cube of transparent material. The crack dots, when illuminated by a light source, scatter the light around and form visible voxels within the 3D volume. The locations of these tiny voxels are strategically determined such that each can be illuminated by a light ray from a high-resolution digital mirror device (DMD) light engine. The distribution of these voxels occupies the full display volume within the static 3D glass screen. This design eliminates any moving screen seen in previous

  8. A closer look at four-dot masking of a foveated target

    Directory of Open Access Journals (Sweden)

    Marwan Daar

    2016-06-01

    Full Text Available Four-dot masking with a common onset mask was recently demonstrated in a fully attended and foveated target (Filmer, Mattingley & Dux, 2015. Here, we replicate and extend this finding by directly comparing a four-dot mask with an annulus mask while probing masking as a function of mask duration, and target-mask separation. Our results suggest that while an annulus mask operates via spatially local contour interactions, a four-dot mask operates through spatially global mechanisms. We also measure how the visual system’s representation of an oriented bar is impacted by a four-dot mask, and find that masking here does not degrade the precision of perceived targets, but instead appears to be driven exclusively by rendering the target completely invisible.

  9. Investigations on the heat transfer performance of edge-shaped finned-tubes

    Science.gov (United States)

    Wang, Xiao-wu; Wan, Zhen-ping; Tang, Yong

    2014-09-01

    The third generation enhanced heat transfer technologies, such as three-dimensional fin and dimple, are still important means of improving energy efficiency and will continue to be challenging issues. This paper concentrates on the analysis of the condensation heat transfer performance of an edge-shaped finned-tube fabricated by extrusion-ploughing process. Experimental results show that the overall heat transfer coefficient increases with increases of volumetric flow rate of cold water and heat flux whereas the shell side heat transfer coefficient decreases with volumetric flow rate and heat flux increasing. At the similar volumetric flow rate, the shell side heat transfer coefficient of the edge-shaped finned-tube is 4-6 times larger than that of the smooth tube. At the similar volumetric flow rate, the shell side heat transfer coefficient of edge-shaped finned-tube increases with ploughing depth increasing. At the same temperature difference between wall and vapor, the shell side heat transfer coefficient is also higher than what had been reported in the literature.

  10. Heat Waves

    Science.gov (United States)

    Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and ... having trouble with the heat. If a heat wave is predicted or happening… - Slow down. Avoid strenuous ...

  11. Heat Islands

    Science.gov (United States)

    EPA's Heat Island Effect Site provides information on heat islands, their impacts, mitigation strategies, related research, a directory of heat island reduction initiatives in U.S. communities, and EPA's Heat Island Reduction Program.

  12. Comparison of Ventilation With One-Handed Mask Seal With an Intraoral Mask Versus Conventional Cuffed Face Mask in a Cadaver Model: A Randomized Crossover Trial.

    Science.gov (United States)

    Amack, Andrew J; Barber, Gary A; Ng, Patrick C; Smith, Thomas B; April, Michael D

    2017-01-01

    We compare received minute volume with an intraoral mask versus conventional cuffed face mask among medics obtaining a 1-handed mask seal on a cadaver model. This study comprised a randomized crossover trial of adult US Army combat medic volunteers participating in a cadaver laboratory as part of their training. We randomized participants to obtain a 1-handed mask seal during ventilation of a fresh unembalmed cadaver, first using either an intraoral airway device or conventional cuffed face mask. Participants obtained a 1-handed mask seal while a ventilator delivered 10 standardized 750-mL breaths during 1 minute. After a 5-minute rest period, they repeated the study with the alternative mask. The primary outcome measure was received minute volume as measured by a respirometer. Of 27 recruited participants, all completed the study. Median received minute volume was higher with the intraoral mask compared with conventional cuffed mask by 1.7 L (95% confidence interval 1.0 to 1.9 L; P<.001). The intraoral mask resulted in greater received minute volume received compared with conventional cuffed face mask during ventilation with a 1-handed mask seal in a cadaver model. The intraoral mask may prove a useful airway adjunct for ventilation. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  13. Floating volumetric image formation using a dihedral corner reflector array device.

    Science.gov (United States)

    Miyazaki, Daisuke; Hirano, Noboru; Maeda, Yuki; Yamamoto, Siori; Mukai, Takaaki; Maekawa, Satoshi

    2013-01-01

    A volumetric display system using an optical imaging device consisting of numerous dihedral corner reflectors placed perpendicular to the surface of a metal plate is proposed. Image formation by the dihedral corner reflector array (DCRA) is free from distortion and focal length. In the proposed volumetric display system, a two-dimensional real image is moved by a mirror scanner to scan a three-dimensional (3D) space. Cross-sectional images of a 3D object are displayed in accordance with the position of the image plane. A volumetric image is observed as a stack of the cross-sectional images. The use of the DCRA brings compact system configuration and volumetric real image generation with very low distortion. An experimental volumetric display system including a DCRA, a galvanometer mirror, and a digital micro-mirror device was constructed to verify the proposed method. A volumetric image consisting of 1024×768×400 voxels was formed by the experimental system.

  14. Comparison of Supreme Laryngeal Mask Airway and ProSeal Laryngeal Mask Airway during Cholecystectomy

    OpenAIRE

    2012-01-01

    Objective: This study compared the safety and efficacy of the Supreme Laryngeal Mask Airway (S-LMA) with that of the ProSeal-LMA (P-LMA) in laparoscopic cholecystectomy. Material and Methods: Sixty adults were randomly allocated. Following anaesthesia induction, experienced LMA users inserted the airway devices. Results: Oropharyngeal leak pressure was similar in groups (S-LMA, 27.8±2.9 cmH20; P-LMA, 27.0±4.7 cmH20; p=0.42) and did not change...

  15. Comparison of Supreme Laryngeal Mask Airway and ProSeal Laryngeal Mask Airway during Cholecystectomy

    OpenAIRE

    2012-01-01

    Objective: This study compared the safety and efficacy of the Supreme Laryngeal Mask Airway (S-LMA) with that of the ProSeal-LMA (P-LMA) in laparoscopic cholecystectomy.Material and Methods: Sixty adults were randomly allocated. Following anaesthesia induction, experienced LMA users inserted the airway devices. Results: Oropharyngeal leak pressure was similar in groups (S-LMA, 27.8±2.9 cmH20; P-LMA, 27.0±4.7 cmH20; p=0.42) and did not change during the induction of and throughout pneumoperit...

  16. Method and device for determining heats of combustion of gaseous hydrocarbons

    Science.gov (United States)

    Singh, Jag J. (Inventor); Sprinkle, Danny R. (Inventor); Puster, Richard L. (Inventor)

    1988-01-01

    A method and device is provided for a quick, accurate and on-line determination of heats of combustion of gaseous hydrocarbons. First, the amount of oxygen in the carrier air stream is sensed by an oxygen sensing system. Second, three individual volumetric flow rates of oxygen, carrier stream air, and hydrocrabon test gas are introduced into a burner. The hydrocarbon test gas is fed into the burner at a volumetric flow rate, n, measured by a flowmeter. Third, the amount of oxygen in the resulting combustion products is sensed by an oxygen sensing system. Fourth, the volumetric flow rate of oxygen is adjusted until the amount of oxygen in the combustion product equals the amount of oxygen previously sensed in the carrier air stream. This equalizing volumetric flow rate is m and is measured by a flowmeter. The heat of combustion of the hydrocrabon test gas is then determined from the ratio m/n.

  17. Phase retrieval from multiple binary masks generated speckle patterns

    Science.gov (United States)

    Gong, Hai; Pozzi, Paolo; Soloviev, Oleg; Verhaegen, Michel; Vdovin, Gleb

    2016-04-01

    We present a reference-less and time-multiplexing phase retrieval method by making use of the digital micromirror device (DMD). In this method, the DMD functions not only as a flexible binary mask which modulates the optical field, but also as a sampling mask for measuring corresponding phases, which makes the whole setup simple and robust. The DMD reflection forms a sparse intensity mask in the pupil which produces speckle pattern after propagation. With the recorded intensity on the camera and the binary pattern on the DMD, the phase in all the `on' pixels can be reconstructed at once by solving inverse problems with iterative methods, for instance using Gerchberg-Saxton algorithm. Then the phase of the whole pupil can be reconstructed from a series of binary patterns and speckle patterns. Numerical experiments show the feasibility of this phase retrieval method and the importance of sparse binary masks in the improving of convergence speed.

  18. MISR radiometric camera-by-camera Cloud Mask V004

    Data.gov (United States)

    National Aeronautics and Space Administration — This file contains the Radiometric camera-by-camera Cloud Mask dataset. It is used to determine whether a scene is classified as clear or cloudy. A new parameter has...

  19. A Binary Shaped Mask Coronagraph for a Segmented Pupil

    CERN Document Server

    Enya, K

    2011-01-01

    We present the concept of a binary shaped mask coronagraph applicable to a telescope pupil including obscuration, based on previous works on binary shaped pupil mask by \\citet{Kasdin2005} and \\citet{Vanderbei1999}. Solutions with multi-barcode masks which "skip over" the obscuration are shown for various types of pupil of telescope, such as SUBARU, JWST, SPICA, and other examples. The number of diffraction tails in the point spread function of the coronagraphic image is reduced to two, thus offering a large discovery angle. The concept of mask rotation is also presented, which allows post-processing removal of diffraction tails and provides a 360$^{\\circ}$ continuous discovery angle. It is suggested that the presented concept offers solutions which potentially allow large telescopes with segmented pupil in future to be used as platforms for an coronagraph.

  20. A Precise-Mask-Based Method for Enhanced Image Inpainting

    Directory of Open Access Journals (Sweden)

    Wanxu Zhang

    2016-01-01

    Full Text Available Mask of damage region is the pretreatment step of the image inpainting, which plays a key role in the ultimate effect. However, state-of-the-art methods have attached significance to the inpainting model, and the mask of damage region is usually selected manually or by the conventional threshold-based method. Since manual method is time-consuming and the threshold-based method does not have the same precision for different images, we herein report a new method for automatically constructing the precise mask by the joint filtering of guided filtering and L0 smoothing. It can accurately locate the boundary of damaged region in order to effectively segment the damage region and then greatly improves the ultimate effect of image inpainting. The experimental results show that the proposed method is superior to state-of-the-art methods in the step of constructing inpainting mask, especially for the damaged region with inconspicuous boundary.

  1. Reproductive biology of the masked triggerfish Sufflamen fraenatus

    Digital Repository Service at National Institute of Oceanography (India)

    Sahayak, S.

    The reproductive biology of the masked triggerfish Sufflamen fraenatus was studied. Three distinct stages, viz. immature, maturing and mature were identified based on the external appearance of the ovary and the ova diameter studies. The fish...

  2. Kuldne Mask Tallinnasssssss! / Sergei Zhenovatsh ; interv. Hellar Bergmann

    Index Scriptorium Estoniae

    Zhenovatsh, Sergei

    2008-01-01

    Lavastaja Sergei Zhenovatsh oma Teatrikunsti Stuudiost, noortest näitlejatest, Eestist. Lavastaja on Eestis teatrifestivali "Kuldne mask Eestis" raames. 10.-11. okt. etendus Tallinnas, Salme Kultuurikeskuses Nikolai Gogoli näidend "Mängurid"

  3. Open-loop frequency response for a chaotic masking system

    Institute of Scientific and Technical Information of China (English)

    Huang Xian-Gao; Yu Pei; Huang Wei

    2006-01-01

    In this paper, a new numerical simulation approach is proposed for the study of open-loop frequency response of a chaotic masking system. Using Chua's circuit and the Lorenz system as illustrative examples, we have shown that one can employ chaos synchronization to separate the feedback network from a chaotic masking system, and then use numerical simulation to obtain the open-loop synchronization response, the phase response, and the amplitude response of a chaotic masking system. Based on the analysis of the frequency response, we have also proved that changing the amplitude of the exciting (input) signal within normal working domain does not influence the frequency response of the chaotic masking system. The new numerical simulation method developed in this paper can be extended to consider the open-loop frequency response of other systems described by differential or difference equations.

  4. Mask roughness induced LER: a rule of thumb -- paper

    Energy Technology Data Exchange (ETDEWEB)

    McClinton, Brittany; Naulleau, Patrick

    2010-03-12

    Much work has already been done on how both the resist and line-edge roughness (LER) on the mask affect the final printed LER. What is poorly understood, however, is the extent to which system-level effects such as mask surface roughness, illumination conditions, and defocus couple to speckle at the image plane, and currently factor into LER limits. Here, we propose a 'rule-of-thumb' simplified solution that provides a fast and powerful method to obtain mask roughness induced LER. We present modeling data on an older generation mask with a roughness of 230 pm as well as the ultimate target roughness of 50 pm. Moreover, we consider feature sizes of 50 nm and 22 nm, and show that as a function of correlation length, the LER peaks at the condition that the correlation length is approximately equal to the resolution of the imaging optic.

  5. Backward Masked Snakes and Guns Modulate Spatial Attention

    Directory of Open Access Journals (Sweden)

    Joshua M. Carlson

    2009-10-01

    Full Text Available Fearful faces are important social cues that alert others of potential threat. Even backward masked fearful faces facilitate spatial attention. However, visual stimuli other than fearful faces can signal potential threat. Indeed, unmasked snakes and spiders modulate spatial attention. Yet, it is unclear if the rapid threat-related facilitation of spatial attention to backward masked stimuli is elicited by non-face threat cues. Evolutionary theories claim that phylogenetic threats (i.e. snakes and spiders should preferentially elicit an automatic fear response, but it is untested as to whether this response extends to enhancements in spatial attention under restricted processing conditions. Thirty individuals completed a backward masking dot-probe task with both evolutionary relevant and irrelevant threat cues. The results suggest that backward masked visual fear stimuli modulate spatial attention. Both evolutionary relevant (snake and irrelevant (gun threat cues facilitated spatial attention.

  6. Comodulation masking release in bit-rate reduction systems

    DEFF Research Database (Denmark)

    Vestergaard, Martin David; Rasmussen, Karsten Bo; Poulsen, Torben

    1999-01-01

    It has been suggested that the level dependence of the upper masking slope be utilized in perceptual models in bit-rate reduction systems. However, comodulation masking release (CMR) phenomena lead to a reduction of the masking effect when a masker and a probe signal are amplitude modulated...... with the same frequency. In bit-rate reduction systems the masker would be the audio signal and the probe signal would represent the quantization noise. Masking curves have been determined for sinusoids and 1-Bark-wide noise maskers in order to investigate the risk of CMR, when quantizing depths are fixed.......75. A CMR of up to 10 dB was obtained at a distance of 6 Bark above the masker. The amount of CMR was found to depend on the presentation level of the masker; a higher masker level leads to a higher CMR effect. Hence, the risk of CMR affecting the subjective performance of bit-rate reduction systems cannot...

  7. Comparison of three methods in improving bag mask ventilation

    Directory of Open Access Journals (Sweden)

    Samad EJ Golzari

    2014-01-01

    Conclusions: Leaving dentures in place in edentulous patients after inducing anesthesia improves bag-mask ventilation. However, placing folded compressed gauze in buccal space leads to more significant improvement in BMV compared to leaving dentures in place.

  8. Normal Blood Pressure in Clinic May Mask Hypertension

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_162363.html Normal Blood Pressure in Clinic May Mask Hypertension Young, lean patients can have high blood pressure that's not caught during regular exams, study finds ...

  9. Lithographic performance of a new "low-k" mask

    Science.gov (United States)

    Adachi, Takashi; Tani, Ayako; Fujimura, Yukihiro; Hayano, Katsuya; Morikawa, Yasutaka; Miyashita, Hiroyuki; Inazuki, Yukio; Kawai, Yoshio

    2016-05-01

    We have been researching new mask blank materials for the next generation lithography (NGL) and developed a new mask blank with low-k phase shifter [1] [2]. The low-k phase shifter consists of only Si and N. In our previous work, we reported the advantages of developed SiN phase shift mask (PSM) [2]. It showed high lithographic performance and high durability against ArF excimer laser as well as against cleaning. In this report, we further verified its high lithographic performance on several types of device pattern. The SiN PSM had high lithographic performance compared with conventional 6% MoSi PSM. Exposure latitude (EL) and mask enhancement factor (MEEF) were especially improved on originally designed Gate, Metal and Via patterns.

  10. Coronagraph-Integrated Wavefront Sensing with a Sparse Aperture Mask

    CERN Document Server

    Subedi, Hari; Kasdin, N Jeremy; Cavanagh, Kathleen; Riggs, A J Eldorado

    2015-01-01

    Stellar coronagraph performance is highly sensitive to optical aberrations. In order to effectively suppress starlight for exoplanet imaging applications, low-order wavefront aberrations entering a coronagraph such as tip-tilt, defocus and coma must be determined and compensated. Previous authors have established the utility of pupil-plane masks (both non-redundant/sparse-aperture and generally asymmetric aperture masks) for wavefront sensing. Here we show how a sparse aperture mask (SAM) can be integrated with a coronagraph to measure low-order, differential phase aberrations. Starlight rejected by the coronagraph's focal plane stop is collimated to a relay pupil, where the mask forms an interference fringe pattern on a subsequent detector. Our numerical Fourier propagation models show that the information encoded in the fringe intensity distortions is sufficient to accurately discriminate and estimate Zernike phase modes extending from tip-tilt up to radial degree $n=5$, with amplitude up to $\\lambda/20$ RM...

  11. Kuldne Mask Tallinnasssssss! / Sergei Zhenovatsh ; interv. Hellar Bergmann

    Index Scriptorium Estoniae

    Zhenovatsh, Sergei

    2008-01-01

    Lavastaja Sergei Zhenovatsh oma Teatrikunsti Stuudiost, noortest näitlejatest, Eestist. Lavastaja on Eestis teatrifestivali "Kuldne mask Eestis" raames. 10.-11. okt. etendus Tallinnas, Salme Kultuurikeskuses Nikolai Gogoli näidend "Mängurid"

  12. The effect of masking in the attentional dwell time paradigm

    DEFF Research Database (Denmark)

    Petersen, Anders

    2009-01-01

    A temporary functional blindness to the second of two spatially separated targets has been identified in numerous studies of temporal visual attention. This effect is known as attentional dwell time and is maximal 200 to 500 ms after presentation of the first target (e.g. Duncan, Ward, Shapiro......, 1994). In most studies of attentional dwell time, two masked targets have been used. Moore et al. (1996) have criticised the masking of the first target when measuring the attentional dwell time, finding a shorter attentional dwell time when the first mask was omitted. In the presented work, the effect...... an impairment of the second target. Hence, the attentional dwell time may be a combined effect arising from attending to both the first target and its mask....

  13. Improve mask inspection capacity with Automatic Defect Classification (ADC)

    Science.gov (United States)

    Wang, Crystal; Ho, Steven; Guo, Eric; Wang, Kechang; Lakkapragada, Suresh; Yu, Jiao; Hu, Peter; Tolani, Vikram; Pang, Linyong

    2013-09-01

    As optical lithography continues to extend into low-k1 regime, resolution of mask patterns continues to diminish. The adoption of RET techniques like aggressive OPC, sub-resolution assist features combined with the requirements to detect even smaller defects on masks due to increasing MEEF, poses considerable challenges for mask inspection operators and engineers. Therefore a comprehensive approach is required in handling defects post-inspections by correctly identifying and classifying the real killer defects impacting the printability on wafer, and ignoring nuisance defect and false defects caused by inspection systems. This paper focuses on the results from the evaluation of Automatic Defect Classification (ADC) product at the SMIC mask shop for the 40nm technology node. Traditionally, each defect is manually examined and classified by the inspection operator based on a set of predefined rules and human judgment. At SMIC mask shop due to the significant total number of detected defects, manual classification is not cost-effective due to increased inspection cycle time, resulting in constrained mask inspection capacity, since the review has to be performed while the mask stays on the inspection system. Luminescent Technologies Automated Defect Classification (ADC) product offers a complete and systematic approach for defect disposition and classification offline, resulting in improved utilization of the current mask inspection capability. Based on results from implementation of ADC in SMIC mask production flow, there was around 20% improvement in the inspection capacity compared to the traditional flow. This approach of computationally reviewing defects post mask-inspection ensures no yield loss by qualifying reticles without the errors associated with operator mis-classification or human error. The ADC engine retrieves the high resolution inspection images and uses a decision-tree flow to classify a given defect. Some identification mechanisms adopted by ADC to

  14. Volumetric display containing multiple two-dimensional color motion pictures

    Science.gov (United States)

    Hirayama, R.; Shiraki, A.; Nakayama, H.; Kakue, T.; Shimobaba, T.; Ito, T.

    2014-06-01

    We have developed an algorithm which can record multiple two-dimensional (2-D) gradated projection patterns in a single three-dimensional (3-D) object. Each recorded pattern has the individual projected direction and can only be seen from the direction. The proposed algorithm has two important features: the number of recorded patterns is theoretically infinite and no meaningful pattern can be seen outside of the projected directions. In this paper, we expanded the algorithm to record multiple 2-D projection patterns in color. There are two popular ways of color mixing: additive one and subtractive one. Additive color mixing used to mix light is based on RGB colors and subtractive color mixing used to mix inks is based on CMY colors. We made two coloring methods based on the additive mixing and subtractive mixing. We performed numerical simulations of the coloring methods, and confirmed their effectiveness. We also fabricated two types of volumetric display and applied the proposed algorithm to them. One is a cubic displays constructed by light-emitting diodes (LEDs) in 8×8×8 array. Lighting patterns of LEDs are controlled by a microcomputer board. The other one is made of 7×7 array of threads. Each thread is illuminated by a projector connected with PC. As a result of the implementation, we succeeded in recording multiple 2-D color motion pictures in the volumetric displays. Our algorithm can be applied to digital signage, media art and so forth.

  15. Volumetric three-dimensional display system with rasterization hardware

    Science.gov (United States)

    Favalora, Gregg E.; Dorval, Rick K.; Hall, Deirdre M.; Giovinco, Michael; Napoli, Joshua

    2001-06-01

    An 8-color multiplanar volumetric display is being developed by Actuality Systems, Inc. It will be capable of utilizing an image volume greater than 90 million voxels, which we believe is the greatest utilizable voxel set of any volumetric display constructed to date. The display is designed to be used for molecular visualization, mechanical CAD, e-commerce, entertainment, and medical imaging. As such, it contains a new graphics processing architecture, novel high-performance line- drawing algorithms, and an API similar to a current standard. Three-dimensional imagery is created by projecting a series of 2-D bitmaps ('image slices') onto a diffuse screen that rotates at 600 rpm. Persistence of vision fuses the slices into a volume-filling 3-D image. A modified three-panel Texas Instruments projector provides slices at approximately 4 kHz, resulting in 8-color 3-D imagery comprised of roughly 200 radially-disposed slices which are updated at 20 Hz. Each slice has a resolution of 768 by 768 pixels, subtending 10 inches. An unusual off-axis projection scheme incorporating tilted rotating optics is used to maintain good focus across the projection screen. The display electronics includes a custom rasterization architecture which converts the user's 3- D geometry data into image slices, as well as 6 Gbits of DDR SDRAM graphics memory.

  16. Myocardial kinematics based on tagged MRI from volumetric NURBS models

    Science.gov (United States)

    Tustison, Nicholas J.; Amini, Amir A.

    2004-04-01

    We present current research in which left ventricular deformation is estimated from tagged cardiac magnetic resonance imaging using volumetric deformable models constructed from nonuniform rational B-splines (NURBS). From a set of short and long axis images at end-diastole, the initial NURBS model is constructed by fitting two surfaces with the same parameterization to the set of epicardial and endocardial contours from which a volumetric model is created. Using normal displacements of the three sets of orthogonal tag planes as well as displacements of both tag line and contour/tag line intersection points, one can solve for the optimal homogeneous coordinates, in a least squares sense, of the control points of the NURBS model at a later time point using quadratic programming. After fitting to all time points of data, lofting the NURBS model at each time point creates a comprehensive 4-D NURBS model. From this model, we can extract 3-D myocardial displacement fields and corresponding strain maps, which are local measures of non-rigid deformation.

  17. Volumetric breast density affects performance of digital screening mammography.

    Science.gov (United States)

    Wanders, Johanna O P; Holland, Katharina; Veldhuis, Wouter B; Mann, Ritse M; Pijnappel, Ruud M; Peeters, Petra H M; van Gils, Carla H; Karssemeijer, Nico

    2017-02-01

    To determine to what extent automatically measured volumetric mammographic density influences screening performance when using digital mammography (DM). We collected a consecutive series of 111,898 DM examinations (2003-2011) from one screening unit of the Dutch biennial screening program (age 50-75 years). Volumetric mammographic density was automatically assessed using Volpara. We determined screening performance measures for four density categories comparable to the American College of Radiology (ACR) breast density categories. Of all the examinations, 21.6% were categorized as density category 1 ('almost entirely fatty') and 41.5, 28.9, and 8.0% as category 2-4 ('extremely dense'), respectively. We identified 667 screen-detected and 234 interval cancers. Interval cancer rates were 0.7, 1.9, 2.9, and 4.4‰ and false positive rates were 11.2, 15.1, 18.2, and 23.8‰ for categories 1-4, respectively (both p-trend density categories: 85.7, 77.6, 69.5, and 61.0% for categories 1-4, respectively (p-trend density, automatically measured on digital mammograms, impacts screening performance measures along the same patterns as established with ACR breast density categories. Since measuring breast density fully automatically has much higher reproducibility than visual assessment, this automatic method could help with implementing density-based supplemental screening.

  18. Volumetric verification of multiaxis machine tool using laser tracker.

    Science.gov (United States)

    Aguado, Sergio; Samper, David; Santolaria, Jorge; Aguilar, Juan José

    2014-01-01

    This paper aims to present a method of volumetric verification in machine tools with linear and rotary axes using a laser tracker. Beyond a method for a particular machine, it presents a methodology that can be used in any machine type. Along this paper, the schema and kinematic model of a machine with three axes of movement, two linear and one rotational axes, including the measurement system and the nominal rotation matrix of the rotational axis are presented. Using this, the machine tool volumetric error is obtained and nonlinear optimization techniques are employed to improve the accuracy of the machine tool. The verification provides a mathematical, not physical, compensation, in less time than other methods of verification by means of the indirect measurement of geometric errors of the machine from the linear and rotary axes. This paper presents an extensive study about the appropriateness and drawbacks of the regression function employed depending on the types of movement of the axes of any machine. In the same way, strengths and weaknesses of measurement methods and optimization techniques depending on the space available to place the measurement system are presented. These studies provide the most appropriate strategies to verify each machine tool taking into consideration its configuration and its available work space.

  19. The Volumetric Rate of Superluminous Supernovae at z~1

    CERN Document Server

    Prajs, S; Smith, M; Levan, A; Karpenka, N V; Edwards, T D P; Walker, C R; Wolf, W M; Balland, C; Carlberg, R; Howell, A; Lidman, C; Pain, R; Pritchet, C; Ruhlmann-Kleider, V

    2016-01-01

    We present a measurement of the volumetric rate of superluminous supernovae (SLSNe) at z~1, measured using archival data from the first four years of the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). We develop a method for the photometric classification of SLSNe to construct our sample. Our sample includes two previously spectroscopically-identified objects, and a further new candidate selected using our classification technique. We use the point-source recovery efficiencies from Perrett et.al. (2010) and a Monte Carlo approach to calculate the rate based on our SLSN sample. We find that the three identified SLSNe from SNLS give a rate of 91 (+76/-36) SNe/Yr/Gpc^3 at a volume-weighted redshift of z=1.13. This is equivalent to 2.2 (+1.8/-0.9) x10^-4 of the volumetric core collapse supernova rate at the same redshift. When combined with other rate measurements from the literature, we show that the rate of SLSNe increases with redshift in a manner consistent with that of the cosmic star formati...

  20. Bubble masks for time-encoded imaging of fast neutrons.

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, Erik; Brennan, James S.; Marleau, Peter; Nowack, Aaron B.; Steele, John T.; Sweany, Melinda; Throckmorton, Daniel J.

    2013-09-01

    Time-encoded imaging is an approach to directional radiation detection that is being developed at SNL with a focus on fast neutron directional detection. In this technique, a time modulation of a detected neutron signal is inducedtypically, a moving mask that attenuates neutrons with a time structure that depends on the source position. An important challenge in time-encoded imaging is to develop high-resolution two-dimensional imaging capabilities; building a mechanically moving high-resolution mask presents challenges both theoretical and technical. We have investigated an alternative to mechanical masks that replaces the solid mask with a liquid such as mineral oil. Instead of fixed blocks of solid material that move in pre-defined patterns, the oil is contained in tubing structures, and carefully introduced air gapsbubblespropagate through the tubing, generating moving patterns of oil mask elements and air apertures. Compared to current moving-mask techniques, the bubble mask is simple, since mechanical motion is replaced by gravity-driven bubble propagation; it is flexible, since arbitrary bubble patterns can be generated by a software-controlled valve actuator; and it is potentially high performance, since the tubing and bubble size can be tuned for high-resolution imaging requirements. We have built and tested various single-tube mask elements, and will present results on bubble introduction and propagation as a function of tubing size and cross-sectional shape; real-time bubble position tracking; neutron source imaging tests; and reconstruction techniques demonstrated on simple test data as well as a simulated full detector system.

  1. [Prospective therapeutic trial of masking treatment in patients with tinnitus].

    Science.gov (United States)

    Hernández Moñiz, F; Barrio, A; Pérez, A; Pertierra, M A; Salafranca, J M; González, M

    1998-01-01

    We report the results of a therapeutic trial of patients with tinnitus of different characteristics that was unresponsive to other medical or surgical treatments. Treatment was based on a combination of biofeedback training designed to reduce stress and either pure masking therapy or masking therapy consisting of a hearing aid and masker. The results showed an improvement in subjective perceptions and in the audiometric parameter of pitch in a significant percentage of patients.

  2. Causal binary mask estimation for speech enhancement using sparsity constraints

    DEFF Research Database (Denmark)

    Kressner, Abigail Anne; Anderson, David V.; Rozell, Christopher J.

    2013-01-01

    While most single-channel noise reduction algorithms fail to improve speech intelligibility, the ideal binary mask (IBM) has demonstrated substantial intelligibility improvements for both normal- and impaired-hearing listeners. However, this approach exploits oracle knowledge of the target and in...... algorithm from the signal processing literature. However, the algorithm employs a non-causal estimator. The present work introduces an improved de-noising algorithm that uses more realistic frame-based (causal) computations to estimate a binary mask....

  3. An Experimental Investigation of Secure Communication With Chaos Masking

    CERN Document Server

    Dhar, Sourav

    2007-01-01

    The most exciting recent development in nonlinear dynamics is realization that chaos can be useful. One application involves "Secure Communication". Two piecewise linear systems with switching nonlinearities have been taken as chaos generators. In the present work the phenomenon of secure communication with chaos masking has been investigated experimentally. In this investigation chaos which is generated from two chaos generators is masked with the massage signal to be transmitted, thus makes communication is more secure.

  4. Oncologic image compression using both wavelet and masking techniques.

    Science.gov (United States)

    Yin, F F; Gao, Q

    1997-12-01

    A new algorithm has been developed to compress oncologic images using both wavelet transform and field masking methods. A compactly supported wavelet transform is used to decompose the original image into high- and low-frequency subband images. The region-of-interest (ROI) inside an image, such as an irradiated field in an electronic portal image, is identified using an image segmentation technique and is then used to generate a mask. The wavelet transform coefficients outside the mask region are then ignored so that these coefficients can be efficiently coded to minimize the image redundancy. In this study, an adaptive uniform scalar quantization method and Huffman coding with a fixed code book are employed in subsequent compression procedures. Three types of typical oncologic images are tested for compression using this new algorithm: CT, MRI, and electronic portal images with 256 x 256 matrix size and 8-bit gray levels. Peak signal-to-noise ratio (PSNR) is used to evaluate the quality of reconstructed image. Effects of masking and image quality on compression ratio are illustrated. Compression ratios obtained using wavelet transform with and without masking for the same PSNR are compared for all types of images. The addition of masking shows an increase of compression ratio by a factor of greater than 1.5. The effect of masking on the compression ratio depends on image type and anatomical site. A compression ratio of greater than 5 can be achieved for a lossless compression of various oncologic images with respect to the region inside the mask. Examples of reconstructed images with compression ratio greater than 50 are shown.

  5. On-line simulations of models for backward masking.

    Science.gov (United States)

    Francis, Gregory

    2003-11-01

    Five simulations of quantitative models of visual backward masking are available on the Internet at http://www.psych.purdue.edu/-gfrancis/Publications/BackwardMasking/. The simulations can be run in a Web browser that supports the Java programming language. This article describes the motivation for making the simulations available and gives a brief introduction as to how the simulations are used. The source code is available on the Web page, and this article describes how the code is organized.

  6. Ferromagnetic shadow mask for spray coating of polymer patterns

    DEFF Research Database (Denmark)

    Keller, Stephan Sylvest; Bosco, Filippo; Boisen, Anja

    2013-01-01

    We present the fabrication of a wafer-scale shadow mask with arrays of circular holes with diameters of 150–400 μm. Standard UV photolithography is used to define 700 μm thick SU-8 structures followed by electroplating of nickel and etching of the template. The ferromagnetic properties of the sha...... of the shadow mask allow magnetic clamping to the substrate and spray coating of well defined polymer patterns....

  7. An experimental study of a three-phase, direct-contact heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Siqueiros, J.; Bonilla, O. [Unidad Energias No-Convencionales, Div. Energias Alternas e Informatica, Cuernavaca (Mexico)

    1999-05-01

    An experimental pilot scale three-phase, direct-contact heat exchanger was constructed and tested. Experiments were performed using normal pentane as the dispersed phase and water as the continuous phase. The inlet water temperatures ranged from 75 to 88degC, and the inlet pentane temperatures varied from 23 to 38degC. The volumetric heat transfer coefficient, hold-up and heat flow-rate are functions of pentane mass flow-rate. For high pentane/water volumetric flow ratios flooding was reached. Before reaching flooding conditions, accumulation of liquid pentane at the top of the active volume was found. The experimental volumetric heat transfer coefficient values are on average 30% greater than those estimated with the correlation previously proposed by Jacobs. (Author)

  8. How do different brands of size 1 laryngeal mask airway compare with face mask ventilation in a dedicated laryngeal mask airway teaching manikin?

    Science.gov (United States)

    Tracy, Mark Brian; Priyadarshi, Archana; Goel, Dimple; Lowe, Krista; Huvanandana, Jacqueline; Hinder, Murray

    2017-08-11

    International neonatal resuscitation guidelines recommend the use of laryngeal mask airway (LMA) with newborn infants (≥34 weeks' gestation or >2 kg weight) when bag-mask ventilation (BMV) or tracheal intubation is unsuccessful. Previous publications do not allow broad LMA device comparison. To compare delivered ventilation of seven brands of size 1 LMA devices with two brands of face mask using self-inflating bag (SIB). 40 experienced neonatal staff provided inflation cycles using SIB with positive end expiratory pressure (PEEP) (5 cmH2O) to a specialised newborn/infant training manikin randomised for each LMA and face mask. All subjects received prior education in LMA insertion and BMV. 12 415 recorded inflations for LMAs and face masks were analysed. Leak detected was lowest with i-gel brand, with a mean of 5.7% compared with face mask (triangular 42.7, round 35.7) and other LMAs (45.5-65.4) (pmask (triangular 22.8, round 25.8) and other LMAs (14.3-22.0) (pmask (triangular 3.0, round 3.6) and other LMAs (0.6-2.6) (pmask leak and ease of use among seven different brands of LMA tested in a manikin model. This coupled with no partial or complete insertion failures and ease of use suggests i-gel LMA may have an expanded role with newborn resuscitation as a primary resuscitation device. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Cloud and Cloud Shadow Masking Using Multi-Temporal Cloud Masking Algorithm in Tropical Environmental

    Science.gov (United States)

    Candra, D. S.; Phinn, S.; Scarth, P.

    2016-06-01

    A cloud masking approach based on multi-temporal satellite images is proposed. The basic idea of this approach is to detect cloud and cloud shadow by using the difference reflectance values between clear pixels and cloud and cloud shadow contaminated pixels. Several bands of satellite image which have big difference values are selected for developing Multi-temporal Cloud Masking (MCM) algorithm. Some experimental analyses are conducted by using Landsat-8 images. Band 3 and band 4 are selected because they can distinguish between cloud and non cloud. Afterwards, band 5 and band 6 are used to distinguish between cloud shadow and clear. The results show that the MCM algorithm can detect cloud and cloud shadow appropriately. Moreover, qualitative and quantitative assessments are conducted using visual inspections and confusion matrix, respectively, to evaluate the reliability of this algorithm. Comparison between this algorithm and QA band are conducted to prove the reliability of the approach. The results show that MCM better than QA band and the accuracy of the results are very high.

  10. Successful training of HEMS personnel in laryngeal mask airway and intubating laryngeal mask airway placement.

    Science.gov (United States)

    Frascone, R J; Pippert, Greg; Heegaard, William; Molinari, Paul; Dries, David

    2008-01-01

    To evaluate laryngeal mask airway (LMA) and intubating laryngeal mask airway (ILMA) placement by helicopter emergency medical services (HEMS) personnel after a comprehensive training program. HEMS flight staff attended a didactic and manikin-based training session for both devices. After this training, they attempted LMA and ILMA placement in live, anesthetized patients in an operating room (OR). Outcome measures included placement success rates with the LMA, ILMA, and endotracheal intubation through the ILMA, time to ventilation, and time to intubation. Success rates and time to ventilation were compared using chi-squared and analysis of variance (ANOVA), respectively. Mean time to ventilation for the first and second placements of both devices was examined with repeated measures ANOVA. There was no difference in successful placement of the LMA compared with the ILMA (100% vs. 91%, P = .15). Ninety-five percent (19/20) of patients were successfully intubated through the ILMA. Time to intubation was 57.1 +/- 55 seconds (range, 20-240). Mean time to ventilation with either device did not differ significantly (36.8 +/- 17 vs. 38.05 +/- 20 seconds; P = .29). Mean time to ventilation for the first and second placement of either the LMA (P = .45) or the ILMA (P = .47) was not statistically different. Trained HEMS flight staff are capable of effectively placing the LMA and ILMA in the operating room after a comprehensive training protocol.

  11. Source Separation via Spectral Masking for Speech Recognition Systems

    Directory of Open Access Journals (Sweden)

    Gustavo Fernandes Rodrigues

    2012-12-01

    Full Text Available In this paper we present an insight into the use of spectral masking techniques in time-frequency domain, as a preprocessing step for the speech signal recognition. Speech recognition systems have their performance negatively affected in noisy environments or in the presence of other speech signals. The limits of these masking techniques for different levels of the signal-to-noise ratio are discussed. We show the robustness of the spectral masking techniques against four types of noise: white, pink, brown and human speech noise (bubble noise. The main contribution of this work is to analyze the performance limits of recognition systems  using spectral masking. We obtain an increase of 18% on the speech hit rate, when the speech signals were corrupted by other speech signals or bubble noise, with different signal-to-noise ratio of approximately 1, 10 and 20 dB. On the other hand, applying the ideal binary masks to mixtures corrupted by white, pink and brown noise, results an average growth of 9% on the speech hit rate, with the same different signal-to-noise ratio. The experimental results suggest that the masking spectral techniques are more suitable for the case when it is applied a bubble noise, which is produced by human speech, than for the case of applying white, pink and brown noise.

  12. Line Search-Based Inverse Lithography Technique for Mask Design

    Directory of Open Access Journals (Sweden)

    Xin Zhao

    2012-01-01

    Full Text Available As feature size is much smaller than the wavelength of illumination source of lithography equipments, resolution enhancement technology (RET has been increasingly relied upon to minimize image distortions. In advanced process nodes, pixelated mask becomes essential for RET to achieve an acceptable resolution. In this paper, we investigate the problem of pixelated binary mask design in a partially coherent imaging system. Similar to previous approaches, the mask design problem is formulated as a nonlinear program and is solved by gradient-based search. Our contributions are four novel techniques to achieve significantly better image quality. First, to transform the original bound-constrained formulation to an unconstrained optimization problem, we propose a new noncyclic transformation of mask variables to replace the wellknown cyclic one. As our transformation is monotonic, it enables a better control in flipping pixels. Second, based on this new transformation, we propose a highly efficient line search-based heuristic technique to solve the resulting unconstrained optimization. Third, to simplify the optimization, instead of using discretization regularization penalty technique, we directly round the optimized gray mask into binary mask for pattern error evaluation. Forth, we introduce a jump technique in order to jump out of local minimum and continue the search.

  13. Soyinka and Yoruba Sculpture: Masks of Deification and Symbolism

    Directory of Open Access Journals (Sweden)

    Gilbert Tarka Fai

    2010-01-01

    Full Text Available The Yoruba mask is a piece of sculpture that is both artistic and functional. The carved work fulfils one or more of several functions—sacred or profane, personal or communal, serious or satirical. As an object it has only its relatively insignificant quota of vital energy that is found, according to African ontology, in all matter and substance of the visible world- animal, vegetable and mineral. But the Yoruba mask also has a force that extends to the world of spirits and gods. These masks also have the dual effect of transforming the wearer and the ambivalence of serving good and evil ends. This indicates that the Yoruba mask apart from its spiritual essence is a symbol of great complexity and ambiguity. It is from this great community of sculptors and from the ambivalent quality of the mask as image and symbol that some of Wole Soyinka’s creative writings emerge. This paper argues that Wole Soyinka uses his native Yoruba sculpture, and the mask in particular, to dramatise the essential spiritual continuity of human nature through the dramatic appearance of gods and the spirits of the ancestors in the world of the living during the dance of possession.

  14. A pattern-based method to automate mask inspection files

    Science.gov (United States)

    Kamal Baharin, Ezni Aznida Binti; Muhsain, Mohamad Fahmi Bin; Ahmad Ibrahim, Muhamad Asraf Bin; Ahmad Noorhani, Ahmad Nurul Ihsan Bin; Sweis, Jason; Lai, Ya-Chieh; Hurat, Philippe

    2017-03-01

    Mask inspection is a critical step in the mask manufacturing process in order to ensure all dimensions printed are within the needed tolerances. This becomes even more challenging as the device nodes shrink and the complexity of the tapeout increases. Thus, the amount of measurement points and their critical dimension (CD) types are increasing to ensure the quality of the mask. In addition to the mask quality, there is a significant amount of manpower needed when the preparation and debugging of this process are not automated. By utilizing a novel pattern search technology with the ability to measure and report match region scan-line (edge) measurements, we can create a flow to find, measure and mark all metrology locations of interest and provide this automated report to the mask shop for inspection. A digital library is created based on the technology product and node which contains the test patterns to be measured. This paper will discuss how these digital libraries will be generated and then utilized. As a time-critical part of the manufacturing process, this can also reduce the data preparation cycle time, minimize the amount of manual/human error in naming and measuring the various locations, reduce the risk of wrong/missing CD locations, and reduce the amount of manpower needed overall. We will also review an example pattern and how the reporting structure to the mask shop can be processed. This entire process can now be fully automated.

  15. Dissolution methodology for taste masked oral dosage forms.

    Science.gov (United States)

    Gittings, Sally; Turnbull, Neil; Roberts, Clive J; Gershkovich, Pavel

    2014-01-10

    Conventional adult dosage forms are often not suitable for the paediatric and geriatric populations due to either swallowing difficulties or patient repulsion and a requirement for tailored dosing to individual compliance or physiological needs. Alternative formulations are available; however these often require the incorporation of more complex taste masking techniques. One approach to taste masking is to reduce contact between the bitter Active Pharmaceutical Ingredient (API) and oral cavity taste bud regions. This is achieved by hindering release in the oral cavity, or including competitive inhibition of bitter sensation for example by using flavours or sweeteners. There may also be other sensational complications from the API such as residual burning, reflux or metallic taste sensations to deal with. In vitro dissolution testing is employed to elucidate taste masking capability by quantifying release of the drug in simulated oral cavity conditions. Dissolution testing approaches may also be used to potentially predict or quantify the effect of the taste masking technique on the resultant pharmacokinetic profile. The present review investigates the anatomy and physiology of the oral cavity and current approaches to taste masking. In vitro dissolution methodologies adopted in the evaluation of taste masked formulations are discussed for their relative merits and drawbacks. A vast array of methodologies has been employed, with little agreement between approaches, and a lack of biorelevance. Future directions in dissolution methodology such as TNO Intestinal Model (TIM) and the Artificial Stomach and Duodenum model (ASD) are also discussed.

  16. The time-course of visual masking effects on saccadic responses indicates that masking interferes with reentrant processing

    DEFF Research Database (Denmark)

    Crouzet, S.; Pin, Simon Hviid Del; Overgaard, Morten;

    2013-01-01

    with reentrant processing, then the first feedforward sweep should be left relatively intact. Using a standard OSM paradigm in combination with a saccadic choice task, giving access to an early phase of visual processing (the fastest saccades occurring only 100 ms after target onset), we compared the masking...... time-course of OSM, noise backward masking, as well as a simple target contrast decrease. Consistently with a reentrant account, a significantly stronger masking effect was observed for slow (larger than median RT; average median RT = 177 ms) relatively to fast saccades in the OSM condition......Object substitution masking (OSM) occurs when a briefly presented target in a search array is surrounded by small dots that remain visible after the target disappears. Here, we tested the widespread assumption that OSM selectively impairs reentrant processing. If OSM interferes selectively...

  17. A procedure and program to calculate shuttle mask advantage

    Science.gov (United States)

    Balasinski, A.; Cetin, J.; Kahng, A.; Xu, X.

    2006-10-01

    A well-known recipe for reducing mask cost component in product development is to place non-redundant elements of layout databases related to multiple products on one reticle plate [1,2]. Such reticles are known as multi-product, multi-layer, or, in general, multi-IP masks. The composition of the mask set should minimize not only the layout placement cost, but also the cost of the manufacturing process, design flow setup, and product design and introduction to market. An important factor is the quality check which should be expeditious and enable thorough visual verification to avoid costly modifications once the data is transferred to the mask shop. In this work, in order to enable the layer placement and quality check procedure, we proposed an algorithm where mask layers are first lined up according to the price and field tone [3]. Then, depending on the product die size, expected fab throughput, and scribeline requirements, the subsequent product layers are placed on the masks with different grades. The actual reduction of this concept to practice allowed us to understand the tradeoffs between the automation of layer placement and setup related constraints. For example, the limited options of the numbers of layer per plate dictated by the die size and other design feedback, made us consider layer pairing based not only on the final price of the mask set, but also on the cost of mask design and fab-friendliness. We showed that it may be advantageous to introduce manual layer pairing to ensure that, e.g., all interconnect layers would be placed on the same plate, allowing for easy and simultaneous design fixes. Another enhancement was to allow some flexibility in mixing and matching of the layers such that non-critical ones requiring low mask grade would be placed in a less restrictive way, to reduce the count of orphan layers. In summary, we created a program to automatically propose and visualize shuttle mask architecture for design verification, with

  18. Assessment of ASME code examinations on regenerative, letdown and residual heat removal heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Gosselin, Stephen R.; Cumblidge, Stephen E.; Anderson, Michael T.; Simonen, Fredric A.; Tinsley, G. A.; Lydell, B.; Doctor, Steven R.

    2005-07-01

    Inservice inspection requirements for pressure retaining welds in the regenerative, letdown, and residual heat removal heat exchangers are prescribed in Section XI Articles IWB and IWC of the ASME Boiler and Pressure Vessel Code. Accordingly, volumetric and/or surface examinations are performed on heat exchanger shell, head, nozzle-to-head, and nozzle-to-shell welds. Inspection difficulties associated with the implementation of these Code-required examinations have forced operating nuclear power plants to seek relief from the U.S. Nuclear Regulatory Commission. The nature of these relief requests are generally concerned with metallurgical, geometry, accessibility, and radiation burden. Over 60% of licensee requests to the NRC identify significant radiation exposure burden as the principle reason for relief from the ASME Code examinations on regenerative heat exchangers. For the residual heat removal heat exchangers, 90% of the relief requests are associated with geometry and accessibility concerns. Pacific Northwest National Laboratory was funded by the NRC Office of Nuclear Regulatory Research to review current practice with regard to volumetric and/or surface examinations of shell welds of letdown heat exchangers regenerative heat exchangers and residual (decay) heat removal heat exchangers Design, operating, common preventative maintenance practices, and potential degradation mechanisms are reviewed. A detailed survey of domestic and international PWR-specific operating experience was performed to identify pressure boundary failures (or lack of failures) in each heat exchanger type and NSSS design. The service data survey was based on the PIPExp® database and covers PWR plants worldwide for the period 1970-2004. Finally a risk assessment of the current ASME Code inspection requirements for residual heat removal, letdown, and regenerative heat exchangers is performed. The results are then reviewed to discuss the examinations relative to plant safety and

  19. Rapid mapping of volumetric machine errors using distance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Krulewich, D.A.

    1998-04-01

    This paper describes a relatively inexpensive, fast, and easy to execute approach to maping the volumetric errors of a machine tool, coordinate measuring machine, or robot. An error map is used to characterize a machine or to improve its accuracy by compensating for the systematic errors. The method consists of three steps: (1) models the relationship between volumetric error and the current state of the machine, (2) acquiring error data based on distance measurements throughout the work volume; and (3)fitting the error model using the nonlinear equation for the distance. The error model is formulated from the kinematic relationship among the six degrees of freedom of error an each moving axis. Expressing each parametric error as function of position each is combined to predict the error between the functional point and workpiece, also as a function of position. A series of distances between several fixed base locations and various functional points in the work volume is measured using a Laser Ball Bar (LBB). Each measured distance is a non-linear function dependent on the commanded location of the machine, the machine error, and the location of the base locations. Using the error model, the non-linear equation is solved producing a fit for the error model Also note that, given approximate distances between each pair of base locations, the exact base locations in the machine coordinate system determined during the non-linear filling procedure. Furthermore, with the use of 2048 more than three base locations, bias error in the measuring instrument can be removed The volumetric errors of three-axis commercial machining center have been mapped using this procedure. In this study, only errors associated with the nominal position of the machine were considered Other errors such as thermally induced and load induced errors were not considered although the mathematical model has the ability to account for these errors. Due to the proprietary nature of the projects we are

  20. Correction: Inferior alveolar nerve injury with laryngeal mask airway: a case report.

    LENUS (Irish Health Repository)

    Hanumanthaiah, Deepak

    2011-11-30

    ABSTRACT: Following the publication of our article [Inferior alveolar nerve injury with laryngeal mask airway: a case report. Journal of Medical Case Reports 2011, 5:122] it was brought to our attention that we inadvertently used the registered trademark of the Laryngeal Mask Company Limited (LMA) as the abbreviation for laryngeal mask airway. A Portex(R) Soft Seal(R) Laryngeal Mask was used and not a device manufactured by the Laryngeal Mask Company.