WorldWideScience

Sample records for volumetric 3d model

  1. 3D Volumetric Modeling and Microvascular Reconstruction of Irradiated Lumbosacral Defects After Oncologic Resection

    Directory of Open Access Journals (Sweden)

    Emilio Garcia-Tutor

    2016-12-01

    Full Text Available Background: Locoregional flaps are sufficient in most sacral reconstructions. However, large sacral defects due to malignancy necessitate a different reconstructive approach, with local flaps compromised by radiation and regional flaps inadequate for broad surface areas or substantial volume obliteration. In this report, we present our experience using free muscle transfer for volumetric reconstruction in such cases, and demonstrate 3D haptic models of the sacral defect to aid preoperative planning.Methods: Five consecutive patients with irradiated sacral defects secondary to oncologic resections were included, surface area ranging from 143-600cm2. Latissimus dorsi-based free flap sacral reconstruction was performed in each case, between 2005 and 2011. Where the superior gluteal artery was compromised, the subcostal artery was used as a recipient vessel. Microvascular technique, complications and outcomes are reported. The use of volumetric analysis and 3D printing is also demonstrated, with imaging data converted to 3D images suitable for 3D printing with Osirix software (Pixmeo, Geneva, Switzerland. An office-based, desktop 3D printer was used to print 3D models of sacral defects, used to demonstrate surface area and contour and produce a volumetric print of the dead space needed for flap obliteration. Results: The clinical series of latissimus dorsi free flap reconstructions is presented, with successful transfer in all cases, and adequate soft-tissue cover and volume obliteration achieved. The original use of the subcostal artery as a recipient vessel was successfully achieved. All wounds healed uneventfully. 3D printing is also demonstrated as a useful tool for 3D evaluation of volume and dead-space.Conclusion: Free flaps offer unique benefits in sacral reconstruction where local tissue is compromised by irradiation and tumor recurrence, and dead-space requires accurate volumetric reconstruction. We describe for the first time the use of

  2. Exploring interaction with 3D volumetric displays

    Science.gov (United States)

    Grossman, Tovi; Wigdor, Daniel; Balakrishnan, Ravin

    2005-03-01

    Volumetric displays generate true volumetric 3D images by actually illuminating points in 3D space. As a result, viewing their contents is similar to viewing physical objects in the real world. These displays provide a 360 degree field of view, and do not require the user to wear hardware such as shutter glasses or head-trackers. These properties make them a promising alternative to traditional display systems for viewing imagery in 3D. Because these displays have only recently been made available commercially (e.g., www.actuality-systems.com), their current use tends to be limited to non-interactive output-only display devices. To take full advantage of the unique features of these displays, however, it would be desirable if the 3D data being displayed could be directly interacted with and manipulated. We investigate interaction techniques for volumetric display interfaces, through the development of an interactive 3D geometric model building application. While this application area itself presents many interesting challenges, our focus is on the interaction techniques that are likely generalizable to interactive applications for other domains. We explore a very direct style of interaction where the user interacts with the virtual data using direct finger manipulations on and around the enclosure surrounding the displayed 3D volumetric image.

  3. a Geometric Processing Workflow for Transforming Reality-Based 3d Models in Volumetric Meshes Suitable for Fea

    Science.gov (United States)

    Gonizzi Barsanti, S.; Guidi, G.

    2017-02-01

    Conservation of Cultural Heritage is a key issue and structural changes and damages can influence the mechanical behaviour of artefacts and buildings. The use of Finite Elements Methods (FEM) for mechanical analysis is largely used in modelling stress behaviour. The typical workflow involves the use of CAD 3D models made by Non-Uniform Rational B-splines (NURBS) surfaces, representing the ideal shape of the object to be simulated. Nowadays, 3D documentation of CH has been widely developed through reality-based approaches, but the models are not suitable for a direct use in FEA: the mesh has in fact to be converted to volumetric, and the density has to be reduced since the computational complexity of a FEA grows exponentially with the number of nodes. The focus of this paper is to present a new method aiming at generate the most accurate 3D representation of a real artefact from highly accurate 3D digital models derived from reality-based techniques, maintaining the accuracy of the high-resolution polygonal models in the solid ones. The approach proposed is based on a wise use of retopology procedures and a transformation of this model to a mathematical one made by NURBS surfaces suitable for being processed by volumetric meshers typically embedded in standard FEM packages. The strong simplification with little loss of consistency possible with the retopology step is used for maintaining as much coherence as possible between the original acquired mesh and the simplified model, creating in the meantime a topology that is more favourable for the automatic NURBS conversion.

  4. Influence of georeference for saturated excess overland flow modelling using 3D volumetric soft geo-objects

    Science.gov (United States)

    Izham, Mohamad Yusoff; Muhamad Uznir, Ujang; Alias, Abdul Rahman; Ayob, Katimon; Wan Ruslan, Ismail

    2011-04-01

    Existing 2D data structures are often insufficient for analysing the dynamism of saturation excess overland flow (SEOF) within a basin. Moreover, all stream networks and soil surface structures in GIS must be preserved within appropriate projection plane fitting techniques known as georeferencing. Inclusion of 3D volumetric structure of the current soft geo-objects simulation model would offer a substantial effort towards representing 3D soft geo-objects of SEOF dynamically within a basin by visualising saturated flow and overland flow volume. This research attempts to visualise the influence of a georeference system towards the dynamism of overland flow coverage and total overland flow volume generated from the SEOF process using VSG data structure. The data structure is driven by Green-Ampt methods and the Topographic Wetness Index (TWI). VSGs are analysed by focusing on spatial object preservation techniques of the conformal-based Malaysian Rectified Skew Orthomorphic (MRSO) and the equidistant-based Cassini-Soldner projection plane under the existing geodetic Malaysian Revised Triangulation 1948 (MRT48) and the newly implemented Geocentric Datum for Malaysia (GDM2000) datum. The simulated result visualises deformation of SEOF coverage under different georeference systems via its projection planes, which delineate dissimilar computation of SEOF areas and overland flow volumes. The integration of Georeference, 3D GIS and the saturation excess mechanism provides unifying evidence towards successful landslide and flood disaster management through envisioning the streamflow generating process (mainly SEOF) in a 3D environment.

  5. Volumetric LiDAR scanning of a wind turbine wake and comparison with a 3D analytical wake model

    Science.gov (United States)

    Carbajo Fuertes, Fernando; Porté-Agel, Fernando

    2016-04-01

    A correct estimation of the future power production is of capital importance whenever the feasibility of a future wind farm is being studied. This power estimation relies mostly on three aspects: (1) a reliable measurement of the wind resource in the area, (2) a well-established power curve of the future wind turbines and, (3) an accurate characterization of the wake effects; the latter being arguably the most challenging one due to the complexity of the phenomenon and the lack of extensive full-scale data sets that could be used to validate analytical or numerical models. The current project addresses the problem of obtaining a volumetric description of a full-scale wake of a 2MW wind turbine in terms of velocity deficit and turbulence intensity using three scanning wind LiDARs and two sonic anemometers. The characterization of the upstream flow conditions is done by one scanning LiDAR and two sonic anemometers, which have been used to calculate incoming vertical profiles of horizontal wind speed, wind direction and an approximation to turbulence intensity, as well as the thermal stability of the atmospheric boundary layer. The characterization of the wake is done by two scanning LiDARs working simultaneously and pointing downstream from the base of the wind turbine. The direct LiDAR measurements in terms of radial wind speed can be corrected using the upstream conditions in order to provide good estimations of the horizontal wind speed at any point downstream of the wind turbine. All this data combined allow for the volumetric reconstruction of the wake in terms of velocity deficit as well as turbulence intensity. Finally, the predictions of a 3D analytical model [1] are compared to the 3D LiDAR measurements of the wind turbine. The model is derived by applying the laws of conservation of mass and momentum and assuming a Gaussian distribution for the velocity deficit in the wake. This model has already been validated using high resolution wind-tunnel measurements

  6. Volumetric 3D display using a DLP projection engine

    Science.gov (United States)

    Geng, Jason

    2012-03-01

    In this article, we describe a volumetric 3D display system based on the high speed DLPTM (Digital Light Processing) projection engine. Existing two-dimensional (2D) flat screen displays often lead to ambiguity and confusion in high-dimensional data/graphics presentation due to lack of true depth cues. Even with the help of powerful 3D rendering software, three-dimensional (3D) objects displayed on a 2D flat screen may still fail to provide spatial relationship or depth information correctly and effectively. Essentially, 2D displays have to rely upon capability of human brain to piece together a 3D representation from 2D images. Despite the impressive mental capability of human visual system, its visual perception is not reliable if certain depth cues are missing. In contrast, volumetric 3D display technologies to be discussed in this article are capable of displaying 3D volumetric images in true 3D space. Each "voxel" on a 3D image (analogous to a pixel in 2D image) locates physically at the spatial position where it is supposed to be, and emits light from that position toward omni-directions to form a real 3D image in 3D space. Such a volumetric 3D display provides both physiological depth cues and psychological depth cues to human visual system to truthfully perceive 3D objects. It yields a realistic spatial representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them.

  7. Volumetric 3D Display System with Static Screen

    Science.gov (United States)

    Geng, Jason

    2011-01-01

    Current display technology has relied on flat, 2D screens that cannot truly convey the third dimension of visual information: depth. In contrast to conventional visualization that is primarily based on 2D flat screens, the volumetric 3D display possesses a true 3D display volume, and places physically each 3D voxel in displayed 3D images at the true 3D (x,y,z) spatial position. Each voxel, analogous to a pixel in a 2D image, emits light from that position to form a real 3D image in the eyes of the viewers. Such true volumetric 3D display technology provides both physiological (accommodation, convergence, binocular disparity, and motion parallax) and psychological (image size, linear perspective, shading, brightness, etc.) depth cues to human visual systems to help in the perception of 3D objects. In a volumetric 3D display, viewers can watch the displayed 3D images from a completely 360 view without using any special eyewear. The volumetric 3D display techniques may lead to a quantum leap in information display technology and can dramatically change the ways humans interact with computers, which can lead to significant improvements in the efficiency of learning and knowledge management processes. Within a block of glass, a large amount of tiny dots of voxels are created by using a recently available machining technique called laser subsurface engraving (LSE). The LSE is able to produce tiny physical crack points (as small as 0.05 mm in diameter) at any (x,y,z) location within the cube of transparent material. The crack dots, when illuminated by a light source, scatter the light around and form visible voxels within the 3D volume. The locations of these tiny voxels are strategically determined such that each can be illuminated by a light ray from a high-resolution digital mirror device (DMD) light engine. The distribution of these voxels occupies the full display volume within the static 3D glass screen. This design eliminates any moving screen seen in previous

  8. 3D Space Shift from CityGML LoD3-Based Multiple Building Elements to a 3D Volumetric Object

    Directory of Open Access Journals (Sweden)

    Shen Ying

    2017-01-01

    Full Text Available In contrast with photorealistic visualizations, urban landscape applications, and building information system (BIM, 3D volumetric presentations highlight specific calculations and applications of 3D building elements for 3D city planning and 3D cadastres. Knowing the precise volumetric quantities and the 3D boundary locations of 3D building spaces is a vital index which must remain constant during data processing because the values are related to space occupation, tenure, taxes, and valuation. To meet these requirements, this paper presents a five-step algorithm for performing a 3D building space shift. This algorithm is used to convert multiple building elements into a single 3D volumetric building object while maintaining the precise volume of the 3D space and without changing the 3D locations or displacing the building boundaries. As examples, this study used input data and building elements based on City Geography Markup Language (CityGML LoD3 models. This paper presents a method for 3D urban space and 3D property management with the goal of constructing a 3D volumetric object for an integral building using CityGML objects, by fusing the geometries of various building elements. The resulting objects possess true 3D geometry that can be represented by solid geometry and saved to a CityGML file for effective use in 3D urban planning and 3D cadastres.

  9. 3D Digital Modelling

    DEFF Research Database (Denmark)

    Hundebøl, Jesper

    wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3...... important to appreciate the analysis. Before turning to the presentation of preliminary findings and a discussion of 3D digital modelling, it begins, however, with an outline of industry specific ICT strategic issues. Paper type. Multi-site field study...

  10. Tangible 3D Modelling

    DEFF Research Database (Denmark)

    Hejlesen, Aske K.; Ovesen, Nis

    2012-01-01

    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through...... facilitated discussions during the course as well as through a survey distributed to the participating students. The analysis of the experiences shows a mixed picture consisting of both benefits and limits to the experimental technique. A discussion about the applicability of the technique and about...

  11. 3D Volumetric Analysis of Fluid Inclusions Using Confocal Microscopy

    Science.gov (United States)

    Proussevitch, A.; Mulukutla, G.; Sahagian, D.; Bodnar, B.

    2009-05-01

    the interface boundaries between the phases before the application of segmentation routines. In turn, we found that an active contour segmentation technique works best for these types of geomaterials. The method was developed by adapting a medical software package implemented using the Insight Toolkit (ITK) set of algorithms developed for segmentation of anatomical structures. We have developed a manual analysis procedure with the potential of 2 micron resolution in 3D volume rendering that is specifically designed for application to fluid inclusion volume measurements.

  12. A novel approach to EPID-based 3D volumetric dosimetry for IMRT and VMAT QA

    Science.gov (United States)

    Alhazmi, Abdulaziz; Gianoli, Chiara; Neppl, Sebastian; Martins, Juliana; Veloza, Stella; Podesta, Mark; Verhaegen, Frank; Reiner, Michael; Belka, Claus; Parodi, Katia

    2018-06-01

    Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) are relatively complex treatment delivery techniques and require quality assurance (QA) procedures. Pre-treatment dosimetric verification represents a fundamental QA procedure in daily clinical routine in radiation therapy. The purpose of this study is to develop an EPID-based approach to reconstruct a 3D dose distribution as imparted to a virtual cylindrical water phantom to be used for plan-specific pre-treatment dosimetric verification for IMRT and VMAT plans. For each depth, the planar 2D dose distributions acquired in air were back-projected and convolved by depth-specific scatter and attenuation kernels. The kernels were obtained by making use of scatter and attenuation models to iteratively estimate the parameters from a set of reference measurements. The derived parameters served as a look-up table for reconstruction of arbitrary measurements. The summation of the reconstructed 3D dose distributions resulted in the integrated 3D dose distribution of the treatment delivery. The accuracy of the proposed approach was validated in clinical IMRT and VMAT plans by means of gamma evaluation, comparing the reconstructed 3D dose distributions with Octavius measurement. The comparison was carried out using (3%, 3 mm) criteria scoring 99% and 96% passing rates for IMRT and VMAT, respectively. An accuracy comparable to the one of the commercial device for 3D volumetric dosimetry was demonstrated. In addition, five IMRT and five VMAT were validated against the 3D dose calculation performed by the TPS in a water phantom using the same passing rate criteria. The median passing rates within the ten treatment plans was 97.3%, whereas the lowest was 95%. Besides, the reconstructed 3D distribution is obtained without predictions relying on forward dose calculation and without external phantom or dosimetric devices. Thus, the approach provides a fully automated, fast and easy QA

  13. 3D Models of Immunotherapy

    Science.gov (United States)

    This collaborative grant is developing 3D models of both mouse and human biology to investigate aspects of therapeutic vaccination in order to answer key questions relevant to human cancer immunotherapy.

  14. 3D Face Apperance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...

  15. 3-D repositioning and differential images of volumetric CT measurements

    International Nuclear Information System (INIS)

    Muench, B.; Rueegsegger, P.

    1993-01-01

    In quantitative computed tomography (QCT), time serial measurements are performed to detect a global bone density loss or to identify localized bone density changes. A prerequisite for an unambiguous analysis is the comparison of identical bone volumes. Usually, manual repositioning is too coarse. The authors therefore developed a mathematical procedure that allows matching two three-dimensional image volumes. The algorithm is based on correlation techniques. The procedure has been optimized and applied to computer-tomographic 3-D images of the human knee. It has been tested with both artificially created and in vivo measured image data. Furthermore, typical results of differential images calculated from real bone measurements are presented

  16. Evaluation of DQA for tomography using 3D volumetric phantom

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Uk [Dept. of Radiation Oncology, Catholic University of Incheon St. Mary' s Hospital, Incheon (Korea, Republic of); Kim, Jeong Koo [Dept. of Radiological Science, Hanseo University, Seosan (Korea, Republic of)

    2016-12-15

    The study investigates the necessity of 3 dimensional dose distribution evaluation instead of point dose and 2 dimensional dose distribution evaluation. Treatment plans were generated on the RANDO phantom to measure the precise dose distribution of the treatment site 0.5, 1, 1.5, 2, 2.5, 3 cm with the prescribed dose; 1,200 cGy, 5 fractions. Gamma analysis (3%/3 mm, 2%/2 mm) of dose distribution was evaluated with gafchromic EBT2 film and ArcCHECK phantom. The average error of absolute dose was measured at 0.76±0.59% and 1.37±0.76% in cheese phantom and ArcCHECK phantom respectively. The average passing ratio for 3%/3 mm were 97.72±0.02% and 99.26±0.01% in gafchromic EBT2 film and ArcCHECK phantom respectively. The average passing ratio for 2%/2 mm were 94.21±0.02% and 93.02±0.01% in gafchromic EBT2 film and ArcCHECK phantom respectively. There was a more accurate dose distribution of 3D volume phantom than cheese phantom in patients DQA using tomotherapy. Therefor it should be evaluated simultaneously 3 dimensional dose evaluation on target and peripheral area in rotational radiotherapy such as tomotherapy.

  17. High-throughput volumetric reconstruction for 3D wheat plant architecture studies

    Directory of Open Access Journals (Sweden)

    Wei Fang

    2016-09-01

    Full Text Available For many tiller crops, the plant architecture (PA, including the plant fresh weight, plant height, number of tillers, tiller angle and stem diameter, significantly affects the grain yield. In this study, we propose a method based on volumetric reconstruction for high-throughput three-dimensional (3D wheat PA studies. The proposed methodology involves plant volumetric reconstruction from multiple images, plant model processing and phenotypic parameter estimation and analysis. This study was performed on 80 Triticum aestivum plants, and the results were analyzed. Comparing the automated measurements with manual measurements, the mean absolute percentage error (MAPE in the plant height and the plant fresh weight was 2.71% (1.08cm with an average plant height of 40.07cm and 10.06% (1.41g with an average plant fresh weight of 14.06g, respectively. The root mean square error (RMSE was 1.37cm and 1.79g for the plant height and plant fresh weight, respectively. The correlation coefficients were 0.95 and 0.96 for the plant height and plant fresh weight, respectively. Additionally, the proposed methodology, including plant reconstruction, model processing and trait extraction, required only approximately 20s on average per plant using parallel computing on a graphics processing unit (GPU, demonstrating that the methodology would be valuable for a high-throughput phenotyping platform.

  18. Diffusion approximation for modeling of 3-D radiation distributions

    International Nuclear Information System (INIS)

    Zardecki, A.; Gerstl, S.A.W.; De Kinder, R.E. Jr.

    1985-01-01

    A three-dimensional transport code DIF3D, based on the diffusion approximation, is used to model the spatial distribution of radiation energy arising from volumetric isotropic sources. Future work will be concerned with the determination of irradiances and modeling of realistic scenarios, relevant to the battlefield conditions. 8 refs., 4 figs

  19. Crowdsourcing Based 3d Modeling

    Science.gov (United States)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  20. CROWDSOURCING BASED 3D MODELING

    Directory of Open Access Journals (Sweden)

    A. Somogyi

    2016-06-01

    Full Text Available Web-based photo albums that support organizing and viewing the users’ images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  1. Volumetric Analysis of 3-D-Cultured Colonies in Wet Alginate Spots Using 384-Pillar Plate.

    Science.gov (United States)

    Lee, Dong Woo; Choi, Yea-Jun; Lee, Sang-Yun; Kim, Myoung-Hee; Doh, Il; Ryu, Gyu Ha; Choi, Soo-Mi

    2018-06-01

    The volumetric analysis of three-dimensional (3-D)-cultured colonies in alginate spots has been proposed to increase drug efficacy. In a previously developed pillar/well chip platform, colonies within spots are usually stained and dried for analysis of cell viability using two-dimensional (2-D) fluorescent images. Since the number of viable cells in colonies is directly related to colony volume, we proposed the 3-D analysis of colonies for high-accuracy cell viability calculation. The spots were immersed in buffer, and the 3-D volume of each colony was calculated from the 2-D stacking fluorescent images of the spot with different focal positions. In the experiments with human gastric carcinoma cells and anticancer drugs, we compared cell viability values calculated using the 2-D area and 3-D volume of colonies in the wet and dried alginate spots, respectively. The IC 50 value calculated using the 3-D volume of the colonies (9.5 μM) was less than that calculated in the 2-D area analysis (121.5 μM). We observed that the colony showed a more sensitive drug response regarding volume calculated from the 3-D image reconstructed using several confocal images than regarding colony area calculated in the 2-D analysis.

  2. 3D neutron transport modelization

    International Nuclear Information System (INIS)

    Warin, X.

    1996-12-01

    Some nodal methods to solve the transport equation in 3D are presented. Two nodal methods presented at an OCDE congress are described: a first one is a low degree one called RTN0; a second one is a high degree one called BDM1. The two methods can be made faster with a totally consistent DSA. Some results of parallelization show that: 98% of the time is spent in sweeps; transport sweeps are easily parallelized. (K.A.)

  3. 3D neutron transport modelization

    Energy Technology Data Exchange (ETDEWEB)

    Warin, X.

    1996-12-01

    Some nodal methods to solve the transport equation in 3D are presented. Two nodal methods presented at an OCDE congress are described: a first one is a low degree one called RTN0; a second one is a high degree one called BDM1. The two methods can be made faster with a totally consistent DSA. Some results of parallelization show that: 98% of the time is spent in sweeps; transport sweeps are easily parallelized. (K.A.). 10 refs.

  4. 3D modelling for multipurpose cadastre

    NARCIS (Netherlands)

    Abduhl Rahman, A.; Van Oosterom, P.J.M.; Hua, T.C.; Sharkawi, K.H.; Duncan, E.E.; Azri, N.; Hassan, M.I.

    2012-01-01

    Three-dimensional (3D) modelling of cadastral objects (such as legal spaces around buildings, around utility networks and other spaces) is one of the important aspects for a multipurpose cadastre (MPC). This paper describes the 3D modelling of the objects for MPC and its usage to the knowledge of 3D

  5. Non-invasive volumetric analysis of asymptomatic hands using a 3-D scanner.

    Directory of Open Access Journals (Sweden)

    Hiroki Shinkai

    Full Text Available Hand swelling is one of the symptoms often seen in practice, but none of the available morphometric methods can quickly and efficiently quantify hand volume in an objective manner, and the current gold-standard volume measurement requires immersion in water, which can be difficult to use. Therefore, we aimed to analyze the accuracy of using 3-dimensional (3-D scanning to measure hand volume. First, we compared the hand volume calculated using the 3-D scanner to that calculated from the conventional method among 109 volunteers to determine the reliability of 3-D measurements. We defined the beginning of the hand as the distal wrist crease, and 3-D forms of the hands were captured by the 3-D scanning system. Second, 238 volunteers (87 men, 151 women with no disease or history of hand surgery underwent 3-D scanning. Data collected included age, height, weight, and shoe size. The wrist circumference (WC and the distance between distal wrist crease and tip of middle finger (DDT were measured. Statistical analyses were performed using linear regression to investigate the relationship between the hand volume and these parameters. In the first study, a significantly strong positive correlation was observed [R = 0.98] between the hand volume calculated via 3-D scanning and that calculated via the conventional method. In the second study, no significant differences between the volumes, WC or DDT of right and left hands were found. The correlations of hand volume with weight, WC, and DDT were strong. We created a formula to predict the hand volume using these parameters; these variables explained approximately 80% of the predicted volume. We confirmed that the new 3-D scanning method, which is performed without touching the hand and can record the form of the hand, yields an accurate volumetric analysis of an asymptomatic hand.

  6. Methodological proposal for the volumetric study of archaeological ceramics through 3D edition free-software programs: the case of the celtiberians cemeteries of the meseta

    Directory of Open Access Journals (Sweden)

    Álvaro Sánchez Climent

    2014-10-01

    Full Text Available Nowadays the free-software programs have been converted into the ideal tools for the archaeological researches, reaching the same level as other commercial programs. For that reason, the 3D modeling tool Blender has reached in the last years a great popularity offering similar characteristics like other commercial 3D editing programs such as 3D Studio Max or AutoCAD. Recently, it has been developed the necessary script for the volumetric calculations of three-dimnesional objects, offering great possibilities to calculate the volume of the archaeological ceramics. In this paper, we present a methodological approach for the volumetric studies with Blender and a study case of funerary urns from several celtiberians cemeteries of the Spanish Meseta. The goal is to demonstrate the great possibilities that the 3D editing free-software tools have in the volumetric studies at the present time.

  7. 3D Tendon Strain Estimation Using High-frequency Volumetric Ultrasound Images: A Feasibility Study.

    Science.gov (United States)

    Carvalho, Catarina; Slagmolen, Pieter; Bogaerts, Stijn; Scheys, Lennart; D'hooge, Jan; Peers, Koen; Maes, Frederik; Suetens, Paul

    2018-03-01

    Estimation of strain in tendons for tendinopathy assessment is a hot topic within the sports medicine community. It is believed that, if accurately estimated, existing treatment and rehabilitation protocols can be improved and presymptomatic abnormalities can be detected earlier. State-of-the-art studies present inaccurate and highly variable strain estimates, leaving this problem without solution. Out-of-plane motion, present when acquiring two-dimensional (2D) ultrasound (US) images, is a known problem and may be responsible for such errors. This work investigates the benefit of high-frequency, three-dimensional (3D) US imaging to reduce errors in tendon strain estimation. Volumetric US images were acquired in silico, in vitro, and ex vivo using an innovative acquisition approach that combines the acquisition of 2D high-frequency US images with a mechanical guided system. An affine image registration method was used to estimate global strain. 3D strain estimates were then compared with ground-truth values and with 2D strain estimates. The obtained results for in silico data showed a mean absolute error (MAE) of 0.07%, 0.05%, and 0.27% for 3D estimates along axial, lateral direction, and elevation direction and a respective MAE of 0.21% and 0.29% for 2D strain estimates. Although 3D could outperform 2D, this does not occur in in vitro and ex vivo settings, likely due to 3D acquisition artifacts. Comparison against the state-of-the-art methods showed competitive results. The proposed work shows that 3D strain estimates are more accurate than 2D estimates but acquisition of appropriate 3D US images remains a challenge.

  8. The Esri 3D city information model

    International Nuclear Information System (INIS)

    Reitz, T; Schubiger-Banz, S

    2014-01-01

    With residential and commercial space becoming increasingly scarce, cities are going vertical. Managing the urban environments in 3D is an increasingly important and complex undertaking. To help solving this problem, Esri has released the ArcGIS for 3D Cities solution. The ArcGIS for 3D Cities solution provides the information model, tools and apps for creating, analyzing and maintaining a 3D city using the ArcGIS platform. This paper presents an overview of the 3D City Information Model and some sample use cases

  9. DSA volumetric 3D reconstructions of intracranial aneurysms: A pictorial essay

    Science.gov (United States)

    Cieściński, Jakub; Serafin, Zbigniew; Strześniewski, Piotr; Lasek, Władysław; Beuth, Wojciech

    2012-01-01

    Summary A gold standard of cerebral vessel imaging remains the digital subtraction angiography (DSA) performed in three projections. However, in specific clinical cases, many additional projections are required, or a complete visualization of a lesion may even be impossible with 2D angiography. Three-dimensional (3D) reconstructions of rotational angiography were reported to improve the performance of DSA significantly. In this pictorial essay, specific applications of this technique are presented in the management of intracranial aneurysms, including: preoperative aneurysm evaluation, intraoperative imaging, and follow-up. Volumetric reconstructions of 3D DSA are a valuable tool for cerebral vessels imaging. They play a vital role in the assessment of intracranial aneurysms, especially in evaluation of the aneurysm neck and the aneurysm recanalization. PMID:22844309

  10. Quantification of smoothing requirement for 3D optic flow calculation of volumetric images

    DEFF Research Database (Denmark)

    Bab-Hadiashar, Alireza; Tennakoon, Ruwan B.; de Bruijne, Marleen

    2013-01-01

    Complexities of dynamic volumetric imaging challenge the available computer vision techniques on a number of different fronts. This paper examines the relationship between the estimation accuracy and required amount of smoothness for a general solution from a robust statistics perspective. We show...... that a (surprisingly) small amount of local smoothing is required to satisfy both the necessary and sufficient conditions for accurate optic flow estimation. This notion is called 'just enough' smoothing, and its proper implementation has a profound effect on the preservation of local information in processing 3D...... dynamic scans. To demonstrate the effect of 'just enough' smoothing, a robust 3D optic flow method with quantized local smoothing is presented, and the effect of local smoothing on the accuracy of motion estimation in dynamic lung CT images is examined using both synthetic and real image sequences...

  11. The 3D-city model

    DEFF Research Database (Denmark)

    Holmgren, Steen; Rüdiger, Bjarne; Tournay, Bruno

    2001-01-01

    We have worked with the construction and use of 3D city models for about ten years. This work has given us valuable experience concerning model methodology. In addition to this collection of knowledge, our perception of the concept of city models has changed radically. In order to explain...... of 3D city models....

  12. 3D Printing of Molecular Models

    Science.gov (United States)

    Gardner, Adam; Olson, Arthur

    2016-01-01

    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  13. Illustrating the disassembly of 3D models

    KAUST Repository

    Guo, Jianwei; Yan, Dongming; Li, Er; Dong, Weiming; Wonka, Peter; Zhang, Xiaopeng

    2013-01-01

    We present a framework for the automatic disassembly of 3D man-made models and the illustration of the disassembly process. Given an assembled 3D model, we first analyze the individual parts using sharp edge loops and extract the contact faces

  14. BEAMS3D Neutral Beam Injection Model

    Energy Technology Data Exchange (ETDEWEB)

    Lazerson, Samuel

    2014-04-14

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  15. From medical imaging data to 3D printed anatomical models.

    Directory of Open Access Journals (Sweden)

    Thore M Bücking

    Full Text Available Anatomical models are important training and teaching tools in the clinical environment and are routinely used in medical imaging research. Advances in segmentation algorithms and increased availability of three-dimensional (3D printers have made it possible to create cost-efficient patient-specific models without expert knowledge. We introduce a general workflow that can be used to convert volumetric medical imaging data (as generated by Computer Tomography (CT to 3D printed physical models. This process is broken up into three steps: image segmentation, mesh refinement and 3D printing. To lower the barrier to entry and provide the best options when aiming to 3D print an anatomical model from medical images, we provide an overview of relevant free and open-source image segmentation tools as well as 3D printing technologies. We demonstrate the utility of this streamlined workflow by creating models of ribs, liver, and lung using a Fused Deposition Modelling 3D printer.

  16. METRIC EVALUATION PIPELINE FOR 3D MODELING OF URBAN SCENES

    Directory of Open Access Journals (Sweden)

    M. Bosch

    2017-05-01

    Full Text Available Publicly available benchmark data and metric evaluation approaches have been instrumental in enabling research to advance state of the art methods for remote sensing applications in urban 3D modeling. Most publicly available benchmark datasets have consisted of high resolution airborne imagery and lidar suitable for 3D modeling on a relatively modest scale. To enable research in larger scale 3D mapping, we have recently released a public benchmark dataset with multi-view commercial satellite imagery and metrics to compare 3D point clouds with lidar ground truth. We now define a more complete metric evaluation pipeline developed as publicly available open source software to assess semantically labeled 3D models of complex urban scenes derived from multi-view commercial satellite imagery. Evaluation metrics in our pipeline include horizontal and vertical accuracy and completeness, volumetric completeness and correctness, perceptual quality, and model simplicity. Sources of ground truth include airborne lidar and overhead imagery, and we demonstrate a semi-automated process for producing accurate ground truth shape files to characterize building footprints. We validate our current metric evaluation pipeline using 3D models produced using open source multi-view stereo methods. Data and software is made publicly available to enable further research and planned benchmarking activities.

  17. Metric Evaluation Pipeline for 3d Modeling of Urban Scenes

    Science.gov (United States)

    Bosch, M.; Leichtman, A.; Chilcott, D.; Goldberg, H.; Brown, M.

    2017-05-01

    Publicly available benchmark data and metric evaluation approaches have been instrumental in enabling research to advance state of the art methods for remote sensing applications in urban 3D modeling. Most publicly available benchmark datasets have consisted of high resolution airborne imagery and lidar suitable for 3D modeling on a relatively modest scale. To enable research in larger scale 3D mapping, we have recently released a public benchmark dataset with multi-view commercial satellite imagery and metrics to compare 3D point clouds with lidar ground truth. We now define a more complete metric evaluation pipeline developed as publicly available open source software to assess semantically labeled 3D models of complex urban scenes derived from multi-view commercial satellite imagery. Evaluation metrics in our pipeline include horizontal and vertical accuracy and completeness, volumetric completeness and correctness, perceptual quality, and model simplicity. Sources of ground truth include airborne lidar and overhead imagery, and we demonstrate a semi-automated process for producing accurate ground truth shape files to characterize building footprints. We validate our current metric evaluation pipeline using 3D models produced using open source multi-view stereo methods. Data and software is made publicly available to enable further research and planned benchmarking activities.

  18. Multifractal modelling and 3D lacunarity analysis

    International Nuclear Information System (INIS)

    Hanen, Akkari; Imen, Bhouri; Asma, Ben Abdallah; Patrick, Dubois; Hedi, Bedoui Mohamed

    2009-01-01

    This study presents a comparative evaluation of lacunarity of 3D grey level models with different types of inhomogeneity. A new method based on the 'Relative Differential Box Counting' was developed to estimate the lacunarity features of grey level volumes. To validate our method, we generated a set of 3D grey level multifractal models with random, anisotropic and hierarchical properties. Our method gives a lacunarity measurement correlated with the theoretical one and allows a better model classification compared with a classical approach.

  19. Radiosity diffusion model in 3D

    Science.gov (United States)

    Riley, Jason D.; Arridge, Simon R.; Chrysanthou, Yiorgos; Dehghani, Hamid; Hillman, Elizabeth M. C.; Schweiger, Martin

    2001-11-01

    We present the Radiosity-Diffusion model in three dimensions(3D), as an extension to previous work in 2D. It is a method for handling non-scattering spaces in optically participating media. We present the extension of the model to 3D including an extension to the model to cope with increased complexity of the 3D domain. We show that in 3D more careful consideration must be given to the issues of meshing and visibility to model the transport of light within reasonable computational bounds. We demonstrate the model to be comparable to Monte-Carlo simulations for selected geometries, and show preliminary results of comparisons to measured time-resolved data acquired on resin phantoms.

  20. A Hybrid 3D Indoor Space Model

    Directory of Open Access Journals (Sweden)

    A. Jamali

    2016-10-01

    Full Text Available GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM, Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  1. Z-Index Parameterization for Volumetric CT Image Reconstruction via 3-D Dictionary Learning.

    Science.gov (United States)

    Bai, Ti; Yan, Hao; Jia, Xun; Jiang, Steve; Wang, Ge; Mou, Xuanqin

    2017-12-01

    Despite the rapid developments of X-ray cone-beam CT (CBCT), image noise still remains a major issue for the low dose CBCT. To suppress the noise effectively while retain the structures well for low dose CBCT image, in this paper, a sparse constraint based on the 3-D dictionary is incorporated into a regularized iterative reconstruction framework, defining the 3-D dictionary learning (3-DDL) method. In addition, by analyzing the sparsity level curve associated with different regularization parameters, a new adaptive parameter selection strategy is proposed to facilitate our 3-DDL method. To justify the proposed method, we first analyze the distributions of the representation coefficients associated with the 3-D dictionary and the conventional 2-D dictionary to compare their efficiencies in representing volumetric images. Then, multiple real data experiments are conducted for performance validation. Based on these results, we found: 1) the 3-D dictionary-based sparse coefficients have three orders narrower Laplacian distribution compared with the 2-D dictionary, suggesting the higher representation efficiencies of the 3-D dictionary; 2) the sparsity level curve demonstrates a clear Z-shape, and hence referred to as Z-curve, in this paper; 3) the parameter associated with the maximum curvature point of the Z-curve suggests a nice parameter choice, which could be adaptively located with the proposed Z-index parameterization (ZIP) method; 4) the proposed 3-DDL algorithm equipped with the ZIP method could deliver reconstructions with the lowest root mean squared errors and the highest structural similarity index compared with the competing methods; 5) similar noise performance as the regular dose FDK reconstruction regarding the standard deviation metric could be achieved with the proposed method using (1/2)/(1/4)/(1/8) dose level projections. The contrast-noise ratio is improved by ~2.5/3.5 times with respect to two different cases under the (1/8) dose level compared

  2. 3D face modeling, analysis and recognition

    CERN Document Server

    Daoudi, Mohamed; Veltkamp, Remco

    2013-01-01

    3D Face Modeling, Analysis and Recognition presents methodologies for analyzing shapes of facial surfaces, develops computational tools for analyzing 3D face data, and illustrates them using state-of-the-art applications. The methodologies chosen are based on efficient representations, metrics, comparisons, and classifications of features that are especially relevant in the context of 3D measurements of human faces. These frameworks have a long-term utility in face analysis, taking into account the anticipated improvements in data collection, data storage, processing speeds, and application s

  3. Measuring Visual Closeness of 3-D Models

    KAUST Repository

    Gollaz Morales, Jose Alejandro

    2012-09-01

    Measuring visual closeness of 3-D models is an important issue for different problems and there is still no standardized metric or algorithm to do it. The normal of a surface plays a vital role in the shading of a 3-D object. Motivated by this, we developed two applications to measure visualcloseness, introducing normal difference as a parameter in a weighted metric in Metro’s sampling approach to obtain the maximum and mean distance between 3-D models using 3-D and 6-D correspondence search structures. A visual closeness metric should provide accurate information on what the human observers would perceive as visually close objects. We performed a validation study with a group of people to evaluate the correlation of our metrics with subjective perception. The results were positive since the metrics predicted the subjective rankings more accurately than the Hausdorff distance.

  4. Simplifying the Exploration of Volumetric Images: Development of a 3D User Interface for the Radiologist’s Workplace

    OpenAIRE

    Teistler, M.; Breiman, R. S.; Lison, T.; Bott, O. J.; Pretschner, D. P.; Aziz, A.; Nowinski, W. L.

    2007-01-01

    Volumetric imaging (computed tomography and magnetic resonance imaging) provides increased diagnostic detail but is associated with the problem of navigation through large amounts of data. In an attempt to overcome this problem, a novel 3D navigation tool has been designed and developed that is based on an alternative input device. A 3D mouse allows for simultaneous definition of position and orientation of orthogonal or oblique multiplanar reformatted images or slabs, which are presented wit...

  5. Multifractal modelling and 3D lacunarity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hanen, Akkari, E-mail: bettaieb.hanen@topnet.t [Laboratoire de biophysique, TIM, Faculte de Medecine (Tunisia); Imen, Bhouri, E-mail: bhouri_imen@yahoo.f [Unite de recherche ondelettes et multifractals, Faculte des sciences (Tunisia); Asma, Ben Abdallah, E-mail: asma.babdallah@cristal.rnu.t [Laboratoire de biophysique, TIM, Faculte de Medecine (Tunisia); Patrick, Dubois, E-mail: pdubois@chru-lille.f [INSERM, U 703, Lille (France); Hedi, Bedoui Mohamed, E-mail: medhedi.bedoui@fmm.rnu.t [Laboratoire de biophysique, TIM, Faculte de Medecine (Tunisia)

    2009-09-28

    This study presents a comparative evaluation of lacunarity of 3D grey level models with different types of inhomogeneity. A new method based on the 'Relative Differential Box Counting' was developed to estimate the lacunarity features of grey level volumes. To validate our method, we generated a set of 3D grey level multifractal models with random, anisotropic and hierarchical properties. Our method gives a lacunarity measurement correlated with the theoretical one and allows a better model classification compared with a classical approach.

  6. Volumetric 3D display with multi-layered active screens for enhanced the depth perception (Conference Presentation)

    Science.gov (United States)

    Kim, Hak-Rin; Park, Min-Kyu; Choi, Jun-Chan; Park, Ji-Sub; Min, Sung-Wook

    2016-09-01

    Three-dimensional (3D) display technology has been studied actively because it can offer more realistic images compared to the conventional 2D display. Various psychological factors such as accommodation, binocular parallax, convergence and motion parallax are used to recognize a 3D image. For glass-type 3D displays, they use only the binocular disparity in 3D depth cues. However, this method cause visual fatigue and headaches due to accommodation conflict and distorted depth perception. Thus, the hologram and volumetric display are expected to be an ideal 3D display. Holographic displays can represent realistic images satisfying the entire factors of depth perception. But, it require tremendous amount of data and fast signal processing. The volumetric 3D displays can represent images using voxel which is a physical volume. However, it is required for large data to represent the depth information on voxel. In order to simply encode 3D information, the compact type of depth fused 3D (DFD) display, which can create polarization distributed depth map (PDDM) image having both 2D color image and depth image is introduced. In this paper, a new volumetric 3D display system is shown by using PDDM image controlled by polarization controller. In order to introduce PDDM image, polarization states of the light through spatial light modulator (SLM) was analyzed by Stokes parameter depending on the gray level. Based on the analysis, polarization controller is properly designed to convert PDDM image into sectioned depth images. After synchronizing PDDM images with active screens, we can realize reconstructed 3D image. Acknowledgment This work was supported by `The Cross-Ministry Giga KOREA Project' grant from the Ministry of Science, ICT and Future Planning, Korea

  7. Automatic balancing of 3D models

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman; Schmidt, Ryan; Bærentzen, Jakob Andreas

    2014-01-01

    3D printing technologies allow for more diverse shapes than are possible with molds and the cost of making just one single object is negligible compared to traditional production methods. However, not all shapes are suitable for 3D print. One of the remaining costs is therefore human time spent......, in these cases, we will apply a rotation of the object which only deforms the shape a little near the base. No user input is required but it is possible to specify manufacturing constraints related to specific 3D print technologies. Several models have successfully been balanced and printed using both polyjet...... is solved by creating cavities of air and distributing dense materials inside the model. Consequently, the surface is not deformed. However, printing materials with significantly different densities is often not possible and adding cavities of air is often not enough to make the model balance. Consequently...

  8. 3D Modelling and Printing Technology to Produce Patient-Specific 3D Models.

    Science.gov (United States)

    Birbara, Nicolette S; Otton, James M; Pather, Nalini

    2017-11-10

    A comprehensive knowledge of mitral valve (MV) anatomy is crucial in the assessment of MV disease. While the use of three-dimensional (3D) modelling and printing in MV assessment has undergone early clinical evaluation, the precision and usefulness of this technology requires further investigation. This study aimed to assess and validate 3D modelling and printing technology to produce patient-specific 3D MV models. A prototype method for MV 3D modelling and printing was developed from computed tomography (CT) scans of a plastinated human heart. Mitral valve models were printed using four 3D printing methods and validated to assess precision. Cardiac CT and 3D echocardiography imaging data of four MV disease patients was used to produce patient-specific 3D printed models, and 40 cardiac health professionals (CHPs) were surveyed on the perceived value and potential uses of 3D models in a clinical setting. The prototype method demonstrated submillimetre precision for all four 3D printing methods used, and statistical analysis showed a significant difference (p3D printed models, particularly using multiple print materials, were considered useful by CHPs for preoperative planning, as well as other applications such as teaching and training. This study suggests that, with further advances in 3D modelling and printing technology, patient-specific 3D MV models could serve as a useful clinical tool. The findings also highlight the potential of this technology to be applied in a variety of medical areas within both clinical and educational settings. Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  9. Illustrating the disassembly of 3D models

    KAUST Repository

    Guo, Jianwei

    2013-06-11

    We present a framework for the automatic disassembly of 3D man-made models and the illustration of the disassembly process. Given an assembled 3D model, we first analyze the individual parts using sharp edge loops and extract the contact faces between each pair of neighboring parts. The contact faces are then used to compute the possible moving directions of each part. We then present a simple algorithm for clustering the sets of the individual parts into meaningful sub-assemblies, which can be used for a hierarchical decomposition. We take the stability of sub-assemblies into account during the decomposition process by considering the upright orientation of the input models. Our framework also provides a user-friendly interface to enable the superimposition of the constraints for the decomposition. Finally, we visualize the disassembly process by generating an animated sequence. The experiments demonstrate that our framework works well for a variety of complex models. © 2013 Elsevier Ltd.

  10. Debris Dispersion Model Using Java 3D

    Science.gov (United States)

    Thirumalainambi, Rajkumar; Bardina, Jorge

    2004-01-01

    This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.

  11. Do-It-Yourself: 3D Models of Hydrogenic Orbitals through 3D Printing

    Science.gov (United States)

    Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H.

    2016-01-01

    Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…

  12. 3D object-oriented image analysis in 3D geophysical modelling

    DEFF Research Database (Denmark)

    Fadel, I.; van der Meijde, M.; Kerle, N.

    2015-01-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects......) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA......) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D...

  13. Handheld real-time volumetric 3-D gamma-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Haefner, Andrew, E-mail: ahaefner@lbl.gov [Lawrence Berkeley National Lab – Applied Nuclear Physics, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Barnowski, Ross [Department of Nuclear Engineering, UC Berkeley, 4155 Etcheverry Hall, MC 1730, Berkeley, CA 94720 (United States); Luke, Paul; Amman, Mark [Lawrence Berkeley National Lab – Applied Nuclear Physics, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Vetter, Kai [Department of Nuclear Engineering, UC Berkeley, 4155 Etcheverry Hall, MC 1730, Berkeley, CA 94720 (United States); Lawrence Berkeley National Lab – Applied Nuclear Physics, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2017-06-11

    This paper presents the concept of real-time fusion of gamma-ray imaging and visual scene data for a hand-held mobile Compton imaging system in 3-D. The ability to obtain and integrate both gamma-ray and scene data from a mobile platform enables improved capabilities in the localization and mapping of radioactive materials. This not only enhances the ability to localize these materials, but it also provides important contextual information of the scene which once acquired can be reviewed and further analyzed subsequently. To demonstrate these concepts, the high-efficiency multimode imager (HEMI) is used in a hand-portable implementation in combination with a Microsoft Kinect sensor. This sensor, in conjunction with open-source software, provides the ability to create a 3-D model of the scene and to track the position and orientation of HEMI in real-time. By combining the gamma-ray data and visual data, accurate 3-D maps of gamma-ray sources are produced in real-time. This approach is extended to map the location of radioactive materials within objects with unknown geometry.

  14. Illustrative visualization of 3D city models

    Science.gov (United States)

    Doellner, Juergen; Buchholz, Henrik; Nienhaus, Marc; Kirsch, Florian

    2005-03-01

    This paper presents an illustrative visualization technique that provides expressive representations of large-scale 3D city models, inspired by the tradition of artistic and cartographic visualizations typically found in bird"s-eye view and panoramic maps. We define a collection of city model components and a real-time multi-pass rendering algorithm that achieves comprehensible, abstract 3D city model depictions based on edge enhancement, color-based and shadow-based depth cues, and procedural facade texturing. Illustrative visualization provides an effective visual interface to urban spatial information and associated thematic information complementing visual interfaces based on the Virtual Reality paradigm, offering a huge potential for graphics design. Primary application areas include city and landscape planning, cartoon worlds in computer games, and tourist information systems.

  15. 3-D model-based vehicle tracking.

    Science.gov (United States)

    Lou, Jianguang; Tan, Tieniu; Hu, Weiming; Yang, Hao; Maybank, Steven J

    2005-10-01

    This paper aims at tracking vehicles from monocular intensity image sequences and presents an efficient and robust approach to three-dimensional (3-D) model-based vehicle tracking. Under the weak perspective assumption and the ground-plane constraint, the movements of model projection in the two-dimensional image plane can be decomposed into two motions: translation and rotation. They are the results of the corresponding movements of 3-D translation on the ground plane (GP) and rotation around the normal of the GP, which can be determined separately. A new metric based on point-to-line segment distance is proposed to evaluate the similarity between an image region and an instantiation of a 3-D vehicle model under a given pose. Based on this, we provide an efficient pose refinement method to refine the vehicle's pose parameters. An improved EKF is also proposed to track and to predict vehicle motion with a precise kinematics model. Experimental results with both indoor and outdoor data show that the algorithm obtains desirable performance even under severe occlusion and clutter.

  16. Integrated Biogeomorphological Modeling Using Delft3D

    Science.gov (United States)

    Ye, Q.; Jagers, B.

    2011-12-01

    The skill of numerical morphological models has improved significantly from the early 2D uniform, total load sediment models (with steady state or infrequent wave updates) to recent 3D hydrodynamic models with multiple suspended and bed load sediment fractions and bed stratigraphy (online coupled with waves). Although there remain many open questions within this combined field of hydro- and morphodynamics, we observe an increasing need to include biological processes in the overall dynamics. In riverine and inter-tidal environments, there is often an important influence by riparian vegetation and macrobenthos. Over the past decade more and more researchers have started to extend the simulation environment with wrapper scripts and other quick code hacks to estimate their influence on morphological development in coastal, estuarine and riverine environments. Although one can in this way quickly analyze different approaches, these research tools have generally not been designed with reuse, performance and portability in mind. We have now implemented a reusable, flexible, and efficient two-way link between the Delft3D open source framework for hydrodynamics, waves and morphology, and the water quality and ecology modules. The same link will be used for 1D, 2D and 3D modeling on networks and both structured and unstructured grids. We will describe the concepts of the overall system, and illustrate it with some first results.

  17. Robust hashing for 3D models

    Science.gov (United States)

    Berchtold, Waldemar; Schäfer, Marcel; Rettig, Michael; Steinebach, Martin

    2014-02-01

    3D models and applications are of utmost interest in both science and industry. With the increment of their usage, their number and thereby the challenge to correctly identify them increases. Content identification is commonly done by cryptographic hashes. However, they fail as a solution in application scenarios such as computer aided design (CAD), scientific visualization or video games, because even the smallest alteration of the 3D model, e.g. conversion or compression operations, massively changes the cryptographic hash as well. Therefore, this work presents a robust hashing algorithm for 3D mesh data. The algorithm applies several different bit extraction methods. They are built to resist desired alterations of the model as well as malicious attacks intending to prevent correct allocation. The different bit extraction methods are tested against each other and, as far as possible, the hashing algorithm is compared to the state of the art. The parameters tested are robustness, security and runtime performance as well as False Acceptance Rate (FAR) and False Rejection Rate (FRR), also the probability calculation of hash collision is included. The introduced hashing algorithm is kept adaptive e.g. in hash length, to serve as a proper tool for all applications in practice.

  18. 3D-modeling and 3D-printing explorations on Japanese tea ceremony utensils

    NARCIS (Netherlands)

    Levy, P.D.; Yamada, Shigeru

    2017-01-01

    In this paper, we inquire aesthetical aspects of the Japanese tea ceremony, described as the aesthetics in the imperfection, based on novel fabrication technologies: 3D-modeling and 3D-printing. To do so, 3D-printed utensils (chashaku and chasen) were iteratively designed for the ceremony and were

  19. 3D modeling of buildings outstanding sites

    CERN Document Server

    Héno, Rapha?le

    2014-01-01

    Conventional topographic databases, obtained by capture on aerial or spatial images provide a simplified 3D modeling of our urban environment, answering the needs of numerous applications (development, risk prevention, mobility management, etc.). However, when we have to represent and analyze more complex sites (monuments, civil engineering works, archeological sites, etc.), these models no longer suffice and other acquisition and processing means have to be implemented. This book focuses on the study of adapted lifting means for "notable buildings". The methods tackled in this book cover las

  20. 3D space analysis of dental models

    Science.gov (United States)

    Chuah, Joon H.; Ong, Sim Heng; Kondo, Toshiaki; Foong, Kelvin W. C.; Yong, Than F.

    2001-05-01

    Space analysis is an important procedure by orthodontists to determine the amount of space available and required for teeth alignment during treatment planning. Traditional manual methods of space analysis are tedious and often inaccurate. Computer-based space analysis methods that work on 2D images have been reported. However, as the space problems in the dental arch exist in all three planes of space, a full 3D analysis of the problems is necessary. This paper describes a visualization and measurement system that analyses 3D images of dental plaster models. Algorithms were developed to determine dental arches. The system is able to record the depths of the Curve of Spee, and quantify space liabilities arising from a non-planar Curve of Spee, malalignment and overjet. Furthermore, the difference between total arch space available and the space required to arrange the teeth in ideal occlusion can be accurately computed. The system for 3D space analysis of the dental arch is an accurate, comprehensive, rapid and repeatable method of space analysis to facilitate proper orthodontic diagnosis and treatment planning.

  1. 3D Hilbert Space Filling Curves in 3D City Modeling for Faster Spatial Queries

    DEFF Research Database (Denmark)

    Ujang, Uznir; Antón Castro, Francesc/François; Azri, Suhaibah

    2014-01-01

    The advantages of three dimensional (3D) city models can be seen in various applications including photogrammetry, urban and regional planning, computer games, etc. They expand the visualization and analysis capabilities of Geographic Information Systems on cities, and they can be developed using...... method, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban...... objects. In this research, the authors propose an opponent data constellation technique of space-filling curves (3D Hilbert curves) for 3D city model data representation. Unlike previous methods, that try to project 3D or n-dimensional data down to 2D or 3D using Principal Component Analysis (PCA...

  2. 3D Model of Surfactant Replacement Therapy

    Science.gov (United States)

    Grotberg, James; Tai, Cheng-Feng; Filoche, Marcel

    2015-11-01

    Surfactant Replacement Therapy (SRT) involves instillation of a liquid-surfactant mixture directly into the lung airway tree. Though successful in neonatal applications, its use in adults had early success followed by failure. We present the first mathematical model of 3D SRT where a liquid plug propagates through the tree from forced inspiration. In two separate modeling steps, the plug first deposits a coating film on the airway wall which subtracts from its volume, a ``coating cost''. Then the plug splits unevenly at the airway bifurcation due to gravity. The steps are repeated until a plug ruptures or reaches the tree endpoint alveoli/acinus. The model generates 3D images of the resulting acinar distribution and calculates two global indexes, efficiency and homogeneity. Simulating published literature, the earlier successful adult SRT studies show comparatively good index values, while the later failed studies do not. Those unsuccessful studies used smaller dose volumes with higher concentration mixtures, apparently assuming a well mixed compartment. The model shows that adult lungs are not well mixed in SRT due to the coating cost and gravity effects. Returning to the higher dose volume protocols could save many thousands of lives annually in the US. Supported by NIH Grants HL85156, HL84370 and Agence Nationale de la Recherche, ANR no. 2010-BLAN-1119-05.

  3. 3D gender recognition using cognitive modeling

    DEFF Research Database (Denmark)

    Fagertun, Jens; Andersen, Tobias; Hansen, Thomas

    2013-01-01

    We use 3D scans of human faces and cognitive modeling to estimate the “gender strength”. The “gender strength” is a continuous class variable of the gender, superseding the traditional binary class labeling. To visualize some of the visual trends humans use when performing gender classification, we...... use linear regression. In addition, we use the gender strength to construct a smaller but refined training set, by identifying and removing ill-defined training examples. We use this refined training set to improve the performance of known classification algorithms. Results are presented using a 5...

  4. 3D Model Optimization of Four-Facet Drill for 3D Drilling Simulation

    Directory of Open Access Journals (Sweden)

    Buranský Ivan

    2016-09-01

    Full Text Available The article is focused on optimization of four-facet drill for 3D drilling numerical modelling. For optimization, the process of reverse engineering by PowerShape software was used. The design of four-facet drill was created in NumrotoPlus software. The modified 3D model of the drill was used in the numerical analysis of cutting forces. Verification of the accuracy of 3D models for reverse engineering was implemented using the colour deviation maps. The CAD model was in the STEP format. For simulation software, 3D model in the STEP format is ideal. STEP is a solid model. Simulation software automatically splits the 3D model into finite elements. The STEP model was therefore more suitable than the STL model.

  5. MC3D modelling of stratified explosion

    International Nuclear Information System (INIS)

    Picchi, S.; Berthoud, G.

    1999-01-01

    It is known that a steam explosion can occur in a stratified geometry and that the observed yields are lower than in the case of explosion in a premixture configuration. However, very few models are available to quantify the amount of melt which can be involved and the pressure peak that can be developed. In the stratified application of the MC3D code, mixing and fragmentation of the melt are explained by the growth of Kelvin Helmholtz instabilities due to the shear flow of the two phase coolant above the melt. Such a model is then used to recalculate the Frost-Ciccarelli tin-water experiment. Pressure peak, speed of propagation, bubble shape and erosion height are well reproduced as well as the influence of the inertial constraint (height of the water pool). (author)

  6. MC3D modelling of stratified explosion

    Energy Technology Data Exchange (ETDEWEB)

    Picchi, S.; Berthoud, G. [DTP/SMTH/LM2, CEA, 38 - Grenoble (France)

    1999-07-01

    It is known that a steam explosion can occur in a stratified geometry and that the observed yields are lower than in the case of explosion in a premixture configuration. However, very few models are available to quantify the amount of melt which can be involved and the pressure peak that can be developed. In the stratified application of the MC3D code, mixing and fragmentation of the melt are explained by the growth of Kelvin Helmholtz instabilities due to the shear flow of the two phase coolant above the melt. Such a model is then used to recalculate the Frost-Ciccarelli tin-water experiment. Pressure peak, speed of propagation, bubble shape and erosion height are well reproduced as well as the influence of the inertial constraint (height of the water pool). (author)

  7. An Algorithm for Fast Computation of 3D Zernike Moments for Volumetric Images

    OpenAIRE

    Hosny, Khalid M.; Hafez, Mohamed A.

    2012-01-01

    An algorithm was proposed for very fast and low-complexity computation of three-dimensional Zernike moments. The 3D Zernike moments were expressed in terms of exact 3D geometric moments where the later are computed exactly through the mathematical integration of the monomial terms over the digital image/object voxels. A new symmetry-based method was proposed to compute 3D Zernike moments with 87% reduction in the computational complexity. A fast 1D cascade algorithm was also employed to add m...

  8. A Novel Volumetric 3D Display System with Static Screen, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The physical world around us is three-dimensional (3D), yet most existing display systems with flat screens can handle only two-dimensional (2D) flat images that...

  9. Simplifying the exploration of volumetric images: development of a 3D user interface for the radiologist's workplace.

    Science.gov (United States)

    Teistler, M; Breiman, R S; Lison, T; Bott, O J; Pretschner, D P; Aziz, A; Nowinski, W L

    2008-10-01

    Volumetric imaging (computed tomography and magnetic resonance imaging) provides increased diagnostic detail but is associated with the problem of navigation through large amounts of data. In an attempt to overcome this problem, a novel 3D navigation tool has been designed and developed that is based on an alternative input device. A 3D mouse allows for simultaneous definition of position and orientation of orthogonal or oblique multiplanar reformatted images or slabs, which are presented within a virtual 3D scene together with the volume-rendered data set and additionally as 2D images. Slabs are visualized with maximum intensity projection, average intensity projection, or standard volume rendering technique. A prototype has been implemented based on PC technology that has been tested by several radiologists. It has shown to be easily understandable and usable after a very short learning phase. Our solution may help to fully exploit the diagnostic potential of volumetric imaging by allowing for a more efficient reading process compared to currently deployed solutions based on conventional mouse and keyboard.

  10. An Algorithm for Fast Computation of 3D Zernike Moments for Volumetric Images

    Directory of Open Access Journals (Sweden)

    Khalid M. Hosny

    2012-01-01

    Full Text Available An algorithm was proposed for very fast and low-complexity computation of three-dimensional Zernike moments. The 3D Zernike moments were expressed in terms of exact 3D geometric moments where the later are computed exactly through the mathematical integration of the monomial terms over the digital image/object voxels. A new symmetry-based method was proposed to compute 3D Zernike moments with 87% reduction in the computational complexity. A fast 1D cascade algorithm was also employed to add more complexity reduction. The comparison with existing methods was performed, where the numerical experiments and the complexity analysis ensured the efficiency of the proposed method especially with image and objects of large sizes.

  11. Towards dense volumetric pancreas segmentation in CT using 3D fully convolutional networks

    Science.gov (United States)

    Roth, Holger; Oda, Masahiro; Shimizu, Natsuki; Oda, Hirohisa; Hayashi, Yuichiro; Kitasaka, Takayuki; Fujiwara, Michitaka; Misawa, Kazunari; Mori, Kensaku

    2018-03-01

    Pancreas segmentation in computed tomography imaging has been historically difficult for automated methods because of the large shape and size variations between patients. In this work, we describe a custom-build 3D fully convolutional network (FCN) that can process a 3D image including the whole pancreas and produce an automatic segmentation. We investigate two variations of the 3D FCN architecture; one with concatenation and one with summation skip connections to the decoder part of the network. We evaluate our methods on a dataset from a clinical trial with gastric cancer patients, including 147 contrast enhanced abdominal CT scans acquired in the portal venous phase. Using the summation architecture, we achieve an average Dice score of 89.7 +/- 3.8 (range [79.8, 94.8])% in testing, achieving the new state-of-the-art performance in pancreas segmentation on this dataset.

  12. 3D Modelling of Kizildag Monument

    Science.gov (United States)

    Karauguz, Güngör; Kalayci, İbrahim; Öğütcü, Sermet

    2016-10-01

    The most important cultural property that the nations possess is their historical accumulation, and bringing these to light, taking measures to preserve them or at least maintain the continuity of transferring them to next generations by means of recent technic and technology, ought to be the business of present generations. Although, nowadays, intensive documentation and archiving studies are done by means of classical techniques, besides studies towards preserving historical objects, modelling one-to-one or scaled modelling were not possible until recently. Computing devices and the on-going reflection of this, which is acknowledged as digital technology, is widely used in many areas and makes it possible to document and archive historical works. Even virtual forms in quantitative environments can be transferred to next generations in a scaled and one-to-one modelled way. Within this scope, every single artefact categorization belonging to any era or civilization present in our country can be considered in separate study areas. Furthermore, any work or likewise can be evaluated in separate categories. Also, it is possible to construct travelable virtual 3D museums that make it possible to visit these artefacts. Under the auspices of these technologies, it is quite possible to construct single virtual indoor museums or also, at the final stage, a 3D travelable open-air museum, a platform or more precisely, to establish a data system that spreads all over the country on a broad spectrum. With a long-termed, significant and extensive study and a substantial organization, such a data system can be established, which also serves as a serious infrastructure for alternative tourism possibilities. Located beside a stepped altar and right above the Kizildag IV inscription, the offering pot is destructed and rolled away a few meters to the south slope of the mould. Every time visiting these artefacts with our undergraduate students, unfortunately, we observe more

  13. A dosimetric comparison of 3D conformal vs intensity modulated vs volumetric arc radiation therapy for muscle invasive bladder cancer

    Directory of Open Access Journals (Sweden)

    Foroudi Farshad

    2012-07-01

    Full Text Available Abstract Background To compare 3 Dimensional Conformal radiotherapy (3D-CRT with Intensity Modulated Radiotherapy (IMRT with Volumetric-Modulated Arc Therapy (VMAT for bladder cancer. Methods Radiotherapy plans for 15 patients with T2-T4N0M0 bladder cancer were prospectively developed for 3-DCRT, IMRT and VMAT using Varian Eclipse planning system. The same radiation therapist carried out all planning and the same clinical dosimetric constraints were used. 10 of the patients with well localised tumours had a simultaneous infield boost (SIB of the primary tumour planned for both IMRT and VMAT. Tumour control probabilities and normal tissue complication probabilities were calculated. Results Mean planning time for 3D-CRT, IMRT and VMAT was 30.0, 49.3, and 141.0 minutes respectively. The mean PTV conformity (CI index for 3D-CRT was 1.32, for IMRT 1.05, and for VMAT 1.05. The PTV Homogeneity (HI index was 0.080 for 3D-CRT, 0.073 for IMRT and 0.086 for VMAT. Tumour control and normal tissue complication probabilities were similar for 3D-CRT, IMRT and VMAT. The mean monitor units were 267 (range 250–293 for 3D-CRT; 824 (range 641–1083 for IMRT; and 403 (range 333–489 for VMAT (P  Conclusions VMAT is associated with similar dosimetric advantages as IMRT over 3D-CRT for muscle invasive bladder cancer. VMAT is associated with faster delivery times and less number of mean monitor units than IMRT. SIB is feasible in selected patients with localized tumours.

  14. A 3D Printing Model Watermarking Algorithm Based on 3D Slicing and Feature Points

    Directory of Open Access Journals (Sweden)

    Giao N. Pham

    2018-02-01

    Full Text Available With the increase of three-dimensional (3D printing applications in many areas of life, a large amount of 3D printing data is copied, shared, and used several times without any permission from the original providers. Therefore, copyright protection and ownership identification for 3D printing data in communications or commercial transactions are practical issues. This paper presents a novel watermarking algorithm for 3D printing models based on embedding watermark data into the feature points of a 3D printing model. Feature points are determined and computed by the 3D slicing process along the Z axis of a 3D printing model. The watermark data is embedded into a feature point of a 3D printing model by changing the vector length of the feature point in OXY space based on the reference length. The x and y coordinates of the feature point will be then changed according to the changed vector length that has been embedded with a watermark. Experimental results verified that the proposed algorithm is invisible and robust to geometric attacks, such as rotation, scaling, and translation. The proposed algorithm provides a better method than the conventional works, and the accuracy of the proposed algorithm is much higher than previous methods.

  15. Improved Second-Generation 3-D Volumetric Display System. Revision 2

    Science.gov (United States)

    1998-10-01

    computer control, uses infrared lasers to address points within a rare-earth-infused solid glass cube. Already, simple animated computer-generated images...Volumetric Display System permits images to be displayed in a three- dimensional format that can be observed without the use of special glasses . Its...MM 120 nm 60 mm nI POLARIZING I $-"• -’’""BEAMSPLI’i-ER ) 4P40-MHz 50-MHz BW PLRZN i TeO2 MODULATORS TeO2 DEFLECTORS Figure 1-4. NEOS four-channel

  16. Prototype coupling of the CFD software ansys CFX with the 3D neutron kinetic core model DYN3D - 249

    International Nuclear Information System (INIS)

    Kliem, S.; Rohde, U.; Schutze, J.; Frank, Th.

    2010-01-01

    The CFD code ANSYS CFX has been coupled with the neutron-kinetic core model DYN3D. ANSYS CFX calculates the fluid dynamics and related transport phenomena in the reactor's coolant and provides the corresponding data to DYN3D. In the fluid flow simulation of the coolant, the core itself is modeled within the porous body approach. DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the prototype that is currently available, the coupling is restricted to single-phase flow problems. In the time domain an explicit coupling of the codes has been implemented so far. Steady-state and transient verification calculations for a small-size test problem confirm the correctness of the implementation of the prototype coupling. This test problem was a mini-core consisting of nine real-size fuel assemblies. Comparison was performed with the DYN3D standalone code. In the steady state, the effective multiplication factor obtained by the ANSYS CFX/DYN3D codes shows a deviation of 9.8 pcm from the DYN3D stand-alone solution. This difference can be attributed to the use of different water property packages in the two codes. The transient test case simulated the withdrawal of the control rod from the central fuel assembly at hot zero power. Power increase during the introduction of positive reactivity and power reduction due to fuel temperature increase are calculated in the same manner by the coupled and the stand-alone codes. The maximum values reached during the power rise differ by about 1 MW at a power level of 50 MW. Beside the different water property packages, these differences are caused by the use of different flow solvers. (authors)

  17. 3D modeling of the marine relief

    OpenAIRE

    Mànuel-González, Bernat; Garcia Benadí, Albert; Río Fernandez, Joaquín del; Cadena Muñoz, Francisco Javier; Manuel Lázaro, Antonio

    2012-01-01

    The article detail the systematic process for transformation the 2D representation to 3D representation, likewise the systematic process for gather up of data, and the considerations and instrumentation necessary for this action. Peer Reviewed

  18. Efficient 3D scene modeling and mosaicing

    CERN Document Server

    Nicosevici, Tudor

    2013-01-01

    This book proposes a complete pipeline for monocular (single camera) based 3D mapping of terrestrial and underwater environments. The aim is to provide a solution to large-scale scene modeling that is both accurate and efficient. To this end, we have developed a novel Structure from Motion algorithm that increases mapping accuracy by registering camera views directly with the maps. The camera registration uses a dual approach that adapts to the type of environment being mapped.   In order to further increase the accuracy of the resulting maps, a new method is presented, allowing detection of images corresponding to the same scene region (crossovers). Crossovers then used in conjunction with global alignment methods in order to highly reduce estimation errors, especially when mapping large areas. Our method is based on Visual Bag of Words paradigm (BoW), offering a more efficient and simpler solution by eliminating the training stage, generally required by state of the art BoW algorithms.   Also, towards dev...

  19. Using 3D Morphable Models for face recognition in video

    NARCIS (Netherlands)

    van Rootseler, R.T.A.; Spreeuwers, Lieuwe Jan; Veldhuis, Raymond N.J.

    The 3D Morphable Face Model (3DMM) has been used for over a decade for creating 3D models from single images of faces. This model is based on a PCA model of the 3D shape and texture generated from a limited number of 3D scans. The goal of fitting a 3DMM to an image is to find the model coefficients,

  20. GEMA3D - landscape modelling for dose assessments

    International Nuclear Information System (INIS)

    Klos, Richard

    2010-08-01

    Concerns have been raised about SKB's interpretation of landscape objects in their radiological assessment models, specifically in relation to the size of the objects represented - leading to excessive volumetric dilution - and to the interpretation of local hydrology - leading to non-conservative hydrologic dilution. Developed from the Generic Ecosystem Modelling Approach, GEMA3D is an attempt to address these issues in a simple radiological assessment landscape model. In GEMA3D landscape features are model led as landscape elements (lels) based on a three compartment structure which is able to represent both terrestrial and aquatic lels. The area of the lels can be chosen to coincide with the bedrock fracture from which radionuclides are assumed to be released and the dispersion of radionuclides through out the landscape can be traced. Result indicate that released contaminants remain localised close to the release location and follow the main flow axis of the surface drainage system. This is true even for relatively weakly sorbing species. An interpretation of the size of landscape elements suitable to represent dilution in the biosphere for radiological assessment purposes is suggested, though the concept remains flexible. For reference purposes an agricultural area of one hectare is the baseline. The Quaternary deposits (QD) at the Forsmark site are only a few metres thick above the crystalline bedrock in which the planned repository for spent fuel will be constructed. The biosphere model is assumed to be the upper one metre of the QD. A further model has been implemented for advective - dispersive transport in the deeper QD. The effects of chemical zonation have been briefly investigated. The results confirm the importance of retention close to the release point from the bedrock and clearly indicate that there is a need for a better description of the hydrology of the QD on the spatial scales relevant to the lels required for radiological assessments

  1. GEMA3D - landscape modelling for dose assessments

    Energy Technology Data Exchange (ETDEWEB)

    Klos, Richard (Aleksandria Sciences (United Kingdom))

    2010-08-15

    Concerns have been raised about SKB's interpretation of landscape objects in their radiological assessment models, specifically in relation to the size of the objects represented - leading to excessive volumetric dilution - and to the interpretation of local hydrology - leading to non-conservative hydrologic dilution. Developed from the Generic Ecosystem Modelling Approach, GEMA3D is an attempt to address these issues in a simple radiological assessment landscape model. In GEMA3D landscape features are model led as landscape elements (lels) based on a three compartment structure which is able to represent both terrestrial and aquatic lels. The area of the lels can be chosen to coincide with the bedrock fracture from which radionuclides are assumed to be released and the dispersion of radionuclides through out the landscape can be traced. Result indicate that released contaminants remain localised close to the release location and follow the main flow axis of the surface drainage system. This is true even for relatively weakly sorbing species. An interpretation of the size of landscape elements suitable to represent dilution in the biosphere for radiological assessment purposes is suggested, though the concept remains flexible. For reference purposes an agricultural area of one hectare is the baseline. The Quaternary deposits (QD) at the Forsmark site are only a few metres thick above the crystalline bedrock in which the planned repository for spent fuel will be constructed. The biosphere model is assumed to be the upper one metre of the QD. A further model has been implemented for advective - dispersive transport in the deeper QD. The effects of chemical zonation have been briefly investigated. The results confirm the importance of retention close to the release point from the bedrock and clearly indicate that there is a need for a better description of the hydrology of the QD on the spatial scales relevant to the lels required for radiological assessments

  2. Building 3D models with modo 701

    CERN Document Server

    García, Juan Jiménez

    2013-01-01

    The book will focus on creating a sample application throughout the book, building gradually from chapter to chapter.If you are new to the 3D world, this is the key to getting started with a modern software in the modern visualization industry. Only minimal previous knowledge is needed.If you have some previous knowledge about 3D content creation, you will find useful tricks that will differentiate the learning experience from a typical user manual from this, a practical guide concerning the most common problems and situations and how to solve them.

  3. Multi-view and 3D deformable part models.

    Science.gov (United States)

    Pepik, Bojan; Stark, Michael; Gehler, Peter; Schiele, Bernt

    2015-11-01

    As objects are inherently 3D, they have been modeled in 3D in the early days of computer vision. Due to the ambiguities arising from mapping 2D features to 3D models, 3D object representations have been neglected and 2D feature-based models are the predominant paradigm in object detection nowadays. While such models have achieved outstanding bounding box detection performance, they come with limited expressiveness, as they are clearly limited in their capability of reasoning about 3D shape or viewpoints. In this work, we bring the worlds of 3D and 2D object representations closer, by building an object detector which leverages the expressive power of 3D object representations while at the same time can be robustly matched to image evidence. To that end, we gradually extend the successful deformable part model [1] to include viewpoint information and part-level 3D geometry information, resulting in several different models with different level of expressiveness. We end up with a 3D object model, consisting of multiple object parts represented in 3D and a continuous appearance model. We experimentally verify that our models, while providing richer object hypotheses than the 2D object models, provide consistently better joint object localization and viewpoint estimation than the state-of-the-art multi-view and 3D object detectors on various benchmarks (KITTI [2] , 3D object classes [3] , Pascal3D+ [4] , Pascal VOC 2007 [5] , EPFL multi-view cars[6] ).

  4. Proposal of custom made wrist orthoses based on 3D modelling and 3D printing.

    Science.gov (United States)

    Abreu de Souza, Mauren; Schmitz, Cristiane; Marega Pinhel, Marcelo; Palma Setti, Joao A; Nohama, Percy

    2017-07-01

    Accessibility to three-dimensional (3D) technologies, such as 3D scanning systems and additive manufacturing (like 3D printers), allows a variety of 3D applications. For medical applications in particular, these modalities are gaining a lot of attention enabling several opportunities for healthcare applications. The literature brings several cases applying both technologies, but none of them focus on the spreading of how this technology could benefit the health segment. This paper proposes a new methodology, which employs both 3D modelling and 3D printing for building orthoses, which could better fit the demands of different patients. Additionally, there is an opportunity for sharing expertise, as it represents a trendy in terms of the maker-movement. Therefore, as a result of the proposed approach, we present a case study based on a volunteer who needs an immobilization orthosis, which was built for exemplification of the whole process. This proposal also employs freely available 3D models and software, having a strong social impact. As a result, it enables the implementation and effective usability for a variety of built to fit solutions, hitching useful and smarter technologies for the healthcare sector.

  5. AxiSEM3D: broadband seismic wavefields in 3-D aspherical Earth models

    Science.gov (United States)

    Leng, K.; Nissen-Meyer, T.; Zad, K. H.; van Driel, M.; Al-Attar, D.

    2017-12-01

    Seismology is the primary tool for data-informed inference of Earth structure and dynamics. Simulating seismic wave propagation at a global scale is fundamental to seismology, but remains as one of most challenging problems in scientific computing, because of both the multiscale nature of Earth's interior and the observable frequency band of seismic data. We present a novel numerical method to simulate global seismic wave propagation in realistic 3-D Earth models. Our method, named AxiSEM3D, is a hybrid of spectral element method and pseudospectral method. It reduces the azimuthal dimension of wavefields by means of a global Fourier series parameterization, of which the number of terms can be locally adapted to the inherent azimuthal smoothness of the wavefields. AxiSEM3D allows not only for material heterogeneities, such as velocity, density, anisotropy and attenuation, but also for finite undulations on radial discontinuities, both solid-solid and solid-fluid, and thereby a variety of aspherical Earth features such as ellipticity, topography, variable crustal thickness, and core-mantle boundary topography. Such interface undulations are equivalently interpreted as material perturbations of the contiguous media, based on the "particle relabelling transformation". Efficiency comparisons show that AxiSEM3D can be 1 to 3 orders of magnitude faster than conventional 3-D methods, with the speedup increasing with simulation frequency and decreasing with model complexity, but for all realistic structures the speedup remains at least one order of magnitude. The observable frequency range of global seismic data (up to 1 Hz) has been covered for wavefield modelling upon a 3-D Earth model with reasonable computing resources. We show an application of surface wave modelling within a state-of-the-art global crustal model (Crust1.0), with the synthetics compared to real data. The high-performance C++ code is released at github.com/AxiSEM3D/AxiSEM3D.

  6. A dosimetric comparison of 3D conformal vs intensity modulated vs volumetric arc radiation therapy for muscle invasive bladder cancer

    International Nuclear Information System (INIS)

    Foroudi, Farshad; Kron, Tomas; Wilson, Lesley; Bressel, Mathias; Haworth, Annette; Hornby, Colin; Pham, Daniel; Cramb, Jim; Gill, Suki; Tai, Keen Hun

    2012-01-01

    To compare 3 Dimensional Conformal radiotherapy (3D-CRT) with Intensity Modulated Radiotherapy (IMRT) with Volumetric-Modulated Arc Therapy (VMAT) for bladder cancer. Radiotherapy plans for 15 patients with T2-T4N0M0 bladder cancer were prospectively developed for 3-DCRT, IMRT and VMAT using Varian Eclipse planning system. The same radiation therapist carried out all planning and the same clinical dosimetric constraints were used. 10 of the patients with well localised tumours had a simultaneous infield boost (SIB) of the primary tumour planned for both IMRT and VMAT. Tumour control probabilities and normal tissue complication probabilities were calculated. Mean planning time for 3D-CRT, IMRT and VMAT was 30.0, 49.3, and 141.0 minutes respectively. The mean PTV conformity (CI) index for 3D-CRT was 1.32, for IMRT 1.05, and for VMAT 1.05. The PTV Homogeneity (HI) index was 0.080 for 3D-CRT, 0.073 for IMRT and 0.086 for VMAT. Tumour control and normal tissue complication probabilities were similar for 3D-CRT, IMRT and VMAT. The mean monitor units were 267 (range 250–293) for 3D-CRT; 824 (range 641–1083) for IMRT; and 403 (range 333–489) for VMAT (P < 0.05). Average treatment delivery time were 2:25min (range 2:01–3:09) for 3D-CRT; 4:39 (range 3:41–6:40) for IMRT; and 1:14 (range 1:13–1:14) for VMAT. In selected patients, the SIB did not result in a higher dose to small bowel or rectum. VMAT is associated with similar dosimetric advantages as IMRT over 3D-CRT for muscle invasive bladder cancer. VMAT is associated with faster delivery times and less number of mean monitor units than IMRT. SIB is feasible in selected patients with localized tumours

  7. Oxygen- and Nitrogen-Enriched 3D Porous Carbon for Supercapacitors of High Volumetric Capacity.

    Science.gov (United States)

    Li, Jia; Liu, Kang; Gao, Xiang; Yao, Bin; Huo, Kaifu; Cheng, Yongliang; Cheng, Xiaofeng; Chen, Dongchang; Wang, Bo; Sun, Wanmei; Ding, Dong; Liu, Meilin; Huang, Liang

    2015-11-11

    Efficient utilization and broader commercialization of alternative energies (e.g., solar, wind, and geothermal) hinges on the performance and cost of energy storage and conversion systems. For now and in the foreseeable future, the combination of rechargeable batteries and electrochemical capacitors remains the most promising option for many energy storage applications. Porous carbonaceous materials have been widely used as an electrode for batteries and supercapacitors. To date, however, the highest specific capacitance of an electrochemical double layer capacitor is only ∼200 F/g, although a wide variety of synthetic approaches have been explored in creating optimized porous structures. Here, we report our findings in the synthesis of porous carbon through a simple, one-step process: direct carbonization of kelp in an NH3 atmosphere at 700 °C. The resulting oxygen- and nitrogen-enriched carbon has a three-dimensional structure with specific surface area greater than 1000 m(2)/g. When evaluated as an electrode for electrochemical double layer capacitors, the porous carbon structure demonstrated excellent volumetric capacitance (>360 F/cm(3)) with excellent cycling stability. This simple approach to low-cost carbonaceous materials with unique architecture and functionality could be a promising alternative to fabrication of porous carbon structures for many practical applications, including batteries and fuel cells.

  8. Modelling 3D spatial objects in a geo-DBMS using a 3D primitive

    Science.gov (United States)

    Arens, Călin; Stoter, Jantien; van Oosterom, Peter

    2005-03-01

    There is a growing interest in modelling the world in three dimensions, both in applications and in science. At the same time, geographical information systems are changing into integrated architecture in which administrative and spatial data are maintained in one environment. It is for this reason that mainstream Data Base Management Systems (DBMSs) have implemented spatial data types according to the 'Simple Feature Specifications for SQL', described by the OpenGeospatial Consortium. However, these specifications are 2D, as indeed are the implementations in DBMSs. At the Section GIS Technology of TU Delft, research has been carried out in which a 3D primitive was implemented in a DBMS (Oracle Spatial). To explore the possibilities and complications, a fairly simple 3D primitive was chosen to start with: a polyhedron. In the future the study will be extended with more complex primitives, the ultimate aim being to build 3D models with features closer to the real world. Besides the data structure, a validation function was developed to check the geometric accuracy of the data. Rules for validation were established and translated into prototype implementations with the aid of literature. In order to manipulate the data, a list of useful 3D functions was specified. Most of these were translated into algorithms, which were implemented in the DBMS. The algorithms for these functions were obtained from the relevant literature. The research also comprised a comparative performance test on spatial indexing in 2D and 3D, using an R-tree. Finally, existing software was used to visualize 3D objects structured with the implemented 3D primitive. This research is a first attempt to implement a true 3D primitive in a DBMS. Future research will focus on extending and improving the implementations and on optimizing maintenance and query of 3D objects in DBMSs.

  9. Joint volumetric extraction and enhancement of vasculature from low-SNR 3-D fluorescence microscopy images.

    Science.gov (United States)

    Almasi, Sepideh; Ben-Zvi, Ayal; Lacoste, Baptiste; Gu, Chenghua; Miller, Eric L; Xu, Xiaoyin

    2017-03-01

    To simultaneously overcome the challenges imposed by the nature of optical imaging characterized by a range of artifacts including space-varying signal to noise ratio (SNR), scattered light, and non-uniform illumination, we developed a novel method that segments the 3-D vasculature directly from original fluorescence microscopy images eliminating the need for employing pre- and post-processing steps such as noise removal and segmentation refinement as used with the majority of segmentation techniques. Our method comprises two initialization and constrained recovery and enhancement stages. The initialization approach is fully automated using features derived from bi-scale statistical measures and produces seed points robust to non-uniform illumination, low SNR, and local structural variations. This algorithm achieves the goal of segmentation via design of an iterative approach that extracts the structure through voting of feature vectors formed by distance, local intensity gradient, and median measures. Qualitative and quantitative analysis of the experimental results obtained from synthetic and real data prove the effcacy of this method in comparison to the state-of-the-art enhancing-segmenting methods. The algorithmic simplicity, freedom from having a priori probabilistic information about the noise, and structural definition gives this algorithm a wide potential range of applications where i.e. structural complexity significantly complicates the segmentation problem.

  10. A novel 3D volumetric voxel registration technique for volume-view-guided image registration of multiple imaging modalities

    International Nuclear Information System (INIS)

    Li Guang; Xie Huchen; Ning, Holly; Capala, Jacek; Arora, Barbara C.; Coleman, C. Norman; Camphausen, Kevin; Miller, Robert W.

    2005-01-01

    Purpose: To provide more clinically useful image registration with improved accuracy and reduced time, a novel technique of three-dimensional (3D) volumetric voxel registration of multimodality images is developed. Methods and Materials: This technique can register up to four concurrent images from multimodalities with volume view guidance. Various visualization effects can be applied, facilitating global and internal voxel registration. Fourteen computed tomography/magnetic resonance (CT/MR) image sets and two computed tomography/positron emission tomography (CT/PET) image sets are used. For comparison, an automatic registration technique using maximization of mutual information (MMI) and a three-orthogonal-planar (3P) registration technique are used. Results: Visually sensitive registration criteria for CT/MR and CT/PET have been established, including the homogeneity of color distribution. Based on the registration results of 14 CT/MR images, the 3D voxel technique is in excellent agreement with the automatic MMI technique and is indicatory of a global positioning error (defined as the means and standard deviations of the error distribution) using the 3P pixel technique: 1.8 deg ± 1.2 deg in rotation and 2.0 ± 1.3 (voxel unit) in translation. To the best of our knowledge, this is the first time that such positioning error has been addressed. Conclusion: This novel 3D voxel technique establishes volume-view-guided image registration of up to four modalities. It improves registration accuracy with reduced time, compared with the 3P pixel technique. This article suggests that any interactive and automatic registration should be safeguarded using the 3D voxel technique

  11. Coupling of the computational fluid dynamics code ANSYS CFX with the 3D neutron kinetic core model DYN3D

    International Nuclear Information System (INIS)

    Kliem, S.; Grahn, A.; Rohde, U.; Schuetze, J.; Frank, Th.

    2010-01-01

    The computational fluid dynamics code ANSYS CFX has been coupled with the neutron-kinetic core model DYN3D. ANSYS CFX calculates the fluid dynamics and related transport phenomena in the reactors coolant and provides the corresponding data to DYN3D. In the fluid flow simulation of the coolant, the core itself is modeled within the porous body approach. DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the prototype that is currently available, the coupling is restricted to single-phase flow problems. In the time domain an explicit coupling of the codes has been implemented so far. Steady-state and transient verification calculations for two small-size test problems confirm the correctness of the implementation of the prototype coupling. The first test problem was a mini-core consisting of nine real-size fuel assemblies with quadratic cross section. Comparison was performed with the DYN3D stand-alone code. In the steady state, the effective multiplication factor obtained by the DYN3D/ANSYS CFX codes hows a deviation of 9.8 pcm from the DYN3D stand-alone solution. This difference can be attributed to the use of different water property packages in the two codes. The transient test case simulated the withdrawal of the control rod from the central fuel assembly at hot zero power in the same mini-core. Power increase during the introduction of positive reactivity and power reduction due to fuel temperature increase are calculated in the same manner by the coupled and the stand-alone codes. The maximum values reached during the power rise differ by about 1 MW at a power level of 50 MW. Beside the different water property packages, these differences are caused by the use of different flow solvers. The same calculations were carried for a mini-core with seven real-size fuel assemblies with hexagonal cross section in

  12. Integrating 3D modeling, photogrammetry and design

    CERN Document Server

    Foster, Shaun

    2014-01-01

    This book looks at the convergent nature of technology and its relationship to the field of photogrammetry and 3D design. This is a facet of a broader discussion of the nature of technology itself and the relationship of technology to art, as well as an examination of the educational process. In the field of technology-influenced design-based education it is natural to push for advanced technology, yet within a larger institution the constraints of budget and adherence to tradition must be accepted. These opposing forces create a natural balance; in some cases constraints lead to greater creat

  13. 3D Modeling Techniques for Print and Digital Media

    Science.gov (United States)

    Stephens, Megan Ashley

    In developing my thesis, I looked to gain skills using ZBrush to create 3D models, 3D scanning, and 3D printing. The models created compared the hearts of several vertebrates and were intended for students attending Comparative Vertebrate Anatomy. I used several resources to create a model of the human heart and was able to work from life while creating heart models from other vertebrates. I successfully learned ZBrush and 3D scanning, and successfully printed 3D heart models. ZBrush allowed me to create several intricate models for use in both animation and print media. The 3D scanning technique did not fit my needs for the project, but may be of use for later projects. I was able to 3D print using two different techniques as well.

  14. BioSig3D: High Content Screening of Three-Dimensional Cell Culture Models.

    Directory of Open Access Journals (Sweden)

    Cemal Cagatay Bilgin

    Full Text Available BioSig3D is a computational platform for high-content screening of three-dimensional (3D cell culture models that are imaged in full 3D volume. It provides an end-to-end solution for designing high content screening assays, based on colony organization that is derived from segmentation of nuclei in each colony. BioSig3D also enables visualization of raw and processed 3D volumetric data for quality control, and integrates advanced bioinformatics analysis. The system consists of multiple computational and annotation modules that are coupled together with a strong use of controlled vocabularies to reduce ambiguities between different users. It is a web-based system that allows users to: design an experiment by defining experimental variables, upload a large set of volumetric images into the system, analyze and visualize the dataset, and either display computed indices as a heatmap, or phenotypic subtypes for heterogeneity analysis, or download computed indices for statistical analysis or integrative biology. BioSig3D has been used to profile baseline colony formations with two experiments: (i morphogenesis of a panel of human mammary epithelial cell lines (HMEC, and (ii heterogeneity in colony formation using an immortalized non-transformed cell line. These experiments reveal intrinsic growth properties of well-characterized cell lines that are routinely used for biological studies. BioSig3D is being released with seed datasets and video-based documentation.

  15. 3D tumor localization through real-time volumetric x-ray imaging for lung cancer radiotherapy.

    Science.gov (United States)

    Li, Ruijiang; Lewis, John H; Jia, Xun; Gu, Xuejun; Folkerts, Michael; Men, Chunhua; Song, William Y; Jiang, Steve B

    2011-05-01

    To evaluate an algorithm for real-time 3D tumor localization from a single x-ray projection image for lung cancer radiotherapy. Recently, we have developed an algorithm for reconstructing volumetric images and extracting 3D tumor motion information from a single x-ray projection [Li et al., Med. Phys. 37, 2822-2826 (2010)]. We have demonstrated its feasibility using a digital respiratory phantom with regular breathing patterns. In this work, we present a detailed description and a comprehensive evaluation of the improved algorithm. The algorithm was improved by incorporating respiratory motion prediction. The accuracy and efficiency of using this algorithm for 3D tumor localization were then evaluated on (1) a digital respiratory phantom, (2) a physical respiratory phantom, and (3) five lung cancer patients. These evaluation cases include both regular and irregular breathing patterns that are different from the training dataset. For the digital respiratory phantom with regular and irregular breathing, the average 3D tumor localization error is less than 1 mm which does not seem to be affected by amplitude change, period change, or baseline shift. On an NVIDIA Tesla C1060 graphic processing unit (GPU) card, the average computation time for 3D tumor localization from each projection ranges between 0.19 and 0.26 s, for both regular and irregular breathing, which is about a 10% improvement over previously reported results. For the physical respiratory phantom, an average tumor localization error below 1 mm was achieved with an average computation time of 0.13 and 0.16 s on the same graphic processing unit (GPU) card, for regular and irregular breathing, respectively. For the five lung cancer patients, the average tumor localization error is below 2 mm in both the axial and tangential directions. The average computation time on the same GPU card ranges between 0.26 and 0.34 s. Through a comprehensive evaluation of our algorithm, we have established its accuracy in 3D

  16. 3-D numerical modelling of flow around a groin

    DEFF Research Database (Denmark)

    Miller, R.; Roulund, A.; Sumer, B. Mutlu

    2003-01-01

    A 3-D flow code, EllipSys3D, has been implemented to simulate the 3-D flow around a groin in steady current. The k  turbulence model has been used for closure. Two kinds of groins are considered: (1) A vertical-wall groin, and (2) A groin with a side slope. Steady-flow simulations were conducted...

  17. APPLICATION OF 3D MODELING IN 3D PRINTING FOR THE LOWER JAW RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    Yu. Yu. Dikov

    2015-01-01

    Full Text Available Aim of study: improvement of functional and aesthetic results of microsurgery reconstructions of the lower jaw due to the use of the methodology of 3D modeling and 3D printing. Application of this methodology has been demonstrated on the example of treatment of 4 patients with locally distributed tumors of the mouth cavity, who underwent excision of the tumor with simultaneous reconstruction of the lower jaw with revascularized fibular graft.Before, one patient has already undergo segmental resection of the lower jaw with the defect replacement with the avascular ileac graft and a reconstruction plate. Then, a relapse of the disease and lysis of the graft has developed with him. Modeling of the graft according to the shape of the lower jaw was performed by making osteotomies of the bone part of the graft using three-dimensional virtual models created by computed tomography data. Then these 3D models were printed with a 3D printer of plastic with the scale of 1:1 with the fused deposition modeling (FDM technology and were used during the surgery in the course of modeling of the graft. Sterilizing of the plastic model was performed in the formalin chamber.This methodology allowed more specific reconstruction of the resected fragment of the lower jaw and get better functional and aesthetic results and prepare patients to further dental rehabilitation. Advantages of this methodology are the possibility of simultaneous performance of stages of reconstruction and resection and shortening of the time of surgery.

  18. An Iterative Interplanetary Scintillation (IPS) Analysis Using Time-dependent 3-D MHD Models as Kernels

    Science.gov (United States)

    Jackson, B. V.; Yu, H. S.; Hick, P. P.; Buffington, A.; Odstrcil, D.; Kim, T. K.; Pogorelov, N. V.; Tokumaru, M.; Bisi, M. M.; Kim, J.; Yun, J.

    2017-12-01

    The University of California, San Diego has developed an iterative remote-sensing time-dependent three-dimensional (3-D) reconstruction technique which provides volumetric maps of density, velocity, and magnetic field. We have applied this technique in near real time for over 15 years with a kinematic model approximation to fit data from ground-based interplanetary scintillation (IPS) observations. Our modeling concept extends volumetric data from an inner boundary placed above the Alfvén surface out to the inner heliosphere. We now use this technique to drive 3-D MHD models at their inner boundary and generate output 3-D data files that are fit to remotely-sensed observations (in this case IPS observations), and iterated. These analyses are also iteratively fit to in-situ spacecraft measurements near Earth. To facilitate this process, we have developed a traceback from input 3-D MHD volumes to yield an updated boundary in density, temperature, and velocity, which also includes magnetic-field components. Here we will show examples of this analysis using the ENLIL 3D-MHD and the University of Alabama Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS) heliospheric codes. These examples help refine poorly-known 3-D MHD variables (i.e., density, temperature), and parameters (gamma) by fitting heliospheric remotely-sensed data between the region near the solar surface and in-situ measurements near Earth.

  19. 3D modeling based on CityEngine

    Science.gov (United States)

    Jia, Guangyin; Liao, Kaiju

    2017-03-01

    Currently, there are many 3D modeling softwares, like 3DMAX, AUTOCAD, and more populous BIM softwares represented by REVIT. CityEngine modeling software introduced in this paper can fully utilize the existing GIS data and combine other built models to make 3D modeling on internal and external part of buildings in a rapid and batch manner, so as to improve the 3D modeling efficiency.

  20. a Proposal for Generalization of 3d Models

    Science.gov (United States)

    Uyar, A.; Ulugtekin, N. N.

    2017-11-01

    In recent years, 3D models have been created of many cities around the world. Most of the 3D city models have been introduced as completely graphic or geometric models, and the semantic and topographic aspects of the models have been neglected. In order to use 3D city models beyond the task, a generalization is necessary. CityGML is an open data model and XML-based format for the storage and exchange of virtual 3D city models. Level of Details (LoD) which is an important concept for 3D modelling, can be defined as outlined degree or prior representation of real-world objects. The paper aim is first describes some requirements of 3D model generalization, then presents problems and approaches that have been developed in recent years. In conclude the paper will be a summary and outlook on problems and future work.

  1. MSX-3D: a tool to validate 3D protein models using mass spectrometry.

    Science.gov (United States)

    Heymann, Michaël; Paramelle, David; Subra, Gilles; Forest, Eric; Martinez, Jean; Geourjon, Christophe; Deléage, Gilbert

    2008-12-01

    The technique of chemical cross-linking followed by mass spectrometry has proven to bring valuable information about the protein structure and interactions between proteic subunits. It is an effective and efficient way to experimentally investigate some aspects of a protein structure when NMR and X-ray crystallography data are lacking. We introduce MSX-3D, a tool specifically geared to validate protein models using mass spectrometry. In addition to classical peptides identifications, it allows an interactive 3D visualization of the distance constraints derived from a cross-linking experiment. Freely available at http://proteomics-pbil.ibcp.fr

  2. A novel image processing technique for 3D volumetric analysis of severely resorbed alveolar sockets with CBCT.

    Science.gov (United States)

    Manavella, Valeria; Romano, Federica; Garrone, Federica; Terzini, Mara; Bignardi, Cristina; Aimetti, Mario

    2017-06-01

    The aim of this study was to present and validate a novel procedure for the quantitative volumetric assessment of extraction sockets that combines cone-beam computed tomography (CBCT) and image processing techniques. The CBCT dataset of 9 severely resorbed extraction sockets was analyzed by means of two image processing software, Image J and Mimics, using manual and automated segmentation techniques. They were also applied on 5-mm spherical aluminum markers of known volume and on a polyvinyl chloride model of one alveolar socket scanned with Micro-CT to test the accuracy. Statistical differences in alveolar socket volume were found between the different methods of volumetric analysis (Psockets showed more accurate results, excellent inter-observer similarity and increased user friendliness. The clinical application of this method enables a three-dimensional evaluation of extraction socket healing after the reconstructive procedures and during the follow-up visits.

  3. Development of 3D statistical mandible models for cephalometric measurements

    International Nuclear Information System (INIS)

    Kim, Sung Goo; Yi, Won Jin; Hwang, Soon Jung; Choi, Soon Chul; Lee, Sam Sun; Heo, Min Suk; Huh, Kyung Hoe; Kim, Tae Il; Hong, Helen; Yoo, Ji Hyun

    2012-01-01

    The aim of this study was to provide sex-matched three-dimensional (3D) statistical shape models of the mandible, which would provide cephalometric parameters for 3D treatment planning and cephalometric measurements in orthognathic surgery. The subjects used to create the 3D shape models of the mandible included 23 males and 23 females. The mandibles were segmented semi-automatically from 3D facial CT images. Each individual mandible shape was reconstructed as a 3D surface model, which was parameterized to establish correspondence between different individual surfaces. The principal component analysis (PCA) applied to all mandible shapes produced a mean model and characteristic models of variation. The cephalometric parameters were measured directly from the mean models to evaluate the 3D shape models. The means of the measured parameters were compared with those from other conventional studies. The male and female 3D statistical mean models were developed from 23 individual mandibles, respectively. The male and female characteristic shapes of variation produced by PCA showed a large variability included in the individual mandibles. The cephalometric measurements from the developed models were very close to those from some conventional studies. We described the construction of 3D mandibular shape models and presented the application of the 3D mandibular template in cephalometric measurements. Optimal reference models determined from variations produced by PCA could be used for craniofacial patients with various types of skeletal shape.

  4. Development of 3D statistical mandible models for cephalometric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Goo; Yi, Won Jin; Hwang, Soon Jung; Choi, Soon Chul; Lee, Sam Sun; Heo, Min Suk; Huh, Kyung Hoe; Kim, Tae Il [School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Hong, Helen; Yoo, Ji Hyun [Division of Multimedia Engineering, Seoul Women' s University, Seoul (Korea, Republic of)

    2012-09-15

    The aim of this study was to provide sex-matched three-dimensional (3D) statistical shape models of the mandible, which would provide cephalometric parameters for 3D treatment planning and cephalometric measurements in orthognathic surgery. The subjects used to create the 3D shape models of the mandible included 23 males and 23 females. The mandibles were segmented semi-automatically from 3D facial CT images. Each individual mandible shape was reconstructed as a 3D surface model, which was parameterized to establish correspondence between different individual surfaces. The principal component analysis (PCA) applied to all mandible shapes produced a mean model and characteristic models of variation. The cephalometric parameters were measured directly from the mean models to evaluate the 3D shape models. The means of the measured parameters were compared with those from other conventional studies. The male and female 3D statistical mean models were developed from 23 individual mandibles, respectively. The male and female characteristic shapes of variation produced by PCA showed a large variability included in the individual mandibles. The cephalometric measurements from the developed models were very close to those from some conventional studies. We described the construction of 3D mandibular shape models and presented the application of the 3D mandibular template in cephalometric measurements. Optimal reference models determined from variations produced by PCA could be used for craniofacial patients with various types of skeletal shape.

  5. Probabilistic reasoning for assembly-based 3D modeling

    KAUST Repository

    Chaudhuri, Siddhartha; Kalogerakis, Evangelos; Guibas, Leonidas; Koltun, Vladlen

    2011-01-01

    Assembly-based modeling is a promising approach to broadening the accessibility of 3D modeling. In assembly-based modeling, new models are assembled from shape components extracted from a database. A key challenge in assembly-based modeling

  6. 3D Face modeling using the multi-deformable method.

    Science.gov (United States)

    Hwang, Jinkyu; Yu, Sunjin; Kim, Joongrock; Lee, Sangyoun

    2012-09-25

    In this paper, we focus on the problem of the accuracy performance of 3D face modeling techniques using corresponding features in multiple views, which is quite sensitive to feature extraction errors. To solve the problem, we adopt a statistical model-based 3D face modeling approach in a mirror system consisting of two mirrors and a camera. The overall procedure of our 3D facial modeling method has two primary steps: 3D facial shape estimation using a multiple 3D face deformable model and texture mapping using seamless cloning that is a type of gradient-domain blending. To evaluate our method's performance, we generate 3D faces of 30 individuals and then carry out two tests: accuracy test and robustness test. Our method shows not only highly accurate 3D face shape results when compared with the ground truth, but also robustness to feature extraction errors. Moreover, 3D face rendering results intuitively show that our method is more robust to feature extraction errors than other 3D face modeling methods. An additional contribution of our method is that a wide range of face textures can be acquired by the mirror system. By using this texture map, we generate realistic 3D face for individuals at the end of the paper.

  7. AUTOMATIC MESH GENERATION OF 3-D GEOMETRIC MODELS

    Institute of Scientific and Technical Information of China (English)

    刘剑飞

    2003-01-01

    In this paper the presentation of the ball-packing method is reviewed,and a scheme to generate mesh for complex 3-D geometric models is given,which consists of 4 steps:(1)create nodes in 3-D models by ball-packing method,(2)connect nodes to generate mesh by 3-D Delaunay triangulation,(3)retrieve the boundary of the model after Delaunay triangulation,(4)improve the mesh.

  8. Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and ROMS

    Science.gov (United States)

    Haas, Kevin A.; Warner, John C.

    2009-01-01

    Predictions of nearshore and surf zone processes are important for determining coastal circulation, impacts of storms, navigation, and recreational safety. Numerical modeling of these systems facilitates advancements in our understanding of coastal changes and can provide predictive capabilities for resource managers. There exists many nearshore coastal circulation models, however they are mostly limited or typically only applied as depth integrated models. SHORECIRC is an established surf zone circulation model that is quasi-3D to allow the effect of the variability in the vertical structure of the currents while maintaining the computational advantage of a 2DH model. Here we compare SHORECIRC to ROMS, a fully 3D ocean circulation model which now includes a three dimensional formulation for the wave-driven flows. We compare the models with three different test applications for: (i) spectral waves approaching a plane beach with an oblique angle of incidence; (ii) monochromatic waves driving longshore currents in a laboratory basin; and (iii) monochromatic waves on a barred beach with rip channels in a laboratory basin. Results identify that the models are very similar for the depth integrated flows and qualitatively consistent for the vertically varying components. The differences are primarily the result of the vertically varying radiation stress utilized by ROMS and the utilization of long wave theory for the radiation stress formulation in vertical varying momentum balance by SHORECIRC. The quasi-3D model is faster, however the applicability of the fully 3D model allows it to extend over a broader range of processes, temporal, and spatial scales.

  9. A FAST METHOD FOR MEASURING THE SIMILARITY BETWEEN 3D MODEL AND 3D POINT CLOUD

    Directory of Open Access Journals (Sweden)

    Z. Zhang

    2016-06-01

    Full Text Available This paper proposes a fast method for measuring the partial Similarity between 3D Model and 3D point Cloud (SimMC. It is crucial to measure SimMC for many point cloud-related applications such as 3D object retrieval and inverse procedural modelling. In our proposed method, the surface area of model and the Distance from Model to point Cloud (DistMC are exploited as measurements to calculate SimMC. Here, DistMC is defined as the weighted distance of the distances between points sampled from model and point cloud. Similarly, Distance from point Cloud to Model (DistCM is defined as the average distance of the distances between points in point cloud and model. In order to reduce huge computational burdens brought by calculation of DistCM in some traditional methods, we define SimMC as the ratio of weighted surface area of model to DistMC. Compared to those traditional SimMC measuring methods that are only able to measure global similarity, our method is capable of measuring partial similarity by employing distance-weighted strategy. Moreover, our method is able to be faster than other partial similarity assessment methods. We demonstrate the superiority of our method both on synthetic data and laser scanning data.

  10. Numerical 3-D Modelling of Overflows

    DEFF Research Database (Denmark)

    Larsen, Torben; Nielsen, L.; Jensen, B.

    2008-01-01

    -dimensional so-called Volume of Fluid Models (VOF-models) based on the full Navier-Stokes equations (named NS3 and developed by DHI Water & Environment) As a general conclusion, the two numerical models show excellent results when compared with measurements. However, considerable errors occur when...

  11. From 2D to 3D: Using Illumination Cones to Build 3d Face Model

    International Nuclear Information System (INIS)

    Xiao, S S; Jin, M

    2006-01-01

    To solve the problem derivate by lighting condition and position of the camera, a new method using illumination cones to build 3d face model has been proposed. Due to illumination variability, the same object can show dramatic difference even as being viewed in fixed pose. To handle this variability, an object recognition system must employ a representation that is either invariant to, or can model this variability. The proposed technique presents an appearance-based method for modeling the variability due to illumination in the images of objects. The method differs from past appearance-based methods. Evenmore, a small set of training images is used to generate a representation that the illumination cone models the complete set of images of an object with Lambertian reflectance surface under a combination of arbitrary point light sources at infinity. After building up the illumination cones, researches focus on how to present the 3d model of the face. Combining illumination and texture feature to build up 3d model of the face make it easy solving the problem in recognition of face under different pose

  12. A 3D Geometry Model Search Engine to Support Learning

    Science.gov (United States)

    Tam, Gary K. L.; Lau, Rynson W. H.; Zhao, Jianmin

    2009-01-01

    Due to the popularity of 3D graphics in animation and games, usage of 3D geometry deformable models increases dramatically. Despite their growing importance, these models are difficult and time consuming to build. A distance learning system for the construction of these models could greatly facilitate students to learn and practice at different…

  13. Real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy.

    Science.gov (United States)

    Li, Ruijiang; Jia, Xun; Lewis, John H; Gu, Xuejun; Folkerts, Michael; Men, Chunhua; Jiang, Steve B

    2010-06-01

    To develop an algorithm for real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy. Given a set of volumetric images of a patient at N breathing phases as the training data, deformable image registration was performed between a reference phase and the other N-1 phases, resulting in N-1 deformation vector fields (DVFs). These DVFs can be represented efficiently by a few eigenvectors and coefficients obtained from principal component analysis (PCA). By varying the PCA coefficients, new DVFs can be generated, which, when applied on the reference image, lead to new volumetric images. A volumetric image can then be reconstructed from a single projection image by optimizing the PCA coefficients such that its computed projection matches the measured one. The 3D location of the tumor can be derived by applying the inverted DVF on its position in the reference image. The algorithm was implemented on graphics processing units (GPUs) to achieve real-time efficiency. The training data were generated using a realistic and dynamic mathematical phantom with ten breathing phases. The testing data were 360 cone beam projections corresponding to one gantry rotation, simulated using the same phantom with a 50% increase in breathing amplitude. The average relative image intensity error of the reconstructed volumetric images is 6.9% +/- 2.4%. The average 3D tumor localization error is 0.8 +/- 0.5 mm. On an NVIDIA Tesla C1060 GPU card, the average computation time for reconstructing a volumetric image from each projection is 0.24 s (range: 0.17 and 0.35 s). The authors have shown the feasibility of reconstructing volumetric images and localizing tumor positions in 3D in near real-time from a single x-ray image.

  14. Modeling 2D and 3D diffusion.

    Science.gov (United States)

    Saxton, Michael J

    2007-01-01

    Modeling obstructed diffusion is essential to the understanding of diffusion-mediated processes in the crowded cellular environment. Simple Monte Carlo techniques for modeling obstructed random walks are explained and related to Brownian dynamics and more complicated Monte Carlo methods. Random number generation is reviewed in the context of random walk simulations. Programming techniques and event-driven algorithms are discussed as ways to speed simulations.

  15. Modeling 3-D solar wind structure

    Czech Academy of Sciences Publication Activity Database

    Odstrčil, Dušan

    2003-01-01

    Roč. 32, č. 4 (2003), s. 497-506 ISSN 0273-1177 R&D Projects: GA AV ČR IAA3003003; GA AV ČR IBS1003006 Institutional research plan: CEZ:AV0Z1003909 Keywords : solar wind * modeling Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.483, year: 2003

  16. Non-contrast-enhanced 3D volumetric time-resolved MRA combining PCASL for intracranial vessels. President award proceedings

    International Nuclear Information System (INIS)

    Nakamura, Masanobu; Yoneyama, Masami; Tabuchi, Takashi; Tatsuno, Satoshi; Takemura, Atsushi; Obara, Makoto; Takahara, Taro

    2013-01-01

    Hemodynamic information is required for accurate diagnosis, effective treatment, and follow-up examination of numerous cerebrovascular diseases. A recently introduced technique for non-contrast 3-dimensional (3D) volumetric time-resolved magnetic resonance angiography (MRA)-contrast inherent inflow enhanced multi phase angiography (CINEMA)-provides useful qualitative information on the morphologic and dynamic filling of intracranial vessels and requires no catheter insertion or contrast agent. We propose combining CINEMA with pseudo-continuous arterial spin labeling (PCASL). We present a preliminary study of non-contrast time-resolved MRA with time-of-arrival map and discuss its clinical relevance. Studies in all volunteers and patients clearly depicted major intracranial vessels. In patients, CINEMA-PCASL demonstrated the nidus, feeding arteries, and right posterior cerebral artery, and subsequent draining into the superficial venous system was clearly observed with a temporal resolution of 200 ms. Time-of-arrival maps presented the different filling time of every segment vessel in a single colorful image. The expected pattern of delayed transit to more distal vessels is apparent as well as the earlier arrival in central portions of larger vessels. This preliminary study demonstrated the usefulness of the CINEMA-PCASL technique in evaluating the cerebral vasculature. Simultaneous acquisition of high quality temporal and spatial resolutions obviated the need for contrast agent. (author)

  17. Non-contrast-enhanced 3D volumetric time-resolved MRA combining PCASL for intracranial vessels. President award proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Masanobu; Yoneyama, Masami; Tabuchi, Takashi; Tatsuno, Satoshi [Yaesu Clinic, Tokyo (Japan); Takemura, Atsushi; Obara, Makoto [Philips Electronics Japan, Tokyo (Japan); Takahara, Taro [Tokai Univ., Hiratsuka, Kanagawa (Japan)

    2013-02-15

    Hemodynamic information is required for accurate diagnosis, effective treatment, and follow-up examination of numerous cerebrovascular diseases. A recently introduced technique for non-contrast 3-dimensional (3D) volumetric time-resolved magnetic resonance angiography (MRA)-contrast inherent inflow enhanced multi phase angiography (CINEMA)-provides useful qualitative information on the morphologic and dynamic filling of intracranial vessels and requires no catheter insertion or contrast agent. We propose combining CINEMA with pseudo-continuous arterial spin labeling (PCASL). We present a preliminary study of non-contrast time-resolved MRA with time-of-arrival map and discuss its clinical relevance. Studies in all volunteers and patients clearly depicted major intracranial vessels. In patients, CINEMA-PCASL demonstrated the nidus, feeding arteries, and right posterior cerebral artery, and subsequent draining into the superficial venous system was clearly observed with a temporal resolution of 200 ms. Time-of-arrival maps presented the different filling time of every segment vessel in a single colorful image. The expected pattern of delayed transit to more distal vessels is apparent as well as the earlier arrival in central portions of larger vessels. This preliminary study demonstrated the usefulness of the CINEMA-PCASL technique in evaluating the cerebral vasculature. Simultaneous acquisition of high quality temporal and spatial resolutions obviated the need for contrast agent. (author)

  18. Volumetric label-free imaging and 3D reconstruction of mammalian cochlea based on two-photon excitation fluorescence microscopy

    International Nuclear Information System (INIS)

    Zhang, Xianzeng; Zhan, Zhenlin; Xie, Shusen; Geng, Yang; Ye, Qing

    2013-01-01

    The visualization of the delicate structure and spatial relationship of intracochlear sensory cells has relied on the laborious procedures of tissue excision, fixation, sectioning and staining for light and electron microscopy. Confocal microscopy is advantageous for its high resolution and deep penetration depth, yet disadvantageous due to the necessity of exogenous labeling. In this study, we present the volumetric imaging of rat cochlea without exogenous dyes using a near-infrared femtosecond laser as the excitation mechanism and endogenous two-photon excitation fluorescence (TPEF) as the contrast mechanism. We find that TPEF exhibits strong contrast, allowing cellular and even subcellular resolution imaging of the cochlea, differentiating cell types, visualizing delicate structures and the radial nerve fiber. Our results further demonstrate that 3D reconstruction rendered with z-stacks of optical sections enables better revealment of fine structures and spatial relationships, and easily performed morphometric analysis. The TPEF-based optical biopsy technique provides great potential for new and sensitive diagnostic tools for hearing loss or hearing disorders, especially when combined with fiber-based microendoscopy. (paper)

  19. Modelling Polymer Deformation during 3D Printing

    Science.gov (United States)

    McIlroy, Claire; Olmsted, Peter

    Three-dimensional printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The fused deposition modelling technique involves melting a thermoplastic, followed by layer-by-layer extrusion to fabricate an object. The key to ensuring strength at the weld between layers is successful inter-diffusion. However, prior to welding, both the extrusion process and the cooling temperature profile can significantly deform the polymer micro-structure and, consequently, how well the polymers are able to ``re-entangle'' across the weld. In particular, polymer alignment in the flow can cause de-bonding of the layers and create defects. We have developed a simple model of the non-isothermal extrusion process to explore the effects that typical printing conditions and material rheology have on the conformation of a polymer melt. In particular, we incorporate both stretch and orientation using the Rolie-Poly constitutive equation to examine the melt structure as it flows through the nozzle, the subsequent alignment with the build plate and the resulting deformation due to the fixed nozzle height, which is typically less than the nozzle radius.

  20. Virtual 3d City Modeling: Techniques and Applications

    Science.gov (United States)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2013-08-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as Building, Tree, Vegetation, and some manmade feature belonging to urban area. There are various terms used for 3D city models such as "Cybertown", "Cybercity", "Virtual City", or "Digital City". 3D city models are basically a computerized or digital model of a city contains the graphic representation of buildings and other objects in 2.5 or 3D. Generally three main Geomatics approach are using for Virtual 3-D City models generation, in first approach, researcher are using Conventional techniques such as Vector Map data, DEM, Aerial images, second approach are based on High resolution satellite images with LASER scanning, In third method, many researcher are using Terrestrial images by using Close Range Photogrammetry with DSM & Texture mapping. We start this paper from the introduction of various Geomatics techniques for 3D City modeling. These techniques divided in to two main categories: one is based on Automation (Automatic, Semi-automatic and Manual methods), and another is Based on Data input techniques (one is Photogrammetry, another is Laser Techniques). After details study of this, finally in short, we are trying to give the conclusions of this study. In the last, we are trying to give the conclusions of this research paper and also giving a short view for justification and analysis, and present trend for 3D City modeling. This paper gives an overview about the Techniques related with "Generation of Virtual 3-D City models using Geomatics Techniques" and the Applications of Virtual 3D City models. Photogrammetry, (Close range, Aerial, Satellite), Lasergrammetry, GPS, or combination of these modern Geomatics techniques play a major role to create a virtual 3-D City model. Each and every techniques and method has some advantages and some drawbacks. Point cloud model is a modern trend for virtual 3-D city model. Photo-realistic, Scalable, Geo-referenced virtual 3

  1. SEGMENTATION OF 3D MODELS FOR CULTURAL HERITAGE STRUCTURAL ANALYSIS – SOME CRITICAL ISSUES

    Directory of Open Access Journals (Sweden)

    S. Gonizzi Barsanti

    2017-08-01

    Full Text Available Cultural Heritage documentation and preservation has become a fundamental concern in this historical period. 3D modelling offers a perfect aid to record ancient buildings and artefacts and can be used as a valid starting point for restoration, conservation and structural analysis, which can be performed by using Finite Element Methods (FEA. The models derived from reality-based techniques, made up of the exterior surfaces of the objects captured at high resolution, are - for this reason - made of millions of polygons. Such meshes are not directly usable in structural analysis packages and need to be properly pre-processed in order to be transformed in volumetric meshes suitable for FEA. In addition, dealing with ancient objects, a proper segmentation of 3D volumetric models is needed to analyse the behaviour of the structure with the most suitable level of detail for the different sections of the structure under analysis. Segmentation of 3D models is still an open issue, especially when dealing with ancient, complicated and geometrically complex objects that imply the presence of anomalies and gaps, due to environmental agents such as earthquakes, pollution, wind and rain, or human factors. The aims of this paper is to critically analyse some of the different methodologies and algorithms available to segment a 3D point cloud or a mesh, identifying difficulties and problems by showing examples on different structures.

  2. Segmentation of 3d Models for Cultural Heritage Structural Analysis - Some Critical Issues

    Science.gov (United States)

    Gonizzi Barsanti, S.; Guidi, G.; De Luca, L.

    2017-08-01

    Cultural Heritage documentation and preservation has become a fundamental concern in this historical period. 3D modelling offers a perfect aid to record ancient buildings and artefacts and can be used as a valid starting point for restoration, conservation and structural analysis, which can be performed by using Finite Element Methods (FEA). The models derived from reality-based techniques, made up of the exterior surfaces of the objects captured at high resolution, are - for this reason - made of millions of polygons. Such meshes are not directly usable in structural analysis packages and need to be properly pre-processed in order to be transformed in volumetric meshes suitable for FEA. In addition, dealing with ancient objects, a proper segmentation of 3D volumetric models is needed to analyse the behaviour of the structure with the most suitable level of detail for the different sections of the structure under analysis. Segmentation of 3D models is still an open issue, especially when dealing with ancient, complicated and geometrically complex objects that imply the presence of anomalies and gaps, due to environmental agents such as earthquakes, pollution, wind and rain, or human factors. The aims of this paper is to critically analyse some of the different methodologies and algorithms available to segment a 3D point cloud or a mesh, identifying difficulties and problems by showing examples on different structures.

  3. Image based 3D city modeling : Comparative study

    Directory of Open Access Journals (Sweden)

    S. P. Singh

    2014-06-01

    Full Text Available 3D city model is a digital representation of the Earth’s surface and it’s related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing rapidly for various engineering and non-engineering applications. Generally four main image based approaches were used for virtual 3D city models generation. In first approach, researchers were used Sketch based modeling, second method is Procedural grammar based modeling, third approach is Close range photogrammetry based modeling and fourth approach is mainly based on Computer Vision techniques. SketchUp, CityEngine, Photomodeler and Agisoft Photoscan are the main softwares to represent these approaches respectively. These softwares have different approaches & methods suitable for image based 3D city modeling. Literature study shows that till date, there is no complete such type of comparative study available to create complete 3D city model by using images. This paper gives a comparative assessment of these four image based 3D modeling approaches. This comparative study is mainly based on data acquisition methods, data processing techniques and output 3D model products. For this research work, study area is the campus of civil engineering department, Indian Institute of Technology, Roorkee (India. This 3D campus acts as a prototype for city. This study also explains various governing parameters, factors and work experiences. This research work also gives a brief introduction, strengths and weakness of these four image based techniques. Some personal comment is also given as what can do or what can’t do from these softwares. At the last, this study shows; it concluded that, each and every software has some advantages and limitations. Choice of software depends on user requirements of 3D project. For normal visualization project, SketchUp software is a good option. For 3D documentation record, Photomodeler gives good

  4. NoSQL Based 3D City Model Management System

    Science.gov (United States)

    Mao, B.; Harrie, L.; Cao, J.; Wu, Z.; Shen, J.

    2014-04-01

    To manage increasingly complicated 3D city models, a framework based on NoSQL database is proposed in this paper. The framework supports import and export of 3D city model according to international standards such as CityGML, KML/COLLADA and X3D. We also suggest and implement 3D model analysis and visualization in the framework. For city model analysis, 3D geometry data and semantic information (such as name, height, area, price and so on) are stored and processed separately. We use a Map-Reduce method to deal with the 3D geometry data since it is more complex, while the semantic analysis is mainly based on database query operation. For visualization, a multiple 3D city representation structure CityTree is implemented within the framework to support dynamic LODs based on user viewpoint. Also, the proposed framework is easily extensible and supports geoindexes to speed up the querying. Our experimental results show that the proposed 3D city management system can efficiently fulfil the analysis and visualization requirements.

  5. 3D Massive MIMO Systems: Modeling and Performance Analysis

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain; Kammoun, Abla; Debbah, Merouane; Alouini, Mohamed-Slim

    2015-01-01

    necessitates the characterization of 3D channels. We present an information-theoretic channel model for MIMO systems that supports the elevation dimension. The model is based on the principle of maximum entropy, which enables us to determine the distribution

  6. The 3D model: explaining densification and deformation mechanisms by using 3D parameter plots.

    Science.gov (United States)

    Picker, Katharina M

    2004-04-01

    The aim of the study was to analyze very differently deforming materials using 3D parameter plots and consequently to gain deeper insights into the densification and deformation process described with the 3D model in order to define an ideal tableting excipient. The excipients used were dicalcium phosphate dihydrate (DCPD), sodium chloride (NaCl), microcrystalline cellulose (MCC), xylitol, mannitol, alpha-lactose monohydrate, maltose, hydroxypropyl methylcellulose (HPMC), sodium carboxymethylcellulose (NaCMC), cellulose acetate (CAC), maize starch, potato starch, pregelatinized starch, and maltodextrine. All of the materials were tableted to graded maximum relative densities (rhorel, max) using an eccentric tableting machine. The data which resulted, namely force, displacement, and time, were analyzed by the application of 3D modeling. Different particle size fractions of DCPD, CAC, and MCC were analyzed in addition. Brittle deforming materials such as DCPD exhibited a completely different 3D parameter plot, with low time plasticity, d, and low pressure plasticity, e, and a strong decrease in omega values when densification increased, in contrast to the plastically deforming MCC, which had much higher d, e, and omega values. e and omega values changed only slightly when densification increased for MCC. NaCl showed less of a decrease in omega values than DCPD did, and the d and e values were between those of MCC and DCPD. The sugar alcohols, xylitol and mannitol, behaved in a similar fashion to sodium chloride. This is also valid for the crystalline sugars, alpha-lactose monohydrate, and maltose. However, the sugars are more brittle than the sugar alcohols. The cellulose derivatives, HPMC, NaCMC, and CAC, are as plastic as MCC, however, their elasticity depends on substitution indicated by lower (more elastic) or higher (less elastic) omega values. The native starches, maize starch and potato starch, are very elastic, and pregelatinized starch and maltodextrine are

  7. Novel Low Cost 3D Surface Model Reconstruction System for Plant Phenotyping

    Directory of Open Access Journals (Sweden)

    Suxing Liu

    2017-09-01

    Full Text Available Accurate high-resolution three-dimensional (3D models are essential for a non-invasive analysis of phenotypic characteristics of plants. Previous limitations in 3D computer vision algorithms have led to a reliance on volumetric methods or expensive hardware to record plant structure. We present an image-based 3D plant reconstruction system that can be achieved by using a single camera and a rotation stand. Our method is based on the structure from motion method, with a SIFT image feature descriptor. In order to improve the quality of the 3D models, we segmented the plant objects based on the PlantCV platform. We also deducted the optimal number of images needed for reconstructing a high-quality model. Experiments showed that an accurate 3D model of the plant was successfully could be reconstructed by our approach. This 3D surface model reconstruction system provides a simple and accurate computational platform for non-destructive, plant phenotyping.

  8. Size-based emphysema cluster analysis on low attenuation area in 3D volumetric CT: comparison with pulmonary functional test

    Science.gov (United States)

    Lee, Minho; Kim, Namkug; Lee, Sang Min; Seo, Joon Beom; Oh, Sang Young

    2015-03-01

    To quantify low attenuation area (LAA) of emphysematous regions according to cluster size in 3D volumetric CT data of chronic obstructive pulmonary disease (COPD) patients and to compare these indices with their pulmonary functional test (PFT). Sixty patients with COPD were scanned by a more than 16-multi detector row CT scanner (Siemens Sensation 16 and 64) within 0.75mm collimation. Based on these LAA masks, a length scale analysis to estimate each emphysema LAA's size was performed as follows. At first, Gaussian low pass filter from 30mm to 1mm kernel size with 1mm interval on the mask was performed from large to small size, iteratively. Centroid voxels resistant to the each filter were selected and dilated by the size of the kernel, which was regarded as the specific size emphysema mask. The slopes of area and number of size based LAA (slope of semi-log plot) were analyzed and compared with PFT. PFT parameters including DLco, FEV1, and FEV1/FVC were significantly (all p-value< 0.002) correlated with the slopes (r-values; -0.73, 0.54, 0.69, respectively) and EI (r-values; -0.84, -0.60, -0.68, respectively). In addition, the D independently contributed regression for FEV1 and FEV1/FVC (adjust R sq. of regression study: EI only, 0.70, 0.45; EI and D, 0.71, 0.51, respectively). By the size based LAA segmentation and analysis, we evaluated the Ds of area, number, and distribution of size based LAA, which would be independent factors for predictor of PFT parameters.

  9. Modeling 3D Objects for Navigation Purposes Using Laser Scanning

    Directory of Open Access Journals (Sweden)

    Cezary Specht

    2016-07-01

    Full Text Available The paper discusses the creation of 3d models and their applications in navigation. It contains a review of available methods and geometric data sources, focusing mostly on terrestrial laser scanning. It presents detailed description, from field survey to numerical elaboration, how to construct accurate model of a typical few storey building as a hypothetical reference in complex building navigation. Hence, the paper presents fields where 3d models are being used and their potential new applications.

  10. Modelling reinforced concrete structures in DYNA3D

    International Nuclear Information System (INIS)

    Broadhouse, B.J.; Neilson, A.J.

    1987-10-01

    A material model for reinforced concrete has been implemented in the transient structural dynamics code DYNA3D. This paper outlines the constitutive material model, and presents comparisons of DYNA3D calculations and experiments on impulsively loaded panels, covering the full range of panel damage states from light cracking through to panel collapse or perforation. The results are presented using the post-processor code TAURUS, which has also been modified to provide mesh diagrams with superimposed crack patterns from the DYNA3D predictions. (author)

  11. Assessment of Delft3D Morphodynamic Model During Duck94

    National Research Council Canada - National Science Library

    Welsch, Charlotte

    2002-01-01

    ... over a wide range of conditions. The Delfi3D 2- DH model utilizes shallow water equations to phase resolve the mean and infragravity motions in combination with an advection diffusion equation for the sediment transport...

  12. Conceptual Development af a 3D Product Configuration Model

    DEFF Research Database (Denmark)

    Skauge, Jørn

    2006-01-01

    in the development of IT-systems that support the procedures in companies and in the building industry. In other words, it is a knowledge-based system that helps companies in their daily work. The aim of the project has been to develop and examine conceptual ideas about 3D modelling configurator used in the company......’s production of steel fire sliding doors. The development of the 3D digital model is based on practical rather than theoretical research. The result of the research is a prototype digital 3D model to be presented live.......Paper. This project deals with 3D product configuration of a digital building element which has been developed as a prototype in cooperation between a product manufacturer and a research institution in Denmark. The project falls within the concept of product modelling which is more and more used...

  13. Animation of 3D Model of Human Head

    Directory of Open Access Journals (Sweden)

    V. Michalcin

    2007-04-01

    Full Text Available The paper deals with the new algorithm of animation of 3D model of the human head in combination with its global motion. The designed algorithm is very fast and with low calculation requirements, because it does not need the synthesis of the input videosequence for estimation of the animation parameters as well as the parameters of global motion. The used 3D model Candide generates different expressions using its animation units which are controlled by the animation parameters. These ones are estimated on the basis of optical flow without the need of extracting of the feature points in the frames of the input videosequence because they are given by the selected vertices of the animation units of the calibrated 3D model Candide. The established multiple iterations inside the designed animation algorithm of 3D model of the human head between two successive frames significantly improved its accuracy above all for the large motion.

  14. Summary on several key techniques in 3D geological modeling.

    Science.gov (United States)

    Mei, Gang

    2014-01-01

    Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized.

  15. 3D Monte Carlo model with direct photon flux recording for optimal optogenetic light delivery

    Science.gov (United States)

    Shin, Younghoon; Kim, Dongmok; Lee, Jihoon; Kwon, Hyuk-Sang

    2017-02-01

    Configuring the light power emitted from the optical fiber is an essential first step in planning in-vivo optogenetic experiments. However, diffusion theory, which was adopted for optogenetic research, precluded accurate estimates of light intensity in the semi-diffusive region where the primary locus of the stimulation is located. We present a 3D Monte Carlo model that provides an accurate and direct solution for light distribution in this region. Our method directly records the photon trajectory in the separate volumetric grid planes for the near-source recording efficiency gain, and it incorporates a 3D brain mesh to support both homogeneous and heterogeneous brain tissue. We investigated the light emitted from optical fibers in brain tissue in 3D, and we applied the results to design optimal light delivery parameters for precise optogenetic manipulation by considering the fiber output power, wavelength, fiber-to-target distance, and the area of neural tissue activation.

  16. AUTOMATIC TEXTURE MAPPING OF ARCHITECTURAL AND ARCHAEOLOGICAL 3D MODELS

    Directory of Open Access Journals (Sweden)

    T. P. Kersten

    2012-07-01

    Full Text Available Today, detailed, complete and exact 3D models with photo-realistic textures are increasingly demanded for numerous applications in architecture and archaeology. Manual texture mapping of 3D models by digital photographs with software packages, such as Maxon Cinema 4D, Autodesk 3Ds Max or Maya, still requires a complex and time-consuming workflow. So, procedures for automatic texture mapping of 3D models are in demand. In this paper two automatic procedures are presented. The first procedure generates 3D surface models with textures by web services, while the second procedure textures already existing 3D models with the software tmapper. The program tmapper is based on the Multi Layer 3D image (ML3DImage algorithm and developed in the programming language C++. The studies showing that the visibility analysis using the ML3DImage algorithm is not sufficient to obtain acceptable results of automatic texture mapping. To overcome the visibility problem the Point Cloud Painter algorithm in combination with the Z-buffer-procedure will be applied in the future.

  17. Automatic Texture Mapping of Architectural and Archaeological 3d Models

    Science.gov (United States)

    Kersten, T. P.; Stallmann, D.

    2012-07-01

    Today, detailed, complete and exact 3D models with photo-realistic textures are increasingly demanded for numerous applications in architecture and archaeology. Manual texture mapping of 3D models by digital photographs with software packages, such as Maxon Cinema 4D, Autodesk 3Ds Max or Maya, still requires a complex and time-consuming workflow. So, procedures for automatic texture mapping of 3D models are in demand. In this paper two automatic procedures are presented. The first procedure generates 3D surface models with textures by web services, while the second procedure textures already existing 3D models with the software tmapper. The program tmapper is based on the Multi Layer 3D image (ML3DImage) algorithm and developed in the programming language C++. The studies showing that the visibility analysis using the ML3DImage algorithm is not sufficient to obtain acceptable results of automatic texture mapping. To overcome the visibility problem the Point Cloud Painter algorithm in combination with the Z-buffer-procedure will be applied in the future.

  18. Gis-Based Smart Cartography Using 3d Modeling

    Science.gov (United States)

    Malinverni, E. S.; Tassetti, A. N.

    2013-08-01

    3D City Models have evolved to be important tools for urban decision processes and information systems, especially in planning, simulation, analysis, documentation and heritage management. On the other hand existing and in use numerical cartography is often not suitable to be used in GIS because not geometrically and topologically correctly structured. The research aim is to 3D structure and organize a numeric cartography for GIS and turn it into CityGML standardized features. The work is framed around a first phase of methodological analysis aimed to underline which existing standard (like ISO and OGC rules) can be used to improve the quality requirement of a cartographic structure. Subsequently, from this technical specifics, it has been investigated the translation in formal contents, using an owner interchange software (SketchUp), to support some guide lines implementations to generate a GIS3D structured in GML3. It has been therefore predisposed a test three-dimensional numerical cartography (scale 1:500, generated from range data captured by 3D laser scanner), tested on its quality according to the previous standard and edited when and where necessary. Cad files and shapefiles are converted into a final 3D model (Google SketchUp model) and then exported into a 3D city model (CityGML LoD1/LoD2). The GIS3D structure has been managed in a GIS environment to run further spatial analysis and energy performance estimate, not achievable in a 2D environment. In particular geometrical building parameters (footprint, volume etc.) are computed and building envelop thermal characteristics are derived from. Lastly, a simulation is carried out to deal with asbestos and home renovating charges and show how the built 3D city model can support municipal managers with risk diagnosis of the present situation and development of strategies for a sustainable redevelop.

  19. Development of ITER 3D neutronics model and nuclear analyses

    International Nuclear Information System (INIS)

    Zeng, Q.; Zheng, S.; Lu, L.; Li, Y.; Ding, A.; Hu, H.; Wu, Y.

    2007-01-01

    ITER nuclear analyses rely on the calculations with the three-dimensional (3D) Monte Carlo code e.g. the widely-used MCNP. However, continuous changes in the design of the components require the 3D neutronics model for nuclear analyses should be updated. Nevertheless, the modeling of a complex geometry with MCNP by hand is a very time-consuming task. It is an efficient way to develop CAD-based interface code for automatic conversion from CAD models to MCNP input files. Based on the latest CAD model and the available interface codes, the two approaches of updating 3D nuetronics model have been discussed by ITER IT (International Team): The first is to start with the existing MCNP model 'Brand' and update it through a combination of direct modification of the MCNP input file and generation of models for some components directly from the CAD data; The second is to start from the full CAD model, make the necessary simplifications, and generate the MCNP model by one of the interface codes. MCAM as an advanced CAD-based MCNP interface code developed by FDS Team in China has been successfully applied to update the ITER 3D neutronics model by adopting the above two approaches. The Brand model has been updated to generate portions of the geometry based on the newest CAD model by MCAM. MCAM has also successfully performed conversion to MCNP neutronics model from a full ITER CAD model which is simplified and issued by ITER IT to benchmark the above interface codes. Based on the two updated 3D neutronics models, the related nuclear analyses are performed. This paper presents the status of ITER 3D modeling by using MCAM and its nuclear analyses, as well as a brief introduction of advanced version of MCAM. (authors)

  20. Implementation of virtual models from sheet metal forming simulation into physical 3D colour models using 3D printing

    Science.gov (United States)

    Junk, S.

    2016-08-01

    Today the methods of numerical simulation of sheet metal forming offer a great diversity of possibilities for optimization in product development and in process design. However, the results from simulation are only available as virtual models. Because there are any forming tools available during the early stages of product development, physical models that could serve to represent the virtual results are therefore lacking. Physical 3D-models can be created using 3D-printing and serve as an illustration and present a better understanding of the simulation results. In this way, the results from the simulation can be made more “comprehensible” within a development team. This paper presents the possibilities of 3D-colour printing with particular consideration of the requirements regarding the implementation of sheet metal forming simulation. Using concrete examples of sheet metal forming, the manufacturing of 3D colour models will be expounded upon on the basis of simulation results.

  1. The 3D Reference Earth Model: Status and Preliminary Results

    Science.gov (United States)

    Moulik, P.; Lekic, V.; Romanowicz, B. A.

    2017-12-01

    In the 20th century, seismologists constructed models of how average physical properties (e.g. density, rigidity, compressibility, anisotropy) vary with depth in the Earth's interior. These one-dimensional (1D) reference Earth models (e.g. PREM) have proven indispensable in earthquake location, imaging of interior structure, understanding material properties under extreme conditions, and as a reference in other fields, such as particle physics and astronomy. Over the past three decades, new datasets motivated more sophisticated efforts that yielded models of how properties vary both laterally and with depth in the Earth's interior. Though these three-dimensional (3D) models exhibit compelling similarities at large scales, differences in the methodology, representation of structure, and dataset upon which they are based, have prevented the creation of 3D community reference models. As part of the REM-3D project, we are compiling and reconciling reference seismic datasets of body wave travel-time measurements, fundamental mode and overtone surface wave dispersion measurements, and normal mode frequencies and splitting functions. These reference datasets are being inverted for a long-wavelength, 3D reference Earth model that describes the robust long-wavelength features of mantle heterogeneity. As a community reference model with fully quantified uncertainties and tradeoffs and an associated publically available dataset, REM-3D will facilitate Earth imaging studies, earthquake characterization, inferences on temperature and composition in the deep interior, and be of improved utility to emerging scientific endeavors, such as neutrino geoscience. Here, we summarize progress made in the construction of the reference long period dataset and present a preliminary version of REM-3D in the upper-mantle. In order to determine the level of detail warranted for inclusion in REM-3D, we analyze the spectrum of discrepancies between models inverted with different subsets of the

  2. SU-D-BRC-07: System Design for a 3D Volumetric Scintillation Detector Using SCMOS Cameras

    Energy Technology Data Exchange (ETDEWEB)

    Darne, C; Robertson, D; Alsanea, F; Beddar, S [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: The purpose of this project is to build a volumetric scintillation detector for quantitative imaging of 3D dose distributions of proton beams accurately in near real-time. Methods: The liquid scintillator (LS) detector consists of a transparent acrylic tank (20×20×20 cm{sup 3}) filled with a liquid scintillator that when irradiated with protons generates scintillation light. To track rapid spatial and dose variations in spot scanning proton beams we used three scientific-complementary metal-oxide semiconductor (sCMOS) imagers (2560×2160 pixels). The cameras collect optical signal from three orthogonal projections. To reduce system footprint two mirrors oriented at 45° to the tank surfaces redirect scintillation light to cameras for capturing top and right views. Selection of fixed focal length objective lenses for these cameras was based on their ability to provide large depth of field (DoF) and required field of view (FoV). Multiple cross-hairs imprinted on the tank surfaces allow for image corrections arising from camera perspective and refraction. Results: We determined that by setting sCMOS to 16-bit dynamic range, truncating its FoV (1100×1100 pixels) to image the entire volume of the LS detector, and using 5.6 msec integration time imaging rate can be ramped up to 88 frames per second (fps). 20 mm focal length lens provides a 20 cm imaging DoF and 0.24 mm/pixel resolution. Master-slave camera configuration enable the slaves to initiate image acquisition instantly (within 2 µsec) after receiving a trigger signal. A computer with 128 GB RAM was used for spooling images from the cameras and can sustain a maximum recording time of 2 min per camera at 75 fps. Conclusion: The three sCMOS cameras are capable of high speed imaging. They can therefore be used for quick, high-resolution, and precise mapping of dose distributions from scanned spot proton beams in three dimensions.

  3. SU-D-BRC-07: System Design for a 3D Volumetric Scintillation Detector Using SCMOS Cameras

    International Nuclear Information System (INIS)

    Darne, C; Robertson, D; Alsanea, F; Beddar, S

    2016-01-01

    Purpose: The purpose of this project is to build a volumetric scintillation detector for quantitative imaging of 3D dose distributions of proton beams accurately in near real-time. Methods: The liquid scintillator (LS) detector consists of a transparent acrylic tank (20×20×20 cm"3) filled with a liquid scintillator that when irradiated with protons generates scintillation light. To track rapid spatial and dose variations in spot scanning proton beams we used three scientific-complementary metal-oxide semiconductor (sCMOS) imagers (2560×2160 pixels). The cameras collect optical signal from three orthogonal projections. To reduce system footprint two mirrors oriented at 45° to the tank surfaces redirect scintillation light to cameras for capturing top and right views. Selection of fixed focal length objective lenses for these cameras was based on their ability to provide large depth of field (DoF) and required field of view (FoV). Multiple cross-hairs imprinted on the tank surfaces allow for image corrections arising from camera perspective and refraction. Results: We determined that by setting sCMOS to 16-bit dynamic range, truncating its FoV (1100×1100 pixels) to image the entire volume of the LS detector, and using 5.6 msec integration time imaging rate can be ramped up to 88 frames per second (fps). 20 mm focal length lens provides a 20 cm imaging DoF and 0.24 mm/pixel resolution. Master-slave camera configuration enable the slaves to initiate image acquisition instantly (within 2 µsec) after receiving a trigger signal. A computer with 128 GB RAM was used for spooling images from the cameras and can sustain a maximum recording time of 2 min per camera at 75 fps. Conclusion: The three sCMOS cameras are capable of high speed imaging. They can therefore be used for quick, high-resolution, and precise mapping of dose distributions from scanned spot proton beams in three dimensions.

  4. Creating physical 3D stereolithograph models of brain and skull.

    Directory of Open Access Journals (Sweden)

    Daniel J Kelley

    2007-10-01

    Full Text Available The human brain and skull are three dimensional (3D anatomical structures with complex surfaces. However, medical images are often two dimensional (2D and provide incomplete visualization of structural morphology. To overcome this loss in dimension, we developed and validated a freely available, semi-automated pathway to build 3D virtual reality (VR and hand-held, stereolithograph models. To evaluate whether surface visualization in 3D was more informative than in 2D, undergraduate students (n = 50 used the Gillespie scale to rate 3D VR and physical models of both a living patient-volunteer's brain and the skull of Phineas Gage, a historically famous railroad worker whose misfortune with a projectile tamping iron provided the first evidence of a structure-function relationship in brain. Using our processing pathway, we successfully fabricated human brain and skull replicas and validated that the stereolithograph model preserved the scale of the VR model. Based on the Gillespie ratings, students indicated that the biological utility and quality of visual information at the surface of VR and stereolithograph models were greater than the 2D images from which they were derived. The method we developed is useful to create VR and stereolithograph 3D models from medical images and can be used to model hard or soft tissue in living or preserved specimens. Compared to 2D images, VR and stereolithograph models provide an extra dimension that enhances both the quality of visual information and utility of surface visualization in neuroscience and medicine.

  5. 3D Bioprinting of Tissue/Organ Models.

    Science.gov (United States)

    Pati, Falguni; Gantelius, Jesper; Svahn, Helene Andersson

    2016-04-04

    In vitro tissue/organ models are useful platforms that can facilitate systematic, repetitive, and quantitative investigations of drugs/chemicals. The primary objective when developing tissue/organ models is to reproduce physiologically relevant functions that typically require complex culture systems. Bioprinting offers exciting prospects for constructing 3D tissue/organ models, as it enables the reproducible, automated production of complex living tissues. Bioprinted tissues/organs may prove useful for screening novel compounds or predicting toxicity, as the spatial and chemical complexity inherent to native tissues/organs can be recreated. In this Review, we highlight the importance of developing 3D in vitro tissue/organ models by 3D bioprinting techniques, characterization of these models for evaluating their resemblance to native tissue, and their application in the prioritization of lead candidates, toxicity testing, and as disease/tumor models. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Arbitrary modeling of TSVs for 3D integrated circuits

    CERN Document Server

    Salah, Khaled; El-Rouby, Alaa

    2014-01-01

    This book presents a wide-band and technology independent, SPICE-compatible RLC model for through-silicon vias (TSVs) in 3D integrated circuits. This model accounts for a variety of effects, including skin effect, depletion capacitance and nearby contact effects. Readers will benefit from in-depth coverage of concepts and technology such as 3D integration, Macro modeling, dimensional analysis and compact modeling, as well as closed form equations for the through silicon via parasitics. Concepts covered are demonstrated by using TSVs in applications such as a spiral inductor?and inductive-based

  7. Modeling And Position Control Of Scara Type 3D Printer

    Directory of Open Access Journals (Sweden)

    Ahmet Saygamp305n Ogulmuamp351

    2015-08-01

    Full Text Available In this work a scara robot type 3D printer system is dynamically modeled and position control of the system is realized. For this aim computer aided design model of three degrees of freedom robotic system is created using SolidWorks program then obtained model is exported to MATLABSimMechanics software for position control. Also mathematical model of servo motors used in robotic 3D printer system is included in control methodology to design proportional controllers. Uncontrolled and controlled position results are simulated and given in the form of the graphics.

  8. Shape: A 3D Modeling Tool for Astrophysics.

    Science.gov (United States)

    Steffen, Wolfgang; Koning, Nicholas; Wenger, Stephan; Morisset, Christophe; Magnor, Marcus

    2011-04-01

    We present a flexible interactive 3D morpho-kinematical modeling application for astrophysics. Compared to other systems, our application reduces the restrictions on the physical assumptions, data type, and amount that is required for a reconstruction of an object's morphology. It is one of the first publicly available tools to apply interactive graphics to astrophysical modeling. The tool allows astrophysicists to provide a priori knowledge about the object by interactively defining 3D structural elements. By direct comparison of model prediction with observational data, model parameters can then be automatically optimized to fit the observation. The tool has already been successfully used in a number of astrophysical research projects.

  9. 3D physical modeling for patterning process development

    Science.gov (United States)

    Sarma, Chandra; Abdo, Amr; Bailey, Todd; Conley, Will; Dunn, Derren; Marokkey, Sajan; Talbi, Mohamed

    2010-03-01

    In this paper we will demonstrate how a 3D physical patterning model can act as a forensic tool for OPC and ground-rule development. We discuss examples where the 2D modeling shows no issues in printing gate lines but 3D modeling shows severe resist loss in the middle. In absence of corrective measure, there is a high likelihood of line discontinuity post etch. Such early insight into process limitations of prospective ground rules can be invaluable for early technology development. We will also demonstrate how the root cause of broken poly-line after etch could be traced to resist necking in the region of STI step with the help of 3D models. We discuss different cases of metal and contact layouts where 3D modeling gives an early insight in to technology limitations. In addition such a 3D physical model could be used for early resist evaluation and selection for required ground-rule challenges, which can substantially reduce the cycle time for process development.

  10. Soft-tissue volumetric changes following monobloc distraction procedure: analysis using digital three-dimensional photogrammetry system (3dMD).

    Science.gov (United States)

    Chan, Fuan Chiang; Kawamoto, Henry K; Federico, Christina; Bradley, James P

    2013-03-01

    We have previously reported that monobloc advancement by distraction osteogenesis resulted in decreased morbidity and greater advancement with less relapse compared with acute monobloc advancement with bone grafting. In this study, we examine the three-dimensional (3D) volumetric soft-tissue changes in monobloc distraction.Patients with syndromic craniosynostosis who underwent monobloc distraction from 2002 to 2010 at University of California-Los Angeles Craniofacial Center were studied (n = 12). We recorded diagnosis, indications for the surgery, and volumetric changes for skeletal and soft-tissue midface structures (preoperative/postoperative [6 weeks]/follow-up [>1 year]). Computed tomography scans and a digital 3D photogrammetry system were used for image analysis.Patients ranged from 6 to 14 years of age (mean, 10.1 years) at the time of the operation (follow-up 2-11 years); mean distraction advancement was 19.4 mm (range, 14-25 mm). There was a mean increase in the 3D volumetric soft-tissue changes: 99.5 ± 4.0 cm(3) (P < 0.05) at 6 weeks and 94.9 ± 3.6 cm(3) (P < 0.05) at 1-year follow-up. When comparing soft-tissue changes at 6 weeks postoperative to 1-year follow-up, there were minimal relapse changes. The overall mean 3D skeletal change was 108.9 ± 4.2 cm. For every 1 cm of skeletal gain, there was 0.78 cm(3) of soft-tissue gain.Monobloc advancement by distraction osteogenesis using internal devices resulted in increased volumetric soft-tissue changes, which remained stable at 1 year. The positive linear correlation between soft-tissue increments and bony advancement can be incorporated during the planning of osteotomies to achieve optimum surgical outcomes with monobloc distraction.

  11. 3D Printed Pediatric Temporal Bone: A Novel Training Model.

    Science.gov (United States)

    Longfield, Evan A; Brickman, Todd M; Jeyakumar, Anita

    2015-06-01

    Temporal bone dissection is a fundamental element of otologic training. Cadaveric temporal bones (CTB) are the gold standard surgical training model; however, many institutions do not have ready access to them and their cost can be significant: $300 to $500. Furthermore, pediatric cadaveric temporal bones are not readily available. Our objective is to develop a pediatric temporal bone model. Temporal bone model. Tertiary Children's Hospital. Pediatric patient model. We describe the novel use of a 3D printer for the generation of a plaster training model from a pediatric high- resolution CT temporal bone scan of a normal pediatric temporal bone. Three models were produced and were evaluated. The models utilized multiple colors (white for bone, yellow for the facial nerve) and were of high quality. Two models were drilled as a proof of concept and found to be an acceptable facsimile of the patient's anatomy, rendering all necessary surgical landmarks accurately. The only negative comments pertaining to the 3D printed temporal bone as a training model were the lack of variation in hardness between cortical and cancellous bone, noting a tactile variation from cadaveric temporal bones. Our novel pediatric 3D temporal bone training model is a viable, low-cost training option for previously inaccessible pediatric temporal bone training. Our hope is that, as 3D printers become commonplace, these models could be rapidly reproduced, allowing for trainees to print models of patients before performing surgery on the living patient.

  12. MolPrint3D: Enhanced 3D Printing of Ball-and-Stick Molecular Models

    Science.gov (United States)

    Paukstelis, Paul J.

    2018-01-01

    The increased availability of noncommercial 3D printers has provided instructors and students improved access to printing technology. However, printing complex ball-and-stick molecular structures faces distinct challenges, including the need for support structures that increase with molecular complexity. MolPrint3D is a software add-on for the…

  13. A spherical harmonics intensity model for 3D segmentation and 3D shape analysis of heterochromatin foci.

    Science.gov (United States)

    Eck, Simon; Wörz, Stefan; Müller-Ott, Katharina; Hahn, Matthias; Biesdorf, Andreas; Schotta, Gunnar; Rippe, Karsten; Rohr, Karl

    2016-08-01

    The genome is partitioned into regions of euchromatin and heterochromatin. The organization of heterochromatin is important for the regulation of cellular processes such as chromosome segregation and gene silencing, and their misregulation is linked to cancer and other diseases. We present a model-based approach for automatic 3D segmentation and 3D shape analysis of heterochromatin foci from 3D confocal light microscopy images. Our approach employs a novel 3D intensity model based on spherical harmonics, which analytically describes the shape and intensities of the foci. The model parameters are determined by fitting the model to the image intensities using least-squares minimization. To characterize the 3D shape of the foci, we exploit the computed spherical harmonics coefficients and determine a shape descriptor. We applied our approach to 3D synthetic image data as well as real 3D static and real 3D time-lapse microscopy images, and compared the performance with that of previous approaches. It turned out that our approach yields accurate 3D segmentation results and performs better than previous approaches. We also show that our approach can be used for quantifying 3D shape differences of heterochromatin foci. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Tangible 3D modeling of coherent and themed structures

    DEFF Research Database (Denmark)

    Walther, Jeppe Ullè; Bærentzen, J. Andreas; Aanæs, Henrik

    2016-01-01

    We present CubeBuilder, a system for interactive, tangible 3D shape modeling. CubeBuilder allows the user to create a digital 3D model by placing physical, non-interlocking cubic blocks. These blocks may be placed in a completely arbitrary fashion and combined with other objects. In effect......, this turns the task of 3D modeling into a playful activity that hardly requires any learning on the part of the user. The blocks are registered using a depth camera and entered into the cube graph where each block is a node and adjacent blocks are connected by edges. From the cube graph, we transform......, allows the user to tangibly build structures of greater details than the blocks provide in and of themselves. We show a number of shapes that have been modeled by users and are indicative of the expressive power of the system. Furthermore, we demonstrate the scalability of the tangible interface which...

  15. The 3-dimensional core model DYN3D

    Energy Technology Data Exchange (ETDEWEB)

    Grundmann, U.; Mittag, S.; Rohde, U.

    1999-01-01

    Analyzing the safety margins in transients and accidents of nuclear reactors 3-dimensional models of the core were used to avoid conservative assumptions needed for point kinetics or 1-dimensional models. Therefore, the 3D code DYN3D has been developed for the analysis of reactivity initiated accidents (RIA) in thermal nuclear reactors. The power distributions are calculated with the help of nodal expansion methods (NEM) for hexagonal and Cartesian geometry. The fuel rod model and the thermohydraulic part provide fuel temperatures, coolant temperatures and densities as well as boron concentrations for the calculation of feedback effects on the basis of cross section libraries generated by cell codes. Safety relevant parameters like maximum fuel and cladding temperatures, critical heat flux and degree of cladding oxidation are estimated. DYN3D can analyze RIA initiated by moved control rods and/or perturbations of the coolant flow. Stationary and transient boundary conditions for the coolant flow, the core inlet temperatures and boron concentrations at the core inlet have to be given. For analyzing more complex transients the code DYN3D is coupled with the plant model ATHLET of the GRS. The extensive validation work accomplished for DYN3D is presented in several examples. Some applications of the code are described. (orig.) [Deutsch] Die Verwendung 3-dimensionaler Kernmodelle zur Untersuchung der Sicherheitsreserven bei Uebergangsprozessen und Stoerfaellen in Kernreaktoren vermeidet konservative Annahmen, die bei der Benutzung des Punktmodells oder 1-dimensionaler Modelle erforderlich sind. Aus diesen Gruenden wurde das 3-dimensionale Rechenprogramm DYN3D fuer die Untersuchung von Reaktivitaetsstoerfaellen in thermischen Reaktoren entwickelt. Die Leistungsverteilung wird mit nodalen Methoden fuer hexagonale oder kartesische Geometrie berechnet. Das Brennstabmodell und der thermohydraulische Teil von DYN3D liefert die Brennstofftemperaturen, Kuehlmitteltemperaturen

  16. Modelling of MOCVD reactor: new 3D approach

    International Nuclear Information System (INIS)

    Raj, E; Lisik, Z; Niedzielski, P; Ruta, L; Turczynski, M; Wang, X; Waag, A

    2014-01-01

    The paper presents comparison of two different 3D models of vertical, rotating disc MOCVD reactor used for 3D GaN structure growth. The first one is based on the reactor symmetry, while the second, novel one incorporates only single line of showerhead nozzles. It is shown that both of them can be applied interchangeably regarding the phenomena taking place within the processing area. Moreover, the importance of boundary conditions regarding proper modelling of showerhead cooling and the significance of thermal radiation on temperature field within the modelled structure are presented and analysed. The last phenomenon is erroneously neglected in most of the hitherto studies.

  17. Modelling of MOCVD Reactor: New 3D Approach

    Science.gov (United States)

    Raj, E.; Lisik, Z.; Niedzielski, P.; Ruta, L.; Turczynski, M.; Wang, X.; Waag, A.

    2014-04-01

    The paper presents comparison of two different 3D models of vertical, rotating disc MOCVD reactor used for 3D GaN structure growth. The first one is based on the reactor symmetry, while the second, novel one incorporates only single line of showerhead nozzles. It is shown that both of them can be applied interchangeably regarding the phenomena taking place within the processing area. Moreover, the importance of boundary conditions regarding proper modelling of showerhead cooling and the significance of thermal radiation on temperature field within the modelled structure are presented and analysed. The last phenomenon is erroneously neglected in most of the hitherto studies.

  18. Modeling real conditions of 'Ukrytie' object in 3D measurement

    International Nuclear Information System (INIS)

    Podbereznyj, S.S.

    2001-01-01

    The article covers a technology of creation on soft products basis for designing: AutoCad, and computer graphics and animation 3D Studio, 3DS MAX, of 3D model of geometrical parameters of current conditions of building structures, technological equipment, fuel-containing materials, concrete, water of ruined Unit 4, 'Ukryttia' object, of Chernobyl NPP. The model built using the above technology will be applied in the future as a basis when automating the design and computer modeling of processes at the 'Ukryttia' object

  19. Magnetic materials and 3D finite element modeling

    CERN Document Server

    Bastos, Joao Pedro A

    2014-01-01

    Magnetic Materials and 3D Finite Element Modeling explores material characterization and finite element modeling (FEM) applications. This book relates to electromagnetic analysis based on Maxwell’s equations and application of the finite element (FE) method to low frequency devices. A great source for senior undergraduate and graduate students in electromagnetics, it also supports industry professionals working in magnetics, electromagnetics, ferromagnetic materials science and electrical engineering. The authors present current concepts on ferromagnetic material characterizations and losses. They provide introductory material; highlight basic electromagnetics, present experimental and numerical modeling related to losses and focus on FEM applied to 3D applications. They also explain various formulations, and discuss numerical codes.

  20. Potential of 3D City Models to assess flood vulnerability

    Science.gov (United States)

    Schröter, Kai; Bochow, Mathias; Schüttig, Martin; Nagel, Claus; Ross, Lutz; Kreibich, Heidi

    2016-04-01

    Vulnerability, as the product of exposure and susceptibility, is a key factor of the flood risk equation. Furthermore, the estimation of flood loss is very sensitive to the choice of the vulnerability model. Still, in contrast to elaborate hazard simulations, vulnerability is often considered in a simplified manner concerning the spatial resolution and geo-location of exposed objects as well as the susceptibility of these objects at risk. Usually, area specific potential flood loss is quantified on the level of aggregated land-use classes, and both hazard intensity and resistance characteristics of affected objects are represented in highly simplified terms. We investigate the potential of 3D City Models and spatial features derived from remote sensing data to improve the differentiation of vulnerability in flood risk assessment. 3D City Models are based on CityGML, an application scheme of the Geography Markup Language (GML), which represents the 3D geometry, 3D topology, semantics and appearance of objects on different levels of detail. As such, 3D City Models offer detailed spatial information which is useful to describe the exposure and to characterize the susceptibility of residential buildings at risk. This information is further consolidated with spatial features of the building stock derived from remote sensing data. Using this database a spatially detailed flood vulnerability model is developed by means of data-mining. Empirical flood damage data are used to derive and to validate flood susceptibility models for individual objects. We present first results from a prototype application in the city of Dresden, Germany. The vulnerability modeling based on 3D City Models and remote sensing data is compared i) to the generally accepted good engineering practice based on area specific loss potential and ii) to a highly detailed representation of flood vulnerability based on a building typology using urban structure types. Comparisons are drawn in terms of

  1. Improving 3d Spatial Queries Search: Newfangled Technique of Space Filling Curves in 3d City Modeling

    Science.gov (United States)

    Uznir, U.; Anton, F.; Suhaibah, A.; Rahman, A. A.; Mioc, D.

    2013-09-01

    The advantages of three dimensional (3D) city models can be seen in various applications including photogrammetry, urban and regional planning, computer games, etc.. They expand the visualization and analysis capabilities of Geographic Information Systems on cities, and they can be developed using web standards. However, these 3D city models consume much more storage compared to two dimensional (2D) spatial data. They involve extra geometrical and topological information together with semantic data. Without a proper spatial data clustering method and its corresponding spatial data access method, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban objects. In this research, we propose an opponent data constellation technique of space-filling curves (3D Hilbert curves) for 3D city model data representation. Unlike previous methods, that try to project 3D or n-dimensional data down to 2D or 3D using Principal Component Analysis (PCA) or Hilbert mappings, in this research, we extend the Hilbert space-filling curve to one higher dimension for 3D city model data implementations. The query performance was tested using a CityGML dataset of 1,000 building blocks and the results are presented in this paper. The advantages of implementing space-filling curves in 3D city modeling will improve data retrieval time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a subinterval of the [0, 1] interval to the corresponding portion of the d-dimensional Hilbert's curve, preserves the Lebesgue measure and is Lipschitz continuous. Depending on the applications, several alternatives are possible in order to cluster spatial data together in the third dimension compared to its

  2. 3D model of amphioxus steroid receptor complexed with estradiol

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Michael E., E-mail: mbaker@ucsd.edu [Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0693 (United States); Chang, David J. [Department of Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0693 (United States)

    2009-08-28

    The origins of signaling by vertebrate steroids are not fully understood. An important advance was the report that an estrogen-binding steroid receptor [SR] is present in amphioxus, a basal chordate with a similar body plan as vertebrates. To investigate the evolution of estrogen-binding to steroid receptors, we constructed a 3D model of amphioxus SR complexed with estradiol. This 3D model indicates that although the SR is activated by estradiol, some interactions between estradiol and human ER{alpha} are not conserved in the SR, which can explain the low affinity of estradiol for the SR. These differences between the SR and ER{alpha} in the steroid-binding domain are sufficient to suggest that another steroid is the physiological regulator of the SR. The 3D model predicts that mutation of Glu-346 to Gln will increase the affinity of testosterone for amphioxus SR and elucidate the evolution of steroid-binding to nuclear receptors.

  3. Statistical 3D damage accumulation model for ion implant simulators

    CERN Document Server

    Hernandez-Mangas, J M; Enriquez, L E; Bailon, L; Barbolla, J; Jaraiz, M

    2003-01-01

    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided.

  4. Statistical 3D damage accumulation model for ion implant simulators

    International Nuclear Information System (INIS)

    Hernandez-Mangas, J.M.; Lazaro, J.; Enriquez, L.; Bailon, L.; Barbolla, J.; Jaraiz, M.

    2003-01-01

    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided

  5. 3D-DART: a DNA structure modelling server

    NARCIS (Netherlands)

    van Dijk, M.; Bonvin, A.M.J.J.

    2009-01-01

    There is a growing interest in structural studies of DNA by both experimental and computational approaches. Often, 3D-structural models of DNA are required, for instance, to serve as templates for homology modeling, as starting structures for macro-molecular docking or as scaffold for NMR structure

  6. Use of a model for 3D image reconstruction

    International Nuclear Information System (INIS)

    Delageniere, S.; Grangeat, P.

    1991-01-01

    We propose a software for 3D image reconstruction in transmission tomography. This software is based on the use of a model and of the RADON algorithm developed at LETI. The introduction of a markovian model helps us to enhance contrast and straitened the natural transitions existing in the objects studied, whereas standard transform methods smoothe them

  7. LIME: 3D visualisation and interpretation of virtual geoscience models

    Science.gov (United States)

    Buckley, Simon; Ringdal, Kari; Dolva, Benjamin; Naumann, Nicole; Kurz, Tobias

    2017-04-01

    Three-dimensional and photorealistic acquisition of surface topography, using methods such as laser scanning and photogrammetry, has become widespread across the geosciences over the last decade. With recent innovations in photogrammetric processing software, robust and automated data capture hardware, and novel sensor platforms, including unmanned aerial vehicles, obtaining 3D representations of exposed topography has never been easier. In addition to 3D datasets, fusion of surface geometry with imaging sensors, such as multi/hyperspectral, thermal and ground-based InSAR, and geophysical methods, create novel and highly visual datasets that provide a fundamental spatial framework to address open geoscience research questions. Although data capture and processing routines are becoming well-established and widely reported in the scientific literature, challenges remain related to the analysis, co-visualisation and presentation of 3D photorealistic models, especially for new users (e.g. students and scientists new to geomatics methods). Interpretation and measurement is essential for quantitative analysis of 3D datasets, and qualitative methods are valuable for presentation purposes, for planning and in education. Motivated by this background, the current contribution presents LIME, a lightweight and high performance 3D software for interpreting and co-visualising 3D models and related image data in geoscience applications. The software focuses on novel data integration and visualisation of 3D topography with image sources such as hyperspectral imagery, logs and interpretation panels, geophysical datasets and georeferenced maps and images. High quality visual output can be generated for dissemination purposes, to aid researchers with communication of their research results. The background of the software is described and case studies from outcrop geology, in hyperspectral mineral mapping and geophysical-geospatial data integration are used to showcase the novel

  8. Automatic Generation of 3D Building Models with Multiple Roofs

    Institute of Scientific and Technical Information of China (English)

    Kenichi Sugihara; Yoshitugu Hayashi

    2008-01-01

    Based on building footprints (building polygons) on digital maps, we are proposing the GIS and CG integrated system that automatically generates 3D building models with multiple roofs. Most building polygons' edges meet at right angles (orthogonal polygon). The integrated system partitions orthogonal building polygons into a set of rectangles and places rectangular roofs and box-shaped building bodies on these rectangles. In order to partition an orthogonal polygon, we proposed a useful polygon expression in deciding from which vertex a dividing line is drawn. In this paper, we propose a new scheme for partitioning building polygons and show the process of creating 3D roof models.

  9. Probabilistic reasoning for assembly-based 3D modeling

    KAUST Repository

    Chaudhuri, Siddhartha

    2011-01-01

    Assembly-based modeling is a promising approach to broadening the accessibility of 3D modeling. In assembly-based modeling, new models are assembled from shape components extracted from a database. A key challenge in assembly-based modeling is the identification of relevant components to be presented to the user. In this paper, we introduce a probabilistic reasoning approach to this problem. Given a repository of shapes, our approach learns a probabilistic graphical model that encodes semantic and geometric relationships among shape components. The probabilistic model is used to present components that are semantically and stylistically compatible with the 3D model that is being assembled. Our experiments indicate that the probabilistic model increases the relevance of presented components. © 2011 ACM.

  10. Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU

    Directory of Open Access Journals (Sweden)

    Yong Xia

    2015-01-01

    Full Text Available Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation and the other is the diffusion term of the monodomain model (partial differential equation. Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations.

  11. 3D fluoroscopic image estimation using patient-specific 4DCBCT-based motion models

    International Nuclear Information System (INIS)

    Dhou, S; Hurwitz, M; Cai, W; Rottmann, J; Williams, C; Wagar, M; Berbeco, R; Lewis, J H; Mishra, P; Li, R; Ionascu, D

    2015-01-01

    3D fluoroscopic images represent volumetric patient anatomy during treatment with high spatial and temporal resolution. 3D fluoroscopic images estimated using motion models built using 4DCT images, taken days or weeks prior to treatment, do not reliably represent patient anatomy during treatment. In this study we developed and performed initial evaluation of techniques to develop patient-specific motion models from 4D cone-beam CT (4DCBCT) images, taken immediately before treatment, and used these models to estimate 3D fluoroscopic images based on 2D kV projections captured during treatment. We evaluate the accuracy of 3D fluoroscopic images by comparison to ground truth digital and physical phantom images. The performance of 4DCBCT-based and 4DCT-based motion models are compared in simulated clinical situations representing tumor baseline shift or initial patient positioning errors. The results of this study demonstrate the ability for 4DCBCT imaging to generate motion models that can account for changes that cannot be accounted for with 4DCT-based motion models. When simulating tumor baseline shift and patient positioning errors of up to 5 mm, the average tumor localization error and the 95th percentile error in six datasets were 1.20 and 2.2 mm, respectively, for 4DCBCT-based motion models. 4DCT-based motion models applied to the same six datasets resulted in average tumor localization error and the 95th percentile error of 4.18 and 5.4 mm, respectively. Analysis of voxel-wise intensity differences was also conducted for all experiments. In summary, this study demonstrates the feasibility of 4DCBCT-based 3D fluoroscopic image generation in digital and physical phantoms and shows the potential advantage of 4DCBCT-based 3D fluoroscopic image estimation when there are changes in anatomy between the time of 4DCT imaging and the time of treatment delivery. (paper)

  12. Hamming Code Based Watermarking Scheme for 3D Model Verification

    Directory of Open Access Journals (Sweden)

    Jen-Tse Wang

    2014-01-01

    Full Text Available Due to the explosive growth of the Internet and maturing of 3D hardware techniques, protecting 3D objects becomes a more and more important issue. In this paper, a public hamming code based fragile watermarking technique is proposed for 3D objects verification. An adaptive watermark is generated from each cover model by using the hamming code technique. A simple least significant bit (LSB substitution technique is employed for watermark embedding. In the extraction stage, the hamming code based watermark can be verified by using the hamming code checking without embedding any verification information. Experimental results shows that 100% vertices of the cover model can be watermarked, extracted, and verified. It also shows that the proposed method can improve security and achieve low distortion of stego object.

  13. 3D Model Generation From the Engineering Drawing

    Science.gov (United States)

    Vaský, Jozef; Eliáš, Michal; Bezák, Pavol; Červeňanská, Zuzana; Izakovič, Ladislav

    2010-01-01

    The contribution deals with the transformation of engineering drawings in a paper form into a 3D computer representation. A 3D computer model can be further processed in CAD/CAM system, it can be modified, archived, and a technical drawing can be then generated from it as well. The transformation process from paper form to the data one is a complex and difficult one, particularly owing to the different types of drawings, forms of displayed objects and encountered errors and deviations from technical standards. The algorithm for 3D model generating from an orthogonal vector input representing a simplified technical drawing of the rotational part is described in this contribution. The algorithm was experimentally implemented as ObjectARX application in the AutoCAD system and the test sample as the representation of the rotational part was used for verificaton.

  14. 3D modeling of dual-gate FinFET.

    Science.gov (United States)

    Mil'shtein, Samson; Devarakonda, Lalitha; Zanchi, Brian; Palma, John

    2012-11-13

    The tendency to have better control of the flow of electrons in a channel of field-effect transistors (FETs) did lead to the design of two gates in junction field-effect transistors, field plates in a variety of metal semiconductor field-effect transistors and high electron mobility transistors, and finally a gate wrapping around three sides of a narrow fin-shaped channel in a FinFET. With the enhanced control, performance trends of all FETs are still challenged by carrier mobility dependence on the strengths of the electrical field along the channel. However, in cases when the ratio of FinFET volume to its surface dramatically decreases, one should carefully consider the surface boundary conditions of the device. Moreover, the inherent non-planar nature of a FinFET demands 3D modeling for accurate analysis of the device performance. Using the Silvaco modeling tool with quantization effects, we modeled a physical FinFET described in the work of Hisamoto et al. (IEEE Tran. Elec. Devices 47:12, 2000) in 3D. We compared it with a 2D model of the same device. We demonstrated that 3D modeling produces more accurate results. As 3D modeling results came close to experimental measurements, we made the next step of the study by designing a dual-gate FinFET biased at Vg1 >Vg2. It is shown that the dual-gate FinFET carries higher transconductance than the single-gate device.

  15. 3D shape decomposition and comparison for gallbladder modeling

    Science.gov (United States)

    Huang, Weimin; Zhou, Jiayin; Liu, Jiang; Zhang, Jing; Yang, Tao; Su, Yi; Law, Gim Han; Chui, Chee Kong; Chang, Stephen

    2011-03-01

    This paper presents an approach to gallbladder shape comparison by using 3D shape modeling and decomposition. The gallbladder models can be used for shape anomaly analysis and model comparison and selection in image guided robotic surgical training, especially for laparoscopic cholecystectomy simulation. The 3D shape of a gallbladder is first represented as a surface model, reconstructed from the contours segmented in CT data by a scheme of propagation based voxel learning and classification. To better extract the shape feature, the surface mesh is further down-sampled by a decimation filter and smoothed by a Taubin algorithm, followed by applying an advancing front algorithm to further enhance the regularity of the mesh. Multi-scale curvatures are then computed on the regularized mesh for the robust saliency landmark localization on the surface. The shape decomposition is proposed based on the saliency landmarks and the concavity, measured by the distance from the surface point to the convex hull. With a given tolerance the 3D shape can be decomposed and represented as 3D ellipsoids, which reveal the shape topology and anomaly of a gallbladder. The features based on the decomposed shape model are proposed for gallbladder shape comparison, which can be used for new model selection. We have collected 19 sets of abdominal CT scan data with gallbladders, some shown in normal shape and some in abnormal shapes. The experiments have shown that the decomposed shapes reveal important topology features.

  16. Geodiversity: Exploration of 3D geological model space

    Science.gov (United States)

    Lindsay, M. D.; Jessell, M. W.; Ailleres, L.; Perrouty, S.; de Kemp, E.; Betts, P. G.

    2013-05-01

    The process of building a 3D model necessitates the reconciliation of field observations, geophysical interpretation, geological data uncertainty and the prevailing tectonic evolution hypotheses and interpretations. Uncertainty is compounded when clustered data points collected at local scales are statistically upscaled to one or two points for use in regional models. Interpretation is required to interpolate between sparse field data points using ambiguous geophysical data in covered terranes. It becomes clear that multiple interpretations are possible during model construction. The various interpretations are considered as potential natural representatives, but pragmatism typically dictates that just a single interpretation is offered by the modelling process. Uncertainties are introduced into the 3D model during construction from a variety of sources and through data set optimisation that produces a single model. Practices such as these are likely to result in a model that does not adequately represent the target geology. A set of geometrical ‘geodiversity’ metrics are used to analyse a 3D model of the Gippsland Basin, southeastern Australia after perturbing geological input data via uncertainty simulation. The resulting sets of perturbed geological observations are used to calculate a suite of geological 3D models that display a range of geological architectures. The concept of biodiversity has been adapted for the geosciences to quantify geometric variability, or geodiversity, between models in order to understand the effect uncertainty has models geometry. Various geometrical relationships (depth, volume, contact surface area, curvature and geological complexity) are used to describe the range of possibilities exhibited throughout the model suite. End-member models geodiversity metrics are classified in a similar manner to taxonomic descriptions. Further analysis of the model suite is performed using principal component analysis (PCA) to determine

  17. Full 3D internal strain measurement for device packaging materials using synchrotron laminography and volumetric digital image correlation method

    International Nuclear Information System (INIS)

    Asada, Takashi; Kimura, Hidehiko; Yamaguchi, Satoshi; Kano, Taiki; Kajiwara, Kentaro

    2014-01-01

    In order to measure full 3D internal strain field of resin molding compound specimens, synchrotron computed tomography and laminography at SPring-8 were performed. Then the reconstructed images were applied to 3D digital image correlation method to compute internal strain field. The results showed that internal strains in resin molding compound could be visualized in this way. (author)

  18. Creating computer aided 3D model of spleen and kidney based based on Visible Human Project

    International Nuclear Information System (INIS)

    Aldur, Muhammad M.

    2005-01-01

    To investigate the efficacy of computer aided 3-dimensional (3D) reconstruction technique on visualization and modeling of gross anatomical structures with an affordable methodology applied on the spleen and kidney. From The Visible Human Project Dataset cryosection images, developed by the National Library of Medicine, the spleen and kidney sections were preferred to be used due to their highly distinct contours. The software used for the reconstruction were Surf Driver 3.5.3 for Mac and Cinema 4D X L version 7.1 for Mac OS X. This study was carried out in May 2004 at the Department of Anatomy, Hacettepe University, Ankara, Turkey. As a result of this study, it is determined that these 2 programs could be effectively used both for 3D modeling of the mentioned organs and volumetric analyses on these models. It is also seen that it is possible to hold the physical models of these gross anatomical digital ones with stereolithography technique by means of the data exchange file format provided by the program and present such images as anaglyph. Surf Driver 3.5.3 for Mac OS and Cinema 4 DXL version 7.1 for Mac OS X can be used effectively for reconstruction of gross anatomical structures from serial parallel sections with distinct contours such as spleen and kidney and the animation of models. These software constitute a highly effective way of getting volumetric calculations, spatial relations and morphometrical measurements of reconstructed structures. (author)

  19. Improving Semantic Updating Method on 3d City Models Using Hybrid Semantic-Geometric 3d Segmentation Technique

    Science.gov (United States)

    Sharkawi, K.-H.; Abdul-Rahman, A.

    2013-09-01

    Cities and urban areas entities such as building structures are becoming more complex as the modern human civilizations continue to evolve. The ability to plan and manage every territory especially the urban areas is very important to every government in the world. Planning and managing cities and urban areas based on printed maps and 2D data are getting insufficient and inefficient to cope with the complexity of the new developments in big cities. The emergence of 3D city models have boosted the efficiency in analysing and managing urban areas as the 3D data are proven to represent the real world object more accurately. It has since been adopted as the new trend in buildings and urban management and planning applications. Nowadays, many countries around the world have been generating virtual 3D representation of their major cities. The growing interest in improving the usability of 3D city models has resulted in the development of various tools for analysis based on the 3D city models. Today, 3D city models are generated for various purposes such as for tourism, location-based services, disaster management and urban planning. Meanwhile, modelling 3D objects are getting easier with the emergence of the user-friendly tools for 3D modelling available in the market. Generating 3D buildings with high accuracy also has become easier with the availability of airborne Lidar and terrestrial laser scanning equipments. The availability and accessibility to this technology makes it more sensible to analyse buildings in urban areas using 3D data as it accurately represent the real world objects. The Open Geospatial Consortium (OGC) has accepted CityGML specifications as one of the international standards for representing and exchanging spatial data, making it easier to visualize, store and manage 3D city models data efficiently. CityGML able to represents the semantics, geometry, topology and appearance of 3D city models in five well-defined Level-of-Details (LoD), namely LoD0

  20. Enhanced LOD Concepts for Virtual 3d City Models

    Science.gov (United States)

    Benner, J.; Geiger, A.; Gröger, G.; Häfele, K.-H.; Löwner, M.-O.

    2013-09-01

    Virtual 3D city models contain digital three dimensional representations of city objects like buildings, streets or technical infrastructure. Because size and complexity of these models continuously grow, a Level of Detail (LoD) concept effectively supporting the partitioning of a complete model into alternative models of different complexity and providing metadata, addressing informational content, complexity and quality of each alternative model is indispensable. After a short overview on various LoD concepts, this paper discusses the existing LoD concept of the CityGML standard for 3D city models and identifies a number of deficits. Based on this analysis, an alternative concept is developed and illustrated with several examples. It differentiates between first, a Geometric Level of Detail (GLoD) and a Semantic Level of Detail (SLoD), and second between the interior building and its exterior shell. Finally, a possible implementation of the new concept is demonstrated by means of an UML model.

  1. Improving 3D spatial queries search: newfangled technique of space filling curves in 3D city modeling

    DEFF Research Database (Denmark)

    Uznir, U.; Anton, François; Suhaibah, A.

    2013-01-01

    , retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban objects......The advantages of three dimensional (3D) city models can be seen in various applications including photogrammetry, urban and regional planning, computer games, etc.. They expand the visualization and analysis capabilities of Geographic Information Systems on cities, and they can be developed using...... modeling will improve data retrieval time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a subinterval of the [0, 1] interval to the corresponding portion of the d-dimensional Hilbert’s curve, preserves the Lebesgue measure and is Lipschitz...

  2. 3D Geological Model for "LUSI" - a Deep Geothermal System

    Science.gov (United States)

    Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.

    2016-04-01

    Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.

  3. Illusions of perception of 3-D house models.

    Science.gov (United States)

    Nielsen, Torsten Ingemann

    2008-01-01

    In five experiments some edgelines on different polyhedrons (house models in 3-D) were, from a certain vantage point, optically confluent, ie in optical prolongation of each other in 2-D on the retinal image and on photos. Other edgelines on the same polyhedrons were non-confluent, ie optically separate in 2-D. These conditions were found to lead to five different illusory shapes in 3-D. Five spatiofigural illusions were perceived. From these findings an edgeline principle is formulated that: "a straight edgeline in 2-D, whether confluent or separate, is perceived as a unitary and continuously straight edgeline in 3-D". To this is added a supplementary perceptual principle, an amodal completion principle. In the experiments reported here, the illusory perception of shapes in 3-D with confluent edgelines as well as the veridical perception of other shapes in 3-D with only separate or non-confluent edgelines could all be explained by the edgeline principle and the amodal completion principle. By applying the concepts of edgeline confluence and the edgeline principle, a new explanation of the Kopfermann (1930 Psychologische Forschung 13 293- 364) cube phenomena is proposed together with one example of how to test this explanation experimentally.

  4. Effect of CT scanning parameters on volumetric measurements of pulmonary nodules by 3D active contour segmentation: a phantom study

    International Nuclear Information System (INIS)

    Way, Ted W; Chan, H-P; Goodsitt, Mitchell M; Sahiner, Berkman; Hadjiiski, Lubomir M; Zhou Chuan; Chughtai, Aamer

    2008-01-01

    The purpose of this study is to investigate the effects of CT scanning and reconstruction parameters on automated segmentation and volumetric measurements of nodules in CT images. Phantom nodules of known sizes were used so that segmentation accuracy could be quantified in comparison to ground-truth volumes. Spherical nodules having 4.8, 9.5 and 16 mm diameters and 50 and 100 mg cc -1 calcium contents were embedded in lung-tissue-simulating foam which was inserted in the thoracic cavity of a chest section phantom. CT scans of the phantom were acquired with a 16-slice scanner at various tube currents, pitches, fields-of-view and slice thicknesses. Scans were also taken using identical techniques either within the same day or five months apart for study of reproducibility. The phantom nodules were segmented with a three-dimensional active contour (3DAC) model that we previously developed for use on patient nodules. The percentage volume errors relative to the ground-truth volumes were estimated under the various imaging conditions. There was no statistically significant difference in volume error for repeated CT scans or scans taken with techniques where only pitch, field of view, or tube current (mA) were changed. However, the slice thickness significantly (p < 0.05) affected the volume error. Therefore, to evaluate nodule growth, consistent imaging conditions and high resolution should be used for acquisition of the serial CT scans, especially for smaller nodules. Understanding the effects of scanning and reconstruction parameters on volume measurements by 3DAC allows better interpretation of data and assessment of growth. Tracking nodule growth with computerized segmentation methods would reduce inter- and intraobserver variabilities

  5. APROS 3-D core models for simulators and plant analyzers

    International Nuclear Information System (INIS)

    Puska, E.K.

    1999-01-01

    The 3-D core models of APROS simulation environment can be used in simulator and plant analyzer applications, as well as in safety analysis. The key feature of APROS models is that the same physical models can be used in all applications. For three-dimensional reactor cores the APROS models cover both quadratic BWR and PWR cores and the hexagonal lattice VVER-type cores. In APROS environment the user can select the number of flow channels in the core and either five- or six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the channel description have a decisive effect on the calculation time of the 3-D core model and thus just these selection make at present the major difference between a safety analysis model and a training simulator model. The paper presents examples of various types of 3-D LWR-type core descriptions for simulator and plant analyzer use and discusses the differences of calculation speed and physical results between a typical safety analysis model description and a real-time simulator model description in transients. (author)

  6. Improving 1D Stellar Models with 3D Atmospheres

    Science.gov (United States)

    Rørsted Mosumgaard, Jakob; Silva Aguirre, Víctor; Weiss, Achim; Christensen-Dalsgaard, Jørgen; Trampedach, Regner

    2017-10-01

    Stellar evolution codes play a major role in present-day astrophysics, yet they share common issues. In this work we seek to remedy some of those by the use of results from realistic and highly detailed 3D hydrodynamical simulations of stellar atmospheres. We have implemented a new temperature stratification extracted directly from the 3D simulations into the Garching Stellar Evolution Code to replace the simplified atmosphere normally used. Secondly, we have implemented the use of a variable mixing-length parameter, which changes as a function of the stellar surface gravity and temperature - also derived from the 3D simulations. Furthermore, to make our models consistent, we have calculated new opacity tables to match the atmospheric simulations. Here, we present the modified code and initial results on stellar evolution using it.

  7. A Sketching Interface for Freeform 3D Modeling

    Science.gov (United States)

    Igarashi, Takeo

    This chapter introduces Teddy, a sketch-based modeling system to quickly and easily design freeform models such as stuffed animals and other rotund objects. The user draws several 2D freeform strokes interactively on the screen and the system automatically constructs plausible 3D polygonal surfaces. Our system supports several modeling operations, including the operation to construct a 3D polygonal surface from a 2D silhouette drawn by the user: it inflates the region surrounded by the silhouette making a wide area fat, and a narrow area thin. Teddy, our prototype system, is implemented as a Java program, and the mesh construction is done in real-time on a standard PC. Our informal user study showed that a first-time user masters the operations within 10 minutes, and can construct interesting 3D models within minutes. We also report the result of a case study where a high school teacher taught various 3D concepts in geography using the system.

  8. 3D engineered models for highway construction : the Iowa experience.

    Science.gov (United States)

    2015-06-01

    3D engineered modeling is a relatively new and developing technology that can provide numerous bene ts to owners, engineers, : contractors, and the general public. This manual is for highway agencies that are considering or are in the process of s...

  9. 3-D Model of the Human Respiratory System

    Science.gov (United States)

    The U.S. EPA’s Office of Research and Development (ORD) has developed a 3-D computational fluid dynamics (CFD) model of the human respiratory system that allows for the simulation of particulate based contaminant deposition and clearance, while being adaptable for age, ethnicity,...

  10. Automatic 3D modeling of the urban landscape

    NARCIS (Netherlands)

    Esteban, I.; Dijk, J.; Groen, F.

    2010-01-01

    In this paper we present a fully automatic system for building 3D models of urban areas at the street level. We propose a novel approach for the accurate estimation of the scale consistent camera pose given two previous images. We employ a new method for global optimization and use a novel sampling

  11. Performance and Cognitive Assessment in 3-D Modeling

    Science.gov (United States)

    Fahrer, Nolan E.; Ernst, Jeremy V.; Branoff, Theodore J.; Clark, Aaron C.

    2011-01-01

    The purpose of this study was to investigate identifiable differences between performance and cognitive assessment scores in a 3-D modeling unit of an engineering drafting course curriculum. The study aimed to provide further investigation of the need of skill-based assessments in engineering/technical graphics courses to potentially increase…

  12. Level of detail in 3D city models

    NARCIS (Netherlands)

    Biljecki, F.

    2017-01-01

    The concept of level of detail (LOD) describes the content of 3D city models and it plays an essential role during their life cycle. On one hand it comes akin to the concepts of scale in cartography and LOD in computer graphics, on the other hand it is a standalone concept that requires attention.

  13. Tracking people and cars using 3D modeling and CCTV.

    Science.gov (United States)

    Edelman, Gerda; Bijhold, Jurrien

    2010-10-10

    The aim of this study was to find a method for the reconstruction of movements of people and cars using CCTV footage and a 3D model of the environment. A procedure is proposed, in which video streams are synchronized and displayed in a 3D model, by using virtual cameras. People and cars are represented by cylinders and boxes, which are moved in the 3D model, according to their movements as shown in the video streams. The procedure was developed and tested in an experimental setup with test persons who logged their GPS coordinates as a recording of the ground truth. Results showed that it is possible to implement this procedure and to reconstruct movements of people and cars from video recordings. The procedure was also applied to a forensic case. In this work we experienced that more situational awareness was created by the 3D model, which made it easier to track people on multiple video streams. Based on all experiences from the experimental set up and the case, recommendations are formulated for use in practice. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  14. Particle based 3D modeling of positive streamer inception

    NARCIS (Netherlands)

    H.J. Teunissen (Jannis)

    2012-01-01

    htmlabstractIn this report we present a particle based 3D model for the study of streamer inception near positive electrodes in air. The particle code is of the PIC-MCC type and an electrode is included using the charge simulation method. An algorithm for the adaptive creation of super-particles is

  15. Building a 3-D Appearance Model of the Human Face

    DEFF Research Database (Denmark)

    Sjöstrand, Karl; Larsen, Rasmus; Lading, Brian

    2003-01-01

    This paper describes a method for building an appearance model from three-dimensional data of human faces. The data consists of 3-D vertices, polygons and a texture map. The method uses a set of nine manually placed landmarks to automatically form a dense correspondence of thousands of points...

  16. Development of a 3D bone marrow adipose tissue model.

    Science.gov (United States)

    Fairfield, Heather; Falank, Carolyne; Farrell, Mariah; Vary, Calvin; Boucher, Joshua M; Driscoll, Heather; Liaw, Lucy; Rosen, Clifford J; Reagan, Michaela R

    2018-01-26

    Over the past twenty years, evidence has accumulated that biochemically and spatially defined networks of extracellular matrix, cellular components, and interactions dictate cellular differentiation, proliferation, and function in a variety of tissue and diseases. Modeling in vivo systems in vitro has been undeniably necessary, but when simplified 2D conditions rather than 3D in vitro models are used, the reliability and usefulness of the data derived from these models decreases. Thus, there is a pressing need to develop and validate reliable in vitro models to reproduce specific tissue-like structures and mimic functions and responses of cells in a more realistic manner for both drug screening/disease modeling and tissue regeneration applications. In adipose biology and cancer research, these models serve as physiologically relevant 3D platforms to bridge the divide between 2D cultures and in vivo models, bringing about more reliable and translationally useful data to accelerate benchtop to bedside research. Currently, no model has been developed for bone marrow adipose tissue (BMAT), a novel adipose depot that has previously been overlooked as "filler tissue" but has more recently been recognized as endocrine-signaling and systemically relevant. Herein we describe the development of the first 3D, BMAT model derived from either human or mouse bone marrow (BM) mesenchymal stromal cells (MSCs). We found that BMAT models can be stably cultured for at least 3 months in vitro, and that myeloma cells (5TGM1, OPM2 and MM1S cells) can be cultured on these for at least 2 weeks. Upon tumor cell co-culture, delipidation occurred in BMAT adipocytes, suggesting a bidirectional relationship between these two important cell types in the malignant BM niche. Overall, our studies suggest that 3D BMAT represents a "healthier," more realistic tissue model that may be useful for elucidating the effects of MAT on tumor cells, and tumor cells on MAT, to identify novel therapeutic

  17. Single-view volumetric PIV via high-resolution scanning, isotropic voxel restructuring and 3D least-squares matching (3D-LSM)

    International Nuclear Information System (INIS)

    Brücker, C; Hess, D; Kitzhofer, J

    2013-01-01

    Scanning PIV as introduced by Brücker (1995 Exp. Fluids 19 255–63, 1996a Appl. Sci. Res. 56 157–79) has been successfully applied in the last 20 years to different flow problems where the frame rate was sufficient to ensure a ‘frozen’ field condition. The limited number of parallel planes however leads typically to an under-sampling in the scan direction in depth; therefore, the spatial resolution in depth is typically considerably lower than the spatial resolution in the plane of the laser sheet (depth resolution = scan shift Δz ≫ pixel unit in object space). In addition, a partial volume averaging effect due to the thickness of the light sheet must be taken into account. Herein, the method is further developed using a high-resolution scanning in combination with a Gaussian regression technique to achieve an isotropic representation of the tracer particles in a voxel-based volume reconstruction with cuboidal voxels. This eliminates the partial volume averaging effect due to light sheet thickness and leads to comparable spatial resolution of the particle field reconstructions in x-, y- and z-axes. In addition, advantage of voxel-based processing with estimations of translation, rotation and shear/strain is taken by using a 3D least-squares matching method, well suited for reconstruction of grey-level pattern fields. The method is discussed in this paper and used to investigate the ring vortex instability at Re = 2500 within a measurement volume of roughly 75 × 75 × 50 mm 3 with a spatial resolution of 100 µm/voxel (750 × 750 × 500 voxel elements). The volume has been scanned with a number of 100 light sheets and scan rates of 10 kHz. The results show the growth of the Tsai–Widnall azimuthal instabilities accompanied with a precession of the axis of the vortex ring. Prior to breakdown, secondary instabilities evolve along the core with streamwise oriented striations. The front stagnation point's streamwise distance to the core starts to decrease

  18. An Agent Based Collaborative Simplification of 3D Mesh Model

    Science.gov (United States)

    Wang, Li-Rong; Yu, Bo; Hagiwara, Ichiro

    Large-volume mesh model faces the challenge in fast rendering and transmission by Internet. The current mesh models obtained by using three-dimensional (3D) scanning technology are usually very large in data volume. This paper develops a mobile agent based collaborative environment on the development platform of mobile-C. Communication among distributed agents includes grasping image of visualized mesh model, annotation to grasped image and instant message. Remote and collaborative simplification can be efficiently conducted by Internet.

  19. Automatic gallbladder segmentation using combined 2D and 3D shape features to perform volumetric analysis in native and secretin-enhanced MRCP sequences.

    Science.gov (United States)

    Gloger, Oliver; Bülow, Robin; Tönnies, Klaus; Völzke, Henry

    2017-11-24

    We aimed to develop the first fully automated 3D gallbladder segmentation approach to perform volumetric analysis in volume data of magnetic resonance (MR) cholangiopancreatography (MRCP) sequences. Volumetric gallbladder analysis is performed for non-contrast-enhanced and secretin-enhanced MRCP sequences. Native and secretin-enhanced MRCP volume data were produced with a 1.5-T MR system. Images of coronal maximum intensity projections (MIP) are used to automatically compute 2D characteristic shape features of the gallbladder in the MIP images. A gallbladder shape space is generated to derive 3D gallbladder shape features, which are then combined with 2D gallbladder shape features in a support vector machine approach to detect gallbladder regions in MRCP volume data. A region-based level set approach is used for fine segmentation. Volumetric analysis is performed for both sequences to calculate gallbladder volume differences between both sequences. The approach presented achieves segmentation results with mean Dice coefficients of 0.917 in non-contrast-enhanced sequences and 0.904 in secretin-enhanced sequences. This is the first approach developed to detect and segment gallbladders in MR-based volume data automatically in both sequences. It can be used to perform gallbladder volume determination in epidemiological studies and to detect abnormal gallbladder volumes or shapes. The positive volume differences between both sequences may indicate the quantity of the pancreatobiliary reflux.

  20. 3D for Geosciences: Interactive Tangibles and Virtual Models

    Science.gov (United States)

    Pippin, J. E.; Matheney, M.; Kitsch, N.; Rosado, G.; Thompson, Z.; Pierce, S. A.

    2016-12-01

    Point cloud processing provides a method of studying and modelling geologic features relevant to geoscience systems and processes. Here, software including Skanect, MeshLab, Blender, PDAL, and PCL are used in conjunction with 3D scanning hardware, including a Structure scanner and a Kinect camera, to create and analyze point cloud images of small scale topography, karst features, tunnels, and structures at high resolution. This project successfully scanned internal karst features ranging from small stalactites to large rooms, as well as an external waterfall feature. For comparison purposes, multiple scans of the same object were merged into single object files both automatically, using commercial software, and manually using open source libraries and code. Files with format .ply were manually converted into numeric data sets to be analyzed for similar regions between files in order to match them together. We can assume a numeric process would be more powerful and efficient than the manual method, however it could lack other useful features that GUI's may have. The digital models have applications in mining as efficient means of replacing topography functions such as measuring distances and areas. Additionally, it is possible to make simulation models such as drilling templates and calculations related to 3D spaces. Advantages of using methods described here for these procedures include the relatively quick time to obtain data and the easy transport of the equipment. With regard to openpit mining, obtaining 3D images of large surfaces and with precision would be a high value tool by georeferencing scan data to interactive maps. The digital 3D images obtained from scans may be saved as printable files to create physical 3D-printable models to create tangible objects based on scientific information, as well as digital "worlds" able to be navigated virtually. The data, models, and algorithms explored here can be used to convey complex scientific ideas to a range of

  1. Citygml Modelling for Singapore 3d National Mapping

    Science.gov (United States)

    Soon, K. H.; Khoo, V. H. S.

    2017-10-01

    Since 2014, the Land Survey Division of Singapore Land Authority (SLA) has spearheaded a Whole-of-Government (WOG) 3D mapping project to create and maintain a 3D national map for Singapore. The implementation of the project is divided into two phases. The first phase of the project, which was based on airborne data collection, has produced 3D models for Relief, Building, Vegetation and Waterbody. This part of the work was completed in 2016. To complement the first phase, the second phase used mobile imaging and scanning technique. This phase is targeted to be completed by the mid of 2017 and is creating 3D models for Transportation, CityFurniture, Bridge and Tunnel. The project has extensively adopted the Open Geospatial Consortium (OGC)'s CityGML standard. Out of 10 currently supported thematic modules in CityGML 2.0, the project has implemented 8. The paper describes the adoption of CityGML in the project, and discusses challenges, data validations and management of the models.

  2. Combining Synchronous and Asynchronous Collaboration within 3D City Models

    Science.gov (United States)

    Klimke, Jan; Döllner, Jürgen

    This paper presents an approach for combining spatially distributed synchronous and asynchronous collaboration within 3D city models. Software applications use these models as additional communication medium to facilitate communication of georeferenced and geospatial information. Collaboration tools should support both the communication with other collaborators and their awareness of the current collaboration context. To support collaborative knowledge construction and gathering, we have designed a collaboration system to facilitate (a) creation of annotations that have 3D references to the virtual 3D city model and (b) collection information about the context in which these annotations are created. Our approach supports synchronous collaboration in connection with the creation of non volatile, precisely georeferenced units of information allow for a comprehensible form of cooperation in spatially distributed settings. Storage and retrieval of this information is provided through a Web Feature Service, which eases integration of collaboration data into existing applications. We further introduce a visualization technique that integrates annotations as complex structured data into the 3D visualization. This avoids media breaks and disruptions in working processes and creates a spatial coherence between annotation and annotated feature or geometry.

  3. 3D Urban Virtual Models generation methodology for smart cities

    Directory of Open Access Journals (Sweden)

    M. Álvarez

    2018-04-01

    Full Text Available Currently the use of Urban 3D Models goes beyond the mere support of three-dimensional image for the visualization of our urban surroundings. The three-dimensional Urban Models are in themselves fundamental tools to manage the different phenomena that occur in smart cities. It is therefore necessary to generate realistic models, in which BIM building design information can be integrated with GIS and other space technologies. The generation of 3D Urban Models benefit from the amount of data from sensors with the latest technologies such as airborne sensors and of the existence of international standards such as CityGML. This paper presents a methodology for the development of a three - dimensional Urban Model, based on LiDAR data and the CityGML standard, applied to the city of Lorca.

  4. Enhancing breast projection in autologous reconstruction using the St Andrew's coning technique and 3D volumetric analysis.

    Science.gov (United States)

    Chae, Michael P; Rozen, Warren Matthew; Patel, Nakul Gamanlal; Hunter-Smith, David J; Ramakrishnan, Venkat

    2017-12-01

    An increasing number of women undergo mastectomy for breast cancer and post-mastectomy autologous breast reconstruction has been shown to significantly improve the psychosexual wellbeing of the patients. A goal of treatment is to achieve symmetry and projection to match the native breast, and/or the contralateral breast in the case of a unilateral reconstruction. Autologous reconstruction, particularly with the deep inferior epigastric artery perforator (DIEP) flap, is particularly advantageous as it can be manipulated to mimic the shape and turgor of the native breast. However, very few techniques of shaping the breast conus when insetting the DIEP flap to enhance aesthetic outcome have been reported to date. With the aide of three-dimension (3D) photography and 3D-printed mirrored image of the contralateral breast as a guide intraoperatively, we describe our St Andrew's coning technique to create a personalized flap projection. We report a prospective case series of 3 delayed unilateral breast reconstructions where symmetrization procedure to the contralateral breast was not indicated. Using a commercial 3D scanner (VECTRA XR, Canfield Scientific), the breast region was imaged. The mirrored image was 3D-printed in-house using a desktop 3D printer. In all cases, projection of the breast mound was able to be safely achieved, with a demonstrated central volume (or 'cone') able to be highlighted on imaging and a 3D printed breast. A 3D print of the contralateral breast was able to be used intraoperatively to guide the operative approach. The St Andrew's coning technique is a useful aesthetic maneuver for achieving breast projection during DIEP flap breast reconstruction, with 3D imaging techniques able to assist in perioperative assessment of breast volume.

  5. Metadata for 3D Models. How to search in 3D Model repositories?

    OpenAIRE

    Boeykens, Stefan; Bogani, Elena

    2008-01-01

    In architectural education and practice, students, teachers and architects increasingly rely on online repositories with architectural information. This includes product model data, exemplary architectural projects and technical documentation, in a wide variety of formats. Unfortunately, the major part of this architectural content exists in individual repositories and they are not accessible to geographically distributed professionals and students who require them. Some of them are freely ac...

  6. The Finite Element Numerical Modelling of 3D Magnetotelluric

    Directory of Open Access Journals (Sweden)

    Ligang Cao

    2014-01-01

    Full Text Available The ideal numerical simulation of 3D magnetotelluric was restricted by the methodology complexity and the time-consuming calculation. Boundary values, the variation of weighted residual equation, and the hexahedral mesh generation method of finite element are three major causes. A finite element method for 3D magnetotelluric numerical modeling is presented in this paper as a solution for the problem mentioned above. In this algorithm, a hexahedral element coefficient matrix for magnetoelluric finite method is developed, which solves large-scale equations using preconditioned conjugate gradient of the first-type boundary conditions. This algorithm is verified using the homogeneous model, and the positive landform model, as well as the low resistance anomaly model.

  7. Towards an Integrated Visualization Of Semantically Enriched 3D City Models: An Ontology of 3D Visualization Techniques

    OpenAIRE

    Métral, Claudine; Ghoula, Nizar; Falquet, Gilles

    2012-01-01

    3D city models - which represent in 3 dimensions the geometric elements of a city - are increasingly used for an intended wide range of applications. Such uses are made possible by using semantically enriched 3D city models and by presenting such enriched 3D city models in a way that allows decision-making processes to be carried out from the best choices among sets of objectives, and across issues and scales. In order to help in such a decision-making process we have defined a framework to f...

  8. Geometric and Colour Data Fusion for Outdoor 3D Models

    Directory of Open Access Journals (Sweden)

    Ricardo Chacón

    2012-05-01

    Full Text Available This paper deals with the generation of accurate, dense and coloured 3D models of outdoor scenarios from scanners. This is a challenging research field in which several problems still remain unsolved. In particular, the process of 3D model creation in outdoor scenes may be inefficient if the scene is digitalized under unsuitable technical (specific scanner on-board camera and environmental (rain, dampness, changing illumination conditions. We address our research towards the integration of images and range data to produce photorealistic models. Our proposal is based on decoupling the colour integration and geometry reconstruction stages, making them independent and controlled processes. This issue is approached from two different viewpoints. On the one hand, given a complete model (geometry plus texture, we propose a method to modify the original texture provided by the scanner on-board camera with the colour information extracted from external images taken at given moments and under specific environmental conditions. On the other hand, we propose an algorithm to directly assign external images onto the complete geometric model, thus avoiding tedious on-line calibration processes. We present the work conducted on two large Roman archaeological sites dating from the first century A.D., namely, the Theatre of Segobriga and the Fori Porticus of Emerita Augusta, both in Spain. The results obtained demonstrate that our approach could be useful in the digitalization and 3D modelling fields.

  9. Towards a 3d Spatial Urban Energy Modelling Approach

    Science.gov (United States)

    Bahu, J.-M.; Koch, A.; Kremers, E.; Murshed, S. M.

    2013-09-01

    Today's needs to reduce the environmental impact of energy use impose dramatic changes for energy infrastructure and existing demand patterns (e.g. buildings) corresponding to their specific context. In addition, future energy systems are expected to integrate a considerable share of fluctuating power sources and equally a high share of distributed generation of electricity. Energy system models capable of describing such future systems and allowing the simulation of the impact of these developments thus require a spatial representation in order to reflect the local context and the boundary conditions. This paper describes two recent research approaches developed at EIFER in the fields of (a) geo-localised simulation of heat energy demand in cities based on 3D morphological data and (b) spatially explicit Agent-Based Models (ABM) for the simulation of smart grids. 3D city models were used to assess solar potential and heat energy demand of residential buildings which enable cities to target the building refurbishment potentials. Distributed energy systems require innovative modelling techniques where individual components are represented and can interact. With this approach, several smart grid demonstrators were simulated, where heterogeneous models are spatially represented. Coupling 3D geodata with energy system ABMs holds different advantages for both approaches. On one hand, energy system models can be enhanced with high resolution data from 3D city models and their semantic relations. Furthermore, they allow for spatial analysis and visualisation of the results, with emphasis on spatially and structurally correlations among the different layers (e.g. infrastructure, buildings, administrative zones) to provide an integrated approach. On the other hand, 3D models can benefit from more detailed system description of energy infrastructure, representing dynamic phenomena and high resolution models for energy use at component level. The proposed modelling strategies

  10. Method for modeling post-mortem biometric 3D fingerprints

    Science.gov (United States)

    Rajeev, Srijith; Shreyas, Kamath K. M.; Agaian, Sos S.

    2016-05-01

    Despite the advancements of fingerprint recognition in 2-D and 3-D domain, authenticating deformed/post-mortem fingerprints continue to be an important challenge. Prior cleansing and reconditioning of the deceased finger is required before acquisition of the fingerprint. The victim's finger needs to be precisely and carefully operated by a medium to record the fingerprint impression. This process may damage the structure of the finger, which subsequently leads to higher false rejection rates. This paper proposes a non-invasive method to perform 3-D deformed/post-mortem finger modeling, which produces a 2-D rolled equivalent fingerprint for automated verification. The presented novel modeling method involves masking, filtering, and unrolling. Computer simulations were conducted on finger models with different depth variations obtained from Flashscan3D LLC. Results illustrate that the modeling scheme provides a viable 2-D fingerprint of deformed models for automated verification. The quality and adaptability of the obtained unrolled 2-D fingerprints were analyzed using NIST fingerprint software. Eventually, the presented method could be extended to other biometric traits such as palm, foot, tongue etc. for security and administrative applications.

  11. GPU-accelerated 3-D model-based tracking

    International Nuclear Information System (INIS)

    Brown, J Anthony; Capson, David W

    2010-01-01

    Model-based approaches to tracking the pose of a 3-D object in video are effective but computationally demanding. While statistical estimation techniques, such as the particle filter, are often employed to minimize the search space, real-time performance remains unachievable on current generation CPUs. Recent advances in graphics processing units (GPUs) have brought massively parallel computational power to the desktop environment and powerful developer tools, such as NVIDIA Compute Unified Device Architecture (CUDA), have provided programmers with a mechanism to exploit it. NVIDIA GPUs' single-instruction multiple-thread (SIMT) programming model is well-suited to many computer vision tasks, particularly model-based tracking, which requires several hundred 3-D model poses to be dynamically configured, rendered, and evaluated against each frame in the video sequence. Using 6 degree-of-freedom (DOF) rigid hand tracking as an example application, this work harnesses consumer-grade GPUs to achieve real-time, 3-D model-based, markerless object tracking in monocular video.

  12. User interface using a 3D model for video surveillance

    Science.gov (United States)

    Hata, Toshihiko; Boh, Satoru; Tsukada, Akihiro; Ozaki, Minoru

    1998-02-01

    These days fewer people, who must carry out their tasks quickly and precisely, are required in industrial surveillance and monitoring applications such as plant control or building security. Utilizing multimedia technology is a good approach to meet this need, and we previously developed Media Controller, which is designed for the applications and provides realtime recording and retrieval of digital video data in a distributed environment. In this paper, we propose a user interface for such a distributed video surveillance system in which 3D models of buildings and facilities are connected to the surveillance video. A novel method of synchronizing camera field data with each frame of a video stream is considered. This method records and reads the camera field data similarity to the video data and transmits it synchronously with the video stream. This enables the user interface to have such useful functions as comprehending the camera field immediately and providing clues when visibility is poor, for not only live video but also playback video. We have also implemented and evaluated the display function which makes surveillance video and 3D model work together using Media Controller with Java and Virtual Reality Modeling Language employed for multi-purpose and intranet use of 3D model.

  13. Interchain coupling and 3D modeling of trans-polyacetylene

    International Nuclear Information System (INIS)

    Bronold, F.; Saxena, A.; Bishop, A.R.

    1992-01-01

    In spite of the success of the SSH model for trans-polyacetylene in interpreting many experimental results (e.g. optical and magnetic properties) there remain some aspects of the real material which are outside the scope of the simple 1D model. Especially ordering phenomena of doped and undoped trans-polyacetylene as well as transport properties (e.g. electronic and thermal conductivity) are beyond a 1D description. There are many attempts to construct a transport theory for this novel class of materials using solitons or polaxons as the basic ingredients. But so far it is not yet clear whether these typical 1D excitations still exist in crystalline transpolyacetylene. Therefore, to clarify the role which intrinsic self-localized nonlinear excitations characteristic of 1D models play in the bulk (3D) material, we study the stability of a polaronic excitation against interchain coupling. As a preliminary step we consider first two coupled t-(CH) x -chains where the π-electrons are allowed to hop from one chain to the other. Then we introduce a 3D generalization of the SSH model and study a polaron in a 3D crystalline environment

  14. CityGML - Interoperable semantic 3D city models

    Science.gov (United States)

    Gröger, Gerhard; Plümer, Lutz

    2012-07-01

    CityGML is the international standard of the Open Geospatial Consortium (OGC) for the representation and exchange of 3D city models. It defines the three-dimensional geometry, topology, semantics and appearance of the most relevant topographic objects in urban or regional contexts. These definitions are provided in different, well-defined Levels-of-Detail (multiresolution model). The focus of CityGML is on the semantical aspects of 3D city models, its structures, taxonomies and aggregations, allowing users to employ virtual 3D city models for advanced analysis and visualization tasks in a variety of application domains such as urban planning, indoor/outdoor pedestrian navigation, environmental simulations, cultural heritage, or facility management. This is in contrast to purely geometrical/graphical models such as KML, VRML, or X3D, which do not provide sufficient semantics. CityGML is based on the Geography Markup Language (GML), which provides a standardized geometry model. Due to this model and its well-defined semantics and structures, CityGML facilitates interoperable data exchange in the context of geo web services and spatial data infrastructures. Since its standardization in 2008, CityGML has become used on a worldwide scale: tools from notable companies in the geospatial field provide CityGML interfaces. Many applications and projects use this standard. CityGML is also having a strong impact on science: numerous approaches use CityGML, particularly its semantics, for disaster management, emergency responses, or energy-related applications as well as for visualizations, or they contribute to CityGML, improving its consistency and validity, or use CityGML, particularly its different Levels-of-Detail, as a source or target for generalizations. This paper gives an overview of CityGML, its underlying concepts, its Levels-of-Detail, how to extend it, its applications, its likely future development, and the role it plays in scientific research. Furthermore, its

  15. 3D Modeling of Electric Fields in the LUX Detector

    OpenAIRE

    LUX Collaboration; Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.

    2017-01-01

    This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data during two periods of searching for weakly interacting massive particle (WIMP) searches. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the detector in time, depth and azimuth, g...

  16. 3D modeling of electric fields in the LUX detector

    OpenAIRE

    Akerib, DS; Alsum, S; Araújo, HM; Bai, X; Bailey, AJ; Balajthy, J; Beltrame, P; Bernard, EP; Bernstein, A; Biesiadzinski, TP; Boulton, EM; Brás, P; Byram, D; Cahn, SB; Carmona-Benitez, MC

    2017-01-01

    © 2017 IOP Publishing Ltd and Sissa Medialab. This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data to search for weakly interacting massive particles (WIMPs) during two periods. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the de...

  17. PIXIE3D: An efficient, fully implicit, parallel, 3D extended MHD code for fusion plasma modeling

    International Nuclear Information System (INIS)

    Chacon, L.

    2007-01-01

    PIXIE3D is a modern, parallel, state-of-the-art extended MHD code that employs fully implicit methods for efficiency and accuracy. It features a general geometry formulation, and is therefore suitable for the study of many magnetic fusion configurations of interest. PIXIE3D advances the state of the art in extended MHD modeling in two fundamental ways. Firstly, it employs a novel conservative finite volume scheme which is remarkably robust and stable, and demands very small physical and/or numerical dissipation. This is a fundamental requirement when one wants to study fusion plasmas with realistic conductivities. Secondly, PIXIE3D features fully-implicit time stepping, employing Newton-Krylov methods for inverting the associated nonlinear systems. These methods have been shown to be scalable and efficient when preconditioned properly. Novel preconditioned ideas (so-called physics based), which were prototypes in the context of reduced MHD, have been adapted for 3D primitive-variable resistive MHD in PIXIE3D, and are currently being extended to Hall MHD. PIXIE3D is fully parallel, employing PETSc for parallelism. PIXIE3D has been thoroughly benchmarked against linear theory and against other available extended MHD codes on nonlinear test problems (such as the GEM reconnection challenge). We are currently in the process of extending such comparisons to fusion-relevant problems in realistic geometries. In this talk, we will describe both the spatial discretization approach and the preconditioning strategy employed for extended MHD in PIXIE3D. We will report on recent benchmarking studies between PIXIE3D and other 3D extended MHD codes, and will demonstrate its usefulness in a variety of fusion-relevant configurations such as Tokamaks and Reversed Field Pinches. (Author)

  18. Analytic Intermodel Consistent Modeling of Volumetric Human Lung Dynamics.

    Science.gov (United States)

    Ilegbusi, Olusegun; Seyfi, Behnaz; Neylon, John; Santhanam, Anand P

    2015-10-01

    Human lung undergoes breathing-induced deformation in the form of inhalation and exhalation. Modeling the dynamics is numerically complicated by the lack of information on lung elastic behavior and fluid-structure interactions between air and the tissue. A mathematical method is developed to integrate deformation results from a deformable image registration (DIR) and physics-based modeling approaches in order to represent consistent volumetric lung dynamics. The computational fluid dynamics (CFD) simulation assumes the lung is a poro-elastic medium with spatially distributed elastic property. Simulation is performed on a 3D lung geometry reconstructed from four-dimensional computed tomography (4DCT) dataset of a human subject. The heterogeneous Young's modulus (YM) is estimated from a linear elastic deformation model with the same lung geometry and 4D lung DIR. The deformation obtained from the CFD is then coupled with the displacement obtained from the 4D lung DIR by means of the Tikhonov regularization (TR) algorithm. The numerical results include 4DCT registration, CFD, and optimal displacement data which collectively provide consistent estimate of the volumetric lung dynamics. The fusion method is validated by comparing the optimal displacement with the results obtained from the 4DCT registration.

  19. Modelling of 3D fractured geological systems - technique and application

    Science.gov (United States)

    Cacace, M.; Scheck-Wenderoth, M.; Cherubini, Y.; Kaiser, B. O.; Bloecher, G.

    2011-12-01

    All rocks in the earth's crust are fractured to some extent. Faults and fractures are important in different scientific and industry fields comprising engineering, geotechnical and hydrogeological applications. Many petroleum, gas and geothermal and water supply reservoirs form in faulted and fractured geological systems. Additionally, faults and fractures may control the transport of chemical contaminants into and through the subsurface. Depending on their origin and orientation with respect to the recent and palaeo stress field as well as on the overall kinematics of chemical processes occurring within them, faults and fractures can act either as hydraulic conductors providing preferential pathways for fluid to flow or as barriers preventing flow across them. The main challenge in modelling processes occurring in fractured rocks is related to the way of describing the heterogeneities of such geological systems. Flow paths are controlled by the geometry of faults and their open void space. To correctly simulate these processes an adequate 3D mesh is a basic requirement. Unfortunately, the representation of realistic 3D geological environments is limited by the complexity of embedded fracture networks often resulting in oversimplified models of the natural system. A technical description of an improved method to integrate generic dipping structures (representing faults and fractures) into a 3D porous medium is out forward. The automated mesh generation algorithm is composed of various existing routines from computational geometry (e.g. 2D-3D projection, interpolation, intersection, convex hull calculation) and meshing (e.g. triangulation in 2D and tetrahedralization in 3D). All routines have been combined in an automated software framework and the robustness of the approach has been tested and verified. These techniques and methods can be applied for fractured porous media including fault systems and therefore found wide applications in different geo-energy related

  20. Multiscale modeling of large deformations in 3-D polycrystals

    International Nuclear Information System (INIS)

    Lu Jing; Maniatty, Antoinette; Misiolek, Wojciech; Bandar, Alexander

    2004-01-01

    An approach for modeling 3-D polycrystals, linking to the macroscale, is presented. A Potts type model is used to generate a statistically representative grain structures with periodicity to allow scale-linking. The grain structures are compared to experimentally observed grain structures to validate that they are representative. A macroscale model of a compression test is compared against an experimental compression test for an Al-Mg-Si alloy to determine various deformation paths at different locations in the samples. These deformation paths are then applied to the experimental grain structure using a scale-bridging technique. Preliminary results from this work will be presented and discussed

  1. 3D modeling and visualization software for complex geometries

    International Nuclear Information System (INIS)

    Guse, Guenter; Klotzbuecher, Michael; Mohr, Friedrich

    2011-01-01

    The reactor safety depends on reliable nondestructive testing of reactor components. For 100% detection probability of flaws and the determination of their size using ultrasonic methods the ultrasonic waves have to hit the flaws within a specific incidence and squint angle. For complex test geometries like testing of nozzle welds from the outside of the component these angular ranges can only be determined using elaborate mathematical calculations. The authors developed a 3D modeling and visualization software tool that allows to integrate and present ultrasonic measuring data into the 3D geometry. The software package was verified using 1:1 test samples (example: testing of the nozzle edge of the feedwater nozzle of a steam generator from the outside; testing of the reactor pressure vessel nozzle edge from the inside).

  2. New boundary conditions for 3D RF modelling

    International Nuclear Information System (INIS)

    Ko, K.; Nelson, E.; Fitze, H.

    1990-01-01

    The new capabilities are being implemented into the 3D particle-in-cell code, ARGUS, which will reduce substantially both problem size and computing time when modeling realistic geometries with high accuracies. In the time domain, a cylindrical radiative boundary condition will enable traveling wave propagation to be simulated in accelerator structures. An application of interest is the input coupler in the SLAC x-band high-gradient structure where local field gradients and impedance matching are important issues. In the frequency domain, a quasi-periodic boundary condition will facilitate the cold-test analysis of 3D periodic structures where many calculations are required to generate an ω β diagram. Present applications include the crossed-field amplifier cavity and the cluster klystron cavity

  3. 3D finite element modelling of sheet metal blanking process

    Science.gov (United States)

    Bohdal, Lukasz; Kukielka, Leon; Chodor, Jaroslaw; Kulakowska, Agnieszka; Patyk, Radoslaw; Kaldunski, Pawel

    2018-05-01

    The shearing process such as the blanking of sheet metals has been used often to prepare workpieces for subsequent forming operations. The use of FEM simulation is increasing for investigation and optimizing the blanking process. In the current literature a blanking FEM simulations for the limited capability and large computational cost of the three dimensional (3D) analysis has been largely limited to two dimensional (2D) plane axis-symmetry problems. However, a significant progress in modelling which takes into account the influence of real material (e.g. microstructure of the material), physical and technological conditions can be obtained by using 3D numerical analysis methods in this area. The objective of this paper is to present 3D finite element analysis of the ductile fracture, strain distribution and stress in blanking process with the assumption geometrical and physical nonlinearities. The physical, mathematical and computer model of the process are elaborated. Dynamic effects, mechanical coupling, constitutive damage law and contact friction are taken into account. The application in ANSYS/LS-DYNA program is elaborated. The effect of the main process parameter a blanking clearance on the deformation of 1018 steel and quality of the blank's sheared edge is analyzed. The results of computer simulations can be used to forecasting quality of the final parts optimization.

  4. Alternative face models for 3D face registration

    Science.gov (United States)

    Salah, Albert Ali; Alyüz, Neşe; Akarun, Lale

    2007-01-01

    3D has become an important modality for face biometrics. The accuracy of a 3D face recognition system depends on a correct registration that aligns the facial surfaces and makes a comparison possible. The best results obtained so far use a one-to-all registration approach, which means each new facial surface is registered to all faces in the gallery, at a great computational cost. We explore the approach of registering the new facial surface to an average face model (AFM), which automatically establishes correspondence to the pre-registered gallery faces. Going one step further, we propose that using a couple of well-selected AFMs can trade-off computation time with accuracy. Drawing on cognitive justifications, we propose to employ category-specific alternative average face models for registration, which is shown to increase the accuracy of the subsequent recognition. We inspect thin-plate spline (TPS) and iterative closest point (ICP) based registration schemes under realistic assumptions on manual or automatic landmark detection prior to registration. We evaluate several approaches for the coarse initialization of ICP. We propose a new algorithm for constructing an AFM, and show that it works better than a recent approach. Finally, we perform simulations with multiple AFMs that correspond to different clusters in the face shape space and compare these with gender and morphology based groupings. We report our results on the FRGC 3D face database.

  5. Digital 3D Borobudur – Integration of 3D surveying and modeling techniques

    Directory of Open Access Journals (Sweden)

    D. Suwardhi

    2015-08-01

    Full Text Available The Borobudur temple (Indonesia is one of the greatest Buddhist monuments in the world, now listed as an UNESCO World Heritage Site. The present state of the temple is the result of restorations after being exposed to natural disasters several times. Today there is still a growing rate of deterioration of the building stones whose causes need further researches. Monitoring programs, supported at institutional level, have been effectively executed to observe the problem. The paper presents the latest efforts to digitally document the Borobudur Temple and its surrounding area in 3D with photogrammetric techniques. UAV and terrestrial images were acquired to completely digitize the temple, produce DEM, orthoimages and maps at 1:100 and 1:1000 scale. The results of the project are now employed by the local government organizations to manage the heritage area and plan new policies for the conservation and preservation of the UNESCO site. In order to help data management and policy makers, a web-based information system of the heritage area was also built to visualize and easily access all the data and achieved 3D results.

  6. Modeling of 3D Aluminum Polycrystals during Large Deformations

    International Nuclear Information System (INIS)

    Maniatty, Antoinette M.; Littlewood, David J.; Lu Jing; Pyle, Devin

    2007-01-01

    An approach for generating, meshing, and modeling 3D polycrystals, with a focus on aluminum alloys, subjected to large deformation processes is presented. A Potts type model is used to generate statistically representative grain structures with periodicity to allow scale-linking. The grain structures are compared to experimentally observed grain structures to validate that they are representative. A procedure for generating a geometric model from the voxel data is developed allowing for adaptive meshing of the generated grain structure. Material behavior is governed by an appropriate crystal, elasto-viscoplastic constitutive model. The elastic-viscoplastic model is implemented in a three-dimensional, finite deformation, mixed, finite element program. In order to handle the large-scale problems of interest, a parallel implementation is utilized. A multiscale procedure is used to link larger scale models of deformation processes to the polycrystal model, where periodic boundary conditions on the fluctuation field are enforced. Finite-element models, of 3D polycrystal grain structures will be presented along with observations made from these simulations

  7. 3D computer model of the VINCY cyclotron magnet

    International Nuclear Information System (INIS)

    Vorozhtsov, S.B.

    1996-01-01

    The VINCY Cyclotron magnetic field simulation was performed with the help of the three-dimensional (3D) software. The following aspects of the system were considered: 3D calculation of the magnetic field in the median plane, 3D calculation of the magnetic field in the extraction region, 3D calculation of the stray magnetic field. 8 refs., 17 figs., 3 tabs

  8. 3D Massive MIMO Systems: Channel Modeling and Performance Analysis

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2015-03-01

    Multiple-input-multiple-output (MIMO) systems of current LTE releases are capable of adaptation in the azimuth only. More recently, the trend is to enhance the system performance by exploiting the channel\\'s degrees of freedom in the elevation through the dynamic adaptation of the vertical antenna beam pattern. This necessitates the derivation and characterization of three-dimensional (3D) channels. Over the years, channel models have evolved to address the challenges of wireless communication technologies. In parallel to theoretical studies on channel modeling, many standardized channel models like COST-based models, 3GPP SCM, WINNER, ITU have emerged that act as references for industries and telecommunication companies to assess system-level and link-level performances of advanced signal processing techniques over real-like channels. Given the existing channels are only two dimensional (2D) in nature; a large effort in channel modeling is needed to study the impact of the channel component in the elevation direction. The first part of this work sheds light on the current 3GPP activity around 3D channel modeling and beamforming, an aspect that to our knowledge has not been extensively covered by a research publication. The standardized MIMO channel model is presented, that incorporates both the propagation effects of the environment and the radio effects of the antennas. In order to facilitate future studies on the use of 3D beamforming, the main features of the proposed 3D channel model are discussed. A brief overview of the future 3GPP 3D channel model being outlined for the next generation of wireless networks is also provided. In the subsequent part of this work, we present an information-theoretic channel model for MIMO systems that supports the elevation dimension. The model is based on the principle of maximum entropy, which enables us to determine the distribution of the channel matrix consistent with the prior information on the angles of departure and

  9. Image-Based 3D Face Modeling System

    Directory of Open Access Journals (Sweden)

    Vladimir Vezhnevets

    2005-08-01

    Full Text Available This paper describes an automatic system for 3D face modeling using frontal and profile images taken by an ordinary digital camera. The system consists of four subsystems including frontal feature detection, profile feature detection, shape deformation, and texture generation modules. The frontal and profile feature detection modules automatically extract the facial parts such as the eye, nose, mouth, and ear. The shape deformation module utilizes the detected features to deform the generic head mesh model such that the deformed model coincides with the detected features. A texture is created by combining the facial textures augmented from the input images and the synthesized texture and mapped onto the deformed generic head model. This paper provides a practical system for 3D face modeling, which is highly automated by aggregating, customizing, and optimizing a bunch of individual computer vision algorithms. The experimental results show a highly automated process of modeling, which is sufficiently robust to various imaging conditions. The whole model creation including all the optional manual corrections takes only 2∼3 minutes.

  10. Field applications of the channel network model, CHAN3D

    International Nuclear Information System (INIS)

    Khademi, B.; Gylling, B.; Moreno, L.; Neretnieks, I.

    1998-01-01

    The Channel Network model and its computer implementation, CHAN3D, was developed to simulate fluid flow and transport of solutes in fractured media. The model has been used to interpret field experiments of flow and transport in small and in large scale. It may also be used for safety assessments of repositories for nuclear and other hazardous wastes. In this case, CHAN3D has been coupled to a compartment model, NUCTRAN, to describe the near field of the repository. The model is based on field observations, which indicate that the flow and solute transport take place in a three-dimensional network of connected channels. The channels have very different properties and they are generated in the model from observed stochastic distributions. This allows us to represent the large heterogeneity of the flow distribution commonly observed in fractured media. Solute transport is modelled considering advection and rock interactions such as matrix diffusion and sorption within the interior of the rock. Objects such as fracture zones, tunnels and release sources can be incorporated in the model

  11. Bioprinting of three dimensional tumor models: a preliminary study using a low cost 3D printer

    Directory of Open Access Journals (Sweden)

    Polley Christian

    2017-09-01

    Full Text Available The deep understanding of cancer and tumor genesis, as well as the development of new therapy strategies still remains one of the emerging challenges in modern medicine. To meet these challenges it seems to be absolutely necessary to overcome the drawbacks of the established 2D in vitro models. Especially the missing microenvironment of the tumor, which means the absence of stroma and immune cells, results in a missing cell-cell and cell-stroma interaction as well as disrupted functional communication pathways. Modern 3D culture systems and 3D printing or rather bioprinting technologies attempt to solve this issue and aim to closely mimic natural tumor microenvironment. In this preliminary work we are going to present the first steps of establishing an artificial 3D tumor model utilising a low cost 3D printer. Therefore the printer had been modified with an open-source syringe pump to become a functional bioprinter using viscosity modulated alginate hydrogel. In the first attempts L929 mouse fibroblasts, which are an integral component of natural stroma, had been incorporated into the hydrogel matrix and printed into scaffolds. Subsequent to the printing process the scaffolds got ionically crosslinked with a 5% w/v aqueous solution of CaCl2 to become mechanically stable. After three days of cultivation viability testing had been performed by utilising FDG staining and PET CT to obtain a volumetric viability measurement. The viability imaging showed vital cells homogeneously distributed in the scaffold and therefore stands as an evidence for a working low cost bioprinting process and a successful first step for the development of an artificial 3D tumor model.

  12. 3D digital anatomy modelling - Practical or pretty?

    Science.gov (United States)

    Murgitroyd, Ellen; Madurska, Marta; Gonzalez, Jasmina; Watson, Angus

    2015-06-01

    With an increasing move towards digitalisation of medical records and medical teaching, such as online exams and webinars, one of the questions that persists asks 'is there a place for digital anatomy teaching and can it effectively replace the traditional teaching methods such as cadaveric dissection?' Cadaveric dissection has a number of benefits as a teaching method but it also has its limitations. Although these can be partially addressed by prosections and new more "life-like" fixatives, it does not address the lack of resources and the increasing pressure to be able to study and learn at home. This paper reviews the literature with regards to the suitability of digital models for teaching and the wider uses a 3D digital anatomy model could have, such as postgraduate teaching, patient education and surgical planning. It also looks briefly at the learning model that anatomy as art contributes. The literature has scattered examples of digital models used for teaching at both undergraduate and postgraduate level, which demonstrate a number of positive outcomes, mostly surrounding user satisfaction and convenience. 3D modelling for patient education and operation planning has less exploration, and these papers generate a number of discussion points, mostly surrounding the practicality of digital models, which can be more time consuming and require the technology to be widely available and reliable. 3D digital anatomy is a useful adjunct to teaching and its use in patient education and operation planning have interesting possibilities still to be fully explored. Copyright © 2014 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.

  13. Evaluating analytical ionization quenching correction models for 3D liquid organic scintillator detector

    Science.gov (United States)

    Alsanea, F.; Beddar, S.

    2017-05-01

    Proton therapy offers dosimetric advantage over conventional photon therapy due to the finite range of the proton beam, which improves dose conformity. However, one of the main challenges of proton beam therapy is verification of the complex treatment plans delivered to a patient. Thus, 3D measurements are needed to verify the complex dose distribution. A 3D organic scintillator detector is capable of such measurements. However, organic scintillators exhibit a non-linear relation to the ionization density called ionization quenching. The ionization quenching phenomenon in organic scintillators must be accounted for to obtain accurate dose measurements. We investigated the energy deposition by secondary electrons (EDSE) model to explain ionization quenching in 3D liquid organic scintillator when exposed to proton beams. The EDSE model was applied to volumetric scintillation measurement of proton pencil beam with energies of 85.6, 100.9, 144.9 and 161.9 MeV. The quenching parameter in EDSE model ρq was determined by plotting the total light output vs the initial energy of the ion. The results were compared to the Birks semi-empirical formula of scintillation light emission.

  14. 3D statistical shape models incorporating 3D random forest regression voting for robust CT liver segmentation

    Science.gov (United States)

    Norajitra, Tobias; Meinzer, Hans-Peter; Maier-Hein, Klaus H.

    2015-03-01

    During image segmentation, 3D Statistical Shape Models (SSM) usually conduct a limited search for target landmarks within one-dimensional search profiles perpendicular to the model surface. In addition, landmark appearance is modeled only locally based on linear profiles and weak learners, altogether leading to segmentation errors from landmark ambiguities and limited search coverage. We present a new method for 3D SSM segmentation based on 3D Random Forest Regression Voting. For each surface landmark, a Random Regression Forest is trained that learns a 3D spatial displacement function between the according reference landmark and a set of surrounding sample points, based on an infinite set of non-local randomized 3D Haar-like features. Landmark search is then conducted omni-directionally within 3D search spaces, where voxelwise forest predictions on landmark position contribute to a common voting map which reflects the overall position estimate. Segmentation experiments were conducted on a set of 45 CT volumes of the human liver, of which 40 images were randomly chosen for training and 5 for testing. Without parameter optimization, using a simple candidate selection and a single resolution approach, excellent results were achieved, while faster convergence and better concavity segmentation were observed, altogether underlining the potential of our approach in terms of increased robustness from distinct landmark detection and from better search coverage.

  15. On Angular Sampling Methods for 3-D Spatial Channel Models

    DEFF Research Database (Denmark)

    Fan, Wei; Jämsä, Tommi; Nielsen, Jesper Ødum

    2015-01-01

    This paper discusses generating three dimensional (3D) spatial channel models with emphasis on the angular sampling methods. Three angular sampling methods, i.e. modified uniform power sampling, modified uniform angular sampling, and random pairing methods are proposed and investigated in detail....... The random pairing method, which uses only twenty sinusoids in the ray-based model for generating the channels, presents good results if the spatial channel cluster is with a small elevation angle spread. For spatial clusters with large elevation angle spreads, however, the random pairing method would fail...... and the other two methods should be considered....

  16. Simulation of current generation in a 3-D plasma model

    International Nuclear Information System (INIS)

    Tsung, F.S.; Dawson, J.M.

    1996-01-01

    Two wires carrying current in the same direction will attract each other, and two wires carrying current in the opposite direction will repel each other. Now, consider a test charge in a plasma. If the test charge carries current parallel to the plasma, then it will be pulled toward the plasma core, and if the test charge carries current anti-parallel to the plasma, then it will be pushed to the edge. The electromagnetic coupling between the plasma and a test charge (i.e., the A parallel circ v parallel term in the test charge's Hamiltonian) breaks the symmetry in the parallel direction, and gives rise to a diffusion coefficient which is dependent on the particle's parallel velocity. This is the basis for the open-quotes preferential lossclose quotes mechanism described in the work by Nunan et al. In our previous 2+1/2 D work, in both cylindrical and toroidal geometries, showed that if the plasma column is centrally fueled, then an initial current increases steadily. The results in straight, cylindrical plasmas showed that self generated parallel current arises without trapped particle or neoclassical diffusion, as assumed by the bootstrap theory. It suggests that the fundamental mechanism seems to be the conservation of particles canonical momenta in the direction of the ignorable coordinate. We have extended the simulation to 3D to verify the model put forth. A scalable 3D EM-PIC code, with a localized field-solver, has been implemented to run on a large class of parallel computers. On the 512-node SP2 at Cornell Theory Center, we have benchmarked the 2+1/2 D calculations using 32 grids in the previously ignored direction, and a 100-fold increase in the number of particles. Our preliminary results show good agreements between the 2+1/2 D and the 3D calculations. We will present our 3D results at the meeting

  17. Automated reconstruction of 3D models from real environments

    Science.gov (United States)

    Sequeira, V.; Ng, K.; Wolfart, E.; Gonçalves, J. G. M.; Hogg, D.

    This paper describes an integrated approach to the construction of textured 3D scene models of building interiors from laser range data and visual images. This approach has been implemented in a collection of algorithms and sensors within a prototype device for 3D reconstruction, known as the EST (Environmental Sensor for Telepresence). The EST can take the form of a push trolley or of an autonomous mobile platform. The Autonomous EST (AEST) has been designed to provide an integrated solution for automating the creation of complete models. Embedded software performs several functions, including triangulation of the range data, registration of video texture, registration and integration of data acquired from different capture points. Potential applications include facilities management for the construction industry and creating reality models to be used in general areas of virtual reality, for example, virtual studios, virtualised reality for content-related applications (e.g., CD-ROMs), social telepresence, architecture and others. The paper presents the main components of the EST/AEST, and presents some example results obtained from the prototypes. The reconstructed model is encoded in VRML format so that it is possible to access and view the model via the World Wide Web.

  18. Exploiting Textured 3D Models for Developing Serious Games

    Directory of Open Access Journals (Sweden)

    G. Kontogianni

    2015-08-01

    Full Text Available Digital technologies have affected significantly many fields of computer graphics such as Games and especially the field of the Serious Games. These games are usually used for educational proposes in many fields such as Health Care, Military applications, Education, Government etc. Especially Digital Cultural Heritage is a scientific area that Serious Games are applied and lately many applications appear in the related literature. Realistic 3D textured models which have been produced using different photogrammetric methods could be a useful tool for the creation of Serious Game applications in order to make the final result more realistic and close to the reality. The basic goal of this paper is how 3D textured models which are produced by photogrammetric methods can be useful for developing a more realistic environment of a Serious Game. The application of this project aims at the creation of an educational game for the Ancient Agora of Athens. The 3D models used vary not only as far as their production methods (i.e. Time of Flight laser scanner, Structure from Motion, Virtual historical reconstruction etc. is concerned, but also as far as their era as some of them illustrated according to their existing situation and some others according to how these monuments looked like in the past. The Unity 3D® game developing environment was used for creating this application, in which all these models were inserted in the same file format. For the application two diachronic virtual tours of the Athenian Agora were produced. The first one illustrates the Agora as it is today and the second one at the 2nd century A.D. Finally the future perspective for the evolution of this game is presented which includes the addition of some questions that the user will be able to answer. Finally an evaluation is scheduled to be performed at the end of the project.

  19. Exploiting Textured 3D Models for Developing Serious Games

    Science.gov (United States)

    Kontogianni, G.; Georgopoulos, A.

    2015-08-01

    Digital technologies have affected significantly many fields of computer graphics such as Games and especially the field of the Serious Games. These games are usually used for educational proposes in many fields such as Health Care, Military applications, Education, Government etc. Especially Digital Cultural Heritage is a scientific area that Serious Games are applied and lately many applications appear in the related literature. Realistic 3D textured models which have been produced using different photogrammetric methods could be a useful tool for the creation of Serious Game applications in order to make the final result more realistic and close to the reality. The basic goal of this paper is how 3D textured models which are produced by photogrammetric methods can be useful for developing a more realistic environment of a Serious Game. The application of this project aims at the creation of an educational game for the Ancient Agora of Athens. The 3D models used vary not only as far as their production methods (i.e. Time of Flight laser scanner, Structure from Motion, Virtual historical reconstruction etc.) is concerned, but also as far as their era as some of them illustrated according to their existing situation and some others according to how these monuments looked like in the past. The Unity 3D® game developing environment was used for creating this application, in which all these models were inserted in the same file format. For the application two diachronic virtual tours of the Athenian Agora were produced. The first one illustrates the Agora as it is today and the second one at the 2nd century A.D. Finally the future perspective for the evolution of this game is presented which includes the addition of some questions that the user will be able to answer. Finally an evaluation is scheduled to be performed at the end of the project.

  20. 3D model tools for architecture and archaeology reconstruction

    Science.gov (United States)

    Vlad, Ioan; Herban, Ioan Sorin; Stoian, Mircea; Vilceanu, Clara-Beatrice

    2016-06-01

    The main objective of architectural and patrimonial survey is to provide a precise documentation of the status quo of the surveyed objects (monuments, buildings, archaeological object and sites) for preservation and protection, for scientific studies and restoration purposes, for the presentation to the general public. Cultural heritage documentation includes an interdisciplinary approach having as purpose an overall understanding of the object itself and an integration of the information which characterize it. The accuracy and the precision of the model are directly influenced by the quality of the measurements realized on field and by the quality of the software. The software is in the process of continuous development, which brings many improvements. On the other side, compared to aerial photogrammetry, close range photogrammetry and particularly architectural photogrammetry is not limited to vertical photographs with special cameras. The methodology of terrestrial photogrammetry has changed significantly and various photographic acquisitions are widely in use. In this context, the present paper brings forward a comparative study of TLS (Terrestrial Laser Scanner) and digital photogrammetry for 3D modeling. The authors take into account the accuracy of the 3D models obtained, the overall costs involved for each technology and method and the 4th dimension - time. The paper proves its applicability as photogrammetric technologies are nowadays used at a large scale for obtaining the 3D model of cultural heritage objects, efficacious in their assessment and monitoring, thus contributing to historic conservation. Its importance also lies in highlighting the advantages and disadvantages of each method used - very important issue for both the industrial and scientific segment when facing decisions such as in which technology to invest more research and funds.

  1. MO-DE-210-06: Development of a Supercompounded 3D Volumetric Ultrasound Image Guidance System for Prone Accelerated Partial Breast Irradiation (APBI)

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, T; Hrycushko, B; Zhao, B; Jiang, S; Gu, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2015-06-15

    Purpose: For early-stage breast cancer, accelerated partial breast irradiation (APBI) is a cost-effective breast-conserving treatment. Irradiation in a prone position can mitigate respiratory induced breast movement and achieve maximal sparing of heart and lung tissues. However, accurate dose delivery is challenging due to breast deformation and lumpectomy cavity shrinkage. We propose a 3D volumetric ultrasound (US) image guidance system for accurate prone APBI Methods: The designed system, set beneath the prone breast board, consists of a water container, an US scanner, and a two-layer breast immobilization cup. The outer layer of the breast cup forms the inner wall of water container while the inner layer is attached to patient breast directly to immobilization. The US transducer scans is attached to the outer-layer of breast cup at the dent of water container. Rotational US scans in a transverse plane are achieved by simultaneously rotating water container and transducer, and multiple transverse scanning forms a 3D scan. A supercompounding-technique-based volumetric US reconstruction algorithm is developed for 3D image reconstruction. The performance of the designed system is evaluated with two custom-made gelatin phantoms containing several cylindrical inserts filled in with water (11% reflection coefficient between materials). One phantom is designed for positioning evaluation while the other is for scaling assessment. Results: In the positioning evaluation phantom, the central distances between the inserts are 15, 20, 30 and 40 mm. The distances on reconstructed images differ by −0.19, −0.65, −0.11 and −1.67 mm, respectively. In the scaling evaluation phantom, inserts are 12.7, 19.05, 25.40 and 31.75 mm in diameter. Measured inserts’ sizes on images differed by 0.23, 0.19, −0.1 and 0.22 mm, respectively. Conclusion: The phantom evaluation results show that the developed 3D volumetric US system can accurately localize target position and determine

  2. Formalizing Implementable Constraints in the INTERLIS Language for Modelling Legal 3D RRR Spaces and 3D Physical Objects

    NARCIS (Netherlands)

    Kalogianni, Eftychia; Dimopoulou, Efi; Quak, C.W.; van Oosterom, P.J.M.; van Oosterom, P.J.M.; Dimopoulou, Efi; Fendel, Elfriede M.

    2016-01-01

    Building Information Models (e.g. BIM, IFC) and virtual 3D city models (e.g. CityGML) are revolutionising the way we manage information about cities. The main focus of such models is on the physical and functional characteristics of urban structures (Aien et al, 2015). On the other hand cadastral

  3. Recent progress in modelling 3D lithospheric deformation

    Science.gov (United States)

    Kaus, B. J. P.; Popov, A.; May, D. A.

    2012-04-01

    Modelling 3D lithospheric deformation remains a challenging task, predominantly because the variations in rock types, as well as nonlinearities due to for example plastic deformation result in sharp and very large jumps in effective viscosity contrast. As a result, there are only a limited number of 3D codes available, most of which are using direct solvers which are computationally and memory-wise very demanding. As a result, the resolutions for typical model runs are quite modest, despite the use of hundreds of processors (and using much larger computers is unlikely to bring much improvement in this situation). For this reason we recently developed a new 3D deformation code,called LaMEM: Lithosphere and Mantle Evolution Model. LaMEM is written on top of PETSc, and as a result it runs on massive parallel machines and we have a large number of iterative solvers available (including geometric and algebraic multigrid methods). As it remains unclear which solver combinations work best under which conditions, we have implemented most currently suggested methods (such as schur complement reduction or Fully coupled iterations). In addition, we can use either a finite element discretization (with Q1P0, stabilized Q1Q1 or Q2P-1 elements) or a staggered finite difference discretization for the same input geometry, which is based on a marker and cell technique). This gives us he flexibility to test various solver methodologies on the same model setup, in terms of accuracy, speed, memory usage etc. Here, we will report on some features of LaMEM, on recent code additions, as well as on some lessons we learned which are important for modelling 3D lithospheric deformation. Specifically we will discuss: 1) How we combine a particle-and-cell method to make it work with both a finite difference and a (lagrangian, eulerian or ALE) finite element formulation, with only minor code modifications code 2) How finite difference and finite element discretizations compare in terms of

  4. The Engelbourg's ruins: from 3D TLS point cloud acquisition to 3D virtual and historic models

    Science.gov (United States)

    Koehl, Mathieu; Berger, Solveig; Nobile, Sylvain

    2014-05-01

    The Castle of Engelbourg was built at the beginning of the 13th century, at the top of the Schlossberg. It is situated on the territory of the municipality of Thann (France), at the crossroads of Alsace and Lorraine, and dominates the outlet of the valley of Thur. Its strategic position was one of the causes of its systematic destructions during the 17th century, and Louis XIV finished his fate by ordering his demolition in 1673. Today only few vestiges remain, of which a section of the main tower from about 7m of diameter and 4m of wide laying on its slice, unique characteristic in the regional castral landscape. It is visible since the valley, was named "the Eye of the witch", and became a key attraction of the region. The site, which extends over approximately one hectare, is for several years the object of numerous archaeological studies and is at the heart of a project of valuation of the vestiges today. It was indeed a key objective, among the numerous planned works, to realize a 3D model of the site in its current state, in other words, a virtual model "such as seized", exploitable as well from a cultural and tourist point of view as by scientists and in archaeological researches. The team of the ICube/INSA lab had in responsibility the realization of this model, the acquisition of the data until the delivery of the virtual model, thanks to 3D TLS and topographic surveying methods. It was also planned to integrate into this 3D model, data of 2D archives, stemming from series of former excavations. The objectives of this project were the following ones: • Acquisition of 3D digital data of the site and 3D modelling • Digitization of the 2D archaeological data and integration in the 3D model • Implementation of a database connected to the 3D model • Virtual Visit of the site The obtained results allowed us to visualize every 3D object individually, under several forms (point clouds, 3D meshed objects and models, etc.) and at several levels of detail

  5. Discussion of Source Reconstruction Models Using 3D MCG Data

    Science.gov (United States)

    Melis, Massimo De; Uchikawa, Yoshinori

    In this study we performed the source reconstruction of magnetocardiographic signals generated by the human heart activity to localize the site of origin of the heart activation. The localizations were performed in a four compartment model of the human volume conductor. The analyses were conducted on normal subjects and on a subject affected by the Wolff-Parkinson-White syndrome. Different models of the source activation were used to evaluate whether a general model of the current source can be applied in the study of the cardiac inverse problem. The data analyses were repeated using normal and vector component data of the MCG. The results show that a distributed source model has the better accuracy in performing the source reconstructions, and that 3D MCG data allow finding smaller differences between the different source models.

  6. A Pseudo-3D Model for Electromagnetic Acoustic Transducers (EMATs

    Directory of Open Access Journals (Sweden)

    Wuliang Yin

    2018-03-01

    Full Text Available Previous methods for modelling Rayleigh waves produced by a meander-line-coil electromagnetic acoustic transducer (EMAT consisted mostly of two-dimensional (2D simulations that focussed on the vertical plane of the material. This paper presents a pseudo-three-dimensional (3D model that extends the simulation space to both vertical and horizontal planes. For the vertical plane, we combines analytical and finite-difference time-domain (FDTD methods to model Rayleigh waves’ propagation within an aluminium plate and their scattering behaviours by cracks. For the horizontal surface plane, we employ an analytical method to investigate the radiation pattern of Rayleigh waves at various depths. The experimental results suggest that the models and the modelling techniques are valid.

  7. Computational Modelling of Piston Ring Dynamics in 3D

    Directory of Open Access Journals (Sweden)

    Dlugoš Jozef

    2014-12-01

    Full Text Available Advanced computational models of a piston assembly based on the level of virtual prototypes require a detailed description of piston ring behaviour. Considering these requirements, the piston rings operate in regimes that cannot, in general, be simplified into an axisymmetric model. The piston and the cylinder liner do not have a perfect round shape, mainly due to machining tolerances and external thermo-mechanical loads. If the ring cannot follow the liner deformations, a local loss of contact occurs resulting in blow-by and increased consumption of lubricant oil in the engine. Current computational models are unable to implement such effects. The paper focuses on the development of a flexible 3D piston ring model based on the Timoshenko beam theory using the multibody system (MBS. The MBS model is compared to the finite element method (FEM solution.

  8. 3D Shape Modeling Using High Level Descriptors

    DEFF Research Database (Denmark)

    Andersen, Vedrana

    features like thorns, bark and scales. Presented here is a simple method for easy modeling, transferring and editing that kind of texture. The method is an extension of the height-field texture, but incorporates an additional tilt of the height field. Related to modeling non-heightfield textures, a part...... of my work involved developing feature-aware resizing of models with complex surfaces consisting of underlying shape and a distinctive texture detail. The aim was to deform an object while preserving the shape and size of the features.......The goal of this Ph.D. project is to investigate and improve the methods for describing the surface of 3D objects, with focus on modeling geometric texture on surfaces. Surface modeling being a large field of research, the work done during this project concentrated around a few smaller areas...

  9. 3D CFD Modeling of the LMF System: Desulfurization Kinetics

    Science.gov (United States)

    Cao, Qing; Pitts, April; Zhang, Daojie; Nastac, Laurentiu; Williams, Robert

    A fully transient 3D CFD modeling approach capable of predicting the three phase (gas, slag and steel) fluid flow characteristics and behavior of the slag/steel interface in the argon gas bottom stirred ladle with two off-centered porous plugs (Ladle Metallurgical Furnace or LMF) has been recently developed. The model predicts reasonably well the fluid flow characteristics in the LMF system and the observed size of the slag eyes for both the high-stirring and low-stirring conditions. A desulfurization reaction kinetics model considering metal/slag interface characteristics is developed in conjunction with the CFD modeling approach. The model is applied in this study to determine the effects of processing time, and gas flow rate on the efficiency of desulfurization in the studied LMF system.

  10. Radiative transfer model for heterogeneous 3-D scenes

    Science.gov (United States)

    Kimes, D. S.; Kirchner, J. A.

    1982-01-01

    A general mathematical framework for simulating processes in heterogeneous 3-D scenes is presented. Specifically, a model was designed and coded for application to radiative transfers in vegetative scenes. The model is unique in that it predicts (1) the directional spectral reflectance factors as a function of the sensor's azimuth and zenith angles and the sensor's position above the canopy, (2) the spectral absorption as a function of location within the scene, and (3) the directional spectral radiance as a function of the sensor's location within the scene. The model was shown to follow known physical principles of radiative transfer. Initial verification of the model as applied to a soybean row crop showed that the simulated directional reflectance data corresponded relatively well in gross trends to the measured data. However, the model can be greatly improved by incorporating more sophisticated and realistic anisotropic scattering algorithms

  11. 3D modeling of electric fields in the LUX detector

    Science.gov (United States)

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Druszkiewicz, E.; Edwards, B. N.; Fallon, S. R.; Fan, A.; Fiorucci, S.; Gaitskell, R. J.; Genovesi, J.; Ghag, C.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.

    2017-11-01

    This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data to search for weakly interacting massive particles (WIMPs) during two periods. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the detector in time, depth and azimuth, generating an electrostatic radially-inward force on electrons on their way upward to the liquid surface. To map this behavior, 3D electric field maps of the detector's active volume were generated on a monthly basis. This was done by fitting a model built in COMSOL Multiphysics to the uniformly distributed calibration data that were collected on a regular basis. The modeled average PTFE charge density increased over the course of the exposure from -3.6 to -5.5 μC/m2. From our studies, we deduce that the electric field magnitude varied locally while the mean value of the field of ~200 V/cm remained constant throughout the exposure. As a result of this work the varying electric fields and their impact on event reconstruction and discrimination were successfully modeled.

  12. Reassessing Geophysical Models of the Bushveld Complex in 3D

    Science.gov (United States)

    Cole, J.; Webb, S. J.; Finn, C.

    2012-12-01

    Conceptual geophysical models of the Bushveld Igneous Complex show three possible geometries for its mafic component: 1) Separate intrusions with vertical feeders for the eastern and western lobes (Cousins, 1959) 2) Separate dipping sheets for the two lobes (Du Plessis and Kleywegt, 1987) 3) A single saucer-shaped unit connected at depth in the central part between the two lobes (Cawthorn et al, 1998) Model three incorporates isostatic adjustment of the crust in response to the weight of the dense mafic material. The model was corroborated by results of a broadband seismic array over southern Africa, known as the Southern African Seismic Experiment (SASE) (Nguuri, et al, 2001; Webb et al, 2004). This new information about the crustal thickness only became available in the last decade and could not be considered in the earlier models. Nevertheless, there is still on-going debate as to which model is correct. All of the models published up to now have been done in 2 or 2.5 dimensions. This is not well suited to modelling the complex geometry of the Bushveld intrusion. 3D modelling takes into account effects of variations in geometry and geophysical properties of lithologies in a full three dimensional sense and therefore affects the shape and amplitude of calculated fields. The main question is how the new knowledge of the increased crustal thickness, as well as the complexity of the Bushveld Complex, will impact on the gravity fields calculated for the existing conceptual models, when modelling in 3D. The three published geophysical models were remodelled using full 3Dl potential field modelling software, and including crustal thickness obtained from the SASE. The aim was not to construct very detailed models, but to test the existing conceptual models in an equally conceptual way. Firstly a specific 2D model was recreated in 3D, without crustal thickening, to establish the difference between 2D and 3D results. Then the thicker crust was added. Including the less

  13. 3D Marine MT Modeling for a Topographic Seafloor

    Science.gov (United States)

    Zhang, B., Sr.; Yin, C.; Ren, X.; Liu, Y.; Huang, X.; Liu, L.

    2017-12-01

    As an effective geophysical tool, marine magnetotelluric (MMT) exploration has been widely used in offshore oil and gas exploration. Accordingly, the MMT forward modelling has made big progress. However, most of the researches are focused on a flat seafloor. In this paper, we present a 3D finite-element (FE) algorithm for marine MT forward modelling based on unstructured grids that can accurately model the MMT responses for a topographic seafloor. The boundary value problem for the forward modelling is described by an Helmholtz equation together with the boundary conditions derived by assuming the electrical polarizations respectively along the x- and y-direction on the top surface of the modelling domain. Applying the Galerkin method to the boundary value problem and substituting the unstructured finite-element vector shape function into the equation, we derive the final large linear system for the two polarizations, from which the EM fields is obtained for the calculation of impedance apparent resistivities and phases. To verify the effectiveness of our algorithm, we compare our modelling results with those by Key's (2013) 2D marine MT open source code of Scripps Institution of Oceanography (Figure 1). From Figure 1, one sees that the two agree well, implying that our 3D modelling method based unstructured FE is an effective modelling tool for topographic seafloor. From the MMT modelling responses for other topographic seafloor models (not shown here), we further observe that 1) the apparent resistivities have a similar profile pattern to the topography at the seafloor; 2) at the edges of the topography, there exist sharp changes; 3) the seafloor topography may dominate the responses from the abnormal bodies under the seafloor. This paper is supported by Key Program of National Natural Science Foundation of China (41530320), China Natural Science Foundation for Young Scientists (41404093), and Key National Research Project of China (2016YFC0303100, 2017YFC0601900)

  14. 3-D Numerical Modelling of Oblique Continental Collisions with ASPECT

    Science.gov (United States)

    Karatun, L.; Pysklywec, R.

    2017-12-01

    Among the fundamental types of tectonic plate boundaries, continent-continent collision is least well understood. Deformation of the upper and middle crustal layers can be inferred from surface structures and geophysical imaging, but the fate of lower crustal rocks and mantle lithosphere is not well resolved. Previous research suggests that shortening of mantle lithosphere generally may be occurring by either: 1) a distributed thickening with a formation of a Raleigh-Tailor (RT) type instability (possibly accompanied with lithospheric folding); or 2) plate-like subduction, which can be one- or two-sided, with or without delamination and slab break-off; a combination of both could be taking place too. 3-D features of the orogens such as along-trench material transfer, bounding subduction zones can influence the evolution of the collision zone significantly. The current study was inspired by South Island of New Zealand - a young collision system where a block of continental crust is being shortened by the relative Australian-Pacific plate motion. The collision segment of the plate boundary is relatively small ( 800 km), and is bounded by oppositely verging subduction zones to the North and South. Here, we present results of 3-D forward numerical modelling of continental collision to investigate some of these processes. To conduct the simulations, we used ASPECT - a highly parallel community-developed code based on the Finite Element method. Model setup for three different sets of models featured 2-D vertical across strike, 3-D with periodic front and back walls, and 3-D with open front and back walls, with velocities prescribed on the left and right faces. We explored the importance of values of convergent velocity, strike-slip velocity and their ratio, which defines the resulting velocity direction relative to the plate boundary (obliquity). We found that higher strike-slip motion promotes strain localization, weakens the lithosphere close to the plate boundary and

  15. ALGE3D: A Three-Dimensional Transport Model

    Science.gov (United States)

    Maze, G. M.

    2017-12-01

    Of the top 10 most populated US cities from a 2015 US Census Bureau estimate, 7 of the cities are situated near the ocean, a bay, or on one of the Great Lakes. A contamination of the water ways in the United States could be devastating to the economy (through tourism and industries such as fishing), public health (from direct contact, or contaminated drinking water), and in some cases even infrastructure (water treatment plants). Current national response models employed by emergency response agencies have well developed models to simulate the effects of hazardous contaminants in riverine systems that are primarily driven by one-dimensional flows; however in more complex systems, such as tidal estuaries, bays, or lakes, a more complex model is needed. While many models exist, none are capable of quick deployment in emergency situations that could contain a variety of release situations including a mixture of both particulate and dissolved chemicals in a complex flow area. ALGE3D, developed at the Department of Energy's (DOE) Savannah River National Laboratory (SRNL), is a three-dimensional hydrodynamic code which solves the momentum, mass, and energy conservation equations to predict the movement and dissipation of thermal or dissolved chemical plumes discharged into cooling lakes, rivers, and estuaries. ALGE3D is capable of modeling very complex flows, including areas with tidal flows which include wetting and drying of land. Recent upgrades have increased the capabilities including the transport of particulate tracers, allowing for more complete modeling of the transport of pollutants. In addition the model is capable of coupling with a one-dimension riverine transport model or a two-dimension atmospheric deposition model in the event that a contamination event occurs upstream or upwind of the water body.

  16. Anti-3D Weapon Model Detection for Safe 3D Printing Based on Convolutional Neural Networks and D2 Shape Distribution

    Directory of Open Access Journals (Sweden)

    Giao N. Pham

    2018-03-01

    Full Text Available With the development of 3D printing, weapons are easily printed without any restriction from the production managers. Therefore, anti-3D weapon model detection is necessary issue in safe 3D printing to prevent the printing of 3D weapon models. In this paper, we would like to propose an anti-3D weapon model detection algorithm to prevent the printing of anti-3D weapon models for safe 3D printing based on the D2 shape distribution and an improved convolutional neural networks (CNNs. The purpose of the proposed algorithm is to detect anti-3D weapon models when they are used in 3D printing. The D2 shape distribution is computed from random points on the surface of a 3D weapon model and their geometric features in order to construct a D2 vector. The D2 vector is then trained by improved CNNs. The CNNs are used to detect anti-3D weapon models for safe 3D printing by training D2 vectors which have been constructed from the D2 shape distribution of 3D weapon models. Experiments with 3D weapon models proved that the D2 shape distribution of 3D weapon models in the same class is the same. Training and testing results also verified that the accuracy of the proposed algorithm is higher than the conventional works. The proposed algorithm is applied in a small application, and it could detect anti-3D weapon models for safe 3D printing.

  17. 3D Massive MIMO Systems: Modeling and Performance Analysis

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2015-07-30

    Multiple-input-multiple-output (MIMO) systems of current LTE releases are capable of adaptation in the azimuth only. Recently, the trend is to enhance system performance by exploiting the channel’s degrees of freedom in the elevation, which necessitates the characterization of 3D channels. We present an information-theoretic channel model for MIMO systems that supports the elevation dimension. The model is based on the principle of maximum entropy, which enables us to determine the distribution of the channel matrix consistent with the prior information on the angles. Based on this model, we provide analytical expression for the cumulative density function (CDF) of the mutual information (MI) for systems with a single receive and finite number of transmit antennas in the general signalto- interference-plus-noise-ratio (SINR) regime. The result is extended to systems with finite receive antennas in the low SINR regime. A Gaussian approximation to the asymptotic behavior of MI distribution is derived for the large number of transmit antennas and paths regime. We corroborate our analysis with simulations that study the performance gains realizable through meticulous selection of the transmit antenna downtilt angles, confirming the potential of elevation beamforming to enhance system performance. The results are directly applicable to the analysis of 5G 3D-Massive MIMO-systems.

  18. Methane Fluxes in West Siberia: 3-D Regional Model Simulation

    International Nuclear Information System (INIS)

    Jagovkina, S. V.; Karol, I. L.; Zubov, V. A.; Lagun, V. E.; Reshetnikov, A. I.; Rozanov, E. V.

    2001-01-01

    The West Siberian region is one of the main contributors of the atmospheric greenhouse gas methane due to the large areas of wetlands, rivers, lakes and numerous gas deposits situated there.But there are no reliable estimations of integral methane flux from this area into the atmosphere. For assessment of methane fluxes in West Siberia the specially constructed 3-D regional chemical transport model was applied. The 3-D distribution of methane is calculated on the basis of the current meteorological data fields(wind, temperature, geopotential) updated 4 times a day. The methane concentrations measured near the main gas fields of West Siberia in the summer season of 1999, were used for correction of methane flux intensity estimates obtained previously by comparison of measurements carried out in summer 1993 and 1996 with modelled methane mixing ratio distribution. This set of field and model experiments confirmed the preliminary conclusion about low leakage intensity: anthropogenic methane flux does not exceed 5-15% of total summer methane flux, estimated as 11-12 Mt CH 4 in summer from this region, in spite of the large areas of gas deposits located there

  19. All part of the process[3D plant modelling

    Energy Technology Data Exchange (ETDEWEB)

    Snieckus, D.

    2002-12-01

    The second coming of EPIC contracts, a renewed emphasis on life-of-field costs for offshore developments, and the deepwater FPSO market's fast approaching construction boom are together demanding fresh thinking - and software systems - from 3D plant modelling and information specialists. Based on its own calculations, Intergraph's Process, Power and Offshore (PPO) division states that it holds down some 35-40% of the market for 3D plant modelling and information management in the offshore oil and gas industry. This article reviews their success, how they have to preserve their hard won share of the market, due to the changeable nature of that market, marked recently by the fundamental shifts in EPIC contract structure, life-of-field costs focuses, and, not least, the rise of FPSO-driven production concepts. Intergraph PPO's integrated product portfolio, which brings together plant design modelling systems and plant information management systems, was founded on its SmartPlant Foundation data warehouse hub. It has maintained its project data integrity o some of the largest and most complex offshore developments, including Phillips Petroleum's Bayu-Undan and Statoil Asgard fields. Some 70% of Intergraph PPO's clients have been contractors, and while the company aims to continue to build on the strength of these relationships, it also recognises that growing its client base of owner-operators will create some 'real synergies' in the process.

  20. 3D MODELING OF THE ARCHAIC AMPHORAS OF IONIA

    Directory of Open Access Journals (Sweden)

    A. Denker

    2015-04-01

    Full Text Available Few other regions offer such a rich collection of amphoras than the cities of Ionia. Throughout history amphoras of these cities had been spread all over the Mediterranean. Despite their common characteristics, amphora manufacturing cities of Ionia had their own distinctive styles that can be identified. They differed in details of shape and decoration. Each city produced an authentic type of amphora which served as a trademark of itself and enabled its attribution to where it originated from. That’s why, amphoras provide important insight into commerce of old ages and yield evidence into ancient sailing routes. Owing to this our knowledge of the ancient trade is profoundly enriched. The following is based on the finds of amphoras which originated from the Ionian cities of Chios, Clazomenai, Lesbos, Miletus, and Samos. Starting from city-specific forms which offer interpretative advantages in provenancing, this article surveys the salient features of the regional forms and styles of the those Ionian cities. 3D modeling is utilized with the aim of bringing fresh glimpses of the investigated amphoras by showing how they originally looked. Due to their virtual indestructibility these models offer interpretative advantages by enabling experimental testing of hypotheses upon the finds without risking them. The 3D models in the following sections were reconstructed from numerous fragments of necks, handles, body sherds and bases. They convey in color- unlike the monochrome drawings which we were accustomed to-the texture, decoration, tint and the vitality of the amphoras of Ionia.

  1. 3D Model Retrieval Based on Vector Quantisation Index Histograms

    International Nuclear Information System (INIS)

    Lu, Z M; Luo, H; Pan, J S

    2006-01-01

    This paper proposes a novel technique to retrieval 3D mesh models using vector quantisation index histograms. Firstly, points are sampled uniformly on mesh surface. Secondly, to a point five features representing global and local properties are extracted. Thus feature vectors of points are obtained. Third, we select several models from each class, and employ their feature vectors as a training set. After training using LBG algorithm, a public codebook is constructed. Next, codeword index histograms of the query model and those in database are computed. The last step is to compute the distance between histograms of the query and those of the models in database. Experimental results show the effectiveness of our method

  2. The virtual craniofacial patient: 3D jaw modeling and animation.

    Science.gov (United States)

    Enciso, Reyes; Memon, Ahmed; Fidaleo, Douglas A; Neumann, Ulrich; Mah, James

    2003-01-01

    In this paper, we present new developments in the area of 3D human jaw modeling and animation. CT (Computed Tomography) scans have traditionally been used to evaluate patients with dental implants, assess tumors, cysts, fractures and surgical procedures. More recently this data has been utilized to generate models. Researchers have reported semi-automatic techniques to segment and model the human jaw from CT images and manually segment the jaw from MRI images. Recently opto-electronic and ultrasonic-based systems (JMA from Zebris) have been developed to record mandibular position and movement. In this research project we introduce: (1) automatic patient-specific three-dimensional jaw modeling from CT data and (2) three-dimensional jaw motion simulation using jaw tracking data from the JMA system (Zebris).

  3. Untangling Slab Dynamics Using 3-D Numerical and Analytical Models

    Science.gov (United States)

    Holt, A. F.; Royden, L.; Becker, T. W.

    2016-12-01

    Increasingly sophisticated numerical models have enabled us to make significant strides in identifying the key controls on how subducting slabs deform. For example, 3-D models have demonstrated that subducting plate width, and the related strength of toroidal flow around the plate edge, exerts a strong control on both the curvature and the rate of migration of the trench. However, the results of numerical subduction models can be difficult to interpret, and many first order dynamics issues remain at least partially unresolved. Such issues include the dominant controls on trench migration, the interdependence of asthenospheric pressure and slab dynamics, and how nearby slabs influence each other's dynamics. We augment 3-D, dynamically evolving finite element models with simple, analytical force-balance models to distill the physics associated with subduction into more manageable parts. We demonstrate that for single, isolated subducting slabs much of the complexity of our fully numerical models can be encapsulated by simple analytical expressions. Rates of subduction and slab dip correlate strongly with the asthenospheric pressure difference across the subducting slab. For double subduction, an additional slab gives rise to more complex mantle pressure and flow fields, and significantly extends the range of plate kinematics (e.g., convergence rate, trench migration rate) beyond those present in single slab models. Despite these additional complexities, we show that much of the dynamics of such multi-slab systems can be understood using the physics illuminated by our single slab study, and that a force-balance method can be used to relate intra-plate stress to viscous pressure in the asthenosphere and coupling forces at plate boundaries. This method has promise for rapid modeling of large systems of subduction zones on a global scale.

  4. Self-Consistent 3D Modeling of Electron Cloud Dynamics and Beam Response

    International Nuclear Information System (INIS)

    Furman, Miguel; Furman, M.A.; Celata, C.M.; Kireeff-Covo, M.; Sonnad, K.G.; Vay, J.-L.; Venturini, M.; Cohen, R.; Friedman, A.; Grote, D.; Molvik, A.; Stoltz, P.

    2007-01-01

    We present recent advances in the modeling of beam electron-cloud dynamics, including surface effects such as secondary electron emission, gas desorption, etc, and volumetric effects such as ionization of residual gas and charge-exchange reactions. Simulations for the HCX facility with the code WARP/POSINST will be described and their validity demonstrated by benchmarks against measurements. The code models a wide range of physical processes and uses a number of novel techniques, including a large-timestep electron mover that smoothly interpolates between direct orbit calculation and guiding-center drift equations, and a new computational technique, based on a Lorentz transformation to a moving frame, that allows the cost of a fully 3D simulation to be reduced to that of a quasi-static approximation

  5. Retrospective evaluation of dosimetric quality for prostate carcinomas treated with 3D conformal, intensity modulated and volumetric modulated arc radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, Scott B [Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland (Australia); Kairn, Tanya [Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland (Australia); Premion, Wesley Medical Centre, Brisbane, Queensland (Australia); Middlebrook, Nigel; Hill, Brendan; Christie, David R H; Knight, Richard T [Premion, Wesley Medical Centre, Brisbane, Queensland (Australia); Kenny, John [Australian Clinical Dosimetry Services, Australian Radiation Protection and Nuclear Safety Agency, Melbourne, Victoria (Australia); Langton, Christian M; Trapp, Jamie V [Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland (Australia)

    2013-12-15

    This study examines and compares the dosimetric quality of radiotherapy treatment plans for prostate carcinoma across a cohort of 163 patients treated across five centres: 83 treated with three-dimensional conformal radiotherapy (3DCRT), 33 treated with intensity modulated radiotherapy (IMRT) and 47 treated with volumetric modulated arc therapy (VMAT). Treatment plan quality was evaluated in terms of target dose homogeneity and organs at risk (OAR), through the use of a set of dose metrics. These included the mean, maximum and minimum doses; the homogeneity and conformity indices for the target volumes; and a selection of dose coverage values that were relevant to each OAR. Statistical significance was evaluated using two-tailed Welch's T-tests. The Monte Carlo DICOM ToolKit software was adapted to permit the evaluation of dose metrics from DICOM data exported from a commercial radiotherapy treatment planning system. The 3DCRT treatment plans offered greater planning target volume dose homogeneity than the other two treatment modalities. The IMRT and VMAT plans offered greater dose reduction in the OAR: with increased compliance with recommended OAR dose constraints, compared to conventional 3DCRT treatments. When compared to each other, IMRT and VMAT did not provide significantly different treatment plan quality for like-sized tumour volumes. This study indicates that IMRT and VMAT have provided similar dosimetric quality, which is superior to the dosimetric quality achieved with 3DCRT.

  6. Canada in 3D - Toward a Sustainable 3D Model for Canadian Geology from Diverse Data Sources

    Science.gov (United States)

    Brodaric, B.; Pilkington, M.; Snyder, D. B.; St-Onge, M. R.; Russell, H.

    2015-12-01

    Many big science issues span large areas and require data from multiple heterogeneous sources, for example climate change, resource management, and hazard mitigation. Solutions to these issues can significantly benefit from access to a consistent and integrated geological model that would serve as a framework. However, such a model is absent for most large countries including Canada, due to the size of the landmass and the fragmentation of the source data into institutional and disciplinary silos. To overcome these barriers, the "Canada in 3D" (C3D) pilot project was recently launched by the Geological Survey of Canada. C3D is designed to be evergreen, multi-resolution, and inter-disciplinary: (a) it is to be updated regularly upon acquisition of new data; (b) portions vary in resolution and will initially consist of four layers (surficial, sedimentary, crystalline, and mantle) with intermediary patches of higher-resolution fill; and (c) a variety of independently managed data sources are providing inputs, such as geophysical, 3D and 2D geological models, drill logs, and others. Notably, scalability concerns dictate a decentralized and interoperable approach, such that only key control objects, denoting anchors for the modeling process, are imported into the C3D database while retaining provenance links to original sources. The resultant model is managed in the database, contains full modeling provenance as well as links to detailed information on rock units, and is to be visualized in desktop and online environments. It is anticipated that C3D will become the authoritative state of knowledge for the geology of Canada at a national scale.

  7. Visual comfort of 3-D TV : models and measurements

    NARCIS (Netherlands)

    Lambooij, M.T.M.

    2012-01-01

    The embracing of 3-D movies by Hollywood and fast LCD panels finally enable the home consumer market to start successful campaigns to get 3-D movies and games in the comfort of the living room. By introducing three-dimensional television (3-D TV) and its desktop-counterpart for gaming and internet

  8. [Dynamic study of the female levator ani muscle using MRI 3D vectorial modeling].

    Science.gov (United States)

    Delmas, Vincent; Ami, Olivier; Iba-Zizen, Marie-Thérèse

    2010-06-01

    The levator ani muscle has a major role in the female pelvic floor, and is involved in the pathophysiology of pelvic prolapse and stress urinary incontinence. We conducted an anatomical and morphological study of this muscle using dynamic 3D vectorial reconstruction MRI, in order to analyze the contraction of two major components of the levator ani: the iliococcygeus and pubococcygeus. Three volunteer healthy continent nulliparous women aged from 19 to 22 underwent dynamic pelvic MRI. Coronal T2-weighted pelvic images were obtained in the supine position, at rest, holding back, and during Valsalva stress effort. 3D vectorial models were reconstructed by manual segmentation of the source images, and were set up on bony anatomic marks. Iliococcygeus and pubococcygeus volumes were measured in the three positions. Volumetrics, displacement and dynamic morphing changes were analyzed with 3D vectorial animation software. The urogenital hiatus extended more holding back (mean +4.31 mm) than on effort (mean +2.78 mm). The iliococcygeus lowered (mean -3.95 mm) and deviated outward (mean +3.01 mm). The basic tone of the iliococcygeus muscle gives it a dome shape, and its reflex contraction against abdominal strain ensures anal and urinary continence The levator ani is more than a pelvic diaphragm: it is a truly dynamic pelvic floor. Its points of support on the stiff osseous frame allow it to retain the pelvic organs. The levator ani muscle seems to prevent anal prolapse during stress strain.

  9. 3D vadose zone modeling using geostatistical inferences

    International Nuclear Information System (INIS)

    Knutson, C.F.; Lee, C.B.

    1991-01-01

    In developing a 3D model of the 600 ft thick interbedded basalt and sediment complex that constitutes the vadose zone at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL) geostatistical data were captured for 12--15 parameters (e.g. permeability, porosity, saturation, etc. and flow height, flow width, flow internal zonation, etc.). This two scale data set was generated from studies of subsurface core and geophysical log suites at RWMC and from surface outcrop exposures located at the Box Canyon of the Big Lost River and from Hell's Half Acre lava field all located in the general RWMC area. Based on these currently available data, it is possible to build a 3D stochastic model that utilizes: cumulative distribution functions obtained from the geostatistical data; backstripping and rebuilding of stratigraphic units; an ''expert'' system that incorporates rules based on expert geologic analysis and experimentally derived geostatistics for providing: (a) a structural and isopach map of each layer, (b) a realization of the flow geometry of each basalt flow unit, and (c) a realization of the internal flow parameters (eg permeability, porosity, and saturation) for each flow. 10 refs., 4 figs., 1 tab

  10. A 3-D model of tumor progression based on complex automata driven by particle dynamics.

    Science.gov (United States)

    Wcisło, Rafał; Dzwinel, Witold; Yuen, David A; Dudek, Arkadiusz Z

    2009-12-01

    The dynamics of a growing tumor involving mechanical remodeling of healthy tissue and vasculature is neglected in most of the existing tumor models. This is due to the lack of efficient computational framework allowing for simulation of mechanical interactions. Meanwhile, just these interactions trigger critical changes in tumor growth dynamics and are responsible for its volumetric and directional progression. We describe here a novel 3-D model of tumor growth, which combines particle dynamics with cellular automata concept. The particles represent both tissue cells and fragments of the vascular network. They interact with their closest neighbors via semi-harmonic central forces simulating mechanical resistance of the cell walls. The particle dynamics is governed by both the Newtonian laws of motion and the cellular automata rules. These rules can represent cell life-cycle and other biological interactions involving smaller spatio-temporal scales. We show that our complex automata, particle based model can reproduce realistic 3-D dynamics of the entire system consisting of the tumor, normal tissue cells, blood vessels and blood flow. It can explain phenomena such as the inward cell motion in avascular tumor, stabilization of tumor growth by the external pressure, tumor vascularization due to the process of angiogenesis, trapping of healthy cells by invading tumor, and influence of external (boundary) conditions on the direction of tumor progression. We conclude that the particle model can serve as a general framework for designing advanced multiscale models of tumor dynamics and it is very competitive to the modeling approaches presented before.

  11. Topological order in an exactly solvable 3D spin model

    International Nuclear Information System (INIS)

    Bravyi, Sergey; Leemhuis, Bernhard; Terhal, Barbara M.

    2011-01-01

    Research highlights: RHtriangle We study exactly solvable spin model with six-qubit nearest neighbor interactions on a 3D face centered cubic lattice. RHtriangle The ground space of the model exhibits topological quantum order. RHtriangle Elementary excitations can be geometrically described as the corners of rectangular-shaped membranes. RHtriangle The ground space can encode 4g qubits where g is the greatest common divisor of the lattice dimensions. RHtriangle Logical operators acting on the encoded qubits are described in terms of closed strings and closed membranes. - Abstract: We study a 3D generalization of the toric code model introduced recently by Chamon. This is an exactly solvable spin model with six-qubit nearest-neighbor interactions on an FCC lattice whose ground space exhibits topological quantum order. The elementary excitations of this model which we call monopoles can be geometrically described as the corners of rectangular-shaped membranes. We prove that the creation of an isolated monopole separated from other monopoles by a distance R requires an operator acting on Ω(R 2 ) qubits. Composite particles that consist of two monopoles (dipoles) and four monopoles (quadrupoles) can be described as end-points of strings. The peculiar feature of the model is that dipole-type strings are rigid, that is, such strings must be aligned with face-diagonals of the lattice. For periodic boundary conditions the ground space can encode 4g qubits where g is the greatest common divisor of the lattice dimensions. We describe a complete set of logical operators acting on the encoded qubits in terms of closed strings and closed membranes.

  12. Geographic Video 3d Data Model And Retrieval

    Science.gov (United States)

    Han, Z.; Cui, C.; Kong, Y.; Wu, H.

    2014-04-01

    Geographic video includes both spatial and temporal geographic features acquired through ground-based or non-ground-based cameras. With the popularity of video capture devices such as smartphones, the volume of user-generated geographic video clips has grown significantly and the trend of this growth is quickly accelerating. Such a massive and increasing volume poses a major challenge to efficient video management and query. Most of the today's video management and query techniques are based on signal level content extraction. They are not able to fully utilize the geographic information of the videos. This paper aimed to introduce a geographic video 3D data model based on spatial information. The main idea of the model is to utilize the location, trajectory and azimuth information acquired by sensors such as GPS receivers and 3D electronic compasses in conjunction with video contents. The raw spatial information is synthesized to point, line, polygon and solid according to the camcorder parameters such as focal length and angle of view. With the video segment and video frame, we defined the three categories geometry object using the geometry model of OGC Simple Features Specification for SQL. We can query video through computing the spatial relation between query objects and three categories geometry object such as VFLocation, VSTrajectory, VSFOView and VFFovCone etc. We designed the query methods using the structured query language (SQL) in detail. The experiment indicate that the model is a multiple objective, integration, loosely coupled, flexible and extensible data model for the management of geographic stereo video.

  13. Active Exploration of Large 3D Model Repositories.

    Science.gov (United States)

    Gao, Lin; Cao, Yan-Pei; Lai, Yu-Kun; Huang, Hao-Zhi; Kobbelt, Leif; Hu, Shi-Min

    2015-12-01

    With broader availability of large-scale 3D model repositories, the need for efficient and effective exploration becomes more and more urgent. Existing model retrieval techniques do not scale well with the size of the database since often a large number of very similar objects are returned for a query, and the possibilities to refine the search are quite limited. We propose an interactive approach where the user feeds an active learning procedure by labeling either entire models or parts of them as "like" or "dislike" such that the system can automatically update an active set of recommended models. To provide an intuitive user interface, candidate models are presented based on their estimated relevance for the current query. From the methodological point of view, our main contribution is to exploit not only the similarity between a query and the database models but also the similarities among the database models themselves. We achieve this by an offline pre-processing stage, where global and local shape descriptors are computed for each model and a sparse distance metric is derived that can be evaluated efficiently even for very large databases. We demonstrate the effectiveness of our method by interactively exploring a repository containing over 100 K models.

  14. An initial study on the estimation of time-varying volumetric treatment images and 3D tumor localization from single MV cine EPID images

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Pankaj, E-mail: pankaj.mishra@varian.com; Mak, Raymond H.; Rottmann, Joerg; Bryant, Jonathan H.; Williams, Christopher L.; Berbeco, Ross I.; Lewis, John H. [Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Li, Ruijiang [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305 (United States)

    2014-08-15

    Purpose: In this work the authors develop and investigate the feasibility of a method to estimate time-varying volumetric images from individual MV cine electronic portal image device (EPID) images. Methods: The authors adopt a two-step approach to time-varying volumetric image estimation from a single cine EPID image. In the first step, a patient-specific motion model is constructed from 4DCT. In the second step, parameters in the motion model are tuned according to the information in the EPID image. The patient-specific motion model is based on a compact representation of lung motion represented in displacement vector fields (DVFs). DVFs are calculated through deformable image registration (DIR) of a reference 4DCT phase image (typically peak-exhale) to a set of 4DCT images corresponding to different phases of a breathing cycle. The salient characteristics in the DVFs are captured in a compact representation through principal component analysis (PCA). PCA decouples the spatial and temporal components of the DVFs. Spatial information is represented in eigenvectors and the temporal information is represented by eigen-coefficients. To generate a new volumetric image, the eigen-coefficients are updated via cost function optimization based on digitally reconstructed radiographs and projection images. The updated eigen-coefficients are then multiplied with the eigenvectors to obtain updated DVFs that, in turn, give the volumetric image corresponding to the cine EPID image. Results: The algorithm was tested on (1) Eight digital eXtended CArdiac-Torso phantom datasets based on different irregular patient breathing patterns and (2) patient cine EPID images acquired during SBRT treatments. The root-mean-squared tumor localization error is (0.73 ± 0.63 mm) for the XCAT data and (0.90 ± 0.65 mm) for the patient data. Conclusions: The authors introduced a novel method of estimating volumetric time-varying images from single cine EPID images and a PCA-based lung motion model

  15. Turning limited experimental information into 3D models of RNA.

    Science.gov (United States)

    Flores, Samuel Coulbourn; Altman, Russ B

    2010-09-01

    Our understanding of RNA functions in the cell is evolving rapidly. As for proteins, the detailed three-dimensional (3D) structure of RNA is often key to understanding its function. Although crystallography and nuclear magnetic resonance (NMR) can determine the atomic coordinates of some RNA structures, many 3D structures present technical challenges that make these methods difficult to apply. The great flexibility of RNA, its charged backbone, dearth of specific surface features, and propensity for kinetic traps all conspire with its long folding time, to challenge in silico methods for physics-based folding. On the other hand, base-pairing interactions (either in runs to form helices or isolated tertiary contacts) and motifs are often available from relatively low-cost experiments or informatics analyses. We present RNABuilder, a novel code that uses internal coordinate mechanics to satisfy user-specified base pairing and steric forces under chemical constraints. The code recapitulates the topology and characteristic L-shape of tRNA and obtains an accurate noncrystallographic structure of the Tetrahymena ribozyme P4/P6 domain. The algorithm scales nearly linearly with molecule size, opening the door to the modeling of significantly larger structures.

  16. View subspaces for indexing and retrieval of 3D models

    Science.gov (United States)

    Dutagaci, Helin; Godil, Afzal; Sankur, Bülent; Yemez, Yücel

    2010-02-01

    View-based indexing schemes for 3D object retrieval are gaining popularity since they provide good retrieval results. These schemes are coherent with the theory that humans recognize objects based on their 2D appearances. The viewbased techniques also allow users to search with various queries such as binary images, range images and even 2D sketches. The previous view-based techniques use classical 2D shape descriptors such as Fourier invariants, Zernike moments, Scale Invariant Feature Transform-based local features and 2D Digital Fourier Transform coefficients. These methods describe each object independent of others. In this work, we explore data driven subspace models, such as Principal Component Analysis, Independent Component Analysis and Nonnegative Matrix Factorization to describe the shape information of the views. We treat the depth images obtained from various points of the view sphere as 2D intensity images and train a subspace to extract the inherent structure of the views within a database. We also show the benefit of categorizing shapes according to their eigenvalue spread. Both the shape categorization and data-driven feature set conjectures are tested on the PSB database and compared with the competitor view-based 3D shape retrieval algorithms.

  17. Measurement of Laser Weld Temperatures for 3D Model Input

    Energy Technology Data Exchange (ETDEWEB)

    Dagel, Daryl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grossetete, Grant [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Maccallum, Danny O. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    Laser welding is a key joining process used extensively in the manufacture and assembly of critical components for several weapons systems. Sandia National Laboratories advances the understanding of the laser welding process through coupled experimentation and modeling. This report summarizes the experimental portion of the research program, which focused on measuring temperatures and thermal history of laser welds on steel plates. To increase confidence in measurement accuracy, researchers utilized multiple complementary techniques to acquire temperatures during laser welding. This data serves as input to and validation of 3D laser welding models aimed at predicting microstructure and the formation of defects and their impact on weld-joint reliability, a crucial step in rapid prototyping of weapons components.

  18. Towards the graviton from spinfoams: the 3d toy model

    International Nuclear Information System (INIS)

    Speziale, Simone

    2006-01-01

    Recently, a proposal has appeared for the extraction of the 2-point function of linearised quantum gravity, within the spinfoam formalism. This relies on the use of a boundary state, which introduces a semi-classical flat geometry on the boundary. In this paper, we investigate this proposal considering a toy model in the (Riemannian) 3d case, where the semi-classical limit is better understood. We show that in this limit the propagation kernel of the model is the one for the harmonic oscillator. This is at the origin of the expected 1/l behaviour of the 2-point function. Furthermore, we numerically study the short scales regime, where deviations from this behaviour occur

  19. String effects in the 3d gauge Ising model

    International Nuclear Information System (INIS)

    Caselle, Michele; Panero, Marco; Hasenbusch, Martin

    2003-01-01

    We compare the predictions of the effective string description of confinement with a set of Monte Carlo data for the 3d gauge Ising model at finite temperature. Thanks to a new algorithm which makes use of the dual symmetry of the model we can reach very high precisions even for large quark-antiquark distances. We are thus able to explore the large R regime of the effective string. We find that for large enough distances and low enough temperature the data are well described by a pure bosonic string. As the temperature increases higher order corrections become important and cannot be neglected even at large distances. These higher order corrections seem to be well described by the Nambu-Goto action truncated at the first perturbative order. (author)

  20. Modeling tree crown dynamics with 3D partial differential equations.

    Science.gov (United States)

    Beyer, Robert; Letort, Véronique; Cournède, Paul-Henry

    2014-01-01

    We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth toward light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications.

  1. Correlation between gamma index passing rate and clinical dosimetric difference for pre-treatment 2D and 3D volumetric modulated arc therapy dosimetric verification.

    Science.gov (United States)

    Jin, X; Yan, H; Han, C; Zhou, Y; Yi, J; Xie, C

    2015-03-01

    To investigate comparatively the percentage gamma passing rate (%GP) of two-dimensional (2D) and three-dimensional (3D) pre-treatment volumetric modulated arc therapy (VMAT) dosimetric verification and their correlation and sensitivity with percentage dosimetric errors (%DE). %GP of 2D and 3D pre-treatment VMAT quality assurance (QA) with different acceptance criteria was obtained by ArcCHECK® (Sun Nuclear Corporation, Melbourne, FL) for 20 patients with nasopharyngeal cancer (NPC) and 20 patients with oesophageal cancer. %DE were calculated from planned dose-volume histogram (DVH) and patients' predicted DVH calculated by 3DVH® software (Sun Nuclear Corporation). Correlation and sensitivity between %GP and %DE were investigated using Pearson's correlation coefficient (r) and receiver operating characteristics (ROCs). Relatively higher %DE on some DVH-based metrics were observed for both patients with NPC and oesophageal cancer. Except for 2%/2 mm criterion, the average %GPs for all patients undergoing VMAT were acceptable with average rates of 97.11% ± 1.54% and 97.39% ± 1.37% for 2D and 3D 3%/3 mm criteria, respectively. The number of correlations for 3D was higher than that for 2D (21 vs 8). However, the general correlation was still poor for all the analysed metrics (9 out of 26 for 3D 3%/3 mm criterion). The average area under the curve (AUC) of ROCs was 0.66 ± 0.12 and 0.71 ± 0.21 for 2D and 3D evaluations, respectively. There is a lack of correlation between %GP and %DE for both 2D and 3D pre-treatment VMAT dosimetric evaluation. DVH-based dose metrics evaluation obtained from 3DVH will provide more useful analysis. Correlation and sensitivity of %GP with %DE for VMAT QA were studied for the first time.

  2. Advanced prior modeling for 3D bright field electron tomography

    Science.gov (United States)

    Sreehari, Suhas; Venkatakrishnan, S. V.; Drummy, Lawrence F.; Simmons, Jeffrey P.; Bouman, Charles A.

    2015-03-01

    Many important imaging problems in material science involve reconstruction of images containing repetitive non-local structures. Model-based iterative reconstruction (MBIR) could in principle exploit such redundancies through the selection of a log prior probability term. However, in practice, determining such a log prior term that accounts for the similarity between distant structures in the image is quite challenging. Much progress has been made in the development of denoising algorithms like non-local means and BM3D, and these are known to successfully capture non-local redundancies in images. But the fact that these denoising operations are not explicitly formulated as cost functions makes it unclear as to how to incorporate them in the MBIR framework. In this paper, we formulate a solution to bright field electron tomography by augmenting the existing bright field MBIR method to incorporate any non-local denoising operator as a prior model. We accomplish this using a framework we call plug-and-play priors that decouples the log likelihood and the log prior probability terms in the MBIR cost function. We specifically use 3D non-local means (NLM) as the prior model in the plug-and-play framework, and showcase high quality tomographic reconstructions of a simulated aluminum spheres dataset, and two real datasets of aluminum spheres and ferritin structures. We observe that streak and smear artifacts are visibly suppressed, and that edges are preserved. Also, we report lower RMSE values compared to the conventional MBIR reconstruction using qGGMRF as the prior model.

  3. A QUADTREE ORGANIZATION CONSTRUCTION AND SCHEDULING METHOD FOR URBAN 3D MODEL BASED ON WEIGHT

    OpenAIRE

    C. Yao; G. Peng; Y. Song; M. Duan

    2017-01-01

    The increasement of Urban 3D model precision and data quantity puts forward higher requirements for real-time rendering of digital city model. Improving the organization, management and scheduling of 3D model data in 3D digital city can improve the rendering effect and efficiency. This paper takes the complexity of urban models into account, proposes a Quadtree construction and scheduling rendering method for Urban 3D model based on weight. Divide Urban 3D model into different rendering weigh...

  4. Collaboration of 3D context and extracellular matrix in the development of glioma stemness in a 3D model.

    Science.gov (United States)

    Ma, Nina K L; Lim, Jia Kai; Leong, Meng Fatt; Sandanaraj, Edwin; Ang, Beng Ti; Tang, Carol; Wan, Andrew C A

    2016-02-01

    A hierarchy of cellular stemness exists in certain cancers, and any successful strategy to treat such cancers would have to eliminate the self-renewing tumor-initiating cells at the apex of the hierarchy. The cellular microenvironment, in particular the extracellular matrix (ECM), is believed to have a role in regulating stemness. In this work, U251 glioblastoma cells are cultured on electrospun polystyrene (ESPS) scaffolds coated with an array of 7 laminin isoforms to provide a 3D model for stem cell-related genes and proteins expression studies. We observed collaboration between 3D context and laminins in promoting glioma stemness. Depending on the laminin isoform presented, U251 cells cultured on ESPS scaffolds (3D) exhibited increased expression of stemness markers compared to those cultured on tissue culture polystyrene (2D). Our results indicate the influence of 3D (versus 2D) context on integrin expression, specifically, the upregulation of the laminin-binding integrins alpha 6 and beta 4. By a colony forming assay, we showed enhanced clonogenicity of cells grown on ESPS scaffolds in collaboration with laminins 411, 421, 511 and 521. Evaluation of patient glioma databases demonstrated significant enrichment of integrin and ECM pathway networks in tumors of worse prognosis, consistent with our observations. The present results demonstrate how 3D versus 2D context profoundly affects ECM signaling, leading to stemness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Brandenburg 3D - a comprehensive 3D Subsurface Model, Conception of an Infrastructure Node and a Web Application

    Science.gov (United States)

    Kerschke, Dorit; Schilling, Maik; Simon, Andreas; Wächter, Joachim

    2014-05-01

    The Energiewende and the increasing scarcity of raw materials will lead to an intensified utilization of the subsurface in Germany. Within this context, geological 3D modeling is a fundamental approach for integrated decision and planning processes. Initiated by the development of the European Geospatial Infrastructure INSPIRE, the German State Geological Offices started digitizing their predominantly analog archive inventory. Until now, a comprehensive 3D subsurface model of Brandenburg did not exist. Therefore the project B3D strived to develop a new 3D model as well as a subsequent infrastructure node to integrate all geological and spatial data within the Geodaten-Infrastruktur Brandenburg (Geospatial Infrastructure, GDI-BB) and provide it to the public through an interactive 2D/3D web application. The functionality of the web application is based on a client-server architecture. Server-sided, all available spatial data is published through GeoServer. GeoServer is designed for interoperability and acts as the reference implementation of the Open Geospatial Consortium (OGC) Web Feature Service (WFS) standard that provides the interface that allows requests for geographical features. In addition, GeoServer implements, among others, the high performance certified compliant Web Map Service (WMS) that serves geo-referenced map images. For publishing 3D data, the OGC Web 3D Service (W3DS), a portrayal service for three-dimensional geo-data, is used. The W3DS displays elements representing the geometry, appearance, and behavior of geographic objects. On the client side, the web application is solely based on Free and Open Source Software and leans on the JavaScript API WebGL that allows the interactive rendering of 2D and 3D graphics by means of GPU accelerated usage of physics and image processing as part of the web page canvas without the use of plug-ins. WebGL is supported by most web browsers (e.g., Google Chrome, Mozilla Firefox, Safari, and Opera). The web

  6. 3D GIS FOR FLOOD MODELLING IN RIVER VALLEYS

    Directory of Open Access Journals (Sweden)

    P. Tymkow

    2016-06-01

    Full Text Available The objective of this study is implementation of system architecture for collecting and analysing data as well as visualizing results for hydrodynamic modelling of flood flows in river valleys using remote sensing methods, tree-dimensional geometry of spatial objects and GPU multithread processing. The proposed solution includes: spatial data acquisition segment, data processing and transformation, mathematical modelling of flow phenomena and results visualization. Data acquisition segment was based on aerial laser scanning supplemented by images in visible range. Vector data creation was based on automatic and semiautomatic algorithms of DTM and 3D spatial features modelling. Algorithms for buildings and vegetation geometry modelling were proposed or adopted from literature. The implementation of the framework was designed as modular software using open specifications and partially reusing open source projects. The database structure for gathering and sharing vector data, including flood modelling results, was created using PostgreSQL. For the internal structure of feature classes of spatial objects in a database, the CityGML standard was used. For the hydrodynamic modelling the solutions of Navier-Stokes equations in two-dimensional version was implemented. Visualization of geospatial data and flow model results was transferred to the client side application. This gave the independence from server hardware platform. A real-world case in Poland, which is a part of Widawa River valley near Wroclaw city, was selected to demonstrate the applicability of proposed system.

  7. New Directions in 3D Medical Modeling: 3D-Printing Anatomy and Functions in Neurosurgical Planning

    Science.gov (United States)

    Árnadóttir, Íris; Gíslason, Magnús; Ólafsson, Ingvar

    2017-01-01

    This paper illustrates the feasibility and utility of combining cranial anatomy and brain function on the same 3D-printed model, as evidenced by a neurosurgical planning case study of a 29-year-old female patient with a low-grade frontal-lobe glioma. We herein report the rapid prototyping methodology utilized in conjunction with surgical navigation to prepare and plan a complex neurosurgery. The method introduced here combines CT and MRI images with DTI tractography, while using various image segmentation protocols to 3D model the skull base, tumor, and five eloquent fiber tracts. This 3D model is rapid-prototyped and coregistered with patient images and a reported surgical navigation system, establishing a clear link between the printed model and surgical navigation. This methodology highlights the potential for advanced neurosurgical preparation, which can begin before the patient enters the operation theatre. Moreover, the work presented here demonstrates the workflow developed at the National University Hospital of Iceland, Landspitali, focusing on the processes of anatomy segmentation, fiber tract extrapolation, MRI/CT registration, and 3D printing. Furthermore, we present a qualitative and quantitative assessment for fiber tract generation in a case study where these processes are applied in the preparation of brain tumor resection surgery. PMID:29065569

  8. New Directions in 3D Medical Modeling: 3D-Printing Anatomy and Functions in Neurosurgical Planning

    Directory of Open Access Journals (Sweden)

    Paolo Gargiulo

    2017-01-01

    Full Text Available This paper illustrates the feasibility and utility of combining cranial anatomy and brain function on the same 3D-printed model, as evidenced by a neurosurgical planning case study of a 29-year-old female patient with a low-grade frontal-lobe glioma. We herein report the rapid prototyping methodology utilized in conjunction with surgical navigation to prepare and plan a complex neurosurgery. The method introduced here combines CT and MRI images with DTI tractography, while using various image segmentation protocols to 3D model the skull base, tumor, and five eloquent fiber tracts. This 3D model is rapid-prototyped and coregistered with patient images and a reported surgical navigation system, establishing a clear link between the printed model and surgical navigation. This methodology highlights the potential for advanced neurosurgical preparation, which can begin before the patient enters the operation theatre. Moreover, the work presented here demonstrates the workflow developed at the National University Hospital of Iceland, Landspitali, focusing on the processes of anatomy segmentation, fiber tract extrapolation, MRI/CT registration, and 3D printing. Furthermore, we present a qualitative and quantitative assessment for fiber tract generation in a case study where these processes are applied in the preparation of brain tumor resection surgery.

  9. 3D model generation using an airborne swarm

    Energy Technology Data Exchange (ETDEWEB)

    Clark, R. A.; Punzo, G.; Macdonald, M. [Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Dobie, G.; MacLeod, C. N.; Summan, R.; Pierce, G. [Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Bolton, G. [National Nuclear Laboratory Limited, Chadwick House, Warrington Road, Birchwood Park, Warrington, WA3 6AE (United Kingdom)

    2015-03-31

    Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm’s computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.

  10. 3D model generation using an airborne swarm

    International Nuclear Information System (INIS)

    Clark, R. A.; Punzo, G.; Macdonald, M.; Dobie, G.; MacLeod, C. N.; Summan, R.; Pierce, G.; Bolton, G.

    2015-01-01

    Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm’s computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced

  11. Optimized volumetric modulated arc therapy versus 3D-CRT for early stage mediastinal Hodgkin lymphoma without axillary involvement: a comparison of second cancers and heart disease risk.

    Science.gov (United States)

    Filippi, Andrea Riccardo; Ragona, Riccardo; Piva, Cristina; Scafa, Davide; Fiandra, Christian; Fusella, Marco; Giglioli, Francesca Romana; Lohr, Frank; Ricardi, Umberto

    2015-05-01

    The purpose of this study was to evaluate the risks of second cancers and cardiovascular diseases associated with an optimized volumetric modulated arc therapy (VMAT) planning solution in a selected cohort of stage I/II Hodgkin lymphoma (HL) patients treated with either involved-node or involved-site radiation therapy in comparison with 3-dimensional conformal radiation therapy (3D-CRT). Thirty-eight patients (13 males and 25 females) were included. Disease extent was mediastinum alone (n=8, 21.1%); mediastinum plus unilateral neck (n=19, 50%); mediastinum plus bilateral neck (n=11, 29.9%). Prescription dose was 30 Gy in 2-Gy fractions. Only 5 patients had mediastinal bulky disease at diagnosis (13.1%). Anteroposterior 3D-CRT was compared with a multiarc optimized VMAT solution. Lung, breast, and thyroid cancer risks were estimated by calculating a lifetime attributable risk (LAR), with a LAR ratio (LAR(VMAT)-to-LAR(3D-CRT)) as a comparative measure. Cardiac toxicity risks were estimated by calculating absolute excess risk (AER). The LAR ratio favored 3D-CRT for lung cancer induction risk in mediastinal alone (P=.004) and mediastinal plus unilateral neck (P=.02) presentations. LAR ratio for breast cancer was lower for VMAT in mediastinal plus bilateral neck presentations (P=.02), without differences for other sites. For thyroid cancer, no significant differences were observed, regardless of anatomical presentation. A significantly lower AER of cardiac (P=.038) and valvular diseases (Pdisease extent. In a cohort of patients with favorable characteristics in terms of disease extent at diagnosis (large prevalence of nonbulky presentations without axillary involvement), optimized VMAT reduced heart disease risk with comparable risks of thyroid and breast cancer, with an increase in lung cancer induction probability. The results are however strongly influenced by the different anatomical presentations, supporting an individualized approach. Copyright © 2015 Elsevier

  12. Prediction of spontaneous ureteral stone passage: Automated 3D-measurements perform equal to radiologists, and linear measurements equal to volumetric.

    Science.gov (United States)

    Jendeberg, Johan; Geijer, Håkan; Alshamari, Muhammed; Lidén, Mats

    2018-01-24

    To compare the ability of different size estimates to predict spontaneous passage of ureteral stones using a 3D-segmentation and to investigate the impact of manual measurement variability on the prediction of stone passage. We retrospectively included 391 consecutive patients with ureteral stones on non-contrast-enhanced CT (NECT). Three-dimensional segmentation size estimates were compared to the mean of three radiologists' measurements. Receiver-operating characteristic (ROC) analysis was performed for the prediction of spontaneous passage for each estimate. The difference in predicted passage probability between the manual estimates in upper and lower stones was compared. The area under the ROC curve (AUC) for the measurements ranged from 0.88 to 0.90. Between the automated 3D algorithm and the manual measurements the 95% limits of agreement were 0.2 ± 1.4 mm for the width. The manual bone window measurements resulted in a > 20 percentage point (ppt) difference between the readers in the predicted passage probability in 44% of the upper and 6% of the lower ureteral stones. All automated 3D algorithm size estimates independently predicted the spontaneous stone passage with similar high accuracy as the mean of three readers' manual linear measurements. Manual size estimation of upper stones showed large inter-reader variations for spontaneous passage prediction. • An automated 3D technique predicts spontaneous stone passage with high accuracy. • Linear, areal and volumetric measurements performed similarly in predicting stone passage. • Reader variability has a large impact on the predicted prognosis for stone passage.

  13. Optimized Volumetric Modulated Arc Therapy Versus 3D-CRT for Early Stage Mediastinal Hodgkin Lymphoma Without Axillary Involvement: A Comparison of Second Cancers and Heart Disease Risk

    Energy Technology Data Exchange (ETDEWEB)

    Filippi, Andrea Riccardo, E-mail: andreariccardo.filippi@unito.it [Department of Oncology, Radiation Oncology, University of Torino, Torino (Italy); Ragona, Riccardo; Piva, Cristina; Scafa, Davide; Fiandra, Christian [Department of Oncology, Radiation Oncology, University of Torino, Torino (Italy); Fusella, Marco; Giglioli, Francesca Romana [Medical Physics, AOU Città della Salute e della Scienza Hospital, Torino (Italy); Lohr, Frank [Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); Ricardi, Umberto [Department of Oncology, Radiation Oncology, University of Torino, Torino (Italy)

    2015-05-01

    Purpose: The purpose of this study was to evaluate the risks of second cancers and cardiovascular diseases associated with an optimized volumetric modulated arc therapy (VMAT) planning solution in a selected cohort of stage I/II Hodgkin lymphoma (HL) patients treated with either involved-node or involved-site radiation therapy in comparison with 3-dimensional conformal radiation therapy (3D-CRT). Methods and Materials: Thirty-eight patients (13 males and 25 females) were included. Disease extent was mediastinum alone (n=8, 21.1%); mediastinum plus unilateral neck (n=19, 50%); mediastinum plus bilateral neck (n=11, 29.9%). Prescription dose was 30 Gy in 2-Gy fractions. Only 5 patients had mediastinal bulky disease at diagnosis (13.1%). Anteroposterior 3D-CRT was compared with a multiarc optimized VMAT solution. Lung, breast, and thyroid cancer risks were estimated by calculating a lifetime attributable risk (LAR), with a LAR ratio (LAR{sub VMAT}-to-LAR{sub 3D-CRT}) as a comparative measure. Cardiac toxicity risks were estimated by calculating absolute excess risk (AER). Results: The LAR ratio favored 3D-CRT for lung cancer induction risk in mediastinal alone (P=.004) and mediastinal plus unilateral neck (P=.02) presentations. LAR ratio for breast cancer was lower for VMAT in mediastinal plus bilateral neck presentations (P=.02), without differences for other sites. For thyroid cancer, no significant differences were observed, regardless of anatomical presentation. A significantly lower AER of cardiac (P=.038) and valvular diseases (P<.0001) was observed for VMAT regardless of disease extent. Conclusions: In a cohort of patients with favorable characteristics in terms of disease extent at diagnosis (large prevalence of nonbulky presentations without axillary involvement), optimized VMAT reduced heart disease risk with comparable risks of thyroid and breast cancer, with an increase in lung cancer induction probability. The results are however strongly influenced by

  14. Interest of the steady state free precession (SSFP) sequence for 3D modeling of the whole fetus.

    Science.gov (United States)

    Anquez, J; Angelini, E; Bloch, I; Merzoug, V; Bellaiche-Millischer, A E; Adamsbaum, C

    2007-01-01

    Fetal magnetic resonance imaging (MRI) has been gaining interest over the last two decades. Current fast MRI sequences provide imaging data of the whole uterus in less than 20 seconds, avoiding fetal motion related artifacts without any maternal or fetal sedation. MRI has proved to be a useful adjunct to echographic screening for prenatal diagnosis. However, MRI volumetric data is still mainly interpreted on 2D slices and 3D applications remain limited. In this paper, we discuss the qualities of the SSFP MRI sequences to provide adequate data for 3D segmentation and modeling of the fetus. Potential exploitations of 3D segmentation and derived anatomical models cover several domains: biometric and morphologic clinical studies, quantitative longitudinal studies of normal and abnormal fetus developments, direct visualization of the overall fetus body and simulations in different fields (surgery, radiation dosimetry,...).

  15. Energy flow in passive and active 3D cochlear model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanli; Steele, Charles [Department of Mechanical Engineering, Stanford University, Stanford, California (United States); Puria, Sunil [Department of Mechanical Engineering, Stanford University, Stanford, California (United States); Department of Otolaryngology, Head and Neck Surgery, Stanford University, Stanford, California (United States)

    2015-12-31

    Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.

  16. Energy flow in passive and active 3D cochlear model

    International Nuclear Information System (INIS)

    Wang, Yanli; Steele, Charles; Puria, Sunil

    2015-01-01

    Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations

  17. Focus for 3D city models should be on interoperability

    DEFF Research Database (Denmark)

    Bodum, Lars; Kjems, Erik; Jaegly, Marie Michele Helena

    2006-01-01

    that would make it useful for other purposes than visualisation. Time has come to try to change this trend and to convince the municipalities that interoperability and semantics are important issues for the future. It is important for them to see that 3D modelling, mapping and geographic information...... developments in Geographical Exploration Systems. Centralized and proprietary Geographical Exploration Systems only give us their own perspective on the world. On the contrary, GRIFINOR is decentralized and available for everyone to use, empowering people to promote their own world vision....... are subjects on the same agenda towards an integrated solution for an object-oriented mapping of multidimensional geographic objects in the urban environment. Many relevant subjects could be discussed regarding these matters, but in this paper we will narrow the discussion down to the ideas behind...

  18. Beyond Virtual Replicas: 3D Modeling and Maltese Prehistoric Architecture

    Directory of Open Access Journals (Sweden)

    Filippo Stanco

    2013-01-01

    Full Text Available In the past decade, computer graphics have become strategic for the development of projects aimed at the interpretation of archaeological evidence and the dissemination of scientific results to the public. Among all the solutions available, the use of 3D models is particularly relevant for the reconstruction of poorly preserved sites and monuments destroyed by natural causes or human actions. These digital replicas are, at the same time, a virtual environment that can be used as a tool for the interpretative hypotheses of archaeologists and as an effective medium for a visual description of the cultural heritage. In this paper, the innovative methodology and aims and outcomes of a virtual reconstruction of the Borg in-Nadur megalithic temple, carried out by Archeomatica Project of the University of Catania, are offered as a case study for a virtual archaeology of prehistoric Malta.

  19. Coupling of the 3D neutron kinetic core model DYN3D with the CFD software ANSYS-CFX

    International Nuclear Information System (INIS)

    Grahn, Alexander; Kliem, Sören; Rohde, Ulrich

    2015-01-01

    Highlights: • Improved thermal hydraulic description of nuclear reactor cores. • Possibility of three-dimensional flow phenomena in the core, such as cross flow, flow reversal, flow around obstacles. • Simulation at higher spatial resolution as compared to system codes. - Abstract: This article presents the implementation of a coupling between the 3D neutron kinetic core model DYN3D and the commercial, general purpose computational fluid dynamics (CFD) software ANSYS-CFX. In the coupling approach, parts of the thermal hydraulic calculation are transferred to CFX for its better ability to simulate the three-dimensional coolant redistribution in the reactor core region. The calculation of the heat transfer from the fuel into the coolant remains with DYN3D, which incorporates well tested and validated heat transfer models for rod-type fuel elements. On the CFX side, the core region is modeled based on the porous body approach. The implementation of the code coupling is verified by comparing test case results with reference solutions of the DYN3D standalone version. Test cases cover mini and full core geometries, control rod movement and partial overcooling transients

  20. Towards Automatic Semantic Labelling of 3D City Models

    Science.gov (United States)

    Rook, M.; Biljecki, F.; Diakité, A. A.

    2016-10-01

    The lack of semantic information in many 3D city models is a considerable limiting factor in their use, as a lot of applications rely on semantics. Such information is not always available, since it is not collected at all times, it might be lost due to data transformation, or its lack may be caused by non-interoperability in data integration from other sources. This research is a first step in creating an automatic workflow that semantically labels plain 3D city model represented by a soup of polygons, with semantic and thematic information, as defined in the CityGML standard. The first step involves the reconstruction of the topology, which is used in a region growing algorithm that clusters upward facing adjacent triangles. Heuristic rules, embedded in a decision tree, are used to compute a likeliness score for these regions that either represent the ground (terrain) or a RoofSurface. Regions with a high likeliness score, to one of the two classes, are used to create a decision space, which is used in a support vector machine (SVM). Next, topological relations are utilised to select seeds that function as a start in a region growing algorithm, to create regions of triangles of other semantic classes. The topological relationships of the regions are used in the aggregation of the thematic building features. Finally, the level of detail is detected to generate the correct output in CityGML. The results show an accuracy between 85 % and 99 % in the automatic semantic labelling on four different test datasets. The paper is concluded by indicating problems and difficulties implying the next steps in the research.

  1. Efficient and robust model-to-image alignment using 3D scale-invariant features.

    Science.gov (United States)

    Toews, Matthew; Wells, William M

    2013-04-01

    This paper presents feature-based alignment (FBA), a general method for efficient and robust model-to-image alignment. Volumetric images, e.g. CT scans of the human body, are modeled probabilistically as a collage of 3D scale-invariant image features within a normalized reference space. Features are incorporated as a latent random variable and marginalized out in computing a maximum a posteriori alignment solution. The model is learned from features extracted in pre-aligned training images, then fit to features extracted from a new image to identify a globally optimal locally linear alignment solution. Novel techniques are presented for determining local feature orientation and efficiently encoding feature intensity in 3D. Experiments involving difficult magnetic resonance (MR) images of the human brain demonstrate FBA achieves alignment accuracy similar to widely-used registration methods, while requiring a fraction of the memory and computation resources and offering a more robust, globally optimal solution. Experiments on CT human body scans demonstrate FBA as an effective system for automatic human body alignment where other alignment methods break down. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Empirical Modeling of Spatial 3D Flow Characteristics Using a Remote-Controlled ADCP System: Monitoring a Spring Flood

    Directory of Open Access Journals (Sweden)

    Claude Flener

    2015-01-01

    Full Text Available The use of acoustic Doppler current profilers (ADCP for measuring streamflow and discharge is becoming increasingly widespread. The spatial distribution of flow patterns is useful data in studying riverine habitats and geomorphology. Until now, most flow mapping has focused on measurements along a series of transects in a channel. Here, we set out to measure, model and analyze the 3D flow characteristics of a natural river over a continuous areal extent, quantifying flow velocity, 3D flow directions, volumes, water depth and their changes over time. We achieved multidimensional spatial flow measurements by deploying an ADCP on a remotely-controlled boat, combined with kinematic GNSS positioning and locally-monitored water level data. We processed this data into a 3D point cloud of accurately positioned individual 3D flow measurements that allows the visual analysis of flow velocities, directions and channel morphology in 3D space. We demonstrate how this allows monitoring changes of flow patterns with a time series of flow point clouds measured over the period of a spring flood in Finnish Lapland. Furthermore, interpolating the raw point cloud onto a 3D matrix allows us to quantify volumetric flow while reducing noise in the data. We can now quantify the volumes of water moving at certain velocities in a given reach and their location in 3D space, allowing, for instance, the monitoring of the high-velocity core and its changes over time.

  3. IMAGE TO POINT CLOUD METHOD OF 3D-MODELING

    Directory of Open Access Journals (Sweden)

    A. G. Chibunichev

    2012-07-01

    Full Text Available This article describes the method of constructing 3D models of objects (buildings, monuments based on digital images and a point cloud obtained by terrestrial laser scanner. The first step is the automated determination of exterior orientation parameters of digital image. We have to find the corresponding points of the image and point cloud to provide this operation. Before the corresponding points searching quasi image of point cloud is generated. After that SIFT algorithm is applied to quasi image and real image. SIFT algorithm allows to find corresponding points. Exterior orientation parameters of image are calculated from corresponding points. The second step is construction of the vector object model. Vectorization is performed by operator of PC in an interactive mode using single image. Spatial coordinates of the model are calculated automatically by cloud points. In addition, there is automatic edge detection with interactive editing available. Edge detection is performed on point cloud and on image with subsequent identification of correct edges. Experimental studies of the method have demonstrated its efficiency in case of building facade modeling.

  4. Automatic paper sliceform design from 3D solid models.

    Science.gov (United States)

    Le-Nguyen, Tuong-Vu; Low, Kok-Lim; Ruiz, Conrado; Le, Sang N

    2013-11-01

    A paper sliceform or lattice-style pop-up is a form of papercraft that uses two sets of parallel paper patches slotted together to make a foldable structure. The structure can be folded flat, as well as fully opened (popped-up) to make the two sets of patches orthogonal to each other. Automatic design of paper sliceforms is still not supported by existing computational models and remains a challenge. We propose novel geometric formulations of valid paper sliceform designs that consider the stability, flat-foldability and physical realizability of the designs. Based on a set of sufficient construction conditions, we also present an automatic algorithm for generating valid sliceform designs that closely depict the given 3D solid models. By approximating the input models using a set of generalized cylinders, our method significantly reduces the search space for stable and flat-foldable sliceforms. To ensure the physical realizability of the designs, the algorithm automatically generates slots or slits on the patches such that no two cycles embedded in two different patches are interlocking each other. This guarantees local pairwise assembility between patches, which is empirically shown to lead to global assembility. Our method has been demonstrated on a number of example models, and the output designs have been successfully made into real paper sliceforms.

  5. The 3D model of debriefing: defusing, discovering, and deepening.

    Science.gov (United States)

    Zigmont, Jason J; Kappus, Liana J; Sudikoff, Stephanie N

    2011-04-01

    The experiential learning process involves participation in key experiences and analysis of those experiences. In health care, these experiences can occur through high-fidelity simulation or in the actual clinical setting. The most important component of this process is the postexperience analysis or debriefing. During the debriefing, individuals must reflect upon the experience, identify the mental models that led to behaviors or cognitive processes, and then build or enhance new mental models to be used in future experiences. On the basis of adult learning theory, the Kolb Experiential Learning Cycle, and the Learning Outcomes Model, we structured a framework for facilitators of debriefings entitled "the 3D Model of Debriefing: Defusing, Discovering, and Deepening." It incorporates common phases prevalent in the debriefing literature, including description of and reactions to the experience, analysis of behaviors, and application or synthesis of new knowledge into clinical practice. It can be used to enhance learning after real or simulated events. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Indoor Modelling Benchmark for 3D Geometry Extraction

    Science.gov (United States)

    Thomson, C.; Boehm, J.

    2014-06-01

    A combination of faster, cheaper and more accurate hardware, more sophisticated software, and greater industry acceptance have all laid the foundations for an increased desire for accurate 3D parametric models of buildings. Pointclouds are the data source of choice currently with static terrestrial laser scanning the predominant tool for large, dense volume measurement. The current importance of pointclouds as the primary source of real world representation is endorsed by CAD software vendor acquisitions of pointcloud engines in 2011. Both the capture and modelling of indoor environments require great effort in time by the operator (and therefore cost). Automation is seen as a way to aid this by reducing the workload of the user and some commercial packages have appeared that provide automation to some degree. In the data capture phase, advances in indoor mobile mapping systems are speeding up the process, albeit currently with a reduction in accuracy. As a result this paper presents freely accessible pointcloud datasets of two typical areas of a building each captured with two different capture methods and each with an accurate wholly manually created model. These datasets are provided as a benchmark for the research community to gauge the performance and improvements of various techniques for indoor geometry extraction. With this in mind, non-proprietary, interoperable formats are provided such as E57 for the scans and IFC for the reference model. The datasets can be found at: http://indoor-bench.github.io/indoor-bench.

  7. 3D MODEL GENERATION USING OBLIQUE IMAGES ACQUIRED BY UAV

    Directory of Open Access Journals (Sweden)

    A. Lingua

    2017-07-01

    Full Text Available In recent years, many studies revealed the advantages of using airborne oblique images for obtaining improved 3D city models (including façades and building footprints. Here the acquisition and use of oblique images from a low cost and open source Unmanned Aerial Vehicle (UAV for the 3D high-level-of-detail reconstruction of historical architectures is evaluated. The critical issues of such acquisitions (flight planning strategies, ground control points distribution, etc. are described. Several problems should be considered in the flight planning: best approach to cover the whole object with the minimum time of flight; visibility of vertical structures; occlusions due to the context; acquisition of all the parts of the objects (the closest and the farthest with similar resolution; suitable camera inclination, and so on. In this paper a solution is proposed in order to acquire oblique images with one only flight. The data processing was realized using Structure-from-Motion-based approach for point cloud generation using dense image-matching algorithms implemented in an open source software. The achieved results are analysed considering some check points and some reference LiDAR data. The system was tested for surveying a historical architectonical complex: the “Sacro Mo nte di Varallo Sesia” in north-west of Italy. This study demonstrates that the use of oblique images acquired from a low cost UAV system and processed through an open source software is an effective methodology to survey cultural heritage, characterized by limited accessibility, need for detail and rapidity of the acquisition phase, and often reduced budgets.

  8. Accurate, low-cost 3D-models of gullies

    Science.gov (United States)

    Onnen, Nils; Gronz, Oliver; Ries, Johannes B.; Brings, Christine

    2015-04-01

    Soil erosion is a widespread problem in arid and semi-arid areas. The most severe form is the gully erosion. They often cut into agricultural farmland and can make a certain area completely unproductive. To understand the development and processes inside and around gullies, we calculated detailed 3D-models of gullies in the Souss Valley in South Morocco. Near Taroudant, we had four study areas with five gullies different in size, volume and activity. By using a Canon HF G30 Camcorder, we made varying series of Full HD videos with 25fps. Afterwards, we used the method Structure from Motion (SfM) to create the models. To generate accurate models maintaining feasible runtimes, it is necessary to select around 1500-1700 images from the video, while the overlap of neighboring images should be at least 80%. In addition, it is very important to avoid selecting photos that are blurry or out of focus. Nearby pixels of a blurry image tend to have similar color values. That is why we used a MATLAB script to compare the derivatives of the images. The higher the sum of the derivative, the sharper an image of similar objects. MATLAB subdivides the video into image intervals. From each interval, the image with the highest sum is selected. E.g.: 20min. video at 25fps equals 30.000 single images. The program now inspects the first 20 images, saves the sharpest and moves on to the next 20 images etc. Using this algorithm, we selected 1500 images for our modeling. With VisualSFM, we calculated features and the matches between all images and produced a point cloud. Then, MeshLab has been used to build a surface out of it using the Poisson surface reconstruction approach. Afterwards we are able to calculate the size and the volume of the gullies. It is also possible to determine soil erosion rates, if we compare the data with old recordings. The final step would be the combination of the terrestrial data with the data from our aerial photography. So far, the method works well and we

  9. 3D Printing of Molecular Potential Energy Surface Models

    Science.gov (United States)

    Lolur, Phalgun; Dawes, Richard

    2014-01-01

    Additive manufacturing, commonly known as 3D printing, is gaining popularity in a variety of applications and has recently become routinely available. Today, 3D printing services are not only found in engineering design labs and through online companies, but also in university libraries offering student access. In addition, affordable options for…

  10. 3D Strain Modelling of Tear Fault Analogues

    Science.gov (United States)

    Hindle, D.; Vietor, T.

    2005-12-01

    Tear faults can be described as vertical discontinuities, with near fault parallel displacements terminating on some sort of shallow detachment. As such, they are difficult to study in "cross section" i.e. 2 dimensions as is often the case for fold-thrust systems. Hence, little attempt has been made to model the evolution of strain around tear faults and the processes of strain localisation in such structures due to the necessity of describing these systems in 3 dimensions and the problems this poses for both numerical and analogue modelling. Field studies suggest that strain in such regions can be distributed across broad zones on minor tear systems, which are often not easily mappable. Such strain is probably assumed to be due to distributed strain and to displacement gradients which are themselves necessary for the initiation of the tear itself. We present a numerical study of the effects of a sharp, basal discontinutiy parallel to the transport direction in a shortening wedge of material. The discontinuity is represented by two adjacent basal surfaces with strongly contrasting (0.5 and 0.05) friction coefficient. The material is modelled using PFC3D distinct element software for simulating granular material, whose properties are chosen to simulate upper crustal, sedimentary rock. The model geometry is a rectangular bounding box, 2km x 1km, and 0.35-0.5km deep, with a single, driving wall of constant velocity. We show the evolution of strain in the model in horizontal and vertical sections, and interpret strain localization as showing the spontaneous development of tear fault like features. The strain field in the model is asymmetrical, rotated towards the strong side of the model. Strain increments seem to oscillate in time, suggesting achievement of a steady state. We also note that our model cannot be treated as a critical wedge, since the 3rd dimension and the lateral variations of strength rule out this type of 2D approximation.

  11. 3D-Digital soil property mapping by geoadditive models

    Science.gov (United States)

    Papritz, Andreas

    2016-04-01

    In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm depth intervals (Arrouays et al., 2014). Legacy soil data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons or for layers at varying soil depth and with non-constant thickness (support). This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses (e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvantage of this approach is that the predictions for different depths are computed independently from each other so that the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common depth is ignored in this approach (Orton et al. 2016). A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.) Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting covariates for the spatial mean function is a formidable task. A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses of soil data. geoAM extend the scope of the linear model with spatially correlated errors to

  12. Continuous table acquisition MRI for radiotherapy treatment planning: Distortion assessment with a new extended 3D volumetric phantom

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Amy, E-mail: aw554@uowmail.edu.au; Metcalfe, Peter [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia and Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); Liney, Gary [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); South West Clinical School, University of New South Wales, Sydney, NSW 2170 (Australia); Holloway, Lois [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); South West Clinical School, University of New South Wales, Sydney, NSW 2170 (Australia); Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Dowling, Jason; Rivest-Henault, David [Commonwealth Scientific and Industrial Research Organisation, Australian E-Health Research Centre, Herston, QLD 4029 (Australia)

    2015-04-15

    Purpose: Accurate geometry is required for radiotherapy treatment planning (RTP). When considering the use of magnetic resonance imaging (MRI) for RTP, geometric distortions observed in the acquired images should be considered. While scanner technology and vendor supplied correction algorithms provide some correction, large distortions are still present in images, even when considering considerably smaller scan lengths than those typically acquired with CT in conventional RTP. This study investigates MRI acquisition with a moving table compared with static scans for potential geometric benefits for RTP. Methods: A full field of view (FOV) phantom (diameter 500 mm; length 513 mm) was developed for measuring geometric distortions in MR images over volumes pertinent to RTP. The phantom consisted of layers of refined plastic within which vitamin E capsules were inserted. The phantom was scanned on CT to provide the geometric gold standard and on MRI, with differences in capsule location determining the distortion. MRI images were acquired with two techniques. For the first method, standard static table acquisitions were considered. Both 2D and 3D acquisition techniques were investigated. With the second technique, images were acquired with a moving table. The same sequence was acquired with a static table and then with table speeds of 1.1 mm/s and 2 mm/s. All of the MR images acquired were registered to the CT dataset using a deformable B-spline registration with the resulting deformation fields providing the distortion information for each acquisition. Results: MR images acquired with the moving table enabled imaging of the whole phantom length while images acquired with a static table were only able to image 50%–70% of the phantom length of 513 mm. Maximum distortion values were reduced across a larger volume when imaging with a moving table. Increased table speed resulted in a larger contribution of distortion from gradient nonlinearities in the through

  13. 3D Printed Molecules and Extended Solid Models for Teaching Symmetry and Point Groups

    Science.gov (United States)

    Scalfani, Vincent F.; Vaid, Thomas P.

    2014-01-01

    Tangible models help students and researchers visualize chemical structures in three dimensions (3D). 3D printing offers a unique and straightforward approach to fabricate plastic 3D models of molecules and extended solids. In this article, we prepared a series of digital 3D design files of molecular structures that will be useful for teaching…

  14. A Unified Building Model for 3D Urban GIS

    Directory of Open Access Journals (Sweden)

    Ihab Hijazi

    2012-07-01

    Full Text Available Several tasks in urban and architectural design are today undertaken in a geospatial context. Building Information Models (BIM and geospatial technologies offer 3D data models that provide information about buildings and the surrounding environment. The Industry Foundation Classes (IFC and CityGML are today the two most prominent semantic models for representation of BIM and geospatial models respectively. CityGML has emerged as a standard for modeling city models while IFC has been developed as a reference model for building objects and sites. Current CAD and geospatial software provide tools that allow the conversion of information from one format to the other. These tools are however fairly limited in their capabilities, often resulting in data and information losses in the transformations. This paper describes a new approach for data integration based on a unified building model (UBM which encapsulates both the CityGML and IFC models, thus avoiding translations between the models and loss of information. To build the UBM, all classes and related concepts were initially collected from both models, overlapping concepts were merged, new objects were created to ensure the capturing of both indoor and outdoor objects, and finally, spatial relationships between the objects were redefined. Unified Modeling Language (UML notations were used for representing its objects and relationships between them. There are two use-case scenarios, both set in a hospital: “evacuation” and “allocating spaces for patient wards” were developed to validate and test the proposed UBM data model. Based on these two scenarios, four validation queries were defined in order to validate the appropriateness of the proposed unified building model. It has been validated, through the case scenarios and four queries, that the UBM being developed is able to integrate CityGML data as well as IFC data in an apparently seamless way. Constraints and enrichment functions are

  15. 3D finite element modeling of sliding wear

    Science.gov (United States)

    Buentello Hernandez, Rodolfo G.

    Wear is defined as "the removal of material volume through some mechanical process between two surfaces". There are many mechanical situations that can induce wear and each can involve many wear mechanisms. This research focuses on the mechanical wear due to dry sliding between two surfaces. Currently there is a need to identify and compare materials that would endure sliding wear under severe conditions such as high velocities. The high costs associated with the field experimentation of systems subject to high-speed sliding, has prevented the collection of the necessary data required to fully characterize this phenomena. Simulating wear through Finite Elements (FE) would enable its prediction under different scenarios and would reduce experimentation costs. In the aerospace, automotive and weapon industries such a model can aid in material selection, design and/or testing of systems subjected to wear in bearings, gears, brakes, gun barrels, slippers, locomotive wheels, or even rocket test tracks. The 3D wear model presented in this dissertation allows one to reasonably predict high-speed sliding mechanical wear between two materials. The model predictions are reasonable, when compared against those measured on a sled slipper traveling over the Holloman High Speed Tests Track. This slipper traveled a distance of 5,816 meters in 8.14 seconds and reached a maximum velocity of 1,530 m/s.

  16. 3D modeling of carbonates petro-acoustic heterogeneities

    Science.gov (United States)

    Baden, Dawin; Guglielmi, Yves; Saracco, Ginette; Marié, Lionel; Viseur, Sophie

    2015-04-01

    Characterizing carbonate reservoirs heterogeneity is a challenging issue for Oil & Gas Industry, CO2 sequestration and all kinds of fluid manipulations in natural reservoirs, due to the significant impact of heterogeneities on fluid flow and storage within the reservoir. Although large scale (> meter) heterogeneities such as layers petrophysical contrasts are well addressed by computing facies-based models, low scale (ultrasonic apparatus and using different sensors allowing acoustic characterization through a bandwidth varying from 50 to 500 kHz. Comprehensive measurements realized on each samples allowed statistical analyses of petro-acoustic properties such as attenuation, shear and longitudinal wave velocity. The cores properties (geological and acoustic facies) were modeled in 3D using photogrammetry and GOCAD geo-modeler. This method successfully allowed detecting and imaging in three dimensions differential diagenesis effects characterized by the occurrence of decimeter-scale diagenetic horizons in samples assumed to be homogeneous and/or different diagenetic sequences between shells filling and the packing matrix. We then discuss how small interfaces such as cracks, stylolithes and laminations which are also imaged may have guided these differential effects, considering that understanding the processes may be taken as an analogue to actual fluid drainage complexity in deep carbonate reservoir.

  17. Model-based normalization for iterative 3D PET image

    International Nuclear Information System (INIS)

    Bai, B.; Li, Q.; Asma, E.; Leahy, R.M.; Holdsworth, C.H.; Chatziioannou, A.; Tai, Y.C.

    2002-01-01

    We describe a method for normalization in 3D PET for use with maximum a posteriori (MAP) or other iterative model-based image reconstruction methods. This approach is an extension of previous factored normalization methods in which we include separate factors for detector sensitivity, geometric response, block effects and deadtime. Since our MAP reconstruction approach already models some of the geometric factors in the forward projection, the normalization factors must be modified to account only for effects not already included in the model. We describe a maximum likelihood approach to joint estimation of the count-rate independent normalization factors, which we apply to data from a uniform cylindrical source. We then compute block-wise and block-profile deadtime correction factors using singles and coincidence data, respectively, from a multiframe cylindrical source. We have applied this method for reconstruction of data from the Concorde microPET P4 scanner. Quantitative evaluation of this method using well-counter measurements of activity in a multicompartment phantom compares favourably with normalization based directly on cylindrical source measurements. (author)

  18. Interpolating Spline Curve-Based Perceptual Encryption for 3D Printing Models

    OpenAIRE

    Giao N. Pham; Suk-Hwan Lee; Ki-Ryong Kwon

    2018-01-01

    With the development of 3D printing technology, 3D printing has recently been applied to many areas of life including healthcare and the automotive industry. Due to the benefit of 3D printing, 3D printing models are often attacked by hackers and distributed without agreement from the original providers. Furthermore, certain special models and anti-weapon models in 3D printing must be protected against unauthorized users. Therefore, in order to prevent attacks and illegal copying and to ensure...

  19. 3D MODELING OF HISTORICAL DOGER CARAVANSARIES BY DIGITAL PHOTOGRAMMETRY

    Directory of Open Access Journals (Sweden)

    M. Yakar

    2013-07-01

    Full Text Available Caravansaries are sort of bigger khan that established on the busy trade roads to provide any kind of supplies but essentially all Caravansaries on Anatolia are established for caravans' accommodations which are passing through on caravan rout. After the Turks had chosen being Muslim, the land that Islam religion spread on it has expanded. As a result of this expansion it is required a safe route for trade caravans. During the ruling time of Seljuk's Empire, Caravansaries took the most advanced form. Sultans of the Seljuk's Empire were aware of importance of trade and economy. That's why they established Caravansaries near marines, between the important trade centers and on Anatolian lands which is a bridge between East and West. But these trade routes has changed at the time of Ottoman Empire. Many of the historical places in the world have been totally or partly destroyed by natural events and human activities such as earthquake, flood and fire until the present day and still going on. Documentation is essentially required for protection and restoration these historical places and photogrammetry is one of the most effective method for documentation of cultural heritages. In this study, it is aimed to get 3D models of Doger Caravansaries which is established in Afyonkarahisar for relief and advertising. Doger Caravansaries was built in 15. Century at Sultan II Murat eras but the exact date of building is not known. The structure has rectangular plan in width. The total length of it is 56.50 in meters. The Caravansaries is consisting of attached two parts. The first part has two floors. There are pointed arched niches in the two sides of the wall and there are windows (iron barred in the middle of the each niche. The door is fillet low arched. First floor rises on four elephant foot columns and ten other small columns. Short sides are covered by two each cross squinch and the other parts with barrel vault. There is a ladder with only ten remain

  20. Modelling Polymer Deformation and Welding Behaviour during 3D Printing

    Science.gov (United States)

    McIlroy, Claire; Olmsted, Peter

    2016-11-01

    3D printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The most common method, fused deposition modelling, involves melting a thermoplastic, followed by layer-by-layer extrusion of the material to fabricate a three-dimensional object. The key to the ensuring strength at the weld between these layers is successful inter-diffusion. However, as the printed layer cools towards the glass transition temperature, the time available for diffusion is limited. In addition, the extrusion process significantly deforms the polymer micro-structure prior to welding and consequently affects how the polymers "re-entangle" across the weld. We have developed a simple model of the non-isothermal printing process to explore the effects that typical printing conditions and amorphous polymer rheology have on the ultimate weld structure. In particular, we incorporate both the stretch and orientation of the polymer using the Rolie-Poly constitutive equation to examine how the melt flows through the nozzle and is deposited onto the build plate. We then address how this deformation relaxes and contributes to the thickness and structure of the weld. National Institute for Standards and Technology (NIST) and Georgetown University.

  1. 3D morphological and micromechanical modeling of cementitious materials

    International Nuclear Information System (INIS)

    Escoda, Julie

    2012-01-01

    The goal of this thesis is to develop morphological models of cementitious materials and use these models to study their local and effective response. To this aim, 3D images of cementitious materials (mortar and concrete), obtained by micro-tomography, are studied. First, the mortar image is segmented in order to obtain an image of a real microstructure, to be used for linear elasticity computations. The image of concrete is used, after being processed, to determine various morphological characteristics of the material. A random model of concrete is then developed and validated by means of morphological data. This model is made up of three phases, corresponding to the matrix, aggregates and voids. The aggregates phase is modelled by implantation of Poisson polyhedra without overlap. For this purpose, an algorithm suited to the vector generation of Poisson polyhedra is introduced and validated with morphological measurements. Finally, the effective linear elastic properties of the mortar and other simulated microstructures are estimated with the FFT (Fast-Fourier Transform) method, for various contrasts between the aggregates and matrix' Young moduli. To complete this work, focused on effective properties, an analysis of the local elastic response in the matrix phase is undertaken, in order to determine the spatial arrangement between stress concentration zones in the matrix and the phases of the microstructure (aggregates and voids). Moreover, a statistical fields characterization, in the matrix, is achieved, including the determination of the Representative Volume Element (RVE) size. Furthermore, a comparison between effective and local elastic properties obtained from microstructures containing polyhedra and spheres is carried out. (author)

  2. Methods for Geometric Data Validation of 3d City Models

    Science.gov (United States)

    Wagner, D.; Alam, N.; Wewetzer, M.; Pries, M.; Coors, V.

    2015-12-01

    Geometric quality of 3D city models is crucial for data analysis and simulation tasks, which are part of modern applications of the data (e.g. potential heating energy consumption of city quarters, solar potential, etc.). Geometric quality in these contexts is however a different concept as it is for 2D maps. In the latter case, aspects such as positional or temporal accuracy and correctness represent typical quality metrics of the data. They are defined in ISO 19157 and should be mentioned as part of the metadata. 3D data has a far wider range of aspects which influence their quality, plus the idea of quality itself is application dependent. Thus, concepts for definition of quality are needed, including methods to validate these definitions. Quality on this sense means internal validation and detection of inconsistent or wrong geometry according to a predefined set of rules. A useful starting point would be to have correct geometry in accordance with ISO 19107. A valid solid should consist of planar faces which touch their neighbours exclusively in defined corner points and edges. No gaps between them are allowed, and the whole feature must be 2-manifold. In this paper, we present methods to validate common geometric requirements for building geometry. Different checks based on several algorithms have been implemented to validate a set of rules derived from the solid definition mentioned above (e.g. water tightness of the solid or planarity of its polygons), as they were developed for the software tool CityDoctor. The method of each check is specified, with a special focus on the discussion of tolerance values where they are necessary. The checks include polygon level checks to validate the correctness of each polygon, i.e. closeness of the bounding linear ring and planarity. On the solid level, which is only validated if the polygons have passed validation, correct polygon orientation is checked, after self-intersections outside of defined corner points and edges

  3. EM modeling for GPIR using 3D FDTD modeling codes

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.D.

    1994-10-01

    An analysis of the one-, two-, and three-dimensional electrical characteristics of structural cement and concrete is presented. This work connects experimental efforts in characterizing cement and concrete in the frequency and time domains with the Finite Difference Time Domain (FDTD) modeling efforts of these substances. These efforts include Electromagnetic (EM) modeling of simple lossless homogeneous materials with aggregate and targets and the modeling dispersive and lossy materials with aggregate and complex target geometries for Ground Penetrating Imaging Radar (GPIR). Two- and three-dimensional FDTD codes (developed at LLNL) where used for the modeling efforts. Purpose of the experimental and modeling efforts is to gain knowledge about the electrical properties of concrete typically used in the construction industry for bridges and other load bearing structures. The goal is to optimize the performance of a high-sample-rate impulse radar and data acquisition system and to design an antenna system to match the characteristics of this material. Results show agreement to within 2 dB of the amplitudes of the experimental and modeled data while the frequency peaks correlate to within 10% the differences being due to the unknown exact nature of the aggregate placement.

  4. 3D city models as a basis for heat demand simulations; 3D-Stadtmodelle als Grundlage fuer Waermebedarfssimulationen

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, Claudia; Coors, Volker; Eicker, Ursula [Hochschule fuer Technik (HFT), Stuttgart (Germany)

    2012-07-01

    The biggest potential for heat consumption reduction and CO2 emission reduction in Germany is in older buildings. By applying innovative modernization concepts, primary energy consumption could be reduced by 80 percent. Planning of modernisation and energy concepts requires data on the current status. HFT Stuttgart developed a promising method for assessing heat consumption according to DIN 18599 of urban districts on the basis of 3D models of buildings (CityGML). The method is presented and explained here.

  5. New Directions in 3D Medical Modeling: 3D-Printing Anatomy and Functions in Neurosurgical Planning

    OpenAIRE

    Gargiulo, Paolo; ?rnad?ttir, ?ris; G?slason, Magn?s; Edmunds, Kyle; ?lafsson, Ingvar

    2017-01-01

    This paper illustrates the feasibility and utility of combining cranial anatomy and brain function on the same 3D-printed model, as evidenced by a neurosurgical planning case study of a 29-year-old female patient with a low-grade frontal-lobe glioma. We herein report the rapid prototyping methodology utilized in conjunction with surgical navigation to prepare and plan a complex neurosurgery. The method introduced here combines CT and MRI images with DTI tractography, while using various image...

  6. GammaModeler 3-D gamma-ray imaging technology

    International Nuclear Information System (INIS)

    2000-01-01

    The 3-D GammaModelertrademark system was used to survey a portion of the facility and provide 3-D visual and radiation representation of contaminated equipment located within the facility. The 3-D GammaModelertrademark system software was used to deconvolve extended sources into a series of point sources, locate the positions of these sources in space and calculate the 30 cm. dose rates for each of these sources. Localization of the sources in three dimensions provides information on source locations interior to the visual objects and provides a better estimate of the source intensities. The three dimensional representation of the objects can be made transparent in order to visualize sources located within the objects. Positional knowledge of all the sources can be used to calculate a map of the radiation in the canyon. The use of 3-D visual and gamma ray information supports improved planning decision-making, and aids in communications with regulators and stakeholders

  7. Image Reconstruction Based Modeling of 3D Textile Composite (Postprint)

    National Research Council Canada - National Science Library

    Zhou, Eric; Mollenhauer, David; Iarve, Endel

    2007-01-01

    ... joints, near-net shape processing, etc. To fully understand the mechanical behavior of 3-D textile composites, it is essential to perform analyses to predict effective material properties and damage initiation and growth...

  8. 3D numerical modeling of YSO accretion shocks

    Directory of Open Access Journals (Sweden)

    Matsakos T.

    2014-01-01

    Full Text Available The dynamics of YSO accretion shocks is determined by radiative processes as well as the strength and structure of the magnetic field. A quasi-periodic emission signature is theoretically expected to be observed, but observations do not confirm any such pattern. In this work, we assume a uniform background field, in the regime of optically thin energy losses, and we study the multi-dimensional shock evolution in the presence of perturbations, i.e. clumps in the stream and an acoustic energy flux flowing at the base of the chromosphere. We perform 3D MHD simulations using the PLUTO code, modelling locally the impact of the infalling gas onto the chromosphere. We find that the structure and dynamics of the post-shock region is strongly dependent on the plasma-beta (thermal over magnetic pressure, different values of which may give distinguishable emission signatures, relevant for observations. In particular, a strong magnetic field effectively confines the plasma inside its flux tubes and leads to the formation of quasi-independent fibrils. The fibrils may oscillate out of phase and hence the sum of their contributions in the emission results in a smooth overall profile. On the contrary, a weak magnetic field is not found to have any significant effect on the shocked plasma and the turbulent hot slab that forms is found to retain its periodic signature.

  9. Validity and Repeatability of the Sizestream 3D Scanner and Poikos Modeling System

    NARCIS (Netherlands)

    Vonk, T.E.; Daanen, H.A.M.

    2015-01-01

    Three-dimensional (3D) body scanning becomes increasingly important in the medical, ergonomical and apparel industry. The SizeStream 3D body scanner is a 3D body scanner in the shape of a fitting room that can generate a 3D copy of the human body in a few seconds. The Poikos modeling system

  10. Performance Investigation of a Handheld 3d Scanner to Define Good Practices for Small Artefact 3d Modeling

    Science.gov (United States)

    Lachat, E.; Landes, T.; Grussenmeyer, P.

    2017-08-01

    Handheld 3D scanners can be used to complete large scale models with the acquisition of occluded areas or small artefacts. This may be of interest for digitization projects in the field of Cultural Heritage, where detailed areas may require a specific treatment. Such sensors present the advantage of being easily portable in the field, and easily usable even without particular knowledge. In this paper, the Freestyle3D handheld scanner launched on the market in 2015 by FARO is investigated. Different experiments are described, covering various topics such as the influence of range or color on the measurements, but also the precision achieved for geometrical primitive digitization. These laboratory experiments are completed by acquisitions performed on engraved and sculpted stone blocks. This practical case study is useful to investigate which acquisition protocol seems to be the more adapted and leads to precise results. The produced point clouds will be compared to photogrammetric surveys for the purpose of their accuracy assessment.

  11. Modeling 3-D Slope Stability of Coastal Bluffs Using 3-D Ground-Water Flow, Southwestern Seattle, Washington

    Science.gov (United States)

    Brien, Dianne L.; Reid, Mark E.

    2007-01-01

    Landslides are a common problem on coastal bluffs throughout the world. Along the coastal bluffs of the Puget Sound in Seattle, Washington, landslides range from small, shallow failures to large, deep-seated landslides. Landslides of all types can pose hazards to human lives and property, but deep-seated landslides are of significant concern because their large areal extent can cause extensive property damage. Although many geomorphic processes shape the coastal bluffs of Seattle, we focus on large (greater than 3,000 m3), deepseated, rotational landslides that occur on the steep bluffs along Puget Sound. Many of these larger failures occur in advance outwash deposits of the Vashon Drift (Qva); some failures extend into the underlying Lawton Clay Member of the Vashon Drift (Qvlc). The slope stability of coastal bluffs is controlled by the interplay of three-dimensional (3-D) variations in gravitational stress, strength, and pore-water pressure. We assess 3-D slope-stability using SCOOPS (Reid and others, 2000), a computer program that allows us to search a high-resolution digital-elevation model (DEM) to quantify the relative stability of all parts of the landscape by computing the stability and volume of thousands of potential spherical failures. SCOOPS incorporates topography, 3-D strength variations, and 3-D pore pressures. Initially, we use our 3-D analysis methods to examine the effects of topography and geology by using heterogeneous material properties, as defined by stratigraphy, without pore pressures. In this scenario, the least-stable areas are located on the steepest slopes, commonly in Qva or Qvlc. However, these locations do not agree well with observations of deep-seated landslides. Historically, both shallow colluvial landslides and deep-seated landslides have been observed near the contact between Qva and Qvlc, and commonly occur in Qva. The low hydraulic conductivity of Qvlc impedes ground-water flow, resulting in elevated pore pressures at the

  12. Verification and Validation of the k-kL Turbulence Model in FUN3D and CFL3D Codes

    Science.gov (United States)

    Abdol-Hamid, Khaled S.; Carlson, Jan-Renee; Rumsey, Christopher L.

    2015-01-01

    The implementation of the k-kL turbulence model using multiple computational uid dy- namics (CFD) codes is reported herein. The k-kL model is a two-equation turbulence model based on Abdol-Hamid's closure and Menter's modi cation to Rotta's two-equation model. Rotta shows that a reliable transport equation can be formed from the turbulent length scale L, and the turbulent kinetic energy k. Rotta's equation is well suited for term-by-term mod- eling and displays useful features compared to other two-equation models. An important di erence is that this formulation leads to the inclusion of higher-order velocity derivatives in the source terms of the scale equations. This can enhance the ability of the Reynolds- averaged Navier-Stokes (RANS) solvers to simulate unsteady ows. The present report documents the formulation of the model as implemented in the CFD codes Fun3D and CFL3D. Methodology, veri cation and validation examples are shown. Attached and sepa- rated ow cases are documented and compared with experimental data. The results show generally very good comparisons with canonical and experimental data, as well as matching results code-to-code. The results from this formulation are similar or better than results using the SST turbulence model.

  13. Automatic generation of 3D statistical shape models with optimal landmark distributions.

    Science.gov (United States)

    Heimann, T; Wolf, I; Meinzer, H-P

    2007-01-01

    To point out the problem of non-uniform landmark placement in statistical shape modeling, to present an improved method for generating landmarks in the 3D case and to propose an unbiased evaluation metric to determine model quality. Our approach minimizes a cost function based on the minimum description length (MDL) of the shape model to optimize landmark correspondences over the training set. In addition to the standard technique, we employ an extended remeshing method to change the landmark distribution without losing correspondences, thus ensuring a uniform distribution over all training samples. To break the dependency of the established evaluation measures generalization and specificity from the landmark distribution, we change the internal metric from landmark distance to volumetric overlap. Redistributing landmarks to an equally spaced distribution during the model construction phase improves the quality of the resulting models significantly if the shapes feature prominent bulges or other complex geometry. The distribution of landmarks on the training shapes is -- beyond the correspondence issue -- a crucial point in model construction.

  14. On singularity formation of a 3D model for incompressible Navier–Stokes equations

    OpenAIRE

    Hou, Thomas Y.; Shi, Zuoqiang; Wang, Shu

    2012-01-01

    We investigate the singularity formation of a 3D model that was recently proposed by Hou and Lei (2009) in [15] for axisymmetric 3D incompressible Navier–Stokes equations with swirl. The main difference between the 3D model of Hou and Lei and the reformulated 3D Navier–Stokes equations is that the convection term is neglected in the 3D model. This model shares many properties of the 3D incompressible Navier–Stokes equations. One of the main results of this paper is that we prove rigorously th...

  15. Creating 3D models of historical buildings using geospatial data

    Science.gov (United States)

    Alionescu, Adrian; Bǎlǎ, Alina Corina; Brebu, Floarea Maria; Moscovici, Anca-Maria

    2017-07-01

    Recently, a lot of interest has been shown to understand a real world object by acquiring its 3D images of using laser scanning technology and panoramic images. A realistic impression of geometric 3D data can be generated by draping real colour textures simultaneously captured by a colour camera images. In this context, a new concept of geospatial data acquisition has rapidly revolutionized the method of determining the spatial position of objects, which is based on panoramic images. This article describes an approach that comprises inusing terrestrial laser scanning and panoramic images captured with Trimble V10 Imaging Rover technology to enlarge the details and realism of the geospatial data set, in order to obtain 3D urban plans and virtual reality applications.

  16. Automated robust generation of compact 3D statistical shape models

    Science.gov (United States)

    Vrtovec, Tomaz; Likar, Bostjan; Tomazevic, Dejan; Pernus, Franjo

    2004-05-01

    Ascertaining the detailed shape and spatial arrangement of anatomical structures is important not only within diagnostic settings but also in the areas of planning, simulation, intraoperative navigation, and tracking of pathology. Robust, accurate and efficient automated segmentation of anatomical structures is difficult because of their complexity and inter-patient variability. Furthermore, the position of the patient during image acquisition, the imaging device and protocol, image resolution, and other factors induce additional variations in shape and appearance. Statistical shape models (SSMs) have proven quite successful in capturing structural variability. A possible approach to obtain a 3D SSM is to extract reference voxels by precisely segmenting the structure in one, reference image. The corresponding voxels in other images are determined by registering the reference image to each other image. The SSM obtained in this way describes statistically plausible shape variations over the given population as well as variations due to imperfect registration. In this paper, we present a completely automated method that significantly reduces shape variations induced by imperfect registration, thus allowing a more accurate description of variations. At each iteration, the derived SSM is used for coarse registration, which is further improved by describing finer variations of the structure. The method was tested on 64 lumbar spinal column CT scans, from which 23, 38, 45, 46 and 42 volumes of interest containing vertebra L1, L2, L3, L4 and L5, respectively, were extracted. Separate SSMs were generated for each vertebra. The results show that the method is capable of reducing the variations induced by registration errors.

  17. Application of 3D model in the schedule management of nuclear power plant construction

    International Nuclear Information System (INIS)

    Nian Fayang

    2009-01-01

    While 3D technology has been widely used in engineering design, the 3D model of engineering design also includes information that can be used to construction. By the visual interface, the 3D model can be used in different aspects of construction. By linking the 3D model with the construction schedule, the 4D model can be created, through which the visual manage of the construction schedule can be achieved. (authors)

  18. Model metadata report for the Somerset Levels 3D geological model

    OpenAIRE

    Gow, H.; Cripps, C.; Thorpe, S.; Horabin, C.; Lee, J.R.

    2014-01-01

    This report summarises the data, information and methodology used in a 3D geological model of the Somerset Levels. The model was constructed using the GSI3D software package and comprises superficial deposits at 1:50,000 scale and lower resolution bedrock units.

  19. Digital Geological Model (DGM): a 3D raster model of the subsurface of the Netherlands

    NARCIS (Netherlands)

    Gunnink, J.L.; Maljers, D.; Gessel, S.F. van; Menkovic, A.; Hummelman, H.J.

    2013-01-01

    A 3D geological raster model has been constructed of the onshore of the Netherlands. The model displays geological units for the upper 500 m in 3D in an internally consistent way. The units are based on the lithostratigraphical classification of the Netherlands. This classification is used to

  20. Biological modelling of fuzzy target volumes in 3D radiotherapy

    International Nuclear Information System (INIS)

    Levegruen, S.; Kampen, M. van; Waschek, T.; Engenhart, R.; Schlegel, W.

    1995-01-01

    Purpose/Objective: The outcome of each radiotherapy depends critically on the optimal choice of the target volume. The goal of the radiotherapist is to include all tumor spread at the same time as saving as much healthy tissue as possible. Even when the information of all imaging modalities is combined, the diagnostic techniques are not sensitive and specific enough to visualize all microscopic tumor cell spread. Due to this lack of information there is room for different interpretations concerning the extend of the target volume, leading to a fuzzy target volume. The aim of this work is to develop a model to score different target volume boundaries within the region of diagnostic uncertainty in terms of tumor control probability (TCP) and normal tissue complication probabilities (NTCP). Materials and Methods: In order to assess the region of diagnostic uncertainty, the radiotherapist defines interactively a minimal planning target volume that absolutely must be irradiated according to the diagnostic information available and a maximal planning target volume outside which no tumor cell spread is expected. For the NTCP calculation we use the Lyman 4 parameter model to estimate the response of an organ at risk to a uniform partial volume irradiation. The TCP calculation is based on the Poisson model of cell killing. The TCP estimation depends not only on volume, dose, clonogenic cell density and the α parameter of the linear quadratic model but also on the probability to find clonogenic cells in the considered volume. Inside the minimal PTV this probability is 1, outside the maximal PTV it is 0. Therefore all voxels inside the minimal PTV are assigned the value of 1 with respect to the target volume, all voxels outside the maximal PTV the value of 0. For voxels in the region of uncertainty in between, a 3D linear interpolation is performed. Here we assume the probability to follow the interpolated values. Starting with the minimal PTV, the expected gain in TCP and

  1. Registration of 3D Face Scans with Average Face Models

    NARCIS (Netherlands)

    A.A. Salah (Albert Ali); N. Alyuz; L. Akarun

    2008-01-01

    htmlabstractThe accuracy of a 3D face recognition system depends on a correct registration that aligns the facial surfaces and makes a comparison possible. The best results obtained so far use a costly one-to-all registration approach, which requires the registration of each facial surface to all

  2. 3D mmWave Channel Model Proposal

    DEFF Research Database (Denmark)

    Thomas, Timothy; Nguyen, Huan Cong; R. MacCartney Jr., George

    2014-01-01

    the measurements, a ray-tracing study has been conducted using databases for the same environments as the measurements, allowing a simple ray-tracer to predict measured statistics such as path loss and angles of arrival in the same physical environment of the measurements. In this paper a preliminary 3GPP-style 3D...

  3. Using 3D Geometric Models to Teach Spatial Geometry Concepts.

    Science.gov (United States)

    Bertoline, Gary R.

    1991-01-01

    An explanation of 3-D Computer Aided Design (CAD) usage to teach spatial geometry concepts using nontraditional techniques is presented. The software packages CADKEY and AutoCAD are described as well as their usefulness in solving space geometry problems. (KR)

  4. Conceptual Development of a 3D Product Configuration Model

    DEFF Research Database (Denmark)

    Skauge, Jørn

    2006-01-01

      Abstract. Projektet er et 3D konfigurationsprojekt for et digitalt byggeelement udviklet i prototypeform i et samarbejde mellem en virksomhed og en forskningsinstitution i Danmark. Projektet betegnes som produktmodellering dvs et knowledge based system dvs et IT system udviklet til hjælp i prod...

  5. Intensity-modulated proton therapy, volumetric-modulated arc therapy, and 3D conformal radiotherapy in anaplastic astrocytoma and glioblastoma. A dosimetric comparison

    Energy Technology Data Exchange (ETDEWEB)

    Adeberg, S.; Debus, J. [Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany); University Hospital Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); German Cancer Research Center (DKFZ), Clinical Cooperation Unit Radiation Oncology, Heidelberg (Germany); Harrabi, S.B.; Bougatf, N.; Rieber, J.; Koerber, S.A.; Herfarth, K.; Rieken, S. [Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany); University Hospital Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Bernhardt, D.; Syed, M.; Sprave, T.; Mohr, A. [Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); University Hospital Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Abdollahi, A. [University Hospital Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Haberer, T. [Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany); Combs, S.E. [Technische Universitaet Muenchen, Department of Radiation Oncology, Muenchen (Germany); Helmholtz Zentrum Muenchen, Institut fuer Innovative Radiotherapie (iRT), Department of Radiation Sciences (DRS), Neuherberg (Germany)

    2016-11-15

    The prognosis for high-grade glioma (HGG) patients is poor; thus, treatment-related side effects need to be minimized to conserve quality of life and functionality. Advanced techniques such as proton radiation therapy (PRT) and volumetric-modulated arc therapy (VMAT) may potentially further reduce the frequency and severity of radiogenic impairment. We retrospectively assessed 12 HGG patients who had undergone postoperative intensity-modulated proton therapy (IMPT). VMAT and 3D conformal radiotherapy (3D-CRT) plans were generated and optimized for comparison after contouring crucial neuronal structures important for neurogenesis and neurocognitive function. Integral dose (ID), homogeneity index (HI), and inhomogeneity coefficient (IC) were calculated from dose statistics. Toxicity data were evaluated. Target volume coverage was comparable for all three modalities. Compared to 3D-CRT and VMAT, PRT showed statistically significant reductions (p < 0.05) in mean dose to whole brain (-20.2 %, -22.7 %); supratentorial (-14.2 %, -20,8 %) and infratentorial (-91.0 %, -77.0 %) regions; brainstem (-67.6 %, -28.1 %); pituitary gland (-52.9 %, -52.5 %); contralateral hippocampus (-98.9 %, -98.7 %); and contralateral subventricular zone (-62.7 %, -66.7 %, respectively). Fatigue (91.7 %), radiation dermatitis (75.0 %), focal alopecia (100.0 %), nausea (41.7 %), cephalgia (58.3 %), and transient cerebral edema (16.7 %) were the most common acute toxicities. Essential dose reduction while maintaining equal target volume coverage was observed using PRT, particularly in contralaterally located critical neuronal structures, areas of neurogenesis, and structures of neurocognitive functions. These findings were supported by preliminary clinical results confirming the safety and feasibility of PRT in HGG. (orig.) [German] Die Prognose bei ''High-grade''-Gliomen (HGG) ist infaust. Gerade bei diesen Patienten sollten therapieassoziierte Nebenwirkungen minimiert werden

  6. Hybrid microscopic depletion model in nodal code DYN3D

    International Nuclear Information System (INIS)

    Bilodid, Y.; Kotlyar, D.; Shwageraus, E.; Fridman, E.; Kliem, S.

    2016-01-01

    Highlights: • A new hybrid method of accounting for spectral history effects is proposed. • Local concentrations of over 1000 nuclides are calculated using micro depletion. • The new method is implemented in nodal code DYN3D and verified. - Abstract: The paper presents a general hybrid method that combines the micro-depletion technique with correction of micro- and macro-diffusion parameters to account for the spectral history effects. The fuel in a core is subjected to time- and space-dependent operational conditions (e.g. coolant density), which cannot be predicted in advance. However, lattice codes assume some average conditions to generate cross sections (XS) for nodal diffusion codes such as DYN3D. Deviation of local operational history from average conditions leads to accumulation of errors in XS, which is referred as spectral history effects. Various methods to account for the spectral history effects, such as spectral index, burnup-averaged operational parameters and micro-depletion, were implemented in some nodal codes. Recently, an alternative method, which characterizes fuel depletion state by burnup and 239 Pu concentration (denoted as Pu-correction) was proposed, implemented in nodal code DYN3D and verified for a wide range of history effects. The method is computationally efficient, however, it has applicability limitations. The current study seeks to improve the accuracy and applicability range of Pu-correction method. The proposed hybrid method combines the micro-depletion method with a XS characterization technique similar to the Pu-correction method. The method was implemented in DYN3D and verified on multiple test cases. The results obtained with DYN3D were compared to those obtained with Monte Carlo code Serpent, which was also used to generate the XS. The observed differences are within the statistical uncertainties.

  7. Semi-quantitative assessment of right ventricular function in comparison to a 3D volumetric approach: A cardiovascular magnetic resonance study

    Energy Technology Data Exchange (ETDEWEB)

    Nijveldt, Robin; Germans, Tjeerd; Rossum, Albert C. van [VU University Medical Center, Department of Cardiology, Amsterdam (Netherlands); Interuniversity Cardiology Institute of the Netherlands, Utrecht (Netherlands); McCann, Gerald P. [University Hospitals Leicester, Department of Cardiology, Leicester (United Kingdom); Beek, Aernout M. [VU University Medical Center, Department of Cardiology, Amsterdam (Netherlands)

    2008-11-15

    Right ventricular (RV) volume measurements with cardiovascular magnetic resonance (CMR) is considered the gold standard, but acquisition and analysis remain time-consuming. The aim of our study was therefore to investigate the accuracy and performance of a semi-quantitative assessment of RV function in CMR, compared to the standard quantitative approach. Seventy-five subjects with pulmonary hypertension (15), anterior myocardial infarction (15), inferior myocardial infarction (15), Brugada syndrome (15) and normal subjects (15) underwent cine CMR. RV end-systolic and end-diastolic volumes were determined to calculate RV ejection fraction (EF). Four-chamber cine images were used to measure tricuspid annular plane systolic excursion (TAPSE). RV fractional shortening (RVFS) was calculated by dividing TAPSE by the RV end-diastolic length. RV EF correlated significantly with TAPSE (r = 0.62, p < 0.01) and RVFS (r = 0.67, p < 0.01). Sensitivity to predict RV dysfunction was comparable between TAPSE and RVFS, with higher specificity for RVFS, but comparable areas under the ROC curve. Intra- and inter-observer variability of RV EF was better than TAPSE (3%/4% versus 7%/15%, respectively). For routine screening in clinical practice, TAPSE and RVFS seem reliable and easy methods to identify patients with RV dysfunction. The 3D volumetric approach is preferred to assess RV function for research purposes or to evaluate treatment response. (orig.)

  8. 3D unified CFD to modeling of bubbles phenomena

    International Nuclear Information System (INIS)

    Vladimir V Chudanov; Anna E Aksenova; Valerii A Pervichko

    2005-01-01

    Full text of publication follows: During of the last ten years the developed numerical methods and algorithms for solving of heat and mass transfer problems in compressible/incompressible fluids were successfully tested at simulation of interaction of two immiscible liquids. Now these computing tools are extended on a case of two-phase flows, such as a liquids-gas system as follows: outside of bubbles the non-stationary incompressible Navier-Stokes equations in the primitive variables coupled with the heat transfer equation are used; inside of bubble a compressible medium model with low Mach limit is applied. To observe of an interface of liquid-gas system we use the modified level set method and three-dimensional advective schemes of TVD-type with small scheme diffusion with use of sub-grid simulation. These schemes with small diffusion were already applied by us under using of sub-grid simulation for interface transfer in case of two non-mixing liquids. For bubble phenomena a numerical technique based on the developed algorithms with a small scheme diffusion, for which the discrete approximations are constructed using the finite-volume methods and fully staggered grids is adapted. Testing of the developed approach is carried out on the set of test problems and a good agreement is obtained between numerical predictions and experimental data. The numerical technique was successfully utilized for numerical support of 3D experiment financed by Nuclear Energy Agency at the Organization economic cooperation and development within the framework of MASKA Project, where computational fluid dynamics of two non-mixing fluids such as corium and steel was investigated. In this paper there is application of developed approach for simulation of bubble flows, in particular, for study of coalescence of two drops. The developed technique has a high degree of efficiency and allows on a personal computer (3 GHz and 2 Gbytes RAM) to carry out CFD calculations on a grid with 10 7

  9. Evaluating procedural modelling for 3D models of informal settlements in urban design activities

    Directory of Open Access Journals (Sweden)

    Victoria Rautenbach

    2015-11-01

    Full Text Available Three-dimensional (3D modelling and visualisation is one of the fastest growing application fields in geographic information science. 3D city models are being researched extensively for a variety of purposes and in various domains, including urban design, disaster management, education and computer gaming. These models typically depict urban business districts (downtown or suburban residential areas. Despite informal settlements being a prevailing feature of many cities in developing countries, 3D models of informal settlements are virtually non-existent. 3D models of informal settlements could be useful in various ways, e.g. to gather information about the current environment in the informal settlements, to design upgrades, to communicate these and to educate inhabitants about environmental challenges. In this article, we described the development of a 3D model of the Slovo Park informal settlement in the City of Johannesburg Metropolitan Municipality, South Africa. Instead of using time-consuming traditional manual methods, we followed the procedural modelling technique. Visualisation characteristics of 3D models of informal settlements were described and the importance of each characteristic in urban design activities for informal settlement upgrades was assessed. Next, the visualisation characteristics of the Slovo Park model were evaluated. The results of the evaluation showed that the 3D model produced by the procedural modelling technique is suitable for urban design activities in informal settlements. The visualisation characteristics and their assessment are also useful as guidelines for developing 3D models of informal settlements. In future, we plan to empirically test the use of such 3D models in urban design projects in informal settlements.

  10. Table of 3D organ model IDs and organ names (PART-OF Tree) - BodyParts3D | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us BodyParts3D Table of 3D organ model IDs and organ names (PART-OF Tree) Data detail Data name Table of 3D org...an model IDs and organ names (PART-OF Tree) DOI 10.18908/lsdba.nbdc00837-002 Description of ...data contents List of downloadable 3D organ models in a tab-delimited text file format, describing the correspondence between 3D org...an model IDs and organ names available in PART-OF Tree. D...atabase Site Policy | Contact Us Table of 3D organ model IDs and organ names (PART-OF Tree) - BodyParts3D | LSDB Archive ...

  11. Modelling soil erosion risk based on RUSLE-3D using GIS in a ...

    Indian Academy of Sciences (India)

    2016-08-26

    watershed ... Click here to view fulltext PDF ... The RUSLE-3D (Revised Universal Soil Loss Equation-3D) model was implemented in geographic information system (GIS) for predicting the soil loss and the spatial patterns of soil ...

  12. Considerations of the Use of 3-D Geophysical Models to Predict Test Ban Monitoring Observables

    Science.gov (United States)

    2007-09-01

    predict first P arrival times. Since this is a 3-D model, the travel times are predicted with a 3-D finite-difference code solving the eikonal equations...for the eikonal wave equation should provide more accurate predictions of travel-time from 3D models. These techniques and others are being

  13. Reconstruction of Consistent 3d CAD Models from Point Cloud Data Using a Priori CAD Models

    Science.gov (United States)

    Bey, A.; Chaine, R.; Marc, R.; Thibault, G.; Akkouche, S.

    2011-09-01

    We address the reconstruction of 3D CAD models from point cloud data acquired in industrial environments, using a pre-existing 3D model as an initial estimate of the scene to be processed. Indeed, this prior knowledge can be used to drive the reconstruction so as to generate an accurate 3D model matching the point cloud. We more particularly focus our work on the cylindrical parts of the 3D models. We propose to state the problem in a probabilistic framework: we have to search for the 3D model which maximizes some probability taking several constraints into account, such as the relevancy with respect to the point cloud and the a priori 3D model, and the consistency of the reconstructed model. The resulting optimization problem can then be handled using a stochastic exploration of the solution space, based on the random insertion of elements in the configuration under construction, coupled with a greedy management of the conflicts which efficiently improves the configuration at each step. We show that this approach provides reliable reconstructed 3D models by presenting some results on industrial data sets.

  14. A novel alternative method for 3D visualisation in Parasitology: the construction of a 3D model of a parasite from 2D illustrations.

    Science.gov (United States)

    Teo, B G; Sarinder, K K S; Lim, L H S

    2010-08-01

    Three-dimensional (3D) models of the marginal hooks, dorsal and ventral anchors, bars and haptoral reservoirs of a parasite, Sundatrema langkawiense Lim & Gibson, 2009 (Monogenea) were developed using the polygonal modelling method in Autodesk 3ds Max (Version 9) based on two-dimensional (2D) illustrations. Maxscripts were written to rotate the modelled 3D structures. Appropriately orientated 3D haptoral hard-parts were then selected and positioned within the transparent 3D outline of the haptor and grouped together to form a complete 3D haptoral entity. This technique is an inexpensive tool for constructing 3D models from 2D illustrations for 3D visualisation of the spatial relationships between the different structural parts within organisms.

  15. MULTI SENSOR DATA INTEGRATION FOR AN ACCURATE 3D MODEL GENERATION

    Directory of Open Access Journals (Sweden)

    S. Chhatkuli

    2015-05-01

    Full Text Available The aim of this paper is to introduce a novel technique of data integration between two different data sets, i.e. laser scanned RGB point cloud and oblique imageries derived 3D model, to create a 3D model with more details and better accuracy. In general, aerial imageries are used to create a 3D city model. Aerial imageries produce an overall decent 3D city models and generally suit to generate 3D model of building roof and some non-complex terrain. However, the automatically generated 3D model, from aerial imageries, generally suffers from the lack of accuracy in deriving the 3D model of road under the bridges, details under tree canopy, isolated trees, etc. Moreover, the automatically generated 3D model from aerial imageries also suffers from undulated road surfaces, non-conforming building shapes, loss of minute details like street furniture, etc. in many cases. On the other hand, laser scanned data and images taken from mobile vehicle platform can produce more detailed 3D road model, street furniture model, 3D model of details under bridge, etc. However, laser scanned data and images from mobile vehicle are not suitable to acquire detailed 3D model of tall buildings, roof tops, and so forth. Our proposed approach to integrate multi sensor data compensated each other’s weakness and helped to create a very detailed 3D model with better accuracy. Moreover, the additional details like isolated trees, street furniture, etc. which were missing in the original 3D model derived from aerial imageries could also be integrated in the final model automatically. During the process, the noise in the laser scanned data for example people, vehicles etc. on the road were also automatically removed. Hence, even though the two dataset were acquired in different time period the integrated data set or the final 3D model was generally noise free and without unnecessary details.

  16. Comparison of 3D Echocardiogram-Derived 3D Printed Valve Models to Molded Models for Simulated Repair of Pediatric Atrioventricular Valves.

    Science.gov (United States)

    Scanlan, Adam B; Nguyen, Alex V; Ilina, Anna; Lasso, Andras; Cripe, Linnea; Jegatheeswaran, Anusha; Silvestro, Elizabeth; McGowan, Francis X; Mascio, Christopher E; Fuller, Stephanie; Spray, Thomas L; Cohen, Meryl S; Fichtinger, Gabor; Jolley, Matthew A

    2018-03-01

    Mastering the technical skills required to perform pediatric cardiac valve surgery is challenging in part due to limited opportunity for practice. Transformation of 3D echocardiographic (echo) images of congenitally abnormal heart valves to realistic physical models could allow patient-specific simulation of surgical valve repair. We compared materials, processes, and costs for 3D printing and molding of patient-specific models for visualization and surgical simulation of congenitally abnormal heart valves. Pediatric atrioventricular valves (mitral, tricuspid, and common atrioventricular valve) were modeled from transthoracic 3D echo images using semi-automated methods implemented as custom modules in 3D Slicer. Valve models were then both 3D printed in soft materials and molded in silicone using 3D printed "negative" molds. Using pre-defined assessment criteria, valve models were evaluated by congenital cardiac surgeons to determine suitability for simulation. Surgeon assessment indicated that the molded valves had superior material properties for the purposes of simulation compared to directly printed valves (p 3D echo-derived molded valves are a step toward realistic simulation of complex valve repairs but require more time and labor to create than directly printed models. Patient-specific simulation of valve repair in children using such models may be useful for surgical training and simulation of complex congenital cases.

  17. Genetic Fuzzy Modelling of User Perception of 3D Shapes

    DEFF Research Database (Denmark)

    Achiche, Sofiane; Ahmed-Kristensen, Saeema

    2011-01-01

    Defining the aesthetic and emotional value of a product is an important consideration for its design. Furthermore, if several designers are faced with the task of creating an object that describe a certain emotion/perception (aggressive, soft, heavy, etc.), each is most likely to interpret...... the emotion/perception with different shapes composed of a set of different geometric features. In this paper, the authors propose an automatic approach to formalize the relationships between geometric information of 3D objects and the intended emotional content using fuzzy logic. In addition...

  18. Advances in 3D electromagnetic finite element modeling

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1997-01-01

    Numerous advances in electromagnetic finite element analysis (FEA) have been made in recent years. The maturity of frequency domain and eigenmode calculations, and the growth of time domain applications is briefly reviewed. A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will also be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis is also discussed

  19. 3D Modeling and Printing in History/Social Studies Classrooms: Initial Lessons and Insights

    Science.gov (United States)

    Maloy, Robert; Trust, Torrey; Kommers, Suzan; Malinowski, Allison; LaRoche, Irene

    2017-01-01

    This exploratory study examines the use of 3D technology by teachers and students in four middle school history/social studies classrooms. As part of a university-developed 3D Printing 4 Teaching & Learning project, teachers integrated 3D modeling and printing into curriculum topics in world geography, U.S. history, and government/civics.…

  20. Virtual and Printed 3D Models for Teaching Crystal Symmetry and Point Groups

    Science.gov (United States)

    Casas, Lluís; Estop, Euge`nia

    2015-01-01

    Both, virtual and printed 3D crystal models can help students and teachers deal with chemical education topics such as symmetry and point groups. In the present paper, two freely downloadable tools (interactive PDF files and a mobile app) are presented as examples of the application of 3D design to study point-symmetry. The use of 3D printing to…

  1. Analysis of 3D Modeling Software Usage Patterns for K-12 Students

    Science.gov (United States)

    Wu, Yi-Chieh; Liao, Wen-Hung; Chi, Ming-Te; Li, Tsai-Yen

    2016-01-01

    In response to the recent trend in maker movement, teachers are learning 3D techniques actively and bringing 3D printing into the classroom to enhance variety and creativity in designing lectures. This study investigates the usage pattern of a 3D modeling software, Qmodel Creator, which is targeted at K-12 students. User logs containing…

  2. Influence of 3D printing on transport : a theory and experts judgment based conceptual model

    NARCIS (Netherlands)

    Boon, Wouter; Van Wee, Bert

    2017-01-01

    Consumer 3D printing is on the rise and has the potential to significantly change the transport and logistics sector. Current literature on 3D printing and transport studies does not provide a systematic model of the impact of 3D printing on transport and related (policy relevant) areas, such as

  3. An evaluation of the Cray T3D programming paradigms in atmospheric chemistry/transport models

    NARCIS (Netherlands)

    J.G. Blom (Joke); C. Keßler (Carsten); J.G. Verwer (Jan)

    1996-01-01

    textabstractIn this paper we compare the different programming paradigms available on the Cray T3D for the implementation of a 3D prototype of an Atmospheric Chemistry/Transport Model. We discuss the amount of work needed to convert existing codes to the T3D and the portability of the resulting

  4. a Quadtree Organization Construction and Scheduling Method for Urban 3d Model Based on Weight

    Science.gov (United States)

    Yao, C.; Peng, G.; Song, Y.; Duan, M.

    2017-09-01

    The increasement of Urban 3D model precision and data quantity puts forward higher requirements for real-time rendering of digital city model. Improving the organization, management and scheduling of 3D model data in 3D digital city can improve the rendering effect and efficiency. This paper takes the complexity of urban models into account, proposes a Quadtree construction and scheduling rendering method for Urban 3D model based on weight. Divide Urban 3D model into different rendering weights according to certain rules, perform Quadtree construction and schedule rendering according to different rendering weights. Also proposed an algorithm for extracting bounding box extraction based on model drawing primitives to generate LOD model automatically. Using the algorithm proposed in this paper, developed a 3D urban planning&management software, the practice has showed the algorithm is efficient and feasible, the render frame rate of big scene and small scene are both stable at around 25 frames.

  5. A QUADTREE ORGANIZATION CONSTRUCTION AND SCHEDULING METHOD FOR URBAN 3D MODEL BASED ON WEIGHT

    Directory of Open Access Journals (Sweden)

    C. Yao

    2017-09-01

    Full Text Available The increasement of Urban 3D model precision and data quantity puts forward higher requirements for real-time rendering of digital city model. Improving the organization, management and scheduling of 3D model data in 3D digital city can improve the rendering effect and efficiency. This paper takes the complexity of urban models into account, proposes a Quadtree construction and scheduling rendering method for Urban 3D model based on weight. Divide Urban 3D model into different rendering weights according to certain rules, perform Quadtree construction and schedule rendering according to different rendering weights. Also proposed an algorithm for extracting bounding box extraction based on model drawing primitives to generate LOD model automatically. Using the algorithm proposed in this paper, developed a 3D urban planning&management software, the practice has showed the algorithm is efficient and feasible, the render frame rate of big scene and small scene are both stable at around 25 frames.

  6. Therapeutic response assessment using 3D ultrasound for hepatic metastasis from colorectal cancer: Application of a personalized, 3D-printed tumor model using CT images.

    Directory of Open Access Journals (Sweden)

    Ye Ra Choi

    Full Text Available To evaluate accuracy and reliability of three-dimensional ultrasound (3D US for response evaluation of hepatic metastasis from colorectal cancer (CRC using a personalized 3D-printed tumor model.Twenty patients with liver metastasis from CRC who underwent baseline and after chemotherapy CT, were retrospectively included. Personalized 3D-printed tumor models using CT were fabricated. Two radiologists measured volume of each 3D printing model using 3D US. With CT as a reference, we compared difference between CT and US tumor volume. The response evaluation was based on Response Evaluation Criteria in Solid Tumors (RECIST criteria.3D US tumor volume showed no significant difference from CT volume (7.18 ± 5.44 mL, 8.31 ± 6.32 mL vs 7.42 ± 5.76 mL in CT, p>0.05. 3D US provided a high correlation coefficient with CT (r = 0.953, r = 0.97 as well as a high inter-observer intraclass correlation (0.978; 0.958-0.988. Regarding response, 3D US was in agreement with CT in 17 and 18 out of 20 patients for observer 1 and 2 with excellent agreement (κ = 0.961.3D US tumor volume using a personalized 3D-printed model is an accurate and reliable method for the response evaluation in comparison with CT tumor volume.

  7. Image fusion in craniofacial virtual reality modeling based on CT and 3dMD photogrammetry.

    Science.gov (United States)

    Xin, Pengfei; Yu, Hongbo; Cheng, Huanchong; Shen, Shunyao; Shen, Steve G F

    2013-09-01

    The aim of this study was to demonstrate the feasibility of building a craniofacial virtual reality model by image fusion of 3-dimensional (3D) CT models and 3 dMD stereophotogrammetric facial surface. A CT scan and stereophotography were performed. The 3D CT models were reconstructed by Materialise Mimics software, and the stereophotogrammetric facial surface was reconstructed by 3 dMD patient software. All 3D CT models were exported as Stereo Lithography file format, and the 3 dMD model was exported as Virtual Reality Modeling Language file format. Image registration and fusion were performed in Mimics software. Genetic algorithm was used for precise image fusion alignment with minimum error. The 3D CT models and the 3 dMD stereophotogrammetric facial surface were finally merged into a single file and displayed using Deep Exploration software. Errors between the CT soft tissue model and 3 dMD facial surface were also analyzed. Virtual model based on CT-3 dMD image fusion clearly showed the photorealistic face and bone structures. Image registration errors in virtual face are mainly located in bilateral cheeks and eyeballs, and the errors are more than 1.5 mm. However, the image fusion of whole point cloud sets of CT and 3 dMD is acceptable with a minimum error that is less than 1 mm. The ease of use and high reliability of CT-3 dMD image fusion allows the 3D virtual head to be an accurate, realistic, and widespread tool, and has a great benefit to virtual face model.

  8. Procedural 3d Modelling for Traditional Settlements. The Case Study of Central Zagori

    Science.gov (United States)

    Kitsakis, D.; Tsiliakou, E.; Labropoulos, T.; Dimopoulou, E.

    2017-02-01

    Over the last decades 3D modelling has been a fast growing field in Geographic Information Science, extensively applied in various domains including reconstruction and visualization of cultural heritage, especially monuments and traditional settlements. Technological advances in computer graphics, allow for modelling of complex 3D objects achieving high precision and accuracy. Procedural modelling is an effective tool and a relatively novel method, based on algorithmic modelling concept. It is utilized for the generation of accurate 3D models and composite facade textures from sets of rules which are called Computer Generated Architecture grammars (CGA grammars), defining the objects' detailed geometry, rather than altering or editing the model manually. In this paper, procedural modelling tools have been exploited to generate the 3D model of a traditional settlement in the region of Central Zagori in Greece. The detailed geometries of 3D models derived from the application of shape grammars on selected footprints, and the process resulted in a final 3D model, optimally describing the built environment of Central Zagori, in three levels of Detail (LoD). The final 3D scene was exported and published as 3D web-scene which can be viewed with 3D CityEngine viewer, giving a walkthrough the whole model, same as in virtual reality or game environments. This research work addresses issues regarding textures' precision, LoD for 3D objects and interactive visualization within one 3D scene, as well as the effectiveness of large scale modelling, along with the benefits and drawbacks that derive from procedural modelling techniques in the field of cultural heritage and more specifically on 3D modelling of traditional settlements.

  9. Interactive Scientific Visualization in 3D Virtual Reality Model

    Directory of Open Access Journals (Sweden)

    Filip Popovski

    2016-11-01

    Full Text Available Scientific visualization in technology of virtual reality is a graphical representation of virtual environment in the form of images or animation that can be displayed with various devices such as Head Mounted Display (HMD or monitors that can view threedimensional world. Research in real time is a desirable capability for scientific visualization and virtual reality in which we are immersed and make the research process easier. In this scientific paper the interaction between the user and objects in the virtual environment аrе in real time which gives a sense of reality to the user. Also, Quest3D VR software package is used and the movement of the user through the virtual environment, the impossibility to walk through solid objects, methods for grabbing objects and their displacement are programmed and all interactions between them will be possible. At the end some critical analysis were made on all of these techniques on various computer systems and excellent results were obtained.

  10. An interactive display system for large-scale 3D models

    Science.gov (United States)

    Liu, Zijian; Sun, Kun; Tao, Wenbing; Liu, Liman

    2018-04-01

    With the improvement of 3D reconstruction theory and the rapid development of computer hardware technology, the reconstructed 3D models are enlarging in scale and increasing in complexity. Models with tens of thousands of 3D points or triangular meshes are common in practical applications. Due to storage and computing power limitation, it is difficult to achieve real-time display and interaction with large scale 3D models for some common 3D display software, such as MeshLab. In this paper, we propose a display system for large-scale 3D scene models. We construct the LOD (Levels of Detail) model of the reconstructed 3D scene in advance, and then use an out-of-core view-dependent multi-resolution rendering scheme to realize the real-time display of the large-scale 3D model. With the proposed method, our display system is able to render in real time while roaming in the reconstructed scene and 3D camera poses can also be displayed. Furthermore, the memory consumption can be significantly decreased via internal and external memory exchange mechanism, so that it is possible to display a large scale reconstructed scene with over millions of 3D points or triangular meshes in a regular PC with only 4GB RAM.

  11. 3D Reflection Map Modeling for Optical Emitter-receiver Pairs

    DEFF Research Database (Denmark)

    Christensen, Henrik Vie

    2004-01-01

    A model for a model-based 3D-position determination system for a passive object is presented. Infrared emitter/receiver pairs are proposed as sensing part to acquire information on a ball shaped object's position. A 3D reflection map model is derived trough geometrical considerations. The model...

  12. 3D simulation studies of tokamak plasmas using MHD and extended-MHD models

    International Nuclear Information System (INIS)

    Park, W.; Chang, Z.; Fredrickson, E.; Fu, G.Y.

    1996-01-01

    The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-β disruption studies in reversed shear plasmas using the MHD level MH3D code, ω *i stabilization and nonlinear island saturation of TAE mode using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D ++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree which agree well with experimental data

  13. Development of 3D Oxide Fuel Mechanics Models

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Casagranda, A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pitts, S. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jiang, W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-27

    This report documents recent work to improve the accuracy and robustness of the mechanical constitutive models used in the BISON fuel performance code. These developments include migration of the fuel mechanics models to be based on the MOOSE Tensor Mechanics module, improving the robustness of the smeared cracking model, implementing a capability to limit the time step size based on material model response, and improving the robustness of the return mapping iterations used in creep and plasticity models.

  14. Developing and Testing a 3d Cadastral Data Model a Case Study in Australia

    Science.gov (United States)

    Aien, A.; Kalantari, M.; Rajabifard, A.; Williamson, I. P.; Shojaei, D.

    2012-07-01

    Population growth, urbanization and industrialization place more pressure on land use with the need for increased space. To extend the use and functionality of the land, complex infrastructures are being built, both vertically and horizontally, layered and stacked. These three-dimensional (3D) developments affect the interests (Rights, Restrictions, and Responsibilities (RRRs)) attached to the underlying land. A 3D cadastre will assist in managing the effects of 3D development on a particular extent of land. There are many elements that contribute to developing a 3D cadastre, such as existing of 3D property legislations, 3D DBMS, 3D visualization. However, data modelling is one of the most important elements of a successful 3D cadastre. As architectural models of houses and high rise buildings help their users visualize the final product, 3D cadastre data model supports 3D cadastre users to understand the structure or behavior of the system and has a template that guides them to construct and implement the 3D cadastre. Many jurisdictions, organizations and software developers have built their own cadastral data model. Land Administration Domain Model (DIS-ISO 19152, The Netherlands) and ePlan (Intergovernmental Committee on Surveying and Mapping, Australia) are examples of existing data models. The variation between these data models is the result of different attitudes towards cadastres. However, there is a basic common thread among them all. Current cadastral data models use a 2D land-parcel concept and extend it to support 3D requirements. These data models cannot adequately manage and represent the spatial extent of 3D RRRs. Most of the current cadastral data models have been influenced by a very broad understanding of 3D cadastral concepts because better clarity in what needs to be represented and analysed in the cadastre needs to be established. This paper presents the first version of a 3D Cadastral Data Model (3DCDM_Version 1.0). 3DCDM models both the legal

  15. Dosimetric impact of inter-observer variability for 3D conformal radiotherapy and volumetric modulated arc therapy: the rectal tumor target definition case

    International Nuclear Information System (INIS)

    Lobefalo, Francesca; Cozzi, Luca; Scorsetti, Marta; Mancosu, Pietro; Bignardi, Mario; Reggiori, Giacomo; Tozzi, Angelo; Tomatis, Stefano; Alongi, Filippo; Fogliata, Antonella; Gaudino, Anna; Navarria, Piera

    2013-01-01

    To assess the dosimetric effect induced by inter-observer variability in target definition for 3D-conformal RT (3DCRT) and volumetric modulated arc therapy by RapidArc (RA) techniques for rectal cancer treatment. Ten patients with rectal cancer subjected to neo-adjuvant RT were randomly selected from the internal database. Four radiation oncologists independently contoured the clinical target volume (CTV) in blind mode. Planning target volume (PTV) was defined as CTV + 7 mm in the three directions. Afterwards, shared guidelines between radiation oncologists were introduced to give general criteria for the contouring of rectal target and the four radiation oncologists defined new CTV following the guidelines. For each patient, six intersections (I) and unions (U) volumes were calculated coupling the contours of the various oncologists. This was repeated for the contours drawn after the guidelines. Agreement Index (AI = I/U) was calculated pre and post guidelines. Two RT plans (one with 3DCRT technique using 3–4 fields and one with RA using a single modulated arc) were optimized on each radiation oncologist’s PTV. For each plan the PTV volume receiving at least 95% of the prescribed dose (PTV V95%) was calculated for both target and non-target PTVs. The inter-operator AI pre-guidelines was 0.57 and was increased up to 0.69 post-guidelines. The maximum volume difference between the various CTV couples, drawn for each patient, passed from 380 ± 147 cm 3 to 137 ± 83 cm 3 after the introduction of guidelines. The mean percentage for the non-target PTV V95% was 93.7 ± 9.2% before and 96.6 ± 4.9%after the introduction of guidelines for the 3DCRT, for RA the increase was more relevant, passing from 86.5 ± 13.8% (pre) to 94.5 ± 7.5% (post). The OARs were maximally spared with VMAT technique while the variability between pre and post guidelines was not relevant in both techniques. The contouring inter-observer variability has dosimetric effects in the PTV coverage

  16. Chest wall desmoid tumours treated with definitive radiotherapy: a plan comparison of 3D conformal radiotherapy, intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy

    International Nuclear Information System (INIS)

    Liu, Jia; Ng, Diana; Lee, James; Stalley, Paul; Hong, Angela

    2016-01-01

    Definitive radiotherapy is often used for chest wall desmoid tumours due to size or anatomical location. The delivery of radiotherapy is challenging due to the large size and constraints of normal surrounding structures. We compared the dosimetry of 3D conformal radiotherapy (3DCRT), intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc radiotherapy (VMAT) to evaluate the best treatment option. Ten consecutive patients with inoperable chest wall desmoid tumours (PTV range 416–4549 cm 3 ) were selected. For each patient, 3DCRT, IMRT and VMAT plans were generated and the Conformity Index (CI), organ at risk (OAR) doses and monitor unit (MU) were evaluated. The Wilcoxon signed-rank test was used to compare dose delivered to both target and OARs. The mean number of fields for 3DCRT and IMRT were 6.3 ± 2.1, 7.2 ± 1.8. The mean number of arcs for VMAT was 3.7 ± 1.1. The mean conformity index of VMAT (0.98 ± 0.14) was similar to that of IMRT (1.03 ± 0.13), both of which were significantly better than 3DCRT (1.35 ± 0.20; p = 0.005). The mean dose to lung was significantly higher for 3DCRT (11.9Gy ± 7.9) compared to IMRT (9.4Gy ± 5.4, p = 0.014) and VMAT (8.9Gy ± 4.5, p = 0.017). For the 3 females, the low dose regions in the ipsilateral breast for VMAT were generally less with VMAT. IMRT plans required 1427 ± 532 MU per fraction which was almost 4-fold higher than 3DCRT (313 ± 112, P = 0.005). Compared to IMRT, VMAT plans required 60 % less MU (570 ± 285, P = 0.005). For inoperable chest wall desmoid tumours, VMAT delivered equivalent target coverage when compared to IMRT but required 60 % less MU. Both VMAT and IMRT were superior to 3DCRT in terms of better PTV coverage and sparing of lung tissue

  17. Modeling Damage Modes in 3-D Woven Armor Composite Systems

    National Research Council Canada - National Science Library

    Valisetty, R; Rajendran, A. M; Grove, D; Namburu, R; Bahei-El-Din, Y; Hody, A; Seever, L

    2006-01-01

    .... This effect is considered in the RVE via a transformation field analysis (TFA). Since the model is computationally intensive, its numerical requirements in modeling the local microstructure, e.g...

  18. 3D City Models with Different Temporal Characteristica

    DEFF Research Database (Denmark)

    Bodum, Lars

    2005-01-01

    traditional static city models and those models that are built for realtime applications. The difference between the city models applies both to the spatial modelling and also when using the phenomenon time in the models. If the city models are used in visualizations without any variation in time or when......-built dynamic or a model suitable for visualization in realtime, it is required that modelling is done with level-of-detail and simplification of both the aesthetics and the geometry. If a temporal characteristic is combined with a visual characteristic, the situation can easily be seen as a t/v matrix where t...... is the temporal characteristic or representation and v is the visual characteristic or representation....

  19. A new approach towards image based virtual 3D city modeling by using close range photogrammetry

    Science.gov (United States)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-05-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing day to day for various engineering and non-engineering applications. Generally three main image based approaches are using for virtual 3D city models generation. In first approach, researchers used Sketch based modeling, second method is Procedural grammar based modeling and third approach is Close range photogrammetry based modeling. Literature study shows that till date, there is no complete solution available to create complete 3D city model by using images. These image based methods also have limitations This paper gives a new approach towards image based virtual 3D city modeling by using close range photogrammetry. This approach is divided into three sections. First, data acquisition process, second is 3D data processing, and third is data combination process. In data acquisition process, a multi-camera setup developed and used for video recording of an area. Image frames created from video data. Minimum required and suitable video image frame selected for 3D processing. In second section, based on close range photogrammetric principles and computer vision techniques, 3D model of area created. In third section, this 3D model exported to adding and merging of other pieces of large area. Scaling and alignment of 3D model was done. After applying the texturing and rendering on this model, a final photo-realistic textured 3D model created. This 3D model transferred into walk-through model or in movie form. Most of the processing steps are automatic. So this method is cost effective and less laborious. Accuracy of this model is good. For this research work, study area is the campus of department of civil engineering, Indian Institute of Technology, Roorkee. This campus acts as a prototype for city. Aerial photography is restricted in many country

  20. Application of anatomically accurate, patient-specific 3D printed models from MRI data in urological oncology

    International Nuclear Information System (INIS)

    Wake, N.; Chandarana, H.; Huang, W.C.; Taneja, S.S.; Rosenkrantz, A.B.

    2016-01-01

    Highlights: • We examine 3D printing in the context of urologic oncology. • Patient-specific 3D printed kidney and prostate tumor models were created. • 3D printed models extend the current capabilities of conventional 3D visualization. • 3D printed models may be used for surgical planning and intraoperative guidance.

  1. Heritage house maintenance using 3D city model application domain extension approach

    DEFF Research Database (Denmark)

    Mohd, Zulaikha Hana; Ujang, Uznir; Choon, Tan Liat

    2017-01-01

    leakage and exfoliation of wall. One of the initiatives for maintaining and documenting this heritage house is through Three-dimensional (3D) of technology. 3D city models are widely used now and much used by researchers for management and analysis. CityGML is a standard tool that usually used...... by researchers to exchange, storing and managing virtual 3D city models either geometric and semantic information. Moreover, it also represent multi-scale of 3D model in five level of details (LoDs) whereby each of level give a distinctive functions. The extension of CityGML was recently introduced and can...

  2. New series of 3 D lattice integrable models

    International Nuclear Information System (INIS)

    Mangazeev, V.V.; Sergeev, S.M.; Stroganov, Yu.G.

    1993-01-01

    In this paper we present a new series of 3-dimensional integrable lattice models with N colors. The weight functions of the models satisfy modified tetrahedron equations with N states and give a commuting family of two-layer transfer-matrices. The dependence on the spectral parameters corresponds to the static limit of the modified tetrahedron equations and weights are parameterized in terms of elliptic functions. The models contain two free parameters: elliptic modulus and additional parameter η. 12 refs

  3. A 3D thermal runaway propagation model for a large format lithium ion battery module

    International Nuclear Information System (INIS)

    Feng, Xuning; Lu, Languang; Ouyang, Minggao; Li, Jiangqiu; He, Xiangming

    2016-01-01

    In this paper, a 3D thermal runaway (TR) propagation model is built for a large format lithium ion battery module. The 3D TR propagation model is built based on the energy balance equation. Empirical equations are utilized to simplify the calculation of the chemical kinetics for TR, whereas equivalent thermal resistant layer is employed to simplify the heat transfer through the thin thermal layer. The 3D TR propagation model is validated by experiment and can provide beneficial discussions on the mechanisms of TR propagation. According to the modeling analysis of the 3D model, the TR propagation can be delayed or prevented through: 1) increasing the TR triggering temperature; 2) reducing the total electric energy released during TR; 3) enhancing the heat dissipation level; 4) adding extra thermal resistant layer between adjacent batteries. The TR propagation is successfully prevented in the model and validated by experiment. The model with 3D temperature distribution provides a beneficial tool for researchers to study the TR propagation mechanisms and for engineers to design a safer battery pack. - Highlights: • A 3D thermal runaway (TR) propagation model for Li-ion battery pack is built. • The 3D TR propagation model can fit experimental results well. • Temperature distributions during TR propagation are presented using the 3D model. • Modeling analysis provides solutions for the prevention of TR propagation. • Quantified solutions to prevent TR propagation in battery pack are discussed.

  4. Indoor 3D Route Modeling Based On Estate Spatial Data

    Science.gov (United States)

    Zhang, H.; Wen, Y.; Jiang, J.; Huang, W.

    2014-04-01

    Indoor three-dimensional route model is essential for space intelligence navigation and emergency evacuation. This paper is motivated by the need of constructing indoor route model automatically and as far as possible. By comparing existing building data sources, this paper firstly explained the reason why the estate spatial management data is chosen as the data source. Then, an applicable method of construction three-dimensional route model in a building is introduced by establishing the mapping relationship between geographic entities and their topological expression. This data model is a weighted graph consist of "node" and "path" to express the spatial relationship and topological structure of a building components. The whole process of modelling internal space of a building is addressed by two key steps: (1) each single floor route model is constructed, including path extraction of corridor using Delaunay triangulation algorithm with constrained edge, fusion of room nodes into the path; (2) the single floor route model is connected with stairs and elevators and the multi-floor route model is eventually generated. In order to validate the method in this paper, a shopping mall called "Longjiang New City Plaza" in Nanjing is chosen as a case of study. And the whole building space is constructed according to the modelling method above. By integrating of existing path finding algorithm, the usability of this modelling method is verified, which shows the indoor three-dimensional route modelling method based on estate spatial data in this paper can support indoor route planning and evacuation route design very well.

  5. Bi-temporal 3D Active Appearance Modelling

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille

    2005-01-01

    in fourdimensional MRI. The theoretical foundation of our work is the generative two-dimensional Active Appearance Models by Cootes et al., here extended to bi-temporal, three-dimensional models. Further issues treated include correction of respiratory induced slice displacements, systole detection, and a texture...

  6. Computational 3-D Model of the Human Respiratory System

    Science.gov (United States)

    We are developing a comprehensive, morphologically-realistic computational model of the human respiratory system that can be used to study the inhalation, deposition, and clearance of contaminants, while being adaptable for age, race, gender, and health/disease status. The model ...

  7. 3-D Geometric Modeling for the 21st Century.

    Science.gov (United States)

    Ault, Holly K.

    1999-01-01

    Describes new geometric computer models used in contemporary computer-aided design (CAD) software including wire frame, surface, solid, and parametric models. Reviews their use in engineering design and discusses the impact of these new technologies on the engineering design graphics curriculum. (Author/CCM)

  8. Internal variability of a 3-D ocean model

    Directory of Open Access Journals (Sweden)

    Bjarne Büchmann

    2016-11-01

    Full Text Available The Defence Centre for Operational Oceanography runs operational forecasts for the Danish waters. The core setup is a 60-layer baroclinic circulation model based on the General Estuarine Transport Model code. At intervals, the model setup is tuned to improve ‘model skill’ and overall performance. It has been an area of concern that the uncertainty inherent to the stochastical/chaotic nature of the model is unknown. Thus, it is difficult to state with certainty that a particular setup is improved, even if the computed model skill increases. This issue also extends to the cases, where the model is tuned during an iterative process, where model results are fed back to improve model parameters, such as bathymetry.An ensemble of identical model setups with slightly perturbed initial conditions is examined. It is found that the initial perturbation causes the models to deviate from each other exponentially fast, causing differences of several PSUs and several kelvin within a few days of simulation. The ensemble is run for a full year, and the long-term variability of salinity and temperature is found for different regions within the modelled area. Further, the developing time scale is estimated for each region, and great regional differences are found – in both variability and time scale. It is observed that periods with very high ensemble variability are typically short-term and spatially limited events.A particular event is examined in detail to shed light on how the ensemble ‘behaves’ in periods with large internal model variability. It is found that the ensemble does not seem to follow any particular stochastic distribution: both the ensemble variability (standard deviation or range as well as the ensemble distribution within that range seem to vary with time and place. Further, it is observed that a large spatial variability due to mesoscale features does not necessarily correlate to large ensemble variability. These findings bear

  9. Coupling 2D/3D registration method and statistical model to perform 3D reconstruction from partial x-rays images data.

    Science.gov (United States)

    Cresson, T; Chav, R; Branchaud, D; Humbert, L; Godbout, B; Aubert, B; Skalli, W; De Guise, J A

    2009-01-01

    3D reconstructions of the spine from a frontal and sagittal radiographs is extremely challenging. The overlying features of soft tissues and air cavities interfere with image processing. It is also difficult to obtain information that is accurate enough to reconstruct complete 3D models. To overcome these problems, the proposed method efficiently combines the partial information contained in two images from a patient with a statistical 3D spine model generated from a database of scoliotic patients. The algorithm operates through two simultaneous iterating processes. The first one generates a personalized vertebra model using a 2D/3D registration process with bone boundaries extracted from radiographs, while the other one infers the position and the shape of other vertebrae from the current estimation of the registration process using a statistical 3D model. Experimental evaluations have shown good performances of the proposed approach in terms of accuracy and robustness when compared to CT-scan.

  10. 3D-Printed Craniosynostosis Model: New Simulation Surgical Tool.

    Science.gov (United States)

    Ghizoni, Enrico; de Souza, João Paulo Sant Ana Santos; Raposo-Amaral, Cassio Eduardo; Denadai, Rafael; de Aquino, Humberto Belém; Raposo-Amaral, Cesar Augusto; Joaquim, Andrei Fernandes; Tedeschi, Helder; Bernardes, Luís Fernando; Jardini, André Luiz

    2018-01-01

    Craniosynostosis is a complex disease once it involves deep anatomic perception, and a minor mistake during surgery can be fatal. The objective of this report is to present novel 3-dimensional-printed polyamide craniosynostosis models that can improve the understanding and treatment complex pathologies. The software InVesalius was used for segmentation of the anatomy image (from 3 patients between 6 and 9 months old). Afterward, the file was transferred to a 3-dimensional printing system and, with the use of an infrared laser, slices of powder PA 2200 were consecutively added to build a polyamide model of cranial bone. The 3 craniosynostosis models allowed fronto-orbital advancement, Pi procedure, and posterior distraction in the operating room environment. All aspects of the craniofacial anatomy could be shown on the models, as well as the most common craniosynostosis pathologic variations (sphenoid wing elevation, shallow orbits, jugular foramen stenosis). Another advantage of our model is its low cost, about 100 U.S. dollars or even less when several models are produced. Simulation is becoming an essential part of medical education for surgical training and for improving surgical safety with adequate planning. This new polyamide craniosynostosis model allowed the surgeons to have realistic tactile feedback on manipulating a child's bone and permitted execution of the main procedures for anatomic correction. It is a low-cost model. Therefore our model is an excellent option for training purposes and is potentially a new important tool to improve the quality of the management of patients with craniosynostosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Universal amplitude ratios in the 3D Ising model

    International Nuclear Information System (INIS)

    Caselle, M.; Hasenbusch, M.

    1998-01-01

    We present a high precision Monte Carlo study of various universal amplitude ratios of the three dimensional Ising spin model. Using state of the art simulation techniques we studied the model close to criticality in both phases. Great care was taken to control systematic errors due to finite size effects and correction to scaling terms. We obtain C + /C - =4.75(3), f +,2nd /f -,2nd =1.95(2) and u * =14.3(1). Our results are compatible with those obtained by field theoretic methods applied to the φ 4 theory and high and low temperature series expansions of the Ising model. (orig.)

  12. Program Package for 3d PIC Model of Plasma Fiber

    Science.gov (United States)

    Kulhánek, Petr; Břeň, David

    2007-08-01

    A fully three dimensional Particle in Cell model of the plasma fiber had been developed. The code is written in FORTRAN 95, implementation CVF (Compaq Visual Fortran) under Microsoft Visual Studio user interface. Five particle solvers and two field solvers are included in the model. The solvers have relativistic and non-relativistic variants. The model can deal both with periodical and non-periodical boundary conditions. The mechanism of the surface turbulences generation in the plasma fiber was successfully simulated with the PIC program package.

  13. 3D Modeling of CMEs observed with STEREO

    Science.gov (United States)

    Bosman, E.; Bothmer, V.

    2012-04-01

    From January 2007 until end of 2010, 565 typical large-scale coronal mass ejections (CMEs) have been identified in the SECCHI/COR2 synoptic movies of the STEREO Mission. A subset comprising 114 CME events, selected based on the CME's brightness appearance in the SECCHI/COR2 images, has been modeled through the Graduated Cylindrical Shell (GCS) Model developed by Thernisien et al. (2006). This study presents an overview of the GCS forward-modeling results and an interpretation of the CME characteristics in relationship to their solar source region properties and solar cycle appearances.

  14. 3D MODELING FOR UNDERWATER ARCHAEOLOGICAL DOCUMENTATION: METRIC VERIFICATIONS

    Directory of Open Access Journals (Sweden)

    S. D’Amelio

    2015-04-01

    Full Text Available The survey in underwater environment has always presented considerable difficulties both operative and technical and this has sometimes made it difficult to use the techniques of survey commonly used for the documentation of Cultural Heritage in dry environment. The work of study concerns the evaluation in terms of capability and accuracy of the Autodesk123DCatch software for the reconstruction of a three-dimensional model of an object in underwater context. The subjects of the study are models generated from sets of photographs and sets of frames extracted from video sequence. The study is based on comparative method, using a reference model, obtained with laser scanner technique.

  15. 3D Building Models Segmentation Based on K-Means++ Cluster Analysis

    Science.gov (United States)

    Zhang, C.; Mao, B.

    2016-10-01

    3D mesh model segmentation is drawing increasing attentions from digital geometry processing field in recent years. The original 3D mesh model need to be divided into separate meaningful parts or surface patches based on certain standards to support reconstruction, compressing, texture mapping, model retrieval and etc. Therefore, segmentation is a key problem for 3D mesh model segmentation. In this paper, we propose a method to segment Collada (a type of mesh model) 3D building models into meaningful parts using cluster analysis. Common clustering methods segment 3D mesh models by K-means, whose performance heavily depends on randomized initial seed points (i.e., centroid) and different randomized centroid can get quite different results. Therefore, we improved the existing method and used K-means++ clustering algorithm to solve this problem. Our experiments show that K-means++ improves both the speed and the accuracy of K-means, and achieve good and meaningful results.

  16. 3D BUILDING MODELS SEGMENTATION BASED ON K-MEANS++ CLUSTER ANALYSIS

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2016-10-01

    Full Text Available 3D mesh model segmentation is drawing increasing attentions from digital geometry processing field in recent years. The original 3D mesh model need to be divided into separate meaningful parts or surface patches based on certain standards to support reconstruction, compressing, texture mapping, model retrieval and etc. Therefore, segmentation is a key problem for 3D mesh model segmentation. In this paper, we propose a method to segment Collada (a type of mesh model 3D building models into meaningful parts using cluster analysis. Common clustering methods segment 3D mesh models by K-means, whose performance heavily depends on randomized initial seed points (i.e., centroid and different randomized centroid can get quite different results. Therefore, we improved the existing method and used K-means++ clustering algorithm to solve this problem. Our experiments show that K-means++ improves both the speed and the accuracy of K-means, and achieve good and meaningful results.

  17. Symbolic Model of Perception in Dynamic 3D Environments

    National Research Council Canada - National Science Library

    Carruth, D. W; Robbins, B; Thomas, M. D; Morais, A; Letherwood, M; Nebel, K

    2006-01-01

    Computational models of human cognition have been applied to many complex real-world tasks including air traffic control, human-computer interaction, learning arithmetic, traversing the World Wide Web...

  18. Large-scale 3-D modeling by integration of resistivity models and borehole data through inversion

    DEFF Research Database (Denmark)

    Foged, N.; Marker, Pernille Aabye; Christiansen, A. V.

    2014-01-01

    resistivity and the clay fraction. Through inversion we use the lithological data and the resistivity data to determine the optimum spatially distributed translator function. Applying the translator function we get a 3-D clay fraction model, which holds information from the resistivity data set...... and the borehole data set in one variable. Finally, we use k-means clustering to generate a 3-D model of the subsurface structures. We apply the procedure to the Norsminde survey in Denmark, integrating approximately 700 boreholes and more than 100 000 resistivity models from an airborne survey...

  19. Interpolating Spline Curve-Based Perceptual Encryption for 3D Printing Models

    Directory of Open Access Journals (Sweden)

    Giao N. Pham

    2018-02-01

    Full Text Available With the development of 3D printing technology, 3D printing has recently been applied to many areas of life including healthcare and the automotive industry. Due to the benefit of 3D printing, 3D printing models are often attacked by hackers and distributed without agreement from the original providers. Furthermore, certain special models and anti-weapon models in 3D printing must be protected against unauthorized users. Therefore, in order to prevent attacks and illegal copying and to ensure that all access is authorized, 3D printing models should be encrypted before being transmitted and stored. A novel perceptual encryption algorithm for 3D printing models for secure storage and transmission is presented in this paper. A facet of 3D printing model is extracted to interpolate a spline curve of degree 2 in three-dimensional space that is determined by three control points, the curvature coefficients of degree 2, and an interpolating vector. Three control points, the curvature coefficients, and interpolating vector of the spline curve of degree 2 are encrypted by a secret key. The encrypted features of the spline curve are then used to obtain the encrypted 3D printing model by inverse interpolation and geometric distortion. The results of experiments and evaluations prove that the entire 3D triangle model is altered and deformed after the perceptual encryption process. The proposed algorithm is responsive to the various formats of 3D printing models. The results of the perceptual encryption process is superior to those of previous methods. The proposed algorithm also provides a better method and more security than previous methods.

  20. Towards Precise Metadata-set for Discovering 3D Geospatial Models in Geo-portals

    Science.gov (United States)

    Zamyadi, A.; Pouliot, J.; Bédard, Y.

    2013-09-01

    Accessing 3D geospatial models, eventually at no cost and for unrestricted use, is certainly an important issue as they become popular among participatory communities, consultants, and officials. Various geo-portals, mainly established for 2D resources, have tried to provide access to existing 3D resources such as digital elevation model, LIDAR or classic topographic data. Describing the content of data, metadata is a key component of data discovery in geo-portals. An inventory of seven online geo-portals and commercial catalogues shows that the metadata referring to 3D information is very different from one geo-portal to another as well as for similar 3D resources in the same geo-portal. The inventory considered 971 data resources affiliated with elevation. 51% of them were from three geo-portals running at Canadian federal and municipal levels whose metadata resources did not consider 3D model by any definition. Regarding the remaining 49% which refer to 3D models, different definition of terms and metadata were found, resulting in confusion and misinterpretation. The overall assessment of these geo-portals clearly shows that the provided metadata do not integrate specific and common information about 3D geospatial models. Accordingly, the main objective of this research is to improve 3D geospatial model discovery in geo-portals by adding a specific metadata-set. Based on the knowledge and current practices on 3D modeling, and 3D data acquisition and management, a set of metadata is proposed to increase its suitability for 3D geospatial models. This metadata-set enables the definition of genuine classes, fields, and code-lists for a 3D metadata profile. The main structure of the proposal contains 21 metadata classes. These classes are classified in three packages as General and Complementary on contextual and structural information, and Availability on the transition from storage to delivery format. The proposed metadata set is compared with Canadian Geospatial

  1. Integration of 3D photogrammetric outcrop models in the reservoir modelling workflow

    Science.gov (United States)

    Deschamps, Remy; Joseph, Philippe; Lerat, Olivier; Schmitz, Julien; Doligez, Brigitte; Jardin, Anne

    2014-05-01

    3D technologies are now widely used in geosciences to reconstruct outcrops in 3D. The technology used for the 3D reconstruction is usually based on Lidar, which provides very precise models. Such datasets offer the possibility to build well-constrained outcrop analogue models for reservoir study purposes. The photogrammetry is an alternate methodology which principles are based in determining the geometric properties of an object from photographic pictures taken from different angles. Outcrop data acquisition is easy, and this methodology allows constructing 3D outcrop models with many advantages such as: - light and fast acquisition, - moderate processing time (depending on the size of the area of interest), - integration of field data and 3D outcrops into the reservoir modelling tools. Whatever the method, the advantages of digital outcrop model are numerous as already highlighted by Hodgetts (2013), McCaffrey et al. (2005) and Pringle et al. (2006): collection of data from otherwise inaccessible areas, access to different angles of view, increase of the possible measurements, attributes analysis, fast rate of data collection, and of course training and communication. This paper proposes a workflow where 3D geocellular models are built by integrating all sources of information from outcrops (surface picking, sedimentological sections, structural and sedimentary dips…). The 3D geomodels that are reconstructed can be used at the reservoir scale, in order to compare the outcrop information with subsurface models: the detailed facies models of the outcrops are transferred into petrophysical and acoustic models, which are used to test different scenarios of seismic and fluid flow modelling. The detailed 3D models are also used to test new techniques of static reservoir modelling, based either on geostatistical approaches or on deterministic (process-based) simulation techniques. A modelling workflow has been designed to model reservoir geometries and properties from

  2. 3D Multiscale Modelling of Angiogenesis and Vascular Tumour Growth

    KAUST Repository

    Perfahl, H.

    2012-11-01

    We present a three-dimensional, multiscale model of vascular tumour growth, which couples nutrient/growth factor transport, blood flow, angiogenesis, vascular remodelling, movement of and interactions between normal and tumour cells, and nutrient-dependent cell cycle dynamics within each cell. We present computational simulations which show how a vascular network may evolve and interact with tumour and healthy cells. We also demonstrate how our model may be combined with experimental data, to predict the spatio-temporal evolution of a vascular tumour.

  3. 3D Multiscale Modelling of Angiogenesis and Vascular Tumour Growth

    KAUST Repository

    Perfahl, H.; Byrne, H. M.; Chen, T.; Estrella, V.; Alarcó n, T.; Lapin, A.; Gatenby, R. A.; Gillies, R. J.; Lloyd, M. C.; Maini, P. K.; Reuss, M.; Owen, M. R.

    2012-01-01

    We present a three-dimensional, multiscale model of vascular tumour growth, which couples nutrient/growth factor transport, blood flow, angiogenesis, vascular remodelling, movement of and interactions between normal and tumour cells, and nutrient-dependent cell cycle dynamics within each cell. We present computational simulations which show how a vascular network may evolve and interact with tumour and healthy cells. We also demonstrate how our model may be combined with experimental data, to predict the spatio-temporal evolution of a vascular tumour.

  4. Grain breakage under uniaxial compression, through 3D DEM modelling

    Directory of Open Access Journals (Sweden)

    Nader François

    2017-01-01

    Full Text Available A breakable grain model is presented, using the concept of particles assembly. Grains of polyhedral shapes are generated, formed by joining together tetrahedral subgrains using cohesive bonds. Single grain crushing simulations are performed for multiple values of the intra-granular cohesion to study the effect on the grain’s strength. The same effect of intra-granular cohesion is studied under oedometric compression on samples of around 800 grains, which allows the evaluation of grain breakage model on the macroscopic behaviour. Grain size distribution curves and grain breakage ratios are monitored throughout the simulations.

  5. Automatic extraction of soft tissues from 3D MRI head images using model driven analysis

    International Nuclear Information System (INIS)

    Jiang, Hao; Yamamoto, Shinji; Imao, Masanao.

    1995-01-01

    This paper presents an automatic extraction system (called TOPS-3D : Top Down Parallel Pattern Recognition System for 3D Images) of soft tissues from 3D MRI head images by using model driven analysis algorithm. As the construction of system TOPS we developed, two concepts have been considered in the design of system TOPS-3D. One is the system having a hierarchical structure of reasoning using model information in higher level, and the other is a parallel image processing structure used to extract plural candidate regions for a destination entity. The new points of system TOPS-3D are as follows. (1) The TOPS-3D is a three-dimensional image analysis system including 3D model construction and 3D image processing techniques. (2) A technique is proposed to increase connectivity between knowledge processing in higher level and image processing in lower level. The technique is realized by applying opening operation of mathematical morphology, in which a structural model function defined in higher level by knowledge representation is immediately used to the filter function of opening operation as image processing in lower level. The system TOPS-3D applied to 3D MRI head images consists of three levels. First and second levels are reasoning part, and third level is image processing part. In experiments, we applied 5 samples of 3D MRI head images with size 128 x 128 x 128 pixels to the system TOPS-3D to extract the regions of soft tissues such as cerebrum, cerebellum and brain stem. From the experimental results, the system is robust for variation of input data by using model information, and the position and shape of soft tissues are extracted corresponding to anatomical structure. (author)

  6. Phase aided 3D imaging and modeling: dedicated systems and case studies

    Science.gov (United States)

    Yin, Yongkai; He, Dong; Liu, Zeyi; Liu, Xiaoli; Peng, Xiang

    2014-05-01

    Dedicated prototype systems for 3D imaging and modeling (3DIM) are presented. The 3D imaging systems are based on the principle of phase-aided active stereo, which have been developed in our laboratory over the past few years. The reported 3D imaging prototypes range from single 3D sensor to a kind of optical measurement network composed of multiple node 3D-sensors. To enable these 3D imaging systems, we briefly discuss the corresponding calibration techniques for both single sensor and multi-sensor optical measurement network, allowing good performance of the 3DIM prototype systems in terms of measurement accuracy and repeatability. Furthermore, two case studies including the generation of high quality color model of movable cultural heritage and photo booth from body scanning are presented to demonstrate our approach.

  7. Lorentzian 3d gravity with wormholes via matrix models

    NARCIS (Netherlands)

    Ambjørn, J.; Jurkiewicz, J.; Loll, R.; Vernizzi, G.

    2001-01-01

    We uncover a surprising correspondence between a non-perturbative formulation of three-dimensional Lorentzian quantum gravity and a hermitian two-matrix model with ABAB-interaction. The gravitational transfer matrix can be expressed as the logarithm of a two-matrix integral, and we deduce from

  8. Lower bound plane stress element for modelling 3D structures

    DEFF Research Database (Denmark)

    Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao

    2017-01-01

    In-plane action is often the primary load-carrying mechanism of reinforced concrete structures. The plate bending action will be secondary, and the behaviour of the structure can be modelled with a reasonable accuracy using a generalised three-dimensional plane stress element. In this paper...

  9. Building extraction for 3D city modelling using airborne laser ...

    African Journals Online (AJOL)

    Light detection and ranging (LiDAR) technology has become a standard tool for three-dimensional mapping because it offers fast rate of data acquisition with unprecedented level of accuracy. This study presents an approach to accurately extract and model building in three-dimensional space from airborne laser scanning ...

  10. Use of 3D Printed Models in Medical Education: A Randomized Control Trial Comparing 3D Prints versus Cadaveric Materials for Learning External Cardiac Anatomy

    Science.gov (United States)

    Lim, Kah Heng Alexander; Loo, Zhou Yaw; Goldie, Stephen J.; Adams, Justin W.; McMenamin, Paul G.

    2016-01-01

    Three-dimensional (3D) printing is an emerging technology capable of readily producing accurate anatomical models, however, evidence for the use of 3D prints in medical education remains limited. A study was performed to assess their effectiveness against cadaveric materials for learning external cardiac anatomy. A double blind randomized…

  11. 3D Anatomy Models and Impact on Learning: A Review of the Quality of the Literature

    Directory of Open Access Journals (Sweden)

    Samy A. Azer

    2016-12-01

    Conclusions: There was no solid evidence that the use of 3D models is superior to traditional teaching. However, the studies varied in research quality. More studies are needed to examine the short- and long-term impacts of 3D models on learning using valid and appropriate tools.

  12. Dual-Extrusion 3D Printing of Anatomical Models for Education

    Science.gov (United States)

    Smith, Michelle L.; Jones, James F. X.

    2018-01-01

    Two material 3D printing is becoming increasingly popular, inexpensive and accessible. In this paper, freely available printable files and dual extrusion fused deposition modelling were combined to create a number of functional anatomical models. To represent muscle and bone FilaFlex[superscript 3D] flexible filament and polylactic acid (PLA)…

  13. Rethinking Design Process: Using 3D Digital Models as an Interface in Collaborative Session

    Science.gov (United States)

    Ding, Suining

    2008-01-01

    This paper describes a pilot study for an alternative design process by integrating a designer-user collaborative session with digital models. The collaborative session took place in a 3D AutoCAD class for a real world project. The 3D models served as an interface for designer-user collaboration during the design process. Students not only learned…

  14. Virtual animation of victim-specific 3D models obtained from CT scans for forensic reconstructions

    DEFF Research Database (Denmark)

    Villa, C; Olsen, K B; Hansen, S H

    2017-01-01

    Post-mortem CT scanning (PMCT) has been introduced at several forensic medical institutions many years ago and has proved to be a useful tool. 3D models of bones, skin, internal organs and bullet paths can rapidly be generated using post-processing software. These 3D models reflect the individual...

  15. Development of 3D and 4D Bridge Models and Plans

    Science.gov (United States)

    2018-05-28

    Since 2012, MDOT has been leading national efforts to modernize design development with 3D modeling. Early focus on roadway projects yielded streamlined plan production and digital data for construction. As MDOT pivots to 3D model-centric design, nat...

  16. 3D Modeling from Multi-views Images for Cultural Heritage in Wat-Pho, Thailand

    Science.gov (United States)

    Soontranon, N.; Srestasathiern, P.; Lawawirojwong, S.

    2015-08-01

    In Thailand, there are several types of (tangible) cultural heritages. This work focuses on 3D modeling of the heritage objects from multi-views images. The images are acquired by using a DSLR camera which costs around 1,500 (camera and lens). Comparing with a 3D laser scanner, the camera is cheaper and lighter than the 3D scanner. Hence, the camera is available for public users and convenient for accessing narrow areas. The acquired images consist of various sculptures and architectures in Wat-Pho which is a Buddhist temple located behind the Grand Palace (Bangkok, Thailand). Wat-Pho is known as temple of the reclining Buddha and the birthplace of traditional Thai massage. To compute the 3D models, a diagram is separated into following steps; Data acquisition, Image matching, Image calibration and orientation, Dense matching and Point cloud processing. For the initial work, small heritages less than 3 meters height are considered for the experimental results. A set of multi-views images of an interested object is used as input data for 3D modeling. In our experiments, 3D models are obtained from MICMAC (open source) software developed by IGN, France. The output of 3D models will be represented by using standard formats of 3D point clouds and triangulated surfaces such as .ply, .off, .obj, etc. To compute for the efficient 3D models, post-processing techniques are required for the final results e.g. noise reduction, surface simplification and reconstruction. The reconstructed 3D models can be provided for public access such as website, DVD, printed materials. The high accurate 3D models can also be used as reference data of the heritage objects that must be restored due to deterioration of a lifetime, natural disasters, etc.

  17. 3D MODELING WITH PHOTOGRAMMETRY BY UAVS AND MODEL QUALITY VERIFICATION

    Directory of Open Access Journals (Sweden)

    V. Barrile

    2017-11-01

    Full Text Available This paper deals with a test lead by Geomatics laboratory (DICEAM, Mediterranea University of Reggio Calabria, concerning the application of UAV photogrammetry for survey, monitoring and checking. The study case relies with the surroundings of the Department of Agriculture Sciences. In the last years, such area was interested by landslides and survey activities carried out to take the phenomenon under control. For this purpose, a set of digital images were acquired through a UAV equipped with a digital camera and GPS. Successively, the processing for the production of a 3D georeferenced model was performed by using the commercial software Agisoft PhotoScan. Similarly, the use of a terrestrial laser scanning technique allowed to product dense cloud and 3D models of the same area. To assess the accuracy of the UAV-derived 3D models, a comparison between image and range-based methods was performed.

  18. A Topological Framework for Interactive Queries on 3D Models in the Web

    Directory of Open Access Journals (Sweden)

    Mauro Figueiredo

    2014-01-01

    Full Text Available Several technologies exist to create 3D content for the web. With X3D, WebGL, and X3DOM, it is possible to visualize and interact with 3D models in a web browser. Frequently, three-dimensional objects are stored using the X3D file format for the web. However, there is no explicit topological information, which makes it difficult to design fast algorithms for applications that require adjacency and incidence data. This paper presents a new open source toolkit TopTri (Topological model for Triangle meshes for Web3D servers that builds the topological model for triangular meshes of manifold or nonmanifold models. Web3D client applications using this toolkit make queries to the web server to get adjacent and incidence information of vertices, edges, and faces. This paper shows the application of the topological information to get minimal local points and iso-lines in a 3D mesh in a web browser. As an application, we present also the interactive identification of stalactites in a cave chamber in a 3D web browser. Several tests show that even for large triangular meshes with millions of triangles, the adjacency and incidence information is returned in real time making the presented toolkit appropriate for interactive Web3D applications.

  19. 3D Printing of Plant Golgi Stacks from Their Electron Tomographic Models.

    Science.gov (United States)

    Mai, Keith Ka Ki; Kang, Madison J; Kang, Byung-Ho

    2017-01-01

    Three-dimensional (3D) printing is an effective tool for preparing tangible 3D models from computer visualizations to assist in scientific research and education. With the recent popularization of 3D printing processes, it is now possible for individual laboratories to convert their scientific data into a physical form suitable for presentation or teaching purposes. Electron tomography is an electron microscopy method by which 3D structures of subcellular organelles or macromolecular complexes are determined at nanometer-level resolutions. Electron tomography analyses have revealed the convoluted membrane architectures of Golgi stacks, chloroplasts, and mitochondria. But the intricacy of their 3D organizations is difficult to grasp from tomographic models illustrated on computer screens. Despite the rapid development of 3D printing technologies, production of organelle models based on experimental data with 3D printing has rarely been documented. In this chapter, we present a simple guide to creating 3D prints of electron tomographic models of plant Golgi stacks using the two most accessible 3D printing technologies.

  20. A Topological Framework for Interactive Queries on 3D Models in the Web

    Science.gov (United States)

    Figueiredo, Mauro; Rodrigues, José I.; Silvestre, Ivo; Veiga-Pires, Cristina

    2014-01-01

    Several technologies exist to create 3D content for the web. With X3D, WebGL, and X3DOM, it is possible to visualize and interact with 3D models in a web browser. Frequently, three-dimensional objects are stored using the X3D file format for the web. However, there is no explicit topological information, which makes it difficult to design fast algorithms for applications that require adjacency and incidence data. This paper presents a new open source toolkit TopTri (Topological model for Triangle meshes) for Web3D servers that builds the topological model for triangular meshes of manifold or nonmanifold models. Web3D client applications using this toolkit make queries to the web server to get adjacent and incidence information of vertices, edges, and faces. This paper shows the application of the topological information to get minimal local points and iso-lines in a 3D mesh in a web browser. As an application, we present also the interactive identification of stalactites in a cave chamber in a 3D web browser. Several tests show that even for large triangular meshes with millions of triangles, the adjacency and incidence information is returned in real time making the presented toolkit appropriate for interactive Web3D applications. PMID:24977236

  1. Computational Analysis of 3D Ising Model Using Metropolis Algorithms

    International Nuclear Information System (INIS)

    Sonsin, A F; Cortes, M R; Nunes, D R; Gomes, J V; Costa, R S

    2015-01-01

    We simulate the Ising Model with the Monte Carlo method and use the algorithms of Metropolis to update the distribution of spins. We found that, in the specific case of the three-dimensional Ising Model, methods of Metropolis are efficient. Studying the system near the point of phase transition, we observe that the magnetization goes to zero. In our simulations we analyzed the behavior of the magnetization and magnetic susceptibility to verify the phase transition in a paramagnetic to ferromagnetic material. The behavior of the magnetization and of the magnetic susceptibility as a function of the temperature suggest a phase transition around KT/J ≈ 4.5 and was evidenced the problem of finite size of the lattice to work with large lattice. (paper)

  2. Contribution to the ATLAS B-field 3D model

    International Nuclear Information System (INIS)

    Vorozhtsov, S.B.; Titkova, I.V.; Nessi, M.

    1996-01-01

    The results from the simplified Tile-Cal B-field models calculations are presented. The effects of glue gaps, end plates, front plates, laminated iron layer near girder, 2 mm iron layers between tiles have been estimated. An interpretation of the existing field measurements of the TileCal segments is fulfilled. Some proposals for the general ATLAS B-field map calculation are given. 12 refs., 10 figs

  3. Acoustic 3D modeling by the method of integral equations

    Science.gov (United States)

    Malovichko, M.; Khokhlov, N.; Yavich, N.; Zhdanov, M.

    2018-02-01

    This paper presents a parallel algorithm for frequency-domain acoustic modeling by the method of integral equations (IE). The algorithm is applied to seismic simulation. The IE method reduces the size of the problem but leads to a dense system matrix. A tolerable memory consumption and numerical complexity were achieved by applying an iterative solver, accompanied by an effective matrix-vector multiplication operation, based on the fast Fourier transform (FFT). We demonstrate that, the IE system matrix is better conditioned than that of the finite-difference (FD) method, and discuss its relation to a specially preconditioned FD matrix. We considered several methods of matrix-vector multiplication for the free-space and layered host models. The developed algorithm and computer code were benchmarked against the FD time-domain solution. It was demonstrated that, the method could accurately calculate the seismic field for the models with sharp material boundaries and a point source and receiver located close to the free surface. We used OpenMP to speed up the matrix-vector multiplication, while MPI was used to speed up the solution of the system equations, and also for parallelizing across multiple sources. The practical examples and efficiency tests are presented as well.

  4. 3-D model of ICME in the interplanetary medium

    Science.gov (United States)

    Borgazzi, A.; Lara, A.; Niembro, T.

    2011-12-01

    We developed a method that describes with simply geometry the coordinates of intersection between the leading edge of an ICME and the position of an arbitrary satellite. When a fast CME is ejected from the Sun to the interplanetary space in most of the cases drives a shock. As the CME moves in the corona and later in the interplanetary space more material is stacking in the front and edges of the ejecta. In a first approximation, it is possible to assume the shape of these structures, the CME and the stacked material as a cone of revolution, (the ice-cream model [Schwenn et al., (2005)]). The interface may change due to the interaction of the structure and the non-shocked material in front of the ICME but the original shape of a cone of revolution is preserved. We assume, in a three dimensional geometry, an ice-cream cone shape for the ICME and apply an analytical model for its transport in the interplanetary medium. The goal of the present method is to give the time and the intersection coordinates between the leading edge of the ICME and any satellite that may be in the path of the ICME. With this information we can modelate the travel of the ICME in the interplanetary space using STEREO data.

  5. 3D MHD MODELING OF TWISTED CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Reale, F.; Peres, G. [Dipartimento di Fisica and Chimica, Università di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Orlando, S. [INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Guarrasi, M. [CINECA—Interuniversity consortium, via Magnanelli 6/3, I-40033, Casalecchio di Reno, Bologna (Italy); Mignone, A. [Dipartimento di Fisica Generale, Università di Torino, via Pietro Giuria 1, I-10125, Torino (Italy); Hood, A. W.; Priest, E. R., E-mail: fabio.reale@unipa.it [School of Mathematics and Statistics, University of St. Andrews, St. Andrews, KY16 9SS (United Kingdom)

    2016-10-10

    We perform MHD modeling of a single bright coronal loop to include the interaction with a non-uniform magnetic field. The field is stressed by random footpoint rotation in the central region and its energy is dissipated into heating by growing currents through anomalous magnetic diffusivity that switches on in the corona above a current density threshold. We model an entire single magnetic flux tube in the solar atmosphere extending from the high- β chromosphere to the low- β corona through the steep transition region. The magnetic field expands from the chromosphere to the corona. The maximum resolution is ∼30 km. We obtain an overall evolution typical of loop models and realistic loop emission in the EUV and X-ray bands. The plasma confined in the flux tube is heated to active region temperatures (∼3 MK) after ∼2/3 hr. Upflows from the chromosphere up to ∼100 km s{sup −1} fill the core of the flux tube to densities above 10{sup 9} cm{sup −3}. More heating is released in the low corona than the high corona and is finely structured both in space and time.

  6. Conformal FDTD modeling of 3-D wake fields

    International Nuclear Information System (INIS)

    Jurgens, T.G.; Harfoush, F.A.

    1991-01-01

    Many computer codes have been written to model wake fields. Here the authors describe the use of the Conformal Finite Difference Time Domain (CFDTD) method to model the wake fields generated by a rigid beam traveling through various accelerating structures. The non-cylindrical symmetry of some of the problems considered here requires the use of a three dimensional code. In traditional FDTD codes, curved surfaces are approximated by rectangular steps. The errors introduced in wake field calculations by such an approximation can be reduced by increasing the mesh size, therefore increasing the cost of computing. Another approach, validated here, deforms Ampere and Faraday contours near a media interface so as to conform to the interface. These improvements so as to conform to the interface. These improvements to the FDTD method result in better accuracy of the fields at asymptotically no computational cost. This method is also capable of modeling thin wires as found in beam profile monitors, and slots and cracks as found in resistive wall monitors

  7. The Martian Water Cycle Based on 3-D Modeling

    Science.gov (United States)

    Houben, H.; Haberle, R. M.; Joshi, M. M.

    1999-01-01

    Understanding the distribution of Martian water is a major goal of the Mars Surveyor program. However, until the bulk of the data from the nominal missions of TES, PMIRR, GRS, MVACS, and the DS2 probes are available, we are bound to be in a state where much of our knowledge of the seasonal behavior of water is based on theoretical modeling. We therefore summarize the results of this modeling at the present time. The most complete calculations come from a somewhat simplified treatment of the Martian climate system which is capable of simulating many decades of weather. More elaborate meteorological models are now being applied to study of the problem. The results show a high degree of consistency with observations of aspects of the Martian water cycle made by Viking MAWD, a large number of ground-based measurements of atmospheric column water vapor, studies of Martian frosts, and the widespread occurrence of water ice clouds. Additional information is contained in the original extended abstract.

  8. A 3-D radiation model for non-grey gases

    International Nuclear Information System (INIS)

    Selcuk, Nevin; Doner, Nimeti

    2009-01-01

    A three-dimensional radiation code based on method of lines (MOL) solution of discrete ordinates method (DOM) coupled with spectral line-based weighted sum of grey gases (SLW) model for radiative heat transfer in non-grey absorbing-emitting media for use in conjunction with a computational fluid dynamics (CFD) code based on the same approach was developed. The code was applied to three test problems: two containing isothermal homogenous/non-homogenous water vapor and one non-isothermal water vapor/carbon dioxide mixture. Predictive accuracy of the code was evaluated by benchmarking its steady-state predictions against accurate results, calculated by ray tracing method with statistical narrow band model, available in the literature. Comparative testing with solutions of other methods is also provided. Comparisons reveal that MOL solution of DOM with SLW model provides accurate solutions for radiative heat fluxes and source terms and can be used with confidence in conjunction with CFD codes based on MOL

  9. 3D MODELLING OF PROPHYLACTIC FOOTWEAR FOR A HIGH ARCHED FOOT

    OpenAIRE

    COSTEA Mariana; MIHAI Aura

    2016-01-01

    This article approaches the methodology of designing customized footwear for high arched foot. The authors propose to reconsider the classical structure of footwear bottom components for people with high arched foot and recommend incorporating custom components, with the role of compensation or adjustment. This study continues the authors’ research, starting from a foot’s 3D shape obtained by 3D scanning, the anthropometrical and biomechanical parameters, shoe lasts’ 3D modelling and continui...

  10. Evaluation of radiation damping using 3-D finite element models

    International Nuclear Information System (INIS)

    Vaughan, D.K.; Isenberg, J.

    1983-01-01

    The paper presents an analytic approach which is being used to quantify the contribution of radiation damping to overall system damping. The approach uses three-dimensional finite element techniques and can easily include details of site geology, foundation shape, and embedment depth. The approach involves performing free vibration response analyses for each soil-structure interaction (SSI) mode of interest. The structural model is specified without damping and, consequently, amplitude decay of the structure's free vibration response is a measure of the radiation damping characteristics of the soil-structure system for the particular deformational mode being investigated. The computational approach developed is highly efficient in order to minimize the impact of including three-dimensional geometry within the model. A new finite element code, FLEX, has been developed to represent the soil continuum. FLEX uses a highly optimized explicit time integration algorithm which takes advantage of parallel processing on vector machines, such as the CRAY 1 computer. A modal representation of the superstructure is used in combination with a substructuring approach to solve for the coupled response of the soil-structure system. This requires solving for numerical Green's functions for each degree-of-freedom of the foundation (assumed rigid). Once computed for a particular site and foundation, these Green's functions may be used within a convolution integral to represent the continuum forces on the foundation for any free vibration SSI response computation of any superstructure model. This analytic approach is applied to an investigation of the radiation damping coefficients for the first two fundamental SSI modes of the HDR containment structure. (orig./HP)

  11. A 3D Orthotropic Elastic Continuum Damage Material Model

    Energy Technology Data Exchange (ETDEWEB)

    English, Shawn Allen [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Brown, Arthur A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2013-08-01

    A three dimensional orthotropic elastic constitutive model with continuum damage is implemented for polymer matrix composite lamina. Damage evolves based on a quadratic homogeneous function of thermodynamic forces in the orthotropic planes. A small strain formulation is used to assess damage. In order to account for large deformations, a Kirchhoff material formulation is implemented and coded for numerical simulation in Sandia’s Sierra Finite Element code suite. The theoretical formulation is described in detail. An example of material parameter determination is given and an example is presented.

  12. 3D Weight Matrices in Modeling Real Estate Prices

    Science.gov (United States)

    Mimis, A.

    2016-10-01

    Central role in spatial econometric models of real estate data has the definition of the weight matrix by which we capture the spatial dependence between the observations. The weight matrices presented in literature so far, treats space in a two dimensional manner leaving out the effect of the third dimension or in our case the difference in height where the property resides. To overcome this, we propose a new definition of the weight matrix including the third dimensional effect by using the Hadamard product. The results illustrated that the level effect can be absorbed into the new weight matrix.

  13. 3D modeling of dual wind-up extensional rheometers

    DEFF Research Database (Denmark)

    Yu, Kaijia; Román Marín, José Manuel; Rasmussen, Henrik K.

    2010-01-01

    Fully three-dimensional numerical simulations of a dual wind-up drum rheometer of the Sentmanat Extensional Rheometer (SER; Sentmanat, 2004 [1]) or the Extensional Viscosity Fixture (EVF; Garritano and Berting, 2006 [2]) type have been performed. In the SER and EVF a strip of rectangular shape...... is attached onto two drums, followed by a rotation of both drums in opposite direction. The numerical modeling is based on integral constitutive equations of the K-BKZ type. Generally, to ensure a proper uni-axial extensional deformation in dual wind-up drum rheometers the simulations show that a very small...

  14. Scaling of coercivity in a 3d random anisotropy model

    Energy Technology Data Exchange (ETDEWEB)

    Proctor, T.C., E-mail: proctortc@gmail.com; Chudnovsky, E.M., E-mail: EUGENE.CHUDNOVSKY@lehman.cuny.edu; Garanin, D.A.

    2015-06-15

    The random-anisotropy Heisenberg model is numerically studied on lattices containing over ten million spins. The study is focused on hysteresis and metastability due to topological defects, and is relevant to magnetic properties of amorphous and sintered magnets. We are interested in the limit when ferromagnetic correlations extend beyond the size of the grain inside which the magnetic anisotropy axes are correlated. In that limit the coercive field computed numerically roughly scales as the fourth power of the random anisotropy strength and as the sixth power of the grain size. Theoretical arguments are presented that provide an explanation of numerical results. Our findings should be helpful for designing amorphous and nanosintered materials with desired magnetic properties. - Highlights: • We study the random-anisotropy model on lattices containing up to ten million spins. • Irreversible behavior due to topological defects (hedgehogs) is elucidated. • Hysteresis loop area scales as the fourth power of the random anisotropy strength. • In nanosintered magnets the coercivity scales as the six power of the grain size.

  15. Evaluation of field development plans using 3-D reservoir modelling

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, D.; Lewis, J.J.M. [Heriot-Watt Univ., Edinburgh (United Kingdom); Newbery, J.D.H. [Conoco, UK Ltd., Aberdeen (United Kingdom)] [and others

    1997-08-01

    Three-dimensional reservoir modelling has become an accepted tool in reservoir description and is used for various purposes, such as reservoir performance prediction or integration and visualisation of data. In this case study, a small Northern North Sea turbiditic reservoir was to be developed with a line drive strategy utilising a series of horizontal producer and injector pairs, oriented north-south. This development plan was to be evaluated and the expected outcome of the wells was to be assessed and risked. Detailed analyses of core, well log and analogue data has led to the development of two geological {open_quotes}end member{close_quotes} scenarios. Both scenarios have been stochastically modelled using the Sequential Indicator Simulation method. The resulting equiprobable realisations have been subjected to detailed statistical well placement optimisation techniques. Based upon bivariate statistical evaluation of more than 1000 numerical well trajectories for each of the two scenarios, it was found that the wells inclinations and lengths had a great impact on the wells success, whereas the azimuth was found to have only a minor impact. After integration of the above results, the actual well paths were redesigned to meet external drilling constraints, resulting in substantial reductions in drilling time and costs.

  16. 3D Printed Models of Cleft Palate Pathology for Surgical Education.

    Science.gov (United States)

    Lioufas, Peter A; Quayle, Michelle R; Leong, James C; McMenamin, Paul G

    2016-09-01

    To explore the potential viability and limitations of 3D printed models of children with cleft palate deformity. The advantages of 3D printed replicas of normal anatomical specimens have previously been described. The creation of 3D prints displaying patient-specific anatomical pathology for surgical planning and interventions is an emerging field. Here we explored the possibility of taking rare pediatric radiographic data sets to create 3D prints for surgical education. Magnetic resonance imaging data of 2 children (8 and 14 months) were segmented, colored, and anonymized, and stereolothographic files were prepared for 3D printing on either multicolor plastic or powder 3D printers and multimaterial 3D printers. Two models were deemed of sufficient quality and anatomical accuracy to print unamended. One data set was further manipulated digitally to artificially extend the length of the cleft. Thus, 3 models were printed: 1 incomplete soft-palate deformity, 1 incomplete anterior palate deformity, and 1 complete cleft palate. All had cleft lip deformity. The single-material 3D prints are of sufficient quality to accurately identify the nature and extent of the deformities. Multimaterial prints were subsequently created, which could be valuable in surgical training. Improvements in the quality and resolution of radiographic imaging combined with the advent of multicolor multiproperty printer technology will make it feasible in the near future to print 3D replicas in materials that mimic the mechanical properties and color of live human tissue making them potentially suitable for surgical training.

  17. TouchTerrain: A simple web-tool for creating 3D-printable topographic models

    Science.gov (United States)

    Hasiuk, Franciszek J.; Harding, Chris; Renner, Alex Raymond; Winer, Eliot

    2017-12-01

    An open-source web-application, TouchTerrain, was developed to simplify the production of 3D-printable terrain models. Direct Digital Manufacturing (DDM) using 3D Printers can change how geoscientists, students, and stakeholders interact with 3D data, with the potential to improve geoscience communication and environmental literacy. No other manufacturing technology can convert digital data into tangible objects quickly at relatively low cost; however, the expertise necessary to produce a 3D-printed terrain model can be a substantial burden: knowledge of geographical information systems, computer aided design (CAD) software, and 3D printers may all be required. Furthermore, printing models larger than the build volume of a 3D printer can pose further technical hurdles. The TouchTerrain web-application simplifies DDM for elevation data by generating digital 3D models customized for a specific 3D printer's capabilities. The only required user input is the selection of a region-of-interest using the provided web-application with a Google Maps-style interface. Publically available digital elevation data is processed via the Google Earth Engine API. To allow the manufacture of 3D terrain models larger than a 3D printer's build volume the selected area can be split into multiple tiles without third-party software. This application significantly reduces the time and effort required for a non-expert like an educator to obtain 3D terrain models for use in class. The web application is deployed at http://touchterrain.geol.iastate.edu/

  18. 3D MODELLING WITH THE SAMSUNG GEAR 360

    Directory of Open Access Journals (Sweden)

    L. Barazzetti

    2017-02-01

    Full Text Available The Samsung Gear 360 is a consumer grade spherical camera able to capture photos and videos. The aim of this work is to test the metric accuracy and the level of detail achievable with the Samsung Gear 360 coupled with digital modelling techniques based on photogrammetry/computer vision algorithms. Results demonstrate that the direct use of the projection generated inside the mobile phone or with Gear 360 Action Direction (the desktop software for post-processing have a relatively low metric accuracy. As results were in contrast with the accuracy achieved by using the original fisheye images (front and rear facing images in photogrammetric reconstructions, an alternative solution to generate the equirectangular projections was developed. A calibration aimed at understanding the intrinsic parameters of the two lenses camera, as well as their relative orientation, allowed one to generate new equirectangular projections from which a significant improvement of geometric accuracy has been achieved.

  19. BWR Fuel Assemblies Physics Analysis Utilizing 3D MCNP Modeling

    International Nuclear Information System (INIS)

    Chiang, Ren-Tai; Williams, John B.; Folk, Ken S.

    2008-01-01

    MCNP is used to model a partially controlled BWR fresh fuel four assemblies (2x2) system for better understanding BWR fuel behavior and for benchmarking production codes. The impact of the GE14 plenum regions on axial power distribution is observed by comparing against the GE13 axial power distribution, in which the GE14 relative power is lower than the GE13 relative power at the 15. node and at the 16. node due to presence of the plenum regions in GE14 fuel in these two nodes. The segmented rod power distribution study indicates that the azimuthally dependent power distribution is very significant for the fuel rods next to the water gap in the uncontrolled portion. (authors)

  20. BWR Fuel Assemblies Physics Analysis Utilizing 3D MCNP Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Ren-Tai [University of Florida, Gainesville, Florida 32611 (United States); Williams, John B.; Folk, Ken S. [Southern Nuclear Company, Birmingham, Alabama 35242 (United States)

    2008-07-01

    MCNP is used to model a partially controlled BWR fresh fuel four assemblies (2x2) system for better understanding BWR fuel behavior and for benchmarking production codes. The impact of the GE14 plenum regions on axial power distribution is observed by comparing against the GE13 axial power distribution, in which the GE14 relative power is lower than the GE13 relative power at the 15. node and at the 16. node due to presence of the plenum regions in GE14 fuel in these two nodes. The segmented rod power distribution study indicates that the azimuthally dependent power distribution is very significant for the fuel rods next to the water gap in the uncontrolled portion. (authors)

  1. Numerical modeling of NI-monitored 3D infiltration experiment

    Science.gov (United States)

    Dohnal, Michal; Dusek, Jaromir; Snehota, Michal; Sacha, Jan; Vogel, Tomas; Votrubova, Jana

    2014-05-01

    It is well known that the temporal changes of saturated hydraulic conductivity caused by the occurrence of air phase discontinuities often play an important role in water flow and solute transport experiments. In the present study, a series of infiltration-outflow experiments was conducted to test several working hypotheses about the mechanism of air phase trapping. The experiments were performed on a porous sample with artificial internal structure, using three sandy materials with contrasting hydraulic properties. The sample was axially symmetric with continuous preferential pathways and separate porous matrix blocks (the sample was 3.4 cm in diameter and 8.8 cm high). The infiltration experiments were monitored by neutron imaging (NI). The NI data were then used to quantify the water content of the selected sample regions. The flow regime in the sample was studied using a three-dimensional model based on Richards' equation. The equation was solved by the finite element method. The results of the numerical simulations of the infiltration experiments were compared with the measured outflow rates and with the spatial distribution of water content determined by NI. The research was supported by the Czech Science Foundation Project No. 14-03691S.

  2. VIRTUAL 3-D MODELLING OF AIRWAYS IN CONGENITAL HEART DEFECTS

    Directory of Open Access Journals (Sweden)

    Simone Speggiorin

    2016-10-01

    Full Text Available The involvement of the airway is not uncommon in the presence of complex cardiovascular malformations. In these cases, a careful inspection of the relationship between the airway and the vasculature is paramount to plan the surgical procedure. Three-dimentional printing enhanced the visualization of the cardio-vascualr structure. Unfortunately IT does not allow to remove selected anatomy to improve the visualization of the surrounding ones. Computerized modelling (CM of has the potential to fill this gap by allowing a dynamic handling of different anatomies, increasing the exposure of vessels or bronchi to show their relationship.. We started to use this technique to plan the surgical repair in these complex cases where the airway is affected. This technique is routinely used in our Institution as an additional tool in the pre-surgical assessment. We report 4 cases in which the airways were compressed by vascular structures : ascending aorta in 1, left pulmonary artery sling in 1, Patent ductus arteriosus (PDA in 1 and major aorto-pulmonary collateral artery in 1. We believe this technique can enhance the understanding of the causes of airway involvement and facilitate the creation of an appropriate surgical plan.

  3. 3D simulation studies of tokamak plasmas using MHD and extended-MHD models

    International Nuclear Information System (INIS)

    Park, W.; Chang, Z.; Fredrickson, E.; Fu, G.Y.; Pomphrey, N.; Sugiyama, L.E.

    1997-01-01

    The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-β disruption studies in reversed shear plasmas using the MHD level MH3D code, ω *i stabilization and nonlinear island rotation studies using the two-fluid level MH3D-T code, studies of nonlinear saturation of TAE modes using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D ++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree well with experimental data

  4. Combining 3d Volume and Mesh Models for Representing Complicated Heritage Buildings

    Science.gov (United States)

    Tsai, F.; Chang, H.; Lin, Y.-W.

    2017-08-01

    This study developed a simple but effective strategy to combine 3D volume and mesh models for representing complicated heritage buildings and structures. The idea is to seamlessly integrate 3D parametric or polyhedral models and mesh-based digital surfaces to generate a hybrid 3D model that can take advantages of both modeling methods. The proposed hybrid model generation framework is separated into three phases. Firstly, after acquiring or generating 3D point clouds of the target, these 3D points are partitioned into different groups. Secondly, a parametric or polyhedral model of each group is generated based on plane and surface fitting algorithms to represent the basic structure of that region. A "bare-bones" model of the target can subsequently be constructed by connecting all 3D volume element models. In the third phase, the constructed bare-bones model is used as a mask to remove points enclosed by the bare-bones model from the original point clouds. The remaining points are then connected to form 3D surface mesh patches. The boundary points of each surface patch are identified and these boundary points are projected onto the surfaces of the bare-bones model. Finally, new meshes are created to connect the projected points and original mesh boundaries to integrate the mesh surfaces with the 3D volume model. The proposed method was applied to an open-source point cloud data set and point clouds of a local historical structure. Preliminary results indicated that the reconstructed hybrid models using the proposed method can retain both fundamental 3D volume characteristics and accurate geometric appearance with fine details. The reconstructed hybrid models can also be used to represent targets in different levels of detail according to user and system requirements in different applications.

  5. High Performance Programming Using Explicit Shared Memory Model on the Cray T3D

    Science.gov (United States)

    Saini, Subhash; Simon, Horst D.; Lasinski, T. A. (Technical Monitor)

    1994-01-01

    The Cray T3D is the first-phase system in Cray Research Inc.'s (CRI) three-phase massively parallel processing program. In this report we describe the architecture of the T3D, as well as the CRAFT (Cray Research Adaptive Fortran) programming model, and contrast it with PVM, which is also supported on the T3D We present some performance data based on the NAS Parallel Benchmarks to illustrate both architectural and software features of the T3D.

  6. Calculation of the 3D density model of the Earth

    Science.gov (United States)

    Piskarev, A.; Butsenko, V.; Poselov, V.; Savin, V.

    2009-04-01

    The study of the Earth's crust is a part of investigation aimed at extension of the Russian Federation continental shelf in the Sea of Okhotsk Gathered data allow to consider the Sea of Okhotsk' area located outside the exclusive economic zone of the Russian Federation as the natural continuation of Russian territory. The Sea of Okhotsk is an Epi-Mesozoic platform with Pre-Cenozoic heterogeneous folded basement of polycyclic development and sediment cover mainly composed of Paleocene - Neocene - Quaternary deposits. Results of processing and complex interpretation of seismic, gravity, and aeromagnetic data along profile 2-DV-M, as well as analysis of available geological and geophysical information on the Sea of Okhotsk region, allowed to calculate of the Earth crust model. 4 layers stand out (bottom-up) in structure of the Earth crust: granulite-basic (density 2.90 g/cm3), granite-gneiss (limits of density 2.60-2.76 g/cm3), volcanogenic-sedimentary (2.45 g/cm3) and sedimentary (density 2.10 g/cm3). The last one is absent on the continent; it is observed only on the water area. Density of the upper mantle is taken as 3.30 g/cm3. The observed gravity anomalies are mostly related to the surface relief of the above mentioned layers or to the density variations of the granite-metamorphic basement. So outlining of the basement blocks of different constitution preceded to the modeling. This operation is executed after Double Fourier Spectrum analysis of the gravity and magnetic anomalies and following compilation of the synthetic anomaly maps, related to the basement density and magnetic heterogeneity. According to bathymetry data, the Sea of Okhotsk can be subdivided at three mega-blocks. Taking in consideration that central Sea of Okhotsk area is aseismatic, i.e. isostatic compensated, it is obvious that Earth crust structure of these three blocks is different. The South-Okhotsk depression is characteristics by 3200-3300 m of sea depths. Moho surface in this area is at

  7. Accelerating volumetric cine MRI (VC-MRI) using undersampling for real-time 3D target localization/tracking in radiation therapy: a feasibility study

    Science.gov (United States)

    Harris, Wendy; Yin, Fang-Fang; Wang, Chunhao; Zhang, You; Cai, Jing; Ren, Lei

    2018-01-01

    Purpose. To accelerate volumetric cine MRI (VC-MRI) using undersampled 2D-cine MRI to provide real-time 3D guidance for gating/target tracking in radiotherapy. Methods. 4D-MRI is acquired during patient simulation. One phase of the prior 4D-MRI is selected as the prior images, designated as MRIprior. The on-board VC-MRI at each time-step is considered a deformation of the MRIprior. The deformation field map is represented as a linear combination of the motion components extracted by principal component analysis from the prior 4D-MRI. The weighting coefficients of the motion components are solved by matching the corresponding 2D-slice of the VC-MRI with the on-board undersampled 2D-cine MRI acquired. Undersampled Cartesian and radial k-space acquisition strategies were investigated. The effects of k-space sampling percentage (SP) and distribution, tumor sizes and noise on the VC-MRI estimation were studied. The VC-MRI estimation was evaluated using XCAT simulation of lung cancer patients and data from liver cancer patients. Volume percent difference (VPD) and Center of Mass Shift (COMS) of the tumor volumes and tumor tracking errors were calculated. Results. For XCAT, VPD/COMS were 11.93  ±  2.37%/0.90  ±  0.27 mm and 11.53  ±  1.47%/0.85  ±  0.20 mm among all scenarios with Cartesian sampling (SP  =  10%) and radial sampling (21 spokes, SP  =  5.2%), respectively. When tumor size decreased, higher sampling rate achieved more accurate VC-MRI than lower sampling rate. VC-MRI was robust against noise levels up to SNR  =  20. For patient data, the tumor tracking errors in superior-inferior, anterior-posterior and lateral (LAT) directions were 0.46  ±  0.20 mm, 0.56  ±  0.17 mm and 0.23  ±  0.16 mm, respectively, for Cartesian-based sampling with SP  =  20% and 0.60  ±  0.19 mm, 0.56  ±  0.22 mm and 0.42  ±  0.15 mm, respectively, for

  8. Use of 3-D modeling in the early development phase of pectin tablets

    Directory of Open Access Journals (Sweden)

    Linda Salbu

    2012-03-01

    Full Text Available This study examines the contribution of a 3-D model in an early development of pectin tablets. The aim of this work was to extract as much information of the compression behavior from as few tablets as possible. Pectins with various degrees of methoxylation (DM were studied (4%-72%. The compressibility was evaluated using classic “in-die” Heckel and Kawakita analyses in addition to the 3-D modeling. For validation purposes well-known reference materials were included. 3-D modeling applied to data of single tablets yielded some information on their compressibility. When several tablets with different maximum relative densities were included, no additional information was obtained through classic evaluation. However, the 3-D model provided additional information through the shape of the 3-D parameter plot. Pectins with a DM >= 25% consolidated predominantly by elastic deformation similarly to the 3-D parameter plot of pregelatinized starch (PGS. The 3-D analysis also suggests some degree of fragmentation and, for some of the low-methoxylated pectins (DM <= 10%, viscoelastic deformation. This study showed that by applying 3-D modeling it is possible to differentiate between elastic and viscoelastic materials for tablets with different relative density values.

  9. Impact of the 3-D model strategy on science learning of the solar system

    Science.gov (United States)

    Alharbi, Mohammed

    The purpose of this mixed method study, quantitative and descriptive, was to determine whether the first-middle grade (seventh grade) students at Saudi schools are able to learn and use the Autodesk Maya software to interact and create their own 3-D models and animations and whether their use of the software influences their study habits and their understanding of the school subject matter. The study revealed that there is value to the science students regarding the use of 3-D software to create 3-D models to complete science assignments. Also, this study aimed to address the middle-school students' ability to learn 3-D software in art class, and then ultimately use it in their science class. The success of this study may open the way to consider the impact of 3-D modeling on other school subjects, such as mathematics, art, and geography. When the students start using graphic design, including 3-D software, at a young age, they tend to develop personal creativity and skills. The success of this study, if applied in schools, will provide the community with skillful young designers and increase awareness of graphic design and the new 3-D technology. Experimental method was used to answer the quantitative research question, are there significant differences applying the learning method using 3-D models (no 3-D, premade 3-D, and create 3-D) in a science class being taught about the solar system and its impact on the students' science achievement scores? Descriptive method was used to answer the qualitative research questions that are about the difficulty of learning and using Autodesk Maya software, time that students take to use the basic levels of Polygon and Animation parts of the Autodesk Maya software, and level of students' work quality.

  10. 3D MODELLING AND VISUALIZATION BASED ON THE UNITY GAME ENGINE – ADVANTAGES AND CHALLENGES

    Directory of Open Access Journals (Sweden)

    I. Buyuksalih

    2017-11-01

    Full Text Available 3D City modelling is increasingly popular and becoming valuable tools in managing big cities. Urban and energy planning, landscape, noise-sewage modelling, underground mapping and navigation are among the applications/fields which really depend on 3D modelling for their effectiveness operations. Several research areas and implementation projects had been carried out to provide the most reliable 3D data format for sharing and functionalities as well as visualization platform and analysis. For instance, BIMTAS company has recently completed a project to estimate potential solar energy on 3D buildings for the whole Istanbul and now focussing on 3D utility underground mapping for a pilot case study. The research and implementation standard on 3D City Model domain (3D data sharing and visualization schema is based on CityGML schema version 2.0. However, there are some limitations and issues in implementation phase for large dataset. Most of the limitations were due to the visualization, database integration and analysis platform (Unity3D game engine as highlighted in this paper.

  11. RETRAN-3D MOD003 Peach Bottom Turbine Trip 2 Multidimensional Kinetics Analysis Models and Results

    International Nuclear Information System (INIS)

    Mori, Michitsugu; Ogura, Katsunori; Gose, Garry C.; Wu, J.-Y.

    2003-01-01

    An analysis of the Peach Bottom Unit 2 Turbine Trip Test 2 (PB2/TT2) has been performed using RETRAN-3D MOD003. The purpose of the analysis was to investigate the PB2/TT2 overpressurization transient using the RETRAN-3D multidimensional kinetics model

  12. Modeling electromagnetic rail launchers at speed using 3D finite elements

    International Nuclear Information System (INIS)

    Rodger, D.; Leonard, P.J.; Eastham, J.F.

    1991-01-01

    In this paper a new finite element technique for modelling 3D transient eddy currents in moving conductors is described. This has been implemented in the MEGA software package for 2 and 3D electromagnetic field analysis. The application of the technique to railgun launchers is illustrated

  13. Fused Deposition Modeling 3D Printing for (Bio)analytical Device Fabrication : Procedures, Materials, and Applications

    NARCIS (Netherlands)

    Salentijn, Gert Ij; Oomen, Pieter E; Grajewski, Maciej; Verpoorte, Elisabeth

    2017-01-01

    In this work, the use of fused deposition modeling (FDM) in a (bio)analytical/lab-on-a-chip research laboratory is described. First, the specifications of this 3D printing method that are important for the fabrication of (micro)devices were characterized for a benchtop FDM 3D printer. These include

  14. A 3D SPM model for biogeochemical modelling, with application to the northwest European continental shelf

    NARCIS (Netherlands)

    van der Molen, J.; Ruardij, P.; Greenwood, N.

    2017-01-01

    An SPM resuspension method was developed for use in 3D coupled hydrodynamics-biogeochemistry models to feed into simulations of the under-water light climate and and primary production. The method uses a single mineral fine SPM component for computational efficiency, with a concentration-dependent

  15. TLS for generating multi-LOD of 3D building model

    International Nuclear Information System (INIS)

    Akmalia, R; Setan, H; Majid, Z; Suwardhi, D; Chong, A

    2014-01-01

    The popularity of Terrestrial Laser Scanners (TLS) to capture three dimensional (3D) objects has been used widely for various applications. Development in 3D models has also led people to visualize the environment in 3D. Visualization of objects in a city environment in 3D can be useful for many applications. However, different applications require different kind of 3D models. Since a building is an important object, CityGML has defined a standard for 3D building models at four different levels of detail (LOD). In this research, the advantages of TLS for capturing buildings and the modelling process of the point cloud can be explored. TLS will be used to capture all the building details to generate multi-LOD. This task, in previous works, involves usually the integration of several sensors. However, in this research, point cloud from TLS will be processed to generate the LOD3 model. LOD2 and LOD1 will then be generalized from the resulting LOD3 model. Result from this research is a guiding process to generate the multi-LOD of 3D building starting from LOD3 using TLS. Lastly, the visualization for multi-LOD model will also be shown

  16. TLS for generating multi-LOD of 3D building model

    Science.gov (United States)

    Akmalia, R.; Setan, H.; Majid, Z.; Suwardhi, D.; Chong, A.

    2014-02-01

    The popularity of Terrestrial Laser Scanners (TLS) to capture three dimensional (3D) objects has been used widely for various applications. Development in 3D models has also led people to visualize the environment in 3D. Visualization of objects in a city environment in 3D can be useful for many applications. However, different applications require different kind of 3D models. Since a building is an important object, CityGML has defined a standard for 3D building models at four different levels of detail (LOD). In this research, the advantages of TLS for capturing buildings and the modelling process of the point cloud can be explored. TLS will be used to capture all the building details to generate multi-LOD. This task, in previous works, involves usually the integration of several sensors. However, in this research, point cloud from TLS will be processed to generate the LOD3 model. LOD2 and LOD1 will then be generalized from the resulting LOD3 model. Result from this research is a guiding process to generate the multi-LOD of 3D building starting from LOD3 using TLS. Lastly, the visualization for multi-LOD model will also be shown.

  17. 3D virtual human rapid modeling method based on top-down modeling mechanism

    Directory of Open Access Journals (Sweden)

    LI Taotao

    2017-01-01

    Full Text Available Aiming to satisfy the vast custom-made character demand of 3D virtual human and the rapid modeling in the field of 3D virtual reality, a new virtual human top-down rapid modeling method is put for-ward in this paper based on the systematic analysis of the current situation and shortage of the virtual hu-man modeling technology. After the top-level realization of virtual human hierarchical structure frame de-sign, modular expression of the virtual human and parameter design for each module is achieved gradu-al-level downwards. While the relationship of connectors and mapping restraints among different modules is established, the definition of the size and texture parameter is also completed. Standardized process is meanwhile produced to support and adapt the virtual human top-down rapid modeling practice operation. Finally, the modeling application, which takes a Chinese captain character as an example, is carried out to validate the virtual human rapid modeling method based on top-down modeling mechanism. The result demonstrates high modelling efficiency and provides one new concept for 3D virtual human geometric mod-eling and texture modeling.

  18. 3D MODEL ATMOSPHERES FOR EXTREMELY LOW-MASS WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, P.-E. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218 (United States); Gianninas, A.; Kilic, M. [Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK, 73019 (United States); Ludwig, H.-G. [Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, D-69117 Heidelberg (Germany); Steffen, M. [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Freytag, B. [Department of Physics and Astronomy at Uppsala University, Regementsvägen 1, Box 516, SE-75120 Uppsala (Sweden); Hermes, J. J., E-mail: tremblay@stsci.edu [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2015-08-20

    We present an extended grid of mean three-dimensional (3D) spectra for low-mass, pure-hydrogen atmosphere DA white dwarfs (WDs). We use CO5BOLD radiation-hydrodynamics 3D simulations covering T{sub eff} = 6000–11,500 K and log g = 5–6.5 (g in cm s{sup −2}) to derive analytical functions to convert spectroscopically determined 1D temperatures and surface gravities to 3D atmospheric parameters. Along with the previously published 3D models, the 1D to 3D corrections are now available for essentially all known convective DA WDs (i.e., log g = 5–9). For low-mass WDs, the correction in temperature is relatively small (a few percent at the most), but the surface gravities measured from the 3D models are lower by as much as 0.35 dex. We revisit the spectroscopic analysis of the extremely low-mass (ELM) WDs, and demonstrate that the 3D models largely resolve the discrepancies seen in the radius and mass measurements for relatively cool ELM WDs in eclipsing double WD and WD + millisecond pulsar binary systems. We also use the 3D corrections to revise the boundaries of the ZZ Ceti instability strip, including the recently found ELM pulsators.

  19. 4D-SPECT/CT in orthopaedics: a new method of combined quantitative volumetric 3D analysis of SPECT/CT tracer uptake and component position measurements in patients after total knee arthroplasty

    Energy Technology Data Exchange (ETDEWEB)

    Rasch, Helmut; Falkowski, Anna L.; Forrer, Flavio [Kantonsspital Baselland, Institute for Radiology and Nuclear Medicine, Bruderholz (Switzerland); Henckel, Johann [Imperial College London, London (United Kingdom); Hirschmann, Michael T. [Kantonsspital Baselland, Department of Orthopaedic Surgery and Traumatology, Bruderholz (Switzerland)

    2013-09-15

    The purpose was to evaluate the intra- and inter-observer reliability of combined quantitative 3D-volumetric single-photon emission computed tomography (SPECT)/CT analysis including size, intensity and localisation of tracer uptake regions and total knee arthroplasty (TKA) position. Tc-99m-HDP-SPECT/CT of 100 knees after TKA were prospectively analysed. The anatomical areas represented by a previously validated localisation scheme were 3D-volumetrically analysed. The maximum intensity was recorded for each anatomical area. Ratios between the respective value and the mid-shaft of the femur as the reference were calculated. Femoral and tibial TKA position (varus-valgus, flexion-extension, internal rotation- external rotation) were determined on 3D-CT. Two consultant radiologists/nuclear medicine physicians interpreted the SPECT/CTs twice with a 2-week interval. The inter- and intra-observer reliability was determined (ICCs). Kappa values were calculated for the area with the highest tracer uptake between the observers. The measurements of tracer uptake intensity showed excellent inter- and intra-observer reliabilities for all regions (tibia, femur and patella). Only the tibial shaft area showed ICCs <0.89. The kappa values were almost perfect (0.856, p < 0.001; 95 % CI 0.778, 0.922). For measurements of the TKA position, there was strong agreement within and between the readings of the two observers; the ICCs for the orientation of TKA components for inter- and intra-observer reliability were nearly perfect (ICCs >0.84). This combined 3D-volumetric standardised method of analysing the location, size and the intensity of SPECT/CT tracer uptake regions (''hotspots'') and the determination of the TKA position was highly reliable and represents a novel promising approach to biomechanics. (orig.)

  20. Use of MCAM in creating 3D neutronics model for ITER building

    International Nuclear Information System (INIS)

    Zeng Qin; Wang Guozhong; Dang Tongqiang; Long Pengcheng; Loughlin, Michael

    2012-01-01

    Highlights: ► We created a 3D neutronics model of the ITER building. ► The model was produced from the engineering CAD model by MCAM software. ► The neutron flux map in the ITER building was calculated. - Abstract: The three dimensional (3D) neutronics reference model of International Thermonuclear Experimental Reactor (ITER) only defines the tokamak machine and extends to the bio-shield. In order to meet further 3D neutronics analysis needs, it is necessary to create a 3D reference model of the ITER building. Monte Carlo Automatic Modeling Program for Radiation Transport Simulation (MCAM) was developed as a computer aided design (CAD) based bi-directional interface program between general CAD systems and Monte Carlo radiation transport simulation codes. With the help of MCAM version 4.8, the 3D neutronics model of ITER building was created based on the engineering CAD model. The calculation of the neutron flux map in ITER building during operation showed the correctness and usability of the model. This model is the first detailed ITER building 3D neutronics model and it will be made available to all international organization collaborators as a reference model.

  1. Use of MCAM in creating 3D neutronics model for ITER building

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Qin [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027 (China); Wang Guozhong, E-mail: mango33@mail.ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027 (China); Dang Tongqiang [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027 (China); Long Pengcheng [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027 (China); Loughlin, Michael [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul-Lz-Durance (France)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer We created a 3D neutronics model of the ITER building. Black-Right-Pointing-Pointer The model was produced from the engineering CAD model by MCAM software. Black-Right-Pointing-Pointer The neutron flux map in the ITER building was calculated. - Abstract: The three dimensional (3D) neutronics reference model of International Thermonuclear Experimental Reactor (ITER) only defines the tokamak machine and extends to the bio-shield. In order to meet further 3D neutronics analysis needs, it is necessary to create a 3D reference model of the ITER building. Monte Carlo Automatic Modeling Program for Radiation Transport Simulation (MCAM) was developed as a computer aided design (CAD) based bi-directional interface program between general CAD systems and Monte Carlo radiation transport simulation codes. With the help of MCAM version 4.8, the 3D neutronics model of ITER building was created based on the engineering CAD model. The calculation of the neutron flux map in ITER building during operation showed the correctness and usability of the model. This model is the first detailed ITER building 3D neutronics model and it will be made available to all international organization collaborators as a reference model.

  2. A Spatial Reference Grid for Real-Time Autonomous Underwater Modeling using 3-D Sonar

    Energy Technology Data Exchange (ETDEWEB)

    Auran, P.G.

    1996-12-31

    The offshore industry has recognized the need for intelligent underwater robotic vehicles. This doctoral thesis deals with autonomous underwater vehicles (AUVs) and concentrates on a data representation for real-time image formation and analysis. Its main objective is to develop a 3-D image representation suitable for autonomous perception objectives underwater, assuming active sonar as the main sensor for perception. The main contributions are: (1) A dynamical image representation for 3-D range data, (2) A basic electronic circuit and software system for 3-D sonar sampling and amplitude thresholding, (3) A model for target reliability, (4) An efficient connected components algorithm for 3-D segmentation, (5) A method for extracting general 3-D geometrical representations from segmented echo clusters, (6) Experimental results of planar and curved target modeling. 142 refs., 120 figs., 10 tabs.

  3. High-Quality 3d Models and Their Use in a Cultural Heritage Conservation Project

    Science.gov (United States)

    Tucci, G.; Bonora, V.; Conti, A.; Fiorini, L.

    2017-08-01

    Cultural heritage digitization and 3D modelling processes are mainly based on laser scanning and digital photogrammetry techniques to produce complete, detailed and photorealistic three-dimensional surveys: geometric as well as chromatic aspects, in turn testimony of materials, work techniques, state of preservation, etc., are documented using digitization processes. The paper explores the topic of 3D documentation for conservation purposes; it analyses how geomatics contributes in different steps of a restoration process and it presents an overview of different uses of 3D models for the conservation and enhancement of the cultural heritage. The paper reports on the project to digitize the earthenware frieze of the Ospedale del Ceppo in Pistoia (Italy) for 3D documentation, restoration work support, and digital and physical reconstruction and integration purposes. The intent to design an exhibition area suggests new ways to take advantage of 3D data originally acquired for documentation and scientific purposes.

  4. A novel modeling method for manufacturing hearing aid using 3D medical images

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeong Gyun [Dept of Radiological Science, Far East University, Eumseong (Korea, Republic of)

    2016-06-15

    This study aimed to suggest a novel method of modeling a hearing aid ear shell based on Digital Imaging and Communication in Medicine (DICOM) in the hearing aid ear shell manufacturing method using a 3D printer. In the experiment, a 3D external auditory meatus was extracted by using the critical values in the DICOM volume images, a nd t he modeling surface structures were compared in standard type STL (STereoLithography) files which could be recognized by a 3D printer. In this 3D modeling method, a conventional ear model was prepared, and the gaps between adjacent isograms produced by a 3D scanner were filled with 3D surface fragments to express the modeling structure. In this study, the same type of triangular surface structures were prepared by using the DICOM images. The result showed that the modeling surface structure based on the DICOM images provide the same environment that the conventional 3D printers may recognize, eventually enabling to print out the hearing aid ear shell shape.

  5. A novel modeling method for manufacturing hearing aid using 3D medical images

    International Nuclear Information System (INIS)

    Kim, Hyeong Gyun

    2016-01-01

    This study aimed to suggest a novel method of modeling a hearing aid ear shell based on Digital Imaging and Communication in Medicine (DICOM) in the hearing aid ear shell manufacturing method using a 3D printer. In the experiment, a 3D external auditory meatus was extracted by using the critical values in the DICOM volume images, a nd t he modeling surface structures were compared in standard type STL (STereoLithography) files which could be recognized by a 3D printer. In this 3D modeling method, a conventional ear model was prepared, and the gaps between adjacent isograms produced by a 3D scanner were filled with 3D surface fragments to express the modeling structure. In this study, the same type of triangular surface structures were prepared by using the DICOM images. The result showed that the modeling surface structure based on the DICOM images provide the same environment that the conventional 3D printers may recognize, eventually enabling to print out the hearing aid ear shell shape

  6. A binder-free NiCo2O4 nanosheet/3D elastic N-doped hollow carbon nanotube sponge electrode with high volumetric and gravimetric capacitances for asymmetric supercapacitors.

    Science.gov (United States)

    Tong, Hao; Yue, Shihong; Lu, Liang; Jin, Fengqiao; Han, Qiwei; Zhang, Xiaogang; Liu, Jie

    2017-11-09

    To increase the volumetric and gravimetric capacitances of supercapacitors, a new class of electrode materials with high electrochemical activity and favorable structures is extremely desired. In this work, a hollow novel nitrogen-doped 3D elastic single-walled carbon nanotube sponge (NSCS) which is ultra lightweight with the lowest density of 0.8 mg cm -3 , and has a high open surface structure for electrolyte accessibility and excellent compressible properties as the electrode scaffold has been successfully fabricated by the pyrolysis method which could produce the carbon nanotube sponge easily on a large scale without high-cost and time-consuming processes. Moreover, a NiCo 2 O 4 nanosheet supported on the NSCS has been successfully fabricated. The highest volumetric and gravimetric capacitance of this electrode is 790 F cm -3 at 1.43 g cm -3 and 1618 F g -1 at 0.54 g cm -3 with excellent cycling stability. The density of NiCo 2 O 4 /NSCS electrode was adjusted by mechanical compression and the most favorable density of the film for both high volumetric and gravimetric capacitances obtained was 1.21 g cm -3 . The thick NiCo 2 O 4 /NSCS film of 72 μm has been fabricated at this favorable density, presenting both high volumetric and gravimetric capacitances of 597 F cm -3 and 1074 F g -1 at 1 A g -1 , respectively, indicating that the structure of the NSCS is extremely feasible for obtaining a thick film electrode with excellent volumetric and gravimetric capacitances. Furthermore, an asymmetric supercapacitor of NiCo 2 O 4 /NSCS//NGN/CNTs was fabricated, exhibiting a high gravimetric energy density of 47.65 W h kg -1 at 536 W kg -1 and a volumetric energy density of 33.44 W h L -1 at 376.16 W L -1 .

  7. The ModFOLD4 server for the quality assessment of 3D protein models

    OpenAIRE

    McGuffin, Liam J.; Buenavista, Maria T.; Roche, Daniel B.

    2013-01-01

    Once you have generated a 3D model of a protein,\\ud how do you know whether it bears any resemblance\\ud to the actual structure? To determine the usefulness\\ud of 3D models of proteins, they must be assessed in\\ud terms of their quality by methods that predict their\\ud similarity to the native structure. The ModFOLD4\\ud server is the latest version of our leading independent\\ud server for the estimation of both the global and\\ud local (per-residue) quality of 3D protein models. The\\ud server ...

  8. Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education.

    Science.gov (United States)

    Bernhard, Jean-Christophe; Isotani, Shuji; Matsugasumi, Toru; Duddalwar, Vinay; Hung, Andrew J; Suer, Evren; Baco, Eduard; Satkunasivam, Raj; Djaladat, Hooman; Metcalfe, Charles; Hu, Brian; Wong, Kelvin; Park, Daniel; Nguyen, Mike; Hwang, Darryl; Bazargani, Soroush T; de Castro Abreu, Andre Luis; Aron, Monish; Ukimura, Osamu; Gill, Inderbir S

    2016-03-01

    To assess the impact of 3D printed models of renal tumor on patient's understanding of their conditions. Patient understanding of their medical condition and treatment satisfaction has gained increasing attention in medicine. Novel technologies such as additive manufacturing [also termed three-dimensional (3D) printing] may play a role in patient education. A prospective pilot study was conducted, and seven patients with a primary diagnosis of kidney tumor who were being considered for partial nephrectomy were included after informed consent. All patients underwent four-phase multi-detector computerized tomography (MDCT) scanning from which renal volume data were extracted to create life-size patient-specific 3D printed models. Patient knowledge and understanding were evaluated before and after 3D model presentation. Patients' satisfaction with their specific 3D printed model was also assessed through a visual scale. After viewing their personal 3D kidney model, patients demonstrated an improvement in understanding of basic kidney physiology by 16.7 % (p = 0.018), kidney anatomy by 50 % (p = 0.026), tumor characteristics by 39.3 % (p = 0.068) and the planned surgical procedure by 44.6 % (p = 0.026). Presented herein is the initial clinical experience with 3D printing to facilitate patient's pre-surgical understanding of their kidney tumor and surgery.

  9. KENO3D Visualization Tool for KENO V.a and KENO-VI Geometry Models

    International Nuclear Information System (INIS)

    Horwedel, J.E.; Bowman, S.M.

    2000-01-01

    Criticality safety analyses often require detailed modeling of complex geometries. Effective visualization tools can enhance checking the accuracy of these models. This report describes the KENO3D visualization tool developed at the Oak Ridge National Laboratory (ORNL) to provide visualization of KENO V.a and KENO-VI criticality safety models. The development of KENO3D is part of the current efforts to enhance the SCALE (Standardized Computer Analyses for Licensing Evaluations) computer software system

  10. Application of 3D CADDS model to design and engineering for constructability improvement

    International Nuclear Information System (INIS)

    Cho, U.Y.; Park, C.C.; Choy, E.

    1998-01-01

    The use of three dimensional (3D) computer-aided design and drafting system (CADDS) model along with the associated information management system in engineering phases of large projects is well established and yielding significant improvements in project cost, schedule and quality. The information contained in these models can also be utilized in plant construction site for construction schedule review, installation procedure review, interference check, and visual communication tool to the utility owner when the visual and spatial information contained in the 3D models is integrated with other plant information. This paper will describe the application of 3D models and the associated databases in the construction process of CANDU HWR heavy water reactors. Some examples on the use of 3D CADD models in CANDU projects will be presented

  11. Researching on Real 3d Modeling Constructed with the Oblique Photogr