WorldWideScience

Sample records for volumetric elastic modulus

  1. Elastic modulus of viral nanotubes

    Science.gov (United States)

    Zhao, Yue; Ge, Zhibin; Fang, Jiyu

    2008-09-01

    We report an experimental and theoretical study of the radial elasticity of tobacco mosaic virus (TMV) nanotubes. An atomic force microscope tip is used to apply small radial indentations to deform TMV nanotubes. The initial elastic response of TMV nanotubes can be described by finite-element analysis in 5nm indentation depths and Hertz theory in 1.5nm indentation depths. The derived radial Young’s modulus of TMV nanotubes is 0.92±0.15GPa from finite-element analysis and 1.0±0.2GPa from the Hertz model, which are comparable with the reported axial Young’s modulus of 1.1GPa [Falvo , Biophys. J. 72, 1396 (1997)].

  2. Computation of Modulus of Elasticity of Concrete

    Directory of Open Access Journals (Sweden)

    Onwuka, D.O

    2013-09-01

    Full Text Available - In this presentation, a computer based method which uses a set of algebraic equations and statistical data, were used to compute concrete mixes for prescribeable elastic concrete modulus, and vice versa. The computer programs based on Simplex and Regression theories can be used to predict several mix proportions for obtaining a desired modulus of elasticity of concrete made from crushed granite rock and other materials. The modulus of elasticity of concrete predicted by these programs agreed with experimentally obtained values. The programs are easy and inexpensive to use, and give instant and accurate results. For example, if the modulus of elasticity is specified as input, the computer instantly prints out all possible concrete mix ratios that can yield concrete having the specified elastic modulus. When the concrete mix ratio is specified as input, the computer quickly prints out the elastic modulus of the concrete obtainable from a given concrete mix ratio.

  3. Study on elastic modulus of individual ferritin

    Institute of Scientific and Technical Information of China (English)

    ZHANG JinHai; CUI ChengYi; ZHOU XingFei

    2009-01-01

    The mechanical property of individual ferriUn was measured with force-volume mapping (FV) under contact mode of atomic force microscopy (AFM) in this work. The elastic modulus of individual ferritin was estimated by the Hertz mode. The estimated value of the elastic modulus of individual ferritin was about 250-800 MPs under a small deformation. In addition, the elastic modulus of individual ferritin was compared with that of the colloid gold nanoparticle.

  4. Elastic modulus of cetacean auditory ossicles.

    Science.gov (United States)

    Tubelli, Andrew A; Zosuls, Aleks; Ketten, Darlene R; Mountain, David C

    2014-05-01

    In order to model the hearing capabilities of marine mammals (cetaceans), it is necessary to understand the mechanical properties, such as elastic modulus, of the middle ear bones in these species. Biologically realistic models can be used to investigate the biomechanics of hearing in cetaceans, much of which is currently unknown. In the present study, the elastic moduli of the auditory ossicles (malleus, incus, and stapes) of eight species of cetacean, two baleen whales (mysticete) and six toothed whales (odontocete), were measured using nanoindentation. The two groups of mysticete ossicles overall had lower average elastic moduli (35.2 ± 13.3 GPa and 31.6 ± 6.5 GPa) than the groups of odontocete ossicles (53.3 ± 7.2 GPa to 62.3 ± 4.7 GPa). Interior bone generally had a higher modulus than cortical bone by up to 36%. The effects of freezing and formalin-fixation on elastic modulus were also investigated, although samples were few and no clear trend could be discerned. The high elastic modulus of the ossicles and the differences in the elastic moduli between mysticetes and odontocetes are likely specializations in the bone for underwater hearing.

  5. A revised and unified pressure-clamp/relaxation theory for studying plant cell water relations with pressure probes: in-situ determination of cell volume for calculation of volumetric elastic modulus and hydraulic conductivity.

    Science.gov (United States)

    Knipfer, T; Fei, J; Gambetta, G A; Shackel, K A; Matthews, M A

    2014-10-21

    The cell-pressure-probe is a unique tool to study plant water relations in-situ. Inaccuracy in the estimation of cell volume (νo) is the major source of error in the calculation of both cell volumetric elastic modulus (ε) and cell hydraulic conductivity (Lp). Estimates of νo and Lp can be obtained with the pressure-clamp (PC) and pressure-relaxation (PR) methods. In theory, both methods should result in comparable νo and Lp estimates, but this has not been the case. In this study, the existing νo-theories for PC and PR methods were reviewed and clarified. A revised νo-theory was developed that is equally valid for the PC and PR methods. The revised theory was used to determine νo for two extreme scenarios of solute mixing between the experimental cell and sap in the pressure probe microcapillary. Using a fully automated cell-pressure-probe (ACPP) on leaf epidermal cells of Tradescantia virginiana, the validity of the revised theory was tested with experimental data. Calculated νo values from both methods were in the range of optically determined νo (=1.1-5.0nL) for T. virginiana. However, the PC method produced a systematically lower (21%) calculated νo compared to the PR method. Effects of solute mixing could only explain a potential error in calculated νo of cell turgor) of 19%, which is a fundamental parameter in calculating νo. It followed from the revised theory that the ratio of ΔV/ΔP was inversely related to the solute reflection coefficient. This highlighted that treating the experimental cell as an ideal osmometer in both methods is potentially not correct. Effects of non-ideal osmotic behavior by transmembrane solute movement may be minimized in the PR as compared to the PC method.

  6. Elastic bending modulus of monolayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Lu Qiang; Huang Rui [Department of Aerospace Engineering and Engineering Mechanics, University of Texas, Austin, TX 78712 (United States); Arroyo, Marino [Department of Applied Mathematics 3, LaCaN, Universitat Politecnica de Catalunya (UPC), Barcelona 08034 (Spain)

    2009-05-21

    An analytic formula is derived for the elastic bending modulus of monolayer graphene based on an empirical potential for solid-state carbon atoms. Two physical origins are identified for the non-vanishing bending stiffness of the atomically thin graphene sheet, one due to the bond-angle effect and the other resulting from the bond-order term associated with the dihedral angles. The analytical prediction compares closely with ab initio energy calculations. Pure bending of graphene monolayers into cylindrical tubes is simulated by a molecular mechanics approach, showing slight nonlinearity and anisotropy in the tangent bending modulus as the bending curvature increases. An intrinsic coupling between bending and in-plane strain is noted for graphene monolayers rolled into carbon nanotubes. (fast track communication)

  7. Determination of Modulus of Elasticity and Shear Modulus by the Measurement of Relative Strains

    Science.gov (United States)

    Labašová, Eva

    2016-12-01

    This contribution is focused on determining the material properties (Young modulus and shear modulus) of the testing samples. The theoretical basis for determining material properties are the knowledge of linear elasticity and strength. The starting points are dependencies among the modulus of elasticity, shear modulus, normal stress and relative strain. The relative strains of the testing samples were obtained by measuring predefined load conditions using a strain-gauge bridge and the universal measurement system Quantum X MX 840. The integration of these tasks into the teaching process enhances practical and intellectual skills of students at secondary level technical universities.

  8. Elastic modulus of phases in Ti–Mo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei-dong [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Liu, Yong, E-mail: yonliu11@aliyun.com [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Wu, Hong; Song, Min [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Zhang, Tuo-yang [Metallurgical Engineering, University of Utah, Salt Lake City, UT 84112 (United States); Lan, Xiao-dong; Yao, Tian-hang [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)

    2015-08-15

    In this work, a series of binary Ti–Mo alloys with the Mo contents ranging from 3.2 to 12 at.% were prepared using non-consumable arc melting. The microstructures were investigated by X-ray diffraction and transmission electron microscope, and the elastic modulus was evaluated by nanoindentation testing technique. The evolution of the volume fractions of ω phase was investigated using X-ray photoelectron spectroscopy. The results indicated that the phase constitution and elastic modulus of the Ti–Mo alloys are sensitive to the Mo content. Ti–3.2Mo and Ti–8Mo alloys containing only α and β phases, respectively, have a low elastic modulus. In contrast, Ti–4.5Mo, Ti–6Mo, Ti–7Mo alloys, with different contents of ω phase, have a high elastic modulus. A simple micromechanical model was used to calculate the elastic modulus of ω phase (E{sub ω}), which was determined to be 174.354 GPa. - Highlights: • Ti–Mo alloys with the Mo contents ranging from 3.2 to 12 at.% were investigated. • XPS was used to investigate the volume fractions of ω phase. • The elastic modulus of Ti–Mo alloys is sensitive to the Mo content. • The elastic modulus of ω phase was determined to be 174.354 GPa.

  9. Modulus of Elasticity and Thermal Expansion Coefficient of ITO Film

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Austin D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Elhadj, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-06-24

    The purpose of this experiment was to determine the modulus of elasticity (E) and thermal expansion coefficient (α) of RF sputtered Indium Tin Oxide (ITO) as a function of temperature (T), and to collect ITO film stress data. In order to accomplish that goal, the Toho FLX-2320-S thin film stress measurement machine was used to collect both single stress and stress-temperature data for ITO coated fused silica and sapphire substrates. The stress measurement function of the FLX-2320-S cannot be used to calculate the elastic modulus of the film because the Stoney formula incorporates the elastic modulus of the substrate, rather than of the film itself.

  10. Temperature effect on elastic modulus of thin films and nanocrystals

    Science.gov (United States)

    Liang, Lihong; Li, Meizhi; Qin, Fuqi; Wei, Yueguang

    2013-02-01

    The stability of nanoscale devices is directly related to elasticity and the effect of temperature on the elasticity of thin films and nanocrystals. The elastic instability induced by rising temperature will cause the failure of integrated circuits and other microelectronic devices in service. The temperature effect on the elastic modulus of thin films and nanocrystals is unclear although the temperature dependence of the modulus of bulk materials has been studied for over half a century. In this paper, a theoretical model of the temperature-dependent elastic modulus of thin films and nanocrystals is developed based on the physical definition of the modulus by considering the size effect of the related cohesive energy and the thermal expansion coefficient. Moreover, the temperature effect on the modulus of Cu thin films is simulated by the molecular dynamics method. The results indicate that the elastic modulus decreases with increasing temperature and the rate of the modulus decrease increases with reducing thickness of thin films. The theoretical predictions based on the model are consistent with the results of computational simulations, semi-continuum calculations and the experimental measurements for Cu, Si thin films and Pd nanocrystals.

  11. Device to measure elastic modulus of superconducting windings

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    This device was made to measure elastic modulus of the Po dipole superconducting coils. More elaborated devices, but based on the same concept, were later used to measure the apparent elastic moduli of the LHC superconducting magnet coils. See also 7903547X, 7901386.

  12. Elastic modulus of posts and the risk of root fracture.

    Science.gov (United States)

    Meira, Josete B C; Espósito, Camila O M; Quitero, Mayra F Z; Poiate, Isis A V P; Pfeifer, Carmem Silvia C; Tanaka, Carina B; Ballester, Rafael Y

    2009-08-01

    The definition of an optimal elastic modulus for a post is controversial. This work hypothesized that the influence of the posts' elastic modulus on dentin stress concentration is dependent on the load direction. The objective was to evaluate, using finite element analysis, the maximum principal stress (sigma(max)) on the root, using posts with different elastic modulus submitted to different loading directions. Nine 3D models were built, representing the dentin root, gutta-percha, a conical post and the cortical bone. The softwares used were: MSC.PATRAN2005r2 (preprocessing) and MSC.Marc2005r2 (processing). Load of 100 N was applied, varying the directions (0 degrees, 45 degrees and 90 degrees) in relation to the post's long axis. The magnitude and direction of the sigma(max) were recorded. At the 45 degrees and 90 degrees loading, the highest values of sigma(max) were recorded for the lowest modulus posts, on the cervical region, with a direction that suggests debonding of the post. For the 0 degrees loading, the highest values of sigma(max) were recorded for higher modulus posts, on the apical region, and the circumferential direction suggests vertical root fracture. The hypothesis was accepted: the effect of the elastic modulus on the magnitude and direction of the sigma(max) generated on the root was dependent on the loading direction.

  13. Reduction in the modulus of elasticity in orthodontic wires.

    Science.gov (United States)

    Goldberg, A J; Vanderby, R; Burstone, C J

    1977-10-01

    The modulus of elasticity of stainless steel orthodontic wires was found to be 20% below the normally assumed range of 19.3 to 20.0 x 10(4) MPa (28.0 to 29.0 x 10(6) psi). Use of the latter value can result in significant computational errors in orthodontic applicance mechanics. The lower modulus was attributed to severe cold drawing.

  14. Determination of the elastic modulus of snow via acoustic measurements

    Science.gov (United States)

    Gerling, Bastian; van Herwijnen, Alec; Löwe, Henning

    2016-04-01

    The elastic modulus of snow is a key quantity from the viewpoint of avalanche research and forecasting, snow engineering or materials science in general. Since it is a fundamental property, many measurements have been reported in the literature. Due to differences in measurement methods, there is a lot of variation in the reported values. Especially values derived via computer tomography (CT) based numerical calculations using finite element methods are not corresponding to the results of other methods. The central issue is that CT based moduli are purely elastic whereas other methods may include viscoelastic deformation. In order to avoid this discrepancy we derived the elastic modulus of snow via wave propagation measurements and compared our results with CT based calculations. We measured the arrival times of acoustic pulses propagating through the snow samples to determine the P-wave velocity and in turn derive the elastic modulus along the direction of wave propagation. We performed a series of laboratory experiments to derive the P-wave modulus of snow in relation to density. The P-wave modulus ranged from 10 to 280 MPa for a snow density between 150 and 370 kg/m^3;. The moduli derived from the acoustic measurements correlated well with the CT-based values and both exhibited a power law trend over the entire density range. Encouraged by these results we used the acoustic method to investigate the temporal evolution of the elastic modulus. The rate of increase was very close to values mentioned in literature on the sintering rate of snow. Overall, our results are a first but important step towards a new measurement method to attain the elastic properties of snow.

  15. Size-Dependent Elastic Modulus and Vibration Frequency of Nanocrystals

    Directory of Open Access Journals (Sweden)

    Lihong Liang

    2011-01-01

    Full Text Available The elastic properties and the vibration characterization are important for the stability of materials and devices, especially for nanomaterials with potential and broad application. Nanomaterials show different properties from the corresponding bulk materials; the valid theoretical model about the size effect of the elastic modulus and the vibration frequency is significant to guide the application of nanomaterials. In this paper, a unified analytical model about the size-dependent elastic modulus and vibration frequency of nanocrystalline metals, ceramics and semiconductors is established based on the inherent lattice strain and the binding energy change of nanocrystals compared with the bulk crystals, and the intrinsic correlation between the elasticity and the vibration properties is discussed. The theoretical predictions for Cu, Ag, Si thin films, nanoparticles, and TiO2 nanoparticles agree with the experimental results, the computational simulations, and the other theoretical models.

  16. Multigene Genetic Programming for Estimation of Elastic Modulus of Concrete

    Directory of Open Access Journals (Sweden)

    Alireza Mohammadi Bayazidi

    2014-01-01

    Full Text Available This paper presents a new multigene genetic programming (MGGP approach for estimation of elastic modulus of concrete. The MGGP technique models the elastic modulus behavior by integrating the capabilities of standard genetic programming and classical regression. The main aim is to derive precise relationships between the tangent elastic moduli of normal and high strength concrete and the corresponding compressive strength values. Another important contribution of this study is to develop a generalized prediction model for the elastic moduli of both normal and high strength concrete. Numerous concrete compressive strength test results are obtained from the literature to develop the models. A comprehensive comparative study is conducted to verify the performance of the models. The proposed models perform superior to the existing traditional models, as well as those derived using other powerful soft computing tools.

  17. Measurement of Elastic Modulus of Collagen Type I Single Fiber.

    Science.gov (United States)

    Dutov, Pavel; Antipova, Olga; Varma, Sameer; Orgel, Joseph P R O; Schieber, Jay D

    2016-01-01

    Collagen fibers are the main components of the extra cellular matrix and the primary contributors to the mechanical properties of tissues. Here we report a novel approach to measure the longitudinal component of the elastic moduli of biological fibers under conditions close to those found in vivo and apply it to type I collagen from rat tail tendon. This approach combines optical tweezers, atomic force microscopy, and exploits Euler-Bernoulli elasticity theory for data analysis. This approach also avoids drying for measurements or visualization, since samples are freshly extracted. Importantly, strains are kept below 0.5%, which appear consistent with the linear elastic regime. We find, surprisingly, that the longitudinal elastic modulus of type I collagen cannot be represented by a single quantity but rather is a distribution that is broader than the uncertainty of our experimental technique. The longitudinal component of the single-fiber elastic modulus is between 100 MPa and 360 MPa for samples extracted from different rats and/or different parts of a single tail. Variations are also observed in the fibril-bundle/fibril diameter with an average of 325±40 nm. Since bending forces depend on the diameter to the fourth power, this variation in diameter is important for estimating the range of elastic moduli. The remaining variations in the modulus may be due to differences in composition of the fibril-bundles, or the extent of the proteoglycans constituting fibril-bundles, or that some single fibrils may be of fibril-bundle size.

  18. Ultrasonic Measurement of Elastic Modulus of Kelvin Foam

    Directory of Open Access Journals (Sweden)

    Oh Sukwon

    2016-01-01

    Full Text Available Elastic modulus of 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam of 3 mm unit cell is designed and printed layer upon layer to fablicate a Kelvin foam plate of 14mm thickness by 3D CAD/printer using ABS plastic. The Kelvin foam plate is filled completely with paraffin wax for impedance matching, so that acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF method to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity.

  19. High elastic modulus nanopowder reinforced resin composites for dental applications

    Science.gov (United States)

    Wang, Yijun

    2007-12-01

    Dental restorations account for more than $3 billion dollars a year on the market. Among them, all-ceramic dental crowns draw more and more attention and their popularity has risen because of their superior aesthetics and biocompatibility. However, their relatively high failure rate and labor-intensive fabrication procedure still limit their application. In this thesis, a new family of high elastic modulus nanopowder reinforced resin composites and their mechanical properties are studied. Materials with higher elastic modulus, such as alumina and diamond, are used to replace the routine filler material, silica, in dental resin composites to achieve the desired properties. This class of composites is developed to serve (1) as a high stiffness support to all-ceramic crowns and (2) as a means of joining independently fabricated crown core and veneer layers. Most of the work focuses on nano-sized Al2O3 (average particle size 47 nm) reinforcement in a polymeric matrix with 50:50 Bisphenol A glycidyl methacrylate (Bis-GMA): triethylene glycol dimethacrylate (TEGDMA) monomers. Surfactants, silanizing agents and primers are examined to obtain higher filler levels and enhance the bonding between filler and matrix. Silane agents work best. The elastic modulus of a 57.5 vol% alumina/resin composite is 31.5 GPa compared to current commercial resin composites with elastic modulus alumina, diamond/resin composites are studied. An elastic modulus of about 45 GPa is obtained for a 57 vol% diamond/resin composite. Our results indicate that with a generally monodispersed nano-sized high modulus filler, relatively high elastic modulus resin-based composite cements are possible. Time-dependent behavior of our resin composites is also investigated. This is valuable for understanding the behavior of our material and possible fatigue testing in the future. Our results indicate that with effective coupling agents and higher filler loading, viscous flow can be greatly decreased due to the

  20. Measurement of Elastic Modulus of Collagen Type I Single Fiber.

    Directory of Open Access Journals (Sweden)

    Pavel Dutov

    Full Text Available Collagen fibers are the main components of the extra cellular matrix and the primary contributors to the mechanical properties of tissues. Here we report a novel approach to measure the longitudinal component of the elastic moduli of biological fibers under conditions close to those found in vivo and apply it to type I collagen from rat tail tendon. This approach combines optical tweezers, atomic force microscopy, and exploits Euler-Bernoulli elasticity theory for data analysis. This approach also avoids drying for measurements or visualization, since samples are freshly extracted. Importantly, strains are kept below 0.5%, which appear consistent with the linear elastic regime. We find, surprisingly, that the longitudinal elastic modulus of type I collagen cannot be represented by a single quantity but rather is a distribution that is broader than the uncertainty of our experimental technique. The longitudinal component of the single-fiber elastic modulus is between 100 MPa and 360 MPa for samples extracted from different rats and/or different parts of a single tail. Variations are also observed in the fibril-bundle/fibril diameter with an average of 325±40 nm. Since bending forces depend on the diameter to the fourth power, this variation in diameter is important for estimating the range of elastic moduli. The remaining variations in the modulus may be due to differences in composition of the fibril-bundles, or the extent of the proteoglycans constituting fibril-bundles, or that some single fibrils may be of fibril-bundle size.

  1. Comparative study on three dynamic modulus of elasticity and static modulus of elasticity for Lodgepole pine lumber

    Institute of Scientific and Technical Information of China (English)

    LIANG Shan-qing; FU feng

    2007-01-01

    The dynamic and static modulus of elasticity (MOE) between bluestained and non-bluestained lumber of Lodgepole pine were tested and analyzed by using three methods of Non-destructive testing (NDT), Portable Ultrasonic Non-destructive Digital Indicating Testing (Pundit), Metriguard and Fast Fourier Transform (FFT) and the normal bending method. Results showed that the dynamic and static MOE of bluestained wood were higher than those of non-bluestained wood. The significant differences in dynamic MOE and static MOE were found between bulestained and non-bluestained wood, of which, the difference in each of three dynamic MOE (Ep.the ultrasonic wave modulus of elasticity, Em, the stress wave modulus of elasticity and Ef, the longitudinal wave modulus of elasticity) between bulestained and non-bluestained wood arrived at the 0.01 significance level, whereas that in the static MOE at the 0.05 significance level. The differences in MOE between bulestained and non-bluestained wood were induced by the variation between sapwood and heartwood and the different densities of bulestained and non-bluestained wood. The correlation between dynamic MOE and static MOE was statistically significant at the 0.01 significance level. Although the dynamic MOE values of Ep, Em, Ef were significantly different, there exists a close relationship between them (arriving at the 0.01 correlation level). Comparative analysis among the three techniques indicated that the accurateness of FFT was higher than that of Pundit and Metriguard. Effect of tree knots on MOE was also investigated. Result showed that the dynamic and static MOE gradually decreased with the increase of knot number, indicating that knot number had significant effect on MOE value.

  2. Effects of elastic indenter deformation on spherical instrumented indentation tests: the reduced elastic modulus

    Science.gov (United States)

    Aida Rodríguez, Sara; Alcalá, Jorge; Martins Souza, Roberto

    2011-03-01

    Although the Hertz theory is not applicable in the analysis of the indentation of elastic-plastic materials, it is common practice to incorporate the concept of indenter/specimen combined modulus to consider indenter deformation. The appropriateness was assessed of the use of reduced modulus to incorporate the effect of indenter deformation in the analysis of the indentation with spherical indenters. The analysis based on finite element simulations considered four values of the ratio of the indented material elastic modulus to that of the diamond indenter, E/Ei (0, 0.04, 0.19, 0.39), four values of the ratio of the elastic reduced modulus to the initial yield strength, Er/Y (0, 10, 20, 100), and two values of the ratio of the indenter radius to maximum total displacement, R/δmax (3, 10). Indenter deformation effects are better accounted for by the reduced modulus if the indented material behaves entirely elastically. In this case, identical load-displacement (P - δ) curves are obtained with rigid and elastic spherical indenters for the same elastic reduced modulus. Changes in the ratio E/Ei , from 0 to 0.39, resulted in variations lower than 5% for the load dimensionless functions, lower than 3% in the contact area, Ac , and lower than 5% in the ratio H/Er . However, deformations of the elastic indenter made the actual radius of contact change, even in the indentation of elastic materials. Even though the load dimensionless functions showed only a little increase with the ratio E/Ei , the hardening coefficient and the yield strength could be slightly overestimated when algorithms based on rigid indenters are used. For the unloading curves, the ratio δe/δmax , where δe is the point corresponding to zero load of a straight line with slope S from the point (Pmax, δmax ), varied less than 5% with the ratio E/Ei . Similarly, the relationship between reduced modulus and the unloading indentation curve, expressed by Sneddon's equation, did not reveal the necessity

  3. Cell wall elasticity: I. A critique of the bulk elastic modulus approach and an analysis using polymer elastic principles

    Science.gov (United States)

    Wu, H. I.; Spence, R. D.; Sharpe, P. J.; Goeschl, J. D.

    1985-01-01

    The traditional bulk elastic modulus approach to plant cell pressure-volume relations is inconsistent with its definition. The relationship between the bulk modulus and Young's modulus that forms the basis of their usual application to cell pressure-volume properties is demonstrated to be physically meaningless. The bulk modulus describes stress/strain relations of solid, homogeneous bodies undergoing small deformations, whereas the plant cell is best described as a thin-shelled, fluid-filled structure with a polymer base. Because cell walls possess a polymer structure, an alternative method of mechanical analysis is presented using polymer elasticity principles. This initial study presents the groundwork of polymer mechanics as would be applied to cell walls and discusses how the matrix and microfibrillar network induce nonlinear stress/strain relationships in the cell wall in response to turgor pressure. In subsequent studies, these concepts will be expanded to include anisotropic expansion as regulated by the microfibrillar network.

  4. Study on the AFM Force Spectroscopy method for elastic modulus measurement of living cells

    Science.gov (United States)

    Demichelis, A.; Pavarelli, S.; Mortati, L.; Sassi, G.; Sassi, M.

    2013-09-01

    The cell elasticity gives information about its pathological state and metastatic potential. The aim of this paper is to study the AFM Force Spectroscopy technique with the future goal of realizing a reference method for accurate elastic modulus measurement in the elasticity range of living cells. This biological range has not been yet explored with a metrological approach. Practical hints are given for the realization of a Sylgard elasticity scale. Systematic effects given by the sample curing thickness and nanoindenter geometry have been found with regards of the measured elastic modulus. AFM measurement reproducibility better than 20% is obtained in the entire investigated elastic modulus scale of 101 - 104 kPa.

  5. Bending Modulus of Elasticity of the Press Forming Composite Material from Bagasse Fiber and Biodegradable Resin

    OpenAIRE

    柴田, 信一; 曹, 勇; 福本, 功; Shibata, Shin-ichi; Cao, Yong; Fukumoto, Isao

    2005-01-01

    Bending modulus of elasticity of the composite material from bagasse fiber (remains after sugar cane squeezed) and biodegradable resin was investigated in view of the content of bagasse fiber and the fiber length. The result was validated by short fiber strengthen theory. The result is as followings. Bending modulus of elasticity increased with increasing the content of bagasse fiber. The increase of Bending modulus of elasticity is predicted by short fiber strengthen theory incorporated with...

  6. Vitamin A deficiency alters the pulmonary parenchymal elastic modulus and elastic fiber concentration in rats

    Directory of Open Access Journals (Sweden)

    Holmes Amey J

    2005-07-01

    Full Text Available Abstract Background Bronchial hyperreactivity is influenced by properties of the conducting airways and the surrounding pulmonary parenchyma, which is tethered to the conducting airways. Vitamin A deficiency (VAD is associated with an increase in airway hyperreactivity in rats and a decrease in the volume density of alveoli and alveolar ducts. To better define the effects of VAD on the mechanical properties of the pulmonary parenchyma, we have studied the elastic modulus, elastic fibers and elastin gene-expression in rats with VAD, which were supplemented with retinoic acid (RA or remained unsupplemented. Methods Parenchymal mechanics were assessed before and after the administration of carbamylcholine (CCh by determining the bulk and shear moduli of lungs that that had been removed from rats which were vitamin A deficient or received a control diet. Elastin mRNA and insoluble elastin were quantified and elastic fibers were enumerated using morphometric methods. Additional morphometric studies were performed to assess airway contraction and alveolar distortion. Results VAD produced an approximately 2-fold augmentation in the CCh-mediated increase of the bulk modulus and a significant dampening of the increase in shear modulus after CCh, compared to vitamin A sufficient (VAS rats. RA-supplementation for up to 21 days did not reverse the effects of VAD on the elastic modulus. VAD was also associated with a decrease in the concentration of parenchymal elastic fibers, which was restored and was accompanied by an increase in tropoelastin mRNA after 12 days of RA-treatment. Lung elastin, which was resistant to 0.1 N NaOH at 98°, decreased in VAD and was not restored after 21 days of RA-treatment. Conclusion Alterations in parenchymal mechanics and structure contribute to bronchial hyperreactivity in VAD but they are not reversed by RA-treatment, in contrast to the VAD-related alterations in the airways.

  7. Low elastic modulus titanium–nickel scaffolds for bone implants

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; Yang, Hailin; Wang, Huifeng; Ruan, Jianming, E-mail: jianming@csu.edu.cn

    2014-01-01

    The superelastic nature of repeating the human bones is crucial to the ideal artificial biomedical implants to ensure smooth load transfer and foster the ingrowth of new bone tissues. Three dimensional interconnected porous TiNi scaffolds, which have the tailorable porous structures with micro-hole, were fabricated by slurry immersing with polymer sponge and sintering method. The crystallinity and phase composition of scaffolds were studied by X-ray diffraction. The pore morphology, size and distribution in the scaffolds were characterized by scanning electron microscopy. The porosity ranged from 65 to 72%, pore size was 250–500 μm. Compressive strength and elastic modulus of the scaffolds were ∼ 73 MPa and ∼ 3GPa respectively. The above pore structural and mechanical properties are similar to those of cancellous bone. In the initial cell culture test, osteoblasts adhered well to the scaffold surface during a short time, and then grew smoothly into the interconnected pore channels. These results indicate that the porous TiNi scaffolds fabricated by this method could be bone substitute materials. - Highlights: • A novel approach for the fabrication of porous TiNi scaffolds • Macroporous structures are replicated from the polymer sponge template. • The pore characteristics and mechanical properties of TiNi scaffolds agree well with the requirement of trabecular bone. • Cytocompatibility of TiNi scaffolds is assessed, and it closely associated with pore property.

  8. Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope

    KAUST Repository

    Zhou, Zhoulong

    2012-04-01

    The elastic modulus of an oral cancer cell line UM1 is investigated by nanoindentation in an atomic force microscope with a flat-ended tip. The commonly used Hertzian method gives apparent elastic modulus which increases with the loading rate, indicating strong effects of viscoelasticity. On the contrary, a rate-jump method developed for viscoelastic materials gives elastic modulus values which are independent of the rate-jump magnitude. The results show that the rate-jump method can be used as a standard protocol for measuring elastic stiffness of living cells, since the measured values are intrinsic properties of the cells. © 2011 Elsevier Ltd.

  9. If mechanics of cells can be described by elastic modulus in AFM indentation experiments?

    Science.gov (United States)

    Sokolov, Igor; Dokukin, Maxim; Guz, Nataliia; Kalaparthi, Vivekanand

    2014-03-01

    We study the question if cells, being highly heterogeneous objects, can be described with an elastic modulus (the Young's modulus) in a self-consistent way. We analyze the elastic modulus using indentation done with AFM of human cervical epithelial cells. Both sharp (cone) and dull AFM probes were used. The indentation data collected were processed through different elastic models. The cell was considered as a homogeneous elastic medium which had either smooth spherical boundary (Hertz/Sneddon models) or the boundary covered with a layer of glycocalyx and membrane protrusions (``brush'' models). Validity of these approximations was investigated. Specifically, we tested the independence of the elastic modulus of the indentation depth, which is assumed in these models. We demonstrate that only one model shows consistency with treating cells as homogeneous elastic medium, the bush model when processing the indentation data collected with the dull probe. The elastic modulus demonstrates strong depth dependence in all other three models. We conclude that it is possible to describe the elastic properties of the cell body by means of an effective elastic modulus in a self-consistent way when using the brush model to analyze data collected with a dull AFM probe.

  10. Measurement of elastic modulus and evaluation of viscoelasticity of foundry green sand

    Directory of Open Access Journals (Sweden)

    Qingchun XIANG

    2004-08-01

    Full Text Available Elastic modulus is an important physical parameter of molding sand; it is closely connected with molding sand's properties. Based on theories of rheology and molding sand microdeformation, elastic modulus of molding sand was measured and investigated using the intelligent molding sand multi-property tester developed by ourselves. The measuring principle was introduced. Effects of bentonite percentage and compactibility of the molding sand were experimentally studied. Furthermore, the essential viscoelastic nature of green sand was analyzed. It is considered that viscoelastic deformation of molding sand consists mainly of that of Kelvin Body of clay membrane, and elastic modulus of molding sand depends mainly on that of Kelvin Body which is the elastic component of clay membrane between sands. Elastic modulus can be adopted as one of the property parameters, and can be employed to evaluate viscoelastic properties of molding sand.

  11. Measurement of elastic modulus and evaluation of viscoelasticity of foundry green sand

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Elastic modulus is an important physical parameter of molding sand; it is closely connected with molding sand's properties. Based on theories of rheology and molding sand microdeformation, elastic modulus of molding sand was measured and investigated using the intelligent molding sand multi-property tester developed by ourselves. The measuring principle was introduced. Effects of bentonite percentage and compactibility of the molding sand were experimentally studied. Furthermore, the essential viscoelastic nature of green sand was analyzed. It is considered that viscoelastic deformation of molding sand consists mainly of that of Kelvin Body of clay membrane, and elastic modulus of molding sand depends mainly on that of Kelvin Body which is the elastic component of clay membrane between sands. Elastic modulus can be adopted as one of the property parameters, and can be employed to evaluate the viscoelastic properties of molding sand.

  12. Volumetric elasticity imaging with a 2-D CMUT array.

    Science.gov (United States)

    Fisher, Ted G; Hall, Timothy J; Panda, Satchi; Richards, Michael S; Barbone, Paul E; Jiang, Jingfeng; Resnick, Jeff; Barnes, Steve

    2010-06-01

    This article reports the use of a two-dimensional (2-D) capacitive micro-machined ultrasound transducer (CMUT) to acquire radio-frequency (RF) echo data from relatively large volumes of a simple ultrasound phantom to compare three-dimensional (3-D) elasticity imaging methods. Typical 2-D motion tracking for elasticity image formation was compared with three different methods of 3-D motion tracking, with sum-squared difference (SSD) used as the similarity measure. Differences among the algorithms were the degree to which they tracked elevational motion: not at all (2-D search), planar search, combination of multiple planes and plane independent guided search. The cross-correlation between the predeformation and motion-compensated postdeformation RF echo fields was used to quantify motion tracking accuracy. The lesion contrast-to-noise ratio was used to quantify image quality. Tracking accuracy and strain image quality generally improved with increased tracking sophistication. When used as input for a 3-D modulus reconstruction, high quality 3-D displacement estimates yielded accurate and low noise modulus reconstruction.

  13. Simplification and improvement of prediction model for elastic modulus of particulate reinforced metal matrix composite

    Institute of Scientific and Technical Information of China (English)

    WANG Wen-ming; PAN Fu-sheng; LU Yun; ZENG Su-min

    2006-01-01

    In this paper, we proposed a five-zone model to predict the elastic modulus of particulate reinforced metal matrix composite. We simplified the calculation by ignoring structural parameters including particulate shape, arrangement pattern and dimensional variance mode which have no obvious influence on the elastic modulus of a composite, and improved the precision of the method by stressing the interaction of interfaces with pariculates and maxtrix of the composite. The five- zone model can reflect effects of interface modulus on elastic modulus of composite. It overcomes limitations of expressions of rigidity mixed law and flexibility mixed law. The original idea of five zone model is to put forward the particulate/interface interactive zone and matrix/interface interactive zone. By organically integrating the rigidity mixed law and flexibility mixed law,the model can predict the engineering elastic constant of a composite effectively.

  14. Use of indentation technique to measure elastic modulus of plasma-sprayed zirconia thermal barrier coating

    Energy Technology Data Exchange (ETDEWEB)

    Singh, J.P.; Sutaria, M. [Argonne National Lab., IL (United States). Energy Technology Div.; Ferber, M. [Oak Ridge National Lab., TN (United States)

    1997-01-01

    Elastic modulus of an yttria partially stabilized zirconia (YSZ) thermal barrier coating (TBC) was evaluated with a Knoop indentation technique. The measured elastic modulus values for the coating ranged from 68.4 {+-} 22.6 GPa at an indentation load of 50 g to 35.7 {+-} 9.8 at an indentation load of 300 g. At higher loads, the elastic modulus values did not change significantly. This steady-state value of 35.7 GPa for ZrO{sub 2} TBC agreed well with literature values obtained by the Hertzian indentation method. Furthermore, the measured elastic modulus for the TBC is lower than that reported for bulk ZrO{sub 2} ({approx} 190 GPa). This difference is believed to be due to the presence of a significant amount of porosity and microcracks in the TBCs. Hardness was also measured.

  15. Elastic modulus and hardness of cortical and trabecular bovine bone measured by nanoindentation

    Institute of Scientific and Technical Information of China (English)

    WANG X J; CHEN X B; HODGSON P D; WEN C E

    2006-01-01

    The elastic modulus and hardness of several microstructure components of dry bovine vertebrae and tibia have been investigated in the longitude and transverse directions using nanoindentation. The elastic modulus for the osteons and the interstitial lamellae in the longitude direction were found to be (24.7±2.5) GPa and (30.1±2.4) GPa. As it's difficult to distinguish osteons from interstitial lamellae in the transverse direction,the average elastic modulus for cortical bovine bone in the transverse direction was (19.8±1.6) GPa. The elastic modulus for trabecular bone in the longitude and transverse direction were (20±2) GPa and (14.7±1.9) GPa respectively. The hardness also varied among the microstructure components in the range of 0.41-0.89 GPa. Analyses of variance show that the values are significantly different.

  16. Elastic modulus of orbicularis oculi muscle in normal humans, humans with Graves' eye disease, and cynomolgus monkeys.

    Science.gov (United States)

    Oestreicher, J H; Frueh, B R

    1995-06-01

    We built an experimental apparatus to investigate the passive elastic characteristics of orbicularis oculi muscle and examined specimens from normal humans, humans with stable Graves' eye disease, and cynomolgus monkeys. Stress-strain curves were determined and found to be exponential. The elastic modulus (Young's modulus), analogous to the stiffness of the material, was calculated as a function of strain. Elastic modulus as a function of instantaneous stress was linear. Monkey elastic modulus values were determined, but did not allow meaningful interspecies comparison because of the small sample size. No significant difference was found between normal humans and humans with Graves' eye disease with respect to elastic modulus values.

  17. Simplified prediction model for elastic modulus of particulate reinforced metal matrix composites

    Institute of Scientific and Technical Information of China (English)

    WANG Wen-ming; PAN Fu-sheng; LU Yun; ZENG Su-min

    2006-01-01

    Some structural parameters of the metal matrix composite, including particulate shape and distribution do not influence the elastic modulus. A prediction model for the elastic modulus of particulate reinforced metal matrix Al composite was developed and improved. Expressions of rigidity and flexibility of the rule of mixing were proposed. A five-zone model for elasticity performance calculation of the composite was proposed. The five-zone model is thought to be able to reflect the effects of the MMC interface on elastic modulus of the composite. The model overcomes limitations of the currently-understood rigidity and flexibility of the rule of mixing. The original idea of a five-zone model is to propose particulate/interface interactive zone and matrix/interface interactive zone. By integrating organically with the law of mixing, the new model is found to be capable of predicting the engineering elastic constants of the MMC composite.

  18. Comparison of mechanical and ultrasound elastic modulus of ovine tibial cortical bone.

    Science.gov (United States)

    Grant, Caroline A; Wilson, Lance J; Langton, Christian; Epari, Devakar

    2014-07-01

    Finite element models of bones can be created by deriving geometry from an X-ray CT scan. Material properties such as the elastic modulus can then be applied using either a single or set of homogeneous values, or individual elements can have local values mapped onto them. Values for the elastic modulus can be derived from the CT density values using an elasticity versus density relationship. Many elasticity-density relationships have been reported in the literature for human bone. However, while ovine in vivo models are common in orthopaedic research, no work has been done to date on creating FE models of ovine bones. To create these models and apply relevant material properties, an ovine elasticity-density relationship needs to be determined. Using fresh frozen ovine tibias the apparent density of regions of interest was determined from a clinical CT scan. The bones were the sectioned into cuboid samples of cortical bone from the regions of interest. Ultrasound was used to determine the elastic modulus in each of three directions - longitudinally, radially and tangentially. Samples then underwent traditional compression testing in each direction. The relationships between apparent density and both ultrasound, and compression modulus in each direction were determined. Ultrasound testing was found to be a highly repeatable non-destructive method of calculating the elastic modulus, particularly suited to samples of this size. The elasticity-density relationships determined in the longitudinal direction were very similar between the compression and ultrasound data over the density range examined. A clear difference was seen in the elastic modulus between the longitudinal and transverse directions of the bone samples, and a transverse elasticity-density relationship is also reported.

  19. Determination of elastic modulus in nickel alloy from ultrasonic measurements

    Indian Academy of Sciences (India)

    Nikhat Parveen; G V S Murthy

    2011-04-01

    Elastic constants relate technological, structural and safety aspects to various materials phenomena and to their fundamental interatomic forces. Hence, they are of fundamental importance in almost all engineering applications. Thus its determination is of utmost importance. The aim of the present investigation is to study the behaviour of elastic constants and the variation on heat treatment in a nickel base super alloy Nimonic 263 by ultrasonic velocity measurements. From the present study it is evident that the elastic moduli of the material are very sensitive to any minor compositional changes, resulting due to the formation of intermetallic phases on heat treatment and can be effectively monitored by ultrasonic.

  20. In-situ measurement of elastic modulus for ceramic top-coat at high temperature

    Institute of Scientific and Technical Information of China (English)

    齐红宇; 周立柱; 马海全; 杨晓光; 李旭

    2008-01-01

    The ceramic thermal barrier coatings (TBCs) play an increasingly important in advanced gas turbine engines because of their ability to further increase the engine operating temperature and reduce the cooling, thus help achieve future engine low emission, high efficiency and improve the reliability goals. Currently, there are two different processes such as the plasma spraying (PS) and the electron beam-physical vapor deposition (EB-PVD) techniques. The PS coating was selected to test the elastic modulus. Using the nanoindentation and resonant frequency method, the mechanical properties of ceramic top-coat were measured in-situ. According to the theory of the resonant frequency and composite beam, the testing system was set up including the hardware and software. The results show that the accurate characterization of the elastic properties of TBCs is important for stress-strain analysis and failure prediction. The TBCs systems are multi-layer material system. It is difficult to measure the elastic modulus of top-coat by tensile method. The testing data is scatter by nanoindentation method because of the microstructure of the ceramic top-coat. The elastic modulus of the top-coat between 20?1 150 ℃ is obtained. The elastic modulus is from 2 to 70 GPa at room temperature. The elastic modulus changes from 62.5 GPa to 18.6 GPa when the temperature increases from 20 ℃ to 1 150 ℃.

  1. Ultrasound estimation and FE analysis of elastic modulus of Kelvin foam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nohyu; Yang, Seung Yong [School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2016-02-15

    The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method.

  2. Effect of Elastic Modulus on Biomechanical Properties of Lumbar Interbody Fusion Cage

    Institute of Scientific and Technical Information of China (English)

    Yue Zhu; Fusheng Li; Shujun Li; Yulin Hao; Rui Yang

    2009-01-01

    This work focuses on the influence of elastic modulus on biomechanical properties of lumbar interbody fusion cages by selecting two titanium alloys with different elastic modulus.They were made by a new β type alloy with chemical composition of Ti-24Nb-4Zr-7.6Sn having low Young's modulus ~50 GPa and by a conventional biomedical alloy Ti-6Al-4V having Young's modulus ~110 GPa.The results showed that the designed cages with low modulus (LMC) and high modulus (HMC) can keep identical compression load ~9.8 kN and endure fatigue cycles higher than 5× 106 without functional or mechanical failure under 2.0 kN axial compression.The anti-subsidence ability of both group cages were examined by axial compression of thoracic spine specimens (T9~T10) dissected freshly from the calf with averaged age of 6 months.The results showed that the LMC has better anti-subsidence ability than the HMC (p<0.05).The above results suggest that the cage with low elastic modulus has great potential for clinical applications.

  3. Actin cytoskeleton contributes to the elastic modulus of embryonic tendon during early development.

    Science.gov (United States)

    Schiele, Nathan R; von Flotow, Friedrich; Tochka, Zachary L; Hockaday, Laura A; Marturano, Joseph E; Thibodeau, Jeffrey J; Kuo, Catherine K

    2015-06-01

    Tendon injuries are common and heal poorly. Strategies to regenerate or replace injured tendons are challenged by an incomplete understanding of normal tendon development. Our previous study showed that embryonic tendon elastic modulus increases as a function of developmental stage. Inhibition of enzymatic collagen crosslink formation abrogated increases in tendon elastic modulus at late developmental stages, but did not affect increases in elastic modulus of early stage embryonic tendons. Here, we aimed to identify potential contributors to the mechanical properties of these early stage embryonic tendons. We characterized tendon progenitor cells in early stage embryonic tendons, and the influence of actin cytoskeleton disruption on tissue elastic modulus. Cells were closely packed in embryonic tendons, and did not change in density during early development. We observed an organized network of actin filaments that seemed contiguous between adjacent cells. The actin filaments exhibited a crimp pattern with a period and amplitude that matched the crimp of collagen fibers at each developmental stage. Chemical disruption of the actin cytoskeleton decreased tendon tissue elastic modulus, measured by atomic force microscopy. Our results demonstrate that early developmental stage embryonic tendons possess a well organized actin cytoskeleton network that contributes significantly to tendon tissue mechanical properties. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  4. Elastic Modulus of 304 Stainless Steel Coating by Cold Gas Dynamic Spraying

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    304 stainless steel coating was deposited on the IF steel substrate by cold gas dynamic spraying (CGDS), and the elastic modulus of the 304 stainless steel coating was studied. The elastic modulus of cold sprayed 304 stain- less steel coating was measured using the three-point bend testing and the compound beam theory, and the other me- chanic parameters (such as the equivalent flexural rigidity and the moment of inertia of area) of the coatings were also calculated using this compound beam theory. It is found that the calculated results using the above methods are accu- rate and reliable. The elastic modulus value of the cold sprayed 304 stainless steel coating is 1. 179 X 105 MPa, and it is slightly lower than the 304 stainless steel plate (about 2 X 105 MPa). It indicates that the elastic modulus of the cold sprayed coatings was quite different from the comparable bulk materials. The main reason is that the pores and other defects are existed in the coatings, and the elastic modulus of the coatings also depends on varies parameters such as the feed stock particle size, porosity, and processing parameters.

  5. Size dependent elastic modulus and mechanical resilience of dental enamel.

    Science.gov (United States)

    O'Brien, Simona; Shaw, Jeremy; Zhao, Xiaoli; Abbott, Paul V; Munroe, Paul; Xu, Jiang; Habibi, Daryoush; Xie, Zonghan

    2014-03-21

    Human tooth enamel exhibits a unique microstructure able to sustain repeated mechanical loading during dental function. Although notable advances have been made towards understanding the mechanical characteristics of enamel, challenges remain in the testing and interpretation of its mechanical properties. For example, enamel was often tested under dry conditions, significantly different from its native environment. In addition, constant load, rather than indentation depth, has been used when mapping the mechanical properties of enamel. In this work, tooth specimens are prepared under hydrated conditions and their stiffnesses are measured by depth control across the thickness of enamel. Crystal arrangement is postulated, among other factors, to be responsible for the size dependent indentation modulus of enamel. Supported by a simple structure model, effective crystal orientation angle is calculated and found to facilitate shear sliding in enamel under mechanical contact. In doing so, the stress build-up is eased and structural integrity is maintained.

  6. Elastic modulus of SiCw/6061Al alloy composites as-squeeze-cast

    Institute of Scientific and Technical Information of China (English)

    姜传海; 吴建生; 王德尊

    2001-01-01

    By using the system of image analyzer connected with scanning electron microscope, the whisker orientation in the SiCw/6061Al alloy composite as-squeeze-cast was measured. According to the shear lag model and the actual distribution function of whisker in composite, the inhomogeneity of elastic modulus in composite was analyzed. With the method of ultrasonic velocity, the elastic modulus of composite was measured. The results showed that, the whiskers of composite are preferred in an orientation normal to the direction of squeeze cast. The higher the volume fraction of whisker, the more extent of preferred orientation of it, and the inhomogeneity of elastic modulus is mainly due to the differences of whisker distribution in composite.

  7. Correlation between macro- and nano-scopic measurements of carbon nanostructured paper elastic modulus

    Energy Technology Data Exchange (ETDEWEB)

    Omar, Yamila M.; Al Ghaferi, Amal, E-mail: aalghaferi@masdar.ac.ae, E-mail: mchiesa@masdar.ac.ae; Chiesa, Matteo, E-mail: aalghaferi@masdar.ac.ae, E-mail: mchiesa@masdar.ac.ae [Laboratory for Energy and Nanosciences, Institute Center for Energy (iEnergy), Masdar Institute of Science and Technology, Abu Dhabi (United Arab Emirates)

    2015-07-20

    Extensive work has been done in order to determine the bulk elastic modulus of isotropic samples from force curves acquired with atomic force microscopy. However, new challenges are encountered given the development of new materials constructed of one-dimensional anisotropic building blocks, such as carbon nanostructured paper. In the present work, we establish a reliable framework to correlate the elastic modulus values obtained by amplitude modulation atomic force microscope force curves, a nanoscopic technique, with that determined by traditional macroscopic tensile testing. In order to do so, several techniques involving image processing, statistical analysis, and simulations are used to find the appropriate path to understand how macroscopic properties arise from anisotropic nanoscale components, and ultimately, being able to calculate the value of bulk elastic modulus.

  8. Mechanical properties of concrete with SAP. Part II: Modulus of elasticity

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jespersen, Morten H. Seneka; Jensen, Ole Mejlhede

    2010-01-01

    In this study, focus is on the modulus of elasticity for concrete with superabsorbent polymers (SAP). The results show that based on composite theory it is possible to establish a model, which predicts overall concrete elasticity. The model assumes a three phase material of aggregate, cement paste......, and air with volume fractions of the three phases as well as elastic properties of paste and aggregates as input parameters. Addition of SAP changes the E-modulus, because it both has an influence on properties of the cement paste and on the volume of air voids. Here, the E-modulus is an example...... a more or less empirical relation. The results show that when introducing SAP, models of a more empirical nature can be misleading (and e.g. relations stated in codes are often of this empirical nature). The reason is twofold: First, the empirical models often have a general problem with the effect...

  9. Mechanical properties of concrete with SAP. Part II: Modulus of elasticity

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jespersen, Morten H. Seneka; Jensen, Ole Mejlhede

    2010-01-01

    In this study, focus is on the modulus of elasticity for concrete with superabsorbent polymers (SAP). The results show that based on composite theory it is possible to establish a model, which predicts overall concrete elasticity. The model assumes a three phase material of aggregate, cement paste......, and air with volume fractions of the three phases as well as elastic properties of paste and aggregates as input parameters. Addition of SAP changes the E-modulus, because it both has an influence on properties of the cement paste and on the volume of air voids. Here, the E-modulus is an example...... a more or less empirical relation. The results show that when introducing SAP, models of a more empirical nature can be misleading (and e.g. relations stated in codes are often of this empirical nature). The reason is twofold: First, the empirical models often have a general problem with the effect...

  10. A new mechanism for low and temperature-independent elastic modulus.

    Science.gov (United States)

    Zhang, Liangxiang; Wang, Dong; Ren, Xiaobing; Wang, Yunzhi

    2015-06-25

    The first Elinvar alloy, FeNiCr, which has invariant elastic modulus over a wide temperature range, was discovered almost 100 years ago by Guillaume. The physical origin of such an anomaly has been attributed to the magnetic phase transition taking place in the system. However, the recent discovery of non-magnetic Elinvar such as multi-functional β-type Ti alloys has imposed a new challenge to the existing theories. In this study we show that random field from stress-carrying defects could suppress the sharp first-order martensitic transformation into a continuous strain glass transition, leading to continued formation and confined growth of nano-domains of martensite in a broad temperature range. Accompanying such a unique transition, there is a gradual softening of the elastic modulus over a wide temperature range, which compensates the normal modulus hardening due to anharmonic atomic vibration, resulting in a low and temperature-independent elastic modulus. The abundance of austenite/martensite interfaces are found responsible for the low elastic modulus.

  11. Elastic Modulus Measurement of ORNL ATF FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Zachary T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    Elastic modulus and Poisson’s ratio for a number of wrought FeCrAl alloys, intended for accident tolerant fuel cladding application, are determined via resonant ultrasonic spectroscopy. The results are reported as a function of temperature from room temperature to 850°C. The wrought alloys were in the fully annealed and unirradiated state. The elastic modulus for the wrought FeCrAl alloys is at least twice that of Zr-based alloys over the temperature range of this study. The Poisson’s ratio of the alloys was 0.28 on average and increased very slightly with increasing temperature.

  12. Modelling of the Elasticity Modulus for Rock Using Genetic Expression Programming

    Directory of Open Access Journals (Sweden)

    Umit Atici

    2016-01-01

    Full Text Available In rock engineering projects, statically determined parameters are more reflective of actual load conditions than dynamic parameters. This study reports a new and efficient approach to the formulation of the static modulus of elasticity Es applying gene expression programming (GEP with nondestructive testing (NDT methods. The results obtained using GEP are compared with the results of multivariable linear regression analysis (MRA, univariate nonlinear regression analysis (URA, and the dynamic elasticity modulus (Ed. The GEP model was found to produce the most accurate calculation of Es. The proposed approach is a simple, nondestructive, and practical way to determine Es for anisotropic and heterogeneous rocks.

  13. Influence of punch radius on elastic modulus of three-point bending tests

    OpenAIRE

    Pengliang Hou; Hongwei Zhao; Zhichao Ma; Shizhong Zhang; Jianping Li; Xiaolong Dong; Yujiao Sun; Zhongwei Zhu

    2016-01-01

    Three-point bending is one of the most common methods of studying the mechanical performance of materials. The influence of punch radius in the measurements is not considered in the previous studies. This article focuses on the influence of the punch radius on the elastic modulus. The experiment is set up to measure the elastic modulus of 6061 aluminum alloy (6061 Al) and copper as the specimens, in which several different radii of punches are used. The maximum bending deflection of the middl...

  14. Elastic modulus affects the growth and differentiation of neural stem cells

    Directory of Open Access Journals (Sweden)

    Xian-feng Jiang

    2015-01-01

    Full Text Available It remains poorly understood if carrier hardness, elastic modulus, and contact area affect neural stem cell growth and differentiation. Tensile tests show that the elastic moduli of Tiansu and SMI silicone membranes are lower than that of an ordinary dish, while the elastic modulus of SMI silicone membrane is lower than that of Tiansu silicone membrane. Neural stem cells from the cerebral cortex of embryonic day 16 Sprague-Dawley rats were seeded onto ordinary dishes as well as Tiansu silicone membrane and SMI silicone membrane. Light microscopy showed that neural stem cells on all three carriers show improved adherence. After 7 days of differentiation, neuron specific enolase, glial fibrillary acidic protein, and myelin basic protein expression was detected by immunofluorescence. Moreover, flow cytometry revealed a higher rate of neural stem cell differentiation into astrocytes on Tiansu and SMI silicone membranes than on the ordinary dish, which was also higher on the SMI than the Tiansu silicone membrane. These findings confirm that all three cell carrier types have good biocompatibility, while SMI and Tiansu silicone membranes exhibit good mechanical homogenization. Thus, elastic modulus affects neural stem cell differentiation into various nerve cells. Within a certain range, a smaller elastic modulus results in a more obvious trend of cell differentiation into astrocytes.

  15. Elastic modulus affects the growth and differentiation of neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Xian-feng Jiang; Kai Yang; Xiao-qing Yang; Ying-fu Liu; Yuan-chi Cheng; Xu-yi Chen; Yue Tu

    2015-01-01

    It remains poorly understood if carrier hardness, elastic modulus, and contact area affect neural stem cell growth and differentiation. Tensile tests show that the elastic moduli of Tiansu and SMI silicone membranes are lower than that of an ordinary dish, while the elastic modulus of SMI silicone membrane is lower than that of Tiansu silicone membrane. Neural stem cells from the cerebral cortex of embryonic day 16 Sprague-Dawley rats were seeded onto ordinary dishes as well as Tiansu silicone membrane and SMI silicone membrane. Light microscopy showed that neural stem cells on all three carriers show improved adherence. After 7 days of differentiation, neuron speciifc enolase, glial ifbrillary acidic protein, and myelin basic protein expression was detected by immunolfuorescence. Moreover, lfow cytometry revealed a higher rate of neural stem cell differentiation into astrocytes on Tiansu and SMI silicone membranes than on the ordinary dish, which was also higher on the SMI than the Tiansu silicone membrane. These ifndings con-ifrm that all three cell carrier types have good biocompatibility, while SMI and Tiansu silicone membranes exhibit good mechanical homogenization. Thus, elastic modulus affects neural stem cell differentiation into various nerve cells. Within a certain range, a smaller elastic modulus re-sults in a more obvious trend of cell differentiation into astrocytes.

  16. Elastic modulus of TiN film investigated with Kroner model and X-ray diffraction

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The four-point bending method was applied to measure X-ray elastic constants(XEC) of (422) and (331) planes of TiN coating. Elastic Modulus and XECs of all the crystal planes were calculated by Kroner method. The results from the calculation and the experiment were compared. It is concluded that the XECs values of same film prepared by different techniques scatter a little because of the effects of stoichiometric proportion and microstructure of films.

  17. Determination of elasticity modulus and Poisson ratio of two onion varieties under different loading conditions

    Directory of Open Access Journals (Sweden)

    A Jafari Malekabadi

    2016-04-01

    Full Text Available Introduction: Poisson ratio and modulus of elasticity are two fundamental properties of elastic and viscoelastic solids that use in solving all contact problems, including the calculation of stress, the contact surfaces and elastic deformation (Mohsenin, 1986; Gentle and Halsall, 1982. There are many published literature on Poisson ratio and elasticity modulus of fruit and vegetables. Shitanda et al. (2002 calculated Poisson ratio of rice by considering Boussinesq’s theory. They showed that the Poisson ratio is greater for shorter varieties. In another study, researchers used the instrumented bending beam to measure the lateral expansion of red beans. They were considered Poisson ratio as the ratio of transverse strain to the longitudinal strain (regardless of the geometry of the sample and were calculated modulus of elasticity with Hertz theory for convex bodies (Kiani Deh Kiani et al., 2009. Cakir et al. (2002 was determined the Poisson ratio and elastic modulus of some onion varieties. They used a simple formula to determine the transverse strain that developed by Sitkei (1986 for prism-shaped rod, regardless of the geometry of the product. Reviewed scientific literature shows that these parameters have not been studied according to the geometric shape of onions and was not used by a more accurate method, such as image processing to determine these parameters. The objective of this study was to evaluate the mechanical properties of two varieties of onions. Poisson ratio was determined with image processing. Considering shape of the onions and deformation value, and using Hertz’s theory with Poisson ratio, modulus of elasticity was calculated. The effects of loading directions (polar or equatorial, deformation value (5, 10 and 15 mm, loading speed (15 or 25 mm min-1 and onion varieties (Red and Yellow on the modulus of elasticity and apparent Poisson’s ratio were examined. Materials and Methods: The onions harvested in autumn, 20 days

  18. Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve.

    Science.gov (United States)

    Palchesko, Rachelle N; Zhang, Ling; Sun, Yan; Feinberg, Adam W

    2012-01-01

    Mechanics is an important component in the regulation of cell shape, proliferation, migration and differentiation during normal homeostasis and disease states. Biomaterials that match the elastic modulus of soft tissues have been effective for studying this cell mechanobiology, but improvements are needed in order to investigate a wider range of physicochemical properties in a controlled manner. We hypothesized that polydimethylsiloxane (PDMS) blends could be used as the basis of a tunable system where the elastic modulus could be adjusted to match most types of soft tissue. To test this we formulated blends of two commercially available PDMS types, Sylgard 527 and Sylgard 184, which enabled us to fabricate substrates with an elastic modulus anywhere from 5 kPa up to 1.72 MPa. This is a three order-of-magnitude range of tunability, exceeding what is possible with other hydrogel and PDMS systems. Uniquely, the elastic modulus can be controlled independently of other materials properties including surface roughness, surface energy and the ability to functionalize the surface by protein adsorption and microcontact printing. For biological validation, PC12 (neuronal inducible-pheochromocytoma cell line) and C2C12 (muscle cell line) were used to demonstrate that these PDMS formulations support cell attachment and growth and that these substrates can be used to probe the mechanosensitivity of various cellular processes including neurite extension and muscle differentiation.

  19. Evaluation the Effects of Some Relevant Parameters on Elastic Modulus of Pumpkin Seed and Its Kernel

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Abbaspour-Fard

    2012-01-01

    Full Text Available The elastic modulus of two varieties of Iranian pumpkin seed and its kernel (namely, Zaria and Gaboor were evaluated as a function of size (large, medium, and small, loading rate (2, 5, 8, and 10 mm/min, and moisture content (4, 7.8, 14, and 20% d.b under quasistatic compression loading. The results showed that elastic modulus of pumpkin seed and its kernel decreased with increasing moisture content and also increasing loading rate, for the varieties under study. The average modulus of elasticity of pumpkin seed from 68.86 to 46.65 Mpa and from 97.14 to 74.93 Mpa was obtained for moisture levels ranging from 4 to 20%, for Zaria and Gaboor varieties, respectively. The elastic modulus of pumpkin seed decreased from 73.55 to 43.04 Mpa and from 101.83 to 71.32 Mpa with increasing loading rate from 2 to 10 mm/min for Zaria and Gaboor varieties, respectively.

  20. MODULUS OF ELASTICITY AND HARDNESS OF COMPRESSION AND OPPOSITE WOOD CELL WALLS OF MASSON PINE

    Directory of Open Access Journals (Sweden)

    Yanhui Huang,

    2012-05-01

    Full Text Available Compression wood is commonly found in Masson pine. To evaluate the mechanical properties of the cell wall of Masson pine compression and opposite wood, nanoindentation was used. The results showed that the average values of hardness and cell wall modulus of elasticity of opposite wood were slightly higher than those of compression wood. With increasing age of the annual ring, the modulus of elasticity showed a negative correlation with microfibril angle, but a weak correlation was observed for hardness. In opposite and compression wood from the same annual ring, the differences in average values of modulus of elasticity and hardness were small. These slight differences were explained by the change of microfibril angle (MFA, the press-in mode of nanoindentation, and the special structure of compression wood. The mechanical properties were almost the same for early, transition, and late wood in a mature annual ring of opposite wood. It can therefore be inferred that the average modulus of elasticity (MOE and hardness of the cell walls in a mature annual ring were not being affected by cell wall thickness.

  1. Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve.

    Directory of Open Access Journals (Sweden)

    Rachelle N Palchesko

    Full Text Available Mechanics is an important component in the regulation of cell shape, proliferation, migration and differentiation during normal homeostasis and disease states. Biomaterials that match the elastic modulus of soft tissues have been effective for studying this cell mechanobiology, but improvements are needed in order to investigate a wider range of physicochemical properties in a controlled manner. We hypothesized that polydimethylsiloxane (PDMS blends could be used as the basis of a tunable system where the elastic modulus could be adjusted to match most types of soft tissue. To test this we formulated blends of two commercially available PDMS types, Sylgard 527 and Sylgard 184, which enabled us to fabricate substrates with an elastic modulus anywhere from 5 kPa up to 1.72 MPa. This is a three order-of-magnitude range of tunability, exceeding what is possible with other hydrogel and PDMS systems. Uniquely, the elastic modulus can be controlled independently of other materials properties including surface roughness, surface energy and the ability to functionalize the surface by protein adsorption and microcontact printing. For biological validation, PC12 (neuronal inducible-pheochromocytoma cell line and C2C12 (muscle cell line were used to demonstrate that these PDMS formulations support cell attachment and growth and that these substrates can be used to probe the mechanosensitivity of various cellular processes including neurite extension and muscle differentiation.

  2. Influence of punch radius on elastic modulus of three-point bending tests

    Directory of Open Access Journals (Sweden)

    Pengliang Hou

    2016-05-01

    Full Text Available Three-point bending is one of the most common methods of studying the mechanical performance of materials. The influence of punch radius in the measurements is not considered in the previous studies. This article focuses on the influence of the punch radius on the elastic modulus. The experiment is set up to measure the elastic modulus of 6061 aluminum alloy (6061 Al and copper as the specimens, in which several different radii of punches are used. The maximum bending deflection of the middle point is 1.0 mm. Moreover, a finite element simulation is constructed to simulate the bending process of specimen, which is consistent with the experimental results. According to the results, the punch radius has affected the measurement of elastic modulus, and the elastic modulus, the contact length, and the peak load increase with the increase in the punch radius. Combining the experiment result (E1 and the standard result (E3 of Changchun research institute for testing machines, it is found that the appropriate punch radius is in the range from 2.5 to 3.0 mm for this experiment, when the specimen’s dimension is 30.0 mm × 6.0 mm × 1.0 mm.

  3. Predictive Models for Modulus of Rupture and Modulus of Elasticity of Particleboard Manufactured in Different Pressing Conditions

    Science.gov (United States)

    Tiryaki, Sebahattin; Aras, Uğur; Kalaycıoğlu, Hülya; Erişir, Emir; Aydın, Aytaç

    2017-07-01

    Determining the mechanical properties of particleboard has gained a great importance due to its increasing usage as a building material in recent years. This study aims to develop artificial neural network (ANN) and multiple linear regression (MLR) models for predicting modulus of rupture (MOR) and modulus of elasticity (MOE) of particleboard depending on different pressing temperature, pressing time, pressing pressure and resin type. Experimental results indicated that the increased pressing temperature, time and pressure in manufacturing process generally improved the mechanical properties of particleboard. It was also seen that ANN and MLR models were highly successful in predicting the MOR and MOE of particleboard under given conditions. On the other hand, a comparison between ANN and MLR revealed that the ANN was superior compared to the MLR in predicting the MOR and MOE. Finally, the findings of this study are expected to provide beneficial insights for practitioners to better understand usability of such composite materials for engineering applications and to better assess the effects of pressing conditions on the MOR and MOE of particleboard.

  4. Parametric studies on effective elastic modulus of nano-clay/polymer composites

    Science.gov (United States)

    Thakur, Arvind Kumar; Srinivas, J.

    2016-04-01

    This paper proposes a methodology of finding effective elastic properties of nanoclay-reinforced polymer composites with aligned clay particles. When interphase regions exist between nanoclay platelets and polymer, numerical homogenization is initially required to identify the properties of effective particle consisting of both clay and interface regions. Once the elastic properties of equivalent particle are obtained, Mori-Tanaka approach is employed to identify all the effective properties of resultant composite. The methodology is implemented with a modular based computer program developed in MATLAB and the variation of longitudinal modulus as a function of weight fraction of nanoclay, aspect ratio of fibers, number of stacks, nanoclay volume fraction etc is reported. The empirical results are validated with a numerical model developed in ANSYS using a representative volume element for prediction of the elastic modulus. Results are illustrated with two cases of exfoliated morphology.

  5. Regulation of the elastic modulus of polyurethane microarrays and its influence on gecko-inspired dry adhesion

    Science.gov (United States)

    Li, Ming; Zhao, Aiwu; Jiang, Rui; Wang, Dapeng; Li, Da; Guo, Hongyan; Tao, Wenyu; Gan, Zibao; Zhang, Maofeng

    2011-02-01

    We studied the influence of the elastic modulus on the gecko-inspired dry adhesion by regulating the elastic modulus of bulk polyurethane combined with changing the size of microarrays. Segmented polyurethane (PU) was utilized to fabricate micro arrays by the porous polydimethyl siloxane (PDMS) membrane molding method. The properties of the micro arrays, such as the elastic modulus and adhesion, were investigated by Triboindenter. The study demonstrates that bulk surfaces show the highest elastic modulus, with similar values at around 175 MPa and decreasing the arrays radius causes a significant decrease in E, down to 0.62 MPa. The corresponding adhesion experiments show that decrease of the elastic modulus can enhance the adhesion which is consistent with the recent theoretical models.

  6. Determination of elastic modulus and residual stress of plasma-sprayed tungsten coating on steel substrate

    Energy Technology Data Exchange (ETDEWEB)

    You, J.H. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmann Street 2, 85748 Garching (Germany)]. E-mail: jeong-ha.you@ipp.mpg.de; Hoeschen, T. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmann Street 2, 85748 Garching (Germany); Lindig, S. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmann Street 2, 85748 Garching (Germany)

    2006-01-01

    Plasma-sprayed tungsten, which is a candidate material for the first wall armour, shows a porous, heterogeneous microstructure. Due to its characteristic morphology, the properties are significantly different from those of its dense bulk material. Measurements of the elastic modulus of this coating have not been reported in the literature. In this work Young's modulus of highly porous plasma-sprayed tungsten coatings deposited on steel (F82H) substrates was measured. For the fabrication of the coating system the vacuum plasma-spray process was applied. Measurements were performed by means of three-point and four-point bending tests. The obtained modulus values ranged from 53 to 57 GPa. These values could be confirmed by the test result of a detached coating strip, which was 54 GPa. The applied methods produced consistent results regardless of testing configurations and specimen sizes. The errors were less than 1%. Residual stress of the coating was also estimated.

  7. Determination of elastic modulus and residual stress of plasma-sprayed tungsten coating on steel substrate

    Science.gov (United States)

    You, J. H.; Höschen, T.; Lindig, S.

    2006-01-01

    Plasma-sprayed tungsten, which is a candidate material for the first wall armour, shows a porous, heterogeneous microstructure. Due to its characteristic morphology, the properties are significantly different from those of its dense bulk material. Measurements of the elastic modulus of this coating have not been reported in the literature. In this work Young's modulus of highly porous plasma-sprayed tungsten coatings deposited on steel (F82H) substrates was measured. For the fabrication of the coating system the vacuum plasma-spray process was applied. Measurements were performed by means of three-point and four-point bending tests. The obtained modulus values ranged from 53 to 57 GPa. These values could be confirmed by the test result of a detached coating strip, which was 54 GPa. The applied methods produced consistent results regardless of testing configurations and specimen sizes. The errors were less than 1%. Residual stress of the coating was also estimated.

  8. Prediction of the modulus of elasticity of Eucalyptus grandis through two nondestructive techniques

    Directory of Open Access Journals (Sweden)

    Pedro Henrique Gonzalez de Cademartori

    Full Text Available The present study aimed to estimate the modulus of elasticity (MOE at static bending of Rose gum (Eucalyptus grandis heartwood and sapwood through two nondestructive techniques: ultrasound and stress wave. Sixty samples of heartwood and sapwood were prepared. Nondestructive tests were performed using ultrasound and stress wave timer equipment, while destructive tests were carried out in a universal machine through static bending tests. The main results showed that the heartwood presented better behavior than the sapwood in the non-destructive tests. However, the best model was obtained considering both wood types through the ultrasonic technique. Therefore, stress wave and ultrasonic techniques could be employed to estimate the modulus of elasticity of Rose gum wood.

  9. Enhanced Elastic Modulus of Regenerated Silk Fibroin by Geometric Confinement in Anodized Aluminum Oxide Templates

    Science.gov (United States)

    Li, Jiankang; Li, Liang

    2017-02-01

    Geometric confinement is a promising method for the reconstruction of silk fibroin to form diversified structures with excellent mechanical properties. To accomplish geometric confinement, a water vapor assistant embossing process is used with porous anodic aluminum oxide templates, yielding silk fibroin nanopillars with diameters ranging from 40 nm to 130 nm. The elastic modulus of the regenerated silk fibroin nanopillars is investigated with atomic force microscopy nanoindentation analysis. Compared to films with the same treatment conditions, geometric confinement provided a twofold increase in elastic modulus in embossed silk fibroin nanopillars, indicating that β-sheet crystal ordering occurred during the water vapor assistant embossing process. These results demonstrate the feasibility and mechanical property enhancement of the embossing method to fabricate silk nanostructures, and will be useful in designing miniaturized devices.

  10. Nanoscale elastic modulus of single horizontal ZnO nanorod using nanoindentation experiment

    Science.gov (United States)

    Soomro, Muhammad Yousuf; Hussain, Ijaz; Bano, Nargis; Broitman, Esteban; Nur, Omer; Willander, Magnus

    2012-02-01

    We measure the elastic modulus of a single horizontal ZnO nanorod [NR] grown by a low-temperature hydrothermal chemical process on silicon substrates by performing room-temperature, direct load-controlled nanoindentation measurements. The configuration of the experiment for the single ZnO NR was achieved using a focused ion beam/scanning electron microscope dual-beam instrument. The single ZnO NR was positioned horizontally over a hole on a silicon wafer using a nanomanipulator, and both ends were bonded with platinum, defining a three-point bending configuration. The elastic modulus of the ZnO NR, extracted from the unloading curve using the well-known Oliver-Pharr method, resulted in a value of approximately 800 GPa. Also, we discuss the NR creep mechanism observed under indentation. The mechanical behavior reported in this paper will be a useful reference for the design and applications of future nanodevices.

  11. Effect of precipitation on elastic modulus of Al-Zn-Mg-Cu-Li alloys

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhong-kui; ZHOU Tie-tao; LIU Pei-ying; LI Huan-xi; CHEN Chang-qi

    2006-01-01

    Al-5.6Zn-3.0Mg-1.6Cu-1.1Li-0.24Cr alloys and Al-8.0Zn-2.4Mg-2.4Cu-1.1Li-0.18Zr alloys (mass fraction, %) were aged by different processes. The microstructure and mechanical properties were determined by transmission electron microscopy(TEM),tensile test and Vicker's hardness test. The experimental results show that the most signified hardening is obtained by double-ageing or multi-ageing for the Al-Zn-Mg-Cu-Li alloys. The yield strength and the elastic modulus of the Li-containing alloys have relationships with ageing processes. The elastic modulus of Li-containing alloys decreases with the increment of precipitates though it is higher than that of Al-Zn-Mg-Cu alloy.

  12. Measurement of Elastic Modulus and Vickers Hardness of Surround Bone Implant Using Dynamic Microindentation - Parameters Definition

    OpenAIRE

    Soares,Priscilla Barbosa Ferreira; Nunes,Sarah Arantes; Franco,Sinésio Domingues; Pires, Raphael Rezende; Zanetta-Barbosa,Darceny; Soares, Carlos José

    2014-01-01

    The clinical performance of dental implants is strongly defined by biomechanical principles. The aim of this study was to quantify the Vicker's hardness (VHN) and elastic modulus (E) surround bone to dental implant in different regions, and to discuss the parameters of dynamic microindantion test. Ten cylindrical implants with morse taper interface (Titamax CM, Neodent; 3.5 mm diameter and 7 mm a height) were inserted in rabbit tibia. The mechanical properties were analyzed using microhardnes...

  13. Strain-rate Dependence of Elastic Modulus Reveals Silver Nanoparticle Induced Cytotoxicity.

    Science.gov (United States)

    Caporizzo, Matthew Alexander; Roco, Charles M; Ferrer, Maria Carme Coll; Grady, Martha E; Parrish, Emmabeth; Eckmann, David M; Composto, Russell John

    Force-displacement measurements are taken at different rates with an atomic force microscope to assess the correlation between cell health and cell viscoelasticity in THP-1 cells that have been treated with a novel drug carrier. A variable indentation-rate viscoelastic analysis, VIVA, is employed to identify the relaxation time of the cells that are known to exhibit a frequency dependent stiffness. The VIVA agrees with a fluorescent viability assay. This indicates that dextran-lysozyme drug carriers are biocompatible and deliver concentrated toxic material (rhodamine or silver nanoparticles) to the cytoplasm of THP-1 cells. By modelling the frequency dependence of the elastic modulus, the VIVA provides three metrics of cytoplasmic viscoelasticity: a low frequency modulus, a high frequency modulus and viscosity. The signature of cytotoxicity by rhodamine or silver exposure is a frequency independent twofold increase in the elastic modulus and cytoplasmic viscosity, while the cytoskeletal relaxation time remains unchanged. This is consistent with the known toxic mechanism of silver nanoparticles, where metabolic stress causes an increase in the rigidity of the cytoplasm. A variable indentation-rate viscoelastic analysis is presented as a straightforward method to promote the self-consistent comparison between cells. This is paramount to the development of early diagnosis and treatment of disease.

  14. Noninvasive Vascular Displacement Estimation for Relative Elastic Modulus Reconstruction in Transversal Imaging Planes

    Directory of Open Access Journals (Sweden)

    Chris L. de Korte

    2013-03-01

    Full Text Available Atherosclerotic plaque rupture can initiate stroke or myocardial infarction. Lipid-rich plaques with thin fibrous caps have a higher risk to rupture than fibrotic plaques. Elastic moduli differ for lipid-rich and fibrous tissue and can be reconstructed using tissue displacements estimated from intravascular ultrasound radiofrequency (RF data acquisitions. This study investigated if modulus reconstruction is possible for noninvasive RF acquisitions of vessels in transverse imaging planes using an iterative 2D cross-correlation based displacement estimation algorithm. Furthermore, since it is known that displacements can be improved by compounding of displacements estimated at various beam steering angles, we compared the performance of the modulus reconstruction with and without compounding. For the comparison, simulated and experimental RF data were generated of various vessel-mimicking phantoms. Reconstruction errors were less than 10%, which seems adequate for distinguishing lipid-rich from fibrous tissue. Compounding outperformed single-angle reconstruction: the interquartile range of the reconstructed moduli for the various homogeneous phantom layers was approximately two times smaller. Additionally, the estimated lateral displacements were a factor of 2–3 better matched to the displacements corresponding to the reconstructed modulus distribution. Thus, noninvasive elastic modulus reconstruction is possible for transverse vessel cross sections using this cross-correlation method and is more accurate with compounding.

  15. Regional variation in wood modulus of elasticity (stiffness) and modulus of rupture (strength) of planted loblolly pine in the United States

    Science.gov (United States)

    Antony Finto; Lewis Jordan; Laurence R. Schimleck; Alexander Clark; Ray A. Souter; Richard F. Daniels

    2011-01-01

    Modulus of elasticity (MOE), modulus of rupture (MOR), and specific gravity (SG) are important properties for determining the end-use and value of a piece of lumber. This study addressed the variation in MOE, MOR, and SG with physiographic region, tree height, and wood type. Properties were measured from two static bending samples (dimensions 25.4 mm × 25.4 mm × 406.4...

  16. Study of the Effect of Temperature Changes on the Elastic Modulus of Flexible Pavement Layers

    Directory of Open Access Journals (Sweden)

    Mohd Raihan Taha

    2013-02-01

    Full Text Available In general, the stiffness of flexible pavement is influenced by environmental changes, whereby temperature and rainfall affect the asphalt layer and non-asphalt layer, such as the subgrade, respectively. Normally, the effect of temperature on flexible pavement can be measured using two methods. The first is a destructive test whereby core samples are tested in a laboratory using a Universal Testing Machine (UTM. The second is a non-destructive in situ test using equipment such as a Falling Weight Deflectometer (FWD and Spectral Analysis of Surface Waves (SASW. This study was conducted to investigate the effect of temperature at different tensile levels on the Soekarno-Hatta and Purwakarta Cikampek roads in Bandung, West Java, Indonesia. It is observed that different tensile levels and testing methods result in various elastic modulus values of flexible pavement. The higher the temperature applied to the flexible pavement layer, the more the elastic modulus values decrease. In contrast, the lower the temperature imposed on the flexible pavement layer, the more the elastic modulus values increase. Different testing methods (FWD, UTM and SASW on the flexible pavement layer are also affected by temperature changes.

  17. Microstructure, Elastic Modulus and Tensile Properties of Ti-Nb-O Alloy System

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In the present study Ti-Nb binary alloy system was chosen because it has excellent biocompatibility as well as reasonable mechanical properties, aiming at understanding oxygen content on microstructural formation,elastic modulus and tensile properties in Ti-Nb alloy system. Small alloy buttons of 50 mm in diameter were prepared by arc melting on a water-cooled copper hearth under an argon gas atmosphere with a non-consumable tungsten electrode. The button ingots were then heat treated in a vacuum atmosphere at 1273 K for 0.5 h followed by water quenching in a specially designed heat treatment furnace. Microstructure, elastic modulus and tensile properties were investigated in order to understand the effect of oxygen content in quenched TiNb alloy system. The orthorhombic structured α″ martensite was changed to bcc structured β-phase with increasing Nb content. Interestingly, it was found that oxygen makes β-phase stable in quenched Ti-Nb alloy system. Elastic modulus values were sensitive to phase stability of constituent phases. Yield strength increased with increasing oxygen content. Details will be explained by phase formation and stability behavior.

  18. Elastic Modulus and Stress Analysis of Porous Titanium Parts Fabricated by Selective Laser Melting

    Institute of Scientific and Technical Information of China (English)

    Junchao Li∗,Yanyan Zang; Wei Wang

    2016-01-01

    The mismatch of elasticity modulus has limited the application of titanium alloys in medical implants, and porous structures have been proved effective to deal with this problem. However, the manufacturing of porous structures has been restricted from conventional technologies. In this study, selective laser melting ( SLM) technology was employed to produce a set of Ti⁃6Al⁃4V porous samples based on cubic lattices with varying size of strut width from 200 μm to 600 μm. Then the compression tests were conducted to analyze the influence of the strut width on the elasticity modulus and the ultimate strength. The result shows both of them increases linearly with the growth of strut width or with the decrease of porosity, and the elasticity modulus of porous parts is largely reduced and actually meets the requirement of clinical application. Additionally, a finite element model was established to verify the un⁃uniform stress distribution of porous parts. It reveals that fractures always initially occur at the vertical struts along the force direction which suffer from the main deformation.

  19. A mechanical model to compute elastic modulus of tissues for harmonic motion imaging.

    Science.gov (United States)

    Shan, Baoxiang; Pelegri, Assimina A; Maleke, Caroline; Konofagou, Elisa E

    2008-07-19

    Numerous experimental and computational methods have been developed to estimate tissue elasticity. The existing testing techniques are generally classified into in vitro, invasive in vivo and non-invasive in vivo. For each experimental method, a computational scheme is accordingly proposed to calculate mechanical properties of soft biological tissues. Harmonic motion imaging (HMI) is a new technique that performs radio frequency (RF) signal tracking to estimate the localized oscillatory motion resulting from a radiation force produced by focused ultrasound. A mechanical model and computational scheme based on the superposition principle are developed in this paper to estimate the Young's modulus of a tissue mimicking phantom and bovine liver in vitro tissue from the harmonic displacement measured by HMI. The simulation results are verified by two groups of measurement data, and good agreement is shown in each comparison. Furthermore, an inverse function is observed to correlate the elastic modulus of uniform phantoms with amplitude of displacement measured in HMI. The computational scheme is also implemented to estimate 3D elastic modulus of bovine liver in vitro.

  20. Contraction stress, elastic modulus, and degree of conversion of three flowable composites.

    Science.gov (United States)

    Cadenaro, Milena; Codan, Barbara; Navarra, Chiara O; Marchesi, Giulio; Turco, Gianluca; Di Lenarda, Roberto; Breschi, Lorenzo

    2011-06-01

    The aim of this study was to measure the contraction stress of three flowable resin composites and to correlate the stress with the elastic modulus and the degree of conversion. One low-shrinkage (Venus Diamond Flow) and two conventional (Tetric EvoFlow and X-Flow) flowable composites were polymerized for 40s with a light-emitting diode (LED) curing unit. Contraction force was continuously recorded for 300s using a stress-analyser, and stress values were calculated at 40s and at 300s. The maximum stress rate was also calculated for each specimen. The elastic modulus of each composite was assayed using a biaxial flexural test, and degree of conversion was analysed with Raman spectroscopy. X-Flow exhibited higher stress values than the other tested materials. Venus Diamond Flow showed the lowest stress values at 40s and at 300s, and the lowest maximum stress rate. Stress values were correlated with elastic modulus but not with degree of conversion, which was comparable among all tested materials.

  1. Compressive Strength and Static Modulus of Elasticity of Periwinkle Shell Ash Blended Cement Concrete

    Directory of Open Access Journals (Sweden)

    Akaninyene Afangide Umoh

    2012-12-01

    Full Text Available The study examined the effect of periwinkle shell ash as supplementary cementitious material on the compressive strength and static modulus of elasticity of concrete with a view to comparing it’s established relation with an existing model. The shells were calcined at a temperature of 800oC. Specimens were prepared from a mix of designed strength 25N/mm2. The replacement of cement with periwinkle shell ash (PSA was at five levels of 0, 10, 20, 30 and 40% by volume. A total of 90 cubical and cylindrical specimens each were cast and tested at 7, 14, 28, 90, 120 and 180 days. The results revealed that the PSA met the minimum chemical and physical requirements for class C Pozzolans. The compressive strength of the PSA blended cement concrete increased with increase in curing age up to 180 days but decreased as the PSA content increased. The design strength was attained with 10%PSA content at the standard age of 28 days. The static modulus of elasticity of PSA blended cement concrete was observed to increase with increased in curing age and decreases with PSA content. In all the curing ages 0%PSA content recorded higher value than the blended cement concrete. The statistical analysis indicated that the percentage PSA replacement and the curing age have significant effect on the properties of the concrete at 95% confidence level. The relation between compressive strength and static modulus of elasticity fitted into existing model for normal-weight concrete.

  2. The apparent elastic modulus of the juxtarticular subchondral bone of the femoral head.

    Science.gov (United States)

    Brown, T D; Vrahas, M S

    1984-01-01

    An experiment was undertaken to obtain approximate values for the intrinsic elastic modulus of subchondral bone. Shallow spherical caps, with uniform and incrementally controlled thickness, were machined from subchondral bone in the weight-bearing regions of 11 fresh-frozen normal femoral head autopsy specimens. Under application of polar point loads, the measured deflections were compared with a corresponding analytical shell solution, thus allowing back-calculation of the apparent modulus. Analogous tests were performed on similarly shaped specimens of stock Plexiglas of known modulus in order to estimate the precision of the testing method. The aggregate results for subchondral bone showed that its intrinsic stiffness correlated inversely with nominal shell thickness, but even the thinnest (1.0 mm thick) of these shells had an apparent modulus (mean = 1.372 GN/m2, SD = 414 MN/m2) well below that generally accepted for "pure" cortical bone (about 14 GN/m2). This stiffness deficit was very likely due to the presence of histologically evident marrow spaces. However, the low apparent modulus values measured in this study may not be fully representative of complex in vivo behavior, because in the testing of excised shells there is no radial compressive stress transfer to underlying cancellous bone.

  3. 3D mapping of elastic modulus using shear wave optical micro-elastography

    Science.gov (United States)

    Zhu, Jiang; Qi, Li; Miao, Yusi; Ma, Teng; Dai, Cuixia; Qu, Yueqiao; He, Youmin; Gao, Yiwei; Zhou, Qifa; Chen, Zhongping

    2016-10-01

    Elastography provides a powerful tool for histopathological identification and clinical diagnosis based on information from tissue stiffness. Benefiting from high resolution, three-dimensional (3D), and noninvasive optical coherence tomography (OCT), optical micro-elastography has the ability to determine elastic properties with a resolution of ~10 μm in a 3D specimen. The shear wave velocity measurement can be used to quantify the elastic modulus. However, in current methods, shear waves are measured near the surface with an interference of surface waves. In this study, we developed acoustic radiation force (ARF) orthogonal excitation optical coherence elastography (ARFOE-OCE) to visualize shear waves in 3D. This method uses acoustic force perpendicular to the OCT beam to excite shear waves in internal specimens and uses Doppler variance method to visualize shear wave propagation in 3D. The measured propagation of shear waves agrees well with the simulation results obtained from finite element analysis (FEA). Orthogonal acoustic excitation allows this method to measure the shear modulus in a deeper specimen which extends the elasticity measurement range beyond the OCT imaging depth. The results show that the ARFOE-OCE system has the ability to noninvasively determine the 3D elastic map.

  4. Relationship Between Lamellar Structure and Elastic Modulus of Thermally Sprayed Thermal Barrier Coatings with Intra-splat Cracks

    Science.gov (United States)

    Li, Guang-Rong; Lv, Bo-Wen; Yang, Guan-Jun; Zhang, Wei-Xu; Li, Cheng-Xin; Li, Chang-Jiu

    2015-12-01

    The elastic modulus of plasma-sprayed top coating plays an important role in thermal cyclic lifetime of thermally sprayed thermal barrier coatings (TBCs), since the thermal stress is determined by the substrate/coating thermal mismatch and the elastic modulus of top coating. Consequently, much attention had been paid to understanding the relationship between elastic modulus and lamellar structure of top coating. However, neglecting the intra-splat cracks connected with inter-splat pores often leads to poor prediction in in-plane modulus. In this study, a modified model taking account of intra-splat cracks and other main structural characteristics of plasma-sprayed yttria-stabilized zirconia coating was proposed. Based on establishing the relationship between elastic modulus and structural parameters of basic unit, effects of structural parameters on the elastic modulus of coatings were discussed. The predicted results are well consistent with experimental data on coating elastic modulus in both out-plane direction and in-plane direction. This study would benefit the further comprehensive understanding of failure mechanism of TBCs in thermal cyclic condition.

  5. A Comparative Study of Solutions Concerning Thick Elastic Plates on Bi-modulus Foundation

    Directory of Open Access Journals (Sweden)

    Ioana Vlad

    2004-01-01

    Full Text Available The classical bending theory of elastic plates is based upon the assumption that the internal moments are proportional to the curvatures of the median deformed surface. This theory does not include the effects of shear and normal pressure in the plate. The model of a bi-modulus foundation is a realistic generalization of the Winkler’s classical one and is widely used to represent the subgrade of railroad systems, airport lanes [1], [2]. The derived equation of elastic thick plates on bi-modulus foundation considers shear and normal stress as linear variable across the plate thickness. This paper presents numerical solutions for thick plate resting on bi-modulus subgrade. These solutions take into account the shear distortion, and they are compared to the solution obtained by Finite Element Analysis and with the Winkler’s model. Particular solutions for the rectangular plate of clamped boundary, for the hinged rectangular plate and for a semi-elliptical plate, are discussed. The numerical solutions consist of double power series and they were obtained based on the minimum of the total strain energy [1]. Parametric studies have been performed in order to emphasize the effects of the chosen foundation and that of the geometry.

  6. Modified atomic force microscope applied to the measurement of elastic modulus for a single peptide molecule

    Science.gov (United States)

    Ptak, Arkadiusz; Takeda, Seiji; Nakamura, Chikashi; Miyake, Jun; Kageshima, Masami; Jarvis, Suzanne P.; Tokumoto, Hiroshi

    2001-09-01

    A modified atomic force microscopy (AFM) system, based on a force modulation technique, has been used to find an approximate value for the elastic modulus of a single peptide molecule directly from a mechanical test. For this purpose a self-assembled monolayer built from two kinds of peptides, reactive (able to anchor to the AFM tip) and nonreactive, was synthesized. In a typical experiment a single C3K30C (C=cysteine, K=lysine) peptide molecule was stretched between a Au(111) substrate and the gold-coated tip of an AFM cantilever to which it was attached via gold-sulfur bonds. The amplitude of the cantilever oscillations, due to an external force applied via a magnetic particle to the cantilever, was recorded by a lock-in amplifier and recalculated into stiffness of the stretched molecule. A longitudinal Young's modulus for the α-helix of a single peptide molecule and for the elongated state of this molecule has been estimated. The obtained values; 1.2±0.3 and 50±15 GPa, for the peptide α-helix and elongated peptide backbone, respectively, seem to be reasonable comparing them to the Young's modulus of protein crystals and linear organic polymers. We believe this research opens up a means by which scientists can perform quantitative studies of the elastic properties of single molecule, especially of biologically important polymers like peptides or DNA.

  7. Elastic modulus and viscoelastic properties of full thickness skin characterised at micro scales.

    Science.gov (United States)

    Crichton, Michael L; Chen, Xianfeng; Huang, Han; Kendall, Mark A F

    2013-03-01

    The recent emergence of micro-devices for vaccine delivery into upper layers of the skin holds potential for increased immune responses using physical means to target abundant immune cell populations. A challenge in doing this has been a limited understanding of the skin elastic properties at the micro scale (i.e. on the order of a cell diameter; ~10 μm). Here, we quantify skin's elastic properties at a micro-scale by fabricating customised probes of scales from sub- to super-cellular (0.5 μm-20 μm radius). We then probe full thickness skin; first with force-relaxation experiments and subsequently by elastic indentations. We find that skin's viscoelastic response is scale-independent: consistently a ~40% decrease in normalised force over the first second, followed by further 10% reduction over 10 s. Using Prony series and Hertzian contact analyses, we determined the strain-rate independent elastic moduli of the skin. A high scale dependency was found: the smallest probe encountered the highest elastic modulus (~30 MPa), whereas the 20 μm radius probe was lowest (below 1 MPa). We propose that this may be a result of the load distribution in skin facilitated by the hard corneocytes in the outermost skin layers, and softer living cell layers below. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Elastic metamaterials with simultaneously negative effective shear modulus and mass density.

    Science.gov (United States)

    Wu, Ying; Lai, Yun; Zhang, Zhao-Qing

    2011-09-02

    We propose a type of elastic metamaterial comprising fluid-solid composite inclusions which can possess a negative shear modulus and negative mass density over a large frequency region. Such a material has the unique property that only transverse waves can propagate with a negative dispersion while longitudinal waves are forbidden. This leads to many interesting phenomena such as negative refraction, which is demonstrated by using a wedge sample and a significant amount of mode conversion from transverse waves to longitudinal waves that cannot occur on the interface of two natural solids.

  9. Elastic superlattices with simultaneously negative effective mass density and shear modulus

    Science.gov (United States)

    Solís-Mora, I. S.; Palomino-Ovando, M. A.; Pérez-Rodríguez, F.

    2013-03-01

    We investigate the vibrational properties of superlattices with layers of rubber and polyurethane foam, which can be either conventional or auxetic. Phononic dispersion calculations show a second pass band for transverse modes inside the lowest band gap of the longitudinal modes. In such a band, the superlattices behave as a double-negative elastic metamaterial since the effective dynamic mass density and shear modulus are both negative. The pass band is associated to a Fabry-Perot resonance band which turns out to be very narrow as a consequence of the high contrast between the acoustic impedances of the superlattice components.

  10. Elastic Metamaterials with Simultaneously Negative Effective Shear Modulus and Mass Density

    KAUST Repository

    Wu, Ying

    2011-09-02

    We propose a type of elastic metamaterial comprising fluid-solid composite inclusions which can possess a negative shear modulus and negative mass density over a large frequency region. Such a material has the unique property that only transverse waves can propagate with a negative dispersion while longitudinal waves are forbidden. This leads to many interesting phenomena such as negative refraction, which is demonstrated by using a wedge sample and a significant amount of mode conversion from transverse waves to longitudinal waves that cannot occur on the interface of two natural solids.

  11. Hardness and Elastic Modulus on Six-Fold Symmetry Gold Nanoparticles

    Science.gov (United States)

    Ramos, Manuel; Ortiz-Jordan, Luis; Hurtado-Macias, Abel; Flores, Sergio; Elizalde-Galindo, José T.; Rocha, Carmen; Torres, Brenda; Zarei-Chaleshtori, Maryam; Chianelli, Russell R.

    2013-01-01

    The chemical synthesis of gold nanoparticles (NP) by using gold (III) chloride trihydrate (HAuCl∙3H2O) and sodium citrate as a reducing agent in aqueous conditions at 100 °C is presented here. Gold nanoparticles areformed by a galvanic replacement mechanism as described by Lee and Messiel. Morphology of gold-NP was analyzed by way of high-resolution transmission electron microscopy; results indicate a six-fold icosahedral symmetry with an average size distribution of 22 nm. In order to understand the mechanical behaviors, like hardness and elastic moduli, gold-NP were subjected to nanoindentation measurements—obtaining a hardness value of 1.72 GPa and elastic modulus of 100 GPa in a 3–5 nm of displacement at the nanoparticle’s surface. PMID:28809302

  12. In vitro ultrasonic and mechanic characterization of the modulus of elasticity of children cortical bone.

    Science.gov (United States)

    Berteau, Jean-Philippe; Baron, Cécile; Pithioux, Martine; Launay, Franck; Chabrand, Patrick; Lasaygues, Philippe

    2014-07-01

    The assessment of elastic properties in children's cortical bone is a major challenge for biomechanical engineering community, more widely for health care professionals. Even with classical clinical modalities such as X-ray tomography, MRI, and/or echography, inappropriate diagnosis can result from the lack of reference values for children bone. This study provides values for elastic properties of cortical bone in children using ultrasonic and mechanical measurements, and compares them with adult values. 18 fibula samples from 8 children (5-16 years old, mean age 10.6 years old ±4.4) were compared to 16 fibula samples from 3 elderly adults (more than 65 years old). First, the dynamic modulus of elasticity (Edyn) and Poisson's ratio (ν) are evaluated via an ultrasonic method. Second, the static modulus of elasticity (Esta) is estimated from a 3-point microbending test. The mean values of longitudinal and transverse wave velocities measured at 10 MHz for the children's samples are respectively 3.2mm/μs (±0.5) and 1.8mm/μs (±0.1); for the elderly adults' samples, velocities are respectively 3.5mm/μs (±0.2) and 1.9 mm/μs (±0.09). The mean Edyn and the mean Esta for the children's samples are respectively 15.5 GPa (±3.4) and 9.1 GPa (±3.5); for the elderly adults' samples, they are respectively 16.7 GPa (±1.9) and 5.8 GPa (±2.1). Edyn, ν and Esta are in the same range for children's and elderly adults' bone without any parametric statistical difference; a ranking correlation between Edyn and Esta is shown for the first time.

  13. If Cell Mechanics Can Be Described by Elastic Modulus: Study of Different Models and Probes Used in Indentation Experiments

    Science.gov (United States)

    Guz, Nataliia; Dokukin, Maxim; Kalaparthi, Vivekanand; Sokolov, Igor

    2014-01-01

    Here we investigated the question whether cells, being highly heterogeneous objects, could be described with the elastic modulus (effective Young’s modulus) in a self-consistent way. We performed a comparative analysis of the elastic modulus derived from the indentation data obtained with atomic force microscopy (AFM) on human cervical epithelial cells (both normal and cancerous). Both sharp (cone) and dull (2500-nm radius sphere) AFM probes were used. The indentation data were processed through different elastic models. The cell was approximated as a homogeneous elastic medium that had either 1), smooth hemispherical boundary (Hertz/Sneddon models) or 2), the boundary covered with a layer of glycocalyx and membrane protrusions (“brush” models). Consistency of these approximations was investigated. Specifically, we tested the independence of the elastic modulus of the indentation depth, which is assumed in these models. We demonstrated that only one model showed consistency in treating cells as a homogeneous elastic medium, namely, the brush model, when processing the indentation data collected with the dull AFM probe. The elastic modulus demonstrated strong depth dependence in all models: Hertz/Sneddon models (no brush taken into account), and when the brush model was applied to the data collected with sharp conical probes. We conclude that it is possible to describe the elastic properties of the cell body by means of an effective elastic modulus, used in a self-consistent way, when using the brush model to analyze data collected with a dull AFM probe. The nature of these results is discussed. PMID:25099796

  14. Bending elasticity modulus of giant vesicles composed of aeropyrum pernix k1 archaeal lipid.

    Science.gov (United States)

    Genova, Julia; Ulrih, Nataša Poklar; Kralj-Iglič, Veronika; Iglič, Aleš; Bivas, Isak

    2015-03-26

    Thermally induced shape fluctuations were used to study elastic properties of giant vesicles composed of archaeal lipids C25,25-archetidyl (glucosyl) inositol and C25,25-archetidylinositol isolated from lyophilised Aeropyrum pernix K1 cells. Giant vesicles were created by electroformation in pure water environment. Stroboscopic illumination using a xenon flash lamp was implemented to remove the blur effect due to the finite integration time of the camera and to obtain an instant picture of the fluctuating vesicle shape. The mean weighted value of the bending elasticity modulus kc of the archaeal membrane determined from the measurements meeting the entire set of qualification criteria was (1.89 ± 0.18) × 10-19 J, which is similar to the values obtained for a membrane composed of the eukaryotic phospholipids SOPC (1.88 ± 0.17) × 10-19 J and POPC (2.00 ± 0.21) ´ 10-19 J. We conclude that membranes composed of archaeal lipids isolated from Aeropyrum pernix K1 cells have similar elastic properties as membranes composed of eukaryotic lipids. This fact, together with the importance of the elastic properties for the normal circulation through blood system, provides further evidence in favor of expectations that archaeal lipids could be appropriate for the design of drug delivery systems.

  15. The bulk elastic modulus and the reversible properties of cell walls in developing Quercus leaves.

    Science.gov (United States)

    Saito, Takami; Soga, Kouichi; Hoson, Takayuki; Terashima, Ichiro

    2006-06-01

    We examined the relationship between the bulk elastic modulus (epsilon) of an individual leaf obtained by the pressure-volume (P-V) technique and the mechanical properties of cell walls in the leaf. The plants used were Quercus glauca and Q. serrata, an evergreen and a deciduous broad-leaved tree species, respectively. We compared epsilon and Young's modulus of leaf specimens determined by the stretch technique at various stages of their leaf development. The results showed that epsilon increased from approximately 5 to 20 MPa during leaf development, although other potential determinants of epsilon such as the apoplastic water content in the leaf and the diameter of a palisade tissue cells remained almost constant. epsilon in these two species was similar at every developmental stages, although the apparent mechanical strength of the leaf lamina and thickness of mesophyll cell walls were greater in Q. glauca. There were significant linear relationships between Young's modulus and epsilon (P < 0.01; R (2) = 0.78 and 0.84 in Q. glauca and Q. serrata, respectively) with small y-intercepts. From these results, we conclude that epsilon is closely related to the reversible properties of the cell walls. From the estimation of epsilon based on a physical model, we suggest that the effective thickness of cell walls responsible for epsilon is smaller than the observed wall thickness.

  16. Ion irradiation induced structural modifications and increase in elastic modulus of silica based thin films

    Science.gov (United States)

    Shojaee, S. A.; Qi, Y.; Wang, Y. Q.; Mehner, A.; Lucca, D. A.

    2017-01-01

    Ion irradiation is an alternative to heat treatment for transforming organic-inorganic thin films to a ceramic state. One major shortcoming in previous studies of ion-irradiated films is the assumption that constituent phases in ion-irradiated and heat-treated films are identical and that the ion irradiation effect is limited to changes in composition. In this study, we investigate the effects of ion irradiation on both the composition and structure of constituent phases and use the results to explain the measured elastic modulus of the films. The results indicated that the microstructure of the irradiated films consisted of carbon clusters within a silica matrix. It was found that carbon was present in a non-graphitic sp2-bonded configuration. It was also observed that ion irradiation caused a decrease in the Si-O-Si bond angle of silica, similar to the effects of applied pressure. A phase transformation from tetrahedrally bonded to octahedrally bonded silica was also observed. The results indicated the incorporation of carbon within the silica network. A combination of the decrease in Si-O-Si bond angle and an increase in the carbon incorporation within the silica network was found to be responsible for the increase in the elastic modulus of the films. PMID:28071696

  17. Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds.

    Science.gov (United States)

    Vatankhah, Elham; Semnani, Dariush; Prabhakaran, Molamma P; Tadayon, Mahdi; Razavi, Shahnaz; Ramakrishna, Seeram

    2014-02-01

    Scaffolds for tissue engineering (TE) require the consideration of multiple aspects, including polymeric composition and the structure and mechanical properties of the scaffolds, in order to mimic the native extracellular matrix of the tissue. Electrospun fibers are frequently utilized in TE due to their tunable physical, chemical, and mechanical properties and porosity. The mechanical properties of electrospun scaffolds made from specific polymers are highly dependent on the processing parameters, which can therefore be tuned for particular applications. Fiber diameter and orientation along with polymeric composition are the major factors that determine the elastic modulus of electrospun nano- and microfibers. Here we have developed a neural network model to investigate the simultaneous effects of composition, fiber diameter and fiber orientation of electrospun polycaprolactone/gelatin mats on the elastic modulus of the scaffolds under ambient and simulated physiological conditions. The model generated might assist bioengineers to fabricate electrospun scaffolds with defined fiber diameters, orientations and constituents, thereby replicating the mechanical properties of the native target tissue.

  18. The effect of elastic modulus and friction coefficient on rubber tube sealing performance

    Science.gov (United States)

    Li, Zhimiao; Xu, Siyuan; Ren, Fushen; Liu, Jubao

    2015-03-01

    The packer is the key element in separating geosphere layers of water injection, water plugging and fracturing operations in the oilfield. The sealing ability of the packer is depending on the contact pressure between rubber tube and the casing. The circumferential strain of casing wall was tested by the strain gauge to get the contact pressure distribution along axial direction of the tube. The friction force between the casing and the rubber tube was taken by the pressure sensor in compression process. Under the 20,60 and 100 degrees Celsius conditions, the friction forces and the contact pressure distribution were taken in work condition of single rubber tube, double rubber tubes and combination rubber tubes after oil immersion .The result shows that elastic modulus of rubber tube has little effect on the friction force and contact pressure. With elastic modulus decreasing, the friction forces has gradually decreasing trend; The friction coefficient has much impact on friction force: the friction forces under the condition of dry friction and wet friction are respectively equivalent to 48.27% and 5.38% axial compression forces. At wet friction condition, the contact pressure distribution is more uniform and the sealing effect is better.

  19. Elastic energy storage in human articular cartilage: estimation of the elastic modulus for type II collagen and changes associated with osteoarthritis.

    Science.gov (United States)

    Silver, Frederick H; Bradica, Gino; Tria, Alfred

    2002-03-01

    The viscoelastic mechanical properties of normal and osteoarthritic articular were analyzed based on data reported by Kempson [in: Adult Articular Cartilage (1973)] and Silver et al. (Connect. Tissue Res., 2001b). Results of the analysis of tensile elastic stress-strain curves suggest that the elastic modulus of cartilage from the superficial zone is approximately 7.0 GPa parallel and 2.21 GPa perpendicular to the cleavage line pattern. Collagen fibril lengths in the superficial zone were found to be approximately 1265 microm parallel and 668 microm perpendicular to the cleavage line direction. The values for the elastic modulus and fibril lengths decreased with increased extent of osteoarthritis. The elastic modulus of type II collagen parallel to the cleavage line pattern in the superficial zone approaches that of type I collagen in tendon, suggesting that elastic energy storage occurs in the superficial zone due to the tensile pre-tension that exists in this region. Decreases in the elastic modulus associated with osteoarthritis reflect decreased ability of cartilage to store elastic energy, which leads to cartilage fibrillation and fissure formation. We hypothesize that under normal physiological conditions, collagen fibrils in cartilage function to store elastic energy associated with weight bearing and locomotion. Enzymatic cleavage of cartilage proteoglycans and collagen observed in osteoarthritis may lead to fibrillation and fissure formation as a result of impaired energy storage capability of cartilage.

  20. Comparison of Elastic Modulus and Compressive Strength of Ariadent and Harvard Polycarboxylate Cement and Vitremer Resin Modified Glass Ionomer

    Directory of Open Access Journals (Sweden)

    Ahmadian Khoshemehr Leila

    2009-09-01

    Full Text Available Background: Luting agents are used to attach indirect restoration into or on the tooth. Poor mechanical properties of cement may be a cause of fracture of this layer and lead to caries and restoration removal. The purpose of this study was to compare the elastic modulus and compressive strength of Ariadent (A Poly and Harvard polycarboxylate (H Poly cements and Vitremer resin modified glass ionomer (RGl.Materials & Methods: In this experimental study 15 specimens were prepared form each experimental cement in Laboratory of Tehran Oil Refining Company. The cylindrical specimens were compressed in Instron machine after 24 hours. Elastic modulus and compressive strength were calculated from stress/strain curve of each specimen. One way ANOVA and Tukey tests were used for statistical analysis and P values<0.05 were considered to be statistically significant.Results: The mean elastic modulus and mean compressive strength were 2.2 GPa and 87.8MPa in H poly, 2.4 GPa and 56.5 MPa in A Poly, and 0.8GPa and 105.6 MPa in RGI, respectively. Statistical analysis showed that compressive strength and elastic modulus of both polycarboxylate cements were significantly different from hybrid ionomer (P<0.05, but the difference between elastic modulus of two types of polycarboxilate cements was not statistically significant. Compressive strength of two polycarboxilate cements were significantly different (P<0.05. Conclusion: An ideal lutting agent must have the best mechanical properties. Between the tested luttins RGl cement had the lowest elastic modulus and the highest compressive strength, but the A poly cement had the highest elastic modulus and the lowest compressive strength. Therefore none of them was the best.

  1. Superficial Collagen Fibril Modulus and Pericellular Fixed Charge Density Modulate Chondrocyte Volumetric Behaviour in Early Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Petri Tanska

    2013-01-01

    Full Text Available The aim of this study was to investigate if the experimentally detected altered chondrocyte volumetric behavior in early osteoarthritis can be explained by changes in the extracellular and pericellular matrix properties of cartilage. Based on our own experimental tests and the literature, the structural and mechanical parameters for normal and osteoarthritic cartilage were implemented into a multiscale fibril-reinforced poroelastic swelling model. Model simulations were compared with experimentally observed cell volume changes in mechanically loaded cartilage, obtained from anterior cruciate ligament transected rabbit knees. We found that the cell volume increased by 7% in the osteoarthritic cartilage model following mechanical loading of the tissue. In contrast, the cell volume decreased by 4% in normal cartilage model. These findings were consistent with the experimental results. Increased local transversal tissue strain due to the reduced collagen fibril stiffness accompanied with the reduced fixed charge density of the pericellular matrix could increase the cell volume up to 12%. These findings suggest that the increase in the cell volume in mechanically loaded osteoarthritic cartilage is primarily explained by the reduction in the pericellular fixed charge density, while the superficial collagen fibril stiffness is suggested to contribute secondarily to the cell volume behavior.

  2. Evaluation of elastic modulus and hardness of highly inhomogeneous materials by nanoindentation

    Science.gov (United States)

    Epshtein, Svetlana A.; Borodich, Feodor M.; Bull, Steve J.

    2015-04-01

    The experimental and numerical techniques for evaluation of mechanical properties of highly inhomogeneous materials are discussed. The techniques are applied to coal as an example of such a material. Characterization of coals is a very difficult task because they are composed of a number of distinct organic entities called macerals and some amount of inorganic substances along with internal pores and cracks. It is argued that to avoid the influence of the pores and cracks, the samples of the materials have to be prepared as very thin and very smooth sections, and the depth-sensing nanoindentation (DSNI) techniques has to be employed rather than the conventional microindentation. It is shown that the use of the modern nanoindentation techniques integrated with transmitted light microscopy is very effective for evaluation of elastic modulus and hardness of coal macerals. However, because the thin sections are glued to the substrate and the glue thickness is approximately equal to the thickness of the section, the conventional DSNI techniques show the effective properties of the section/substrate system rather than the properties of the material. As the first approximation, it is proposed to describe the sample/substrate system using the classic exponential weight function for the dependence of the equivalent elastic contact modulus on the depth of indentation. This simple approach allows us to extract the contact modulus of the material constitutes from the data measured on a region occupied by a specific component of the material. The proposed approach is demonstrated on application to the experimental data obtained by Berkovich nanoindentation with varying maximum depth of indentation.

  3. Shoulder horizontal abduction stretching effectively increases shear elastic modulus of pectoralis minor muscle.

    Science.gov (United States)

    Umehara, Jun; Nakamura, Masatoshi; Fujita, Kosuke; Kusano, Ken; Nishishita, Satoru; Araki, Kojiro; Tanaka, Hiroki; Yanase, Ko; Ichihashi, Noriaki

    2017-07-01

    Stretching maneuvers for the pectoralis minor muscle, which involve shoulder horizontal abduction or scapular retraction, are performed in clinical and sports settings because the tightness of this muscle may contribute to scapular dyskinesis. The effectiveness of stretching maneuvers for the pectoralis minor muscle is unclear in vivo. The purpose of this study was to verify the effectiveness of stretching maneuvers for the pectoralis minor muscle in vivo using ultrasonic shear wave elastography. Eighteen healthy men participated in this study. Elongation of the pectoralis minor muscle was measured for 3 stretching maneuvers (shoulder flexion, shoulder horizontal abduction, and scapular retraction) at 3 shoulder elevation angles (30°, 90°, and 150°). The shear elastic modulus, used as the index of muscle elongation, was computed using ultrasonic shear wave elastography for the 9 aforementioned stretching maneuver-angle combinations. The shear elastic modulus was highest in horizontal abduction at 150°, followed by horizontal abduction at 90°, horizontal abduction at 30°, scapular retraction at 30°, scapular retraction at 90°, scapular retraction at 150°, flexion at 150°, flexion at 90°, and flexion at 30°. The shear elastic moduli of horizontal abduction at 90° and horizontal abduction at 150° were significantly higher than those of other stretching maneuvers. There was no significant difference between horizontal abduction at 90° and horizontal abduction at 150°. This study determined that shoulder horizontal abduction at an elevation of 90° and horizontal abduction at an elevation of 150° were the most effective stretching maneuvers for the pectoralis minor muscle in vivo. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  4. Design and fabrication of a metastable β-type titanium alloy with ultralow elastic modulus and high strength

    Science.gov (United States)

    Guo, Shun; Meng, Qingkun; Zhao, Xinqing; Wei, Qiuming; Xu, Huibin

    2015-10-01

    Titanium and its alloys have become the most attractive implant materials due to their high corrosion resistance, excellent biocompatibility and relatively low elastic modulus. However, the current Ti materials used for implant applications exhibit much higher Young’s modulus (50 ~ 120 GPa) than human bone (~30 GPa). This large mismatch in the elastic modulus between implant and human bone can lead to so-called “stress shielding effect” and eventual implant failure. Therefore, the development of β-type Ti alloys with modulus comparable to that of human bone has become an ever more pressing subject in the area of advanced biomedical materials. In this study, an attempt was made to produce a bone-compatible metastable β-type Ti alloy. By alloying and thermo-mechanical treatment, a metastable β-type Ti-33Nb-4Sn (wt. %) alloy with ultralow Young’s modulus (36 GPa, versus ~30 GPa for human bone) and high ultimate strength (853 MPa) was fabricated. We believe that this method can be applied to developing advanced metastable β-type titanium alloys for implant applications. Also, this approach can shed light on design and development of novel β-type titanium alloys with large elastic limit due to their high strength and low elastic modulus.

  5. Quantitative estimation of muscle shear elastic modulus of the upper trapezius with supersonic shear imaging during arm positioning.

    Directory of Open Access Journals (Sweden)

    Hio-Teng Leong

    Full Text Available Pain and tenderness of the upper trapezius are the major complaints among people with chronic neck and shoulder disorders. Hyper-activation and increased muscle tension of the upper trapezius during arm elevation will cause imbalance of the scapular muscle force and contribute to neck and shoulder disorders. Assessing the elasticity of the upper trapezius in different arm positions is therefore important for identifying people at risk so as to give preventive programmes or for monitoring the effectiveness of the intervention programmes for these disorders. This study aimed to establish the reliability of supersonic shear imaging (SSI in quantifying upper trapezius elasticity/shear elastic modulus and its ability to measure the modulation of muscle elasticity during arm elevation. Twenty-eight healthy adults (15 males, 13 females; mean age = 29.6 years were recruited to participate in the study. In each participant, the shear elastic modulus of the upper trapezius while the arm was at rest and at 30° abduction was measured by two operators and twice by operator 1 with a time interval between the measurements. The results showed excellent within- and between-session intra-operator (ICC = 0.87-0.97 and inter-observer (ICC = 0.78-0.83 reliability for the upper trapezius elasticity with the arm at rest and at 30° abduction. An increase of 55.23% of shear elastic modulus from resting to 30° abduction was observed. Our findings demonstrate the possibilities for using SSI to quantify muscle elasticity and its potential role in delineating the modulation of upper trapezius elasticity, which is essential for future studies to compare the differences in shear elastic modulus between normal elasticity and that of individuals with neck and shoulder disorders.

  6. Hardness, elastic modulus, and wear resistance of hafnium oxide-based films grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Berdova, Maria; Liu, Xuwen; Franssila, Sami, E-mail: sami.franssila@aalto.fi [Department of Materials Science and Engineering, Aalto University, 02150 Espoo (Finland); Wiemer, Claudia; Lamperti, Alessio; Tallarida, Grazia; Cianci, Elena [Laboratorio MDM, IMM CNR, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Fanciulli, Marco [Laboratorio MDM, IMM CNR, Via C. Olivetti 2, 20864 Agrate Brianza (MB), Italy and Dipartimento di Scienza dei Materiali, Università degli studi di Milano Bicocca, 20126 Milano (Italy)

    2016-09-15

    The investigation of mechanical properties of atomic layer deposition HfO{sub 2} films is important for implementing these layers in microdevices. The mechanical properties of films change as a function of composition and structure, which accordingly vary with deposition temperature and post-annealing. This work describes elastic modulus, hardness, and wear resistance of as-grown and annealed HfO{sub 2}. From nanoindentation measurements, the elastic modulus and hardness remained relatively stable in the range of 163–165 GPa and 8.3–9.7 GPa as a function of deposition temperature. The annealing of HfO{sub 2} caused significant increase in hardness up to 14.4 GPa due to film crystallization and densification. The structural change also caused increase in the elastic modulus up to 197 GPa. Wear resistance did not change as a function of deposition temperature, but improved upon annealing.

  7. Impact of twin boundaries on bulk elastic constants: Density-functional theory data for Young׳s modulus of Ag.

    Science.gov (United States)

    Klöffel, Tobias; Bitzek, Erik; Meyer, Bernd

    2015-06-01

    Experimental and theoretical studies on nanowires have reported a size-dependence of the Young׳s modulus in the axial direction, which has been attributed to the increasing influence of surface stresses with decreasing wire diameter. Internal interfaces and their associated interface stresses could lead to similar changes in the elastic properties. In Kobler et al. [1], however, we reported results from atomistic calculations which showed for Ag that twin boundaries have a negligible effect on the Young׳s modulus. Here, we present data of density-functional theory calculations of elastic constants and Young׳s modulus for defect-free bulk Ag as well as for bulk Ag containing dense arrays of twin boundaries. It is shown that rigorous convergence tests are required in order to be able to deduce changes in the elastic properties due to bulk defects in a reliable way.

  8. Elastic modulus of LaFe{sub 4}Sb{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, I. [Department of Quantum Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan)], E-mail: ishii@hiroshima-u.ac.jp; Higaki, H.; Morita, S. [Department of Quantum Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan); Mori, I.; Sugawara, H. [Faculty of Integrated Arts and Sciences, Tokushima University, Tokushima 770-8502 (Japan); Yoshizawa, M. [Graduate School of Engineering, Iwate University, Morioka 020-8551 (Japan); Suzuki, T. [Department of Quantum Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan)

    2008-04-01

    In filled skutterudite compounds and clathrate compounds, guest atoms, which are accommodated in polyhedral cages, exhibit an anharmonic oscillation so-called the rattling motion. The rattling motion is suggested by inelastic neutron scattering experiments in filled skutterudite compound LaFe{sub 4}Sb{sub 12}. To investigate an influence of rattling motion of La atoms to the lattice system, we have measured temperature dependence of elastic modulus C{sub 44} on a LaFe{sub 4}Sb{sub 12} single-crystalline sample in the T range between 4.2 and 150 K for ultrasonic frequencies from 30 to 220 MHz. We found ultrasonic frequency dependence in C{sub 44}, suggesting the rattling motion of La atoms between 30 and 80 K. We obtained a relaxation time 3.1x10{sup -11}s and an excitation energy {approx}300K of the rattling motion.

  9. Controlled multiple neutral planes by low elastic modulus adhesive for flexible organic photovoltaics

    Science.gov (United States)

    Kim, Wansun; Lee, Inhwa; Kim, Dong Yoon; Yu, Youn-Yeol; Jung, Hae-Yoon; Kwon, Seyeoul; Park, Weon Seo; Kim, Taek-Soo

    2017-05-01

    To protect brittle layers in organic photovoltaic devices, the mechanical neutral plane strategy can be adopted through placing the brittle functional materials close to the neutral plane where stress and strain are zero during bending. However, previous research has been significantly limited in the location and number of materials to protect through using a single neutral plane. In this study, multiple neutral planes are generated using low elastic modulus adhesives and are controlled through quantitative analyses in order to protect the multiple brittle materials at various locations. Moreover, the protection of multiple brittle layers at various locations under both concave and convex bending directions is demonstrated. Multilayer structures that have soft adhesives are further analyzed using the finite element method analysis in order to propose guidelines for structural design when employing multiple neutral planes.

  10. Study on Attenuation, Modulus of Elasticity and Nonlinearity in Thermowood Using Ultrasound

    Science.gov (United States)

    Hæggström, E.; Wallin, A.; Hoffren, H.; Hassinen, T.; Viitaniemi, P.

    2005-04-01

    We determined ultrasonically the attenuation, modulus of elasticity (MOE), and nonlinearity parameter (B/A) of dry defect-free thermally modified wood samples ("thick" 10 × 50 × 100 mm3 and "thin" 2 × 40 × 150 mm3) of Finnish pine, Pinus Sylvestris, as a function of treatment temperature (60-240 °C, three hours in protective water steam). The samples were cut as radial-tangential (RT) planes, and as longitudinal-radial (LR) planes. Two distinct regions of change in mechanical parameters were seen: one around 140 C where both the linear and nonlinear parameters increased and one around 230 C where the mechanical parameters decreased. These treatment temperatures thus serves as candidates for quality class delimiters for these soft wood samples.

  11. High elastic modulus polymer electrolytes suitable for preventing thermal runaway in lithium batteries

    Science.gov (United States)

    Mullin, Scott; Panday, Ashoutosh; Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2014-04-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics. In another aspect, the electrolyte exhibits a conductivity drop when the temperature of electrolyte increases over a threshold temperature, thereby providing a shutoff mechanism for preventing thermal runaway in lithium battery cells.

  12. A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage

    DEFF Research Database (Denmark)

    Day, J; Ding, Ming; van der Linden, JC

    2001-01-01

    In osteoarthritis, one postulate is that changes in the mechanical properties of the subchondral bone layer result in cartilage damage. The goal of this study was to examine changes in subchondral trabecular bone properties at the calcified tissue level in the early stages of cartilage damage....... Finite element models were constructed from microCT scans of trabectilar bone from the proximal tibia of donors with mild cartilage damage and from normal donors. In the donors with cartilage damage, macroscopic damage was present only in the medial compartment. The effective tissue elastic moduli were...... determined using a combination of finite element models and mechanical testing. The bone tissue modulus was reduced by 60% in the medial condyle of the cases with cartilage damage compared to the control specimens. Neither the presence of cartilage damage nor the anatomic site (medial vs. lateral) affected...

  13. Single crystal elasticity of gold up to ˜20 GPa: Bulk modulus anomaly and implication for a primary pressure scale

    Science.gov (United States)

    Yoneda, Akira; Fukui, Hiroshi; Gomi, Hitoshi; Kamada, Seiji; Xie, Longjian; Hirao, Naohisa; Uchiyama, Hiroshi; Tsutsui, Satoshi; Baron, Alfred Q. R.

    2017-09-01

    We measured the elasticity of single crystal gold (Au) and its lattice parameters under high pressure using inelastic X-ray scattering (IXS). The elastic moduli were obtained at five pressure points between 0 and 20 GPa. The pressure variation of the bulk modulus displays anomalous behavior, being nearly constant up to ˜5 GPa, and then steeply increasing at higher pressure. A similar anomaly is observed in first-principles calculations. An absolute pressure scale was derived by direct numerical integration of the bulk modulus over volume change. This yields a scale that gives slightly lower pressure values than those of previous work, about 5-10% lower at ˜20 GPa.

  14. Evaluation of elastic modulus and hardness of crop stalks cell walls by nano-indentation.

    Science.gov (United States)

    Wu, Yan; Wang, Siqun; Zhou, Dingguo; Xing, Cheng; Zhang, Yang; Cai, Zhiyong

    2010-04-01

    Agricultural biomaterials such as crop stalks are natural sources of cellulosic fiber and have great potential as reinforced materials in bio-composites. In order to evaluate their potential as materials for reinforcement, the nano-mechanical properties of crop-stalk cell walls, i.e. those of cotton (Gossypium herbaceu) stalk, soybean (Glycine max) stalk, cassava (Manihot esculent) stalk, rice (Oryza sativa L.) straw, and wheat (Triticum aestivum L.) straw, were investigated by means of nano-indentation and atomic force microscopy (AFM). The elastic modulus of wheat straw was found to be 20.8 GPa, which was higher than that of the other four crops. The highest hardness was observed in cotton stalk at 0.85 GPa. The elastic moduli of the crop stalks were lower than those of most of the hardwood species, but higher than that of some softwoods and of lyocell fiber. The mean value of the hardness of the five crop stalks' cell walls was higher than those of wood or lyocell fiber.

  15. Impact of twin boundaries on bulk elastic constants: Density-functional theory data for Young׳s modulus of Ag

    Directory of Open Access Journals (Sweden)

    Tobias Klöffel

    2015-06-01

    Here, we present data of density-functional theory calculations of elastic constants and Young׳s modulus for defect-free bulk Ag as well as for bulk Ag containing dense arrays of twin boundaries. It is shown that rigorous convergence tests are required in order to be able to deduce changes in the elastic properties due to bulk defects in a reliable way.

  16. Relation between Modulus of Elasticity and Compressive Strength of Ultrahigh-Strength Mortar with Mixed Silicon Carbide as Fine Aggregate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Ultrahigh-strength mortar mixed surface-oxidized silicon carbide as a fine aggregate was prepared by means of press-casting followed by curing in an autoclave. The relation between modulus of elasticity up to 111 GPa and compressive strength up to 360 MPa of mortar mixed silicon carbide was discussed and it was revealed that the contributions of the aggregate hardness and of the interfacial strength between the aggregate and the cement paste on the elasticity of mortar were imporant.

  17. Static modulus of elasticity of concrete measured by the ultrasonic method

    Directory of Open Access Journals (Sweden)

    Sena Rodrigues, S.

    2003-12-01

    Full Text Available Lately, a huge number of accidents caused by problems found in the durability of concrete structures due to inappropriate project design, lack of control of quality during the project s execution, inadequate maintenance practices and an aggressive environment has been reported. This finding has required from the professionals constant inspections and evaluations of the real conditions of all concrete structures. In order to perform those inspections, one should know not only the elastic modulus to analyze the concrete structural behaviour but also to investigate its performance, since the strains may yield cracks able to compromise the durability- of structures. Non-destructive testing techniques, particularly the ultrasonic testing, are performed to evaluate and determine the quality of a concrete structure or element. Currently, such essays have been widely researched and analyzed all over the world because they enable the examination of structures without damaging them. The purpose of the present study was to correlate the ultrasonic pulse velocity and the elastic modulus of several concrete specimens molded with a range of water-cement ratios, different kinds of aggregates and curing methods. All the concrete specimens were tested in different ages to determine the pulse velocity and the static modulus of elasticity standardized according to KBR 8522, through mechanical extensometers, electrical strain gauge and LVTD inductive transducer.

    Recientemente se ha registrado un gran número de accidentes causados por problemas relacionados con la durabilidad de las estructuras de hormigón y debidos a un inadecuado proyecto de diseño, ausencia de control de calidad durante la ejecución del proyecto, prácticas inadecuadas de construcción y un ambiente agresivo. Este hallazgo ha dado lugar a que los ingenieros realicen constantes inspecciones y evaluaciones de la condición real de todas las estructuras de hormigón. Para llevar a cabo

  18. Determining the elastic modulus of thin films using a buckling-based method: computational study

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Xiupeng; Cao Yanping; Li Bo; Feng Xiqiao [AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Jiang Hanqing [Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ 85287 (United States); Huang, Yonggang Y, E-mail: caoyanping@tsinghua.edu.c, E-mail: fengxq@tsinghua.edu.c [Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)

    2009-09-07

    The buckling mode of a thin film lying on a soft substrate has been used to determine the elastic modulus of thin films and one-dimensional objects (e.g. nanowires and nanotubes). In this paper, dimensional analysis and three-dimensional nonlinear finite element computations have been made to investigate the buckling of a film with finite width bonded to a compliant substrate. Our study demonstrates that the effect of Poisson's ratio of the film can be neglected when its width-thickness ratio is smaller than 20. For wider films, omitting the influence of Poisson's ratio may lead to a significant systematic error in the measurement of the Young's modulus and, therefore, the film should be treated as a plate. It is also found that the assumption of the uniform interfacial normal stress along the width of the film made in the theoretical analysis does not cause an evident error, even when its width is comparable to its thickness. Based on the computational results, we further present a simple expression to correlate the buckling wavelength with the width and thickness of the film and the material properties (Young's moduli and Poisson's ratios) of the film and substrate, which has a similar form to that in the classical plane-strain problem. The fundamental solutions reported here are not only very accurate in a broad range of geometric and material parameters but also convenient for practical use since they do not involve any complex calculation.

  19. Analysis of the elastic-plastic indentation properties of materials with varying ratio of hardness to Young's modulus

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The elastic-plastic indentation properties of materials with varying ratio of hardness to Young's modulus (H/E) were analyzed with the finite element method. And the indentation stress fields of materials with varying ratio H/E on the surface were studied by the experiment. The results show that the penetration depth, contact radius, plastic pileup and the degree of elastic recovery depend strongly on the ratio H/E. Moreover, graphs were established to describe the relationship between the elastic-plastic indentation parameters and H/E. The established graphs can be used to predict the H/E of materials when compared with experimental data.

  20. A comparative study on the elastic modulus of polyvinyl alcohol sponge using different stress-strain definitions.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi; Alizadeh, Mansour; Razaghi, Reza

    2014-10-01

    There have been different stress-strain definitions to measure the elastic modulus of spongy materials, especially polyvinyl alcohol (PVA) sponge. However, there is no agreement as to which stress-strain definition should be implemented. This study was aimed to show how different results are given by the various definitions of stress-strain used, and to recommend a specific definition when testing spongy materials. A fabricated PVA sponge was subjected to a series of tensile tests in order to measure its mechanical properties. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) were used to determine the elastic modulus. The results revealed that the Almansi-Hamel strain definition exhibited the highest non-linear stress-strain relation and, as a result, may overestimate the elastic modulus at different stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress). The Green-St. Venant strain definition failed to address the non-linear stress-strain relation using different definitions of stress and invoked an underestimation of the elastic modulus values. Engineering stress and strain definitions were only valid for small strains and displacements, which make them impractical when analyzing spongy materials. The results showed that the effect of varying the stress definition on the maximum stress measurements was significant but not when calculating the elastic modulus. It is important to consider which stress-strain definition is employed when characterizing the mechanical properties of spongy materials. Although the true stress-true strain definition exhibits a non-linear relation, we favor it in spongy materials mechanics as it gives more accurate measurements of the material's response using the instantaneous values.

  1. Numerical Modeling for Springback Predictions by Considering the Variations of Elastic Modulus in Stamping Advanced High-Strength Steels (AHSS)

    Science.gov (United States)

    Kim, Hyunok; Kimchi, Menachem

    2011-08-01

    This paper presents a numerical modeling approach for predicting springback by considering the variations of elastic modulus on springback in stamping AHSS. Various stamping tests and finite-element method (FEM) simulation codes were used in this study. The cyclic loading-unloading tensile tests were conducted to determine the variations of elastic modulus for dual-phase (DP) 780 sheet steel. The biaxial bulge test was used to obtain plastic flow stress data. The non-linear reduction of elastic modulus for increasing the plastic strain was formulated by using the Yoshida model that was implemented in FEM simulations for springback. To understand the effects of material properties on springback, experiments were conducted with a simple geometry such as U-shape bending and the more complex geometry such as the curved flanging and S-rail stamping. Different measurement methods were used to confirm the final part geometry. Two different commercial FEM codes, LS-DYNA and DEFORM, were used to compare the experiments. The variable elastic modulus improved springback predictions in U-shape bending and curved flanging tests compared to FEM with the constant elastic modulus. However, in S-rail stamping tests, both FEM models with the isotropic hardening model showed limitations in predicting the sidewall curl of the S-rail part after springback. To consider the kinematic hardening and Bauschinger effects that result from material bending-unbending in S-rail stamping, the Yoshida model was used for FEM simulation of S-rail stamping and springback. The FEM predictions showed good improvement in correlating with experiments.

  2. Impact Of Elastic Modulus Degradation On Springback In Sheet Metal Forming

    Science.gov (United States)

    Halilovič, Miroslav; Vrh, Marko; Štok, Boris

    2007-05-01

    Strain recovery after removal of forming loads, commonly defined as springback, is of great concern in sheet metal forming, in particular with regard to proper prediction of the final shape of the part. To control the problem a lot of work has been done, either by minimizing the springback on the material side or by increasing the estimation precision in corresponding process simulations. Unfortunately, by currently available software springback still cannot be adequately predicted, because most analyses of springback are using linear, isotropic and constant Young's modulus and Poisson's ratio. But, as it was measured and reported, none of it is true. The aim of this work is to propose an upgraded mechanical model which takes evolution of damage and related orthotropic stiffness degradation into account. Damage is considered by inclusion of ellipsoidal cavities, and their influence on the stiffness degradation is taken in accordance with the Mori-Tanaka theory, adopting the GTN model for plastic flow. In order to improve the numerical springback prediction, two major things are important: first, the correct evaluation of the stress-strain state at the end of the forming process, and second, correctness of the elastic properties used in the elastic relaxation analysis. Since in modelling of the forming process we adopt a damage constitutive model with orthotropic stiffness degradation considered, a corresponding damage parameters identification upon specific experimental tests data must be performed first, independently of the metal forming modelling. An improved identification of material parameters, which simultaneously considers tensile test results with different type of specimens and using neural network, is proposed. With regard to the case in which damage in material is neglected it is shown in the article how the springback of a formed part differs, when we take orthotropic damage evolution into consideration.

  3. On the nontrivial wave-vector dependence of the elastic modulus of glasses

    Science.gov (United States)

    Baldi, Giacomo; Giordano, Valentina M.; Ruta, Beatrice; Monaco, Giulio

    2016-04-01

    Recent theoretical models for the vibrations in glasses assume that the complex elastic modulus depends on frequency but not on the wave vector, q . This assumption translates in a simple q dependence of the dynamic structure factor, which can be experimentally tested. Following the suggestion of a recent paper [U. Buchenau, Phys. Rev. E 90, 062319 (2014), 10.1103/PhysRevE.90.062319], we present here a new analysis, performed in q space, of inelastic x-ray scattering data of supercooled silica. The outcome of the analysis is compared to the more common approach in the frequency domain and indicates that the mentioned theoretical assumption is consistent with the data only below the boson peak frequency. At higher frequencies it gives rise to a breakdown of the classical second moment sum rule. This violation arises from the underlying assumption of the presence of a single excitation in the spectra. A comparison with the vibrational dynamics of α -cristobalite suggests, on the contrary, that in the terahertz frequency domain the inelastic spectrum of the glass gains contributions from both acousticlike and opticlike modes. A microscopic theory of the vibrations in glasses cannot neglect the medium range order in their structure, which gives rise to dispersion curves within a pseudo-Brillouin zone.

  4. The effect of three-dimensional postural change on shear elastic modulus of the iliotibial band.

    Science.gov (United States)

    Tateuchi, Hiroshige; Shiratori, Sakiko; Ichihashi, Noriaki

    2016-06-01

    To understand and treat iliotibial band (ITB) syndrome, caused by excessive compression between the ITB and lateral femoral condyle, it is important to identify factors contributing to an increase in ITB stiffness. The purpose of this study was to clarify the factors that contribute to an increase in ITB stiffness by examining the relationship between three-dimensional postural changes and ITB stiffness. Fourteen healthy individuals performed one-leg standing under 7 conditions (including normal one-leg standing as a control condition) in which the pelvic position was changed in three planes. The shear elastic modulus in the ITB was measured using shear-wave elastography, as a measure of ITB stiffness. The three-dimensional joint angles and external joint moments in the hip and knee joints were also measured to confirm the changes in joint angles and external load. Compared to the normal one-leg standing condition, ITB stiffness was significantly increased in the pelvic posterior tilted position (i.e. hip extension), contralateral pelvic dropped position (i.e. hip adduction), and contralateral pelvic posterior rotated position (i.e. hip external rotation). The findings suggest that interventions to reduce hip extension, adduction, and external rotation might be useful if these excessive positional changes are detected in patients with ITB syndrome.

  5. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting.

    Science.gov (United States)

    Čapek, Jaroslav; Machová, Markéta; Fousová, Michaela; Kubásek, Jiří; Vojtěch, Dalibor; Fojt, Jaroslav; Jablonská, Eva; Lipov, Jan; Ruml, Tomáš

    2016-12-01

    Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity ~0.15GPa, compressive yield strength ~3MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures.

  6. Determination of the elastic modulus of fly ash-based stabilizer applied in the trackbed

    Science.gov (United States)

    Lojda, Vít; Lidmila, Martin; Pýcha, Marek

    2017-09-01

    This paper describes a unique application of a fly ash-based stabilizer in the trackbed of a railway main line. The key goals of the stabilizer application are to protect the subgrade against the ingress of rain water, to increase the frost resistance and to remediate the natural ground constituted of weathered rock. The stabilizer was designed as a mixture of fly ash, generated as a waste material from coal plants, gypsum, calcium oxide and water. The mixture recipe was developed in a laboratory over several years. In 2005, a trial section of a railway line with subgrade consisting of clay limestone (weathered marlite) was built in the municipality of Smiřice. Since then, periodical measurements including collection of samples for laboratory evaluation of the fly ash-based stabilizer have taken place. Over the time span of the measurements, changes in mineral composition and development of fly ash transforming structures leading to the formation of C-A-S-H gel were detected. This paper describes the experimental laboratory investigation of the influence of dynamic loading on the elastic modulus of fly ash stabilizer samples and the development of permanent deformation of the samples with increasing number of loading cycles.

  7. Nanoindentation hardness and elastic modulus of nano-grained titanium produced by asymmetric and symmetric rolling.

    Science.gov (United States)

    Li, Zhiming; Fu, Liming; Fu, Bin; Yang, Xiaoping; Shan, Aidang

    2014-10-01

    To understand the nanomechanical properties of nano-grained (NG) Ti produced by combination of asymmetric and symmetric rolling, nanoindentation hardness (H(n)) and elastic modulus (E(n)) of different planes within the NG Ti specimens were measured using continuous stiffness measurement mode at room temperature. For comparison, the nanomechanical properties of the as-received hot-rolled coarse-grained (CG) Ti and ultrafine-grained (UFG) Ti with only asymmetric rolling process were also investigated. It was found that H(n) of the Ti samples increased significantly with the decrease of grain sizes, while E(n) exhibited a slight decrease as the grain sizes decreased from CG to NG regime. The increase of H(n) was expected to be caused by higher density of dislocations and finer grains attained by severer plastic deformation, while the slight decrease of E(n) was considered as a result of the increased density of lattice defects and volume fraction of the grain boundary atoms. Furthermore, the nanomechanical properties of different planes of the Ti specimen exhibited a little difference which can be expressed as H(n(RD-TD)) > H(n(N-RD)) > H(n(TD-ND)) and E(n(RD-TD)) > E(n(ND-RD)) > E(n(TD-ND)). These differences were ascribed to crystallographic textures formed by rolling deformation.

  8. Effect of Soil Contact on the Modulus of Elasticity of Beeswax-Impregnated Wood

    Directory of Open Access Journals (Sweden)

    Róbert Németh

    2015-01-01

    Full Text Available The aims of this study were to use beeswax impregnation as a wood preservative method and to evaluate its suitability to protect wood species with low resistance to decay. Poplar (Populus × euramericana cv. Pannonia and beech (Fagus sylvatica samples were impregnated with beeswax and exposed to soil contact for 18 months. Impregnated samples were separated into three groups, on the basis of their degrees of pore saturation (DPS. With progressing decay, the load-bearing capacity and modulus of elasticity (MOE of the woods decreased. After one month of soil contact, there was a marked decrease in MOE, which is explained by the increase in the moisture content of the wood. After 18 months, control samples were completely decayed. Nevertheless, impregnated samples showed less decay and a noticeable remaining load-bearing capacity. Impregnation efficiency had a pronounced effect on decay resistance. In both investigated species, samples with higher DPS resulted in less of a decrease in MOE than in samples with lower DPS. Although beeswax is a bio-based material, it showed noticeable decay resistance effects against soft rot. Scanning electron microscopy investigations showed that the impregnation has a barrier effect, mostly in the longitudinal direction, against the spread of the fungi.

  9. High elastic modulus nanoparticles: a novel tool for subfailure connective tissue matrix damage.

    Science.gov (United States)

    Empson, Yvonne M; Ekwueme, Emmanuel C; Hong, Jung K; Paynter, Danielle M; Kwansa, Albert L; Brown, Chalmers; Pekkanen, Allison M; Roman, Maren; Rylander, Nichole M; Brolinson, Gunnar P; Freeman, Joseph W

    2014-09-01

    Subfailure matrix injuries such as sprains and strains account for a considerable portion of ligament and tendon pathologies. In addition to the lack of a robust biological healing response, these types of injuries are often characterized by seriously diminished matrix biomechanics. Recent work has shown nanosized particles, such as nanocarbons and nanocellulose, to be effective in modulating cell and biological matrix responses for biomedical applications. In this article, we investigate the feasibility and effect of using high stiffness nanostructures of varying size and shape as nanofillers to mechanically reinforce damaged soft tissue matrices. To this end, nanoparticles (NPs) were characterized using atomic force microscopy and dynamic light scattering techniques. Next, we used a uniaxial tensile injury model to test connective tissue (porcine skin and tendon) biomechanical response to NP injections. After injection into damaged skin and tendon specimens, the NPs, more notably nanocarbons in skin, led to an increase in elastic moduli and yield strength. Furthermore, rat primary patella tendon fibroblast cell activity evaluated using the metabolic water soluble tetrazolium salt assay showed no cytotoxicity of the NPs studied, instead after 21 days nanocellulose-treated tenocytes exhibited significantly higher cell activity when compared with nontreated control tenocytes. Dispersion of nanocarbons injected by solution into tendon tissue was investigated through histologic studies, revealing effective dispersion and infiltration in the treated region. Such results suggest that these high modulus NPs could be used as a tool for damaged connective tissue repair.

  10. Improving the estimate of the effective elastic modulus derived from three-point bending tests of long bones.

    Science.gov (United States)

    Kourtis, Lampros C; Carter, Dennis R; Beaupre, Gary S

    2014-08-01

    Three-point bending tests are often used to determine the apparent or effective elastic modulus of long bones. The use of beam theory equations to interpret such tests can result in a substantial underestimation of the true effective modulus. In this study three-dimensional, nonlinear finite element analysis is used to quantify the errors inherent in beam theory and to create plots that can be used to correct the elastic modulus calculated from beam theory. Correction plots are generated for long bones representative of a variety of species commonly used in research studies. For a long bone with dimensions comparable to the mouse femur, the majority of the error in the effective elastic modulus results from deformations to the bone cross section that are not accounted for in the equations from beam theory. In some cases, the effective modulus calculated from beam theory can be less than one-third of the true effective modulus. Errors are larger: (1) for bones having short spans relative to bone length; (2) for bones with thin vs. thick cortices relative to periosteal diameter; and (3) when using a small radius or "knife-edge" geometry for the center loading ram and the outer supports in the three-point testing system. The use of these correction plots will enable researchers to compare results for long bones from different animal strains and to compare results obtained using testing systems that differ with regard to length between the outer supports and the radius used for the loading ram and outer supports.

  11. In Vivo Non-Invasive Measurement of Young's Modulus of Elasticity in Human Eyes: A Feasibility Study.

    Science.gov (United States)

    Sit, Arthur J; Lin, Shuai-Chun; Kazemi, Arash; McLaren, Jay W; Pruet, Christopher M; Zhang, Xiaoming

    2017-08-28

    Abnormal ocular biomechanical properties may be important for understanding the risk of glaucoma. However, there are no clinical methods for measuring standard material properties in patients. In this feasibility study we demonstrated proof-of-principle for a novel method, ultrasound surface wave elastography (USWE), to determine the in vivo Young's modulus of elasticity of corneas in normal human eyes. Twenty eyes of 10 healthy subjects (mean age 51.4±7.2;±SD, range 43-64 y) were studied. A spherical-tipped probe (3-mm diameter) was placed on closed eyelids and generated a gentle harmonic vibration at 100 Hz for 0.1 second. Wave speed propagation in the cornea was measured by USWE, and Young's modulus was calculated from the wave speed. Associations between Young's modulus and intraocular pressure (IOP), age, central corneal thickness, and axial length were explored by Pearson correlation. Statistical significance was determined by using generalized estimating equation models to account for possible correlation between fellow eyes. Mean IOP was 12.8±2.7 mm Hg. Mean wave speed in the cornea was 1.82±0.10 m/s. Young's modulus of elasticity was 696±113 kPa and was correlated with IOP (r=0.57; P=0.004), but none of the other variables (P>0.1). USWE is a novel non-invasive technique for measuring ocular biomechanical properties. Corneal Young's modulus in normal eyes is associated with IOP, consistent with measurements in cadaver eyes. Further work is needed to determine elasticity in other ocular tissues, particularly the sclera, and if elasticity is altered in glaucoma patients.

  12. Fracture Toughness and Elastic Modulus of Epoxy-Based Nanocomposites with Dopamine-Modified Nano-Fillers

    OpenAIRE

    Kwang Liang Koh; Xianbai Ji; Aravind Dasari; Xuehong Lu; Soo Khim Lau; Zhong Chen

    2017-01-01

    This paper examines the effect of surface treatment and filler shape factor on the fracture toughness and elastic modulus of epoxy-based nanocomposite. Two forms of nanofillers, polydopamine-coated montmorillonite clay (D-clay) and polydopamine-coated carbon nanofibres (D-CNF) were investigated. It was found that Young’s modulus increases with increasing D-clay and D-CNF loading. However, the fracture toughness decreases with increased D-clay loading but increases with increased D-CNF loading...

  13. Whisker Orientation Function and Elastic Modulus of the as-cast 20%SiCw/Mg Composite

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The relationship between the plane-orientation function and the space-orientation function of whiskers in whisker-reinforced metal matrix composites was analyzed theoretically. The actual orientation of whiskers in the as-cast 20%SiCw/Mg composite (SiCw content in volume fraction) were investigated, and the elastic modulus of the composite was measured with an ultrasonic velocity analyzer. Results show that there is an evident difference be-tween the plane-orientation function and the space-orientation function of whiskers and the space-orientation function can represent the actual condition of the composite. Only by using the space-orientation function of whiskers, the difference of elastic modulus of the as-cast composite in different directions can be explained reasonably.

  14. Observation of Low-Temperature Softening of Transverse Elastic Modulus Due to Cobalt Impurities in Mercury Selenide

    Science.gov (United States)

    Zhevstovskikh, Irina V.; Okulov, Vsevolod I.; Gudkov, Vladimir V.; Sarychev, Maksim N.; Medvedev, Kirill A.; Andriichuk, Myroslav D.; Paranchich, Lidiya D.

    2016-12-01

    Influence on elastic moduli of donor electron d-states of cobalt impurities has been investigated in mercury selenide crystals. Experiments have been carried out at the frequency of 53 MHz in the temperature interval of 1.3-100 K. Softening of the (C_{11} - C_{12})/2 modulus below 10 K has been observed in the impurity crystals in contrast with the (C_{11} + C_{12} + 2C_{44})/2 and C_{44} moduli those have exhibited hardening at cooling typical for dielectric and semiconductor crystals. The softening of the elastic modulus has been interpreted as manifestation of hybridization of the impurity d-states in the conduction band of the crystal. Comparison of theoretical calculations with experimental data has been proved to be in good agreement and has made it possible to determine the parameters characterizing the hybridized electron states.

  15. The effect of hip rotation on shear elastic modulus of the medial and lateral hamstrings during stretching.

    Science.gov (United States)

    Umegaki, Hiroki; Ikezoe, Tome; Nakamura, Masatoshi; Nishishita, Satoru; Kobayashi, Takuya; Fujita, Kosuke; Tanaka, Hiroki; Ichihashi, Noriaki

    2015-02-01

    Regarding hamstring stretching methods, many studies have investigated the effect of stretching duration or frequency on muscle stiffness. However, the most effective stretching positions for hamstrings are unclear because it is impossible to quantify muscle elongation directly and noninvasively in vivo. Recently, a new ultrasound technology, ultrasonic shear wave elastography, has permitted noninvasive and reliable measurement of muscle shear elastic modulus, which has a strong linear relationship to the amount of muscle elongation. This study aimed to investigate the effect of hip internal and external rotation on shear elastic modulus of the lateral and medial hamstrings, respectively, during stretching in vivo using ultrasonic shear wave elastography. Twenty-three healthy men (age, 23.0 ± 2.1 years) were recruited for this study. To investigate the effect of hip rotation on the elongation of the medial and lateral hamstrings, shear elastic modulus of the biceps femoris (BF) and semitendinosus (ST) was measured at rest (a supine position with 90° knee flexion, 90° hip flexion, and hip neutral rotation) and in seven stretching positions (with 45° knee flexion and hip internal, external, and neutral rotation) using ultrasonic shear wave elastography. In both BF and ST, the shear elastic modulus in the rest position was significantly lower than that in all stretching positions. However, no significant differences were seen among stretching positions. Our results suggest that adding hip rotation at a stretching position for the hamstrings may not have a significant effect on muscle elongation of the medial and lateral hamstrings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. ESTIMATION OF MODULUS OF ELASTICITY AND RUPTURE OF Eucalyptus cloeziana F. Muell WOOD THROUGH NON-DESTRUCTIVE METHOD

    Directory of Open Access Journals (Sweden)

    Darci Alberto Gatto

    2012-11-01

    Full Text Available This study was developed aiming at evaluating the use of constant dynamic elastic obtained by non-destructive testing, as a parameter in the estimation of mechanical properties of Eucalyptus cloeziana obtained by destructive test. With equipment emitting ultrasonicwaves from transducers adapted to dry spots of 45 kHz, we determined the ultrasonic velocity relates to distance and time of transmission of the wave along the length of specimens used in test with nominal dimensions of 2.0 x 2.0 x 30.0 cm in thickness, width and length,respectively. To assess the sensitivity of ultrasound, the samples were tested for evidencedestructively in a universal test for determining the modulus of elasticity and rupture in staticbending. The results showed that the ultrasonic method is a fast and efficient tool for inference of non-destructive wood mechanical properties. However, differences in the adjustment of statistical models showed that the best regression parameters were obtained toestimating the modulus of elasticity, compared with the modulus of rupture.

  17. Optimization of custom cementless stem using finite element analysis and elastic modulus distribution for reducing stress-shielding effect.

    Science.gov (United States)

    Saravana Kumar, Gurunathan; George, Subin Philip

    2017-02-01

    This work proposes a methodology involving stiffness optimization for subject-specific cementless hip implant design based on finite element analysis for reducing stress-shielding effect. To assess the change in the stress-strain state of the femur and the resulting stress-shielding effect due to insertion of the implant, a finite element analysis of the resected femur with implant assembly is carried out for a clinically relevant loading condition. Selecting the von Mises stress as the criterion for discriminating regions for elastic modulus difference, a stiffness minimization method was employed by varying the elastic modulus distribution in custom implant stem. The stiffness minimization problem is formulated as material distribution problem without explicitly penalizing partial volume elements. This formulation enables designs that could be fabricated using additive manufacturing to make porous implant with varying levels of porosity. Stress-shielding effect, measured as difference between the von Mises stress in the intact and implanted femur, decreased as the elastic modulus distribution is optimized.

  18. Elastic Modulus and Hardness of Cr-Nb Nano-Multilayers

    Institute of Scientific and Technical Information of China (English)

    YANG Meng-Jin; LAI Wen-Sheng; PAN Feng

    2007-01-01

    Cr-Nb nano-multilayered films with various modulation wavelengths ∧ are prepared by e-gun evaporation and their mechanical properties are investigated. Cr and Nb both have bcc structures with large differences in lattice constants and Young's modulus, which are supposed to favour modulus enhancement. Nevertheless,nano-indention measurements show no enhancement for the modulus and a slight decrease for the hardness with decreasing ∧ down to 6 nm. This is mainly due to counter-contribution to modulus from adjacent layers subjected to reverse strains, in agreement with recent theoretical study, while the decrease of hardness arises from grain boundary sliding. Interestingly, at ∧ = 3 nm, the hardness of the film has an increase of 44% relative to the value of a rule of mixture, owing to the emergence of a new phase for reconciling the structure difference at the interfaces.

  19. Internal Force Analysis Due to the Supporting Translation in Statically Indeterminate Structures for Different Elastic Modulus

    Institute of Scientific and Technical Information of China (English)

    姚文娟; 叶志明

    2004-01-01

    For statically indeterminate structure, the internal force will be changed with the translation of the supports, because the internal force is related to the absolute value of the stiffness EI. When the tension is different with the compression modulus, EI is the function of internal force and is not constant any more that is different from classic mechanics. In the other words, it is a nonlinear problem to calculate the internal force. The expression for neutral axis of the statically indeterminate structure was derived in the paper. The iterative program for nonlinear internal force was compiled. One case study was presented to illustrate the difference between the results using the different modulus theory and the single modulus theory as in classical mechanics. Finally, some reasonable suggestions were made for the different modulus structures.

  20. In vivo areal modulus of elasticity estimation of the human tympanic membrane system: modelling of middle ear mechanical function in normal young and aged ears

    DEFF Research Database (Denmark)

    Gaihede, Michael Lyhne; Donghua, Liao; Gregersen, H.

    2007-01-01

    are related to these, but studies are few and mostly not comparable. The elastic properties of membranes can be described by the areal modulus, and these may also be susceptible to age-related changes reflected by changes in the areal modulus. The areal modulus is determined by the relationship between...... a younger (n = 10) and an older (n = 10) group of normal subjects. The areal modulus for lateral and medial displacement of the tympanic membrane system was smaller in the older group (mean = 0.686 and 0.828 kN m(-1), respectively) compared to the younger group (mean = 1.066 and 1.206 kN m(-1), respectively...... finite element analyses. In vivo estimates of Young's modulus in this study were a factor 2-3 smaller than previously found in vitro. No significant age-related differences were found in the elastic properties as expressed by the areal modulus....

  1. Pulp Fiber Bending Stiffness in Wet and Dry State Measured from Moment of Inertia and Modulus of Elasticity

    Directory of Open Access Journals (Sweden)

    Christian Lorbach

    2014-07-01

    Full Text Available The bending stiffness of pulp fibers in both dry and wet states is of great importance with respect to many optical and physical paper properties. We introduce a method that evaluates fiber bending stiffness from the fibers’ Young’s modulus (E and the area moment of inertia (I from the fiber cross section. The values for E and I in the dry state are obtained from single fiber tensile testing and image analysis of the fiber cross section. The values for the wet state are estimated from literature results for decreasing elastic modulus due to wetting and by the measurement of swollen, freeze-dried fiber cross sections by serial sectioning. We show a comparison between the results from our method and the bending stiffness of individual fibers measured with other methods.

  2. Rupture and Modulus of Elasticity of Heat Treated Anatolian Chestnut (Castanea Sativa Wood by Fuzzy Logic Classifier

    Directory of Open Access Journals (Sweden)

    Fatih Yapıcı

    2012-03-01

    Full Text Available In this study, test samples prepared from Anatolian chestnut (Castanea sativa wood were first exposed to heat treatment at 130, 145, 160, 175, 190 and 205 ºC for 3, 6, 9 and 12 hours. Then the values of the samples of the modulus of rupture (MOR and modulus of elasticity (MOE were determined and evaluated by multiple variance analysis. The aim of this study was to establish the effects of heat treatment on the MOR and MOE values of wood samples by using fuzzy logic classifier. Secondly, input and output values and rule base of the fuzzy logic classifier model were built by using the results obtained from the experiment. The developed fuzzy classifier model could predict the MOR and MOE values of test samples at the accuracy levels of 92.64 % and 90.35 %, respectively. The model could be especially employed in manufacturing stages of timber industry.

  3. Effect of lightweight aggregate intrinsic Strength on lightweight concrete compressive strength and modulus of elasticity

    Directory of Open Access Journals (Sweden)

    Videla, C.

    2002-03-01

    Full Text Available The study of Structural Lightweight Concrete (SLC, which is a material generally composed of cement, water and lightweight aggregate, has been mainly focused on developing particular cases. Then, the main objective of this research was to generalise the knowledge of this type of material. Particularly, the effect of replacing conventional coarse aggregate by lightweight aggregate on mechanical properties of concrete was studied. SLC may be conceived as a two -phase material. The first phase, composed of cement, water and siliceous natural sand, is called the "resistant phase", and contributes to the structural strength. The second phase is the lightweight phase, comprised of coarse lightweight aggregate, and it is meant to decrease the concrete density. In this way it would be possible to describe the mechanical behaviour of concrete, based on lightweight aggregate and the cement mortar parameters. The obtained results allow for the proposition of relationships between mechanical properties of SLC (such as compressive strength and modulus of elasticity and the constituent materials properties and amount. At the same time, an easily measured index representing the structural capability of lightweight aggregate is also proposed, this index allows to estimate the potential mechanical properties of concrete which could be obtained by using a particular aggregate.

    El estudio del Hormigón Ligero Estructural (HLE, material compuesto generalmente por cemento, agua y árido ligero, ha estado enfocado principalmente al desarrollo de casos particulares. Por lo anterior, el objetivo principal de esta investigación fue generalizar el conocimiento sobre este material. En particular, la meta de este trabajo fue estudiar el efecto que tiene el reemplazo de árido convencional por un árido ligero, en las propiedades mecánicas del hormigón. El modelo aplicado conceptualiza al HLE como un material de dos fases, una denominada "soportante", constituida

  4. Effect of Preheating and Precooling on the Flexural Strength and Modulus of Elasticity of Nanohybrid and Silorane-based Composite

    Directory of Open Access Journals (Sweden)

    Farahnaz Sharafeddin

    2015-09-01

    Full Text Available Statement of the Problem: Composite resin may be used in different temperatures; it is crucial to determine the effect of temperature on mechanical properties of nanohybrid and silorane-based composite. Purpose: This in vitro study compared the flexural strength and modulus of elasticity of nanohybrid and silorane-based resin composite, at 4˚C, room temperature (25˚C, and 45˚C. Materials and Method: In this experimental study, 60 specimens were prepared in a metal split mold (2×2×25mm. Two different resin composites, Filtek Z250 XT (3M/ ESPE and Filtek P90 (3M/ESPE, were evaluated. The material were inserted into split molds at room temperature, 4˚C or 45˚C and cured with LED (1200 mW/cm2 for 20 seconds in four points (n=10. Then, a three-point bending test was performed using a universal testing machine at a crosshead speed of 0.5 mm/min for measuring the flexural strength and flexural modulus of samples. The data were analyzed by the two-way ANOVA and Tukey test (p< 0.05. Results: The mean highest flexural strength was observed at 45˚C, showing statistically significant difference with flexural strength at 4˚C (p= 0.0001 and 25˚C (p= 0.003 regardless of the type of resin composite. The flexural modulus at 45˚C was highest, showing the statistically significant difference with flexural modulus at 4˚C (p= 0.0001 and 25˚C (p= 0.002. The flexural modulus was statistically different between nanohybrid and silorane-based resin composite (p= 0.01 in 25˚C and 45˚C, but there were no statistically significant differences between flexural strength of Filtek Z250 XT and Filtek P90 regardless of the temperatures (p= 0.062. Conclusion: Preheating the resin composite at 45˚C improves flexural strength and modulus of nanohybrid and silorane-based resin composite. However, flexural strength and modulus of the tested materials were not affected by precooling. The flexural modulus of nanohybrid resin composite was significantly higher than

  5. In vivo areal modulus of elasticity estimation of the human tympanic membrane system: modelling of middle ear mechanical function in normal young and aged ears

    Energy Technology Data Exchange (ETDEWEB)

    Gaihede, Michael [Department of Otolaryngology, Head and Neck Surgery, Aalborg Hospital, Aarhus University Hospital, Aalborg (Denmark); Liao Donghua [Centre of Excellence in Visceral Biomechanics and Pain, Aalborg Hospital, Aarhus University Hospital, Aalborg (Denmark); Gregersen, Hans [Centre of Excellence in Visceral Biomechanics and Pain, Aalborg Hospital, Aarhus University Hospital, Aalborg (Denmark)

    2007-02-07

    The quasi-static elastic properties of the tympanic membrane system can be described by the areal modulus of elasticity determined by a middle ear model. The response of the tympanic membrane to quasi-static pressure changes is determined by its elastic properties. Several clinical problems are related to these, but studies are few and mostly not comparable. The elastic properties of membranes can be described by the areal modulus, and these may also be susceptible to age-related changes reflected by changes in the areal modulus. The areal modulus is determined by the relationship between membrane tension and change of the surface area relative to the undeformed surface area. A middle ear model determined the tension-strain relationship in vivo based on data from experimental pressure-volume deformations of the human tympanic membrane system. The areal modulus was determined in both a younger (n = 10) and an older (n = 10) group of normal subjects. The areal modulus for lateral and medial displacement of the tympanic membrane system was smaller in the older group (mean = 0.686 and 0.828 kN m{sup -1}, respectively) compared to the younger group (mean = 1.066 and 1.206 kN m{sup -1}, respectively), though not significantly (2p = 0.10 and 0.11, respectively). Based on the model the areal modulus was established describing the summated elastic properties of the tympanic membrane system. Future model improvements include exact determination of the tympanic membrane area accounting for its shape via 3D finite element analyses. In vivo estimates of Young's modulus in this study were a factor 2-3 smaller than previously found in vitro. No significant age-related differences were found in the elastic properties as expressed by the areal modulus.

  6. Influence of phase transformations on dynamical elastic modulus and anelasticity of beta Ti-Nb-Fe alloys for biomedical applications.

    Science.gov (United States)

    Chaves, J M; Florêncio, O; Silva, P S; Marques, P W B; Afonso, C R M

    2015-06-01

    Recent studies in materials for biomedical applications have focused on β-titanium alloys that are highly biocompatible, free of toxic elements and with an elastic modulus close to that of human bone (10-40 GPa). Beta Ti-xNb-3Fe (x=10, 15, 20 and 25 wt%) alloys were obtained by rapid solidification and characterized by anelastic relaxation measurements at temperatures between 140 K and 770 K, using a free-decay elastometer, as well as analysis by Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The observed stabilization of the β-phase with rising Nb content was linked to the strength of the relaxation peak around 570 K. The phase transformations detected in the anelastic relaxation spectra agreed with those observed in the DSC curves. However, the results from anelastic relaxation spectra provide more detailed information about the kinetics of phase transformations. At temperatures between 140 K and 300 K, there was an indication of a reversible transformation in the alloys studied. The elastic modulus measurements showed a hardening of the material, between 400 K and 620 K, related to the ω-phase precipitation. However, the starting temperature of ω-phase precipitation was clearly influenced by the Nb content, showing a shift to high temperature with increasing percentage of Nb. At temperatures above 620 K, a fall was observed in the dynamical elastic modulus, accompanied by a relaxation peak centered at 660 K, which was attributed to the growing α-phase arising from the ω-phase, which acts as a nucleation sites or from the decomposition of the metastable β-phase. XRD patterns confirmed the formation of β, α and ω phases after mechanical relaxation measurements. A predominant β phase with dendritic morphology was observed, which became more stable with 25 wt% Nb. The lowest elastic modulus was of 65 GPa obtained in the Ti-25Nb-3Fe alloy, representing a

  7. The diagnostic performance of shear wave speed (SWS) imaging for thyroid nodules with elasticity modulus and SWS measurement.

    Science.gov (United States)

    Wang, Dan; He, Ya-Ping; Zhang, Yi-Feng; Liu, Bo-Ji; Zhao, Chong-Ke; Fu, Hui-Jun; Wei, Qing; Xu, Hui-Xiong

    2017-01-06

    To evaluate the diagnostic performance of a new technique of shear wave speed (SWS) imaging for the diagnosis of thyroid nodule with elasticity modulus and SWS measurement. 322 thyroid nodules in 322 patients (216 benign nodules, 106 malignant nodules) were included in this study. All the nodules received conventional ultrasound (US) and SWS imaging (Aplio500, Toshiba Medical Systems, Japan) before fine-needle aspiration (FNA) and/or surgery. The values of E-max and E-mean with elastic modulus (61.27 ± 36.31 kPa and 31.89 ± 19.11 kPa) or SWS (4.45 ± 1.49 m/s and 3.26 ± 2.71 m/s) in malignant nodules were significantly higher than those in benign lesions (29.18 ± 18.62 kPa and 15.85 ± 6.96 kPa, or 2.98 ± 0.85 m/s and 2.19 ± 0.42 m/s, all P 0.05). In multivariate logistic regression analysis, E-max (m/s) with SWS was identified to be the strongest independent predictor for malignant nodules (odds ratio [OR] = 16.760), followed by poorly-defined margin (OR = 7.792), taller-than-wide shape (OR = 3.160), micro-calcification (OR = 2.422), and E-max (kPa) with elastic modulus (OR = 0.914). The AUC was 0.813 for E-max with SWS (m/s) and 0.796 for E-max with elastic modulus (kPa). With cut-off SWS value of 3.52 m/s in E-max, sensitivity of 69.8%, specificity of 81.5%, and accuracy of 77.6% were achieved. SWS imaging is a valuable tool in predicting thyroid malignancy. E-max with SWS measurement is the strongest independent predictor for thyroid malignancy.

  8. Effect of recasting on the elastic modulus of metal-ceramic systems from nickel-chromium and cobalt-chromium alloys

    Directory of Open Access Journals (Sweden)

    Mirković Nemanja

    2007-01-01

    Full Text Available Background/Aim. Elastic modulus of metal-ceramic systems determines their flexural strength and prevents damages on ceramics during mastication. Recycling of basic alloys is often a clinical practice, despite the possible effects on the quality of the future metal-ceramic dentures. This research was done to establish recasting effects of nickel-chromium and cobalt-chromium alloys on the elastic modulus of metalceramic systems in making fixed partial dentures. Methods. The research was performed as an experimental study. Six metal-ceramic samples of nickel-chromium alloy (Wiron 99 and cobalt-chromium alloy (Wirobond C were made. Alloy residues were recycled through twelve casting generations with the addition of 50% of new alloy on the occasion of every recasting. Three- point bending test was used to determine elastic modulus, recommended by the standard ISO 9693:1999. Fracture load for damaging ceramic layer was recorded on the universal testing machine (Zwick, type 1464, with the speed of 0,05 mm/min. Results. The results of this research revealed significant differences between elasticity modules of metal-ceramic samples in every examined recycle generation. Recasting had negative effect on the elastic modulus of the examined alloys. This research showed the slight linear reduction of elastic modulus up to the 6th generation of recycling. After the 6th recycling there was a sudden fall of elastic modulus. Conclusion. Recasting of nickelchromium and cobalt-chromium alloys is not recommended because of the reduced elastic modulus of these alloys. Instead of reusing previously recasted alloys, the alloy residues should be returned to the manufacturer. .

  9. Characterizing size-dependent effective elastic modulus of silicon nanocantilevers using electrostatic pull-in instability

    NARCIS (Netherlands)

    Sadeghian, H.; Yang, C.K.; Goosen, J.F.L.; Van der Drift, E.; Bossche, A.; French, P.J.; Van Keulen, F.

    2009-01-01

    This letter presents the application of electrostatic pull-in instability to study the size-dependent effective Young’s Modulus Ẽ ( ~170–70 GPa) of [110] silicon nanocantilevers (thickness ~1019–40 nm). The presented approach shows substantial advantages over the previous methods used for

  10. NEW TEST TECHNIQUE FOR SHEAR MODULUS AND OTHER ELASTIC CONSTANTS OF FILAMENTARY COMPOSITES,

    Science.gov (United States)

    corresponding to one tensile test . Otherwise, two tests are required to obtain those properties. The shear modulus, which is independent of the Poisson’s...ratio, can be obtained from tensile test data on a specimen having filaments oriented at any angle 0 < alpha < 90 degrees. The validity and

  11. Measurement of Elastic Modulus of Alumina and Barium Strontium Titanate Wafers Produced by Tape Casting Method

    Science.gov (United States)

    2014-02-01

    measurements – Generally in the 230 to 250 GPa range * VTT manufacturing, 1996, ISBN 951-38-4987-2 Figure 7 Modulus measurements on 0.5-mm wafers of...Capacitors,”1998 Society of Automotive Engineers. 4. Barsoum, Michel, “Fundamentals of Ceramics,” cap.11, p. 401. 5. VTT Manufacturing, ISBN 951-38

  12. Internal strain estimation for quantification of human heel pad elastic modulus: A phantom study

    DEFF Research Database (Denmark)

    Holst, Karen; Liebgott, Hervé; Wilhjelm, Jens E.

    2013-01-01

    Shock absorption is the most important function of the human heel pad. However, changes in heel pad elasticity, as seen in e.g. long-distance runners, diabetes patients, and victims of Falanga torture are affecting this function, often in a painful manner. Assessment of heel pad elasticity......, and the three hard phantoms were 89kPa, 153kPa, and 168kPa, respectively. The combination of ultrasound images and force measurements provided an effective way of assessing the elastic properties of the heel pad due to the internal strain estimation....

  13. Fracture Toughness and Elastic Modulus of Epoxy-Based Nanocomposites with Dopamine-Modified Nano-Fillers

    Directory of Open Access Journals (Sweden)

    Kwang Liang Koh

    2017-07-01

    Full Text Available This paper examines the effect of surface treatment and filler shape factor on the fracture toughness and elastic modulus of epoxy-based nanocomposite. Two forms of nanofillers, polydopamine-coated montmorillonite clay (D-clay and polydopamine-coated carbon nanofibres (D-CNF were investigated. It was found that Young’s modulus increases with increasing D-clay and D-CNF loading. However, the fracture toughness decreases with increased D-clay loading but increases with increased D-CNF loading. Explanations have been provided with the aid of fractographic analysis using electron microscope observations of the crack-filler interactions. Fractographic analysis suggests that although polydopamine provides a strong adhesion between the fillers and the matrix, leading to enhanced elastic stiffness, the enhancement prohibits energy release via secondary cracking, resulting in a decrease in fracture toughness. In contrast, 1D fibre is effective in increasing the energy dissipation during fracture through crack deflection, fibre debonding, fibre break, and pull-out.

  14. Fracture Toughness and Elastic Modulus of Epoxy-Based Nanocomposites with Dopamine-Modified Nano-Fillers.

    Science.gov (United States)

    Koh, Kwang Liang; Ji, Xianbai; Dasari, Aravind; Lu, Xuehong; Lau, Soo Khim; Chen, Zhong

    2017-07-10

    This paper examines the effect of surface treatment and filler shape factor on the fracture toughness and elastic modulus of epoxy-based nanocomposite. Two forms of nanofillers, polydopamine-coated montmorillonite clay (D-clay) and polydopamine-coated carbon nanofibres (D-CNF) were investigated. It was found that Young's modulus increases with increasing D-clay and D-CNF loading. However, the fracture toughness decreases with increased D-clay loading but increases with increased D-CNF loading. Explanations have been provided with the aid of fractographic analysis using electron microscope observations of the crack-filler interactions. Fractographic analysis suggests that although polydopamine provides a strong adhesion between the fillers and the matrix, leading to enhanced elastic stiffness, the enhancement prohibits energy release via secondary cracking, resulting in a decrease in fracture toughness. In contrast, 1D fibre is effective in increasing the energy dissipation during fracture through crack deflection, fibre debonding, fibre break, and pull-out.

  15. Fracture Toughness and Elastic Modulus of Epoxy-Based Nanocomposites with Dopamine-Modified Nano-Fillers

    Science.gov (United States)

    Koh, Kwang Liang; Ji, Xianbai; Lu, Xuehong; Lau, Soo Khim; Chen, Zhong

    2017-01-01

    This paper examines the effect of surface treatment and filler shape factor on the fracture toughness and elastic modulus of epoxy-based nanocomposite. Two forms of nanofillers, polydopamine-coated montmorillonite clay (D-clay) and polydopamine-coated carbon nanofibres (D-CNF) were investigated. It was found that Young’s modulus increases with increasing D-clay and D-CNF loading. However, the fracture toughness decreases with increased D-clay loading but increases with increased D-CNF loading. Explanations have been provided with the aid of fractographic analysis using electron microscope observations of the crack-filler interactions. Fractographic analysis suggests that although polydopamine provides a strong adhesion between the fillers and the matrix, leading to enhanced elastic stiffness, the enhancement prohibits energy release via secondary cracking, resulting in a decrease in fracture toughness. In contrast, 1D fibre is effective in increasing the energy dissipation during fracture through crack deflection, fibre debonding, fibre break, and pull-out. PMID:28773136

  16. Non-invasive assessment of elastic modulus of arterial constructs during cell culture using ultrasound elasticity imaging.

    Science.gov (United States)

    Dutta, Debaditya; Lee, Kee-Won; Allen, Robert A; Wang, Yadong; Brigham, John C; Kim, Kang

    2013-11-01

    Mechanical strength is a key design factor in tissue engineering of arteries. Most existing techniques assess the mechanical property of arterial constructs destructively, leading to sacrifice of a large number of animals. We propose an ultrasound-based non-invasive technique for the assessment of the mechanical strength of engineered arterial constructs. Tubular scaffolds made from a biodegradable elastomer and seeded with vascular fibroblasts and smooth muscle cells were cultured in a pulsatile-flow bioreactor. Scaffold distension was computed from ultrasound radiofrequency signals of the pulsating scaffold via 2-D phase-sensitive speckle tracking. Young's modulus was then calculated by solving the inverse problem from the distension and the recorded pulse pressure. The stiffness thus computed from ultrasound correlated well with direct mechanical testing results. As the scaffolds matured in culture, ultrasound measurements indicated an increase in Young's modulus, and histology confirmed the growth of cells and collagen fibrils in the constructs. The results indicate that ultrasound elastography can be used to assess and monitor non-invasively the mechanical properties of arterial constructs. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. Zipping, entanglement, and the elastic modulus of aligned single-walled carbon nanotube films.

    Science.gov (United States)

    Won, Yoonjin; Gao, Yuan; Panzer, Matthew A; Xiang, Rong; Maruyama, Shigeo; Kenny, Thomas W; Cai, Wei; Goodson, Kenneth E

    2013-12-17

    Reliably routing heat to and from conversion materials is a daunting challenge for a variety of innovative energy technologies--from thermal solar to automotive waste heat recovery systems--whose efficiencies degrade due to massive thermomechanical stresses at interfaces. This problem may soon be addressed by adhesives based on vertically aligned carbon nanotubes, which promise the revolutionary combination of high through-plane thermal conductivity and vanishing in-plane mechanical stiffness. Here, we report the data for the in-plane modulus of aligned single-walled carbon nanotube films using a microfabricated resonator method. Molecular simulations and electron microscopy identify the nanoscale mechanisms responsible for this property. The zipping and unzipping of adjacent nanotubes and the degree of alignment and entanglement are shown to govern the spatially varying local modulus, thereby providing the route to engineered materials with outstanding combinations of mechanical and thermal properties.

  18. Understanding and Improving the Elastic Compressive Modulus of Fibre Reinforced Soy-Based Polyurethane Foams

    Science.gov (United States)

    Hussain, Sadakat

    Soy-based polyurethane foams (PUFs) were reinforced with fibres of different aspect ratios to improve the compressive modulus. Each of the three fibre types reinforced PUF differently. Shorter micro-crystalline cellulose fibres were found embedded inside the cell struts of PUF and reinforced them. The reinforcement was attributed to be stress transfer from the matrix to the fibre by comparing the experimental results to those predicted by micro-mechanical models for short fibre reinforced composites. The reinforced cell struts increased the overall compressive modulus of the foam. Longer glass fibres (470 microns, length) provided the best reinforcement. These fibres were found to be larger than the cell diameters. The micro-mechanical models could not predict the reinforcement provided by the longer glass fibres. The models predicted negligible reinforcement because the very low modulus PUF should not transfer load to the higher modulus fibres. However, using a finite element model, it was determined that the fibres were providing reinforcement through direct fibre interaction with each other. Intermediate length glass fibres (260 microns, length) were found to poorly reinforce the PUF and should be avoided. These fibres were too short to interact with each other and were on average too large to embed and reinforce cell struts. In order to produce natural fibre reinforced PUFs in the future, a novel device was invented. The purpose of the device is to deliver natural fibres at a constant mass flow rate. The device was found to consistently meter individual loose natural fibre tufts at a mass flow rate of 2 grams per second. However, the device is not robust and requires further development to deliver a fine stream of natural fibre that can mix and interact with the curing polymeric components of PUF. A design plan was proposed to address the remaining issues with the device.

  19. Nano-hardness and elastic modulus of anodic aluminium oxide based Poly (2-hydroxyethylmethacrylate composite membranes

    Directory of Open Access Journals (Sweden)

    Gérrard Eddy Jai Poinern

    2014-07-01

    Full Text Available In this study we determine the elastic and hardness properties of electrochemically engineered porous anodic aluminium oxide (AAO membranes and AAO membranes infiltrated with Poly (2-hydroxyethylmethacrylate to form a unique biologically compatible AAO/polymer composite. The electrochemically-synthesised membranes have a nanometre scale porous oxide structure with a mean pore diameter of 100 nm. The membranes were characterized using field emission scanning electron microscopy before and after polymer infiltration. The polymer treated and untreated membranes were then examined using the nano-indentation technique to measure the hardness and subsequently determine the membrane elasticity.

  20. Static versus dynamic gerbil tympanic membrane elasticity: derivation of the complex modulus.

    Science.gov (United States)

    Aernouts, Jef; Dirckx, Joris J J

    2012-07-01

    An accurate estimation of tympanic membrane stiffness is important for realistic modelling of middle ear mechanics. Tympanic membrane stiffness has been investigated extensively under either quasi-static or dynamic loading conditions. It is known that biological tissues are sensitive to strain rate. Therefore, in this work, the mechanical behaviour of the tympanic membrane was studied under both quasi-static and dynamic loading conditions. Experiments were performed on the pars tensa of four gerbil tympanic membranes. A custom-built indentation apparatus was used to perform in situ tissue indentations and testing was done applying both quasi-static and dynamic sinusoidal indentations up to 8.2 Hz. The unloaded shape of the tympanic membrane was measured and used to create specimen-specific finite element models to simulate the experiments. The frequency dependent Young's modulus of each specimen was then estimated by an inverse analysis in which the error between experimental and simulated indentation data was optimised for each indentation frequency separately. Using an 8 μm central region thickness, we found Young's moduli between 71 and 106 MPa (n = 4) at 0.2 Hz indentation frequency. A standard linear viscoelastic model and a viscoelastic model with a continuous relaxation spectrum were used to derive a complex modulus in the frequency domain. Due to experimental limitations, the indentation frequency upper limit was 8.2 Hz. The average relative modulus increase in this domain was 14% and the increase was the strongest below 6 Hz.

  1. The effects of side-artifacts on the elastic modulus of trabecular bone.

    Science.gov (United States)

    Un, Kerem; Bevill, Grant; Keaveny, Tony M

    2006-01-01

    Determining accurate density-mechanical property relationships for trabecular bone is critical for correct characterization of this important structure-function relation. When testing any excised specimen of trabecular bone, an unavoidable experimental artifact originates from the sides of the specimen where peripheral trabeculae lose their vertical load-bearing capacity due to interruption of connectivity, a phenomenon denoted here as the 'side-artifact'. We sought in this study to quantify the magnitude of such side-artifact errors in modulus measurement and to do so as a function of the trabecular architecture and specimen size. Using parametric computational analysis of high-resolution micro-CT-based finite-element models of cores of elderly human vertebral trabecular bone, a specimen-specific correction factor for the side-artifact was quantified as the ratio of the side-artifact-free apparent modulus (Etrue) to the apparent modulus that would be measured in a typical experiment (Emeasured). We found that the width over which the peripheral trabeculae were mostly unloaded was between 0.19 and 0.58 mm. The side-artifact led to an underestimation error in Etrue of over 50% in some specimens, having a mean (+/-SD) of 27+/-11%. There was a trend for the correction factor to linearly increase as volume fraction decreased (p=0.001) and as mean trabecular separation increased (perror increased substantially as specimen size decreased. Two methods used for correcting for the side-artifact were both successful in bringing Emeasured into statistical agreement with Etrue. These findings have important implications for the interpretation of almost all literature data on trabecular bone mechanical properties since they indicate that such properties need to be adjusted to eliminate the substantial effects of side-artifacts in order to provide more accurate estimates of in situ behavior.

  2. Objectification of Modulus Elasticity of Foam Concrete Poroflow 17-5 on the Subbase Layer

    Directory of Open Access Journals (Sweden)

    Hájek Matej

    2016-05-01

    Full Text Available Principles of sustainable development create the need to develop new building materials. Foam concrete is a type of lightweight concrete that has many advantages compared to conventional building materials, for example low density and thermal insulation characteristics. With current development level, any negatively influencing material features are constantly eliminated as well. This paper is dealing with substitution of hydraulically bound mixtures by cement foam concrete Poroflow 17-5. The executed assessment is according to the methodology of assessing the existing asphalt pavements in Slovak Republic. The ex post calculation was used to estimate modulus range for Poroflow 17-5 based on the results of static load tests conducted using the Testing Experiment Equipment.

  3. Thermal Variation of Elastic Modulus on Nanocrystalline NiCuZn Ferrites

    Directory of Open Access Journals (Sweden)

    S. R. Murthy

    2013-01-01

    Full Text Available The nanopowders of Ni0.38Cu0.12Zn0.5Fe2O4 with particle size, 20 nm have been synthesised using Microwave-Hydrothermal method and characterized. Then the ferrite samples were microwave sintered at different temperatures in an air atmosphere and characterized. The magnetic properties were measured at room temperature. The dielectric constant (ɛ, initial permeability (μi and quality factor (Q has been measured on sintered samples at 1 MHz. Thermal variation of initial permeability has been measured over temperature range of 300 K–600 K. A detailed study of elastic behaviour of NiCuZn ferrites has been under taken using a composite piezoelectric oscillator method over a temperature of 300 K–600 K. The room temperature elastic moduli is found to be slightly sample dependent and decreases with increasing the temperature, except near the Curie temperature, TC, where a small anomaly is observed. The internal friction at room temperature is also found to be more particle size dependent. The temperature variation of internal friction exhibits a broad maximum around 500 K, just below Curie temperature TC 530 K. The above observations were carried on in the demagnetized state; on the application of a 400 mT magnetic field allowed us to reach the saturated state of the sample at any of the measuring temperature. The anomaly observed in the thermal variation of elastic moduli and internal friction is explained with the help of temperature variation of magneto-crystalline anisotropy constant.

  4. EFFECTIVE ELASTIC PROPERTIES OF ALUMINA-ZIRCONIA COMPOSITE CERAMICS - PART 4. TENSILE MODULUS OF POROUS ALUMINA AND ZIRCONIA

    Directory of Open Access Journals (Sweden)

    W. Pabst

    2004-12-01

    Full Text Available In this fourth paper of a series on the effective elastic properties of alumina-zirconia composite ceramics the influence of porosity on the effective tensile modulus of alumina and zirconia ceramics is discussed. The examples investigated are alumina and zirconia ceramics prepared from submicron powders by starch consolidation casting using two different types of starch, potato starch (median size D50 =47.2 µm and corn starch (median size D50 =13.7 µm. The dependence of effective tensile moduli E, on the porosity f, measured for porosities in the ranges of approx. 19-55 vol.% and 10-42 vol.% for alumina and zirconia, respectively, using a resonant frequency technique, was evaluated by fitting with various model relations, including newly developed ones. A detailed comparison of the fitting results suggests the superiority of the new relation E/E0 = (1 - f·(1 - f/fC, developed by the authors (with the tensile modulus of the dense ceramic material E0 and the critical porosity fC, over most other existing fit models. Only for special purposes and well-behaved data sets the recently proposed exponential relation E/E0 = exp [-Bf/(1 - f] and the well-known Phani-Niyogi relation E/E0 = (1 - f/fCN might be preferable.

  5. Advantages of a 3-parameter reduced constitutive model for the measurement of polymers elastic modulus using tensile tests

    Science.gov (United States)

    Blaise, A.; André, S.; Delobelle, P.; Meshaka, Y.; Cunat, C.

    2016-11-01

    Exact measurements of the rheological parameters of time-dependent materials are crucial to improve our understanding of their intimate relation to the internal bulk microstructure. Concerning solid polymers and the apparently simple determination of Young's modulus in tensile tests, international standards rely on basic protocols that are known to lead to erroneous values. This paper describes an approach allowing a correct measurement of the instantaneous elastic modulus of polymers by a tensile test. It is based on the use of an appropriate reduced model to describe the behavior of the material up to great strains, together with well-established principles of parameter estimation in engineering science. These principles are objective tools that are used to determine which parameters of a model can be correctly identified according to the informational content of a given data set. The assessment of the methodology and of the measurements is accomplished by comparing the results with those obtained from two other physical experiments, probing the material response at small temporal and length scales, namely, ultrasound measurements with excitation at 5 MHz and modulated nanoindentation tests over a few nanometers of amplitude.

  6. Elastic Modulus Measurements of the LHC Dipole Superconducting Coil at 300 K and at 77 K

    CERN Document Server

    Couturier, K; Todesco, Ezio; Tommasini, D; Scandale, Walter

    2002-01-01

    We present measurements of the stress-displacement relation for the superconducting coils used in the Large Hadron Collider main magnets (dipoles and quadrupoles). This mechanical property is relevant to determine the correct amount of azimuthal pre-stress to be imposed on the coil. The hysteresis pattern in the loading and unloading curves is discussed. The stress-displacement curves are used to compute the corresponding elastic moduli and deformations. Measurements are also carried out at liquid nitrogen temperature, using the same framework to interpret experimental data.

  7. Elastic modulus measurements of LDEF glasses and glass-ceramics using a speckle technique

    Science.gov (United States)

    Wiedlocher, D. E.; Kinser, D. L.

    1992-01-01

    Elastic moduli of five glass types and the glass-ceramic Zerodur, exposed to a near-earth orbit environment on the Long Duration Exposure Facility (LDEF), were compared to that of unexposed samples. A double exposure speckle photography technique utilizing 633 nm laser light was used in the production of the speckle pattern. Subsequent illumination of a double exposed negative using the same wavelength radiation produces Young's fringes from which the in-plane displacements are measured. Stresses imposed by compressive loading produced measurable strains in the glasses and glass-ceramic.

  8. Approaches To Modelling Of Elastic Modulus Degradation In Sheet Metal Forming

    Science.gov (United States)

    Vrh, Marko; Halilovič, Miroslav; Štok, Boris

    2007-04-01

    Strain recovery after removal of forming loads, commonly defined as springback, is of great concern in sheet metal forming, in particular with regard to proper prediction of the final shape of the part. To control the problem a lot of work has been done, either by minimizing the springback on the material side or by increasing the estimation precision in corresponding process simulations. Unfortunately, by currently available software springback still cannot be adequately predicted, because most analyses of springback are using linear, isotropic and constant Young's modulus and Poisson's ratio. But, as it was measured and reported, none of it is true. The aim of this work is to propose an upgraded mechanical model which takes evolution of damage and related orthotropic stiffness degradation into account. Damage is considered by inclusion of ellipsoidal cavities, and their influence on the stiffness degradation is taken in accordance with the Mori-Tanaka theory, adopting the GTN model for plastic flow. With regard to the case in which damage in material is neglected it is shown in the article how the springback of a formed part differs, when we take orthotropic damage evolution into consideration.

  9. Perbaikan Sifat Reologi Visco-Elastic Aspal dengan Penambahan Asbuton Murni Menggunakan Parameter Complex Shear Modulus

    Directory of Open Access Journals (Sweden)

    Eva Wahyu Indriyati

    2013-06-01

    Full Text Available The increasing demand of crude oil will increase the price of petroleum asphalt. Indonesia has imported asphalt to meet the need for the annually road construction and maintenance. One solution to improving the rheological properties of bitumen is by adding the harder bitumen or other chemical compound to reduce dependence to petroleum asphalt. In Indonesia there is a source of natural asphalt in Buton Island, Sulawesi with huge amount of deposit that potentially could improve the rheological properties of Pen 60/70 Petroleum Asphalt. In order to obtain a better understanding on the contribution of Asbuton to the improvement of performance on rheological properties, this research used 19 variations of Asbuton and pen 60/70 petroleum bitumen. This variation is then subjected to the basic rheology test and the mechanistic test using Dynamic Shear Rheometer. The conclusion of basic rheological performance is obtained that mixture (Asbuton and 60/70 petroleum bitumen will increase hardness of bitumen. Conclusion on mechanistic rheological performance is that mixture (Asbuton and 60/70 petrol bitumen will increase Performance Grade (PG and Complex Shear Modulus (G*. The results from the analysis of Master Curve and Black Diagram, it is shown that the increasing proportion of bitumen Asbuton will decrease the phase angle (δ but its temperature susceptibility is worse.

  10. Effect of crosslinker length on the elastic and compression modulus of poly(acrylamide) nanocomposite hydrogels

    Science.gov (United States)

    Zaragoza, J.; Chang, A.; Asuri, P.

    2017-01-01

    Polymer hydrogelshave shown to exhibit improved properties upon the addition of nanoparticles; however, the mechanical underpinnings behind these enhancements have not been fully elucidated. Moreover, fewer studies have focused on developing an understanding of how polymer parameters affect the nanoparticle-mediated enhancements. In this study, we investigated the elastic properties of silica nanoparticle-reinforced poly(acrylamide) hydrogels synthesized using crosslinkers of various lengths. Crosslinker length positively affected the mechanical properties of hydrogels that were synthesized with or without nanoparticles. However the degree of nanoparticle enhancement was negatively correlated to crosslinker length. Our findings enable the understanding of the respective roles of nanoparticle and polymer properties on nanoparticle-mediated enhancement of hydrogels and thereby the development of next-generation nanocomposite materials.

  11. Elasticity Modulus and Flexural Strength Assessment of Foam Concrete Layer of Poroflow

    Science.gov (United States)

    Hajek, Matej; Decky, Martin; Drusa, Marian; Orininová, Lucia; Scherfel, Walter

    2016-10-01

    Nowadays, it is necessary to develop new building materials, which are in accordance to the principles of the following provisions of the Roads Act: The design of road is a subject that follows national technical standards, technical regulations and objectively established results of research and development for road infrastructure. Foam concrete, as a type of lightweight concrete, offers advantages such as low bulk density, thermal insulation and disadvantages that will be reduced by future development. The contribution focuses on identifying the major material characteristics of foam concrete named Poroflow 17-5, in order to replace cement-bound granular mixtures. The experimental measurements performed on test specimens were the subject of diploma thesis in 2015 and continuously of the dissertation thesis and grant research project. At the beginning of the contribution, an overview of the current use of foam concrete abroad is elaborated. Moreover, it aims to determine the flexural strength of test specimens Poroflow 17-5 in combination with various basis weights of the underlying geotextile. Another part of the article is devoted to back-calculation of indicative design modulus of Poroflow based layers based on the results of static plate load tests provided at in situ experimental stand of Faculty of Civil Engineering, University of Žilina (FCE Uniza). Testing stand has been created in order to solve problems related to research of road and railway structures. Concern to building construction presents a physical homomorphic model that is identical with the corresponding theory in all structural features. Based on the achieved material characteristics, the tensile strength in bending of previously used road construction materials was compared with innovative alternative of foam concrete and the suitability for the base layers of pavement roads was determined.

  12. Trabecular Plate Loss and Deteriorating Elastic Modulus of Femoral Trabecular Bone in Intertrochanteric Hip Fractures

    Institute of Scientific and Technical Information of China (English)

    Ji Wang; Bin Zhou; Ian Parkinson; C. David L. Thomas; John G. Clement; Nick Fazzalari; X. Edward Guo

    2013-01-01

    Osteoporotic hip fracture is associated with significant trabecular bone loss, which is typically characterized as low bone density by dual-energy X-ray absorptiometry (DXA) and altered microstructure by micro-computed tomography (µCT). Emerging morphological analysis techniques, e.g. individual trabecula segmentation (ITS), can provide additional insights into changes in plate-like and rod-like trabeculae, two major micro-structural types serving different roles in determining bone strength. Using ITS, we evaluated trabecular microstructure of intertrochanteric bone cores obtained from 23 patients undergoing hip replacement surgery for intertrochanteric fracture and 22 cadaveric controls. Micro-finite element (µFE) analyses were performed to further understand how the abnormalities seen by ITS might translate into effects on bone strength. ITS analyses revealed that, near fracture site, plate-like trabeculae were seriously depleted in fracture patients, but trabecular rod volume was maintained. Besides, decreased plate area and rod length were observed in fracture patients. Fracture patients also showed decreased elastic moduli and shear moduli of trabecular bone. These results provided evidence that in intertrochanteric hip fracture, preferential loss of plate-like trabeculae led to more rod-like microstructure and deteriorated mechanical competence adjacent to the fracture site, which increased our understanding of the biomechanical pathogenesis of hip fracture in osteoporosis.

  13. Effects of graphite porosity and anisotropy on measurements of elastic modulus using laser untrasonics

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, James B [Johns Hopkins University; Zeng, Fan W [Johns Hopkins University; Han, Karen [Johns Hopkins University; Olasov, Lauren R [Johns Hopkins University; Gallego, Nidia C [ORNL; Contescu, Cristian I [ORNL

    2014-01-01

    Laser ultrasonic techniques can be used to study the ultrasonic properties of nuclear graphites and can serve as tools in establishing relationships between materials microstructure and the macroscopic stiffnesses of graphite. Establishing structure-property relationships permits improved ultrasonic sensing of graphite microstructural changes related to service-induced degradation. Laser ultrasonic measurements were made using a pulsed Nd:YAG laser source and detection was performed using a Michelson-type interferometer. This source-receiver combination provides for non-contacting, highly linear transduction of broadbanded, ultrasonic pulses permitting simultaneous determination of longitudinal and shear stiffnesses. Measurements show that among the graphites examined, a change in density of 0.26 g/cm3 (average 1.8 g/cm3) results in a change in the longitudinal elastic stiffness of 9.2 GPa (average 11.3 GPa) and 3.2 GPa (average 4.3 GPa) for the shear stiffness. Larger variations in density were produced by controlled oxidation of IG-110 and NBG-18. Shear wave birefringence measurements using laser line sources in IG-110 and PCEA indicate that IG-110 behaves isotropically while PCEA displays texture characteristic of transversely isotropic materials.

  14. Hyperoxia increases the elastic modulus of alveolar epithelial cells through Rho kinase.

    Science.gov (United States)

    Wilhelm, Kristina R; Roan, Esra; Ghosh, Manik C; Parthasarathi, Kaushik; Waters, Christopher M

    2014-02-01

    Patients with acute lung injury are administered high concentrations of oxygen during mechanical ventilation, and while both hyperoxia and mechanical ventilation are necessary, each can independently cause additional injury. However, the precise mechanisms that lead to injury are not well understood. We hypothesized that alveolar epithelial cells may be more susceptible to injury caused by mechanical ventilation because hyperoxia causes cells to be stiffer due to increased filamentous actin (f-actin) formation via the GTPase RhoA and its effecter Rho kinase (ROCK). We examined cytoskeletal structures in cultured murine lung alveolar epithelial cells (MLE-12) under normoxic and hyperoxic (48 h) conditions. We also measured cell elasticity (E) using an atomic force microscope in the indenter mode. Hyperoxia caused increased f-actin stress fibers and bundle formation, an increase in g- and f-actin, an increase in nuclear area and a decrease in nuclear height, and cells became stiffer (higher E). Treatment with an inhibitor (Y-27632) of ROCK significantly decreased E and prevented the cytoskeletal changes, while it did not influence the nuclear height and area. Pre-exposure of cells to hyperoxia promoted detachment when cells were subsequently stretched cyclically, but the ROCK inhibitor prevented this effect. Hyperoxia caused thickening of vinculin focal adhesion plaques, and inhibition of ROCK reduced the formation of distinct focal adhesion plaques. Phosphorylation of focal adhesion kinase was significantly reduced by both hyperoxia and treatment with Y-27632. Hyperoxia caused increased cell stiffness and promoted cell detachment during stretch. These effects were ameliorated by inhibition of ROCK.

  15. Measurement of the elastic modulus of spider mite silk fibers using atomic force microscopy

    Science.gov (United States)

    Hudson, Stephen D.; Zhurov, Vladimir; Grbić, Vojislava; Grbić, Miodrag; Hutter, Jeffrey L.

    2013-04-01

    Bio-nanomaterials are one of the fastest developing sectors of industry and technology. Spider silk, a highly attractive light-weight biomaterial, has high tensile strength and elasticity and is compatible with human tissues, allowing for many areas of application. In comparison to spider silk fibers with diameters of several micrometers, spider mite silk fibers have much smaller diameters of tens of nanometers, making conventional tensile testing methods impractical. To determine the mechanical properties of adult and larval Tetranychus urticae silk fibers, we have performed three-point bending tests with an atomic force microscope. We found that because of the small diameters of these fibers, axial tension—due to both the applied force and a pre-existing strain—has a significant effect on the fiber response, even in the small-deformation limit. As a result, the typical Euler-Bernoulli-Timoshenko theory cannot be applied. We therefore follow the approach of Heidelberg et al. to develop a mechanical model of the fiber response that accounts for bending, an initial tension in the fibers, and a tension due to elongation during testing. This model provides self-consistent results, allowing us to determine that adult and larval fibers have Young's moduli of 24±3 GPa and 15±3 GPa, respectively. Both adult and larval fibers have an estimated ultimate strength of 200-300 MPa and a toughness of order 9 MJ/m3. We note that with increasing interest in the mechanical properties of very high aspect ratio nanomaterials, the influence of pre-existing tension must be considered in any measurements involving a bending test.

  16. Modulus of elasticity loss as a rapid indicator of rot-fungal attack on untreated and preservative-treated wood in laboratory tests

    Science.gov (United States)

    Xingxia Ma; Grant T. Kirker; Carol A. Clausen; Mingliang Jiang; Haibin Zhou

    2017-01-01

    The modulus of elasticity (MOE) of wood is a sensitive indicator of rotfungal attack. To develop an alternative method of rapid assessment of fungal decay in the laboratory, changes in static MOE of untreated and preservative-treated wood were measured during exposure to the brownrot fungus, Gloeophyllum trabeum, and the white-rot fungus, Trametes...

  17. Bacterial deposition to fluoridated and non-fluoridated polyurethane coatings with different elastic modulus and surface tension in a parallel plate and a stagnation point flow chamber

    NARCIS (Netherlands)

    Bakker, D.P.; Huijs, F.M.; Vries, J. de; Klijnstra, J.W.; Busscher, H.J.; Mei, H.C. van der

    2003-01-01

    Deposition of three marine bacterial strains with different cell surface hydrophobicities from artificial seawater to polyurethane coatings on glass with different surface tensions and elastic modulus was studied in situ in a parallel plate (PP) and stagnation point (SP) flow chamber. Different surf

  18. Undifferentiated bronchial fibroblasts derived from asthmatic patients display higher elastic modulus than their non-asthmatic counterparts.

    Directory of Open Access Journals (Sweden)

    Michal Sarna

    Full Text Available During asthma development, differentiation of epithelial cells and fibroblasts towards the contractile phenotype is associated with bronchial wall remodeling and airway constriction. Pathological fibroblast-to-myofibroblast transition (FMT can be triggered by local inflammation of bronchial walls. Recently, we have demonstrated that human bronchial fibroblasts (HBFs derived from asthmatic patients display some inherent features which facilitate their FMT in vitro. In spite of intensive research efforts, these properties remain unknown. Importantly, the role of undifferentiated HBFs in the asthmatic process was systematically omitted. Specifically, biomechanical properties of undifferentiated HBFs have not been considered in either FMT or airway remodeling in vivo. Here, we combine atomic force spectroscopy with fluorescence microscopy to compare mechanical properties and actin cytoskeleton architecture of HBFs derived from asthmatic patients and non-asthmatic donors. Our results demonstrate that asthmatic HBFs form thick and aligned 'ventral' stress fibers accompanied by enlarged focal adhesions. The differences in cytoskeleton architecture between asthmatic and non-asthmatic cells correlate with higher elastic modulus of asthmatic HBFs and their increased predilection to TGF-β-induced FMT. Due to the obvious links between cytoskeleton architecture and mechanical equilibrium, our observations indicate that HBFs derived from asthmatic bronchi can develop considerably higher static tension than non-asthmatic HBFs. This previously unexplored property of asthmatic HBFs may be potentially important for their myofibroblastic differentiation and bronchial wall remodeling during asthma development.

  19. Undifferentiated bronchial fibroblasts derived from asthmatic patients display higher elastic modulus than their non-asthmatic counterparts.

    Science.gov (United States)

    Sarna, Michal; Wojcik, Katarzyna A; Hermanowicz, Pawel; Wnuk, Dawid; Burda, Kvetoslava; Sanak, Marek; Czyż, Jarosław; Michalik, Marta

    2015-01-01

    During asthma development, differentiation of epithelial cells and fibroblasts towards the contractile phenotype is associated with bronchial wall remodeling and airway constriction. Pathological fibroblast-to-myofibroblast transition (FMT) can be triggered by local inflammation of bronchial walls. Recently, we have demonstrated that human bronchial fibroblasts (HBFs) derived from asthmatic patients display some inherent features which facilitate their FMT in vitro. In spite of intensive research efforts, these properties remain unknown. Importantly, the role of undifferentiated HBFs in the asthmatic process was systematically omitted. Specifically, biomechanical properties of undifferentiated HBFs have not been considered in either FMT or airway remodeling in vivo. Here, we combine atomic force spectroscopy with fluorescence microscopy to compare mechanical properties and actin cytoskeleton architecture of HBFs derived from asthmatic patients and non-asthmatic donors. Our results demonstrate that asthmatic HBFs form thick and aligned 'ventral' stress fibers accompanied by enlarged focal adhesions. The differences in cytoskeleton architecture between asthmatic and non-asthmatic cells correlate with higher elastic modulus of asthmatic HBFs and their increased predilection to TGF-β-induced FMT. Due to the obvious links between cytoskeleton architecture and mechanical equilibrium, our observations indicate that HBFs derived from asthmatic bronchi can develop considerably higher static tension than non-asthmatic HBFs. This previously unexplored property of asthmatic HBFs may be potentially important for their myofibroblastic differentiation and bronchial wall remodeling during asthma development.

  20. Elastic modulus in rigid Al{sub 2}O{sub 3}/ZrO{sub 2} ceramic laminates

    Energy Technology Data Exchange (ETDEWEB)

    Moya, J.S.; Sanchez-Herencia, J.A.; Bartolome, J.F. [CSIC, Madrid (Spain). Inst. de Ciencia de Materiales; Tanimoto, T. [Shonan Inst. of Tech., Fujisawa, Kanagawa (Japan)

    1997-10-01

    In previous works it has been shown that by making a three-layer composite in which the central region contains the matrix oxide and stabilized zirconia and the surface layers contain the matrix oxide and unstabilized zirconia, strength can be substantially enhanced relative to the monolithic materials containing the oxide matrix and either stabilized or unstabilized zirconia. The magnitude of the surface compressive stresses can be varied controlling the thickness of the outer layers and by proper thermal treatment in which the relative amounts of the monoclinic and tetragonal phases in the outer layers are controlled or by varying the volume fraction of total zirconia in the component. Often, the residual stresses are tailored to obtain high surface compression and a moderate bulk tension. In the present investigation, the authors have studied the effects of macroscopic residual stresses on stress intensities in the different layers of the Al{sub 2}O{sub 3}/ZrO{sub 2} laminates and the influence of the layered design on the elastic modulus of these materials.

  1. Measurement of elastic modulus and Vickers hardness of surround bone implant using dynamic microindentation--parameters definition.

    Science.gov (United States)

    Soares, Priscilla Barbosa Ferreira; Nunes, Sarah Arantes; Franco, Sinésio Domingues; Pires, Raphael Rezende; Zanetta-Barbosa, Darceny; Soares, Carlos José

    2014-01-01

    The clinical performance of dental implants is strongly defined by biomechanical principles. The aim of this study was to quantify the Vicker's hardness (VHN) and elastic modulus (E) surround bone to dental implant in different regions, and to discuss the parameters of dynamic microindantion test. Ten cylindrical implants with morse taper interface (Titamax CM, Neodent; 3.5 mm diameter and 7 mm a height) were inserted in rabbit tibia. The mechanical properties were analyzed using microhardness dynamic indenter with 200 mN load and 15 s penetration time. Seven continuous indentations were made distancing 0.08 mm between each other perpendicularly to the implant-bone interface towards the external surface, at the limit of low (Lp) and high implant profile (Hp). Data were analyzed by Student's t-test (a=0.05) to compare the E and VHN values obtained on both regions. Mean and standard deviation of E (GPa) were: Lp. 16.6 ± 1.7, Hp. 17.0 ± 2.5 and VHN (N/mm2): Lp. 12.6 ± 40.8, Hp. 120.1 ± 43.7. No statistical difference was found between bone mechanical properties of high and low profile of the surround bone to implant, demonstrating that the bone characterization homogeneously is pertinent. Dynamic microindantion method proved to be highly useful in the characterization of the individual peri-implant bone tissue.

  2. Modulus of elasticity and dry-matter content of bovine claw horn affected by the changes of chronic laminitis.

    Science.gov (United States)

    Hinterhofer, Christine; Apprich, Veronika; Ferguson, James C; Stanek, Christian

    2007-11-01

    The mechanical properties of horn samples from 22 hind claws with chronic laminitis were determined in adult Austrian Fleckvieh cows. The resistance to deformation was quantified as the modulus of elasticity (E). Tension tests revealed mean E values of 520MPa for the dorsal wall, 243MPa for the abaxial wall, 339MPa for the axial wall and 97MPa for the sole. E tended to be lower in laminitic horn than in sound horn in all segments tested, with the difference being largest in the abaxial wall. The mean dry-matter content (DMC) of the laminitic claws was 75.8% in the dorsal wall, 75.86% in the abaxial wall, 71.15% in the axial wall and 69.28% in the sole. These values are generally comparable to those for sound claws except in the axial wall. Further, E and DMC were only correlated in the axial wall. Chronic laminitis leads to a low resistance of claw horn to mechanical insults in the dorsal wall, abaxial wall and sole, and to the loss of a correlation between the E and DMC in these segments. The reason for these alterations is therefore not increased ingress of moisture, but must be due to changes in the microstructure, biochemical components and/or horn formation by the diseased dermis.

  3. Investigation of the elastic modulus, tensile and flexural strength of five skull simulant materials for impact testing of a forensic skin/skull/brain model.

    Science.gov (United States)

    Falland-Cheung, Lisa; Waddell, J Neil; Chun Li, Kai; Tong, Darryl; Brunton, Paul

    2017-04-01

    Conducting in vitro research for forensic, impact and injury simulation modelling generally involves the use of a skull simulant with mechanical properties similar to those found in the human skull. For this study epoxy resin, fibre filled epoxy resin, 3D-printing filaments (PETG, PLA) and self-cure acrylic denture base resin were used to fabricate the specimens (n=20 per material group), according to ISO 527-2 IBB and ISO20795-1. Tensile and flexural testing in a universal testing machine was used to measure their tensile/flexural elastic modulus and strength. The results showed that the epoxy resin and fibre filled epoxy resin had similar tensile elastic moduli (no statistical significant difference) with lower values observed for the other materials. The fibre filled epoxy resin had a considerably higher flexural elastic modulus and strength, possibly attributed to the presence of fibres. Of the simulants tested, epoxy resin had an elastic modulus and flexural strength close to that of mean human skull values reported in the literature, and thus can be considered as a suitable skull simulant for a skin/skull/brain model for lower impact forces that do not exceed the fracture stress. For higher impact forces a 3D printing filament (PLA) may be a more suitable skull simulant material, due to its closer match to fracture stresses found in human skull bone. Influencing factors were also anisotropy, heterogeneity and viscoelasticity of human skull bone and simulant specimens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Inverting Comet Acoustic Surface Sounding Experiment (CASSE) touchdown signals to measure the elastic modulus of comet material

    Science.gov (United States)

    Arnold, W.; Faber, C.; Knapmeyer, M.; Witte, L.; Schröder, S.; Tune, J.; Möhlmann, D.; Roll, R.; Chares, B.; Fischer, H.; Seidensticker, K.

    2014-07-01

    The landing of Philae on comet 67P/Churyumov-Gerasimenko is scheduled for November 11, 2014. Each of the three landing feet of Philae house a triaxial acceleration sensor of CASSE, which will thus be the first sensors to be in mechanical contact with the cometary surface. CASSE will be in listening mode to record the deceleration of the lander, when it impacts with the comet at a velocity of approx. 0.5 m/s. The analysis of this data yields information on the reduced elastic modulus and the yield stress of the comet's surface material. We describe a series of controlled landings of a lander model. The tests were conducted in the Landing & Mobility Test Facility (LAMA) of the DLR Institute of Space Systems in Bremen, Germany, where an industrial robot can be programmed to move landers or rovers along predefined paths, allowing to adapt landing procedures with predefined velocities. The qualification model of the Philae landing gear was used in the tests. It consists of three legs manufactured of carbon fiber and metal joints. A dead mass of the size and mass of the lander housing is attached via a damper above the landing gear to represent the lander structure as a whole. Attached to each leg is a foot with two soles and a mechanically driven fixation screw (''ice screw'') to secure the lander on the comet. The right soles, if viewed from the outside towards the lander body, house a Brüel & Kjaer DeltaTron 4506 triaxial piezoelectric accelerometer as used on the spacecraft. Orientation of the three axes was such that one of the axes, here the X-axis of the accelerometer, points downwards, while the Y- and Z-axes are horizontal. Data were recorded at a sampling rate of 8.2 kHz within a time gate of 2 s. In parallel, a video sequence was taken, in order to monitor the touchdown on the sand and the movement of the ice screws. Touchdown measurements were conducted on three types of ground with landing velocities between 0.1 to 1.1 m/s. Landings with low velocities were

  5. Class I and Class II restorations of resin composite: an FE analysis of the influence of modulus of elasticity on stresses generated by occlusal loading

    DEFF Research Database (Denmark)

    Asmussen, Erik; Peutzfeldt, Anne

    2008-01-01

    was that the marginal stresses would decrease with increasing modulus of elasticity of the restoration. METHODS: A cylindrical tooth was modelled in enamel and dentin and fitted with a Class I or a Class II restoration of resin composite. In one scenario the restoration was bonded to the tooth, in another...... the restoration was left nonbonded. The resin composite was modelled with a modulus of elasticity of 5, 10, 15 or 20 GPa and loaded occlusally with 100 N. By means of the soft-ware program ABAQUS the von Mises stresses in enamel and dentin were calculated. RESULTS: In the bonded scenario, the maximum stresses...... in the enamel were located at the occlusal margins (range 7-11 MPa), and in the dentin centrally at the pulpal floor (range 3.4-5.5MPa). The stresses decreased with increasing modulus of elasticity of the resin composite. In the nonbonded scenario, the stresses were higher in the dentin and lower in the enamel...

  6. Influence of microstructural evolution on mechanical behavior of Fe–Nb–B ultrafine composites with a correlation to elastic modulus and hardness

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.T.; Hong, S.H.; Park, H.J.; Park, G.H. [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neugdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Suh, J.Y. [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seoungbuk-gu, Seoul 136-791 (Korea, Republic of); Park, J.M., E-mail: jinman_park@hotmail.com [Global Technology Center, Samsung Electronics Co., Ltd, 129 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-742 (Korea, Republic of); Kim, K.B., E-mail: kbkim@sejong.ac.kr [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neugdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of)

    2015-10-25

    In this study, we explore the microstructural modulation and mechanical properties of Fe–Nb–B ultrafine composites by the addition of boron. According to the evolution of microstructure, mechanical properties including yield strength and plastic strain were significantly changed. With increase of boron content, Fe–B type compounds were newly formed and eutectic structured matrix was concurrently altered. Newly formed phases with high hardness/elastic modulus leads to considerably increase the yield strength up to 3110 MPa but macroscopic plasticity is deteriorated inadequately. To understand the origin of critically changed macroscopic mechanical properties, the values of hardness and elastic modulus obtained from nanoindentation test were plotted and demonstrated as a contour map. The structural characterization and nano-scale mechanical analysis are capable of providing the clear evidence to understand the relationship between microstructure and mechanical properties of the ultrafine multi-phase composites. - Highlights: • Fe–Nb–B heterogeneous ultrafine eutectic composites. • Nano-scale mechanical analysis has been performed by nanoindentation test. • Relationship between microstructural heterogeneity and mechanical coherency. • Hardness and elastic modulus were plotted as a mechanical contour map.

  7. To Estimate the Axial Elastic Modulus of Eye and Posterior Wall Thickness in Healthy Human Eye by Ultrasound Images and their Relation with Age and Gender

    Directory of Open Access Journals (Sweden)

    S. Shahbazi

    2007-06-01

    Full Text Available Introduction: Based on the invasive studies it has been shown that factors such as age, the progress of eye disorders, lens fibers compression and the biochemical changes of ocular matrix alter the physical characteristics and elastic properties of eye. In this study, a noninvasive method of estimating human eye elasticityis proposed and its relation with age and gender is evaluated using ultrasound images. Materials and Methods: To estimate eye elasticity, an especial loading system was designed and an external stress of 2614 ± 146 Pa which is less than the intraocular pressure of eye was applied to 20 eyes in an in vivo study. The pressure was measured using digital force gauge. The ultrasound images of B-mode were acquired prior to and post applying the stress. For the offline study throughout the loading process, the ultrasound images were saved as multi-frames into the computer by video grabber board. Monitoring, saving and further study of images were provided for the extraction of eye axial length and posterior wall thickness (PWT. The elasticity was estimated by measuring the relative changes of the axial length of eye, the posterior wall thickness and the applied stress. The statistical correlation of elastic modulus was analyzed based on age and gender. Results: The elastic modulus of the eye and the posterior wall thickness was estimated to be 51,777 ± 27304 and 14603 ± 4636 Pa, respectively. The obtained results indicated that there was no significant difference between the elastic parameters of the eye and the posterior wall thickness based on gender in both male and female group. The correlation analysis of the elastic parameter showed that there was significant difference between the eye and the posterior wall thickness based on age with a 95% confidence interval. Discussion and Conclusion: Based on the results obtained in this study the ultrasonic instruments might be used to estimate the hardness of eye lesions as well as eye

  8. Effect of time of sintering of a castable with andalusite aggregates in the rupture modulus and elastic modulus; Efeito do tempo de sinterizacao de um concreto refratario com agregados de andaluzita nos modulos de ruptura e elastico

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.R.; Garcia, G.C.R.; Claudinei, S.; Ribeiro, S., E-mail: mroliveira@ppgem.eel.usp.br [Universidade de Sao Paulo (DEMAR/EEL/USP), Lorena, SP (Brazil). Escola de Engenharia. Departamento de Engenharia de Materiais; Resende, W.S. [Industrias Brasileiras de Artigos Refratarios (IBAR), Lorena, SP (Brazil)

    2011-07-01

    The studied castable contain andalusite aggregates, and when sintered in temperatures above 1280 deg C, transformed into mullite improving the properties of concrete due to its low expansion and thermal conductivity, creep resistance and thermal shock. The refractory was homogenized in a mixer with 5.5% m/m of water and poured into a metal mold resulting in prismatic bars. After curing for 48 hours, were sintered at 1450 ° C for 0 h, 1 h, 2.5 h and 10 h with heating and cooling rates of 2 ° C / min. The results of elastic modules were, respectively, in GPa: 25.75±1.75, 37.79±0.36, 39.03±1.97 and 54.47±4.01, and rupture, MPa: 8.40±0.78, 11.94±0.68, 10.91±0.91 and 11,34±1.16, showing the increase in elastic modulus for longer times and for times exceeding one hour, no significant changes in results of the modulus of rupture , stabilizing the change of this refractory's properties after the first hour of sintering. (author)

  9. Estimation of elastic modulus of reinforcement corrosion products using inverse analysis of digital image correlation measurements for input in corrosion-induced cracking model

    DEFF Research Database (Denmark)

    Pease, Bradley Justin; Michel, Alexander; Thybo, Anna Emilie A.;

    2012-01-01

    A combined experimental and numerical approach for estimating the elastic modulus of reinforcement corrosion products is presented. Deformations between steel and mortar were measured using digital image correlation during accelerated corrosion testing at 100 μA/cm2 (~1.16 mm/year). Measured...... deformations were compared to a numerical corrosion model that considers electrochemical, transport, and mechanical processes, including penetration of corrosion products into a ‘corrosion-accommodating region,’ provided by the mortar’s capillary porosity, directly surrounding the steel. Comparing model...... and experimental results provides an order-of-magnitude approximation of corrosion product stiffness of 2.0 GPa....

  10. Barras de FRP: avaliando o módulo de elasticidade não destrutivamente FRP bars: assesing elastic modulus nondestructively

    Directory of Open Access Journals (Sweden)

    Protasio F Castro

    1997-06-01

    Full Text Available Um estudo experimental foi realizado com o objetivo de contribuir com o desenvolvimento de métodos de ensaios de avaliação das características mecânicas das barras de plástico reforçado com fibra (FRP a serem utilizadas como armadura nas obras de engenharia civil. Comparou-se o módulo de elasticidade estático, obtido por ensaio de tração em uma máquina universal, com o módulo de elasticidade dinâmico, obtido por ensaios não destrutivos. O módulo de elasticidade dinâmico foi determinado utilizando-se dois métodos de propagação de ondas: o pulso ultra-sônico e a freqüência de ressonância. Os valores do módulo de elasticidade dinâmico e os valores do módulo de elasticidade estático obtidos a partir da curva tensão-deformação dos ensaios de tração são significativamente semelhantes. Os resultados mostram que os ensaios de módulo de elasticidade dinâmico possuem potencial para serem utilizados na linha de fabricação das barras de FRP como controle da produção.An experimental study was carried out to support the development of standards test methods for fiber reinforced plastic (FRP bars used as concrete reinforcement. In addition, this study compares the elastic modulus values from tensile stress-strain curves with the dynamic values obtained nondestructively. Dynamic modulus of elasticity was determined using two stress wave propagation methods: ultrasonic pulse velocity and resonant frequency. The dynamic values compared favorably with values obtained from tensile stress-strain curves. The results showed the feasibility of using nondestructive methods, as control test, to estimate FRP bars elastic modulus in a manufacture process.

  11. Elastic modulus of Al-Si/SiC metal matrix composites as a function of volume fraction

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh Kumar, S; Rajasekharan, T [Powder Metallurgy Group, Defence Metallurgical Research Laboratory, Kanchanbagh PO, Hyderabad-500 058 (India); Seshu Bai, V [School of Physics, University of Hyderabad, Central University PO, Hyderabad-500 046 (India); Rajkumar, K V; Sharma, G K; Jayakumar, T, E-mail: dearsanthosh@gmail.co [Non-Destructive Evaluation Division, Indira Gandhi Center for Atomic Research, Kalpakkam, Chennai-603 102 (India)

    2009-09-07

    Aluminum alloy matrix composites have emerged as candidate materials for electronic packaging applications in the field of aerospace semiconductor electronics. Composites prepared by the pressureless infiltration technique with high volume fractions in the range 0.41-0.70 were studied using ultrasonic velocity measurements. For different volume fractions of SiC, the longitudinal velocity and shear velocity were found to be in the range of 7600-9300 m s{sup -1} and 4400-5500 m s{sup -1}, respectively. The elastic moduli of the composites were determined from ultrasonic velocities and were analysed as a function of the volume fraction of the reinforcement. The observed variation is discussed in the context of existing theoretical models for the effective elastic moduli of two-phase systems.

  12. Effect of Cylinder Size on the Modulus of Elasticity and Compressive Strength of Concrete from Static and Dynamic Tests

    Directory of Open Access Journals (Sweden)

    Byung Jae Lee

    2015-01-01

    Full Text Available The primary objective of this study is to investigate the effects of cylinder size (150 by 300 mm and 100 by 200 mm on empirical equations that relate static elastic moduli and compressive strength and static and dynamic elastic moduli of concrete. For the purposes, two sets of one hundred and twenty concrete cylinders, 150 by 300 mm and 100 by 200 mm, were prepared from three different mixtures with target compressive strengths of 30, 35, and 40 MPa. Static and dynamic tests were performed at 4, 7, 14, and 28 days to evaluate compressive strength and static and dynamic moduli of cylinders. The effects of the two different cylinder sizes were investigated through experiments in this study and database collected from the literature. For normal strength concrete (≤40 MPa, the two different cylinder sizes do not result in significant differences in test results including experimental variability, compressive strength, and static and dynamic elastic moduli. However, it was observed that the size effect became substantial in high strength concrete greater than 40 MPa. Therefore, special care is still needed to compare the static and dynamic properties of high strength concrete from the two different cylinder sizes.

  13. Characterization of High Temperature Modulus of Elasticity of Lightweight Foamed Concrete under Static Flexural and Compression: An Experimental Investigations

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2012-09-01

    Full Text Available This paper focused on an experimental works that have been performed to examine the young’s modulus of foamed concrete at elevated temperatures up to 600°C. Foamed concrete of 650 and 1000 kg/m3 density were cast and tested under compression and bending. The experimental results of this study consistently demonstrated that the loss in stiffness for cement based material like foamed concrete at elevated temperatures occurs predominantly after about 95°C, regardless of density. This indicates that the primary mechanism causing stiffness degradation is microcracking, which occurs as water expands and evaporates from the porous body. As expected, reducing the density of LFC reduces its strength and stiffness. However, for LFC of different densities, the normalised strength-temperature and stiffness-temperature relationships are very similar.

  14. Using the ultrasound and instrumented indentation techniques to measure the elastic modulus of engineering materials; Medicion del modulo de elasticidad en materiales de ingenieria utilizando la tecnica de indentacion instrumentada y de ultrasonido

    Energy Technology Data Exchange (ETDEWEB)

    Meza, J. M.; Franco, E. E.; Farias, M. C. M.; Buiochi, F.; Souza, R. M.; Cruz, J.

    2008-07-01

    Currently, the acoustic and nano indentation techniques are two of the most used techniques for materials elastic modulus measurement. In this article fundamental principles and limitations of both techniques are shown and discussed. Last advances in nano indentation technique are also reviewed. an experimental study in ceramic, metallic, composite and single crystals was also done. Results shown that ultrasonic technique is capable to provide results in agreement with those reported in literature. However, ultrasonic technique does not allow measuring the elastic modulus of some small samples and single crystals. On the other hand, the nano indentation technique estimates the elastic modulus values in reasonable agreement with those measured by acoustic methods, particularly in amorphous materials, while in some policristaline materials some deviation from expected values was obtained. (Author) 29 refs.

  15. Using the ultrasound and instrumented indentation techniques to measure the elastic modulus of engineering materials; Medicion del modulo de elasticidad en materiales de ingenieria utilizando la tecnica de indentacion instrumentada y de ultrasonido

    Energy Technology Data Exchange (ETDEWEB)

    Meza, J. M.; Franco, E. E.; Farias, M. C. M.; Buiochi, F.; Souza, R. M.; Cruz, J.

    2008-07-01

    Currently, the acoustic and nano indentation techniques are two of the most used techniques for materials elastic modulus measurement. In this article fundamental principles and limitations of both techniques are shown and discussed. Last advances in nano indentation technique are also reviewed. an experimental study in ceramic, metallic, composite and single crystals was also done. Results shown that ultrasonic technique is capable to provide results in agreement with those reported in literature. However, ultrasonic technique does not allow measuring the elastic modulus of some small samples and single crystals. On the other hand, the nano indentation technique estimates the elastic modulus values in reasonable agreement with those measured by acoustic methods, particularly in amorphous materials, while in some policristaline materials some deviation from expected values was obtained. (Author) 29 refs.

  16. Correlation between the band gap, elastic modulus, Raman shift and melting point of CdS, ZnS, and CdSe semiconductors and their size dependency

    Science.gov (United States)

    Yang, C.; Zhou, Z. F.; Li, J. W.; Yang, X. X.; Qin, W.; Jiang, R.; Guo, N. G.; Wang, Y.; Sun, C. Q.

    2012-02-01

    With structural miniaturization down to the nanoscale, the detectable quantities of solid materials no longer remain constant but become tunable. For the II-VI semiconductors example, the band gap expands, the elastic modulus increases, the melting point drops, and the Raman optical phonons experience red shift associated with creation of low frequency Raman acoustic modes that undergo blue shift with decreasing the dimensional scale. In order to understand the common origin of the size dependency of these seemingly irrelevant properties, we formulated these quantities for CdS, ZnS, and CdSe semiconductors from the perspectives of bond order-length-strength correlation and the local bond averaging approach. Consistency between the theory predictions and the measured size dependence of these quantities clarified that the undercoordination-induced local strain and quantum entrapment and the varied fraction of undercoordinated atoms of the entire solid correlate these quantities and dominate their size effect.

  17. Tailored interface and enhanced elastic modulus in epoxy-based composites in presence of branched poly(ethyleneimine) grafted multiwall carbon nanotubes.

    Science.gov (United States)

    Rohini, Rani; Bose, Suryasarathi

    2015-03-28

    In this study, branched poly(ethyleneimine), BPEI, was synthesized from carboxylic acid terminated multi-walled carbon nanotubes (c-MWNTs) and characterized using FTIR, TEM and TGA. The BPEI was then chemically grafted onto MWNTs to enhance the interfacial adhesion with the epoxy matrix. The epoxy composites with c-MWNTs and the BPEI-g-MWNTs were prepared using a sonication and mechanical stirring method, followed by curing at 100 °C and post-curing at 120 °C. The dynamic mechanical thermal analysis showed an impressive 49% increment in the storage elastic modulus in the composites. In addition, the nanoindentation on the composites exhibited significant improvement in the hardness and decrease in the plasticity index in the presence of the BPEI-g-MWNTs. Thus, epoxy composites with BPEI-g-MWNTs can be further explored as self-healing materials.

  18. The Influence of Small Quantities of Oxygen in the Structure, Microstructure, Hardness, Elasticity Modulus and Cytocompatibility of Ti-Zr Alloys for Dental Applications

    Directory of Open Access Journals (Sweden)

    Fábio B. Vicente

    2014-01-01

    Full Text Available The mechanical properties of Ti alloys are changed significantly with the addition of interstitial elements, such as oxygen. Because oxygen is a strong stabilizer of the α phase and has an effect on hardening in a solid solution, it has aroused great interest in the biomedical area. In this paper, Ti-Zr alloys were subjected to a doping process with small amounts of oxygen. The influence of interstitial oxygen in the structure, microstructure and some selected mechanical properties of interest for use as biomaterial and biocompatibility of the alloys were analyzed. The results showed that in the range of 0.02 wt% to 0.04 wt%, oxygen has no influence on the structure, microstructure or biocompatibility of the studied alloys, but causes hardening of the alloys, increasing the values of the microhardness and causing variation in the elasticity modulus values.

  19. Estimation of an Effective Young’s Modulus of Elasticity in the Locality of the Gabčíkovo Hydrology Power Plant by Geometric Leveling

    Directory of Open Access Journals (Sweden)

    Mojzeš Marcel

    2015-03-01

    Full Text Available The Gabčíkovo hydroelectric power plant is located in a complicated geological environment (gravel sub-soil and a high groundwater level. Excavation work started after the withdrawal of water in the autumn of 1984 and lasted until the autumn of 1986. A basic geodetic control network with a special monument was founded before the excavation work began. This network served for the setting-out of the hydroelectric power plant as well as for the control of the excavation work. The repeated geodetic control measurements have been evaluated and presented at many seminars and conferences. Monitoring the horizontal and vertical stability of the geodetic control network during the general site excavation showed significant horizontal and vertical deformations. The paper is focused on an estimation of an effective Young's modulus of elasticity in the area studied.

  20. 基于复合材料的橡胶颗粒沥青混合料弹性模量预测%Elastic modulus prediction of crumb rubber asphalt mixture based on composite material

    Institute of Scientific and Technical Information of China (English)

    陈渊召; 李振霞

    2013-01-01

    为对橡胶颗粒沥青混合料弹性模量进行预估,分别建立单夹杂复合材料两层嵌入式模型和多步骤多相细观力学模型,得到橡胶颗粒沥青混合料弹性模量预测方法,对橡胶颗粒沥青混合料弹性模量进行预测;将弹性模量预测结果与实测结果进行对比分析,研究橡胶颗粒沥青混合料弹性模量影响因素,并对低温条件下弹性衰减进行分析.研究结果表明:该细观力学模型方法是有效的和可靠的,可用于预先评估橡胶颗粒沥青路面在低温下的力学性能和除冰能力;沥青胶浆的弹性模量对橡胶颗粒沥青混合料弹性模量的影响较大,且随沥青胶浆弹性模量的增大而增大;橡胶颗粒用量变化对混合料弹性模量的影响比较大,随着橡胶颗粒用量的增加,混合料弹性模量逐渐减小;在低温下,混合料的弹性模量显著增大,橡胶颗粒沥青路面的除冰效果将大大减弱.%In order to predict elastic modulus of crumb rubber asphalt mixture,two-layer embedded model of single inclusion composite and multi-step multiphase micro-mechanical model were established.Prediction method of elastic modulus for crumb rubber asphalt mixture was gotten.Elastic modulus of crumb rubber asphalt mixture was predicted,and elastic modulus comparative analysis of prediction results and measured results was carried out.Influencing factors of elastic modulus for crumb rubber asphalt mixture were researched,and deep analysis on elasticity attenuation under low temperature was carried out.The results show that the micro-mechanical model method is effective and reliable,and can be used to predict mechanical properties and deicing ability of crumb rubber asphalt mixture under low temperature.The effect of elastic modulus for asphalt mortar on elastic modulus for asphalt mixture is big,and elastic modulus of crumb rubber asphalt mixture increases with the increase of the asphalt mortar.The effect of crumb rubber

  1. Elastic Modulus Evolution and Behavior of Si/Mullite/BSAS-Based Environmental Barrier Coatings Exposed to High Temperature in Water Vapor Environment

    Science.gov (United States)

    Cojocaru, C. V.; Kruger, S. E.; Moreau, C.; Lima, R. S.

    2011-01-01

    Si-based ceramics (e.g., SiC and Si3N4) are known as promising high-temperature structural materials in various components where metals/alloys reached their ultimate performances (e.g., advanced gas turbine engines and structural components of future hypersonic vehicles). To alleviate the surface recession that Si-based ceramics undergo in a high-temperature environmental attack (e.g., H2O vapor), appropriate refractory oxides are engineered to serve as environmental barrier coatings (EBCs). The current state-of-the-art EBCs multilayer system comprises a silicon (Si) bond coat, mullite (3Al2O3·2SiO2) interlayer and (1 - x)BaO· xSrO·Al2O3·2SiO2, 0 ≤ x ≤ 1 (BSAS) top coat. In this article, the role of high-temperature exposure (1300 °C) performed in H2O vapor environment (for time intervals up to 500 h) on the elastic moduli of air plasma sprayed Si/mullite/BSAS layers deposited on SiC substrates was investigated via depth-sensing indentation. Laser-ultrasonics was employed to evaluate the E values of as-sprayed BSAS coatings as an attempt to validate the indentation results. Fully crystalline, crack-free, and near-crack-free as-sprayed EBCs were engineered under controlled deposition conditions. The absence of phase transformation and stability of the low elastic modulus values (e.g., ~60-70 GPa) retained by the BSAS top layers after harsh environmental exposure provides a plausible explanation for the almost crack-free coatings observed. The relationships between the measured elastic moduli of the EBCs and their microstructural behavior during the high-temperature exposure are discussed.

  2. Study on the use of 3-aminopropyltriethoxysilane and 3-chloropropyltriethoxysilane to surface biochemical modification of a novel low elastic modulus Ti-Nb-Hf alloy.

    Science.gov (United States)

    Paredes, V; Salvagni, E; Rodríguez-Castellon, E; Gil, F J; Manero, J M

    2015-04-01

    A biocompatible new titanium alloy Ti-16Hf-25Nb with low elastic modulus (45 GPa) and the use of short bioadhesive peptides derived from the extracellular matrix have been studied. In terms of cell adhesion, a comparative study with mixtures of short peptides as RGD (Arg-Gly-Asp)/PHSRN (Pro-His-Ser-Arg-Asn) and RGD (Arg-Gly-Asp)/FHRRIKA (Phe-His-Arg-Arg-Ile-Lys-Ala) have been carried out with rat mesenchymal cells. The effect of these mixtures of short peptides have already been studied but there are no comparative studies between them. Despite the wide variety of silane precursors available for surface modification in pure titanium, the majority of studies have used aminosilanes, in particular 3-minopropyltriethoxysilane (APTES). Nevertheless, the 3-chloropropyltriethoxysilane (CPTES) is, recently, proposed by other authors. Unlike APTES, CPTES does not require an activation step and offers the potential to directly bind the nucleophilic groups present on the biomolecule (e.g., amines or thiols). Since the chemical surface composition of this new alloy could be different to that pure titanium, both organosilanes have been compared and characterized by means of a complete surface characterization using contact angle goniometry and X-ray photoelectron spectroscopy.

  3. 基于暴露试验的桥梁混凝土长期弹性模量试验研究%Experimental Study on Long-term Elastic Modulus of Bridge Concrete Based on Exposure Experiment

    Institute of Scientific and Technical Information of China (English)

    吕毅刚; 韩伟威; 吕健鸣; 刘云峰

    2016-01-01

    为弥补传统测试方法的不足,建立暴露试验站,开展了自然暴露环境下的桥梁混凝土长期静、动弹性模量试验研究.运用超声波平测法,取不同测距的接收波波峰相关散点进行回归计算,获取桥梁混凝土的纵波波速及表面波波速,根据动弹性模量与波速的数学关系,计算出混凝土的动弹性模量.基于一批碎石混凝土试件的试验结果,分析了混凝土动弹性模量随时间发展的规律,构建了5~20 mm和5~30 mm两种连续级配碎石混凝土试件的静、动弹性模量换算公式.结合钢筋混凝土构件的试验研究,验证了该静、动弹性模量换算公式的适用性.本试验方法和研究成果为桥梁工程的长期弹性模量无损快速跟踪测试奠定了基础.%In order to remedy the deficiencies of traditional detection methods, an exposure experiment station is established, and the experimental research on the long-term static and dynamic elastic moduli of bridge concrete in natural exposure environment is carried out. By use of ultrasonic plane testing method, the longitudinal and surface wave velocities of bridge concrete are obtained through regression calculation of correlative points of the received wave crests of different ranges. The dynamic elastic modulus of concrete is calculated according to the mathematical relationship between dynamic elastic modulus and wave velocity. Based on the experimental results of a group of gravel concrete specimens, the rule of dynamic elastic modulus of concrete developing with time is analyzed, and the conversion formulas between static elastic modulus and dynamic elastic modulus of the concrete specimens with 5-20 mm and 5-30 mm gravels are set up. The applicability of the conversion formulas is verified by experimental research of reinforced concrete members. The detection methods and findings can lay the foundations of fast nondestructive follow - up detection of the long-term elastic modulus of

  4. Elastic moduli, damping and modulus of rupture changes in a high alumina refractory castable due to different types of thermal shock

    Directory of Open Access Journals (Sweden)

    Pereira, A. H. A.

    2012-06-01

    Full Text Available The work herein verifies the changes of the elastic moduli, damping and modulus of rupture (MOR of a high alumina refractory castable due to heating, cooling and heating-cooling thermal shock damage. Twelve prismatic specimens were prepared for the tests and divided into four groups. The thermal shocks were performed on three groups, each containing three specimens having abrupt temperature changes of 1100°C during heating in the first group, during cooling in the second and during heating followed by cooling in the third group. The fourth group, which was taken as a reference did not receive any thermal shock. The elastic moduli were measured after each thermal shock cycle. After 10 cycles, the MOR, the damping and the damping dependence on excitation amplitude were measured at room temperature for all specimens. The elastic moduli showed a similar decrease and the damping a similar increase due to the cooling and heating-cooling thermal shocks. The heating thermal shocks caused no significant changes on the elastic moduli and damping. However, the MOR appeared to be sensitive to the heating thermal shock. This work also shows that the damping for the studied refractory castable is non-linear (i.e., amplitude of excitation sensitive and that this non-linearity increases when the damage level rises.

    En este trabajo se investigaron las alteraciones de los módulos elásticos dinámicos, del amortiguamiento y del módulo de rotura (MOR de un material refractario moldeable de alta alúmina después de recibir choques térmicos de calentamiento, enfriamiento y calentamiento seguido de enfriamiento (calentamiento-enfriamiento. Para ello se prepararon doce cuerpos prismáticos dividiéndolos en cuatro grupos. Los choques térmicos se le aplicaron a sólo tres grupos, cada uno con tres muestras. Al primer grupo se le aplicó un cambio brusco de temperatura de 1100 °C en calentamiento, en enfriamiento al segundo grupo y calentamiento seguido

  5. Elasticity

    CERN Document Server

    Soutas-Little, Robert William

    2010-01-01

    According to the author, elasticity may be viewed in many ways. For some, it is a dusty, classical subject . . . to others it is the paradise of mathematics."" But, he concludes, the subject of elasticity is really ""an entity itself,"" a unified subject deserving comprehensive treatment. He gives elasticity that full treatment in this valuable and instructive text. In his preface, Soutas-Little offers a brief survey of the development of the theory of elasticity, the major mathematical formulation of which was developed in the 19th century after the first concept was proposed by Robert Hooke

  6. 基于微钻阻力的落叶松弹性模量快速检测%Research on Rapid Detection of Larch Wood Modulus of Elasticity Based on Micro-Drilling Resistance

    Institute of Scientific and Technical Information of China (English)

    孙燕良; 张厚江; 朱磊; 王喜平; 闫海成; 廖春晖

    2012-01-01

    以落叶松(Larix gmelinii)新鲜材、古建筑旧材为试验材料,运用微钻阻力仪对其内部的微钻阻力进行了快速检测,分析微钻阻力与两种落叶松材弹性模量之间的相关性及利用微钻阻力快速评估木材弹性模量的可行性.结果表明,对于新鲜落叶松材料,其微钻阻力检测值与弹性模量呈显著线性相关,可以利用微钻阻力较好地评估其弹性模量,且二者相关系数为0.831 9;对于古建筑的落叶松材料,利用微钻阻力快速检测弹性模量的精度则相对较差,二者相关系数为0.341 5,需结合其他检测指标综合进行判断.%Aimed at finding the correlation between the micro-drilling resistance and modulus of elasticity of two larch wood and the feasibility to rapid assessment of the modulus of elasticity, the micro-drilling resistance meter was adopted to detect the internal situation of new and old larch wood. The results showed that the micro-drilling resistance detection value and e-lastic modulus presented a significant linear correlation for general larch materials. The micro-drilling could be used to better assess the modulus of elasticity, and the correlation coefficient were 0.831 9 between them. However, for the old larch, the precision of ueing micro-drilling resistance for rapid detection of the elastic modulus were relatively poor with the correlation coefficient of 0.341 5, it should combine with other testing indicators to get the reliable data.

  7. Low elastic modulus Ti–Ta alloys for load-bearing permanent implants: Enhancing the biodegradation resistance by electrochemical surface engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kesteven, Jazmin [Biomaterials and Engineering Materials (BEM) Laboratory, School of Engineering and Physical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); Kannan, M. Bobby, E-mail: bobby.mathan@jcu.edu.au [Biomaterials and Engineering Materials (BEM) Laboratory, School of Engineering and Physical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); Walter, Rhys; Khakbaz, Hadis [Biomaterials and Engineering Materials (BEM) Laboratory, School of Engineering and Physical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); Choe, Han-Choel [Department of Dental Materials, Chosun University, Gwangju 501-759 (Korea, Republic of)

    2015-01-01

    In this study, the in vitro degradation behaviour of titanium–tantalum (Ti–Ta) alloys (10–30 wt.% Ta) was investigated and compared with conventional implant materials, i.e., commercially pure titanium (Cp-Ti) and titanium–aluminium–vanadium (Ti6Al4V) alloy. Among the three Ti–Ta alloys studied, the Ti20Ta (6.3 × 10{sup −4} mm/y) exhibited the lowest degradation rate, followed by Ti30Ta (1.2 × 10{sup −3} mm/y) and Ti10Ta (1.4 × 10{sup −3} mm/y). All the Ti–Ta alloys exhibited lower degradation rate than that of Cp-Ti (1.8 × 10{sup −3} mm/y), which suggests that Ta addition to Ti is beneficial. As compared to Ti6Al4V alloy (8.1 × 10{sup −4} mm/y), the degradation rate of Ti20Ta alloy was lower by ∼ 22%. However, the Ti30Ta alloy, which has closer elastic modulus to that of natural bone, showed ∼ 48% higher degradation rate than that of Ti6Al4V alloy. Hence, to improve the degradation performance of Ti30Ta alloy, an intermediate thin porous layer was formed electrochemically on the alloy followed by calcium phosphate (CaP) electrodeposition. The coated Ti30Ta alloy (3.8 × 10{sup −3} mm/y) showed ∼ 53% lower degradation rate than that of Ti6Al4V alloy. Thus, the study suggests that CaP coated Ti30Ta alloy can be a viable material for load-bearing permanent implants. - Highlights: • In vitro degradation of titanium–tantalum (Ti–Ta) alloys was studied. • Ta addition to Ti is beneficial for better degradation resistance. • Ti–Ta alloys perform better than commercially pure Ti. • Calcium phosphate coated Ti–Ta alloy is superior to Ti6Al4V alloy.

  8. 基于声卡和Adobe Audition的动弹性模量测试方法研究%Research on measurement method of dynamic elastic modulus based on sound card and adobe audition

    Institute of Scientific and Technical Information of China (English)

    刘绍娜; 李书伟; 汤沛; 李鹏飞; 张英

    2011-01-01

    弹性模量是表征材料弹性性质的特征物理量,在工程应用中具有重要的作用.设计了基于声卡和Adobe Audition的材料动弹性模量测定的测试系统,基于声卡的数据采集系统由传感器、调理装置、计算机组成.对不同长度的等强度悬臂梁进行实验,利用Matlab软件进行实验数据分析,得到悬臂梁的固有频率,从而根据理论公式计算出材料的动弹性模量,并与有限元分析结果进行比较.实验结果表明该测试系统测量精度较高,该试验方法简单易行,具有较强的实用性.%Elastic modulus is a physical quantity representing the elastic properties of the material, which is very important in engineering application.A test system of dynamic elastic modulus is proposed based on sound card and Adobe Audition,ire which the data acquisition system based on sound card is composed of a sensor,a processing device and a computer.Meanwhile different lengths of equal strength cantilever beams are experimented, which empirical data obtained are analyzed by using Mal\\ah.Thus the natural frequencies of cantilever beams are gained, and then dynamic elastic modulus is worked out based on the theoretical formula,which is compared with the finite element analysis.The results indicate that the test system is simple and feasible with high precise in me as wing, therefore it is practicable.

  9. Effective elastic modulus of a transverse isotropy solid with aligned inhomogeneity%横向各向同性固体材料中含定向非均匀体的有效弹性模量∗

    Institute of Scientific and Technical Information of China (English)

    许松; 唐晓明; 苏远大

    2015-01-01

    The effective modulus of transversely isotropic compound material containing aligned ellipsoidal inhomogeneity is derived using the method of sphere-equivalency of effective scattering. Based on this approach, we derive the integral solution of the Eshelby tensor for the anisotropic medium, allowing for numerically evaluating the effects of anisotropy for the solution. The numerical results show that the effective modulus of the medium decreases monotonically with increasing the concentration of the inhomogeneties. The anisotropy increases if the inhomogeneity alignment direction is perpendicular to the TI symmetry axis of the background medium. By reducing the numbers of matrix elastic modulus from 5 to 2, we calculate the slowness surfaces for the three modes of propagation in an isotropic medium containing aligned ellipsoidal inhomogeneity. The results are the same as the existing ones, which validates the exactness of our theory. The modeling results can be used to evaluate elastic property of an anisotropic medium with aligned inclusions, such as earth formation shale rocks containing aligned cracks.

  10. Temperature Dependence of the Elastic Modulus of (Ni0.6Nb0.41−xZrx Membranes: Effects of Thermal Treatments and Hydrogenation

    Directory of Open Access Journals (Sweden)

    Oriele Palumbo

    2015-05-01

    Full Text Available Amorphous (Ni0.6Nb0.41−xZrx membranes were investigated by means of X-ray diffraction, thermogravimetry, differential thermal analysis and tensile modulus measurements. Crystallization occurs only above 673 K, and even after hydrogenation the membranes retain their mainly amorphous nature. However, after exposure to gaseous hydrogen, the temperature dependence of the tensile modulus, M, displays large variations. The modulus of the hydrogen reacted membrane is higher with respect to the pristine samples in the temperature range between 298 K and 423 K. Moreover, a sharp drop in M is observed upon heating to approximately 473 K, well below the glass transition temperature of these glasses. We propose that the changes in the moduli as a function of temperature on the hydrogenated samples are due to the formation of nanocrystalline phases of Zr hydrides in (Ni0.6Nb0.41−xZrx-H membanes.

  11. 碳纳米管聚合物复合材料弹性模量预测模型研究进展∗%The research progress in predicting the elastic modulus of carbon nanotubes reinforced polymer composites

    Institute of Scientific and Technical Information of China (English)

    亚斌; 周秉文; 黄炳坤; 贾非; 丁旭; 任志原; 张兴国

    2015-01-01

    碳纳米管具有优异的力学、电学、光学和磁学等性能,是聚合物复合材料理想的增强体。弹性模量是材料重要的力学性能参数之一,本文介绍了近年来碳纳米管聚合物复合材料弹性模量的研究状况,综述了混合法则、Hashin-Shtrikman 模型、Cox 模型、Halpin-Tsai模型和数值模拟法预测碳纳米管聚合物复合材料弹性模量的方法,并提出了研究中面临的一些问题以及发展方向。%Carbon nanotubes have been considered as an ideal reinforcement for polymer composites owing to their outstanding mechanical,electrical,optical and magnetic properties.Elastic modulus is an important pa-rameter of mechanical properties of materials.The research progress of the study of the elastic modulus of car-bon nanotubes reinforced polymer composites was reviewed in this paper.Different method of predicting the elastic modulus of carbon nanotube/polymer composites,rule of Mixtures,Hashin-Shtrikman model,Cox model Halpin-Tsai model and numerical simulation were introduced.In addition,the problems and the develo-ping prospect in this field were discussed and previewed.

  12. 地应力与岩石弹性模量关系试验研究%Experimental study of relation between in-situ crustal stress and rock elastic modulus

    Institute of Scientific and Technical Information of China (English)

    秦向辉; 谭成轩; 孙进忠; 陈群策; 安美建

    2012-01-01

    在北京某深孔原岩应力测量和原岩应力测量段同等深度单轴及不同围压下的三轴岩石力学试验的基础上,结合统计的钻孔岩体结构参数,分析了原岩应力测量段深度处修正前、后的岩石弹性模量,进而探讨了地应力与岩石弹性模量间关系.结果表明,在花岗岩中,主应力大小与修正前、后的岩石弹性模量间均呈正相关关系,而在灰岩中,主应力大小与修正前、后岩石弹性模量间的关系不明确,需要进一步研究;在花岗岩中,主应力大小与修正后的岩石弹性模量间的相关性系数高于主应力大小与修正前的岩石弹性模量间的相关性系数:各向同性高的岩体(如花岗岩),实测地应力大小与岩石力学试验结果相关性好,而各向异性大的岩体(如沉积岩),实测地应力大小与岩石力学试验结果相关性较差.%An in-situ stress measurement and a rock mechanical test under different confining pressures and statistics of structure properties of rock mass in a deep borehole in Beijing have been carried out to research the relation between in-situ stress and rock elastic modulus thoroughly. The results are as follows: the relation between principal stress magnitude and rock elastic modulus shows a positive correlation in granite, but not clear in limestone. In granite, the relative coefficient between principal stress magnitude and revised rock elastic modulus exceeds the relative coefficient between principal stress magnitude and rock elastic modulus. The correlation between in-situ crustal stress magnitude and results of rock mechanical test in high-isotropic rock (e.g. granite) is high, but the correlation in low-isotropic rock (e.g. sedimentary rock) is low.

  13. A New Method of Studying Quantitatively the Non-Linear Elasticity Deformation Rock Volumetric Strain%一种定量研究非线弹性岩石体积应变新方法

    Institute of Scientific and Technical Information of China (English)

    李莲明; 李治平; 车艳

    2011-01-01

    When the rock is deformed by pressure decreasing in the formation, it is difficult to study the non-linear elasticity deformation rock volumetric strain. According to the power relationship between the non-elastic deformation rock elastic modelling quantity and effective pressure, this paper establishes the theoretic expressions between rock volumetric strain and effective pressure under the surface experiment conditions and the formation conditions, proposese a new method of the “Trial Calculation & Iteration”used to study the non-linear elasticity deformation rock volumetric strain quantitatively, calculates the a and b values of the rock non-linear elasticity deformation constants by means of the experiment databetween the non-linear elasticity rock volumetric strain and the effective pressure, and forecastes the non-linear elasticity deformation rock volumetric strain quantitatively. The application of this method indicates that the relative errors between the predictive values of the non-linear rock volumetric strain, rock porosity under the surface experiment conditions & rock porosity of the formation pressure decrease and the experiment values or the predictive values using experiment data of them should be less than or equal to 7.39%,0.80% & 3.92% and preferable consistance, and that it is possible to convert from the experimental data of the surface conditions to the data of reservoir conditions. This method provides an effective way to calculate the non-linear elasticity deformation rock volumetric strain quantitatively.%砂岩气藏地层压力下降岩石发生非线弹性变形时,定量研究非线弹性岩石体积应变的大小是个难点.由非线弹性岩石弹性模量与有效压力满足的乘幂关系,推导了地面实验和地层条件岩石体积应变理论关系,提出了一种定量研究岩石体积应变的试算迭代法,并结合岩石变形实验岩石体积应变与有效压力变化数据,求取了岩

  14. Calculation of Elastic Modulus of Corrugated Laminated Paper for Four-ply Corrugated Board%4层瓦楞纸板复合瓦楞纸弹性模量的计算

    Institute of Scientific and Technical Information of China (English)

    任艳玲; 卢立新

    2012-01-01

    应用复合材料细观力学分析方法,推导了4层瓦楞纸板的复合瓦楞纸的弹性模量。考虑2层瓦楞原纸间粘合剂的影响,分析了复合瓦楞纸纵向弹性模量与粘合剂体积分数及其纵向弹性模量的关系,并用实验进行了验证。为4层瓦楞纸板进一步的相关理论分析奠定基础。%Elastic modulus of corrugated laminated paper for four-ply corrugated board was deduced based on micromechanics analysis of composite material.Considering the effect of adhesive between two layers of base paper,the relationship between corrugated laminated paper's longitudinal elastic modulus and volume fraction as well as of the adhesive was analyzed.Verification experiments were carried out.The purpose was to provide reference for further theoretical analysis of four-ply corrugated paperboard.

  15. Experiment and Analysis about the Change of Elasticity Modulus of Coal with Different Water Contained%不同含水率下煤岩弹性模量变化实验分析

    Institute of Scientific and Technical Information of China (English)

    岑朝正; 蒋永芳; 蒋朝军

    2015-01-01

    The elasticity modulus of coal-body is related to the water quantity contained in the coal, due to the geology condition under which coal is deposited varies considerably, the water quantity is unconstant in the coal so that the elasticity modulus of coal-body is also different. To get a full understanding of the elasticity modulus of coal-body varying with water contained in the coal experiment relevant is carried out with the RMT-150B rock mechanism device before and after the coal in a degree of different waterlogged, the coal sample taken from Xinmi Coal Field.The elasticity modulus of coal-body changing with different water contained in the coal is learned, and the consequence of which is also analysed based on the acting mechanisation between the coal and the water contained in it. In the end, an conclusion can be drawn from the experiment that the elasticity modulus of coal has become samller and smaller according to the quantity of water-contained in the coal. The most important reason of that result is because the water occurring in the coal change the original colloid connection manner among coal matrix to that of water and colloid, with the connection force being dropped ,so that the capacity of the coal-body resistible to formation from out-side power become less.%煤岩体内通常含有一定的水份,由于煤岩体所处地质环境的差异,会造成煤岩体含水量不同,进而影响煤岩体的弹性模量。为了解不同含水率下煤岩体弹性模量变化规律,实验采取新密矿区煤样,通过在RMT-150B岩石力学试验装置上对浸泡前后煤样进行三轴应力加载实验,得出浸泡前后煤样的弹性模量变化,进而根据水与煤样之间的作用关系,分析了引起煤岩弹性模量变化的原因。实验结果显示经过浸泡后煤样的弹性模量降低,并且含水率增加越大,弹性模量降低越大。分析认为煤样弹性模量降低主要是由于水的存在是使颗粒之

  16. Experimental Study on Dynamic Elasticity Modulus and Damping Ratio of Highly Weathered Rock which Covered by Loess%黄土层下覆强风化岩动弹性模量和阻尼比试验研究

    Institute of Scientific and Technical Information of China (English)

    王平; 王杰民; 刘红玫; 王谦

    2011-01-01

    A series of studies on dynamic elasticity modulus and damping ratio of highly weathered rock which covered by loess are conducted with small strain ed, using triaxial shear equipment and their dynamics properties are analyzed. The results show that the dynamic stress and strain relation of highly weathered rock is nonlinear elastic relations, and fit the model of hyperbolic type with small strain ed. Within the same strain range, the mudstone's damping ratio is greater than the red sandstone's. In the same consolidation condition, the initial elastic modulus of red sandstone is greater than the one of mudstone. The research provides experimental technology and dynamic property parameters to dynamic response analysis and seismic deformation mechanism study for highly weathered rock which covered by thick layer of loess.%运用扭剪仪对小应变εd时黄土层下覆强风化岩的动模量和阻尼比进行了系列研究,分析了其动力学特性.结果表明,在小应变情况下风化岩体的动应力与动应变关系为非线性弹性关系,基本符合双曲线型模型;在相同应变范围内,泥岩阻尼比大于红砂岩的阻尼比;在相同固结条件下,红砂岩的初始动弹模大于泥岩初始动弹模.研究为厚覆盖层黄土场地及其下覆强风化岩层、隧道、高边坡动力反应分析和地震后土体变形机理研究提供了必要试验技术和参数.

  17. Mechanism of the Structure and Elastic Modulus Calculation of the Sliced Veneer Laminated Timber Cervical Splint%薄木层积材颈椎夹板构造机制及其弹性模量计算

    Institute of Scientific and Technical Information of China (English)

    张杨; 马岩; 杨春梅

    2013-01-01

    In modern biomedical technology,it is a more cutting-edge research to use biomedical materials as alternative materials for making medical assistance implements.In this paper,under the theory of modern cervical splint design,we researched the sliced veneer laminated timber cervical splint characteristics from micro-structure,and constructed a new sliced veneer laminated timber cervical splint.The paper gave the optimal size of sliced veneer of the molded cervical splint,and calculated the theoretical elastic modulus and its correlation coefficient which would impact its strength.Furthermore,we got the mechanical expression by deducing these the quantitative mathematical relation between the elastic modulus of coefficients and sliced veneer laminated timber cervical splint.This provided a basis for the micromechanics theory of cervical splint composite elastic mechanics,and provided experimental proofs.%采用现代颈椎夹板设计理论,从微观结构研究薄木层积材特性,构造新型薄木层积材颈椎夹板.文中给出模压颈椎夹板的薄木最优尺寸,求出其理论弹性模量,给出对强度产生影响的相关系数,并推导出这些系数和薄木层积材颈椎夹板的弹性模量之间定量的数学关系和力学表达式,为颈椎夹板复合弹性力学的微观力学理论提供基础,并给出试验证明.

  18. Módulo de elasticidade de grãos de milho submetidos a impactos mecânicos Modulus of elasticity of shelled corn submitted to mechanical impacts

    Directory of Open Access Journals (Sweden)

    Solenir Ruffato

    2001-04-01

    Full Text Available Neste trabalho investigou-se a viabilidade de se obter o módulo de compressão de grãos de milho, utilizando-se dados experimentais de força versus tempo, provenientes de testes de impacto, juntamente com uma análise estrutural elástica do processo. Os módulos de elasticidade foram determinados para grãos, a diferentes teores de umidade, submetidos a impactos de diferentes velocidades, e obtidos por um processo de otimização por meio da técnica de elementos finitos. Dois tipos de módulo foram avaliados: (a um módulo efetivo para todo o grão e (b um módulo para cada uma das três regiões, com diferentes características, segundo as quais o grão foi dividido. O teor de umidade e a velocidade de impacto influenciaram nos valores dos módulos. Módulos para grãos a 13,4% base úmida (b.u. foram maiores do que para aqueles a 20,0% b.u. A análise realizada (elástica mostrou-se ser mais adequada na obtenção de módulos de elasticidade de grãos a 13,4% b.u.; neste teor, os grãos apresentam características elásticas mais pronunciadas que quando a 20,0% b.u. e, nos grãos com altos teores de umidade, as características viscoelásticas tornam-se predominantes.In this study the viability of obtaining the corn compression modulus through an elastic structural analysis was investigated using force versus time data from grain impact tests. The moduli of elasticity of shelled corn at different moisture contents submitted to various impact velocities were determined. The moduli were obtained through an optimization process using the finite element technique. Two kinds of modulus were obtained: (a an effective modulus for the grain and (b a modulus for each one of the three regions, with different characteristics, in which the grain was divided. The moisture content and the impact velocity affected the modulus values. The moduli values for grains at 13.4% wet basis (w.b. were higher than those for grains at 20.0% w.b. The analysis used

  19. 静态弹性成像对正常乳腺组织弹性模量的影响%Research on effect of static elastography on the elastic modulus of normal breast tissue

    Institute of Scientific and Technical Information of China (English)

    梁思; 钱林学; 刘冬

    2015-01-01

    目的:研究静态弹性成像操作对正常乳腺组织弹性模量造成的影响。方法:①对15个正常腺体型乳腺同一位置进行静态超声弹性检测,截取未压缩时的图像及最大压缩图像,测量乳腺厚度(h,cm),计算最小伸长比(λ),得出静态弹性成像正常操作对正常乳腺组织造成的变形;②对50个正常腺体型乳腺采集未进行压缩时弹性模量(E0,kPa)及压缩所致伸长比达到第一部分所得λ时的弹性模量(Em,kPa)。分别计算弹性模量改变比(Rm/0),得出静态弹性成像正常操作时正常乳腺组织弹性模量的改变。结果:静态弹性成像操作中对正常腺体型乳腺造成的最小伸长比λ=0.74±0.07,静态弹性成像中正常操作造成的变形使正常乳腺组织弹性模量增加4.38倍。结论:静态弹性成像造成正常乳腺组织弹性模量增加4.38倍。%Objective:To investigate the effects of static ultrasound elastography on the elastic modulus of normal breast tissue.Methods: (1)Fifteen cases of normal breasts was tested by static ultrasound elastography at the same locations. Intercepted two pictures each time with one stress-free and the other compressed the maximum amount. For these two cases we measured the breast thickness and calculated the minimum stretch ratios(λ). (2)Fifty breasts with no breast nodules were prospectively enrolled in the study. Intercepted two pictures each time with one stress-free and the other compressed to the minimum stretch ratios(λ). For these two cases we measured the Elastic modulus (E0, Em, kPa). Calculate the elastic modulus change ratio (Rm/0).Results: (1)The minimum stretch ratio caused by static ultrasound elastography was 0.74±0.07. (2)The elastic modulus change ratio of static ultrasound elastography was 4.38±1.72. Conclusion: The normal operation of static ultrasound elastography caused 74 percent deformation in normal breast tissue. There was 4.38 times elastic

  20. MECHANICAL MODEL AND ELASTIC MODULUS OF GROUTED CONCRETE BLOCK MASONRY IN COMPRESSION%灌孔混凝土砌块砌体受压力学模型及其弹性模量

    Institute of Scientific and Technical Information of China (English)

    梁建国; 龙腾

    2012-01-01

    灌孔混凝土砌块砌体是由砌体和灌孔混凝土两部分组合而成,为了得到竖向压力作用下两种材料的相互作用机理,该文基于最小势能原理推导了砌体对灌孔混凝土的套箍系数以及灌孔混凝土砌块砌体内的应力分布,得到了灌孔混凝土砌块砌体的弹性模量可近似按材料力学组合截面公式进行计算,其计算结果与收集的全国65组281个试件试验结果符合良好,并通过试验结果统计得到了灌孔混凝土砌块砌体弹性模量的建议公式。理论分析和试验结果表明,我国现行规范中灌孔混凝土砌块砌体弹性模量取值偏低,将使配筋砌块砌体结构的设计计算结果偏于不安全。%In order to obtain the interaction mechanism between the grout and masonry in grouted concrete block masonry structures under vertical load, the hooping factor which denotes the hooping action of the masonry to the grouted concrete and the stress distribution in the grouted concrete block masonry is studied based on the minimum potential energy principle. The elastic modulus of grouted concrete block masonry can be approximately calculated according to the assembled section formula in material mechanics, and the calculation results of this formula agree well with the test results of 281 specimens in 65 groups. Another proposed formula to calculate the elastic modulus of the grouted concrete block is derived base on the test results by regression analysis method. Theoretical analysis and test results show that the value of elastic modulus of grouted concrete block masonry in our current code is low, indicating it is unsafe to guide the design of reinforced concrete block masonry structures.

  1. 种植牙用钛合金Ti-30Nb-8Zr-2Mo硬度及弹性模量%Micro-hardness and elastic modulus of Ti-30Nb-8Zr-2Mo alloy for dental implants

    Institute of Scientific and Technical Information of China (English)

    邓嘉胤; 崔春翔; 刘双进; 戚玉敏; 杨薇; 高平; 彭诚; 宫崎隆

    2009-01-01

    BACKGROUND: As dental implants, pure titanium and Ti-6Al-4V has achieved broad clinical applications, but they also contain toxic vanadium and aluminum element. Moreover, their elastic modulus is so high as to produce stress shield. OBJECTIVE: To examine the micro-hardness and elastic modulus of the self-made Ti-30Nb-8Zr-2Mo titanium alloy. DESIGN, TIME AND SETTING: An observational experiment was performed at the laboratory of College of Material Science and Engineering at Hebei University of Technology between March 2003 and February 2006. MATERIALS: Titanium alloy was prepared using titanium sponge (≥ 99% purify), niobium strip (≥ 99.9% purify), molybdenum powder (≥ 99% purify) and zirconium sponge (≥ 99.4% purify).METHODS: The micro-hardness of the specimens was determined after uniformly annealing, hot-forging and solution. Compression test was conducted on post-aging samples. MAIN OUTCOME MEASURES: Hardness and stress-strain curve.RESULTS: The maximal alloy strength was obtained after solution under 800 ℃ for 0.5 hours. Post-aging alloy's hardness was improved significantly although little change occurred on solution alloy. Compressive strength of alloy samples was 1 054 MPa, while elastic modulus reached 16.5 GPa. CONCLUSION: Both micro-hardness and elastic modulus of the self-made Ti-30Nb-8Zr-2Mo titanium alloy have satisfied performance requirements for dental implant materials.%背景:目前广泛应用于临床的纯钛和Ti-6AI-4V种植体材料中存在着铝和钒的潜在毒性及弹性模量太大易造成界面应力屏障等问题.目的:对自行研制的新型钛合金Ti-30Nb-8Zr-2Mo进行硬度及弹性模量性能测试.设计、时间及地点:观察实验,于2003-03/2006-02在河北工业大学材料学实验室完成.材料:钛合金制备用原材料海绵钛纯度≥99%、钼粉纯度≥99%、铌条≥99.9%、海绵锆≥99.4%.方法:在均匀化退火、热煅、固溶后对试样显微硬度进行测量,对时效后的样品

  2. Research on elastic modulus backcalculation of asphalt course using BP artificial neural network based on surface deflection basin of pavement%基于路表弯沉盆的BP人工神经网络反演沥青面层弹性模量研究

    Institute of Scientific and Technical Information of China (English)

    杨国良; 钟雯; 黄晓韵; 梁思敏; 何慧慧; 陈家驹

    2015-01-01

    Based on layered elastic theory,the elastic modulus of asphalt course in asphalt pavement was predicted using BP artificial neural network.According to the types of pavement structure in common use,the database of surface deflections with their corresponding structural parameters of asphalt course based on layered elastic theory was established.The elastic modulus backcalculation model of asphalt course in asphalt pavement was developed using BP artificial neural network to predict.The predictive results of asphalt course elastic modulus backcalculation using theoretical deflection basin and measured deflection basin indicate that the elastic modulus backcalculation model of asphalt course in asphalt pavement is of good predictive accuracy and reliability.It would provide the references with the elastic modulus backcalculation model of asphalt course to accurately and quickly estimate the conditions of asphalt course in asphalt pavement.%基于层状弹性体系理论,建立BP人工神经网络反演沥青路面沥青面层弹性模量预测模型,利用BP人工神经网络预测沥青路面沥青面层弹性模量.理论弯沉盆和实测弯沉盆反演沥青面层弹性模量的结果表明,建立的BP人工神经网络反演沥青路面沥青面层弹性模量模型具有良好的预测精度和可靠性,为评价沥青路面的沥青面层性能状况提供了参考.

  3. Application of an elastic 2D tube-waveform tomography to estimate the shear modulus in the vicinity of the FINO3 offshore platform

    Science.gov (United States)

    Köhn, D.; Wilken, D.; Rabbel, W.

    2012-04-01

    The FINO3 project is aimed at the construction of an offshore research platform in the north-sea, hosting research projects dealing with offshore wind energy topics. As part of FINO3 our sub-project deals with the development of new seismic acquisition and inversion concepts for offshore-building foundation soil analysis. We are focussed on the determination of seismic parameters and structural information of the building plot of the platform. Possible changes of the shear modulus of the sediments in the vicinity of the FINO3 monopile due to mechanic loads on the platform are estimated by a tube-waveform tomography. The tube-waves are excited by a hammer blow at the internal wall of the FINO3 monopile above the water line. The tube-waves are propagating through the water column and the sediments and are measured in situ by hydrophones at the external wall of the monopile. Homogenous long wavelength starting models for the waveform tomography are estimated using simple 2D finite difference models. Possible shear-wave velocity starting models range from 150-300 m/s. The resolution of the tube-waveform tomography is estimated by simple chequerboard and random media models. Additionally first results of the data application in the vicinity of the monopile are presented.

  4. Comparative Study of Surface Chemical Composition and Oxide Layer Modification upon Oxygen Plasma Cleaning and Piranha Etching on a Novel Low Elastic Modulus Ti25Nb21Hf Alloy

    Science.gov (United States)

    Paredes, Virginia; Salvagni, Emiliano; Rodríguez-Castellón, Enrique; Manero, José María

    2017-08-01

    Metals are widely employed for many biological artificial replacements, and it is known that the quality and the physical/chemical properties of the surface are crucial for the success of the implant. Therefore, control over surface implant materials and their elastic moduli may be crucial to avoid undesired effects. In this study, surface modification upon cleaning and activation of a low elastic modulus Ti alloy (Ti25Hf21Nb) was investigated. Two different methods, oxygen plasma (OP) cleaning and piranha (PI) solution, were studied and compared. Both surface treatments were effective for organic contaminant removal and to increase the Ti-oxide layer thickness rather than other metal-oxides present at the surface, which is beneficial for biocompatibility of the material. Furthermore, both techniques drastically increased hydrophilicity and introduced oxidation and hydroxylation (OH)-functional groups at the surface that may be beneficial for further chemical modifications. However, these treatments did not alter the surface roughness and bulk material properties. The surfaces were fully characterized in terms of surface roughness, wettability, oxide layer composition, and hydroxyl surface density through analytical techniques (interferometry, X-ray photoelectron spectroscopy (XPS), contact angle, and zinc complexation). These findings provide essential information when planning surface modifications for cleanliness, oxide layer thickness, and surface hydroxyl density, as control over these factors is essential for many applications, especially in biomaterials.

  5. Modulus-Pressure Equation for Confined Fluids

    CERN Document Server

    Gor, Gennady Y; Shen, Vincent K; Bernstein, Noam

    2016-01-01

    Ultrasonic experiments allow one to measure the elastic modulus of bulk solid or fluid samples. Recently such experiments have been carried out on fluid-saturated nanoporous glass to probe the modulus of a confined fluid. In our previous work [J. Chem. Phys., (2015) 143, 194506], using Monte Carlo simulations we showed that the elastic modulus $K$ of a fluid confined in a mesopore is a function of the pore size. Here we focus on modulus-pressure dependence $K(P)$, which is linear for bulk materials, a relation known as the Tait-Murnaghan equation. Using transition-matrix Monte Carlo simulations we calculated the elastic modulus of bulk argon as a function of pressure and argon confined in silica mesopores as a function of Laplace pressure. Our calculations show that while the elastic modulus is strongly affected by confinement and temperature, the slope of the modulus versus pressure is not. Moreover, the calculated slope is in a good agreement with the reference data for bulk argon and experimental data for ...

  6. Prediction of Equivalent Elastic Modulus of Porous Concrete through 3D Homogenization Theory%三维均匀化理论预测多孔混凝土等效弹性模量

    Institute of Scientific and Technical Information of China (English)

    张新; 程华; 王仲刚; 叶敏

    2015-01-01

    The finite element method (FEM) of 3D homogenization theory is derived through the homogenization theory in multi⁃scale to predict the equivalent elastic modulus of composite material. It is supposed that porous concrete consists of mortar ma⁃trix and identical smooth balls. To generate the random unit⁃cell model of porous concrete, an improved numerical method of ran⁃dom pores is presented. The expanded polystyrene (EPS) concrete is taken as an example. Six groups of random unit⁃cell models of different volume fractions of EPS concrete are generated, and its equivalent elastic modulus is calculated by FEM of 3D homogeniza⁃tion theory. It is shown that random unit⁃cell model can express both the nonuniform in mesoscale and the equivalent elastic modu⁃lus calculated by FEM of 3D homogenization theory is consistent with Miled’s test.%应用多尺度渐进展开的均匀化理论,推导三维均匀化理论的有限元解法,求解复合材料等效弹性系数。假设多孔混凝土由光滑均匀一致的球孔与水泥石基质组成,提出改进的随机投放方法,生成三维均匀化理论求解的随机单胞模型。以聚苯乙烯泡沫(EPS)混凝土为数值算例,生成6组不同体积分数的EPS混凝土随机单胞模型,通过三维均匀化理论的有限元法计算得到其等效弹性模量。计算结果表明:随机单胞模型能反映细观的非均质性,三维均匀化理论的有限元法计算得到的等效弹性模量变化趋势比较符合Miled的试验结果。

  7. Study of effects of fines content on dynamic elastic modulus and damping ratio of saturated sand%细粒含量对饱和砂土动弹性模量与阻尼比的影响研究

    Institute of Scientific and Technical Information of China (English)

    王勇; 王艳丽

    2011-01-01

    With the GDS dynamic triaxial system, undrained dynamic triaxial tests on the saturated sand of different fines contents were performed; and effects of fines content on the dynamic elastic modulus and damping ratio were analyzed. Results show that the dynamic elastic modulus of sand decreases with increasing of fines content; but the trend is reversed beyond the critical value of fines content of 30%. The damping ratio of sand firstly increases and then decreases with increasing fines content at the same critical value of fines content of 30%. When fines content is less than 30%, the dynamic characteristics of sand is determined mainly by the coarse grains; the skeleton void ratio between coarse grains increases with the increase of fines content; and the ability to resist deformation under the same strain level weakens so that the elastic modulus decreases. Meanwhile, the stress wave propagation speed slows down because of the reduction of contact points between soil particles, hysteresis quality of the soil dynamic load response strengthens and the damping ratio increases; when the fines content is greater than 30%, the dynamic characteristics of sand is determined mainly by the fine grains; the interfine void ratio decreases with increasing of fines content; so that the dynamic properties of sand shows a reverse trend.%利用GDS循环三轴试验系统,进行一系列不同细粒含量砂土的不排水动三轴试验,研究细粒含量对饱和砂土动弹性模量与阻尼比的影响.试验结果表明,砂土的动弹性模量随细粒含量的增加而减小,但当超过细粒含量的临界值30%后,变化趋势则相反;阻尼比随着细粒含量的增加呈现先增大后减小的趋势,其细粒含量的临界值也为30%.当细粒含量小于30%时,砂土的动力特性主要由粗粒决定,粗粒间形成的骨架孔隙比随细粒含量的增加而增大,相同应变水平下抵抗变形的能力随之减弱,从而使动弹性模量减小.同

  8. RESEARCH ON THE HETEROGENEOUS STATISTICAL PROPERTIES OF ELASTIC MODULUS OF A CONCRETE MESO-SCALE UNIT%混凝土材料细观单元弹模非均匀统计特性研究

    Institute of Scientific and Technical Information of China (English)

    杜修力; 金浏

    2012-01-01

    Concrete was assumed to compose of aggregate particles and a mortar matrix, and the concrete unit was processed equivalently based on the Voigt parallel model in the paper. The distribution of equivalent elastic modulus of a meso-unit was studied, based on the Weibull distribution, and a graphical method and the stepwise regression were applied to optimizing the estimated parameters. Furthermore, the validity of the assumed distribution was examined by the Kolmogorov test. The statistical parameter of element Young's modulus with different element-scale, and the spatial distribution randomness of aggregate were studied in the paper. The problem on material characteristic element scale of concrete of different grade-level was analyzed at the end of the paper. The analytical results indicate that: l) the form and the parameters of random distribution of elastic modulus of a concrete meso-scale unit have size effects, and not fully obey the Weibull distribution. 2) the variability of elastic modulus of a concrete meso-element associates with scales; and the variability increases firstly and tends to be stable gradually with the decrease of element size, which reflects the facts that there exists a reasonable representation of non-uniform degree of concrete at meso level. The reasonable scale, i.e. the variation coefficients tending to the inflection point of a smooth transition to the corresponding scale, is defined as a characteristic element scale. 3) The characteristic element scale of concrete material on two-grade, three-grade and four-grade are 10mm, 15mm and 18mm, respectively. 4) The spatial distribution randomness of aggregate has little effects on random distribution properties of elastic modulus of a concrete meso-unit.%假定混凝土是由骨料颗粒及砂浆基质组成的复合材料,基于Voigt并联模型对混凝土细观单元进行等效化,对单元的等效弹性模量进行统计分析。以Weibull分布为假设分布,

  9. 微米木纤维颈椎夹板的制备及其弹性模量模型%Preparation of micron wood ifbre cervical splint and its elastic modulus model

    Institute of Scientific and Technical Information of China (English)

    张杨; 马岩

    2015-01-01

    In order to meet the medical criteria in the strength of cervical splints, with micron grade wood ifber as the material, the micron wood ifbre cervical splint was prepared. Through the micro-organisational observation on Populus tomentosa wood ifbre (its density was 0.439 g/cm3 and its moisture content was between12% ~ 15%, it was found that the interior structure of the wood ifbre showed a stable honeycombed unidirectional spongy structure. The wood ifbre had good toughness and intensity when it was cut into the micron wood ifbre (average thickness 52mm) and it can be uses in medical cervical splint manufacturing after molded. By calculating the elastic modulus values under the different pavement states of wood ifbers, it also could be found that in the molding process, the ifber size, density, amount of compression, amount of glue, gluing effect and other factors all will cause influences to the elastic modulus of the cervical splint.%为制备出在强度上满足医用条件的颈椎夹板,以微米级的木纤维为材料,通过对密度0.439 g/cm3、含水率12%~15%的毛白杨进行微观组织观察,发现木材内部呈现稳定的蜂窝状单向多孔结构,用其切削出平均厚度为52 mm的木纤维,具有良好的韧性和强度,经过模压可用于制造医用颈椎夹板。对木纤维不同铺装状态下的弹性模量进行计算,得出了在模压过程中纤维尺寸、密度、压缩量、施胶量、胶合程度等因素都会对夹板弹性模量产生一定的影响。

  10. Study of low elastic modulus expandable screws in osteoporotic sheep in vivo%低弹性模量膨胀螺钉在骨质疏松绵羊的体内研究

    Institute of Scientific and Technical Information of China (English)

    石磊; 王陵; 雷伟; 郭征; 吴子祥; 刘达

    2011-01-01

    Objective To observe the biological performance of the low elastic modulus expandable screw in osteoporotic sheep in vivo and to find out whether the stability of the screw can be improved. Methods Four adult female sheep were ovariectomized. After 12 months, the bone mineral density of the lumber vertebra was determined using dual energy X-ray absorptiometry to confirm the establishment of the osteoporosis model. Bilateral pedicles of the lumbar vertebrae ( L, -L, ) were random fixed with two different elastic modulus expendable screws, low elastic module expandable screws (42GPa) for the experiment group and ordinary expandable screws (HOGPa) for the control group. All the animals were sacrificed 3 months after the implantation. Maximal force testing, micro-CT measurement, and histology analysis were performed. Results BMD of the lumbar vertebrae of the sheep decreased significantly 1 year after ovariectomy ( P 0. 05 ) . Histological observation showed that newly formed bone around the screws was more in the experimental group than in the controlgroup. Meanwhile more tight contact and less fibrous connective tissue were observed on the screw-boneinterface in the experimental group. Conclusion The low elastic modulus expandable screws can furtherimprove the biomechanioal fixation strength in osteoporotk: sheep and reduce the failure of the screwfixation, through reduction of the difference of elastic modulus between the screws and the surrounding bonetissue.%目的 观察应力作用下低弹性模量膨胀螺钉在骨质疏松绵羊体内生物学表现,探讨其是否能在普通膨胀螺钉的基础上进一步提高螺钉的稳定性.方法 选用4只成年雌性绵羊,行去势手术12月后,以双能X线骨密度测量仪测定去势前后腰椎骨密度,确定骨质疏松模型建立成功.于L1-L5脊椎两侧椎弓根内随机植入两种弹性模量的膨胀螺钉,低弹膨胀螺钉(42GPa)为实验组,普通膨胀螺钉(110GPa)为对照组,术后3月处

  11. 基于弹性模量的再生混凝土疲劳强度分析%On Fatigue Strength of Recycled Aggregate Concrete Based on Its Elastic Modulus

    Institute of Scientific and Technical Information of China (English)

    李宏; 肖建庄

    2012-01-01

    通过试验与分析,建立了再生混凝土弹性模量与其疲劳强度的回归公式,结果表明:由该回归公式计算出的再生混凝土受压疲劳强度与试验结果接近,可用来预测再生混凝土的受压疲劳强度,并指导工程实践;初步验证了GB 50010-2002《混凝土结构设计规范》中普通混凝土受压疲劳强度的取值方法对再生混凝土同样适用.%Based on the experiments and analysis, the relationship between the elastic modulus and the fatigue strength of recycled aggregate concrete(RAC) was established. The compressive fatigue strength calculated according to the formula suggested by this investigation is close to the experimental results, a reliable prediction for the compressive fatigue strength of RAC can be used to guide the engineering practice. And it is confirmed from this study that the method in code for GB 50010-2002 (Design of Concrete Structures> is suitable for the calculation of the compressive fatigue strength of RAC.

  12. Ultra-high Modulus Nano-Fluoroelastomers

    Science.gov (United States)

    Pan, David H.

    2004-03-01

    The cross-linking densities, glass transition temperatures, and physical properties of fluoroelastomers filled with a nanometer-size particle have been determined as a function of filler concentration and co-solvent using both dry and wet filler incorporation methodologies. Addition of alcohol to the casting solvent such as methyl isobutyl ketone results in about a factor of 1.5-3 increase in elastic modulus for elastomer of the same filler concentration. It is discovered that a properly prepared nano-fluoroelastomer can exhibit as much as a two-order-of-magnitude increase in elastic modulus as the filler concentration increases from zero to 35 parts per hundred of rubber (phr) by weight while the glass transition temperature does not change substantially with filler concentration. The effect of cross-linking density on the elastic modulus for these materials will be discussed in this paper.

  13. Elastic constant versus temperature behavior of three hardened maraging steels

    Science.gov (United States)

    Ledbetter, H. M.; Austin, M. W.

    1985-01-01

    Elastic constants of three maraging steels were determined by measuring ultrasonic velocities. Annealed steels show slightly lower bulk moduli and considerably lower shear moduli than hardened steels. All the elastic constants (Young's modulus, shear modulus, bulk modulus and Poisson's ratio) show regular temperature behavior between 76 and 400 K. Young's modulus and the shear modulus increase with increasing yield strength, but the bulk modulus and Poisson's ratio are relatively unchanged. Elastic anisotropy is quite small.

  14. Light-Curing Volumetric Shrinkage in Dimethacrylate-Based Dental Composites by Nanoindentation and PAL Study

    Science.gov (United States)

    Shpotyuk, Olha; Adamiak, Stanislaw; Bezvushko, Elvira; Cebulski, Jozef; Iskiv, Maryana; Shpotyuk, Oleh; Balitska, Valentina

    2017-01-01

    Light-curing volumetric shrinkage in dimethacrylate-based dental resin composites Dipol® is examined through comprehensive kinetics research employing nanoindentation measurements and nanoscale atomic-deficient study with lifetime spectroscopy of annihilating positrons. Photopolymerization kinetics determined through nanoindentation testing is shown to be described via single-exponential relaxation function with character time constants reaching respectively 15.0 and 18.7 s for nanohardness and elastic modulus. Atomic-deficient characteristics of composites are extracted from positron lifetime spectra parameterized employing unconstrained x3-term fitting. The tested photopolymerization kinetics can be adequately reflected in time-dependent changes observed in average positron lifetime (with 17.9 s time constant) and fractional free volume of positronium traps (with 18.6 s time constant). This correlation proves that fragmentation of free-volume positronium-trapping sites accompanied by partial positronium-to-positron traps conversion determines the light-curing volumetric shrinkage in the studied composites.

  15. 实时定量超声弹性成像技术检测肱二头肌横切面与纵切面弹性差异%Quantitative measurement for the elastic modulus of the cross section and longitudinal section of biceps brachii by shear-wave elasto-sonography

    Institute of Scientific and Technical Information of China (English)

    范春芝; 安力春; 徐建红; 王真; 孙静; 唐杰; 温朝阳

    2011-01-01

    目的 研究声束平行于肌纤维(纵切面)和声束垂直于肌纤维(横切面)时肱二头肌的杨氏模量值差异.方法 141例男性志愿者,年龄16~34岁,平均22岁,均无上肢外伤史、重症肌无力、进行性肌营养不良、周期性瘫痪、代谢性肌病等病史.使用法国Supersonic Imagine公司的AixPlore型实时定量剪切波超声弹性成像超声诊断仪,L4-15线阵探头.探头平行于肱二头肌肌纤维(纵切面)和垂直于肱二头肌肌纤维(横切面)时分别测量肱二头肌杨氏模量值并进行比较.结果 松弛状态下,肱二头肌纵切面杨氏模量值为(45.658±13.479)kPa,横切面杨氏模量值为(7.334±1.612) kPa,差异有统计学意义(P=0.0000);收缩状态下,肱二头肌纵切面杨氏模量值为(123.658±31.392) kPa,横切面杨氏模量值为(13.261±4.045)kPa,差异有统计学意义(P=0.0000).结论 肱二头肌纵切面杨氏模量值明显大于横切面杨氏模量值;肱二头肌弹性模量的各向异性,提示在检查心肌、肾脏等组织结构具有各向异性的脏器时,应注意到超声检查切面角度可能会影响其杨氏模量测量值大小;横切面检查和纵切面检查相结合也许能为疾病的诊断提供更多的信息和依据.%Objective To assess the elastic modulus difference of the ultrasonic beam parallel to the biceps brachii fiber( longitudinal section )and the ultrasonic beam perpendicular to the biceps brachii fibers( cross section ). Methods A total of 141 male volunteers aged 16 to 34 years ( mean 22 years old ), who had no history of upper extremity trauma, myasthenia gravis, progressive muscular dystrophy, periodic paralysis and metabolic myopathy were included in the study. A shear-wave elasto-sonography ( AixPlorer model, Supersonic Imagine, Aix en Provence, France ) coupled with a linear array transducer array ( 4-15 MHz ) was employed. The ultrasound transducer was parallel to the biceps brachii muscle fiber and then it was

  16. Interfacial Modulus Mapping during Structural Transformation in Shape Memory Alloys

    Science.gov (United States)

    Wan, Jianfeng; Cui, Shushan; Zhang, Jihua; Rong, Yonghua

    2017-10-01

    Through the modified phase-field model the local soft mode mechanism of nucleation during martensitic transformation was confirmed in shape memory alloys. It was discovered that the modulus loss (8 pct) depended on the martensitic nucleation exceeding the loss (1 pct) during the martensitic growth. The elastic modulus and the stress across the martensite/parent interface differed from those across the martensitic twin boundary. The modulus losses in systems with three variants, two variants, and one variant were compared.

  17. Ab initio study of the modification of elastic properties of {alpha}-iron by hydrostatic strain and by hydrogen interstitials

    Energy Technology Data Exchange (ETDEWEB)

    Psiachos, D., E-mail: dpsiachos@gmail.com [ICAMS, Ruhr-Universitaet Bochum, Bochum (Germany); Hammerschmidt, T., E-mail: thomas.hammerschmidt@icams.rub.de [ICAMS, Ruhr-Universitaet Bochum, Bochum (Germany); Drautz, R., E-mail: ralf.drautz@icams.rub.de [ICAMS, Ruhr-Universitaet Bochum, Bochum (Germany)

    2011-06-15

    The effect of hydrostatic strain and of interstitial hydrogen on the elastic properties of {alpha}-iron is investigated using ab initio density-functional theory calculations. We find that the cubic elastic constants and the polycrystalline elastic moduli to a good approximation decrease linearly with increasing hydrogen concentration. This net strength reduction can be partitioned into a strengthening electronic effect which is overcome by a softening volumetric effect. The calculated hydrogen-dependent elastic constants are used to determine the polycrystalline elastic moduli and anisotropic shear moduli. For the key slip planes in {alpha}-iron, [11-bar0] and [112-bar], we find a shear modulus reduction of approximately 1.6% per at.% H.

  18. Computational fluid dynamics modeling of airflow inside lungs using heterogenous anisotropic lung tissue elastic properties.

    Science.gov (United States)

    Ilegbusi, Olusegun; Li, Ziang; Min, Yugang; Meeks, Sanford; Kupelian, Patrick; Santhanam, Anand P

    2012-01-01

    The aim of this paper is to model the airflow inside lungs during breathing and its fluid-structure interaction with the lung tissues and the lung tumor using subject-specific elastic properties. The fluid-structure interaction technique simultaneously simulates flow within the airway and anisotropic deformation of the lung lobes. The three-dimensional (3D) lung geometry is reconstructed from the end-expiration 3D CT scan datasets of humans with lung cancer. The lung is modeled as a poro-elastic medium with anisotropic elastic property (non-linear Young's modulus) obtained from inverse lung elastography of 4D CT scans for the same patients. The predicted results include the 3D anisotropic lung deformation along with the airflow pattern inside the lungs. The effect is also presented of anisotropic elasticity on both the spatio-temporal volumetric lung displacement and the regional lung hysteresis.

  19. Research on Reasonable Elastic Modulus of High-strength Extruded Sheet Laid at Bridge Beam end and Used in CRTS-II Slab Track on Bridge%桥上CRTS域型板式轨道梁端高强度挤塑板的合理弹性模量研究

    Institute of Scientific and Technical Information of China (English)

    赵坪锐; 刘观; 胡佳

    2014-01-01

    依据梁端CRTS域型板式轨道的结构受力特征,采用梁模拟钢轨、轨道板和底座板,线性弹簧模拟扣件与CA砂浆的弹性作用,采用单向受压弹簧模拟滑动层与挤塑板的支撑作用,建立梁端轨道叠合梁计算模型,分析挤塑板弹性模量对无砟轨道承受轮载以及梁端位移时的受力变化规律。分析表明:由于梁端挤塑板弹性模量相对较低,列车通过时容易引起刚度不平顺、增大轨道受力,应适当提高挤塑板弹性模量;而梁端位移作用时,较大的挤塑板弹性模量则会引起较大的附加弯矩。综合考虑两方面作用,在常用32 m梁上,挤塑板弹性模量在10~50 MPa时,轨道受力状态最佳,其他梁型应根据实际梁端位移适当调整挤塑板弹性模量。%In this research, based on structural and mechanical characteristic of CRTS-II slab track at bridge beam end, a beam-track composite model at bridge beam end was established. In this model, the rail, track slab and base plate were assumed to be beam elements; the fastener and CA mortar were assumed to be linear springs so as to simulate their elastic effect;and the sliding layer and the extruded sheet were assumed to be uniaxial compression springs so as to simulate their supporting effect. Then the change rules of the action effects of both the wheel load and bridge beam end displacement were analyzed with the change of the elastic modulus of the extruded sheet. The analysis shows that: because of the lower elastic modulus of the extruded sheet, there will be uneven stiffness and increased rail stress when train passing through, so the elastic modulus of extruded sheet should be increased appropriately;and on the other hand, because of the higher elastic modulus of the extruded sheet, there will be additional bending moment when displacement angle appearing at bridge beam end. Then this research comes to the conclusion:according to a comprehensive

  20. 腰背部肌筋膜疼痛综合征激痛点的剪切波弹性模量研究%Study on the elastic modulus of shear wave for myofascial trigger points of lumber and back myofascial pain syndrome

    Institute of Scientific and Technical Information of China (English)

    李真; 吕恒勇; 任泽阳; 梁晓宁; 贾晓霞; 李硕; 牛雅莉; 李迎新; 郭瑞君

    2016-01-01

    Objective To investigate the clinical diagnostic value of elastography in myofascial pain syndrome by measuring the elastic properties of myofascial trigger points.Methods The elastic modulus of 30 myofascial trigger points from 15 female patients with myofascial pain syndrome and 8 normal points from 8 female healthy volunteers were measured by shear wave elastography.The mean,min,max,and standard deviation (SD) of elastic modulus in lesions,surrounding tissue of myofascial trigger point and normal points were recorded and compared,and the correlation between elasticity of myofascial trigger points and age,location were analyzed.Results The mean,min,max,and standard deviation of elastic modulus in lesion area of myofascial trigger point were significantly higher than that in surrounding tissue and normal points (P<0.05).There were no significant differences between lesion area of myofascial trigger point and normal points (P>0.05),and elastic modulus of myofascial trigger points bore no relation to age and location (P>0.05).Conclusions Shear wave elastic modulus can be used to differentiate lesion area and its adjacent area of trigger points and normal points,which will provide a new way to identify myofascial trigger point and new basis for palpation,thus has higher application value in clinical and research prospect.%目的 通过剪切波弹性成像(SWE)技术研究肌筋膜疼痛综合征激痛点的弹性特征,探索弹性超声技术在肌筋膜疼痛综合征临床诊断中的应用价值.方法 对8例女性健康志愿者的8个正常点和15例女性肌筋膜疼痛综合征患者腰背部30个激痛点行弹性超声检查,分别获得正常点、激痛点病灶区及邻近区定量分析取样框(Q-box)内弹性模量的均值(Mean)、最小值(Min)、最大值(Max)及标准差(SD);比较正常点、激痛点病灶区及临近区的弹性模量差异,探索激痛点弹性模量与患者年龄、所在部位的关系.结果 激痛点病灶区弹

  1. Serum liver fibrosis indexes and SWE detection of HBV infected hepatic elastic modulus and the correlation studies of liver fibrosis%HBV感染者肝脏弹性模量值及血清肝纤维化指标与肝纤维化的相关研究

    Institute of Scientific and Technical Information of China (English)

    陶国运; 张丽; 孙昳; 郑慧珂; 艾莉莎; 梁运光

    2015-01-01

    ObjectiveTo explore the application of real-time shear wave elasticity imaging to detect the liver elastic modulus and serum liver fibrosis indexes and liver fibrosis.Methods In Pingdingshan Coal Group General Hospital 68 patients who were diagnosed as chronic liver disease, were detected the serum indices of liver fibrosis, liver biopsy and SWE test, analyzed the liver elastic modulus values correlated with serum liver fibrosis indexes and liver pathology.ResultsIn group G0/G1, HA, PCⅢ, LN,ⅣC and S5 segments of the elastic value and S6 segment of elasticity values were not correlated; in group G2, HA and S6 segments of the elasticity value was positively correlated (r=0.58,P0.05); PCⅢ and S5, S6 segment of the elasticity value were positively correlated (r=0.65,P0.05);ⅣC and S5 segment of the elasticity value was positively correlated (r=0.91,P0.05); in group S0/S1, HA, PCⅢ, LN,ⅣC and S5 segments of the elastic value and S6 segment of elasticity values were not correlated; S2 in group A, HA and S6 segments of the elasticity value was positively correlated (r=0.54,P0.05); PCⅢ and S5, S6 segment of the elasticity value were positively correlated (r=0.72,P0.05);PCⅢ与S5、S6段的弹性值呈正相关(r=0.65,P0.05);ⅣC与S5段的弹性值呈正相关(r=0.91,P0.05);S0/S1组中,HA、PCⅢ、LN、ⅣC与S5段的弹性值及S6 段的弹性值均无相关关系;S2 组中, HA与S6段的弹性值呈正相关(r=0.54,P0.05);PCⅢ与S5、S6段的弹性值呈正相关(r=0.72,P<0.05;r=0.65,P<0.05);ⅣC与S5、S6段的弹性值呈正相关(r=0.66,P<0.05;r=0.52,P<0.05);S3/S4组中,HA、PCⅢ、LN、ⅣC与S5段的弹性值及S6段的弹性值均无相关性.肝组织炎症分级与纤维化分期有显著相关性(r=0.512,P<0.05).结论 实时剪切波弹性成像测得肝脏硬度与血清肝纤维化指标及肝脏病理有较好的相关性,实时剪切波弹性成像可动态监测肝纤维化进展,评估肝纤维化程度.

  2. 原子相互作用势对弹性模量随压强变化规律的影响研究%The Influences of the Atomic Interaction Potential on Pressure Dependence of Elastic Modulus

    Institute of Scientific and Technical Information of China (English)

    杨欢; 邢玲玲; 张穗萌; 吴兴举; 袁好

    2015-01-01

    Based on the interaction potential among particles and the isothermal bulk modulus ,we had discussed the rule of pres‐sure dependence of the isothermal bulk modulus with Born‐Mie potential and Born‐Mayer potential and Harrison potential .The conclusions shows that calculated results with Harrison potential were in good agreement with the available experimental data .%从体积弹性模量与原子相互作用势的关系出发,分别利用Born‐Mie势、Born‐Mayer势和 Harrison交叉排斥势函数来讨论弹性模量随压强变化的规律,结果表明,用Harrison交叉排斥势函数得到的理论预测值与实验结果吻合得很好。

  3. Influence of Two-Section Titanium Alloy Dental Implant Components with Different Elastic Modulus and Their Combinations on Implant-Bone Interface Stress Distribution%二段式钛合金种植牙不同弹性模量组件及其组合对骨界面应力分布的影响

    Institute of Scientific and Technical Information of China (English)

    石茂林; 李洪友; 陈梦月

    2014-01-01

    A two-section model of titanium alloy dental implant and bone issue was established by 3-D software Pro/E and meshed by Ansys Workbench 14.5.The influence of components of different elastic modulus and their combinations on implant-bone interface stress distribution was studied after setting material properties,constraints and loading.The method to improve dental implant system was studied.The result shows that the dental implant system of lower elastic modulus implants was with better biomechanical compatibility.A dental implant system using suitable modulus abutment and dental implant combination can reduce implant-bone interface stress effectively.%采用Pro/E三维构图软件及Ansys Workbench 14.5建立二段式钛合金种植牙系统模型,并进行网格划分.设定材料属性、约束和加载条件,分析种植牙系统不同弹性模量组件及其组合对骨界面应力分布的影响,研究种植牙系统的改进方法.结果表明:低模量值种植体具有更好的生物力学相容性,种植牙系统采用适宜模量值基台和种植体组合能够有效地降低骨界面应力.

  4. Volumetric Virtual Environments

    Institute of Scientific and Technical Information of China (English)

    HE Taosong

    2000-01-01

    Driven by fast development of both virtual reality and volume visualization, we discuss some critical techniques towards building a volumetric VR system, specifically the modeling, rendering, and manipulations of a volumetric scene.Techniques such as voxel-based object simplification, accelerated volume rendering,fast stereo volume rendering, and volumetric "collision detection" are introduced and improved, with the idea of demonstrating the possibilities and potential benefits of incorporating volumetric models into VR systems.

  5. The 'sixth sense' of ultrasound: probing nonlinear elasticity with acoustic radiation force.

    Science.gov (United States)

    Guzina, Bojan B; Dontsov, Egor V; Urban, Matthew W; Fatemi, Mostafa

    2015-05-07

    Prompted by a recent finding that the magnitude of the acoustic radiation force (ARF) in isotropic tissue-like solids depends linearly on a particular third-order modulus of elasticity-hereon denoted by C, this study investigates the possibility of estimating C from the amplitude of the ARF-generated shear waves. The featured coefficient of nonlinear elasticity, which captures the incipient nonlinear interaction between the volumetric and deviatoric modes of deformation, has so far received only a limited attention in the context of soft tissues due to the fact that the latter are often approximated as (i) fluid-like when considering ultrasound waves, and (ii) incompressible under static deformations. On establishing the analytical and computational platform for the proposed sensing methodology, the study proceeds with applying the prototype technique toward estimating via ARF the third-order modulus C in a series of tissue-mimicking phantoms. To help validate the concept and its implementation, the germane third-order modulus is independently estimated in each phantom via an established technique known as acoustoelasticity. The C-estimates obtained respectively via acoustoelasticity and the new theory of ARF show a significant degree of consistency. The key features of the new sensing methodology are that: (a) it requires no external deformation of a material other than that produced by the ARF, and (b) it estimates the nonlinear C-modulus locally, over the focal region of an ultrasound beam-where the shear waves are being generated.

  6. Determination of Young's modulus by nanoindentation

    Institute of Scientific and Technical Information of China (English)

    MA Dejun; Chung Wo Ong; LIU Jianmin; HE Jiawen

    2004-01-01

    A methodology for determining Young's modulus of materials by non-ideally sharp indentation has been developed. According to the principle of the same area-to-depth ratio, a non-ideally pyramidal indenter like a Berkovich one can be approximated by a non-ideally conical indenter with a spherical cap at the tip. By applying dimensional and finite element analysis to the non-ideally conical indentation, a set of approximate one-to-one relationships between the ratio of nominal hardness/reduced Young's modulus and the ratio of elastic work/total work, which correspond to different tip bluntness, have been revealed. The nominal hardness is defined as the maximum indentation load divided by the cross-section area of the conical indenter specified at the maximum indentation depth. As a consequence, Young's modulus can be determined from a nanoindentation test only using the maximum indentation load and depth, and the work done during loading and unloading processes. The new method for determining Young's modulus is referred to as "pure energy method". The validity of the method was examined by performing indentation tests on five materials. The experimental results and the standard reference values are in good agreement, indicating that the proposed pure energy method is a promising substitution for the most widely used analysis models at present.

  7. Elastic moduli of pyrope rich garnets

    Science.gov (United States)

    Pandey, B. K.; Pandey, A. K.; Singh, C. K.

    2013-06-01

    The elastic properties of minerals depend on its composition, crystal structure, temperature and level of defects. The elastic parameters are important for the interpretation of the structure and composition of the garnet rich family. In present work we have calculated the elastic moduli such as isothermal bulk modulus, Young's modulus and Shear modulus over a wide range of temperature from 300 K to 1000 K by using Birch EOS and Poirrier Tarantola equation of state. The obtained results are compared with the experimental results obtained by measuring the elastic moduli of single crystal. The calculated results show that the logarithmic isothermal EOS does not cooperate well with experimental results.

  8. Emprego de ferramentas numéricas na avaliação do módulo de elasticidade em vigas roliças de madeira Use of numerical tools in the evaluation of the longitudinal modulus of elasticity in round timber beams

    Directory of Open Access Journals (Sweden)

    André L. Christoforo

    2012-10-01

    . The use of round timber as a beam is very attractive, since it does not need to be processed, such as lumber. The design of structural timber elements requires the determination of its physical and mechanical properties in which are obtained based on the recommendations of engineering standards. In case of round timber, the national standards dealing with the determination of strength and stiffness properties are in term for more than twenty years with no technical review. Overall, both national and international standards consider truncated-cone geometry for cylindrical logs of wood, resulting in simplified equations unable to predict the effect of shape irregularities on the longitudinal modulus of elasticity. This paper aims to evaluate the effect of shape irregularity of round timber of Corymbia citriodora and Pinus caribaea to determine the longitudinal modulus of elasticity. The three-point bending test is used to determine the modulus, considering a simplified analytical model, with constant circular section for the element. The irregularities of the wood are considered in the numerical models based on a beam and three-dimensional finite elements. The results showed statistical equivalence between the modulus of elasticity for both methods of calculation, indicating that the constant circular section is a reasonable assumption for the wooden here evaluated.

  9. Experimental and Theoretical Study of Young Modulus in Micromachined Polysilicon Films

    Institute of Scientific and Technical Information of China (English)

    丁建宁; 孟永钢; 温诗铸

    2002-01-01

    The elastic modulus is a very important mechanical property in micromachined structures. Several design issues such as resonant frequencies and stiffness in the micromachined structures are related to the elastic modulus. In addition, the accuracy of results from finite element models is highly dependent upon the elastic modulus. In this study, the Young modulus of micromachined thin polysilicon films has been investigated with a new tensile test machine using a magnetic-solenoid force actuator with linear response, low hysteresis, no friction and direct electrical control. The tensile test results show that the measured average value of Young modulus for a typical sample, (164±1.2) GPa, falls within the theoretical bounds of the texture model. These results will provide more reliable design of polysilicon microelectromechanical systems (MEMS).

  10. Experiment Study and Interpretation on Relation between Modulus of Rock and Strain Amplitude

    Institute of Scientific and Technical Information of China (English)

    Bao Xueyang; Shi Xingjue; Wen Dan; Li Chengbo; Wang Xingzhou

    2006-01-01

    Nonlinear elasticity of the earth medium produces a numerical difference between the dynamic and the static modulus of rock. The dynamic modulus is calculated with the ultrasonic velocity measurement, the small-cycle modulus is calculated with small cycles in the load-unload experiment, the static modulus is calculated from the slope of the stress-strain curve in the large cycle, the Young' s modulus is obtained from the ratio of stress to strain in the measured point.The relationship between the modulus and the strain amplitudes is studied by changing the strain amplitude in the small cycles. The moduli obtained from different measuring methods are thus compared. The result shows that the dynamic modulus is the largest, the small-cycle modulus takes the second place, the static modulus of bigger-cycle is the third, and finally the Young's modulus is the smallest. Nonlinear modulus of rock is a function of the strain level and strain amplitude. The modulus decreases exponentially with the ascending of the strain amplitude, while increases with the ascending of the strain level. Finally, the basic concept of the P-M model is briefly introduced and the relationship between the modulus and strain amplitude is explained by the rock having different distribution densities and the different open-and-close stresses of the micro-cracks.

  11. Estimation of the Young’s modulus of cellulose Iß by MM3 and quantum mechanics

    Science.gov (United States)

    Young’s modulus provides a measure of the resistance to deformation of an elastic material. In this study, modulus estimations for models of cellulose Iß relied on calculations performed with molecular mechanics (MM) and quantum mechanics (QM) programs. MM computations used the second generation emp...

  12. Quantitative photoacoustic elastography of Young's modulus in humans

    Science.gov (United States)

    Hai, Pengfei; Zhou, Yong; Gong, Lei; Wang, Lihong V.

    2017-03-01

    Elastography can noninvasively map the elasticity distribution of biological tissue, which is often altered in pathological states. In this work, we report quantitative photoacoustic elastography (QPAE), capable of measuring Young's modulus of human tissue in vivo. By combining photoacoustic elastography with a stress sensor having known stress-strain behavior, QPAE can simultaneously measure strain and stress, from which Young's modulus is calculated. We first applied QPAE to quantify the Young's modulus of tissue-mimicking agar phantoms with different concentrations. The measured values fitted well with both the empirical expectations based on the agar concentrations and those measured in independent standard compression tests. We then demonstrated the feasibility of QPAE by measuring the Young's modulus of human skeletal muscle in vivo. The data showed a linear relationship between muscle stiffness and loading. The results proved that QPAE can noninvasively quantify the absolute elasticity of biological tissue, thus enabling longitudinal imaging of tissue elasticity. QPAE can be exploited for both preclinical biomechanics studies and clinical applications.

  13. The ‘sixth sense’ of ultrasound: probing nonlinear elasticity with acoustic radiation force

    Science.gov (United States)

    Guzina, Bojan B.; Dontsov, Egor V.; Urban, Matthew W.; Fatemi, Mostafa

    2015-05-01

    Prompted by a recent finding that the magnitude of the acoustic radiation force (ARF) in isotropic tissue-like solids depends linearly on a particular third-order modulus of elasticity—hereon denoted by C, this study investigates the possibility of estimating C from the amplitude of the ARF-generated shear waves. The featured coefficient of nonlinear elasticity, which captures the incipient nonlinear interaction between the volumetric and deviatoric modes of deformation, has so far received only a limited attention in the context of soft tissues due to the fact that the latter are often approximated as (i) fluid-like when considering ultrasound waves, and (ii) incompressible under static deformations. On establishing the analytical and computational platform for the proposed sensing methodology, the study proceeds with applying the prototype technique toward estimating via ARF the third-order modulus C in a series of tissue-mimicking phantoms. To help validate the concept and its implementation, the germane third-order modulus is independently estimated in each phantom via an established technique known as acoustoelasticity. The C-estimates obtained respectively via acoustoelasticity and the new theory of ARF show a significant degree of consistency. The key features of the new sensing methodology are that: (a) it requires no external deformation of a material other than that produced by the ARF, and (b) it estimates the nonlinear C-modulus locally, over the focal region of an ultrasound beam—where the shear waves are being generated.

  14. Numerical evaluation of the modulus of longitudinal elasticity in structural round timber elements of the Eucalyptus genus Avaliação numérica do módulo de elasticidade longitudinal em peças roliças estruturais de madeira do gênero Eucalyptus

    Directory of Open Access Journals (Sweden)

    André L. Christoforo

    2011-10-01

    Full Text Available Currently, the standards that deal with the determination of the properties of rigidity and strength for structural round timber elements do not take in consideration in their calculations and mathematical models the influence of the existing irregularities in the geometry of these elements. This study has as objective to determine the effective value of the modulus of longitudinal elasticity for structural round timber pieces of the Eucalyptus citriodora genus by a technique of optimization allied to the Inverse Analysis Method, to the Finite Element Method and the Least Square Method.Atualmente, os documentos normativos que tratam da determinação das propriedades de rigidez e resistência para elementos estruturais roliços de madeira, não levam em consideração em seus cálculos e modelos matemáticos a influência das irregularidades existentes na geometria dessas peças. Este trabalho tem como objetivo determinar o efetivo valor do módulo de elasticidade longitudinal para peças estruturais roliças de madeira do gênero Eucalyptus citriodora, por intermédio de uma técnica de otimização aliada ao Método da Análise Inversa, ao Método dos Elementos Finitos e ao Método dos Mínimos Quadrados.

  15. Módulo elástico como ferramenta para avaliação da hidratação da magnésia e dos processamento de concretos refratários Elastic modulus as a tool for magnesia hydration and refractory castables processing evaluation

    Directory of Open Access Journals (Sweden)

    T. M. Souza

    2012-09-01

    Full Text Available Considerando-se as dificuldades para a utilização de MgO em concretos refratários, técnicas anti-hidratação têm sido propostas com o objetivo de minimizar os efeitos deletérios causados pela reação da magnésia com a água. Em paralelo, surge a necessidade de investigar novas metodologias que permitam melhor avaliar os danos causados pela hidratação. Neste sentido, uma técnica promissora consiste no acompanhamento do módulo de Young durante as etapas de cura e secagem dos concretos. No presente trabalho, concretos refratários contendo magnésia cáustica ou sínter de MgO foram avaliados por meio do acompanhamento do módulo elástico utilizando-se o método de ressonância de barras. A avaliação das etapas iniciais de processamento (cura e secagem dos concretos por meio do uso desta técnica apresentou-se como uma alternativa adequada para detecção dos efeitos causados pela hidratação do MgO. Os resultados obtidos também destacam que, em comparação com outras técnicas comumente empregadas, as medidas do módulo elástico permitem delinear com maior precisão a evolução da microestrutura em função do tempo, além de detectar antecipadamente os danos relacionados à formação de brucita, garantindo-se assim maior sensibilidade no monitoramento de tal reação.Considering the difficulties related to the use of MgO in refractory castables, anti-hydration techniques have been proposed, in order to minimize the drawbacks as a result of the magnesia hydration. In parallel, new methodologies should be investigated, aiming better evaluation of the damage caused by the hydration. In this context, a promising technique is the Young's modulus measurement during curing and drying processing steps of refractory castables. In this work, caustic magnesia-containing castables and dead-burned magnesia-containing ones were evaluated by following the elastic modulus profile using the resonance bar method. The evaluation of the initial

  16. Aplicação do método de ensaio das frequências naturais de vibração para obtenção do módulo de elasticidade de peças estruturais de madeira Analysis of the natural vibration frequency test method to obtain the modulus of elasticity of wood structural components

    Directory of Open Access Journals (Sweden)

    Pedro Gutemberg de Alcântara Segundinho

    2012-12-01

    Full Text Available Existem diversas técnicas para caracterização do módulo de elasticidade de madeiras e, dentre as atualmente empregadas, destacam-se aquelas que utilizam as frequências naturais de vibração, por serem técnicas não destrutivas e, portanto, apresentarem resultados que podem ser repetidos e comparados ao longo do tempo. Este trabalho teve como objetivo avaliar a eficácia, dos métodos de ensaios baseados nas frequências naturais de vibração comparando-os aos resultados obtidos na flexão estática na obtenção das propriedades elásticas em peças estruturais de madeira de reflorestamento que são usualmente empregadas na construção civil. Foram avaliadas 24 vigas de Eucalyptus sp. com dimensões nominais (40 x 60 x 2.000 mm e 14 vigas de Pinus oocarpa com dimensões nominais (45 x 90 x 2.300 mm, ambas sem tratamento; 30 pranchas com dimensões nominais (40 x 240 x 2.010 mm e 30 pranchas com dimensões nominais (40 x 240 x 3.050 mm, ambas de Pinnus oocarpa e com tratamento preservativo à base de Arseniato de Cobre Cromatado - CCA. Os resultados obtidos apresentaram boa correlação quando comparados aos resultados obtidos pelo método mecânico de flexão estática, especialmente quando empregada a frequência natural de vibração longitudinal. O emprego da frequência longitudinal mostrou-se confiável e prático, portanto recomendada para a determinação do módulo de elasticidade de peças estruturais de madeira. Verificou-se ainda que, empregando a frequência longitudinal, não há necessidade de um suporte específico para os corpos de prova ou calibrações prévias, reduzindo assim o tempo de execução e favorecendo o ensaio de grande quantidade de amostras.There are several techniques to characterize the elastic modulus of wood and those currently using the natural frequencies of vibration stand out as they are non-destructive techniques, producing results that can be repeated and compared over time. This study reports

  17. Multiphase composites with extremal bulk modulus

    DEFF Research Database (Denmark)

    Gibiansky, L. V.; Sigmund, Ole

    2000-01-01

    This paper is devoted to the analytical and numerical study of isotropic elastic composites made of three or more isotropic phases. The ranges of their effective bulk and shear moduli are restricted by the Hashin-Shtrikman-Walpole (HSW) bounds. For two-phase composites, these bounds are attainable......, that is, there exist composites with extreme bulk and shear moduli. For multiphase composites, they may or may not be attainable depending on phase moduli and volume fractions. Sufficient conditions of attainability of the bounds and various previously known and new types of optimal composites...... are described. Most of our new results are related to the two-dimensional problem. A numerical topology optimization procedure that solves the inverse homogenization problem is adopted and used to look for two-dimensional three-phase composites with a maximal effective bulk modulus. For the combination...

  18. ELASTIC CHARACTERIZATION OF Eucalyptus citriodora WOOD

    Directory of Open Access Journals (Sweden)

    Adriano Wagner Ballarin

    2003-01-01

    Full Text Available This paper contributed to the elastic characterization of Eucalyptus citriodora grown inBrazil, considering an orthotropic model and evaluating its most important elastic constants.Considering this as a reference work to establish basic elastic ratios — several important elasticconstants of Brazilian woods were not determined yet - the experimental set-up utilized one tree of 65years old from plantations of “Horto Florestal Navarro de Andrade”, at Rio Claro-SP, Brazil. All theexperimental procedures attended NBR 7190/97 – Brazilian Code for wooden structures –withconventional tension and compression tests. Results showed statistical identity between compressionand tension modulus of elasticity. The relation observed between longitudinal and radial modulus ofelasticity was 10 (EL/ER ≈ 10 and same relation, considering shear modulus (modulus of rigidity was20 (EL/GLR ≈ 20. These results, associated with Poisson’s ratios herein determined, allow theoreticalmodeling of wood mechanical behavior in structures.

  19. Pengukuran Modulus Elastisitas Dinamis Batuan dengan Metode Seismik Refraksi

    Directory of Open Access Journals (Sweden)

    Ashadi Salim

    2012-12-01

    Full Text Available The seismic wave velocity in rock formation depends on the elastic modulus and mass density of rock where the wave travels. The velocity measurement of P and S waves on rock formation and the mass density in the laboratory can be used for calculating the elastic modulus of rock formation. The elastic modulus is part of rock mechanical parameter needed in geological engineering researches. The velocity measurement of P and S waves by the seismic refraction method was done on a tunnel with 11 spreads of measurement. From the resultsof the measurement, three groups of rock formation could be identified. The first is rock formation with Ed=8.890-12.68 MPa and G=3.306-4.830MPa; the second group is rock formation with Ed=8.890-12.68 MPa and G=3.306-4.830MPa; and the third group is with Ed=18.520-21.120MPa and G=6.724-7.744MP. The first group is clay formation while the second and third groups are andesitic stone formation. 

  20. Quantitative measurement of the elastic modulus of the biceps brachii during muscle relaxation and tension by shear-wave elasto-sonography%实时定量超声弹性成像技术检测肱二头肌松弛和紧张状态下弹性模量值差异

    Institute of Scientific and Technical Information of China (English)

    温朝阳; 范春芝; 安力春; 徐建红; 陈浩; 王月香; 唐杰

    2011-01-01

    Objective To explore the difference of Young' s modulus in the biceps brachii during muscle relaxation and tension. Methods A total of 141 healthy male volunteers with age range from 16 to 34 years ( mean 22 years old ) were included in the study. A shear-wave elasto-sonography ( AixPlorer model, Supersonic Imagine,Aix en Provence, France ) coupled with a linear array transducer array ( 4-15 MHz )was used. The scanner was set at the SWE mode and then at Q-BOX mode and the ultrasound transducer was placed directly above the biceps brachii belly and carefully aligned with the muscle bundle. The elastic moduli of the biceps brachii were measured during muscle relaxation and tension in all 141 volunteers. Results The Young ' s modulus of biceps brachii was 123. 658 ± 31. 392 kPa during muscle tension and 45. 658 ± 13. 479 kPa during muscle relaxation, respectively with statistical significance ( P =0. 0000 ), Conclusion The Young' s modulus of the biceps brachii was higher during muscle tension than those during muscle relaxation.%目的 研究松弛和紧张状态下肱二头肌肌腹的杨氏模量值差异.方法 141例男性健康志愿者,年龄16~34岁, 中位年龄22岁.使用法国Supersonic 公司的AixPlore型实时定量剪切波弹性成像超声诊断仪,L4-15线阵探头沿肱二头肌肌腹肌束方向检查,启动超声仪器弹性成像模式(SWE)模式,然后使用其定量分析系统Q-BOX分别测量二头肌处于松弛与紧张状态下的杨氏模量值.结果 紧张状态下肱二头肌肌腹杨氏模量值为(123.658±31.392) kPa,松弛状态下杨氏模量值为(45.658±13.479) kPa,两者比较差异具有统计学意义(P=0.0000).结论 剪切波弹性成像技术可检测肱二头肌肌腹在松弛和紧张状态下杨氏模量值差异,紧张状态下较松弛状态下模量值大;定量超声弹性成像技术用于肌肉组织疾病检查,使提供常规超声之外的诊断信息成为可能.

  1. Ab-initio study of electronic structure and elastic properties of ZrC

    Science.gov (United States)

    Mund, H. S.; Ahuja, B. L.

    2016-05-01

    The electronic and elastic properties of ZrC have been investigated using the linear combination of atomic orbitals method within the framework of density functional theory. Different exchange-correlation functionals are taken into account within generalized gradient approximation. We have computed energy bands, density of states, elastic constants, bulk modulus, shear modulus, Young's modulus, Poisson's ratio, lattice parameters and pressure derivative of the bulk modulus by calculating ground state energy of the rock salt structure type ZrC.

  2. An elastic second skin

    Science.gov (United States)

    Yu, Betty; Kang, Soo-Young; Akthakul, Ariya; Ramadurai, Nithin; Pilkenton, Morgan; Patel, Alpesh; Nashat, Amir; Anderson, Daniel G.; Sakamoto, Fernanda H.; Gilchrest, Barbara A.; Anderson, R. Rox; Langer, Robert

    2016-08-01

    We report the synthesis and application of an elastic, wearable crosslinked polymer layer (XPL) that mimics the properties of normal, youthful skin. XPL is made of a tunable polysiloxane-based material that can be engineered with specific elasticity, contractility, adhesion, tensile strength and occlusivity. XPL can be topically applied, rapidly curing at the skin interface without the need for heat- or light-mediated activation. In a pilot human study, we examined the performance of a prototype XPL that has a tensile modulus matching normal skin responses at low strain (<40%), and that withstands elongations exceeding 250%, elastically recoiling with minimal strain-energy loss on repeated deformation. The application of XPL to the herniated lower eyelid fat pads of 12 subjects resulted in an average 2-grade decrease in herniation appearance in a 5-point severity scale. The XPL platform may offer advanced solutions to compromised skin barrier function, pharmaceutical delivery and wound dressings.

  3. Volumetric composition of nanocomposites

    DEFF Research Database (Denmark)

    Madsen, Bo; Lilholt, Hans; Mannila, Juha

    2015-01-01

    Detailed characterisation of the properties of composite materials with nanoscale fibres is central for the further progress in optimization of their manufacturing and properties. In the present study, a methodology for the determination and analysis of the volumetric composition of nanocomposites...... is presented, using cellulose/epoxy and aluminosilicate/polylactate nanocomposites as case materials. The buoyancy method is used for the accurate measurements of materials density. The accuracy of the method is determined to be high, allowing the measured nanocomposite densities to be reported with 5...... significant figures. The plotting of the measured nanocomposite density as a function of the nanofibre weight content is shown to be a first good approach of assessing the porosity content of the materials. The known gravimetric composition of the nanocomposites is converted into a volumetric composition...

  4. Short cellulosic fiber/starch acetate composites — micromechanical modeling of Young’s modulus

    DEFF Research Database (Denmark)

    Madsen, Bo; Joffe, Roberts; Peltola, Heidi;

    2011-01-01

    This study is presented to predict the Young’s modulus of injection-molded short cellulosic fiber/plasticized starch acetate composites with variable fiber and plasticizer content. A modified rule of mixtures model is applied where the effect of porosity is included, and where the fiber weight...... fraction is used as the basic independent variable. The values of the input model parameters are derived from experimental studies of the configuration of the composites (volumetric composition, dimensions, and orientation of fibers), as well as the properties of the constituent fiber and matrix phases...... (density and Young’s modulus). The measured Young’s modulus of the composites varies in the range 1.1—8.3 GPa, and this is well predicted by the model calculations. A property diagram is presented to be used for the tailor-making of composites with Young’s modulus in the range 0.2—10 GPa....

  5. Low modulus Ti–Nb–Hf alloy for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    González, M., E-mail: Marta.Gonzalez.Colominas@upc.edu [Department of Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, 08028 Barcelona (Spain); Materials Science, Elisava Escola Superior de Disseny i Enginyeria de Barcelona, La Rambla 30-32, 08002 Barcelona (Spain); Peña, J. [Department of Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, 08028 Barcelona (Spain); Materials Science, Elisava Escola Superior de Disseny i Enginyeria de Barcelona, La Rambla 30-32, 08002 Barcelona (Spain); Gil, F.J.; Manero, J.M. [Department of Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, 08028 Barcelona (Spain); Ciber-BBN (Spain)

    2014-09-01

    β-Type titanium alloys with a low elastic modulus are a potential strategy to reduce stress shielding effect and to enhance bone remodeling in implants used to substitute failed hard tissue. For biomaterial application, investigation on the mechanical behavior, the corrosion resistance and the cell response is required. The new Ti25Nb16Hf alloy was studied before and after 95% cold rolling (95% C.R.). The mechanical properties were determined by tensile testing and its corrosion behavior was analyzed by potentiostatic equipment in Hank's solution at 37 °C. The cell response was studied by means of cytotoxicity evaluation, cell adhesion and proliferation measurements. The stress–strain curves showed the lowest elastic modulus (42 GPa) in the cold worked alloy and high tensile strength, similar to that of Ti6Al4V. The new alloy exhibited better corrosion resistance in terms of open circuit potential (E{sub OCP}), but was similar in terms of corrosion current density (i{sub CORR}) compared to Ti grade II. Cytotoxicity studies revealed that the chemical composition of the alloy does not induce cytotoxic activity. Cell studies in the new alloy showed a lower adhesion and a higher proliferation compared to Ti grade II presenting, therefore, mechanical features similar to those of human cortical bone and, simultaneously, a good cell response. - Highlights: • Presents low elastic modulus and high strength and elastic deformability. • Exhibits good biocompatibility in terms of cytotoxicity and cell response. • Corrosion resistance of this alloy is good, similar to that of Ti grade II. • Potential candidate for implants used to substitute failed hard tissue.

  6. Multi-spectral photoacoustic elasticity tomography

    Science.gov (United States)

    Liu, Yubin; Yuan, Zhen

    2016-01-01

    The goal of this work was to develop and validate a spectrally resolved photoacoustic imaging method, namely multi-spectral photoacoustic elasticity tomography (PAET) for quantifying the physiological parameters and elastic modulus of biological tissues. We theoretically and experimentally examined the PAET imaging method using simulations and in vitro experimental tests. Our simulation and in vitro experimental results indicated that the reconstructions were quantitatively accurate in terms of sizes, the physiological and elastic properties of the targets. PMID:27699101

  7. MODULUS PREDICTION AND DISCUSSION OF REINFORCED SYNTACTIC FOAMS WITH COATED HOLLOW SPHERICAL INCLUSIONS

    Institute of Scientific and Technical Information of China (English)

    袁应龙; 卢子兴

    2004-01-01

    The elastic properties of syntactic foams with coated hollow spherical inclusions have been studied by means of Mori and Tanaka' s concept of average stress in the matrix and Eshelby' s equivalent inclusion theories. Some formulae to predict the effective modulus of this material have been derived theoretically. Based on these formulae, the influences of coating parameters such as the thickness and Poisson' s ratio on the modulus of the syntactic foams have been discussed at the same time.

  8. Ultrasonic velocity and elastic moduli of heavy metal tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Afifi, Hesham; Marzouk, Samier

    2003-05-26

    Longitudinal and transverse ultrasonic waves velocities in lead tungsten tellurite glasses have been measured using the pulse-echo method at 5 MHz frequency and at room temperature (300 K). The elastic properties; longitudinal modulus, shear modulus, Young's modulus, bulk modulus and Poisson's ratio together with the microhardness, softening temperature, and Debye temperature are found to be rather sensitive to the glass composition. Information about the structure of the glass can be deduced after calculating the average stretching force constant and the average ring size. A comparison between the experimental elastic moduli data obtained in this study and those calculated theoretically by other models has been discussed.

  9. Study of equivalent elastic modulus of sand gravel soil with Eshelby tensor and Mori-Tanaka equivalent method%基于Eshelby张量和Mori-Tanaka等效方法的砂卵石土等效弹性模量研究

    Institute of Scientific and Technical Information of China (English)

    胡敏; 徐国元; 胡盛斌

    2013-01-01

    Sandy pebble soil is a granular media, and the physico-mechanical properties of sandy pebble soil are different from those of sandy soil and intact rock mass. Here sandy pebble soil is considered as a simplified material, namely a two-phase composite material consists of sandy soil as matrix and pebble as ellipsoid inclusion. This paper presents the theoretical derivation of equivalent elastic matrix calculation equation. The derivation process is based on Eshelby tensors and Mori-Tanaka equivalent method within small deformation condition. The process is also considered pebble’s content and distribution, using replacement iterative method. This paper focuses on the calculation of sandy pebble soil equivalent elastic modulus using numerical solution through compile program. Comparison is made between numerical solution and theoretical result. The result shows that the theoretical calculation method has better calculation accuracy than the earlier calculation methods of previous experiment and theory. When the pebble volume fraction less than 50%, the result of theoretical calculation coincides with experiment result, thus the presented method can be used to predict sandy pebble soil’s macroscopic mechanical properties, and it is beneficial to underground engineering application;when the volume fraction more than 50%, the theoretical calculation result may have some error with the experiment result.%  砂卵石土是物理力学性质既不同于砂土也不同于完整岩体的离散体,将其简化为砂土为基体,卵石为椭球形夹杂的两相复合材料。在小变形条件下,考虑卵石的含量和分布,采用Eshelby张量和Mori-Tanaka等效方法,运用替换迭代方式,从理论上推导出等效柔度张量一般性计算方程;重点研究卵石为球形时(椭球的一种特殊情况)砂卵石土等效弹性模量,通过编写程序求得其数值解,并与相关数值试验和理论进行对比。结果表明,

  10. ANALYTICAL SOLUTION OF BENDING-COMPRESSION COLUMN USING DIFFERENT TENSION-COMPRESSION MODULUS

    Institute of Scientific and Technical Information of China (English)

    姚文娟; 叶志明

    2004-01-01

    Based on elastic theory of different tension-compression modulus, the analytical solution was deduced for bending-compression column subject to combined loadings by the flowing coordinate system and phased integration method. The formulations for the neutral axis, stress, strain and displacement were developed, the finite element program was compiled for calculation, and the comparison between the result of finite element and analytical solution were given too. Finally, compare and analyze the result of different modulus and the same modulus, obtain the difference of two theories in result, and propose the reasonable suggestion for the calculation of this structure.

  11. Flexible Volumetric Structure

    Science.gov (United States)

    Cagle, Christopher M. (Inventor); Schlecht, Robin W. (Inventor)

    2014-01-01

    A flexible volumetric structure has a first spring that defines a three-dimensional volume and includes a serpentine structure elongatable and compressible along a length thereof. A second spring is coupled to at least one outboard edge region of the first spring. The second spring is a sheet-like structure capable of elongation along an in-plane dimension thereof. The second spring is oriented such that its in-plane dimension is aligned with the length of the first spring's serpentine structure.

  12. Wear, strength, modulus and hardness of CAD/CAM restorative materials.

    Science.gov (United States)

    Lawson, Nathaniel C; Bansal, Ritika; Burgess, John O

    2016-11-01

    To measure the mechanical properties of several CAD/CAM materials, including lithium disilicate (e.max CAD), lithium silicate/zirconia (Celtra Duo), 3 resin composites (Cerasmart, Lava Ultimate, Paradigm MZ100), and a polymer infiltrated ceramic (Enamic). CAD/CAM blocks were sectioned into 2.5mm×2.5mm×16mm bars for flexural strength and elastic modulus testing and 4mm thick blocks for hardness and wear testing. E.max CAD and half the Celtra Duo specimens were treated in a furnace. Flexural strength specimens (n=10) were tested in a three-point bending fixture. Vickers microhardness (n=2, 5 readings per specimen) was measured with a 1kg load and 15s dwell time. The CAD/CAM materials as well as labial surfaces of human incisors were mounted in the UAB wear device. Cusps of human premolars were mounted as antagonists. Specimens were tested for 400,000 cycles at 20N force, 2mm sliding distance, 1Hz frequency, 24°C, and 33% glycerin lubrication. Volumetric wear and opposing enamel wear were measured with non-contact profilometry. Data were analyzed with 1-way ANOVA and Tukey post-hoc analysis (alpha=0.05). Specimens were observed with SEM. Properties were different for each material (pCAD and Celtra Duo were generally stronger, stiffer, and harder than the other materials. E.max CAD, Celtra Duo, Enamic, and enamel demonstrated signs of abrasive wear, whereas Cerasmart, Lava Ultimate, Paradigm MZ100 demonstrated signs of fatigue. Resin composite and resin infiltrated ceramic materials have demonstrated adequate wear resistance for load bearing restorations, however, they will require at least similar material thickness as lithium disilicate restorations due to their strength. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Elastic properties of superconductors and materials with weakly correlated spins.

    Science.gov (United States)

    Binek, Christian

    2017-07-07

    It is shown that in the ergodic regime, the temperature dependence of Young's modulus is solely determined by the magnetic properties of a material. For the large class of materials with paramagnetic or diamagnetic response, simple functional forms of the temperature derivative of Young's modulus are derived and compared with experimental data and empirical results. Superconducting materials in the Meissner phase are ideal diamagnets. As such, they display remarkable elastic properties. Constant diamagnetic susceptibility gives rise to a temperature independent elastic modulus for ceramic and single crystalline superconductors alike. The thermodynamic approach established in this report, paves the way to tailor elastic material parameters through the design of magnetic properties.

  14. 用拉压不同模量理论计算支座移动引起的超静定结构内力%Internal Force Analysis Due to the Supporting Translation in Statically Indeterminate Structures for Different Elastic Modulus

    Institute of Scientific and Technical Information of China (English)

    姚文娟; 叶志明

    2004-01-01

    For statically indeterminate structure, the internal force will be changed with the translation of the supports, because the internal force is related to the absolute value of the stiffness EI. When the tension is different with the compression modulus, EI is the function of internal force and is not constant any more that is different from classic mechanics. In the other words, it is a nonlinear problem to calculate the internal force. The expression for neutral axis of the statically indeterminate structure was derived in the paper. The iterative program for nonlinear internal force was compiled. One case study was presented to illustrate the difference between the results using the different modulus theory and the single modulus theory as in classical mechanics. Finally, some reasonable suggestions were made for the different modulus structures.

  15. Elasticity reconstructive imaging by means of stimulated echo MRI.

    Science.gov (United States)

    Chenevert, T L; Skovoroda, A R; O'Donnell, M; Emelianov, S Y

    1998-03-01

    A method is introduced to measure internal mechanical displacement and strain by means of MRI. Such measurements are needed to reconstruct an image of the elastic Young's modulus. A stimulated echo acquisition sequence with additional gradient pulses encodes internal displacements in response to an externally applied differential deformation. The sequence provides an accurate measure of static displacement by limiting the mechanical transitions to the mixing period of the simulated echo. Elasticity reconstruction involves definition of a region of interest having uniform Young's modulus along its boundary and subsequent solution of the discretized elasticity equilibrium equations. Data acquisition and reconstruction were performed on a urethane rubber phantom of known elastic properties and an ex vivo canine kidney phantom using elastic properties are well represented on Young's modulus images. The long-term objective of this work is to provide a means for remote palpation and elasticity quantitation in deep tissues otherwise inaccessible to manual palpation.

  16. Analysis of Apparent Elasticity Constants of Woven Fabrics

    Institute of Scientific and Technical Information of China (English)

    董侠; 张建春; 张燕

    2001-01-01

    The woven fabric can be defined as orthogonal elastomer if the extension force that puts on the fabric is very small. Based on the precondition, the apparent elasticity constants of a woven fabric were analyzed theoretically in the paper. The bias angle (which is between weft yarns and extension direction ) affects apparent elasticity modulus and elasticity coefficient of the fabric in the extension direction. And the experiment describes fluxes of elasticity constants going with the bias angle of the fabric.

  17. Determinação do módulo de elasticidade da madeira juvenil e adulta de Pinus taeda por ultra-som Determination of the modulus of elasticity of juvenile and mature wood of Pinus taeda L.with ultrasonic method

    Directory of Open Access Journals (Sweden)

    Adriano W. Ballarin

    2005-04-01

    Full Text Available A madeira de Pinus sp. tem utilização crescente na indústria madeireira brasileira. O decréscimo constante do suprimento de árvores adultas com grandes diâmetros, provenientes de florestas naturais, tornou comum a produção de madeira em ciclos curtos, com grande proporção de madeira juvenil. Resultados de diversas pesquisas têm reportado que o módulo de elasticidade e a resistência a diferentes solicitações mecânicas são seriamente afetados pela presença de madeira juvenil. Este trabalho teve por objetivo determinar o módulo de elasticidade da madeira juvenil e adulta de Pinus taeda L. a partir da constante dinâmica C LL, obtida em ensaios não-destrutivos de ultra-som. A madeira de P. taeda era originária de plantios da Estação Experimental de Itapeva - SP, sendo amostrados seis indivíduos arbóreos com 34 anos de idade. Os corpos-de-prova (4 cm x 4 cm x 45 cm foram obtidos separadamente das regiões de madeira juvenil e adulta da prancha central, previamente submetida à secagem industrial (umidade final de 12%, para a determinação da constante dinâmica por meio de ensaios de ultra-som. Para avaliar a sensibilidade do método do ultra-som, os corpos-de-prova foram ensaiados destrutivamente à compressão paralela. Os resultados mostraram boa sensibilidade do método do ultra-som (R² » 0,90 na avaliação desse parâmetro mecânico da madeira juvenil e adulta.Pinus sp. wood has an increasing importance on supplying brazilian wood industry. The diminution of adult and large diameter trees supply deriving from natural tropical forests, became usual the production of wood on short rotation plantation, with considerable proportion of juvenil wood. Results from several researches have been demonstrated that MOE and mechanical strength are strongly affected by juvenile wood occurrence. This research was developed with the main objective of correlating dynamic modulus of elasticity (non-destructive ultrasound tests and MOE

  18. Detail of photo 7903109 stack of superconducting cables in the modulus measuring device

    CERN Multimedia

    1979-01-01

    The picture shows an assembly of insulated superconducting cables of the type used in the Po dipole magnet inserted in the elastic modulus measuring device (photos 7903547X and 7903169) in order to measures its mechanical properties under azimuthal compression. See also 7903547X, 7903169, 8307552X.

  19. Measuring Young's Modulus the Easy Way, and Tracing the Effects of Measurement Uncertainties

    Science.gov (United States)

    Nunn, John

    2015-01-01

    The speed of sound in a solid is determined by the density and elasticity of the material. Young's modulus can therefore be calculated once the density and the speed of sound in the solid are measured. The density can be measured relatively easily, and the speed of sound through a rod can be measured very inexpensively by setting up a longitudinal…

  20. An autonomic self-healing organogel with a photo-mediated modulus.

    Science.gov (United States)

    Xiong, Yubing; Chen, Zhijun; Wang, Hong; Ackermann, Lisa-Maria; Klapper, Markus; Butt, Hans-Jürgen; Wu, Si

    2016-12-01

    A new method is described for fabricating autonomic, self-healing, deformable organogels. We combined imidazolium-based poly(ionic liquid) (PIL) and azobenzene-grafted poly(carboxylic acid) (PAA-Azo) in N,N-dimethyl formamide. Further, complexing PIL with unirradiated (trans) or irradiated (cis) PAA-Azo tuned the elastic modulus of the organogel.

  1. Factors Determining the Stability of a Gas Cell in an Elastic Medium

    NARCIS (Netherlands)

    Fyrillas, M.M.; Kloek, W.; van Vliet, T.; Mellema, J.

    1999-01-01

    In this paper we consider the stability of a gas cell embedded in an infinite elastic medium. The stability criterion obtained extends the classical result by Gibbs, y < 2E, to include the shear modulus of the elastic material. Interestingly, besides the shear modulus another parameter appears which

  2. Factors Determining the Stability of a Gas Cell in an Elastic Medium

    NARCIS (Netherlands)

    Fyrillas, M.M.; Kloek, W.; Vliet, van T.; Mellema, J.

    1999-01-01

    In this paper we consider the stability of a gas cell embedded in an infinite elastic medium. The stability criterion obtained extends the classical result by Gibbs, y < 2E, to include the shear modulus of the elastic material. Interestingly, besides the shear modulus another parameter appears whic

  3. Are the dynamics of silicate glasses and glass-forming liquids embedded in their elastic properties?

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Mauro, John C.

    According to the elastic theory of the glass transition, the dynamics of glasses and glass-forming liquids are controlled by the evolution of shear modulus. In particular, the elastic shoving model expresses dynamics in terms of an activation energy required to shove aside the surrounding atoms, ...... of the silicate glass transition are governed by additional factors beyond the evolution of the shear modulus....

  4. Elasticity of some mantle crystal structures. II.

    Science.gov (United States)

    Wang, H.; Simmons, G.

    1973-01-01

    The single-crystal elastic constants are determined as a function of pressure and temperature for rutile structure germanium dioxide (GeO2). The data are qualitatively similar to those of rutile TiO2 measured by Manghnani (1969). The compressibility in the c direction is less than one-half that in the a direction, the pressure derivative of the shear constant is negative, and the pressure derivative of the bulk modulus has a relatively high value of about 6.2. According to an elastic strain energy theory, the negative shear modulus derivative implies that the kinetic barrier to diffusion decreases with increasing pressure.

  5. Elastic properties of suspended black phosphorus nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jia-Ying; Li, Yang; Zhen, Liang; Xu, Cheng-Yan, E-mail: cy-xu@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); MOE Key Laboratory of Micro-systems and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin 150080 (China); Zhan, Zhao-Yao [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China); Li, Tie [Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2016-01-04

    The mechanical properties of black phosphorus (BP) nanosheets suspended over circular holes were measured by an atomic force microscope nanoindentation method. The continuum mechanic model was introduced to calculate the elastic modulus and pretension of BP nanosheets with thicknesses ranging from 14.3 to 34 nm. Elastic modulus of BP nanosheets declines with thickness, and the maximum value is 276 ± 32.4 GPa. Besides, the effective strain of BP ranges from 8 to 17% with a breaking strength of 25 GPa. Our results show that BP nanosheets serve as a promising candidate for flexible electronic applications.

  6. Young's modulus and hardness of shark tooth biomaterials.

    Science.gov (United States)

    Whitenack, Lisa B; Simkins, Daniel C; Motta, Philip J; Hirai, Makoto; Kumar, Ashok

    2010-03-01

    To date, the majority of studies on feeding mechanics in sharks have focused on the movement of cranial components and muscle function, with little attention to tooth properties or function. Attributes related to mechanical properties, such as structural strength, may also be subjected to natural selection. Additionally it is necessary to characterize these properties in order to construct biomechanical models of tooth function. The goal of this study was to determine hardness and elastic modulus for the shark tooth materials enameloid, osteodentine, and orthodentine. Five teeth each from one carcharhiniform species, the bonnethead Sphyrna tiburo, and one lamniform, the sand tiger shark Carcharias taurus, were utilized for nanoindentation testing. Each tooth was sectioned transversely, air-dried, and polished. Both enameloid and dentine were tested on each tooth via a Berkovich diamond tip, with nine 2 microm deep indentations per material. t-Tests were used to determine if there were differences in hardness and Young's modulus between the tooth materials of the two species. There was no significant difference between the two species for the material properties of enameloid, however both hardness and Young's modulus were higher for osteodentine than for orthodentine. This may be due to differences in microanatomy and chemical composition, however this needs to be studied in greater detail. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Low modulus Ti-Nb-Hf alloy for biomedical applications.

    Science.gov (United States)

    González, M; Peña, J; Gil, F J; Manero, J M

    2014-09-01

    β-Type titanium alloys with a low elastic modulus are a potential strategy to reduce stress shielding effect and to enhance bone remodeling in implants used to substitute failed hard tissue. For biomaterial application, investigation on the mechanical behavior, the corrosion resistance and the cell response is required. The new Ti25Nb16Hf alloy was studied before and after 95% cold rolling (95% C.R.). The mechanical properties were determined by tensile testing and its corrosion behavior was analyzed by potentiostatic equipment in Hank's solution at 37°C. The cell response was studied by means of cytotoxicity evaluation, cell adhesion and proliferation measurements. The stress-strain curves showed the lowest elastic modulus (42GPa) in the cold worked alloy and high tensile strength, similar to that of Ti6Al4V. The new alloy exhibited better corrosion resistance in terms of open circuit potential (EOCP), but was similar in terms of corrosion current density (iCORR) compared to Ti grade II. Cytotoxicity studies revealed that the chemical composition of the alloy does not induce cytotoxic activity. Cell studies in the new alloy showed a lower adhesion and a higher proliferation compared to Ti grade II presenting, therefore, mechanical features similar to those of human cortical bone and, simultaneously, a good cell response.

  8. Various Expressions for Modulus of Random Convexity

    Institute of Scientific and Technical Information of China (English)

    Xiao Lin ZENG

    2013-01-01

    We first prove various kinds of expressions for modulus of random convexity by using an Lo(F,R)-valued function's intermediate value theorem and the well known Hahn-Banach theorem for almost surely bounded random linear functionals,then establish some basic properties including continuity for modulus of random convexity.In particular,we express the modulus of random convexity of a special random normed module Lo(F,X) derived from a normed space X by the classical modulus of convexity of X.

  9. Elastic properties of fly ash-stabilized mixes

    Directory of Open Access Journals (Sweden)

    Sanja Dimter

    2015-12-01

    Full Text Available Stabilized mixes are used in the construction of bearing layers in asphalt and concrete pavement structures. Two nondestructive methods: resonant frequency method and ultrasonic pulse velocity method, were used for estimation of elastic properties of fly ash–stabilized mixes. Stabilized mixes were designed containing sand from the river Drava and binder composed of different share of cement and fly ash. The aim of the research was to analyze the relationship between the dynamic modulus of elasticity determined by different nondestructive methods. Data showed that average value of elasticity modulus obtained by the ultrasound velocity method is lower than the values of elasticity modulus obtained by resonant frequency method. For further analysis and enhanced discussion of elastic properties of fly ash stabilized mixes, see Dimter et al. [1].

  10. Contour Propagation With Riemannian Elasticity Regularization

    DEFF Research Database (Denmark)

    Bjerre, Troels; Hansen, Mads Fogtmann; Sapru, W.;

    2011-01-01

    the planning CT onto the rescans and correcting to reflect actual anatomical changes. For deformable registration, a free-form, multi-level, B-spline deformation model with Riemannian elasticity, penalizing non-rigid local deformations, and volumetric changes, was used. Regularization parameters was defined...

  11. Twelve Elastic Constants of Betula platyphylla Suk.

    Institute of Scientific and Technical Information of China (English)

    Wang Liyu; Lu Zhenyou

    2004-01-01

    Wood elastic constants are needed to describe the elastic behaviors of wood and be taken as an important design parameter for wood-based composite materials and structural materials. This paper clarified the relationships between compliance coefficients and engineering elastic constants combined with orthotropic properties of wood, and twelve elastic constants of Betula platyphylla Suk. were measured by electrical strain gauges. Spreading the adhesive quantity cannot be excessive or too little when the strain flakes were glued. If excessive, the glue layer was too thick which would influence the strain flakes' performance, and if too little, glues plastered were not firm, which could not accurately transmit the strain. Wood as an orthotropic material, its modulus of elasticity and poisson's ratios are related by two formulas:μij /Ei =μji /Ej and μij 0.95) between the reciprocal of elastic modulus MOE-1 and the square of the ratio of depth to length (h/l)2, which indicate that shear modulus values measured were reliable by three point bending experiment.

  12. COMPARISON OF ELASTIC OF POROUS CORDIERITE BY FLEXURE AND DYNAMIC TEST METHODS

    Energy Technology Data Exchange (ETDEWEB)

    Stafford, Randall [Cummins, Inc; Golovin, K. B. [Cummins, Inc; Dickinson, A. [Cummins, Inc; Watkins, Thomas R [ORNL; Shyam, Amit [ORNL; Lara-Curzio, Edgar [ORNL

    2012-01-01

    Previous work showed differences in apparent elastic modulus between mechanical flexure testing and resonance methods. Flexure tests have been conducted using non-contact optical systems to directly measure deflection for calculation of elastic modulus. Dynamic test methods for elastic modulus measurement were conducted on the same material for comparison. The results show significant difference in the apparent elastic modulus for static flexure versus dynamic methods. The significance of the difference in apparent elastic modulus on thermal stress and the hypotheses for these differences will be discussed. Dynamic measurement (resonance) and static measurement (mechanical) produce different values for elastic modulus of porous cordierite ceramic. The elastic modulus from resonance is a measure of the material response at very low strain which is different from the material response in a mechanical test with relatively large strain. The apparent elastic moduli for dynamic versus static test methods in this study are different by a factor of two. This result has significant impact on calculated stress and life in an aftertreatment component.

  13. Elastic Properties of the Annular Ligament of the Human Stapes—AFM Measurement

    OpenAIRE

    Kwacz, Monika; Rymuza, Zygmunt; Michałowski, Marcin; Wysocki, Jarosław

    2015-01-01

    Elastic properties of the human stapes annular ligament were determined in the physiological range of the ligament deflection using atomic force microscopy and temporal bone specimens. The annular ligament stiffness was determined based on the experimental load-deflection curves. The elastic modulus (Young’s modulus) for a simplified geometry was calculated using the Kirchhoff–Love theory for thin plates. The results obtained in this study showed that the annular ligament is a linear elastic ...

  14. Regulating the modulus of a chiral liquid crystal polymer network by light.

    Science.gov (United States)

    Kumar, Kamlesh; Schenning, Albertus P H J; Broer, Dirk J; Liu, Danqing

    2016-04-01

    We report a novel way to modulate the elastic modulus of azobenzene containing liquid crystal networks (LCNs) by exposure to light. The elastic modulus can cycle between different levels by controlling the illumination conditions. Exposing the polymer network to UV light near the trans absorption band of azobenzene gives a small reduction of the glass transition temperature thereby lowering the modulus. The addition of blue light addressing the cis absorption band surprisingly amplifies this effect. The continuous oscillatory effects of the trans-to-cis isomerization of the azobenzene overrule the overall net cis conversion. The influence on the chain dynamics of the network is demonstrated by dynamic mechanical thermal analysis which shows a large shift of the glass transition temperature and a modulus decrease by more than two orders of magnitude. The initial high modulus and the glassy state are recovered within a minute in the dark by switching off the light sources, despite the observation that azobenzene is still predominantly in its cis state. Based on these new findings, we are able to create a shape memory polymer LCN film at room temperature using light.

  15. Electronic and elastic properties of MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Li Wei, E-mail: tolwwt@163.co [Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, 510006, Guangzhou (China); Chen Junfang; He Qinyu [Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, 510006, Guangzhou (China); Wang Teng [School of Computer, South China Normal University, 510631, Guangzhou (China)

    2010-05-15

    The electronic structures and elastic properties of molybdenum disulfide are studied using first-principles calculations. The energy band structure and density of state (DOS) of MoS{sub 2} at 0 GPa are calculated. The band gap energy of MoS{sub 2} versus the pressure 0-40 GPa is obtained. We find that the band gap energy decreases as the pressure increases. The geometry optimized structural parameters for lithium nitride under different pressures are listed. The parameters a, c, and E (the enthalpy) all decrease with increasing pressure. However, parameter B (the bulk modulus), S (the shear modulus) and Y (the Young's modulus) increase with pressure. The normalized lattice constants and the elastic modulus as two functions of pressure from 0-40 GPa are obtained. All the calculated elastic constants C{sub ij} increase by different rates with increasing pressure.

  16. Quantitative Techniques in Volumetric Analysis

    Science.gov (United States)

    Zimmerman, John; Jacobsen, Jerrold J.

    1996-12-01

    Quantitative Techniques in Volumetric Analysis is a visual library of techniques used in making volumetric measurements. This 40-minute VHS videotape is designed as a resource for introducing students to proper volumetric methods and procedures. The entire tape, or relevant segments of the tape, can also be used to review procedures used in subsequent experiments that rely on the traditional art of quantitative analysis laboratory practice. The techniques included are: Quantitative transfer of a solid with a weighing spoon Quantitative transfer of a solid with a finger held weighing bottle Quantitative transfer of a solid with a paper strap held bottle Quantitative transfer of a solid with a spatula Examples of common quantitative weighing errors Quantitative transfer of a solid from dish to beaker to volumetric flask Quantitative transfer of a solid from dish to volumetric flask Volumetric transfer pipet A complete acid-base titration Hand technique variations The conventional view of contemporary quantitative chemical measurement tends to focus on instrumental systems, computers, and robotics. In this view, the analyst is relegated to placing standards and samples on a tray. A robotic arm delivers a sample to the analysis center, while a computer controls the analysis conditions and records the results. In spite of this, it is rare to find an analysis process that does not rely on some aspect of more traditional quantitative analysis techniques, such as careful dilution to the mark of a volumetric flask. Figure 2. Transfer of a solid with a spatula. Clearly, errors in a classical step will affect the quality of the final analysis. Because of this, it is still important for students to master the key elements of the traditional art of quantitative chemical analysis laboratory practice. Some aspects of chemical analysis, like careful rinsing to insure quantitative transfer, are often an automated part of an instrumental process that must be understood by the

  17. Analytical Solution for Wave-Induced Response of Seabed with Variable Shear Modulus

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A plane strain analysis based on the generalized Biot's equation is utilized to investigate the wave-induced response of a poro-elastic seabed with variable shear modulus. By employing integral transform and Frobenius methods, the transient and steady solutions for the wave-induced pore water pressure, effective stresses and displacements are analytically derived in detail. Verification is available through the reduction to the simple case of homogeneous seabed. The numerical results indicate that the inclusion of variable shear modulus significantly affects the wave-induced seabed response.

  18. Monte Carlo study of the shear modulus at the surface of a Lennard-Jones crystal

    Science.gov (United States)

    Eerden, J. P. v. d.; Knops, H. J. F.; Roos, A.

    1992-01-01

    In this paper, we give a microscopic definition of local elastic constants. We apply this to the numerical evaluation of the shear modulus of an interface which is sharp as compared with the interaction range. The algorithm is applied to a study of the (001) face of a face-centered-cubic (fcc) Lennard-Jones crystal. The vanishing of the shear modulus gives an estimate of the melting temperature of the first layer which is well below the bulk triple point. Some theoretical aspects of surface melting are briefly discussed.

  19. Elastic and thermal expansion asymmetry in dense molecular materials.

    Science.gov (United States)

    Burg, Joseph A; Dauskardt, Reinhold H

    2016-09-01

    The elastic modulus and coefficient of thermal expansion are fundamental properties of elastically stiff molecular materials and are assumed to be the same (symmetric) under both tension and compression loading. We show that molecular materials can have a marked asymmetric elastic modulus and coefficient of thermal expansion that are inherently related to terminal chemical groups that limit molecular network connectivity. In compression, terminal groups sterically interact to stiffen the network, whereas in tension they interact less and disconnect the network. The existence of asymmetric elastic and thermal expansion behaviour has fundamental implications for computational approaches to molecular materials modelling and practical implications on the thermomechanical strains and associated elastic stresses. We develop a design space to control the degree of elastic asymmetry in molecular materials, a vital step towards understanding their integration into device technologies.

  20. Elastic and thermal expansion asymmetry in dense molecular materials

    Science.gov (United States)

    Burg, Joseph A.; Dauskardt, Reinhold H.

    2016-09-01

    The elastic modulus and coefficient of thermal expansion are fundamental properties of elastically stiff molecular materials and are assumed to be the same (symmetric) under both tension and compression loading. We show that molecular materials can have a marked asymmetric elastic modulus and coefficient of thermal expansion that are inherently related to terminal chemical groups that limit molecular network connectivity. In compression, terminal groups sterically interact to stiffen the network, whereas in tension they interact less and disconnect the network. The existence of asymmetric elastic and thermal expansion behaviour has fundamental implications for computational approaches to molecular materials modelling and practical implications on the thermomechanical strains and associated elastic stresses. We develop a design space to control the degree of elastic asymmetry in molecular materials, a vital step towards understanding their integration into device technologies.

  1. Elastic Comparison Between Human and Bovine Femural Bone

    Directory of Open Access Journals (Sweden)

    Mohamed S. Gaith

    2012-12-01

    Full Text Available In this study, the elastic stiffness and the degree of anisotropy will be compared for the femur human and bovine bones are presented. A scale for measuring the overall elastic stiffness of the bone at different locations is introduced and its correlation with the calculated bulk modulus is analyzed. Based on constructing orthonormal tensor basis elements using the form-invariant expressions, the elastic stiffness for orthotropic system materials is decomposed into two parts; isotropic (two terms and anisotropic parts. The overall elastic stiffness is calculated and found to be directly proportional to bulk modulus. A scale quantitative comparison of the contribution of the anisotropy to the elastic stiffness and to measure the degree of anisotropy in an anisotropic material is proposed using the Norm Ratio Criteria (NRC. It is found that bovine femure plexiform has the largest overall elastic stiffness and bovine has the most isotropic (least anisotropic symmetry.

  2. Test Facility for Volumetric Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, M.; Dibowski, G.; Pfander, M.; Sack, J. P.; Schwarzbozl, P.; Ulmer, S.

    2006-07-01

    Long-time testing of volumetric absorber modules is an inevitable measure to gain the experience and reliability required for the commercialization of the open volumetric receiver technology. While solar tower test facilities are necessary for performance measurements of complete volumetric receivers, the long-term stability of individual components can be tested in less expensive test setups. For the qualification of the aging effects of operating cycles on single elements of new absorber materials and designs, a test facility was developed and constructed in the framework of the KOSMOSOL project. In order to provide the concentrated solar radiation level, the absorber test facility is integrated into a parabolic dish system at the Plataforma Solar de Almeria (PSA) in Spain. Several new designs of ceramic absorbers were developed and tested during the last months. (Author)

  3. Biopolymer Elasticity

    CERN Document Server

    Sinha, S

    2003-01-01

    In recent years molecular elasticity has emerged as an active area of research: there are experiments that probe mechanical properties of single biomolecules such as DNA and Actin, with a view to understanding the role of elasticity of these polymers in biological processes such as transcription and protein-induced DNA bending. Single molecule elasticity has thus emerged as an area where there is a rich cross-fertilization of ideas between biologists, chemists and theoretical physicists. In this article we present a perspective on this field of research.

  4. Elastic properties of Pd40Cu30Ni10P20 bulk glass in supercooled liquid region

    DEFF Research Database (Denmark)

    Nishiyama, N.; Inoue, A.; Jiang, Jianzhong

    2001-01-01

    In situ ultrasonic measurements for the Pd40Cu30Ni10P20 bulk glass in three states: Glassy solid, supercooled liquid, and crystalline, have been performed. It is found that velocities of both longitudinal and transverse waves and elastic moduli (shear modulus, bulk modulus, Young's modulus, and L...

  5. Flexural modulus identification of thin polymer sheets

    Science.gov (United States)

    Gluhihs, S.; Kovalovs, A.; Tishkunovs, A.; Chate, A.

    2011-06-01

    The method of determination of the flexural Young's modulus is based on a solution to the problem of compression of a thin-walled cylindrical specimen by two parallel planes (TWCS method). This method was employed to calculate the flexural modulus for PET polymer compositions. The flexural modules received by TWCS method were verified by comparing the experimentally measured eigenfrequencies by Polytec vibrometer with numerical results from ANSYS program.

  6. Flexural modulus identification of thin polymer sheets

    Energy Technology Data Exchange (ETDEWEB)

    Gluhihs, S; Kovalovs, A; Tishkunovs, A; Chate, A, E-mail: s_gluhih@inbox.lv [Riga Technical University, Institute of Materials and Structures, Azenes 16/22, LV-1048, Riga (Latvia)

    2011-06-23

    The method of determination of the flexural Young's modulus is based on a solution to the problem of compression of a thin-walled cylindrical specimen by two parallel planes (TWCS method). This method was employed to calculate the flexural modulus for PET polymer compositions. The flexural modules received by TWCS method were verified by comparing the experimentally measured eigenfrequencies by Polytec vibrometer with numerical results from ANSYS program.

  7. Modulus and yield stress of drawn LDPE

    Science.gov (United States)

    Thavarungkul, Nandh

    Modulus and yield stress were investigated in drawn low density polyethylene (LDPE) film. Uniaxially drawn polymeric films usually show high values of modulus and yield stress, however, studies have normally only been conducted to identify the structural features that determine modulus. In this study small-angle x-ray scattering (SAXS), thermal shrinkage, birefringence, differential scanning calorimetry (DSC), and dynamic mechanical thermal analysis (DMTA) were used to examine, directly and indirectly, the structural features that determine both modulus and yield stress, which are often closely related in undrawn materials. Shish-kebab structures are proposed to account for the mechanical properties in drawn LDPE. The validity of this molecular/morphological model was tested using relationships between static mechanical data and structural and physical parameters. In addition, dynamic mechanical results are also in line with static data in supporting the model. In the machine direction (MD), "shish" and taut tie molecules (TTM) anchored in the crystalline phase account for E; whereas crystal lamellae with contributions from "shish" and TTM determine yield stress. In the transverse direction (TD), the crystalline phase plays an important roll in both modulus and yield stress. Modulus is determined by crystal lamellae functioning as platelet reinforcing elements in the amorphous matrix with an additional contributions from TTM and yield stress is determined by the crystal lamellae's resistance to deformation.

  8. Traveling Lamb wave in elastic metamaterial layer

    Science.gov (United States)

    Shu, Haisheng; Xu, Lihuan; Shi, Xiaona; Zhao, Lei; Zhu, Jie

    2016-10-01

    The propagation of traveling Lamb wave in single layer of elastic metamaterial is investigated in this paper. We first categorized the traveling Lamb wave modes inside an elastic metamaterial layer according to different combinations (positive or negative) of effective medium parameters. Then the impacts of the frequency dependence of effective parameters on dispersion characteristics of traveling Lamb wave were studied. Distinct differences could be observed when comparing the traveling Lamb wave along an elastic metamaterial layer with one inside the traditional elastic layer. We further examined in detail the traveling Lamb wave mode supported in elastic metamaterial layer, when the effective P and S wave velocities were simultaneously imaginary. It was found that the effective modulus ratio is the key factor for the existence of special traveling wave mode, and the main results were verified by FEM simulations from two levels: the level of effective medium and the level of microstructure unit cell.

  9. Linear and nonlinear modulus surfaces in stress space, from stress-strain measurements on Berea sandstone

    Directory of Open Access Journals (Sweden)

    M. Boudjema

    2003-01-01

    Full Text Available The elastic response of many rocks to quasistatic stress changes is highly nonlinear and hysteretic, displaying discrete memory. Rocks also display unusual nonlinear response to dynamic stress changes. A model to describe the elastic behavior of rocks and other consolidated materials is called the Preisach-Mayergoyz (PM space model. In contrast to the traditional analytic approach to stress-strain, the PM space picture establishes a relationship between the quasistatic data and a number density of hysteretic mesoscopic elastic elements in the rock. The number density allows us to make quantitative predictions of dynamic elastic properties. Using the PM space model, we analyze a complex suite of quasistatic stress-strain data taken on Berea sandstone. We predict a dynamic bulk modulus and a dynamic shear modulus surface as a function of mean stress and shear stress. Our predictions for the dynamic moduli compare favorably to moduli derived from time of flight measurements. We derive a set of nonlinear elastic constants and a set of constants that describe the hysteretic behavior of the sandstone.

  10. On a thickness free expression for the shear modulus of carbon nanotubes

    Science.gov (United States)

    Ghadyani, Ghasem; Soufeiani, Leila; Öchsner, Andreas

    2016-11-01

    The thickness of carbon nanotubes is an important issue for the characterization and design of these structures. In this article, thickness free expressions for the shear modulus of single-walled carbon nanotubes have been developed by finite element simulations on the minimum potential energy circle. As a part of this work, some equations have been obtained to define the relation between the thickness and the shear modulus, which are in good agreement with previous studies. Moreover, these expressions are in good agreement with both continuum and quantum mechanics and capable to support "Yakobson's paradox," that the scattering data for the elastic properties of carbon nanotubes are due to the not-well-defined thickness for these structures. Furthermore, these expressions can provide a tool for the prediction of the shear modulus of single-walled carbon nanotubes in regards to any thickness assumption when the experimental investigations are too difficult to realize.

  11. Full deflection profile calculation and Young’s modulus optimisation for engineered high performance materials

    Science.gov (United States)

    Farsi, A.; Pullen, A. D.; Latham, J. P.; Bowen, J.; Carlsson, M.; Stitt, E. H.; Marigo, M.

    2017-04-01

    New engineered materials have critical applications in different fields in medicine, engineering and technology but their enhanced mechanical performances are significantly affected by the microstructural design and the sintering process used in their manufacture. This work introduces (i) a methodology for the calculation of the full deflection profile from video recordings of bending tests, (ii) an optimisation algorithm for the characterisation of Young’s modulus, (iii) a quantification of the effects of optical distortions and (iv) a comparison with other standard tests. The results presented in this paper show the capabilities of this procedure to evaluate the Young’s modulus of highly stiff materials with greater accuracy than previously possible with bending tests, by employing all the available information from the video recording of the tests. This methodology extends to this class of materials the possibility to evaluate both the elastic modulus and the tensile strength with a single mechanical test, without the need for other experimental tools.

  12. Optical, elastic and thermal properties of ZB-AlN semiconductor from first-principle calculations

    Science.gov (United States)

    Kumar, V.; Singh, Bhanu P.; Chandra, Satish

    2016-12-01

    The optical, elastic and thermal properties of zincblende aluminium nitride have been studied. The refractive index, absorption coefficient, reflectivity, dielectric constant, extinction coefficient, and energy-loss spectrum have been calculated using the pseudo-potential method under density functional theory at different pressures. The heat capacity, Debye temperature and phonon frequencies have been calculated using CASTEP code at 0 GPa. The elastic stiffness constants, bulk modulus, Young's modulus, shear modulus and pressure derivatives of elastic constants have also been calculated. The calculated results are compared with the available experimental and theoretical data. Reasonably good agreement has been found between them.

  13. Controlling elastic waves with small phononic crystals containing rigid inclusions

    KAUST Repository

    Peng, Pai

    2014-05-01

    We show that a two-dimensional elastic phononic crystal comprising rigid cylinders in a solid matrix possesses a large complete band gap below a cut-off frequency. A mechanical model reveals that the band gap is induced by negative effective mass density, which is affirmed by an effective medium theory based on field averaging. We demonstrate, by two examples, that such elastic phononic crystals can be utilized to design small devices to control low-frequency elastic waves. One example is a waveguide made of a two-layer anisotropic elastic phononic crystal, which can guide and bend elastic waves with wavelengths much larger than the size of the waveguide. The other example is the enhanced elastic transmission of a single-layer elastic phononic crystal loaded with solid inclusions. The effective mass density and reciprocal of the modulus of the single-layer elastic phononic crystal are simultaneously near zero. © CopyrightEPLA, 2014.

  14. An autonomic self-healing organogel with a photo-mediated modulus

    KAUST Repository

    Xiong, Yubing

    2016-11-15

    A new method is described for fabricating autonomic, self-healing, deformable organogels. We combined imidazolium-based poly(ionic liquid) (PIL) and azobenzene-grafted poly(carboxylic acid) (PAA-Azo) in N,N-dimethyl formamide. Further, complexing PIL with unirradiated (trans) or irradiated (cis) PAA-Azo tuned the elastic modulus of the organogel. © 2016 The Royal Society of Chemistry.

  15. Effects of the temperature dependence of the bulk modulus on magnetic exchange-entropy

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.A. da [Departamento de Física, Universidade Federal de Sergipe, 49100-000 São Cristóvão, SE (Brazil); Plaza, E.J.R., E-mail: ejrplaza@gmail.com [Departamento de Física, Universidade Federal de Sergipe, 49100-000 São Cristóvão, SE (Brazil); Campoy, J.C.P. [Departamento de Ciências Naturais, Universidade Federal de São João del Rei, 36301-160 São João del Rei, MG (Brazil)

    2015-05-25

    Highlights: • A thermodynamic route for the field-induced additional exchange-entropy was studied. • The temperature dependence of bulk modulus leads to the additional exchange-entropy. • The total entropy change matches with the sum of conventional and additional terms. • We obtained analytical expressions for deformation and additional exchange-entropy. - Abstract: We have studied the field-induced additional exchange-entropy on an elastic ferromagnet as a response effect of the dependence of its bulk modulus with temperature. We consider that the temperature dependence of the bulk modulus follows a linear behavior or a Wachtman-type equation. Our analysis is based on a free energy model containing exchange, Zeeman and elastic terms. From the deduced expressions for the exchange parameter, the additional exchange-entropy was obtained. This quantity must be the difference between the conventional and the total entropy change which were calculated from well-established thermodynamic expressions, i.e., configurational spin disorder and Maxwell’s equation, respectively. In addition, we established an analytical relation between the field-induced additional exchange-entropy and the temperature dependence of the bulk modulus.

  16. Ultrasonic measurement of viscoelastic shear modulus development in hydrating cement paste.

    Science.gov (United States)

    Wang, Xiaojun; Subramaniam, Kolluru V; Lin, Fengbao

    2010-06-01

    A test procedure for measuring changes in amplitude and phase of SH ultrasonic waves from the interface between fused-quartz and cement paste samples is presented. The phase change is determined from the temporal shift in the reflected signal relative to the incident signal. The sensitivity of the measured parameters to changes in acoustic impedance of the materials in contact with fused-quartz is evaluated for different angles of incidence. It is shown that a reflection measurement at normal incidence at nano-second temporal resolution does not provide sufficient sensitivity to measure the viscous component of shear modulus of low viscosity fluids and cannot be applied to cement paste while it is in a fluid state. Monitoring the measured amplitude and phase at oblique angle of incidence allows for measuring fluids with acoustic impedance comparable to cement paste. The reflection measurements are used to determine the evolution of elastic and viscous components of shear modulus cement paste with time. Influence of sampling rate and temperature effects on the phase measurements are evaluated and shown to be significant. It is shown that the initial loss of workability of cement paste through setting process is associated with a larger relative increase in the viscous component of shear modulus. Following the initial rapid rise of the viscous component of shear modulus, there is a larger relative increase in the elastic component, which can be related to the emergence of a solid structure capable of retaining an imprint.

  17. Dentinogenesis imperfecta - hardness and Young's modulus of teeth.

    Science.gov (United States)

    Wieczorek, Aneta; Loster, Jolanta; Ryniewicz, Wojciech; Ryniewicz, Anna M

    2013-01-01

    Dentinogenesis imperfecta type II (DI-II) is the most common dental genetic disease with reported incidence 1 in 8000. Elasticity and hardness of the enamel of teeth are important values which are connected with their resistance to attrition. It is hypothesized that values of physical properties for healthy teeth and teeth with DI-II are different. The aim of the study was to investigate some physical properties of teeth extracted from patients with DI-II in comparison with normal teeth. The material of the study was six teeth: three lower molars, with clinical signs of DI-II, which were extracted due to complications of pulp inflammation and three other lower molars which were extracted for orthodontic reasons - well formed, without any signs of pathology. The surfaces of DI-II and normal teeth were tested on the CSM Instruments Scratch Tester machine (producer CSEM Switzerland) by Oliver and Pharr method. The indenter used was Vicker's VG-73 diamond indenter. Additionally, the Scanning Electron Microscopy (SEM) analysis of the surface of the teeth with DI-II was made. Vickers hardness of the teeth with dental pathology (DI-II) was seven times smaller, and Young's modulus six times smaller than those of healthy teeth. The parameters of hardness and elasticity of enamel of teeth with clinical diagnosis of DI-II were very much smaller than in normal teeth and because of that can be responsible for attrition.

  18. Effects of carbon and nitrogen on the elastic constants of AISI (American Iron and Steel Institute) type 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ledbetter, H.M.; Austin, M.W.

    1985-01-01

    Nine AISI type 304 stainless steel alloys were studied at room temperature. The carbon-plus-nitrogen contents of these alloys ranged from 0.067 to 0.325 wt.% (from 0.3 to 1.3 at. %). Five elastic constants (the longitudinal modulus, Young's modulus, the shear modulus, the bulk modulus and Poisson's ratio) were determined by a pulse echo ultrasonic method.

  19. Pengaruh Variasisilica Fumedan Perubahan Faktor Air Semen Terhadap Modulus Elastisitas Beton

    Directory of Open Access Journals (Sweden)

    Nor Intang Setyo H.

    2005-08-01

    Full Text Available The aim of this research is to know influence of addition silica fume and variation of water cement ratio (w/c, also interaction of between both to elasticity modulus of concrete. Independent variable in this research is variation of silica fume and water cement ratio. Dependent variable is compression strength and strain for result of elasticity modulus. The sample test of cylinder concrete with diameter 15 cm and high 30 cm, with the variation of w/c 0,3 ; 0,35 ; 0,4 ; 0,45 ; and 0,5, and also variation of silica fume 0,5%, 10%, 15%, and 20% cement weight. Each treatment made by 10 samples with of volume comparison of mixer concrete 1 : 1,5 : 2,5. The result of samples test carried out 28th days of age obtained optimum rate silica fume 9,328% with w/c 0,35 giving influence to increase of concrete elasticity modulus of concrete to 4,191% of normal concrete

  20. Strength and elastic properties of sandstone under different testing conditions

    Institute of Scientific and Technical Information of China (English)

    CHEN Yun-ping; WANG Si-jing; WANG En-zhi

    2007-01-01

    A laboratory experimental program performed on Wuhan sandstones was presented under monotonic loading, partial cyclic loading during loading path and sine wave cyclic loading with different strain rates to compare uniaxial compression strength and elastic properties (elastic modulus and Poisson ratio) under different conditions and influence of pore fluid on them. When the loading strain rates are 10-5, 10-4 and 10-3/s, uniaxial compression strengths of dry sandstones are 82.3, 126.6 and 141.6 MPa,respectively, and that of water saturated sandstones are 70.5, 108.3 and 124.1 MPa, respectively. The above results show that the uniaxial compression strength increases with the increase of strain rate, however, variation of softening coefficient is insignificant.Under monotonic loading condition, tangent modulus increases with an increment of stress (strain) to a maximum value at a certain stress level, beyond which it starts to decline. Under the partial cyclic loading during loading path condition, unloading or reloading modulus is larger than loading modulus, and unloading and reloading moduli are almost constants with respect to stress level,especially unloading modulus. Under the sine wave cyclic loading condition, tangent modulus and Poisson ratio display asymmetric 'X' shape with various strain, and the average unloading modulus is larger than the average loading modulus.

  1. Remarks on orthotropic elastic models applied to wood

    Directory of Open Access Journals (Sweden)

    Nilson Tadeu Mascia

    2006-09-01

    Full Text Available Wood is generally considered an anisotropic material. In terms of engineering elastic models, wood is usually treated as an orthotropic material. This paper presents an analysis of two principal anisotropic elastic models that are usually applied to wood. The first one, the linear orthotropic model, where the material axes L (Longitudinal, R( radial and T(tangential are coincident with the Cartesian axes (x, y, z, is more accepted as wood elastic model. The other one, the cylindrical orthotropic model is more adequate of the growth caracteristics of wood but more mathematically complex to be adopted in practical terms. Specifically due to its importance in wood elastic parameters, this paper deals with the fiber orientation influence in these models through adequate transformation of coordinates. As a final result, some examples of the linear model, which show the variation of elastic moduli, i.e., Young´s modulus and shear modulus, with fiber orientation are presented.

  2. Indentation of elastically soft and plastically compressible solids

    DEFF Research Database (Denmark)

    Needleman, A.; Tvergaard, Viggo; Van der Giessen, E.

    2015-01-01

    The effect of soft elasticity, i.e., a relatively small value of the ratio of Young's modulus to yield strength and plastic compressibility on the indentation of isotropically hardening elastic-viscoplastic solids is investigated. Calculations are carried out for indentation of a perfectly sticking...... rigid sharp indenter into a cylinder modeling indentation of a half space. The material is characterized by a finite strain elastic-viscoplastic constitutive relation that allows for plastic as well as elastic compressibility. Both soft elasticity and plastic compressibility significantly reduce...... the ratio of nominal indentation hardness to yield strength. A linear relation is found between the nominal indentation hardness and the logarithm of the ratio of Young's modulus to yield strength, but with a different coefficient than reported in previous studies. The nominal indentation hardness decreases...

  3. Elastic Beanstalk

    CERN Document Server

    Vliet, Jurg; Wel, Steven; Dowd, Dara

    2011-01-01

    While it's always been possible to run Java applications on Amazon EC2, Amazon's Elastic Beanstalk makes the process easier-especially if you understand how it works beneath the surface. This concise, hands-on book not only walks you through Beanstalk for deploying and managing web applications in the cloud, you'll also learn how to use this AWS tool in other phases of development. Ideal if you're a developer familiar with Java applications or AWS, Elastic Beanstalk provides step-by-step instructions and numerous code samples for building cloud applications on Beanstalk that can handle lots

  4. Role of interparticle friction and particle-scale elasticity in the shear-strength mechanism of three-dimensional granular media

    Science.gov (United States)

    Antony, S. J.; Kruyt, N. P.

    2009-03-01

    The interlink between particle-scale properties and macroscopic behavior of three-dimensional granular media subjected to mechanical loading is studied intensively by scientists and engineers, but not yet well understood. Here we study the role of key particle-scale properties, such as interparticle friction and particle elastic modulus, in the functioning of dual contact force networks, viz., strong and weak contacts, in mobilizing shear strength in dense granular media subjected to quasistatic shearing. The study is based on three-dimensional discrete element method in which particle-scale constitutive relations are based on well-established nonlinear theories of contact mechanics. The underlying distinctive contributions of these force networks to the macroscopic stress tensor of sheared granular media are examined here in detail to find out how particle-scale friction and particle-scale elasticity (or particle-scale stiffness) affect the mechanism of mobilization of macroscopic shear strength and other related properties. We reveal that interparticle friction mobilizes shear strength through bimodal contribution, i.e., through both major and minor principal stresses. However, against expectation, the contribution of particle-scale elasticity is mostly unimodal, i.e., through the minor principal stress component, but hardly by the major principal stress. The packing fraction and the geometric stability of the assemblies (expressed by the mechanical coordination number) increase for decrease in interparticle friction and elasticity of particles. Although peak shear strength increases with interparticle friction, the deviator strain level at which granular systems attain peak shear strength is mostly independent of interparticle friction. Granular assemblies attain peak shear strength (and maximum fabric anisotropy of strong contacts) when a critical value of the mechanical coordination number is attained. Irrespective of the interparticle friction and elasticity

  5. Revisiting Fermat's Factorization for the RSA Modulus

    CERN Document Server

    Gupta, Sounak

    2009-01-01

    We revisit Fermat's factorization method for a positive integer $n$ that is a product of two primes $p$ and $q$. Such an integer is used as the modulus for both encryption and decryption operations of an RSA cryptosystem. The security of RSA relies on the hardness of factoring this modulus. As a consequence of our analysis, two variants of Fermat's approach emerge. We also present a comparison between the two methods' effective regions. Though our study does not yield a new state-of-the-art algorithm for integer factorization, we believe that it reveals some interesting observations that are open for further analysis.

  6. ANALYTICAL SOLUTION FOR BENDING BEAM SUBJECT TO LATERAL FORCE WITH DIFFERENT MODULUS

    Institute of Scientific and Technical Information of China (English)

    姚文娟; 叶志明

    2004-01-01

    A bending beam,subjected to state of plane stress,was chosen to investigate.The determination of the neutral surface of the structure was made,and the calculating formulas of neutral axis,normal stress,shear stress and displacement were derived.It is concluded that, for the elastic bending beam with different tension-compression modulus in the condition of complex stress, the position of the neutral axis is not related with the shear stress, and the analytical solution can be derived by normal stress used as a criterion, improving the multiple cyclic method which determines the position of neutral point by the principal stress. Meanwhile, a comparison is made between the results of the analytical solution and those calculated from the classic mechanics theory, assuming the tension modulus is equal to the compression modulus, and those from the finite element method (FEM) numerical solution. The comparison shows that the analytical solution considers well the effects caused by the condition of different tension and compression modulus. Finally, a calculation correction of the structure with different modulus is proposed to optimize the structure.

  7. Rotational elasticity

    Science.gov (United States)

    Vassiliev, Dmitri

    2017-04-01

    We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint https://arxiv.org/abs/1008.3833

  8. Structural relaxation monitored by instantaneous shear modulus

    DEFF Research Database (Denmark)

    Olsen, Niels Boye; Dyre, Jeppe; Christensen, Tage Emil

    1998-01-01

    This paper reports on aging of the silicone oil MS704 for sudden changes of temperature from 210.5 to 209.0 K and from 207.5 to 209.0 K studied by continuously monitoring the instantaneous shear modulus G [infinity]. The results are interpreted within the Tool-Narayanaswamy formalism with a reduc...

  9. Loading Rate for Modulus of Rupture Test

    Institute of Scientific and Technical Information of China (English)

    QUMing; ZHANGYong-fang

    1996-01-01

    Relationship among load rate,strain rate and stress rate for modulus of ruptue test,the way of applying load with stress rate using both hydraulic compression testing machine and nechanical compression testing machine have been described.The test results are identical with selected strain rate loading and stress rate loading.

  10. Elasticity anlysis of texture for titanium and niobium plate

    Energy Technology Data Exchange (ETDEWEB)

    Hongsum, C.; Shiwu, Y.; Lin, M.; Lubin, H.; Shuqian, W. (Northwest Institute for Nonferrous Metal Research, Shaanxi (China))

    1991-04-01

    The new texture analysis method was proposed as substitute for X-ray diffractometry with which the essential information on texture can be estimated through elastic anisotropic patterns of crystals derived from measured elastic modulus distributions on plates. Anisotropy expressions of single crystals such as an anisotropy stereogram of monocrystal (ASC) and anisotropy diagram of crystallographic plane (ADCP) were used as a fundamental reference to analyze texture through the new method. The anisotropy of plates was numerically characterized with polar coordinates diagrams, Fourier series and characteristic parameters. Some information on texture could be estimated from Young {prime} s modulus distributions on plates, and the method was, in particular, efficient in the case where the elastic anisotropy of monocrystals is large. The method was also superior in estimating texture components qualitatively from the Young {prime} s modulus distribution. Analytical results of texture for Ti and Nb plate specimens well agreed with those obtained through X-ray diffractometry. 7 refs., 10 figs., 2 tabs.

  11. Young's modulus imaging based on axial and lateral strain estimation from ultrasound data using a clinical linear probe

    Science.gov (United States)

    Said, Ghada; Vray, Didier; Liebgott, Herve; Brusseau, Elisabeth; Basset, Olivier

    2005-04-01

    Strain imaging is useful for visualizing information related to tissue stiffness. However, strain is a parameter that depends on the boundary conditions, tissue connectivity and geometry. As a result, tissue hardness cannot be quantitatively evaluated from the strain distribution. Therefore, reconstruction of the elastic modulus (Young's Modulus) distribution has been investigated for quantitative evaluation of tissue hardness. A method has been recently proposed [NITT 00] to calculate locally the Young's modulus of tissues from the estimations of 3D displacement field within the medium. This approach requires a specific annular ultrasonic probe. The aim of our work, based on Nitta's approach, is to build a Young modulus mapping using clinical ultrasonic equipment. Results from finite-element simulations and a physical phantom are presented.

  12. Elastic properties of superconductors and materials with weakly correlated spins

    OpenAIRE

    Binek, Christian

    2017-01-01

    It is shown that in the ergodic regime, the temperature dependence of Young?s modulus is solely determined by the magnetic properties of a material. For the large class of materials with paramagnetic or diamagnetic response, simple functional forms of the temperature derivative of Young?s modulus are derived and compared with experimental data and empirical results. Superconducting materials in the Meissner phase are ideal diamagnets. As such, they display remarkable elastic properties. Const...

  13. Effect of dynamic visco-elasticity on vertical and torsional vibrations of a half-space

    Indian Academy of Sciences (India)

    Prakash Chandra Pal

    2001-08-01

    By expressing the dynamic visco-elastic characteristic of a material in terms of the complex shear modulus, the vertical vibrations of a visco-elastic half-space as well as that of a mass in visco-elastic half-space are considered here. Torsional vibrations of a visco-elastic half-space is also considered. Numerical results are derived for two cases and shown graphically.

  14. First-principles study of structural, elastic and thermodynamic properties of AuIn2

    Science.gov (United States)

    Wu, Hai Ying; Chen, Ya Hong; Deng, Chen Rong; Yin, Peng Fei; Cao, Hong

    2015-12-01

    The structural, elastic and thermodynamic properties of AuIn2 in the CaF2 structure under pressure have been investigated using ab initio plane wave pseudopotential method within the generalized gradient approximation. The calculated structural parameters and equation of state are in excellent agreement with the available experimental and theoretical results. The elastic constants of AuIn2 at ambient condition are calculated, and the bulk modulus obtained from these calculated elastic constants agrees well with the experimental data. The pressure dependence of the elastic constants, bulk modulus, shear modulus and Young’s modulus has also been investigated. The Debye temperature presents a slight increase with pressure. AuIn2 exhibits ductibility and low hardness characteristics, the ductibility increases while the hardness decreases with the increasing of pressure. The pressure effect on the heat capacity and thermal expansion coefficient for AuIn2 is much larger.

  15. Coupling of elasticity to capillarity in soft aerated materials.

    Science.gov (United States)

    Ducloué, Lucie; Pitois, Olivier; Goyon, Julie; Chateau, Xavier; Ovarlez, Guillaume

    2014-07-28

    We study the elastic properties of soft solids containing air bubbles. Contrary to standard porous materials, the softness of the matrix allows for a coupling of the matrix elasticity to surface tension forces acting on the bubble surface. Thanks to appropriate experiments on model systems, we demonstrate how the elastic response of the soft porous solid is governed by two dimensionless parameters: the gas volume fraction and a capillary number comparing the elasticity of the matrix with the stiffness of the bubbles. Furthermore, we show that our experimental results are accurately predicted by computations of the shear modulus through a micro-mechanical approach.

  16. Some Modulus and Normal Structure in Banach Space

    Directory of Open Access Journals (Sweden)

    Zhanfei Zuo

    2009-01-01

    Full Text Available We present some sufficient conditions for which a Banach space X has normal structure in terms of the modulus of U-convexity, modulus of W∗-convexity, and the coefficient R(1,X, which generalized some well-known results. Furthermore the relationship between modulus of convexity, modulus of smoothness, and Gao's constant is considered, meanwhile the exact value of Milman modulus has been obtained for some Banach space.

  17. Characterizing the elasticity of hollow metal nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ji Changjiang; Park, Harold S [Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235 (United States)

    2007-03-21

    We have performed atomistic simulations on solid and hollow copper nanowires to quantify the elastic properties of hollow nanowires (nanoboxes). We analyse variations in the modulus, yield stress and strain for <100> and <110> nanoboxes by varying the amount of bulk material that is removed to create the nanoboxes. We find that, while <100> nanoboxes show no improvement in elastic properties as compared to solid <100>nanowires, <110> nanoboxes can show enhanced elastic properties as compared to solid <110> nanowires. The simulations reveal that the elastic properties of the nanoboxes are strongly dependent on the relative strength of the bulk material that has been removed, as well as the total surface area of the nanoboxes, and indicate the potential of ultralight, high-strength nanomaterials such as nanoboxes.

  18. Volumetric Three-Dimensional Display Systems

    Science.gov (United States)

    Blundell, Barry G.; Schwarz, Adam J.

    2000-03-01

    A comprehensive study of approaches to three-dimensional visualization by volumetric display systems This groundbreaking volume provides an unbiased and in-depth discussion on a broad range of volumetric three-dimensional display systems. It examines the history, development, design, and future of these displays, and considers their potential for application to key areas in which visualization plays a major role. Drawing substantially on material that was previously unpublished or available only in patent form, the authors establish the first comprehensive technical and mathematical formalization of the field, and examine a number of different volumetric architectures. System level design strategies are presented, from which proposals for the next generation of high-definition predictable volumetric systems are developed. To ensure that researchers will benefit from work already completed, they provide: * Descriptions of several recent volumetric display systems prepared from material supplied by the teams that created them * An abstract volumetric display system design paradigm * An historical summary of 90 years of development in volumetric display system technology * An assessment of the strengths and weaknesses of many of the systems proposed to date * A unified presentation of the underlying principles of volumetric display systems * A comprehensive bibliography Beautifully supplemented with 17 color plates that illustrate volumetric images and prototype displays, Volumetric Three-Dimensional Display Systems is an indispensable resource for professionals in imaging systems development, scientific visualization, medical imaging, computer graphics, aerospace, military planning, and CAD/CAE.

  19. Reporting buckling strength and elastic properties of nanowires

    Science.gov (United States)

    Shaat, M.; Abdelkefi, A.

    2016-12-01

    Nanocrystalline-nanowires have been incorporated in many micro-/nano-scale applications. To design nanowires-based nano-devices, studies should be conducted on the characterization of the elastic properties and the buckling strengths of nanowires. The challenge associated with detecting the properties of nanowires is that their properties are size-dependent. This motivated us to propose a model for the mechanics of nanocrystalline nanowires. In the context of this model, new measures are incorportated to account for the nanowire material structure and size effects and to reflect the experimental observations of nanomaterials-nanowires. This model is then harnessed to report the ranges of the buckling strength and the elastic properties of nanowires made of nanocrystalline diamond, Si, Al, Cu, Ag, Au, and Pt, for the first time. First, we report the range of the grain boundary Young's modulus for the various nanocrystalline materials. Depending on the contents of the grain boundary and the amount of impurities, the grain boundary Young's modulus is likely to be within the reported ranges. Second, for each grain size (from 200 nm to 2 nm), we report the range of Young's modulus, shear modulus, bulk modulus, and mass density of the aforementioned nanocrystalline nanomaterials. Third, we report the buckling strength and the equivalent Young's modulus of nanowires with different sizes accounting for the nanowire surface effects. The reported ranges of the buckling strength and the elastic properties of nanowires are experimentally validated.

  20. A method to determine Young's modulus of soft gels for cell adhesion

    Institute of Scientific and Technical Information of China (English)

    Xiaoling Peng; Jianyong Huang; Lei Qin; Chunyang Xiong; Jing Fang

    2009-01-01

    A convenient technique is reported in this note for measuring elastic modulus of extremely soft material for cellular adhesion. Specimens of bending cylinder under gravity are used to avoid contact problem between testing device and sample, and a beam model is presented for evaluating the curvatures of gel beams with large elastic deformation. A self-adaptive algorithm is also proposed to search for the best estimation of gels' elastic moduli by comparing the experimental bending curvatures with those computed from the beam model with preestimated moduli. Application to the measurement of the property of polyacrylamide gels indicates that the material compliance varies with the concentrations of bis-acrylamide, and the gels become softer after being immersed in a culture medium for a period of time, no matter to what extent they are polymerized.

  1. Elastic Constants of Na and K from Non-parameter Perturbation Calculation

    Institute of Scientific and Technical Information of China (English)

    陈军; 经福谦; 陈栋泉; 张景琳; 段素清

    2001-01-01

    Combining a linear muffin-tin orbital method, which can be used to calculate the total energy and pressure of solids in a self-consistent manner, with a generalized elastic energy equation, a non-parameter perturbation method has been proposed to compute the elastic constant for cubic metals. The pressure dependence of the shear modulus and bulk modulus forNa and K was calculated. It was found that the computed results agree well with experiments.

  2. A Unified Guide to Two Opposite Size Effects in Nano Elastic Materials

    Institute of Scientific and Technical Information of China (English)

    TANG Yi-Zhe; ZHENG Zhi-Jun; XIA Meng-Fen; BAI Yi-Long

    2009-01-01

    The microstructural variation near surface of nano elastic materials is analyzed based on different potentials.The atomic/molecular mechanism underlying the variation and its effect on elastic modulus are such that the nature of long-range interactions(attractive or repulsive)in the atomic/molecular potentials essentially governs the variation near surface(looser or tighter)and results in two opposite size effects(decreasing or increasing modulus)with decreasing size.

  3. Nonlinear elastic response in solid helium: critical velocity or strain?

    Science.gov (United States)

    Day, James; Syshchenko, Oleksandr; Beamish, John

    2010-02-19

    Torsional oscillator experiments show evidence of mass decoupling in solid 4He. This decoupling is amplitude dependent, suggesting a critical velocity for supersolidity. We observe similar behavior in the elastic shear modulus. By measuring the shear modulus over a wide frequency range, we can distinguish between an amplitude dependence which depends on velocity and one which depends on some other parameter such as displacement. In contrast with the torsional oscillator behavior, the modulus depends on the magnitude of stress, not velocity. We interpret our results in terms of the motion of dislocations which are weakly pinned by 3He impurities but which break away when large stresses are applied.

  4. Elastic Properties of Liquid Surfaces Coated with Colloidal Particles

    Directory of Open Access Journals (Sweden)

    Edward Bormashenko

    2015-01-01

    Full Text Available The physical mechanism of elasticity of liquid surfaces coated with colloidal particles is proposed. It is suggested that particles are separated by water clearings and the capillary interaction between them is negligible. The case is treated when the colloidal layer is deformed normally to its surface. The elasticity arises as an interfacial effect. The effective Young modulus of a surface depends on the interfacial tension, equilibrium contact angle, radius of colloidal particles, and their surface density. For the nanometrically scaled particles the line tension becomes essential and has an influence on the effective Young modulus.

  5. Probing hysteretic elasticity in weakly nonlinear materials

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Paul A [Los Alamos National Laboratory; Haupert, Sylvain [UPMC UNIV PARIS; Renaud, Guillaume [UPMC UNIV PARIS; Riviere, Jacques [UPMC UNIV PARIS; Talmant, Maryline [UPMC UNIV PARIS; Laugier, Pascal [UPMC UNIV PARIS

    2010-12-07

    Our work is aimed at assessing the elastic and dissipative hysteretic nonlinear parameters' repeatability (precision) using several classes of materials with weak, intermediate and high nonlinear properties. In this contribution, we describe an optimized Nonlinear Resonant Ultrasound Spectroscopy (NRUS) measuring and data processing protocol applied to small samples. The protocol is used to eliminate the effects of environmental condition changes that take place during an experiment, and that may mask the intrinsic elastic nonlinearity. As an example, in our experiments, we identified external temperature fluctuation as a primary source of material resonance frequency and elastic modulus variation. A variation of 0.1 C produced a frequency variation of 0.01 %, which is similar to the expected nonlinear frequency shift for weakly nonlinear materials. In order to eliminate environmental effects, the variation in f{sub 0} (the elastically linear resonance frequency proportional to modulus) is fit with the appropriate function, and that function is used to correct the NRUS calculation of nonlinear parameters. With our correction procedure, we measured relative resonant frequency shifts of 10{sup -5} , which are below 10{sup -4}, often considered the limit to NRUS sensitivity under common experimental conditions. Our results show that the procedure is an alternative to the stringent control of temperature often applied. Applying the approach, we report nonlinear parameters for several materials, some with very small nonclassical nonlinearity. The approach has broad application to NRUS and other Nonlinear Elastic Wave Spectroscopy approaches.

  6. The Elastic Constants for Wrought Aluminum Alloys

    Science.gov (United States)

    Templin, R L; Hartmann, E C

    1945-01-01

    There are several constants which have been devised as numerical representations of the behavior of metals under the action of loadings which stress the metal within the range of elastic action. Some of these constants, such as Young's modulus of elasticity in tension and compression, shearing modulus of elasticity, and Poisson's ratio, are regularly used in engineering calculations. Precise tests and experience indicate that these elastic constants are practically unaffected by many of the factors which influence the other mechanical properties of materials and that a few careful determinations under properly controlled conditions are more useful and reliable than many determinations made under less favorable conditions. It is the purpose of this paper to outline the methods employed by the Aluminum Research Laboratories for the determination of some of these elastic constants, to list the values that have been determined for some of the wrought aluminum alloys, and to indicate the variations in the values that may be expected for some of the commercial products of these alloys.

  7. 我国部分核电厂核岛区岩体动、静模量研究%THE RESEARCH ON DYNAMIC AND STATIC MODULUS OF ISLAND ROCK OF PARTIAL NUCLEAR POWER PLANTS IN CHINA

    Institute of Scientific and Technical Information of China (English)

    胡勐乾; 周群; 纪忠华; 李亮

    2015-01-01

    通过利用我国部分核电厂核岛区岩体原位测试获得的动、静模量,对动、静模量之间的关系进行对比研究。结果表明,微风化岩体的动、静模量比值Ed/Es 分布在0.56~3.0之间,中风化岩体的动、静模量比值Ed/Es 分布在1.84~9.32之间。由一元线性回归分析可得动、静模量的关系式,表明动、静模量之间具有较好的相关性。%It was studied the relationship of the dynamic elastic modulus and static modulus using the data getting from in situ testing of rock of island of partial nuclear power plants.The results showed that the ratio of dynamic elastic modulus and static modulus of slightly weathered rock was 0.56 to 3.0, and the ratio of dynamic elastic modulus and static modulus of moderately weathered rock was 1.84 to 9.32.The relationship of the dynamic elastic modulus and static modulus from linear regression analysis indicated that they have a good correlation.

  8. Mechanical properties of low modulus beta titanium alloys designed from the electronic approach.

    Science.gov (United States)

    Laheurte, P; Prima, F; Eberhardt, A; Gloriant, T; Wary, M; Patoor, E

    2010-11-01

    Titanium alloys dedicated to biomedical applications may display both clinical and mechanical biocompatibility. Based on nontoxic elements such as Ti, Zr, Nb, Ta, they should combine high mechanical resistance with a low elastic modulus close to the bone elasticity (E=20 GPa) to significantly improve bone remodelling and osseointegration processes. These elastic properties can be reached using both lowering of the intrinsic modulus by specific chemical alloying and superelasticity effects associated with a stress-induced phase transformation from the BCC metastable beta phase to the orthorhombic alpha(″) martensite. It is shown that the stability of the beta phase can be triggered using a chemical formulation strategy based on the electronic design method initially developed by Morinaga. This method is based on the calculation of two electronic parameters respectively called the bond order (B(o)) and the d orbital level (M(d)) for each alloy. By this method, two titanium alloys with various tantalum contents, Ti-29Nb-11Ta-5Zr and Ti-29Nb-6Ta-5Zr (wt%) were prepared. In this paper, the effect of the tantalum content on the elastic modulus/yield strength balance has been investigated and discussed regarding the deformation modes. The martensitic transformation beta-->alpha(″) has been observed on Ti-29Nb-6Ta-5Zr in contrast to Ti-29Nb-11Ta-5Zr highlighting the chemical influence of the Ta element on the initial beta phase stability. A formulation strategy is discussed regarding the as-mentioned electronic parameters. Respective influence of cold rolling and flash thermal treatments (in the isothermal omega phase precipitation domain) on the tensile properties has been investigated.

  9. Microscopic origin of volume modulus inflation

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele [ICTP, Strada Costiera 11, Trieste 34014 (Italy); Dipartimento di Fisica e Astronomia, Università di Bologna, via Irnerio 46, 40126 Bologna (Italy); INFN, Sezione di Bologna, via Irnerio 46, 40126 Bologna (Italy); Muia, Francesco [Dipartimento di Fisica e Astronomia, Università di Bologna, via Irnerio 46, 40126 Bologna (Italy); INFN, Sezione di Bologna, via Irnerio 46, 40126 Bologna (Italy); Pedro, Francisco Gil [Departamento de Fisica Teórica UAM and Instituto de Fisica Teórica UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2015-12-21

    High-scale string inflationary models are in well-known tension with low-energy supersymmetry. A promising solution involves models where the inflaton is the volume of the extra dimensions so that the gravitino mass relaxes from large values during inflation to smaller values today. We describe a possible microscopic origin of the scalar potential of volume modulus inflation by exploiting non-perturbative effects, string loop and higher derivative perturbative corrections to the supergravity effective action together with contributions from anti-branes and charged hidden matter fields. We also analyse the relation between the size of the flux superpotential and the position of the late-time minimum and the inflection point around which inflation takes place. We perform a detailed study of the inflationary dynamics for a single modulus and a two moduli case where we also analyse the sensitivity of the cosmological observables on the choice of initial conditions.

  10. Microscopic Origin of Volume Modulus Inflation

    CERN Document Server

    Cicoli, Michele; Pedro, Francisco Gil

    2015-01-01

    High-scale string inflationary models are in well-known tension with low-energy supersymmetry. A promising solution involves models where the inflaton is the volume of the extra dimensions so that the gravitino mass relaxes from large values during inflation to smaller values today. We describe a possible microscopic origin of the scalar potential of volume modulus inflation by exploiting non-perturbative effects, string loop and higher derivative perturbative corrections to the supergravity effective action together with contributions from anti-branes and charged hidden matter fields. We also analyse the relation between the size of the flux superpotential and the position of the late-time minimum and the inflection point around which inflation takes place. We perform a detailed study of the inflationary dynamics for a single modulus and a two moduli case where we also analyse the sensitivity of the cosmological observables on the choice of initial conditions.

  11. Fibonacci difference sequence spaces for modulus functions

    Directory of Open Access Journals (Sweden)

    Kuldip Raj

    2015-05-01

    Full Text Available In the present paper we introduce Fibonacci difference sequence spaces l(F, Ƒ, p, u and  l_∞(F, Ƒ, p, u by using a sequence of modulus functions and a new band matrix F. We also make an effort to study some inclusion relations, topological and geometric properties of these spaces. Furthermore, the alpha, beta, gamma duals and matrix transformation of the space l(F, Ƒ, p, u are determined.

  12. Residual stress in high modulus carbon fibers

    Science.gov (United States)

    Chen, K. J.; Diefendorf, R. J.

    1982-01-01

    The modulus and residual strain in carbon fibers are measured by successively electrochemically milling away the fiber surface. Electrochemical etching is found to remove the carbon fiber surface very uniformly, in contrast to air and wet oxidation. The precision of fiber diameter measurements is improved by using a laser diffraction technique instead of optical methods. More precise diameter measurements reveal that past correlations of diameter and fiber modulus are largely measurement artifact. The moduli of most carbon fibers decrease after the outer layers of the fibers are removed. Owing to experimental difficulties, the moduli and strengths of the fibers at their centers are not determined, and moduli are estimated on the basis of microstructure. The calculated residual stresses are found to be insensitive to these moduli estimates as well as the exact form of regression equation used to describe the moduli and residual strain distributions. Axial compressive residual stresses are found to be very high for some higher modulus carbon fibers. It is pointed out that the compressive stress makes the fibers insensitive to surface flaws when loaded in tension but it may initiate failure by buckling when loaded in compression.

  13. Shear modulus of neutron star crust

    CERN Document Server

    Baiko, D A

    2011-01-01

    Shear modulus of solid neutron star crust is calculated by thermodynamic perturbation theory taking into account ion motion. At given density the crust is modelled as a body-centered cubic Coulomb crystal of fully ionized atomic nuclei of one type with the uniform charge-compensating electron background. Classic and quantum regimes of ion motion are considered. The calculations in the classic temperature range agree well with previous Monte Carlo simulations. At these temperatures the shear modulus is given by the sum of a positive contribution due to the static lattice and a negative $\\propto T$ contribution due to the ion motion. The quantum calculations are performed for the first time. The main result is that at low temperatures the contribution to the shear modulus due to the ion motion saturates at a constant value, associated with zero-point ion vibrations. Such behavior is qualitatively similar to the zero-point ion motion contribution to the crystal energy. The quantum effects may be important for li...

  14. High-pressure elastic properties of cubic Ir2P from ab initio calculations

    Science.gov (United States)

    Sun, Xiao-Wei; Bioud, Nadhira; Fu, Zhi-Jian; Wei, Xiao-Ping; Song, Ting; Li, Zheng-Wei

    2016-10-01

    A study of the high-pressure elastic properties of new synthetic Ir2P in the anti-fluorite structure is conducted using ab initio calculations based on density functional theory. The elastic constants C11, C12 and C44 for the cubic Ir2P are obtained by the stress-strain method and the elastic stability calculations under pressure indicate that it is stable at least 100 GPa. Additionally, the electronic density of states, the aggregate elastic moduli, that is bulk modulus, shear modulus, and Young's modulus along with the Debye temperature, Poisson's ratio, and elastic anisotropy factor are all successfully obtained. Moreover, the pressure dependence of the longitudinal and shear wave velocities in three different directions [100], [110], and [111] for Ir2P are also predicted for the first time.

  15. STM verification of the reduction of the Young's modulus of CdS nanoparticles at smaller sizes

    Science.gov (United States)

    Hazarika, A.; Peretz, E.; Dikovsky, V.; Santra, P. K.; Shneck, R. Z.; Sarma, D. D.; Manassen, Y.

    2014-12-01

    We demonstrate the first STM evaluation of the Young's modulus (E) of nanoparticles (NPs) of different sizes. The sample deformation induced by tip-sample interaction has been determined using current-distance (I-Z) spectroscopy. As a result of tip-sample interaction, and the induced surface deformations, the I-z curves deviates from pure exponential dependence. Normally, in order to analyze the deformation quantitatively, the tip radius must be known. We show, that this necessity is eliminated by measuring the deformation on a substrate with a known Young's modulus (Au(111)) and estimating the tip radius, and afterwards, using the same tip (with a known radius) to measure the (unknown) Young's modulus of another sample (nanoparticles of CdS). The Young's modulus values found for 3 NP's samples of average diameters of 3.7, 6 and 7.5 nm, were E ~ 73%, 78% and 88% of the bulk value, respectively. These results are in a good agreement with the theoretically predicted reduction of the Young's modulus due to the changes in hydrostatic stresses which resulted from surface tension in nanoparticles with different sizes. Our calculation using third order elastic constants gives a reduction of E which scales linearly with 1/r (r is the NP's radius). This demonstrates the applicability of scanning tunneling spectroscopy for local mechanical characterization of nanoobjects. The method does not include a direct measurement of the tip-sample force but is rather based on the study of the relative elastic response.

  16. Elastic response of filamentous networks with compliant crosslinks.

    Science.gov (United States)

    Sharma, A; Sheinman, M; Heidemann, K M; MacKintosh, F C

    2013-11-01

    Experiments have shown that elasticity of disordered filamentous networks with compliant crosslinks is very different from networks with rigid crosslinks. Here, we model and analyze filamentous networks as a collection of randomly oriented rigid filaments connected to each other by flexible crosslinks that are modeled as wormlike chains. For relatively large extensions we allow for enthalpic stretching of crosslink backbones. We show that for sufficiently high crosslink density, the network linear elastic response is affine on the scale of the filaments' length. The nonlinear regime can become highly nonaffine and is characterized by a divergence of the elastic modulus at finite strain. In contrast to the prior predictions, we do not find an asymptotic regime in which the differential elastic modulus scales linearly with the stress, although an approximate linear dependence can be seen in a transition from entropic to enthalpic regimes. We discuss our results in light of recent experiments.

  17. Elastic response of filamentous networks with compliant crosslinks

    CERN Document Server

    Sharma, A; Heidemann, K M; MacKintosh, F C

    2013-01-01

    Experiments have shown that elasticity of disordered filamentous networks with compliant crosslinks is very different from networks with rigid crosslinks. Here, we model and analyze filamentous networks as a collection of randomly oriented rigid filaments connected to each other by flexible crosslinks that are modeled as worm-like chains. For relatively large extensions we allow for enthalpic stretching of crosslinks' backbones. We show that for sufficiently high crosslink density, the network linear elastic response is affine on the scale of the filaments' length. The nonlinear regime can become highly nonaffine and is characterized by a divergence of the elastic modulus at finite strain. In contrast to the prior predictions, we do not find an asymptotic regime in which the differential elastic modulus scales linearly with the stress, although an approximate linear dependence can be seen in a transition from entropic to enthalpic regimes. We discuss our results in light of the recent experiments.

  18. Model-Based Reconstructive Elasticity Imaging Using Ultrasound

    Directory of Open Access Journals (Sweden)

    Salavat R. Aglyamov

    2007-01-01

    Full Text Available Elasticity imaging is a reconstructive imaging technique where tissue motion in response to mechanical excitation is measured using modern imaging systems, and the estimated displacements are then used to reconstruct the spatial distribution of Young's modulus. Here we present an ultrasound elasticity imaging method that utilizes the model-based technique for Young's modulus reconstruction. Based on the geometry of the imaged object, only one axial component of the strain tensor is used. The numerical implementation of the method is highly efficient because the reconstruction is based on an analytic solution of the forward elastic problem. The model-based approach is illustrated using two potential clinical applications: differentiation of liver hemangioma and staging of deep venous thrombosis. Overall, these studies demonstrate that model-based reconstructive elasticity imaging can be used in applications where the geometry of the object and the surrounding tissue is somewhat known and certain assumptions about the pathology can be made.

  19. Nonlinear surface waves in soft, weakly compressible elastic media.

    Science.gov (United States)

    Zabolotskaya, Evgenia A; Ilinskii, Yurii A; Hamilton, Mark F

    2007-04-01

    Nonlinear surface waves in soft, weakly compressible elastic media are investigated theoretically, with a focus on propagation in tissue-like media. The model is obtained as a limiting case of the theory developed by Zabolotskaya [J. Acoust. Soc. Am. 91, 2569-2575 (1992)] for nonlinear surface waves in arbitrary isotropic elastic media, and it is consistent with the results obtained by Fu and Devenish [Q. J. Mech. Appl. Math. 49, 65-80 (1996)] for incompressible isotropic elastic media. In particular, the quadratic nonlinearity is found to be independent of the third-order elastic constants of the medium, and it is inversely proportional to the shear modulus. The Gol'dberg number characterizing the degree of waveform distortion due to quadratic nonlinearity is proportional to the square root of the shear modulus and inversely proportional to the shear viscosity. Simulations are presented for propagation in tissue-like media.

  20. Mendapatkan Young’s Modulus Fasa Cu6Sn5 dengan Teknik Ultrasonik dan Teori Komposit

    Directory of Open Access Journals (Sweden)

    Ellyza Herda

    2015-09-01

    Full Text Available The purpose of this study is to obtain the Young’s Modulus (elastic property of Cu6Sn5 phase by using ultrasonic technique and composite theory. Alloy with the following composition (weight percent = wt%: 15.00 % Cu and 85 % Sn was fabricated by casting method. Phases identification were determined by using X-ray Diffraction (XRD, Differential Scanning Calorimeter (DSC, and Scanning Electron Microscope (SEM + EDAX (Energy Dispersive X-ray Analysis. A non destructive technique is preferable evaluation method for evaluation the elastic property of material, that is by utilizing longitudinal and transversal waves velocity employed by ultrasonic pulse-echo method. X-ray diffraction, DSC, and SEM+EDAX analysis indicate that the fabricated Cu-85%Sn alloy produce a composite in situ material which consist of Sn as a matrix (0.67 volume fraction and Cu6Sn5 phase as a reinforcing material (0.33 volume fraction. The Young’s Modulus value of Cu-85%Sn is 67.7 GPa. This value is base on the calculating result on the longitudinal and transversal waves velocity. In order to obtain the Young’s Modulus of reinforcement (Cu6Sn5 phase the composite theory was applied to this material (Cu-85%Sn, and the resulted value is 103.8 GPa.

  1. Elastic and electromechanical properties of polypropylene foam ferroelectrets

    Science.gov (United States)

    Dansachmüller, M.; Schwödiauer, R.; Bauer-Gogonea, S.; Bauer, S.; Paajanen, M.; Raukola, J.

    2005-01-01

    Internally charged closed-cell polymer electrets exhibit ferroelectric-like behavior and have been called ferroelectrets. They are attractive for soft electroactive transducers, the high compressibility leads to d33 transducer coefficients exceeding those of ferroelectric polymers. A technique for the measurement of the elastic modulus and the transducer coefficient of ferroelectrets is reported. The elastic behavior of ferroelectretic polypropylene foams is correlated with the piezoelectric-like properties. Prestress treatments linearize the transducer properties.

  2. Numerical and Analytical Analysis of Elastic Rotor Natural Frequency

    Directory of Open Access Journals (Sweden)

    Adis J. Muminovic

    2014-11-01

    Full Text Available In this paper simulation model which enables quick analysis of elastic rotor natural frequency modes is developed using Matlab. This simulation model enables users to get dependency diagram of natural frequency in relation to diameter and length of the rotor,density of the material or modulus of elasticity. Testing of the model is done using numerical analysis in SolidWorks software.

  3. Polymerization Shrinkage and Flexural Modulus of Flowable Dental Composites

    Directory of Open Access Journals (Sweden)

    Janaína Cavalcanti Xavier

    2010-09-01

    Full Text Available Linear polymerization shrinkage (LPS, flexural strength (FS and modulus of elasticity (ME of low-viscosity resin composites (Admira Flow™, Grandio Flow™/VOCO; Filtek Z350 Flow™/3M ESPE; Tetric Flow™/Ivoclar-Vivadent was evaluated using a well-established conventional micro-hybrid composite as a standard (Filtek Z250™/3M ESPE. For the measurement of LPS, composites were applied to a cylindrical metallic mould and polymerized (n = 8. The gap formed at the resin/mould interface was observed using SEM (1500×. For FS and ME, specimens were prepared according to the ISO 4049 specifications (n = 10. Statistical analysis of the data was performed with one-way ANOVA and the Tukey test. The conventional resin presented significantly lower LPS associated with high FS and ME, but only the ME values of the conventional resin differed significantly from the low-viscosity composites. The relationship between ME and LPS of low-viscosity resin composites when used as restorative material is a critical factor in contraction stress relief and marginal leakage.

  4. A reduced volumetric expansion factor plot

    Science.gov (United States)

    Hendricks, R. C.

    1979-01-01

    A reduced volumetric expansion factor plot has been constructed for simple fluids which is suitable for engineering computations in heat transfer. Volumetric expansion factors have been found useful in correlating heat transfer data over a wide range of operating conditions including liquids, gases and the near critical region.

  5. Pressure induced stiffening, thermal softening of bulk modulus and brittle nature of mercury chalcogenides

    Science.gov (United States)

    Varshney, Dinesh; Shriya, Swarna; Sapkale, Raju; Varshney, Meenu; Ameri, M.

    2015-07-01

    The pressure and temperature dependent elastic properties of mercury chalcogenides (HgX; X = S, Se and Te) with pressure induced structural transition from ZnS-type (B3) to NaCl-type (B1) structure have been analyzed within the framework of a model interionic interaction potential with long-range Coulomb and charge transfer interactions, short-range overlap repulsion and van der Waals (vdW) interactions as well as zero point energy effects. Emphasis is on the evaluation of the Bulk modulus with pressure and temperature dependency to yield the Poisson's ratio ν, the Pugh ratio ϕ, anisotropy parameter, Shear and Young's modulus, Lamé's constant, Klein man parameter, elastic wave velocity and Debye temperature. The Poisson's ratio behavior infers that HgX are brittle in nature. To our knowledge this is the first quantitative theoretical prediction of the pressure dependence of elastic and thermodynamical properties explicitly the ductile (brittle) nature of HgX and still awaits experimental confirmations.

  6. Measurement of ultimate tensile strength and Young modulus in LYSO scintillating crystals

    Energy Technology Data Exchange (ETDEWEB)

    Scalise, Lorenzo, E-mail: l.scalise@univpm.it [Dipartimento di Meccanica, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Rinaldi, Daniele [Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Istituto Nazionale di Fisica Nucleare, Section of Perugia (Italy); Davi, Fabrizio [Dipartimento di Architettura Costruzioni e Strutture, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Paone, Nicola [Dipartimento di Meccanica, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy)

    2011-10-21

    Scintillating crystals are employed in high energy physics, in medical imaging, diagnostic and security. Two mechanical properties of lutetium-yttrium oxyorthosilicate cerium-doped Lu{sub 2(1-x)}Y{sub 2x}SiO{sub 5}:Ce with x=0.1 (LYSO) crystals have been measured: the ultimate tensile stress ({sigma}{sub UTS}) and the Young elastic modulus (E). Measurements are made by means of a 4-points loading device and the experimental results account for an elastic-brittle stress-strain relation, which depends heavily on the specimen preparation and the material defects. {sigma}{sub UTS} along the [0 1 0] tensile direction ranges within 68.14 and 115.61 MPa, which, in the lowest case, is more than twice with respect to those measured for PbWO{sub 4} (PWO), exhibiting a marked difference between the annealed and the not-annealed samples. The mean elastic modulus (E), along the same direction, is E=1.80x10{sup 11} ({+-}2.15x10{sup 10}) N/m{sup 2}, with lower dispersion respect to UTS data. This type of analysis and study can be included into quality control procedures of crystals, based on samples taken out of production; such procedures can be established for industrial processing of crystals aimed to the high energy physics (calorimeters) and medical imaging (PET, etc.) applications.

  7. New multitarget constant modulus array for CDMA systems

    Institute of Scientific and Technical Information of China (English)

    Zhang Jidong; Zheng Baoyu

    2006-01-01

    A new multitarget constant modulus array is proposed for CDMA systems based on least squares constant modulus algorithm. The new algorithm is called pre-despreading decision directed least squares constant modulus algorithm (DDDLSCMA). In the new algorithm, the pre-despreading is first applied for multitarget arrays to remove some multiple access signals, then the despreaded signal is processed by the algorithm which united the constant modulus algorithm and decision directed method. Simulation results illustrate the good performance for the proposed algorithm.

  8. The instantaneous shear modulus in the shoving model

    DEFF Research Database (Denmark)

    Dyre, J. C.; Wang, W. H.

    2012-01-01

    We point out that the instantaneous shear modulus G∞ of the shoving model for the non-Arrhenius temperature dependence of viscous liquids’ relaxation time is the experimentally accessible highfrequency plateau modulus, not the idealized instantaneous affine shear modulus that cannot be measured...

  9. Properties of elastic percolating networks in isotropic media with arbitrary elastic constants

    Science.gov (United States)

    Pla, O.; Garcia-Molina, R.; Guinea, F.; Louis, E.

    1990-06-01

    The properties of diluted elastic media in two dimensions are investigated in an isotropic system in which the ratio between the two Lamé coefficients can be varied. Changes in the ratio between the continuum elastic constants induce significant variations in the behavior of the system away from the threshold for percolation, but not in the properties near the percolation transition. We discuss the results in both cases and their relevance to the definition of the universal properties of diluted elastic networks. It is shown that many features of interest, like the bulk modulus at intermediate concentrations of voids and the backbone, are very dependent on the microscopic details of the model, and not only on its macroscopic behavior. Thus, elastic percolation does not seem to have the same degree of universality as scalar percolation.

  10. Membrane elastic properties and cell function.

    Directory of Open Access Journals (Sweden)

    Bruno Pontes

    Full Text Available Recent studies indicate that the cell membrane, interacting with its attached cytoskeleton, is an important regulator of cell function, exerting and responding to forces. We investigate this relationship by looking for connections between cell membrane elastic properties, especially surface tension and bending modulus, and cell function. Those properties are measured by pulling tethers from the cell membrane with optical tweezers. Their values are determined for all major cell types of the central nervous system, as well as for macrophage. Astrocytes and glioblastoma cells, which are considerably more dynamic than neurons, have substantially larger surface tensions. Resting microglia, which continually scan their environment through motility and protrusions, have the highest elastic constants, with values similar to those for resting macrophage. For both microglia and macrophage, we find a sharp softening of bending modulus between their resting and activated forms, which is very advantageous for their acquisition of phagocytic functions upon activation. We also determine the elastic constants of pure cell membrane, with no attached cytoskeleton. For all cell types, the presence of F-actin within tethers, contrary to conventional wisdom, is confirmed. Our findings suggest the existence of a close connection between membrane elastic constants and cell function.

  11. On the relationship between indentation hardness and modulus, and the damage resistance of biological materials.

    Science.gov (United States)

    Labonte, David; Lenz, Anne-Kristin; Oyen, Michelle L

    2017-07-15

    indentation is a widespread tool for characterising the mechanical properties of biological materials. Here, we show that the ratio between indentation hardness and modulus is approximately constant in biological materials. A simple elastic-plastic series deformation model is employed to rationalise part of this correlation, and criteria for a meaningful comparison of indentation hardness across biological materials are proposed. The ratio between indentation hardness and modulus emerges as the key parameter characterising the relative amount of irreversible deformation during indentation. Despite their comparatively high hardness to modulus ratio, biological materials are susceptible to quasiplastic deformation, due to their high toughness: quasi-plastic deformation is hence hypothesised to be a frequent yet poorly understood phenomenon, highlighting an important area of future research. Copyright © 2017 Acta Materialia Inc. All rights reserved.

  12. The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications

    NARCIS (Netherlands)

    Lotters, J.C.; Olthuis, W.; Veltink, P.H.; Bergveld, P.

    1997-01-01

    Polydimethylsiloxane (PDMS) is a commercially available physically and chemically stable silicone rubber. It has a unique flexibility with a shear elastic modulus due to one of the lowest glass transition temperatures of any polymer . Further properties of PDMS are a low change in the shear elastic

  13. First-principles study on the elastic properties of Cu2GeSe3

    Science.gov (United States)

    Shao, Hezhu; Tan, Xiaojian; Jiang, Jun; Jiang, Haochuan

    2016-01-01

    The elastic properties of Cu2GeSe3, including bulk modulus, shear modulus, Young's modulus, Possion's ratio, and their anisotropic properties, have been investigated by using first-principles calculations. The calculated lattice parameters are in good agreement with previous calculations and experimental measurements. The result of bulk modulus by fitting the Birch-Murnaghan 3rd-order equation of state is well consistent with that calculated from the elastic constants. The ductile nature of Cu2GeSe3 is characterized according to Pugh's rule. The Debye temperature calculated from fitting heat capacity data is consistent with that obtained from sound velocity. Additionally, the elastic anisotropy is depicted in detail by plotting the directional dependence of the bulk and Young's moduli.

  14. Elastic and Thermal Properties of Silicon Compounds from First-Principles Calculations

    Science.gov (United States)

    Hou, Haijun; Zhu, H. J.; Cheng, W. H.; Xie, L. H.

    2016-07-01

    The structural and elastic properties of V-Si (V3Si, VSi2, V5Si3, and V6Si5) compounds are studied by using first-principles method. The calculated equilibrium lattice parameters and formation enthalpy are in good agreement with the available experimental data and other theoretical results. The calculated results indicate that the V-Si compounds are mechanically stable. Elastic properties including bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are also obtained. The elastic anisotropies of V-Si compounds are investigated via the three-dimensional (3D) figures of directional dependences of reciprocals of Young's modulus. Finally, based on the quasi-harmonic Debye model, the internal energy, Helmholtz free energy, entropy, heat capacity, thermal expansion coefficient, Grüneisen parameter, and Debye temperature of V-Si compounds have been calculated.

  15. Elastic and thermal properties of silicon compounds from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Haijun; Zhu, H.J. [Yancheng Institute of Technology (China). School of Materials Engineering; Cheng, W.H. [Yancheng Institute of Technology (China). Dept. of Light Chemical Engineering; Xie, L.H. [Sichuan Normal Univ., Chengdu (China). Inst. of Solid State Physics and School of Physics and Electronic Engineering

    2016-11-01

    The structural and elastic properties of V-Si (V{sub 3}Si, VSi{sub 2}, V{sub 5}Si{sub 3}, and V{sub 6}Si{sub 5}) compounds are studied by using first-principles method. The calculated equilibrium lattice parameters and formation enthalpy are in good agreement with the available experimental data and other theoretical results. The calculated results indicate that the V-Si compounds are mechanically stable. Elastic properties including bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are also obtained. The elastic anisotropies of V-Si compounds are investigated via the three-dimensional (3D) figures of directional dependences of reciprocals of Young's modulus. Finally, based on the quasi-harmonic Debye model, the internal energy, Helmholtz free energy, entropy, heat capacity, thermal expansion coefficient, Grueneisen parameter, and Debye temperature of V-Si compounds have been calculated.

  16. Elastic properties of DNA linked flexible magnetic filaments

    Energy Technology Data Exchange (ETDEWEB)

    Erglis, K; Cebers, A [Department of Theoretical Physics, University of Latvia, Zellu 8, Riga, LV-1002 (Latvia); Zhulenkovs, D; Sharipo, A [Latvian Biomedical Research and Study Center, Ratsupites 1, Riga, LV-1067 (Latvia)], E-mail: aceb@tesla.sal.lv

    2008-05-21

    Elastic properties of magnetic filaments linked by DNA in solutions of univalent and bivalent salts with different pH values are investigated through their deformation in an external field. A strong dependence of the bending modulus in bivalent salt solution on the pH is shown. Experimental results are interpreted on the basis of the magnetic elastica.

  17. Theoretical elastic moduli of ferromagnetic bcc Fe alloys.

    Science.gov (United States)

    Zhang, Hualei; Punkkinen, Marko P J; Johansson, Börje; Vitos, Levente

    2010-07-14

    The polycrystalline elastic parameters of ferromagnetic Fe(1-x)M(x) (M = Al, Si, V, Cr, Mn, Co, Ni, Rh; 0 ≤ x ≤ 0.1) random alloys in the body centered cubic (bcc) crystallographic phase have been calculated using first-principles alloy theory in combination with statistical averaging methods. With a few exceptions, the agreement between the calculated and the available experimental data for the polycrystalline aggregates is satisfactory. All additions considered here decrease the bulk modulus (B) and Poisson's ratio (ν) of bcc Fe. The complex composition dependence of the C(44) single-crystal elastic constant is reflected in the polycrystalline shear modulus (G), Young's modulus (E), and Debye temperature (Θ). The polycrystalline anisotropy of bcc Fe is increased by all additions, and Al, Si, Ni, and Rh yield the largest alloying effects.

  18. Renormalization of the tension and area expansion modulus in fluid membranes.

    Science.gov (United States)

    Marsh, D

    1997-08-01

    Renormalization of the membrane tension and elastic area expansion modulus by thermally induced bending fluctuations is treated in terms of the formalism of Brochard, De Gennes, and Pfeuty (J. de Phys. (France). 37:1099-1104, 1976). The dependence of the renormalized tension on the bare membrane tension parallels the dependence on the fractional area extension of giant vesicles found experimentally by Evans and Rawicz (Physiol. Rev. Lett. 64:2094-2097, 1990), and suggests conditions for molecular dynamics simulations with membrane patches of limited size that might best represent the properties of macroscopic vesicles.

  19. The Elastic Constants Measurement of Metal Alloy by Using Ultrasonic Nondestructive Method at Different Temperature

    Directory of Open Access Journals (Sweden)

    Eryi Hu

    2016-01-01

    Full Text Available The ultrasonic nondestructive method is introduced into the elastic constants measurement of metal material. The extraction principle of Poisson’s ratio, elastic modulus, and shear modulus is deduced from the ultrasonic propagating equations with two kinds of vibration model of the elastic medium named ultrasonic longitudinal wave and transverse wave, respectively. The ultrasonic propagating velocity is measured by using the digital correlation technique between the ultrasonic original signal and the echo signal from the bottom surface, and then the elastic constants of the metal material are calculated. The feasibility of the correlation algorithm is verified by a simulation procedure. Finally, in order to obtain the stability of the elastic properties of different metal materials in a variable engineering application environment, the elastic constants of two kinds of metal materials in different temperature environment are measured by the proposed ultrasonic method.

  20. Elastic properties of RCC under flexural loading-experimental and analytical approach

    Indian Academy of Sciences (India)

    S K Kulkarni; M R Shiyekar; S M Shiyekar; B Wagh

    2014-06-01

    In structural analysis,especially in indeterminate structures, it becomes essential to know material and geometrical properties of members. The codal provisions recommend elastic properties of concrete and steel and these are fairly accurate enough. The stress–strain curve for concrete cylinder or a cube specimen is plotted. The slope of this curve is modulus of elasticity of plain concrete. Another method of determining modulus of elasticity of concrete is by flexural test of a beam specimen. The modulus of elasticity most commonly used for concrete is secant modulus. The modulus of elasticity of steel is obtained by performing a tension test of steel bar. While performing analysis by any software for high rise building, cross area of plain concrete is taken into consideration whereas effects of reinforcement bars and concrete confined by stirrups are neglected. The aim of study is to determine elastic properties of reinforced cement concrete material. Two important stiffness properties such as AE and EI play important role in analysis of high rise RCC building idealized as plane frame. The experimental programme consists of testing of beams (model size 150 × 150 × 700 mm) with percentage of reinforcement varying from 0.54 to 1.63%. The experimental results are verified by using 3D finite element techniques. This study refers to the effect of variation of percentage of main longitudinal reinforcement and concrete grade. Effect of confinement is not considered and it appears in a separate study.

  1. Polycrystalline gamma plutonium's elastic moduli versus temperature

    Energy Technology Data Exchange (ETDEWEB)

    Migliori, Albert [Los Alamos National Laboratory; Betts, J [Los Alamos National Laboratory; Trugman, A [Los Alamos National Laboratory; Mielke, C H [Los Alamos National Laboratory; Mitchell, J N [Los Alamos National Laboratory; Ramos, M [Los Alamos National Laboratory; Stroe, I [WORCESTER POLYTECHNIC INSTITUTE

    2009-01-01

    Resonant ultrasound spectroscopy was used to measure the elastic properties of pure polycrystalline {sup 239}Pu in the {gamma} phase. Shear and longitudinal elastic moduli were measured simultaneously and the bulk modulus was computed from them. A smooth, linear, and large decrease of all elastic moduli with increasing temperature was observed. They calculated the Poisson ratio and found that it increases from 0.242 at 519 K to 0.252 at 571 K. These measurements on extremely well characterized pure Pu are in agreement with other reported results where overlap occurs.

  2. Elastic properties of gamma-Pu by resonant ultrasound spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Migliori, Albert [Los Alamos National Laboratory; Betts, J [Los Alamos National Laboratory; Trugman, A [Los Alamos National Laboratory; Mielke, C H [Los Alamos National Laboratory; Mitchell, J N [Los Alamos National Laboratory; Ramos, M [Los Alamos National Laboratory; Stroe, I [WORXESTER, MA

    2009-01-01

    Despite intense experimental and theoretical work on Pu, there is still little understanding of the strange properties of this metal. We used resonant ultrasound spectroscopy method to investigate the elastic properties of pure polycrystalline Pu at high temperatures. Shear and longitudinal elastic moduli of the {gamma}-phase of Pu were determined simultaneously and the bulk modulus was computed from them. A smooth linear and large decrease of all elastic moduli with increasing temperature was observed. We calculated the Poisson ratio and found that it increases from 0.242 at 519K to 0.252 at 571K.

  3. In vivo quantification of the shear modulus of the human Achilles tendon during passive loading using shear wave dispersion analysis

    Science.gov (United States)

    Helfenstein-Didier, C.; Andrade, R. J.; Brum, J.; Hug, F.; Tanter, M.; Nordez, A.; Gennisson, J.-L.

    2016-03-01

    The shear wave velocity dispersion was analyzed in the Achilles tendon (AT) during passive dorsiflexion using a phase velocity method in order to obtain the tendon shear modulus (C 55). Based on this analysis, the aims of the present study were (i) to assess the reproducibility of the shear modulus for different ankle angles, (ii) to assess the effect of the probe locations, and (iii) to compare results with elasticity values obtained with the supersonic shear imaging (SSI) technique. The AT shear modulus (C 55) consistently increased with the ankle dorsiflexion (N  =  10, p  tendon mechanical properties across populations. Future studies should determine the clinical relevance of the shear wave dispersion analysis, for instance in the case of tendinopathy or tendon tear.

  4. Surfactant enhanced volumetric sweep efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Harwell, J.H.; Scamehorn, J.F.

    1989-10-01

    Surfactant-enhanced waterflooding is a novel EOR method aimed to improve the volumetric sweep efficiencies in reservoirs. The technique depends upon the ability to induce phase changes in surfactant solutions by mixing with surfactants of opposite charge or with salts of appropriate type. One surfactant or salt solution is injected into the reservoir. It is followed later by injection of another surfactant or salt solution. The sequence of injections is arranged so that the two solutions do not mix until they are into the permeable regions well away from the well bore. When they mix at this point, by design they form a precipitate or gel-like coacervate phase, plugging this permeable region, forcing flow through less permeable regions of the reservoir, improving sweep efficiency. The selectivity of the plugging process is demonstrated by achieving permeability reductions in the high permeable regions of Berea sandstone cores. Strategies were set to obtain a better control over the plug placement and the stability of plugs. A numerical simulator has been developed to investigate the potential increases in oil production of model systems. Furthermore, the hardness tolerance of anionic surfactant solutions is shown to be enhanced by addition of monovalent electrolyte or nonionic surfactants. 34 refs., 32 figs., 8 tabs.

  5. A theoretical study of the elastic and thermal properties of ScRu compound under pressure

    Science.gov (United States)

    Huang, Shuo; Li, Rui-Zi; Qi, San-Tao; Chen, Bao; Shen, Jiang

    2014-06-01

    The elastic and thermal properties of ScRu under pressure are studied using a first-principles pseudopotential method within the generalized gradient approximation. The calculated lattice parameter and formation enthalpy are in good agreement with the previous experimental and theoretical results. From the static finite strain technique, we obtained three independent elastic constants (C 11, C 12 and C 44) and various secondary elasticity parameters such as shear modulus, Young’s modulus and elastic anisotropy, as functions of pressure. This study also provided the pressure and temperature variations of the bulk modulus, Debye temperature, thermal expansion coefficient and heat capacity in wide pressure (0-60 GPa) and temperature (0-1800 K) ranges.

  6. Elasticity of 3D networks with rigid filaments and compliant crosslinks

    CERN Document Server

    Heidemann, Knut M; Rehfeldt, Florian; Schmidt, Christoph F; Wardetzky, Max

    2014-01-01

    Disordered filamentous networks with compliant crosslinks exhibit a low linear elastic shear modulus at small strains, but stiffen dramatically at high strains. Experiments have shown that the elastic modulus can increase by up to three orders of magnitude while the networks withstand relatively large stresses without rupturing. Here, we perform an analytical and numerical study on model networks in three dimensions. Our model consists of a collection of randomly oriented rigid filaments connected by flexible crosslinks that are modeled as wormlike chains. Due to zero probability of filament intersection in three dimensions, our model networks are by construction prestressed in terms of initial tension in the crosslinks. We demonstrate how the linear elastic modulus can be related to the prestress in these network. Under the assumption of affine deformations in the limit of infinite crosslink density, we show analytically that the nonlinear elastic regime in 1- and 2-dimensional networks is characterized by p...

  7. Elastic Properties of the Annular Ligament of the Human Stapes--AFM Measurement.

    Science.gov (United States)

    Kwacz, Monika; Rymuza, Zygmunt; Michałowski, Marcin; Wysocki, Jarosław

    2015-08-01

    Elastic properties of the human stapes annular ligament were determined in the physiological range of the ligament deflection using atomic force microscopy and temporal bone specimens. The annular ligament stiffness was determined based on the experimental load-deflection curves. The elastic modulus (Young's modulus) for a simplified geometry was calculated using the Kirchhoff-Love theory for thin plates. The results obtained in this study showed that the annular ligament is a linear elastic material up to deflections of about 100 nm, with a stiffness of about 120 N/m and a calculated elastic modulus of about 1.1 MPa. These parameters can be used in numerical and physical models of the middle and/or inner ear.

  8. Shell Model for Elastic and Thermodynamic Properties of Gallium Nitride with Hexagonal Wurtzite Structure

    Institute of Scientific and Technical Information of China (English)

    CHENG Yan; TU Ya-Jing; ZENG Zhao-Yi; GOU Qing-Quan

    2008-01-01

    Shell model molecular dynamic simulation with interatomic pair potential is utilized to investigate the elastic and thermodynamic properties of gallium nitride with hexagonal wurtzite structure (w-GaN) at high pressure. The calculated elastic constants Cij at zero pressure and 300 K agree well with the experimental data and other calculated values. Meanwhile, the dependences of the relative volume V/Vo, elastic constants Cij, entropy S, enthalpy H, and heat capacities Cv and Cp on pressure are successfully obtained. From the elastic constants obtained, we also calculate the shear modulus G, bulk modulus B, Young's modulus E, Poisson's ratio v, Debye temperature ΘD, and shear anisotropic factor Ashear on pressures.

  9. Elastic constants at low temperatures - Recent measurements on technological materials at NBS

    Science.gov (United States)

    Ledbetter, H. M.

    1978-01-01

    Solid-state low-temperature elastic properties have been experimentally studied at the NBS Cryogenic Division for four years. Most studies were between room temperature and liquid-helium temperature; some were only to liquid-nitrogen temperature. Two dynamic (high-frequency) experimental methods were used, pulse-echo and resonance, resulting in adiabatic elastic constants. The present paper reviews these studies for 47 technological materials - metals, alloys, and composites. The elastic constants primarily discussed are Young's modulus, the shear modulus, the bulk modulus (reciprocal compressibility), and Poisson's ratio. A summary table is presented to show which base metals tend to exhibit regular, irregular, or anomalous behavior in their elastic constant/temperature curves.

  10. Study on modal characteristics of perforated shell using effective Young's modulus

    Energy Technology Data Exchange (ETDEWEB)

    Jhung, Myung Jo, E-mail: mjj@kins.re.kr [Korea Institute of Nuclear Safety, 19 Guseong-dong, Yuseong-gu, Daejeon 305-338 (Korea, Republic of); Yu, Seon Oh [Korea Institute of Nuclear Safety, 19 Guseong-dong, Yuseong-gu, Daejeon 305-338 (Korea, Republic of)

    2011-06-15

    Research highlights: > The effective Young's modulus of perforated shell is proposed for modal analysis. > The penetration pattern is almost negligible for effective elastic constants. > The frequency of perforated shell decreases significantly due to the hole effect. - Abstract: For the perforated cylindrical shell submerged in fluid, it is almost impossible to develop a finite element model due to the necessity of the fine meshing of the shell and the fluid at the same time. This necessitates the use of solid shell with effective material properties. Unfortunately the effective elastic constants are not found in any references even though the ASME code is suggesting those for perforated plate. Therefore in this study the effective material properties of perforated shell are suggested by performing several finite element analyses with respect to the ligament efficiencies.

  11. The Young Modulus of Black Strings and the Fine Structure of Blackfolds

    CERN Document Server

    Armas, Jay; Harmark, Troels; Obers, Niels A

    2011-01-01

    We explore corrections in the blackfold approach, which is a worldvolume theory capturing the dynamics of thin black branes. The corrections probe the fine structure of the branes, going beyond the approximation in which they are infinitely thin, and account for the dipole moment of worldvolume stress-energy as well as the internal spin degrees of freedom. We show that the dipole correction is induced elastically by bending a black brane. We argue that the long-wavelength transport coefficient capturing this response is a relativistic generalization of the Young modulus of elastic materials and we compute it analytically. Using this we draw predictions for black rings in dimensions greater than six. Furthermore, we employ our corrected blackfold equations to various multi-spinning black hole configurations in the blackfold limit, finding perfect agreement with known analytic solutions.

  12. Investigations of structural, elastic, electronic and thermodynamic properties of lutetium filled skutterudite LuFe4P12 under pressure effect: FP-LMTO method

    Directory of Open Access Journals (Sweden)

    Boudia Keltouma

    2015-12-01

    Full Text Available Structural, elastic, electronic and thermodynamic properties of ternary cubic filled skutterudite compound were calculated. We have computed the elastic modulus and its pressure dependence. From the elastic parameter behavior, it is inferred that this compound is elastically stable and ductile in nature. Through the quasi-harmonic Debye model, in which phononic effects are considered, the effect of pressure P (0 to 50 GPa and temperature T (0 to 3000 °C on the lattice constant, elastic parameters, bulk modulus B, heat capacity, thermal expansion coefficient α, internal energy U, entropy S, Debye temperature θD, Helmholtz free energy A, and Gibbs free energy G are investigated.

  13. Dependence of the elastic strain coefficient of copper on the pre-treatment

    Science.gov (United States)

    Kuntze, Wilhelm

    1950-01-01

    The effect of various pre-treatments on the elastic strain coefficient (alpha) (defined as the reciprocal of the modulus of elasticity E) (Epsilon) and on the mechanical hysteresis of copper has been investigated. Variables comprising the pre-treatments were pre-straining by stretching in a tensile testing machine and by drawing through a die, aging at room and elevated temperatures and annealing. The variation of the elastic strain coefficient with test stress was also investigated.

  14. Single-monolayer in situ modulus measurements using a SAW device: Photocrosslinking of a diacetylenic thiol-based monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Ricco, A.J.; Staton, A.W. [Sandia National Labs., Albuquerque, NM (United States); Crooks, R.M. [Texas A& M Univ., College Station, TX (United States). Dept. of Chemistry; Kim, Taisun [Hallym Univ., Kang-Won Do (Korea, Republic of). Dept. of Chemistry

    1997-10-01

    We report direct measurement of the modulus change that accompanies the crosslinking of a single molecular monolayer. We measured a change in elastic modulus of 5 x 10{sup 10} dyn/cm{sup 2} as a result of ultraviolet-induced photocrosslinking of a single surface-confined monolayer of the conjugated diacetylenic thiol HS(CH{sub 2}){sub 10}C{triple_bond}CC{triple_bond}C(CH{sub 2}){sub 10}COOH, designated {open_quotes}DAT{close_quotes} hereafter. The modulus measurement was made on a monolayer of DAT chemisorbed upon a gold film on the surface of a 97-MHz ST-quartz surface acoustic wave delay line. The ratio of the changes recorded in SAW velocity and attenuation, approximately 4:1, suggests that the measured effect is mainly a change in the elastic (real) component of the complex shear modulus, viscous changes playing a lesser role. In relation to typical polymer modulus values, the change of 5 x 10{sup 10} dyn/cm{sup 2} is consistent with a change from a rubbery material (G{prime} {approximately} 10{sup 7} - 10{sup 8} dyn/cm{sup 2}) to a fairly rigid, glassy material (G{prime} {approximately} 10{sup 10} dyn/cm{sup 2}), reasonable for comparison of the monolayer in its as-adsorbed and crosslinked forms. This report of the direct SAW-based measurement of the modulus change associated with the crosslinking of a single molecular monolayer is complementary to and consistent with previous in-situ measurements of this process using thickness-shear mode resonators.

  15. Elastic metamaterials for independent realization of negativity in density and stiffness.

    Science.gov (United States)

    Oh, Joo Hwan; Kwon, Young Eui; Lee, Hyung Jin; Kim, Yoon Young

    2016-03-23

    In this paper, we present the first realization of an elastic metamaterial allowing independent tuning of negative density and stiffness for elastic waves propagating along a designated direction. In electromagnetic (or acoustic) metamaterials, it is now possible to tune permittivity (bulk modulus) and permeability (density) independently. Apparently, the tuning methods seem to be directly applicable for elastic case, but no realization has yet been made due to the unique tensorial physics of elasticity that makes wave motions coupled in a peculiar way. To realize independent tunability, we developed a single-phased elastic metamaterial supported by theoretical analysis and numerical/experimental validations.

  16. Cold Resistant Properties of High Modulus Polyurethane

    Institute of Scientific and Technical Information of China (English)

    LI Minghua; XIA Ru; ZHANG Yuchuan; HUANG Zhifang; YAO Heping; HUANG Wanli; WANG Yifeng; HUI Jianqiang; WU Chunyu

    2009-01-01

    Six kinds of polyurethane(PU)elastomers were prepared based on different poly-esters,polyethers and chain extenders.The structure,mechanical properties and cold resistant proper-ties of PU were systematically investigated by FTIR,XRD,DMTA,universal testing machine and flex ductility machine.The results show that T_g of soft segment is the main factor of the cold resistant properties of polyurethane elastomer.Compared with the same relative molecular mass of the polyester and the polyether,the polyether flexibility is better,the glass transition temperature(T_g)is lower and the cold resistant properties is remarkable,for example the cold resistant properties of PU based on poly(tetramethylene glycol),1,4-BG and MDI achieves the fifth level.The physics performances of polyurethane elastomers,such as breakdown strength,Young's modulus and the cold resistant prop-erties,are all superior.

  17. DSC modelling for predicting resilient modulus of crushed rock base as a road base material for Western Australia roads

    Institute of Scientific and Technical Information of China (English)

    KHOBKLANG Pakdee; VIMONSATIT Vanissorn; JITSANGIAM Peerapong; NIKRAZ Hamid

    2013-01-01

    In order to increase the applied efficiency of crushed rock base (CRB) in pavement structure design for Western Australia roads,the material modelling based on the experimental results was investigated,and the disturbed state concept (DSC) was used to predict the resilient modulus of CRB because of its simplicity and strong ability in capturing the elastic and inelastic responses of materials to loads.The actual deformation of DSC,at any loading state,was determined from its assumed relative intact (RI) state.The DSC equation of CRB was constructed by using a set of experimental results of resilient modulus tests,and an idealized material model,namely the linear elastic model,of relative intact (RI) part was considered.Analysis results reveal that the resilient modulus-applied stress relationships back-predicted by using the DSC modelling are consistent with the experimental results,so,the DSC equation is suited for predicting the resilient modulus of CRB specimen.However,the model and the equation coming from the test results are conducted in accordance with the Austroads standard,so further investigation and validation with respect to the field behaviours of pavement structure should be performed.7 figs,11 refs.

  18. Tibia and radius bone geometry and volumetric density in obese compared to non-obese adolescents.

    Science.gov (United States)

    Leonard, Mary B; Zemel, Babette S; Wrotniak, Brian H; Klieger, Sarah B; Shults, Justine; Stallings, Virginia A; Stettler, Nicolas

    2015-04-01

    Childhood obesity is associated with biologic and behavioral characteristics that may impact bone mineral density (BMD) and structure. The objective was to determine the association between obesity and bone outcomes, independent of sexual and skeletal maturity, muscle area and strength, physical activity, calcium intake, biomarkers of inflammation, and vitamin D status. Tibia and radius peripheral quantitative CT scans were obtained in 91 obese (BMI>97th percentile) and 51 non-obese adolescents (BMI>5th and Tibia cortical section modulus and calf muscle area Z-scores were greater in obese participants (1.07 and 1.63, respectively, both pTibia and radius trabecular and cortical volumetric BMD did not differ significantly between groups. Calf muscle area and strength Z-scores, advanced skeletal maturity, and physical activity (by accelerometry) were positively associated with tibia cortical section modulus Z-scores (all ptibia section modulus Z-scores between obese and non-obese participants from 1.07 to 0.28. After multivariate adjustment for greater calf muscle area and strength Z-scores, advanced maturity, and less moderate to vigorous physical activity, tibia section modulus Z-scores were 0.32 (95% CI -0.18, 0.43, p=0.06) greater in obese, vs. non-obese participants. Radius cortical section modulus Z-scores were 0.45 greater (p=0.08) in obese vs. non-obese participants; this difference was attenuated to 0.14 with adjustment for advanced maturity. These findings suggest that greater tibia cortical section modulus in obese adolescents is attributable to advanced skeletal maturation and greater muscle area and strength, while less moderate to vigorous physical activities offset the positive effects of these covariates. The impact of obesity on cortical structure was greater at weight bearing sites.

  19. Laser Based 3D Volumetric Display System

    Science.gov (United States)

    1993-03-01

    Literature, Costa Mesa, CA July 1983. 3. "A Real Time Autostereoscopic Multiplanar 3D Display System", Rodney Don Williams, Felix Garcia, Jr., Texas...8217 .- NUMBERS LASER BASED 3D VOLUMETRIC DISPLAY SYSTEM PR: CD13 0. AUTHOR(S) PE: N/AWIU: DN303151 P. Soltan, J. Trias, W. Robinson, W. Dahlke 7...laser generated 3D volumetric images on a rotating double helix, (where the 3D displays are computer controlled for group viewing with the naked eye

  20. Predicting the elastic properties of selective laser sintered PCL/β-TCP bone scaffold materials using computational modelling.

    Science.gov (United States)

    Doyle, Heather; Lohfeld, Stefan; McHugh, Peter

    2014-03-01

    This study assesses the ability of finite element (FE) models to capture the mechanical behaviour of sintered orthopaedic scaffold materials. Individual scaffold struts were fabricated from a 50:50 wt% poly-ε-caprolactone (PCL)/β-tricalcium phosphate (β-TCP) blend, using selective laser sintering. The tensile elastic modulus of single struts was determined experimentally. High resolution FE models of single struts were generated from micro-CT scans (28.8 μm resolution) and an effective strut elastic modulus was calculated from tensile loading simulations. Three material assignment methods were employed: (1) homogeneous PCL elastic constants, (2) composite PCL/β-TCP elastic constants based on rule of mixtures, and (3) heterogeneous distribution of micromechanically-determined elastic constants. In comparison with experimental results, the use of homogeneous PCL properties gave a good estimate of strut modulus; however it is not sufficiently representative of the real material as it neglects the β-TCP phase. The rule of mixtures method significantly overestimated strut modulus, while there was no significant difference between strut modulus evaluated using the micromechanically-determined elastic constants and experimentally evaluated strut modulus. These results indicate that the multi-scale approach of linking micromechanical modelling of the sintered scaffold material with macroscale modelling gives an accurate prediction of the mechanical behaviour of the sintered structure.

  1. Effects of endodontic treatment on apparent Young's modulus of human teeth: in vitro study using speckle interferometry

    Science.gov (United States)

    González-Peña, Rolando J.; Salvador, Rosario; Cibrián, Rosa M.; Martinez-Celorio, René A.; López, Francisco J.; Sala, Faustino; Paredes, Vanessa

    2012-04-01

    The introduction of new techniques for endodontic procedures requires the analysis of the biomechanical behavior of dental structures. Digital speckle shearing pattern interferometry (DSSPI) is a nondestructive optical measuring technique that allows one to directly quantify deformations in teeth that are subjected to stress. DSSPI technique was applied to measure small deformations caused by flexion in different types of teeth. The test was carried out both before and after endodontic treatment with the ProTaper method in order to evaluate the variation of dental elasticity, taking into the account the type of tooth and the endodontic treatment. The results obtained show that dental elasticity, established by means of the apparent Young's modulus, before and after the endodontic treatment, differs between incisors and premolars. The endodontic process does not affect dental elasticity (p>0.7). Specifically, 57.1% of central incisors and 56.3% of second premolars slightly increase their elasticity after the endodontic process. In turn, 42.9% of central incisors and 43.7% of second premolars slightly decrease elasticity. The endodontic treatment especially affects the ``neutral fibre'' therefore, there is little influence on elasticity by flexion. However, after finishing the process, the channel was restored with material, which can slightly increase tooth elasticity in some cases.

  2. Elastic anisotropy and low-temperature thermal expansion in the shape memory alloy Cu-Al-Zn.

    Science.gov (United States)

    Kuruvilla, Santhosh Potharay; Menon, C S

    2008-04-01

    Cu-based shape memory alloys are known for their technologically important pseudo-elastic and shapememory properties, which are intimately associated with the martensitic transformation. A combination of deformation theory and finite-strain elasticity theory has been employed to arrive at the expressions for higher order elastic constants of Cu-Al-Zn based on Keating's approach. The second- and third-order elastic constants are in good agreement with the measurements. The aggregate elastic properties like bulk modulus, pressure derivatives, mode Grüneisen parameters of the elastic waves, low temperature limit of thermal expansion, and the Anderson-Grüneisen parameter are also presented.

  3. Estimating Young's modulus of zona pellucida by micropipette aspiration in combination with theoretical models of ovum.

    Science.gov (United States)

    Khalilian, Morteza; Navidbakhsh, Mahdi; Valojerdi, Mojtaba Rezazadeh; Chizari, Mahmoud; Yazdi, Poopak Eftekhari

    2010-04-06

    The zona pellucida (ZP) is the spherical layer that surrounds the mammalian oocyte. The physical hardness of this layer plays a crucial role in fertilization and is largely unknown because of the lack of appropriate measuring and modelling methods. The aim of this study is to measure the biomechanical properties of the ZP of human/mouse ovum and to test the hypothesis that Young's modulus of the ZP varies with fertilization. Young's moduli of ZP are determined before and after fertilization by using the micropipette aspiration technique, coupled with theoretical models of the oocyte as an elastic incompressible half-space (half-space model), an elastic compressible bilayer (layered model) or an elastic compressible shell (shell model). Comparison of the models shows that incorporation of the layered geometry of the ovum and the compressibility of the ZP in the layered and shell models may provide a means of more accurately characterizing ZP elasticity. Evaluation of results shows that although the results of the models are different, all confirm that the hardening of ZP will increase following fertilization. As can be seen, different choices of models and experimental parameters can affect the interpretation of experimental data and lead to differing mechanical properties.

  4. Interfacial modulus mapping of layered dental ceramics using nanoindentation

    Science.gov (United States)

    Bushby, Andrew J; P'ng, Ken MY; Wilson, Rory M

    2016-01-01

    PURPOSE The aim of this study was to test the modulus of elasticity (E) across the interfaces of yttria stabilized zirconia (YTZP) / veneer multilayers using nanoindentation. MATERIALS AND METHODS YTZP core material (KaVo-Everest, Germany) specimens were either coated with a liner (IPS e.max ZirLiner, Ivoclar-Vivadent) (Type-1) or left as-sintered (Type-2) and subsequently veneered with a pressable glass-ceramic (IPS e.max ZirPress, Ivoclar-Vivadent). A 5 µm (nominal tip diameter) spherical indenter was used with a UMIS CSIRO 2000 (ASI, Canberra, Australia) nanoindenter system to test E across the exposed and polished interfaces of both specimen types. The multiple point load – partial unload method was used for E determination. All materials used were characterized using Scanning Electron Microscopy (SEM) and X – ray powder diffraction (XRD). E mappings of the areas tested were produced from the nanoindentation data. RESULTS A significantly (P<.05) lower E value between Type-1 and Type-2 specimens at a distance of 40 µm in the veneer material was associated with the liner. XRD and SEM characterization of the zirconia sample showed a fine grained bulk tetragonal phase. IPS e-max ZirPress and IPS e-max ZirLiner materials were characterized as amorphous. CONCLUSION The liner between the YTZP core and the heat pressed veneer may act as a weak link in this dental multilayer due to its significantly (P<.05) lower E. The present study has shown nanoindentation using spherical indentation and the multiple point load - partial unload method to be reliable predictors of E and useful evaluation tools for layered dental ceramic interfaces. PMID:28018566

  5. Elastic and thermodynamic properties of Rh and Rh{sub 3}Zr under pressure from first-principles calculation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Suhong [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); College of Science, Yanshan University, Qinhuangdao 066004 (China); Zhang, Xinyu, E-mail: xyzhang@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhu, Yan [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); College of Physics and Chemistry, Hebei Normal University of Science and Technology, Qinhuangdao 066004 (China); Ma, Mingzhen [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Qin, Jiaqian [Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330 (Thailand); Liu, Riping [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2015-01-15

    To give guidance for developing Rh-based superalloys, systematic investigations on structural, elastic and thermodynamic properties of Rh and Rh{sub 3}Zr are conducted by first-principles calculations. The pressure dependence of the basic mechanical parameters is presented covering elastic constants, bulk modulus, shear modulus, Young's modulus, Poisson's ratio, aggregate sound velocities and elastic anisotropy. Additionally, the mechanical stability and ductility/brittleness are also assessed. Compared with Rh, it is found that Rh{sub 3}Zr has higher ductility but lower elastic moduli, lower aggregate sound velocities and higher elastic anisotropy. The variations of the thermal properties including the normalized volume, bulk modulus, thermal expansion coefficient and heat capacity of Rh and Rh{sub 3}Zr in wide pressure (0–40 GPa) and temperature (0–2200 K) ranges are also predicted and analyzed, and a remarkable consistency with experimental results is obtained. - Highlights: • Structural, elastic and thermodynamic properties of Rh and Rh{sub 3}Zr are investigated. • Pressure effects on the structural and elastic properties are presented. • Rh{sub 3}Zr has higher ductility/elastic anisotropy but lower elastic moduli than Rh. • The thermal properties in wide pressure and temperature ranges are predicted.

  6. Computational Elastic Knots

    KAUST Repository

    Zhao, Xin

    2013-05-01

    Elastic rods have been studied intensively since the 18th century. Even now the theory of elastic rods is still developing and enjoying popularity in computer graphics and physical-based simulation. Elastic rods also draw attention from architects. Architectural structures, NODUS, were constructed by elastic rods as a new method of form-finding. We study discrete models of elastic rods and NODUS structures. We also develop computational tools to find the equilibria of elastic rods and the shape of NODUS. Applications of elastic rods in forming torus knot and closing Bishop frame are included in this thesis.

  7. Measuring Young’s modulus the easy way, and tracing the effects of measurement uncertainties

    Science.gov (United States)

    Nunn, John

    2015-09-01

    The speed of sound in a solid is determined by the density and elasticity of the material. Young’s modulus can therefore be calculated once the density and the speed of sound in the solid are measured. The density can be measured relatively easily, and the speed of sound through a rod can be measured very inexpensively by setting up a longitudinal standing wave and using a microphone to record its frequency. This is a simplified version of a technique called ‘impulse excitation’. It is a good educational technique for school pupils. This paper includes the description and the free provision of custom software to calculate the frequency spectrum of a recorded sound so that the resonant peaks can be readily identified. Discussion on the effect of measurement uncertainties is included to help the more thorough experimental student improve the accuracy of his method. The technique is sensitive enough to be able to detect changes in the elasticity modulus with a temperature change of just a few degrees.

  8. Minimal subfamilies and the probabilistic interpretation for modulus on graphs

    CERN Document Server

    Albin, Nathan

    2016-01-01

    The notion of $p$-modulus of a family of objects on a graph is a measure of the richness of such families. We develop the notion of minimal subfamilies using the method of Lagrangian duality for $p$-modulus. We show that minimal subfamilies have at most $|E|$ elements and that these elements carry a weight related to their "importance" in relation to the corresponding $p$-modulus problem. When $p=2$, this measure of importance is in fact a probability measure and modulus can be thought as trying to minimize the expected overlap in the family.

  9. PARADOX SOLUTION ON ELASTIC WEDGE DISSIMILAR MATERIALS

    Institute of Scientific and Technical Information of China (English)

    姚伟岸; 张兵茹

    2003-01-01

    According to the Hellinger-Reissner variational principle and introducing proper transformation of variables, the problem on elastic wedge dissimilar materials can be led to Hamiltonian system, so the solution of the problem can be got by employing the separation of variables method and symplectic eigenfunction expansion under symplectic space, which consists of original variables and their dual variables. The eigenvalue - 1 is a special one of all symplectic eigenvalue for Hamiltonian system in polar coordinate. In general, the eigenvalue - is a single eigenvalue, and the classical solution of an elastic wedge dissimilar materials subjected to a unit concentrated couple at the vertex is got directly by solving the eigenfunction vector for eigenvalue - 1 . But the eigenvalue - 1 becomes a double eigenvalue when the vertex angles and modulus of the materials satisfy certain definite relationships and the classical solution for the stress distribution becomes infinite at this moment, that is, the paradox should occur. Here the Jordan form eigenfunction vector for eigenvalue - 1 exists, and solution of the paradox on elastic wedge dissimilar materials subjected to a unit concentrated couple at the vertex is obtained directly by solving this special Jordan form eigenfunction. The result shows again that the solutions of the special paradox on elastic wedge in the classical theory of elasticity are just Jordan form solutions in symplectic space under Hamiltonian system.

  10. Elastic moduli and crosslinking of some tellurite glass systems

    Energy Technology Data Exchange (ETDEWEB)

    El-Mallawany, R., E-mail: raoufelmallawany@Yahoo.com [Physics Dept., Science College, Northern Boarders University (Saudi Arabia); Afifi, H. [National Institute for Standards, Giza (Egypt)

    2013-12-16

    Tellurite glass systems in the form 80(TeO{sub 2})–5(TiO{sub 2})–(15 − x)(WO{sub 3})–(x)A{sub n}O{sub m} have been prepared by the melt quenching technique. The A{sub n}O{sub m} oxide was Nb{sub 2}O{sub 5} or Nd{sub 2}O{sub 3} or Er{sub 2}O{sub 3} and x ≤ 5 mol%. Density and Molar volume have been determined for the prepared glasses. Both longitudinal and shear ultrasonic velocities were measured in different compositions of the glass system by using the pulse-echo method at 5 MHz frequency and at room temperature. Ultrasonic velocity and density data have been used to calculate elastic moduli (longitudinal modulus L, shear modulus G, Young's modulus E, Bulk modulus K), Poisson's ratio σ, and Debye temperature θ{sub D}. Quantitative analysis of elastic moduli based on the number of bonds per unit volume, average crosslinks and number of vibrating atoms per unit volume has been achieved. - Highlights: • Tellurite glasses. • Elastic moduli, Poisson's ratio, Debye temperature, microhardness. • Number of bonds per unit volume, average crosslinks, number of vibrating atoms per unit volume.

  11. Size effects in the elastic deformation behavior of metallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Patrick; Peukert, Wolfgang, E-mail: W.Peukert@lfg.uni-erlangen.de [Friedrich-Alexander-University Erlangen-Nuremberg, Institute for Particle Technology (Germany)

    2012-12-15

    In this work, the results of a series of molecular statics simulations to investigate the size dependence of the elastic properties of metallic nanoparticles are presented. The per-atom stiffness tensor was calculated from the derivative of the used embedded atom method potentials and, from it, lower order elastic parameters, such as the Young's modulus or the Poisson ratio. The Young's modulus decayed up to 30 % relative to the bulk values for 2.5 nm small particles, whereas the Poisson ratio showed an increase with decreasing particle size for most materials. Particles with a diameter of 30 nm approached the continuum values to around 1 %, marking the transition to continuum theory. The size-dependent Young's modulus and several other material properties can be described by a simple algebraic function of the number of atoms per particle. By plotting the radial distribution of the local Young's modulus within particles of different size, it is shown that only the outermost 2-3 atomic layers are responsible for the size-dependent change of elastic properties. Within these layers, the average atomic stiffness was found to decay linearly and independent of the particle size.

  12. A methodology to obtain an analytical formula for the elastic modulus of lightweight aggregate concrete

    Directory of Open Access Journals (Sweden)

    Flávio de Souza-Barbosa

    2015-01-01

    Full Text Available Este trabajo propone una metodolo gía para evaluar el módulo elá stico de los hormigones de agre gados livianos. Para ello una fó rmula analítica se logra mediante el ajuste de la c urva de los resultados experime ntales de 135 muestras de hormigón hechas de 45 mezclas diferen tes. La validación de la metodología propuesta se lle va a cabo mediante la aplicac ión de la fórmula analítica obtenida a otro conjunto de 90 mues tras de hormigón hecha de 30 mezclas diferentes. Las c omparaciones con otros métodos u tilizados para predecir el módul o de elasticidad de hormigones de agregados livianos muestran que los resultados sean justos y sugieren que la metodología propuesta podría aplicarse en situaciones prácticas.

  13. EFFECT OF SEDIMENTARY AND METAMORPHIC AGGREGATE ON STATIC MODULUS OF ELASTICITY OF HIGH-STRENGTH CONCRETE

    Directory of Open Access Journals (Sweden)

    JUAN LIZARAZO-MARRIAGA

    2011-01-01

    Full Text Available Considerando la creciente utilización de hormigón de alta resistencia como material estructural, este artículo presenta los resultados de un trabajo experimental llevado a cabo con el fin de investigar el efecto de diferentes tipos de agregados gruesos sobre el módulo estático elástico, la resistencia a la compresión, la densidad del hormigón y la velocidad del pulso. Para lograr esto, se usaron diferentes relaciones agua cementante (a/c (0.36, 0.32, y 0.28 y cuatro tipos de agregados diferentes, todos del área de influencia de Bogotá, Colombia. Como materiales cementantes se usaron cemento Portland y microsílice (SF. Los resultados experimentales fueron analizados estadísticamente, de donde se encontró que todos los ensayos se comportan siguiendo una distribución de frecuencia normal. De los datos experimentales obtenidos se concluyó que las ecuaciones propuestas en los códigos obreestiman el módulo de elasticidad del hormigón de alta resistencia, por lo que se proponen ecuaciones empíricas como alternativa.

  14. The Measurement of Hardness and Elastic Modulus of non-Metallic Inclusions in Steely Welding Joints

    Directory of Open Access Journals (Sweden)

    Ignatova Anna

    2015-08-01

    Full Text Available Trunk pipelines work under a cyclic dynamical mechanical load because when oil or gas is pumped, the pressure constantly changes - pulsates. Therefore, the fatigue phenomenon is a common reason of accidents. The fatigue phenomenon more often happens in the zone of non-metallic inclusions concentration. To know how the characteristics of nonmetallic inclusions influence the probability of an accident the most modern research methods should be used. It is determined with the help of the modern research methods that the accident rate of welded joints of pipelines is mostly influenced by their morphological type, composition and size of nonmetallic inclusions, this effect is more important than the common level of pollution by non-metallic inclusions. The article presents the results of the investigations of welded joints, obtained after the use of different common welding materials. We used the methods, described in the state standards: scanning electronic microscopy, spectral microprobe analysis and nano-indentation. We found out that non-metallic inclusions act like stress concentrators because they shrink, forming a blank space between metal and nonmetallic inclusions; it strengthens the differential properties on this boundary. Nonmetallic inclusion is not fixed, it can move. The data that we have received mean that during welded joints’ contamination (with non-metallic inclusions monitoring process, more attention should be paid to the content of definite inclusions, but not to total contamination.

  15. Application of Finite Element to Evaluate Material with Small Modulus of Elasticity

    Science.gov (United States)

    2013-03-01

    the lights are switched off, however, the adults will fly for hours against the walls of the enclosure and damage their wings. This is to be avoided...Introduction to Contact Mechanics. Springer‐Verlag, New York, NY, 2000. 30. Cao, Y., X. Qian, and N. Huber, “Spherical indentation into elastoplastic

  16. Elastic modulus and flexural strength comparisons of high-impact and traditional denture base acrylic resins

    Directory of Open Access Journals (Sweden)

    Nour M. Ajaj-ALKordy

    2014-01-01

    Conclusion: Within the limitations of this study, it can be concluded that the high-impact acrylic resin is a suitable denture base material for patients with clinical fracture of the acrylic denture.

  17. Elastic Modulus of Foamcrete in Compression and Bending at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2012-09-01

    Full Text Available This paper will presents the experimental results that have been performed to examine and characterize the mechanical properties of foamcrete at elevated temperatures. Foamcrete of 650 and 1000 kg/m 3 density were cast and tested under compression and bending. The tests were done at room temperature, 100, 200, 300, 400, 500, and 600°C. The results of this study consistently demonstrated that the loss in stiffness for cement based material like foamcrete at elevated temperatures occurs predominantly after about 95°C, regardless of density. This indicates that the primary mechanism causing stiffness degradation is microcracking, which occurs as water expands and evaporates from the porous body. As expected, reducing the density of LFC reduces its strength and stiffness. However, for LFC of different densities, the normalised strength-temperature and stiffnesstemperature relationships are very similar.

  18. A Highly Aromatic and Sulfonated Ionomer for High Elastic Modulus Ionic Polymer Membrane Micro-Actuators

    Science.gov (United States)

    2012-05-01

    BMIm ][BF4]) is used as the electrolyte. The ion transport and storage at the electrodes (cross section A–A) causes a bending actuation when a voltage...imidazolium based room temperature IL, 1-methyl-3-butylimidazolium tetrafluoroborate ([ BMIm ][BF4]), which was previously used in IPMC actuators, is...utilized as the electrolyte [15]. The chemical structure of [ BMIm ][BF4] is presented in figure 2(b) and, as can be seen, BMIm − and BF+4 show a large ion

  19. Influence of internal stresses on field-dependent elastic modulus and damping in pure nickel

    Energy Technology Data Exchange (ETDEWEB)

    Morales, A.L., E-mail: AngelLuis.Morales@uclm.e [Area de Ingenieria Mecanica, E.T.S. Ingenieros Industriales (Universidad de Castilla - La Mancha), Edificio Politecnico, Avda. Camilo Jose Cela s/n, 13071 Ciudad Real (Spain); Nieto, A.J.; Chicharro, J.M.; Pintado, P. [Area de Ingenieria Mecanica, E.T.S. Ingenieros Industriales (Universidad de Castilla - La Mancha), Edificio Politecnico, Avda. Camilo Jose Cela s/n, 13071 Ciudad Real (Spain); Rodriguez, G.P.; Herranz, G. [Area de Ciencia de los Materiales e Ingenieria Metalurgica, E.T.S. Ingenieros Industriales (Universidad de Castilla - La Mancha), Edificio Politecnico, Avda. Camilo Jose Cela s/n, 13071 Ciudad Real (Spain)

    2010-11-15

    Measurements of the {Delta}E-effect and magnetomechanical damping are reported for crystalline pure nickel under several states of internal stresses. The different internal stresses are obtained by means of a wide variety of heat treatments and studied via microscopic examination and measurement. The influence of the heating temperature, the heating time and the cooling method on the magnetoelastic properties is studied. Our results make it possible to select the most suitable heat treatment for each application and to optimize the magnetoelastic response of nickel. Relative variations from 2% to 13% can be obtained in the {Delta}E-effect, whereas relative variations from 40.0% to 99.9% are possible in magnetomechanical damping, in terms of specific damping capacity.

  20. Field-dependent elastic modulus and damping in pure iron, nickel and cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Morales, A.L., E-mail: AngelLuis.Morales@uclm.e [Area de Ingenieria Mecanica, E.T.S. Ingenieros Industriales, Universidad de Castilla - La Mancha, Edificio Politecnico, Avda. Camilo Jose Cela s/n, 13071 Ciudad Real (Spain); Nieto, A.J.; Chicharro, J.M.; Pintado, P. [Area de Ingenieria Mecanica, E.T.S. Ingenieros Industriales, Universidad de Castilla - La Mancha, Edificio Politecnico, Avda. Camilo Jose Cela s/n, 13071 Ciudad Real (Spain)

    2010-07-15

    Measurements of the DELTAE-effect and magnetomechanical damping are reported for crystalline pure iron, nickel and cobalt bars. An automatic experimental system for measuring both magnitudes simultaneously has been used, taking advantage of its improved features which make it possible to include stress-dependence and path-dependence (due to magnetic hysteresis loop) studies in this work. Our results not only provide a useful qualitative comparison among the magnetoelastic behaviour of these three classic ferromagnetic materials, but also show a useful set of quantitative DELTAE-effect and magnetomechanical damping values.

  1. The influence of elastic modulus of inlay materials on stress distribution and fracture of premolars.

    Science.gov (United States)

    Costa, Akf; Xavier, Ta; Noritomi, Py; Saavedra, G; Borges, Als

    2014-01-01

    SUMMARY The purpose of this study was to evaluate the influence the width of the occlusal isthmus and inlay material had on the stress distribution, displacement, and fracture resistance of upper human premolars. For this in vitro test, 35 intact upper premolars (UPM) were selected and five were kept intact for the control group (group I). The remaining 30 were divided into two experimental groups (n=15) according to the width of isthmus: conservative (CP) and extensive preparation (EP), one third and more than two thirds of cuspal distance, respectively. Five teeth from each experimental group were left without restoration for negative controls (CPnc and EPnc), and the remaining 10 in each group were subdivided according to the inlay material (resin or ceramic): group CPr, CP + indirect resin; group CPc, CP + ceramic; group EPr, EP + indirect resin; and group EPc, EP + ceramic. The cemented inlays were loaded in a universal testing machine at a crosshead speed of 0.5 mm/min until fracture. The fractured specimens were analyzed with stereomicroscopy, and the values of the fracture resistance evaluated by analysis of variance and Tukey test. For the finite element analyses, an average UPM for each group was modeled in Rhinoceros CAD software and imported to Ansys 13.0. An average of 320,000 tetrahedral elements and 540,000 nodes for the seven models were performed using the same experimental simulation setup for each. The models were constrained on the base, and a displacement of 0.02 mm was applied to keep a linear behavior for the analysis. A von Mises stress and total displacement fields were used for the coherence test and the maximum principal stress fields were used for mechanical behavior comparisons. Group I (161.73 ± 22.94) showed a significantly higher mean value than the other experimental groups (EPc: 103.55 ± 15.84; CPc: 94.38 ± 12.35; CPr: 90.31 ± 6.10; EPr: 65.42 ± 10.15; CPnc: 65.46 ± 5.37; EPnc: 58.08 ± 9.62). The stress distribution was different in all of the groups. EPnc showed a higher concentration of tensile stress on the cervical region of the proximal box. CPc and EPc provided a lower tensile stress and a smaller cuspal displacement. Within the limits of this study, the configuration of the inlay preparation is a significant factor in the fracture resistance of premolars: the smaller the amount of remaining tooth, the lower the fracture resistance. In addition, the teeth restored with ceramic materials showed a higher fracture resistance than those restored with composite resin.

  2. Consequence of reduced necrotic bone elastic modulus in a Perthes' hip

    DEFF Research Database (Denmark)

    Salmingo, Remel A.; Skytte, Tina Lercke; Mikkelsen, Lars Pilgaard

    in the femoral head using Finite Element Analysis (FEA). Methods The femoral and necrotic bone of the affected hip of a Perthes’ patient was segmented from the MR images using Simpleware. The segmented parts were exported to SolidWorks to build the 3D solid model and Comsol for FEA. A load of 750 N (300% body...

  3. The Determination of the Elastic Modulus of Rubber Mooring Tethers and Their Use in Coastal Moorings

    Science.gov (United States)

    2005-12-01

    meters (Geyer et al., 1992). The Vector Averaging Current Meter (VACM) utilizes a Savonius rotor to measure current speed and a vane to obtain...direction. If the VACM were moved up and down by the waves on a mooring that is tilted, the non-linearly of the Savonius rotor can rectify the oscillating

  4. On elastic moduli and elastic anisotropy in polycrystalline martensitic NiTi

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, S. [Advanced Materials Processing and Analysis Center (AMPAC), Mechanical, Materials and Aerospace Engineering Department, University of Central Florida, Orlando, FL 32816 (United States); Clausen, B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Padula, S.A.; Noebe, R.D. [NASA Glenn Research Center, Cleveland, OH 44135 (United States); Vaidyanathan, R., E-mail: raj@mail.ucf.edu [Advanced Materials Processing and Analysis Center (AMPAC), Mechanical, Materials and Aerospace Engineering Department, University of Central Florida, Orlando, FL 32816 (United States)

    2011-08-15

    A combined experimental and computational effort was undertaken to provide insight into the elastic response of B19' martensitic NiTi variants as they exist in bulk, polycrystalline aggregate form during monotonic tensile and compressive loading. The experimental effort centered on using in situ neutron diffraction during loading to measure elastic moduli in several directions along with an average Young's modulus and a Poisson's ratio. The measurements were compared with predictions from a 30,000 variant, self-consistent polycrystalline deformation model that accounted for the elastic intergranular constraint, and also with predictions of single crystal behavior from previously published ab initio studies. Variant conversion and detwinning processes that influenced the intergranular constraint occurred even at stresses where the macroscopic stress-strain response appeared linear. Direct evidence of these processes was revealed in changes in texture, which were captured in inverse pole figures constructed from the neutron diffraction measurements.

  5. Sensitivity analysis of effective fluid and rock bulk modulus due to changes in pore pressure, temperature and saturation

    Science.gov (United States)

    Bhakta, Tuhin; Avseth, Per; Landrø, Martin

    2016-12-01

    Fluid substitution plays a vital role in time-lapse seismic modeling and interpretation. It is, therefore, very important to quantify as exactly as possible the changes in fluid bulk modulus due to changes in reservoir parameters. In this paper, we analyze the sensitivities in effective fluid bulk modulus due to changes in reservoir parameters like saturation, pore-pressure and temperature. The sensitivities are analyzed for two extreme bounds, i.e. the Voigt average and the Reuss average, for various fluid combinations (i.e. oil-water, gas-water and gas-oil). We quantify that the effects of pore-pressure and saturation changes are highest in the case of gas-water combination, while the effect of temperature is highest for oil-gas combination. Our results show that sensitivities vary with the bounds, even for same amount of changes in any reservoir parameter. In 4D rock physics studies, we often neglect the effects of pore-pressure or temperature changes assuming that those effects are negligible compare to the effect due to saturation change. Our analysis shows that pore-pressure and temperature changes can be vital and sometimes higher than the effect of saturation change. We investigate these effects on saturated rock bulk modulus. We first compute frame bulk modulus using the Modified Hashin Shtrikman (MHS) model for carbonate rocks and then perform fluid substitution using the Gassmann equation. We consider upper bound of the MHS as elastic behavior for stiffer rocks and lower bound of the MHS as elastic behavior for softer rocks. We then investigate four various combinations: stiff rock with upper bound (the Voigt bound) as effective fluid modulus, stiff rock with lower bound (Reuss bound) as effective fluid modulus, soft rock with upper bound as effective fluid modulus and soft rock with lower bound as effective fluid modulus. Our results show that the effect of any reservoir parameter change is highest for soft rock and lower bound combination and lowest

  6. Elastic therapeutic tape: do they have the same material properties?

    Science.gov (United States)

    Boonkerd, Chuanpis; Limroongreungrat, Weerawat

    2016-01-01

    [Purpose] Elastic therapeutic tape has been widely used for rehabilitation and treatment of sports injuries. Tapes with different elastic properties serve different treatment purposes with inappropriate tension reducing tape effectiveness. Many tapes are available in the market, but studies on tape properties are limited. The aim of this study was to examine the material properties of elastic therapeutic tape. [Subjects and Methods] Brands of elastic therapeutic tape included KinesioTex®, ATex, Mueller, 3M, and ThaiTape. The Material Testing System Insight® 1 Electromechanical Testing Systems was used to apply a tensile force on elastic therapeutic tape. Ten specimens of each brand were tested. Stress, load, and Young’s modulus at 25%, 50%, 75%, 100%, and maximum point were collected. One-way analysis of variance with post hoc testing was used to analyze tape parameters. [Results] Maximum elongation and Young’s modulus at all percentages were significantly different between brands. There were no differences in maximum load and maximum stress. [Conclusion] Mechanical properties are different for commercial elastic therapeutic tapes. Physiotherapists and other clinicians should be aware of mechanical tape properties to correctly apply kinesio tape. PMID:27190472

  7. Measurement of elastic nonlinearity of soft solid with transient elastography

    Science.gov (United States)

    Catheline, S.; Gennisson, J.-L.; Fink, M.

    2003-12-01

    Transient elastography is a powerful tool to measure the speed of low-frequency shear waves in soft tissues and thus to determine the second-order elastic modulus μ (or the Young's modulus E). In this paper, it is shown how transient elastography can also achieve the measurement of the nonlinear third-order elastic moduli of an Agar-gelatin-based phantom. This method requires speed measurements of polarized elastic waves measured in a statically stressed isotropic medium. A static uniaxial stress induces a hexagonal anisotropy (transverse isotropy) in solids. In the special case of uniaxially stressed isotropic media, the anisotropy is not caused by linear elastic coefficients but by the third-order nonlinear elastic constants, and the medium recovers its isotropic properties as soon as the uniaxial stress disappears. It has already been shown how transient elastography can measure the elastic (second-order) moduli in a media with transverse isotropy such as muscles. Consequently this method, based on the measurement of the speed variations of a low-frequency (50-Hz) polarized shear strain waves as a function of the applied stress, allows one to measure the Landau moduli A, B, C that completely describe the third-order nonlinearity. The several orders of magnitude found among these three constants can be justified from the theoretical expression of the internal energy.

  8. Measurement of elastic nonlinearity of soft solid with transient elastography.

    Science.gov (United States)

    Catheline, S; Gennisson, J L; Fink, M

    2003-12-01

    Transient elastography is a powerful tool to measure the speed of low-frequency shear waves in soft tissues and thus to determine the second-order elastic modulus mu (or the Young's modulus E). In this paper, it is shown how transient elastography can also achieve the measurement of the nonlinear third-order elastic moduli of an Agar-gelatin-based phantom. This method requires speed measurements of polarized elastic waves measured in a statically stressed isotropic medium. A static uniaxial stress induces a hexagonal anisotropy (transverse isotropy) in solids. In the special case of uniaxially stressed isotropic media, the anisotropy is not caused by linear elastic coefficients but by the third-order nonlinear elastic constants, and the medium recovers its isotropic properties as soon as the uniaxial stress disappears. It has already been shown how transient elastography can measure the elastic (second-order) moduli in a media with transverse isotropy such as muscles. Consequently this method, based on the measurement of the speed variations of a low-frequency (50-Hz) polarized shear strain waves as a function of the applied stress, allows one to measure the Landau moduli A, B, C that completely describe the third-order nonlinearity. The several orders of magnitude found among these three constants can be justified from the theoretical expression of the internal energy.

  9. Elastic therapeutic tape: do they have the same material properties?

    Science.gov (United States)

    Boonkerd, Chuanpis; Limroongreungrat, Weerawat

    2016-04-01

    [Purpose] Elastic therapeutic tape has been widely used for rehabilitation and treatment of sports injuries. Tapes with different elastic properties serve different treatment purposes with inappropriate tension reducing tape effectiveness. Many tapes are available in the market, but studies on tape properties are limited. The aim of this study was to examine the material properties of elastic therapeutic tape. [Subjects and Methods] Brands of elastic therapeutic tape included KinesioTex(®), ATex, Mueller, 3M, and ThaiTape. The Material Testing System Insight(®) 1 Electromechanical Testing Systems was used to apply a tensile force on elastic therapeutic tape. Ten specimens of each brand were tested. Stress, load, and Young's modulus at 25%, 50%, 75%, 100%, and maximum point were collected. One-way analysis of variance with post hoc testing was used to analyze tape parameters. [Results] Maximum elongation and Young's modulus at all percentages were significantly different between brands. There were no differences in maximum load and maximum stress. [Conclusion] Mechanical properties are different for commercial elastic therapeutic tapes. Physiotherapists and other clinicians should be aware of mechanical tape properties to correctly apply kinesio tape.

  10. Inverse problemfor an inhomogeneous elastic beam at a combined strength

    Directory of Open Access Journals (Sweden)

    Andreev Vladimir Igorevich

    2014-01-01

    Full Text Available In the article the authors describe a method of optimizing the stress state of an elastic beam, subject to the simultaneous action of the central concentrated force and bending moment. The optimization method is based on solving the inverse problem of the strength of materials, consisting in defining the law of changing in elasticity modulus with beam cross-section altitude. With this changing the stress state will be preset. Most problems of the elasticity theory of inhomogeneous bodies are solved in direct formulation, the essence of which is to determine the stress-strain state of a body at the known dependences of the material elastic characteristics from the coordinates. There are also some solutions of the inverse problems of the elasticity theory, in which the dependences of the mechanical characteristics from the coordinates, at which the stress state of a body is preset, are determined. In the paper the authors solve the problem of finding a dependence modulus of elasticity, where the stresses will be constant over the beam’s cross section. We will solve the problem of combined strength (in the case of the central stretching and bending. We will use an iterative method. As the initial solution, we take the solution for a homogeneous material. As the first approximation, we consider the stress state of a beam, when the modulus of elasticity varies linearly. According to the results, it can be stated that three approximations are sufficient in the considered problem. The obtained results allow us to use them in assessing the strength of a beam and its optimization.

  11. Substrate-dependent cell elasticity measured by optical tweezers indentation

    Science.gov (United States)

    Yousafzai, Muhammad S.; Ndoye, Fatou; Coceano, Giovanna; Niemela, Joseph; Bonin, Serena; Scoles, Giacinto; Cojoc, Dan

    2016-01-01

    In the last decade, cell elasticity has been widely investigated as a potential label free indicator for cellular alteration in different diseases, cancer included. Cell elasticity can be locally measured by pulling membrane tethers, stretching or indenting the cell using optical tweezers. In this paper, we propose a simple approach to perform cell indentation at pN forces by axially moving the cell against a trapped microbead. The elastic modulus is calculated using the Hertz-model. Besides the axial component, the setup also allows us to examine the lateral cell-bead interaction. This technique has been applied to measure the local elasticity of HBL-100 cells, an immortalized human cell line, originally derived from the milk of a woman with no evidence of breast cancer lesions. In addition, we have studied the influence of substrate stiffness on cell elasticity by performing experiments on cells cultured on two substrates, bare and collagen-coated, having different stiffness. The mean value of the cell elastic modulus measured during indentation was 26±9 Pa for the bare substrate, while for the collagen-coated substrate it diminished to 19±7 Pa. The same trend was obtained for the elastic modulus measured during the retraction of the cell: 23±10 Pa and 13±7 Pa, respectively. These results show the cells adapt their stiffness to that of the substrate and demonstrate the potential of this setup for low-force probing of modifications to cell mechanics induced by the surrounding environment (e.g. extracellular matrix or other cells).

  12. Redirecting valvular myofibroblasts into dormant fibroblasts through light-mediated reduction in substrate modulus.

    Science.gov (United States)

    Wang, Huan; Haeger, Sarah M; Kloxin, April M; Leinwand, Leslie A; Anseth, Kristi S

    2012-01-01

    Fibroblasts residing in connective tissues throughout the body are responsible for extracellular matrix (ECM) homeostasis and repair. In response to tissue damage, they activate to become myofibroblasts, which have organized contractile cytoskeletons and produce a myriad of proteins for ECM remodeling. However, persistence of myofibroblasts can lead to fibrosis with excessive collagen deposition and tissue stiffening. Thus, understanding which signals regulate de-activation of myofibroblasts during normal tissue repair is critical. Substrate modulus has recently been shown to regulate fibrogenic properties, proliferation and apoptosis of fibroblasts isolated from different organs. However, few studies track the cellular responses of fibroblasts to dynamic changes in the microenvironmental modulus. Here, we utilized a light-responsive hydrogel system to probe the fate of valvular myofibroblasts when the Young's modulus of the substrate was reduced from ~32 kPa, mimicking pre-calcified diseased tissue, to ~7 kPa, mimicking healthy cardiac valve fibrosa. After softening the substrata, valvular myofibroblasts de-activated with decreases in α-smooth muscle actin (α-SMA) stress fibers and proliferation, indicating a dormant fibroblast state. Gene signatures of myofibroblasts (including α-SMA and connective tissue growth factor (CTGF)) were significantly down-regulated to fibroblast levels within 6 hours of in situ substrate elasticity reduction while a general fibroblast gene vimentin was not changed. Additionally, the de-activated fibroblasts were in a reversible state and could be re-activated to enter cell cycle by growth stimulation and to express fibrogenic genes, such as CTGF, collagen 1A1 and fibronectin 1, in response to TGF-β1. Our data suggest that lowering substrate modulus can serve as a cue to down-regulate the valvular myofibroblast phenotype resulting in a predominantly quiescent fibroblast population. These results provide insight in designing

  13. Redirecting valvular myofibroblasts into dormant fibroblasts through light-mediated reduction in substrate modulus.

    Directory of Open Access Journals (Sweden)

    Huan Wang

    Full Text Available Fibroblasts residing in connective tissues throughout the body are responsible for extracellular matrix (ECM homeostasis and repair. In response to tissue damage, they activate to become myofibroblasts, which have organized contractile cytoskeletons and produce a myriad of proteins for ECM remodeling. However, persistence of myofibroblasts can lead to fibrosis with excessive collagen deposition and tissue stiffening. Thus, understanding which signals regulate de-activation of myofibroblasts during normal tissue repair is critical. Substrate modulus has recently been shown to regulate fibrogenic properties, proliferation and apoptosis of fibroblasts isolated from different organs. However, few studies track the cellular responses of fibroblasts to dynamic changes in the microenvironmental modulus. Here, we utilized a light-responsive hydrogel system to probe the fate of valvular myofibroblasts when the Young's modulus of the substrate was reduced from ~32 kPa, mimicking pre-calcified diseased tissue, to ~7 kPa, mimicking healthy cardiac valve fibrosa. After softening the substrata, valvular myofibroblasts de-activated with decreases in α-smooth muscle actin (α-SMA stress fibers and proliferation, indicating a dormant fibroblast state. Gene signatures of myofibroblasts (including α-SMA and connective tissue growth factor (CTGF were significantly down-regulated to fibroblast levels within 6 hours of in situ substrate elasticity reduction while a general fibroblast gene vimentin was not changed. Additionally, the de-activated fibroblasts were in a reversible state and could be re-activated to enter cell cycle by growth stimulation and to express fibrogenic genes, such as CTGF, collagen 1A1 and fibronectin 1, in response to TGF-β1. Our data suggest that lowering substrate modulus can serve as a cue to down-regulate the valvular myofibroblast phenotype resulting in a predominantly quiescent fibroblast population. These results provide insight in

  14. Development of non-destructive Young's modulus measurement techniques in non-oriented CeF$_{3}$ crystals

    CERN Document Server

    Pietroni, P; Lebeau, M; Majni, G; Rinaldi, D

    2005-01-01

    For a reliable mechanical assembly of scintillating crystals for the application to radiographic systems such as Positron Emission Tomographer (PET) and high-energy physics calorimeters (e.g. in CMS at CERN LHC), the evaluation of the monocrystal elastic constant (Young's modulus) is needed. Its knowledge is also essential in the photoelastic analysis for the determination of residual stresses. In this work non-destructive techniques based on elastic wave propagation are tested. They differ in the mechanical excitation device: instrumented hammer, traditional ultrasonic probes and laser- generated ultrasound. We have analysed three non-oriented cerium fluoride crystal samples produced for scintillation applications. Finally, we have validated the experimental results comparing them with the elastic constant calculated by using the stiffness matrix.

  15. Diameter-dependent thermodynamic and elastic properties of metallic nanoparticles

    Science.gov (United States)

    Chandra, Jeewan; Kholiya, Kuldeep

    2015-04-01

    A simple theoretical model has been proposed to study the diameter-dependent properties of metallic nanoparticles, i.e. Ag, Au, Al, Ni, Pb, Cu and Fe. The diameter-dependent thermodynamic properties includes melting temperature, Debye temperature, evaporation temperature, melting enthapy and melting entropy. The model is also extended to study the diameter-dependent elastic properties including bulk modulus, Young's modulus and thermal expansion coefficient. On comparison with available experimental findings and other theoretical approaches, the results obtained with the present formulation depict a close agreement and demonstrate the validity of the method proposed in the present paper.

  16. Elastic Moduli Inheritance and Weakest Link in Bulk Metallic Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, Alexandru Dan [ORNL; Wang, Xun-Li [ORNL; Lu, Z.P. [University of Science and Technology, Beijing; Clausen, Bjorn [Los Alamos National Laboratory (LANL); Brown, Donald [Los Alamos National Laboratory (LANL)

    2012-01-01

    We show that a variety of bulk metallic glasses (BMGs) inherit their Young s modulus and shear modulus from the solvent components. This is attributed to preferential straining of locally solvent-rich configurations among tightly bonded atomic clusters, which constitute the weakest link in an amorphous structure. This aspect of inhomogeneous deformation, also revealed by our in-situ neutron diffraction studies of an elastically deformed BMG, suggests a scenario of rubber-like viscoelasticity owing to a hierarchy of atomic bonds in BMGs.

  17. Fluctuation-stabilized marginal networks and anomalous entropic elasticity.

    Science.gov (United States)

    Dennison, M; Sheinman, M; Storm, C; MacKintosh, F C

    2013-08-30

    We study the elastic properties of thermal networks of Hookean springs. In the purely mechanical limit, such systems are known to have a vanishing rigidity when their connectivity falls below a critical, isostatic value. In this work, we show that thermal networks exhibit a nonzero shear modulus G well below the isostatic point and that this modulus exhibits an anomalous, sublinear dependence on temperature T. At the isostatic point, G increases as the square root of T, while we find G∝Tα below the isostatic point, where α≃0.8. We show that this anomalous T dependence is entropic in origin.

  18. Elastic properties of nonstoichiometric reacted PDMS networks

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard; Hansen, Kristoffer Karsten; Sommer-Larsen, Peter;

    2003-01-01

    The influence of stoichiometry on the elastic modulus of eight-functional end-linked poly(dimethylsiloxane) (PDMS) networks was investigated by extensional rheometry with extensions up to more than 100%, and the stress-strain relation was found to be almost linear-a characteristic property...... obtained for the Mooney-Rivlin constants. It was furthermore found that trapped entanglements dominate when there is an excess of cross-linker, ensuring that all long difunctional DMS chains are bound to the infinite network in both ends....

  19. Elastic-Plastic Fracture Toughness Testing Methods.

    Science.gov (United States)

    1983-12-01

    Notch Crack Test Figure 8. Tracing of HY80 -SB Fracture Surface 37 APPENDIX A TESTING METHODS A. INTRODUCTION The steps required to perform a J-integral...tinting the specimen, 10 minutes at 300C for &oat steel &, aid& in the visual identification of the amount of crack extension. After the specimen is removed...597085.603738 ULTIMATE TS - 689475.23 ELASTIC MODULUS - 1.9994783497E+8 FLOW STRESS - 643280.448369 BASED ON CURRENT INFORMATION FOR HY80 -5B: CURRENT CRACK

  20. Gas sorption and the consequent volumetric and permeability change of coal

    Science.gov (United States)

    Lin, Wenjuan

    in the injection gas, the greater the amount of total adsorption. Volumetric strain followed the same trend as the amount of adsorption with pressure and injection gas composition. Permeability showed opposite behaviors, decreasing with the increase of pressure and the percentage of CO2 in the injection gas. The experimental adsorption, volumetric strain, and permeability data were analyzed to investigate the numerical correlations between gas sorption, sorption-induced volumetric strain and permeability, and pressure and injection gas composition. The relationship between the amount of adsorption and pressure for pure gases (CO2 and N2) were readily represented by parametric isotherm models, such as Langmuir and the N-layer BET equations. Modeling efforts of multicomponent adsorption included predicting amount of adsorption and adsorbed phase composition based on the extended Langmuir equations and the ideal adsorbed solution model. Activity coefficients of the components in the adsorbed phase were computed based on the real adsorbed solution model and the ABC excess Gibbs free energy model. Algorithms for modeling the CO 2/N2-Coal system were developed, and the constraints and strength of each model were discussed. The experimental volumetric strain was found to be linearly proportional to the total amount of adsorption and independent of the injection gas composition. The permeability reduction could not be readily correlated by the models in the literature unless the change of other coal properties (bulk modulus, axial constrained modulus, etc.) due to gas sorption was incorporated. The sorption, volumetric strain, and permeability data collected in this study can be used for comparison by other researchers conducting similar studies. The algorithms of sorption modeling and the correlations developed in this study are readily incorporated into the simulation of enhanced coalbed methane recovery and CO2 sequestration in coalbeds. (Abstract shortened by UMI.)

  1. ON A GENERALIZED MODULUS OF CONVEXITY AND UNIFORM NORMAL STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    Yang Changsen; Wang Fenghui

    2007-01-01

    In this article, the authors study a generalized modulus of convexity, δ(α)(∈).Certain related geometrical properties of this modulus are analyzed. Their main result is that Banach space X has uniform normal structure if there exists ∈, 0 ≤∈≤1, such that δ(α)(1 + ∈) > (1 - α)∈.

  2. Protocol for determining Apparent Young's Modulus of human teeth using laser speckle interferometry

    Science.gov (United States)

    Salvador-Palmer, Rosario; González-Peña, Rolando J.; Martínez-Celorio, René A.; López, Francisco J.; Paredes, Vanessa; Cibrián, Rosa

    2012-10-01

    Digital Speckle Shearing Pattern Interferometry (DSSPI) allows to directly quantify deformations in teeth that are subjected to stress. Eighteen second premolars (2PM) were studied both before and after endodontic treatment made with the ProTaper method in order to evaluate the variation of dental elasticity. We present a protocol for determination tooth Apparent Young's Modulus (AYM). Each tooth underwent different flexion loads from 50 to 300 g. DSSPI technique, makes it possible to show the deformation at each point of a line, selected by the researcher, that goes from the attachment point (Point 0) to the root area where the load is applied (Point 300-350, depending on the tooth size). The deformation of each tooth was characterized by the deformation value of point 150, located around the mid-area of tooth. This value was obtained from a linear regression applied on the deformation values of all the points in the fitted line. The correlation coefficients of these fitted regression lines were always higher than 0.972. The elasticity constant of each tooth was obtained as the slope of a new regression line, corresponding to the different loads applied on the tooth versus the corresponding deformation at point 150. This value, divided by the length of the tooth, is the apparent Young's modulus (AYM), which is expressed in arbitrary units (a.u.). Values of the AYM before (4.16 104 a.u) and after endodontic treatment using the ProTaper method (4.30 104 a.u.) showed no statistically significant difference in the elasticity of teeth (p>0.7).

  3. Some fundamental definitions of the elastic parameters for homogeneous isotropic linear elastic materials in pavement design and analysis

    CSIR Research Space (South Africa)

    De Beer, Morris

    2008-07-01

    Full Text Available during tensile (or compressive) tests conducted on a sample of the material. Young’s Modulus is named after Thomas Young, the 18th Century British scientist. The SI unit of modulus of elasticity, E is the pascal. Given the large values typical of many... stream_source_info De Beer1_2008.pdf.txt stream_content_type text/plain stream_size 31159 Content-Encoding UTF-8 stream_name De Beer1_2008.pdf.txt Content-Type text/plain; charset=UTF-8 1 Some fundamental definitions...

  4. First principles study on the structural, electronic, and elastic properties of Na-As systems

    Science.gov (United States)

    Ozisik, H. B.; Colakoglu, K.; Deligoz, E.; Ozisik, H.

    2011-10-01

    We have performed the first principles calculation by using the plane-wave pseudopotential approach with the generalized gradient approximation for investigating the structural, electronic, and elastic properties Na-As systems (NaAs in NaP, LiAs and AuCu-type structures, NaAs 2 in MgCu 2-type structure, Na 3As in Na 3As, Cu 3P and Li 3Bi-type structures, and Na 5As 4 in A 5B 4-type structure). The lattice parameters, cohesive energy, formation energy, bulk modulus, and the first derivative of bulk modulus (to fit to Murnaghan's equation of state) of the related structures are calculated. The second-order elastic constants and the other related quantities such as Young's modulus, shear modulus, Poisson's ratio, sound velocities, and Debye temperature are also estimated.

  5. Pseudo-elastic Hysteresis Damping Characteristics of SMA Hybrid Composite Lamina

    Institute of Scientific and Technical Information of China (English)

    SUN Shuangshuang; JIANG Xiance; SUN Guojun

    2008-01-01

    The longitudinal mechanical behavior of shape memory alloy (SMA) composite lamina subjected to longitudinally strain or stress controlled cyclic loading is investigated. The SMA is under pseudo-elastic condition and the fibers are embedded (bonded) to the host material. The influences of temperature, volume fraction of SMA and longitudinal modulus of the host material on the stress-strain relation and energy dissipation of the SMA hybrid composite lamina are discussed. The results indicate that the stress-strain curve of the lamina per cycle shows a hysteresis loop. The hysteresis damping decreases with increasing temperature and with decreasing volume fractions of SMA. In addition, the hysteresis damping is nearly independent of the longitudinal modulus of the host material under strain controlled loading. However, it depends dramatically on the longitudinal modulus of the host material under stress controlled loading, which shows the SMA composite lamina has high pseudo-elastic hysteresis damping when the longitudinal modulus of the host material is low.

  6. The elastic constants and anisotropy of superconducting MgCNi3 and CdCNi3 under different pressure

    KAUST Repository

    Feng, Huifang

    2013-11-23

    The second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of MgCNi3 and CdCNi3 are presented by using first-principles methods combined with homogeneous deformation theory. The Voigt-Reuss-Hill (VRH) approximation are used to calculate the bulk modulus B, shear modulus G, averaged Young\\'s modulus E and Poisson\\'s ratio ν for polycrystals and these effective modulus are consistent with the experiments. The SOECs under different pressure of MgCNi3 and CdCNi3 are also obtained based on the TOECs. Furthermore, the Zener anisotropy factor, Chung-Buessem anisotropy index, and the universal anisotropy index are used to describe the anisotropy of MgCNi3 and CdCNi3. The anisotropy of Young\\'s modulus of single-crystal under different pressure is also presented. © 2013 Springer Science+Business Media New York.

  7. Nonequilibrium volumetric response of shocked polymers

    Energy Technology Data Exchange (ETDEWEB)

    Clements, B E [Los Alamos National Laboratory

    2009-01-01

    Polymers are well known for their non-equilibrium deviatoric behavior. However, investigations involving both high rate shock experiments and equilibrium measured thermodynamic quantities remind us that the volumetric behavior also exhibits a non-equilibrium response. Experiments supporting the notion of a non-equilibrium volumetric behavior will be summarized. Following that discussion, a continuum-level theory is proposed that will account for both the equilibrium and non-equilibrium response. Upon finding agreement with experiment, the theory is used to study the relaxation of a shocked polymer back towards its shocked equilibrium state.

  8. Change of Static and Dynamic Elastic Properties due to CO² Injection in North Sea Chalk

    DEFF Research Database (Denmark)

    Alam, Mohammad Monzurul; Hjuler, M.L.; Christensen, H.F.;

    2012-01-01

    Reservoir modeling and monitoring uses dynamic data for predicting and determining static changes. Dynamic data are achieved from the propagation velocity of elastic waves in rock while static data are obtained from the mechanical deformation. Reservoir simulation and monitoring are particularly......% non-carbonate. We studied difference in static and dynamic behavior. Furthermore, brine saturated data were compared with CO2 injected data to reveal the effect of supercritical CO2 injection in both static and dynamic elastic properties. We used strain gauges and LVDTs to measure static deformation....... We observed lower dynamic elastic modulus for chalk with higher non-carbonate content at porosities lower than 30%. In 30% porosity chalk, dynamic compressional and bulk modulus were found significantly higher than the static modulus. Static measurements with LVDT were found lowest. The effect of CO2...

  9. Thermodynamics and elastic properties of Ta from first-principles calculations

    Institute of Scientific and Technical Information of China (English)

    Li Qiang; Huang Duo-Hui; Cao Qi-Long; Wang Fan-Hou; Cai Ling-Cang; Zhang Xiu-Lu; Jing Fu-Qian

    2012-01-01

    Within the framework of the quasiharmonic approximation,the thermodynamics and elastic properties of Ta,including phonon density of states (DOS),equation of state,linear thermal expansion coefficient,entropy,enthalpy,heat capacity,elastic constants,bulk modulus,shear modulus,Young's modulus,microhardness,and sound velocity,are studied using the first-principles projector-augmented wave method.The vibrational contribution to Helmholtz free energy is evaluated from the first-principles phonon DOS and the Debye model.The thermal electronic contribution to Helmholtz free energy is estimated from the integration over the electronic DOS.By comparing the experimental results with the calculation results from the first-principles and the Debye model,it is found that the thermodynamic properties of Ta are depicted well by the first-principles.The elastic properties of Ta from the first-principles are consistent with the available experimental data.

  10. Elastic properties and electron transport in InAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Migunov, Vadim

    2013-02-22

    The electron transport and elastic properties of InAs nanowires grown by chemical vapor deposition on InAs (001) substrate were studied experimentally, in-situ in a transmission electron microscope (TEM). A TEM holder allowing the measurement of a nanoforce while simultaneous imaging nanowire bending was used. Diffraction images from local areas of the wire were recorded to correlate elastic properties with the atomic structure of the nanowires. Another TEM holder allowing the application of electrical bias between the nanowire and an apex of a metallic needle while simultaneous imaging the nanowire in TEM or performing electron holography was used to detect mechanical vibrations in mechanical study or holographical observation of the nanowire inner potential in the electron transport studies. The combination of the scanning probe methods with TEM allows to correlate the measured electric and elastic properties of the nanowires with direct identification of their atomic structure. It was found that the nanowires have different atomic structures and different stacking fault defect densities that impacts critically on the elastic properties and electric transport. The unique methods, that were applied in this work, allowed to obtain dependencies of resistivity and Young's modulus of left angle 111 right angle -oriented InAs nanowires on defect density and diameter. It was found that the higher is the defect density the higher are the resistivity and the Young's modulus. Regarding the resistivity, it was deduced that the stacking faults increase the scattering of the electrons in the nanowire. These findings are consistent with the literature, however, the effect described by the other groups is not so pronounced. This difference can be attributed to the significant incompleteness of the physical models used for the data analysis. Regarding the elastic modulus, there are several mechanisms affecting the elasticity of the nanowires discussed in the thesis. It

  11. Damage of the Interface Between an Orthodontic Bracket and Enamel - the Effect of Some Elastic Properties of the Adhesive Material

    Science.gov (United States)

    Durgesh, B. H.; Alkheraif, A. A.; Al Sharawy, M.; Varrela, J.; Vallittu, P. K.

    2016-01-01

    The aim of this study was to investigate the magnitude of debonding stress of an orthodontic bracket bonded to the enamel with resin systems having different elastic properties. For the same purpose, sixty human premolars were randomly divided into four groups according to the adhesive system used for bonding brackets: G Fix flowable resin (GFI) with Everstick NET (ESN), GFI, G Aenial Universal Flow (GAU) with ESN, and GAU. The brackets were stressed in the occlusogingival direction on a universal testing machine. The values of debonding load and displacement were determined at the point of debonding. The elastic modulus of the tested materials was determined using nanoindentation. An analysis of variance showed a significant difference in the loads required to debond the bracket among the groups tested. The GAU group had the highest elastic modulus, followed by the GFI and ESN groups. ARI (Adhesive Remnant Index) scores demonstrated more remnants of the adhesive material on the bracket surface with adhesives having a higher elastic modulus. Taking into consideration results of the present in-vitro study, it can be concluded that the incorporation of a glass-fiber-reinforced composite resin (FRC) with a low elastic modulus between the orthodontic bracket and enamel increases the debonding force and strain more than with adhesive systems having a higher elastic modulus.

  12. First-principles investigation of the elastic and thermodynamic properties of ReC2 (Re = Ho, Nd, Pr)

    Science.gov (United States)

    Huang, Wen; Chen, Haichuan

    2015-01-01

    The elastic and thermodynamic properties of ReC2 (Re = Ho, Nd, Pr) have been investigated by using the first-principles density functional theory within the generalized gradient approximation. The computed lattice constants of ReC2 are in agreement with the experimental data. The calculated elastic constants reveal that all compounds are mechanically stable. The shear modulus, Young's modulus, Poisson's ratio σ, the ratio B/G, shear anisotropy and elastic anisotropy are also calculated. Finally, the Vicker hardness, Debye temperature, melting point and thermal conductivity have been predicted.

  13. Origin of high strength, low modulus superelasticity in nanowire-shape memory alloy composites

    Science.gov (United States)

    Zhang, Xudong; Zong, Hongxiang; Cui, Lishan; Fan, Xueling; Ding, Xiangdong; Sun, Jun

    2017-04-01

    An open question is the underlying mechanisms for a recent discovered nanocomposite, which composed of shape memory alloy (SMA) matrix with embedded metallic nanowires (NWs), demonstrating novel mechanical properties, such as large quasi-linear elastic strain, low Young’s modulus and high yield strength. We use finite element simulations to investigate the interplay between the superelasticity of SMA matrix and the elastic-plastic deformation of embedded NWs. Our results show that stress transfer plays a dominated role in determining the quasi-linear behavior of the nanocomposite. The corresponding microstructure evolution indicate that the transfer is due to the coupling between plastic deformation within the NWs and martensitic transformation in the matrix, i.e., the martensitic transformation of the SMA matrix promotes local plastic deformation nearby, and the high plastic strain region of NWs retains considerable martensite in the surrounding SMA matrix, thus facilitating continues martensitic transformation in subsequent loading. Based on these findings, we propose a general criterion for achieving quasi-linear elasticity.

  14. Small shear modulus of cubic CaSiO3 perovskite

    Science.gov (United States)

    Kawai, Kenji; Tsuchiya, Taku

    2015-04-01

    Ca-perovskite (CaPv) is considered to be one of the most abundant minerals in the Earth's lower mantle (LM). Furthermore, previous static calculations and mean-field theory suggest that it has a much larger shear modulus than bridgmanite (MgPv). In this study, the elasticity of cubic CaPv was reinvestigated using the density functional constant-temperature first principles molecular dynamics method under the correct conditions to simulate its elasticity. Our new results clearly demonstrate that cubic CaPv has comparable bulk and slightly smaller shear moduli than Fe-bearing MgPv. This is because the boundary condition for the supercell used in this study allows for the rotational phonon motion of SiO6 octahedra under strain, which predominantly affects the decrease in C11 and C44. Acoustic wave velocities determined from the elastic moduli indicate that cubic CaPv has slower velocities and larger densities than Fe-bearing MgPv and preliminary reference Earth model in the LM. This suggests that if CaPv-rich material exists, it can accumulate in the lowermost LM and produce a seismically low-velocity anomaly.

  15. Elastic characteristics and microplastic deformation of amorphous alloys on iron base

    Energy Technology Data Exchange (ETDEWEB)

    Pol' dyaeva, G.P.; Zakharov, E.K.; Ovcharov, V.P.; Tret' yakov, B.N. (Tsentral' nyj Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii, Moscow (USSR))

    1983-01-01

    Investigation results of elasticity and microplasticity properties (modulus of normal elasticity E, elasticity limit sigmasub(0.01) and yield limit sigmasub(0.2)) of three amorphous alloys on iron base Fe/sub 80/B/sub 20/, Fe/sub 70/Cr/sub 10/B/sub 20/ and Fe/sub 70/Cr/sub 5/Ni/sub 5/B/sub 20/ are given. Amorphous band of the alloys is obtained using the method of melt hardening. It is shown that amorphous alloys on iron base possess high elasticity and yield limits and hardness and are very perspective for the use as spring materials.

  16. Determination of the shear modulus of gelatine hydrogels by magnetization measurements using dispersed nickel nanorods as mechanical probes

    Energy Technology Data Exchange (ETDEWEB)

    Bender, P., E-mail: nano@p-bender.de; Tschöpe, A., E-mail: antsch@mx.uni-saarland.de; Birringer, R., E-mail: r.birringer@nano.uni-saarland.de

    2013-11-15

    Ni nanorods are dispersed into gelatine gels and used as nanoprobes to estimate the shear modulus of the surrounding gel matrix by magnetization measurements. The nanorods are synthesized via pulsed electrodeposition of Ni into porous alumina, released from the templates by dissolution of the oxide layer and after several processing steps dispersed into gelatine gels with an isotropic orientation-distribution. Magnetization measurements of the resulting gels show a significant influence of the gelatine concentration on their magnetic behavior. In particular, with decreasing gelatine concentration the measured coercivity is reduced indicating a mechanical rotation of the nanorods in the field direction. A theoretical model which relates the measured coercivity to the shear modulus of the surrounding gel matrix is introduced and applied to investigate the ageing process of gelatine gels with different gelatine concentrations at room temperature. - Highlights: • AAO-template synthesis of uniaxial ferromagnetic single domain Ni nanorods. • Embedding nanorods as magnetic probes in soft elastic gelatine hydrogels. • Coercivity of isotropic samples increases with gelation time and gelatine concentration. • Quantitative relationship between coercivity and matrix shear modulus is obtained from an extended Stoner–Wohlfarth-model. • Semi-quantitative method for magnetic rheometry of soft elastic materials.

  17. Elasticity and inelasticity of silicon nitride/boron nitride fibrous monoliths.

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, B. I.; Burenkov, Yu. A.; Kardashev, B. K.; Singh, D.; Goretta, K. C.; de Arellano-Lopez, A. R.; Energy Technology; Russian Academy of Sciences; Univer. de Sevilla

    2001-01-01

    A study is reported on the effect of temperature and elastic vibration amplitude on Young's modulus E and internal friction in Si{sub 3}N{sub 4} and BN ceramic samples and Si{sub 3}N{sub 4}/BN monoliths obtained by hot pressing of BN-coated Si{sub 3}N{sub 4} fibers. The fibers were arranged along, across, or both along and across the specimen axis. The E measurements were carried out under thermal cycling within the 20-600 C range. It was found that high-modulus silicon-nitride specimens possess a high thermal stability; the E(T) dependences obtained under heating and cooling coincide well with one another. The low-modulus BN ceramic exhibits a considerable hysteresis, thus indicating evolution of the defect structure under the action of thermoelastic (internal) stresses. Monoliths demonstrate a qualitatively similar behavior (with hysteresis). This behavior of the elastic modulus is possible under microplastic deformation initiated by internal stresses. The presence of microplastic shear in all the materials studied is supported by the character of the amplitude dependences of internal friction and the Young's modulus. The experimental data obtained are discussed in terms of a model in which the temperature dependences of the elastic modulus and their features are accounted for by both microplastic deformation and nonlinear lattice-atom vibrations, which depend on internal stresses.

  18. Molecular dynamics investigation of the elastic and fracture properties of the R-graphyne under uniaxial tension

    Energy Technology Data Exchange (ETDEWEB)

    Rouhi, Saeed, E-mail: s_rouhi@iaul.ac.ir

    2017-05-15

    In this paper, the mechanical properties of the R-graphynes are investigated by using molecular dynamics simulations. For this purpose, the uniaxial strain is applied on the nanosheets. The effects of R-graphyne chirality and dimension on their fracture and elastic properties are investigated. It is shown that the fracture properties of the armchair R-graphyne are approximately independent from the nanosheet sizes. However, a clear dependence is observed in the fracture properties of the zigzag R-graphyne on the nanosheet dimensions. Comparing the elastic modulus of the armchair and zigzag R-graphynes, it is shown that for the same sizes, the elastic modulus of armchair R-graphyne is approximately equal to 2.5 times of the elastic modulus of the zigzag ones. Pursuing the fracture process of R-graphynes with different chiralities, it is represented that the fracture propagates in the zigzag nanosheet with a higher velocity than the armchair ones.

  19. Process conditions and volumetric composition in composites

    DEFF Research Database (Denmark)

    Madsen, Bo

    2013-01-01

    The obtainable volumetric composition in composites is linked to the gravimetric composition, and it is influenced by the conditions of the manufacturing process. A model for the volumetric composition is presented, where the volume fractions of fibers, matrix and porosity are calculated as a fun...... is increased. Altogether, the model is demonstrated to be a valuable tool for a quantitative analysis of the effect of process conditions. Based on the presented findings and considerations, examples of future work are mentioned for the further improvement of the model.......The obtainable volumetric composition in composites is linked to the gravimetric composition, and it is influenced by the conditions of the manufacturing process. A model for the volumetric composition is presented, where the volume fractions of fibers, matrix and porosity are calculated...... as a function of the fiber weight fraction, and where parameters are included for the composite microstructure, and the fiber assembly compaction behavior. Based on experimental data of composites manufactured with different process conditions, together with model predictions, different types of process related...

  20. Indexing Volumetric Shapes with Matching and Packing.

    Science.gov (United States)

    Koes, David Ryan; Camacho, Carlos J

    2015-04-01

    We describe a novel algorithm for bulk-loading an index with high-dimensional data and apply it to the problem of volumetric shape matching. Our matching and packing algorithm is a general approach for packing data according to a similarity metric. First an approximate k-nearest neighbor graph is constructed using vantage-point initialization, an improvement to previous work that decreases construction time while improving the quality of approximation. Then graph matching is iteratively performed to pack related items closely together. The end result is a dense index with good performance. We define a new query specification for shape matching that uses minimum and maximum shape constraints to explicitly specify the spatial requirements of the desired shape. This specification provides a natural language for performing volumetric shape matching and is readily supported by the geometry-based similarity search (GSS) tree, an indexing structure that maintains explicit representations of volumetric shape. We describe our implementation of a GSS tree for volumetric shape matching and provide a comprehensive evaluation of parameter sensitivity, performance, and scalability. Compared to previous bulk-loading algorithms, we find that matching and packing can construct a GSS-tree index in the same amount of time that is denser, flatter, and better performing, with an observed average performance improvement of 2X.

  1. SPLITTING MODULUS FINITE ELEMENT METHOD FOR ORTHOGONAL ANISOTROPIC PLATE BENGING

    Institute of Scientific and Technical Information of China (English)

    党发宁; 荣廷玉; 孙训方

    2001-01-01

    Splitting modulus variational principle in linear theory of solid mechanics was introduced, the principle for thin plate was derived, and splitting modulus finite element method of thin plate was established too. The distinctive feature of the splitting model is that its functional contains one or more arbitrary additional parameters, called splitting factors,so stiffness of the model can be adjusted by properly selecting the splitting factors. Examples show that splitting modulus method has high precision and the ability to conquer some illconditioned problems in usual finite elements. The cause why the new method could transform the ill-conditioned problems into well-conditioned problem, is analyzed finally.

  2. Effect of Cooling Rate on the Longitudinal Modulus of Cu3Sn Phase of Ag-Sn-Cu Amalgam Alloy (Part II

    Directory of Open Access Journals (Sweden)

    R. H. Rusli

    2015-10-01

    Full Text Available Effects of cooling rate (at the time of solidification on the elastic constants of Cu3Sn phase of Ag-Sn-Cu dental amalgam alloy were studied. In this study, three types of alloys were made, with the composition Cu-38-37 wt% Sn by means of casting, where each alloy was subjected to different cooling rate, such as cooling on the air (AC, air blown (AB, and quenched in the water (WQ. X-ray diffraction, metallography, and Scanning Electron Microscopy with Energy Dispersive Spectroscopy studies of three alloys indicated the existence of Cu3Sn phase. Determination of the modulus of elasticity of Cu3Sn (ε phase was carried out by the measurement of longitudinal and transversal waves velocity using ultrasonic technique. The result shows that Cu3Sn (ε phase on AC gives higher modulus of elasticity values than those of Cu3Sn (ε on AB and WQ. The high modulus of elasticity value will produce a strong Ag-Sn-Cu dental amalagam alloy.

  3. Breakdown of nonlinear elasticity in stress-controlled thermal amorphous solids

    Science.gov (United States)

    Dailidonis, Vladimir; Ilyin, Valery; Procaccia, Itamar; Shor, Carmel A. B. Z.

    2017-03-01

    In recent work it was clarified that amorphous solids under strain control do not possess nonlinear elastic theory in the sense that the shear modulus exists but nonlinear moduli exhibit sample-to-sample fluctuations that grow without bound with the system size. More relevant, however, for experiments are the conditions of stress control. In the present Rapid Communication we show that also under stress control the shear modulus exists, but higher-order moduli show unbounded sample-to-sample fluctuation. The unavoidable consequence is that the characterization of stress-strain curves in experiments should be done with a stress-dependent shear modulus rather than with nonlinear expansions.

  4. Elastic Constants of Superconducting MgB2 from Molecular Dynamics Simulations with Shell Model

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The elastic constants of superconducting MgB2 are calculated using a molecular dynamics method (MD)with shell model. The lattice parameters, five independent elastic constants, equations of state (EOS), Debye temperature, and bulk modulus of MgB2 are obtained. Meanwhile, the dependence of the bulk modulus B, the lattice parameters a and c, and the unit cell volume V on the applied pressure are presented. It is demonstrated that the method introduced here can well reproduce the experimental results with a reasonable accuracy.

  5. Ab Initio Calculations of Elastic Constants of Li2O under Pressure

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Feng; CHEN Xiang-Rong; JI Guang-Fu; MENG Chuan-Min

    2006-01-01

    @@ We investigate the equilibrium lattice constant, bulk modulus, elastic constants and Debye temperature of Li2 O under pressure by using ab initio unrestricted Hartree-Fock (HF) linear combination of atomic orbital (LCAO) periodic approach. The obtained results at zero pressure are well consistent with the available experimental data and other theoretical results. It is found that the elastic constants C11, C12 and C44 and bulk modulus B increase monotonously as pressure increases. Also, the anisotropy will weaken and the Debye temperature will rise with pressure increasing.

  6. Elastic and mechanical softening in boron-doped diamond

    Science.gov (United States)

    Liu, Xiaobing; Chang, Yun-Yuan; Tkachev, Sergey N.; Bina, Craig R.; Jacobsen, Steven D.

    2017-01-01

    Alternative approaches to evaluating the hardness and elastic properties of materials exhibiting physical properties comparable to pure diamond have recently become necessary. The classic linear relationship between shear modulus (G) and Vickers hardness (HV), along with more recent non-linear formulations based on Pugh’s modulus extending into the superhard region (HV > 40 GPa) have guided synthesis and identification of novel superabrasives. These schemes rely on accurately quantifying HV of diamond-like materials approaching or potentially exceeding the hardness of the diamond indenter, leading to debate about methodology and the very definition of hardness. Elasticity measurements on such materials are equally challenging. Here we used a high-precision, GHz-ultrasonic interferometer in conjunction with a newly developed optical contact micrometer and 3D optical microscopy of indentations to evaluate elasticity-hardness relations in the ultrahard range (HV > 80 GPa) by examining single-crystal boron-doped diamond (BDD) with boron contents ranging from 50–3000 ppm. We observe a drastic elastic-mechanical softening in highly doped BDD relative to the trends observed for superhard materials, providing insight into elasticity-hardness relations for ultrahard materials. PMID:28233808

  7. Elastic and mechanical softening in boron-doped diamond.

    Science.gov (United States)

    Liu, Xiaobing; Chang, Yun-Yuan; Tkachev, Sergey N; Bina, Craig R; Jacobsen, Steven D

    2017-02-24

    Alternative approaches to evaluating the hardness and elastic properties of materials exhibiting physical properties comparable to pure diamond have recently become necessary. The classic linear relationship between shear modulus (G) and Vickers hardness (HV), along with more recent non-linear formulations based on Pugh's modulus extending into the superhard region (HV > 40 GPa) have guided synthesis and identification of novel superabrasives. These schemes rely on accurately quantifying HV of diamond-like materials approaching or potentially exceeding the hardness of the diamond indenter, leading to debate about methodology and the very definition of hardness. Elasticity measurements on such materials are equally challenging. Here we used a high-precision, GHz-ultrasonic interferometer in conjunction with a newly developed optical contact micrometer and 3D optical microscopy of indentations to evaluate elasticity-hardness relations in the ultrahard range (HV > 80 GPa) by examining single-crystal boron-doped diamond (BDD) with boron contents ranging from 50-3000 ppm. We observe a drastic elastic-mechanical softening in highly doped BDD relative to the trends observed for superhard materials, providing insight into elasticity-hardness relations for ultrahard materials.

  8. Elastic and mechanical softening in boron-doped diamond

    Science.gov (United States)

    Liu, Xiaobing; Chang, Yun-Yuan; Tkachev, Sergey N.; Bina, Craig R.; Jacobsen, Steven D.

    2017-02-01

    Alternative approaches to evaluating the hardness and elastic properties of materials exhibiting physical properties comparable to pure diamond have recently become necessary. The classic linear relationship between shear modulus (G) and Vickers hardness (HV), along with more recent non-linear formulations based on Pugh’s modulus extending into the superhard region (HV > 40 GPa) have guided synthesis and identification of novel superabrasives. These schemes rely on accurately quantifying HV of diamond-like materials approaching or potentially exceeding the hardness of the diamond indenter, leading to debate about methodology and the very definition of hardness. Elasticity measurements on such materials are equally challenging. Here we used a high-precision, GHz-ultrasonic interferometer in conjunction with a newly developed optical contact micrometer and 3D optical microscopy of indentations to evaluate elasticity-hardness relations in the ultrahard range (HV > 80 GPa) by examining single-crystal boron-doped diamond (BDD) with boron contents ranging from 50–3000 ppm. We observe a drastic elastic-mechanical softening in highly doped BDD relative to the trends observed for superhard materials, providing insight into elasticity-hardness relations for ultrahard materials.

  9. Relationship between elastic moduli and pore radius in clay aggregates

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke

    2011-01-01

    Available experimental data on elastic velocities of clay-air mixtures and clay-brine mixtures as a function of porosity are re-interpreted. Pore radius as calculated from porosity and specific surface measured by BET seems to be the factor controlling stiffness of these un-cemented sediments....... For each of the two pore fluids: air or brine smectitic clay and kaolinitic clay seem to have similar power law relationships between a given elastic modulus and pore radius. These results indicate that pore radius and thus permeability of shale in the depth interval of mechanical compaction may...

  10. Conditioning-induced elastic nonlinearity in hysteretic media

    Science.gov (United States)

    Gliozzi, A. S.; Scalerandi, M.; Antonaci, P.; Bruno, C. L. E.

    2010-08-01

    The definition and measurement of the nonlinear elastic properties of a sample is of great importance for a large number of applications, including characterization of material performances and damage detection. However, such measurements are often influenced by spurious effects due to a combination of nonlinearity and nonequilibrium phenomena. We will present experimental data to show how nonlinearity due to small cracks in concrete samples increases as a consequence of conditioning, i.e., after having perturbed them with a constant amplitude excitation. In addition, our experimental data highlight "memory effects," i.e., they show that when the excitation is removed, the elastic modulus does not return instantaneously to the initial value.

  11. Anisotropic linear elastic properties of fractal-like composites.

    Science.gov (United States)

    Carpinteri, Alberto; Cornetti, Pietro; Pugno, Nicola; Sapora, Alberto

    2010-11-01

    In this work, the anisotropic linear elastic properties of two-phase composite materials, made up of square inclusions embedded in a matrix, are investigated. The inclusions present a fractal hierarchical distribution and are supposed to have the same Poisson's ratio as the matrix but a different Young's modulus. The effective elastic moduli of the medium are computed at each fractal iteration by coupling a position-space renormalization-group technique with a finite element analysis. The study allows to obtain and generalize some fundamental properties of fractal composite materials.

  12. Anisotropic linear elastic properties of fractal-like composites

    Science.gov (United States)

    Carpinteri, Alberto; Cornetti, Pietro; Pugno, Nicola; Sapora, Alberto

    2010-11-01

    In this work, the anisotropic linear elastic properties of two-phase composite materials, made up of square inclusions embedded in a matrix, are investigated. The inclusions present a fractal hierarchical distribution and are supposed to have the same Poisson’s ratio as the matrix but a different Young’s modulus. The effective elastic moduli of the medium are computed at each fractal iteration by coupling a position-space renormalization-group technique with a finite element analysis. The study allows to obtain and generalize some fundamental properties of fractal composite materials.

  13. Elastic and Electronic Properties of Point Defects in Titanium Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Daebok [Kyungsung Univ., Busan (Korea, Republic of)

    2013-12-15

    A theoretical study of the electronic structures of TiC{sub 1-x} and Ti{sub -1-x}W{sub x}C (x = 0, 0.25) is presented. The density of states and crystal orbital overlap population calculations were used to interpret variations of elastic properties induced by carbon vacancies and alloying substitutions. Our results show why the introduction of vacancies into TiC reduces bulk moduli, while W substitution at a Ti site increases the elastic modulus. The effect of the point defects on the bonding in TiC is investigated by means of extended Huckel tight-binding band calculations.

  14. Elastic moduli and vibrational modes in jammed particulate packings

    Science.gov (United States)

    Mizuno, Hideyuki; Saitoh, Kuniyasu; Silbert, Leonardo E.

    2016-06-01

    When we elastically impose a homogeneous, affine deformation on amorphous solids, they also undergo an inhomogeneous, nonaffine deformation, which can have a crucial impact on the overall elastic response. To correctly understand the elastic modulus M , it is therefore necessary to take into account not only the affine modulus MA, but also the nonaffine modulus MN that arises from the nonaffine deformation. In the present work, we study the bulk (M =K ) and shear (M =G ) moduli in static jammed particulate packings over a range of packing fractions φ . The affine MA is determined essentially by the static structural arrangement of particles, whereas the nonaffine MN is related to the vibrational eigenmodes. We elucidate the contribution of each vibrational mode to the nonaffine MN through a modal decomposition of the displacement and force fields. In the vicinity of the (un)jamming transition φc, the vibrational density of states g (ω ) shows a plateau in the intermediate-frequency regime above a characteristic frequency ω*. We illustrate that this unusual feature apparent in g (ω ) is reflected in the behavior of MN: As φ →φc , where ω*→0 , those modes for ω ω* approach a constant value which results in MN to approach a critical value MN c, as MN-MN c˜ω* . At φc itself, the bulk modulus attains a finite value Kc=KA c-KN c>0 , such that KN c has a value that remains below KA c. In contrast, for the critical shear modulus Gc, GN c and GA c approach the same value so that the total value becomes exactly zero, Gc=GA c-GN c=0 . We explore what features of the configurational and vibrational properties cause such a distinction between K and G , allowing us to validate analytical expressions for their critical values.

  15. Growth-induced axial buckling of a slender elastic filament embedded in an isotropic elastic matrix

    KAUST Repository

    O'Keeffe, Stephen G.

    2013-11-01

    We investigate the problem of an axially loaded, isotropic, slender cylinder embedded in a soft, isotropic, outer elastic matrix. The cylinder undergoes uniform axial growth, whilst both the cylinder and the surrounding elastic matrix are confined between two rigid plates, so that this growth results in axial compression of the cylinder. We use two different modelling approaches to estimate the critical axial growth (that is, the amount of axial growth the cylinder is able to sustain before it buckles) and buckling wavelength of the cylinder. The first approach treats the filament and surrounding matrix as a single 3-dimensional elastic body undergoing large deformations, whilst the second approach treats the filament as a planar, elastic rod embedded in an infinite elastic foundation. By comparing the results of these two approaches, we obtain an estimate of the foundation modulus parameter, which characterises the strength of the foundation, in terms of the geometric and material properties of the system. © 2013 Elsevier Ltd. All rights reserved.

  16. Response to Concentrated Moving Masses of Elastically Supported Rectangular Plates Resting on Winkler Elastic Foundation

    Directory of Open Access Journals (Sweden)

    Awodola T. O.

    2014-09-01

    Full Text Available The dynamic response to moving concentrated masses of elastically supported rectangular plates resting on Winkler elastic foundation is investigated in this work. This problem, involving non-classical boundary conditions, is solved and illustrated with two common examples often encountered in engineering practice. Analysis of the closed form solutions shows that, for the same natural frequency (i the response amplitude for the moving mass problem is greater than that one of the moving force problem for fixed Rotatory inertia correction factor R0 and foundation modulus F0, (ii The critical speed for the moving mass problem is smaller than that for the moving force problem and so resonance is reached earlier in the former. The numerical results in plotted curves show that, for the elastically supported plate, as the value of R0 increases, the response amplitudes of the plate decrease and that, for fixed value of R0, the displacements of the plate decrease as F0 increases. The results also show that for fixed R0 and F0, the transverse deflections of the plates under the actions of moving masses are higher than those when only the force effects of the moving load are considered. Hence, the moving force solution is not a save approximation to the moving mass problem. Also, as the mass ratio Γ approaches zero, the response amplitude of the moving mass problem approaches that one of the moving force problem of the elastically supported rectangular plate resting on constant Winkler elastic foundation.

  17. Quantitative optical coherence elastography as an inverse elasticity problem (Conference Presentation)

    Science.gov (United States)

    Dong, Li; Wijesinghe, Philip; Dantuono, James T.; Sampson, David D.; Munro, Peter R. T.; Kennedy, Brendan F.; Oberai, Assad A.

    2016-03-01

    Quantitative elasticity imaging, which retrieves elastic modulus maps from tissue, is preferred to qualitative strain imaging for acquiring system- and operator-independent images and longitudinal and multi-site diagnoses. Quantitative elasticity imaging has already been demonstrated in optical elastography by relating surface-acoustic and shear wave speed to Young's modulus via a simple algebraic relationship. Such approaches assume largely homogeneous samples and neglect the effect of boundary conditions. We present a general approach to quantitative elasticity imaging based upon the solution of the inverse elasticity problem using an iterative technique and apply it to compression optical coherence elastography. The inverse problem is one of finding the distribution of Young's modulus within a sample, that in response to an applied load, and a given displacement and traction boundary conditions, can produce a displacement field matching one measured in experiment. Key to our solution of the inverse elasticity problem is the use of the adjoint equations that allow the very efficient evaluation of the gradient of the objective function to be minimized with respect to the unknown values of Young's modulus within the sample. Although we present the approach for the case of linear elastic, isotropic, incompressible solids, this method can be employed for arbitrarily complex mechanical models. We present the details of the method and quantitative elastograms of phantoms and tissues. We demonstrate that by using the inverse approach, we can decouple the artefacts produced by mechanical tissue heterogeneity from the true distribution of Young's modulus, which are often evident in techniques that employ first-order algebraic relationships.

  18. Influence of the Testing Gage Length on the Strength, Young's Modulus and Weibull Modulus of Carbon Fibres and Glass Fibres

    Directory of Open Access Journals (Sweden)

    Luiz Claudio Pardini

    2002-10-01

    Full Text Available Carbon fibres and glass fibres are reinforcements for advanced composites and the fiber strength is the most influential factor on the strength of the composites. They are essentially brittle and fail with very little reduction in cross section. Composites made with these fibres are characterized by a high strength/density ratio and their properties are intrisically related to their microstructure, i.e., amount and orientation of the fibres, surface treatment, among other factors. Processing parameters have an important role in the fibre mechanical behaviour (strength and modulus. Cracks, voids and impurities in the case of glass fibres and fibrillar misalignments in the case of carbon fibres are created during processing. Such inhomogeneities give rise to an appreciable scatter in properties. The most used statistical tool that deals with this characteristic variability in properties is the Weibull distribution. The present work investigates the influence of the testing gage length on the strength, Young's modulus and Weibull modulus of carbon fibres and glass fibres. The Young's modulus is calculated by two methods: (i ASTM D 3379M, and (ii interaction between testing equipment/specimen The first method resulted in a Young modulus of 183 GPa for carbon fibre, and 76 GPa for glass fibre. The second method gave a Young modulus of 250 GPa for carbon fibre and 50 GPa for glass fibre. These differences revelead differences on how the interaction specimen/testing machine can interfere in the Young modulus calculations. Weibull modulus can be a tool to evaluate the fibre's homogeneity in terms of properties and it is a good quality control parameter during processing. In the range of specimen gage length tested the Weibull modulus for carbon fibre is ~ 3.30 and for glass fibres is ~ 5.65, which indicates that for the batch of fibres tested, the glass fibre is more uniform in properties.

  19. Diffraction plane dependence of elastic constants in residual stress measurement by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Okido, Shinobu; Hayashi, Makoto [Hitachi Ltd., Tokyo (Japan); Morii, Yukio; Minakawa, Nobuaki; Tsuchiya, Yoshinori

    1997-06-01

    In a residual stress measurement by x-ray diffraction method and a neutron diffraction method, strictly speaking, the strain measurement of various diffracted surface was conducted and it is necessary to use its elastic modulus to convert from the strain to the stress. Then, in order to establish the residual stress measuring technique using neutron diffraction, it is an aim at first to make clear a diffraction surface dependency of elastic modulus for the stress conversion in various alloys. As a result of investigations the diffraction surface dependency of elastic module on SUS304 and STS410 steels by using RESA (Neutron diffractometer for residual stress analysis) installed at JRR-3M in Tokai Establishment of JAERI, following results are obtained. The elastic modulus of each diffraction surface considering till plastic region could be confirmed to be in a region of {+-}20% of that calculated by Kroner`s model and to be useful for that used on conversion to the stress. And, error of this elastic modulus was thought to cause the transition and defect formed at inner portion of the materials due to a plastic deformation. (G.K.)

  20. Elastic behaviour of Cr{sup 3+} substituted Co–Zn ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Algude, S.G. [Department of Physics, Adarsh College, Omerga 413606, Maharashtra (India); Patange, S.M., E-mail: smpatange@rediffmail.com [Materials Research Laboratory, Shrikrishna Mahavidyalaya, Gunjoti 413613, Maharashtra (India); Shirsath, Sagar E., E-mail: shirsathsagar@hotmail.com [Spin Device Technology Center, Department of Information Engineering, Shinshu University, Nagano 380-8553 (Japan); Mane, D.R. [Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431001, Maharashtra (India); Jadhav, K.M. [Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431001, Maharashtra (India)

    2014-01-15

    The elastic behaviour of Cr{sup 3+} substituted Co–Zn ferrites system; Co{sub 0.7}Zn{sub 0.3}Cr{sub x}Fe{sub 2−x}O{sub 4} where x=0.0 to 0.5 in step of 0.1 were prepared by ceramic method. Ultrasonic Pulse transmission method at room temperature was employed to determine the elastic properties of the presently investigated samples. Values of longitudinal and shear wave velocities were increased with an increases in Cr composition x. Using these value of velocities; Young's modulus, rigidity modulus, bulk modulus, longitudinal modulus and Poisson's ratio were calculated. The values of moduli were increased with an increases in Cr composition x. Debye temperature of all sample were calculate using the Anderson equation and it shows increasing trend with an increases in Cr composition x. The behaviour elastic moduli of Co{sub 0.7}Zn{sub 0.3}Cr{sub x}Fe{sub 2−x}O{sub 4} are interpreted in terms of bonding force between atoms. - Highlights: • Cr{sup 3+} substituted Co–Zn ferrite were prepared by ceramic method. • Ultrasonic pulse transmission technique was used to determine the elastic moduli. • Elastic moduli were increased with Cr composition x. • Debye temperature was increased with Cr composition x.

  1. Bending elastic moduli of lipid bilayers : modulation by solutes

    OpenAIRE

    Duwe, H.P.; Kaes, J.; Sackmann, E.

    1990-01-01

    We present high precision measurements of the bending elastic moduli for bilayers of a variety of different lipids and of modifications of the flexural rigidity by solutes. The measurements are based on the Fourier analysis of thermally excited membrane undulations (vesicle shape fluctuations) using a recently developed dynamic image processing method. Measurements of the bending modulus as a function of the undulation wave vector provide information on the limitation of the excitations by th...

  2. Indentation metrology of clamped, ultra-thin elastic sheets

    OpenAIRE

    Vella, Dominic; Davidovitch, Benny

    2017-01-01

    We study the indentation of ultrathin elastic sheets clamped to the edge of a circular hole. This classical setup has received considerable attention lately, being used by various experimental groups as a probe to measure the surface properties and stretching modulus of thin solid films. Despite the apparent simplicity of this method, the geometric nonlinearity inherent in the mechanical response of thin solid objects renders the analysis of the resulting data a nontrivial task. Importantly, ...

  3. J-integral fracture toughness, Tearing modulus and tensile properties of Vitamin E stabilized radiation crosslinked UHMWPE.

    Science.gov (United States)

    Bellare, Anuj; Dorfman, Robert; Samuel, Ashwanth; Thornhill, Thomas S

    2016-08-01

    Radiation crosslinking of ultra-high molecular weight polyethylene (UHMWPE) increases its wear resistance in total joint replacement prostheses. Unfortunately, it is accompanied by a dose-dependent decrease in several mechanical properties. In this study, the tensile properties and fracture behavior of radiation crosslinked, Vitamin E stabilized UHMWPE was studied as a function of radiation dose. The Rice and Sorensen model, applicable to elastic-plastic materials, was utilized to obtain the initial crack driving force, J1c, steady state J-integral fracture toughness, Jss and the Tearing modulus. Tensile tests showed the dependence of tensile properties on radiation dose. Jss of non-crosslinked UHMWPE was higher than for crosslinked UHMWPE׳s but there was no dose dependent change in Jss whereas there was almost no change in J1c over the entire dose range. Finally, a monotonic decrease in Tearing modulus was observed with radiation dose.

  4. Young modulus, mechanical and electrical properties of isolated individual and bundled single-walled boron nitride nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Arenal, Raul; Loiseau, Annick [Laboratoire d' Etude des Microstructures (LEM), ONERA-CNRS, F-92322 Chatillon (France); Wang Mingsheng; Xu Zhi; Golberg, Dmitri, E-mail: raul.arenal@onera.fr [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 3050044 (Japan)

    2011-07-01

    The Young modulus of individual single-walled boron nitride nanotubes (SW-BNNTs) was determined using a high-resolution transmission-electron microscope (HRTEM)-atomic force microscope (AFM) set-up. The Young modulus and maximum stress for these NTs were deduced from the analysis of the stress-strain curves, and discussed as a function of the considered value for the shell thickness of an SW-BNNT. The elastic properties of bundles of SW-BNNTs were also investigated. All these experiments revealed that SW-BNNTs are very flexible. Furthermore, the electrical behavior of these SW-BNNTs was also analyzed employing a scanning tunneling microscope (STM) holder integrated with the same HRTEM. I/V curves were measured on individual tubes as well as on bundles of SW-BNNTs.

  5. Elastic properties of terbium

    DEFF Research Database (Denmark)

    Spichkin, Y.I.; Bohr, Jakob; Tishin, A.M.

    1996-01-01

    The temperature dependence of the Young modulus along the crystallographic axes b and c (E(b) and E(c)), and the internal friction of a terbium single crystal have been measured. At 4.2 K, E(b) and E(c) are equal to 38 and 84.5 GPa, respectively. The lattice part of the Young modulus and the Debye...

  6. Finite element modelling of moisture related and visco-elastic deformations in inhomogeneous timber beams

    DEFF Research Database (Denmark)

    Ormarsson, Sigurdur; Dahlblom, Ola

    2013-01-01

    Wood is a hygro-mechanical, non-isotropic and inhomogeneous material concerning both modulus of elasticity (MOE) and shrinkage properties. In stress calculations associated with ordinary timber design, these matters are often not dealt with properly. The main reason for this is that stress...... distributions in inhomogeneous glued laminated members (glulam) and in composite beams exposed to combined mechanical action and variable climate conditions are extremely difficult to predict by hand. Several experimental studies of Norway spruce have shown that the longitudinal modulus of elasticity...... composites behave during both mechanical and environmental load action. The beam element is exposed to both axial and lateral deformation. The material model employed concerns the elastic, shrinkage, mechano-sorption and visco-elastic behaviour of the wood material. It is used here to simulate the behaviour...

  7. Non-toxic invert analog glass compositions of high modulus

    Science.gov (United States)

    Bacon, J. F. (Inventor)

    1974-01-01

    Glass compositions having a Young's modulus of at least 15 million psi are described. They and a specific modulus of at least 110 million inches consist essentially of, in mols, 15 to 40% SiO2, 6 to 15% Li2O, 24 to 45% of at least two bivalent oxides selected from the group consisting of Ca, NzO, MgO and CuO; 13 to 39% of at least two trivalent oxides selected from the group consisting of Al2O3, Fe2O3, B2O3, La2O3, and Y2O3 and up to 15% of one or more tetravelent oxides selected from the group consisting of ZrO2, TiO2 and CeO2. The high modulus, low density glass compositions contain no toxic elements. The composition, glass density, Young's modulus, and specific modulus for 28 representative glasses are presented. The fiber modulus of five glasses are given.

  8. Background data for modulus mapping high-performance polyethylene fiber morphologies.

    Science.gov (United States)

    Strawhecker, Kenneth E; Sandoz-Rosado, Emil J; Stockdale, Taylor A; Laird, Eric D

    2017-02-01

    The data included here provides a basis for understanding "Interior morphology of high-performance polyethylene fibers revealed by modulus mapping" (K.E. Strawhecker, E.J. Sandoz-Rosado, T.A. Stockdale, E.D. Laird, 2016) [1], in specific: the multi-frequency (AMFM) atomic force microscopy technique and its application to ultra-high-molecular-weight Polyethylene (UHMWPE) fibers. Furthermore, the data suggests why the Hertzian contact mechanics model can be used within the framework of AMFM theory, simple harmonic oscillator theory, and contact mechanics. The framework is first laid out followed by data showing cantilever dynamics, force-distance spectra in AC mode, and force-distance in contact mode using Polystyrene reference and UHMWPE. Finally topography and frequency shift (stiffness) maps are presented to show the cases where elastic versus plastic deformation may have occurred.

  9. Background data for modulus mapping high-performance polyethylene fiber morphologies

    Directory of Open Access Journals (Sweden)

    Kenneth E. Strawhecker

    2017-02-01

    Full Text Available The data included here provides a basis for understanding “Interior morphology of high-performance polyethylene fibers revealed by modulus mapping” (K.E. Strawhecker, E.J. Sandoz-Rosado, T.A. Stockdale, E.D. Laird, 2016 [1], in specific: the multi-frequency (AMFM atomic force microscopy technique and its application to ultra-high-molecular-weight Polyethylene (UHMWPE fibers. Furthermore, the data suggests why the Hertzian contact mechanics model can be used within the framework of AMFM theory, simple harmonic oscillator theory, and contact mechanics. The framework is first laid out followed by data showing cantilever dynamics, force-distance spectra in AC mode, and force-distance in contact mode using Polystyrene reference and UHMWPE. Finally topography and frequency shift (stiffness maps are presented to show the cases where elastic versus plastic deformation may have occurred.

  10. Rubber elasticity for percolation network consisting of Gaussian chains

    Energy Technology Data Exchange (ETDEWEB)

    Nishi, Kengo, E-mail: kengo.nishi@phys.uni-goettingen.de, E-mail: sakai@tetrapod.t.u-tokyo.ac.jp, E-mail: sibayama@issp.u-tokyo.ac.jp; Noguchi, Hiroshi; Shibayama, Mitsuhiro, E-mail: kengo.nishi@phys.uni-goettingen.de, E-mail: sakai@tetrapod.t.u-tokyo.ac.jp, E-mail: sibayama@issp.u-tokyo.ac.jp [Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Sakai, Takamasa, E-mail: kengo.nishi@phys.uni-goettingen.de, E-mail: sakai@tetrapod.t.u-tokyo.ac.jp, E-mail: sibayama@issp.u-tokyo.ac.jp [Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-11-14

    A theory describing the elastic modulus for percolation networks of Gaussian chains on general lattices such as square and cubic lattices is proposed and its validity is examined with simulation and mechanical experiments on well-defined polymer networks. The theory was developed by generalizing the effective medium approximation (EMA) for Hookian spring network to Gaussian chain networks. From EMA theory, we found that the ratio of the elastic modulus at p, G to that at p = 1, G{sub 0}, must be equal to G/G{sub 0} = (p − 2/f)/(1 − 2/f) if the position of sites can be determined so as to meet the force balance, where p is the degree of cross-linking reaction. However, the EMA prediction cannot be applicable near its percolation threshold because EMA is a mean field theory. Thus, we combine real-space renormalization and EMA and propose a theory called real-space renormalized EMA, i.e., REMA. The elastic modulus predicted by REMA is in excellent agreement with the results of simulations and experiments of near-ideal diamond lattice gels.

  11. Rubber elasticity for percolation network consisting of Gaussian chains.

    Science.gov (United States)

    Nishi, Kengo; Noguchi, Hiroshi; Sakai, Takamasa; Shibayama, Mitsuhiro

    2015-11-14

    A theory describing the elastic modulus for percolation networks of Gaussian chains on general lattices such as square and cubic lattices is proposed and its validity is examined with simulation and mechanical experiments on well-defined polymer networks. The theory was developed by generalizing the effective medium approximation (EMA) for Hookian spring network to Gaussian chain networks. From EMA theory, we found that the ratio of the elastic modulus at p, G to that at p = 1, G0, must be equal to G/G0 = (p - 2/f)/(1 - 2/f) if the position of sites can be determined so as to meet the force balance, where p is the degree of cross-linking reaction. However, the EMA prediction cannot be applicable near its percolation threshold because EMA is a mean field theory. Thus, we combine real-space renormalization and EMA and propose a theory called real-space renormalized EMA, i.e., REMA. The elastic modulus predicted by REMA is in excellent agreement with the results of simulations and experiments of near-ideal diamond lattice gels.

  12. Rubber Elasticity for percolation network consisting of Gaussian Chains

    Science.gov (United States)

    Nishi, Kengo; Shibayama, Mitsuhiro; Sakai, Takamasa

    A theory describing the elastic modulus for percolation networks of Gaussian chains on general lattices such as square and cubic lattices is proposed and its validity is examined with simulation and mechanical experiments on well-defined polymer networks. The theory was developed by generalizing the effective medium approximation for Hookian spring network (EMA) to Gaussian chain networks. From EMA theory, we found that the ratio of the elastic modulus at p, G to that at p = 1 ,G0, must be equal to G /G0 = (p - 2 / f) / (1 - 2 / f) if the position of sites can be determined so as to meet the force balance, where p is the degree of cross-linking reaction. However, the EMA prediction cannot be applicable near its percolation threshold because EMA is a mean field theory. Thus, we combine real-space renormalization and EMA, and propose a theory called real-space renormalized EMA, i.e., REMA. The elastic modulus predicted by REMA is in excellent agreement with the results of simulations and experiments of near-ideal diamond lattice gels.

  13. Nonlinear elastic behavior of phantom materials for elastography

    Energy Technology Data Exchange (ETDEWEB)

    Pavan, Theo Z; Madsen, Ernest L; Frank, Gary R; Hall, Timothy J [Medical Physics Department, University of Wisconsin, Room 1005, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Madison, WI 53705 (United States); Adilton O Carneiro, Antonio, E-mail: tjhall@wisc.ed [Departamento de Fisica e Matematica, FFCLRP, Universidade de Sao Paulo, Av. Bandeirantes, 3900, Monte Alegre, Ribeirao Preto, Sao Paulo (Brazil)

    2010-05-07

    The development of phantom materials for elasticity imaging is reported in this paper. These materials were specifically designed to provide nonlinear stress/strain relationship that can be controlled independently of the small strain shear modulus of the material. The materials are mixtures of agar and gelatin gels. Oil droplet dispersions in these materials provide further control of the small strain shear modulus and the nonlinear parameter of the material. Since these materials are mostly water, they are assumed to be incompressible under typical experimental conditions in elasticity imaging. The Veronda-Westman model for strain energy density provided a good fit to all materials used in this study. Materials with a constant gelatin concentration (3.0% dry weight) but varying agar concentration (0.6-2.8% dry weight) demonstrated the same power law relationship between elastic modulus and agar concentration found for pure agar (1.89 {+-} 0.02), consistent with percolation theory, and provided a consistent nonlinearity parameter of 4.5 {+-} 0.3. The insights provided by this study will form the basis for stable elastography phantoms with stiffness and nonlinear stress/strain relationships in the background that differ from those in the target.

  14. DYNAMICYOUNG’S MODULUS MEASUREMENT OF TREATED AND POST-TREATED TROPICAL WOOD POLYMER COMPOSITES (WPC

    Directory of Open Access Journals (Sweden)

    Sinin Hamdan

    2010-02-01

    Full Text Available By means of dynamic mechanical thermal analysis (DMTA, selected tropical wood species, namely Eugenia spp., Artocarpus rigidus, Artocarpus elesticus, Koompassia malaccensis, and Xylopia spp. have been characterized. The woods were treated with sodium meta-periodate to convert them into wood polymer composites (WPC. After two weeks the WPC were chemically treated with phenylhydrazine to convert them into secondary wood polymer composites, also called post-treated WPC (PTWPC. The chemical treatment and post-treatment are successful in improving the mechanical properties of the final product. The storage modulus (E’ was measured using dynamic mechanical thermal analysis (DMTA, and the dynamic Young’s modulus (Ed was calculated using free-free vibrational testing. The results reveal that the elastic properties i.e. stiffness (Ed and storage modulus (E’ of the composite were dependent on the type of wood species. The E’ of WPC and PTWPC were much higher than raw wood, whereas the glass transition temperatures (Tg of WPC and PTWPC were much lower than those of raw wood. Free-free vibration testing provided rapid information about the quality of the composite material, such as the stiffness (Ed of the PTWPC compared to the respective WPC and raw woods. The WPC and PTWPC were characterized using Fourier transform infrared (FTIR spectroscopy and scanning electron microscopy (SEM. FTIR analysis indicated the absorption band of raw wood at 1635 cm-1 due to carbonyl stretching, whereas WPC and PTWPC showed increased absorption bands near 1718 cm-1 and 1604 cm-1, respectively.

  15. Analysis of Nonlinear Poro-Elastic and Poro-Visco-Elastic Models

    Science.gov (United States)

    Bociu, Lorena; Guidoboni, Giovanna; Sacco, Riccardo; Webster, Justin T.

    2016-12-01

    We consider the initial and boundary value problem for a system of partial differential equations describing the motion of a fluid-solid mixture under the assumption of full saturation. The ability of the fluid phase to flow within the solid skeleton is described by the permeability tensor, which is assumed here to be a multiple of the identity and to depend nonlinearly on the volumetric solid strain. In particular, we study the problem of the existence of weak solutions in bounded domains, accounting for non-zero volumetric and boundary forcing terms. We investigate the influence of viscoelasticity on the solution functional setting and on the regularity requirements for the forcing terms. The theoretical analysis shows that different time regularity requirements are needed for the volumetric source of linear momentum and the boundary source of traction depending on whether or not viscoelasticity is present. The theoretical results are further investigated via numerical simulations based on a novel dual mixed hybridized finite element discretization. When the data are sufficiently regular, the simulations show that the solutions satisfy the energy estimates predicted by the theoretical analysis. Interestingly, the simulations also show that, in the purely elastic case, the Darcy velocity and the related fluid energy might become unbounded if indeed the data do not enjoy the time regularity required by the theory.

  16. Propagation of ultrasonic Love waves in nonhomogeneous elastic functionally graded materials.

    Science.gov (United States)

    Kiełczyński, P; Szalewski, M; Balcerzak, A; Wieja, K

    2016-02-01

    This paper presents a theoretical study of the propagation behavior of ultrasonic Love waves in nonhomogeneous functionally graded elastic materials, which is a vital problem in the mechanics of solids. The elastic properties (shear modulus) of a semi-infinite elastic half-space vary monotonically with the depth (distance from the surface of the material). The Direct Sturm-Liouville Problem that describes the propagation of Love waves in nonhomogeneous elastic functionally graded materials is formulated and solved by using two methods: i.e., (1) Finite Difference Method, and (2) Haskell-Thompson Transfer Matrix Method. The dispersion curves of phase and group velocity of surface Love waves in inhomogeneous elastic graded materials are evaluated. The integral formula for the group velocity of Love waves in nonhomogeneous elastic graded materials has been established. The effect of elastic non-homogeneities on the dispersion curves of Love waves is discussed. Two Love wave waveguide structures are analyzed: (1) a nonhomogeneous elastic surface layer deposited on a homogeneous elastic substrate, and (2) a semi-infinite nonhomogeneous elastic half-space. Obtained in this work, the phase and group velocity dispersion curves of Love waves propagating in the considered nonhomogeneous elastic waveguides have not previously been reported in the scientific literature. The results of this paper may give a deeper insight into the nature of Love waves propagation in elastic nonhomogeneous functionally graded materials, and can provide theoretical guidance for the design and optimization of Love wave based devices.

  17. Analysis of the multistage cyclic loading test on resilient modulus value64

    Directory of Open Access Journals (Sweden)

    Sas Wojciech

    2016-03-01

    Full Text Available Analysis of the multistage cyclic loading test on resilient modulus value. Upon cyclic excitation of soil mass, two types of strain can be recognized, namely elastic and plastic one. Proper analysis of these two types of deformations can help engineers in designing more reliable structures. In this study, a multistage uniaxial cyclic loading in unconfined conditions was performed. Tests were performed in order to characterize strain response to repeated excitation. Soil sample under cyclic loading was recognized as exhibiting the symptoms of a plastic strain growth during the cyclic loading process with exponential manner, when compared to number of cycles. Soil in this study was reconstituted and compacted by using the Proctor method to simulate conditions similar to those affecting the road subbase. The soil was recognized as sandy clay. Results were analysed and a proposition of empirical formula for plastic strain calculation with the use of characteristic stress values was presented. The resilient modulus values were also calculated. The Mr value was within range from 45 to 105 MPa. The conclusions concerning the cyclically loaded soil in uniaxial conditions were presented.

  18. Strength and fracture toughness of heterogeneous blocks with joint lognormal modulus and failure strain

    Science.gov (United States)

    Dimas, Leon S.; Veneziano, Daniele; Buehler, Markus J.

    2016-07-01

    We obtain analytical approximations to the probability distribution of the fracture strengths of notched one-dimensional rods and two-dimensional plates in which the stiffness (Young's modulus) and strength (failure strain) of the material vary as jointly lognormal random fields. The fracture strength of the specimen is measured by the elongation, load, and toughness at two critical stages: when fracture initiates at the notch tip and, in the 2D case, when fracture propagates through the entire specimen. This is an extension of a previous study on the elastic and fracture properties of systems with random Young's modulus and deterministic material strength (Dimas et al., 2015a). For 1D rods our approach is analytical and builds upon the ANOVA decomposition technique of (Dimas et al., 2015b). In 2D we use a semi-analytical model to derive the fracture initiation strengths and regressions fitted to simulation data for the effect of crack arrest during fracture propagation. Results are validated through Monte Carlo simulation. Randomness of the material strength affects in various ways the mean and median values of the initial strengths, their log-variances, and log-correlations. Under low spatial correlation, material strength variability can significantly increase the effect of crack arrest, causing ultimate failure to be a more predictable and less brittle failure mode than fracture initiation. These insights could be used to guide design of more fracture resistant composites, and add to the design features that enhance material performance.

  19. The pore characteristics of geopolymer foam concrete and their impact on the compressive strength and modulus

    Directory of Open Access Journals (Sweden)

    Zuhua Zhang

    2016-08-01

    Full Text Available The pore characteristics of GFCs manufactured in the laboratory with 0-16% foam additions were examined using image analysis (IA and vacuum water saturation techniques. The pore size distribution, pore shape and porosity were obtained. The IA method provides a suitable approach to obtain the information of large pores, which are more important in affecting the compressive strength of GFC. By examining the applicability of the existing models of predicting compressive strength of foam concrete, a modified Ryshkevitch’s model is proposed for GFC, in which only the porosity that is contributed by the pores over a critical diameter (>100 μm is considered. This critical void model is shown to have very satisfying prediction capability in the studied range of porosity. A compression-modulus model for Portland cement concrete is recommended for predicting the compression modulus elasticity of GFC. This study confirms that GFC have similar pore structures and mechanical behavior as those Portland cement foam concrete and can be used alternatively in the industry for the construction and insulation purposes.

  20. The pore characteristics of geopolymer foam concrete and their impact on the compressive strength and modulus

    Science.gov (United States)

    Zhang, Zuhua; Wang, Hao

    2016-08-01

    The pore characteristics of GFCs manufactured in the laboratory with 0-16% foam additions were examined using image analysis (IA) and vacuum water saturation techniques. The pore size distribution, pore shape and porosity were obtained. The IA method provides a suitable approach to obtain the information of large pores, which are more important in affecting the compressive strength of GFC. By examining the applicability of the existing models of predicting compressive strength of foam concrete, a modified Ryshkevitch’s model is proposed for GFC, in which only the porosity that is contributed by the pores over a critical diameter (>100 μm) is considered. This “critical void model” is shown to have very satisfying prediction capability in the studied range of porosity. A compression-modulus model for Portland cement concrete is recommended for predicting the compression modulus elasticity of GFC. This study confirms that GFC have similar pore structures and mechanical behavior as those Portland cement foam concrete and can be used alternatively in the industry for the construction and insulation purposes.