WorldWideScience

Sample records for volumetric brain mri

  1. Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy

    NARCIS (Netherlands)

    De Vis, J B; Zwanenburg, J J|info:eu-repo/dai/nl/290473683; van der Kleij, L A; Spijkerman, J M; Biessels, G J|info:eu-repo/dai/nl/165576367; Hendrikse, J|info:eu-repo/dai/nl/266590268; Petersen, E T

    2016-01-01

    OBJECTIVES: To assess whether volumetric cerebrospinal fluid (CSF) MRI can be used as a surrogate for brain atrophy assessment and to evaluate how the T2 of the CSF relates to brain atrophy. METHODS: Twenty-eight subjects [mean age 64 (sd 2) years] were included; T1-weighted and CSF MRI were perform

  2. Volumetric MRI study of the intrauterine growth restriction fetal brain

    Energy Technology Data Exchange (ETDEWEB)

    Polat, A.; Barlow, S.; Ber, R.; Achiron, R.; Katorza, E. [Tel Aviv University, Sackler School of Medicine, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer (Israel)

    2017-05-15

    Intrauterine growth restriction (IUGR) is a pathologic fetal condition known to affect the fetal brain regionally and associated with future neurodevelopmental abnormalities. This study employed MRI to assess in utero regional brain volume changes in IUGR fetuses compared to controls. Retrospectively, using MRI images of fetuses at 30-34 weeks gestational age, a total of 8 brain regions - supratentorial brain and cavity, cerebral hemispheres, temporal lobes and cerebellum - were measured for volume in 13 fetuses with IUGR due to placental insufficiency and in 21 controls. Volumes and their ratios were assessed for difference using regression models. Reliability was assessed by intraclass correlation coefficients (ICC) between two observers. In both groups, all structures increase in absolute volume during that gestation period, and the rate of cerebellar growth is higher compared to that of supratentorial structures. All structures' absolute volumes were significantly smaller for the IUGR group. Cerebellar to supratentorial ratios were found to be significantly smaller (P < 0.05) for IUGR compared to controls. No other significant ratio differences were found. ICC showed excellent agreement. The cerebellar to supratentorial volume ratio is affected in IUGR fetuses. Additional research is needed to assess this as a radiologic marker in relation to long-term outcome. (orig.)

  3. Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy.

    Science.gov (United States)

    De Vis, J B; Zwanenburg, J J; van der Kleij, L A; Spijkerman, J M; Biessels, G J; Hendrikse, J; Petersen, E T

    2016-05-01

    To assess whether volumetric cerebrospinal fluid (CSF) MRI can be used as a surrogate for brain atrophy assessment and to evaluate how the T2 of the CSF relates to brain atrophy. Twenty-eight subjects [mean age 64 (sd 2) years] were included; T1-weighted and CSF MRI were performed. The first echo data of the CSF MRI sequence was used to obtain intracranial volume, CSF partial volume was measured voxel-wise to obtain CSF volume (VCSF) and the T2 of CSF (T2,CSF) was calculated. The correlation between VCSF/T2,CSF and brain atrophy scores [global cortical atrophy (GCA) and medial temporal lobe atrophy (MTA)] was evaluated. Relative total, peripheral subarachnoidal, and ventricular VCSF increased significantly with increased scores on the GCA and MTA (R = 0.83, 0.78 and 0.78 and R = 0.72, 0.62 and 0.86). Total, peripheral subarachnoidal, and ventricular T2 of the CSF increased significantly with higher scores on the GCA and MTA (R = 0.72, 0.70 and 0.49 and R = 0.60, 0.57 and 0.41). A fast, fully automated CSF MRI volumetric sequence is an alternative for qualitative atrophy scales. The T2 of the CSF is related to brain atrophy and could thus be a marker of neurodegenerative disease. • A 1:11 min CSF MRI volumetric sequence can evaluate brain atrophy. • CSF MRI provides accurate atrophy assessment without partial volume effects. • CSF MRI data can be processed quickly without user interaction. • The measured T 2 of the CSF is related to brain atrophy.

  4. Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Vis, J.B. de; Zwanenburg, J.J.; Kleij, L.A. van der; Spijkerman, J.M.; Hendrikse, J. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Biessels, G.J. [University Medical Center Utrecht, Department of Neurology, Brain Center Rudolf Magnus, Utrecht (Netherlands); Petersen, E.T. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Hvidovre Hospital, Danish Research Centre for Magnetic Resonance, Hvidovre (Denmark)

    2016-05-15

    To assess whether volumetric cerebrospinal fluid (CSF) MRI can be used as a surrogate for brain atrophy assessment and to evaluate how the T{sub 2} of the CSF relates to brain atrophy. Twenty-eight subjects [mean age 64 (sd 2) years] were included; T{sub 1}-weighted and CSF MRI were performed. The first echo data of the CSF MRI sequence was used to obtain intracranial volume, CSF partial volume was measured voxel-wise to obtain CSF volume (V{sub CSF}) and the T{sub 2} of CSF (T{sub 2,CSF}) was calculated. The correlation between V{sub CSF} / T{sub 2,CSF} and brain atrophy scores [global cortical atrophy (GCA) and medial temporal lobe atrophy (MTA)] was evaluated. Relative total, peripheral subarachnoidal, and ventricular V{sub CSF} increased significantly with increased scores on the GCA and MTA (R = 0.83, 0.78 and 0.78 and R = 0.72, 0.62 and 0.86). Total, peripheral subarachnoidal, and ventricular T{sub 2} of the CSF increased significantly with higher scores on the GCA and MTA (R = 0.72, 0.70 and 0.49 and R = 0.60, 0.57 and 0.41). A fast, fully automated CSF MRI volumetric sequence is an alternative for qualitative atrophy scales. The T{sub 2} of the CSF is related to brain atrophy and could thus be a marker of neurodegenerative disease. (orig.)

  5. Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy

    DEFF Research Database (Denmark)

    De Vis, J B; Zwanenburg, J J; van der Kleij, L A;

    2016-01-01

    ) and medial temporal lobe atrophy (MTA)] was evaluated. RESULTS: Relative total, peripheral subarachnoidal, and ventricular VCSF increased significantly with increased scores on the GCA and MTA (R = 0.83, 0.78 and 0.78 and R = 0.72, 0.62 and 0.86). Total, peripheral subarachnoidal, and ventricular T2...... of the CSF increased significantly with higher scores on the GCA and MTA (R = 0.72, 0.70 and 0.49 and R = 0.60, 0.57 and 0.41). CONCLUSION: A fast, fully automated CSF MRI volumetric sequence is an alternative for qualitative atrophy scales. The T2 of the CSF is related to brain atrophy and could thus...

  6. Multi-atlas multi-shape segmentation of fetal brain MRI for volumetric and morphometric analysis of ventriculomegaly.

    Science.gov (United States)

    Gholipour, Ali; Akhondi-Asl, Alireza; Estroff, Judy A; Warfield, Simon K

    2012-04-15

    The recent development of motion robust super-resolution fetal brain MRI holds out the potential for dramatic new advances in volumetric and morphometric analysis. Volumetric analysis based on volumetric and morphometric biomarkers of the developing fetal brain must include segmentation. Automatic segmentation of fetal brain MRI is challenging, however, due to the highly variable size and shape of the developing brain; possible structural abnormalities; and the relatively poor resolution of fetal MRI scans. To overcome these limitations, we present a novel, constrained, multi-atlas, multi-shape automatic segmentation method that specifically addresses the challenge of segmenting multiple structures with similar intensity values in subjects with strong anatomic variability. Accordingly, we have applied this method to shape segmentation of normal, dilated, or fused lateral ventricles for quantitative analysis of ventriculomegaly (VM), which is a pivotal finding in the earliest stages of fetal brain development, and warrants further investigation. Utilizing these innovative techniques, we introduce novel volumetric and morphometric biomarkers of VM comparing these values to those that are generated by standard methods of VM analysis, i.e., by measuring the ventricular atrial diameter (AD) on manually selected sections of 2D ultrasound or 2D MRI. To this end, we studied 25 normal and abnormal fetuses in the gestation age (GA) range of 19 to 39 weeks (mean=28.26, stdev=6.56). This heterogeneous dataset was essentially used to 1) validate our segmentation method for normal and abnormal ventricles; and 2) show that the proposed biomarkers may provide improved detection of VM as compared to the AD measurement.

  7. The association of brain structure with gait velocity in older adults: a quantitative volumetric analysis of brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Ezzati, Ali [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Montefiore Medical Center, Department of Neurology, Bronx, NY (United States); Katz, Mindy J. [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Lipton, Michael L. [Albert Einstein College of Medicine of Yeshiva University, The Gruss Magnetic Resonance Research Center and Departments of Radiology, Psychiatry and Behavioral Sciences and the Dominick P. Purpura Department of Neuroscience, Bronx, NY (United States); Montefiore Medical Center, The Department of Radiology, Bronx, NY (United States); Lipton, Richard B. [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Albert Einstein College of Medicine of Yeshiva University, Department of Epidemiology and Population Health, Bronx, NY (United States); Verghese, Joe [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Albert Einstein College of Medicine, Division of Cognitive and Motor Aging, Bronx, NY (United States)

    2015-08-15

    While cortical processes play an important role in controlling locomotion, the underlying structural brain changes associated with slowing of gait in aging are not yet fully established. Our study aimed to examine the relationship between cortical gray matter volume (GM), white matter volume (WM), ventricular volume (VV), hippocampal and hippocampal subfield volumes, and gait velocity in older adults free of dementia. Gait and cognitive performance was tested in 112 community-residing adults, age 70 years and over, participating in the Einstein Aging Study. Gait velocity (cm/s) was obtained using an instrumented walkway. Volumetric MRI measures were estimated using a FreeSurfer software. We examined the cross-sectional relationship of GM, WM, VV, and hippocampal total and subfield volumes and gait velocity using linear regression models. In complementary models, the effect of memory performance on the relationship between gait velocity and regional volumes was evaluated. Slower gait velocity was associated with smaller cortical GM and total hippocampal volumes. There was no association between gait velocity and WM or VV. Among hippocampal subfields, only smaller presubiculum volume was significantly associated with decrease in gait velocity. Addition of the memory performance to the models attenuated the association between gait velocity and all volumetric measures. Our findings indicate that total GM and hippocampal volumes as well as specific hippocampal subfield volumes are inversely associated with locomotor function. These associations are probably affected by cognitive status of study population. (orig.)

  8. Brain tissue- and region-specific abnormalities on volumetric MRI scans in 21 patients with Bardet-Biedl syndrome (BBS

    Directory of Open Access Journals (Sweden)

    Johnston Jennifer

    2011-07-01

    Full Text Available Abstract Background Bardet-Biedl syndrome (BBS is a heterogeneous human disorder inherited in an autosomal recessive pattern, and characterized by the primary findings of obesity, polydactyly, hypogonadism, and learning and behavioural problems. BBS mouse models have a neuroanatomical phenotype consisting of third and lateral ventriculomegaly, thinning of the cerebral cortex, and reduction in the size of the corpus striatum and hippocampus. These abnormalities raise the question of whether humans with BBS have a characteristic morphologic brain phenotype. Further, although behavioral, developmental, neurological and motor defects have been noted in patients with BBS, to date, there are limited reports of brain findings in BBS. The present study represents the largest systematic evaluation for the presence of structural brain malformations and/or progressive changes, which may contribute to these functional problems. Methods A case-control study of 21 patients, most aged 13-35 years, except for 2 patients aged 4 and 8 years, who were diagnosed with BBS by clinical criteria and genetic analysis of known BBS genes, and were evaluated by qualitative and volumetric brain MRI scans. Healthy controls were matched 3:1 by age, sex and race. Statistical analysis was performed using SAS language with SAS STAT procedures. Results All 21 patients with BBS were found to have statistically significant region- and tissue-specific patterns of brain abnormalities. There was 1 normal intracranial volume; 2 reduced white matter in all regions of the brain, but most in the occipital region; 3 preserved gray matter volume, with increased cerebral cortex volume in only the occipital lobe; 4 reduced gray matter in the subcortical regions of the brain, including the caudate, putamen and thalamus, but not in the cerebellum; and 5 increased cerebrospinal fluid volume. Conclusions There are distinct and characteristic abnormalities in tissue- and region- specific volumes

  9. Structural brain abnormalities in patients with inflammatory illness acquired following exposure to water-damaged buildings: a volumetric MRI study using NeuroQuant®.

    Science.gov (United States)

    Shoemaker, Ritchie C; House, Dennis; Ryan, James C

    2014-01-01

    Executive cognitive and neurologic abnormalities are commonly seen in patients with a chronic inflammatory response syndrome (CIRS) acquired following exposure to the interior environment of water-damaged buildings (WDB), but a clear delineation of the physiologic or structural basis for these abnormalities has not been defined. Symptoms of affected patients routinely include headache, difficulty with recent memory, concentration, word finding, numbness, tingling, metallic taste and vertigo. Additionally, persistent proteomic abnormalities in inflammatory parameters that can alter permeability of the blood-brain barrier, such as C4a, TGFB1, MMP9 and VEGF, are notably present in cases of CIRS-WDB compared to controls, suggesting a consequent inflammatory injury to the central nervous system. Findings of gliotic areas in MRI scans in over 45% of CIRS-WDB cases compared to 5% of controls, as well as elevated lactate and depressed ratios of glutamate to glutamine, are regularly seen in MR spectroscopy of cases. This study used the volumetric software program NeuroQuant® (NQ) to determine specific brain structure volumes in consecutive patients (N=17) seen in a medical clinic specializing in inflammatory illness. Each of these patients presented for evaluation of an illness thought to be associated with exposure to WDB, and received an MRI that was evaluated by NQ. When compared to those of a medical control group (N=18), statistically significant differences in brain structure proportions were seen for patients in both hemispheres of two of the eleven brain regions analyzed; atrophy of the caudate nucleus and enlargement of the pallidum. In addition, the left amygdala and right forebrain were also enlarged. These volumetric abnormalities, in conjunction with concurrent abnormalities in inflammatory markers, suggest a model for structural brain injury in "mold illness" based on increased permeability of the blood-brain barrier due to chronic, systemic inflammation

  10. A longitudinal observational study of brain atrophy rate reflecting four decades of multiple sclerosis: a comparison of serial 1D, 2D, and volumetric measurements from MRI images

    Energy Technology Data Exchange (ETDEWEB)

    Martola, Juha; Zhang, Yi; Aspelin, Peter; Kristoffersen Wiberg, Maria [Karolinska Institutet, Division of Radiology, Department of Clinical Science, Intervention, and Technology, Stockholm (Sweden); Bergstroem, Jakob [Karolinska Institutet, The Medical Statistics Unit, Department of Learning, Informatics, Management and Ethics (LIME), Stockholm (Sweden); Fredrikson, Sten; Stawiarz, Leszek; Hillert, Jan [Karolinska Institutet, Division of Neurology, Department of Clinical Neuroscience, Stockholm (Sweden); Flodmark, Olof; Lilja, Anders [Karolinska University Hospital, Department of Neuroradiology, Department of Clinical Neuroscience, Stockholm (Sweden); Ekbom, Anders [Karolinska Institutet, Clinical Epidemiology Unit, Stockholm (Sweden)

    2010-02-15

    Multiple sclerosis (MS) has a variable progression with an early onset of atrophy. Individual longitudinal radiological evaluations (over decades) are difficult to perform due to the limited availability of magnetic resonance imaging (MRI) in the past, patients lost in follow-up, and the continuous updating of scanners. We studied a cohort with widespread disease duration at baseline. The observed individual atrophy rates over time of 10 years represented four decades of disease span. Thirty-seven MS patients (age range 24-65 years with disease duration 1-33 years) were consecutively selected and evaluated with MRI at baseline 1995 and in 1996. They were followed up for a decade (mean of 9.25 years, range 7.3-10 years) up to 2003-2005. Brain parenchymal volume and volumes of the supratentorial ventricles were analyzed with semi-automated volumetric measurements at three time points (1995, 1996, and 2003-2005). Volumetric differences were found over shorter periods of time (1-7 months); however, differences vanished by the end of follow-up. A uniform longitudinal decrease in brain volume and increase in ventricle volumes were found. Frontal horn width (1D) correlated strongest to 3D measures. No statistical differences of atrophy rates between MS courses were found. Supratentorial ventricular volumes were associated with disability and this association persisted during follow-up. Despite variable clinical courses, the degenerative effects of MS progression expressed in brain atrophy seem to uniformly progress over longer periods of time. These volumetric changes can be detected using 1D and 2D measurements performed on a routine PACS workstation. (orig.)

  11. Development of an MRI rating scale for multiple brain regions: comparison with volumetrics and with voxel-based morphometry

    Energy Technology Data Exchange (ETDEWEB)

    Davies, R.R.; Williams, Guy B. [University of Cambridge, Department of Clinical Neurosciences, Cambridge (United Kingdom); Scahill, Victoria L.; Graham, Kim S. [Cardiff University, MRC Cognition and Brain Sciences Unit, Cambridge and Wales Institute of Cognitive Neuroscience, School of Psychology, Cardiff (United Kingdom); Graham, Andrew [University of Cambridge, Department of Clinical Neurosciences, Cambridge (United Kingdom); Cardiff University, MRC Cognition and Brain Sciences Unit, Cambridge and Wales Institute of Cognitive Neuroscience, School of Psychology, Cardiff (United Kingdom); Hodges, John R. [University of Cambridge, Department of Clinical Neurosciences, Cambridge (United Kingdom); Cardiff University, MRC Cognition and Brain Sciences Unit, Cambridge and Wales Institute of Cognitive Neuroscience, School of Psychology, Cardiff (United Kingdom); Prince of Wales Medical Research Institute, Cognitive Neurology, Sydney, NSW (Australia)

    2009-08-15

    We aimed to devise a rating method for key frontal and temporal brain regions validated against quantitative volumetric methods and applicable to a range of dementia syndromes. Four standardised coronal MR images from 36 subjects encompassing controls and cases with Alzheimer's disease (AD) and frontotemporal dementia (FTD) were used. After initial pilot studies, 15 regions produced good intra- and inter-rater reliability. We then validated the ratings against manual volumetry and voxel-based morphometry (VBM) and compared ratings across the subject groups. Validation against both manual volumetry (for both frontal and temporal lobes), and against whole brain VBM, showed good correlation with visual ratings for the majority of the brain regions. Comparison of rating scores across disease groups showed involvement of the anterior fusiform gyrus, anterior hippocampus and temporal pole in semantic dementia, while anterior cingulate and orbitofrontal regions were involved in behavioural variant FTD. This simple visual rating can be used as an alternative to highly technical methods of quantification, and may be superior when dealing with single cases or small groups. (orig.)

  12. A fully-automatic caudate nucleus segmentation of brain MRI: application in volumetric analysis of pediatric attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Igual, Laura; Soliva, Joan Carles; Hernández-Vela, Antonio; Escalera, Sergio; Jiménez, Xavier; Vilarroya, Oscar; Radeva, Petia

    2011-12-05

    Accurate automatic segmentation of the caudate nucleus in magnetic resonance images (MRI) of the brain is of great interest in the analysis of developmental disorders. Segmentation methods based on a single atlas or on multiple atlases have been shown to suitably localize caudate structure. However, the atlas prior information may not represent the structure of interest correctly. It may therefore be useful to introduce a more flexible technique for accurate segmentations. We present CaudateCut: a new fully-automatic method of segmenting the caudate nucleus in MRI. CaudateCut combines an atlas-based segmentation strategy with the Graph Cut energy-minimization framework. We adapt the Graph Cut model to make it suitable for segmenting small, low-contrast structures, such as the caudate nucleus, by defining new energy function data and boundary potentials. In particular, we exploit information concerning the intensity and geometry, and we add supervised energies based on contextual brain structures. Furthermore, we reinforce boundary detection using a new multi-scale edgeness measure. We apply the novel CaudateCut method to the segmentation of the caudate nucleus to a new set of 39 pediatric attention-deficit/hyperactivity disorder (ADHD) patients and 40 control children, as well as to a public database of 18 subjects. We evaluate the quality of the segmentation using several volumetric and voxel by voxel measures. Our results show improved performance in terms of segmentation compared to state-of-the-art approaches, obtaining a mean overlap of 80.75%. Moreover, we present a quantitative volumetric analysis of caudate abnormalities in pediatric ADHD, the results of which show strong correlation with expert manual analysis. CaudateCut generates segmentation results that are comparable to gold-standard segmentations and which are reliable in the analysis of differentiating neuroanatomical abnormalities between healthy controls and pediatric ADHD.

  13. A Technique for Generating Volumetric Cine MRI (VC-MRI)

    Science.gov (United States)

    Harris, Wendy; Ren, Lei; Cai, Jing; Zhang, You; Chang, Zheng; Yin, Fang-Fang

    2016-01-01

    Purpose To develop a technique to generate on-board volumetric-cine MRI (VC-MRI) using patient prior images, motion modeling and on-board 2D-cine MRI. Methods One phase of a 4D-MRI acquired during patient simulation is used as patient prior images. 3 major respiratory deformation patterns of the patient are extracted from 4D-MRI based on principal-component-analysis. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI. The deformation field is represented as a linear combination of the 3 major deformation patterns. The coefficients of the deformation patterns are solved by the data fidelity constraint using the acquired on-board single 2D-cine MRI. The method was evaluated using both XCAT simulation of lung cancer patients and MRI data from four real liver cancer patients. The accuracy of the estimated VC-MRI was quantitatively evaluated using Volume-Percent-Difference(VPD), Center-of-Mass-Shift(COMS), and target tracking errors. Effects of acquisition orientation, region-of-interest(ROI) selection, patient breathing pattern change and noise on the estimation accuracy were also evaluated. Results Image subtraction of ground-truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground-truth with prior image. Agreement between profiles in the estimated and ground-truth VC-MRI was achieved with less than 6% error for both XCAT and patient data. Among all XCAT scenarios, the VPD between ground-truth and estimated lesion volumes was on average 8.43±1.52% and the COMS was on average 0.93±0.58mm across all time-steps for estimation based on the ROI region in the sagittal cine images. Matching to ROI in the sagittal view achieved better accuracy when there was substantial breathing pattern change. The technique was robust against noise levels up to SNR=20. For patient data, average tracking errors were less than 2 mm in all directions for all patients. Conclusions Preliminary studies demonstrated the

  14. Automated segmentation of ventricles from serial brain MRI for the quantification of volumetric changes associated with communicating hydrocephalus in patients with brain tumor

    Science.gov (United States)

    Pura, John A.; Hamilton, Allison M.; Vargish, Geoffrey A.; Butman, John A.; Linguraru, Marius George

    2011-03-01

    Accurate ventricle volume estimates could improve the understanding and diagnosis of postoperative communicating hydrocephalus. For this category of patients, associated changes in ventricle volume can be difficult to identify, particularly over short time intervals. We present an automated segmentation algorithm that evaluates ventricle size from serial brain MRI examination. The technique combines serial T1- weighted images to increase SNR and segments the means image to generate a ventricle template. After pre-processing, the segmentation is initiated by a fuzzy c-means clustering algorithm to find the seeds used in a combination of fast marching methods and geodesic active contours. Finally, the ventricle template is propagated onto the serial data via non-linear registration. Serial volume estimates were obtained in an automated robust and accurate manner from difficult data.

  15. MRI brain imaging.

    Science.gov (United States)

    Skinner, Sarah

    2013-11-01

    General practitioners (GPs) are expected to be allowed to request MRI scans for adults for selected clinically appropriate indications from November 2013 as part of the expansion of Medicare-funded MRI services announced by the Federal Government in 2011. This article aims to give a brief overview of MRI brain imaging relevant to GPs, which will facilitate explanation of scan findings and management planning with their patients. Basic imaging techniques, common findings and terminology are presented using some illustrative case examples.

  16. Brain MRI in Parkinson's disease

    NARCIS (Netherlands)

    Meijer, F.J.A.; Goraj, B.M.

    2014-01-01

    In this review article, conventional brain MRI and advanced MRI techniques in Parkinson`s disease (PD) are discussed, with emphasis on clinical relevance. Conventional brain MRI sequences generally demonstrate limited abnormalities specific for PD and in clinical practice brain MRI is mainly used to

  17. Widespread Volumetric Brain Changes following Tooth Loss in Female Mice

    Science.gov (United States)

    Avivi-Arber, Limor; Seltzer, Ze'ev; Friedel, Miriam; Lerch, Jason P.; Moayedi, Massieh; Davis, Karen D.; Sessle, Barry J.

    2017-01-01

    Tooth loss is associated with altered sensory, motor, cognitive and emotional functions. These changes vary highly in the population and are accompanied by structural and functional changes in brain regions mediating these functions. It is unclear to what extent this variability in behavior and function is caused by genetic and/or environmental determinants and which brain regions undergo structural plasticity that mediates these changes. Thus, the overall goal of our research program is to identify genetic variants that control structural and functional plasticity following tooth loss. As a step toward this goal, here our aim was to determine whether structural magnetic resonance imaging (sMRI) is sensitive to detect quantifiable volumetric differences in the brains of mice of different genetic background receiving tooth extraction or sham operation. We used 67 adult female mice of 7 strains, comprising the A/J (A) and C57BL/6J (B) strains and a randomly selected sample of 5 of the 23 AXB-BXA strains (AXB1, AXB4, AXB24, BXA14, BXA24) that were produced from the A and B parental mice by recombinations and inbreeding. This panel of 25 inbred strains of genetically diverse inbred strains of mice is used for mapping chromosomal intervals throughout the genome that harbor candidate genes controlling the phenotypic variance of any trait under study. Under general anesthesia, 39 mice received extraction of 3 right maxillary molar teeth and 28 mice received sham operation. On post-extraction day 21, post-mortem whole-brain high-resolution sMRI was used to quantify the volume of 160 brain regions. Compared to sham operation, tooth extraction was associated with a significantly reduced regional and voxel-wise volumes of cortical brain regions involved in processing somatosensory, motor, cognitive and emotional functions, and increased volumes in subcortical sensorimotor and temporal limbic forebrain regions including the amygdala. Additionally, comparison of the 10 BXA14

  18. Verbal Memory Decline following DBS for Parkinson’s Disease: Structural Volumetric MRI Relationships

    Science.gov (United States)

    Geevarghese, Ruben; Lumsden, Daniel E.; Costello, Angela; Hulse, Natasha; Ayis, Salma; Samuel, Michael; Ashkan, Keyoumars

    2016-01-01

    Background Parkinson’s disease is a chronic degenerative movement disorder. The mainstay of treatment is medical. In certain patients Deep Brain Stimulation (DBS) may be offered. However, DBS has been associated with post-operative neuropsychology changes, especially in verbal memory. Objectives Firstly, to determine if pre-surgical thalamic and hippocampal volumes were related to verbal memory changes following DBS. Secondly, to determine if clinical factors such as age, duration of symptoms or motor severity (UPDRS Part III score) were related to verbal memory changes. Methods A consecutive group of 40 patients undergoing bilateral Subthalamic Nucleus (STN)-DBS for PD were selected. Brain MRI data was acquired, pre-processed and structural volumetric data was extracted using FSL. Verbal memory test scores for pre- and post-STN-DBS surgery were recorded. Linear regression was used to investigate the relationship between score change and structural volumetric data. Results A significant relationship was demonstrated between change in List Learning test score and thalamic (left, p = 0.02) and hippocampal (left, p = 0.02 and right p = 0.03) volumes. Duration of symptoms was also associated with List Learning score change (p = 0.02 to 0.03). Conclusion Verbal memory score changes appear to have a relationship to pre-surgical MRI structural volumetric data. The findings of this study provide a basis for further research into the use of pre-surgical MRI to counsel PD patients regarding post-surgical verbal memory changes. PMID:27557088

  19. The prognostic role of prenatal MRI volumetric assessment in fetuses with isolated ventriculomegaly.

    Science.gov (United States)

    Gezer, Naciye Sinem; Güleryüz, Handan; Gezer, Cenk; Koçyiğit, Ali; Yeşilırmak, Didem; Ekin, Atalay; Bilgin, Muzaffer; Ertaş, İbrahim Egemen

    2015-01-01

    In this prospective study, we aimed to establish the value of volumetric assessment by prenatal brain MRI in determining the prognosis of fetuses with isolated VM. A total of 23 fetuses with isolated VM were included in the study. Supratentorial cerebral parenchyma volume (PV) and ventricular volume (VV) were measured, and supratentorial ventricular/parenchymal volume (VV/PV) ratios were calculated. Pregnancy and postnatal neurodevelopmental outcomes up to two years of age were obtained and correlated with the volumetric measurements. VV was found to be strongly and positively correlated with ventricular dimension. There was a statistically significant difference between the VV/ PV ratios of the good and poor prognosis groups into which the cases had been categorized. The fetuses with a poor prognosis had a significantly higher VV/PV ratio. Volumetric parenchymal and ventricular measurements obtained by fetal brain MRI may contribute to future clinical studies concerning the evaluation of fetuses with VM and provide an important indicator in cases where management dilemmas arise.

  20. MRI of the Fetal Brain.

    Science.gov (United States)

    Weisstanner, C; Kasprian, G; Gruber, G M; Brugger, P C; Prayer, D

    2015-10-01

    The purpose of this article is to provide an overview of the possibilities for fetal magnetic resonance imaging (MRI) in the evaluation of the fetal brain. For brain pathologies, fetal MRI is usually performed when an abnormality is detected by previous prenatal ultrasound, and is, therefore, an important adjunct to ultrasound. The most commonly suspected brain pathologies referred to fetal MRI for further evaluation are ventriculomegaly, missing corpus callosum, and abnormalities of the posterior fossa. We will briefly discuss the most common indications for fetal brain MRI, as well as recent advances.

  1. Brain and behaviour in children with 22q11.2 deletion syndrome: a volumetric and voxel-based morphometry MRI study.

    Science.gov (United States)

    Campbell, Linda E; Daly, Eileen; Toal, Fiona; Stevens, Angela; Azuma, Rayna; Catani, Marco; Ng, Virginia; van Amelsvoort, Therese; Chitnis, Xavier; Cutter, William; Murphy, Declan G M; Murphy, Kieran C

    2006-05-01

    In people with velo-cardio-facial syndrome [or 22q11.2 deletion syndrome (22qDS)], a single interstitial deletion of chromosome 22q11.2 causes a wide spectrum of cognitive deficits ranging from global learning difficulties to specific cognitive deficits. People with 22qDS are also at high risk of developing attention-deficit/hyperactivity disorder and autism spectrum disorders in childhood, and schizophrenia in adolescence or adult life. However, the neurobiology of 22qDS, and the relationship between abnormalities in brain anatomy and behaviour, is poorly understood. Thus, we studied the neuroanatomy of 22qDS children using fully automated voxel-based morphometry (VBM) and manually traced single region-of-interest (ROI) analysis. Also, we investigated whether those brain regions that differed significantly between groups were related to behavioural differences within children with 22qDS. We compared the brain morphometry of 39 children and adolescents with 22qDS (mean age: 11 years, SD +/-3, IQ = 67, SD +/-10) and 26 sibling controls (mean age: 11 years, SD +/-3, IQ = 102, SD +/-12). Using VBM, we found, after correction for IQ, that individuals with 22qDS compared with controls had a significant reduction in cerebellar grey matter, and white matter reductions in the frontal lobe, cerebellum and internal capsule. Using single ROI analysis, we found that people with 22qDS had a significant (P social behavioural difficulties and grey matter in frontostriatal regions. Thus, subjects with 22qDS have widespread changes in brain anatomy, particularly affecting white matter, basal ganglia and cerebellum. Also, within 22qDS, regionally specific differences in brain development may partially underpin behavioural differences. We suggest that there is preliminary evidence for specific vulnerability of the frontostriatal and cerebellar-cortical networks in 22qDS.

  2. An MRI-based semiautomated volumetric quantification of hip osteonecrosis

    Energy Technology Data Exchange (ETDEWEB)

    Malizos, K.N.; Siafakas, M.S.; Karachalios, T.S. [Dept. of Orthopaedics, Univ. of Thessalia, Larissa (Greece); Fotiadis, D.I. [Dept. of Computer Science, Univ. of Ioannina (Greece); Soucacos, P.N. [Dept. of Orthopaedic Surgery, Univ. of Ioannina (Greece)

    2001-12-01

    Objective: To objectively and precisely define the spatial distribution of osteonecrosis and to investigate the influence of various factors including etiology. Design: A volumetric method is presented to describe the size and spatial distribution of necrotic lesions of the femoral head, using MRI scans. The technique is based on the definition of an equivalent sphere model for the femoral head. Patients: The gender, age, number of hips involved, disease duration, pain intensity, limping disability and etiology were correlated with the distribution of the pathologic bone. Seventy-nine patients with 122 hips affected by osteonecrosis were evaluated. Results: The lesion size ranged from 7% to 73% of the sphere equivalent. The lateral octants presented considerable variability, ranging from wide lateral lesions extending beyond the lip of the acetabulum, to narrow medial lesions, leaving a lateral supporting pillar of intact bone. Patients with sickle cell disease and steroid administration presented the largest lesions. The extent of the posterior superior medial octant involvement correlated with the symptom intensity, a younger age and male gender. Conclusion: The methodology presented here has proven a reliable and straightforward imaging tool for precise assessment of necrotic lesions. It also enables us to target accurately the drilling and grafting procedures. (orig.)

  3. Femoral head osteonecrosis: Volumetric MRI assessment and outcome

    Energy Technology Data Exchange (ETDEWEB)

    Bassounas, Athanasios E. [Department of Medical Physics, School of Medicine, University of Ioannina, GR 451 10 Ioannina (Greece); Karantanas, Apostolos H. [Department of Radiology, School of Medicine, University of Crete, Heraklion, GR 711 10 (Greece); Fotiadis, Dimitrios I. [Unit of Medical Technology and Intelligent Information Systems, Department of Computer Science, University of Ioannina and Biomedical Research Institute-FORTH, GR 451 10 Ioannina (Greece); Malizos, Konstantinos N. [Orthopaedic Department, Medical School, University of Thessalia, GR 412 22 Larissa (Greece)]. E-mail: kmalizos@otenet.gr

    2007-07-15

    Effective treatment of femoral head osteonecrosis (FHON) requires early diagnosis and accurate assessment of the disease severity. The ability to predict in the early stages the risk of collapse is important for selecting a joint salvage procedure. The aim of the present study was to evaluate the outcome in patients treated with vascularized fibular grafts in relation to preoperative MR imaging volumetry. We studied 58 patients (87 hips) with FHON. A semi-automated octant-based lesion measurement method, previously described, was performed on the T1-w MR images. The mean time of postoperative follow-up was 7.8 years. Sixty-three hips were successful and 24 failed and converted to total hip arthroplasty within a period of 2-4 years after the initial operation. The rate of failures for hips of male patients was higher than in female patients. The mean lesion size was 28% of the sphere equivalent of the femoral head, 24 {+-} 12% for the successful hips and 37 {+-} 9% for the failed (p < 0.001). The most affected octants were antero-supero-medial (58 {+-} 26%) and postero-supero-medial (54 {+-} 31%). All but postero-infero-medial and postero-infero-lateral octants, showed statistically significant differences in the lesion size between patients with successful and failed hips. In conclusion, the volumetric analysis of preoperative MRI provides useful information with regard to a successful outcome in patients treated with vascularized fibular grafts.

  4. Volumetric study of the olfactory bulb in patients with chronic rhinonasal sinusitis using MRI

    Directory of Open Access Journals (Sweden)

    Reda A. Alarabawy

    2016-06-01

    Conclusions: MRI with volumetric analysis is a useful tool in assessment of the olfactory bulb volume in patients with olfactory loss and appears to be of help in assessment of the degree of recovery in patients after sinus surgery.

  5. Volumetric T1 and T2 magnetic resonance brain toolkit for relaxometry mapping simulation

    Directory of Open Access Journals (Sweden)

    Antonio Carlos da Silva Senra Filho

    Full Text Available Abstract Introduction Relaxometry images are an important magnetic resonance imaging (MRI technique in the clinical routine. Many diagnoses are based on the relaxometry maps to infer abnormal state in the tissue characteristic relaxation constant. In order to study the performance of these image processing approaches, a controlled simulated environment is necessary. However, a simulated relaxometry image tool is still lacking. This study proposes a computational anatomical brain phantom for MRI relaxometry images, which aims to offer an easy and flexible toolkit to test different image processing techniques, applied to MRI relaxometry maps in a controlled simulated environment. Methods A pipeline of image processing techniques such as brain extraction, image segmentation, normalization to a common space and signal relaxation decay simulation, were applied to a brain structural ICBM brain template, on both T1 and T2 weighted images, in order to simulate a volumetric brain relaxometry phantom. The FMRIB Software Library (FSL toolkits were used here as the base image processing needed to all the relaxometry reconstruction. Results All the image processing procedures are performed using automatic algorithms. In addition, different artefact levels can be set from different sources such as Rician noise and radio-frequency inhomogeneity noises. Conclusion The main goal of this project is to help researchers in their future image processing analysis involving MRI relaxometry images, offering reliable and robust brain relaxometry simulation modelling. Furthermore, the entire pipeline is open-source, which provides a wide collaboration between researchers who may want to improve the software and its functionality.

  6. Visualization and volumetric structures from MR images of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Parvin, B.; Johnston, W.; Robertson, D.

    1994-03-01

    Pinta is a system for segmentation and visualization of anatomical structures obtained from serial sections reconstructed from magnetic resonance imaging. The system approaches the segmentation problem by assigning each volumetric region to an anatomical structure. This is accomplished by satisfying constraints at the pixel level, slice level, and volumetric level. Each slice is represented by an attributed graph, where nodes correspond to regions and links correspond to the relations between regions. These regions are obtained by grouping pixels based on similarity and proximity. The slice level attributed graphs are then coerced to form a volumetric attributed graph, where volumetric consistency can be verified. The main novelty of our approach is in the use of the volumetric graph to ensure consistency from symbolic representations obtained from individual slices. In this fashion, the system allows errors to be made at the slice level, yet removes them when the volumetric consistency cannot be verified. Once the segmentation is complete, the 3D surfaces of the brain can be constructed and visualized.

  7. Brain MRI of diabetes Mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Yutaka; Tanaka, Hisashi; Ohtani, Masatoshi; Yamamoto, Hiroshi; Yamamoto, Tadashi; Tsukaguchi, Isao (Osaka Rosai Hospital, Sakai (Japan))

    1993-11-01

    One hundred and fifty-nine patients with diabetes mellitus (DM) and 2,566 patients without DM were studied on brain MRI. The results taught us that the incidence of cerebral atrophy was significantly higher in DM patients than in controls. Unexpectedly, the incidence of cerebral infarction showed no significant difference between the two groups. (author).

  8. Objectively Measured Physical Activity Is Associated with Brain Volumetric Measurements in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Rachel E. Klaren

    2015-01-01

    Full Text Available Background. Little is known about physical activity and its association with volumes of whole brain gray matter and white matter and deep gray matter structures in persons with multiple sclerosis (MS. Purpose. This study examined the association between levels of physical activity and brain volumetric measures from magnetic resonance imaging (MRI in MS. Method. 39 persons with MS wore an accelerometer for a 7-day period and underwent a brain MRI. Normalized GM volume (NGMV, normalized WM volume (NWMV, and deep GM structures were calculated from 3D T1-weighted structural brain images. We conducted partial correlations (pr controlling for demographic and clinical variables. Results. Moderate-to-vigorous physical activity (MVPA was significantly associated with NGMV (pr=0.370, p<0.05, NWMV (pr=0.433, p<0.01, hippocampus (pr=0.499, p<0.01, thalamus (pr=0.380, p<0.05, caudate (pr=0.539, p<0.01, putamen (pr=0.369, p<0.05, and pallidum (pr=0.498, p<0.01 volumes, when controlling for sex, age, clinical course of MS, and Expanded Disability Status Scale score. There were no associations between sedentary and light physical activity with MRI outcomes. Conclusion. Our results provide the first evidence that MVPA is associated with volumes of whole brain GM and WM and deep GM structures that are involved in motor and cognitive functions in MS.

  9. Brain stem and cerebellum volumetric analysis of Machado Joseph disease patients

    Directory of Open Access Journals (Sweden)

    S T Camargos

    2011-01-01

    Full Text Available Machado-Joseph disease, or spinocerebellar ataxia type 3(MJD/SCA3, is the most frequent late onset spinocerebellar ataxia and results from a CAG repeat expansion in the ataxin-3 gene. Previous studies have found correlation between atrophy of cerebellum and brainstem with age and CAG repeats, although no such correlation has been found with disease duration and clinical manifestations. In this study we test the hypothesis that atrophy of cerebellum and brainstem in MJD/SCA3 is related to clinical severity, disease duration and CAG repeat length as well as to other variables such as age and ICARS (International Cooperative Ataxia Rating Scale. Whole brain high resolution MRI and volumetric measurement with cranial volume normalization were obtained from 15 MJD/SCA3 patients and 15 normal, age and sex-matchedcontrols. We applied ICARS and compared the score with volumes and CAG number, disease duration and age. We found significant correlation of both brain stem and cerebellar atrophy with CAG repeat length, age, disease duration and degree of disability. The Spearman rank correlation was stronger with volumetric reduction of the cerebellum than with brain stem. Our data allow us to conclude that volumetric analysis might reveal progressive degeneration after disease onset, which in turn is linked to both age and number of CAG repeat expansions in SCA 3.

  10. Brain MRI volumetry in a single patient with mild traumatic brain injury.

    Science.gov (United States)

    Ross, David E; Castelvecchi, Cody; Ochs, Alfred L

    2013-01-01

    This letter to the editor describes the case of a 42 year old man with mild traumatic brain injury and multiple neuropsychiatric symptoms which persisted for a few years after the injury. Initial CT scans and MRI scans of the brain showed no signs of atrophy. Brain volume was measured using NeuroQuant®, an FDA-approved, commercially available software method. Volumetric cross-sectional (one point in time) analysis also showed no atrophy. However, volumetric longitudinal (two points in time) analysis showed progressive atrophy in several brain regions. This case illustrated in a single patient the principle discovered in multiple previous group studies, namely that the longitudinal design is more powerful than the cross-sectional design for finding atrophy in patients with traumatic brain injury.

  11. Volumetric Magnetic Resonance Imaging Study of Brain and Cerebellum in Children with Cerebral Palsy

    Science.gov (United States)

    Maciorkowska, Elżbieta; Gościk, Elżbieta

    2016-01-01

    Introduction. Quantitative magnetic resonance imaging (MRI) studies are rarely used in the diagnosis of patients with cerebral palsy. The aim of present study was to assess the relationships between the volumetric MRI and clinical findings in children with cerebral palsy compared to control subjects. Materials and Methods. Eighty-two children with cerebral palsy and 90 age- and sex-matched healthy controls were collected. Results. The dominant changes identified on MRI scans in children with cerebral palsy were periventricular leukomalacia (42%) and posthemorrhagic hydrocephalus (21%). The total brain and cerebellum volumes in children with cerebral palsy were significantly reduced in comparison to controls. Significant grey matter volume reduction was found in the total brain in children with cerebral palsy compared with the control subjects. Positive correlations between the age of the children of both groups and the grey matter volumes in the total brain were found. Negative relationship between width of third ventricle and speech development was found in the patients. Positive correlations were noted between the ventricles enlargement and motor dysfunction and mental retardation in children with cerebral palsy. Conclusions. By using the voxel-based morphometry, the total brain, cerebellum, and grey matter volumes were significantly reduced in children with cerebral palsy. PMID:27579318

  12. Brain volumetric changes and cognitive ageing during the eighth decade of life

    Science.gov (United States)

    Dickie, David Alexander; Cox, Simon R.; Valdes Hernandez, Maria del C.; Corley, Janie; Royle, Natalie A.; Pattie, Alison; Aribisala, Benjamin S.; Redmond, Paul; Muñoz Maniega, Susana; Taylor, Adele M.; Sibbett, Ruth; Gow, Alan J.; Starr, John M.; Bastin, Mark E.; Wardlaw, Joanna M.; Deary, Ian J.

    2015-01-01

    Abstract Later‐life changes in brain tissue volumes—decreases in the volume of healthy grey and white matter and increases in the volume of white matter hyperintensities (WMH)—are strong candidates to explain some of the variation in ageing‐related cognitive decline. We assessed fluid intelligence, memory, processing speed, and brain volumes (from structural MRI) at mean age 73 years, and at mean age 76 in a narrow‐age sample of older individuals (n = 657 with brain volumetric data at the initial wave, n = 465 at follow‐up). We used latent variable modeling to extract error‐free cognitive levels and slopes. Initial levels of cognitive ability were predictive of subsequent brain tissue volume changes. Initial brain volumes were not predictive of subsequent cognitive changes. Brain volume changes, especially increases in WMH, were associated with declines in each of the cognitive abilities. All statistically significant results were modest in size (absolute r‐values ranged from 0.114 to 0.334). These results build a comprehensive picture of macrostructural brain volume changes and declines in important cognitive faculties during the eighth decade of life. Hum Brain Mapp 36:4910–4925, 2015. © 2015 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc PMID:26769551

  13. Myocardial kinematics based on tagged MRI from volumetric NURBS models

    Science.gov (United States)

    Tustison, Nicholas J.; Amini, Amir A.

    2004-04-01

    We present current research in which left ventricular deformation is estimated from tagged cardiac magnetic resonance imaging using volumetric deformable models constructed from nonuniform rational B-splines (NURBS). From a set of short and long axis images at end-diastole, the initial NURBS model is constructed by fitting two surfaces with the same parameterization to the set of epicardial and endocardial contours from which a volumetric model is created. Using normal displacements of the three sets of orthogonal tag planes as well as displacements of both tag line and contour/tag line intersection points, one can solve for the optimal homogeneous coordinates, in a least squares sense, of the control points of the NURBS model at a later time point using quadratic programming. After fitting to all time points of data, lofting the NURBS model at each time point creates a comprehensive 4-D NURBS model. From this model, we can extract 3-D myocardial displacement fields and corresponding strain maps, which are local measures of non-rigid deformation.

  14. MRI of perinatal brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Mary; Allsop, Joanna [Imperial College, Robert Steiner MR Unit, Perinatal Imaging, MRC Clinical Sciences Centre, Hammersmith Hospital, London (United Kingdom); Martinez Biarge, Miriam [La Paz University Hospital, Dept of Neonatology, Madrid (Spain); Counsell, Serena [Imperial College, Robert Steiner MR Unit, Neonatal Medicine, MRC Clinical Sciences Centre, Hammersmith Hospital, London (United Kingdom); Cowan, Frances [Imperial College, Dept of Paediatrics, Hammersmith Hospital, London (United Kingdom)

    2010-06-15

    MRI is invaluable in assessing the neonatal brain following suspected perinatal injury. Good quality imaging requires adaptations to both the hardware and the sequences used for adults or older children. The perinatal and postnatal details often predict the pattern of lesions sustained and should be available to aid interpretation of the imaging findings. Perinatal lesions, the pattern of which can predict neurodevelopmental outcome, are at their most obvious on conventional imaging between 1 and 2 weeks from birth. Very early imaging during the first week may be useful to make management decisions in ventilated neonates but brain abnormalities may still be subtle using conventional sequences. Diffusion-weighted imaging (DWI) is very useful for the early identification of ischaemic tissue in the neonatal brain but may underestimate the final extent of injury, particularly basal ganglia and thalamic lesions. MR imaging is an excellent predictor of outcome following perinatal brain injury and can therefore be used as a biomarker in interventional trials designed to reduce injury and improve neurodevelopmental outcome. (orig.)

  15. Brain volumetric changes and cognitive ageing during the eighth decade of life.

    Science.gov (United States)

    Ritchie, Stuart J; Dickie, David Alexander; Cox, Simon R; Valdes Hernandez, Maria Del C; Corley, Janie; Royle, Natalie A; Pattie, Alison; Aribisala, Benjamin S; Redmond, Paul; Muñoz Maniega, Susana; Taylor, Adele M; Sibbett, Ruth; Gow, Alan J; Starr, John M; Bastin, Mark E; Wardlaw, Joanna M; Deary, Ian J

    2015-12-01

    Later-life changes in brain tissue volumes--decreases in the volume of healthy grey and white matter and increases in the volume of white matter hyperintensities (WMH)--are strong candidates to explain some of the variation in ageing-related cognitive decline. We assessed fluid intelligence, memory, processing speed, and brain volumes (from structural MRI) at mean age 73 years, and at mean age 76 in a narrow-age sample of older individuals (n = 657 with brain volumetric data at the initial wave, n = 465 at follow-up). We used latent variable modeling to extract error-free cognitive levels and slopes. Initial levels of cognitive ability were predictive of subsequent brain tissue volume changes. Initial brain volumes were not predictive of subsequent cognitive changes. Brain volume changes, especially increases in WMH, were associated with declines in each of the cognitive abilities. All statistically significant results were modest in size (absolute r-values ranged from 0.114 to 0.334). These results build a comprehensive picture of macrostructural brain volume changes and declines in important cognitive faculties during the eighth decade of life.

  16. Novel whole brain segmentation and volume estimation using quantitative MRI

    Energy Technology Data Exchange (ETDEWEB)

    West, J. [Linkoeping University, Radiation Physics, Department of Medical and Health Sciences, Faculty of Health Sciences, Linkoeping (Sweden); Linkoeping University, Center for Medical Imaging Science and Visualization (CMIV), Linkoeping (Sweden); SyntheticMR AB, Linkoeping (Sweden); Warntjes, J.B.M. [Linkoeping University, Center for Medical Imaging Science and Visualization (CMIV), Linkoeping (Sweden); SyntheticMR AB, Linkoeping (Sweden); Linkoeping University and Department of Clinical Physiology UHL, County Council of Oestergoetland, Clinical Physiology, Department of Medical and Health Sciences, Faculty of Health Sciences, Linkoeping (Sweden); Lundberg, P. [Linkoeping University, Center for Medical Imaging Science and Visualization (CMIV), Linkoeping (Sweden); Linkoeping University and Department of Radiation Physics UHL, County Council of Oestergoetland, Radiation Physics, Department of Medical and Health Sciences, Faculty of Health Sciences, Linkoeping (Sweden); Linkoeping University and Department of Radiology UHL, County Council of Oestergoetland, Radiology, Department of Medical and Health Sciences, Faculty of Health Sciences, Linkoeping (Sweden)

    2012-05-15

    Brain segmentation and volume estimation of grey matter (GM), white matter (WM) and cerebro-spinal fluid (CSF) are important for many neurological applications. Volumetric changes are observed in multiple sclerosis (MS), Alzheimer's disease and dementia, and in normal aging. A novel method is presented to segment brain tissue based on quantitative magnetic resonance imaging (qMRI) of the longitudinal relaxation rate R{sub 1}, the transverse relaxation rate R{sub 2} and the proton density, PD. Previously reported qMRI values for WM, GM and CSF were used to define tissues and a Bloch simulation performed to investigate R{sub 1}, R{sub 2} and PD for tissue mixtures in the presence of noise. Based on the simulations a lookup grid was constructed to relate tissue partial volume to the R{sub 1}-R{sub 2}-PD space. The method was validated in 10 healthy subjects. MRI data were acquired using six resolutions and three geometries. Repeatability for different resolutions was 3.2% for WM, 3.2% for GM, 1.0% for CSF and 2.2% for total brain volume. Repeatability for different geometries was 8.5% for WM, 9.4% for GM, 2.4% for CSF and 2.4% for total brain volume. We propose a new robust qMRI-based approach which we demonstrate in a patient with MS. (orig.)

  17. Disorder-specific volumetric brain difference in adolescent major depressive disorder and bipolar depression.

    Science.gov (United States)

    MacMaster, Frank P; Carrey, Normand; Langevin, Lisa Marie; Jaworska, Natalia; Crawford, Susan

    2014-03-01

    Structural abnormalities in frontal, limbic and subcortical regions have been noted in adults with both major depressive disorder (MDD) and bipolar disorder (BD). In the current study, we examined regional brain morphology in youth with MDD and BD as compared to controls. Regional brain volumes were measured in 32 MDD subjects (15.7 ± 2.1 years), 14 BD subjects (16.0 ± 2.4 years) and 22 healthy controls (16.0 ± 2.8 years) using magnetic resonance imaging (MRI). Regions of interest included the hippocampus, dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), caudate, putamen and thalamus. Volumetric differences between groups were significant (F26,80 = 1.80, p = 0.02). Post-hoc analyses indicated that individuals with MDD showed reduced left hippocampus volumes (p = 0.048) as well as right ACC white and gray matter volumes (p = 0.003; p = 0.01) compared to controls. BD participants also displayed reduced left hippocampal and right/left putamen volumes compared to controls (p < 0.001; p = 0.015; p = 0.046 respectively). Interestingly, right and left ACC white matter volumes were smaller in MDD than in BD participants (p = 0.019; p = 0.045 respectively). No volumetric group differences were observed for the DLPFC and thalamus. Discriminant analysis was able to correctly classify 81.0 % of subjects as having BD or as MDD based on imaging data. Confirmation and extension of our findings requires larger sample sizes. Our findings provide new evidence of distinct, specific regional brain volumetric differences between MDD and BD that may be used to distinguish the two disorders.

  18. Exploration of volumetric cerebral changes, with de micro-MRi, due to psychomotor exercise in mice

    OpenAIRE

    Moës, Florian; Plenevaux, Alain; Becker, Guillaume; Tirelli, Ezio; Lespine, Louis-Ferdinand

    2015-01-01

    It's well know that exercise is good for health .In addition exercise has postive effects on cognition ,neurodegenerative disease and on mood. Some studies show that exercise has effect on brain so the aim of this study is to see if there are volumetric changes due to exercise or not.

  19. Histology-derived volumetric annotation of the human hippocampal subfields in postmortem MRI

    Science.gov (United States)

    Adler, Daniel H.; Pluta, John; Kadivar, Salmon; Craige, Caryne; Gee, James C.; Avants, Brian B.; Yushkevich, Paul A.

    2013-01-01

    Recently, there has been a growing effort to analyze the morphometry of hippocampal subfields using both in vivo and postmortem magnetic resonance imaging (MRI). However, given that boundaries between subregions of the hippocampal formation (HF) are conventionally defined on the basis of microscopic features that often lack discernible signature in MRI, subfield delineation in MRI literature has largely relied on heuristic geometric rules, the validity of which with respect to the underlying anatomy is largely unknown. The development and evaluation of such rules is challenged by the limited availability of data linking MRI appearance to microscopic hippocampal anatomy, particularly in three dimensions (3D). The present paper, for the first time, demonstrates the feasibility of labeling hippocampal subfields in a high resolution volumetric MRI dataset based directly on microscopic features extracted from histology. It uses a combination of computational techniques and manual post-processing to map subfield boundaries from a stack of histology images (obtained with 200 μm spacing and 5 μm slice thickness; stained using the Kluver-Barrera method) onto a postmortem 9.4 Tesla MRI scan of the intact, whole hippocampal formation acquired with 160 μm isotropic resolution. The histology reconstruction procedure consists of sequential application of a graph-theoretic slice stacking algorithm that mitigates the effects of distorted slices, followed by iterative affine and diffeomorphic co-registration to postmortem MRI scans of approximately 1 cm-thick tissue sub-blocks acquired with 200 μm isotropic resolution. These 1 cm blocks are subsequently co-registered to the MRI of the whole HF. Reconstruction accuracy is evaluated as the average displacement error between boundaries manually delineated in both the histology and MRI following the sequential stages of reconstruction. The methods presented and evaluated in this single-subject study can potentially be applied to

  20. Brain MRI Findings in Congenital Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-03-01

    Full Text Available Brain magnetic resonance imaging (MRI findings in 13 patients with congenital muscular dystrophy (MDCIC and Fukutin-related protein (FKRP gene mutations were retrospectively reviewed in a study at Hammersmith Hospital, London, UK, and European centers.

  1. Cortical thickness and brain volumetric analysis in body dysmorphic disorder.

    Science.gov (United States)

    Madsen, Sarah K; Zai, Alex; Pirnia, Tara; Arienzo, Donatello; Zhan, Liang; Moody, Teena D; Thompson, Paul M; Feusner, Jamie D

    2015-04-30

    Individuals with body dysmorphic disorder (BDD) suffer from preoccupations with perceived defects in physical appearance, causing severe distress and disability. Although BDD affects 1-2% of the population, the neurobiology is not understood. Discrepant results in previous volumetric studies may be due to small sample sizes, and no study has investigated cortical thickness in BDD. The current study is the largest neuroimaging analysis of BDD. Participants included 49 medication-free, right-handed individuals with DSM-IV BDD and 44 healthy controls matched by age, sex, and education. Using high-resolution T1-weighted magnetic resonance imaging, we computed vertex-wise gray matter (GM) thickness on the cortical surface and GM volume using voxel-based morphometry. We also computed volumes in cortical and subcortical regions of interest. In addition to group comparisons, we investigated associations with symptom severity, insight, and anxiety within the BDD group. In BDD, greater anxiety was significantly associated with thinner GM in the left superior temporal cortex and greater GM volume in the right caudate nucleus. There were no significant differences in cortical thickness, GM volume, or volumes in regions of interest between BDD and control subjects. Subtle associations with clinical symptoms may characterize brain morphometric patterns in BDD, rather than large group differences in brain structure. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Brain volumetric abnormalities in patients with anorexia and bulimia nervosa: a voxel-based morphometry study.

    Science.gov (United States)

    Amianto, Federico; Caroppo, Paola; D'Agata, Federico; Spalatro, Angela; Lavagnino, Luca; Caglio, Marcella; Righi, Dorico; Bergui, Mauro; Abbate-Daga, Giovanni; Rigardetto, Roberto; Mortara, Paolo; Fassino, Secondo

    2013-09-30

    Recent studies focussing on neuroimaging features of eating disorders have observed that anorexia nervosa (AN) is characterized by significant grey matter (GM) atrophy in many brain regions, especially in the cerebellum and anterior cingulate cortex. To date, no studies have found GM atrophy in bulimia nervosa (BN) or have directly compared patients with AN and BN. We used voxel-based morphometry (VBM) to characterize brain abnormalities in AN and BN patients, comparing them with each other and with a control group, and correlating brain volume with clinical features. We recruited 17 AN, 13 BN and 14 healthy controls. All subjects underwent high-resolution magnetic resonance imaging (MRI) with a T1-weighted 3D image. VBM analysis was carried out with the FSL-VBM 4.1 tool. We found no global atrophy, but regional GM reduction in AN with respect to controls and BN in the cerebellum, fusiform area, supplementary motor area, and occipital cortex, and in the caudate in BN compared to AN and controls. Both groups of patients had a volumetric increase bilaterally in somatosensory regions with respect to controls, in areas that are typically involved in the sensory-motor integration of body stimuli and in mental representation of the body image. Our VBM study documented, for the first time in BN patients, the presence of volumetric alterations and replicated previous findings in AN patients. We evidenced morphological differences between AN and BN, demonstrating in the latter atrophy of the caudate nucleus, a region involved in reward mechanisms and processes of self-regulation, perhaps involved in the genesis of the binge-eating behaviors of this disorder. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Somatic mutations associated with MRI-derived volumetric features in glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Gutman, David A.; Dunn, William D. [Emory University School of Medicine, Departments of Neurology, Atlanta, GA (United States); Emory University School of Medicine, Biomedical Informatics, Atlanta, GA (United States); Grossmann, Patrick; Alexander, Brian M. [Harvard Medical School, Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital, Boston, MA (United States); Cooper, Lee A.D. [Emory University School of Medicine, Biomedical Informatics, Atlanta, GA (United States); Georgia Institute of Technology, Department of Biomedical Engineering, Atlanta, GA (United States); Holder, Chad A. [Emory University School of Medicine, Radiology and Imaging Sciences, Atlanta, GA (United States); Ligon, Keith L. [Brigham and Women' s Hospital, Harvard Medical School, Pathology, Dana-Farber Cancer Institute, Boston, MA (United States); Aerts, Hugo J.W.L. [Harvard Medical School, Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital, Boston, MA (United States); Brigham and Women' s Hospital, Harvard Medical School, Radiology, Dana-Farber Cancer Institute, Boston, MA (United States)

    2015-12-15

    MR imaging can noninvasively visualize tumor phenotype characteristics at the macroscopic level. Here, we investigated whether somatic mutations are associated with and can be predicted by MRI-derived tumor imaging features of glioblastoma (GBM). Seventy-six GBM patients were identified from The Cancer Imaging Archive for whom preoperative T1-contrast (T1C) and T2-FLAIR MR images were available. For each tumor, a set of volumetric imaging features and their ratios were measured, including necrosis, contrast enhancing, and edema volumes. Imaging genomics analysis assessed the association of these features with mutation status of nine genes frequently altered in adult GBM. Finally, area under the curve (AUC) analysis was conducted to evaluate the predictive performance of imaging features for mutational status. Our results demonstrate that MR imaging features are strongly associated with mutation status. For example, TP53-mutated tumors had significantly smaller contrast enhancing and necrosis volumes (p = 0.012 and 0.017, respectively) and RB1-mutated tumors had significantly smaller edema volumes (p = 0.015) compared to wild-type tumors. MRI volumetric features were also found to significantly predict mutational status. For example, AUC analysis results indicated that TP53, RB1, NF1, EGFR, and PDGFRA mutations could each be significantly predicted by at least one imaging feature. MRI-derived volumetric features are significantly associated with and predictive of several cancer-relevant, drug-targetable DNA mutations in glioblastoma. These results may shed insight into unique growth characteristics of individual tumors at the macroscopic level resulting from molecular events as well as increase the use of noninvasive imaging in personalized medicine. (orig.)

  4. [MRI compatibility of deep brain stimulator].

    Science.gov (United States)

    Zhang, Yujing

    2013-07-01

    Deep brain stimulation (DBS) therapy develops rapidly in clinical application. The structures of deep brain stimulator and magnetic resonance imaging (MRI) equipment are introduced, the interactions are analyzed, and the two compatible problems of radio frequency (RF) heating and imaging artifact are summarized in this paper.

  5. [Advanced MRI techniques of the fetal brain].

    Science.gov (United States)

    Schöpf, V; Dittrich, E; Berger-Kulemann, V; Kasprian, G; Kollndorfer, K; Prayer, D

    2013-02-01

    Evaluation of the normal and pathological fetal brain. Magnetic resonance imaging (MRI). Advanced MRI of the fetal brain. Diffusion tensor imaging (DTI) is used in clinical practice, all other methods are used at a research level. Serving as standard methods in the future. Combined structural and functional data for all gestational ages will allow more specific insight into the developmental processes of the fetal brain. This gain of information will help provide a common understanding of complex spatial and temporal procedures of early morphological features and their impact on cognitive and sensory abilities.

  6. MRI and MRS of human brain tumors.

    Science.gov (United States)

    Hou, Bob L; Hu, Jiani

    2009-01-01

    The purpose of this chapter is to provide an introduction to magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) of human brain tumors, including the primary applications and basic terminology involved. Readers who wish to know more about this broad subject should seek out the referenced books (1. Tofts (2003) Quantitative MRI of the brain. Measuring changes caused by disease. Wiley; Bradley and Stark (1999) 2. Magnetic resonance imaging, 3rd Edition. Mosby Inc; Brown and Semelka (2003) 3. MRI basic principles and applications, 3rd Edition. Wiley-Liss) or reviews (4. Top Magn Reson Imaging 17:127-36, 2006; 5. JMRI 24:709-724, 2006; 6. Am J Neuroradiol 27:1404-1411, 2006).MRI is the most popular means of diagnosing human brain tumors. The inherent difference in the magnetic resonance (MR) properties of water between normal tissues and tumors results in contrast differences on the image that provide the basis for distinguishing tumors from normal tissues. In contrast to MRI, which provides spatial maps or images using water signals of the tissues, proton MRS detects signals of tissue metabolites. MRS can complement MRI because the observed MRS peaks can be linked to inherent differences in biochemical profiles between normal tissues and tumors.The goal of MRI and MRS is to characterize brain tumors, including tumor core, edge, edema, volume, types, and grade. The commonly used brain tumor MRI protocol includes T2-weighted images and T1-weighted images taken both before and after the injection of a contrast agent (typically gadolinium: Gd). The commonly used MRS technique is either point-resolved spectroscopy (PRESS) or stimulated echo acquisition mode (STEAM).

  7. MRI Brain Tumor Segmentation Methods- A Review

    OpenAIRE

    Gursangeet, Kaur; Jyoti, Rani

    2016-01-01

    Medical image processing and its segmentation is an active and interesting area for  researchers. It has reached at the tremendous place in diagnosing tumors after the discovery of CT and MRI. MRI is an useful tool to detect the brain tumor and segmentation is performed to carry out the useful portion from an image. The purpose of this paper is to provide an overview of different image segmentation methods like watershed algorithm, morphological operations, neutrosophic sets, thresholding, K-...

  8. Longitudinal Volumetric Brain Changes in Autism Spectrum Disorder Ages 6–35 Years

    Science.gov (United States)

    Lange, Nicholas; Travers, Brittany G.; Bigler, Erin D.; Prigge, Molly B.D.; Froehlich, Alyson L.; Nielsen, Jared A.; Cariello, Annahir N.; Zielinski, Brandon A.; Anderson, Jeffrey S.; Fletcher, P. Thomas; Alexander, Andrew A.; Lainhart, Janet E.

    2014-01-01

    LAY ABSTRACT Since the impairments associated with autism spectrum disorder (ASD) tend to persist or worsen from childhood into adulthood, it is of critical importance to examine how the brain develops over this growth epoch. We report initial findings on whole and regional longitudinal brain development in 100 male participants with ASD (226 high-quality MRI scans) compared to 56 typically developing male controls (TDCs) (117 high-quality scans) from childhood into adulthood, for a total of 156 participants scanned over an eight-year period. We provide volumetric growth curves for the entire brain, total gray matter (GM), frontal GM, temporal GM, parietal GM, occipital GM, total cortical white matter (WM), corpus callosum, caudate, thalamus, total cerebellum, and total ventricles. Mean volume of cortical WM was reduced significantly. Decreases in regional mean volumes in the ASD sample were most often due to decreases during late adolescence and adulthood. The growth curve of whole-brain volume showed increased volumes in young children with autism and subsequently decreased during adolescence to meet the TDC curve between 10 and 15 years of age. The volume of many structures continued to decline atypically into adulthood in the ASD sample. The data suggest that ASD is a dynamic disorder with complex changes in whole and regional brain volumes that change over time from childhood into adulthood. SCIENTIFIC ABSTRACT Since the impairments associated with autism spectrum disorder (ASD) tend to persist or worsen from childhood into adulthood, it is of critical importance to examine how the brain develops over this growth epoch. We report initial findings on whole and regional longitudinal brain development in 100 male participants with ASD (226 high-quality MRI scans; mean inter-scan interval 2.7 years) compared to 56 typically developing male controls (TDCs) (117 high-quality scans; mean inter-scan interval 2.6 years) from childhood into adulthood, for a total of 156

  9. Diagnostic pitfalls in fetal brain MRI.

    Science.gov (United States)

    Al-Mukhtar, Ali; Kasprian, Gregor; Schmook, Maria T; Brugger, Peter C; Prayer, Daniela

    2009-08-01

    Recent technological advances in fetal magnetic resonance imaging (MRI) and increased reliability of MRI in depicting abnormalities and lesions, especially in the central nervous system, are increasingly bringing up challenging issues with regard to accurate diagnosis. There are also pitfalls not only attributable to image acquisition but also in clinical interpretation. The misinterpretation of findings because of insufficient knowledge about fetal brain development as visualized by MRI may also be regarded as an important limitation of fetal MRI. We provide an overview of the most common pitfalls experienced in fetal MRI in routine practice, demonstrate how to identify some of the factors that lead to imaging misinterpretation, and suggest ways to tackle these problems, with an emphasis on MR techniques and image calibration.

  10. volBrain: an online MRI brain volumetry system

    Directory of Open Access Journals (Sweden)

    Jose V. Manjon

    2016-07-01

    Full Text Available The amount of medical image data produced in clinical and research settings is rapidly growing resulting in vast amount of data to analyze. Automatic and reliable quantitative analysis tools, including segmentation, allow to analyze brain development and to understand specific patterns of many neurological diseases. This field has recently experienced many advances with successful techniques based on non-linear warping and label fusion. In this work we present a novel and fully automatic pipeline for volumetric brain analysis based on multi-atlas label fusion technology that is able to provide accurate volumetric information at different levels of detail in a short time. This method is available through the volBrain online web interface (http://volbrain.upv.es, which is publically and freely accessible to the scientific community. Our new framework has been compared with current state-of-the-art methods showing very competitive results.

  11. Multiparametric MRI in the assessment of response of rectal cancer to neoadjuvant chemoradiotherapy: A comparison of morphological, volumetric and functional MRI parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hoetker, Andreas M. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Universitaetsmedizin Mainz, Department of Diagnostic and Interventional Radiology, Mainz (Germany); Tarlinton, Lisa; Gollub, Marc J. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Mazaheri, Yousef [Memorial Sloan Kettering Cancer Center, Department of Medical Physics, New York, NY (United States); Woo, Kaitlin M.; Goenen, Mithat [Memorial Sloan Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York, NY (United States); Saltz, Leonard B. [Memorial Sloan Kettering Cancer Center, Department of Medicine, Gastrointestinal Oncology Service, New York, NY (United States); Goodman, Karyn A. [Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, New York, NY (United States); Garcia-Aguilar, Julio [Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, NY (United States)

    2016-12-15

    To compare morphological and functional MRI metrics and determine which ones perform best in assessing response to neoadjuvant chemoradiotherapy (CRT) in rectal cancer. This retrospective study included 24 uniformly-treated patients with biopsy-proven rectal adenocarcinoma who underwent MRI, including diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) sequences, before and after completion of CRT. On all MRI exams, two experienced readers independently measured longest and perpendicular tumour diameters, tumour volume, tumour regression grade (TRG) and tumour signal intensity ratio on T2-weighted imaging, as well as tumour volume and apparent diffusion coefficient on DW-MRI and tumour volume and transfer constant K{sup trans} on DCE-MRI. These metrics were correlated with histopathological percent tumour regression in the resected specimen (%TR). Inter-reader agreement was assessed using the concordance correlation coefficient (CCC). For both readers, post-treatment DW-MRI and DCE-MRI volumetric tumour assessments were significantly associated with %TR; DCE-MRI volumetry showed better inter-reader agreement (CCC=0.700) than DW-MRI volumetry (CCC=0.292). For one reader, mrTRG, post-treatment T2 tumour volumetry and assessments of volume change made with T2, DW-MRI and DCE-MRI were also significantly associated with %TR. Tumour volumetry on post-treatment DCE-MRI and DW-MRI correlated well with %TR, with DCE-MRI volumetry demonstrating better inter-reader agreement. (orig.)

  12. Brain MRI abnormalities in neuromyelitis optica

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fei, E-mail: feiwang1973@gmail.com [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, 45 Chang-Chun St, Xuanwu District, Beijing 100053 (China); Liu Yaou, E-mail: asiaeurope80@gmail.com [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, 45 Chang-Chun St, Xuanwu District, Beijing 100053 (China); Duan Yunyun, E-mail: duanyun2003@sohu.com [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, 45 Chang-Chun St, Xuanwu District, Beijing 100053 (China); Li Kuncheng, E-mail: kunchengli@yahoo.com.cn [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, 45 Chang-Chun St, Xuanwu District, Beijing 100053 (China); Education Ministry Key Laboratory for Neurodegenerative Disease, Xuanwu Hospital, Capital University of Medical Sciences, 45 Chang-Chun St, Xuanwu District, Beijing 100053 (China)

    2011-11-15

    Objective: The purpose of this study was to explore brain MRI findings in neuromyelitis optica (NMO) and to investigate specific brain lesions with respect to the localization of aquaporin-4 (AQP-4). Materials and methods: Forty admitted patients (36 women) who satisfied the 2006 criteria of Wingerchuk et al. for NMO were included in this study. All patients received a neurological examination and MRI scanning including brain and spinal cord. MRIs were classified as normal, nonspecific, multiple sclerosis-like, typical abnormalities. MS-like lesions were too few to satisfy the Barkhof et al. criteria for MS. Confluent lesions involving high AQP-4 regions were considered typical. Non-enhancing deep white matter lesions other than MS-like lesions or typical lesions were classified as nonspecific. Results: Brain MRI lesions were delineated in 12 patients (25%). Four patients (10%) had hypothalamus, brainstem or periventricle lesions. Six (15%) patients were nonspecific, and 2 (5%) patients had multiple sclerosis-like lesions. Conclusion: Brain MRIs are negative in most NMO, and brain lesions do not exclude the diagnosis of NMO. Hypothalamus, brainstem or periventricle lesions, corresponding to high sites of AQP-4 in the brain, are indicative of lesions of NMO.

  13. In vivo MRI volumetric measurement of prostate regression and growth in mice

    Directory of Open Access Journals (Sweden)

    Nalcioglu Orhan

    2007-07-01

    Full Text Available Abstract Background Mouse models for treatment of late-stage prostate cancer are valuable tools, but assessing the extent of growth of the prostate and particularly its regression due to therapeutic intervention or castration is difficult due to the location, small size and interdigitated anatomy of the prostate gland in situ. Temporal monitoring of mouse prostate regression requires multiple animals and examination of histological sections. Methods Initially, T2-weighted magnetic resonance imaging (MRI was performed on normal year-old C57/BL6 mice. Individual mice were repeatedly imaged using inhalation anesthesia to establish the reproducibility of the method and to follow hormone manipulation of the prostate volume. Subsequently, MRI fat signal was suppressed using a chemical shift-selective (CHESS pulse to avoid signal contamination and enhance discrimination of the prostate. Results High field (7T MRI provides high resolution (117 × 117 μm in plane, highly reproducible images of the normal mouse prostate. Despite long imaging times, animals can be imaged repeatedly to establish reliability of volume measurements. Prostate volume declines following castration and subsequently returns to normal with androgen administration in the same animal. CHESS imaging allowed discrimination of both the margins of the prostate and the dorsal-lateral lobes of the prostate (DLP from the ventral lobes (VP. Castration results in a 40% reduction in the volume of the DLP and a 75% reduction in the volume of the VP. Conclusion MRI assessment of the volume of the mouse prostate is precise and reproducible. MRI improves volumetric determination of the extent of regression and monitoring of the same mouse over time during the course of treatment is possible. Since assessing groups of animals at each time point is avoided, this improves the accuracy of the measurement of any manipulation effect and reduces the number of animals required.

  14. Constrained reverse diffusion for thick slice interpolation of 3D volumetric MRI images.

    Science.gov (United States)

    Neubert, Aleš; Salvado, Olivier; Acosta, Oscar; Bourgeat, Pierrick; Fripp, Jurgen

    2012-03-01

    Due to physical limitations inherent in magnetic resonance imaging scanners, three dimensional volumetric scans are often acquired with anisotropic voxel resolution. We investigate several interpolation approaches to reduce the anisotropy and present a novel approach - constrained reverse diffusion for thick slice interpolation. This technique was compared to common methods: linear and cubic B-Spline interpolation and a technique based on non-rigid registration of neighboring slices. The methods were evaluated on artificial MR phantoms and real MR scans of human brain. The constrained reverse diffusion approach delivered promising results and provides an alternative for thick slice interpolation, especially for higher anisotropy factors.

  15. Usefulness of MRI-assisted metabolic volumetric parameters provided by simultaneous {sup 18}F-fluorocholine PET/MRI for primary prostate cancer characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong-il [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Cancer Research Institute, Seoul (Korea, Republic of); Cheon, Gi Jeong [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, Cancer Research Institute, Seoul (Korea, Republic of); Seoul National University College of Medicine, Radiological Science Research Institute, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Nuclear Medicine, 101 Daehak-ro, Chongno-gu, Seoul (Korea, Republic of); Paeng, Jin Chul [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Cho, Jeong Yeon [Seoul National University College of Medicine, Radiological Science Research Institute, Seoul (Korea, Republic of); Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, 101 Daehak-ro, Chongno-gu, Seoul (Korea, Republic of); Kwak, Cheol [Seoul National University Hospital, Department of Urology, Seoul (Korea, Republic of); Kang, Keon Wook; Chung, June-Key [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, Cancer Research Institute, Seoul (Korea, Republic of); Seoul National University College of Medicine, Radiological Science Research Institute, Seoul (Korea, Republic of); Kim, Euishin Edmund [Seoul National University, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of); University of California, Department of Radiological Sciences, Irvine, CA (United States); Lee, Dong Soo [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of)

    2015-07-15

    The aim of this study was to determine the usefulness of MRI-assisted positron emission tomography (PET) parameters provided by simultaneous {sup 18}F-fluorocholine (FCH) PET/MRI for characterization of primary prostate cancer. Thirty patients with localized prostate cancer (mean age 69.4 ± 6.7 years) confirmed by biopsy were prospectively enrolled for simultaneous PET/MRI imaging. The patients underwent {sup 18}F-FCH PET/MRI 1 week before undergoing total prostatectomy. Multiple parameters of diffusion-weighted MRI [minimum and mean apparent diffusion coefficient (ADC{sub min} and ADC{sub mean})], metabolic PET [maximum and mean standardized uptake value (SUV{sub max} and SUV{sub mean})], and metabolic volumetric PET [metabolic tumor volume (MTV) and uptake volume product (UVP)] were compared with laboratory, pathologic, and immunohistochemical (IHC) features of the prostate cancer specimen. PET parameters were divided into two categories as follows: volume of interest (VOI) of prostate by SUV cutoff 2.5 (SUV{sub max}, SUV{sub mean}, MTV{sub SUV}, and UVP{sub SUV}) and MRI-assisted VOI of prostate cancer (SUV{sub maxMRI}, SUV{sub meanMRI}, MTV{sub MRI}, and UVP{sub MRI}). The rates of prostate cancer-positive cases identified by MRI alone, {sup 18}F-FCH PET alone, and {sup 18}F-FCH PET/MRI were 83.3, 80.0, and 93.3 %, respectively. Among the multiple PET/MRI parameters, MTV{sub MRI} showed fair correlation with serum prostate-specific antigen (PSA; r = 0.442, p = 0.014) and highest correlation with tumor volume (r = 0.953, p < 0.001). UVP{sub MRI} showed highest correlation with serum PSA (r = 0.531, p = 0.003), good correlation with tumor volume (r = 0.908, p < 0.001), and it was significantly associated with Gleason score (p = 0.041). High MTV{sub MRI} and UVP{sub MRI} values were significant for perineural invasion, lymphatic invasion, extracapsular extension, seminal vesicle invasion, and positive B-cell lymphoma 2 (Bcl-2) expression (all p < 0

  16. Microvascular brain pathology on high resolution MRI

    NARCIS (Netherlands)

    Veluw, S.J. van

    2015-01-01

    Cerebral small vessel disease (SVD) is a common finding in the aging human brain and is associated with stroke, cognitive decline, and dementia. On autopsy, SVD encompasses pathological processes affecting small arteries and arterioles. Magnetic resonance imaging (MRI) detects the consequences of th

  17. Segmentation of Brain Tumors in MRI Images Using Three-Dimensional Active Contour without Edge

    Directory of Open Access Journals (Sweden)

    Ali M. Hasan

    2016-11-01

    Full Text Available Brain tumor segmentation in magnetic resonance imaging (MRI is considered a complex procedure because of the variability of tumor shapes and the complexity of determining the tumor location, size, and texture. Manual tumor segmentation is a time-consuming task highly prone to human error. Hence, this study proposes an automated method that can identify tumor slices and segment the tumor across all image slices in volumetric MRI brain scans. First, a set of algorithms in the pre-processing stage is used to clean and standardize the collected data. A modified gray-level co-occurrence matrix and Analysis of Variance (ANOVA are employed for feature extraction and feature selection, respectively. A multi-layer perceptron neural network is adopted as a classifier, and a bounding 3D-box-based genetic algorithm is used to identify the location of pathological tissues in the MRI slices. Finally, the 3D active contour without edge is applied to segment the brain tumors in volumetric MRI scans. The experimental dataset consists of 165 patient images collected from the MRI Unit of Al-Kadhimiya Teaching Hospital in Iraq. Results of the tumor segmentation achieved an accuracy of 89% ± 4.7% compared with manual processes.

  18. Toddlers with autism; metabolic, radiologic, and volumetric aspects of brain development

    NARCIS (Netherlands)

    Zeegers, M.

    2006-01-01

    The overall aim of this thesis is to study MR spectroscopic, radiologic, and volumetric brain correlates in very young children with severe developmental disorders; ASD, mental retardation, and language disorder. We wished to examine brain – behaviour relationships in children with ASD at a very you

  19. Volumetric and shape analyses of subcortical structures in United States service members with mild traumatic brain injury.

    Science.gov (United States)

    Tate, David F; Wade, Benjamin S C; Velez, Carmen S; Drennon, Ann Marie; Bolzenius, Jacob; Gutman, Boris A; Thompson, Paul M; Lewis, Jeffrey D; Wilde, Elisabeth A; Bigler, Erin D; Shenton, Martha E; Ritter, John L; York, Gerald E

    2016-10-01

    Mild traumatic brain injury (mTBI) is a significant health concern. The majority who sustain mTBI recover, although ~20 % continue to experience symptoms that can interfere with quality of life. Accordingly, there is a critical need to improve diagnosis, prognostic accuracy, and monitoring (recovery trajectory over time) of mTBI. Volumetric magnetic resonance imaging (MRI) has been successfully utilized to examine TBI. One promising improvement over standard volumetric approaches is to analyze high-dimensional shape characteristics of brain structures. In this study, subcortical shape and volume in 76 Service Members with mTBI was compared to 59 Service Members with orthopedic injury (OI) and 17 with post-traumatic stress disorder (PTSD) only. FreeSurfer was used to quantify structures from T1-weighted 3 T MRI data. Radial distance (RD) and Jacobian determinant (JD) were defined vertex-wise on parametric mesh-representations of subcortical structures. Linear regression was used to model associations between morphometry (volume and shape), TBI status, and time since injury (TSI) correcting for age, sex, intracranial volume, and level of education. Volumetric data was not significantly different between the groups. JD was significantly increased in the accumbens and caudate and significantly reduced in the thalamus of mTBI participants. Additional significant associations were noted between RD of the amygdala and TSI. Positive trend-level associations between TSI and the amygdala and accumbens were observed, while a negative association was observed for third ventricle. Our findings may aid in the initial diagnosis of mTBI, provide biological targets for functional examination, and elucidate regions that may continue remodeling after injury.

  20. The relationship between limited MRI section analyses and volumetric assessment of synovitis in knee osteoarthritis

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, L.A. [Academic Unit of Medical Physics, University of Leeds and Leeds General Infirmary, Leeds (United Kingdom)]. E-mail: lar@medphysics.leeds.ac.uk; Keenan, A.-M. [Academic Unit of Musculoskeletal Disease, University of Leeds and Leeds General Infirmary, Leeds (United Kingdom); Grainger, A.J. [Department of Radiology, Leeds General Infirmary, Leeds (United Kingdom); Emery, P. [Academic Unit of Musculoskeletal Disease, University of Leeds and Leeds General Infirmary, Leeds (United Kingdom); McGonagle, D. [Academic Unit of Musculoskeletal Disease, University of Leeds and Leeds General Infirmary, Leeds (United Kingdom); Calderdale Royal Hospital, Salterhebble, Halifax (United Kingdom); Conaghan, P.G. [Academic Unit of Musculoskeletal Disease, University of Leeds and Leeds General Infirmary, Leeds (United Kingdom)

    2005-12-15

    AIM: To assess whether simple, limited section analysis can replace detailed volumetric assessment of synovitis in patients with osteoarthritis (OA) of the knee using contrast-enhanced magnetic resonance imaging (MRI). MATERIALS AND METHODS: Thirty-five patients with clinical and radiographic OA of the knee were assessed for synovitis using gadolinium-enhanced MRI. The volume of enhancing synovium was quantitatively assessed in four anatomical sites (the medial and lateral parapatellar recesses, the intercondylar notch and the suprapatellar pouch) by summing the volumes of synovitis in consecutive sections. Four different combinations of section analysis were evaluated for their ability to predict total synovial volume. RESULTS: A total of 114 intra-articular sites were assessed. Simple linear regression demonstrated that the best predictor of total synovial volume was the analysis containing the inferior, mid and superior sections of each of the intra-articular sites, which predicted between 40-80% (r {sup 2}=0.396, p<0.001 for notch; r {sup 2}=0.818, p<0.001 for medial parapatellar recess) of the total volume assessment. CONCLUSIONS: The results suggest that a three-section analysis on axial post-gadolinium sequences provides a simple surrogate measure of synovial volume in OA knees.

  1. Optimized T1- and T2-weighted volumetric brain imaging as a diagnostic tool in very preterm neonates

    Energy Technology Data Exchange (ETDEWEB)

    Nossin-Manor, Revital [Neurosciences and Mental Health, Research Institute, Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto (Canada); Chung, Andrew D.; Morris, Drew; Thomas, Bejoy; Shroff, Manohar M. [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Soares-Fernandes, Joao P. [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Hospital de S. Marcos, Neuroradiology Department, Braga (Portugal); Cheng, Hai-Ling M. [The Hospital for Sick Children, Department of Diagnostic Imaging, Physiology Experimental Medicine, Research Institute, Toronto (Canada); University of Toronto, Medical Biophysics Department, Toronto (Canada); Whyte, Hilary E.A. [Neurosciences and Mental Health, Research Institute, Neonatology Department, The Hospital for Sick Children, Toronto (Canada); Taylor, Margot J. [The Hospital for Sick Children, Neurosciences and Mental Health, Research Institute, Department of Diagnostic Imaging, Toronto (Canada); University of Toronto, Medical Imaging, Toronto (Canada); Sled, John G. [University of Toronto, Physiology Experimental Medicine, Research Institute, The Hospital for Sick Children, Medical Biophysics, Toronto (Canada)

    2011-06-15

    T1- and T2-W MR sequences used for obtaining diagnostic information and morphometric measurements in the neonatal brain are frequently acquired using different imaging protocols. Optimizing one protocol for obtaining both kinds of information is valuable. To determine whether high-resolution T1- and T2-W volumetric sequences optimized for preterm brain imaging could provide both diagnostic and morphometric value. Thirty preterm neonates born between 24 and 32 weeks' gestational age were scanned during the first 2 weeks after birth. T1- and T2-W high-resolution sequences were optimized in terms of signal-to-noise ratio, contrast-to-noise ratio and scan time and compared to conventional spin-echo-based sequences. No differences were found between conventional and high-resolution T1-W sequences for diagnostic confidence, image quality and motion artifacts. A preference for conventional over high-resolution T2-W sequences for image quality was observed. High-resolution T1 images provided better delineation of thalamic myelination and the superior temporal sulcus. No differences were found for detection of myelination and sulcation using conventional and high-resolution T2-W images. High-resolution T1- and T2-W volumetric sequences can be used in clinical MRI in the very preterm brain to provide both diagnostic and morphometric information. (orig.)

  2. Tissue tracking: applications for brain MRI classification

    Science.gov (United States)

    Melonakos, John; Gao, Yi; Tannenbaum, Allen

    2007-03-01

    Bayesian classification methods have been extensively used in a variety of image processing applications, including medical image analysis. The basic procedure is to combine data-driven knowledge in the likelihood terms with clinical knowledge in the prior terms to classify an image into a pre-determined number of classes. In many applications, it is difficult to construct meaningful priors and, hence, homogeneous priors are assumed. In this paper, we show how expectation-maximization weights and neighboring posterior probabilities may be combined to make intuitive use of the Bayesian priors. Drawing upon insights from computer vision tracking algorithms, we cast the problem in a tissue tracking framework. We show results of our algorithm on the classification of gray and white matter along with surrounding cerebral spinal fluid in brain MRI scans. We show results of our algorithm on 20 brain MRI datasets along with validation against expert manual segmentations.

  3. Brain MRI findings in Wernicke encephalopathy.

    Science.gov (United States)

    Wicklund, Meredith R; Knopman, David S

    2013-08-01

    A 71-year-old woman with myelofibrosis on chemotherapy experienced an acute illness with nausea, vomiting, and diarrhea. Two weeks later, she developed an acute confusional state characterized by disorientation and fluctuating alertness with normal speech and language. Her neurologic examination demonstrated an upper motor neuron pattern of right hemiparesis. She reported double vision though ophthalmoparesis was not appreciated. Her gait was normal. While hospitalized, she developed generalized tonic-clonic seizures. Brain MRI revealed a small area of restricted diffusion of the left precentral gyrus (figure). She was diagnosed with a stroke with secondary seizures; however, as the confusional state resolved, she developed profound retrograde and anterograde amnesia. Review of the brain MRI showed high T2 signal in the medial thalamus and contrast enhancement of the mamillary bodies; a diagnosis of Wernicke-Korsakoff syndrome was entertained and she was started on thiamine replacement. The encephalopathy and hemiparesis resolved though she remains severely amnestic.

  4. Brain palpation from physiological vibrations using MRI

    OpenAIRE

    2015-01-01

    It is commonly supposed that noise obscures but does not contain useful information. However, in wave physics and especially, seismology, scientists developed some tools known as “noise correlation” to extract useful information and construct images from the random vibrations of a medium. Living tissues are full of unexploited vibrations as well. In this manuscript, we show that noise correlation techniques in the brain using MRI can conduct to a tomography related to the stiffness that physi...

  5. Brain MRI findings of neuropsychiatric lupus

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jang-Wook; Kwon, Bae Ju; Lee, Seung-Ro; Hahm, Chang-Kok; Moon, Won Jin; Jeon, Eui Yong; Bae, Sang-Chul [Hanyang Univ. School of Medicine, Seoul (Korea, Republic of)

    2000-12-01

    To evaluate the brain MRI findings in patients with neuropsychiatric lupus. In 26 patients (M:F = 2:24 ; aged 9-48 years) in whom the presence of systemic lupus erythematosus was clinically or pathologically proven and in whom neuropsychiatric lupus was also clinically diagnosed, the findings of brain MRI were retrospectively evaluated. MR images were analyzed with regard to the distribution, location, size and number of lesions due to cerebral ischemia or infarction, the presence of cerebral atrophy, and the extent and degree of brain parenchymal and intravascular enhancement. The most common MRI findings were lesions due to cerebral ischemia or infarction occurring in 18 patients (69%), and located within deep periventricular white matter (n=10), subcortical white matter (n=8), the cerebral cortex (n=7), basal ganglia (n=7), or brain stem or cerebellum (n=2). The lesions were single (n=3) or multiple (n=15), and in 17 patients were less than 1cm in diameter in regions other than the cerebral cortex. In six of these patients, lesions of 1-4cm in diameter in this region were combined, and one occurred in the cerebral cortex only. Cerebral atrophy was seen in 16 patients (62%), in ten of whom there was no past history of treatment with steroids for more than six months. In 15 patients (58%), contrast-enhanced MR image revealed diffuse enhancement of the basal ganglia or intravascular enhancement. In no case were MRI findings normal. The primary mainfestations of neuropsychiatric lupus are multifocal ischemia or infarctions in the cerebral cortex, and subcortical and deep white matter, and the cerebral atrophy. Contrast-enhanced MR images also demonstrated diffuse enhancement of the basal ganglia and intravascular enhancement, both thought to be related to the congestion due to the stagnation of cerebral blood flow.

  6. Unexplained mental retardation: is brain MRI useful?

    Energy Technology Data Exchange (ETDEWEB)

    Decobert, Fabrice; Merzoug, Valerie; Kalifa, Gabriel; Adamsbaum, Catherine [Saint Vincent de Paul Hospital, Department of Radiology, 75674 Paris Cedex 14 (France); Grabar, Sophie [Cochin Hospital, Department of Biostatistics and Medical Information, Paris (France); Ponsot, Gerard [Saint Vincent de Paul Hospital, Department of Neuropaediatrics, Paris (France); Des Portes, Vincent [Saint Vincent de Paul Hospital, Department of Neuropaediatrics, Paris (France); Debrousse Hospital, Department of Neuropaediatrics, Lyon (France)

    2005-06-01

    Mental retardation (MR), defined as an IQ below 70, is a frequent cause of consultation in paediatrics. To evaluate the yield of brain MRI in the diagnostic work-up of unexplained MR in children. Patients and methods: The MRI features and clinical data of 100 patients (age 1-18 years) affected with non-progressive MR of unknown origin were compared to an age-matched control group (n=100). Two radiologists conducted an independent review of the MRI scans. Univariate and multivariate analyses showed a higher incidence of brain anomalies in the MR group than in the control group (53 vs 17, OR=5.7 [2.9-11.1]), for signal abnormalities within the periventricular white matter (OR=20.3 [2.6-155.3]), lateral ventricular dilatation (OR=15.6 [2.0-124]), mild corpus callosum abnormalities (shortness, atrophy) (OR=6.8 [1.8-25.6]) and subtle cerebellar abnormalities, including fissure enlargement (OR=5.2 [1.1-26.2]). The diagnostic value of MRI abnormalities was considered good in 5% of patients (Alexander disease n=1, diffuse cortical malformation n=1, leukomalacia n=1, vermian agenesis n=1, commissural agenesis n=1), and weak in 48% of patients, in whom non-specific abnormalities did not lead to a diagnosis. Some clinical features resulted in a significantly higher percentage of abnormal MRI scans: abnormal neurological examination (82% vs 47%, P=0.008), abnormal skull circumference (66% vs 49%, P=0.04). Motor delay was associated with cerebellar abnormalities (P=0.01). (orig.)

  7. Digital atlas of fetal brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Teresa; Weinberger, E. [Department of Radiology, Seattle Children' s Hospital, Seattle, WA (United States); Matesan, Manuela [University of Washington, Department of Radiology, Seattle, WA (United States); Bulas, Dorothy I. [Division of Diagnostic Imaging and Radiology, Children' s National Medical Center, Washington, DC (United States)

    2010-02-15

    Fetal MRI can be performed in the second and third trimesters. During this time, the fetal brain undergoes profound structural changes. Interpretation of appropriate development might require comparison with normal age-based models. Consultation of a hard-copy atlas is limited by the inability to compare multiple ages simultaneously. To provide images of normal fetal brains from weeks 18 through 37 in a digital format that can be reviewed interactively. This will facilitate recognition of abnormal brain development. T2-W images for the atlas were obtained from fetal MR studies of normal brains scanned for other indications from 2005 to 2007. Images were oriented in standard axial, coronal and sagittal projections, with laterality established by situs. Gestational age was determined by last menstrual period, earliest US measurements and sonogram performed on the same day as the MR. The software program used for viewing the atlas, written in C, permits linked scrolling and resizing the images. Simultaneous comparison of varying gestational ages is permissible. Fetal brain images across gestational ages 18 to 37 weeks are provided as an interactive digital atlas and are available for free download. Improved interpretation of fetal brain abnormalities can be facilitated by the use of digital atlas cataloging of the normal changes throughout fetal development. Here we provide a description of the atlas and a discussion of normal fetal brain development. (orig.)

  8. Intraoperative MRI in pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Choudhri, Asim F. [Le Bonheur Children' s Hospital, Department of Radiology, Memphis, TN (United States); University of Tennessee Health Science Center, Department of Radiology, Memphis, TN (United States); University of Tennessee Health Science Center, Department of Neurosurgery, Memphis, TN (United States); University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN (United States); Le Bonheur Children' s Hospital, Le Bonheur Neuroscience Institute, Memphis, TN (United States); Siddiqui, Adeel [University of Tennessee Health Science Center, Department of Radiology, Memphis, TN (United States); Le Bonheur Children' s Hospital, Le Bonheur Neuroscience Institute, Memphis, TN (United States); Klimo, Paul; Boop, Frederick A. [University of Tennessee Health Science Center, Department of Neurosurgery, Memphis, TN (United States); Le Bonheur Children' s Hospital, Le Bonheur Neuroscience Institute, Memphis, TN (United States); Semmes-Murphey Neurologic and Spine Institute, Memphis, TN (United States); St. Jude Children' s Hospital, Division of Neurosurgery, Department of Surgery, Memphis, TN (United States)

    2015-09-15

    Intraoperative magnetic resonance imaging (iMRI) has emerged as an important tool in guiding the surgical management of children with brain tumors. Recent advances have allowed utilization of high field strength systems, including 3-tesla MRI, resulting in diagnostic-quality scans that can be performed while the child is on the operating table. By providing information about the possible presence of residual tumor, it allows the neurosurgeon to both identify and resect any remaining tumor that is thought to be safely accessible. By fusing the newly obtained images with the surgical guidance software, the images have the added value of aiding in navigation to any residual tumor. This is important because parenchyma often shifts during surgery. It also gives the neurosurgeon insight into whether any immediate postoperative complications have occurred. If any complications have occurred, the child is already in the operating room and precious minutes lost in transport and communications are saved. In this article we review the three main approaches to an iMRI system design. We discuss the possible roles for iMRI during intraoperative planning and provide guidance to help radiologists and neurosurgeons alike in the collaborative management of these children. (orig.)

  9. Alpha shape theory for 3D visualization and volumetric measurement of brain tumor progression using magnetic resonance images.

    Science.gov (United States)

    Hamoud Al-Tamimi, Mohammed Sabbih; Sulong, Ghazali; Shuaib, Ibrahim Lutfi

    2015-07-01

    Resection of brain tumors is a tricky task in surgery due to its direct influence on the patients' survival rate. Determining the tumor resection extent for its complete information via-à-vis volume and dimensions in pre- and post-operative Magnetic Resonance Images (MRI) requires accurate estimation and comparison. The active contour segmentation technique is used to segment brain tumors on pre-operative MR images using self-developed software. Tumor volume is acquired from its contours via alpha shape theory. The graphical user interface is developed for rendering, visualizing and estimating the volume of a brain tumor. Internet Brain Segmentation Repository dataset (IBSR) is employed to analyze and determine the repeatability and reproducibility of tumor volume. Accuracy of the method is validated by comparing the estimated volume using the proposed method with that of gold-standard. Segmentation by active contour technique is found to be capable of detecting the brain tumor boundaries. Furthermore, the volume description and visualization enable an interactive examination of tumor tissue and its surrounding. Admirable features of our results demonstrate that alpha shape theory in comparison to other existing standard methods is superior for precise volumetric measurement of tumor.

  10. In vitro MRI of brain development

    Energy Technology Data Exchange (ETDEWEB)

    Rados, Marko [Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10000 Zagreb (Croatia); Clinical Hospital Center Zagreb, School of Medicine, University of Zagreb, Kispaticeva 12, 10000 Zagreb (Croatia); Judas, Milos [Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10000 Zagreb (Croatia); Kostovic, Ivica [Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10000 Zagreb (Croatia)]. E-mail: ikostov@hiim.h

    2006-02-15

    In this review, we demonstrate the developmental appearance, structural features, and reorganization of transient cerebral zones and structures in the human fetal brain using a correlative histological and MRI analysis. The analysis of postmortem aldehyde-fixed specimens (age range: 10 postovulatory weeks to term) revealed that, at 10 postovulatory weeks, the cerebral wall already has a trilaminar appearance and consists of: (1) a ventricular zone of high cell-packing density; (2) an intermediate zone; (3) the cortical plate (in a stage of primary consolidation) with high MRI signal intensity. The anlage of the hippocampus is present as a prominent bulging in the thin limbic telencephalon. The early fetal telencephalon impar also contains the first commissural fibers and fornix bundles in the septal area. The ganglionic eminence is clearly visible as an expanded continuation of the proliferative ventricular zone. The basal ganglia showed an initial aggregation of cells. The most massive fiber system is in the hemispheric stalk, which is in continuity with thalamocortical fibers. During the mid-fetal period (15-22 postovulatory weeks), the typical fetal lamination pattern develops and the cerebral wall consists of the following zones: (a) a marginal zone (visible on MRI exclusively in the hippocampus); (b) the cortical plate with high cell-packing density and high MRI signal intensity; (c) the subplate zone, which is the most prominent zone rich in extracellular matrix and with a very low MRI signal intensity; (d) the intermediate zone (fetal 'white matter'); (e) the subventricular zone; (f) the periventricular fiber-rich zone; (g) the ventricular zone. The ganglionic eminence is still a very prominent structure with an intense proliferative activity. During the next period (22-26 postovulatory weeks), there is the developmental peak of transient MRI features, caused by the high content of hydrophyllic extracellular matrix in the subplate zone and the

  11. Accuracy of model-based tracking of knee kinematics and cartilage contact measured by dynamic volumetric MRI.

    Science.gov (United States)

    Kaiser, Jarred; Monawer, Arezu; Chaudhary, Rajeev; Johnson, Kevin M; Wieben, Oliver; Kijowski, Richard; Thelen, Darryl G

    2016-10-01

    The purpose of this study was to determine the accuracy of knee kinematics and cartilage contact measured by volumetric dynamic MRI. A motor-actuated phantom drove femoral and tibial bone segments through cyclic 3D motion patterns. Volumetric images were continuously acquired using a 3D radially undersampled cine spoiled gradient echo sequence (SPGR-VIPR). Image data was binned based on position measured via a MRI-compatible rotary encoder. High-resolution static images were segmented to create bone models. Model-based tracking was performed by optimally registering the bone models to the volumetric images at each frame of the SPGR-VIPR series. 3D tibiofemoral translations and orientations were reconstructed, and compared to kinematics obtained by tracking fiducial markers. Imaging was repeated on a healthy subject who performed cyclic knee flexion-extension. Cartilage contact for the subject was assessed by measuring the overlap between articular cartilage surfaces. Model-based tracking was able to track tibiofemoral angles and translations with precisions less than 0.8° and 0.5mm. These precisions resulted in an uncertainty of less than 0.5mm in cartilage contact location. Dynamic SPGR-VIPR imaging can accurately assess in vivo knee kinematics and cartilage contact during voluntary knee motion performed in a MRI scanner. This technology could facilitate the quantitative investigation of links between joint mechanics and the development of osteoarthritis.

  12. Genetic correlates of brain aging on MRI and cognitive test measures: a genome-wide association and linkage analysis in the Framingham study

    OpenAIRE

    2007-01-01

    Abstract Background Brain magnetic resonance imaging (MRI) and cognitive tests can identify heritable endophenotypes associated with an increased risk of developing stroke, dementia and Alzheimer's disease (AD). We conducted a genome-wide association (GWA) and linkage analysis exploring the genetic basis of these endophenotypes in a community-based sample. Methods A total of 705 stroke- and dementia-free Framingham participants (age 62 +9 yrs, 50% male) who underwent volumetric brain MRI and ...

  13. Association of metabolic dysregulation with volumetric brain magnetic resonance imaging and cognitive markers of subclinical brain aging in middle-aged adults: the Framingham Offspring Study

    National Research Council Canada - National Science Library

    Tan, Zaldy S; Beiser, Alexa S; Fox, Caroline S; Au, Rhoda; Himali, Jayandra J; Debette, Stephanie; Decarli, Charles; Vasan, Ramachandran S; Wolf, Philip A; Seshadri, Sudha

    2011-01-01

    ...) in middle-aged adults. Framingham Offspring participants who underwent volumetric MRI and detailed cognitive testing and were free of clinical stroke and dementia during examination 7 (1998-2001...

  14. Tumor shrinkage assessed by volumetric MRI in the long-term follow-up after stereotactic radiotherapy of meningiomas

    Energy Technology Data Exchange (ETDEWEB)

    Astner, Sabrina T.; Theodorou, Marilena; Dobrei-Ciuchendea, Mihaela; Kopp, Christine; Molls, Michael [Dept. of Radiotherapy and Radiooncology, Klinikum rechts der Isar, Technical Univ. of Munich (Germany); Auer, Florian [Dept. of Neuroradiology, Klinikum rechts der Isar, Technical Univ. of Munich (Germany); Grosu, Anca-Ligia [Dept. of Radiotherapy, Univ. Hospital Freiburg (Germany)

    2010-08-15

    Purpose: To evaluate tumor volume reduction in the follow-up of meningiomas after fractionated stereotactic radiotherapy (FSRT) or linac radiosurgery (RS) by using magnetic resonance imaging (MRI). Patients and Methods: In 59 patients with skull base meningiomas, gross tumor volume (GTV) was outlined on contrast-en-hanced MRI before and median 50 months (range 11-92 months) after stereotactic radiotherapy. MRI was performed as an axial three-dimensional gradient-echo T1-weighted sequence at 1.6 mm slice thickness without gap (3D-MRI). Results were compared to the reports of diagnostic findings. Results: Mean tumor size of all 59 meningiomas was 13.9 ml (0.8-62.9 ml) before treatment. There was shrinkage of the treated meningiomas in all but one patient. Within a median volumetric follow-up of 50 months (11-95 months), an absolute mean volume reduction of 4 ml (0-18 ml) was seen. The mean relative size reduction compared to the volume before radiotherapy was 27% (0-73%). Shrinkage measured by 3D-MRI was greater at longer time intervals after radiotherapy. The mean size reduction was 17%, 23%, and 30% (at < 24 months, 24-48 months, and 48-72 months). Conclusion: By using 3D-MRI in almost all patients undergoing radiotherapy of a meningioma, tumor shrinkage is detected. The data presented here demonstrate that volumetric assessment from 3D-MRI provides additional information to routinely used radiologic response measurements. After FSRT or RS, a mean size reduction of 25-45% can be expected within 4 years. (orig.)

  15. MRI Brain Image Segmentation based on Thresholding

    Directory of Open Access Journals (Sweden)

    G. Evelin Sujji, Y.V.S. Lakshmi, G. Wiselin Jiji

    2013-03-01

    Full Text Available Medical Image processing is one of the mostchallenging topics in research field. The mainobjective of image segmentation is to extract variousfeatures of the image that are used foranalysing,interpretation and understanding of images.Medical Resonance Image plays a major role inMedical diagnostics. Image processing in MRI ofbrain is highlyessential due to accurate detection ofthe type of brain abnormality which can reduce thechance of fatal result. This paper outlines anefficient image segmentation technique that candistinguish the pathological tissues such asedemaandtumourfrom thenormal tissues such as WhiteMatter(WM,GreyMatter(GM, andCerebrospinal Fluid(CSF. Thresholding is simplerand most commonly used techniques in imagesegmentation. This technique can be used to detectthe contour of thetumourin brain.

  16. A Combined Random Forests and Active Contour Model Approach for Fully Automatic Segmentation of the Left Atrium in Volumetric MRI

    Directory of Open Access Journals (Sweden)

    Chao Ma

    2017-01-01

    Full Text Available Segmentation of the left atrium (LA from cardiac magnetic resonance imaging (MRI datasets is of great importance for image guided atrial fibrillation ablation, LA fibrosis quantification, and cardiac biophysical modelling. However, automated LA segmentation from cardiac MRI is challenging due to limited image resolution, considerable variability in anatomical structures across subjects, and dynamic motion of the heart. In this work, we propose a combined random forests (RFs and active contour model (ACM approach for fully automatic segmentation of the LA from cardiac volumetric MRI. Specifically, we employ the RFs within an autocontext scheme to effectively integrate contextual and appearance information from multisource images together for LA shape inferring. The inferred shape is then incorporated into a volume-scalable ACM for further improving the segmentation accuracy. We validated the proposed method on the cardiac volumetric MRI datasets from the STACOM 2013 and HVSMR 2016 databases and showed that it outperforms other latest automated LA segmentation methods. Validation metrics, average Dice coefficient (DC and average surface-to-surface distance (S2S, were computed as 0.9227±0.0598 and 1.14±1.205 mm, versus those of 0.6222–0.878 and 1.34–8.72 mm, obtained by other methods, respectively.

  17. A Combined Random Forests and Active Contour Model Approach for Fully Automatic Segmentation of the Left Atrium in Volumetric MRI

    Science.gov (United States)

    Luo, Gongning

    2017-01-01

    Segmentation of the left atrium (LA) from cardiac magnetic resonance imaging (MRI) datasets is of great importance for image guided atrial fibrillation ablation, LA fibrosis quantification, and cardiac biophysical modelling. However, automated LA segmentation from cardiac MRI is challenging due to limited image resolution, considerable variability in anatomical structures across subjects, and dynamic motion of the heart. In this work, we propose a combined random forests (RFs) and active contour model (ACM) approach for fully automatic segmentation of the LA from cardiac volumetric MRI. Specifically, we employ the RFs within an autocontext scheme to effectively integrate contextual and appearance information from multisource images together for LA shape inferring. The inferred shape is then incorporated into a volume-scalable ACM for further improving the segmentation accuracy. We validated the proposed method on the cardiac volumetric MRI datasets from the STACOM 2013 and HVSMR 2016 databases and showed that it outperforms other latest automated LA segmentation methods. Validation metrics, average Dice coefficient (DC) and average surface-to-surface distance (S2S), were computed as 0.9227 ± 0.0598 and 1.14 ± 1.205 mm, versus those of 0.6222–0.878 and 1.34–8.72 mm, obtained by other methods, respectively. PMID:28316992

  18. Label-free volumetric optical imaging of intact murine brains

    Science.gov (United States)

    Ren, Jian; Choi, Heejin; Chung, Kwanghun; Bouma, Brett E.

    2017-04-01

    A central effort of today’s neuroscience is to study the brain’s ’wiring diagram’. The nervous system is believed to be a network of neurons interacting with each other through synaptic connection between axons and dendrites, therefore the neuronal connectivity map not only depicts the underlying anatomy, but also has important behavioral implications. Different approaches have been utilized to decipher neuronal circuits, including electron microscopy (EM) and light microscopy (LM). However, these approaches typically demand extensive sectioning and reconstruction for a brain sample. Recently, tissue clearing methods have enabled the investigation of a fully assembled biological system with greatly improved light penetration. Yet, most of these implementations, still require either genetic or exogenous contrast labeling for light microscopy. Here we demonstrate a high-speed approach, termed as Clearing Assisted Scattering Tomography (CAST), where intact brains can be imaged at optical resolution without labeling by leveraging tissue clearing and the scattering contrast of optical frequency domain imaging (OFDI).

  19. Heritability of volumetric brain changes and height in children entering puberty.

    Science.gov (United States)

    van Soelen, Inge L C; Brouwer, Rachel M; van Baal, G Caroline M; Schnack, Hugo G; Peper, Jiska S; Chen, Lei; Kahn, René S; Boomsma, Dorret I; Hulshoff Pol, Hilleke E

    2013-03-01

    The human brain undergoes structural changes in children entering puberty, while simultaneously children increase in height. It is not known if brain changes are under genetic control, and whether they are related to genetic factors influencing the amount of overall increase in height. Twins underwent magnetic resonance imaging brain scans at age 9 (N = 190) and 12 (N = 125). High heritability estimates were found at both ages for height and brain volumes (49-96%), and high genetic correlation between ages were observed (r(g) > 0.89). With increasing age, whole brain (+1.1%), cerebellum (+4.2%), cerebral white matter (+5.1%), and lateral ventricle (+9.4%) volumes increased, and third ventricle (-4.0%) and cerebral gray matter (-1.6%) volumes decreased. Children increased on average 13.8 cm in height (9.9%). Genetic influences on individual difference in volumetric brain and height changes were estimated, both within and across traits. The same genetic factors influenced both cerebral (20% heritable) and cerebellar volumetric changes (45%). Thus, the extent to which changes in cerebral and cerebellar volumes are heritable in children entering puberty are due to the same genes that influence change in both structures. The increase in height was heritable (73%), and not associated with cerebral volumetric change, but positively associated with cerebellar volume change (r(p) = 0.24). This association was explained by a genetic correlation (r(g) = 0.48) between height and cerebellar change. Brain and body each expand at their own pace and through separate genetic pathways. There are distinct genetic processes acting on structural brain development, which cannot be explained by genetic increase in height.

  20. MRI of normal fetal brain development.

    Science.gov (United States)

    Prayer, Daniela; Kasprian, Gregor; Krampl, Elisabeth; Ulm, Barbara; Witzani, Linde; Prayer, Lucas; Brugger, Peter C

    2006-02-01

    Normal fetal brain maturation can be studied by in vivo magnetic resonance imaging (MRI) from the 18th gestational week (GW) to term, and relies primarily on T2-weighted and diffusion-weighted (DW) sequences. These maturational changes must be interpreted with a knowledge of the histological background and the temporal course of the respective developmental steps. In addition, MR presentation of developing and transient structures must be considered. Signal changes associated with maturational processes can mainly be ascribed to the following changes in tissue composition and organization, which occur at the histological level: (1) a decrease in water content and increasing cell-density can be recognized as a shortening of T1- and T2-relaxation times, leading to increased T1-weighted and decreased T2-weighted intensity, respectively; (2) the arrangement of microanatomical structures to create a symmetrical or asymmetrical environment, leading to structural differences that may be demonstrated by DW-anisotropy; (3) changes in non-structural qualities, such as the onset of a membrane potential in premyelinating axons. The latter process also influences the appearance of a structure on DW sequences. Thus, we will review the in vivo MR appearance of different maturational states of the fetal brain and relate these maturational states to anatomical, histological, and in vitro MRI data. Then, the development of the cerebral cortex, white matter, temporal lobe, and cerebellum will be reviewed, and the MR appearance of transient structures of the fetal brain will be shown. Emphasis will be placed on the appearance of the different structures with the various sequences. In addition, the possible utility of dynamic fetal sequences in assessing spontaneous fetal movements is discussed.

  1. MRI of normal fetal brain development

    Energy Technology Data Exchange (ETDEWEB)

    Prayer, Daniela [Department of Radiodiagnostics, Medical University of Vienna, Vienna (Austria)]. E-mail: Daniela.prayer@meduniwien.ac.at; Kasprian, Gregor [Department of Radiodiagnostics, Medical University of Vienna, Vienna (Austria); Krampl, Elisabeth [Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna (Austria); Ulm, Barbara [Department of Prenatal Diagnosis, Medical University of Vienna, Vienna (Austria); Witzani, Linde [Department of Radiodiagnostics, Medical University of Vienna, Vienna (Austria); Prayer, Lucas [Diagnosezentrum Urania, Vienna (Austria); Brugger, Peter C. [Center of Anatomy and Cell Biology, Medical University of Vienna, Vienna (Austria)

    2006-02-15

    Normal fetal brain maturation can be studied by in vivo magnetic resonance imaging (MRI) from the 18th gestational week (GW) to term, and relies primarily on T2-weighted and diffusion-weighted (DW) sequences. These maturational changes must be interpreted with a knowledge of the histological background and the temporal course of the respective developmental steps. In addition, MR presentation of developing and transient structures must be considered. Signal changes associated with maturational processes can mainly be ascribed to the following changes in tissue composition and organization, which occur at the histological level: (1) a decrease in water content and increasing cell-density can be recognized as a shortening of T1- and T2-relaxation times, leading to increased T1-weighted and decreased T2-weighted intensity, respectively; (2) the arrangement of microanatomical structures to create a symmetrical or asymmetrical environment, leading to structural differences that may be demonstrated by DW-anisotropy; (3) changes in non-structural qualities, such as the onset of a membrane potential in premyelinating axons. The latter process also influences the appearance of a structure on DW sequences. Thus, we will review the in vivo MR appearance of different maturational states of the fetal brain and relate these maturational states to anatomical, histological, and in vitro MRI data. Then, the development of the cerebral cortex, white matter, temporal lobe, and cerebellum will be reviewed, and the MR appearance of transient structures of the fetal brain will be shown. Emphasis will be placed on the appearance of the different structures with the various sequences. In addition, the possible utility of dynamic fetal sequences in assessing spontaneous fetal movements is discussed.

  2. Chediak-Higashi syndrome: brain MRI and MR spectroscopy manifestations

    Energy Technology Data Exchange (ETDEWEB)

    Lolli, Valentina; Soto Ares, Gustavo; Pruvo, Jean-Pierre [Roger Salengro Hospital, CHRU, Neuroradiology Department, Lille (France); Abou Chahla, Wadih [Jeanne de Flandre Hospital, Pediatric Hematology and Oncology Department, Lille (France); Jissendi-Tchofo, Patrice [University Hospital Saint-Pierre, Radiology Department - Pediatric Neuroradiology Section, Brussels (Belgium)

    2015-08-15

    Chediak-Higashi syndrome is a rare inherited metabolic disorder characterized by partial oculocutaneous albinism, immunodeficiency, and neurological dysfunction. We present the brain magnetic resonance imaging (MRI) and MR spectroscopy (MRS) findings obtained during the accelerated phase of the disorder in an 8-year-old. The brain MRI manifestations at recurrences 15 months and 24 months later are reported as well. (orig.)

  3. Atlas-Guided Segmentation of Vervet Monkey Brain MRI

    OpenAIRE

    Li, Xiaoxing; Pohl, Kilian M.; Styner, Martin; Addicott, Merideth; Wyatt, Chris; Daunais, James B.; Fedorov, Andriy; Bouix, Sylvain; Wells, William Mercer; Kikinis, Ron

    2011-01-01

    The vervet monkey is an important nonhuman primate model that allows the study of isolated environmental factors in a controlled environment. Analysis of monkey MRI often suffers from lower quality images compared with human MRI because clinical equipment is typically used to image the smaller monkey brain and higher spatial resolution is required. This, together with the anatomical differences of the monkey brains, complicates the use of neuroimage analysis pipelines tuned for human MRI anal...

  4. Preliminary evaluation of a brain PET insertable to MRI

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Gyuseng [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701 South (Korea, Republic of); Choi, Yong [Department of Electronic Engineering, Sogang University, Seoul, 121-742 South (Korea, Republic of); Lee, Jae Sung; An, Hyun Joon [Department of Nuclear Medicine, Seoul National University, Seoul, 110-744 South (Korea, Republic of); Jung, Jin Ho [Department of Electronic Engineering, Sogang University, Seoul, 121-742 South (Korea, Republic of); Park, Hyun Wook; Oh, Chang Hyun; Park, Kyeongjin; Lim, Kyung Taek; Cho, Minsik [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701 South (Korea, Republic of); Sul, Woo Suk [National NanoFab Center, Deajeon, 305-806 South (Korea, Republic of); Kim, Hyoungtaek; Kim, Hyunduk [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701 South (Korea, Republic of)

    2014-07-29

    There is a new trend of the medical image that diagnoses a brain disease as like Alzheimer dementia. The first qualified candidate is a PET-MRI fusion modality because MRI is a more powerful anatomic diagnosis tool than other modalities. In our study, in order to solve the high magnetic field from MRI, the development was consisted with four main items such as photo-sensor, PET scanner, MRI head-coil and attenuation correction algorithm development.

  5. MRI of brain disease in veterinary patients part 1: Basic principles and congenital brain disorders.

    Science.gov (United States)

    Hecht, Silke; Adams, William H

    2010-01-01

    Magnetic resonance imaging (MRI) is increasingly being used in the diagnosis of central nervous system disorders in veterinary patients and is quickly becoming the imaging modality of choice in evaluation of brain and intracranial disease. This article provides an overview of the basic principles of MRI, a description of sequences and their applications in brain imaging, and an approach to interpretation of brain MRI. A detailed discussion of imaging findings in general intracranial disorders including hydrocephalus, vasogenic edema, brain herniation, and seizure-associated changes, and the MR diagnosis of congenital brain disorders is provided. MRI evaluation of acquired brain disorders is described in a second companion article.

  6. A stereotaxic MRI template set for the rat brain with tissue class distribution maps and co-registered anatomical atlas: application to pharmacological MRI.

    Science.gov (United States)

    Schwarz, Adam J; Danckaert, Anne; Reese, Torsten; Gozzi, Alessandro; Paxinos, George; Watson, Charles; Merlo-Pich, Emilio V; Bifone, Angelo

    2006-08-15

    We describe a stereotaxic rat brain MRI template set with a co-registered digital anatomical atlas and illustrate its application to the analysis of a pharmacological MRI (phMRI) study of apomorphine. The template set includes anatomical images and tissue class probability maps for brain parenchyma and cerebrospinal fluid (CSF). These facilitate the use of standard fMRI software for spatial normalisation and tissue segmentation of rat brain data. A volumetric reconstruction of the Paxinos and Watson rat brain atlas is also co-localised with the template, enabling the atlas structure and stereotaxic coordinates corresponding to a feature within a statistical map to be interactively reported, facilitating the localisation of functional effects. Moreover, voxels falling within selected brain structures can be combined to define anatomically based 3D volumes of interest (VOIs), free of operator bias. As many atlas structures are small relative to the typical resolution of phMRI studies, a mechanism for defining composite structures as agglomerations of individual atlas structures is also described. This provides a simple and robust means of interrogating structures that are otherwise difficult to delineate and an objective framework for comparing and classifying compounds based on an anatomical profile of their activity. These developments allow a closer alignment of pre-clinical and clinical analysis techniques.

  7. Pediatric brain MRI in neurofibromatosis type I

    Energy Technology Data Exchange (ETDEWEB)

    Mentzel, Hans-J.; Fitzek, Clemens; Vogt, Susanna; Reichenbach, Juergen R.; Kaiser, Werner A. [Friedrich-Schiller-University Jena, Department of Pediatric Radiology, Institute of Diagnostic and Interventional Radiology, Jena (Germany); Seidel, Joerg; Eichhorn, Annegret; Zintl, Felix [Friedrich-Schiller-University Jena, Department of Pediatrics, Jena (Germany)

    2005-04-01

    Neurofibromatosis (NF) is the most common of the phakomatoses, with a prevalence of 1 in 3-4,000. Many organ systems can be affected. In addition to multiple peripheral neurofibromas, NF I predisposed to CNS tumors including optic glioma, astrocytoma and plexiform neurofibroma. The purpose of this pictorial review is to illustrate characteristic brain MR imaging lesions in children with NF I and to give some recommendations about diagnostic imaging procedures in children suffering from NF I. Typical findings in brain MRI are hyperintense lesion on T2-weighted images, so-called unknown bright objects, which may be useful as an additional imaging criterion for NF I. Contrast administration is necessary in MR studies to maximize tumor detection and characterization, to add confidence to the diagnosis of benign probable myelin vacuolization, and to document stability of neoplasm on follow-up examinations. We recommend to perform serial MR imaging in children every 12 months. The frequency of follow-up in children with known brain tumors will vary with the tumor grade, biological activity and treatment. (orig.)

  8. MRI of 'brain death'

    Energy Technology Data Exchange (ETDEWEB)

    Nishino, Shigeki; Itoh, Takahiko; Tuchida, Shohei; Kinugasa, Kazushi; Asari, Shoji; Nishimoto, Akira (Okayama Univ. (Japan). School of Medicine); Sanou, Kazuo

    1990-12-01

    Magnetic resonance imaging (MRI) was undertaken for two patients who suffered from severe cerebrovascular diseases and were clinically brain dead. The MRI system we used was Resona (Yokogawa Medical Systems, superconductive system 0.5 T) and the CT apparatus was Toshiba TCT-300. Initial CT and MRI were undertaken as soon as possible after admission, and repeated sequentially. After diagnosis of brain death, we performed angiography to determine cerebral circulatory arrest, and MRI obtained at the same time was compared with the angiogram and CT. Case 1 was a 77-year-old man who was admitted in an unconscious state. CT and MRI on the second day after hospitalization revealed cerebellar infarction. He was diagnosed as brain dead on day 4. Case 2 was a 35-year-old man. When he was transferred to our hospital, he was in cardiorespiratory arrested. Cardiac resuscitation was successful but no spontaneous respiration appeared. CT and MRI on admission revealed right intracerebral hemorrhage. Angiography revealed cessation of contrast medium in intracranial vessels in both of the patients. We found no 'flow signal void sign' in the bilateral internal carotid and basilar arteries on MRI images in both cases after brain death. MRI, showing us the anatomical changes of the brain, clearly revealed brain herniations, even though only nuclear findings of 'brain tamponade' were seen on CT. But in Case 1, we could not see the infarct lesions in the cerebellum on MR images obtained after brain death. This phenomenon was caused by the whole brain ischemia masking the initial ischemic lesions. We concluded that MRI was useful not only the anatomical display of lesions and brain herniation with high contrast resolution but for obtaining information on cerebral circulation of brain death. (author).

  9. MRI of the brain in diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Y. [Osaka Rosai Hospital (Japan). Dept. of Radiology; Nomurak, M. [Osaka Rosai Hospital (Japan). Dept. of Medicine; Tanaka, H. [Osaka Rosai Hospital (Japan). Dept. of Radiology; Yamamoto, H. [Osaka Rosai Hospital (Japan). Dept. of Radiology; Yamamoto, T. [Osaka Rosai Hospital (Japan). Dept. of Radiology; Tsukaguchi, I, [Osaka Rosai Hospital (Japan). Dept. of Radiology; Nakamura, H. [Osaka Univ. Medical School (Japan). Dept. of Radiology

    1994-02-01

    We studied the MRI appearances of the brain in 159 patients with diabetes mellitus (DM) and 2566 age-matched individuals without DM (controls). The images were reviewed for cerebral infarcts, hemorrhage, atrophy and subcortical arteriosclerotic encephalopathy. Cerebral atrophy was significantly more frequent in patients with DM than in controls (P > 0.005) from the sixth to the eighth decade. The frequency of atrophy was 41.2% in the 6th decade, 60.0 % in the 7th and 92.3 % in the 8th decade in DM, and 19.8 %, 38.9 % and 56.8 % respectively in controls. Unexpectedly, there was no statistically significant difference in the incidences of cerebrovascular diseases at any age. (orig.)

  10. Corpus callosum thickness on mid-sagittal MRI as a marker of brain volume: a pilot study in children with HIV-related brain disease and controls

    Energy Technology Data Exchange (ETDEWEB)

    Andronikou, Savvas [University of the Witwatersrand, Department of Radiology, Faculty of Health Sciences, Cape Town (South Africa); Ackermann, Christelle [University of Stellenbosch, Department of Radiology, Stellenbosch (South Africa); Laughton, Barbara; Cotton, Mark [Stellenbosch University and Tygerberg Children' s Hospital, Children' s Infectious Diseases Research Unit, Stellenbosch (South Africa); Tomazos, Nicollette [University of Cape Town, Faculty of Commerce, Department of Management Studies, Cape Town (South Africa); Spottiswoode, Bruce [University of Cape Town, MRC/UCT Medical Imaging Research Unit, Department of Human Biology, Cape Town (South Africa); Mauff, Katya [University of Cape Town, Department of Statistical Sciences, Cape Town (South Africa); Pettifor, John M. [University of the Witwatersrand, MRC/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics, Faculty of Health Sciences, Witwatersrand (South Africa)

    2015-07-15

    Corpus callosum thickness measurement on mid-sagittal MRI may be a surrogate marker of brain volume. This is important for evaluation of diseases causing brain volume gain or loss, such as HIV-related brain disease and HIV encephalopathy. To determine if thickness of the corpus callosum on mid-sagittal MRI is a surrogate marker of brain volume in children with HIV-related brain disease and in controls without HIV. A retrospective MRI analysis in children (<5 years old) with HIV-related brain disease and controls used a custom-developed semi-automated tool, which divided the midline corpus callosum and measured its thickness in multiple locations. Brain volume was determined using volumetric analysis. Overall corpus callosum thickness and thickness of segments of the corpus callosum were correlated with overall and segmented (grey and white matter) brain volume. Forty-four children (33 HIV-infected patients and 11 controls) were included. Significant correlations included overall corpus callosum (mean) and total brain volume (P = 0.05); prefrontal corpus callosum maximum with white matter volume (P = 0.02); premotor corpus callosum mean with total brain volume (P = 0.04) and white matter volume (P = 0.02), premotor corpus callosum maximum with white matter volume (P = 0.02) and sensory corpus callosum mean with total brain volume (P = 0.02). Corpus callosum thickness correlates with brain volume both in HIV-infected patients and controls. (orig.)

  11. Lesion Explorer: a video-guided, standardized protocol for accurate and reliable MRI-derived volumetrics in Alzheimer's disease and normal elderly.

    Science.gov (United States)

    Ramirez, Joel; Scott, Christopher J M; McNeely, Alicia A; Berezuk, Courtney; Gao, Fuqiang; Szilagyi, Gregory M; Black, Sandra E

    2014-04-14

    Obtaining in vivo human brain tissue volumetrics from MRI is often complicated by various technical and biological issues. These challenges are exacerbated when significant brain atrophy and age-related white matter changes (e.g. Leukoaraiosis) are present. Lesion Explorer (LE) is an accurate and reliable neuroimaging pipeline specifically developed to address such issues commonly observed on MRI of Alzheimer's disease and normal elderly. The pipeline is a complex set of semi-automatic procedures which has been previously validated in a series of internal and external reliability tests(1,2). However, LE's accuracy and reliability is highly dependent on properly trained manual operators to execute commands, identify distinct anatomical landmarks, and manually edit/verify various computer-generated segmentation outputs. LE can be divided into 3 main components, each requiring a set of commands and manual operations: 1) Brain-Sizer, 2) SABRE, and 3) Lesion-Seg. Brain-Sizer's manual operations involve editing of the automatic skull-stripped total intracranial vault (TIV) extraction mask, designation of ventricular cerebrospinal fluid (vCSF), and removal of subtentorial structures. The SABRE component requires checking of image alignment along the anterior and posterior commissure (ACPC) plane, and identification of several anatomical landmarks required for regional parcellation. Finally, the Lesion-Seg component involves manual checking of the automatic lesion segmentation of subcortical hyperintensities (SH) for false positive errors. While on-site training of the LE pipeline is preferable, readily available visual teaching tools with interactive training images are a viable alternative. Developed to ensure a high degree of accuracy and reliability, the following is a step-by-step, video-guided, standardized protocol for LE's manual procedures.

  12. Predicting Alzheimer's disease by classifying 3D-Brain MRI images using SVM and other well-defined classifiers

    Science.gov (United States)

    Matoug, S.; Abdel-Dayem, A.; Passi, K.; Gross, W.; Alqarni, M.

    2012-02-01

    Alzheimer's disease (AD) is the most common form of dementia affecting seniors age 65 and over. When AD is suspected, the diagnosis is usually confirmed with behavioural assessments and cognitive tests, often followed by a brain scan. Advanced medical imaging and pattern recognition techniques are good tools to create a learning database in the first step and to predict the class label of incoming data in order to assess the development of the disease, i.e., the conversion from prodromal stages (mild cognitive impairment) to Alzheimer's disease, which is the most critical brain disease for the senior population. Advanced medical imaging such as the volumetric MRI can detect changes in the size of brain regions due to the loss of the brain tissues. Measuring regions that atrophy during the progress of Alzheimer's disease can help neurologists in detecting and staging the disease. In the present investigation, we present a pseudo-automatic scheme that reads volumetric MRI, extracts the middle slices of the brain region, performs segmentation in order to detect the region of brain's ventricle, generates a feature vector that characterizes this region, creates an SQL database that contains the generated data, and finally classifies the images based on the extracted features. For our results, we have used the MRI data sets from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.

  13. Optimizing full-brain coverage in human brain MRI through population distributions of brain size

    NARCIS (Netherlands)

    Mennes, M.; Jenkinson, M.; Valabregue, R.; Buitelaar, J.; Beckmann, C.; Smith, S.

    2014-01-01

    When defining an MRI protocol, brain researchers need to set multiple interdependent parameters that define repetition time (TR), voxel size, field-of-view (FOV), etc. Typically, researchers aim to image the full brain, making the expected FOV an important parameter to consider. Especially in 2D-EPI

  14. FULLY AUTOMATIC FRAMEWORK FOR SEGMENTATION OF BRAIN MRI IMAGE

    Institute of Scientific and Technical Information of China (English)

    Lin Pan; Zheng Chongxun; Yang Yong; Gu Jianwen

    2005-01-01

    Objective To propose an automatic framework for segmentation of brain image in this paper. Methods The brain MRI image segmentation framework consists of three-step segmentation procedures. First, Non-brain structures removal by level set method. Then, the non-uniformity correction method is based on computing estimates of tissue intensity variation. Finally, it uses a statistical model based on Markov random filed for MRI brain image segmentation. The brain tissue can be classified into cerebrospinal fluid, white matter and gray matter. Results To evaluate the proposed our method, we performed two sets of experiments, one on simulated MR and another on real MR brain data. Conclusion The efficacy of the brain MRI image segmentation framework has been demonstrated by the extensive experiments. In the future, we are also planning on a large-scale clinical evaluation of this segmentation framework.

  15. Diffusion tensor and volumetric magnetic resonance measures as biomarkers of brain damage in a small animal model of HIV.

    Directory of Open Access Journals (Sweden)

    Margaret R Lentz

    Full Text Available There are currently no widely accepted neuro-HIV small animal models. We wanted to validate the HIV-1 Transgenic rat (Tg as an appropriate neuro-HIV model and then establish in vivo imaging biomarkers of neuropathology, within this model, using MR structural and diffusion tensor imaging (DTI.Young and middle-aged Tg and control rats were imaged using MRI. A subset of middle-aged animals underwent longitudinal repeat imaging six months later. Total brain volume (TBV, ventricular volume (VV and parenchymal volume (PV = TBV-VV were measured. Fractional anisotropy (FA and mean diffusivity (MD values of the corpus callosum (CC were calculated from DTI data.TBV and PV were smaller in Tg compared to control rats in young and middle-aged cohorts (p0.05.We detected brain volume loss in the Tg rat, probably due to astrocytic dysfunction/loss, loss of structural/axonal matrix and striatal neuronal loss as suggested by immunofluorescence. Increased MD and decreased FA in the CC probably reflect microstructural differences between the Tg and Control rats which could include increased extracellular space between white matter tracts, demyelination and axonal degeneration, among other pathologies. We believe that the Tg rat is an adequate model of neuropathology in HIV and that volumetric MR and DTI measures can be potentially used as biomarkers of disease progression.

  16. A Review of Brain Extraction Techniques in Fetal MRI

    Directory of Open Access Journals (Sweden)

    Morteza Pishghadam

    2016-03-01

    Full Text Available Sonography, Maternal Serum Screening, amniocentesis, and sampling are among the techniques utilized to examine a developing fetus and diagnose fetal abnormalities in the uterus. Despite the fact that Sonography is the main technique used for imaging and monitoring, the use of Magnetic Resonance Imaging (MRI to evaluate the fetus is growing. Moreover, MRI is used for further examinations in case of abnormalities diagnosed in the ultrasound scan. MRI, in comparison with other imaging techniques, provides the advantage of fetal brain study with higher precision and quality. The first step to study the fetal brain is its extraction from the MRI of the fetal brain. Since the maternal tissue is also present in the MRI of the fetal brain tissue, and due to the differences in the adult and fetus signals of brain tissue, it is not possible to use the adult brain extraction techniques for fetus. Given that semi-automatic segmentation is a time-consuming and tedious task, the need for automatic segmentation is highlighted. This is while the development of the stages of automatic segmentation of brain structures is still a challenge to overcome. In the present paper, we review the techniques for automatic segmentation or brain extraction of fetal MRI.

  17. Growth trajectories of the human fetal brain tissues estimated from 3D reconstructed in utero MRI.

    Science.gov (United States)

    Scott, Julia A; Habas, Piotr A; Kim, Kio; Rajagopalan, Vidya; Hamzelou, Kia S; Corbett-Detig, James M; Barkovich, A James; Glenn, Orit A; Studholme, Colin

    2011-08-01

    In the latter half of gestation (20-40 gestational weeks), human brain growth accelerates in conjunction with cortical folding and the deceleration of ventricular zone progenitor cell proliferation. These processes are reflected in changes in the volume of respective fetal tissue zones. Thus far, growth trajectories of the fetal tissue zones have been extracted primarily from 2D measurements on histological sections and magnetic resonance imaging (MRI). In this study, the volumes of major fetal zones-cortical plate (CP), subplate and intermediate zone (SP+IZ), germinal matrix (GMAT), deep gray nuclei (DG), and ventricles (VENT)--are calculated from automatic segmentation of motion-corrected, 3D reconstructed MRI. We analyzed 48 T2-weighted MRI scans from 39 normally developing fetuses in utero between 20.57 and 31.14 gestational weeks (GW). The supratentorial volume (STV) increased linearly at a rate of 15.22% per week. The SP+IZ (14.75% per week) and DG (15.56% per week) volumes increased at similar rates. The CP increased at a greater relative rate (18.00% per week), while the VENT (9.18% per week) changed more slowly. Therefore, CP increased as a fraction of STV and the VENT fraction declined. The total GMAT volume slightly increased then decreased after 25 GW. We did not detect volumetric sexual dimorphisms or total hemispheric volume asymmetries, which may emerge later in gestation. Further application of the automated fetal brain segmentation to later gestational ages will bridge the gap between volumetric studies of premature brain development and normal brain development in utero. Published by Elsevier Ltd.

  18. MRI segmentation of the human brain: challenges, methods, and applications.

    Science.gov (United States)

    Despotović, Ivana; Goossens, Bart; Philips, Wilfried

    2015-01-01

    Image segmentation is one of the most important tasks in medical image analysis and is often the first and the most critical step in many clinical applications. In brain MRI analysis, image segmentation is commonly used for measuring and visualizing the brain's anatomical structures, for analyzing brain changes, for delineating pathological regions, and for surgical planning and image-guided interventions. In the last few decades, various segmentation techniques of different accuracy and degree of complexity have been developed and reported in the literature. In this paper we review the most popular methods commonly used for brain MRI segmentation. We highlight differences between them and discuss their capabilities, advantages, and limitations. To address the complexity and challenges of the brain MRI segmentation problem, we first introduce the basic concepts of image segmentation. Then, we explain different MRI preprocessing steps including image registration, bias field correction, and removal of nonbrain tissue. Finally, after reviewing different brain MRI segmentation methods, we discuss the validation problem in brain MRI segmentation.

  19. Mapping Human Brain Function with MRI at 7 Tesla

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ In the past decade, the most significant development in MRI is the introduction of fMRI, which permits the mapping of human brain function with exquisite details noninvasively. Functional mapping can be achieved by measuring changes in the blood oxygenation level (I.e. The BOLD contrast) or cerebral blood flow.

  20. Automatic Analysis of Brain Tissue and Structural Connectivity in MRI

    NARCIS (Netherlands)

    R. de Boer (Renske)

    2011-01-01

    textabstractStudies of the brain using magnetic resonance imaging (MRI) can provide insights in physiology and pathology that can eventually aid clinical diagnosis and therapy monitoring. MRI data acquired in these studies can be difficult, as well as laborious, to interpret and analyze by human obs

  1. Prematurity and brain perfusion: Arterial spin labeling MRI

    Directory of Open Access Journals (Sweden)

    Domenico Tortora

    2017-01-01

    Conclusions: ASL MRI demonstrated differences in brain perfusion of the basal ganglia between PN and TN. In PN, a positive correlation between CBF and neuromotor outcome was demonstrated in this area.

  2. Brain volumetrics, regional cortical thickness and radiographic findings in children with cyanotic congenital heart disease using quantitative magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Alsiagy A. Salama, M.D.

    2016-12-01

    Conclusions: Children with CCHD show MRI evidence of micro- and macro vascular injury, reduced brain volume and cortical thickness. Brain volume loss correlated with hsCRP, oxygen saturation and packed cell volume.

  3. MRI assessment of relapsed glioblastoma during treatment with bevacizumab: Volumetric measurement of enhanced and FLAIR lesions for evaluation of response and progression—A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Pichler, Josef, E-mail: josef.pichler@gespag.at [Wagner Jauregg Weg 15, 4020 Linz, Landesnervenklinik Linz (Austria); Pachinger, Corinna, E-mail: pachingercorinna@gmx.at [Wagner Jauregg Weg 15, 4020 Linz, Landesnervenklinik Linz (Austria); Pelz, Manuela, E-mail: mauela.pelz@gespag.at [Wagner Jauregg Weg 15, 4020 Linz, Landesnervenklinik Linz (Austria); Kleiser, Raimund, E-mail: raimund.kleiser@gespag.at [Wagner Jauregg Weg 15, 4020 Linz, Landesnervenklinik Linz (Austria)

    2013-05-15

    Purpose: To develop a magnetic resonance imaging (MRI) metric that is useful for therapy monitoring in patients with relapsed glioblastoma (GBM) during treatment with the antiangiogenic monoclonal antibody bevacizumab (Bev). We evaluated the feasibility of tumour volume measurement with our software tool in clinical routine and tried to establish reproducible and quantitative parameters for surveillance of patients on treatment with antiangiogenic drugs. Materials and methods: In this retrospective institutional pilot study, 18 patients (11 men, 7 women; mean age 53.5) with recurrent GBM received bevacizumab and irinotecan every two weeks as second line therapy. Follow up scans were assessed every two to four months. Data were collected on a 1.5 T MR System (Siemens, Symphony) with the standard head coil using our standardized tumour protocol. Volumetric measurement was performed with a commercial available software stroketool in FLAIR and T1-c imaging with following procedure: Pre-processing involved cutting noise and electing a Gaussian of 3 × 3 to smooth images, selecting a ROI (region of interest) in healthy brain area of the contra lateral side with quantifying the intensity value, adding 20% to this value to define the threshold level. Only values above this threshold are left corresponding to the tumour lesion. For the volumetric measurement the detected tumour area was circuited in all slices and finally summing up all values and multiplied by slice thickness to get the whole volume. Results: With McDonalds criteria progression was indicated in 14 out of 18 patients. In contrast, volumetric measurement showed an increase of contrast enhancement of >25%, defined as threshold for progression, in 11 patients (78%) and in 12 patients (85%) in FLAIR volume, respectively. 6 patients revealed that volumes in MRI increased earlier than the last scan, which was primarily defined as the date of progression with McDonald criteria, changing PFS after re-evaluation of

  4. MRI Segmentation of the Human Brain: Challenges, Methods, and Applications

    Directory of Open Access Journals (Sweden)

    Ivana Despotović

    2015-01-01

    Full Text Available Image segmentation is one of the most important tasks in medical image analysis and is often the first and the most critical step in many clinical applications. In brain MRI analysis, image segmentation is commonly used for measuring and visualizing the brain’s anatomical structures, for analyzing brain changes, for delineating pathological regions, and for surgical planning and image-guided interventions. In the last few decades, various segmentation techniques of different accuracy and degree of complexity have been developed and reported in the literature. In this paper we review the most popular methods commonly used for brain MRI segmentation. We highlight differences between them and discuss their capabilities, advantages, and limitations. To address the complexity and challenges of the brain MRI segmentation problem, we first introduce the basic concepts of image segmentation. Then, we explain different MRI preprocessing steps including image registration, bias field correction, and removal of nonbrain tissue. Finally, after reviewing different brain MRI segmentation methods, we discuss the validation problem in brain MRI segmentation.

  5. Cognition and brain abnormalities on MRI in pituitary patients

    Energy Technology Data Exchange (ETDEWEB)

    Brummelman, Pauline [Department of Endocrinology, University of Groningen, University Medical Center Groningen (Netherlands); Sattler, Margriet G.A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen (Netherlands); Department of Radiation Oncology, Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Meiners, Linda C. [Department of Radiology, University of Groningen, University Medical Center Groningen (Netherlands); Berg, Gerrit van den; Klauw, Melanie M. van der [Department of Endocrinology, University of Groningen, University Medical Center Groningen (Netherlands); Elderson, Martin F. [Department of Endocrinology, University of Groningen, University Medical Center Groningen (Netherlands); LifeLines Cohort Study and Biobank, University of Groningen, University Medical Center Groningen (Netherlands); Dullaart, Robin P.F. [Department of Endocrinology, University of Groningen, University Medical Center Groningen (Netherlands); Koerts, Janneke [Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen (Netherlands); Werumeus Buning, Jorien, E-mail: j.werumeus.buning@umcg.nl [Department of Endocrinology, University of Groningen, University Medical Center Groningen (Netherlands); Tucha, Oliver [Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen (Netherlands); Wolffenbuttel, Bruce H.R. [Department of Endocrinology, University of Groningen, University Medical Center Groningen (Netherlands); LifeLines Cohort Study and Biobank, University of Groningen, University Medical Center Groningen (Netherlands); Bergh, Alfons C.M. van den [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen (Netherlands); Beek, André P. van, E-mail: a.p.van.beek@umcg.nl [Department of Endocrinology, University of Groningen, University Medical Center Groningen (Netherlands)

    2015-02-15

    Highlights: • Cognitive impairments are frequently observed in treated NFA patients. • NFA patients with cognitive impairments do not show brain abnormalities on MRI more frequently than patients without cognitive impairments. • The absence of brain abnormalities on brain MRI does not exclude impairments of cognition. - Abstract: Purpose: The extent to which cognitive dysfunction is related to specific brain abnormalities in patients treated for pituitary macroadenoma is unclear. Therefore, we compared brain abnormalities seen on Magnetic Resonance Imaging (MRI) in patients treated for nonfunctioning pituitary macroadenoma (NFA) with or without impairments in cognitive functioning. Methods: In this cross-sectional design, a cohort of 43 NFA patients was studied at the University Medical Center Groningen. White matter lesions (WMLs), cerebral atrophy, (silent) brain infarcts and abnormalities of the temporal lobes and hippocampi were assessed on pre-treatment and post-treatment MRI scans. Post-treatment cognitive examinations were performed using a verbal memory and executive functioning test. We compared our patient cohort with large reference populations representative of the Dutch population. Results: One or more impairments on both cognitive tests were frequently observed in treated NFA patients. No treatment effects were found with regard to the comparison between patients with and without impairments in executive functioning. Interestingly, in patients with one or more impairments on verbal memory function, treatment with radiotherapy had been given more frequently (74% in the impaired group versus 40% in the unimpaired group, P = 0.025). Patients with or without any brain abnormality on MRI did not differ in verbal memory or executive functioning. Conclusions: Brain abnormalities on MRI are not observed more frequently in treated NFA patients with impairments compared to NFA patients without impairments in verbal memory or executive functioning

  6. Prediction of individual brain maturity using fMRI.

    Science.gov (United States)

    Dosenbach, Nico U F; Nardos, Binyam; Cohen, Alexander L; Fair, Damien A; Power, Jonathan D; Church, Jessica A; Nelson, Steven M; Wig, Gagan S; Vogel, Alecia C; Lessov-Schlaggar, Christina N; Barnes, Kelly Anne; Dubis, Joseph W; Feczko, Eric; Coalson, Rebecca S; Pruett, John R; Barch, Deanna M; Petersen, Steven E; Schlaggar, Bradley L

    2010-09-10

    Group functional connectivity magnetic resonance imaging (fcMRI) studies have documented reliable changes in human functional brain maturity over development. Here we show that support vector machine-based multivariate pattern analysis extracts sufficient information from fcMRI data to make accurate predictions about individuals' brain maturity across development. The use of only 5 minutes of resting-state fcMRI data from 238 scans of typically developing volunteers (ages 7 to 30 years) allowed prediction of individual brain maturity as a functional connectivity maturation index. The resultant functional maturation curve accounted for 55% of the sample variance and followed a nonlinear asymptotic growth curve shape. The greatest relative contribution to predicting individual brain maturity was made by the weakening of short-range functional connections between the adult brain's major functional networks.

  7. Applications of arterial spin labeled MRI in the brain.

    Science.gov (United States)

    Detre, John A; Rao, Hengyi; Wang, Danny J J; Chen, Yu Fen; Wang, Ze

    2012-05-01

    Perfusion provides oxygen and nutrients to tissues and is closely tied to tissue function while disorders of perfusion are major sources of medical morbidity and mortality. It has been almost two decades since the use of arterial spin labeling (ASL) for noninvasive perfusion imaging was first reported. While initial ASL magnetic resonance imaging (MRI) studies focused primarily on technological development and validation, a number of robust ASL implementations have emerged, and ASL MRI is now also available commercially on several platforms. As a result, basic science and clinical applications of ASL MRI have begun to proliferate. Although ASL MRI can be carried out in any organ, most studies to date have focused on the brain. This review covers selected research and clinical applications of ASL MRI in the brain to illustrate its potential in both neuroscience research and clinical care.

  8. Urea cycle disorders: brain MRI and neurological outcome

    Energy Technology Data Exchange (ETDEWEB)

    Bireley, William R. [University of Colorado, Department of Radiology, Aurora, CO (United States); Van Hove, Johan L.K. [University of Colorado, Department of Genetics and Inherited Metabolic Diseases, Aurora, CO (United States); Gallagher, Renata C. [Children' s Hospital Colorado, Department of Genetics and Inherited Metabolic Diseases, Aurora, CO (United States); Fenton, Laura Z. [Children' s Hospital Colorado, Department of Pediatric Radiology, Aurora, CO (United States)

    2012-04-15

    Urea cycle disorders encompass several enzyme deficiencies that can result in cerebral damage, with a wide clinical spectrum from asymptomatic to severe. The goal of this study was to correlate brain MRI abnormalities in urea cycle disorders with clinical neurological sequelae to evaluate whether MRI abnormalities can assist in guiding difficult treatment decisions. We performed a retrospective chart review of patients with urea cycle disorders and symptomatic hyperammonemia. Brain MRI images were reviewed for abnormalities that correlated with severity of clinical neurological sequelae. Our case series comprises six urea cycle disorder patients, five with ornithine transcarbamylase deficiency and one with citrullinemia type 1. The observed trend in distribution of brain MRI abnormalities as the severity of neurological sequelae increased was the peri-insular region first, extending into the frontal, parietal, temporal and, finally, the occipital lobes. There was thalamic restricted diffusion in three children with prolonged hyperammonemia. Prior to death, this site is typically reported to be spared in urea cycle disorders. The pattern and extent of brain MRI abnormalities correlate with clinical neurological outcome in our case series. This suggests that brain MRI abnormalities may assist in determining prognosis and helping clinicians with subsequent treatment decisions. (orig.)

  9. A Comparison of Two Human Brain Tumor Segmentation Methods for MRI Data

    CERN Document Server

    Egger, Jan; Bauer, Miriam H A; Kuhnt, Daniela; Carl, Barbara; Freisleben, Bernd; Kolb, Andreas; Nimsky, Christopher

    2011-01-01

    The most common primary brain tumors are gliomas, evolving from the cerebral supportive cells. For clinical follow-up, the evaluation of the preoperative tumor volume is essential. Volumetric assessment of tumor volume with manual segmentation of its outlines is a time-consuming process that can be overcome with the help of computerized segmentation methods. In this contribution, two methods for World Health Organization (WHO) grade IV glioma segmentation in the human brain are compared using magnetic resonance imaging (MRI) patient data from the clinical routine. One method uses balloon inflation forces, and relies on detection of high intensity tumor boundaries that are coupled with the use of contrast agent gadolinium. The other method sets up a directed and weighted graph and performs a min-cut for optimal segmentation results. The ground truth of the tumor boundaries - for evaluating the methods on 27 cases - is manually extracted by neurosurgeons with several years of experience in the resection of glio...

  10. Classification of normal and pathological aging processes based on brain MRI morphology measures

    Science.gov (United States)

    Perez-Gonzalez, J. L.; Yanez-Suarez, O.; Medina-Bañuelos, V.

    2014-03-01

    Reported studies describing normal and abnormal aging based on anatomical MRI analysis do not consider morphological brain changes, but only volumetric measures to distinguish among these processes. This work presents a classification scheme, based both on size and shape features extracted from brain volumes, to determine different aging stages: healthy control (HC) adults, mild cognitive impairment (MCI), and Alzheimer's disease (AD). Three support vector machines were optimized and validated for the pair-wise separation of these three classes, using selected features from a set of 3D discrete compactness measures and normalized volumes of several global and local anatomical structures. Our analysis show classification rates of up to 98.3% between HC and AD; of 85% between HC and MCI and of 93.3% for MCI and AD separation. These results outperform those reported in the literature and demonstrate the viability of the proposed morphological indexes to classify different aging stages.

  11. MRI findings of miliary tuberculosis of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Lak; Song, Chang June; Ahn, Young Jun; Youn, Wan Gyu; Jung, Youn Sin; Cho, June Sik [Chungnam National Univ. College of Medicine, Taejon (Korea, Republic of)

    1996-07-01

    To evaluate MRI(Magnetic Resonance Imaging) findings of miliary tuberculosis of the brain Six patients with miliary tuberculosis of the brain diagnosed by characteristic clinical or laboratory findings were studied with spin echo MRI before and after contrast enhancement. We retrospectively evaluated MRI findings according to the appearance, distribution, location, and enhancement pattern of the granulomas as well as associated other abnormalities. In six patients, contrast-enhanced MRI of the brain showed numerous punctate, contrast enhancing lesions scattered throughout the brain. Unenhanced MRI failed to demonstrate small granulomas except a few small foci of high signal intensity on T2-weighted images. The shapes of enhancing granulomas were homogeneous nodular enhancement in 86% of cases and small ring enhancement in 14%. 98% of granulomas were smaller than 3-mm and 2% were larger. Although several lesions were located in the basal ganglia, thalamus, and brain stem, the majority were located in the subpial and subarachnoid space. There was no significant difference in distribution of granulomas between the supratentorial and the infratentorial areas. Other associated abnormalities were focal meningitis in five cases and focal cerebritis in one. On chest radiograph, all patients had miliary tuberculosis in the lungs. Contrast-enhanced T1-weighted MR imaging showed numerous round, very small enhancing lesions scattered throughout the brain. The majority of lesions were located in the subpial and subarachnoid space. Contrast-enhanced T1-weighted images are helpful in the detection and diagnosis of miliary disseminated tuberculous granulomas and meningitis.

  12. MRI Helps Assess Fetal Brain Abnormalities

    Science.gov (United States)

    ... authors. The study was published Dec. 14 in The Lancet . "Adding an MRI scan when a problem is ... practice as soon as possible, he said. SOURCE: The Lancet , news release, Dec. 14, 2016 HealthDay Copyright (c) ...

  13. Magnetic Resonance, Functional (fMRI) -- Brain

    Science.gov (United States)

    ... their nature and the strength of the MRI magnet. Many implanted devices will have a pamphlet explaining ... large cylinder-shaped tube surrounded by a circular magnet. You will lie on a moveable examination table ...

  14. Applications of fMRI for Brain Mapping

    Directory of Open Access Journals (Sweden)

    Nivedita Daimiwal

    2012-11-01

    Full Text Available Brain-mapping techniques have proven to be vital in understanding the molecular, cellular, and functional mechanisms of the brain. Normal anatomical imaging can provide structural information on certain abnormalities in the brain. However there are many neurological disorders for which only structure studies are not sufficient. In such cases it is required to investigate the functional organization of the brain. Further it is necessary to study the brain functions under normal as well as diseased conditions. Brain mapping techniques can help in deriving useful and important information on these issues. Brain functions and brain area responsible for the particular activities like motor, sensory speech and memory process could be investigated. The authors provide an overview of various Brain Mapping techniques and fMRI signal processing methods.

  15. Atlas-guided segmentation of vervet monkey brain MRI.

    Science.gov (United States)

    Fedorov, Andriy; Li, Xiaoxing; Pohl, Kilian M; Bouix, Sylvain; Styner, Martin; Addicott, Merideth; Wyatt, Chris; Daunais, James B; Wells, William M; Kikinis, Ron

    2011-01-01

    The vervet monkey is an important nonhuman primate model that allows the study of isolated environmental factors in a controlled environment. Analysis of monkey MRI often suffers from lower quality images compared with human MRI because clinical equipment is typically used to image the smaller monkey brain and higher spatial resolution is required. This, together with the anatomical differences of the monkey brains, complicates the use of neuroimage analysis pipelines tuned for human MRI analysis. In this paper we developed an open source image analysis framework based on the tools available within the 3D Slicer software to support a biological study that investigates the effect of chronic ethanol exposure on brain morphometry in a longitudinally followed population of male vervets. We first developed a computerized atlas of vervet monkey brain MRI, which was used to encode the typical appearance of the individual brain structures in MRI and their spatial distribution. The atlas was then used as a spatial prior during automatic segmentation to process two longitudinal scans per subject. Our evaluation confirms the consistency and reliability of the automatic segmentation. The comparison of atlas construction strategies reveals that the use of a population-specific atlas leads to improved accuracy of the segmentation for subcortical brain structures. The contribution of this work is twofold. First, we describe an image processing workflow specifically tuned towards the analysis of vervet MRI that consists solely of the open source software tools. Second, we develop a digital atlas of vervet monkey brain MRIs to enable similar studies that rely on the vervet model.

  16. Atlas-Guided Segmentation of Vervet Monkey Brain MRI

    Science.gov (United States)

    Fedorov, Andriy; Li, Xiaoxing; Pohl, Kilian M; Bouix, Sylvain; Styner, Martin; Addicott, Merideth; Wyatt, Chris; Daunais, James B; Wells, William M; Kikinis, Ron

    2011-01-01

    The vervet monkey is an important nonhuman primate model that allows the study of isolated environmental factors in a controlled environment. Analysis of monkey MRI often suffers from lower quality images compared with human MRI because clinical equipment is typically used to image the smaller monkey brain and higher spatial resolution is required. This, together with the anatomical differences of the monkey brains, complicates the use of neuroimage analysis pipelines tuned for human MRI analysis. In this paper we developed an open source image analysis framework based on the tools available within the 3D Slicer software to support a biological study that investigates the effect of chronic ethanol exposure on brain morphometry in a longitudinally followed population of male vervets. We first developed a computerized atlas of vervet monkey brain MRI, which was used to encode the typical appearance of the individual brain structures in MRI and their spatial distribution. The atlas was then used as a spatial prior during automatic segmentation to process two longitudinal scans per subject. Our evaluation confirms the consistency and reliability of the automatic segmentation. The comparison of atlas construction strategies reveals that the use of a population-specific atlas leads to improved accuracy of the segmentation for subcortical brain structures. The contribution of this work is twofold. First, we describe an image processing workflow specifically tuned towards the analysis of vervet MRI that consists solely of the open source software tools. Second, we develop a digital atlas of vervet monkey brain MRIs to enable similar studies that rely on the vervet model. PMID:22253661

  17. Volumetric MRI analysis of hippocampal subregions in Cushing's disease: a model for glucocorticoid neural modulation.

    Science.gov (United States)

    Toffanin, T; Nifosì, F; Follador, H; Passamani, A; Zonta, F; Ferri, G; Scanarini, M; Amistà, P; Pigato, G; Scaroni, C; Mantero, F; Carollo, C; Perini, G I

    2011-01-01

    Several preclinical studies have demonstrated neuronal effects of glucocorticoids on the hippocampus (HC), a limbic structure with anterior-posterior anatomical and functional segmentation. We propose a volumetric magnetic resonance imaging analysis of hippocampus head (HH), body (HB) and tail (HT) using Cushing's disease (CD) as model, to investigate whether there is a differential sensitivity to glucocorticoid neuronal damage in these segments. We found a significant difference in the HH bilaterally after 12 months from trans-sphenoidal surgical selective resection of the adrenocorticotropic hormone (ACTH)-secreting pituitary micro-adenomas. This pre-post surgery difference could contribute to better understand the pathopysiology of CD as an in vivo model for stress-related hypercortisolemic neuropsychiatric disorders.

  18. Volumetric MRI Analysis of the Amygdala and Hippocampus in Subjects with Major Depression

    Institute of Scientific and Technical Information of China (English)

    夏军; 陈军; 周义成; 张景峰; 杨波; 夏黎明; 王承缘

    2004-01-01

    In order to explore the MRI volume of the amygdala and hippocampus in patients with major depression, quantitative MRI of the amygdala and hippocampus were studied in 22 patients with major depression and compared with 13 age-matched controls. The results showed that both groups exhibited similar significant hippocampal asymmetry (left smaller than right). The volume of the bilateral hippocampus was significantly smaller in the major depression group than that in control group. The patients had significant asymmetry of the amygdalar volumes (right smaller than left). No correlation was found between hippocampal volume abnormalities and ill duration. It was concluded that the hippocampus and amygdala within limbic-cortical networks may play a crucial role in the pathogenesis of major depression.

  19. MRI virtual biopsy and treatment of brain metastatic tumors with targeted nanobioconjugates: nanoclinic in the brain.

    Science.gov (United States)

    Patil, Rameshwar; Ljubimov, Alexander V; Gangalum, Pallavi R; Ding, Hui; Portilla-Arias, Jose; Wagner, Shawn; Inoue, Satoshi; Konda, Bindu; Rekechenetskiy, Arthur; Chesnokova, Alexandra; Markman, Janet L; Ljubimov, Vladimir A; Li, Debiao; Prasad, Ravi S; Black, Keith L; Holler, Eggehard; Ljubimova, Julia Y

    2015-05-26

    Differential diagnosis of brain magnetic resonance imaging (MRI) enhancement(s) remains a significant problem, which may be difficult to resolve without biopsy, which can be often dangerous or even impossible. Such MRI enhancement(s) can result from metastasis of primary tumors such as lung or breast, radiation necrosis, infections, or a new primary brain tumor (glioma, meningioma). Neurological symptoms are often the same on initial presentation. To develop a more precise noninvasive MRI diagnostic method, we have engineered a new class of poly(β-l-malic acid) polymeric nanoimaging agents (NIAs). The NIAs carrying attached MRI tracer are able to pass through the blood-brain barrier (BBB) and specifically target cancer cells for efficient imaging. A qualitative/quantitative "MRI virtual biopsy" method is based on a nanoconjugate carrying MRI contrast agent gadolinium-DOTA and antibodies recognizing tumor-specific markers and extravasating through the BBB. In newly developed double tumor xenogeneic mouse models of brain metastasis this noninvasive method allowed differential diagnosis of HER2- and EGFR-expressing brain tumors. After MRI diagnosis, breast and lung cancer brain metastases were successfully treated with similar tumor-targeted nanoconjugates carrying molecular inhibitors of EGFR or HER2 instead of imaging contrast agent. The treatment resulted in a significant increase in animal survival and markedly reduced immunostaining for several cancer stem cell markers. Novel NIAs could be useful for brain diagnostic MRI in the clinic without currently performed brain biopsies. This technology shows promise for differential MRI diagnosis and treatment of brain metastases and other pathologies when biopsies are difficult to perform.

  20. Clinical applications of 7 T MRI in the brain

    Energy Technology Data Exchange (ETDEWEB)

    Kolk, Anja G. van der, E-mail: A.G.vanderKolk@umcutrecht.nl [Department of Radiology, University Medical Center Utrecht, Postbox 85500, 3508 GA Utrecht (Netherlands); Hendrikse, Jeroen, E-mail: J.Hendrikse@umcutrecht.nl [Department of Radiology, University Medical Center Utrecht, Postbox 85500, 3508 GA Utrecht (Netherlands); Zwanenburg, Jaco J.M., E-mail: J.J.M.Zwanenburg@umcutrecht.nl [Department of Radiology, University Medical Center Utrecht, Postbox 85500, 3508 GA Utrecht (Netherlands); Image Sciences Institute, University Medical Center Utrecht (Netherlands); Visser, Fredy, E-mail: F.Visser-2@umcutrecht.nl [Department of Radiology, University Medical Center Utrecht, Postbox 85500, 3508 GA Utrecht (Netherlands); Philips Healthcare, Best (Netherlands); Luijten, Peter R., E-mail: P.Luijten@umcutrecht.nl [Department of Radiology, University Medical Center Utrecht, Postbox 85500, 3508 GA Utrecht (Netherlands)

    2013-05-15

    This review illustrates current applications and possible future directions of 7 Tesla (7 T) Magnetic Resonance Imaging (MRI) in the field of brain MRI, in clinical studies as well as clinical practice. With its higher signal-to-noise (SNR) and contrast-to-noise ratio (CNR) compared to lower field strengths, high resolution, contrast-rich images can be obtained of diverse pathologies, like multiple sclerosis (MS), brain tumours, aging-related changes and cerebrovascular diseases. In some of these diseases, additional pathophysiological information can be gained compared to lower field strengths. Because of clear depiction of small anatomical details, and higher lesion conspicuousness, earlier diagnosis and start of treatment of brain diseases may become possible. Furthermore, additional insight into the pathogenesis of brain diseases obtained with 7 T MRI could be the basis for new treatment developments. However, imaging at high field comes with several limitations, like inhomogeneous transmit fields, a higher specific absorption rate (SAR) and, currently, extensive contraindications for patient scanning. Future studies will be aimed at assessing the advantages and disadvantages of 7 T MRI over lower field strengths in light of clinical applications, specifically the additional diagnostic and prognostic value of 7 T MRI.

  1. Optimizing full-brain coverage in human brain MRI through population distributions of brain size.

    Science.gov (United States)

    Mennes, Maarten; Jenkinson, Mark; Valabregue, Romain; Buitelaar, Jan K; Beckmann, Christian; Smith, Stephen

    2014-09-01

    When defining an MRI protocol, brain researchers need to set multiple interdependent parameters that define repetition time (TR), voxel size, field-of-view (FOV), etc. Typically, researchers aim to image the full brain, making the expected FOV an important parameter to consider. Especially in 2D-EPI sequences, non-wasteful FOV settings are important to achieve the best temporal and spatial resolution. In practice, however, imperfect FOV size estimation often results in partial brain coverage for a significant number of participants per study, or, alternatively, an unnecessarily large voxel-size or number of slices to guarantee full brain coverage. To provide normative FOV guidelines we estimated population distributions of brain size in the x-, y-, and z-direction using data from 14,781 individuals. Our results indicated that 11mm in the z-direction differentiate between obtaining full brain coverage for 90% vs. 99.9% of participants. Importantly, we observed that rotating the FOV to optimally cover the brain, and thus minimize the number of slices needed, effectively reduces the required inferior-superior FOV size by ~5%. For a typical adult imaging study, 99.9% of the population can be imaged with full brain coverage when using an inferior-superior FOV of 142mm, assuming optimal slice orientation and minimal within-scan head motion. By providing population distributions for brain size in the x-, y-, and z-direction we improve the potential for obtaining full brain coverage, especially in 2D-EPI sequences used in most functional and diffusion MRI studies. We further enable optimization of related imaging parameters including the number of slices, TR and total acquisition time.

  2. Imaging the premature brain: ultrasound or MRI?

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Linda S. de; Benders, Manon J.N.L.; Groenendaal, Floris [UMC Utrecht, Department of Neonatology, Wilhelmina Children' s Hospital, PO Box 85090, Utrecht (Netherlands)

    2013-09-15

    Neuroimaging of preterm infants has become part of routine clinical care, but the question is often raised on how often cranial ultrasound should be done and whether every high risk preterm infant should at least have one MRI during the neonatal period. An increasing number of centres perform an MRI either at discharge or around term equivalent age, and a few centres have access to a magnet in or adjacent to the neonatal intensive care unit and are doing sequential MRIs. In this review, we try to discuss when best to perform these two neuroimaging techniques and the additional information each technique may provide. (orig.)

  3. TU-F-CAMPUS-J-05: Fast Volumetric MRI On An MRI-Linac Enables On-Line QA On Dose Deposition in the Patient

    Energy Technology Data Exchange (ETDEWEB)

    Crijns, S; Glitzner, M; Kontaxis, C; Maenhout, M; Bol, G; Lagendijk, J; Raaymakers, B [University Medical Center Utrecht, Utrecht (Netherlands); Senneville, B Denis de [University Medical Center Utrecht, Utrecht (Netherlands); Mathematical Institute of Bordeaux, University of Bordeaux, Talence Cedex (France)

    2015-06-15

    Purpose: The introduction of the MRI-linac in radiotherapy brings MRI-guided treatment with daily plan adaptions within reach. This paradigm demands on-line QA. With its ability to perform continuous volumetric imaging in an outstanding soft-tissue contrast, the MRI- linac promises to elucidate the dose deposition process during a treatment session. Here we study for a prostate case how dynamic MRI combined with linac machine parameters and a fast dose-engine can be used for on-line dose accumulation. Methods: Prostate imaging was performed in healthy volunteer on a 1.5T MR-scanner (Philips, Best, NL) according to a clinical MR-sim protocol, followed by 10min of dynamic imaging (FLASH, 4s/volume, FOV 40×40×12cm{sup 3}, voxels 3×3×3mm{sup 3}, TR/TE/α=3.5ms/1.7ms/5°). An experienced radiation oncologist made delineations, considering the prostate CTV. Planning was performed on a two-compartment pseudoCT (air/water density) according to clinical constraints (77Gy in PTV) using a Monte-Carlo (MC) based TPS that accounts for magnetic fields. Delivery of one fraction (2.2Gy) was simulated on an emulator for the Axesse linac (Elekta, Stockholm, SE). Machine parameters (MLC settings, gantry angle, dose rate, etc.) were recorded at 25Hz. These were re-grouped per dynamic volume and fed into the MC-engine to calculate a dose delivered for each of the dynamics. Deformations derived from non-rigid registration of each dynamic against the first allowed dose accumulation on a common reference grid. Results: The DVH parameters on the PTV compared to the optimized plan showed little changes. Local deformations however resulted in local deviations, primarily around the air/rectum interface. This clearly indicates the potential of intra-fraction adaptations based on the accumulated dose. Application in each fraction helps to track the influence of plan adaptations to the eventual dose distribution. Calculation times were about twice the delivery time. Conclusion: The current

  4. Mapping human whole-brain structural networks with diffusion MRI.

    Directory of Open Access Journals (Sweden)

    Patric Hagmann

    Full Text Available Understanding the large-scale structural network formed by neurons is a major challenge in system neuroscience. A detailed connectivity map covering the entire brain would therefore be of great value. Based on diffusion MRI, we propose an efficient methodology to generate large, comprehensive and individual white matter connectional datasets of the living or dead, human or animal brain. This non-invasive tool enables us to study the basic and potentially complex network properties of the entire brain. For two human subjects we find that their individual brain networks have an exponential node degree distribution and that their global organization is in the form of a small world.

  5. A human post-mortem brain model for the standardization of multi-centre MRI studies.

    Science.gov (United States)

    Droby, Amgad; Lukas, Carsten; Schänzer, Anne; Spiwoks-Becker, Isabella; Giorgio, Antonio; Gold, Ralf; De Stefano, Nicola; Kugel, Harald; Deppe, Michael; Wiendl, Heinz; Meuth, Sven G; Acker, Till; Zipp, Frauke; Deichmann, Ralf

    2015-04-15

    Multi-centre MRI studies of the brain are essential for enrolling large and diverse patient cohorts, as required for the investigation of heterogeneous neurological and psychiatric diseases. However, the multi-site comparison of standard MRI data sets that are weighted with respect to tissue parameters such as the relaxation times (T1, T2) and proton density (PD) may be problematic, as signal intensities and image contrasts depend on site-specific details such as the sequences used, imaging parameters, and sensitivity profiles of the radiofrequency (RF) coils. Water or gel phantoms are frequently used for long-term and/or inter-site quality assessment. However, these phantoms hardly mimic the structure, shape, size or tissue distribution of the human brain. The goals of this study were: (1) to validate the long-term stability of a human post-mortem brain phantom, performing quantitative mapping of T1, T2, and PD, and the magnetization transfer ratio (MTR) over a period of 18months; (2) to acquire and analyse data for this phantom and the brain of a healthy control (HC) in a multi-centre study for MRI protocol standardization in four centres, while conducting a voxel-wise as well as whole brain grey (GM) and white matter (WM) tissue volume comparison. MTR, T2, and the quotient of PD in WM and GM were stable in the post-mortem brain with no significant changes. T1 was found to decrease from 267/236ms (GM/WM) to 234/216ms between 5 and 17weeks post embedment, stabilizing during an 18-month period following the first scan at about 215/190ms. The volumetric measures, based on T1-weighted MP-RAGE images obtained at all participating centres, revealed inter- and intra-centre variations in the evaluated GM and WM volumes that displayed similar trends in both the post-mortem brain as well as the HC. At a confidence level of 95%, brain regions such as the brainstem, deep GM structures as well as boundaries between GM and WM tissues were found to be less reproducible than

  6. Joint brain connectivity estimation from diffusion and functional MRI data

    Science.gov (United States)

    Chu, Shu-Hsien; Lenglet, Christophe; Parhi, Keshab K.

    2015-03-01

    Estimating brain wiring patterns is critical to better understand the brain organization and function. Anatomical brain connectivity models axonal pathways, while the functional brain connectivity characterizes the statistical dependencies and correlation between the activities of various brain regions. The synchronization of brain activity can be inferred through the variation of blood-oxygen-level dependent (BOLD) signal from functional MRI (fMRI) and the neural connections can be estimated using tractography from diffusion MRI (dMRI). Functional connections between brain regions are supported by anatomical connections, and the synchronization of brain activities arises through sharing of information in the form of electro-chemical signals on axon pathways. Jointly modeling fMRI and dMRI data may improve the accuracy in constructing anatomical connectivity as well as functional connectivity. Such an approach may lead to novel multimodal biomarkers potentially able to better capture functional and anatomical connectivity variations. We present a novel brain network model which jointly models the dMRI and fMRI data to improve the anatomical connectivity estimation and extract the anatomical subnetworks associated with specific functional modes by constraining the anatomical connections as structural supports to the functional connections. The key idea is similar to a multi-commodity flow optimization problem that minimizes the cost or maximizes the efficiency for flow configuration and simultaneously fulfills the supply-demand constraint for each commodity. In the proposed network, the nodes represent the grey matter (GM) regions providing brain functionality, and the links represent white matter (WM) fiber bundles connecting those regions and delivering information. The commodities can be thought of as the information corresponding to brain activity patterns as obtained for instance by independent component analysis (ICA) of fMRI data. The concept of information

  7. Brain size regulations by cbp haploinsufficiency evaluated by in-vivo MRI based volumetry.

    Science.gov (United States)

    Ateca-Cabarga, Juan C; Cosa, Alejandro; Pallarés, Vicente; López-Atalaya, José P; Barco, Ángel; Canals, Santiago; Moratal, David

    2015-11-06

    The Rubinstein-Taybi Syndrome (RSTS) is a congenital disease that affects brain development causing severe cognitive deficits. In most cases the disease is associated with dominant mutations in the gene encoding the CREB binding protein (CBP). In this work, we present the first quantitative analysis of brain abnormalities in a mouse model of RSTS using magnetic resonance imaging (MRI) and two novel self-developed automated algorithms for image volumetric analysis. Our results quantitatively confirm key syndromic features observed in RSTS patients, such as reductions in brain size (-16.31%, p brain tissues in a region by region basis between cbp(+/-) and cbp(+/+) littermates, we found that cbp haploinsufficiency is specifically associated with significant reductions in prosencephalic tissue, such us in the olfactory bulb and neocortex, whereas regions evolved from the embryonic rhombencephalon were spared. Despite the large volume reductions, the proportion between gray-, white-matter and cerebrospinal fluid were conserved, suggesting a role of CBP in brain size regulation. The commonalities with holoprosencephaly and arhinencephaly conditions suggest the inclusion of RSTS in the family of neuronal migration disorders.

  8. In-vivo human brain molecular imaging with a brain-dedicated PET/MRI system.

    Science.gov (United States)

    Cho, Zang Hee; Son, Young Don; Choi, Eun Jung; Kim, Hang Keun; Kim, Jeong Hee; Lee, Sang Yoon; Ogawa, Seiji; Kim, Young Bo

    2013-02-01

    Advances in the new-generation of ultra-high-resolution, brain-dedicated positron emission tomography-magnetic resonance imaging (PET/MRI) systems have begun to provide many interesting insights into the molecular dynamics of the brain. First, the finely delineated structural information from ultra-high-field MRI can help us to identify accurate landmark structures, thereby making it easier to locate PET activation sites that are anatomically well-correlated with metabolic or ligand-specific organs in the neural structures in the brain. This synergistic potential of PET/MRI imaging is discussed in terms of neuroscience and neurological research from both translational and basic research perspectives. Experimental results from the hippocampus, thalamus, and brainstem obtained with (18)F-fluorodeoxyglucose and (11)C-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)benzonitrile are used to demonstrate the potential of this new brain PET/MRI system.

  9. MRI of fetal acquired brain lesions

    Energy Technology Data Exchange (ETDEWEB)

    Prayer, Daniela [Department of Radiodiagnostics, Medical University of Vienna (Austria)]. E-mail: daniela.prayer@meduniwien.ac.at; Brugger, Peter C. [Center of Anatomy and Cell Biology, Medical University of Vienna (Austria); Kasprian, Gregor [Department of Radiodiagnostics, Medical University of Vienna (Austria); Witzani, Linde [Department of Radiodiagnostics, Medical University of Vienna (Austria); Helmer, Hanns [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria); Dietrich, Wolfgang [Department of Neurosurgery, Medical University of Vienna (Austria); Eppel, Wolfgang [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria); Langer, Martin [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria)

    2006-02-15

    Acquired fetal brain damage is suspected in cases of destruction of previously normally formed tissue, the primary cause of which is hypoxia. Fetal brain damage may occur as a consequence of acute or chronic maternal diseases, with acute diseases causing impairment of oxygen delivery to the fetal brain, and chronic diseases interfering with normal, placental development. Infections, metabolic diseases, feto-fetal transfusion syndrome, toxic agents, mechanical traumatic events, iatrogenic accidents, and space-occupying lesions may also qualify as pathologic conditions that initiate intrauterine brain damage. MR manifestations of acute fetal brain injury (such as hemorrhage or acute ischemic lesions) can easily be recognized, as they are hardly different from postnatal lesions. The availability of diffusion-weighted sequences enhances the sensitivity in recognizing acute ischemic lesions. Recent hemorrhages are usually readily depicted on T2 (*) sequences, where they display hypointense signals. Chronic fetal brain injury may be characterized by nonspecific changes that must be attributable to the presence of an acquired cerebral pathology. The workup in suspected acquired fetal brain injury also includes the assessment of extra-CNS organs that may be affected by an underlying pathology. Finally, the placenta, as the organ that mediates oxygen delivery from the maternal circulation to the fetus, must be examined on MR images.

  10. MRI of fetal acquired brain lesions.

    Science.gov (United States)

    Prayer, Daniela; Brugger, Peter C; Kasprian, Gregor; Witzani, Linde; Helmer, Hanns; Dietrich, Wolfgang; Eppel, Wolfgang; Langer, Martin

    2006-02-01

    Acquired fetal brain damage is suspected in cases of destruction of previously normally formed tissue, the primary cause of which is hypoxia. Fetal brain damage may occur as a consequence of acute or chronic maternal diseases, with acute diseases causing impairment of oxygen delivery to the fetal brain, and chronic diseases interfering with normal, placental development. Infections, metabolic diseases, feto-fetal transfusion syndrome, toxic agents, mechanical traumatic events, iatrogenic accidents, and space-occupying lesions may also qualify as pathologic conditions that initiate intrauterine brain damage. MR manifestations of acute fetal brain injury (such as hemorrhage or acute ischemic lesions) can easily be recognized, as they are hardly different from postnatal lesions. The availability of diffusion-weighted sequences enhances the sensitivity in recognizing acute ischemic lesions. Recent hemorrhages are usually readily depicted on T2 (*) sequences, where they display hypointense signals. Chronic fetal brain injury may be characterized by nonspecific changes that must be attributable to the presence of an acquired cerebral pathology. The workup in suspected acquired fetal brain injury also includes the assessment of extra-CNS organs that may be affected by an underlying pathology. Finally, the placenta, as the organ that mediates oxygen delivery from the maternal circulation to the fetus, must be examined on MR images.

  11. Simultaneous MRI and PET imaging of a rat brain

    Science.gov (United States)

    Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan K.; Sendhil Velan, S.; Kross, Brian; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Zorn, Carl; Marano, Gary D.

    2006-12-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging.

  12. Simultaneous MRI and PET imaging of a rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Raylman, Raymond R [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States); Majewski, Stan [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Lemieux, Susan K [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States); Velan, S Sendhil [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States); Kross, Brian [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Popov, Vladimir [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Smith, Mark F [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Weisenberger, Andrew G [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Zorn, Carl [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Marano, Gary D [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States)

    2006-12-21

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging.

  13. Value of repeat brain MRI in children with focal epilepsy and negative findings on initial MRI

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Tae Yeon; Kim, Ji Hye; Lee, Jee Hun; Yoo, So Young; Hwang, Sook Min; Lee, Mun Hyang [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2017-08-01

    To evaluate the value of repeat brain magnetic resonance imaging (MRI) in identifying potential epileptogenic lesions in children with initial MRI-negative focal epilepsy. Our Institutional Review Board approved this retrospective study and waived the requirement for informed consent. During a 15-year period, 257 children (148 boys and 109 girls) with initial MRI-negative focal epilepsy were included. After re-evaluating both initial and repeat MRIs, positive results at repeat MRI were classified into potential epileptogenic lesions (malformation of cortical development and hippocampal sclerosis) and other abnormalities. Contributing factors for improved lesion conspicuity of the initially overlooked potential epileptogenic lesions were analyzed and classified into lesion factors and imaging factors. Repeat MRI was positive in 21% (55/257) and negative in 79% cases (202/257). Of the positive results, potential epileptogenic lesions comprised 49% (27/55) and other abnormalities comprised 11% of the cases (28/257). Potential epileptogenic lesions included focal cortical dysplasia (n = 11), hippocampal sclerosis (n = 10), polymicrogyria (n = 2), heterotopic gray matter (n = 2), microlissencephaly (n = 1), and cortical tumor (n = 1). Of these, seven patients underwent surgical resection. Contributing factors for new diagnoses were classified as imaging factors alone (n = 6), lesion factors alone (n = 2), both (n = 18), and neither (n = 1). Repeat MRI revealed positive results in 21% of the children with initial MRI-negative focal epilepsy, with 50% of the positive results considered as potential epileptogenic lesions. Enhanced MRI techniques or considering the chronological changes of lesions on MRI may improve the diagnostic yield for identification of potential epileptogenic lesions on repeat MRI.

  14. A novel computer algorithm allows for volumetric and cross-sectional area analysis of indirect decompression following transpsoas lumbar arthrodesis despite variations in MRI technique.

    Science.gov (United States)

    Gates, Timothy A; Vasudevan, Ram R; Miller, Kai J; Stamatopoulou, Vasiliki; Mindea, Stefan A

    2014-03-01

    Many patients present for neurosurgical spine evaluation with MRI studies conducted at facilities outside of the treating medical center. These images often vary widely in technique, for example, variation in slice thickness, number of slices, and gantry angle. While these images may be sufficient in conjunction with a physical exam to make surgical evaluations, we have found they are often incapable of being used for objective post-operative volumetric comparisons. In order to overcome this, we created a computer program that compensates for these variations in MRI technique. For this study, we examined patients who had undergone outside MRI pre-operatively and were deemed appropriate for a lateral retroperitoneal transpsoas lumbar interbody arthrodesis procedure. Volumetric analysis was performed on sagittal and axial T2-weighted pre- and post-operative MRI. The percentage change of central canal volume and foraminal area was calculated for each level. The authors identified five levels with MRI sufficient for volumetric analysis and eight levels (16 foramina) sufficient for foraminal cross-sectional analysis. Through use of our computer algorithm, average central canal volume and foraminal cross-sectional area was calculated to increase by 32.8% and 67.6% respectively following the procedure. These results are consistent with previous study findings and support the idea that restoration of the anterior column via a lateral approach can result in significant indirect decompression of the neural elements. Additionally, the novel algorithm created and used for this study suggests that it can achieve quick measurement and comparison of MRI studies despite variations in pre- and post-operative technique.

  15. Pediatric brain MRI. Pt. 2. Advanced techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Mai-Lan; Campeau, Norbert G.; Welker, Kirk M. [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Ngo, Thang D. [Nemours Children' s Hospital, Department of Radiology, Orlando, FL (United States); Udayasankar, Unni K. [University of Arizona, Department of Radiology, Tucson, AZ (United States)

    2017-05-15

    Pediatric neuroimaging is a complex and specialized field that uses magnetic resonance (MR) imaging as the workhorse for diagnosis. MR protocols should be tailored to the specific indication and reviewed by the supervising radiologist in real time. Targeted advanced imaging sequences can be added to provide information regarding tissue microstructure, perfusion, metabolism and function. In part 2 of this review, we highlight the utility of advanced imaging techniques for superior evaluation of pediatric neurologic disease. We focus on the following techniques, with clinical examples: phase-contrast imaging, perfusion-weighted imaging, vessel wall imaging, diffusion tensor imaging, task-based functional MRI and MR spectroscopy. (orig.)

  16. Volumetric analysis of the hypothalamus in Huntington Disease using 3T MRI: the IMAGE-HD Study.

    Directory of Open Access Journals (Sweden)

    Sanaz Gabery

    Full Text Available Huntington disease (HD is a fatal neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin gene. Non-motor symptoms and signs such as psychiatric disturbances, sleep problems and metabolic dysfunction are part of the disease manifestation. These aspects may relate to changes in the hypothalamus, an area of the brain involved in the regulation of emotion, sleep and metabolism. Neuropathological and imaging studies using both voxel-based morphometry (VBM of magnetic resonance imaging (MRI as well as positron emission tomography (PET have demonstrated pathological changes in the hypothalamic region during early stages in symptomatic HD. In this investigation, we aimed to establish a robust method for measurements of the hypothalamic volume in MRI in order to determine whether the hypothalamic dysfunction in HD is associated with the volume of this region. Using T1-weighted imaging, we describe a reproducible delineation procedure to estimate the hypothalamic volume which was based on the same landmarks used in histologically processed postmortem hypothalamic tissue. Participants included 36 prodromal HD (pre-HD, 33 symptomatic HD (symp-HD and 33 control participants who underwent MRI scanning at baseline and 18 months follow-up as part of the IMAGE-HD study. We found no evidence of cross-sectional or longitudinal changes between groups in hypothalamic volume. Our results suggest that hypothalamic pathology in HD is not associated with volume changes.

  17. Volumetric Analysis of the Hypothalamus in Huntington Disease Using 3T MRI: The IMAGE-HD Study

    Science.gov (United States)

    Gabery, Sanaz; Georgiou-Karistianis, Nellie; Lundh, Sofia Hult; Cheong, Rachel Y.; Churchyard, Andrew; Chua, Phyllis; Stout, Julie C.; Egan, Gary F.; Kirik, Deniz; Petersén, Åsa

    2015-01-01

    Huntington disease (HD) is a fatal neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin gene. Non-motor symptoms and signs such as psychiatric disturbances, sleep problems and metabolic dysfunction are part of the disease manifestation. These aspects may relate to changes in the hypothalamus, an area of the brain involved in the regulation of emotion, sleep and metabolism. Neuropathological and imaging studies using both voxel-based morphometry (VBM) of magnetic resonance imaging (MRI) as well as positron emission tomography (PET) have demonstrated pathological changes in the hypothalamic region during early stages in symptomatic HD. In this investigation, we aimed to establish a robust method for measurements of the hypothalamic volume in MRI in order to determine whether the hypothalamic dysfunction in HD is associated with the volume of this region. Using T1-weighted imaging, we describe a reproducible delineation procedure to estimate the hypothalamic volume which was based on the same landmarks used in histologically processed postmortem hypothalamic tissue. Participants included 36 prodromal HD (pre-HD), 33 symptomatic HD (symp-HD) and 33 control participants who underwent MRI scanning at baseline and 18 months follow-up as part of the IMAGE-HD study. We found no evidence of cross-sectional or longitudinal changes between groups in hypothalamic volume. Our results suggest that hypothalamic pathology in HD is not associated with volume changes. PMID:25659157

  18. The core musculature in male prepubescent tennis players and untrained counterparts: a volumetric MRI study.

    Science.gov (United States)

    Sanchis-Moysi, Joaquin; Idoate, Fernando; Álamo-Arce, David; Calbet, José A L; Dorado, Cecilia

    2017-04-01

    The effects of exercise on the core musculature have not been investigated in prepubescents. The main purpose of the present study was to determine the volume and degree of asymmetry of rectus abdominis, obliques and transversus abdominis, quadratus lumborum, iliopsoas, gluteus and paravertebralis muscles in prepubescent tennis players and in untrained boys. The muscle volume was determined using magnetic resonance imaging (MRI) in 7 male prepubescent tennis players and 10 untrained controls (mean age 11.0 ± 0.8 years, Tanner 1-2). After accounting for height and body weight as covariates, the tennis players had 14-34% greater volume than the controls in all the muscles analysed (P quadratus lumborum and non-dominant gluteus, which had similar volumes in both groups (P = NS). Compared to controls, the tennis players displayed a greater degree of asymmetry in quadratus lumborum and rectus abdominis (3% vs. 15%, P quadratus lumborum and rectus abdominis compared to untrained boys.

  19. Longitudinal MRI studies of brain morphometry

    DEFF Research Database (Denmark)

    Skimminge, Arnold Jesper Møller

    into the accompanying deformation field. Deformation fields from high dimensional warping founds tensor based morphometry (TBM), and provides unique opportunities to study human brain morphology and plasticity. In this thesis, specially adapted image processing streams utilizing several image registration techniques......High resolution MR images acquired at multiple time points of the brain allow quantification of localized changes induced by external factors such as maturation, ageing or disease progression/recovery. High-dimensional warping of such MR images incorporates changes induced by external factors...

  20. Three-dimensional MRI perfusion maps: a step beyond volumetric analysis in mental disorders.

    Science.gov (United States)

    Fabene, Paolo F; Farace, Paolo; Brambilla, Paolo; Andreone, Nicola; Cerini, Roberto; Pelizza, Luisa; Versace, Amelia; Rambaldelli, Gianluca; Birbaumer, Niels; Tansella, Michele; Sbarbati, Andrea

    2007-01-01

    A new type of magnetic resonance imaging analysis, based on fusion of three-dimensional reconstructions of time-to-peak parametric maps and high-resolution T1-weighted images, is proposed in order to evaluate the perfusion of selected volumes of interest. Because in recent years a wealth of data have suggested the crucial involvement of vascular alterations in mental diseases, we tested our new method on a restricted sample of schizophrenic patients and matched healthy controls. The perfusion of the whole brain was compared with that of the caudate nucleus by means of intrasubject analysis. As expected, owing to the encephalic vascular pattern, a significantly lower time-to-peak was observed in the caudate nucleus than in the whole brain in all healthy controls, indicating that the suggested method has enough sensitivity to detect subtle perfusion changes even in small volumes of interest. Interestingly, a less uniform pattern was observed in the schizophrenic patients. The latter finding needs to be replicated in an adequate number of subjects. In summary, the three-dimensional analysis method we propose has been shown to be a feasible tool for revealing subtle vascular changes both in normal subjects and in pathological conditions.

  1. MRI for premature neonatal brain injury: a case report.

    Science.gov (United States)

    Langham, Alexander

    2017-06-01

    This case report aims to extend analytical thinking and clinical reasoning of clinicians and radiographers when presented with diagnosing premature neonatal brain injuries (PNBI). The report considers the uses and merit of magnetic resonance imaging (MRI) in the primary assessment of PNBI. The traditional technique of cranial ultrasound as the first modality of choice can have several limitations, which includes a lower temporal resolution in its ability to differentiate grey-white matter distribution patterns, lower spatial resolution in its ability to accurately map white matter fibre tracts and distribution patterns which are critical in white matter injury pathological events. In this specific case report, MRI was useful for the assessment of haemorrhagic brain injury post partum.Therefore, should MRI be considered, the primary imaging modality in these cases when the concerns about PNBI is presented? This case study explores the current trends in MRI neonatal brain imaging and advancements being made in this field. © 2017 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical Imaging and Radiation Therapy and New Zealand Institute of Medical Radiation Technology.

  2. Quantifying brain microstructure with diffusion MRI

    DEFF Research Database (Denmark)

    Novikov, Dmitry S.; Jespersen, Sune N.; Kiselev, Valerij G.

    2016-01-01

    We review, systematize and discuss models of diffusion in neuronal tissue, by putting them into an overarching physical context of coarse-graining over an increasing diffusion length scale. From this perspective, we view research on quantifying brain microstructure as occurring along the three ma...

  3. Combined MRI and MRS improves pre-therapeutic diagnoses of pediatric brain tumors over MRI alone

    Energy Technology Data Exchange (ETDEWEB)

    Shiroishi, Mark S.; Nelson, Marvin D. [Children' s Hospital Los Angeles/Keck School of Medicine of USC, Department of Radiology, Los Angeles, CA (United States); Panigrahy, Ashok [Children' s Hospital Los Angeles/Keck School of Medicine of USC, Department of Radiology, Los Angeles, CA (United States); Children' s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Department of Pediatric Radiology, Pittsburgh, PA (United States); Moore, Kevin R. [Primary Children' s Medical Center, Department of Radiology, Salt Lake City, UT (United States); Gilles, Floyd H. [Children' s Hospital Los Angeles/Keck School of Medicine of USC, Department of Pathology, Los Angeles, CA (United States); Gonzalez-Gomez, Ignacio [All Children' s Hospital, Department of Pathology, St. Petersburg, FL (United States); Blueml, Stefan [Children' s Hospital Los Angeles/Keck School of Medicine of USC, Department of Radiology, Los Angeles, CA (United States); Rudi Schulte Research Institute, Santa Barbara, CA (United States)

    2015-09-15

    The specific goal of this study was to determine whether the inclusion of MRS had a measureable and positive impact on the accuracy of pre-surgical MR examinations of untreated pediatric brain tumors over that of MRI alone in clinical practice. Final imaging reports of 120 pediatric patients with newly detected brain tumors who underwent combined MRI/MRS examinations were retrospectively reviewed. Final pathology was available in all cases. Group A comprised 60 subjects studied between June 2001 and January 2005, when MRS was considered exploratory and radiologists utilized only conventional MRI to arrive at a diagnosis. For group B, comprising 60 subjects studied between January 2005 and March 2008, the radiologists utilized information from both MRI and MRS. Furthermore, radiologists revisited group A (blind review, time lapse >4 years) to determine whether the additional information from MRS would have altered their interpretation. Sixty-three percent of patients in group A were diagnosed correctly, whereas in 10 % the report was partially correct with the final tumor type mentioned (but not mentioned as most likely tumor), while in 27 % of cases the reports were wrong. For group B, the diagnoses were correct in 87 %, partially correct in 5 %, and incorrect in 8 % of the cases, which is a significant improvement (p < 0.005). Re-review of combined MRI and MRS of group A resulted 87 % correct, 7 % partially correct, and 7 % incorrect diagnoses, which is a significant improvement over the original diagnoses (p < 0.05). Adding MRS to conventional MRI significantly improved diagnostic accuracy in preoperative pediatric patients with untreated brain tumors. (orig.)

  4. Brain MRI changes in chronic liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Skehan, S. [Department of Diagnostic Imaging, St. Vincent`s Hospital, Elm Park, Dublin 4 (Ireland); Norris, S. [Liver Unit, St. Vincent`s Hospital, Elm Park, Dublin 4 (Ireland); Hegarty, J. [Liver Unit, St. Vincent`s Hospital, Elm Park, Dublin 4 (Ireland); Owens, A. [Department of Diagnostic Imaging, St. Vincent`s Hospital, Elm Park, Dublin 4 (Ireland); MacErlaine, D. [Department of Diagnostic Imaging, St. Vincent`s Hospital, Elm Park, Dublin 4 (Ireland)

    1997-08-01

    Cirrhotic patients are known to have abnormally high signal principally in the globus pallidus on non-contrast T1-weighted MRI. The purpose of this study was to relate MR changes to clinical and pathological features of chronic liver disease. We confirmed abnormally high signal in the globus pallidus on T1-weighted images in 25 of 28 patients with chronic liver disease, showing that it also occurs in patients who have not yet progressed to cirrhosis. Changes were seen in patients both with and without clinical portosystemic shunting. This abnormality is not responsible for hepatic encephalopathy. Cholestatic disease was more likely to produce marked changes than non-cholestatic disease. No statistically significant correlation was demonstrated between the severity of liver disease and the degree of MR abnormality. However, marked improvement in MR appearances was seen after successful liver transplantation. (orig.). With 3 figs., 4 tabs.

  5. Pediatric brain MRI. Pt. 1. Basic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Mai-Lan; Campeau, Norbert G.; Welker, Kirk M. [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Ngo, Thang D. [Nemours Children' s Hospital, Department of Radiology, Orlando, FL (United States); Udayasankar, Unni K. [University of Arizona, Department of Radiology, Tucson, AZ (United States)

    2017-05-15

    Pediatric neuroimaging is a complex and specialized field that uses magnetic resonance (MR) imaging as the workhorse for diagnosis. Standard MR techniques used in adult neuroimaging are suboptimal for imaging in pediatrics because there are significant differences in the child's developing brain. These differences include size, myelination and sulcation. MR protocols need to be tailored to the specific indication and reviewed by the supervising radiologist in real time, and the specialized needs of this population require careful consideration of issues such as scan timing, sequence order, sedation, anesthesia and gadolinium administration. In part 1 of this review, we focus on basic protocol development and anatomical characterization. We provide multiple imaging examples optimized for evaluation of supratentorial and infratentorial brain, midline structures, head and neck, and intracranial vasculature. (orig.)

  6. Prematurity and brain perfusion: Arterial spin labeling MRI.

    Science.gov (United States)

    Tortora, Domenico; Mattei, Peter Angelo; Navarra, Riccardo; Panara, Valentina; Salomone, Rita; Rossi, Andrea; Detre, John A; Caulo, Massimo

    2017-01-01

    Abnormal brain perfusion is a critical mechanism in neonatal brain injury. The aim of the present study was to compare Cerebral Blood Flow (CBF) evaluated with ASL MRI in three groups of neonates: preterms without brain lesions on MRI (PN), preterms with periventricular white matter lesions (PNp) and term neonates with normal MRI (TN). The correlation between CBF and clinical outcome was explored. The institutional review board approved this prospective study and waived informed consent. The perfusion ASL data from 49 consecutive preterm neonates (PN) studied at term-equivalent age and 15 TN were evaluated. Statistically significant differences in gray matter CBF were evaluated by using a linear mixed-model analysis and Mann-Whitney U test. Logistic regression analysis was used to assess the relation between CBF and neuromotor outcome at 12 months. Comparison of means indicated that the CBF of the whole brain were significantly higher in PN compared to TN (P = 0.011). This difference remained significant when considering the frontal (P = 0.038), parietal (P = 0.002), temporal (P = 0.030), occipital (P = 0.041) and cerebellar (P = 0.010) gray matter. In the PN group, lower CBF in basal ganglia was associated with a worse neuromotor outcome (P = 0.012). ASL MRI demonstrated differences in brain perfusion of the basal ganglia between PN and TN. In PN, a positive correlation between CBF and neuromotor outcome was demonstrated in this area.

  7. A brief report on MRI investigation of experimental traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Timothy Q.Duong; Lora T.Watts

    2016-01-01

    Traumatic brain injury is a major cause of death and disability. This is a brief report based on a symposium presentation to the2014 Chinese Neurotrauma Association Meeting in San Francisco, USA. It covers the work from our laboratory in applying multimodal MRI to study experimental traumatic brain injury in rats with comparisons made to behavioral tests and histology. MRI protocols include structural, perfusion, manganese-enhanced, diffusion-tensor MRI, and MRI of blood-brain barrier integrity and cerebrovascular reactivity.

  8. Hemorrhage detection in MRI brain images using images features

    Science.gov (United States)

    Moraru, Luminita; Moldovanu, Simona; Bibicu, Dorin; Stratulat (Visan), Mirela

    2013-11-01

    The abnormalities appear frequently on Magnetic Resonance Images (MRI) of brain in elderly patients presenting either stroke or cognitive impairment. Detection of brain hemorrhage lesions in MRI is an important but very time-consuming task. This research aims to develop a method to extract brain tissue features from T2-weighted MR images of the brain using a selection of the most valuable texture features in order to discriminate between normal and affected areas of the brain. Due to textural similarity between normal and affected areas in brain MR images these operation are very challenging. A trauma may cause microstructural changes, which are not necessarily perceptible by visual inspection, but they could be detected by using a texture analysis. The proposed analysis is developed in five steps: i) in the pre-processing step: the de-noising operation is performed using the Daubechies wavelets; ii) the original images were transformed in image features using the first order descriptors; iii) the regions of interest (ROIs) were cropped from images feature following up the axial symmetry properties with respect to the mid - sagittal plan; iv) the variation in the measurement of features was quantified using the two descriptors of the co-occurrence matrix, namely energy and homogeneity; v) finally, the meaningful of the image features is analyzed by using the t-test method. P-value has been applied to the pair of features in order to measure they efficacy.

  9. The cerebellum link to neuroticism: a volumetric MRI association study in healthy volunteers.

    Science.gov (United States)

    Schutter, Dennis J L G; Koolschijn, P Cédric M P; Peper, Jiska S; Crone, Eveline A

    2012-01-01

    Prior research suggests an association between reduced cerebellar volumes and symptoms of depression and anxiety in patients with mood disorders. However, whether a smaller volume in itself reflects a neuroanatomical correlate for increased susceptibility to develop mood disorders remains unclear. The aim of the present study was to examine the relationship between cerebellar volume and neurotic personality traits in a non-clinical subject sample. 3T Structural magnetic resonance imaging scans were acquired, and trait depression and anxiety scales of the revised NEO personality inventory were assessed in thirty-eight healthy right-handed volunteers. Results showed that cerebellar volume corrected for total brain volume was inversely associated with depressive and anxiety-related personality traits. Cerebellar gray and white matter contributed equally to the observed associations. Our findings extend earlier clinical observations by showing that cerebellar volume covaries with neurotic personality traits in healthy volunteers. The results may point towards a possible role of the cerebellum in the vulnerability to experience negative affect. In conclusion, cerebellar volumes may constitute a clinico-neuroanatomical correlate for the development of depression- and anxiety-related symptoms.

  10. The cerebellum link to neuroticism: a volumetric MRI association study in healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Dennis J L G Schutter

    Full Text Available Prior research suggests an association between reduced cerebellar volumes and symptoms of depression and anxiety in patients with mood disorders. However, whether a smaller volume in itself reflects a neuroanatomical correlate for increased susceptibility to develop mood disorders remains unclear. The aim of the present study was to examine the relationship between cerebellar volume and neurotic personality traits in a non-clinical subject sample. 3T Structural magnetic resonance imaging scans were acquired, and trait depression and anxiety scales of the revised NEO personality inventory were assessed in thirty-eight healthy right-handed volunteers. Results showed that cerebellar volume corrected for total brain volume was inversely associated with depressive and anxiety-related personality traits. Cerebellar gray and white matter contributed equally to the observed associations. Our findings extend earlier clinical observations by showing that cerebellar volume covaries with neurotic personality traits in healthy volunteers. The results may point towards a possible role of the cerebellum in the vulnerability to experience negative affect. In conclusion, cerebellar volumes may constitute a clinico-neuroanatomical correlate for the development of depression- and anxiety-related symptoms.

  11. Microtesla MRI of the human brain with simultaneous MEG

    CERN Document Server

    Zotev, V S; Matlashov, A N; Savukov, I M; Espy, M A; Mosher, J C; Gómez, J J; Kraus, R H

    2007-01-01

    Magnetic resonance imaging at ultra-low fields (ULF MRI) uses SQUIDs (superconducting quantum interference devices) to measure spin precession at a microtesla-range field after sample magnetization is enhanced by a stronger pre-polarizing field. Here, the first ULF images of the human head acquired at 46 microtesla measurement field with pre-polarization at 30 mT are reported. The imaging was performed with 3 mm x 3 mm x 6 mm resolution using the seven-channel SQUID system designed for both ULF MRI and magnetoencephalography (MEG). Auditory MEG signals were measured immediately after the imaging while the human subject remained inside the system. These results demonstrate that ULF MRI of the human brain is feasible and can be naturally combined with MEG.

  12. The thalamus in cirrhotic patients with and without hepatic encephalopathy: A volumetric MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Ran, E-mail: taoran1648@yahoo.cn [Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Department of Radiology, Bethune International Peace Hospital of People' s Liberty Army, Shijiazhuang 050082, Hebei Province (China); Zhang, Jiuquan, E-mail: jiuquanzhang@yahoo.com [Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); You, Zhonglan, E-mail: you_zhonglan@163.com [Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Wei, Luqing, E-mail: weiluqing@foxmail.com [Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Fan, Yi, E-mail: fanyi1978@yahoo.cn [Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Cui, Jinguo, E-mail: cuijinguo2005@163.com [Department of Radiology, Bethune International Peace Hospital of People' s Liberty Army, Shijiazhuang 050082, Hebei Province (China); Wang, Jian, E-mail: wangjian_811@yahoo.com [Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China)

    2013-11-01

    Background and aims: The thalamus is a major relay and filter station in the central neural system. Some previous studies have suggested that the thalamus maybe implicated in the pathogenesis of hepatic encephalopathy. The aim of our study was to investigate changing thalamic volumes in cirrhotic patients with and without hepatic encephalopathy. Methods: Neuropsychological tests and structural MR scanning were performed on 24 cirrhotic patients, 23 cirrhotic patients with minimal hepatic encephalopathy, 24 cirrhotic patients during their first episode of overt hepatic encephalopathy, and 33 healthy controls. Voxel-based morphometry analysis was performed to detect gray matter morphological changes. The thalamus and whole brain volume were extrapolated. A receiver operating characteristic curve analysis of thalamic volumes was used to discriminate patients with minimal hepatic encephalopathy from those with hepatic cirrhosis. Results: Thalamic volume increased in a stepwise manner in patients with progressively worse stages of hepatic encephalopathy compared to healthy subjects. Additionally, a comparison of gray matter morphometry between patients with Child–Pugh grades A, B, or C and controls revealed a progression in thalamic volumes in parallel with the degree of liver failure. Moreover, thalamic volume was significantly correlated with the number connection test A time and digit-symbol test score in cirrhotic patients with minimal hepatic encephalopathy (r = 0.659, P = 0.001; r = −0.577, P = 0.004; respectively). The area under the receiver operating characteristic curve was 0.827 (P = 0.001). Conclusions: A significantly increased thalamic volume may be provide an objective imaging measure for predicting seizures due to minimal hepatic encephalopathy in cirrhotic patients.

  13. Imaging brain neuronal activity using functionalized magnetonanoparticles and MRI.

    Science.gov (United States)

    Akhtari, Massoud; Bragin, Anatol; Moats, Rex; Frew, Andrew; Mandelkern, Mark

    2012-10-01

    This study explored the use of non-radioactive 2-deoxy glucose (2DG)-labeled magnetonanoparticles (MNP) and magnetic resonance imaging (MRI) to detect functional activity during rest, peripheral stimulation, and epileptic seizures, in animal models. Non-radioactive 2DG was covalently attached to magnetonanoparticles composed of iron oxide and dextran and intravenous (tail) injections were performed. 2DG-MNP was injected in resting and stimulated naïve rodents and the subsequent MRI was compared to published (14)C-2DG autoradiography data. Reproducibility and statistical significance was established in one studied model. Negative contrast enhancement (NCE) in acute seizures and chronic models of epilepsy were investigated. MRI NCE due to 2DG-MNP particles was compared to that of plain (unconjugated) MNP in one animal. NCE due to 2DG-MNP particles at 3 T, which is approved for human use, was also investigated. Histology showed presence of MNP (following intravenous injection) in the brain tissues of resting naïve animal. 2DG-MNP intraparenchymal uptake was visible on MRI and histology. The locations of NCE agreed with published results of 2DG autoradiography in resting and stimulated animals and epileptic rats. Localization of epileptogenicity was confirmed by subsequent depth-electrode EEG (iEEG). Non-radioactive 2DG-MNP can cross the blood-brain barrier (BBB) and may accurately localize areas of increased activity. Although, this proof-of-principle study involves only a limited number of animals, and much more research and quantification are necessary to demonstrate that 2DG-MNP, or MNPs conjugated with other ligands, could eventually be used to image localized cerebral function with MRI in humans, this MNP-MRI approach is potentially applicable to the use of many bioactive molecules as ligands for imaging normal and abnormal localized cerebral functions.

  14. Repeated diffusion MRI reveals earliest time point for stratification of radiotherapy response in brain metastases

    Science.gov (United States)

    Mahmood, Faisal; Johannesen, Helle H.; Geertsen, Poul; Hansen, Rasmus H.

    2017-04-01

    An imaging biomarker for early prediction of treatment response potentially provides a non-invasive tool for better prognostics and individualized management of the disease. Radiotherapy (RT) response is generally related to changes in gross tumor volume manifesting months later. In this prospective study we investigated the apparent diffusion coefficient (ADC), perfusion fraction and pseudo diffusion coefficient derived from diffusion weighted MRI as potential early biomarkers for radiotherapy response of brain metastases. It was a particular aim to assess the optimal time point for acquiring the DW-MRI scan during the course of treatment, since to our knowledge this important question has not been addressed directly in previous studies. Twenty-nine metastases (N  =  29) from twenty-one patients, treated with whole-brain fractionated external beam RT were analyzed. Patients were scanned with a 1 T MRI system to acquire DW-, T2*W-, T2W- and T1W scans, before start of RT, at each fraction and at follow up two to three months after RT. The DW-MRI parameters were derived using regions of interest based on high b-value images (b  =  800 s mm‑2). Both volumetric and RECIST criteria were applied for response evaluation. It was found that in non-responding metastases the mean ADC decreased and in responding metastases it increased. The volume based response proved to be far more consistently predictable by the ADC change found at fraction number 7 and later, compared to the linear response (RECIST). The perfusion fraction and pseudo diffusion coefficient did not show sufficient prognostic value with either response assessment criteria. In conclusion this study shows that the ADC derived using high b-values may be a reliable biomarker for early assessment of radiotherapy response for brain metastases patients. The earliest response stratification can be achieved using two DW-MRI scans, one pre-treatment and one at treatment day 7–9 (equivalent to 21

  15. Advance MRI for pediatric brain tumors with emphasis on clinical benefits

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo; Ra, Young Shin [Asan Medical Center, University of Ulsan College of Medicine, Seoul(Korea, Republic of)

    2017-01-15

    Conventional anatomic brain MRI is often limited in evaluating pediatric brain tumors, the most common solid tumors and a leading cause of death in children. Advanced brain MRI techniques have great potential to improve diagnostic performance in children with brain tumors and overcome diagnostic pitfalls resulting from diverse tumor pathologies as well as nonspecific or overlapped imaging findings. Advanced MRI techniques used for evaluating pediatric brain tumors include diffusion-weighted imaging, diffusion tensor imaging, functional MRI, perfusion imaging, spectroscopy, susceptibility-weighted imaging, and chemical exchange saturation transfer imaging. Because pediatric brain tumors differ from adult counterparts in various aspects, MRI protocols should be designed to achieve maximal clinical benefits in pediatric brain tumors. In this study, we review advanced MRI techniques and interpretation algorithms for pediatric brain tumors.

  16. MRI Brain Activation During Instruction of Dyslexic Children

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2003-08-01

    Full Text Available Ten children with dyslexia and 11 normal readers performed tasks of phoneme mapping (assigning sounds to letters and morpheme mapping (relating suffixed words to their roots during fMRI scanning, before and after 28 hours of comprehensive reading instruction, in a study of the effects of reading instruction on brain activation in children with dyslexia at University of Washington, Seattle, WA.

  17. Brain infarcts due to scorpion stings in children: MRI

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Bouzas, A.; Ballesteros-Maresma, A. [Univ. Nacional Autonoma de Mexico, Mexico (Mexico); Morales-Resendiz, M.L. [Hospital General de Queretaro, Mexico (Mexico); Llamas-Ibarra, F. [Clinica Neurologica de Queretaro, Mexico (Mexico); Martinez-Lopez, M. [Fundacion Clinica Medica Sur., Mexico (Mexico)

    2000-02-01

    We report two children with severe neurological complications after having been stung by a scorpion. Clinical and MRI findings suggested brain infarcts. The lesions seen were in pons in one child and the right hemisphere in the other. The latter also showed possible hyperemia in the infarcted area. No vascular occlusions were observed and we therefore think the brain infarcts were a consequence of the scorpion sting. The cause of the infarct may be hypotension, shock or depressed left ventricular function, all of which are frequent in severe poisoning by scorpion sting. (orig.)

  18. Imaging Findings of Brain Death on 3-Tesla MRI

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Chul Ho [Dept. of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of); Lee, Hwa Pyung [Dept. of Occupational and Environmental Medicine, CHA Gumi Medical Center, CHA University, Gumi (Korea, Republic of); Park, Jun Beom [Dept. of Radiology, Korean Armed Force Daejeon Hospital, Daejeon (Korea, Republic of); Chang, Hyuk Won; Kim, Easlmaan; Park, Ui Jun; Kim, Hyoung Tae [Keimyung University College of Medicine, Dongsan Medical Center, Daegu (Korea, Republic of); Kim, Eun Hee [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Ku, Jeong Hun [Dept. of Biomedical Engineering, Keimyung University College of Medicine, Daegu (Korea, Republic of)

    2012-09-15

    To demonstrate the usefulness of 3-tesla (3T) magnetic resonance imaging (MRI) including T2-weighted imaging (T2WI), diffusion weighted imaging (DWI), time-of-flight (TOF) magnetic resonance angiography (MRA), T2*-weighted gradient recalled echo (GRE), and susceptibility weighted imaging (SWI) in diagnosing brain death. Magnetic resonance imaging findings for 10 patients with clinically verified brain death (group I) and seven patients with comatose or stuporous mentality who did not meet the clinical criteria of brain death (group II) were retrospectively reviewed. Tonsilar herniation and loss of intraarterial flow signal voids (LIFSV) on T2WI were highly sensitive and specific findings for the diagnosis of brain death (p < 0.001 and < 0.001, respectively). DWI, TOF-MRA, and GRE findings were statistically different between the two groups (p = 0.015, 0.029, and 0.003, respectively). However, cortical high signal intensities in T2WI and SWI findings were not statistically different between the two group (p = 0.412 and 1.0, respectively). T2-weighted imaging, DWI, and MRA using 3T MRI may be useful for diagnosing brain death. However, SWI findings are not specific due to high false positive findings.

  19. Automated detection of multiple sclerosis lesions in serial brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Llado, Xavier; Ganiler, Onur; Oliver, Arnau; Marti, Robert; Freixenet, Jordi [University of Girona, Computer Vision and Robotics Group, Girona (Spain); Valls, Laia [Dr. Josep Trueta University Hospital, Department of Radiology, Girona (Spain); Vilanova, Joan C. [Girona Magnetic Resonance Center, Girona (Spain); Ramio-Torrenta, Lluis [Dr. Josep Trueta University Hospital, Institut d' Investigacio Biomedica de Girona, Multiple Sclerosis and Neuroimmunology Unit, Girona (Spain); Rovira, Alex [Vall d' Hebron University Hospital, Magnetic Resonance Unit, Department of Radiology, Barcelona (Spain)

    2012-08-15

    Multiple sclerosis (MS) is a serious disease typically occurring in the brain whose diagnosis and efficacy of treatment monitoring are vital. Magnetic resonance imaging (MRI) is frequently used in serial brain imaging due to the rich and detailed information provided. Time-series analysis of images is widely used for MS diagnosis and patient follow-up. However, conventional manual methods are time-consuming, subjective, and error-prone. Thus, the development of automated techniques for the detection and quantification of MS lesions is a major challenge. This paper presents an up-to-date review of the approaches which deal with the time-series analysis of brain MRI for detecting active MS lesions and quantifying lesion load change. We provide a comprehensive reference source for researchers in which several approaches to change detection and quantification of MS lesions are investigated and classified. We also analyze the results provided by the approaches, discuss open problems, and point out possible future trends. Lesion detection approaches are required for the detection of static lesions and for diagnostic purposes, while either quantification of detected lesions or change detection algorithms are needed to follow up MS patients. However, there is not yet a single approach that can emerge as a standard for the clinical practice, automatically providing an accurate MS lesion evolution quantification. Future trends will focus on combining the lesion detection in single studies with the analysis of the change detection in serial MRI. (orig.)

  20. A study of brain MRI findings in children with epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Kanematsu, Sachiko; Sumida, Sawako; Muto, Ayako; Osawa, Makiko; Ono, Yuko [Tokyo Women' s Medical Coll. (Japan); Uchida, Moriyasu; Maruyama, Hiroshi

    2000-06-01

    Magnetic resonance imaging in the brain was performed in 293 patients with childhood-onset (<15 y.o.) epilepsy who had been classified into 4 groups, idiopathic localization-related epilepsy (ILRE), 78 patients; idiopathic generalized epilepsy (IGE), 116 patients; symptomatic localization-related epilepsy (SLRE), 68 patients and symptomatic generalized epilepsy (SGE), 31 patients, with the Classification of Epilepsies and Epileptic Syndrome (1989 International League Against Epilepsy). The examination was performed with a 1.5 T magnet. One hundred twenty-five patients (42.7%) showed abnormal findings, and the incidence in each group was as follows: Idiopathic epilepsy: The rate of abnormal findings in the ILRE and IGE groups was 21.8% and 20.7%, respectively. Most of the abnormal findings were secondary changes, such as diffuse or localized brain atrophy. Of the congenital abnormalities, the main finding was arachnoid cyst. Symptomatic epilepsy: The rate of abnormality in the SLRE patients was 88.2%, and 85% of the findings were secondary changes, i.e., brain atrophy, or degeneration of the white matter. In the SGE group, the rate was 77.4%, with an almost equal percentage of congenital and secondary changes. Of 255 patients who were examined by electroencephalography (EEG) on the same day as MRI, about 50% showed a correlation between the EEG records and the MRI abnormalities. However, only 8 patients showed a correlation in localization between the EEG and MRI abnormalities. (author)

  1. Accuracy of fully automated, quantitative, volumetric measurement of the amount of fibroglandular breast tissue using MRI: correlation with anthropomorphic breast phantoms.

    Science.gov (United States)

    Wengert, Georg J; Pinker, Katja; Helbich, Thomas H; Vogl, Wolf-Dieter; Spijker, Sylvia M; Bickel, Hubert; Polanec, Stephan H; Baltzer, Pascal A

    2017-06-01

    To demonstrate the accuracy of fully automated, quantitative, volumetric measurement of the amount of fibroglandular breast tissue (FGT), using MRI, and to investigate the impact of different MRI sequences using anthropomorphic breast phantoms as the ground truth. In this study, 10 anthropomorphic breast phantoms that consisted of different known fractions of adipose and protein tissue, which closely resembled normal breast parenchyma, were developed. Anthropomorphic breast phantoms were imaged with a 1.5 T unit (Siemens, Avantofit) using an 18-channel breast coil. The sequence protocol consisted of an isotropic Dixon sequence (Di), an anisotropic Dixon sequence (Da), and T1 3D FLASH sequences with and without fat saturation (T1). Fully automated, quantitative, volumetric measurement of FGT for all anthropomorphic phantoms and sequences was performed and correlated with the amounts of fatty and protein components in the phantoms as the ground truth. Fully automated, quantitative, volumetric measurements of FGT with MRI for all sequences ranged from 5.86 to 61.05% (mean 33.36%). The isotropic Dixon sequence yielded the highest accuracy (median 0.51%-0.78%) and precision (median range 0.19%) compared with anisotropic Dixon (median 1.92%-2.09%; median range 0.55%) and T1 -weighted sequences (median 2.54%-2.46%; median range 0.82%). All sequences yielded good correlation with the FGT content of the anthropomorphic phantoms. The best correlation of FGT measurements was identified for Dixon sequences (Di, R(2)  = 0.999; Da, R(2)  = 0.998) compared with conventional T1 -weighted sequences (R(2)  = 0.971). MRI yields accurate, fully automated, quantitative, volumetric measurements of FGT, an increasingly important and sensitive imaging biomarker for breast cancer risk. Compared with conventional T1 sequences, Dixon-type sequences show the highest correlation and reproducibility for automated, quantitative, volumetric FGT measurements using anthropomorphic breast

  2. Multi-modal MRI investigation of volumetric and microstructural changes in the hippocampus and its subfields in mild cognitive impairment, Alzheimer's disease, and dementia with Lewy bodies.

    Science.gov (United States)

    Mak, Elijah; Gabel, Silvy; Su, Li; Williams, Guy B; Arnold, Robert; Passamonti, Luca; Vazquez Rodríguez, Patricia; Surendranathan, Ajenthan; Bevan-Jones, W Richard; Rowe, James B; O'Brien, John T

    2017-04-01

    Volumetric atrophy and microstructural alterations in diffusion tensor imaging (DTI) measures of the hippocampus have been reported in people with Alzheimer's disease (AD) and mild cognitive impairment (MCI). However, no study to date has jointly investigated concomitant microstructural and volumetric changes of the hippocampus in dementia with Lewy bodies (DLB). A total of 84 subjects (23 MCI, 17 DLB, 14 AD, and 30 healthy controls) were recruited for a multi-modal imaging (3T MRI and DTI) study that included neuropsychological evaluation. Freesurfer was used to segment the total hippocampus and delineate its subfields. The hippocampal segmentations were co-registered to the mean diffusivity (MD) and fractional anisotropy (FA) maps obtained from the DTI images. Both AD and MCI groups showed significantly smaller hippocampal volumes compared to DLB and controls, predominantly in the CA1 and subiculum subfields. Compared to controls, hippocampal MD was elevated in AD, but not in MCI. DLB was characterized by both volumetric and microstructural preservation of the hippocampus. In MCI, higher hippocampal MD was associated with greater atrophy of the hippocampus and CA1 region. Hippocampal volume was a stronger predictor of memory scores compared to MD within the MCI group. Through a multi-modal integration, we report novel evidence that the hippocampus in DLB is characterized by both macrostructural and microstructural preservation. Contrary to recent suggestions, our findings do not support the view that DTI measurements of the hippocampus are superior to volumetric changes in characterizing group differences, particularly between MCI and controls.

  3. Patch-based generation of a pseudo CT from conventional MRI sequences for MRI-only radiotherapy of the brain

    DEFF Research Database (Denmark)

    Andreasen, Daniel; Van Leemput, Koen; Hansen, Rasmus H.

    2015-01-01

    Purpose: In radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modality, the information on electron density must be derived from the MRI scan by creating a so-called pseudo computed tomography (pCT). This is a nontrivial task, since the voxel-intensities in an MRI scan are n...... on conventional T1-weighted MRI sequences and without deformable registrations. In our evaluations, the method performed better than existing voxel-based and atlas-based methods and showed a promising potential for RT of the brain based only on MRI....

  4. Three-dimensional brain mapping using fMRI

    Energy Technology Data Exchange (ETDEWEB)

    Fukunaga, Masaki; Tanaka, Chuzo; Umeda, Masahiro; Ebisu, Toshihiko; Aoki, Ichio [Meiji Univ. of Oriental Medicine, Hiyoshi, Kyoto (Japan); Higuchi, Toshihiro; Naruse, Shoji

    1997-10-01

    Functional mapping of the activated brain, the location and extent of the activated area were determined, during motor tasks and sensory stimulation using fMRI superimposed on 3D anatomical MRI. Twelve volunteers were studied. The fMR images were acquired using a 2D gradient echo echo planar imaging sequence. The 3D anatomical MR images of the whole brain were acquired using a conventional 3D gradient echo sequence. Motor tasks were sequential opposition of fingers, clenching a hand and elbow flexion. Somatosensory stimulation were administered by scrubbing the palm and sole with a washing sponge. Visual stimulation consisted of full visual field stimulation. Data were analyzed by the cross-correlation method. Transversal fMR images and anatomical images were reconstructed using both volume-, surface-rendering methods, and reconstructed for coronal and sagittal sections. Activated areas were expressed using the three primary colors. Motor tasks activated the contralateral primary motor area (M1), the primary somatosensory area (S1) and the supplementary motor area (SMA). Somatosensory tasks activated the contralateral S1, M1 and secondary sensory area (S2). Activated areas during full visual field stimulation was observed in the bilateral occipital lobe, including both the primary cortex. Three-dimensional brain mapping allowed visualization of the anatomical location and extent of the activated brain during both motor task and sensory stimulation. Using this method we could obtain a functional map similar to the Penfield`s schema. (author)

  5. Automated detection of periventricular veins on 7 T brain MRI

    Science.gov (United States)

    Kuijf, Hugo J.; Bouvy, Willem H.; Zwanenburg, Jaco J. M.; Viergever, Max A.; Biessels, Geert Jan; Vincken, Koen L.

    2015-03-01

    Cerebral small vessel disease is common in elderly persons and a leading cause of cognitive decline, dementia, and acute stroke. With the introduction of ultra-high field strength 7.0T MRI, it is possible to visualize small vessels in the brain. In this work, a proof-of-principle study is conducted to assess the feasibility of automatically detecting periventricular veins. Periventricular veins are organized in a fan-pattern and drain venous blood from the brain towards the caudate vein of Schlesinger, which is situated along the lateral ventricles. Just outside this vein, a region-of- interest (ROI) through which all periventricular veins must cross is defined. Within this ROI, a combination of the vesselness filter, tubular tracking, and hysteresis thresholding is applied to locate periventricular veins. All detected locations were evaluated by an expert human observer. The results showed a positive predictive value of 88% and a sensitivity of 95% for detecting periventricular veins. The proposed method shows good results in detecting periventricular veins in the brain on 7.0T MR images. Compared to previous works, that only use a 1D or 2D ROI and limited image processing, our work presents a more comprehensive definition of the ROI, advanced image processing techniques to detect periventricular veins, and a quantitative analysis of the performance. The results of this proof-of-principle study are promising and will be used to assess periventricular veins on 7.0T brain MRI.

  6. Detection of brain metastases from lung cancer by CT and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Tetsu; Ohno, Yoshiharu [Kobe Univ. (Japan). School of Medicine; Endo, Masahiro [and others

    1996-08-01

    To compare the detectability of brain metastases from lung cancer, both CT and MRI were performed on all patients. Thirty-two lung cancer patients with brain metastases admitted from December 1990 to June 1994 were examined by CT and MRI using contrast enhancement. Six radiologists individually evaluated CT and MRI films for brain metastases. In 3 of 32 cases, multiple small metastatic lesions which could not be detected on CT were detected on MRI. In 29 of the 32 cases, 56 metastatic lesions were detected on CT, whereas 103 lesions were detected on MRI. There were no lesions that were detected only by CT and were not detected by MRI. MRI was superior to CT for determining small lesions less than 9 mm and inferior tentorial lesions. As a result, we consider that CT is not sufficiently effective for detecting brain metastases of lung cancer, and that MRI is now indispensable. (author)

  7. Structural and functional correlates of visual field asymmetry in the human brain by diffusion kurtosis MRI and functional MRI.

    Science.gov (United States)

    O'Connell, Caitlin; Ho, Leon C; Murphy, Matthew C; Conner, Ian P; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C

    2016-11-09

    Human visual performance has been observed to show superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine whether the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI, respectively, in 15 healthy individuals at 3 T. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In diffusion kurtosis MRI, the brain regions mapping to the lower visual field showed higher mean kurtosis, but not fractional anisotropy or mean diffusivity compared with the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing.

  8. Vascular changes caused by deep brain stimulation using double-dose gadolinium-enhanced brain MRI

    Institute of Scientific and Technical Information of China (English)

    Byeong Sam Choi; Yong Hwan Kim; Sang Ryong Jeon

    2014-01-01

    We retrospectively analyzed the clinical data of 32 patients with medically intractable idiopathic Parkinson’s disease who had undergone staged bilateral deep brain stimulation of the subtha-lamic nuclei from January 2007 to May 2011. The vascularture of the patients who received two deep brain stimulations was detected using double-dose gadolinium-enhanced brain MRI. The dimensions of straight sinus, superior sagittal sinus, ipsilateral internal cerebral vein in the tha-lamic branch and ipsilateral anterior caudate vein were reduced. These ifndings demonstrate that bilateral deep brain stimulation of the subthalamic nuclei affects cerebral venous blood lfow.

  9. MRI magnetic field stimulates rotational sensors of the brain.

    Science.gov (United States)

    Roberts, Dale C; Marcelli, Vincenzo; Gillen, Joseph S; Carey, John P; Della Santina, Charles C; Zee, David S

    2011-10-11

    Vertigo in and around magnetic resonance imaging (MRI) machines has been noted for years [1, 2]. Several mechanisms have been suggested to explain these sensations [3, 4], yet without direct, objective measures, the cause is unknown. We found that all of our healthy human subjects developed a robust nystagmus while simply lying in the static magnetic field of an MRI machine. Patients lacking labyrinthine function did not. We use the pattern of eye movements as a measure of vestibular stimulation to show that the stimulation is static (continuous, proportional to static magnetic field strength, requiring neither head movement nor dynamic change in magnetic field strength) and directional (sensitive to magnetic field polarity and head orientation). Our calculations and geometric model suggest that magnetic vestibular stimulation (MVS) derives from a Lorentz force resulting from interaction between the magnetic field and naturally occurring ionic currents in the labyrinthine endolymph fluid. This force pushes on the semicircular canal cupula, leading to nystagmus. We emphasize that the unique, dual role of endolymph in the delivery of both ionic current and fluid pressure, coupled with the cupula's function as a pressure sensor, makes magnetic-field-induced nystagmus and vertigo possible. Such effects could confound functional MRI studies of brain behavior, including resting-state brain activity.

  10. Prenatal brain MRI of fetuses with Zika virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Guillemette-Artur, Prisca [Centre Hospitalier de Polynesie Francaise, Service de Radiologie, Pirae, Tahiti (Country Unknown); Besnard, Marianne [Centre Hospitalier de Polynesie Francaise, Service de Reanimation Neo-natale, Pirae, Tahiti (Country Unknown); Eyrolle-Guignot, Dominique [Centre Hospitalier de Polynesie Francaise, Service d' Obstetrique, Pirae, Tahiti (Country Unknown); Jouannic, Jean-Marie [Universite Pierre et Marie Curie, Service de Medecine Foetale, Hopital d' Enfants Armand-Trousseau, Paris (France); Garel, Catherine [Hopital d' Enfants Armand-Trousseau, Department of Radiology, Paris (France)

    2016-06-15

    An outbreak of Zika virus was observed in French Polynesia in 2013-2014. Maternal Zika virus infection has been associated with fetal microcephaly and severe cerebral damage. To analyze the MRI cerebral findings in fetuses with intrauterine Zika virus infection. We retrospectively analyzed prospectively collected data. Inclusion criteria comprised cases with (1) estimated conception date between June 2013 and May 2014, (2) available US and MRI scans revealing severe fetal brain lesions and (3) positive polymerase chain reaction for Zika virus in the amniotic fluid. We recorded pregnancy history of Zika virus infection and analyzed US and MRI scans. Three out of 12 cases of severe cerebral lesions fulfilled all inclusion criteria. History of maternal Zika virus infection had been documented in two cases. Calcifications and ventriculomegaly were present at US in all cases. MRI showed micrencephaly (n = 3), low cerebellar biometry (n = 2), occipital subependymal pseudocysts (n = 2), polymicrogyria with laminar necrosis and opercular dysplasia (n = 3), absent (n = 1) or hypoplastic (n = 1) corpus callosum and hypoplastic brainstem (n = 1). Severe cerebral damage was observed in our series, with indirect findings suggesting that the germinal matrix is the principal target for Zika virus. The lesions are very similar to severe forms of congenital cytomegalovirus and lymphocytic choriomeningitis virus infections. (orig.)

  11. State of the art survey on MRI brain tumor segmentation.

    Science.gov (United States)

    Gordillo, Nelly; Montseny, Eduard; Sobrevilla, Pilar

    2013-10-01

    Brain tumor segmentation consists of separating the different tumor tissues (solid or active tumor, edema, and necrosis) from normal brain tissues: gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). In brain tumor studies, the existence of abnormal tissues may be easily detectable most of the time. However, accurate and reproducible segmentation and characterization of abnormalities are not straightforward. In the past, many researchers in the field of medical imaging and soft computing have made significant survey in the field of brain tumor segmentation. Both semiautomatic and fully automatic methods have been proposed. Clinical acceptance of segmentation techniques has depended on the simplicity of the segmentation, and the degree of user supervision. Interactive or semiautomatic methods are likely to remain dominant in practice for some time, especially in these applications where erroneous interpretations are unacceptable. This article presents an overview of the most relevant brain tumor segmentation methods, conducted after the acquisition of the image. Given the advantages of magnetic resonance imaging over other diagnostic imaging, this survey is focused on MRI brain tumor segmentation. Semiautomatic and fully automatic techniques are emphasized.

  12. Functional MRI of the brain: localisation of eloquent cortex in focal brain lesion therapy

    Energy Technology Data Exchange (ETDEWEB)

    Dymarkowski, S.; Sunaert, S.; Oostende, S. van; Hecke, P. van; Wilms, G.; Demaerel, P.; Marchal, G. [Department of Radiology, University Hospitals, Leuven (Belgium); Nuttin, B.; Plets, C. [Department of Neurosurgery, University Hospitals, Leuven (Belgium)

    1998-12-01

    The aim of this study was to assess the feasibility of functional MRI (fMRI) in a clinical environment on a large patient group, and to evaluate the pretherapeutic value of localisation of eloquent cortex. Forty patients with focal brain lesions of different origin were studied using fMRI. Functional information was obtained using motor, somatosensory, auditory and phonological stimuli depending on the localisation of the lesions. To obtain information about the spatial accuracy of fMRI, the results were compared with postoperative electrocortical stimulation. Two patients with secondary trigeminal neuralgia were scanned using a motor protocol and were implanted with an extradural plate electrode. Imaging was successful in 40 of 42 patients (including the 2 with trigeminal neuralgia). These patients were analysed for strength of activation, the relation of the lesion to activation sites and the presence of mass effect. The correlation between these data and surgical findings provided significant additional clinical information. Functional MRI can be accurately performed in patients with focal brain lesions using a dedicated approach. Functional MRI offers important clinical information as a contribution to a decrease in posttherapeutic morbidity. The accuracy of the technique can be confirmed by other modalities, including invasive cortical electrostimulation. (orig.) With 7 figs., 2 tabs., 25 refs.

  13. Automated selection of brain regions for real-time fMRI brain-computer interfaces

    Science.gov (United States)

    Lührs, Michael; Sorger, Bettina; Goebel, Rainer; Esposito, Fabrizio

    2017-02-01

    Objective. Brain-computer interfaces (BCIs) implemented with real-time functional magnetic resonance imaging (rt-fMRI) use fMRI time-courses from predefined regions of interest (ROIs). To reach best performances, localizer experiments and on-site expert supervision are required for ROI definition. To automate this step, we developed two unsupervised computational techniques based on the general linear model (GLM) and independent component analysis (ICA) of rt-fMRI data, and compared their performances on a communication BCI. Approach. 3 T fMRI data of six volunteers were re-analyzed in simulated real-time. During a localizer run, participants performed three mental tasks following visual cues. During two communication runs, a letter-spelling display guided the subjects to freely encode letters by performing one of the mental tasks with a specific timing. GLM- and ICA-based procedures were used to decode each letter, respectively using compact ROIs and whole-brain distributed spatio-temporal patterns of fMRI activity, automatically defined from subject-specific or group-level maps. Main results. Letter-decoding performances were comparable to supervised methods. In combination with a similarity-based criterion, GLM- and ICA-based approaches successfully decoded more than 80% (average) of the letters. Subject-specific maps yielded optimal performances. Significance. Automated solutions for ROI selection may help accelerating the translation of rt-fMRI BCIs from research to clinical applications.

  14. MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain.

    Science.gov (United States)

    Eide, Per Kristian; Ringstad, Geir

    2015-11-01

    Recently, the "glymphatic system" of the brain has been discovered in rodents, which is a paravascular, transparenchymal route for clearance of excess brain metabolites and distribution of compounds in the cerebrospinal fluid. It has already been demonstrated that intrathecally administered gadolinium (Gd) contrast medium distributes along this route in rats, but so far not in humans. A 27-year-old woman underwent magnetic resonance imaging (MRI) with intrathecal administration of gadobutrol, which distributed throughout her entire brain after 1 and 4.5 h. MRI with intrathecal Gd may become a tool to study glymphatic function in the human brain.

  15. Characterization of three dimensional volumetric strain distribution during passive tension of the human tibialis anterior using Cine Phase Contrast MRI.

    Science.gov (United States)

    Jensen, Elisabeth R; Morrow, Duane A; Felmlee, Joel P; Murthy, Naveen S; Kaufman, Kenton R

    2016-10-03

    Intramuscular pressure correlates strongly with muscle tension and is a promising tool for quantifying individual muscle force. However, clinical application is impeded by measurement variability that is not fully understood. Previous studies point to regional differences in IMP, specifically increasing pressure with muscle depth. Based on conservation of mass, intramuscular pressure and volumetric strain distributions may be inversely related. Therefore, we hypothesized volumetric strain would decrease with muscle depth. To test this we quantified 3D volumetric strain in the tibialis anterior of 12 healthy subjects using Cine Phase Contrast Magnetic Resonance Imaging. Cine Phase Contrast data were collected while a custom apparatus rotated the subjects' ankle continuously between neutral and plantarflexion. A T2-weighted image stack was used to define the resting tibials anterior position. Custom and commercial post-processing software were used to quantify the volumetric strain distribution. To characterize regional strain changes, the muscle was divided into superior-inferior sections and either medial-lateral or anterior-posterior slices. Mean volumetric strain was compared across the sections and slices. As hypothesized, volumetric strain demonstrated regional differences with a decreasing trend from the anterior (superficial) to the posterior (deep) muscle regions. Statistical tests showed significant main effects and interactions of superior-inferior and anterior-posterior position as well as superior-inferior and medial-lateral position on regional strain. These data support our hypothesis and imply a potential relationship between regional volumetric strain and intramuscular pressure. This finding may advance our understanding of intramuscular pressure variability sources and lead to more reliable measurement solutions in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Spatial heterogeneity analysis of brain activation in fMRI.

    Science.gov (United States)

    Gupta, Lalit; Besseling, René M H; Overvliet, Geke M; Hofman, Paul A M; de Louw, Anton; Vaessen, Maarten J; Aldenkamp, Albert P; Ulman, Shrutin; Jansen, Jacobus F A; Backes, Walter H

    2014-01-01

    In many brain diseases it can be qualitatively observed that spatial patterns in blood oxygenation level dependent (BOLD) activation maps appear more (diffusively) distributed than in healthy controls. However, measures that can quantitatively characterize this spatial distributiveness in individual subjects are lacking. In this study, we propose a number of spatial heterogeneity measures to characterize brain activation maps. The proposed methods focus on different aspects of heterogeneity, including the shape (compactness), complexity in the distribution of activated regions (fractal dimension and co-occurrence matrix), and gappiness between activated regions (lacunarity). To this end, functional MRI derived activation maps of a language and a motor task were obtained in language impaired children with (Rolandic) epilepsy and compared to age-matched healthy controls. Group analysis of the activation maps revealed no significant differences between patients and controls for both tasks. However, for the language task the activation maps in patients appeared more heterogeneous than in controls. Lacunarity was the best measure to discriminate activation patterns of patients from controls (sensitivity 74%, specificity 70%) and illustrates the increased irregularity of gaps between activated regions in patients. The combination of heterogeneity measures and a support vector machine approach yielded further increase in sensitivity and specificity to 78% and 80%, respectively. This illustrates that activation distributions in impaired brains can be complex and more heterogeneous than in normal brains and cannot be captured fully by a single quantity. In conclusion, heterogeneity analysis has potential to robustly characterize the increased distributiveness of brain activation in individual patients.

  17. Spatial heterogeneity analysis of brain activation in fMRI

    Directory of Open Access Journals (Sweden)

    Lalit Gupta

    2014-01-01

    Full Text Available In many brain diseases it can be qualitatively observed that spatial patterns in blood oxygenation level dependent (BOLD activation maps appear more (diffusively distributed than in healthy controls. However, measures that can quantitatively characterize this spatial distributiveness in individual subjects are lacking. In this study, we propose a number of spatial heterogeneity measures to characterize brain activation maps. The proposed methods focus on different aspects of heterogeneity, including the shape (compactness, complexity in the distribution of activated regions (fractal dimension and co-occurrence matrix, and gappiness between activated regions (lacunarity. To this end, functional MRI derived activation maps of a language and a motor task were obtained in language impaired children with (Rolandic epilepsy and compared to age-matched healthy controls. Group analysis of the activation maps revealed no significant differences between patients and controls for both tasks. However, for the language task the activation maps in patients appeared more heterogeneous than in controls. Lacunarity was the best measure to discriminate activation patterns of patients from controls (sensitivity 74%, specificity 70% and illustrates the increased irregularity of gaps between activated regions in patients. The combination of heterogeneity measures and a support vector machine approach yielded further increase in sensitivity and specificity to 78% and 80%, respectively. This illustrates that activation distributions in impaired brains can be complex and more heterogeneous than in normal brains and cannot be captured fully by a single quantity. In conclusion, heterogeneity analysis has potential to robustly characterize the increased distributiveness of brain activation in individual patients.

  18. Olivary degeneration after cerebellar or brain stem haemorrhage: MRI

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, A. (Dept. of Radiology, Kyushu Univ. Hospital, Fukuoka (Japan) Dept. of Radiology, Kyushu Rosai Hospital, Kitakyushu (Japan)); Hasuo, K. (Dept. of Radiology, Kyushu Univ. Hospital, Fukuoka (Japan)); Uchida, K. (Dept. of Radiology, Kyushu Rosai Hospital, Kitakyushu (Japan)); Matsumoto, S. (Dept. of Radiology, Kyushu Univ. Hospital, Fukuoka (Japan)); Tsukamoto, Y. (Dept. of Radiology, Kyushu Rosai Hospital, Kitakyushu (Japan)); Ohno, M. (Dept. of Radiology, Kyushu Rosai Hospital, Kitakyushu (Japan)); Masuda, K. (Dept. of Radiology, Kyushu Univ. Hospital, Fukuoka (Japan))

    1993-05-01

    Magnetic resonance (MR) images of seven patients with olivary degeneration caused by cerebellar or brain stem haemorrhages were reviewed. In four patients with cerebellar haemorrhage, old haematomas were identified as being located in the dentate nucleus; the contralateral inferior olivary nuclei were hyperintense on proton-density- and T2-weighted images. In two patients with pontine haemorrhages, the old haematomas were in the tegmentum and the ipsilateral inferior olivary nuclei, which were hyperintense. In one case of midbrain haemorrhage, the inferior olivary nuclei were hyperintense bilaterally. The briefest interval from the ictus to MRI was 2 months. Hypertrophic olivary nuclei were observed only at least 4 months after the ictus. Olivary degeneration after cerebellar or brain stem haemorrhage should not be confused with ischaemic, neoplastic, or other primary pathological conditions of the medulla. (orig.)

  19. Cortical laminar necrosis in brain infarcts: serial MRI

    Energy Technology Data Exchange (ETDEWEB)

    Siskas, N.; Lefkopoulos, A.; Ioannidis, I.; Charitandi, A.; Dimitriadis, A.S. [Radiology Department, AHEPA University Hospital, Aristotele University of Thessaloniki (Greece)

    2003-05-01

    High-signal cortical lesions are observed on T1-weighted images in cases of brain infarct. Histological examination has demonstrated these to be ''cortical laminar necrosis'', without haemorrhage or calcification. We report serial MRI in this condition in 12 patients with brain infarcts. We looked at high-signal lesions on T1-weighted images, chronological changes in signal intensity and contrast enhancement. High-signal cortical lesions began to appear about 2 weeks after the ictus, were prominent at 1 - 2 months, then became less evident, but occasionally remained for up to 1.5 years. They gave high signal or were isointense on T2-weighted images and did not give low signal at any stage. Contrast enhancement of these lesions was prominent at 1 - 2 months, and less apparent from 3 months, but was seen up to 5 months. (orig.)

  20. Simple Fully Automated Group Classification on Brain fMRI

    Energy Technology Data Exchange (ETDEWEB)

    Honorio, J.; Goldstein, R.; Honorio, J.; Samaras, D.; Tomasi, D.; Goldstein, R.Z.

    2010-04-14

    We propose a simple, well grounded classification technique which is suited for group classification on brain fMRI data sets that have high dimensionality, small number of subjects, high noise level, high subject variability, imperfect registration and capture subtle cognitive effects. We propose threshold-split region as a new feature selection method and majority voteas the classification technique. Our method does not require a predefined set of regions of interest. We use average acros ssessions, only one feature perexperimental condition, feature independence assumption, and simple classifiers. The seeming counter-intuitive approach of using a simple design is supported by signal processing and statistical theory. Experimental results in two block design data sets that capture brain function under distinct monetary rewards for cocaine addicted and control subjects, show that our method exhibits increased generalization accuracy compared to commonly used feature selection and classification techniques.

  1. The effect of brain hematoma location on volumetric inductive phase shift spectroscopy of the brain with circular and magnetron sensor coils: a numerical simulation study.

    Science.gov (United States)

    Rojas, R; Rubinsky, B; González, C A

    2008-06-01

    This numerical simulation study addressed the effects of the location of a discrete brain hematoma on the volumetric inductive phase shift of the brain measured with an induction circular sensor coil and an induction magnetron sensor coil. The theoretical study simulates the brain cavity as a circular sphere transversely centered with respect to the circular and magnetron sensor coils. As a case study for the effects of hematoma location, we employed similar size simulated spherical hematomas placed at three different positions from the center of the brain outward. A three-dimensional finite element analysis of the field equations in the frequency range from 100 kHz to 100 MHz revealed a substantial effect of hematoma location on the ability of both the circular and magnetron sensors to detect the hematomas. In particular it was found that there are frequencies, which may be related to resonance, at which the occurrence of the hematomas has no effect on the volumetric inductive phase shift of the brain. Furthermore it was found that the relative sensitivity of circular and magnetron sensor coils with respect to the occurrence of hematoma varies with the location of the hematoma.

  2. Can induced hypothermia be assured during brain MRI in neonates with hypoxic-ischemic encephalopathy?

    Energy Technology Data Exchange (ETDEWEB)

    Wintermark, Pia [Children' s Hospital Boston, Division of Newborn Medicine, Boston, MA (United States); Children' s Hospital Boston, Department of Radiology, Boston, MA (United States); Montreal Children' s Hospital, Division of Newborn Medicine, Montreal, QC (Canada); Labrecque, Michelle; Hansen, Anne [Children' s Hospital Boston, Division of Newborn Medicine, Boston, MA (United States); Warfield, Simon K.; DeHart, Stephanie [Children' s Hospital Boston, Department of Radiology, Boston, MA (United States)

    2010-12-15

    Until now, brain MRIs in asphyxiated neonates who are receiving therapeutic hypothermia have been performed after treatment is complete. However, there is increasing interest in utilizing early brain MRI while hypothermia is still being provided to rapidly understand the degree of brain injury and possibly refine neuroprotective strategies. This study was designed to assess whether therapeutic hypothermia can be maintained while performing a brain MRI. Twenty MRI scans were obtained in 12 asphyxiated neonates while they were treated with hypothermia. The median difference between esophageal temperature on NICU departure and return was 0.1 C (range: -0.8 to 0.8 C). We found that therapeutic hypothermia can be safely and reproducibly maintained during a brain MRI. Hypothermia treatment should not prevent obtaining an early brain MRI if clinically indicated. (orig.)

  3. Brain Activity Associated with Emoticons: An fMRI Study

    Science.gov (United States)

    Yuasa, Masahide; Saito, Keiichi; Mukawa, Naoki

    In this paper, we describe that brain activities associated with emoticons by using fMRI. In communication over a computer network, we use abstract faces such as computer graphics (CG) avatars and emoticons. These faces convey users' emotions and enrich their communications. However, the manner in which these faces influence the mental process is as yet unknown. The human brain may perceive the abstract face in an entirely different manner, depending on its level of reality. We conducted an experiment using fMRI in order to investigate the effects of emoticons. The results show that right inferior frontal gyrus, which associated with nonverbal communication, is activated by emoticons. Since the emoticons were created to reflect the real human facial expressions as accurately as possible, we believed that they would activate the right fusiform gyrus. However, this region was not found to be activated during the experiment. This finding is useful in understanding how abstract faces affect our behaviors and decision-making in communication over a computer network.

  4. Investigating the physiology of brain activation with MRI

    Science.gov (United States)

    Buxton, Richard B.; Uludag, Kamil; Dubowitz, David J.

    2004-04-01

    Functional magnetic resonance imaging (fMRI) has become a powerful tool for investigating the working human brain based on the blood oxygenation level dependent (BOLD) effect on the MR signal. However, despite the widespread use of fMRI techniques for mapping brain activation, the basic physiological mechanisms underlying the observed signal changes are still poorly understood. Arterial spin labeling (ASL) techniques, which measure cerebral blood flow (CBF) and the BOLD effect simultaneously, provide a useful tool for investigating these physiological questions. In this paper, recent results of studies manipulating the baseline CBF both pharmacologically and physiologically will be discussed. These data are consistent with a feed-forward mechanism of neurovascular coupling, and suggest that the CBF change itself may be a more robust reflection of neural activity changes than the BOLD effect. Consistent with these data, a new thermodynamic hypothesis is proposed for the physiological function of CBF regulation: maintenance of the [O2]/[CO2] concentration ratio at the mitochondria in order to preserve the free energy available from oxidative metabolism. A kinetic model based on this hypothesis provides a reasonable quantitative description of the CBF changes associated with neural activity and altered blood gases (CO2 and O2).

  5. Synthetic MRI of the brain in a clinical setting

    Energy Technology Data Exchange (ETDEWEB)

    Blystad, I.; Smedby, O. [Center for Medical Image Science and Visualization, CMIV, Linkoeping University, Linkoeping (Sweden); Radiology, Department of Medical and Health Sciences, Linkoeping University, Department of Radiology, UHL, County Council of Oestergoetland, Linkoeping (Sweden)], E-mail: ida.blystad@lio.se; Warntjes, J.B.M. [Center for Medical Image Science and Visualization, CMIV, Linkoeping University, Linkoeping (Sweden); Clinical Physiology, Department of Medical and Health Sciences, Linkoeping University, Department of Clinical Physiology, UHL, County Council of Oestergoetland, Linkoeping (Sweden); Landtblom, A.-M. [Center for Medical Image Science and Visualization, CMIV, Linkoeping University, Linkoeping (Sweden); Neurology, Department of Clinical and Experimental Medicine, Linkoeping University, Division of Neurology, UHL, LiM, County Council of Oestergoetland, Linkoeping (Sweden); Lundberg, P. [Center for Medical Image Science and Visualization, CMIV, Linkoeping University, Linkoeping (Sweden); Radiation Physics, Department of Medical and Health Sciences, Linkoeping University, Department of Radiation Physics, UHL, County Council of Oestergoetland, Linkoeping (Sweden); Larsson, E.-M. [Center for Medical Image Science and Visualization, CMIV, Linkoeping University, Linkoeping (Sweden); Department of Radiology, Oncology and Radiation Science/Radiology, Uppsala University, Uppsala (Sweden)

    2012-12-15

    Background. Conventional magnetic resonance imaging (MRI) has relatively long scan times for routine examinations, and the signal intensity of the images is related to the specific MR scanner settings. Due to scanner imperfections and automatic optimizations, it is impossible to compare images in terms of absolute image intensity. Synthetic MRI, a method to generate conventional images based on MR quantification, potentially both decreases examination time and enables quantitative measurements. Purpose. To evaluate synthetic MRI of the brain in a clinical setting by assessment of the contrast, the contrast-to-noise ratio (CNR), and the diagnostic quality compared with conventional MR images. Material and Methods. Twenty-two patients had synthetic imaging added to their clinical MR examination. In each patient, 12 regions of interest were placed in the brain images to measure contrast and CNR. Furthermore, general image quality, probable diagnosis, and lesion conspicuity were investigated. Results. Synthetic T1-weighted turbo spin echo and T2-weighted turbo spin echo images had higher contrast but also a higher level of noise, resulting in a similar CNR compared with conventional images. Synthetic T2-weighted FLAIR images had lower contrast and a higher level of noise, which led to a lower CNR. Synthetic images were generally assessed to be of inferior image quality, but agreed with the clinical diagnosis to the same extent as the conventional images. Lesion conspicuity was higher in the synthetic T1-weighted images, which also had a better agreement with the clinical diagnoses than the conventional T1-weighted images. Conclusion. Synthetic MR can potentially shorten the MR examination time. Even though the image quality is perceived to be inferior, synthetic images agreed with the clinical diagnosis to the same extent as the conventional images in this study.

  6. Dosimetric Evaluation of Intensity-Modulated Radiotherapy, Volumetric Modulated Arc Therapy, and Helical Tomotherapy for Hippocampal-Avoidance Whole Brain Radiotherapy

    Science.gov (United States)

    Rong, Yi; Evans, Josh; Xu-Welliver, Meng; Pickett, Cadron; Jia, Guang; Chen, Quan; Zuo, Li

    2015-01-01

    Background Whole brain radiotherapy (WBRT) is a vital tool in radiation oncology and beyond, but it can result in adverse health effects such as neurocognitive decline. Hippocampal Avoidance WBRT (HA-WBRT) is a strategy that aims to mitigate the neuro-cognitive side effects of whole brain radiotherapy treatment by sparing the hippocampi while delivering the prescribed dose to the rest of the brain. Several competing modalities capable of delivering HA-WBRT, include: Philips Pinnacle step-and-shoot intensity modulated radiotherapy (IMRT), Varian RapidArc volumetric modulated arc therapy (RapidArc), and helical TomoTherapy (TomoTherapy). Methods In this study we compared these methods using 10 patient datasets. Anonymized planning CT (computerized tomography) scans and contour data based on fused MRI images were collected. Three independent planners generated treatment plans for the patients using three modalities, respectively. All treatment plans met the RTOG 0933 criteria for HA-WBRT treatment. Results In dosimetric comparisons between the three modalities, TomoTherapy has a significantly superior homogeneity index of 0.15 ± 0.03 compared to the other two modalities (0.28 ± .04, p delivery time of 2.5 min compared to the other modalities (15 min for IMRT and 18 min for TomoTherapy). Conclusion TomoTherapy is considered to be the preferred modality for HA-WBRT due to its superior dose distribution. When TomoTherapy is not available or treatment time is a concern, RapidArc can provide sufficient dose distribution meeting RTOG criteria and efficient treatment delivery. PMID:25894615

  7. Building an EEG-fMRI Multi-Modal Brain Graph: A Concurrent EEG-fMRI Study.

    Science.gov (United States)

    Yu, Qingbao; Wu, Lei; Bridwell, David A; Erhardt, Erik B; Du, Yuhui; He, Hao; Chen, Jiayu; Liu, Peng; Sui, Jing; Pearlson, Godfrey; Calhoun, Vince D

    2016-01-01

    The topological architecture of brain connectivity has been well-characterized by graph theory based analysis. However, previous studies have primarily built brain graphs based on a single modality of brain imaging data. Here we develop a framework to construct multi-modal brain graphs using concurrent EEG-fMRI data which are simultaneously collected during eyes open (EO) and eyes closed (EC) resting states. FMRI data are decomposed into independent components with associated time courses by group independent component analysis (ICA). EEG time series are segmented, and then spectral power time courses are computed and averaged within 5 frequency bands (delta; theta; alpha; beta; low gamma). EEG-fMRI brain graphs, with EEG electrodes and fMRI brain components serving as nodes, are built by computing correlations within and between fMRI ICA time courses and EEG spectral power time courses. Dynamic EEG-fMRI graphs are built using a sliding window method, versus static ones treating the entire time course as stationary. In global level, static graph measures and properties of dynamic graph measures are different across frequency bands and are mainly showing higher values in eyes closed than eyes open. Nodal level graph measures of a few brain components are also showing higher values during eyes closed in specific frequency bands. Overall, these findings incorporate fMRI spatial localization and EEG frequency information which could not be obtained by examining only one modality. This work provides a new approach to examine EEG-fMRI associations within a graph theoretic framework with potential application to many topics.

  8. Building an EEG-fMRI multi-modal brain graph: a concurrent EEG-fMRI study

    Directory of Open Access Journals (Sweden)

    Qingbao Yu

    2016-09-01

    Full Text Available The topological architecture of brain connectivity has been well characterized by graph theory based analysis. However, previous studies have primarily built brain graphs based on a single modality of brain imaging data. Here we develop a framework to construct multi-modal brain graphs using concurrent EEG-fMRI data which are simultaneously collected during eyes open (EO and eyes closed (EC resting states. FMRI data are decomposed into independent components with associated time courses by group independent component analysis (ICA. EEG time series are segmented, and then spectral power time courses are computed and averaged within 5 frequency bands (delta; theta; alpha; beta; low gamma. EEG-fMRI brain graphs, with EEG electrodes and fMRI brain components serving as nodes, are built by computing correlations within and between fMRI ICA time courses and EEG spectral power time courses. Dynamic EEG-fMRI graphs are built using a sliding window method, versus static ones treating the entire time course as stationary. In global level, static graph measures and properties of dynamic graph measures are different across frequency bands and are mainly showing higher values in eyes closed than eyes open. Nodal level graph measures of a few brain components are also showing higher values during eyes closed in specific frequency bands. Overall, these findings incorporate fMRI spatial localization and EEG frequency information which could not be obtained by examining only one modality. This work provides a new approach to examine EEG-fMRI associations within a graph theoretic framework with potential application to many topics.

  9. Building an EEG-fMRI Multi-Modal Brain Graph: A Concurrent EEG-fMRI Study

    Science.gov (United States)

    Yu, Qingbao; Wu, Lei; Bridwell, David A.; Erhardt, Erik B.; Du, Yuhui; He, Hao; Chen, Jiayu; Liu, Peng; Sui, Jing; Pearlson, Godfrey; Calhoun, Vince D.

    2016-01-01

    The topological architecture of brain connectivity has been well-characterized by graph theory based analysis. However, previous studies have primarily built brain graphs based on a single modality of brain imaging data. Here we develop a framework to construct multi-modal brain graphs using concurrent EEG-fMRI data which are simultaneously collected during eyes open (EO) and eyes closed (EC) resting states. FMRI data are decomposed into independent components with associated time courses by group independent component analysis (ICA). EEG time series are segmented, and then spectral power time courses are computed and averaged within 5 frequency bands (delta; theta; alpha; beta; low gamma). EEG-fMRI brain graphs, with EEG electrodes and fMRI brain components serving as nodes, are built by computing correlations within and between fMRI ICA time courses and EEG spectral power time courses. Dynamic EEG-fMRI graphs are built using a sliding window method, versus static ones treating the entire time course as stationary. In global level, static graph measures and properties of dynamic graph measures are different across frequency bands and are mainly showing higher values in eyes closed than eyes open. Nodal level graph measures of a few brain components are also showing higher values during eyes closed in specific frequency bands. Overall, these findings incorporate fMRI spatial localization and EEG frequency information which could not be obtained by examining only one modality. This work provides a new approach to examine EEG-fMRI associations within a graph theoretic framework with potential application to many topics. PMID:27733821

  10. WE-G-BRD-06: Volumetric Cine MRI (VC-MRI) Estimated Based On Prior Knowledge for On-Board Target Localization

    Energy Technology Data Exchange (ETDEWEB)

    Harris, W; Yin, F; Cai, J; Zhang, Y; Ren, L [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: To develop a technique to generate on-board VC-MRI using patient prior 4D-MRI, motion modeling and on-board 2D-cine MRI for real-time 3D target verification of liver and lung radiotherapy. Methods: The end-expiration phase images of a 4D-MRI acquired during patient simulation are used as patient prior images. Principal component analysis (PCA) is used to extract 3 major respiratory deformation patterns from the Deformation Field Maps (DFMs) generated between end-expiration phase and all other phases. On-board 2D-cine MRI images are acquired in the axial view. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI at the end-expiration phase. The DFM is represented as a linear combination of the 3 major deformation patterns. The coefficients of the deformation patterns are solved by matching the corresponding 2D slice of the estimated VC-MRI with the acquired single 2D-cine MRI. The method was evaluated using both XCAT (a computerized patient model) simulation of lung cancer patients and MRI data from a real liver cancer patient. The 3D-MRI at every phase except end-expiration phase was used to simulate the ground-truth on-board VC-MRI at different instances, and the center-tumor slice was selected to simulate the on-board 2D-cine images. Results: Image subtraction of ground truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground truth with prior image. Excellent agreement between profiles was achieved. The normalized cross correlation coefficients between the estimated and ground-truth in the axial, coronal and sagittal views for each time step were >= 0.982, 0.905, 0.961 for XCAT data and >= 0.998, 0.911, 0.9541 for patient data. For XCAT data, the maximum-Volume-Percent-Difference between ground-truth and estimated tumor volumes was 1.6% and the maximum-Center-of-Mass-Shift was 0.9 mm. Conclusion: Preliminary studies demonstrated the feasibility to estimate real-time VC-MRI for on

  11. Real-time fMRI brain computer interfaces: self-regulation of single brain regions to networks.

    Science.gov (United States)

    Ruiz, Sergio; Buyukturkoglu, Korhan; Rana, Mohit; Birbaumer, Niels; Sitaram, Ranganatha

    2014-01-01

    With the advent of brain computer interfaces based on real-time fMRI (rtfMRI-BCI), the possibility of performing neurofeedback based on brain hemodynamics has become a reality. In the early stage of the development of this field, studies have focused on the volitional control of activity in circumscribed brain regions. However, based on the understanding that the brain functions by coordinated activity of spatially distributed regions, there have recently been further developments to incorporate real-time feedback of functional connectivity and spatio-temporal patterns of brain activity. The present article reviews the principles of rtfMRI neurofeedback, its applications, benefits and limitations. A special emphasis is given to the discussion of novel developments that have enabled the use of this methodology to achieve self-regulation of the functional connectivity between different brain areas and of distributed brain networks, anticipating new and exciting applications for cognitive neuroscience and for the potential alleviation of neuropsychiatric disorders.

  12. A quantitative MRI method for imaging blood-brain barrier leakage in experimental traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available Blood-brain barrier (BBB disruption is common following traumatic brain injury (TBI. Dynamic contrast enhanced (DCE MRI can longitudinally measure the transport coefficient Ktrans which reflects BBB permeability. Ktrans measurements however are not widely used in TBI research because it is generally considered to be noisy and possesses low spatial resolution. We improved spatiotemporal resolution and signal sensitivity of Ktrans MRI in rats by using a high-sensitivity surface transceiver coil. To overcome the signal drop off profile of the surface coil, a pre-scan module was used to map the flip angle (B1 field and magnetization (M0 distributions. A series of T1-weighted gradient echo images were acquired and fitted to the extended Kety model with reversible or irreversible leakage, and the best model was selected using F-statistics. We applied this method to study the rat brain one hour following controlled cortical impact (mild to moderate TBI, and observed clear depiction of the BBB damage around the impact regions, which matched that outlined by Evans Blue extravasation. Unlike the relatively uniform T2 contrast showing cerebral edema, Ktrans shows a pronounced heterogeneous spatial profile in and around the impact regions, displaying a nonlinear relationship with T2. This improved Ktrans MRI method is also compatible with the use of high-sensitivity surface coil and the high-contrast two-coil arterial spin-labeling method for cerebral blood flow measurement, enabling more comprehensive investigation of the pathophysiology in TBI.

  13. Collimator design for a multipinhole brain SPECT insert for MRI

    Energy Technology Data Exchange (ETDEWEB)

    Van Audenhaege, Karen; Van Holen, Roel; Vanhove, Christian; Vandenberghe, Stefaan [Department of Electronics and Information Systems, Ghent University-iMinds Medical IT, MEDISIP-IBiTech, De Pintelaan 185 block B/5, Ghent B-9000 (Belgium)

    2015-11-15

    Purpose: Brain single photon emission computed tomography (SPECT) imaging is an important clinical tool, with unique tracers for studying neurological diseases. Nowadays, most commercial SPECT systems are combined with x-ray computed tomography (CT) in so-called SPECT/CT systems to obtain an anatomical background for the functional information. However, while CT images have a high spatial resolution, they have a low soft-tissue contrast, which is an important disadvantage for brain imaging. Magnetic resonance imaging (MRI), on the other hand, has a very high soft-tissue contrast and does not involve extra ionizing radiation. Therefore, the authors designed a brain SPECT insert that can operate inside a clinical MRI. Methods: The authors designed and simulated a compact stationary multipinhole SPECT insert based on digital silicon photomultiplier detector modules, which have shown to be MR-compatible and have an excellent intrinsic resolution (0.5 mm) when combined with a monolithic 2 mm thick LYSO crystal. First, the authors optimized the different parameters of the SPECT system to maximize sensitivity for a given target resolution of 7.2 mm in the center of the field-of-view, given the spatial constraints of the MR system. Second, the authors performed noiseless simulations of two multipinhole configurations to evaluate sampling and reconstructed resolution. Finally, the authors performed Monte Carlo simulations and compared the SPECT insert with a clinical system with ultrahigh-resolution (UHR) fan beam collimators, based on contrast-to-noise ratio and a visual comparison of a Hoffman phantom with a 9 mm cold lesion. Results: The optimization resulted in a stationary multipinhole system with a collimator radius of 150.2 mm and a detector radius of 172.67 mm, which corresponds to four rings of 34 diSPM detector modules. This allows the authors to include eight rings of 24 pinholes, which results in a system volume sensitivity of 395 cps/MBq. Noiseless simulations

  14. Collimator design for a multipinhole brain SPECT insert for MRI.

    Science.gov (United States)

    Van Audenhaege, Karen; Van Holen, Roel; Vanhove, Christian; Vandenberghe, Stefaan

    2015-11-01

    Brain single photon emission computed tomography (SPECT) imaging is an important clinical tool, with unique tracers for studying neurological diseases. Nowadays, most commercial SPECT systems are combined with x-ray computed tomography (CT) in so-called SPECT/CT systems to obtain an anatomical background for the functional information. However, while CT images have a high spatial resolution, they have a low soft-tissue contrast, which is an important disadvantage for brain imaging. Magnetic resonance imaging (MRI), on the other hand, has a very high soft-tissue contrast and does not involve extra ionizing radiation. Therefore, the authors designed a brain SPECT insert that can operate inside a clinical MRI. The authors designed and simulated a compact stationary multipinhole SPECT insert based on digital silicon photomultiplier detector modules, which have shown to be MR-compatible and have an excellent intrinsic resolution (0.5 mm) when combined with a monolithic 2 mm thick LYSO crystal. First, the authors optimized the different parameters of the SPECT system to maximize sensitivity for a given target resolution of 7.2 mm in the center of the field-of-view, given the spatial constraints of the MR system. Second, the authors performed noiseless simulations of two multipinhole configurations to evaluate sampling and reconstructed resolution. Finally, the authors performed Monte Carlo simulations and compared the SPECT insert with a clinical system with ultrahigh-resolution (UHR) fan beam collimators, based on contrast-to-noise ratio and a visual comparison of a Hoffman phantom with a 9 mm cold lesion. The optimization resulted in a stationary multipinhole system with a collimator radius of 150.2 mm and a detector radius of 172.67 mm, which corresponds to four rings of 34 diSPM detector modules. This allows the authors to include eight rings of 24 pinholes, which results in a system volume sensitivity of 395 cps/MBq. Noiseless simulations show sufficient axial

  15. Quantitative Tractography and Volumetric MRI in Blast and Blunt Force TBI: Predictors of Neurocognitive and Behavioral Outcome

    Science.gov (United States)

    2015-10-01

    middle frontal and left inferior parietal regions, as well as with the left caudate and right lateral and medial orbital-frontal regions (Orff et al...within cortical and subcortical regions within the frontal and temporal lobes including prefrontal cortices, the anterior cingulate, the temporal cortex... lobe volumes. Initial efforts have proved that volumetric analyses are not as sensitive to the effects of TBI (at least in this subset of

  16. Temperature Changes in the Brain of Patients Undergoing MRI Examination

    Directory of Open Access Journals (Sweden)

    Theresa Bebaaku Dery

    2013-04-01

    Full Text Available Magnetic Resonance Imaging scanners have become important tools in modern day health care. During the imaging process, total radiofrequency power is transferred from the RF coil to the brain tissues resulting in increase in temperature in the subject being imaged. Currently, reliable and validated means to predict RF heating are not unavailable.This research was conducted to determine temperature changes in the human brain during MRI examination.This study was carried out at two MRI Units in Ghana. One hundred and twenty-six patients were investigated. Data collected include pre- and post-scan tympanic temperatures and specific absorption rates values. The average pre- and post-scan tympanic temperatures measured for Centre A were 36.5±0.1 °C and 37.0±0.1 °C respectively with an average change in temperature of 0.5±0.1 °C for 30.68 minutes scan and an average SAR value of 1.25 W/kg. Centre B measured average pre- and post-scan tympanic temperatures of 36.4±0.1 °C and 36.8±0.1 °C respectively with an average change in temperature of 0.4±0.1 °C for 41.58 minutes scan and an average SAR value of 0.1 W/kg.The rise in tympanic temperature and SAR values were within guidance level of 1 °C recommended by theUnited States Food and Administration and the International Electrotechnical Commission.

  17. Volumetric assessment of recurrent or progressive gliomas: comparison between F-DOPA PET and perfusion-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Cicone, Francesco [Sant' Andrea Hospital, Rome (Italy). Unit of Nuclear Medicine; Rome Sapienza Univ. (Italy). Dept. of Surgical and Medical Sciences and tranlational Medicine; Research Centre Juelich (Germany). Inst. of Neureoscience and Medicine; Filss, Christian P.; Langen, Karl-Josef [Research Centre Juelich (Germany). Inst. of Neureoscience and Medicine; RWTH Aachen Univ. Hospital (Germany). Dept. of Nuclear Medicine; Minniti, Giuseppe; Scaringi, Claudia [Rome Sapienza Univ. (Italy). Dept. of Surgical and Medical Sciences and tranlational Medicine; Sant' Andrea Hospital, Rome (Italy). Unit of Radiotherapy; Rossi-Espagnet, Camilla; Bozzao, Alessandro [Sant' Andrea Hospital, Rome (Italy). Unit of Neuroradiology; Rome Sapienza Univ. (Italy). Dept. of Neurosciences, Mental Health and Sensory Organs (Ne.S.M.O.S.); Papa, Annalisa; Scopinaro, Francesco [Sant' Andrea Hospital, Rome (Italy). Unit of Nuclear Medicine; Rome Sapienza Univ. (Italy). Dept. of Surgical and Medical Sciences and tranlational Medicine; Galldiks, Norbert [Research Centre Juelich (Germany). Inst. of Neureoscience and Medicine; Cologne Univ. (Germany). Dept. of Neurology; Shah, N. Jon [Research Centre Juelich (Germany). Inst. of Neureoscience and Medicine

    2015-05-01

    To compare the diagnostic information obtained with 6-[{sup 18}F]-fluoro-l-3,4-dihydroxyphenylalanine (F-DOPA) PET and relative cerebral blood volume (rCBV) maps in recurrent or progressive glioma. All patients with recurrent or progressive glioma referred for F-DOPA imaging at our institution between May 2010 and May 2014 were retrospectively included, provided that macroscopic disease was visible on conventional MRI images and that rCBV maps were available for comparison. The final analysis included 50 paired studies (44 patients). After image registration, automatic tumour segmentation of both sets of images was performed using the average signal in a large reference VOI including grey and white matter multiplied by 1.6. Tumour volumes identified by both modalities were compared and their spatial congruence calculated. The distances between F-DOPA uptake and rCBV hot spots, tumour-to-brain ratios (TBRs) and normalized histograms were also computed. On visual inspection, 49 of the 50 F-DOPA and 45 of the 50 rCBV studies were classified as positive. The tumour volume delineated using F-DOPA (F-DOPA{sub vol} {sub 1.6}) greatly exceeded that of rCBV maps (rCBV{sub vol} {sub 1.6}). The median F-DOPA{sub vol} {sub 1.6} and rCBV{sub vol} {sub 1.6} were 11.44 ml (range 0 - 220.95 ml) and 1.04 ml (range 0 - 26.30 ml), respectively (p < 0.00001). Overall, the median overlapping volume was 0.27 ml, resulting in a spatial congruence of 1.38 % (range 0 - 39.22 %). The mean hot spot distance was 27.17 mm (±16.92 mm). F-DOPA uptake TBR was significantly higher than rCBV TBR (1.76 ± 0.60 vs. 1.15 ± 0.52, respectively; p < 0.0001). The histogram analysis showed that F-DOPA provided better separation of tumour from background. In 6 of the 50 studies (12 %), however, physiological uptake in the striatum interfered with tumour delineation. The information provided by F-DOPA PET and rCBV maps are substantially different. Image interpretation is easier and a larger tumour extent

  18. Clinical validation of synthetic brain MRI in children: initial experience

    Energy Technology Data Exchange (ETDEWEB)

    West, Hollie; Leach, James L.; Jones, Blaise V.; Care, Marguerite; Radhakrishnan, Rupa; Merrow, Arnold C.; Alvarado, Enrique; Serai, Suraj D. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States)

    2017-01-15

    The purpose of this study was to determine the diagnostic accuracy of synthetic MR sequences generated through post-acquisition processing of a single sequence measuring inherent R1, R2, and PD tissue properties compared with sequences acquired conventionally as part of a routine clinical pediatric brain MR exam. Thirty-two patients underwent routine clinical brain MRI with conventional and synthetic sequences acquired (22 abnormal). Synthetic axial T1, T2, and T2 fluid attenuation inversion recovery or proton density-weighted sequences were made to match the comparable clinical sequences. Two exams for each patient were de-identified. Four blinded reviewers reviewed eight patients and were asked to generate clinical reports on each exam (synthetic or conventional) at two different time points separated by a mean of 33 days. Exams were rated for overall and specific finding agreement (synthetic/conventional and compared to gold standard consensus review by two senior reviewers with knowledge of clinical report), quality, and diagnostic confidence. Overall agreement between conventional and synthetic exams was 97%. Agreement with consensus readings was 84% (conventional) and 81% (synthetic), p = 0.61. There were no significant differences in sensitivity, specificity, or accuracy for specific imaging findings involving the ventricles, CSF, brain parenchyma, or vasculature between synthetic or conventional exams (p > 0.05). No significant difference in exam quality, diagnostic confidence, or noise/artifacts was noted comparing studies with synthetic or conventional sequences. Diagnostic accuracy and quality of synthetically generated sequences are comparable to conventionally acquired sequences as part of a standard pediatric brain exam. Further confirmation in a larger study is warranted. (orig.)

  19. Simultaneous fMRI-PET of the opioidergic pain system in human brain

    DEFF Research Database (Denmark)

    Wey, Hsiao-Ying; Catana, Ciprian; Hooker, Jacob M

    2014-01-01

    MRI and PET provide complementary information for studying brain function. While the potential use of simultaneous MRI/PET for clinical diagnostic and disease staging has been demonstrated recently; the biological relevance of concurrent functional MRI-PET brain imaging to dissect neurochemically...... in this region. Simultaneous fMRI-PET provides unique opportunities allowing us to relate specific neurochemical events to functional hemodynamic activation and to investigate the impacts of neurotransmission on neurovascular coupling of the human brain in vivo.......MRI and PET provide complementary information for studying brain function. While the potential use of simultaneous MRI/PET for clinical diagnostic and disease staging has been demonstrated recently; the biological relevance of concurrent functional MRI-PET brain imaging to dissect neurochemically...... data were acquired with an opioid radioligand, [(11)C]diprenorphine, to detect endogenous opioid releases in response to pain. BOLD fMRI data were collected at the same time to capture hemodynamic responses. In this simultaneous human fMRI-PET imaging study, we show co-localized responses in thalamus...

  20. Structural MRI of Pediatric Brain Development: What Have We Learned and Where Are We Going?

    OpenAIRE

    2010-01-01

    Magnetic resonance imaging (MRI) allows unprecedented access to the anatomy and physiology of the developing brain without the use of ionizing radiation. Over the past two decades, thousands of brain MRI scans from healthy youth and those with neuropsychiatric illness have been acquired and analyzed with respect to diagnosis, sex, genetics, and/or psychological variables such as IQ. Initial reports comparing size differences of various brain components averaged across large age spans have giv...

  1. White matter segmentation by estimating tissue optical attenuation from volumetric OCT massive histology of whole rodent brains

    Science.gov (United States)

    Lefebvre, Joël.; Castonguay, Alexandre; Lesage, Frédéric

    2017-02-01

    A whole rodent brain was imaged using an automated massive histology setup and an Optical Coherence Tomography (OCT) microscope. Thousands of OCT volumetric tiles were acquired, each covering a size of about 2.5x2.5x0.8 mm3 with a sampling resolution of 4.9x4.9x6.5 microns. This paper shows the techniques for reconstruction, attenuation compensation and segmentation of the sliced brains. The tile positions within the mosaic were evaluated using a displacement model of the motorized stage and pairwise coregistration. Volume blending was then performed by solving the 3D Laplace equation, and consecutive slices were assembled using the cross-correlation of their 2D image gradient. This reconstruction algorithm resulted in a 3D map of optical reflectivity for the whole brain at micrometric resolution. OCT tissue slices were then used to estimate the local attenuation coefficient based on a single scattering photon model. The attenuation map obtained exhibits a high contrast for all white matter fibres, regardless of their orientation. The tissue optical attenuation from the intrinsic OCT reflectivity contributes to better white matter tissue segmentation. The combined 3D maps of reflectivity and attenuation is a step toward the study of white matter at a microscopic scale for the whole brain in small animals.

  2. A cross-sectional MRI study of brain regional atrophy and clinical characteristics of temporal lobe epilepsy with hippocampal sclerosis.

    LENUS (Irish Health Repository)

    2012-02-01

    PURPOSE: Applying a cross-sectional design, we set out to further characterize the significance of extrahippocampal brain atrophy in a large sample of \\'sporadic\\' mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE+HS). By evaluating the influence of epilepsy chronicity on structural atrophy, this work represents an important step towards the characterization of MRI-based volumetric measurements as genetic endophenotypes for this condition. METHODS: Using an automated brain segmentation technique, MRI-based volume measurements of several brain regions were compared between 75 patients with \\'sporadic\\' MTLE+HS and 50 healthy controls. Applying linear regression models, we examined the relationship between structural atrophy and important clinical features of MTLE+HS, including disease duration, lifetime number of partial and generalized seizures, and history of initial precipitating insults (IPIs). RESULTS: Significant volume loss was detected in ipsilateral hippocampus, amygdala, thalamus, and cerebral white matter (WM). In addition, contralateral hippocampal and bilateral cerebellar grey matter (GM) volume loss was observed in left MTLE+HS patients. Hippocampal, amygdalar, and cerebral WM volume loss correlated with duration of epilepsy. This correlation was stronger in patients with prior IPIs history. Further, cerebral WM, cerebellar GM, and contralateral hippocampal volume loss correlated with lifetime number of generalized seizures. CONCLUSION: Our findings confirm that multiple brain regions beyond the hippocampus are involved in the pathogenesis of MTLE+HS. IPIs are an important factor influencing the rate of regional atrophy but our results also support a role for processes related to epilepsy chronicity. The consequence of epilepsy chronicity on candidate brain regions has important implications on their application as genetic endophenotypes.

  3. MRI detection of brain metastases at initial staging of small-cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pol, M. van de [Dept. of Neurology, Univ. Hospital, Maastricht (Netherlands); Oosterhout, A.G. van [Dept. of Neurology, Univ. Hospital, Maastricht (Netherlands); Wilmink, J.T. [Dept. of Diagnostic Radiology, Univ. Hospital, Maastricht (Netherlands); Velde, G.P.M. ten [Dept. of Pulmonology, Univ. Hospital, Maastricht (Netherlands); Twijnstra, A. [Dept. of Neurology, Univ. Hospital, Maastricht (Netherlands)

    1996-04-01

    We prospectively investigated 40 patients with small-cell carcinoma of the lung (SCLC) for signs of brain metastasis by neurological examination and MRI of the brain, to determine the significance of MRI for staging. MRI could not be completed in one patient, who was excluded from the study. The MRI studies of the remaining patients showed no abnormalities in 12, cerebral infarcts in 2 and brain metastases in 11 patients, of whom 3 no relevant symptoms. Nonenhancing white matter lesions were found in 14 patients. In 3 of the 4 patients with an abnormal neurological examination at diagnosis, nonenhancing white matter lesions later developed into contrast enhancing lesions compatible with breain metastases; in 2, this occurred during the course of the chemotherapy. MRI did not change the clinical staging in patients with asymptomatic brain metastases. (orig.)

  4. Regional infant brain development: an MRI-based morphometric analysis in 3 to 13 month olds.

    Science.gov (United States)

    Choe, Myong-Sun; Ortiz-Mantilla, Silvia; Makris, Nikos; Gregas, Matt; Bacic, Janine; Haehn, Daniel; Kennedy, David; Pienaar, Rudolph; Caviness, Verne S; Benasich, April A; Grant, P Ellen

    2013-09-01

    Elucidation of infant brain development is a critically important goal given the enduring impact of these early processes on various domains including later cognition and language. Although infants' whole-brain growth rates have long been available, regional growth rates have not been reported systematically. Accordingly, relatively less is known about the dynamics and organization of typically developing infant brains. Here we report global and regional volumetric growth of cerebrum, cerebellum, and brainstem with gender dimorphism, in 33 cross-sectional scans, over 3 to 13 months, using T1-weighted 3-dimensional spoiled gradient echo images and detailed semi-automated brain segmentation. Except for the midbrain and lateral ventricles, all absolute volumes of brain regions showed significant growth, with 6 different patterns of volumetric change. When normalized to the whole brain, the regional increase was characterized by 5 differential patterns. The putamen, cerebellar hemispheres, and total cerebellum were the only regions that showed positive growth in the normalized brain. Our results show region-specific patterns of volumetric change and contribute to the systematic understanding of infant brain development. This study greatly expands our knowledge of normal development and in future may provide a basis for identifying early deviation above and beyond normative variation that might signal higher risk for neurological disorders.

  5. White Matter Development during Adolescence as Shown by Diffusion MRI

    Science.gov (United States)

    Schmithorst, Vincent J.; Yuan, Weihong

    2010-01-01

    Previous volumetric developmental MRI studies of the brain have shown white matter development continuing through adolescence and into adulthood. This review presents current findings regarding white matter development and organization from diffusion MRI studies. The general trend during adolescence (age 12-18 years) is towards increasing…

  6. MB-SWIFT functional MRI during deep brain stimulation in rats.

    Science.gov (United States)

    Lehto, Lauri J; Idiyatullin, Djaudat; Zhang, Jinjin; Utecht, Lynn; Adriany, Gregor; Garwood, Michael; Gröhn, Olli; Michaeli, Shalom; Mangia, Silvia

    2017-08-07

    Recently introduced 3D radial MRI pulse sequence entitled Multi-Band SWeep Imaging with Fourier Transformation (MB-SWIFT) having virtually zero acquisition delay was used to obtain functional MRI (fMRI) contrast in rat's brain at 9.4 T during deep brain stimulation (DBS). The results demonstrate that MB-SWIFT allows functional images free of susceptibility artifacts, and provides an excellent fMRI activation contrast in the brain. Flip angle dependence of the MB-SWIFT fMRI signal and elimination of the fMRI contrast while using saturation bands, indicate a blood flow origin of the observed fMRI contrast. MB-SWIFT fMRI modality permits activation studies in the close proximity to an implanted lead, which is not possible to achieve with conventionally used gradient echo and spin echo - echo planar imaging fMRI techniques. We conclude that MB-SWIFT fMRI is a powerful imaging modality for investigations of functional responses during DBS. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Robust volume assessment of brain tissues for 3-dimensional fourier transformation MRI via a novel multispectral technique.

    Directory of Open Access Journals (Sweden)

    Jyh-Wen Chai

    Full Text Available A new TRIO algorithm method integrating three different algorithms is proposed to perform brain MRI segmentation in the native coordinate space, with no need of transformation to a standard coordinate space or the probability maps for segmentation. The method is a simple voxel-based algorithm, derived from multispectral remote sensing techniques, and only requires minimal operator input to depict GM, WM, and CSF tissue clusters to complete classification of a 3D high-resolution multislice-multispectral MRI data. Results showed very high accuracy and reproducibility in classification of GM, WM, and CSF in multislice-multispectral synthetic MRI data. The similarity indexes, expressing overlap between classification results and the ground truth, were 0.951, 0.962, and 0.956 for GM, WM, and CSF classifications in the image data with 3% noise level and 0% non-uniformity intensity. The method particularly allows for classification of CSF with 0.994, 0.961 and 0.996 of accuracy, sensitivity and specificity in images data with 3% noise level and 0% non-uniformity intensity, which had seldom performed well in previous studies. As for clinical MRI data, the quantitative data of brain tissue volumes aligned closely with the brain morphometrics in three different study groups of young adults, elderly volunteers, and dementia patients. The results also showed very low rates of the intra- and extra-operator variability in measurements of the absolute volumes and volume fractions of cerebral GM, WM, and CSF in three different study groups. The mean coefficients of variation of GM, WM, and CSF volume measurements were in the range of 0.03% to 0.30% of intra-operator measurements and 0.06% to 0.45% of inter-operator measurements. In conclusion, the TRIO algorithm exhibits a remarkable ability in robust classification of multislice-multispectral brain MR images, which would be potentially applicable for clinical brain volumetric analysis and explicitly promising

  8. A three-dimensional MRI atlas of the zebra finch brain in stereotaxic coordinates

    DEFF Research Database (Denmark)

    Poirier, Colline; Vellema, Michiel; Verhoye, Marleen

    2008-01-01

    of different brain areas (nuclei) involved in the sensory and motor control of song. Until now, the only published atlases of songbird brains consisted in drawings based on histological slices of the canary and of the zebra finch brain. Taking advantage of high-magnetic field (7 Tesla) MRI technique, we...

  9. MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain

    OpenAIRE

    2015-01-01

    Recently, the “glymphatic system” of the brain has been discovered in rodents, which is a paravascular, transparenchymal route for clearance of excess brain metabolites and distribution of compounds in the cerebrospinal fluid. It has already been demonstrated that intrathecally administered gadolinium (Gd) contrast medium distributes along this route in rats, but so far not in humans. A 27-year-old woman underwent magnetic resonance imaging (MRI) with intrathecal administration of gadobutrol,...

  10. FULLY AUTOMATIC FRAMEWORK FOR SEGMENTATION OF BRAIN MRI IMAGE

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Automaticbraintissuesegmentationfrommag neticresonanceimages(MRI)isofgreatimportance forresearchandclinicalstudyofmuchneurological pathology.Duringthepastdecade,theMRIhashad agreatimpactonthediagnosticimagingofmosthu manorgansystem.ThesegmentationofbrainMRI imagesplaysanimportantroleinthevolumerecon structionforavarietyofmedicalimageanalysis, computer aideddiagnosis,three dimensionalrecon structionandvisualizationapplications.Theaccu rateSegmentationofMRimagesintodifferenttis sueclasses,especiallygray...

  11. fMRI Brain-Computer Interface: A Tool for Neuroscientific Research and Treatment

    Directory of Open Access Journals (Sweden)

    Ranganatha Sitaram

    2007-01-01

    Full Text Available Brain-computer interfaces based on functional magnetic resonance imaging (fMRI-BCI allow volitional control of anatomically specific regions of the brain. Technological advancement in higher field MRI scanners, fast data acquisition sequences, preprocessing algorithms, and robust statistical analysis are anticipated to make fMRI-BCI more widely available and applicable. This noninvasive technique could potentially complement the traditional neuroscientific experimental methods by varying the activity of the neural substrates of a region of interest as an independent variable to study its effects on behavior. If the neurobiological basis of a disorder (e.g., chronic pain, motor diseases, psychopathy, social phobia, depression is known in terms of abnormal activity in certain regions of the brain, fMRI-BCI can be targeted to modify activity in those regions with high specificity for treatment. In this paper, we review recent results of the application of fMRI-BCI to neuroscientific research and psychophysiological treatment.

  12. A semi-automated volumetric software for segmentation and perfusion parameter quantification of brain tumors using 320-row multidetector computed tomography: a validation study

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Soo Young; Suh, Sangil; Ryoo, Inseon; Park, Arim; Seol, Hae Young [Korea University Guro Hospital, Department of Radiology, Seoul (Korea, Republic of); Noh, Kyoung Jin [Soonchunhyang University, Department of Electronic Engineering, Asan (Korea, Republic of); Shim, Hackjoon [Toshiba Medical Systems Korea Co., Seoul (Korea, Republic of)

    2017-05-15

    We developed a semi-automated volumetric software, NPerfusion, to segment brain tumors and quantify perfusion parameters on whole-brain CT perfusion (WBCTP) images. The purpose of this study was to assess the feasibility of the software and to validate its performance compared with manual segmentation. Twenty-nine patients with pathologically proven brain tumors who underwent preoperative WBCTP between August 2012 and February 2015 were included. Three perfusion parameters, arterial flow (AF), equivalent blood volume (EBV), and Patlak flow (PF, which is a measure of permeability of capillaries), of brain tumors were generated by a commercial software and then quantified volumetrically by NPerfusion, which also semi-automatically segmented tumor boundaries. The quantification was validated by comparison with that of manual segmentation in terms of the concordance correlation coefficient and Bland-Altman analysis. With NPerfusion, we successfully performed segmentation and quantified whole volumetric perfusion parameters of all 29 brain tumors that showed consistent perfusion trends with previous studies. The validation of the perfusion parameter quantification exhibited almost perfect agreement with manual segmentation, with Lin concordance correlation coefficients (ρ {sub c}) for AF, EBV, and PF of 0.9988, 0.9994, and 0.9976, respectively. On Bland-Altman analysis, most differences between this software and manual segmentation on the commercial software were within the limit of agreement. NPerfusion successfully performs segmentation of brain tumors and calculates perfusion parameters of brain tumors. We validated this semi-automated segmentation software by comparing it with manual segmentation. NPerfusion can be used to calculate volumetric perfusion parameters of brain tumors from WBCTP. (orig.)

  13. Quantitative Tractography and Volumetric MRI in Blast and Blunt Force TBI: Predictors of Neurocognitive and Behavioral Outcome

    Science.gov (United States)

    2013-10-01

    aneurysm ) of individuals with chronic symptoms of fatigue follow- ing brain injury (mean = 44 months since injury), the FIS provided the most...582. 61. Wozniak JR, Krach L, Ward E, et al. Neurocognitive and neu- roimaging correlates of pediatric traumatic brain injury: a diffusion tensor

  14. Detection of Brain Reorganization in Pediatric Multiple Sclerosis Using Functional MRI

    Science.gov (United States)

    2015-10-01

    surgical site. 15. SUBJECT TERMS Functional brain mapping using fMRI, functional magnetic resonance imaging (fMRI), pediatric-onset multiple sclerosis (POMS...Fluency, for verbal fluency; DKEFS Trails, for visual motor-sequencing; and a Grooved Pegboard task to assess manipulation dexterity. Results for...epilepsy patients at our institution. We have explored fMRI for improving epilepsy surgical planning in pediatric patients. To that end we acquired

  15. Relating resting-state fMRI and EEG whole-brain connectomes across frequency bands

    Science.gov (United States)

    Deligianni, Fani; Centeno, Maria; Carmichael, David W.; Clayden, Jonathan D.

    2014-01-01

    Whole brain functional connectomes hold promise for understanding human brain activity across a range of cognitive, developmental and pathological states. So called resting-state (rs) functional MRI studies have contributed to the brain being considered at a macroscopic scale as a set of interacting regions. Interactions are defined as correlation-based signal measurements driven by blood oxygenation level dependent (BOLD) contrast. Understanding the neurophysiological basis of these measurements is important in conveying useful information about brain function. Local coupling between BOLD fMRI and neurophysiological measurements is relatively well defined, with evidence that gamma (range) frequency EEG signals are the closest correlate of BOLD fMRI changes during cognitive processing. However, it is less clear how whole-brain network interactions relate during rest where lower frequency signals have been suggested to play a key role. Simultaneous EEG-fMRI offers the opportunity to observe brain network dynamics with high spatio-temporal resolution. We utilize these measurements to compare the connectomes derived from rs-fMRI and EEG band limited power (BLP). Merging this multi-modal information requires the development of an appropriate statistical framework. We relate the covariance matrices of the Hilbert envelope of the source localized EEG signal across bands to the covariance matrices derived from rs-fMRI with the means of statistical prediction based on sparse Canonical Correlation Analysis (sCCA). Subsequently, we identify the most prominent connections that contribute to this relationship. We compare whole-brain functional connectomes based on their geodesic distance to reliably estimate the performance of the prediction. The performance of predicting fMRI from EEG connectomes is considerably better than predicting EEG from fMRI across all bands, whereas the connectomes derived in low frequency EEG bands resemble best rs-fMRI connectivity. PMID:25221467

  16. Relating resting-state fMRI and EEG whole-brain connectomes across frequency bands

    Directory of Open Access Journals (Sweden)

    Fani eDeligianni

    2014-08-01

    Full Text Available Whole brain functional connectomes hold promise for understanding human brain activity across a range of cognitive, developmental and pathological states. So called ‘resting-state’ (rs functional MRI studies have contributed to the brain being considered at a macroscopic scale as a set of interacting regions. Interactions are defined as correlation-based signal measurements driven by blood oxygenation level dependent (BOLD contrast. Understanding the neurophysiological basis of these measurements is important in conveying useful information about brain function. Local coupling between BOLD fMRI and neurophysiological measurements is relatively well defined, with evidence that gamma (range frequency EEG signals are the closest correlate of BOLD fMRI changes during cognitive processing. However, it is less clear how whole-brain network interactions relate during rest where lower frequency signals have been suggested to play a key role. Simultaneous EEG-fMRI offers the opportunity to observe brain network dynamics with high spatio-temporal resolution. We utilize these measurements to compare the connectomes derived from rs-fMRI and EEG band limited power (BLP. Merging this multi-modal information requires the development of an appropriate statistical framework. We relate the covariance matrices of the Hilbert envelope of the source localised EEG signal across bands to the covariance matrices derived from rs-fMRI with the means of statistical prediction based on sparse Canonical Correlation Analysis (sCCA. Subsequently, we identify the most prominent connections that contribute to this relationship. We compare whole-brain functional connectomes based on their geodesic distance to reliably estimate the performance of the prediction. The performance of predicting fMRI from EEG connectomes is considerably better than predicting EEG from fMRI across all bands, whereas the connectomes derived in low frequency EEG bands resemble best rs-fMRI

  17. In vivo manganese-enhanced MRI for visuotopic brain mapping.

    Science.gov (United States)

    Chan, Kevin C; Wu, Ed X

    2012-01-01

    This study explored the feasibility of localized manganese-enhanced MRI (MEMRI) via 3 different routes of Mn(2+) administrations for visuotopic brain mapping of retinal, callosal, cortico-subcortical, transsynaptic and horizontal connections in normal adult rats. Upon fractionated intravitreal Mn(2+) injection, Mn enhancements were observed in the contralateral superior colliculus (SC) and lateral geniculate nucleus (LGN) by 45-60% at 1-3 days after initial Mn(2+) injection and in the contralateral primary visual cortex (V1) by about 10% at 2-3 days after initial Mn(2+) injection. Direct, single-dose Mn(2+) injection to the LGN resulted in Mn enhancement by 13-21% in V1 and 8-11% in SC of the ipsilateral hemisphere at 8 to 24 hours after Mn(2+) administration. Intracortical, single-dose Mn(2+) injection to the visual cortex resulted in Mn enhancement by 53-65% in ipsilateral LGN, 15-26% in ipsilateral SC, 32-34% in the splenium of corpus callosum and 17-25% in contralateral V1/V2 transition zone at 8 to 24 hours after Mn(2+) administration. Notably, some patchy patterns were apparent near the V1/V2 border of the contralateral hemisphere. Laminar-specific horizontal cortical connections were also observed in the ipsilateral hemisphere. The current results demonstrated the sensitivity of MEMRI for assessing the neuroarchitecture of the visual brains in vivo without depth-limitation, and may possess great potentials for studying the basic neural components and connections in the visual system longitudinally during development, plasticity, pharmacological interventions and genetic modifications.

  18. A multi-contrast MRI study of microstructural brain damage in patients with mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    C. Granziera

    2015-01-01

    Conclusion: Multi-contrast MRI appears to be a promising approach to infer pathophysiological mechanisms leading to brain tissue alterations in MCI. Likewise, parametric MRI data provide powerful correlates of cognitive deficits and improve automatic disease classification based on morphometric features.

  19. Current status and future role of brain PET/MRI in clinical and research settings

    Energy Technology Data Exchange (ETDEWEB)

    Werner, P.; Barthel, H.; Sabri, O. [University Hospital Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Drzezga, A. [University Hospital Cologne, Department of Nuclear Medicine, Koeln (Germany)

    2015-01-09

    Hybrid PET/MRI systematically offers a complementary combination of two modalities that has often proven itself superior to the single modality approach in the diagnostic work-up of many neurological and psychiatric diseases. Emerging PET tracers, technical advances in multiparametric MRI and obvious workflow advantages may lead to a significant improvement in the diagnosis of dementia disorders, neurooncological diseases, epilepsy and neurovascular diseases using PET/MRI. Moreover, simultaneous PET/MRI is well suited to complex studies of brain function in which fast fluctuations of brain signals (e.g. related to task processing or in response to pharmacological interventions) need to be monitored on multiple levels. Initial simultaneous studies have already demonstrated that these complementary measures of brain function can provide new insights into the functional and structural organization of the brain. (orig.)

  20. MRI and 1H-MRS detects volumetric and metabolic abnormalities of hippocampal sclerosis in temporal lobe epilepsy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective:To further investigate the ability of MRI and 1H-MRS techniques for presurgical evaluation of hippocampal sclerosis. Methods:MRI and 1H-MRS were performed on 30 healthy subjects to determine the confidence levels. Eight patients who were pathologically confirmed hippocampal sclerosis were then studied using the same protocols. The difference of hippocampal formation (DHF) was used to determine atrophy of hippocampus. Areas under the peak of N-acetylaspartate(NAA) ,Creatine(Cr) and Choline (Cho) were measured, and the ratios of NAA/Cr, Cho/Cr, and NAA/Cr+Cho were calculated. NAA/Cr+Cho value was applied to localize the seizure focus. Results:Two patients showed hippocampal atrophy according to DHF value. NAA/Cr ratio decreased significantly in ipsilateral hippocampus compared to that in contralateral hippocampus and control subjects(P<0.01). Cho/Cr value increased in both ipsi-and contralateral hippocampus in comparison with that in control subjects(P<0.01). NAA/Cr+Cho ratio, however, significantly reduced in both ipsi-and contralateral hippocampus(P<0.01) with lowest NAA/Cr+Cho ratio in seizure foci. Six patients could be lateralized by reduced and/or asymmetric NAA/Cr+Cho value. Conclusion:1H-MRS should be a promising diagnostic tool to detect neuron abnormality.1H-MRS and MRI complement each other hi presurgical lateralization of epileptogenic lesion in epilepsy patients.

  1. Value of brain MRI when sonography raises suspicion of agenesis of the corpus callosum in fetuses.

    Science.gov (United States)

    Jarre, A; Llorens Salvador, R; Montoliu Fornas, G; Montoya Filardi, A

    To evaluate the role of magnetic resonance imaging (MRI) in fetuses with a previous sonographic suspicion of agenesis of the corpus callosum (ACC) to confirm the diagnosis and to detect associated intracranial anomalies. Single-center retrospective and descriptive observational study of the brain MRI performed in 78 fetuses with ACC sonographic suspicion between January 2006 and December 2015. Two experts in fetal imaging reviewed the MRI findings to evaluate the presence and morphology of the corpus callosum. When ACC was detected the whole fetal brain anatomy was thoroughly studied to determine the presence of associated anomalies. Prenatal MR imaging findings were compared to postnatal brain MRI or necropsy findings when available. Fetal MRI diagnosed 45 cases of ACC, 12 were partial (26.7%) and 33 complete (73.3%). In 28 cases (62,2%) associated intracranial anomalies were identified. The most often abnormality was ventriculomegaly (78,6%), followed by cortical malformations (53,6%), posterior fossa (25%) and midline anomalies (10,7%). Fetal brain MRI has an important role in the diagnosis of ACC and detection of associated anomalies. To perform a fetal brain MRI is important in fetuses with sonographic suspicion of ACC. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Magnetic Resonance Image Segmentation and its Volumetric Measurement

    Directory of Open Access Journals (Sweden)

    Rahul R. Ambalkar

    2013-02-01

    Full Text Available Image processing techniques make it possible to extract meaningful information from medical images. Magnetic resonance (MR imaging has been widely applied in biological research and diagnostics because of its excellent soft tissue contrast, non-invasive character, high spatial resolution and easy slice selection at any orientation. The MRI-based brain volumetric is concerned with the analysis of volumes and shapes of the structural components of the human brain. It also provides a criterion, by which we recognize the presence of degenerative diseases and characterize their rates of progression to make the diagnosis and treatments as a easy task. In this paper we have proposed an automated method for volumetric measurement of Magnetic Resonance Imaging and used Self Organized Map (SOM clustering method for their segmentations. We have used the MRI data set of 61 slices of 256×256 pixels in DICOM standard format

  3. AN ARTIFICIAL FISH SWARM OPTIMIZED FUZZY MRI IMAGE SEGMENTATION APPROACH FOR IMPROVING IDENTIFICATION OF BRAIN TUMOUR

    OpenAIRE

    Jagadeesan, R; S.N. Sivanandam

    2013-01-01

    In image processing, it is difficult to detect the abnormalities in brain especially in MRI brain images. Also the tumor segmentation from MRI image data is an important; however it is time consumingwhile carried out by medical specialists. A lot of methods have been proposed to solve MR images problems, quite difficult to develop an automated recognition system which could process on a large information of patient and provide a correct estimation. Hence enhanced k-means and fuzzy c-means wit...

  4. Structural and Functional Brain Remodeling during Pregnancy with Diffusion Tensor MRI and Resting-State Functional MRI.

    Directory of Open Access Journals (Sweden)

    Russell W Chan

    Full Text Available Although pregnancy-induced hormonal changes have been shown to alter the brain at the neuronal level, the exact effects of pregnancy on brain at the tissue level remain unclear. In this study, diffusion tensor imaging (DTI and resting-state functional MRI (rsfMRI were employed to investigate and document the effects of pregnancy on the structure and function of the brain tissues. Fifteen Sprague-Dawley female rats were longitudinally studied at three days before mating (baseline and seventeen days after mating (G17. G17 is equivalent to the early stage of the third trimester in humans. Seven age-matched nulliparous female rats served as non-pregnant controls and were scanned at the same time-points. For DTI, diffusivity was found to generally increase in the whole brain during pregnancy, indicating structural changes at microscopic levels that facilitated water molecular movement. Regionally, mean diffusivity increased more pronouncedly in the dorsal hippocampus while fractional anisotropy in the dorsal dentate gyrus increased significantly during pregnancy. For rsfMRI, bilateral functional connectivity in the hippocampus increased significantly during pregnancy. Moreover, fractional anisotropy increase in the dentate gyrus appeared to correlate with the bilateral functional connectivity increase in the hippocampus. These findings revealed tissue structural modifications in the whole brain during pregnancy, and that the hippocampus was structurally and functionally remodeled in a more marked manner.

  5. Structural and Functional Brain Remodeling during Pregnancy with Diffusion Tensor MRI and Resting-State Functional MRI.

    Science.gov (United States)

    Chan, Russell W; Ho, Leon C; Zhou, Iris Y; Gao, Patrick P; Chan, Kevin C; Wu, Ed X

    2015-01-01

    Although pregnancy-induced hormonal changes have been shown to alter the brain at the neuronal level, the exact effects of pregnancy on brain at the tissue level remain unclear. In this study, diffusion tensor imaging (DTI) and resting-state functional MRI (rsfMRI) were employed to investigate and document the effects of pregnancy on the structure and function of the brain tissues. Fifteen Sprague-Dawley female rats were longitudinally studied at three days before mating (baseline) and seventeen days after mating (G17). G17 is equivalent to the early stage of the third trimester in humans. Seven age-matched nulliparous female rats served as non-pregnant controls and were scanned at the same time-points. For DTI, diffusivity was found to generally increase in the whole brain during pregnancy, indicating structural changes at microscopic levels that facilitated water molecular movement. Regionally, mean diffusivity increased more pronouncedly in the dorsal hippocampus while fractional anisotropy in the dorsal dentate gyrus increased significantly during pregnancy. For rsfMRI, bilateral functional connectivity in the hippocampus increased significantly during pregnancy. Moreover, fractional anisotropy increase in the dentate gyrus appeared to correlate with the bilateral functional connectivity increase in the hippocampus. These findings revealed tissue structural modifications in the whole brain during pregnancy, and that the hippocampus was structurally and functionally remodeled in a more marked manner.

  6. Optimization of Treatment Geometry to Reduce Normal Brain Dose in Radiosurgery of Multiple Brain Metastases with Single–Isocenter Volumetric Modulated Arc Therapy

    Science.gov (United States)

    Wu, Qixue; Snyder, Karen Chin; Liu, Chang; Huang, Yimei; Zhao, Bo; Chetty, Indrin J.; Wen, Ning

    2016-01-01

    Treatment of patients with multiple brain metastases using a single-isocenter volumetric modulated arc therapy (VMAT) has been shown to decrease treatment time with the tradeoff of larger low dose to the normal brain tissue. We have developed an efficient Projection Summing Optimization Algorithm to optimize the treatment geometry in order to reduce dose to normal brain tissue for radiosurgery of multiple metastases with single-isocenter VMAT. The algorithm: (a) measures coordinates of outer boundary points of each lesion to be treated using the Eclipse Scripting Application Programming Interface, (b) determines the rotations of couch, collimator, and gantry using three matrices about the cardinal axes, (c) projects the outer boundary points of the lesion on to Beam Eye View projection plane, (d) optimizes couch and collimator angles by selecting the least total unblocked area for each specific treatment arc, and (e) generates a treatment plan with the optimized angles. The results showed significant reduction in the mean dose and low dose volume to normal brain, while maintaining the similar treatment plan qualities on the thirteen patients treated previously. The algorithm has the flexibility with regard to the beam arrangements and can be integrated in the treatment planning system for clinical application directly. PMID:27688047

  7. Automated fibroglandular tissue segmentation and volumetric density estimation in breast MRI using an atlas-aided fuzzy C-means method

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shandong; Weinstein, Susan P.; Conant, Emily F.; Kontos, Despina, E-mail: despina.kontos@uphs.upenn.edu [Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2013-12-15

    Purpose: Breast magnetic resonance imaging (MRI) plays an important role in the clinical management of breast cancer. Studies suggest that the relative amount of fibroglandular (i.e., dense) tissue in the breast as quantified in MR images can be predictive of the risk for developing breast cancer, especially for high-risk women. Automated segmentation of the fibroglandular tissue and volumetric density estimation in breast MRI could therefore be useful for breast cancer risk assessment. Methods: In this work the authors develop and validate a fully automated segmentation algorithm, namely, an atlas-aided fuzzy C-means (FCM-Atlas) method, to estimate the volumetric amount of fibroglandular tissue in breast MRI. The FCM-Atlas is a 2D segmentation method working on a slice-by-slice basis. FCM clustering is first applied to the intensity space of each 2D MR slice to produce an initial voxelwise likelihood map of fibroglandular tissue. Then a prior learned fibroglandular tissue likelihood atlas is incorporated to refine the initial FCM likelihood map to achieve enhanced segmentation, from which the absolute volume of the fibroglandular tissue (|FGT|) and the relative amount (i.e., percentage) of the |FGT| relative to the whole breast volume (FGT%) are computed. The authors' method is evaluated by a representative dataset of 60 3D bilateral breast MRI scans (120 breasts) that span the full breast density range of the American College of Radiology Breast Imaging Reporting and Data System. The automated segmentation is compared to manual segmentation obtained by two experienced breast imaging radiologists. Segmentation performance is assessed by linear regression, Pearson's correlation coefficients, Student's pairedt-test, and Dice's similarity coefficients (DSC). Results: The inter-reader correlation is 0.97 for FGT% and 0.95 for |FGT|. When compared to the average of the two readers’ manual segmentation, the proposed FCM-Atlas method achieves a

  8. Seizure-induced brain lesions: A wide spectrum of variably reversible MRI abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Cianfoni, A., E-mail: acianfoni@hotmail.com [Neuroradiology, Neurocenter of Italian Switzerland–Ospedale regionale Lugano, Via Tesserete 46, Lugano, 6900, CH (Switzerland); Caulo, M., E-mail: caulo@unich.it [Department of Neuroscience and Imaging, University of Chieti, Via dei Vestini 33, 6610 Chieti. Italy (Italy); Cerase, A., E-mail: alfonsocerase@gmail.com [Unit of Neuroimaging and Neurointervention NINT, Department of Neurological and Sensorineural Sciences, Azienda Ospedaliera Universitaria Senese, Policlinico “Santa Maria alle Scotte”, V.le Bracci 16, Siena (Italy); Della Marca, G., E-mail: dellamarca@rm.unicatt.it [Neurology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Falcone, C., E-mail: carlo_falc@libero.it [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Di Lella, G.M., E-mail: gdilella@rm.unicatt.it [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Gaudino, S., E-mail: sgaudino@sirm.org [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Edwards, J., E-mail: edwardjc@musc.edu [Neuroscience Dept., Medical University of South Carolina, 96J Lucas st, 29425, Charleston, SC (United States); Colosimo, C., E-mail: colosimo@rm.unicatt.it [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy)

    2013-11-01

    Introduction MRI abnormalities in the postictal period might represent the effect of the seizure activity, rather than its structural cause. Material and Methods Retrospective review of clinical and neuroimaging charts of 26 patients diagnosed with seizure-related MR-signal changes. All patients underwent brain-MRI (1.5-Tesla, standard pre- and post-contrast brain imaging, including DWI-ADC in 19/26) within 7 days from a seizure and at least one follow-up MRI, showing partial or complete reversibility of the MR-signal changes. Extensive clinical work-up and follow-up, ranging from 3 months to 5 years, ruled out infection or other possible causes of brain damage. Seizure-induced brain-MRI abnormalities remained a diagnosis of exclusion. Site, characteristics and reversibility of MRI changes, and association with characteristics of seizures were determined. Results MRI showed unilateral (13/26) and bilateral abnormalities, with high (24/26) and low (2/26) T2-signal, leptomeningeal contrast-enhancement (2/26), restricted diffusion (9/19). Location of abnormality was cortical/subcortical, basal ganglia, white matter, corpus callosum, cerebellum. Hippocampus was involved in 10/26 patients. Reversibility of MRI changes was complete in 15, and with residual gliosis or focal atrophy in 11 patients. Reversibility was noted between 15 and 150 days (average, 62 days). Partial simple and complex seizures were associated with hippocampal involvement (p = 0.015), status epilepticus with incomplete reversibility of MRI abnormalities (p = 0.041). Conclusions Seizure or epileptic status can induce transient, variably reversible MRI brain abnormalities. Partial seizures are frequently associated with hippocampal involvement and status epilepticus with incompletely reversible lesions. These seizure-induced MRI abnormalities pose a broad differential diagnosis; increased awareness may reduce the risk of misdiagnosis and unnecessary intervention.

  9. Quantitative volumetric analysis of the optic radiation in the normal human brain using diffusion tensor magnetic resonance imaging-based tractography

    Institute of Scientific and Technical Information of China (English)

    Dong-Hoon Lee; Ji-Won Park; Cheol-Pyo Hong

    2014-01-01

    To attain the volumetric information of the optic radiation in normal human brains, we per-formed diffusion tensor imaging examination in 13 healthy volunteers. Simultaneously, we used a brain normalization method to reduce individual brain variation and increase the accuracy of volumetric information analysis. In addition, tractography-based group mapping method was also used to investigate the probability and distribution of the optic radiation pathways. Our results showed that the measured optic radiation ifber tract volume was a range of about 0.16%and that the fractional anisotropy value was about 0.53. Moreover, the optic radiation probability ifber pathway that was determined with diffusion tensor tractography-based group mapping was able to detect the location relatively accurately. We believe that our methods and results are help-ful in the study of optic radiation ifber tract information.

  10. Volumetric comparisons of brain structures in bats (an attempt at a phylogenetic interpretation)

    NARCIS (Netherlands)

    Stephan, Heinz; Pirlot, Paul

    1970-01-01

    Bats show, in spite of the unity which they derive from the unique possession of flight-ability, remarkable differences in their encephalization (Pirlot & Stephan, 1970). These differences were found to be more closely related to feeding habits than to systematic relationships. The brains of the ins

  11. Three-dimensional volumetric MRI with isotropic resolution: improved speed of acquisition, spatial resolution and assessment of lesion conspicuity in patients with recurrent soft tissue sarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Ahlawat, Shivani [The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Morris, Carol [The Johns Hopkins Medical Institutions, Department of Orthopedic Surgery, Baltimore, MD (United States); The Johns Hopkins Medical Institutions, Department of Oncology, Baltimore, MD (United States); Fayad, Laura M. [The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); The Johns Hopkins Medical Institutions, Department of Orthopedic Surgery, Baltimore, MD (United States); The Johns Hopkins Medical Institutions, Department of Oncology, Baltimore, MD (United States)

    2016-05-15

    To assess the acquisition speed, lesion conspicuity, and inter-observer agreement associated with volumetric T{sub 1}-weighted MR sequences with isotropic resolution for detecting recurrent soft-tissue sarcoma (STS). Fifteen subjects with histologically proven recurrent STS underwent MRI, including axial and coronal T{sub 1}-weighted spin echo (T{sub 1}-WSE) (5-mm slice thickness) and coronal 3D volumetric T{sub 1}-weighted (fat-suppressed, volume-interpolated, breath-hold examination; repetition time/echo time, 3.7/1.4 ms; flip angle, 9.5 ; 1-mm slice thickness) sequences before and after intravenous contrast administration. Subtraction imaging and multiplanar reformations (MPRs) were performed. Acquisition times for T{sub 1}-WSE in two planes and 3D sequences were reported. Two radiologists reviewed images for quality (>50 % artifacts, 25-50 % artifacts, <25 % artifacts, and no substantial artifacts), lesion conspicuity, contrast-to-noise ratio (CNR{sub muscle}), recurrence size, and recurrence-to-joint distance. Descriptive and intraclass correlation (ICC) statistics are given. Mean acquisition times were significantly less for 3D imaging compared with 2-plane T{sub 1}-WSE (183.6 vs 342.6 s; P = 0.012). Image quality was rated as having no substantial artifacts in 13/15 and <25 % artifacts in 2/15. Lesion conspicuity was significantly improved for subtracted versus unsubtracted images (CNR{sub muscle}, 100 ± 138 vs 181 ± 199; P = 0.05). Mean recurrent lesion size was 2.5 cm (range, 0.7-5.7 cm), and measurements on 3D sequences offered excellent interobserver agreement (ICC, 0.98 for lesion size and 0.96 for recurrence-to-joint distance with MPR views). Three-dimensional volumetric sequences offer faster acquisition times, higher spatial resolution, and MPR capability compared with 2D T{sub 1}-WSE for postcontrast imaging. Subtraction imaging provides higher lesion conspicuity for detecting recurrent STS in skeletal muscle, with excellent interobserver

  12. A study of brain MRI findings and clinical response of bladder empting failure in brain bladder

    Energy Technology Data Exchange (ETDEWEB)

    Miyakoda, Keiichi (Yamashina Aiseikai Hospital, Kyoto (Japan)); Watanabe, Kousuke

    1993-02-01

    In 45 patients (38 males and 7 females; average age:78 years) with brain bladder, who did not have any peripheral neuropathies and spinal disturbance, cerebral findings of MRI (1.5 T) T[sub 2] enhanced image were analyzed in comparison with those of 7 control patients with normal urination after BPH operations. Patients with neurogenic bladder were divided into three groups as follows: 33 patients with a chief complaint of urinary disturbance (Group I), 9 patients with urinary incontinence (Group II) and 3 patients with balanced bladder (Group III). High frequency of lacune (24%) of the globus pallidus and low signalling of the corpus striatum (30%) was found in Group I patients, but low frequency in other Group patients and control patients. Furthermore, pathologic changes with various grades in the globus pallidus were observed in 91% of Group I patients. In the treatment of urinary disturbance, a high improvement rate of micturition disorder (77%) was obtained in patients treated with a combination of dantrolene and TURp (TUIbn for females). However, patients who had clear lacune of the globus pallidus showed the low improvement rate. It should be possible that the globus pallidus contributes to control the movement of the external sphincter and the pelvic base muscles as well as other striated muscles. Moreover, lacune was rarely found in the urination center of the brain-stem on MRI. (author).

  13. The Chiropteran Brain Database: Volumetric Survey of the Hypophysis in 165 Species.

    Science.gov (United States)

    Bhatnagar, Kunwar P; Smith, Timothy D; Rai, Shesh N; Frahm, Heiko D

    2016-04-01

    For nearly two decades, a database of brain structures from a large sample (272 species) of chiropterans has been widely accessible and used for socioecological analyses of mammals. However, this database remains incomplete since the hypophysis has not been measured. Since this glandular/neural structure has reproductive significance to chiropterans as for other mammals, this investigation was carried out using serial coronal sections of bat brains comprising the Heinz Stephan collection, Düsseldorf, Germany. Complete serially sectioned brains were examined in 313 individuals (165 species, 15 families). Using a well-documented method, hypophyseal volumes were determined from every fourth or sixth section in each individual. The strongest correlation was between body weight and the hypophysis (R(2) = 0.887) and its various components as well as between body weight and adenohypophysis (R(2) = 0.830) and neurohypophysis (R(2) = 0.925). Correlations were also strong for brain weight-adenohypophysis (R(2) = 0.817) and brain weight- neurohypophysis (R(2) = 0.911). Results indicated that: (1) in regression analyses, hipposiderids stand apart as having relatively large adenohypophysis; (2) analysis of residuals generated using least-squares regression of hypophyseal components suggests a trend among microchiropterans where females have a relatively larger adenohypophysis than males. However, this difference is only statistically significant in the largest samples: Phyllostomidae and Vespertilionidae. Pteropodids do not appear to follow this trend. Our findings suggest both phylogenetic and sexual differences in the adenohypophysis in particular, and indicate the need for investigation of larger samples by species, especially those best understood in reproductive and social biology.

  14. Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions.

    Science.gov (United States)

    Akkus, Zeynettin; Galimzianova, Alfiia; Hoogi, Assaf; Rubin, Daniel L; Erickson, Bradley J

    2017-08-01

    Quantitative analysis of brain MRI is routine for many neurological diseases and conditions and relies on accurate segmentation of structures of interest. Deep learning-based segmentation approaches for brain MRI are gaining interest due to their self-learning and generalization ability over large amounts of data. As the deep learning architectures are becoming more mature, they gradually outperform previous state-of-the-art classical machine learning algorithms. This review aims to provide an overview of current deep learning-based segmentation approaches for quantitative brain MRI. First we review the current deep learning architectures used for segmentation of anatomical brain structures and brain lesions. Next, the performance, speed, and properties of deep learning approaches are summarized and discussed. Finally, we provide a critical assessment of the current state and identify likely future developments and trends.

  15. MRI脑测谎实验方法学%Brain-Based MRI lie detection experiment methodology

    Institute of Scientific and Technical Information of China (English)

    李文石; 张好; 胡清泉; 苏香; 郭亮

    2006-01-01

    The brain-based MRI lie detection experiment methodology is reviewed for the first time, including the magnetic resonance imaging paradigm,the double-block deign,the equidistance hit-ball and the test mechanice,This paper illustrates the research results of 3D MRI lie detection and the contrastive experiment of otopoint mapping brain signature lie detection,ingeminates the lie-Truth Law(PT/PL ≤0.618)which we get from the statistic of the world MRI reports. The conclusion points out the essence of this technology,its advantages and disadvantages,and the evolution of this methodology.

  16. Longitudinal MRI reveals altered trajectory of brain development during childhood and adolescence in fetal alcohol spectrum disorders.

    Science.gov (United States)

    Treit, Sarah; Lebel, Catherine; Baugh, Lauren; Rasmussen, Carmen; Andrew, Gail; Beaulieu, Christian

    2013-06-12

    Diffusion tensor imaging (DTI) of brain development in fetal alcohol spectrum disorders (FASD) has revealed structural abnormalities, but studies have been limited by the use of cross-sectional designs. Longitudinal scans can provide key insights into trajectories of neurodevelopment within individuals with this common developmental disorder. Here we evaluate serial DTI and T1-weighted volumetric MRI in a human sample of 17 participants with FASD and 27 controls aged 5-15 years who underwent 2-3 scans each, ∼2-4 years apart (92 scans total). Increases of fractional anisotropy and decreases of mean diffusivity (MD) were observed between scans for both groups, in keeping with changes expected of typical development, but mixed-models analysis revealed significant age-by-group interactions for three major white matter tracts: superior longitudinal fasciculus and superior and inferior fronto-occipital fasciculus. These findings indicate altered developmental progression in these frontal-association tracts, with the FASD group notably showing greater reduction of MD between scans. ΔMD is shown to correlate with reading and receptive vocabulary in the FASD group, with steeper decreases of MD in the superior fronto-occipital fasciculus and superior longitudinal fasciculus between scans correlating with greater improvement in language scores. Volumetric analysis revealed reduced total brain, white, cortical gray, and deep gray matter volumes and fewer significant age-related volume increases in the FASD group, although age-by-group interactions were not significant. Longitudinal DTI indicates delayed white matter development during childhood and adolescence in FASD, which may underlie persistent or worsening behavioral and cognitive deficits during this critical period.

  17. Continuous table acquisition MRI for radiotherapy treatment planning: Distortion assessment with a new extended 3D volumetric phantom

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Amy, E-mail: aw554@uowmail.edu.au; Metcalfe, Peter [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia and Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); Liney, Gary [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); South West Clinical School, University of New South Wales, Sydney, NSW 2170 (Australia); Holloway, Lois [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); South West Clinical School, University of New South Wales, Sydney, NSW 2170 (Australia); Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Dowling, Jason; Rivest-Henault, David [Commonwealth Scientific and Industrial Research Organisation, Australian E-Health Research Centre, Herston, QLD 4029 (Australia)

    2015-04-15

    Purpose: Accurate geometry is required for radiotherapy treatment planning (RTP). When considering the use of magnetic resonance imaging (MRI) for RTP, geometric distortions observed in the acquired images should be considered. While scanner technology and vendor supplied correction algorithms provide some correction, large distortions are still present in images, even when considering considerably smaller scan lengths than those typically acquired with CT in conventional RTP. This study investigates MRI acquisition with a moving table compared with static scans for potential geometric benefits for RTP. Methods: A full field of view (FOV) phantom (diameter 500 mm; length 513 mm) was developed for measuring geometric distortions in MR images over volumes pertinent to RTP. The phantom consisted of layers of refined plastic within which vitamin E capsules were inserted. The phantom was scanned on CT to provide the geometric gold standard and on MRI, with differences in capsule location determining the distortion. MRI images were acquired with two techniques. For the first method, standard static table acquisitions were considered. Both 2D and 3D acquisition techniques were investigated. With the second technique, images were acquired with a moving table. The same sequence was acquired with a static table and then with table speeds of 1.1 mm/s and 2 mm/s. All of the MR images acquired were registered to the CT dataset using a deformable B-spline registration with the resulting deformation fields providing the distortion information for each acquisition. Results: MR images acquired with the moving table enabled imaging of the whole phantom length while images acquired with a static table were only able to image 50%–70% of the phantom length of 513 mm. Maximum distortion values were reduced across a larger volume when imaging with a moving table. Increased table speed resulted in a larger contribution of distortion from gradient nonlinearities in the through

  18. EEG-fMRI integration for the study of human brain function.

    Science.gov (United States)

    Jorge, João; van der Zwaag, Wietske; Figueiredo, Patrícia

    2014-11-15

    Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have proved to be extremely valuable tools for the non-invasive study of human brain function. Moreover, due to a notable degree of complementarity between the two modalities, the combination of EEG and fMRI data has been actively sought in the last two decades. Although initially focused on epilepsy, EEG-fMRI applications were rapidly extended to the study of healthy brain function, yielding new insights into its underlying mechanisms and pathways. Nevertheless, EEG and fMRI have markedly different spatial and temporal resolutions, and probe neuronal activity through distinct biophysical processes, many aspects of which are still poorly understood. The remarkable conceptual and methodological challenges associated with EEG-fMRI integration have motivated the development of a wide range of analysis approaches over the years, each relying on more or less restrictive assumptions, and aiming to shed further light on the mechanisms of brain function along with those of the EEG-fMRI coupling itself. Here, we present a review of the most relevant EEG-fMRI integration approaches yet proposed for the study of brain function, supported by a general overview of our current understanding of the biophysical mechanisms coupling the signals obtained from the two modalities.

  19. Neurobiological origin of spurious brain morphological changes: A quantitative MRI study.

    Science.gov (United States)

    Lorio, Sara; Kherif, Ferath; Ruef, Anne; Melie-Garcia, Lester; Frackowiak, Richard; Ashburner, John; Helms, Gunther; Lutti, Antoine; Draganski, Bodgan

    2016-05-01

    The high gray-white matter contrast and spatial resolution provided by T1-weighted magnetic resonance imaging (MRI) has made it a widely used imaging protocol for computational anatomy studies of the brain. While the image intensity in T1-weighted images is predominantly driven by T1, other MRI parameters affect the image contrast, and hence brain morphological measures derived from the data. Because MRI parameters are correlates of different histological properties of brain tissue, this mixed contribution hampers the neurobiological interpretation of morphometry findings, an issue which remains largely ignored in the community. We acquired quantitative maps of the MRI parameters that determine signal intensities in T1-weighted images (R1 (=1/T1), R2 *, and PD) in a large cohort of healthy subjects (n = 120, aged 18-87 years). Synthetic T1-weighted images were calculated from these quantitative maps and used to extract morphometry features-gray matter volume and cortical thickness. We observed significant variations in morphometry measures obtained from synthetic images derived from different subsets of MRI parameters. We also detected a modulation of these variations by age. Our findings highlight the impact of microstructural properties of brain tissue-myelination, iron, and water content-on automated measures of brain morphology and show that microstructural tissue changes might lead to the detection of spurious morphological changes in computational anatomy studies. They motivate a review of previous morphological results obtained from standard anatomical MRI images and highlight the value of quantitative MRI data for the inference of microscopic tissue changes in the healthy and diseased brain. Hum Brain Mapp 37:1801-1815, 2016. © 2016 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.

  20. Population based MRI and DTI templates of the adult ferret brain and tools for voxelwise analysis.

    Science.gov (United States)

    Hutchinson, E B; Schwerin, S C; Radomski, K L; Sadeghi, N; Jenkins, J; Komlosh, M E; Irfanoglu, M O; Juliano, S L; Pierpaoli, C

    2017-05-15

    Non-invasive imaging has the potential to play a crucial role in the characterization and translation of experimental animal models to investigate human brain development and disorders, especially when employed to study animal models that more accurately represent features of human neuroanatomy. The purpose of this study was to build and make available MRI and DTI templates and analysis tools for the ferret brain as the ferret is a well-suited species for pre-clinical MRI studies with folded cortical surface, relatively high white matter volume and body dimensions that allow imaging with pre-clinical MRI scanners. Four ferret brain templates were built in this study - in-vivo MRI and DTI and ex-vivo MRI and DTI - using brain images across many ferrets and region of interest (ROI) masks corresponding to established ferret neuroanatomy were generated by semi-automatic and manual segmentation. The templates and ROI masks were used to create a web-based ferret brain viewing software for browsing the MRI and DTI volumes with annotations based on the ROI masks. A second objective of this study was to provide a careful description of the imaging methods used for acquisition, processing, registration and template building and to demonstrate several voxelwise analysis methods including Jacobian analysis of morphometry differences between the female and male brain and bias-free identification of DTI abnormalities in an injured ferret brain. The templates, tools and methodological optimization presented in this study are intended to advance non-invasive imaging approaches for human-similar animal species that will enable the use of pre-clinical MRI studies for understanding and treating brain disorders. Published by Elsevier Inc.

  1. MRI and brain spect findings in patients with unilateral temporal lobe epilepsy and normal CT scan

    Directory of Open Access Journals (Sweden)

    P.G. Carrilho

    1994-06-01

    Full Text Available 26 patients with temporal lobe epilepsy clinically documented by several abnormal interictal surface EEGs with typical unitemporal epileptiform activity and a normal CT scan were studied. Interictal99mTC HMPAO brain SPECT and MRI were performed in all subjects. Abnormalities were shown in 61.5% of MRI (n=16 and 65.4% of SPECT (n=17. Hippocampal atrophy associated to a high signal on T2-weighted MRI slices suggesting mesial temporal sclerosis was the main finding (n=12; 75% of abnormal MRI. MRI correlated well to surface EEG in 50% (n=13. There was also a good correlation between MRI and SPECT in 30.7% (n=8. SPECT and EEG were in agreement in 57.7% (n=l5. MRI, SPECT and EEG were congruent in 26.9% (n=7. These results support the usefulness of interictal brain SPECT and MRI in detecting lateralized abnormalities in temporal lobe epilepsy. On the other hand, in two cases, interictal SPECT correlated poorly with surface EEG. This functional method should not be used isolately in the detection of temporal lobe foci. MRI is more useful than CT as a neuroimaging technique in temporal lobe epilepsy. It may detect small structural lesions and mesial temporal lobe sclerosis which are not easily seen with traditional CT scanning.

  2. Parallel workflow tools to facilitate human brain MRI post-processing

    Directory of Open Access Journals (Sweden)

    Zaixu eCui

    2015-05-01

    Full Text Available Multi-modal magnetic resonance imaging (MRI techniques are widely applied in human brain studies. To obtain specific brain measures of interest from MRI datasets, a number of complex image post-processing steps are typically required. Parallel workflow tools have recently been developed, concatenating individual processing steps and enabling fully automated processing of raw MRI data to obtain the final results. These workflow tools are also designed to make optimal use of available computational resources and to support the parallel processing of different subjects or of independent processing steps for a single subject. Automated, parallel MRI post-processing tools can greatly facilitate relevant brain investigations and are being increasingly applied. In this review, we briefly summarize these parallel workflow tools and discuss relevant issues.

  3. Emerging role of functional brain MRI in low-grade glioma surgery

    DEFF Research Database (Denmark)

    Friismose, Ancuta; Traise, Peter; Markovic, Ljubo

    Learning objectives 1. To describe the use of functional MRI (fMRI) in cranial surgery planning for patients with low-grade gliomas (LGG). 2. To show the increasing importance of fMRI in the clinical setting. Background LGG include brain tumors classified by the World Health Organization as grade I....... Language comprehension and visual tasks can be added to visualize Wernicke’s area or the visual cortex. Diffusion tensor imaging (DTI) is used to map nerve tract course relative to the tumour. Conclusion FMRI has proven its clinical utility in locating eloquent brain areas with relation to tumor site...... be used to map eloquent cortex areas, thus minimizing postoperative deficits and improving surgical performance. Findings and procedure details Patients diagnosed with low-grade gliomas located in eloquent brain areas undergo fMRI prior to surgery. The exams are performed on a 3T MR system (Achieva TX...

  4. Structural MRI of pediatric brain development: what have we learned and where are we going?

    Science.gov (United States)

    Giedd, Jay N; Rapoport, Judith L

    2010-09-09

    Magnetic resonance imaging (MRI) allows unprecedented access to the anatomy and physiology of the developing brain without the use of ionizing radiation. Over the past two decades, thousands of brain MRI scans from healthy youth and those with neuropsychiatric illness have been acquired and analyzed with respect to diagnosis, sex, genetics, and/or psychological variables such as IQ. Initial reports comparing size differences of various brain components averaged across large age spans have given rise to longitudinal studies examining trajectories of development over time and evaluations of neural circuitry as opposed to structures in isolation. Although MRI is still not of routine diagnostic utility for evaluation of pediatric neuropsychiatric disorders, patterns of typical versus atypical development have emerged that may elucidate pathologic mechanisms and suggest targets for intervention. In this review we summarize general contributions of structural MRI to our understanding of neurodevelopment in health and illness.

  5. Efficacy and toxicity in brain tumor treatment - quantitative Measurements using advanced MRI

    DEFF Research Database (Denmark)

    Ravn, Søren

    2016-01-01

    and are now being used for presurgical and radiation therapy (RT) planning. More advanced MRI sequences have gained attention. Sequences such as diffusion-weighted imaging (DWI), perfusion-weighted imaging (PWI) and functional magnetic resonance imaging (fMRI) have entered the clinical world concurrently......From the clinical introduction in the 1980s, MRI has grown to become an indispensable brain imaging modality, mainly due to its excellent ability to visualize soft tissues. Morphologically, T1- and T2-weighted brain tumor MRI have been part of routine diagnostic radiology for more than two decades...... with the introduction of magnets with higher field strength. Ongoing technical development has enabled a change from semiquantitative measurements to a true quantitative approach. This step is expected to have a great impact on the treatment of brain tumor patients in the future. The aim of this Ph.D. dissertation...

  6. Joint sparse representation of brain activity patterns in multi-task fMRI data.

    Science.gov (United States)

    Ramezani, M; Marble, K; Trang, H; Johnsrude, I S; Abolmaesumi, P

    2015-01-01

    A single-task functional magnetic resonance imaging (fMRI) experiment may only partially highlight alterations to functional brain networks affected by a particular disorder. Multivariate analysis across multiple fMRI tasks may increase the sensitivity of fMRI-based diagnosis. Prior research using multi-task analysis in fMRI, such as those that use joint independent component analysis (jICA), has mainly assumed that brain activity patterns evoked by different tasks are independent. This may not be valid in practice. Here, we use sparsity, which is a natural characteristic of fMRI data in the spatial domain, and propose a joint sparse representation analysis (jSRA) method to identify common information across different functional subtraction (contrast) images in data from a multi-task fMRI experiment. Sparse representation methods do not require independence, or that the brain activity patterns be nonoverlapping. We use functional subtraction images within the joint sparse representation analysis to generate joint activation sources and their corresponding sparse modulation profiles. We evaluate the use of sparse representation analysis to capture individual differences with simulated fMRI data and with experimental fMRI data. The experimental fMRI data was acquired from 16 young (age: 19-26) and 16 older (age: 57-73) adults obtained from multiple speech comprehension tasks within subjects, where an independent measure (namely, age in years) can be used to differentiate between groups. Simulation results show that this method yields greater sensitivity, precision, and higher Jaccard indexes (which measures similarity and diversity of the true and estimated brain activation sources) than does the jICA method. Moreover, superiority of the jSRA method in capturing individual differences was successfully demonstrated using experimental fMRI data.

  7. Volumetric analysis of day of injury computed tomography is associated with rehabilitation outcomes after traumatic brain injury.

    Science.gov (United States)

    Majercik, Sarah; Bledsoe, Joseph; Ryser, David; Hopkins, Ramona O; Fair, Joseph E; Brock Frost, R; MacDonald, Joel; Barrett, Ryan; Horn, Susan; Pisani, David; Bigler, Erin D; Gardner, Scott; Stevens, Mark; Larson, Michael J

    2017-01-01

    Day-of-injury (DOI) brain lesion volumes in traumatic brain injury (TBI) patients are rarely used to predict long-term outcomes in the acute setting. The purpose of this study was to investigate the relationship between acute brain injury lesion volume and rehabilitation outcomes in patients with TBI at a level one trauma center. Patients with TBI who were admitted to our rehabilitation unit after the acute care trauma service from February 2009-July 2011 were eligible for the study. Demographic data and outcome variables including cognitive and motor Functional Independence Measure (FIM) scores, length of stay (LOS) in the rehabilitation unit, and ability to return to home were obtained. The DOI quantitative injury lesion volumes and degree of midline shift were obtained from DOI brain computed tomography scans. A multiple stepwise regression model including 13 independent variables was created. This model was used to predict postrehabilitation outcomes, including FIM scores and ability to return to home. A p value less than 0.05 was considered significant. Ninety-six patients were enrolled in the study. Mean age was 43 ± 21 years, admission Glasgow Coma Score was 8.4 ± 4.8, Injury Severity Score was 24.7 ± 9.9, and head Abbreviated Injury Scale score was 3.73 ± 0.97. Acute hospital LOS was 12.3 ± 8.9 days, and rehabilitation LOS was 15.9 ± 9.3 days. Day-of-injury TBI lesion volumes were inversely associated with cognitive FIM scores at rehabilitation admission (p = 0.004) and discharge (p = 0.004) and inversely associated with ability to be discharged to home after rehabilitation (p = 0.006). In a cohort of patients with moderate to severe TBI requiring a rehabilitation unit stay after the acute care hospital stay, DOI brain injury lesion volumes are associated with worse cognitive FIM scores at the time of rehabilitation admission and discharge. Smaller-injury volumes were associated with eventual discharge to home. Volumetric neuroimaging in the acute

  8. Investigation of the growth patterns of non-functioning pituitary macroadenomas using volumetric assessments on serial MRI investigations

    Directory of Open Access Journals (Sweden)

    Jaco Pieterse

    2016-03-01

    Full Text Available Background: Benign non-functioning pituitary macroadenomas (NFMA often cause mass effect on the optic chiasm necessitating transsphenoidal surgery to prevent blindness.However, surgery is complicated and there is a high tumour recurrence rate. Currently, very little is known about the natural (and residual post-surgical growth patterns of these NFMA. Conflicting data describe decreased growth to exponential growth over various time periods.Due to lack of information on growth dynamics of these NFMA, suitable follow-up imaging protocols have not been described to date.Objective: To determine if NFMA grow or stay quiescent over a time period using serial MRI investigations and a stereo logical method to determine tumour volume. In addition, to evaluate if NFMA adhere to a certain growth pattern or grow at random.Method: Thirteen patients with NFMA had serial MRI investigations over a 73-month period at the Universitas Academic Hospital. Six of the selected patients had undergone previous surgery, while seven patients had received no medical or surgical intervention. By using astereological method, tumour volumes were calculated and plotted over time to demonstrate growth curves. The data were then fitted to tumour growth models already described in literature in order to obtain the best fit by calculating the r2 value.Results: Positive tumour growth was demonstrated in all cases. Tumour growth patterns of nine patients best fitted the exponential growth curve while the growth patterns of three patients best fitted the logistic growth curve. The remaining patient demonstrated a linear growth pattern.Conclusion: A specific growth model best described tumour growth observed in non-surgical and surgical cases. If follow-up imaging confirms positive growth, future growth can be predicted by extrapolation. This information can then be used to determine the relevant follow-up-imaging interval in each individual patient.

  9. Magnetization transfer ratio and volumetric analysis of the brain in macrocephalic patients with neurofibromatosis type 1

    Energy Technology Data Exchange (ETDEWEB)

    Margariti, Persefoni N.; Katzioti, Frosso G.; Zikou, Anastasia K.; Argyropoulou, Maria I. [University of Ioannina, Department of Radiology, Medical School, Ioannina (Greece); Blekas, Konstantinos [University of Ioannina, Department of Computer Science, Ioannina (Greece); Tzoufi, Meropi [University of Ioannina, Child Health Department, Medical School, Ioannina (Greece)

    2007-02-15

    The purpose of the study was to evaluate brain myelination by measuring the magnetization transfer ratio (MTR) and to measure grey (GMV) and white matter volume (WMV) in macrocephalic children with neurofibromatosis type 1 (NF1). Seven NF1 patients (aged 0.65-16.67 years) and seven age- and gender-matched controls were studied. A three-dimensional (3D) gradient echo sequence with and without magnetization transfer (MT) prepulse was used for MTR assessment. Volume measurements of GM and WM were performed by applying segmentation techniques on T2-weighted turbo spin echo images (T2WI). MTR of unidentified bright objects (UBOs) on T2WI in cerebellar white matter (52.8{+-}3.3), cerebral peduncles (48.5{+-}1.5), hippocampus (52.6{+-}1.1), internal capsule (55.7{+-}0.3), globus pallidus (52.7{+-}3.9), and periventricular white matter (52.6{+-}1.2) was lower than in the corresponding areas of controls (64.6{+-}2.5, 60.8{+-}1.3, 56.4{+-}0.9, 64.7{+-}1.9, 59.2{+-}2.3, 63.6{+-}1.7, respectively; p<0.05). MTR of normal-appearing brain tissue in patients was not significantly different than in controls. Surface area (mm{sup 2}) of the corpus callosum (809.1{+-}62.8), GMV (cm{sup 3}) (850.7{+-}42.9), and white matter volume (WMV) (cm{sup 3}) (785.1{+-}85.2) were greater in patients than in controls (652.5{+-}52.6 mm{sup 2}, 611.2{+-}92.1 cm{sup 3}, 622.5{+-}108.7 cm{sup 3}, respectively; p<0.05). To conclude, macrocephaly in NF1 patients is related to increased GMV and WMV and corpus callosum enlargement. MTR of UBOs is lower than that of normal brain tissue. (orig.)

  10. Effects of motor fatigue on human brain activity, an fMRI study

    NARCIS (Netherlands)

    van Duinen, Hiske; Renken, Remco; Maurits, Natasha; Zijdewind, Inge

    2007-01-01

    The main purpose of this study was to investigate effects of motor fatigue on brain activation in humans, using fMRI. First, we assessed brain activation that correlated with muscle activity during brief contractions at different force levels (force modulation). Second, a similar analysis was done f

  11. MRI/MRA evaluation of sickle cell disease of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Robert A. [Childrens Hospital, Department of Radiology, Philadelphia, PA (United States)

    2005-03-01

    Sickle cell disease is a major cause of pediatric stroke. Understanding the disease that affects the brain as infarctions, both clinically apparent and silent, requires an understanding of how the blood vessels are affected, the way in which both the brain and the blood vessels are imaged by MRI and MRA and the mechanism of injury. (orig.)

  12. Volumetric MRI and {sup 1}H MRS study of hippocampus in unilateral MCAO patients: Relationship between hippocampal secondary damage and cognitive disorder following stroke

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiangyu; Wang, Chengyuan; Xia, Liming [Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Dadao 1095, Wuhan 430030 (China); Zhu, Wenhao [Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Dadao 1095, Wuhan 430030 (China); Zhao, Lingyun [Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Dadao 1095, Wuhan 430030 (China); Zhu, Wenzhen, E-mail: zhuwenzhen@hotmail.com [Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Dadao 1095, Wuhan 430030 (China)

    2012-10-15

    Objective: To determine whether hippocampi alter in patients at the recovery stage of middle cerebral artery occlusion (MCAO) and whether the changes of hippocampi involve in the cognitive impairment in such patients. Meterials and methods: Forty-four patients with unilateral infarction solely in MCAO territory and 44 age-, sex- and education background-matched healthy volunteers were enrolled in this study. All subjects underwent 3-dimensional fast spoiled gradient-echo (3D FSPGR) and sing-voxel proton magnetic resonance spectroscopy ({sup 1}H MRS) protocols at a 1.5 T MR scanner. The ratios of n-acetylaspartate/creatine (NAA/Cr) and myo-inositol/creatine (mI/Cr) were obtained by using software integrated in the MR scanner. The hippocampal volumes were estimated by manually measurement. Results: The volume and NAA/Cr ratio were found significantly decreased and mI/Cr ratio significantly increased in the hippocampus ipsilateral to occluded middle cerebral artery (MCA) as compared with values in the contralateral hippocampus or healthy control. A reduced NAA/Cr ratio was also observed in contralateral hippocampus compared to controls. The shrinkage ratio of hippocampus ipsilateral to MCAO was found related to the Mini–Mental State Examination (MMSE) score. Conclusion: Our study identified that the hippocampal secondary damage occurred in patients after MCAO, and it could be evaluated noninvasively by volumetric magnetic resonance imaging (MRI) and {sup 1}H MRS. Moreover, the hippocampal secondary damage in MCAO patients indeed contributed to their cognitive impairment.

  13. Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI

    Directory of Open Access Journals (Sweden)

    N. Sauwen

    2016-01-01

    Full Text Available Tumor segmentation is a particularly challenging task in high-grade gliomas (HGGs, as they are among the most heterogeneous tumors in oncology. An accurate delineation of the lesion and its main subcomponents contributes to optimal treatment planning, prognosis and follow-up. Conventional MRI (cMRI is the imaging modality of choice for manual segmentation, and is also considered in the vast majority of automated segmentation studies. Advanced MRI modalities such as perfusion-weighted imaging (PWI, diffusion-weighted imaging (DWI and magnetic resonance spectroscopic imaging (MRSI have already shown their added value in tumor tissue characterization, hence there have been recent suggestions of combining different MRI modalities into a multi-parametric MRI (MP-MRI approach for brain tumor segmentation. In this paper, we compare the performance of several unsupervised classification methods for HGG segmentation based on MP-MRI data including cMRI, DWI, MRSI and PWI. Two independent MP-MRI datasets with a different acquisition protocol were available from different hospitals. We demonstrate that a hierarchical non-negative matrix factorization variant which was previously introduced for MP-MRI tumor segmentation gives the best performance in terms of mean Dice-scores for the pathologic tissue classes on both datasets.

  14. Analysis of large brain MRI databases for investigating the relationships between brain, cognitive, and genetic polymorphisms

    Energy Technology Data Exchange (ETDEWEB)

    Mazoyer, B

    2006-07-01

    A major challenge for the years to come is the understanding of the brain-behaviour relationships, and in particular the investigation and quantification of the impact of genetic polymorphism on these relationships. In this framework, a promising experimental approach, which we will refer to as neuro-epidemiologic imaging, consists in acquiring multimodal (brain images, psychometric an d sociological data, genotypes) data in large (several hundreds or thousands ) cohorts of subjects. Processing of such large databases requires on first place the conception and implementation of automated 'pipelines', including image registration, spatial normalisation tissue segmentation, and multivariate statistical analysis. Given the number of images and data to be processed, such pipelines must be both fully automated and robust enough to be able to handle multi-center MRI data, e.g. having inhomogeneous characteristics in terms of resolution and contrast. This approach will be illustrated using two databases collected in aged healthy subjects, searching for the impact of genetic and environmental on two markers of brain aging, namely white matter hyper-signals, and grey matter atrophy. (author)

  15. Early development of arterial spin labeling to measure regional brain blood flow by MRI.

    Science.gov (United States)

    Koretsky, Alan P

    2012-08-15

    Two major avenues of work converged in the late 1980's and early 1990's to give rise to brain perfusion MRI. The development of anatomical brain MRI quickly had as a major goal the generation of angiograms using tricks to label flowing blood in macroscopic vessels. These ideas were aimed at getting information about microcirculatory flow as well. Over the same time course the development of in vivo magnetic resonance spectroscopy had as its primary goal the assessment of tissue function and in particular, tissue energetics. For this the measurement of the delivery of water to tissue was critical for assessing tissue oxygenation and viability. The measurement of the washin/washout of "freely" diffusible tracers by spectroscopic based techniques pointed the way for quantitative approaches to measure regional blood flow by MRI. These two avenues came together in the development of arterial spin labeling (ASL) MRI techniques to measure regional cerebral blood flow. The early use of ASL to measure brain activation to help verify BOLD fMRI led to a rapid development of ASL based perfusion MRI. Today development and applications of regional brain blood flow measurements with ASL continues to be a major area of activity.

  16. Robust brain parcellation using sparse representation on resting-state fMRI.

    Science.gov (United States)

    Zhang, Yu; Caspers, Svenja; Fan, Lingzhong; Fan, Yong; Song, Ming; Liu, Cirong; Mo, Yin; Roski, Christian; Eickhoff, Simon; Amunts, Katrin; Jiang, Tianzi

    2015-11-01

    Resting-state fMRI (rs-fMRI) has been widely used to segregate the brain into individual modules based on the presence of distinct connectivity patterns. Many parcellation methods have been proposed for brain parcellation using rs-fMRI, but their results have been somewhat inconsistent, potentially due to various types of noise. In this study, we provide a robust parcellation method for rs-fMRI-based brain parcellation, which constructs a sparse similarity graph based on the sparse representation coefficients of each seed voxel and then uses spectral clustering to identify distinct modules. Both the local time-varying BOLD signals and whole-brain connectivity patterns may be used as features and yield similar parcellation results. The robustness of our method was tested on both simulated and real rs-fMRI datasets. In particular, on simulated rs-fMRI data, sparse representation achieved good performance across different noise levels, including high accuracy of parcellation and high robustness to noise. On real rs-fMRI data, stable parcellation of the medial frontal cortex (MFC) and parietal operculum (OP) were achieved on three different datasets, with high reproducibility within each dataset and high consistency across these results. Besides, the parcellation of MFC was little influenced by the degrees of spatial smoothing. Furthermore, the consistent parcellation of OP was also well corresponding to cytoarchitectonic subdivisions and known somatotopic organizations. Our results demonstrate a new promising approach to robust brain parcellation using resting-state fMRI by sparse representation.

  17. In vivo visuotopic brain mapping with manganese-enhanced MRI and resting-state functional connectivity MRI.

    Science.gov (United States)

    Chan, Kevin C; Fan, Shu-Juan; Chan, Russell W; Cheng, Joe S; Zhou, Iris Y; Wu, Ed X

    2014-04-15

    The rodents are an increasingly important model for understanding the mechanisms of development, plasticity, functional specialization and disease in the visual system. However, limited tools have been available for assessing the structural and functional connectivity of the visual brain network globally, in vivo and longitudinally. There are also ongoing debates on whether functional brain connectivity directly reflects structural brain connectivity. In this study, we explored the feasibility of manganese-enhanced MRI (MEMRI) via 3 different routes of Mn(2+) administration for visuotopic brain mapping and understanding of physiological transport in normal and visually deprived adult rats. In addition, resting-state functional connectivity MRI (RSfcMRI) was performed to evaluate the intrinsic functional network and structural-functional relationships in the corresponding anatomical visual brain connections traced by MEMRI. Upon intravitreal, subcortical, and intracortical Mn(2+) injection, different topographic and layer-specific Mn enhancement patterns could be revealed in the visual cortex and subcortical visual nuclei along retinal, callosal, cortico-subcortical, transsynaptic and intracortical horizontal connections. Loss of visual input upon monocular enucleation to adult rats appeared to reduce interhemispheric polysynaptic Mn(2+) transfer but not intra- or inter-hemispheric monosynaptic Mn(2+) transport after Mn(2+) injection into visual cortex. In normal adults, both structural and functional connectivity by MEMRI and RSfcMRI was stronger interhemispherically between bilateral primary/secondary visual cortex (V1/V2) transition zones (TZ) than between V1/V2 TZ and other cortical nuclei. Intrahemispherically, structural and functional connectivity was stronger between visual cortex and subcortical visual nuclei than between visual cortex and other subcortical nuclei. The current results demonstrated the sensitivity of MEMRI and RSfcMRI for assessing the

  18. AN IMPROVED TECHNIQUE FOR IDENTIFICATION AND CLASSIFICATION OF BRAIN DISORDER FROM MRI BRAIN IMAGE

    Directory of Open Access Journals (Sweden)

    Finitha Joseph

    2015-11-01

    Full Text Available Medical image processing is developing recently due to its wide applications. An efficient MRI image segmentation is needed at present. In this paper, MRI brain segmentation is done by Semi supervised learning which does not require pathology modelling and, thus, allows high degree of automation. In abnormality detection, a vector is characterized as anomalous if it does not comply with the probability distribution obtained from normal data. The estimation of the probability density function, however, is usually not feasible due to large data dimensionality. In order to overcome this challenge, we treat every image as a network of locally coherent image partitions (overlapping blocks. We formulate and maximize a strictly concave likelihood function estimating abnormality for each partition and fuse the local estimates into a globally optimal estimate that satisfies the consistency constraints, based on a distributed estimation algorithm. After this features are extracted by Gray-Level Co-occurrence Matrices (GLCM algorithm and those features are given to Particle Spam Optimization (PSO and finally classification is done by using Library Support Vector Machine (LIBSVM.Thus results are evaluated and proved its efficiency using accuracy.

  19. Detection of Brain Reorganization in Pediatric Multiple Sclerosis Using Functional MRI

    Science.gov (United States)

    2015-10-01

    epilepsy patients as well as tumor and intravenous malformation patients who were placed under consideration to undergo pediatric brain surgery at...dissemination activities— journal articles, abstracts, and presentations—have friends or family who suffer from pediatric brain disorders; these...Page | 2 AWARD NUMBER: W81XWH-13-1-0464 TITLE: Detection of Brain Reorganization in Pediatric Multiple Sclerosis Using Functional MRI

  20. Implementing Tumor Detection and Area Calculation in Mri Image of Human Brain Using Image Processing Techniques

    OpenAIRE

    Sunil L. Bangare; Madhura Patil

    2015-01-01

    This paper is based on the research on Human Brain Tumor which uses the MRI imaging technique to capture the image. In this proposed work Brain Tumor area is calculated to define the Stage or level of seriousness of the tumor. Image Processing techniques are used for the brain tumor area calculation and Neural Network algorithms for the tumor position calculation. Also in the further advancement the classification of the tumor based on few parameters is also expected. Proposed wor...

  1. Wilson's disease: two treatment modalities. Correlations to pretreatment and posttreatment brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Leiros da Costa, Maria do Desterro [Federal University of Paraiba, Movement Disorders Unit, Paraiba (Brazil); Spitz, Mariana; Bacheschi, Luiz Alberto; Barbosa, Egberto Reis [University of Sao Paulo, Movement Disorders Unit, Sao Paulo (Brazil); Leite, Claudia Costa; Lucato, Leandro Tavares [University of Sao Paulo, Department of Radiology, Sao Paulo (Brazil)

    2009-10-15

    Brain magnetic resonance imaging (MRI) studies on Wilson's disease (WD) show lack of correlations between neurological and neuroimaging features. Long-term follow-up reports with sequential brain MRI in patients with neurological WD comparing different modalities of treatment are scarce. Eighteen patients with neurological WD underwent pretreatment and posttreatment brain MRI scans to evaluate the range of abnormalities and the evolution along these different periods. All patients underwent at least two MRI scans at different intervals, up to 11 years after the beginning of treatment. MRI findings were correlated with clinical picture, clinical severity, duration of neurological symptoms, and treatment with two different drugs. Patients were divided into two groups according to treatment: d-penicillamine (D-P), zinc (Zn), and Zn after the onset of severe intolerance to D-P. MRI scans before treatment showed, in all patients, hypersignal intensity lesions on T2- and proton-density-weighted images bilaterally and symmetrically at basal nuclei, thalamus, brain stem, cerebellum, brain cortex, and brain white matter. The most common neurological symptoms were: dysarthria, parkinsonism, dystonia, tremor, psychiatric disturbances, dysphagia, risus sardonicus, ataxia, chorea, and athetosis. From the neurological point of view, there was no difference on the evolution between the group treated exclusively with D-P and the one treated with Zn. Analysis of MRI scans with longer intervals after the beginning of treatment depicted a trend for neuroimaging worsening, without neurological correspondence, among patients treated with Zn. Neuroimaging pattern of evolution was more favorable for the group that received exclusively D-P. (orig.)

  2. Sparse representation of whole-brain fMRI signals for identification of functional networks.

    Science.gov (United States)

    Lv, Jinglei; Jiang, Xi; Li, Xiang; Zhu, Dajiang; Chen, Hanbo; Zhang, Tuo; Zhang, Shu; Hu, Xintao; Han, Junwei; Huang, Heng; Zhang, Jing; Guo, Lei; Liu, Tianming

    2015-02-01

    There have been several recent studies that used sparse representation for fMRI signal analysis and activation detection based on the assumption that each voxel's fMRI signal is linearly composed of sparse components. Previous studies have employed sparse coding to model functional networks in various modalities and scales. These prior contributions inspired the exploration of whether/how sparse representation can be used to identify functional networks in a voxel-wise way and on the whole brain scale. This paper presents a novel, alternative methodology of identifying multiple functional networks via sparse representation of whole-brain task-based fMRI signals. Our basic idea is that all fMRI signals within the whole brain of one subject are aggregated into a big data matrix, which is then factorized into an over-complete dictionary basis matrix and a reference weight matrix via an effective online dictionary learning algorithm. Our extensive experimental results have shown that this novel methodology can uncover multiple functional networks that can be well characterized and interpreted in spatial, temporal and frequency domains based on current brain science knowledge. Importantly, these well-characterized functional network components are quite reproducible in different brains. In general, our methods offer a novel, effective and unified solution to multiple fMRI data analysis tasks including activation detection, de-activation detection, and functional network identification. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Lesion Activity on Brain MRI in a Chinese Population with Unilateral Optic Neuritis.

    Science.gov (United States)

    Lai, Chuntao; Chang, Qinglin; Tian, Guohong; Wang, Jiawei; Yin, Hongxia; Liu, Wu

    2015-01-01

    Longitudinal studies have shown that brain white matter lesions are strong predictors of the conversion of unilateral optic neuritis to multiple sclerosis (MS) in Caucasian populations. Consequently brain MRI criteria have been developed to improve the prediction of the development of clinically definite multiple sclerosis (CDMS). In Asian populations, optic neuritis may be the first sign of classical or optic-spinal MS. These signs add to the uncertainty regarding brain MRI changes with respect to the course of unilateral optic neuritis. The aim of this study was to examine the association between brain lesion activity and conversion to CDMS in Chinese patients with unilateral optic neuritis. A small prospective cohort study of 40 consecutive Chinese patients who presented with unilateral optic neuritis was conducted. Brain lesion activity was recorded as the incidence of Gd-enhanced lesions and new T2 lesions. Brain lesions on MRI that were characteristic of MS were defined according to the 2010 revisions of the McDonald criteria. The primary endpoint was the development of CDMS. We found that nineteen patients (48%) had brain lesions that were characteristic of MS on the initial scan. One of these patients (3%) had Gd-enhanced brain lesions. A significantly lower percentage of the patients (10%, poptic neuritis; however, these patients exhibit low lesion activity. The predictive value of brain lesion activity for CDMS requires investigation in additional patients.

  4. Decoding lifespan changes of the human brain using resting-state functional connectivity MRI.

    Directory of Open Access Journals (Sweden)

    Lubin Wang

    Full Text Available The development of large-scale functional brain networks is a complex, lifelong process that can be investigated using resting-state functional connectivity MRI (rs-fcMRI. In this study, we aimed to decode the developmental dynamics of the whole-brain functional network in seven decades (8-79 years of the human lifespan. We first used parametric curve fitting to examine linear and nonlinear age effect on the resting human brain, and then combined manifold learning and support vector machine methods to predict individuals' "brain ages" from rs-fcMRI data. We found that age-related changes in interregional functional connectivity exhibited spatially and temporally specific patterns. During brain development from childhood to senescence, functional connections tended to linearly increase in the emotion system and decrease in the sensorimotor system; while quadratic trajectories were observed in functional connections related to higher-order cognitive functions. The complex patterns of age effect on the whole-brain functional network could be effectively represented by a low-dimensional, nonlinear manifold embedded in the functional connectivity space, which uncovered the inherent structure of brain maturation and aging. Regression of manifold coordinates with age further showed that the manifold representation extracted sufficient information from rs-fcMRI data to make prediction about individual brains' functional development levels. Our study not only gives insights into the neural substrates that underlie behavioral and cognitive changes over age, but also provides a possible way to quantitatively describe the typical and atypical developmental progression of human brain function using rs-fcMRI.

  5. MRI visualization of endogenous neural progenitor cell migration along the RMS in the adult mouse brain

    DEFF Research Database (Denmark)

    Vreys, Ruth; Vande Velde, Greetje; Krylychkina, Olga

    2010-01-01

    The adult rodent brain contains neural progenitor cells (NPCs), generated in the subventricular zone (SVZ), which migrate along the rostral migratory stream (RMS) towards the olfactory bulb (OB) where they differentiate into neurons. The aim of this study was to visualize endogenous NPC migration...... along the RMS with magnetic resonance imaging (MRI) in adult healthy mice. We evaluated various in situ (in vivo) labeling approaches using micron-sized iron oxide particles (MPIOs) on their efficiency to label endogenous NPCs. In situ labeling and visualization of migrating NPCs were analyzed...... by a longitudinal MRI study and validated with histology. Here, we visualized endogenous NPC migration in the mouse brain by in vivo MRI and demonstrated accumulation of MPIO-labeled NPCs in the OB over time with ex vivo MRI. Furthermore, we investigated the influence of in situ injection of MPIOs on adult...

  6. Effects of changing from non-accelerated to accelerated MRI for follow-up in brain atrophy measurement.

    Science.gov (United States)

    Leung, Kelvin K; Malone, Ian M; Ourselin, Sebastien; Gunter, Jeffrey L; Bernstein, Matt A; Thompson, Paul M; Jack, Clifford R; Weiner, Michael W; Fox, Nick C

    2015-02-15

    Stable MR acquisition is essential for reliable measurement of brain atrophy in longitudinal studies. One attractive recent advance in MRI is to speed up acquisition using parallel imaging (e.g. reducing volumetric T1-weighted acquisition scan times from around 9 to 5 min). In some studies, a decision to change to an accelerated acquisition may have been deliberately taken, while in others repeat scans may occasionally be accidentally acquired with an accelerated acquisition. In ADNI, non-accelerated and accelerated scans were acquired in the same scanning session on each individual. We investigated the impact on brain atrophy as measured by k-means normalized boundary shift integral (KN-BSI) and deformation-based morphometry when changing from non-accelerated to accelerated MRI acquisitions over a 12-month interval using scans of 422 subjects from ADNI. KN-BSIs were calculated using both a non-accelerated baseline scan and non-accelerated 12-month scans (i.e. consistent acquisition), and a non-accelerated baseline scan and an accelerated 12-month scan (i.e. changed acquisition). Fluid-based non-rigid registration was also performed on those scans to estimate the brain atrophy rate. We found that the effect on KN-BSI and fluid-based non-rigid registration depended on the scanner manufacturer. For KN-BSI, in Philips and Siemens scanners, the change had very little impact on the measured atrophy rate (increase of 0.051% in Philips and -0.035% in Siemens from consistent acquisition to changed acquisition), whereas, in GE, the change caused a mean reduction of 0.65% in the brain atrophy rate. This is likely due to the difference in tissue contrast between gray matter and cerebrospinal fluid in the non-accelerated and accelerated scans in GE, which uses IR-FSPGR instead of MP-RAGE. For fluid-based non-rigid registration, the change caused a mean increase of 0.29% in the brain atrophy rate in the changed acquisition compared with consistent acquisition in Philips

  7. Patch-based generation of a pseudo CT from conventional MRI sequences for MRI-only radiotherapy of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Andreasen, Daniel, E-mail: dana@dtu.dk [Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby 2800, Denmark and Department of Oncology, Radiotherapy Research Unit, Copenhagen University Hospital, Herlev 2730 (Denmark); Van Leemput, Koen [Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby 2800, Denmark and A.A. Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, Charlestown, Massachusetts 02129 (United States); Hansen, Rasmus H. [Department of Radiology, Copenhagen University Hospital, Herlev 2730 (Denmark); Andersen, Jon A. L.; Edmund, Jens M. [Department of Oncology, Radiotherapy Research Unit, Copenhagen University Hospital, Herlev 2730 (Denmark)

    2015-04-15

    atlas-based methods and showed a promising potential for RT of the brain based only on MRI.

  8. Brain Metastases from Different Primary Carcinomas: an Evaluation of DSC MRI Measurements.

    Science.gov (United States)

    Zhang, H; Zhang, G; Oudkerk, M

    2012-03-01

    This study evaluated the roles of different dynamic susceptibility contrast magnetic imaging (DSC MRI) measurements in discriminating between brain metastases derived from four common primary carcinomas. Thirty-seven patients with brain metastases were enrolled. Relative cerebral blood volume (rCBV), cerebral blood flow (rCBF) and relative mean transit time (rMTT) in both tumor and peritumoral edema were measured. Metastases were grouped by their primary tumor (lung, gastrointestinal, breast and renal cell carcinoma). DSC MRI measurements were compared between groups. Mean rCBV, rCBF, rMTT in tumor and peritumoral edema of all brain metastases (n=37) were 2.79 ± 1.73, 2.56 ± 2.11, 1.21 ± 0.48 and 1.05 ± 0.53, 0.86 ± 0.40, 1.99 ± 0.41, respectively. The tumoral rCBV (5.26 ± 1.89) and rCBF (5.32 ± 3.28) of renal metastases were greater than those of the other three metastases (P0.05). Evaluating various DSC MRI measurements can provide complementary hemodynamic information on brain metastases. The tumoral rCBV, rCBF and likely rMTT can help discriminate between brain metastases originating from different primary carcinomas. The peritumoral DSC MRI measurements had limited value in discriminating between brain metastases.

  9. Unraveling the multiscale structural organization and connectivity of the human brain: the role of diffusion MRI

    Directory of Open Access Journals (Sweden)

    Matteo eBastiani

    2015-06-01

    Full Text Available The structural architecture and the anatomical connectivity of the human brain show different organizational principles at distinct spatial scales. Histological staining and light microscopy techniques have been widely used in classical neuroanatomical studies to unravel brain organization. Using such techniques is a laborious task performed on 2-dimensional histological sections by skilled anatomists possibly aided by semi-automated algorithms. With the recent advent of modern magnetic resonance imaging (MRI contrast mechanisms, cortical layers and columns can now be reliably identified and their structural properties quantified post mortem. These developments are allowing the investigation of neuroanatomical features of the brain at a spatial resolution that could be interfaced with that of histology. Diffusion MRI and tractography techniques, in particular, have been used to probe the architecture of both white and gray matter in three dimensions. Combined with mathematical network analysis, these techniques are increasingly influential in the investigation of the macro-, meso- and microscopic organization of brain connectivity and anatomy, both in vivo and ex vivo. Diffusion MRI-based techniques in combination with histology approaches can therefore support the endeavor of creating multimodal atlases that take into account the different spatial scales or levels on which the brain is organized. The aim of this review is to illustrate and discuss the structural architecture and the anatomical connectivity of the human brain at different spatial scales and how recently developed diffusion MRI techniques can help investigate these.

  10. COMPARISON OF VOLUMETRIC REGISTRATION ALGORITHMS FOR TENSOR-BASED MORPHOMETRY

    Science.gov (United States)

    Villalon, Julio; Joshi, Anand A.; Toga, Arthur W.; Thompson, Paul M.

    2015-01-01

    Nonlinear registration of brain MRI scans is often used to quantify morphological differences associated with disease or genetic factors. Recently, surface-guided fully 3D volumetric registrations have been developed that combine intensity-guided volume registrations with cortical surface constraints. In this paper, we compare one such algorithm to two popular high-dimensional volumetric registration methods: large-deformation viscous fluid registration, formulated in a Riemannian framework, and the diffeomorphic “Demons” algorithm. We performed an objective morphometric comparison, by using a large MRI dataset from 340 young adult twin subjects to examine 3D patterns of correlations in anatomical volumes. Surface-constrained volume registration gave greater effect sizes for detecting morphometric associations near the cortex, while the other two approaches gave greater effects sizes subcortically. These findings suggest novel ways to combine the advantages of multiple methods in the future. PMID:26925198

  11. Combined MRI Might Help Predict Brain Damage in Boxers

    Science.gov (United States)

    ... 2017 WEDNESDAY, Aug. 2, 2017 (HealthDay News) -- Brain injuries among pro football players are in the headlines, but pro fighters ... damage. In the boxing ring, as on the football field, recurring blows to the head can cause mild traumatic brain injury. Over time, this can lead to progressive brain ...

  12. Brain Perfusion MRI Findings in Patients with Behcet’s Disease

    Directory of Open Access Journals (Sweden)

    Alpay Alkan

    2012-01-01

    Full Text Available Objective. To search brain perfusion MRI (pMRI changes in Behcet’s disease (BD with or without neurological involvement. Materials and Method. The pMRI were performed in 34 patients with BD and 16 healthy controls. Based on neurologic examination and post-contrast MRI, 12 patients were classified as Neuro-Behcet (group 1, NBD and 22 patients as BD without neurological involvement (group 2. Mean transit time (MTT, time to peak (TTP, relative cerebral blood volume (rCBV, and relative cerebral blood flow (rCBF were obtained and compared to those of healthy control group (group 3. Results. There was a significant difference in the MTT and rCBF within the pons and parietal cortex in groups 1 and 2. rCBV increased in cerebral pedicle in group 1 compared with groups 2 and 3. In the temporal lobe white matter, prolonged MTT and decreased rCBF were found in groups 1 and 2. In the corpus striatum, internal capsule, and periventricular white matter, rCBF increased in group 1 compared with group 3 and decreased in groups 1 and 2. Conclusion. Brain pMRI is a very sensitive method to detect brain involvement in patients with BD and aids the clinical diagnosis of NBD, especially in patients with negative MRI findings.

  13. Safety of a dedicated brain MRI protocol in patients with a vagus nerve stimulator.

    Science.gov (United States)

    de Jonge, Jeroen C; Melis, Gerrit I; Gebbink, Tineke A; de Kort, Gérard A P; Leijten, Frans S S

    2014-11-01

    Although implanted metallic devices constitute a relative contraindication to magnetic resonance imaging (MRI) scanning, the safety of brain imaging in a patient with a vagus nerve stimulator (VNS) is classified as "conditional," provided that specific manufacturer guidelines are followed when a transmit and receive head coil is used at 1.5 or 3.0 Tesla. The aim of this study was to evaluate the safety of performing brain MRI scans in patients with the VNS. From September 2009 until November 2011, 101 scans were requested in 73 patients with the VNS in The Netherlands. Patients were scanned according to the manufacturer's guidelines. No patient reported any side effect, discomfort, or pain during or after the MRI scan. In one patient, a lead break was detected based on device diagnostics after the MRI-scan. However, because no system diagnostics had been performed prior to MR scanning in this patient, it is unclear whether MR scanning was responsible for the lead break. The indication for most scans was epilepsy related. Twenty-six scans (26%) were part of a (new) presurgical evaluation and could probably better have been performed prior to VNS implantation. Performing brain MRI scans in patients with an implanted VNS is safe when a modified MRI protocol is followed.

  14. Comparison of CT and MRI brain tumor imaging using a canine glioma model.

    Science.gov (United States)

    Whelan, H T; Clanton, J A; Wilson, R E; Tulipan, N B

    1988-01-01

    A canine gliosarcoma model was used to study the effectiveness of magnetic resonance imaging (MRI) with gadolinium contrast enhancement in defining the histologic margins of brain tumors. The effectiveness of this technique was compared to conventional computed tomography (CT) using iodinated contrast enhancement. Cultured canine gliosarcoma cells were injected into the left hemisphere of adult mongrel dogs. The dogs developed brain tumors and progressive clinical signs. Serial MRI with and without gadolinium diethylene triamine penta-acetic acid was compared to serial CT with and without sodium iothalamate obtained on the same days. After the final scans, animals were sacrificed; the brains were removed and processed for routine histopathologic study. All tumors were visualized with contrast-enhanced MRI which proved most sensitive. Gadolinium di-ethylene triamine penta-acetic acid caused bright enhancement of tumors in a distribution that consistently corresponded to areas of pathologically proved tumor infiltration. Gross and microscopic autopsy findings correlated better with MRI than with CT which tended to produce poorer resolution and underrepresent the size of viable tumor. Gadolinium-enhanced MRI is more accurate than unenhanced MRI, unenhanced CT, or enhanced CT in defining the histologic margins of tumors.

  15. Brain CT and MRI findings of a long-term case of subacute sclerosing panencephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Aoshiba, Kazunori; Ota, Kohei; Komatsuzaki, Satoshi; Kobayashi, Itsuro; Maruyama, Shoichi

    1987-11-01

    Our study involved a long-term case (ten years) of subacute sclerosing panencephalitis. The case began with a 23 year-old experiencing visual deterioration. During the course of his illness, amnesia, autism and abnormal behavior were observed without any myoclonus. On the electroencephalogram, periodic synclonous discharge was shown in the early stage of his illness and subsequently disappeared. The brain CT and the MRI disclosed diffuse lesions in both cortical and subcortical areas of the cerebral hemispheres. The location and spread of lesions were more clearly revealed by the MRI than the brain CT. These findings suggest that the MRI is more useful than the brain CT in the diagnosis of subacute sclerosing panencephalitis.

  16. Neonatal brain MRI: how reliable is the radiologist's eye?

    Energy Technology Data Exchange (ETDEWEB)

    Morel, B. [A. Trousseau Hospital APHP, Pediatric Radiology, Paris (France); LTCI, CNRS, Telecom ParisTech, Universite Paris-Saclay, Paris (France); Antoni, G.; Teglas, J.P. [INSERM, CESP Centre for Research in Epidemiology and Population Health, U1018, Reproduction and Child Development, Villejuif (France); Bloch, I. [LTCI, CNRS, Telecom ParisTech, Universite Paris-Saclay, Paris (France); Adamsbaum, C. [Paris Sud University, Pediatric Radiology Department Bicetre Hospital APHP, Faculty of Medicine, Paris (France)

    2016-02-15

    White matter (WM) analysis in neonatal brain magnetic resonance imaging (MRI) is challenging, as demonstrated by the issue of diffuse excessive high signal intensity (DEHSI). We evaluated the reliability of the radiologist's eye in this context. Three experienced observers graded the WM signal intensity on axial T2-weighted 1.5T images from 60 different premature newborns on 2 occasions 4 weeks apart with a semi-quantitative classification under identical viewing conditions. The intra- and inter-observer correlation coefficients were fair to moderate (Fleiss' kappa between 0.21 and 0.60). This is a serious limitation of which we need to be aware, as it can lead to contradictory conclusions in the challenging context of term-equivalent age brain MRI in premature infants. These results highlight the need for a semiautomatic tool to help in objectively analyzing MRI signal intensity in the neonatal brain. (orig.)

  17. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI.

    Science.gov (United States)

    Iliff, Jeffrey J; Lee, Hedok; Yu, Mei; Feng, Tian; Logan, Jean; Nedergaard, Maiken; Benveniste, Helene

    2013-03-01

    The glymphatic system is a recently defined brain-wide paravascular pathway for cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange that facilitates efficient clearance of solutes and waste from the brain. CSF enters the brain along para-arterial channels to exchange with ISF, which is in turn cleared from the brain along para-venous pathways. Because soluble amyloid β clearance depends on glymphatic pathway function, we proposed that failure of this clearance system contributes to amyloid plaque deposition and Alzheimer's disease progression. Here we provide proof of concept that glymphatic pathway function can be measured using a clinically relevant imaging technique. Dynamic contrast-enhanced MRI was used to visualize CSF-ISF exchange across the rat brain following intrathecal paramagnetic contrast agent administration. Key features of glymphatic pathway function were confirmed, including visualization of para-arterial CSF influx and molecular size-dependent CSF-ISF exchange. Whole-brain imaging allowed the identification of two key influx nodes at the pituitary and pineal gland recesses, while dynamic MRI permitted the definition of simple kinetic parameters to characterize glymphatic CSF-ISF exchange and solute clearance from the brain. We propose that this MRI approach may provide the basis for a wholly new strategy to evaluate Alzheimer's disease susceptibility and progression in the live human brain.

  18. Volumetric Brain Morphometry Changes in patients with Obstructive Sleep Apnea Syndrome : effects of CPAP treatment and literature review.

    Directory of Open Access Journals (Sweden)

    Nelly T Huynh

    2014-04-01

    Full Text Available Introduction: Obstructive sleep apnea syndrome (OSAS is a frequent breathing disorder occurring during sleep that is characterized by recurrent hypoxic episodes and sleep fragmentation. It remains unclear whether OSAS leads to structural brain changes, and if so, in which brain regions. Brain region-specific gray and white matter volume (GMV and WMV changes can be measured with voxel-based morphometry (VBM. The aims of this study were to use VBM to analyze GMV and WMV in untreated OSAS patients compared to healthy controls (HC; examine the impact of OSAS-related variables (nocturnal hypoxemia duration and sleep fragmentation index on GMV and WMV; and assess the effects of therapeutic versus sham continuous positive airway pressure (CPAP. We discuss our results in light of previous findings and provide a comprehensive literature review. Methods: Twenty-seven treatment-naïve male patients with moderate to severe OSAS and seven healthy age- and education-matched control subjects (HC were recruited. After a baseline fMRI scan, patients randomly received either active (therapeutic, n=14 or sham (subtherapeutic, n=13 nasal CPAP treatment for 2 months. Results: Significant negative correlations were observed between nocturnal hypoxemia duration and GMV in bilateral lateral temporal regions. No differences in GMV or WMV were found between OSAS patients and HC, and no differences between CPAP versus sham CPAP treatment effects in OSAS patients. Conclusion: It appears that considering VBM GMV changes there is little difference between OSAS patients and HC. The largest VBM study to date indicates structural changes in the lateral aspect of the temporal lobe, which also showed a significant negative correlation with nocturnal hypoxemia duration in our study. This finding suggests an association between the effect of nocturnal hypoxemia and decreased GMV in OSAS patients.

  19. MRI patterns of atrophy and hypoperfusion associations across brain regions in frontotemporal dementia.

    Science.gov (United States)

    Tosun, Duygu; Rosen, Howard; Miller, Bruce L; Weiner, Michael W; Schuff, Norbert

    2012-02-01

    Magnetic Resonance Imaging (MRI) provides various imaging modes to study the brain. We tested the benefits of a joint analysis of multimodality MRI data in combination with a large-scale analysis that involved simultaneously all image voxels using joint independent components analysis (jICA) and compared the outcome to results using conventional voxel-by-voxel unimodality tests. Specifically, we designed a jICA to decompose multimodality MRI data into independent components that explain joint variations between the image modalities as well as variations across brain regions. We tested the jICA design on structural and perfusion-weighted MRI data from 12 patients diagnosed with behavioral variant frontotemporal dementia (bvFTD) and 12 cognitively normal elderly individuals. While unimodality analyses showed widespread brain atrophy and hypoperfusion in the patients, jICA further revealed two significant joint components of variations between atrophy and hypoperfusion across brain regions. The 1st joint component revealed associated brain atrophy and hypoperfusion predominantly in the right brain hemisphere in behavioral variant frontotemporal dementia, and the 2nd joint component revealed greater atrophy relative to hypoperfusion affecting predominantly the left hemisphere in behavioral variant frontotemporal dementia. The patterns are consistent with the clinical symptoms of behavioral variant frontotemporal dementia that relate to asymmetric compromises of the left and right brain hemispheres. The joint components also revealed that that structural alterations can be associated with physiological alterations in spatially separated but potentially connected brain regions. Finally, jICA outperformed voxel-by-voxel unimodal tests significantly in terms of an effect size, separating the behavioral variant frontotemporal dementia patients from the controls. Taken together, the results demonstrate the benefit of multimodality MRI in conjunction with jICA for mapping

  20. Diffusion MRI and the detection of alterations following traumatic brain injury.

    Science.gov (United States)

    Hutchinson, Elizabeth B; Schwerin, Susan C; Avram, Alexandru V; Juliano, Sharon L; Pierpaoli, Carlo

    2017-06-13

    This article provides a review of brain tissue alterations that may be detectable using diffusion magnetic resonance imaging MRI (dMRI) approaches and an overview and perspective on the modern dMRI toolkits for characterizing alterations that follow traumatic brain injury (TBI). Noninvasive imaging is a cornerstone of clinical treatment of TBI and has become increasingly used for preclinical and basic research studies. In particular, quantitative MRI methods have the potential to distinguish and evaluate the complex collection of neurobiological responses to TBI arising from pathology, neuroprotection, and recovery. dMRI provides unique information about the physical environment in tissue and can be used to probe physiological, architectural, and microstructural features. Although well-established approaches such as diffusion tensor imaging are known to be highly sensitive to changes in the tissue environment, more advanced dMRI techniques have been developed that may offer increased specificity or new information for describing abnormalities. These tools are promising, but incompletely understood in the context of TBI. Furthermore, model dependencies and relative limitations may impact the implementation of these approaches and the interpretation of abnormalities in their metrics. The objective of this paper is to present a basic review and comparison across dMRI methods as they pertain to the detection of the most commonly observed tissue and cellular alterations following TBI. © 2017 The Authors Journal of Neuroscience Research Published by Wiley Periodicals, Inc.

  1. Blood Flow and Brain Function: Investigations of neurovascular coupling using BOLD fMRI at 7 tesla

    NARCIS (Netherlands)

    Siero, J.C.W.

    2013-01-01

    The advent of ultra high field (7 tesla) MRI systems has opened the possibility to probe biological processes of the human body in great detail. Especially for studying brain function using BOLD fMRI there is a large benefit from the increased magnetic field strength. BOLD fMRI is the working horse

  2. Functional MRI for Assessment of the Default Mode Network in Acute Brain Injury.

    Science.gov (United States)

    Kondziella, Daniel; Fisher, Patrick M; Larsen, Vibeke Andrée; Hauerberg, John; Fabricius, Martin; Møller, Kirsten; Knudsen, Gitte Moos

    2017-05-08

    Assessment of the default mode network (DMN) using resting-state functional magnetic resonance imaging (fMRI) may improve assessment of the level of consciousness in chronic brain injury, and therefore, fMRI may also have prognostic value in acute brain injury. However, fMRI is much more challenging in critically ill patients because of cardiovascular vulnerability, intravenous sedation, and artificial ventilation. Using resting-state fMRI, we investigated the DMN in a convenience sample of patients with acute brain injury admitted to the intensive care unit. The DMN was classified dichotomously into "normal" and "grossly abnormal." Clinical outcome was assessed at 3 months. Seven patients with acute brain injury (4 females; median age 37 years [range 14-71 years]; 1 traumatic brain injury [TBI]; 6 non-TBI) were investigated by fMRI a median of 15 days after injury (range 5-25 days). Neurological presentation included 2 coma, 1 vegetative state/unresponsive wakefulness syndrome (VS/UWS), 3 minimal conscious state (MCS) minus, and 1 MCS plus. Clinical outcomes at 3 months included 1 death, 1 VS/UWS, 1 MCS plus, and 4 conscious states (CS; 1 modified Rankin Scale 0; 2 mRS 4; 1 mRS 5). Normal DMNs were seen in 4 out of 7 patients (1 MCS plus, 3 CS at follow-up). It is feasible to assess the DMN by resting-state fMRI in patients with acute brain injury already in the very early period of intensive care unit admission. Although preliminary data, all patients with a preserved DMN regained consciousness levels at follow-up compatible with MCS+ or better.

  3. Functional brain activation differences in stuttering identified with a rapid fMRI sequence

    Science.gov (United States)

    Kraft, Shelly Jo; Choo, Ai Leen; Sharma, Harish; Ambrose, Nicoline G.

    2011-01-01

    The purpose of this study was to investigate whether brain activity related to the presence of stuttering can be identified with rapid functional MRI (fMRI) sequences that involved overt and covert speech processing tasks. The long-term goal is to develop sensitive fMRI approaches with developmentally appropriate tasks to identify deviant speech motor and auditory brain activity in children who stutter closer to the age at which recovery from stuttering is documented. Rapid sequences may be preferred for individuals or populations who do not tolerate long scanning sessions. In this report, we document the application of a picture naming and phoneme monitoring task in three minute fMRI sequences with adults who stutter (AWS). If relevant brain differences are found in AWS with these approaches that conform to previous reports, then these approaches can be extended to younger populations. Pairwise contrasts of brain BOLD activity between AWS and normally fluent adults indicated the AWS showed higher BOLD activity in the right inferior frontal gyrus (IFG), right temporal lobe and sensorimotor cortices during picture naming and and higher activity in the right IFG during phoneme monitoring. The right lateralized pattern of BOLD activity together with higher activity in sensorimotor cortices is consistent with previous reports, which indicates rapid fMRI sequences can be considered for investigating stuttering in younger participants. PMID:22133409

  4. ANALISIS PERBEDAAN CITRA MRI BRAIN PADA SEKUENT1SE DAN T1FLAIR

    Directory of Open Access Journals (Sweden)

    Nursama Heru Apriantoro

    2015-10-01

    Full Text Available MRI adalah bagian dari ilmu kedokteran untuk mediagnosa kelainan organ dengan memanfaatkan medan magnet dan pergerakan proton atom hidrogen. Salah satu pemeriksaan MRI adalah pemeriksaan brain. Pemeriksaan MRI brain dapat dilakukan T1 weighted image Spin Echo (T1 SE atau T1 Fluid Attenuated Inversion Recovery (T1 FLAIR. Kajian dilakukan untuk menentukan perbedaan T1 SE dan T1 FLAIR dari segi citra berdasarkan nilai Rasio Signal terhadap Noise (SNR dengan MRI GE Type Signa HD xt 1.5 Tesla. Penelitian menggunakan pendekatan kuantitatif.  20 pasien  telah diambil pada pemeriksaan MRI brain pada potongan axial, dengan parameter T1 SE potongan axial dengan parameter Time Repetition (TR 700 ms, Time Echo (TE 20 ms, Field of View (FOV 240 mm, Slice Thickness 5,0 mm, Spacing 1,0 mm, Number of Excitations (NEX 1, Phase 224, dan total slice 20. T1 FLAIR  parameter TR 3000 ms, TE 13,9 ms, TI 920 ms, FOV 240 mm, slice thickness 5,0 mm, spacing 1,0 mm,   NEX 1, phase 224, dan total slice 20. SNR dihitung pada anatomi brain meliputi CSF (Cerebro Spinal Fluid, White Matter dan Gray Matter. Hasil penelitian kedua sequence tersebut menunjukkan bahwa sequence T1 SE lebih baik daripada sequence T1 FLAIR.

  5. Pseudo-progression after stereotactic radiotherapy of brain metastases: lesion analysis using MRI cine-loops.

    Science.gov (United States)

    Wiggenraad, Ruud; Bos, Petra; Verbeek-de Kanter, Antoinette; Lycklama À Nijeholt, Geert; van Santvoort, Jan; Taphoorn, Martin; Struikmans, Henk

    2014-09-01

    Stereotactic radiotherapy (SRT) of brain metastasis can lead to lesion growth caused by radiation toxicity. The pathophysiology of this so-called pseudo-progression is poorly understood. The purpose of this study was to evaluate the use of MRI cine-loops for describing the consecutive events in this radiation induced lesion growth. Ten patients were selected from our department's database that had received SRT of brain metastases and had lesion growth caused by pseudo-progression as well as at least five follow-up MRI scans. Pre- and post SRT MRI scans were co-registered and cine-loops were made using post-gadolinium 3D T1 axial slices. The ten cine loops were discussed in a joint meeting of the authors. The use of cine-loops was superior to evaluation of separate MRI scans for interpretation of events after SRT. There was a typical lesion evolution pattern in all patients with varying time course. Initially regression of the metastases was observed, followed by an enlarging area of new contrast enhancement in the surrounding brain tissue. Analysis of consecutive MRI's using cine-loops may improve understanding of pseudo-progression. It probably represents a radiation effect in brain tissue surrounding the irradiated metastasis and not enlargement of the metastasis itself.

  6. MRI of the brain and craniocervical junction in Morquio`s disease

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, D.G. [Department of Radiology, Hope Hospital, Stott Lane, Salford, Manchester M6 8HD (United Kingdom); Chadderton, R.D. [Department of Neurosurgery, Hope Hospital, Salford, Manchester M6 8HD (United Kingdom); Cowie, R.A. [Department of Neurosurgery, Hope Hospital, Salford, Manchester M6 8HD (United Kingdom); Wraith, J.E. [Willink Biochemical Genetics Unit, Royal Manchester Children`s Hospital, Manchester M27 4HA (United Kingdom); Jenkins, J.P.R. [Department of Clinical Radiology, Manchester Royal Infirmary, Oxford Road, Manchester (United Kingdom)

    1997-05-01

    We reviewed MRI of the brain and cervical spine in 11 patients with Morquio`s disease. No abnormality was seen in the brain. The odontoid peg was abnormal in all patients, with varying degrees of cord compression due to an anterior soft tissue mass and indentation by the posterior arch of the atlas. The degree of cord compression was more marked than suggested by the symptoms and signs. We recommend MRI of the cervical spine in children with Morquio`s disease before the development of neurological symptoms, to optimise the timing and type of surgical intervention. (orig.). With 5 figs., 2 tabs.

  7. An efficient Volumetric Arc Therapy treatment planning approach for hippocampal-avoidance whole-brain radiation therapy (HA-WBRT)

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Jin [Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (United States); Bender, Edward [Department of Medical Physics, University of Wisconsin, Madison, WI (United States); Yaparpalvi, Ravindra; Kuo, Hsiang-Chi; Basavatia, Amar; Hong, Linda; Bodner, William; Garg, Madhur K.; Kalnicki, Shalom [Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (United States); Tomé, Wolfgang A., E-mail: wtome@montefiore.org [Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (United States); Department of Medical Physics, University of Wisconsin, Madison, WI (United States)

    2015-10-01

    An efficient and simple class solution is proposed for hippocampal-avoidance whole-brain radiation therapy (HA-WBRT) planning using the Volumetric Arc Therapy (VMAT) delivery technique following the NRG Oncology protocol NRG-CC001 treatment planning guidelines. The whole-brain planning target volume (PTV) was subdivided into subplanning volumes that lie in plane and out of plane with the hippocampal-avoidance volume. To further improve VMAT treatment plans, a partial-field dual-arc technique was developed. Both the arcs were allowed to overlap on the in-plane subtarget volume, and in addition, one arc covered the superior out-of-plane sub-PTV, while the other covered the inferior out-of-plane subtarget volume. For all plans (n = 20), the NRG-CC001 protocol dose-volume criteria were met. Mean values of volumes for the hippocampus and the hippocampal-avoidance volume were 4.1 cm{sup 3} ± 1.0 cm{sup 3} and 28.52 cm{sup 3} ± 3.22 cm{sup 3}, respectively. For the PTV, the average values of D{sub 2%} and D{sub 98%} were 36.1 Gy ± 0.8 Gy and 26.2 Gy ± 0.6 Gy, respectively. The hippocampus D{sub 100%} mean value was 8.5 Gy ± 0.2 Gy and the maximum dose was 15.7 Gy ± 0.3 Gy. The corresponding plan quality indices were 0.30 ± 0.01 (homogeneity index), 0.94 ± 0.01 (target conformality), and 0.75 ± 0.02 (confirmation number). The median total monitor unit (MU) per fraction was 806 MU (interquartile range [IQR]: 792 to 818 MU) and the average beam total delivery time was 121.2 seconds (IQR: 120.6 to 121.35 seconds). All plans passed the gamma evaluation using the 5-mm, 4% criteria, with γ > 1 of not more than 9.1% data points for all fields. An efficient and simple planning class solution for HA-WBRT using VMAT has been developed that allows all protocol constraints of NRG-CC001 to be met.

  8. Brain MRI in patients with multiple sclerosis with oligoclonal cerebrospinal fluid bands

    Directory of Open Access Journals (Sweden)

    Mesaroš Šarlota

    2003-01-01

    Full Text Available Locally produced oligoclonal IgG bands (OCB are present in the cerebrospinal fluid (CSF of 95% patients with multiple sclerosis (MS[2,3]. The most sensitive method for the detection of OCB is isoelectric focusing (IEF [1]. Occasional patients with clinically definite MS lack evidence for intrathecal IgG synthesis [2,9]. This study was designed to compare brain magnetic resonance imagining (MRI findings between CSF OCB positive and negative MS patients. The study comprised 22 OB negative patients with clinically definite MS and 22 OCB positive controls matched for age, disease duration, activity and course of MS. In the both groups clinical assessment was performed by using Expanded Disability Status Scale (EDSS score. T2 weighted MRI of the brain was performed on a Siemens Magnetom (1.0 T. Lesions were countred and sized for 15 anatomically defined locations:7 periventricular (PV and 8 non-periventricular (NPV regions. An arbitrary scoring system weighted for lesions size was used to estimate total and regional lesions loads: a1 point was given for each lesion with a diameter 1-5 mm, b 2 points for one lesion with a diameter 6-10 mm, c 3 points for one over 10 mm, and confluent lesions scored one extra point [16]. Atrophy were scored as follows: 0-normal size, 1-mild atrophy, 2-moderate atrophy and 3-severe atrophy. Mean score of total brain MRI loads was lower in OCB negative than in OCB positive MS patients (44 vs. 50 but the difference was not statistically significant. Mean periventricular (32 vs. 23 non-periventricular (26 vs. 19 and infratentorial (11 vs. 9 scores were higher in OCB positive MS group in comparison with OCB negative patients but non-significant (figure 1. There was no correlation between EDSS score and total MRI lesions load in OCB negative MS patients, while in OCB positive group we detected significant correlation between EDSS score and total MRI lesions load (p=0.026 (figure 2. The results of this study demonstrate that

  9. Brain herniations into the dural venous sinus or calvarium: MRI findings, possible causes and clinical significance

    Energy Technology Data Exchange (ETDEWEB)

    Battal, Bilal; Hamcan, Salih; Akgun, Veysel; Sari, Sebahattin; Tasar, Mustafa [Gulhane Military Medical School, Department of Radiology, Ankara (Turkey); Oz, Oguzhan [Gulhane Military Medical School, Department of Neurology, Ankara (Turkey); Castillo, Mauricio [University of North Carolina School of Medicine, Division of Neuroradiology, Department of Radiology, Chapel Hill, NC (United States)

    2016-06-15

    To determine frequency, imaging features and clinical significance of herniations of brain parenchyma into dural venous sinuses (DVS) and/or calvarium found on MRI. A total of 6160 brain MRI examinations containing at least one high-resolution T1- or T2-weighted sequence were retrospectively evaluated to determine the presence of incidental brain herniations into the DVS or calvarium. MRI sequences available for review were evaluated according to their capability to demonstrate these herniations. Patients' symptoms and clinical findings were recorded. Twenty-one (0.32 %) brain parenchyma herniations into the DVS (n = 18) or calvarium (n = 3) in 20 patients were detected. The most common locations of the herniations were the transverse sinuses (n = 13) and those involving inferior gyrus of the temporal lobe (n = 9). High-resolution T1- and T2-weighted sequences were equally useful in the detection of these brain herniations. According to clinical symptoms, brain herniations were considered to be incidental but headaches were present in nine patients. Brain herniations with surrounding cerebrospinal fluid (CSF) into the DVS and/or calvarium are incidental findings and not proven to be associated with any symptoms. Although rare, these herniations are more common than previously recognized and should not be confused with arachnoid granulations, clots or tumours. (orig.)

  10. MRI Guided Brain Stimulation without the Use of a Neuronavigation System

    Directory of Open Access Journals (Sweden)

    Ehsan Vaghefi

    2015-01-01

    Full Text Available A key issue in the field of noninvasive brain stimulation (NIBS is the accurate localization of scalp positions that correspond to targeted cortical areas. The current gold standard is to combine structural and functional brain imaging with a commercially available “neuronavigation” system. However, neuronavigation systems are not commonplace outside of specialized research environments. Here we describe a technique that allows for the use of participant-specific functional and structural MRI data to guide NIBS without a neuronavigation system. Surface mesh representations of the head were generated using Brain Voyager and vectors linking key anatomical landmarks were drawn on the mesh. Our technique was then used to calculate the precise distances on the scalp corresponding to these vectors. These calculations were verified using actual measurements of the head and the technique was used to identify a scalp position corresponding to a brain area localized using functional MRI.

  11. Functional MRI of food-induced brain responses

    NARCIS (Netherlands)

    Smeets, P.A.M.

    2006-01-01

    The ultimate goal of this research was to find central biomarkers of satiety, i.e., physiological measures in the brain that relate to subjectively rated appetite, actual food intake, or both. This thesis describes the changes in brain activity in response to food stimuli as measured by functional

  12. Functional MRI of food-induced brain responses

    NARCIS (Netherlands)

    Smeets, P.A.M.

    2006-01-01

    The ultimate goal of this research was to find central biomarkers of satiety, i.e., physiological measures in the brain that relate to subjectively rated appetite, actual food intake, or both. This thesis describes the changes in brain activity in response to food stimuli as measured by functional M

  13. Functional MRI of food-induced brain responses

    NARCIS (Netherlands)

    Smeets, P.A.M.

    2006-01-01

    The ultimate goal of this research was to find central biomarkers of satiety, i.e., physiological measures in the brain that relate to subjectively rated appetite, actual food intake, or both. This thesis describes the changes in brain activity in response to food stimuli as measured by functional M

  14. Real-time motion analytics during brain MRI improve data quality and reduce costs.

    Science.gov (United States)

    Dosenbach, Nico U F; Koller, Jonathan M; Earl, Eric A; Miranda-Dominguez, Oscar; Klein, Rachel L; Van, Andrew N; Snyder, Abraham Z; Nagel, Bonnie J; Nigg, Joel T; Nguyen, Annie L; Wesevich, Victoria; Greene, Deanna J; Fair, Damien A

    2017-08-10

    Head motion systematically distorts clinical and research MRI data. Motion artifacts have biased findings from many structural and functional brain MRI studies. An effective way to remove motion artifacts is to exclude MRI data frames affected by head motion. However, such post-hoc frame censoring can lead to data loss rates of 50% or more in our pediatric patient cohorts. Hence, many scanner operators collect additional 'buffer data', an expensive practice that, by itself, does not guarantee sufficient high-quality MRI data for a given participant. Therefore, we developed an easy-to-setup, easy-to-use Framewise Integrated Real-time MRI Monitoring (FIRMM) software suite that provides scanner operators with head motion analytics in real-time, allowing them to scan each subject until the desired amount of low-movement data has been collected. Our analyses show that using FIRMM to identify the ideal scan time for each person can reduce total brain MRI scan times and associated costs by 50% or more. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Semiautomatic segmentation and follow-up of multicomponent low-grade tumors in longitudinal brain MRI studies

    Energy Technology Data Exchange (ETDEWEB)

    Weizman, Lior, E-mail: weizmanl@gmail.com [School of Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Sira, Liat Ben [Department of Radiology, Tel Aviv Medical Center, Tel Aviv University, Tel Aviv 64239 (Israel); Joskowicz, Leo [School of Engineering and Computer Science and The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Rubin, Daniel L.; Yeom, Kristen W. [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Constantini, Shlomi; Shofty, Ben [Tel Aviv Medical Center, Dana Children' s Hospital, Tel Aviv University, Tel Aviv 64239 (Israel); Bashat, Dafna Ben [Tel Aviv Medical Center, Functional Brain Center, Tel Aviv University, Tel Aviv 64239 (Israel)

    2014-05-15

    Purpose: Tracking the progression of low grade tumors (LGTs) is a challenging task, due to their slow growth rate and associated complex internal tumor components, such as heterogeneous enhancement, hemorrhage, and cysts. In this paper, the authors show a semiautomatic method to reliably track the volume of LGTs and the evolution of their internal components in longitudinal MRI scans. Methods: The authors' method utilizes a spatiotemporal evolution modeling of the tumor and its internal components. Tumor components gray level parameters are estimated from the follow-up scan itself, obviating temporal normalization of gray levels. The tumor delineation procedure effectively incorporates internal classification of the baseline scan in the time-series as prior data to segment and classify a series of follow-up scans. The authors applied their method to 40 MRI scans of ten patients, acquired at two different institutions. Two types of LGTs were included: Optic pathway gliomas and thalamic astrocytomas. For each scan, a “gold standard” was obtained manually by experienced radiologists. The method is evaluated versus the gold standard with three measures: gross total volume error, total surface distance, and reliability of tracking tumor components evolution. Results: Compared to the gold standard the authors' method exhibits a mean Dice similarity volumetric measure of 86.58% and a mean surface distance error of 0.25 mm. In terms of its reliability in tracking the evolution of the internal components, the method exhibits strong positive correlation with the gold standard. Conclusions: The authors' method provides accurate and repeatable delineation of the tumor and its internal components, which is essential for therapy assessment of LGTs. Reliable tracking of internal tumor components over time is novel and potentially will be useful to streamline and improve follow-up of brain tumors, with indolent growth and behavior.

  16. Diffusion MRI of the neonate brain: acquisition, processing and analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pannek, Kerstin [University of Queensland, Centre for Clinical Research, Brisbane (Australia); University of Queensland, School of Medicine, Brisbane (Australia); University of Queensland, Centre for Advanced Imaging, Brisbane (Australia); Guzzetta, Andrea [IRCCS Stella Maris, Department of Developmental Neuroscience, Calambrone Pisa (Italy); Colditz, Paul B. [University of Queensland, Centre for Clinical Research, Brisbane (Australia); University of Queensland, Perinatal Research Centre, Brisbane (Australia); Rose, Stephen E. [University of Queensland, Centre for Clinical Research, Brisbane (Australia); University of Queensland, Centre for Advanced Imaging, Brisbane (Australia); University of Queensland Centre for Clinical Research, Royal Brisbane and Women' s Hospital, Brisbane (Australia)

    2012-10-15

    Diffusion MRI (dMRI) is a popular noninvasive imaging modality for the investigation of the neonate brain. It enables the assessment of white matter integrity, and is particularly suited for studying white matter maturation in the preterm and term neonate brain. Diffusion tractography allows the delineation of white matter pathways and assessment of connectivity in vivo. In this review, we address the challenges of performing and analysing neonate dMRI. Of particular importance in dMRI analysis is adequate data preprocessing to reduce image distortions inherent to the acquisition technique, as well as artefacts caused by head movement. We present a summary of techniques that should be used in the preprocessing of neonate dMRI data, and demonstrate the effect of these important correction steps. Furthermore, we give an overview of available analysis techniques, ranging from voxel-based analysis of anisotropy metrics including tract-based spatial statistics (TBSS) to recently developed methods of statistical analysis addressing issues of resolving complex white matter architecture. We highlight the importance of resolving crossing fibres for tractography and outline several tractography-based techniques, including connectivity-based segmentation, the connectome and tractography mapping. These techniques provide powerful tools for the investigation of brain development and maturation. (orig.)

  17. Brain MRI Anatomical and Attention and Behavior Disorders With 22qll.2 Deletion Syndrome

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-05-01

    Full Text Available The brain anatomy of 39 children and adolescents with 22qDS (mean age 11 years; IQ 67 and 26 sibling controls (mean age 11 years; IQ 102 was compared using MRI and automated voxel-based morphometry, and behavioral differences were correlated with affected brain regions in a study at King’s College, Institute of Psychiatry, London, UK; Royal College of Surgeons, Dublin, Ireland; and Academic Medical Center, Amsterdam, Holland.

  18. IMPROVED HYBRID SEGMENTATION OF BRAIN MRI TISSUE AND TUMOR USING STATISTICAL FEATURES

    OpenAIRE

    S. Allin Christe; K. Malathy; A.Kandaswamy

    2010-01-01

    Medical image segmentation is the most essential and crucial process in order to facilitate the characterization and visualization of the structure of interest in medical images. Relevant application in neuroradiology is the segmentation of MRI data sets of the human brain into the structure classes gray matter, white matter and cerebrospinal fluid (CSF) and tumor. In this paper, brain image segmentation algorithms such as Fuzzy C means (FCM) segmentation and Kohonen means(K means) segmentati...

  19. A combined histological and MRI brain atlas of the common marmoset monkey, Callithrix jacchus

    OpenAIRE

    Newman, John D.; Kenkel, William M.; Aronoff, Emily C.; Bock, Nicholas A.; Zametkin, Molly R.; Silva, Afonso C.

    2009-01-01

    The common marmoset, Callithrix jacchus, is of growing importance for research in neuroscience and related fields. In the present work, we describe a combined histological and magnetic resonance imaging (MRI) atlas constructed from the brains of two adult female marmosets. Histological sections were processed from Nissl staining and digitized to produce an atlas in a large format that facilitates visualization of structures with significant detail. Naming of identifiable brain structures was ...

  20. Localization of the brain calculation function area with MRI

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The aim of this study is to define the anatomical localization of corresponding brain function area during calculating. The activating modes in brain during continuous silent calculating subtraction and repeated silent reading multiplication table were compared and investigated. Fourteen volunteers of right-handedness were enrolled in this experiment. The quite difference of reaction modes in brain area during the two modes of calculation reveal that there are different processing pathways in brain during these two operating actions. During continuous silent calculating, the function area is localized on the posterior portion of superior and middle gyrus of frontal lobe and the Iobule of posterior parietal lobe (P < 0.01, T = 5.41). It demonstrates that these function areas play an important role in the performance of calculation and working memory. Whereas the activating of visual cortex shows that even in mental arithmetic processing the brain action is having the aid of vision and visual space association.

  1. Comparative observation with MRI and pathology of brain edema at the early stage of severe burn

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the correlation between MRI features and pathology in brain edema at the early stage of severe burn (50% TBSA Ⅲ degree) in dogs.Methods: Fifty-two dogs were randomized into control, simple burn (SB), burn plus sodium lactate (BSL), and burn plus glucose solution groups (BGS). The manifestation of the brain of control group was compared with that of burn groups at 6, 12, 18 and 24 hours postburn with MRI and pathological examination (gross appearance, electron microscopy and light microscopy).Results: The earliest findings of brain edema were seen at 12 hours after burn in BGS group, in which brain swelling was the main feature of MRI. The decrease of SIR on T1WI was not observed until it was exceeded 10%.Signal of T2WI increased by 8.29% at 24 hours after burn.It was difficult to distinguish the gray matter from the white matter at the boundary line, which became blurred later. Histological changes of brain edema were observed as early as 6 hours after burn, being accompanied by swelling of endothelial cells and peri-vescular astrocytes, and vacuolation took place in neurons at 12 hours after burn, with different degrees of necrosis of capillary endothelimn,neurons, and axons. These changes became more marked with elapse of time. The BGS group showed the most obvious changes mentioned above at 24 hours after burn.Conclusions: The model of the brain edema after severe burn has the feature of both vasogenic edema and cytotoxic edema on the MRI and pathology. Positive MRI findings lagged behind that of the pathomorphological changes.ed

  2. Studies on the reliability of high-field intra-operative MRI in brain glioma resection

    Directory of Open Access Journals (Sweden)

    Zhi-jun SONG

    2011-07-01

    Full Text Available Objective To evaluate the reliability of high-field intra-operative magnetic resonance imaging(iMRI in detecting the residual tumors during glioma resection.Method One hundred and thirty-one cases of brain glioma(69 males and 62 females,aged from 7 to 79 years with mean of 39.6 years hospitalized from Nov.2009 to Aug.2010 were involved in present study.All the patients were evaluated using magnetic resonance imaging(MRI before the operation.The tumors were resected under conventional navigation microscope,and the high-field iMRI was used for all the patients when the operators considered the tumor was satisfactorily resected,while the residual tumor was difficult to detect under the microscope,but resected after being revealed by high-field iMRI.Histopathological examination was performed.The patients without residual tumors recieved high-field MRI scan at day 4 or 5 after operation to evaluate the accuracy of high-field iMRI during operation.Results High quality intra-operative images were obtained by using high-field iMRI.Twenty-eight cases were excluded because their residual tumors were not resected due to their location too close to functional area.Combined with the results of intra-operative histopathological examination and post-operative MRI at the early recovery stage,the sensitivity of high-field iMRI in residual tumor diagnosis was 98.0%(49/50,the specificity was 94.3%(50/53,and the accuracy was 96.1%(99/103.Conclusion High-quality intra-operative imaging could be acquired by high-field iMRI,which maybe used as a safe and reliable method in detecting the residual tumors during glioma resection.

  3. 7.0 tesla MRI brain white matter atlas. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Zang-Hee (ed.) [Gachon Univ., Incheon (Korea, Republic of). Neuroscience Research Institute

    2015-04-01

    Depicts the visualization of brain white matter with the latest 7.0 T MRI and TDI techniques. Represents a useful addition to brain research and clinical settings, such as the Human Connectome Project. Contains a wealth of exquisitely detailed color images. The introduction of techniques that permit visualization of the human nervous system is one of the foremost advances in neuroscience and brain-related research. Among the most recent significant developments in this respect are ultra-high field MRI and the image post-processing technique known as track density imaging (TDI). It is these techniques (including super-resolution TDI) which represent the two major components of 7.0 Tesla MRI - Brain White Matter Atlas. This second edition of the atlas has been revised and updated to fully reflect current application of these technological advancements in order to visualize the nervous system and the brain with the finest resolution and sensitivity. Exquisitely detailed color images offer neuroscientists, neurologists, and neurosurgeons a superb resource that will be of value both for the purpose of research and for the treatment of common brain diseases such as Alzheimer's disease and multiple sclerosis.

  4. Optimal Gaussian Mixture Models of Tissue Intensities in Brain MRI of Patients with Multiple-Sclerosis

    Science.gov (United States)

    Xiao, Yiming; Shah, Mohak; Francis, Simon; Arnold, Douglas L.; Arbel, Tal; Collins, D. Louis

    Brain tissue segmentation is important in studying markers in human brain Magnetic Resonance Images (MRI) of patients with diseases such as Multiple Sclerosis (MS). Parametric segmentation approaches typically assume unimodal Gaussian distributions on MRI intensities of individual tissue classes, even in applications on multi-spectral images. However, this assumption has not been rigorously verified especially in the context of MS. In this work, we evaluate the local MRI intensities of both healthy and diseased brain tissues of 21 multi-spectral MRIs (63 volumes in total) of MS patients for adherence to this assumption. We show that the tissue intensities are not uniform across the brain and vary across (anatomical) regions of the brain. Consequently, we show that Gaussian mixtures can better model the multi-spectral intensities. We utilize an Expectation Maximization (EM) based approach to learn the models along with a symmetric Jeffreys divergence criterion to study differences in intensity distributions. The effects of these findings are also empirically verified on automatic segmentation of brains with MS.

  5. A brain MRI atlas of the common squirrel monkey, Saimiri sciureus

    Science.gov (United States)

    Gao, Yurui; Schilling, Kurt G.; Khare, Shweta P.; Panda, Swetasudha; Choe, Ann S.; Stepniewska, Iwona; Li, Xia; Ding, Zhoahua; Anderson, Adam; Landman, Bennett A.

    2014-03-01

    The common squirrel monkey, Saimiri sciureus, is a New World monkey with functional and microstructural organization of central nervous system similar to that of humans. It is one of the most commonly used South American primates in biomedical research. Unlike its Old World macaque cousins, no digital atlases have described the organization of the squirrel monkey brain. Here, we present a multi-modal magnetic resonance imaging (MRI) atlas constructed from the brain of an adult female squirrel monkey. In vivo MRI acquisitions include high resolution T2 structural imaging and low resolution diffusion tensor imaging. Ex vivo MRI acquisitions include high resolution T2 structural imaging and high resolution diffusion tensor imaging. Cortical regions were manually annotated on the co-registered volumes based on published histological sections.

  6. Findings at brain MRI in children with dengue fever and neurological symptoms.

    Science.gov (United States)

    Rastogi, Ruchi; Garg, Bhavya

    2016-01-01

    Dengue is a flavivirus of the genus arbovirus with four serotypes, from DEN 1 to DEN 4. There has been an increase in incidence of dengue infection in children in the tropics and subtropics. Dengue has a variable clinical presentation, with many patients being asymptomatic. Its clinical manifestations in children vary from fever and arthralgia to life-threatening dengue hemorrhagic fever and dengue shock syndrome. We describe MRI findings in children with neurological involvement including dengue encephalopathy, acute hypoxic injury and dengue encephalitis. Dengue encephalopathy is usually secondary to multisystem derangement such as shock, hepatitis, coagulopathy and concurrent bacterial infection and is relatively common. Dengue encephalitis from direct neuronal invasion is rare. Nonspecific changes are seen on brain MRI in dengue infection. Clinical and laboratory findings as well as outcome do not necessarily correspond with brain MRI findings.

  7. A brain MRI atlas of the common squirrel monkey, Saimiri sciureus.

    Science.gov (United States)

    Gao, Yurui; Khare, Shweta P; Panda, Swetasudha; Choe, Ann S; Stepniewska, Iwona; Li, Xia; Ding, Zhoahua; Anderson, Adam; Landman, Bennett A

    2014-03-13

    The common squirrel monkey, Saimiri sciureus, is a New World monkey with functional and microstructural organization of central nervous system similar to that of humans. It is one of the most commonly used South American primates in biomedical research. Unlike its Old World macaque cousins, no digital atlases have described the organization of the squirrel monkey brain. Here, we present a multi-modal magnetic resonance imaging (MRI) atlas constructed from the brain of an adult female squirrel monkey. In vivo MRI acquisitions include T2 structural imaging and diffusion tensor imaging. Ex vivo MRI acquisitions include T2 structural imaging and diffusion tensor imaging. Cortical regions were manually annotated on the co-registered volumes based on published histological sections.

  8. Contribution of brain MRI in a patient diagnosed with 2-hydroxyglutaric aciduria.

    Science.gov (United States)

    Işikay, Sedat; Carman, Kursat Bora

    2013-06-19

    L-2-Hydroxyglutaric aciduria is a rare autosomal recessively inherited metabolic disorder of organic acid metabolism. Clinical findings are characterised by progressive neurological syndrome with cerebellar signs, mental deterioration and macrocephaly. Diagnosis is via increased levels of L-2 hydroxyglutaric acid in urine, plasma and cerebrospinal fluid. Brain magnetic resonance imaging (MRI) shows peripheral white matter abnormalities in cerebral hemispheres, basal ganglia and dentate nuclei. In this report, we present an rare 8-year-old patient with a rare mental retardation, cerebellar findings, macrocephaly and typical brain MRI findings, who was subsequently diagnosed with L-2-hydroxyglutaric aciduria. In conclusion, in patients with progressive mental retardation, macrocephaly and cerebral findings, L-2-hydroxyglutaric aciduria should be considered in case of deep white matter and dentate nuclei involvement in MRI.

  9. Findings at brain MRI in children with dengue fever and neurological symptoms

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Ruchi; Garg, Bhavya [Indraprastha Apollo Hospitals, Department of Radiodiagnosis, New Delhi (India)

    2016-01-15

    Dengue is a flavivirus of the genus arbovirus with four serotypes, from DEN 1 to DEN 4. There has been an increase in incidence of dengue infection in children in the tropics and subtropics. Dengue has a variable clinical presentation, with many patients being asymptomatic. Its clinical manifestations in children vary from fever and arthralgia to life-threatening dengue hemorrhagic fever and dengue shock syndrome. We describe MRI findings in children with neurological involvement including dengue encephalopathy, acute hypoxic injury and dengue encephalitis. Dengue encephalopathy is usually secondary to multisystem derangement such as shock, hepatitis, coagulopathy and concurrent bacterial infection and is relatively common. Dengue encephalitis from direct neuronal invasion is rare. Nonspecific changes are seen on brain MRI in dengue infection. Clinical and laboratory findings as well as outcome do not necessarily correspond with brain MRI findings. (orig.)

  10. Local vascular CO2 reactivity in the infant brain assessed by functional MRI

    DEFF Research Database (Denmark)

    Toft, P.B.; Leth, H; Lou, H.C.

    1995-01-01

    hyperventilated voluntarily, the vascular reactivity was homogeneously distributed predominantly over the grey matter. The experiments demonstrate that local impairment of vascular CO2 reactivity in the distressed infant brain can be detected by T2 sensitive gradient-echo MRI, which is also known as functional...

  11. The usefulness of brain MRI and CT in the clinical practice of epilepsia

    Energy Technology Data Exchange (ETDEWEB)

    Horita, Hideki [Jikei Univ., Komae, Tokyo (Japan). Daisan Hospital; Maekawa, Kihei

    1995-09-01

    This study was conducted to clarify the usefulness of brain MRI and CT in the clinical practice of epilepsy. The subjects were 100 epileptic child patients (average age, 13.2{+-}8.2 years) who underwent brain MRI, including 93 patients who also underwent brain CT. Twenty-two abnormal findings were obtained by MRI and 25 by CT. Thirty-nine patients who had complications such as mental retardation, cerebral palsy, or the overlapping disorders showed abnormal findings in a significantly high incidence. No significant correlations existed between the presence or absence of abnormal findings and the disease course after seizures. Patients with symptomatic localization-related epilepsies or cryptogenic and symptomatic generalized epilepsies showed abnormal findings in a significantly high incidence and unfavorable disease course after seizures. In 10 of 28 patients who showed abnormal findings, the abnormal finding site on images were correlated to the focus site on electroencephalograms. In conclusion, brain MRI and CT are essential in the clinical practice of epilepsy, however, we should notice the limitation of these methods. (Y.S.).

  12. Optimized Fuzzy Logic Based Segmentation for Abnormal MRI Brain Images Analysis

    Directory of Open Access Journals (Sweden)

    Indah Soesanti

    2011-09-01

    Full Text Available In this paper an optimized fuzzy logic based segmentation for abnormal MRI brain images analysis is presented. A conventional fuzzy c-means (FCM technique does not use the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The FCM algorithm that incorporates spatial information into the membership function is used for clustering, while a conventional FCM algorithm does not fully utilize the spatial information in the image.The advantage of the technique is less sensitive to noise than the others. Originality of this research is focused in application of the technique on a normal and a glioma MRI brain images, and analysis of the area of abnormal mass from segmented images. The results show that the method effectively segmented MRI brain images, and the segmented normal and glioma MRI brain images can be analyzed for diagnosis purpose. The area of abnormal mass is identified from 7.15 to 19.41 cm2.

  13. Serial cranial ultrasonography or early MRI for detecting preterm brain injury?

    NARCIS (Netherlands)

    Plaisier, Annemarie; Raets, Marlou M A; Ecury-Goossen, Ginette M; Govaert, Paul; Feijen-Roon, Monique; Reiss, Irwin K M; Smit, Liesbeth S; Lequin, Maarten H; Dudink, Jeroen

    2015-01-01

    OBJECTIVE: To investigate detection ability and feasibility of serial cranial ultrasonography (CUS) and early MRI in preterm brain injury. DESIGN: Prospective cohort study. SETTING: Level III neonatal intensive care unit. PATIENTS: 307 infants, born below 29 weeks of gestation. METHODS: Serial CUS a

  14. OUR APPROACH TOWARDS DEVELOPING A SPECIFIC TUMOR-TARGETED MRI CONTRAST AGENT FOR THE BRAIN

    NARCIS (Netherlands)

    GO, KG; BULTE, JWM; DELEY, L; THE, TH; KAMMAN, RL; HULSTAERT, CE; BLAAUW, EH; MA, LD

    1993-01-01

    This review presents various aspects of the technological development, and their assessment in the design of a contrast agent for MRI, tailored to visualise tumours in the brain. First, it was demonstrated that magnetite as a contrast agent exhibited a much stronger relaxivity than gadolinium. The p

  15. MRBrainS Challenge : Online Evaluation Framework for Brain Image Segmentation in 3T MRI Scans

    NARCIS (Netherlands)

    Mendrik, Adriënne M.; Vincken, Koen L.; Kuijf, Hugo J.; Breeuwer, Marcel; Bouvy, Willem H.; De Bresser, Jeroen; Alansary, Amir; De Bruijne, Marleen; Carass, Aaron; El-Baz, Ayman; Jog, Amod; Katyal, Ranveer; Khan, Ali R.; Van Der Lijn, Fedde; Mahmood, Qaiser; Mukherjee, Ryan; Van Opbroek, Annegreet; Paneri, Sahil; Pereira, Sérgio; Persson, Mikael; Rajchl, Martin; Sarikaya, Duygu; Smedby, Örjan; Silva, Carlos A.; Vrooman, Henri A.; Vyas, Saurabh; Wang, Chunliang; Zhao, Liang; Biessels, Geert Jan; Viergever, Max A.

    2015-01-01

    Many methods have been proposed for tissue segmentation in brain MRI scans. The multitude of methods proposed complicates the choice of one method above others. We have therefore established the MRBrainS online evaluation framework for evaluating (semi)automatic algorithms that segment gray matter (

  16. MRBrainS Challenge: Online Evaluation Framework for Brain Image Segmentation in 3T MRI Scans

    NARCIS (Netherlands)

    A. Mendrik (Adrienne); K.L. Vincken (Koen); H.J. Kuijf (Hugo J.); M. Breeuwer; W.H. Bouvy (Willem H.); J. de Bresser (Jeroen); A. Alansary (Amir); M. de Bruijne (Marleen); A. Carass (Aaron); A. El-Baz (Ayman); A. Jog (Amod); R. Katyal (Ranveer); A.R. Khan (Ali R.); F. van der Lijn (Fedde); Q. Mahmood (Qaiser); R. Mukherjee (Ryan); A. van Opbroek (Annegreet); S. Paneri (Sahil); S. Pereira (Sérgio); M. Persson (Mikael); M. Rajchl (Martin); D. Sarikaya (Duygu); O. Smedby; C.A. Silva (Carlos A.); H.A. Vrooman (Henri); S. Vyas (Saurabh); C. Wang (Chunliang); L. Zhao (Liang); G.J. Biessels (Geert Jan); M.A. Viergever (Max)

    2015-01-01

    textabstractMany methods have been proposed for tissue segmentation in brain MRI scans. The multitude of methods proposed complicates the choice of one method above others. We have therefore established the MRBrainS online evaluation framework for evaluating (semi)automatic algorithms that segment g

  17. Simultaneous EMG-Functional MRI Recordings Can Directly Relate Hyperkinetic Movements to Brain Activity

    NARCIS (Netherlands)

    van Rootselaar, Anne-Fleur; Maurits, Natasha M.; Renken, Remco; Koelman, Johannes H. T. M.; Hoogduin, Johannes M.; Leenders, Klaus L.; Tijssen, Marina A. J.

    2008-01-01

    Objective: To apply and validate the use of electromyogram (EMG) recorded during functional magnetic resonance imaging (fMRI) in patients with movement disorders, to directly relate involuntary movements to brain activity. Methods: Eight "familial cortical myoclonic tremor with epilepsy" (FCMTE) pat

  18. EEG-fMRI methods for the study of brain networks during sleep

    Directory of Open Access Journals (Sweden)

    Jeff H. Duyn

    2012-07-01

    Full Text Available Modern neuroimaging methods may provide unique insights into the mechanism and role of sleep, as well as into particular mechanisms of brain function in general. Many of the recent neuroimaging studies have used concurrent EEG and fMRI, which present unique technical challenges ranging from the difficulty of inducing sleep in the MRI environment to appropriate instrumentation and data processing methods to obtain artifact free data. In addition, the use of EEG-fMRI during sleep leads to unique data interpretation issues, as common approaches developed for the analysis of task-evoked activity do not apply to sleep. Reviewed are a variety of statistical approaches that can be used to characterize brain activity from fMRI data acquired during sleep, with an emphasis on approaches that investigate the presence of correlated activity between brain regions. Each of these approaches has advantages and disadvantages that must be considered in concert with the theoretical questions of interest. Specifically, fundamental theories of sleep control and function should be considered when designing these studies and when choosing the associated statistical approaches. For example, the notion that local brain activity during sleep may be triggered by local, use-dependent activity during wakefulness may be tested by analyzing sleep networks as statistically independent components. Alternatively, the involvement of regions in more global processes such as arousal may be investigated with correlation analysis.

  19. A STUDY ON PERITUMORAL BRAIN EDEMA AROUND MENINGIOMAS BY MRI AND CONTRAST CT

    NARCIS (Netherlands)

    GO, KG; KAMMAN, RL; WILMINK, JT; MOOYAART, EL

    1994-01-01

    In the present study upon 9 meningiomas, the volume of peritumoral brain edema was calculated by integration of the cross-sectional edematous areas on serial MRI slices. It was zero in 3 cases and ranged from 11 to 176.4 ml in the other cases. There was disruption of the cortex in all cases, ranging

  20. Morphometric connectivity analysis to distinguish normal, mild cognitive impaired, and Alzheimer subjects based on brain MRI

    DEFF Research Database (Denmark)

    Erleben, Lene Lillemark; Sørensen, Lauge; Mysling, Peter

    2013-01-01

    This work investigates a novel way of looking at the regions in the brain and their relationship as possible markers to classify normal control (NC), mild cognitive impaired (MCI), and Alzheimer Disease (AD) subjects. MRI scans from a subset of 101 subjects from the ADNI study at baseline was used...

  1. A STUDY ON PERITUMORAL BRAIN EDEMA AROUND MENINGIOMAS BY MRI AND CONTRAST CT

    NARCIS (Netherlands)

    GO, KG; KAMMAN, RL; WILMINK, JT; MOOYAART, EL

    1994-01-01

    In the present study upon 9 meningiomas, the volume of peritumoral brain edema was calculated by integration of the cross-sectional edematous areas on serial MRI slices. It was zero in 3 cases and ranged from 11 to 176.4 ml in the other cases. There was disruption of the cortex in all cases, ranging

  2. Brain imaging in normal kids: a community-based MRI study in Malawian children.

    Science.gov (United States)

    Potchen, M J; Kampondeni, S D; Mallewa, M; Taylor, T E; Birbeck, G L

    2013-04-01

    To collect normative MRI data for effective clinical and research applications. Such data may also offer insights into common neurological insults. We identified a representative, community-based sample of children aged 9-14 years. Children were screened for neurodevelopmental problems. Demographic data, medical history and environmental exposures were ascertained. Eligible children underwent the Neurologic Examination for Subtle Signs (NESS) and a brain MRI. Descriptive findings and analyses to identify risk factors for MRI abnormalities are detailed. One hundred and two of 170 households screened had age-appropriate children. Two of 102 children had neurological problems - one each with cerebral palsy and epilepsy. Ninety-six of 100 eligible children were enrolled. Mean age was 11.9 years (SD 1.5), and 43 (45%) were boys. No acute MRI abnormalities were seen. NESS abnormalities were identified in 6 of 96 children (6%). Radiographic evidence of sinusitis in 29 children (30%) was the most common MRI finding. Brain abnormalities were found in 16 (23%): mild diffuse atrophy in 4 (4%), periventricular white matter changes/gliosis in 6 (6%), multifocal punctuate subcortical white matter changes in 2 (2%), vermian atrophy in 1 (1%), empty sella in 3 (3%) and multifocal granulomas with surrounding gliosis in 1 (1%). Having an abnormal MRI was not associated with age, sex, antenatal problems, early malnutrition, febrile seizures, an abnormal neurological examination or housing quality (all P values >0.05). No predictors of radiographic sinusitis were identified. Incidental brain MRI abnormalities are common in normal Malawian children. The incidental atrophy and white matter abnormalities seen in this African population have not been reported among incidental findings from US populations, suggesting Malawi-specific exposures may be the cause. © 2013 Blackwell Publishing Ltd.

  3. Reversible brain shrinkage in abstinent alcoholics, measured by MRI

    Energy Technology Data Exchange (ETDEWEB)

    Schroth, G.; Naegele, T.; Klose, U.; Petersen, D.; Mann, K.

    1988-11-01

    Magnetic resonance imaging of the intracranial CSF volume was compared before and after 5 weeks of confirmed abstinence in 9 alcohol-dependent patients. All patients showed a highly significant reduction in CSF volume in accordance with reexpansion of the brain after alcohol abstinence. T2 values for white matter, estimated by linear regression from 16 echoes of a CPGM sequence, however, showed no significant increase such as occurs in rehydration. This indicates, that alcohol-induced reversible brain atrophy cannot be attributed to fluctuation of free water in the brain only.

  4. Reversible brain shrinkage in abstinent alcoholics, measured by MRI.

    Science.gov (United States)

    Schroth, G; Naegele, T; Klose, U; Mann, K; Petersen, D

    1988-01-01

    Magnetic resonance imaging of the intracranial CSF volume was compared before and after 5 weeks of confirmed abstinence in 9 alcohol-dependent patients. All patients showed a highly significant reduction in CSF volume in accordance with reexpansion of the brain after alcohol abstinence. T2 values for white matter, estimated by linear regression from 16 echoes of a CPGM sequence, however, showed no significant increase such as occurs in rehydration. This indicates, that alcohol-induced reversible brain atrophy cannot be attributed to fluctuation of free water in the brain only.

  5. [Progress of clinical application of functional MRI in the localization of brain language area].

    Science.gov (United States)

    Zhang, Nan; Lu, Junfeng; Wu, Jinsong

    2016-02-01

    For surgical operation in the functional area in the brain, it's commonly demanded to resect the lesion to the maximal extent on the basis of preserve the normal neural function, thus the precise localization of functional area is extremely important. As for the advantages of being widely available, easy to grasp and non-invasive, the functional MRI (fMRI) has come into wide use, while the application of language fMRI is still in the initial stage. It's important to choose appropriate fMRI task according to the individual condition of the subject, the commonly-adopted tasks include verb generation, picture naming, word recognition, word generation, etc. However, the effectiveness of using fMRI to localize language area is not totally satisfactory, adopting multiple task is an effective approach to improve the sensitivity of this technique. The application of resting state fMRI in the localization of language area and the further research of the role of fMRI in localizing the Chinese language area are the important future directions.

  6. Integrating histology and MRI in the first digital brain of common squirrel monkey, Saimiri sciureus.

    Science.gov (United States)

    Sun, Peizhen; Parvathaneni, Prasanna; Schilling, Kurt G; Gao, Yurui; Janve, Vaibhav; Anderson, Adam; Landman, Bennett A

    2015-03-17

    This effort is a continuation of development of a digital brain atlas of the common squirrel monkey, Saimiri sciureus, a New World monkey with functional and microstructural organization of central nervous system similar to that of humans. Here, we present the integration of histology with multi-modal magnetic resonance imaging (MRI) atlas constructed from the brain of an adult female squirrel monkey. The central concept of this work is to use block face photography to establish an intermediate common space in coordinate system which preserves the high resolution in-plane resolution of histology while enabling 3-D correspondence with MRI. In vivo MRI acquisitions include high resolution T2 structural imaging (300 µm isotropic) and low resolution diffusion tensor imaging (600 um isotropic). Ex vivo MRI acquisitions include high resolution T2 structural imaging and high resolution diffusion tensor imaging (both 300 µm isotropic). Cortical regions were manually annotated on the co-registered volumes based on published histological sections in-plane. We describe mapping of histology and MRI based data of the common squirrel monkey and construction of a viewing tool that enable online viewing of these datasets. The previously descried atlas MRI is used for its deformation to provide accurate conformation to the MRI, thus adding information at the histological level to the MRI volume. This paper presents the mapping of single 2D image slice in block face as a proof of concept and this can be extended to map the atlas space in 3D coordinate system as part of the future work and can be loaded to an XNAT system for further use.

  7. Integrating histology and MRI in the first digital brain of common squirrel monkey, Saimiri sciureus

    Science.gov (United States)

    Sun, Peizhen; Parvathaneni, Prasanna; Schilling, Kurt G.; Gao, Yurui; Janve, Vaibhav; Anderson, Adam; Landman, Bennett A.

    2015-03-01

    This effort is a continuation of development of a digital brain atlas of the common squirrel monkey, Saimiri sciureus, a New World monkey with functional and microstructural organization of central nervous system similar to that of humans. Here, we present the integration of histology with multi-modal magnetic resonance imaging (MRI) atlas constructed from the brain of an adult female squirrel monkey. The central concept of this work is to use block face photography to establish an intermediate common space in coordinate system which preserves the high resolution in-plane resolution of histology while enabling 3-D correspondence with MRI. In vivo MRI acquisitions include high resolution T2 structural imaging (300 μm isotropic) and low resolution diffusion tensor imaging (600 um isotropic). Ex vivo MRI acquisitions include high resolution T2 structural imaging and high resolution diffusion tensor imaging (both 300 μm isotropic). Cortical regions were manually annotated on the co-registered volumes based on published histological sections in-plane. We describe mapping of histology and MRI based data of the common squirrel monkey and construction of a viewing tool that enable online viewing of these datasets. The previously descried atlas MRI is used for its deformation to provide accurate conformation to the MRI, thus adding information at the histological level to the MRI volume. This paper presents the mapping of single 2D image slice in block face as a proof of concept and this can be extended to map the atlas space in 3D coordinate system as part of the future work and can be loaded to an XNAT system for further use.

  8. Association between fully automated MRI-based volumetry of different brain regions and neuropsychological test performance in patients with amnestic mild cognitive impairment and Alzheimer's disease.

    Science.gov (United States)

    Arlt, Sönke; Buchert, Ralph; Spies, Lothar; Eichenlaub, Martin; Lehmbeck, Jan T; Jahn, Holger

    2013-06-01

    Fully automated magnetic resonance imaging (MRI)-based volumetry may serve as biomarker for the diagnosis in patients with mild cognitive impairment (MCI) or dementia. We aimed at investigating the relation between fully automated MRI-based volumetric measures and neuropsychological test performance in amnestic MCI and patients with mild dementia due to Alzheimer's disease (AD) in a cross-sectional and longitudinal study. In order to assess a possible prognostic value of fully automated MRI-based volumetry for future cognitive performance, the rate of change of neuropsychological test performance over time was also tested for its correlation with fully automated MRI-based volumetry at baseline. In 50 subjects, 18 with amnestic MCI, 21 with mild AD, and 11 controls, neuropsychological testing and T1-weighted MRI were performed at baseline and at a mean follow-up interval of 2.1 ± 0.5 years (n = 19). Fully automated MRI volumetry of the grey matter volume (GMV) was performed using a combined stereotactic normalisation and segmentation approach as provided by SPM8 and a set of pre-defined binary lobe masks. Left and right hippocampus masks were derived from probabilistic cytoarchitectonic maps. Volumes of the inner and outer liquor space were also determined automatically from the MRI. Pearson's test was used for the correlation analyses. Left hippocampal GMV was significantly correlated with performance in memory tasks, and left temporal GMV was related to performance in language tasks. Bilateral frontal, parietal and occipital GMVs were correlated to performance in neuropsychological tests comprising multiple domains. Rate of GMV change in the left hippocampus was correlated with decline of performance in the Boston Naming Test (BNT), Mini-Mental Status Examination, and trail making test B (TMT-B). The decrease of BNT and TMT-A performance over time correlated with the loss of grey matter in multiple brain regions. We conclude that fully automated MRI

  9. MRI-induced heating of deep brain stimulation leads

    Energy Technology Data Exchange (ETDEWEB)

    Mohsin, Syed A; Sheikh, Noor M [University of Engineering and Technology, Lahore (Pakistan); Saeed, Usman [Georgia Institute of Technology, Atlanta, GA (United States)], E-mail: syed_alimohsin@uet.edu.pk, E-mail: deanee@uet.edu.pk, E-mail: usaeed@gatech.edu

    2008-10-21

    The radiofrequency (RF) field used in magnetic resonance imaging is scattered by medical implants. The scattered field of a deep brain stimulation lead can be very intense near the electrodes stimulating the brain. The effect is more pronounced if the lead behaves as a resonant antenna. In this paper, we examine the resonant length effect. We also use the finite element method to compute the near field for (i) the lead immersed in inhomogeneous tissue (fat, muscle, and brain tissues) and (ii) the lead connected to an implantable pulse generator. Electric field, specific absorption rate and induced temperature rise distributions have been obtained in the brain tissue surrounding the electrodes. The worst-case scenario has been evaluated by neglecting the effect of blood perfusion. The computed values are in good agreement with in vitro measurements made in the laboratory.

  10. MRI confirms loss of blood-brain barrier integrity in a mouse model of disseminated candidiasis.

    Science.gov (United States)

    Navarathna, Dhammika H M L P; Munasinghe, Jeeva; Lizak, Martin J; Nayak, Debasis; McGavern, Dorian B; Roberts, David D

    2013-09-01

    Disseminated candidiasis primarily targets the kidneys and brain in mice and humans. Damage to these critical organs leads to the high mortality associated with such infections, and invasion across the blood-brain barrier can result in fungal meningoencephalitis. Candida albicans can penetrate a brain endothelial cell barrier in vitro through transcellular migration, but this mechanism has not been confirmed in vivo. MRI using the extracellular vascular contrast agent gadolinium diethylenetriaminepentaacetic acid demonstrated that integrity of the blood-brain barrier is lost during C. albicans invasion. Intravital two-photon laser scanning microscopy was used to provide the first real-time demonstration of C. albicans colonizing the living brain, where both yeast and filamentous forms of the pathogen were found. Furthermore, we adapted a previously described method utilizing MRI to monitor inflammatory cell recruitment into infected tissues in mice. Macrophages and other phagocytes were visualized in kidney and brain by the administration of ultrasmall iron oxide particles. In addition to obtaining new insights into the passage of C. albicans across the brain microvasculature, these imaging methods provide useful tools to study further the pathogenesis of C. albicans infections, to define the roles of Candida virulence genes in kidney versus brain infection and to assess new therapeutic measures for drug development.

  11. Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques.

    Science.gov (United States)

    Bigler, Erin D

    2015-09-01

    Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.

  12. Whole brain radiotherapy with hippocampal avoidance and simultaneous integrated boost for brain metastases: a dosimetric volumetric-modulated arc therapy study.

    Science.gov (United States)

    Giaj Levra, Niccolò; Sicignano, Gianluisa; Fiorentino, Alba; Fersino, Sergio; Ricchetti, Francesco; Mazzola, Rosario; Naccarato, Stefania; Ruggieri, Ruggero; Alongi, Filippo

    2016-01-01

    To develop a feasible volumetric modulated arc therapy (VMAT) treatment in whole brain radiotherapy (WBRT) with a simultaneous integrated boost (SIB) and hippocampal (HP) sparing in 1-5 brain metastases (BMs). Ten patients with 20 BMs received a WBRT prescription of 20 Gy, SIB dose on BMs of 40 Gy/5 fractions. PTVWBRT was generated from brain minus BMs-PTVs (PTVSIB) and planning organ at risk volume to HP. All plans were evaluated in: homogeneity index (HI), target coverage (TC), maximum dose to prescription dose ratio (MDPD), prescription isodose to target volume ratio (PITV) and paddick conformity index (CI). We also evaluate D100%, mean and maximum doses to HP. Planning objectives were for PTVWBRT, D2% = 25 Gy with acceptable deviation of 26.7 Gy and D98% ≥ 16.7 Gy; for PTVSIB D95% ≥ 38 Gy; for HP, D100% = 6 Gy with acceptable deviation of 6.7 Gy, Dmax = 10.7 Gy with acceptable deviation of 11.3 Gy, a mean dose of 8 Gy. Mean number of BMs was 2 (range 1-5). Mean values for BMs were volume of PTVSIB = 5.1 ± 4.9 cc, dose to 95% of PTVSIB 39.3 ± 0.9 Gy, HI 0.083 ± 0.03, TC 0.96 ± 0.24, CI 0.78 ± 0.17. Mean MDPD was 1.06 ± 0.02 and PITV 0.96 ± 0.24. For WBRT, mean target volume was (13.46 ± 2)*10(2) cc, mean dose to 90% of PTVWBRT 19.8 ± 0.2 Gy, mean HI 0.42 ± 0.12 and TC 0.78 ± 0.11. Mean and maximum HP doses were 7.7 ± 0.3 Gy and 10.5 ± 0.5 Gy. Mean dose to 100% of HP volume (D100%) was 6.7 ± 0.3 Gy. WBRT plus SIB with HP avoidance with VMAT was feasible. All dosimetric parameters were satisfied for PTVWBRT and PTVSIB.

  13. A HYBRID FIREFLY ALGORITHM WITH FUZZY-C MEAN ALGORITHM FOR MRI BRAIN SEGMENTATION

    Directory of Open Access Journals (Sweden)

    Mutasem K. Alsmadi

    2014-01-01

    Full Text Available Image processing is one of the essential tasks to extract suspicious region and robust features from the Magnetic Resonance Imaging (MRI. A numbers of the segmentation algorithms were developed in order to satisfy and increasing the accuracy of brain tumor detection. In the medical image processing brain image segmentation is considered as a complex and challenging part. Fuzzy c-means is unsupervised method that has been implemented for clustering of the MRI and different purposes such as recognition of the pattern of interest and image segmentation. However; fuzzy c-means algorithm still suffers many drawbacks, such as low convergence rate, getting stuck in the local minima and vulnerable to initialization sensitivity. Firefly algorithm is a new population-based optimization method that has been used successfully for solving many complex problems. This paper proposed a new dynamic and intelligent clustering method for brain tumor segmentation using the hybridization of Firefly Algorithm (FA with Fuzzy C-Means algorithm (FCM. In order to automatically segment MRI brain images and improve the capability of the FCM to automatically elicit the proper number and location of cluster centres and the number of pixels in each cluster in the abnormal (multiple sclerosis lesions MRI images. The experimental results proved the effectiveness of the proposed FAFCM in enhancing the performance of the traditional FCM clustering. Moreover; the superiority of the FAFCM with other state-of-the-art segmentation methods is shown qualitatively and quantitatively. Conclusion: A novel efficient and reliable clustering algorithm presented in this work, which is called FAFCM based on the hybridization of the firefly algorithm with fuzzy c-mean clustering algorithm. Automatically; the hybridized algorithm has the capability to cluster and segment MRI brain images.

  14. Brain tumor segmentation using holistically nested neural networks in MRI images.

    Science.gov (United States)

    Zhuge, Ying; Krauze, Andra V; Ning, Holly; Cheng, Jason Y; Arora, Barbara C; Camphausen, Kevin; Miller, Robert W

    2017-07-24

    Gliomas are rapidly progressive, neurologically devastating, largely fatal brain tumors. Magnetic resonance imaging (MRI) is a widely used technique employed in the diagnosis and management of gliomas in clinical practice. MRI is also the standard imaging modality used to delineate the brain tumor target as part of treatment planning for the administration of radiation therapy. Despite more than 20 yr of research and development, computational brain tumor segmentation in MRI images remains a challenging task. We are presenting a novel method of automatic image segmentation based on holistically nested neural networks that could be employed for brain tumor segmentation of MRI images. Two preprocessing techniques were applied to MRI images. The N4ITK method was employed for correction of bias field distortion. A novel landmark-based intensity normalization method was developed so that tissue types have a similar intensity scale in images of different subjects for the same MRI protocol. The holistically nested neural networks (HNN), which extend from the convolutional neural networks (CNN) with a deep supervision through an additional weighted-fusion output layer, was trained to learn the multiscale and multilevel hierarchical appearance representation of the brain tumor in MRI images and was subsequently applied to produce a prediction map of the brain tumor on test images. Finally, the brain tumor was obtained through an optimum thresholding on the prediction map. The proposed method was evaluated on both the Multimodal Brain Tumor Image Segmentation (BRATS) Benchmark 2013 training datasets, and clinical data from our institute. A dice similarity coefficient (DSC) and sensitivity of 0.78 and 0.81 were achieved on 20 BRATS 2013 training datasets with high-grade gliomas (HGG), based on a two-fold cross-validation. The HNN model built on the BRATS 2013 training data was applied to ten clinical datasets with HGG from a locally developed database. DSC and sensitivity of

  15. [Non-medical applications for brain MRI: Ethical considerations].

    Science.gov (United States)

    Sarrazin, S; Fagot-Largeault, A; Leboyer, M; Houenou, J

    2015-04-01

    The recent neuroimaging techniques offer the possibility to better understand complex cognitive processes that are involved in mental disorders and thus have become cornerstone tools for research in psychiatry. The performances of functional magnetic resonance imaging are not limited to medical research and are used in non-medical fields. These recent applications represent new challenges for bioethics. In this article we aim at discussing the new ethical issues raised by the applications of the latest neuroimaging technologies to non-medical fields. We included a selection of peer-reviewed English medical articles after a search on NCBI Pubmed database and Google scholar from 2000 to 2013. We screened bibliographical tables for supplementary references. Websites of governmental French institutions implicated in ethical questions were also screened for governmental reports. Findings of brain areas supporting emotional responses and regulation have been used for marketing research, also called neuromarketing. The discovery of different brain activation patterns in antisocial disorder has led to changes in forensic psychiatry with the use of imaging techniques with unproven validity. Automated classification algorithms and multivariate statistical analyses of brain images have been applied to brain-reading techniques, aiming at predicting unconscious neural processes in humans. We finally report the current position of the French legislation recently revised and discuss the technical limits of such techniques. In the near future, brain imaging could find clinical applications in psychiatry as diagnostic or predictive tools. However, the latest advances in brain imaging are also used in non-scientific fields raising key ethical questions. Involvement of neuroscientists, psychiatrists, physicians but also of citizens in neuroethics discussions is crucial to challenge the risk of unregulated uses of brain imaging. Copyright © 2014 L’Encéphale, Paris. Published by

  16. Detection of electroporation-induced membrane permeabilization states in the brain using diffusion-weighted MRI

    DEFF Research Database (Denmark)

    Mahmood, Faisal; Hansen, Rasmus H; Agerholm-Larsen, Birgit

    2015-01-01

    BACKGROUND: Tissue permeabilization by electroporation (EP) is a promising technique to treat certain cancers. Non-invasive methods for verification of induced permeabilization are important, especially in deep-seated cancers. In this study we evaluated diffusion-weighted magnetic resonance imaging...... (DW-MRI) as a quantitative method for detecting EP-induced membrane permeabilization of brain tissue using a rat brain model. MATERIAL AND METHODS: Fifty-four anesthetized Sprague-Dawley male rats were electroporated in the right hemisphere, using different voltage levels to induce no permeabilization......-induced permeabilization of brain tissue and to some extent of differentiating NP, TMP and PMP using appropriate scan timing....

  17. SEGMA: An Automatic SEGMentation Approach for Human Brain MRI Using Sliding Window and Random Forests

    Science.gov (United States)

    Serag, Ahmed; Wilkinson, Alastair G.; Telford, Emma J.; Pataky, Rozalia; Sparrow, Sarah A.; Anblagan, Devasuda; Macnaught, Gillian; Semple, Scott I.; Boardman, James P.

    2017-01-01

    Quantitative volumes from brain magnetic resonance imaging (MRI) acquired across the life course may be useful for investigating long term effects of risk and resilience factors for brain development and healthy aging, and for understanding early life determinants of adult brain structure. Therefore, there is an increasing need for automated segmentation tools that can be applied to images acquired at different life stages. We developed an automatic segmentation method for human brain MRI, where a sliding window approach and a multi-class random forest classifier were applied to high-dimensional feature vectors for accurate segmentation. The method performed well on brain MRI data acquired from 179 individuals, analyzed in three age groups: newborns (38–42 weeks gestational age), children and adolescents (4–17 years) and adults (35–71 years). As the method can learn from partially labeled datasets, it can be used to segment large-scale datasets efficiently. It could also be applied to different populations and imaging modalities across the life course. PMID:28163680

  18. Topology of whole-brain functional MRI networks: Improving the truncated scale-free model

    Science.gov (United States)

    Ruiz Vargas, E.; Mitchell, D. G. V.; Greening, S. G.; Wahl, L. M.

    2014-07-01

    Networks of connections within the human brain have been the subject of intense recent research, yet their topology is still only partially understood. We analyze weighted networks calculated from functional magnetic resonance imaging (fMRI) data acquired during task performance. Expanding previous work in the area, our analysis retains all of the connections between all of the voxels in the full brain fMRI data, computing correlations between approximately 200,000 voxels per subject for 10 subjects. We evaluate the extent to which this rich dataset can be described by existing models of scale-free or exponentially truncated scale-free topology, comparing results across a large number of more complex topological models as well. Our results suggest that the novel “log quadratic” model presented in this paper offers a significantly better fit to networks of functional connections at the voxel level in the human brain.

  19. Graph theoretical analysis and application of fMRI-based brain network in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    LIU Xue-na

    2012-08-01

    Full Text Available Alzheimer's disease (AD, a progressive neurodegenerative disease, is clinically characterized by impaired memory and many other cognitive functions. However, the pathophysiological mechanisms underlying the disease are not thoroughly understood. In recent years, using functional magnetic resonance imaging (fMRI as well as advanced graph theory based network analysis approach, several studies of patients with AD suggested abnormal topological organization in both global and regional properties of functional brain networks, specifically, as demonstrated by a loss of small-world network characteristics. These studies provide novel insights into the pathophysiological mechanisms of AD and could be helpful in developing imaging biomarkers for disease diagnosis. In this paper we introduce the essential concepts of complex brain networks theory, and review recent advances of the study on human functional brain networks in AD, especially focusing on the graph theoretical analysis of small-world network based on fMRI. We also propound the existent problems and research orientation.

  20. Brain/language relationships identified with diffusion and perfusion MRI: Clinical applications in neurology and neurosurgery.

    Science.gov (United States)

    Hillis, Argye E

    2005-12-01

    Diffusion and perfusion MRI have contributed to stroke management by identifying patients with tissue "at risk" for further damage in acute stroke. However, the potential usefulness of these imaging modalities, along with diffusion tensor imaging, can be expanded by using these imaging techniques with concurrent assessment of language and other cognitive skills to identify the specific cognitive deficits that are associated with diffusion and perfusion abnormalities in particular brain regions. This paper illustrates how this combined behavioral and imaging methodology can yield information that is useful for predicting specific positive effects of intervention to restore blood flow in hypoperfused regions of brain identified with perfusion MRI, and for predicting negative effects of resection of particular brain regions or fiber bundles. Such data allow decisions about neurological and neurosurgical interventions to be based on specific risks and benefits in terms of functional consequences.

  1. Neuroimaging of pediatric brain tumors: from basic to advanced magnetic resonance imaging (MRI).

    Science.gov (United States)

    Panigrahy, Ashok; Blüml, Stefan

    2009-11-01

    In this review, the basic magnetic resonance concepts used in the imaging approach of a pediatric brain tumor are described with respect to different factors including understanding the significance of the patient's age. Also discussed are other factors directly related to the magnetic resonance scan itself including evaluating the location of the tumor, determining if the lesion is extra-axial or intra-axial, and evaluating the contrast characteristics of the lesion. Of note, there are key imaging features of pediatric brain tumors, which can give information about the cellularity of the lesion, which can then be confirmed with advanced magnetic resonance imaging (MRI) techniques. The second part of this review will provide an overview of the major advanced MRI techniques used in pediatric imaging, particularly, magnetic resonance diffusion, magnetic resonance spectroscopy, and magnetic resonance perfusion. The last part of the review will provide more specific information about the use of advanced magnetic resonance techniques in the evaluation of pediatric brain tumors.

  2. A supervised clustering approach for fMRI-based inference of brain states

    CERN Document Server

    Michel, Vincent; Varoquaux, Gaël; Eger, Evelyn; Keribin, Christine; Thirion, Bertrand; 10.1016/j.patcog.2011.04.006

    2011-01-01

    We propose a method that combines signals from many brain regions observed in functional Magnetic Resonance Imaging (fMRI) to predict the subject's behavior during a scanning session. Such predictions suffer from the huge number of brain regions sampled on the voxel grid of standard fMRI data sets: the curse of dimensionality. Dimensionality reduction is thus needed, but it is often performed using a univariate feature selection procedure, that handles neither the spatial structure of the images, nor the multivariate nature of the signal. By introducing a hierarchical clustering of the brain volume that incorporates connectivity constraints, we reduce the span of the possible spatial configurations to a single tree of nested regions tailored to the signal. We then prune the tree in a supervised setting, hence the name supervised clustering, in order to extract a parcellation (division of the volume) such that parcel-based signal averages best predict the target information. Dimensionality reduction is thus ac...

  3. A survey of current trends in diffusion MRI for structural brain connectivity

    Science.gov (United States)

    Ghosh, Aurobrata; Deriche, Rachid

    2016-02-01

    In this paper, we review the state of the art in diffusion magnetic resonance imaging (dMRI) and we present current trends in modelling the brain's tissue microstructure and the human connectome. dMRI is today the only tool that can probe the brain's axonal architecture in vivo and non-invasively, and has grown in leaps and bounds in the last two decades since its conception. A plethora of models with increasing complexity and better accuracy have been proposed to characterise the integrity of the cerebral tissue, to understand its microstructure and to infer its connectivity. Here, we discuss a wide range of the most popular, important and well-established local microstructure models and biomarkers that have been proposed from these models. Finally, we briefly present the state of the art in tractography techniques that allow us to understand the architecture of the brain's connectivity.

  4. Early life stress-induced alterations in rat brain structures measured with high resolution MRI.

    Science.gov (United States)

    Sarabdjitsingh, R Angela; Loi, Manila; Joëls, Marian; Dijkhuizen, Rick M; van der Toorn, Annette

    2017-01-01

    Adverse experiences early in life impair cognitive function both in rodents and humans. In humans this increases the vulnerability to develop mental illnesses while in the rodent brain early life stress (ELS) abnormalities are associated with changes in synaptic plasticity, excitability and microstructure. Detailed information on the effects of ELS on rodent brain structural integrity at large and connectivity within the brain is currently lacking; this information is highly relevant for understanding the mechanism by which early life stress predisposes to mental illnesses. Here, we exposed rats to 24 hours of maternal deprivation (MD) at postnatal day 3, a paradigm known to increase corticosterone levels and thereby activate glucocorticoid receptors in the brain. Using structural magnetic resonance imaging we examined: i) volumetric changes and white/grey matter properties of the whole cerebrum and of specific brain areas; and ii) whether potential alterations could be normalized by blocking glucocorticoid receptors with mifepristone during the critical developmental window of early adolescence, i.e. between postnatal days 26 and 28. The results show that MD caused a volumetric reduction of the prefrontal cortex, particularly the ventromedial part, and the orbitofrontal cortex. Within the whole cerebrum, white (relative to grey) matter volume was decreased and region-specifically in prefrontal cortex and dorsomedial striatum following MD. A trend was found for the hippocampus. Grey matter fractions were not affected. Treatment with mifepristone did not normalize these changes. This study indicates that early life stress in rodents has long lasting consequences for the volume and structural integrity of the brain. However, changes were relatively modest and-unlike behavior- not mitigated by blockade of glucocorticoid receptors during a critical developmental period.

  5. Diagnostic usefulness of 3 tesla MRI of the brain for cushing disease in a child.

    Science.gov (United States)

    Ono, Erina; Ozawa, Ayako; Matoba, Kaori; Motoki, Takanori; Tajima, Asako; Miyata, Ichiro; Ito, Junko; Inoshita, Naoko; Yamada, Syozo; Ida, Hiroyuki

    2011-10-01

    It is sometimes difficult to confirm the location of a microadenoma in Cushing disease. Recently, we experienced an 11-yr-old female case of Cushing disease with hyperprolactinemia. She was referred to our hospital because of decrease of height velocity with body weight gain. On admission, she had typical symptoms of Cushing syndrome. Although no pituitary microadenomas were detected on 1.5 Tesla MRI of the brain, endocrinological examinations including IPS and CS sampling were consistent with Cushing disease with hyperprolactinemia. Oral administration of methyrapone instead of neurosurgery was started after discharge, but subsequent 3 Tesla MRI of the brain clearly demonstrated a 3-mm less-enhanced lesion in the left side of the pituitary gland. Finally, transsphenoidal surgery was performed, and a 3.5-mm left-sided microadenoma was resected. Compared with 1.5 Tesla MRI, 3 Tesla MRI offers the advantage of a higher signal to noise ratio (SNR), which provides higher resolution and proper image quality. Therefore, 3 Tesla MRI is a very useful tool to localize microadenomas in Cushing disease in children as well as in adults. It will be the first choice of radiological examinations in suspected cases of Cushing disease.

  6. MRI Brain Tumor Segmentation and Necrosis Detection Using Adaptive Sobolev Snakes

    Science.gov (United States)

    Nakhmani, Arie; Kikinis, Ron; Tannenbaum, Allen

    2014-01-01

    Brain tumor segmentation in brain MRI volumes is used in neurosurgical planning and illness staging. It is important to explore the tumor shape and necrosis regions at different points of time to evaluate the disease progression. We propose an algorithm for semi-automatic tumor segmentation and necrosis detection. Our algorithm consists of three parts: conversion of MRI volume to a probability space based on the on-line learned model, tumor probability density estimation, and adaptive segmentation in the probability space. We use manually selected acceptance and rejection classes on a single MRI slice to learn the background and foreground statistical models. Then, we propagate this model to all MRI slices to compute the most probable regions of the tumor. Anisotropic 3D diffusion is used to estimate the probability density. Finally, the estimated density is segmented by the Sobolev active contour (snake) algorithm to select smoothed regions of the maximum tumor probability. The segmentation approach is robust to noise and not very sensitive to the manual initialization in the volumes tested. Also, it is appropriate for low contrast imagery. The irregular necrosis regions are detected by using the outliers of the probability distribution inside the segmented region. The necrosis regions of small width are removed due to a high probability of noisy measurements. The MRI volume segmentation results obtained by our algorithm are very similar to expert manual segmentation. PMID:25302005

  7. Value of MRI of the brain in patients with systemic lupus erythematosus and neurologic disturbance

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, J.E.; Sundgren, P.C.; Maly, P. [Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 East Medical Center Drive, MI 48109, Ann Arbor (United States); Attwood, J.; McCune, J. [Department of Internal Medicine, University of Michigan, 1500 East Medical Center Drive, MI 48109, Ann Arbor (United States)

    2004-01-01

    Our objective was to review the frequency and pattern of signal abnormalities seen on conventional MRI in patients with suspected neuropsychiatric systemic lupus erythematosus (NP-SLE). We reviewed 116 MRI examinations of the brain performed on 85 patients with SLE, (81 women, four men, aged 21-78 years, mean 40.6 years) presenting with neurological disturbances. MRI was normal or nearly normal in 34%. In 60% high-signal lesions were observed on T2-weighted images, frequently in the frontal and parietal subcortical white matter. Infarct-like lesions involving gray and white matter were demonstrated in 21 of cases. Areas of restricted diffusion were seen in 12 of the 67 patients who underwent diffusion-weighted imaging. Other abnormalities included loss of brain volume, hemorrhage, meningeal enhancement, and bilateral high signal in occipital white-matter. The MRI findings alone did not allow us to distinguish between thromboembolic and inflammatory events in many patients. Some patients with normal MRI improved clinically while on immunosuppressive therapy. More sensitive and/or specific imaging methods, such as spectroscopy and perfusion-weighted imaging, should be investigated in these subgroups of patients with suspected NP-SLE. (orig.)

  8. Imaging artifacts induced by electrical stimulation during conventional fMRI of the brain.

    Science.gov (United States)

    Antal, Andrea; Bikson, Marom; Datta, Abhishek; Lafon, Belen; Dechent, Peter; Parra, Lucas C; Paulus, Walter

    2014-01-15

    Functional magnetic resonance imaging (fMRI) of brain activation during transcranial electrical stimulation is used to provide insight into the mechanisms of neuromodulation and targeting of particular brain structures. However, the passage of current through the body may interfere with the concurrent detection of blood oxygen level-dependent (BOLD) signal, which is sensitive to local magnetic fields. To test whether these currents can affect concurrent fMRI recordings we performed conventional gradient echo-planar imaging (EPI) during transcranial direct current (tDCS) and alternating current stimulation (tACS) on two post-mortem subjects. tDCS induced signals in both superficial and deep structures. The signal was specific to the electrode montage, with the strongest signal near cerebrospinal fluid (CSF) and scalp. The direction of change relative to non-stimulation reversed with tDCS stimulation polarity. For tACS there was no net effect of the MRI signal. High-resolution individualized modeling of current flow and induced static magnetic fields suggested a strong coincidence of the change EPI signal with regions of large current density and magnetic fields. These initial results indicate that (1) fMRI studies of tDCS must consider this potentially confounding interference from current flow and (2) conventional MRI imaging protocols can be potentially used to measure current flow during transcranial electrical stimulation. The optimization of current measurement and artifact correction techniques, including consideration of the underlying physics, remains to be addressed.

  9. The spinning dancer illusion and spontaneous brain fluctuations: an fMRI study.

    Science.gov (United States)

    Bernal, Byron; Guillen, Magno; Marquez, Juan Camilo

    2014-01-01

    The brain activation associated with the Spinning Dancer Illusion, a cognitive visual illusion, is not entirely known. Inferences from other study modalities point to the involvement of the dorso-parieto-occipital areas in the spontaneous switchings of perception in other bistable non-kinetic illusions. fMRI is a mature technique used to investigate the brain responses associated with mental changes. Resting-state fMRI is a novel technique that may help ascertain the effects of spontaneous brain changes in the top-down regulation of visual perception. The purpose of this report is to describe the brain activation associated with the subjective illusory changes of perception of a kinetic bistable stimulus. We hypothesize that there is a relationship between the perception phases with the very slow cortical spontaneous fluctuations, recently described. A single normal subject who was trained to produce voluntarily perception phase switches underwent a series of fMRI studies whose blocks were either defined post-hoc or accordingly with a predefined timeline to assess spontaneous and voluntarily evoked visual perception switches, respectively. Correlation of findings with resting-state fMRI and independent component analysis of the task series was sought. Phases of the rotation direction were found associated with right parietal activity. Independent component analysis of the task series and their comparison with basal resting-state components suggest that this activity is related to one of the very slow spontaneous brain fluctuations. The spontaneous fluctuations of the cortical activity may explain the subjective changes in perception of direction of the Spinning Dancer Illusion. This observation is a proof-of-principle, suggesting that the spontaneous brain oscillations may influence top-down sensory regulation.

  10. Body growth and brain development in premature babies: an MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Tzarouchi, Loukia C.; Zikou, Anastasia; Kosta, Paraskevi; Argyropoulou, Maria I. [University of Ioannina, Department of Radiology, Medical School, Ioannina (Greece); Drougia, Aikaterini; Andronikou, Styliani [University of Ioannina, Intensive Care Unit, Child Health Department, Medical School, Ioannina (Greece); Astrakas, Loukas G. [University of Ioannina, Department of Medical Physics, Medical School, Ioannina (Greece)

    2014-03-15

    Prematurity and intrauterine growth restriction are associated with neurodevelopmental disabilities. To assess the relationship between growth status and regional brain volume (rBV) and white matter microstructure in premature babies at around term-equivalent age. Premature infants (n= 27) of gestational age (GA): 29.8 ± 2.1 weeks, with normal brain MRI scans were studied at corrected age: 41.2 ± 1.4 weeks. The infants were divided into three groups: 1) appropriate for GA at birth and at the time of MRI (AGA), 2) small for GA at birth with catch-up growth at the time of MRI (SGA{sub a}) and 3) small for GA at birth with failure of catch-up growth at the time of MRI (SGA{sub b}). The T1-weighted images were segmented into 90 rBVs using the SPM8/IBASPM and differences among groups were assessed. Fractional anisotropy (FA) was measured bilaterally in 15 fiber tracts and its relationship to GA and somatometric measurements was explored. Lower rBV was observed in SGA{sub b} in superior and anterior brain areas. A positive correlation was demonstrated between FA and head circumference and body weight. Body weight was the only significant predictor for FA (P< 0.05). In premature babies, catch-up growth is associated with regional brain volume catch-up at around term-equivalent age, starting from the brain areas maturing first. Body weight seems to be a strong predictor associated with WM microstructure in brain areas related to attention, language, cognition, memory and executing functioning. (orig.)

  11. Correlation of auditory brain stem response and the MRI measurements in neuro-degenerative disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, Hidekazu (Tokyo Women' s Medical Coll. (Japan))

    1989-06-01

    The purpose of this study is to elucidate correlations of several MRI measurements of the cranium and brain, functioning as a volume conductor, to the auditory brain stem response (ABR) in neuro-degenerative disorders. The subjects included forty-seven patients with spinocerebellar degeneration (SCD) and sixteen of amyotrophic lateral sclerosis (ALS). Statistically significant positive correlations were found between I-V and III-V interpeak latencies (IPLs) and the area of cranium and brain in the longitudinal section of SCD patients, and between I-III and III-V IPLs and the area in the longitudinal section of those with ALS. And, also there were statistically significant correlations between the amplitude of the V wave and the area of brain stem as well as that of the cranium in the longitudinal section of SCD patients, and between the amplitude of the V wave and the area of the cerebrum in the longitudinal section of ALS. In conclusion, in the ABR, the IPLs were prolonged and the amplitude of the V wave was decreased while the MRI size of the cranium and brain increased. When the ABR is applied to neuro-degenerative disorders, it might be important to consider not only the conduction of the auditory tracts in the brain stem, but also the correlations of the size of the cranium and brain which act as a volume conductor. (author).

  12. MRI-guided brain PET image filtering and partial volume correction

    Science.gov (United States)

    Yan, Jianhua; Chu-Shern Lim, Jason; Townsend, David W.

    2015-02-01

    Positron emission tomography (PET) image quantification is a challenging problem due to limited spatial resolution of acquired data and the resulting partial volume effects (PVE), which depend on the size of the structure studied in relation to the spatial resolution and which may lead to over or underestimation of the true tissue tracer concentration. In addition, it is usually necessary to perform image smoothing either during image reconstruction or afterwards to achieve a reasonable signal-to-noise ratio. Typically, an isotropic Gaussian filtering (GF) is used for this purpose. However, the noise suppression is at the cost of deteriorating spatial resolution. As hybrid imaging devices such as PET/MRI have become available, the complementary information derived from high definition morphologic images could be used to improve the quality of PET images. In this study, first of all, we propose an MRI-guided PET filtering method by adapting a recently proposed local linear model and then incorporate PVE into the model to get a new partial volume correction (PVC) method without parcellation of MRI. In addition, both the new filtering and PVC are voxel-wise non-iterative methods. The performance of the proposed methods were investigated with simulated dynamic FDG brain dataset and 18F-FDG brain data of a cervical cancer patient acquired with a simultaneous hybrid PET/MR scanner. The initial simulation results demonstrated that MRI-guided PET image filtering can produce less noisy images than traditional GF and bias and coefficient of variation can be further reduced by MRI-guided PET PVC. Moreover, structures can be much better delineated in MRI-guided PET PVC for real brain data.

  13. Assessment of blood–brain barrier disruption using dynamic contrast-enhanced MRI. A systematic review

    Directory of Open Access Journals (Sweden)

    Anna K. Heye

    2014-01-01

    Full Text Available There is increasing recognition of the importance of blood–brain barrier (BBB disruption in aging, dementia, stroke and multiple sclerosis in addition to more commonly-studied pathologies such as tumors. Dynamic contrast-enhanced MRI (DCE-MRI is a method for studying BBB disruption in vivo. We review pathologies studied, scanning protocols and data analysis procedures to determine the range of available methods and their suitability to different pathologies. We systematically review the existing literature up to February 2014, seeking studies that assessed BBB integrity using T1-weighted DCE-MRI techniques in animals and humans in normal or abnormal brain tissues. The literature search provided 70 studies that were eligible for inclusion, involving 417 animals and 1564 human subjects in total. The pathologies most studied are intracranial neoplasms and acute ischemic strokes. There are large variations in the type of DCE-MRI sequence, the imaging protocols and the contrast agents used. Moreover, studies use a variety of different methods for data analysis, mainly based on model-free measurements and on the Patlak and Tofts models. Consequently, estimated KTrans values varied widely. In conclusion, DCE-MRI is shown to provide valuable information in a large variety of applications, ranging from common applications, such as grading of primary brain tumors, to more recent applications, such as assessment of subtle BBB dysfunction in Alzheimer's disease. Further research is required in order to establish consensus-based recommendations for data acquisition and analysis and, hence, improve inter-study comparability and promote wider use of DCE-MRI.

  14. Evolution and current challenges in the teaching of functional MRI and functional brain imaging.

    Science.gov (United States)

    Savoy, Robert L

    2012-08-15

    The report of any new and successful method for studying the world triggers the need to train people in the use of that method. In the case of functional magnetic resonance imaging and its use for examining human brain function in vivo, expertise is required in a greater collection of domains than usual. Development of fMRI training programs started shortly after the announcement of BOLD-based fMRI in humans. These programs had a variety of durations and primary content areas. All programs had to deal with the challenge of bringing interested researchers from a wide variety of areas-many of whom had little or no understanding of MR physics, and/or experimental psychology, and/or the nuances of data analysis and modeling-to a sufficiently detailed level of knowledge that both the funding agencies, and the existing proprietors of the technology (often radiologists or MR physicists at hospitals) would take the research proposals of new investigators seriously. Now that fMRI-based research is well established, there are new educational challenges. Some have to do with the growing list of technologies used to study human brain function in vivo. But perhaps more daunting is the challenge of training consumers of the reports and claims based on fMRI and other brain imaging modalities. As fMRI becomes influential in contexts beyond the research environment-from the clinic to the courtroom to the legislature-training consumers of fMRI-based claims will take on increasing importance, and represents its own unique challenges for education.

  15. Assessment of blood–brain barrier disruption using dynamic contrast-enhanced MRI. A systematic review

    Science.gov (United States)

    Heye, Anna K.; Culling, Ross D.; Valdés Hernández, Maria del C.; Thrippleton, Michael J.; Wardlaw, Joanna M.

    2014-01-01

    There is increasing recognition of the importance of blood–brain barrier (BBB) disruption in aging, dementia, stroke and multiple sclerosis in addition to more commonly-studied pathologies such as tumors. Dynamic contrast-enhanced MRI (DCE-MRI) is a method for studying BBB disruption in vivo. We review pathologies studied, scanning protocols and data analysis procedures to determine the range of available methods and their suitability to different pathologies. We systematically review the existing literature up to February 2014, seeking studies that assessed BBB integrity using T1-weighted DCE-MRI techniques in animals and humans in normal or abnormal brain tissues. The literature search provided 70 studies that were eligible for inclusion, involving 417 animals and 1564 human subjects in total. The pathologies most studied are intracranial neoplasms and acute ischemic strokes. There are large variations in the type of DCE-MRI sequence, the imaging protocols and the contrast agents used. Moreover, studies use a variety of different methods for data analysis, mainly based on model-free measurements and on the Patlak and Tofts models. Consequently, estimated KTrans values varied widely. In conclusion, DCE-MRI is shown to provide valuable information in a large variety of applications, ranging from common applications, such as grading of primary brain tumors, to more recent applications, such as assessment of subtle BBB dysfunction in Alzheimer's disease. Further research is required in order to establish consensus-based recommendations for data acquisition and analysis and, hence, improve inter-study comparability and promote wider use of DCE-MRI. PMID:25379439

  16. Brain without anatomy: construction and comparison of fully network-driven structural MRI connectomes.

    Directory of Open Access Journals (Sweden)

    Olga Tymofiyeva

    Full Text Available MRI connectomics methods treat the brain as a network and provide new information about its organization, efficiency, and mechanisms of disruption. The most commonly used method of defining network nodes is to register the brain to a standardized anatomical atlas based on the Brodmann areas. This approach is limited by inter-subject variability and can be especially problematic in the context of brain maturation or neuroplasticity (cerebral reorganization after brain damage. In this study, we combined different image processing and network theory methods and created a novel approach that enables atlas-free construction and connection-wise comparison of diffusion MRI-based brain networks. We illustrated the proposed approach in three age groups: neonates, 6-month-old infants, and adults. First, we explored a data-driven method of determining the optimal number of equal-area nodes based on the assumption that all cortical areas of the brain are connected and, thus, no part of the brain is structurally isolated. Second, to enable a connection-wise comparison, alignment to a "reference brain" was performed in the network domain within each group using a matrix alignment algorithm with simulated annealing. The correlation coefficients after pair-wise network alignment ranged from 0.6102 to 0.6673. To test the method's reproducibility, one subject from the 6-month-old group and one from the adult group were scanned twice, resulting in correlation coefficients of 0.7443 and 0.7037, respectively. While being less than 1 due to parcellation and noise, statistically, these values were significantly higher than inter-subject values. Rotation of the parcellation largely explained the variability. Through the abstraction from anatomy, the developed framework allows for a fully network-driven analysis of structural MRI connectomes and can be applied to subjects at any stage of development and with substantial differences in cortical anatomy.

  17. Brain functions after sports-related concussion: insights from event-related potentials and functional MRI.

    Science.gov (United States)

    Gosselin, Nadia; Saluja, Rajeet Singh; Chen, Jen-Kai; Bottari, Carolina; Johnston, Karen; Ptito, Alain

    2010-10-01

    The high incidence of concussions in contact sports and their impact on brain functions are a major cause for concern. To improve our understanding of brain functioning after sports-related concussion, advanced functional assessment techniques, namely event-related potentials (ERPs) and functional magnetic resonance imaging (fMRI), have been recently used in research studies. Contrary to neuropsychological tests that measure verbal and/or motor responses, ERPs and fMRI assess the neural activities associated with cognitive/behavioral demands, and thus provide access to better comprehension of brain functioning. In fact, ERPs have excellent temporal resolution, and fMRI identifies the involved structures during a task. This article describes ERP and fMRI techniques and reviews the results obtained with these tools in sports-related concussion. Although these techniques are not yet readily available, they offer a unique clinical approach, particularly for complex cases (ie, athletes with multiple concussions, chronic symptoms) and objective measures that provide valuable information to guide management and return-to-play decision making.

  18. Utility of resting fMRI and connectivity in patients with brain tumor

    Directory of Open Access Journals (Sweden)

    Sandhya Manglore

    2013-01-01

    Full Text Available Background: Resting state (task independent Functional Magnetic Resonance Imaging (fMRI has opened a new avenue in cognitive studies and has found practical clinical applications. Materials and Methods: Resting fMRI analysis was performed in six patients with brain tumor in the motor cortex. For comparison, task-related mapping of the motor cortex was done. Connectivity analysis to study the connections and strength of the connections between the primary motor cortex, premotor cortex, and primary somatosensory cortex on the affected side was also performed and compared with the contralateral normal side and the controls. Results: Resting fMRI in patients with brain tumor in the motor cortex mapped the motor cortex in a task-free state and the results were comparable to the motor task paradigm. Decreased connectivity on the tumor-affected side was observed, as compared to the unaffected side. Conclusion: Resting fMRI and connectivity analysis are useful in the presurgical evaluation of patients with brain tumors and may help in uncooperative or pediatric patients. They can also prognosticate the postoperative outcome. This method also has significant applications due to the ease of image acquisition.

  19. Brain MRI findings in patients with mucopolysaccharidosis types I and II and mild clinical presentation

    Energy Technology Data Exchange (ETDEWEB)

    Matheus, M.Gisele; Castillo, Mauricio; Smith, J. Keith [Department of Radiology, University of North Carolina School of Medicine, 27599-7510, Chapel Hill, NC (United States); Armao, Diane [Department of Pathology, University of North Carolina School of Medicine, Chapel Hill, NC (United States); Towle, Diane; Muenzer, Joseph [Department of Genetics and Metabolism, University of North Carolina School of Medicine, Chapel Hill, NC (United States)

    2004-08-01

    Our objective was to determine the brain magnetic resonance imaging (MRI) abnormalities in a selected group of patients with mucopolysaccharidosis (MPS) types I and II who had only mild clinical manifestations. We retrospectively assessed MRI brain studies in 18 patients with MPS (type I: 6 and type II: 12). We evaluated abnormal signal intensity in the white matter, widening of the cortical sulci, size of the supratentorial ventricles, dilatation of the perivascular spaces (PVS) and enlargement of the subarachnoid spaces. We observed a broad spectrum of findings, and despite severely abnormal MRI studies, no patients had mental retardation. We also observed that dilated PVS, previously believed to be caused by macroscopic deposition of the mucopolysaccharides, had an appearance similar to cerebrospinal fluid (CSF) in all MRI sequences performed, even in FLAIR and trace diffusion weighted images. Based on our results, we believe that with the exception of white matter abnormalities and brain atrophy, all other findings may be related to abnormal resorption of CSF, and there is no relationship between the imaging and clinical manifestations of the disease. (orig.)

  20. Do spotty high intensity regions found in basal ganglia on MRI T2-weighted brain images of elderly subjects indicate gliosis? Comparison of brain MRI T2-weighted images of elderly subjects and necropsy brain

    Energy Technology Data Exchange (ETDEWEB)

    Murai, Hiroshi; Hattori, Hideyuki; Matsumoto, Masayuki [Kanazawa Medical Univ., Uchinada, Ishikawa (Japan)

    2001-12-01

    Spotty high intensity regions are frequently found on the MRI T2-weighted brain images (T2WI) of elderly people. High intensity regions with a diameter of 3 mm or less have been considered as expanded perivascular space with no pathological implications on radiological diagnosis. However, its morphometrical basis is not clear. We examined the character of the spotty regions using brain MRI of brain screening subjects, and studied morphometrically arteriolosclerosis and perivascular tissue damage using necropsy brains of subjects aged 65 years and over. The size, number and location of the spotty high intensity regions were examined using the brain MRI of 109 T2WI which is used for brain screening at Kanazawa Medical University Hospital. The frontal lobe, temporal lobe, parietal lobe, hippocampus, midbrain and basal ganglia were sampled from 15 subjects aged 65 years and over, and the tissue sections were processed for HE stain, Elastica van Gieson stain and immunostaining with GFAP. We took photographs of brain arterioli and surrounding parenchyma with a digital telescope camera and the degree of arterioscleosis and tissue damage were assessed by measurements with an image analyzer. Spotty high intensity regions on T2WI with a diameter of 3 mm or less were observed in 95.5% subjects aged 65 years and over. 69.4% spotty region was observed in basal ganglia. There was a significant correlation between age and size. In morphometrical examination, at the basal ganglia, the density of GFAP-positive astrocytes in the perivascular tissue had a significant positive correlation with the proportional thickness of the adventitia, which is an index of arteriosclerosis, and a significant negative correlation with the size of the perivascular space. The results suggested that the spotty regions in the brain MRI of elderly people do not represent dilatations of the perivascular space, but is mild brain damage caused by arteriosclerosis. (author)

  1. Test-retest reliability of white matter structural brain networks: A multiband diffusion MRI study

    Directory of Open Access Journals (Sweden)

    Tengda eZhao

    2015-02-01

    Full Text Available The multiband EPI sequence has been developed for the human connectome project to accelerate MRI data acquisition. However, no study has yet investigated the test-retest (TRT reliability of the graph metrics of white matter (WM structural brain networks constructed from this new sequence. Here, we employed a multiband diffusion MRI (dMRI dataset with repeated scanning sessions and constructed both low- and high-resolution WM networks by volume- and surface-based parcellation methods. The reproducibility of network metrics and its dependence on type of construction procedures was assessed by the intra-class correlation coefficient (ICC. We observed conserved topological architecture of WM structural networks constructed from the multiband dMRI data as previous findings from conventional dMRI. For the global network properties, the first order metrics were more reliable than second order metrics. Between two parcellation methods, networks with volume-based parcellation showed better reliability than surface-based parcellation, especially for the global metrics. Between different resolutions, the high-resolution network exhibited higher TRT performance than the low-resolution in terms of the global metrics with a large effect size, whereas the low-resolution performs better in terms of local (region and connection properties with a relatively low effect size. Moreover, we identified that the association and primary cortices showed higher reproducibility than the paralimbic/limbic regions. The important hub regions and rich-club connections are more reliable than the non-hub regions and connections. Finally, we found WM networks from the multiband dMRI showed higher reproducibility compared with those from the conventional dMRI. Together, our results demonstrated the fair to good reliability of the WM structural brain networks from the multiband EPI sequence, suggesting its potential utility for exploring individual differences and for clinical

  2. Test-retest reliability of white matter structural brain networks: a multiband diffusion MRI study.

    Science.gov (United States)

    Zhao, Tengda; Duan, Fei; Liao, Xuhong; Dai, Zhengjia; Cao, Miao; He, Yong; Shu, Ni

    2015-01-01

    The multiband EPI sequence has been developed for the human connectome project to accelerate MRI data acquisition. However, no study has yet investigated the test-retest (TRT) reliability of the graph metrics of white matter (WM) structural brain networks constructed from this new sequence. Here, we employed a multiband diffusion MRI (dMRI) dataset with repeated scanning sessions and constructed both low- and high-resolution WM networks by volume- and surface-based parcellation methods. The reproducibility of network metrics and its dependence on type of construction procedures was assessed by the intra-class correlation coefficient (ICC). We observed conserved topological architecture of WM structural networks constructed from the multiband dMRI data as previous findings from conventional dMRI. For the global network properties, the first order metrics were more reliable than second order metrics. Between two parcellation methods, networks with volume-based parcellation showed better reliability than surface-based parcellation, especially for the global metrics. Between different resolutions, the high-resolution network exhibited higher TRT performance than the low-resolution in terms of the global metrics with a large effect size, whereas the low-resolution performs better in terms of local (region and connection) properties with a relatively low effect size. Moreover, we identified that the association and primary cortices showed higher reproducibility than the paralimbic/limbic regions. The important hub regions and rich-club connections are more reliable than the non-hub regions and connections. Finally, we found WM networks from the multiband dMRI showed higher reproducibility compared with those from the conventional dMRI. Together, our results demonstrated the fair to good reliability of the WM structural brain networks from the multiband EPI sequence, suggesting its potential utility for exploring individual differences and for clinical applications.

  3. Analysis of Diffusion MRI: Disentangling the Entangled Brain

    NARCIS (Netherlands)

    Yang, J.

    2015-01-01

    The white matter of the brain contains all the connections between different parts of the grey matter. Many diseases especially affect the brain’s white matter. For instance, the white matter tracts are destroyed in neurodegenerative diseases, such as Alzheimer’s disease. Accordingly, there is a

  4. Which fMRI clustering gives good brain parcellations?

    Directory of Open Access Journals (Sweden)

    Bertrand eThirion

    2014-07-01

    Full Text Available Analysis and interpretation of neuroimaging data often require one to divide the brain into a number of regions, or parcels, with homogeneous characteristics, be these regions defined in the brain volume or on on the cortical surface. While predefined brain atlases do not adapt to the signal in the individual subjects images, parcellation approaches use brain activity (e.g. found in some functional contrasts of interest and clustering techniques to define regions with some degree of signal homogeneity. In this work, we address the question of which clustering technique is appropriate and how to optimize the corresponding model. We use two principled criteria: goodness of fit (accuracy, and reproducibility of the parcellation across bootstrap samples. We study these criteria on both simulated and two task-based functional Magnetic Resonance Imaging datasets for the Ward, spectral and K-means clustering algorithms. We show that in general Ward’s clustering performs better than alternative methods with regards to reproducibility and accuracy and that the two criteria diverge regarding the preferred models (reproducibility leading to more conservative solutions, thus deferring the practical decision to a higher level alternative, namely the choice of a trade-off between accuracy and stability.

  5. Quantification of deep medullary veins at 7 T brain MRI

    NARCIS (Netherlands)

    Kuijf, Hugo J.; Bouvy, Willem H.; Zwanenburg, Jaco J M; Schultz, Tom B Razoux; Viergever, Max A.; Vincken, Koen L.; Biessels, Geert Jan

    2016-01-01

    Objectives: Deep medullary veins support the venous drainage of the brain and may display abnormalities in the context of different cerebrovascular diseases. We present and evaluate a method to automatically detect and quantify deep medullary veins at 7 T. Methods: Five participants were scanned

  6. Quantification of deep medullary veins at 7 T brain MRI

    NARCIS (Netherlands)

    Kuijf, Hugo J.; Bouvy, Willem H.; Zwanenburg, Jaco J M; Schultz, Tom B Razoux; Viergever, Max A.; Vincken, Koen L.; Biessels, Geert Jan

    2016-01-01

    Objectives: Deep medullary veins support the venous drainage of the brain and may display abnormalities in the context of different cerebrovascular diseases. We present and evaluate a method to automatically detect and quantify deep medullary veins at 7 T. Methods: Five participants were scanned twi

  7. Incidental sinus abnormalities in 256 patients referred for brain MRI

    Directory of Open Access Journals (Sweden)

    Ghanaati H

    2007-06-01

    Full Text Available Background: Imaging abnormalities in the paranasal sinuses are regularly noted as incidental findings on MRI, however, little is known about their prevalence in the Iranian population. The purpose of this study was to classify these findings in the paranasal sinuses as seen on MRI and to investigate the prevalence, according to site and type of paranasal abnormality. Methods: In this cross-sectional study, the T2-weighted axial MRI of 256 patients with diseases unrelated to their paranasal sinuses were reviewed between May 2002 and June 2003. The findings were categorized according to the anatomic location and the imaging characteristics of the abnormality. The abnormalities recorded included total sinus opacification, mucoperiosteal thickening >5mm, air fluid levels and retention cysts or polyps. Unilateral or bilateral involvement and septal deviation were also noted. A sinus was considered normal if it was fully aerated and no soft-tissue density was apparent within the cavity. Results: Among our cases, 111 (43.5% were male and 145 (56.5% were female. Of these patients, abnormalities in one or more of the sinus groups were found in 110 subjects (42.9%, 55.5% of which were male and 44.5% were female (P=0.001. Maxillary sinus abnormalities were observed in 66.4% of the patients, while ethmoid sinus abnormalities were found in 63.6%. Of the ethmoid abnormalities, 21% were found in the anterior section, 9% in the middle ethmoid, and 8% in the posterior ethmoid. The most common abnormality found was mucosal thickening. Among our cases, 23.4% had septal deviation, which was significantly higher among those with sinusitis (29% versus 19.1%; P<0.01. Of those patients with sinus involvement, 16% were involved in the sphenoid sinus and 5% in the frontal sinus. The results obtained from the patients with sinus abnormality revealed that 85% suffered from cough, nasal obstruction, runny nose, facial pain and post nasal discharge and 24% had been diagnosed

  8. Spurious leptomeningeal enhancement on immediate post-operative MRI for paediatric brain tumours

    Energy Technology Data Exchange (ETDEWEB)

    Widjaja, Elysa; Connolly, Daniel J.A. [Royal Hallamshire Hospital, Department of Radiology, Sheffield (United Kingdom); Gatscher, Sylvia; McMullen, John [Royal Hallamshire Hospital, Department of Neurosurgery, Sheffield (United Kingdom); Griffiths, Paul D. [University of Sheffield, Academic section of Radiology, Sheffield (United Kingdom)

    2005-03-01

    Immediate post-operative MRI has been recommended as an accurate and robust method to assess residual brain tumour. Early enhancement at the resection margin and in the dura is well recognized, but we describe two cases of enhancement in the basal cisterns on immediate post-operative MRI that resolved on follow-up. The underlying cause of the enhancement remains to be elucidated, but it should be recognized that leptomeningeal enhancement may occur after surgery and that this does not necessarily imply tumour spread. (orig.)

  9. Assessment of MRI Parameters as Imaging Biomarkers for Radiation Necrosis in the Rat Brain

    Energy Technology Data Exchange (ETDEWEB)

    Wang Silun [Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Tryggestad, Erik [Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Zhou Tingting [Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Armour, Michael [Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Wen Zhibo [Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong (China); Fu Dexue [Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Ford, Eric [Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Zijl, Peter C.M. van [Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland (United States); Zhou Jinyuan, E-mail: jzhou@mri.jhu.edu [Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland (United States)

    2012-07-01

    Purpose: Radiation necrosis is a major complication of radiation therapy. We explore the features of radiation-induced brain necrosis in the rat, using multiple MRI approaches, including T{sub 1}, T{sub 2}, apparent diffusion constant (ADC), cerebral blood flow (CBF), magnetization transfer ratio (MTR), and amide proton transfer (APT) of endogenous mobile proteins and peptides. Methods and Materials: Adult rats (Fischer 344; n = 15) were irradiated with a single, well-collimated X-ray beam (40 Gy; 10 Multiplication-Sign 10 mm{sup 2}) in the left brain hemisphere. MRI was acquired on a 4.7-T animal scanner at {approx}25 weeks' postradiation. The MRI signals of necrotic cores and perinecrotic regions were assessed with a one-way analysis of variance. Histological evaluation was accomplished with hematoxylin and eosin staining. Results: ADC and CBF MRI could separate perinecrotic and contralateral normal brain tissue (p < 0.01 and < 0.05, respectively), whereas T{sub 1}, T{sub 2}, MTR, and APT could not. MRI signal intensities were significantly lower in the necrotic core than in normal brain for CBF (p < 0.001) and APT (p < 0.01) and insignificantly higher or lower for T{sub 1}, T{sub 2}, MTR, and ADC. Histological results demonstrated coagulative necrosis within the necrotic core and reactive astrogliosis and vascular damage within the perinecrotic region. Conclusion: ADC and CBF are promising imaging biomarkers for identifying perinecrotic regions, whereas CBF and APT are promising for identifying necrotic cores.

  10. Eye-position recording during brain MRI examination to identify and characterize steps of glioma diagnosis

    Science.gov (United States)

    Cavaro-Ménard, Christine; Tanguy, Jean-Yves; Le Callet, Patrick

    2010-02-01

    MRI is an essential tool for brain glioma diagnosis thanks to its ability to produce images in any layout plan and to its numerous sequences adapted to both anatomic and functional imaging. In this paper, we investigate the use of an eyetracking system to explore relationships between visual scanning patterns and the glioma diagnostic process during brain MRI analysis. We divide the analyzed screen into Areas of Interest (AOIs), each AOI corresponding to one sequence. Analyzing temporal organization of fixation location intra AOI and inter AOI splits the diagnostic process into different steps. The analysis of saccadic amplitudes reveals clear delineation of three sequential steps. During the first step (characterized by large saccades), a radiologist performs a short review on all sequences and on the patient report. In the second step (characterized by short saccades), a radiologist sequentially and systematically scans all the slices of each sequence. The fixation duration in one AOI depends on the number of slices, on the lesion subtlety and on the lesion contrast in the sequence to be analyzed. In order to improve the detection, localization and characterization of the glioma, the radiologist compares sequences during the third step (characterized by large saccades). Eye-position recording enables one to identify each elementary task implemented during diagnostic process of glioma detection and characterization on brain MRI. Total dwell time associated with one MRI sequence (one AOI) and contrast in primary lesion area enable one to estimate the amount and subtleties of diagnosis criteria provided by the sequence. From this information, one could establish some rules to optimize brain MRI compression (depending on the sequence to be compressed).

  11. Risk of multiple sclerosis after optic neuritis in patients with normal baseline brain MRI.

    Science.gov (United States)

    Marques, Inês Brás; Matias, Fernando; Silva, Eduardo Duarte; Cunha, Luis; Sousa, Lívia

    2014-04-01

    When assessing and managing a patient with optic neuritis (ON), the risk of future development of multiple sclerosis (MS) is an important issue, as this can be the first presentation of the disease. Although the presence of lesions on baseline brain MRI is the strongest predictor of MS conversion, some patients with normal imaging also develop MS. We aimed to estimate MS risk in patients with ON and a normal baseline MRI and identify individuals with higher risk of conversion. We performed a retrospective study including patients with idiopathic ON and normal baseline brain MRI who presented to our hospital over an 8 year period. Of a total of 42 patients, 10 converted to MS: five during the first follow-up year, seven during the first 2 years and all of the patients within the first 5 years, with a 5 year MS conversion rate of 23.8%. MS conversion rates were significantly higher in patients with history of previous symptoms suggestive of demyelination (p=0.002), cerebrospinal fluid oligoclonal bands unmatched in serum (p=0.004) and incomplete visual acuity recovery (≤6/12) after 1 year (p=0.002). Lower conversion rates were found in patients with optic disc edema (p=0.022). According to these results, a significant proportion of patients with idiopathic ON and a normal baseline brain MRI will develop MS, with a higher risk during the first 5 years. Therefore, in the presence of factors in favor of MS conversion, close follow-up, including semestral medical consultations and yearly brain MRI, can be recommended. Early immunomodulatory treatment may be individually considered as it can delay conversion and reduce new lesion development rate.

  12. Quantitative analysis of MRI-guided attenuation correction techniques in time-of-flight brain PET/MRI.

    Science.gov (United States)

    Mehranian, Abolfazl; Arabi, Hossein; Zaidi, Habib

    2016-04-15

    In quantitative PET/MR imaging, attenuation correction (AC) of PET data is markedly challenged by the need of deriving accurate attenuation maps from MR images. A number of strategies have been developed for MRI-guided attenuation correction with different degrees of success. In this work, we compare the quantitative performance of three generic AC methods, including standard 3-class MR segmentation-based, advanced atlas-registration-based and emission-based approaches in the context of brain time-of-flight (TOF) PET/MRI. Fourteen patients referred for diagnostic MRI and (18)F-FDG PET/CT brain scans were included in this comparative study. For each study, PET images were reconstructed using four different attenuation maps derived from CT-based AC (CTAC) serving as reference, standard 3-class MR-segmentation, atlas-registration and emission-based AC methods. To generate 3-class attenuation maps, T1-weighted MRI images were segmented into background air, fat and soft-tissue classes followed by assignment of constant linear attenuation coefficients of 0, 0.0864 and 0.0975 cm(-1) to each class, respectively. A robust atlas-registration based AC method was developed for pseudo-CT generation using local weighted fusion of atlases based on their morphological similarity to target MR images. Our recently proposed MRI-guided maximum likelihood reconstruction of activity and attenuation (MLAA) algorithm was employed to estimate the attenuation map from TOF emission data. The performance of the different AC algorithms in terms of prediction of bones and quantification of PET tracer uptake was objectively evaluated with respect to reference CTAC maps and CTAC-PET images. Qualitative evaluation showed that the MLAA-AC method could sparsely estimate bones and accurately differentiate them from air cavities. It was found that the atlas-AC method can accurately predict bones with variable errors in defining air cavities. Quantitative assessment of bone extraction accuracy based on

  13. Cortical laminar necrosis in brain infarcts: chronological changes on MRI

    Energy Technology Data Exchange (ETDEWEB)

    Komiyama, M. [Department of Neurosurgery, Osaka City General Hospital, 2-13-22, Miyakojima-Hondouri, Miyakojima, Osaka 534 (Japan); Nishikawa, M. [Department of Neurosurgery, Osaka City General Hospital, 2-13-22, Miyakojima-Hondouri, Miyakojima, Osaka 534 (Japan); Yasui, T. [Department of Neurosurgery, Osaka City General Hospital, 2-13-22, Miyakojima-Hondouri, Miyakojima, Osaka 534 (Japan)

    1997-07-10

    We studied the MRI characteristics of cortical laminar necrosis in ischaemic stroke. We reviewed 13 patients with cortical laminar high signal on T1-weighted images to analyse the chronological changes in signal intensity and contrast enhancement. High-density cortical lesions began to appear on T1-weighted images about 2 weeks after the ictus. At 1-2 months they were prominent. They began to fade from 3 months but could be seen up to 11 months. These cortical lesions showed isointensity or high intensity on T2-weighted images and did not show low intensity at any stage. Contrast enhancement of the laminar lesions was prominent at 1-2 months and became less apparent from 3 months, but could be seen up to 8 months. (orig.). With 6 figs., 1 tab.

  14. Evaluation of Brain and Cervical MRI Abnormality Rates in Patients With Systemic Lupus Erythematosus With or Without Neurological Manifestations

    Directory of Open Access Journals (Sweden)

    Seyed Reza Najafizadeh

    2011-11-01

    Full Text Available Background: Central nervous system (CNS involvement has been observed in 14-80% of patients with systemic lupus erythematosus (SLE. Magnetic resonance imaging (MRI is an appropriate method for evaluating CNS involvement in these patients. Clinical manifestations and MRI findings of CNS lupus should be differentiated from other mimicking diseases such as multiple sclerosis (MS.Objectives: The aim of this study was to evaluate the prevalence and extent of brain and cervical cord MRI lesions of lupus patients. The relationship between neurological signs and symptoms and MRI findings were evaluated as well.Patients and Methods: Fifty SLE patients who had been referred to the rheumatology clinic of our hospital within 2009 were included in a cross sectional study. All patients fulfilled the revised 1981 American College of Rheumatology (ACR criteria for SLE. We evaluated the neurological signs and symptoms and brain and cervical MRI findings in these patients.Results: Forty-one patients (82% were female and nine (18% were male. The mean age was 30.1 ± 9.3 years. Twenty eight (56% patients had an abnormal brain MRI. No one showed any abnormality in the cervical MRI. The lesions in 20 patients were similar to demyelinative plaques. Seventeen patients with abnormal brain MRI were neurologically asymptomatic. There was only a significant relationship between neurological motor manifestations and brain MRI abnormal findings.Conclusions: Unlike the brain, cervical MRI abnormality and especially asymptomatic cord involvement in MRI is quite rare in SLE patients. This finding may be helpful to differentiate SLE from other CNS disorders such as MS.

  15. Targeted Drug Delivery to the Brain by MRI-guided Focused Ultrasound

    Science.gov (United States)

    Treat, Lisa Hsu; McDannold, Nathan; Vykhodtseva, Natalia; Zhang, Yongzhi; Tam, Karen; Hynynen, Kullervo

    2006-05-01

    The effect of focused ultrasound on the absorption of liposome-encapsulated doxorubicin in the brain was investigated. By applying focused ultrasound in the presence of microbubble ultrasound contrast agent, we achieved targeted drug delivery to the brain in vivo. Tissue drug concentrations in sonicated brain corresponded with cytotoxic levels measured in various human tumors and were significantly different from those measured in unexposed contralateral control samples (p ⩽ 0.02). In addition, increased MR signal enhancement at the focal location on contrast-enhanced T1-weighted fast spin echo images correlated with increased penetration of doxorubicin into brain tissue (r = 0.85), indicating the potential of MRI to be used as an indicator of blood-brain barrier permeability during treatment. Further investigation is required to evaluate the efficacy of this technique and to optimize its parameters for clinical application.

  16. Exploring the brain network: a review on resting-state fMRI functional connectivity.

    Science.gov (United States)

    van den Heuvel, Martijn P; Hulshoff Pol, Hilleke E

    2010-08-01

    Our brain is a network. It consists of spatially distributed, but functionally linked regions that continuously share information with each other. Interestingly, recent advances in the acquisition and analysis of functional neuroimaging data have catalyzed the exploration of functional connectivity in the human brain. Functional connectivity is defined as the temporal dependency of neuronal activation patterns of anatomically separated brain regions and in the past years an increasing body of neuroimaging studies has started to explore functional connectivity by measuring the level of co-activation of resting-state fMRI time-series between brain regions. These studies have revealed interesting new findings about the functional connections of specific brain regions and local networks, as well as important new insights in the overall organization of functional communication in the brain network. Here we present an overview of these new methods and discuss how they have led to new insights in core aspects of the human brain, providing an overview of these novel imaging techniques and their implication to neuroscience. We discuss the use of spontaneous resting-state fMRI in determining functional connectivity, discuss suggested origins of these signals, how functional connections tend to be related to structural connections in the brain network and how functional brain communication may form a key role in cognitive performance. Furthermore, we will discuss the upcoming field of examining functional connectivity patterns using graph theory, focusing on the overall organization of the functional brain network. Specifically, we will discuss the value of these new functional connectivity tools in examining believed connectivity diseases, like Alzheimer's disease, dementia, schizophrenia and multiple sclerosis. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Fractality in the neuron axonal topography of the human brain based on 3-D diffusion MRI

    Science.gov (United States)

    Katsaloulis, P.; Ghosh, A.; Philippe, A. C.; Provata, A.; Deriche, R.

    2012-05-01

    In this work the fractal architecture of the neuron axonal topography of the human brain is evaluated, as derived from 3-D diffusion MRI (dMRI) acquisitions. This is a 3D extension of work performed previously in 2D regions of interest (ROIs), where the fractal dimension of the neuron axonal topography was computed from dMRI data. A group study with 18 subjects is here conducted and the fractal dimensions D f of the entire 3-D volume of the brains is estimated via the box counting, the correlation dimension and the fractal mass dimension methods. The neuron axon data is obtained using tractography algorithms on diffusion tensor imaging of the brain. We find that all three calculations of D f give consistent results across subjects, namely, they demonstrate fractal characteristics in the short and medium length scales: different fractal exponents prevail at different length scales, an indication of multifractality. We surmise that this complexity stems as a collective property emerging when many local brain units, performing different functional tasks and having different local topologies, are recorded together.

  18. Summary of high field diffusion MRI and microscopy data demonstrate microstructural aberration in chronic mild stress rat brain

    DEFF Research Database (Denmark)

    Khan, Ahmad Raza; Chuhutin, Andrey; Wiborg, Ove

    2016-01-01

    Abstract This data article describes a large, high resolution diffusion MRI data set from fixed rat brain acquired at high field strength. The rat brain samples consist of21adult rat brain hemispheres from animals exposed to chronic mild stress (anhedonic and resilient) and controls. Histology from...

  19. Cornelia de Lange syndrome: Correlation of brain MRI findings with behavioral assessment.

    Science.gov (United States)

    Roshan Lal, Tamanna R; Kliewer, Mark A; Lopes, Thelma; Rebsamen, Susan L; O'Connor, Julia; Grados, Marco A; Kimball, Amy; Clemens, Julia; Kline, Antonie D

    2016-06-01

    Neurobehavioral and developmental issues with a broad range of deficits are prominent features of Cornelia de Lange syndrome (CdLS), a disorder due to disruption of the cohesin protein complex. The etiologic relationship of these clinical findings to anatomic abnormalities on neuro-imaging studies has not, however, been established. Anatomic abnormalities in the brain and central nervous system specific to CdLS have been observed, including changes in the white matter, brainstem, and cerebellum. We hypothesize that location and severity of brain abnormalities correlate with clinical phenotype in CdLS, as seen in other developmental disorders. In this study, we retrospectively evaluated brain MRI studies of 15 individuals with CdLS and compared these findings to behavior at the time of the scan. Behavior was assessed using the Aberrant Behavior Checklist (ABC), a validated behavioral assessment tool with several clinical features. Ten of fifteen (67%) of CdLS patients had abnormal findings on brain MRI, including cerebral atrophy, white matter changes, cerebellar hypoplasia, and enlarged ventricles. Other findings included pituitary tumors or cysts, Chiari I malformation and gliosis. Abnormal behavioral scores in more than one behavioral area were seen in all but one patient. All 5 of the 15 (33%) patients with normal structural MRI studies had abnormal ABC scores. All normal ABC scores were noted in only one patient and this was correlated with moderately abnormal MRI changes. Although our cohort is small, our results suggest that abnormal behaviors can exist in individuals with CdLS in the setting of relatively normal structural brain findings. © 2016 Wiley Periodicals, Inc.

  20. Multidimensional MRI-CT atlas of the naked mole-rat brain

    Directory of Open Access Journals (Sweden)

    Fumiko eSeki

    2013-12-01

    Full Text Available Naked mole-rats have a variety of distinctive features such as the organisation of a hierarchical society (known as eusociality, extraordinary longevity, and cancer resistance; thus, it would be worthwhile investigating these animals in detail. One important task is the preparation of a brain atlas database that provide comprehensive information containing multidimensional data with various image contrasts, which can be achievable using a magnetic resonance imaging (MRI. Advanced MRI techniques such as diffusion tensor imaging (DTI, which generates high contrast images of fibre structures, can characterise unique morphological properties in addition to conventional MRI. To obtain high spatial resolution images, MR histology, DTI, and X-ray computed tomography (CT were performed on the fixed adult brain. Skull and brain structures were segmented as well as reconstructed in stereotaxic coordinates. Data were also acquired for the neonatal brain to allow developmental changes to be observed. Moreover, in vivo imaging of naked mole-rats was established as an evaluation tool of live animals. The data obtained comprised three-dimensional (3D images with high tissue contrast as well as stereotaxic coordinates. Developmental differences in the visual system were highlighted in particular by DTI. Although it was difficult to delineate optic nerves in the mature adult brain, parts of them could be distinguished in the immature neonatal brain. From observation of cortical thickness, possibility of high somatosensory system development replaced to the visual system was indicated. 3D visualisation of brain structures in the atlas as well as the establishment of in vivo imaging would promote neuroimaging researches towards detection of novel characteristics of eusocial naked mole-rats.

  1. Structural MRI studies of language function in the undamaged brain.

    Science.gov (United States)

    Richardson, Fiona M; Price, Cathy J

    2009-10-01

    In recent years, the demonstration that structural changes can occur in the human brain beyond those associated with development, ageing and neuropathology has revealed a new approach to studying the neural basis of behaviour. In this review paper, we focus on structural imaging studies of language that have utilised behavioural measures in order to investigate the neural correlates of language skills in the undamaged brain. We report studies that have used two different techniques: voxel-based morphometry of whole brain grey or white matter images and diffusion tensor imaging. At present, there are relatively few structural imaging studies of language. We group them into those that investigated (1) the perception of novel speech sounds, (2) the links between speech sounds and their meaning, (3) speech production, and (4) reading. We highlight the validity of the findings by comparing the results to those from functional imaging studies. Finally, we conclude by summarising the novel contribution of these studies to date and potential directions for future research.

  2. MRI

    Science.gov (United States)

    MRI does not use ionizing radiation. No side effects from the magnetic fields and radio waves have been reported. The most common type of contrast (dye) used is gadolinium. It is very safe. Allergic reactions rarely ...

  3. Creating probabilistic maps of the face network in the adolescent brain: a multicentre functional MRI study.

    Science.gov (United States)

    Tahmasebi, Amir M; Artiges, Eric; Banaschewski, Tobias; Barker, Gareth J; Bruehl, Ruediger; Büchel, Christian; Conrod, Patricia J; Flor, Herta; Garavan, Hugh; Gallinat, Jürgen; Heinz, Andreas; Ittermann, Bernd; Loth, Eva; Mareckova, Klara; Martinot, Jean-Luc; Poline, Jean-Baptiste; Rietschel, Marcella; Smolka, Michael N; Ströhle, Andreas; Schumann, Gunter; Paus, Tomáš

    2012-04-01

    Large-scale magnetic resonance (MR) studies of the human brain offer unique opportunities for identifying genetic and environmental factors shaping the human brain. Here, we describe a dataset collected in the context of a multi-centre study of the adolescent brain, namely the IMAGEN Study. We focus on one of the functional paradigms included in the project to probe the brain network underlying processing of ambiguous and angry faces. Using functional MR (fMRI) data collected in 1,110 adolescents, we constructed probabilistic maps of the neural network engaged consistently while viewing the ambiguous or angry faces; 21 brain regions responding to faces with high probability were identified. We were also able to address several methodological issues, including the minimal sample size yielding a stable location of a test region, namely the fusiform face area (FFA), as well as the effect of acquisition site (eight sites) and scanner (four manufacturers) on the location and magnitude of the fMRI response to faces in the FFA. Finally, we provided a comparison between male and female adolescents in terms of the effect sizes of sex differences in brain response to the ambiguous and angry faces in the 21 regions of interest. Overall, we found a stronger neural response to the ambiguous faces in several cortical regions, including the fusiform face area, in female (vs. male) adolescents, and a slightly stronger response to the angry faces in the amygdala of male (vs. female) adolescents. Copyright © 2011 Wiley Periodicals, Inc.

  4. MRI surveillance of cancer cell fate in a brain metastasis model after early radiotherapy.

    Science.gov (United States)

    Murrell, Donna H; Zarghami, Niloufar; Jensen, Michael D; Dickson, Fiona; Chambers, Ann F; Wong, Eugene; Foster, Paula J

    2017-10-01

    Incidence of brain metastasis attributed to breast cancer is increasing and prognosis is poor. It is thought that disseminated dormant cancer cells persist in metastatic organs and may evade treatments, thereby facilitating a mechanism for recurrence. Radiotherapy is used to treat brain metastases clinically, but assessment has been limited to macroscopic tumor volumes detectable by clinical imaging. Here, we use cellular MRI to understand the concurrent responses of metastases and nonproliferative or slowly cycling cancer cells to radiotherapy. MRI cell tracking was used to investigate the impact of early cranial irradiation on the fate of individual iron-labeled cancer cells and outgrowth of breast cancer brain metastases in the human MDA-MB-231-BR-HER2 cell model. Early whole-brain radiotherapy significantly reduced the outgrowth of metastases from individual disseminated cancer cells in treated animals compared to controls. However, the numbers of nonproliferative iron-retaining cancer cells in the brain were not significantly different. Radiotherapy, when given early in cancer progression, is effective in preventing the outgrowth of solitary cancer cells to brain metastases. Future studies of the nonproliferative cancer cells' clonogenic potentials are warranted, given that their persistent presence suggests that they may have evaded treatment. Magn Reson Med 78:1506-1512, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  5. Non-arteritic anterior ischaemic optic neuropathy: evaluation of the brain and optic pathway by conventional MRI and magnetisation transfer imaging

    Energy Technology Data Exchange (ETDEWEB)

    Argyropoulou, Maria I.; Zikou, Anastasia K.; Tzovara, Ioanna; Margariti, Persefoni [University of Ioannina, Department of Radiology, Medical School, Ioannina (Greece); Nikas, Alexios; Asproudis, Ioannis [University of Ioannina, Ophthalmologic Clinic, Medical School, Ioannina (Greece); Blekas, Kostandinos; Galatsanos, Nikolaos [University of Ioannina, Department of Informatics, Ioannina (Greece)

    2007-07-15

    The purpose of the study was to examine the brain and the visual pathway of patients with non-arteritic anterior ischaemic optic neuropathy (NAION) by using conventional MRI (cMRI) and volumetric magnetisation transfer imaging (MTI). Thirty NAION patients, aged 67.5 {+-} 8.14 years, and 28 age- and gender-matched controls were studied. MTI was used to measure the magnetisation transfer ratio (MTR) of the chiasm and for MTR histograms of the brain. The presence of areas of white matter hyperintensity (WMH) was evaluated on fluid-attenuated inversion recovery (FLAIR) images. Area of the optic nerves (ONs) and volume of the chiasm were assessed, as were coronal short-tau inversion recovery (STIR) and MTI images, respectively. More areas of WMH were observed in patients (total 419; mean 14.4; SD 19) than in controls (total 127; mean 4.7; SD 5.7), P < 0.001. Area (in square millimetres) of the affected ONs, volume(in cubic millimetres) and MTR (in percent) of the chiasm (10.7 {+-} 4.6), (75.8 {+-} 20.2), (56.4 {+-} 6.5), respectively, were lower in patients than in controls (13.6 {+-} 4.3), (158.2 {+-} 75.3) (62.1 {+-} 6.2), respectively, P < 0.05. Mean MTR of brain histograms was lower in patients (53.0 {+-} 8.0) than in controls (58.0 {+-} 5.6), P < 0.05. NAION is characterised by decreased ON and chiasmatic size. The low MTR of the chiasm and brain associated with increased areas of WMH may be suggestive of demyelination and axonal damage due to generalised cerebral vascular disease. (orig.)

  6. Impact of CT/MRI Image Registration on Target Delineation of Radiotherapy for Lung Cancer with Brain Metastasis

    Directory of Open Access Journals (Sweden)

    Yang LI

    2012-08-01

    Full Text Available Background and objective Accurate target delineation in radiation therapy is a key component of the treatment regimen for brain metastasis for which CT/MRI fusion technology provides a feasible method. The aim of this study is to explore the role of CT/MRI image registration in target delineation for lung cancer with brain metastasis. Methods The image data of 31 patients were processed using Oncentra MasterPlan. The GTVs were delineated on CT and CT/MRI images, and their differences were compared to analyze the impact of the maximum average error and tumor edema on target delineation. Results The GTVs delineated on CT/MRI images were markedly smaller than those delineated on CT images. Target delineation was clearly influenced by edema. Conclusion The technology of CT/MRI image registration can improve the accuracy of target delineation for lung cancer with brain metastasis.

  7. [Prenatal imaging of the fetal brain--indications and developmental implications of fetal MRI].

    Science.gov (United States)

    Ben Sira, Liat; Garel, Catherine; Leitner, Yael; Gross-Tsur, Varda

    2008-01-01

    Cerebral anomalies at birth account for approximately 9% of all isolated anomalies and are present in 15.9% of babies with multiple malformations and, thereby, warrant concern in antenatal diagnosis. Ultrasonography is the basic screening examination for the pregnant woman due to its efficiency, availability, low cost and real time capability. Many of the major anomalies can be diagnosed by ultrasound during the first trimester of pregnancy. However subtle abnormalities can be missed by ultrasonography or detected only in later stages of pregnancy. Fetal MRI has proved itself to be an effective adjuvant imaging tool and is indicated whenever there is a diagnostic query on ultrasound or a need to define a suspected brain anomaly. The information obtained from fetal MRI has significant implications for parental counseling regarding both the type of malformation as well as the neurological and developmental prognosis. Current indications for fetal MRI, focusing on various common fetal cerebral pathologies, will be addressed in this review.

  8. Brain activity modification produced by a single radioelectric asymmetric brain stimulation pulse: a new tool for neuropsychiatric treatments. Preliminary fMRI study

    Directory of Open Access Journals (Sweden)

    Castagna A

    2011-10-01

    Full Text Available Salvatore Rinaldi1,2, Vania Fontani1, Alessandro Castagna1 1Department of Neuro-Psycho-Physio Pathology, Rinaldi Fontani Institute, Florence, Italy; 2Medical School of Occupational Medicine, University of Florence, Florence, Italy Purpose: Radioelectric asymmetric brain stimulation technology with its treatment protocols has shown efficacy in various psychiatric disorders. The aim of this work was to highlight the mechanisms by which these positive effects are achieved. The current study was conducted to determine whether a single 500-millisecond radioelectric asymmetric conveyor (REAC brain stimulation pulse (BSP, applied to the ear, can effect a modification of brain activity that is detectable using functional magnetic resonance imaging (fMRI. Methods: Ten healthy volunteers, six females and four males, underwent fMRI during a simple finger-tapping motor task before and after receiving a single 500-millisecond REAC-BSP. Results: The fMRI results indicate that the average variation in task-induced encephalic activation patterns is lower in subjects following the single REAC pulse. Conclusion: The current report demonstrates that a single REAC-BSP is sufficient to modulate brain activity in awake subjects, able to be measured using fMRI. These initial results open new perspectives into the understanding of the effects of weak and brief radio pulses upon brain activity, and provide the basis for further indepth studies using REAC-BSP and fMRI. Keywords: fMRI, brain stimulation, brain modulation, REAC, neuropsychiatric treatments

  9. Brain size and white matter content of cerebrospinal tracts determine the upper cervical cord area: evidence from structural brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Engl, Christina; Arsic, Milan; Boucard, Christine C.; Biberacher, Viola; Nunnemann, Sabine; Muehlau, Mark [Technische Universitaet Muenchen, Department of Neurology, Klinikum rechts der Isar, Munich (Germany); Technische Universitaet Muenchen, TUM-Neuroimaging Center, Klinikum rechts der Isar, Munich (Germany); Schmidt, Paul [Technische Universitaet Muenchen, Department of Neurology, Klinikum rechts der Isar, Munich (Germany); Ludwig-Maximilians-University Muenchen, Department of Statistics, Munich (Germany); Roettinger, Michael [Technische Universitaet Muenchen, Department of Radiology, Klinikum rechts der Isar, Munich (Germany); Muenchner Institut fuer Neuroradiologie, Munich (Germany); Etgen, Thorleif [Technische Universitaet Muenchen, Department of Neurology, Klinikum rechts der Isar, Munich (Germany); Klinikum Traunstein, Department of Neurology, Traunstein (Germany); Koutsouleris, Nikolaos; Meisenzahl, Eva M. [Ludwig-Maximilians-Universitaet Muenchen, Department of Psychiatry and Psychotherapy, Munich (Germany); Reiser, Maximilian [Ludwig-Maximilians-Universitaet, Department of Radiology, Munich (Germany)

    2013-08-15

    Measurement of the upper cervical cord area (UCCA) from brain MRI may be an effective way to quantify spinal cord involvement in neurological disorders such as multiple sclerosis. However, knowledge on the determinants of UCCA in healthy controls (HCs) is limited. In two cohorts of 133 and 285 HCs, we studied the influence of different demographic, body-related, and brain-related parameters on UCCA by simple and partial correlation analyses as well as by voxel-based morphometry (VBM) across both cerebral gray matter (GM) and white matter (WM). First, we confirmed the known but moderate effect of age on UCCA in the older cohort. Second, we studied the correlation of UCCA with sex, body height, and total intracranial volume (TIV). TIV was the only variable that correlated significantly with UCCA after correction for the other variables. Third, we studied the correlation of UCCA with brain-related parameters. Brain volume correlated stronger with UCCA than TIV. Both volumes of the brain tissue compartments GM and WM correlated with UCCA significantly. WM volume explained variance of UCCA after correction for GM volume, whilst the opposite was not observed. Correspondingly, VBM did not yield any brain region, whose GM content correlated significantly with UCCA, whilst cerebral WM content of cerebrospinal tracts strongly correlated with UCCA. This latter effect increased along a craniocaudal gradient. UCCA is mainly determined by brain volume as well as by WM content of cerebrospinal tracts. (orig.)

  10. Brain activity during driving with distraction: an immersive fMRI study

    Directory of Open Access Journals (Sweden)

    Tom A Schweizer

    2013-02-01

    Full Text Available Introduction: Non-invasive measurements of brain activity have an important role to play in understanding driving ability. The current study aimed to identify the neural underpinnings of human driving behavior by visualizing the areas of the brain involved in driving under different levels of demand, such as driving while distracted or making left turns at busy intersections. Methods: To capture brain activity during driving, we placed a driving simulator with a fully functional steering wheel and pedals in a 3.0 Tesla functional magnetic resonance imaging (fMRI system. To identify the brain areas involved while performing different real-world driving maneuvers, participants completed tasks ranging from simple (right turns to more complex (left turns at busy intersections. To assess the effects of driving while distracted, participants were asked to perform an auditory task while driving analogous to speaking on a hands-free device and driving. Results: A widely distributed brain network was identified, especially when making left turns at busy intersections compared to more simple driving tasks. During distracted driving, brain activation shifted dramatically from the posterior, visual and spatial areas to the prefrontal cortex. Conclusions: Our findings suggest that the distracted brain sacrificed areas in the posterior brain important for visual attention and alertness to recruit enough brain resources to perform a secondary, cognitive task. The present findings offer important new insights into the scientific understanding of the neuro-cognitive mechanisms of driving behavior and lay down an important foundation for future clinical research.

  11. Reprint of "Quantitative evaluation of brain development using anatomical MRI and diffusion tensor imaging".

    Science.gov (United States)

    Oishi, Kenichi; Faria, Andreia V; Yoshida, Shoko; Chang, Linda; Mori, Susumu

    2014-02-01

    The development of the brain is structure-specific, and the growth rate of each structure differs depending on the age of the subject. Magnetic resonance imaging (MRI) is often used to evaluate brain development because of the high spatial resolution and contrast that enable the observation of structure-specific developmental status. Currently, most clinical MRIs are evaluated qualitatively to assist in the clinical decision-making and diagnosis. The clinical MRI report usually does not provide quantitative values that can be used to monitor developmental status. Recently, the importance of image quantification to detect and evaluate mild-to-moderate anatomical abnormalities has been emphasized because these alterations are possibly related to several psychiatric disorders and learning disabilities. In the research arena, structural MRI and diffusion tensor imaging (DTI) have been widely applied to quantify brain development of the pediatric population. To interpret the values from these MR modalities, a "growth percentile chart," which describes the mean and standard deviation of the normal developmental curve for each anatomical structure, is required. Although efforts have been made to create such a growth percentile chart based on MRI and DTI, one of the greatest challenges is to standardize the anatomical boundaries of the measured anatomical structures. To avoid inter- and intra-reader variability about the anatomical boundary definition, and hence, to increase the precision of quantitative measurements, an automated structure parcellation method, customized for the neonatal and pediatric population, has been developed. This method enables quantification of multiple MR modalities using a common analytic framework. In this paper, the attempt to create an MRI- and a DTI-based growth percentile chart, followed by an application to investigate developmental abnormalities related to cerebral palsy, Williams syndrome, and Rett syndrome, have been introduced. Future

  12. Quantitative evaluation of brain development using anatomical MRI and diffusion tensor imaging.

    Science.gov (United States)

    Oishi, Kenichi; Faria, Andreia V; Yoshida, Shoko; Chang, Linda; Mori, Susumu

    2013-11-01

    The development of the brain is structure-specific, and the growth rate of each structure differs depending on the age of the subject. Magnetic resonance imaging (MRI) is often used to evaluate brain development because of the high spatial resolution and contrast that enable the observation of structure-specific developmental status. Currently, most clinical MRIs are evaluated qualitatively to assist in the clinical decision-making and diagnosis. The clinical MRI report usually does not provide quantitative values that can be used to monitor developmental status. Recently, the importance of image quantification to detect and evaluate mild-to-moderate anatomical abnormalities has been emphasized because these alterations are possibly related to several psychiatric disorders and learning disabilities. In the research arena, structural MRI and diffusion tensor imaging (DTI) have been widely applied to quantify brain development of the pediatric population. To interpret the values from these MR modalities, a "growth percentile chart," which describes the mean and standard deviation of the normal developmental curve for each anatomical structure, is required. Although efforts have been made to create such a growth percentile chart based on MRI and DTI, one of the greatest challenges is to standardize the anatomical boundaries of the measured anatomical structures. To avoid inter- and intra-reader variability about the anatomical boundary definition, and hence, to increase the precision of quantitative measurements, an automated structure parcellation method, customized for the neonatal and pediatric population, has been developed. This method enables quantification of multiple MR modalities using a common analytic framework. In this paper, the attempt to create an MRI- and a DTI-based growth percentile chart, followed by an application to investigate developmental abnormalities related to cerebral palsy, Williams syndrome, and Rett syndrome, have been introduced. Future

  13. Scale-Free Brain-Wave Music from Simultaneously EEG and fMRI Recordings

    Science.gov (United States)

    Lu, Jing; Wu, Dan; Yang, Hua; Luo, Cheng; Li, Chaoyi; Yao, Dezhong

    2012-01-01

    In the past years, a few methods have been developed to translate human EEG to music. In 2009, PloS One 4 e5915, we developed a method to generate scale-free brainwave music where the amplitude of EEG was translated to music pitch according to the power law followed by both of them, the period of an EEG waveform is translated directly to the duration of a note, and the logarithm of the average power change of EEG is translated to music intensity according to the Fechner's law. In this work, we proposed to adopt simultaneously-recorded fMRI signal to control the intensity of the EEG music, thus an EEG-fMRI music is generated by combining two different and simultaneous brain signals. And most importantly, this approach further realized power law for music intensity as fMRI signal follows it. Thus the EEG-fMRI music makes a step ahead in reflecting the physiological process of the scale-free brain. PMID:23166768

  14. Scale-free brain-wave music from simultaneously EEG and fMRI recordings.

    Science.gov (United States)

    Lu, Jing; Wu, Dan; Yang, Hua; Luo, Cheng; Li, Chaoyi; Yao, Dezhong

    2012-01-01

    In the past years, a few methods have been developed to translate human EEG to music. In 2009, PloS One 4 e5915, we developed a method to generate scale-free brainwave music where the amplitude of EEG was translated to music pitch according to the power law followed by both of them, the period of an EEG waveform is translated directly to the duration of a note, and the logarithm of the average power change of EEG is translated to music intensity according to the Fechner's law. In this work, we proposed to adopt simultaneously-recorded fMRI signal to control the intensity of the EEG music, thus an EEG-fMRI music is generated by combining two different and simultaneous brain signals. And most importantly, this approach further realized power law for music intensity as fMRI signal follows it. Thus the EEG-fMRI music makes a step ahead in reflecting the physiological process of the scale-free brain.

  15. Structural linear measurements in the newborn brain: accuracy of cranial ultrasound compared to MRI

    Energy Technology Data Exchange (ETDEWEB)

    Leijser, Lara M. [Hammersmith Hospital, Imperial College, Department of Paediatrics, London (United Kingdom); Srinivasan, Latha; Cowan, Frances M. [Hammersmith Hospital, Imperial College, Department of Paediatrics, London (United Kingdom); Hammersmith Hospital, Imperial College, Department of Imaging Sciences, London (United Kingdom); Rutherford, Mary A.; Counsell, Serena J.; Allsop, Joanna M. [Hammersmith Hospital, Imperial College, Department of Imaging Sciences, London (United Kingdom)

    2007-07-15

    Structural size in the neonatal brain is of clinical importance. Cranial ultrasonography (cUS) is the primary method used for evaluating the neonatal brain and it is important to know whether linear measurements made using this technique are accurate. To compare linear measurements of different cerebral structures made from neonatal cUS and contemporaneous MRI. Preterm and term infants studies with cUS and MRI on the same day were studied. Linear measurements made using both techniques from many cerebral structures were compared using a paired t-test. A total of 44 sets of scans from 26 preterm and 8 term infants were assessed. Small but significant differences between the cUS and MRI measurements (P<0.05) were found for the ventricular index, the posterior horn depth of the lateral ventricle, the extracerebral space and interhemispheric fissure, and the cortex of the cingulate gyrus. No significant differences were found for any other measurements. Linear measurements from cUS are accurate for most neonatal cerebral structures. Significant differences compared to MRI were found for a few structures, but only for the cortex were the absolute differences marked and possibly of clinical importance. (orig.)

  16. EVALUATION OF BRAIN TUMOURS BY MRI TECHNIQUES AND THEIR HISTOPATHOLOGICAL CORRELATION

    Directory of Open Access Journals (Sweden)

    Mohammad Shamim

    2014-12-01

    Full Text Available : This study was conducted on thirty patients of brain tumors diagnosed on CT scan/ Conventional MRI. It was performed in the Department of Radiological and PET Imaging, Institute of Nuclear Medicine and Allied Sciences (INMAS, Brig S. K. Mazumdar Marg , Lucknow road, Delhi. Out of thirty patients, 19 patients (63.33% were male and 11 patients (36.66% were female. Their ages ranged from 22 to 63 years. The most common presenting symptom was headache followed by seizures. MRI is a powerful tool for evaluation and characterization of brain tumors because of its superior soft tissue contrast and multiplanar capabilities. All these patients underwent routine MRI sequences, including T1W, T2WI and FLAIR sequences. Histopathological correlation was obtained in all the patients to serve as the gold standard. Out of thirty patients selected for this study, twenty cases were found to be malignant and ten cases were benign on histopathological evaluation. Majority of malignant lesions were glioblastomamultiforme. Amongst benign cases, majorities were meningioma, one was a granulomatous lesion and one was a benign cystic lesion. On conventional MRI sequences, including T1, T2 and FLAIR, there was significant overlap between appearances of benign and malignant lesions in their intensity on various sequences. Moreover, it has got no prognostic value in follow up of patients after therapy.

  17. Discriminating between brain rest and attention states using fMRI connectivity graphs and subtree SVM

    Science.gov (United States)

    Mokhtari, Fatemeh; Bakhtiari, Shahab K.; Hossein-Zadeh, Gholam Ali; Soltanian-Zadeh, Hamid

    2012-02-01

    Decoding techniques have opened new windows to explore the brain function and information encoding in brain activity. In the current study, we design a recursive support vector machine which is enriched by a subtree graph kernel. We apply the classifier to discriminate between attentional cueing task and resting state from a block design fMRI dataset. The classifier is trained using weighted fMRI graphs constructed from activated regions during the two mentioned states. The proposed method leads to classification accuracy of 1. It is also able to elicit discriminative regions and connectivities between the two states using a backward edge elimination algorithm. This algorithm shows the importance of regions including cerebellum, insula, left middle superior frontal gyrus, post cingulate cortex, and connectivities between them to enhance the correct classification rate.

  18. Temporal and spatial profile of brain diffusion-weighted MRI after cardiac arrest

    Science.gov (United States)

    Mlynash, M.; Campbell, D.M.; Leproust, E.M.; Fischbein, N.J.; Bammer, R.; Eyngorn, I.; Hsia, A.W.; Moseley, M.; Wijman, C.A.C.

    2010-01-01

    Background and Purpose Diffusion-weighted MRI (DWI) of the brain is a promising technique to help predict functional outcome in comatose survivors of cardiac arrest. We aimed to evaluate prospectively the temporal-spatial profile of brain apparent diffusion coefficient (ADC) changes in comatose survivors during the first 8 days after cardiac arrest. Methods ADC values were measured by two independent and blinded investigators in predefined brain regions in 18 good and 15 poor outcome patients with 38 brain MRIs, and compared with 14 normal controls. The same brain regions were also assessed qualitatively by two other independent and blinded investigators. Results In poor outcome patients, cortical structures, in particular the occipital and temporal lobes, and the putamen exhibited the most profound ADC reductions, which were noted as early as 1.5 days and reached nadir between 3 to 5 days after the arrest. Conversely, when compared to normal controls, good outcome patients exhibited increased diffusivity, in particular in the hippocampus, temporal and occipital lobes, and corona radiata. By the qualitative MRI readings, one or more cortical gray matter structures were read as moderately-to-severely abnormal in all poor outcome patients imaged beyond 54 hours after the arrest, but not in the three patients imaged earlier. Conclusions Brain DWI changes in comatose post-cardiac arrest survivors in the first week after the arrest are region- and time-dependent and differ between good and poor outcome patients. With the increasing use of MRI in this context, it is important to be aware of these relationships. PMID:20595666

  19. Genome-wide association studies of mri-defined brain infarcts: Meta-analysis from the charge consortium

    NARCIS (Netherlands)

    S. Debette (Stéphanie); J.C. Bis (Joshua); M. Fornage (Myriam); H.A. Schmid (Herbert); M.A. Ikram (Arfan); S. Sigurdsson (Stefan); G. Heiss (Gerardo); M.V. Struchalin (Maksim); A.V. Smith (Albert Vernon); A. van der Lugt (Aad); C. DeCarli (Charles); T. Lumley (Thomas); D.S. Knopman (David); C. Enzinger (Christian); G. Eiriksdottir (Gudny); P.J. Koudstaal (Peter Jan); A.L. DeStefano (Anita); B.M. Psaty (Bruce); C. Dufouil (Carole); D.J. Catellier (Diane); F. Fazekas (Franz); T. Aspelund (Thor); Y.S. Aulchenko (Yurii); A. Beiser (Alexa); J.I. Rotter (Jerome); C. Tzourio (Christophe); D.K. Shibata (Dean); M. Tscherner (Maria); T.B. Harris (Tamara); F. Rivadeneira Ramirez (Fernando); L.D. Atwood (Larry); K. Rice (Kenneth); R.F. Gottesman (Rebecca); M.A. van Buchem (Mark); A.G. Uitterlinden (André); M. Kelly-Hayes (Margaret); M. Cushman (Mary Ann); Y. Zhu (Yicheng); E.A. Boerwinkle (Eric); V. Gudnason (Vilmundur); A. Hofman (Albert); J.R. Romero (Jose Rafael); M.M.B. Breteler (Monique); R. Schmidt (Reinhold); L.J. Launer (Lenore); W.T. Longstreth Jr

    2010-01-01

    textabstractBackground and Purpose-Previous studies examining genetic associations with MRI-defined brain infarct have yielded inconsistent findings. We investigated genetic variation underlying covert MRI infarct in persons without histories of transient ischemic attack or stroke. We performed meta

  20. Preterm brain injury on term-equivalent age MRI in relation to perinatal factors and neurodevelopmental outcome at two years

    NARCIS (Netherlands)

    Brouwer, Margaretha J; Kersbergen, Karina J; van Kooij, Britt J M; Benders, Manon J N L|info:eu-repo/dai/nl/185214266; van Haastert, Ingrid C; Koopman-Esseboom, C|info:eu-repo/dai/nl/14117739X; Neil, Jeffrey J; de Vries, Linda S|info:eu-repo/dai/nl/072995408; Kidokoro, Hiroyuki; Inder, Terrie E; Groenendaal, Floris|info:eu-repo/dai/nl/073282596

    2017-01-01

    OBJECTIVES: First, to apply a recently extended scoring system for preterm brain injury at term-equivalent age (TEA-)MRI in a regional extremely preterm cohort; second, to identify independent perinatal factors associated with this score; and third, to assess the prognostic value of this TEA-MRI sco

  1. Genome-wide association studies of mri-defined brain infarcts: Meta-analysis from the charge consortium

    NARCIS (Netherlands)

    S. Debette (Stéphanie); J.C. Bis (Joshua); M. Fornage (Myriam); H.A. Schmid (Herbert); M.A. Ikram (Arfan); S. Sigurdsson (Stefan); G. Heiss (Gerardo); M.V. Struchalin (Maksim); A.V. Smith (Albert Vernon); A. van der Lugt (Aad); C. DeCarli (Charles); T. Lumley (Thomas); D.S. Knopman (David); C. Enzinger (Christian); G. Eiriksdottir (Gudny); P.J. Koudstaal (Peter Jan); A.L. DeStefano (Anita); B.M. Psaty (Bruce); C. Dufouil (Carole); D.J. Catellier (Diane); F. Fazekas (Franz); T. Aspelund (Thor); Y.S. Aulchenko (Yurii); A. Beiser (Alexa); J.I. Rotter (Jerome); C. Tzourio (Christophe); D.K. Shibata (Dean); M. Tscherner (Maria); T.B. Harris (Tamara); F. Rivadeneira Ramirez (Fernando); L.D. Atwood (Larry); K. Rice (Kenneth); R.F. Gottesman (Rebecca); M.A. van Buchem (Mark); A.G. Uitterlinden (André); M. Kelly-Hayes (Margaret); M. Cushman (Mary Ann); Y. Zhu (Yicheng); E.A. Boerwinkle (Eric); V. Gudnason (Vilmundur); A. Hofman (Albert); J.R. Romero (Jose Rafael); M.M.B. Breteler (Monique); R. Schmidt (Reinhold); L.J. Launer (Lenore); W.T. Longstreth Jr

    2010-01-01

    textabstractBackground and Purpose-Previous studies examining genetic associations with MRI-defined brain infarct have yielded inconsistent findings. We investigated genetic variation underlying covert MRI infarct in persons without histories of transient ischemic attack or stroke. We performed meta

  2. Comparison between PVHIS on the MRI and the permeability of brain blood vessels in elderly patients

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Katsuhiko; Tanaka, Yuriko; Kubo, Hideki; Takagi, Yasushi; Tachikawa, Shinzo (Omotemachi Hospital, Tachikawa General Hospital, Tokyo (Japan)); Katsunuma, Hideyo

    1989-11-01

    The degree of PVHIS (periventricular high intensity signal) on the MRI was composed with the permeability of brain blood vessels using the cerebrospinal fluid (CSF)/serum ratio for albumin, and the CSF/serum ratio for IgG in elderly patients. The 47 elderly patients (mean age=79.9) were divided into three groups: (1) Mild group (20 cases, M:6, F:14, mean age=75.8), (2) Moderate group (18 cases, M:7, F:11, mean age=82.6), (3) Severe group (9 cases, M:2, F:7, mean age=82.9), in accordance with the degree of PVHIS on the MRI. The MRI was operated at a field strength of 0.22 tesla. The pulse sequence (used on all patients) had a repetition times (TR) of 2,000 msec and a time to echo (TE) of 40 msec. The levels of albumin and IgG in the serum and CSF were measured. The CSF/serum ratio for albumin was used of analyze the permeability of the brain blood vessels in each group. There was no significant difference in the level of the serum albumin, the CSF albumin, the serum IgG, the CSF IgG and the CSF/serum ratio for IgG among the three groups. The same was found to be true for the IgG index which indicates the synthesis of immunoglobulin in the central nervous system. However, there was a statistically significant difference (p<0.05) in the CSF/serum ratio for albumin between groups (1) and (3). The increased CSF/serum ratio for albumin in the severe group indicated there were confluent lesions involving the entire extent of the periventriular white matter on the MRI. This suggested an increased permeability of brain blood vessels which revealed the dysfunction of the blood brain barrier due to affected cerebral endothelial cells in capillaries. (author).

  3. Diagnostic Usefulness of 3 Tesla MRI of the Brain for Cushing Disease in a Child

    OpenAIRE

    Ono, Erina; Ozawa, Ayako; Matoba, Kaori; Motoki, Takanori; Tajima, Asako; Miyata, Ichiro; Ito, Junko; Inoshita, Naoko; Yamada, Syozo; Ida, Hiroyuki

    2011-01-01

    It is sometimes difficult to confirm the location of a microadenoma in Cushing disease. Recently, we experienced an 11-yr-old female case of Cushing disease with hyperprolactinemia. She was referred to our hospital because of decrease of height velocity with body weight gain. On admission, she had typical symptoms of Cushing syndrome. Although no pituitary microadenomas were detected on 1.5 Tesla MRI of the brain, endocrinological examinations including IPS and CS sampling were consistent wit...

  4. A Natural Language Processing-based Model to Automate MRI Brain Protocol Selection and Prioritization.

    Science.gov (United States)

    Brown, Andrew D; Marotta, Thomas R

    2017-02-01

    Incorrect imaging protocol selection can contribute to increased healthcare cost and waste. To help healthcare providers improve the quality and safety of medical imaging services, we developed and evaluated three natural language processing (NLP) models to determine whether NLP techniques could be employed to aid in clinical decision support for protocoling and prioritization of magnetic resonance imaging (MRI) brain examinations. To test the feasibility of using an NLP model to support clinical decision making for MRI brain examinations, we designed three different medical imaging prediction tasks, each with a unique outcome: selecting an examination protocol, evaluating the need for contrast administration, and determining priority. We created three models for each prediction task, each using a different classification algorithm-random forest, support vector machine, or k-nearest neighbor-to predict outcomes based on the narrative clinical indications and demographic data associated with 13,982 MRI brain examinations performed from January 1, 2013 to June 30, 2015. Test datasets were used to calculate the accuracy, sensitivity and specificity, predictive values, and the area under the curve. Our optimal results show an accuracy of 82.9%, 83.0%, and 88.2% for the protocol selection, contrast administration, and prioritization tasks, respectively, demonstrating that predictive algorithms can be used to aid in clinical decision support for examination protocoling. NLP models developed from the narrative clinical information provided by referring clinicians and demographic data are feasible methods to predict the protocol and priority of MRI brain examinations. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  5. Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kopelman, Raoul [Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor MI 48109 (United States)]. E-mail: kopelman@umich.edu; Lee Koo, Yong-Eun [Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor MI 48109 (United States); Philbert, Martin [Environmental Health Sciences, niversity of Michigan (United States); Moffat, Bradford A. [Department of Radiology, The University of Michigan (United States); Ramachandra Reddy, G. [Molecular Therapeutics, Inc., Ann Arbor, MI 48104 (United States); McConville, Patrick [Molecular Therapeutics, Inc., Ann Arbor, MI 48104 (United States); Hall, Daniel E. [Department of Radiology, University of Michigan (United States); Chenevert, Thomas L. [Department of Radiology, University of Michigan (United States); Bhojani, Mahaveer Swaroop [Department of Radiation Oncology, University of Michigan (United States); Buck, Sarah M. [Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor MI 48109 (United States); Rehemtulla, Alnawaz [Department of Radiation Oncology, University of Michigan (United States); Ross, Brian D. [Department of Radiology, University of Michigan (United States)

    2005-05-15

    A paradigm for brain cancer detection, treatment, and monitoring is established. Multifunctional biomedical nanoparticles (30-60 nm) containing photosensitizer externally deliver reactive oxygen species (ROS) to cancer cells while simultaneously enhancing magnetic resonance imaging (MRI) contrast providing real-time tumor kill measurement. Plasma residence time control and specific cell targeting are achieved. A 5 min treatment in rats halted and even reversed in vivo tumor growth after 3-4 days post-treatment.

  6. Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer

    Science.gov (United States)

    Kopelman, Raoul; Lee Koo, Yong-Eun; Philbert, Martin; Moffat, Bradford A.; Ramachandra Reddy, G.; McConville, Patrick; Hall, Daniel E.; Chenevert, Thomas L.; Bhojani, Mahaveer Swaroop; Buck, Sarah M.; Rehemtulla, Alnawaz; Ross, Brian D.

    2005-05-01

    A paradigm for brain cancer detection, treatment, and monitoring is established. Multifunctional biomedical nanoparticles (30-60 nm) containing photosensitizer externally deliver reactive oxygen species (ROS) to cancer cells while simultaneously enhancing magnetic resonance imaging (MRI) contrast providing real-time tumor kill measurement. Plasma residence time control and specific cell targeting are achieved. A 5 min treatment in rats halted and even reversed in vivo tumor growth after 3-4 days post-treatment.

  7. EVALUATION OF BRAIN TUMOURS BY MRI TECHNIQUES AND THEIR HISTOPATHOLOGICAL CORRELATION

    OpenAIRE

    Mohammad Shamim; Reyaz; Anju; Dinesh Kumar; Paricharak

    2014-01-01

    : This study was conducted on thirty patients of brain tumors diagnosed on CT scan/ Conventional MRI. It was performed in the Department of Radiological and PET Imaging, Institute of Nuclear Medicine and Allied Sciences (INMAS), Brig S. K. Mazumdar Marg , Lucknow road, Delhi. Out of thirty patients, 19 patients (63.33%) were male and 11 patients (36.66%) were female. Their ages ranged from 22 to 63 years. The most common presenting symptom was headache followed by seizures...

  8. An availability of brain magnetic resonance imaging (MRI) in the early diagnosis of latent hepatic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, Noaki; Tanabe, Masako; Fujiwara, Akiko; Minato, Takeshi; Sasaki, Hiromasa [Hiroshima Posts and Telecommunications Hospital (Japan); Higashi, Toshihiro; Tsuji, Takao

    1996-03-01

    Brain MRI was carried out in patients with chronic liver diseases. No abnormal findings were recognized in patients with chronic viral hepatitis, while 59.2% of cirrhotics showed a symmetrically strong signal in basal ganglia on T1 weighted image in MRI. This finding significantly related with lowered Fischer`s ratio of serum amino acid, increased levels of serum phenylalanine, tyrosine and hyaluronic acid, prolonged prothrombin time and decreased platelet counts in the peripheral blood. Overt hepatic encephalopathy was observed in 6 of 34 patients with the strong signal in MRI during follow-up period, while none of patients without that finding developed hepatic encephalopathy. These results have indicated that the strong signal in basal ganglia on MRI appears in cirrhotic patients with severe liver dysfunction, and it is an useful index in the early diagnosis of latent hepatic encephalopathy. An improvement of this MRI finding was not observed by long-term oral administration of branched-chain amino acid. (author).

  9. Mapping the mouse brain with rs-fMRI: An optimized pipeline for functional network identification.

    Science.gov (United States)

    Zerbi, Valerio; Grandjean, Joanes; Rudin, Markus; Wenderoth, Nicole

    2015-12-01

    The use of resting state fMRI (rs-fMRI) in translational research is a powerful tool to assess brain connectivity and investigate neuropathology in mouse models. However, despite encouraging initial results, the characterization of consistent and robust resting state networks in mice remains a methodological challenge. One key reason is that the quality of the measured MR signal is degraded by the presence of structural noise from non-neural sources. Notably, in the current pipeline of the Human Connectome Project, a novel approach has been introduced to clean rs-fMRI data, which involves automatic artifact component classification and data cleaning (FIX). FIX does not require any external recordings of physiology or the segmentation of CSF and white matter. In this study, we evaluated the performance of FIX for analyzing mouse rs-fMRI data. Our results showed that FIX can be easily applied to mouse datasets and detects true signals with 100% accuracy and true noise components with very high accuracy (>98%), thus reducing both within- and between-subject variability of rs-fMRI connectivity measurements. Using this improved pre-processing pipeline, maps of 23 resting state circuits in mice were identified including two networks that displayed default mode network-like topography. Hierarchical clustering grouped these neural networks into meaningful larger functional circuits. These mouse resting state networks, which are publicly available, might serve as a reference for future work using mouse models of neurological disorders.

  10. Ultra-fast MRI of the human brain with simultaneous multi-slice imaging

    Science.gov (United States)

    Feinberg, David A.; Setsompop, Kawin

    2013-04-01

    The recent advancement of simultaneous multi-slice imaging using multiband excitation has dramatically reduced the scan time of the brain. The evolution of this parallel imaging technique began over a decade ago and through recent sequence improvements has reduced the acquisition time of multi-slice EPI by over ten fold. This technique has recently become extremely useful for (i) functional MRI studies improving the statistical definition of neuronal networks, and (ii) diffusion based fiber tractography to visualize structural connections in the human brain. Several applications and evaluations are underway which show promise for this family of fast imaging sequences.

  11. MRI-detectable changes in mouse brain structure induced by voluntary exercise.

    Science.gov (United States)

    Cahill, Lindsay S; Steadman, Patrick E; Jones, Carly E; Laliberté, Christine L; Dazai, Jun; Lerch, Jason P; Stefanovic, Bojana; Sled, John G

    2015-06-01

    Physical exercise, besides improving cognitive and mental health, is known to cause structural changes in the brain. Understanding the structural changes that occur with exercise as well as the neuroanatomical correlates of a predisposition for exercise is important for understanding human health. This study used high-resolution 3D MR imaging, in combination with deformation-based morphometry, to investigate the macroscopic changes in brain structure that occur in healthy adult mice following four weeks of voluntary exercise. We found that exercise induced changes in multiple brain structures that are involved in motor function and learning and memory including the hippocampus, dentate gyrus, stratum granulosum of the dentate gyrus, cingulate cortex, olivary complex, inferior cerebellar peduncle and regions of the cerebellum. In addition, a number of brain structures, including the hippocampus, striatum and pons, when measured on MRI prior to the start of exercise were highly predictive of subsequent exercise activity. Exercise tended to normalize these pre-existing differences between mice.

  12. Grasping-related functional MRI brain responses in the macaque monkey

    Science.gov (United States)

    Nelissen, Koen; Vanduffel, Wim

    2011-01-01

    Research in recent decades has suggested the existence of a dedicated brain network devoted to the organization and execution of grasping, one of the most important and skilled movements of primates. Grasping an object requires the transformation of intrinsic object properties such as size, orientation and shape into an appropriate motor scheme shaping the hand. While electrophysiological recordings in the monkey model have proven invaluable for gaining insights into the neuronal substrate underlying this complex behavior, knowledge concerning the existence and organization of a similar system in the human brain is derived mainly from imaging studies. Here we present for the first time functional magnetic resonance imaging (fMRI) of brain activity while macaque monkeys performed reaching and grasping movements in a 3 Tesla MR scanner. Grasping-in-the-dark (compared to reaching) yielded significant activations in anterior intraparietal area (AIP) and ventral premotor area F5, in addition to area PFG in the rostral inferior parietal lobule, somatosensory areas (SI, SII, area 5) and the hand field of F1. Whole-brain macaque fMRI motor studies will be instrumental in establishing possible homologies concerning grasping organization in the human and monkey brains, bridging the gap between human imaging and monkey electrophysiology. PMID:21632943

  13. scMRI reveals large-scale brain network abnormalities in autism.

    Directory of Open Access Journals (Sweden)

    Brandon A Zielinski

    Full Text Available Autism is a complex neurological condition characterized by childhood onset of dysfunction in multiple cognitive domains including socio-emotional function, speech and language, and processing of internally versus externally directed stimuli. Although gross brain anatomic differences in autism are well established, recent studies investigating regional differences in brain structure and function have yielded divergent and seemingly contradictory results. How regional abnormalities relate to the autistic phenotype remains unclear. We hypothesized that autism exhibits distinct perturbations in network-level brain architecture, and that cognitive dysfunction may be reflected by abnormal network structure. Network-level anatomic abnormalities in autism have not been previously described. We used structural covariance MRI to investigate network-level differences in gray matter structure within two large-scale networks strongly implicated in autism, the salience network and the default mode network, in autistic subjects and age-, gender-, and IQ-matched controls. We report specific perturbations in brain network architecture in the salience and default-mode networks consistent with clinical manifestations of autism. Extent and distribution of the salience network, involved in social-emotional regulation of environmental stimuli, is restricted in autism. In contrast, posterior elements of the default mode network have increased spatial distribution, suggesting a 'posteriorization' of this network. These findings are consistent with a network-based model of autism, and suggest a unifying interpretation of previous work. Moreover, we provide evidence of specific abnormalities in brain network architecture underlying autism that are quantifiable using standard clinical MRI.

  14. Endoscopy-verified occult subependymal dissemination of glioblastoma and brain metastasis undetected by MRI: prognostic significance

    Directory of Open Access Journals (Sweden)

    Iacoangeli M

    2012-12-01

    Full Text Available Maurizio Iacoangeli,1 Alessandro Di Rienzo,1 Roberto Colasanti,1 Antonio Zizzi,2 Maurizio Gladi,1 Lorenzo Alvaro,1 Niccolò Nocchi,1 Lucia Giovanna Maria Di Somma,1 Marina Scarpelli,2 Massimo Scerrati11Department of Neurosurgery, 2Department of Pathology, Università Politecnica delle Marche, Umberto I General Hospital, Ancona, ItalyAbstract: Although various prognostic indices exist for patients with malignant brain tumors, the prognostic significance of the subependymal spread of intracranial tumors is still a matter of debate. In this paper, we report the cases of two intraventricular lesions, a recurrent glioblastoma multiforme (GBM and a brain metastasis, each successfully treated with a neuroendoscopic approach. Thanks to this minimally invasive approach, we achieved good therapeutic results: we obtained a histological diagnosis; we controlled intracranial hypertension by treating the associated hydrocephalus and, above all, compared with a microsurgical approach, we reduced the risks related to dissection and brain retraction. Moreover, in both cases, neuroendoscopy enabled us to identify an initial, precocious subependymal tumor spreading below the threshold of magnetic resonance imaging (MRI detection. This finding, undetected in pre-operative MRI scans, was then evident during follow-up neuroimaging studies. In light of these data, a neuroendoscopic approach might play a leading role in better defining the prognosis and optimally tailored management protocols for GBM and brain metastasis.Keywords: subependymal spreading, glioblastoma, brain metastasis, endoscopy, minimally invasive surgery, prognosis

  15. A template of rat brain based on fMRI T2* imaging

    Institute of Scientific and Technical Information of China (English)

    HU Zhenghui; WU Yigen; WANG Xiaochuan; WANG Jianzhi; CHEN Feiyan; TANG Xiaowei

    2005-01-01

    The development of functional magnetic resonance imaging (fMRI) technology has made it possible to carry out functional brain imaging experiments in small animals. Usually, group data is required to form the assessment of population, which can not only increase the sensitivity of the overall experiment, but also allow the generalization of the conclusion to the whole population. In order to average the signals of functional brain images from different subjects, it is necessary to put all the mapping images into the same standard space (template image). However, up to now, most animal brain templates remain unavailable and it must be done by ourselves. In this study, a template image based on the brains of eight male Wistar rats is obtained, and it is successfully used in our present Alzheimer disease (AD)-like rat model studies as template for spatially normalizing images to the same stereotaxical space. The fMRI results processed with statistical parametric mapping (SPM99) software are in agreement with the results from immunohistochemical experiment, which proves that this method is universally applicable to the pathologic models of other small animals and to human brain lesion studies.

  16. On the characterization of single-event related brain activity from functional Magnetic Resonance Imaging (fMRI) measurements

    KAUST Repository

    Khoram, Nafiseh

    2014-08-01

    We propose an efficient numerical technique for calibrating the mathematical model that describes the singleevent related brain response when fMRI measurements are given. This method employs a regularized Newton technique in conjunction with a Kalman filtering procedure. We have applied this method to estimate the biophysiological parameters of the Balloon model that describes the hemodynamic brain responses. Illustrative results obtained with both synthetic and real fMRI measurements are presented. © 2014 IEEE.

  17. Characterizing brain anatomical connections using diffusion weighted MRI and graph theory.

    Science.gov (United States)

    Iturria-Medina, Y; Canales-Rodríguez, E J; Melie-García, L; Valdés-Hernández, P A; Martínez-Montes, E; Alemán-Gómez, Y; Sánchez-Bornot, J M

    2007-07-01

    A new methodology based on Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) and Graph Theory is presented for characterizing the anatomical connections between brain gray matter areas. In a first step, brain voxels are modeled as nodes of a non-directed graph in which the weight of an arc linking two neighbor nodes is assumed to be proportional to the probability of being connected by nervous fibers. This probability is estimated by means of probabilistic tissue segmentation and intravoxel white matter orientational distribution function, obtained from anatomical MRI and DW-MRI, respectively. A new tractography algorithm for finding white matter routes is also introduced. This algorithm solves the most probable path problem between any two nodes, leading to the assessment of probabilistic brain anatomical connection maps. In a second step, for assessing anatomical connectivity between K gray matter structures, the previous graph is redefined as a K+1 partite graph by partitioning the initial nodes set in K non-overlapped gray matter subsets and one subset clustering the remaining nodes. Three different measures are proposed for quantifying anatomical connections between any pair of gray matter subsets: Anatomical Connection Strength (ACS), Anatomical Connection Density (ACD) and Anatomical Connection Probability (ACP). This methodology was applied to both artificial and actual human data. Results show that nervous fiber pathways between some regions of interest were reconstructed correctly. Additionally, mean connectivity maps of ACS, ACD and ACP between 71 gray matter structures for five healthy subjects are presented.

  18. In vivo detection of neuroarchitecture in the rodent brain using manganese-enhanced MRI.

    Science.gov (United States)

    Aoki, Ichio; Wu, Yi-Jen Lin; Silva, Afonso C; Lynch, Ronald M; Koretsky, Alan P

    2004-07-01

    Visualizing brain anatomy in vivo could provide insight into normal and pathophysiology. Here it is demonstrated that neuroarchitecture can be detected in the rodent brain using MRI after systemic MnCl2. Administration of MnCl2 leads to rapid T1 enhancement in the choroid plexus and circumventricular organs, which spreads to the CSF space in ventricles and periventricular tissue. After 1 day, there was MRI enhancement throughout the brain with high intensity in the pituitary, olfactory bulb, cortex, basal forebrain, hippocampus, basal ganglia, hypothalamus, amygdala, and cerebellum. Contrast obtained enabled visualization of specific features of neuroarchitecture. The arrowhead structure of the dentate gyrus as well as the CA1-CA3 region of the hippocampus and layers in cortex, cerebellum, as well as the olfactory bulb could be readily observed. Preliminary assignments of olfactory bulb layers, cortical layers in frontal and somatosensory cortex, and cerebellum were made. Systemic MnCl2 leads to MRI visualization of neuroarchitecture nondestructively. Copyright 2004 Elsevier Inc.

  19. Registration and display of brain SPECT and MRI using external markers.

    Science.gov (United States)

    Pohjonen, H; Nikkinen, P; Sipilä, O; Launes, J; Salli, E; Salonen, O; Karp, P; Ylä-Jääski, J; Katila, T; Liewendahl, K

    1996-02-01

    Accurate anatomical localisation of abnormalities observed in brain perfusion single-photon emission computed tomography (SPECT) is difficult, but can be improved by correlating data from SPECT and other tomographic imaging modalities. For this purpose we have developed software to register, analyse and display 99mTc-hexamethylpropyleneamine oxime SPECT and 1.0 T MRI of the brain. For registration of SPECT and MRI data external skin markers containing 99mTc (220 kBq) in 50 microliters of coconut butter were used. The software is coded in the C programming language, and the X Window system and the OSF/Motif standards are used for graphics and definition of the user interface. The registration algorithm follows a noniterative least-squares method using singular value decomposition of a 3 x 3 covariance matrix. After registration, the image slices of both data sets are shown at identical tomographic levels. The registration error in phantom studies was on average 4 mm. In the two-dimensional display mode the orthogonal cross-sections of the data sets are displayed side by side. In the three-dimensional mode MRI data are displayed as a surface-shaded 3 D reconstruction and SPECT data as cut planes. The usefulness of this method is demonstrated in patients with cerebral infarcts, brain tumour, herpes simplex encephalitis and epilepsy.

  20. Registration and display of brain SPECT and MRI using external markers

    Energy Technology Data Exchange (ETDEWEB)

    Pohjonen, H. [Medical Engineering Centre, Helsinki University Central Hospital, Stenbaeckinkatu 9, FIN-00290 Helsinki (Finland); Nikkinen, P. [Department of Clinical Chemistry, Division of Nuclear Medicine, Helsinki University Central Hospital, Helsinki (Finland); Sipilae, O. [Laboratory of Biomedical Engineering, Helsinki University of Technology, Espoo (Finland); Launes, J. [Department of Neurology, Helsinki University Central Hospital, Helsinki (Finland); Salli, E. [Laboratory of Biomedical Engineering, Helsinki University of Technology, Espoo (Finland); Salonen, O. [Department of Radiology, Helsinki University Central Hospital, Helsinki (Finland); Karp, P. [Medical Engineering Centre, Helsinki University Central Hospital, Stenbaeckinkatu 9, FIN-00290 Helsinki (Finland); Ylae-Jaeaeski, J. [Graphic Arts Laboratory, Technical Research Centre of Finland, Espoo (Finland); Katila, T. [Medical Engineering Centre, Helsinki University Central Hospital, Stenbaeckinkatu 9, FIN-00290 Helsinki (Finland)]|[Laboratory of Biomedical Engineering, Helsinki University of Technology, Espoo (Finland); Liewendahl, K. [Department of Clinical Chemistry, Division of Nuclear Medicine, Helsinki University Central Hospital, Helsinki (Finland)

    1996-02-01

    Accurate anatomical localisation of abnormalities observed in brain perfusion single-photon emission computed tomography (SPECT) is difficult, but can be improved by correlating data from SPECT and other tomographic imaging modalities. For this purpose we have developed software to register, analyse and display {sup 99m}Tc-hexamethylpropyleneamine oxime SPECT and 1.0 T MRI of the brain. For registration of SPECT and MRI data external skin markers containing {sup 99m}Tc (220 kBq) in 50 {mu}l of coconut butter were used. The software is coded in the C programming language, and the X Window system and the OSF/Motif standards are used for graphics and definition of the user interface. The registration algorithm follows a noniterative least-squares method using singular value decomposition of a 3 x 3 covariance matrix. After registration, the image slices of both data sets are shown at identical tomographic levels. The registration error in phantom studies was on average 4 mm. In the two-dimensional display mode the orthogonal cross-sections of the data sets are displayed side by side. In the three-dimensional mode MRI data are displayed as a surface-shaded 3 D reconstruction and SPECT data as cut planes. The usefulness of this method is demonstrated in patients with cerebral infarcts, brain tumour, herpes simplex encephalitis and epilepsy. (orig.). With 9 figs.

  1. Application of Preoperative CT/MRI Image Fusion in Target Positioning for Deep Brain Stimulation

    Institute of Scientific and Technical Information of China (English)

    Yu Wang; Zi-yuan Liu; Wan-chen Dou; Wen-bin Ma; Ren-zhi Wang; Yi Guo

    2016-01-01

    Objective To explore the efficacy of target positioning by preoperative CT/MRI image fusion technique in deep brain stimulation. Methods We retrospectively analyzed the clinical data and images of 79 cases (68 with Parkinson’s disease, 11 with dystonia) who received preoperative CT/MRI image fusion in target positioning of subthalamic nucleus in deep brain stimulation. Deviation of implanted electrodes from the target nucleus of each patient were measured. Neurological evaluations of each patient before and after the treatment were performed and compared. Complications of the positioning and treatment were recorded. Results The mean deviations of the electrodes implanted on X, Y, and Z axis were 0.5 mm, 0.6 mm, and 0.6 mm, respectively. Postoperative neurologic evaluations scores of unified Parkinson’s disease rating scale (UPDRS) for Parkinson’s disease and Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) for dystonia patients improved significantly compared to the preoperative scores (P<0.001); Complications occurred in 10.1% (8/79) patients, and main side effects were dysarthria and diplopia. Conclusion Target positioning by preoperative CT/MRI image fusion technique in deep brain stimulation has high accuracy and good clinical outcomes.

  2. The Safety of Using Body-Transmit MRI in Patients with Implanted Deep Brain Stimulation Devices.

    Directory of Open Access Journals (Sweden)

    Joshua Kahan

    Full Text Available Deep brain stimulation (DBS is an established treatment for patients with movement disorders. Patients receiving chronic DBS provide a unique opportunity to explore the underlying mechanisms of DBS using functional MRI. It has been shown that the main safety concern with MRI in these patients is heating at the electrode tips - which can be minimised with strict adherence to a supervised acquisition protocol using a head-transmit/receive coil at 1.5T. MRI using the body-transmit coil with a multi-channel receive head coil has a number of potential advantages including an improved signal-to-noise ratio.We compared the safety of cranial MRI in an in vitro model of bilateral DBS using both head-transmit and body-transmit coils. We performed fibre-optic thermometry at a Medtronic ActivaPC device and Medtronic 3389 electrodes during turbo-spin echo (TSE MRI using both coil arrangements at 1.5T and 3T, in addition to gradient-echo echo-planar fMRI exposure at 1.5T. Finally, we investigated the effect of transmit-coil choice on DBS stimulus delivery during MRI.Temperature increases were consistently largest at the electrode tips. Changing from head- to body-transmit coil significantly increased the electrode temperature elevation during TSE scans with scanner-reported head SAR 0.2W/kg from 0.45°C to 0.79°C (p<0.001 at 1.5T, and from 1.25°C to 1.44°C (p<0.001 at 3T. The position of the phantom relative to the body coil significantly impacted on electrode heating at 1.5T; however, the greatest heating observed in any position tested remained <1°C at this field strength.We conclude that (1 with our specific hardware and SAR-limited protocol, body-transmit cranial MRI at 1.5T does not produce heating exceeding international guidelines, even in cases of poorly positioned patients, (2 cranial MRI at 3T can readily produce heating exceeding international guidelines, (3 patients with ActivaPC Medtronic systems are safe to be recruited to future fMRI

  3. MRI-guided single fraction ablative radiotherapy for early-stage breast cancer : a brachytherapy versus volumetric modulated arc therapy dosimetry study

    NARCIS (Netherlands)

    Charaghvandi, Ramona K; den Hartogh, Mariska D; van Ommen, Anne-Mar L N; de Vries, Wilfred J H; Scholten, Vincent; Moerland, Rien; Philippens, Mariëlle E P; Schokker, Rogier I; van Vulpen, Marco; van Asselen, B; van den Bongard, Desirée H J G

    2015-01-01

    BACKGROUND AND PURPOSE: A radiosurgical treatment approach for early-stage breast cancer has the potential to minimize the patient's treatment burden. The dosimetric feasibility for single fraction ablative radiotherapy was evaluated by comparing volumetric modulated arc therapy (VMAT) with an inter

  4. Hippocampus, caudate nucleus and entorhinal cortex volumetric MRI measurements in discrimination between Alzheimer’s disease, mild cognitive impairment, and normal aging

    Directory of Open Access Journals (Sweden)

    Rasha Elshafey

    2014-06-01

    Conclusion: Semi-automated MR volumetric measurements can be used to determine atrophy in hippocampus, caudate nucleus and entorhinal cortex which aided in discrimination of healthy elderly control subjects from subjects with AD and MCI and predict clinical decline of MCI leading to increase the efficiency of clinical treatments, delay institutionalization and improve cognition and behavioral symptoms.

  5. Correlations of Behavioral Deficits with Brain Pathology Assessed through Longitudinal MRI and Histopathology in the HdhQ150/Q150 Mouse Model of Huntington’s Disease

    Science.gov (United States)

    Rattray, Ivan; Smith, Edward J.; Crum, William R.; Walker, Thomas A.; Gale, Richard; Bates, Gillian P.

    2017-01-01

    A variety of mouse models have been developed that express mutant huntingtin (mHTT) leading to aggregates and inclusions that model the molecular pathology observed in Huntington’s disease. Here we show that although homozygous HdhQ150 knock-in mice developed motor impairments (rotarod, locomotor activity, grip strength) by 36 weeks of age, cognitive dysfunction (swimming T maze, fear conditioning, odor discrimination, social interaction) was not evident by 94 weeks. Concomitant to behavioral assessments, T2-weighted MRI volume measurements indicated a slower striatal growth with a significant difference between wild type (WT) and HdhQ150 mice being present even at 15 weeks. Indeed, MRI indicated significant volumetric changes prior to the emergence of the “clinical horizon” of motor impairments at 36 weeks of age. A striatal decrease of 27% was observed over 94 weeks with cortex (12%) and hippocampus (21%) also indicating significant atrophy. A hypothesis-free analysis using tensor-based morphometry highlighted further regions undergoing atrophy by contrasting brain growth and regional neurodegeneration. Histology revealed the widespread presence of mHTT aggregates and cellular inclusions. However, there was little evidence of correlations between these outcome measures, potentially indicating that other factors are important in the causal cascade linking the molecular pathology to the emergence of behavioral impairments. In conclusion, the HdhQ150 mouse model replicates many aspects of the human condition, including an extended pre-manifest period prior to the emergence of motor impairments. PMID:28099507

  6. The effect of inflammation and its reduction on brain plasticity in multiple sclerosis: MRI evidence

    Science.gov (United States)

    d'Ambrosio, Alessandro; Petsas, Nikolaos; Wise, Richard G.; Sbardella, Emilia; Allen, Marek; Tona, Francesca; Fanelli, Fulvia; Foster, Catherine; Carnì, Marco; Gallo, Antonio; Pantano, Patrizia; Pozzilli, Carlo

    2016-01-01

    Abstract Brain plasticity is the basis for systems‐level functional reorganization that promotes recovery in multiple sclerosis (MS). As inflammation interferes with plasticity, its pharmacological modulation may restore plasticity by promoting desired patterns of functional reorganization. Here, we tested the hypothesis that brain plasticity probed by a visuomotor adaptation task is impaired with MS inflammation and that pharmacological reduction of inflammation facilitates its restoration. MS patients were assessed twice before (sessions 1 and 2) and once after (session 3) the beginning of Interferon beta (IFN beta), using behavioural and structural MRI measures. During each session, 2 functional MRI runs of a visuomotor task, separated by 25‐minutes of task practice, were performed. Within‐session between‐run change in task‐related functional signal was our imaging marker of plasticity. During session 1, patients were compared with healthy controls. Comparison of patients' sessions 2 and 3 tested the effect of reduced inflammation on our imaging marker of plasticity. The proportion of patients with gadolinium‐enhancing lesions reduced significantly during IFN beta. In session 1, patients demonstrated a greater between‐run difference in functional MRI activity of secondary visual areas and cerebellum than controls. This abnormally large practice‐induced signal change in visual areas, and in functionally connected posterior parietal and motor cortices, was reduced in patients in session 3 compared with 2. Our results suggest that MS inflammation alters short‐term plasticity underlying motor practice. Reduction of inflammation with IFN beta is associated with a restoration of this plasticity, suggesting that modulation of inflammation may enhance recovery‐oriented strategies that rely on patients' brain plasticity. Hum Brain Mapp 37:2431–2445, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26991559

  7. AN ARTIFICIAL FISH SWARM OPTIMIZED FUZZY MRI IMAGE SEGMENTATION APPROACH FOR IMPROVING IDENTIFICATION OF BRAIN TUMOUR

    Directory of Open Access Journals (Sweden)

    R.Jagadeesan

    2013-07-01

    Full Text Available In image processing, it is difficult to detect the abnormalities in brain especially in MRI brain images. Also the tumor segmentation from MRI image data is an important; however it is time consumingwhile carried out by medical specialists. A lot of methods have been proposed to solve MR images problems, quite difficult to develop an automated recognition system which could process on a large information of patient and provide a correct estimation. Hence enhanced k-means and fuzzy c-means with firefly algorithm for a segmentation of brain magnetic resonance images were developed. Thisalgorithm is based on maximum measure of the distance function which is found for cluster center detection process using the Mahalanobis concept. Particularly the firefly algorithm is implemented tooptimize the Fuzzy C-means membership function for better accuracy segmentation process. At the same time the convergence criteria is fixed for the efficient clustering method. The Firefly algorithmparameters are set fixed and they do not adjust by the time. As well Firefly algorithm does not memorize any history of better situation for each firefly and this reasons they travel in any case of it, and they miss their situations. So there is a need of better algorithm that could provide even better solution than the firefly algorithm. To attain this requirement as a proposed work the Artificial Fish Swarm Algorithm to optimize the fuzzy membership function. During surveying of the previous literature, it has been found out that no work has been done in segmentation of brain tumor using AFSA based clustering. In AFSA, artificial fishes for next movement act completely independent from past and next movement is justrelated to current position of artificial fish and its other companions which lead to select best initial centers for the MRI brain tumor segmentation. Experimental results show that presented method has an acceptable performance than the previous method.

  8. fMRI and brain activation after sport concussion: a tale of two cases

    Directory of Open Access Journals (Sweden)

    Michael G Hutchison

    2014-04-01

    Full Text Available Sport-related concussions are now recognized as a major public health concern: The number of participants in sport and recreation is growing, possibly playing their games faster, and there is heightened public awareness of injuries to some high-profile athletes. However, many clinicians still rely on subjective symptom reports for the clinical determination of recovery. Relying on subjective symptom reports can be dangerous, as it has been shown that some concussed athletes may downplay their symptoms. The use of neuropsychological (NP testing tools has enabled clinicians to measure the effects and extent of impairment following concussion more precisely, providing more objective metrics for determining recovery after concussion. Nevertheless, there is a remaining concern that brain abnormalities may exist beyond the point at which individuals achieve recovery in self-reported symptoms and cognition measured by NP testing. Our understanding of brain recovery after concussion is important not only from a neuroscience perspective, but also from the perspective of clinical decision making for safe return-to-play (RTP. A number of advanced neuroimaging tools, including blood oxygen level dependent (BOLD functional magnetic resonance imaging (fMRI, have independently yielded early information on these abnormal brain functions. In the two cases presented in this article, we report contrasting brain activation patterns and recovery profiles using fMRI. Importantly, fMRI was conducted using adapted versions of the most sensitive computerized NP tests administered in current clinical practice to determine impairments and recovery after sport-related concussion. One of the cases is consistent with the concept of lagging brain recovery.

  9. Midsagittal Brain Shape Correlation with Intelligence and Cognitive Performance

    Science.gov (United States)

    Bruner, Emiliano; Martin-Loeches, Manuel; Burgaleta, Miguel; Colom, Roberto

    2011-01-01

    Brain shape might influence cognitive performance because of the relationships between functions, spatial organization, and differential volumetric development of cortical areas. Here we analyze the relationships between midsagittal brain shape variation and a set of basic psychological measures. Coordinates in 2D from 102 MRI-scanned young adult…

  10. Quantification of deep medullary veins at 7 T brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kuijf, Hugo J.; Viergever, Max A.; Vincken, Koen L. [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); Bouvy, Willem H.; Razoux Schultz, Tom B.; Biessels, Geert Jan [University Medical Center Utrecht, Department of Neurology, Brain Center Rudolf Magnus, Utrecht (Netherlands); Zwanenburg, Jaco J.M. [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands)

    2016-10-15

    Deep medullary veins support the venous drainage of the brain and may display abnormalities in the context of different cerebrovascular diseases. We present and evaluate a method to automatically detect and quantify deep medullary veins at 7 T. Five participants were scanned twice, to assess the robustness and reproducibility of manual and automated vein detection. Additionally, the method was evaluated on 24 participants to demonstrate its application. Deep medullary veins were assessed within an automatically created region-of-interest around the lateral ventricles, defined such that all veins must intersect it. A combination of vesselness, tubular tracking, and hysteresis thresholding located individual veins, which were quantified by counting and computing (3-D) density maps. Visual assessment was time-consuming (2 h/scan), with an intra-/inter-observer agreement on absolute vein count of ICC = 0.76 and 0.60, respectively. The automated vein detection showed excellent inter-scan reproducibility before (ICC = 0.79) and after (ICC = 0.88) visually censoring false positives. It had a positive predictive value of 71.6 %. Imaging at 7 T allows visualization and quantification of deep medullary veins. The presented method offers fast and reliable automated assessment of deep medullary veins. (orig.)

  11. Combining EEG Microstates with fMRI Structural Features for Modeling Brain Activity.

    Science.gov (United States)

    Michalopoulos, Kostas; Bourbakis, Nikolaos

    2015-12-01

    Combining information from Electroencephalography (EEG) and Functional Magnetic Resonance Imaging (fMRI) has been a topic of increased interest recently. The main advantage of the EEG is its high temporal resolution, in the scale of milliseconds, while the main advantage of fMRI is the detection of functional activity with good spatial resolution. The advantages of each modality seem to complement each other, providing better insight in the neuronal activity of the brain. The main goal of combining information from both modalities is to increase the spatial and the temporal localization of the underlying neuronal activity captured by each modality. This paper presents a novel technique based on the combination of these two modalities (EEG, fMRI) that allow a better representation and understanding of brain activities in time. EEG is modeled as a sequence of topographies, based on the notion of microstates. Hidden Markov Models (HMMs) were used to model the temporal evolution of the topography of the average Event Related Potential (ERP). For each model the Fisher score of the sequence is calculated by taking the gradient of the trained model parameters. The Fisher score describes how this sequence deviates from the learned HMM. Canonical Partial Least Squares (CPLS) were used to decompose the two datasets and fuse the EEG and fMRI features. In order to test the effectiveness of this method, the results of this methodology were compared with the results of CPLS using the average ERP signal of a single channel. The presented methodology was able to derive components that co-vary between EEG and fMRI and present significant differences between the two tasks.

  12. Quantitative estimation of brain atrophy and function with PET and MRI two-dimensional projection images

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Reiko; Uemura, Koji; Uchiyama, Akihiko [Waseda Univ., Tokyo (Japan). School of Science and Engineering; Toyama, Hinako; Ishii, Kenji; Senda, Michio

    2001-05-01

    The purpose of this paper is to estimate the extent of atrophy and the decline in brain function objectively and quantitatively. Two-dimensional (2D) projection images of three-dimensional (3D) transaxial images of positron emission tomography (PET) and magnetic resonance imaging (MRI) were made by means of the Mollweide method which keeps the area of the brain surface. A correlation image was generated between 2D projection images of MRI and cerebral blood flow (CBF) or {sup 18}F-fluorodeoxyglucose (FDG) PET images and the sulcus was extracted from the correlation image clustered by K-means method. Furthermore, the extent of atrophy was evaluated from the extracted sulcus on 2D-projection MRI and the cerebral cortical function such as blood flow or glucose metabolic rate was assessed in the cortex excluding sulcus on 2D-projection PET image, and then the relationship between the cerebral atrophy and function was evaluated. This method was applied to the two groups, the young and the aged normal subjects, and the relationship between the age and the rate of atrophy or the cerebral blood flow was investigated. This method was also applied to FDG-PET and MRI studies in the normal controls and in patients with corticobasal degeneration. The mean rate of atrophy in the aged group was found to be higher than that in the young. The mean value and the variance of the cerebral blood flow for the young are greater than those of the aged. The sulci were similarly extracted using either CBF or FDG PET images. The purposed method using 2-D projection images of MRI and PET is clinically useful for quantitative assessment of atrophic change and functional disorder of cerebral cortex. (author)

  13. Accuracy of UTE-MRI-based patient setup for brain cancer radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yingli; Cao, Minsong; Kaprealian, Tania; Sheng, Ke; Gao, Yu; Gomez, Caitlin; Santhanam, Anand; Tenn, Stephen; Agazaryan, Nzhde; Low, Daniel A. [Department of Radiation Oncology, University of California, Los Angeles, California 90095 (United States); Han, Fei; Hu, Peng, E-mail: penghu@mednet.ucla.edu [Department of Radiological Sciences, University of California, Los Angeles, California 90095 (United States)

    2016-01-15

    Purpose: Radiation therapy simulations solely based on MRI have advantages compared to CT-based approaches. One feature readily available from computed tomography (CT) that would need to be reproduced with MR is the ability to compute digitally reconstructed radiographs (DRRs) for comparison against on-board radiographs commonly used for patient positioning. In this study, the authors generate MR-based bone images using a single ultrashort echo time (UTE) pulse sequence and quantify their 3D and 2D image registration accuracy to CT and radiographic images for treatments in the cranium. Methods: Seven brain cancer patients were scanned at 1.5 T using a radial UTE sequence. The sequence acquired two images at two different echo times. The two images were processed using an in-house software to generate the UTE bone images. The resultant bone images were rigidly registered to simulation CT data and the registration error was determined using manually annotated landmarks as references. DRRs were created based on UTE-MRI and registered to simulated on-board images (OBIs) and actual clinical 2D oblique images from ExacTrac™. Results: UTE-MRI resulted in well visualized cranial, facial, and vertebral bones that quantitatively matched the bones in the CT images with geometric measurement errors of less than 1 mm. The registration error between DRRs generated from 3D UTE-MRI and the simulated 2D OBIs or the clinical oblique x-ray images was also less than 1 mm for all patients. Conclusions: UTE-MRI-based DRRs appear to be promising for daily patient setup of brain cancer radiotherapy with kV on-board imaging.

  14. Multi-modal MRI classifiers identify excessive alcohol consumption and treatment effects in the brain.

    Science.gov (United States)

    Cosa, Alejandro; Moreno, Andrea; Pacheco-Torres, Jesús; Ciccocioppo, Roberto; Hyytiä, Petri; Sommer, Wolfgang H; Moratal, David; Canals, Santiago

    2017-09-01

    Robust neuroimaging markers of neuropsychiatric disorders have proven difficult to obtain. In alcohol use disorders, profound brain structural deficits can be found in severe alcoholic patients, but the heterogeneity of unimodal MRI measurements has so far precluded the identification of selective biomarkers, especially for early diagnosis. In the present work we used a combination of multiple MRI modalities to provide comprehensive and insightful descriptions of brain tissue microstructure. We performed a longitudinal experiment using Marchigian-Sardinian (msP) rats, an established model of chronic excessive alcohol consumption, and acquired multi-modal images before and after 1 month of alcohol consumption (6.8 ± 1.4 g/kg/day, mean ± SD), as well as after 1 week of abstinence with or without concomitant treatment with the antirelapse opioid antagonist naltrexone (2.5 mg/kg/day). We found remarkable sensitivity and selectivity to accurately classify brains affected by alcohol even after the relative short exposure period. One month drinking was enough to imprint a highly specific signature of alcohol consumption. Brain alterations were regionally specific and affected both gray and white matter and persisted into the early abstinence state without any detectable recovery. Interestingly, naltrexone treatment during early abstinence resulted in subtle brain changes that could be distinguished from non-treated abstinent brains, suggesting the existence of an intermediate state associated with brain recovery from alcohol exposure induced by medication. The presented framework is a promising tool for the development of biomarkers for clinical diagnosis of alcohol use disorders, with capacity to further inform about its progression and response to treatment. © 2016 Society for the Study of Addiction.

  15. Susceptibility Contrast in High Field MRI of Human Brain as a Function of Tissue Iron Content

    Science.gov (United States)

    Yao, Bing; Li, Tie-Qiang; van Gelderen, Peter; Shmueli, Karin; de Zwart, Jacco A.; Duyn, Jeff H.

    2009-01-01

    Magnetic susceptibility provides an important contrast mechanism for MRI. Increasingly, susceptibility-based contrast is being exploited to investigate brain tissue microstructure and to detect abnormal levels of brain iron as these have been implicated in a variety of neuro-degenerative diseases. However, it remains unclear to what extent magnetic susceptibility-related contrast at high field relates to actual brain iron concentrations. In this study, we performed susceptibility weighted imaging as a function of field strength on healthy brains in vivo and post-mortem brain tissues at 1.5T, 3T and 7T. Iron histology was performed on the tissue samples for comparison. The calculated susceptibility-related parameters R2* and signal frequency shift in four iron-rich regions (putamen, globus pallidus, caudate, and thalamus) showed an almost linear dependence (r=0.90 for R2*; r=0.83 for phase, p<0.01) on field strength, suggesting that potential ferritin saturation effects are not relevant to susceptibility-weighted contrast for field strengths up to 7T. The R2* dependence on the putative (literature-based) iron concentration was 0.048 Hz/Tesla/ppm. The histological data from brain samples confirmed the linear dependence of R2* on field strength and showed a slope against iron concentration of 0.0099 Hz/Tesla/ppm dry-weight, which is equivalent to 0.05 Hz/Tesla/ppm wet-weight and closely matched the calculated value in vivo. These results confirm the validity of using susceptibility-weighted contrast as an indicator of iron content in iron-rich brain regions. The absence of saturation effects opens the way to exploit the benefits of MRI at high field strengths for the detection of iron distributions with high sensitivity and resolution. PMID:19027861

  16. Functional MRI Preprocessing in Lesioned Brains: Manual Versus Automated Region of Interest Analysis.

    Science.gov (United States)

    Garrison, Kathleen A; Rogalsky, Corianne; Sheng, Tong; Liu, Brent; Damasio, Hanna; Winstein, Carolee J; Aziz-Zadeh, Lisa S

    2015-01-01

    Functional magnetic resonance imaging (fMRI) has significant potential in the study and treatment of neurological disorders and stroke. Region of interest (ROI) analysis in such studies allows for testing of strong a priori clinical hypotheses with improved statistical power. A commonly used automated approach to ROI analysis is to spatially normalize each participant's structural brain image to a template brain image and define ROIs using an atlas. However, in studies of individuals with structural brain lesions, such as stroke, the gold standard approach may be to manually hand-draw ROIs on each participant's non-normalized structural brain image. Automated approaches to ROI analysis are faster and more standardized, yet are susceptible to preprocessing error (e.g., normalization error) that can be greater in lesioned brains. The manual approach to ROI analysis has high demand for time and expertise, but may provide a more accurate estimate of brain response. In this study, commonly used automated and manual approaches to ROI analysis were directly compared by reanalyzing data from a previously published hypothesis-driven cognitive fMRI study, involving individuals with stroke. The ROI evaluated is the pars opercularis of the inferior frontal gyrus. Significant differences were identified in task-related effect size and percent-activated voxels in this ROI between the automated and manual approaches to ROI analysis. Task interactions, however, were consistent across ROI analysis approaches. These findings support the use of automated approaches to ROI analysis in studies of lesioned brains, provided they employ a task interaction design.

  17. Brain atlas of the Mongolian gerbil (Meriones unguiculatus) in CT/MRI-aided stereotaxic coordinates.

    Science.gov (United States)

    Radtke-Schuller, Susanne; Schuller, Gerd; Angenstein, Frank; Grosser, Oliver S; Goldschmidt, Jürgen; Budinger, Eike

    2016-09-01

    A new stereotaxic brain atlas of the Mongolian gerbil (Meriones unguiculatus), an important animal model in neurosciences, is presented. It combines high-quality histological material for identification of brain structures with reliable stereotaxic coordinates. The atlas consists of high-resolution images of frontal sections alternately stained for cell bodies (Nissl) and myelinated fibers (Gallyas) of 62 rostro-caudal levels at intervals of 350 μm. Brain structures were named according to the Paxinos nomenclature for rodents. The accuracy of the stereotaxic coordinate system was improved substantially by comparing and matching the series of histological sections to in vivo brain images of the gerbil obtained by magnetic resonance imaging (MRI). The skull outlines corresponding to the MR images were acquired using X-ray computerized tomography (CT) and were used to establish the relationship between coordinates of brain structures and skull. Landmarks such as lambda, bregma, ear canals and occipital crest can be used to line up skull and brain in standard atlas coordinates. An easily reproducible protocol allows sectioning of experimental brains in the standard frontal plane of the atlas.

  18. Brain MRI atrophy quantification in MS: From methods to clinical application.

    Science.gov (United States)

    Rocca, Maria A; Battaglini, Marco; Benedict, Ralph H B; De Stefano, Nicola; Geurts, Jeroen J G; Henry, Roland G; Horsfield, Mark A; Jenkinson, Mark; Pagani, Elisabetta; Filippi, Massimo

    2017-01-24

    Patients with the main clinical phenotypes of multiple sclerosis (MS) manifest varying degrees of brain atrophy beyond that of normal aging. Assessment of atrophy helps to distinguish clinically and cognitively deteriorating patients and predicts those who will have a less-favorable clinical outcome over the long term. Atrophy can be measured from brain MRI scans, and many technological improvements have been made over the last few years. Several software tools, with differing requirements on technical ability and levels of operator intervention, are currently available and have already been applied in research or clinical trial settings. Despite this, the measurement of atrophy in routine clinical practice remains an unmet need. After a short summary of the pathologic substrates of brain atrophy in MS, this review attempts to guide the clinician towards a better understanding of the methods currently used for quantifying brain atrophy in this condition. Important physiologic factors that affect brain volume measures are also considered. Finally, the most recent research on brain atrophy in MS is summarized, including whole brain and various compartments thereof (i.e., white matter, gray matter, selected CNS structures). Current methods provide sufficient precision for cohort studies, but are not adequate for confidently assessing changes in individual patients over the scale of months or a few years. © 2016 American Academy of Neurology.

  19. MRI relaxation in the presence of fictitious fields correlates with myelin content in normal rat brain.

    Science.gov (United States)

    Hakkarainen, Hanne; Sierra, Alejandra; Mangia, Silvia; Garwood, Michael; Michaeli, Shalom; Gröhn, Olli; Liimatainen, Timo

    2016-01-01

    Brain myelin plays an important role in normal brain function. Demyelination is involved in many degenerative brain diseases, thus quantitative imaging of myelin has been under active investigation. In previous work, we demonstrated the capability of the method known as Relaxation Along a Fictitious Field (RAFF) in the rotating frame of rank n (RAFFn) to provide image contrast between white and gray matter in human and rat brains. Here, we provide evidence pointing to myelin being the major source of this contrast. RAFFn relaxation time constant (TRAFFn) was mapped in rat brain ex vivo. TRAFFn was quantified in 12 different brain areas. TRAFFn values were compared with multiple other MRI metrics (T1, T2 , continuous wave T1ρ, adiabatic T1ρ and T2ρ, magnetization transfer ratio), and with histologic measurements of cell density, myelin and iron content. Highest contrast between white and grey matter was obtained with TRAFFn in the rotating frames of ranks n = 4 and 5. TRAFFn values correlated strongly with myelin content, whereas no associations between TRAFFn and iron content or cell density were found. TRAFFn with n = 4 or 5 provides a high sensitivity for selective myelin mapping in the rat brain. © 2015 Wiley Periodicals, Inc.

  20. Landmark-based morphometrics of the normal adult brain using MRI.

    Science.gov (United States)

    Free, S L; O'Higgins, P; Maudgil, D D; Dryden, I L; Lemieux, L; Fish, D R; Shorvon, S D

    2001-05-01

    We describe the application of statistical shape analysis to homologous landmarks on the cortical surface of the adult human brain. Statistical shape analysis has a sound theoretical basis. Landmarks are identified on the surface of a 3-D reconstruction of the segmented cortical surface from magnetic resonance image (MRI) data. Using publicly available software (morphologika) the location and size dependence of the landmarks are removed and the differences in landmark distribution across subjects are analysed using principal component analysis. These differences, representing shape differences between subjects, can be visually assessed using wireframe models and transformation grids. The MRI data of 58 adult brains (27 female and 15 left handed) were examined. Shape differences in the whole brain are described which concern the relative orientation of frontal lobe sulci. Analysis of all 116 hemispheres revealed a statistically significant difference (P < 0.001) between left and right hemispheres. This finding was significant for right- but not left-handed subjects alone. No other significant age, gender, handedness, or brain-size correlations with shape differences were found.

  1. Endoscopy-verified occult subependymal dissemination of glioblastoma and brain metastasis undetected by MRI: prognostic significance

    Science.gov (United States)

    Iacoangeli, Maurizio; Di Rienzo, Alessandro; Colasanti, Roberto; Zizzi, Antonio; Gladi, Maurizio; Alvaro, Lorenzo; Nocchi, Niccolò; Di Somma, Lucia Giovanna Maria; Scarpelli, Marina; Scerrati, Massimo

    2012-01-01

    Although various prognostic indices exist for patients with malignant brain tumors, the prognostic significance of the subependymal spread of intracranial tumors is still a matter of debate. In this paper, we report the cases of two intraventricular lesions, a recurrent glioblastoma multiforme (GBM) and a brain metastasis, each successfully treated with a neuroendoscopic approach. Thanks to this minimally invasive approach, we achieved good therapeutic results: we obtained a histological diagnosis; we controlled intracranial hypertension by treating the associated hydrocephalus and, above all, compared with a microsurgical approach, we reduced the risks related to dissection and brain retraction. Moreover, in both cases, neuroendoscopy enabled us to identify an initial, precocious subependymal tumor spreading below the threshold of magnetic resonance imaging (MRI) detection. This finding, undetected in pre-operative MRI scans, was then evident during follow-up neuroimaging studies. In light of these data, a neuroendoscopic approach might play a leading role in better defining the prognosis and optimally tailored management protocols for GBM and brain metastasis. PMID:23271915

  2. Localisation of the brain in fetal MRI using bundled SIFT features.

    Science.gov (United States)

    Keraudren, Kevin; Kyriakopoulou, Vanessa; Rutherford, Mary; Hajnal, Joseph V; Rueckert, Daniel

    2013-01-01

    Fetal MRI is a rapidly emerging diagnostic imaging tool. Its main focus is currently on brain imaging, but there is a huge potential for whole body studies. We propose a method for accurate and robust localisation of the fetal brain in MRI when the image data is acquired as a stack of 2D slices misaligned due to fetal motion. We first detect possible brain locations in 2D images with a Bag-of-Words model using SIFT features aggregated within Maximally Stable Extremal Regions (called bundled SIFT), followed by a robust fitting of an axis-aligned 3D box to the selected regions. We rely on prior knowledge of the fetal brain development to define size and shape constraints. In a cross-validation experiment, we obtained a median error distance of 5.7mm from the ground truth and no missed detection on a database of 59 fetuses. This 2D approach thus allows a robust detection even in the presence of substantial fetal motion.

  3. Discovering anatomical patterns with pathological meaning by clustering of visual primitives in structural brain MRI