WorldWideScience

Sample records for volumes runoff rates

  1. Urban Run-off Volumes Dependency on Rainfall Measurement Method

    DEFF Research Database (Denmark)

    Pedersen, L.; Jensen, N. E.; Rasmussen, Michael R.;

    2005-01-01

    Urban run-off is characterized with fast response since the large surface run-off in the catchments responds immediately to variations in the rainfall. Modeling such type of catchments is most often done with the input from very few rain gauges, but the large variation in rainfall over small area...... resolutions and single gauge rainfall was fed to a MOUSE run-off model. The flow and total volume over the event is evaluated.......Urban run-off is characterized with fast response since the large surface run-off in the catchments responds immediately to variations in the rainfall. Modeling such type of catchments is most often done with the input from very few rain gauges, but the large variation in rainfall over small areas...... suggests that rainfall needs to be measured with a much higher spatial resolution (Jensen and Pedersen, 2004). This paper evaluates the impact of using high-resolution rainfall information from weather radar compared to the conventional single gauge approach. The radar rainfall in three different...

  2. Regional projections of glacier volume and runoff in response to twenty-first century climate scenarios (Invited)

    Science.gov (United States)

    Radic, V.; Bliss, A. K.; Hock, R.

    2013-12-01

    Changes in mass contained by mountain glaciers and ice caps can modify the Earth's hydrological cycle on multiple scales. On a global scale, the mass loss from glaciers contributes to sea level rise. On regional and local scales, glacier melt-water is an important contributor to and modulator of river flow. In this study we use an elevation-dependent glacier mass balance model to project annual volume changes and monthly runoff from all mountain glaciers and ice caps in the world (excluding those in the Antarctic periphery) for the 21st century forced by temperature and precipitation scenarios from 14 global climate models. The largest contributors to projected total volume loss are the glaciers in the Canadian and Russian Arctic, Alaska and glaciers peripheral to Greenland ice sheet. Although small contributors to global volume loss, glaciers in Central Europe, low-latitude South America, Caucasus, North Asia, and Western Canada and US are projected to lose more than 75% of their volume by 2100. The magnitude and sign of trends in annual runoff totals differ considerably among regions depending on the balance between enhanced melt and the reduction of the glacier reservoir by glacier retreat and shrinkage. Most regions show strong declines in glacier runoff indicating that the effect of glacier shrinkage is more dominant than increased melting rates. Some high-latitude regions (Arctic Canada North, Russian Arctic and Greenland) exhibit increases in runoff totals. Iceland and Svalbard show an increase in runoff followed by a multi-decadal decrease in annual runoff.

  3. Rainfall timing and poultry litter application rate effects on phosphorus loss in surface runoff.

    Science.gov (United States)

    Schroeder, P D; Radcliffe, D E; Cabrera, M L

    2004-01-01

    Phosphorus (P) in runoff from pastures amended with poultry litter may be a significant contributor to eutrophication of lakes and streams in Georgia and other areas in the southeastern United States. The objectives of this research were to determine the effects of litter application rate and initial runoff timing on the long-term loss of P in runoff from surface-applied poultry litter and to develop equations that predict P loss in runoff under these conditions. Litter application rates of 2, 7, and 13 Mg ha(-1), and three rainfall scenarios applied to 1- x 2-m plots in a 3 x 3 randomized complete block design with three replications. The rainfall scenarios included (i) sufficient rainfall to produce runoff immediately after litter application; (ii) no rainfall for 30 d after litter application; and (iii) small rainfall events every 7 d (5 min at 75 mm h(-1)) for 30 d. Phosphorus loss was greatest from the high litter rate and immediate runoff treatments. Nonlinear regression equations based on the small plot study produced fairly accurate (r(2) = 0.52-0.62) prediction of P concentrations in runoff water from larger (0.75 ha) fields over a 2-yr period. Predicted P concentrations were closest to observed values for events that occurred shortly after litter application, and the relative error in predictions increased with time after litter application. In addition, previously developed equations relating soil test P levels to runoff P concentrations were ineffective in the presence of surface-applied litter.

  4. Effect on runoff of rainfall redistribution by the impluvium-shaped canopy of banana cultivated on an Andosol with a high infiltration rate

    Science.gov (United States)

    Cattan, P.; Ruy, S. M.; Cabidoche, Y.-M.; Findeling, A.; Desbois, P.; Charlier, J. B.

    2009-04-01

    SummaryRainfall redistribution by plant canopy, notably the water flow down the plant stem (stemflow), modifies the incident rainfall rate at the soil surface and may affect runoff generation. To test this hypothesis, we observed and measured runoff at the plant scale with banana cultivated on tropical Andosol. Observation of runoff by video and matrix potential monitoring showed that, during a runoff event, the matrix potential increased mainly downstream from the pseudostem in line with the slope, delimiting a saturated zone of runoff propagation that appeared on video monitoring. The results indicate that rainfall redistribution by plant canopy, i.e. stemflow and dripping areas, enhances runoff even on soil with a high infiltration rate (mean hydraulic conductivity at saturation Ks of 67 mm h -1). Data analysis of 40 runoff events showed that events were composed of at least two runoff phases characterized by an abrupt increase in runoff coefficient (RC) from 0.16 to 0.65 between the first and the second phase. The change in RC was related to rainfall rate. Also, between the first and the second runoff phase, the apparent infiltration rate at the plot scale decreased from 30 to 10 mm h -1. This was related to an increase in runoff contributing areas (RCA), from an estimated 18% to 93% of the plot surface. However, data analysis and model simulations showed that the increase in mean rainfall rate in RCA due to stemflow was not sufficient to account for large runoff volumes. Hence, one must also take into account the spatial variation of hydraulic conductivity at saturation with low values relative to RCA (estimation for the second runoff phase was 7.6 mm h -1). Moreover, simulation results implied Ks decreases with time. Finally, rainfall redistribution may have an impact at a larger scale. In banana plantations, the hydraulic connectivity of runoff areas can enhance the stemflow effect up to the plot scale. From this point of view, the two-compartment scheme we

  5. Changes in lakes water volume and runoff over ungauged Sahelian watersheds

    Science.gov (United States)

    Gal, L.; Grippa, M.; Hiernaux, P.; Peugeot, C.; Mougin, E.; Kergoat, L.

    2016-09-01

    A large part of the Sahel consists of endorheic hydrological systems, where reservoirs and lakes capture surface runoff during the rainy season, making water available during the dry season. Monitoring and understanding the dynamics of these lakes and their relationships to the ecohydrological evolution of the region is important to assess past, present and future changes of water resources in the Sahel. Yet, most of Sahelian watersheds are still ungauged or poorly gauged, which hinders the assessment of the water flows feeding the lakes and the overall runoff over their watershed. In this paper, a methodology is developed to estimate water inflow to lakes for ungauged watersheds. It is tested for the Agoufou lake in the Gourma region in Mali, for which in situ water height measurements and surface areas estimations by remote sensing are simultaneously available. A Height-Volume-Area (HVA) model is developed to relate water volume to water height and lake surface area. This model is combined to daily evaporation and precipitation to estimate water inflow to the lake, which approximates runoff over the whole watershed. The ratio between annual water inflow and precipitation increases over the last sixty years as a result of a significant increase in runoff coefficient over the Agoufou watershed. The method is then extended to derive water inflow to three other Sahelian lakes in Mauritania and Niger. No in situ measurements are available and lake surface areas estimation by remote sensing is the only source of information. Dry season surface area changes and estimated evaporation are used to select a suited VA relationship for each case. It is found that the ratio between annual water inflow and precipitation has also increased in the last 60 years over these watersheds, although trends at the Mauritanian site are not statistically significant. The remote sensing approach developed in this study can be easily applied to recent sensors such as Sentinel-2 or Landsat-8

  6. Functional approach to exploring climatic and landscape controls of runoff generation. 1. Behavioral constraints on runoff volume

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongyi; Sivapalan, Murugesu; Tian, Fuqiang; Harman, Ciaran

    2014-12-09

    Inspired by the Dunne diagram, the climatic and landscape controls on the partitioning of annual runoff into its various components (Hortonian and Dunne overland flow and subsurface stormflow) are assessed quantitatively, from a purely theoretical perspective. A simple distributed hydrologic model has been built sufficient to simulate the effects of different combinations of climate, soil, and topography on the runoff generation processes. The model is driven by a sequence of simple hypothetical precipitation events, for a large combination of climate and landscape properties, and hydrologic responses at the catchment scale are obtained through aggregation of grid-scale responses. It is found, first, that the water balance responses, including relative contributions of different runoff generation mechanisms, could be related to a small set of dimensionless similarity parameters. These capture the competition between the wetting, drying, storage, and drainage functions underlying the catchment responses, and in this way, provide a quantitative approximation of the conceptual Dunne diagram. Second, only a subset of all hypothetical catchment/climate combinations is found to be ‘‘behavioral,’’ in terms of falling sufficiently close to the Budyko curve, describing mean annual runoff as a function of climate aridity. Furthermore, these behavioral combinations are mostly consistent with the qualitative picture presented in the Dunne diagram, indicating clearly the commonality between the Budyko curve and the Dunne diagram. These analyses also suggest clear interrelationships amongst the ‘‘behavioral’’ climate, soil, and topography parameter combinations, implying these catchment properties may be constrained to be codependent in order to satisfy the Budyko curve.

  7. Greenland ice sheet melt area, volume, and runoff from satellite and in situ observations

    Science.gov (United States)

    van As, D.; Box, J. E.; Fausto, R. S.; Petersen, D.; Citterio, M.; Ahlstrom, A. P.; Andersen, S. B.; Steffen, K.

    2013-12-01

    Remote sensing provides surface melt area and regional mass change. In situ automatic weather station (AWS) data provide a relatively precise, but very local surface mass budget. Combining the two methods allows melt quantification for the entire Greenland ice sheet. We use interpolated near-surface air temperature from the GC-Net and PROMICE AWS networks, and remotely-sensed MODIS surface albedo to calculate melt with a temperature/albedo-index melt model. The calculations make use of albedo, combined with top-of-the-atmosphere solar radiation and cloud cover, to take into account absorbed shortwave radiation, the dominant melt parameter. In so doing the darkening due to the melt-albedo feedback is accounted. Calculated ablation is calibrated using AWS data. Assuming that surface albedo is a first-order indicator of the firn's available pore space and cold content, refreezing is parameterized as a function of it. Meltwater runoff for selected catchments is validated with river discharge data. The product: observation-based daily maps of near-surface air temperature, melt (extent and volume), and runoff for the Greenland ice sheet.

  8. County-Level Climate Uncertainty for Risk Assessments: Volume 15 Appendix N - Forecast Surface Runoff.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lowry, Thomas Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Shannon M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Barry L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Malczynski, Leonard A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.

  9. County-Level Climate Uncertainty for Risk Assessments: Volume 14 Appendix M - Historical Surface Runoff.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M; Walker, La Tonya Nicole; Roberts, Barry L; Malczynski, Leonard A.

    2017-06-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.

  10. The impact of standard preparation practice on the runoff and soil erosion rates under laboratory conditions

    Science.gov (United States)

    Khaledi Darvishan, Abdulvahed; Homayounfar, Vafa; Hamidreza Sadeghi, Seyed

    2016-09-01

    The use of laboratory methods in soil erosion studies, rainfall simulation experiments, Gerlach troughs, and other measurements such as ring infiltrometer has been recently considered more and more because of many advantages in controlling rainfall properties and high accuracy of sampling and measurements. However, different stages of soil removal, transfer, preparation and placement in laboratory plots cause significant changes in soil structure and, subsequently, the results of runoff, sediment concentration and soil loss. Knowing the rate of changes in sediment concentration and soil loss variables with respect to the soil preparation for laboratory studies is therefore inevitable to generalize the laboratory results to field conditions. However, there has been little attention given to evaluate the effects of soil preparation on sediment variables. The present study was therefore conducted to compare sediment concentration and soil loss in natural and prepared soil. To achieve the study purposes, 18 field 1 × 1 m plots were adopted in an 18 % gradient slope with sandy-clay-loam soil in the Kojour watershed, northern Iran. A portable rainfall simulator was then used to simulate rainfall events using one or two nozzles of BEX: 3/8 S24W for various rainfall intensities with a constant height of 3 m above the soil surface. Three rainfall intensities of 40, 60 and 80 mm h-1 were simulated on both prepared and natural soil treatments with three replications. The sediment concentration and soil loss at five 3 min intervals after time to runoff were then measured. The results showed the significant increasing effects of soil preparation (p ≤ 0.01) on the average sediment concentration and soil loss. The increasing rates of runoff coefficient, sediment concentration and soil loss due to the study soil preparation method for laboratory soil erosion plots were 179, 183 and 1050 % (2.79, 2.83 and 11.50 times), respectively.

  11. Nitrogen and Phosphorus Runoff Losses from Orchard Soils in South China as Affected by Fertilization Depths and Rates

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Fertilizers are heavily applied in orchards of the hilly and mountainous topography of South China and may increase nutrient loadings to receiving waters.A simple runoff collecting system was used to measure the effects of different fertilization treatments on total N and P concentrations of surface runoff in a Chinese chestnut(Castanea mollissima Blume)orchard in Dongyuan County,Guangdong Province,China.In such orchards,fertilizer was typically applied in two short furrows or pits on either side of each tree.Treatments included three application depths(surface,10 era and 20 cm),and three application rates(low,median and high).Results showed that 90.5% of the runoff water samples had a total N concentration higher than 0.35 mg L-1 and 54.2% had a total P concentration higher than 0.1 mg L-1.Fertilizer application at all depths and at all but the lowest rate significantly increased total N and P concentrations in runoff water.Fertilization with chemical compound fertilizer at a soil depth of 20 cm prodiuced significantly lower(P<0.05)total N concentration in runoff than both surface and 10-cm depth fertilization,and significantly lower(P<0.05)total P concentration in runoff than surface fertilization.Total N and P concentrations in runoff significantly increased with the application rate of organic fertilizers.With the exception of total P concentrations,which were not significantly different between the control and fertilization at a rate of 119 kg P ha-1 in organic form,all the other fertilization treatments produced significantly higher total N and total P concentrations in runoff than the control.A fertilization depth ≥ 20 cm and an application rate ≤ 72 kg N ha-1 or 119 kg P ha-1 for compound organic fertilizer was suggested to substantially reduce N and P runoff losses from hillslope orchards and to protect receiving waters in South China.

  12. Runoff, nitrogen (N) and phosphorus (P) losses from purple slope cropland soil under rating fertilization in Three Gorges Region.

    Science.gov (United States)

    Bouraima, Abdel-Kabirou; He, Binghui; Tian, Taiqiang

    2016-03-01

    Soil erosion along with soil particles and nutrients losses is detrimental to crop production. We carried out a 5-year (2010 to 2014) study to characterize the soil erosion and nitrogen and phosphorus losses caused by rainfall under different fertilizer application levels in order to provide a theoretical evidence for the agricultural production and coordinate land management to improve ecological environment. The experiment took place under rotation cropping, winter wheat-summer maize, on a 15° slope purple soil in Chongqing (China) within the Three Gorges Region (TGR). Four treatments, control (CK) without fertilizer, combined manure with chemical fertilizer (T1), chemical fertilization (T2), and chemical fertilizer with increasing fertilization (T3), were designed on experimental runoff plots for a long-term observation aiming to study their effects on soil erosion and nutrients losses. The results showed that fertilization reduced surface runoff and nutrient losses as compared to CK. T1, T2, and T3, compared to CK, reduced runoff volume by 35.7, 29.6, and 16.8 %, respectively and sediment yield by 40.5, 20.9, and 49.6 %, respectively. Regression analysis results indicated that there were significant relationships between soil loss and runoff volume in all treatments. The combined manure with chemical fertilizer (T1) treatment highly reduced total nitrogen and total phosphorus losses by 41.2 and 33.33 %, respectively as compared with CK. Through this 5-year experiment, we can conclude that, on the sloping purple soil, the combined application of manure with fertilizer is beneficial for controlling runoff sediments losses and preventing soil erosion.

  13. Data for and adjusted regional regression models of volume and quality of urban storm-water runoff in Boise and Garden City, Idaho, 1993-94

    Science.gov (United States)

    Kjelstrom, L.C.

    1995-01-01

    The U.S. Environmental Protection Agency requires information on the volume and quality of urban storm-water runoff to apply for a permit to discharge this water into the Boise River under the National Pollutant Discharge Elimination System Program. Concentrations of selected chemical constituents in storm runoff were determined from samples collected at four storm-sewer outfalls in Boise from October 1993 through June 1994 and at one outfall in Garden City from September through October 1994. Samples were analyzed for specific conductance, pH, alkalinity, water temperature, oxygen demand, fecal indicator bacteria, major ions, dissolved and suspended solids, nutrients, trace elements, and numerous organic compounds. The measurement of storm-runoff volume and mean concentrations of constituents were used to estimate storm-runoff loads.

  14. Probabilistic runoff volume forecasting in risk-based optimization for RTC of urban drainage systems

    DEFF Research Database (Denmark)

    Löwe, Roland; Vezzaro, Luca; Mikkelsen, Peter Steen

    2016-01-01

    This article demonstrates the incorporation of stochastic grey-box models for urban runoff forecasting into a full-scale, system-wide control setup where setpoints are dynamically optimized considering forecast uncertainty and sensitivity of overflow locations in order to reduce combined sewer...... overflow risk. The stochastic control framework and the performance of the runoff forecasting models are tested in a case study in Copenhagen (76 km2 with 6 sub-catchments and 7 control points) using 2-h radar rainfall forecasts and inlet flows to control points computed from a variety of noisy...... smoothing. Simulations demonstrate notable improvements of the control efficiency when considering forecast information and additionally when considering forecast uncertainty, compared with optimization based on current basin fillings only....

  15. Effect of liquid swine manure rate, incorporation, and timing of rainfall on phosphorus loss with surface runoff.

    Science.gov (United States)

    Allen, Brett L; Mallarino, Antonio P

    2008-01-01

    Excessive manure phosphorus (P) application increases risk of P loss from fields. This study assessed total runoff P (TPR), bioavailable P (BAP), and dissolved reactive P (DRP) concentrations and loads in surface runoff after liquid swine (Sus scrofa domesticus) manure application with or without incorporation into soil and different timing of rainfall. Four replicated manure P treatments were applied in 2002 and in 2003 to two Iowa soils testing low in P managed with corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotations. Total P applied each time was 0 to 80 kg P ha(-1) at one site and 0 to 108 kg P ha(-1) at the other. Simulated rainfall was applied within 24 h of P application or after 10 to 16 d and 5 to 6 mo. Nonincorporated manure P increased DRP, BAP, and TPR concentrations and loads linearly or exponentially for 24-h and 10- to 16-d runoff events. On average for the 24-h events, DRP, BAP, and TPR concentrations were 5.4, 4.7, and 2.2 times higher, respectively, for nonincorporated manure than for incorporated manure; P loads were 3.8, 7.7, and 3.6 times higher; and DRP and BAP concentrations were 54% of TPR for nonincorporated manure and 22 to 25% for incorporated manure. A 10- to 16-d rainfall delay resulted in DRP, BAP, and TPR concentrations that were 3.1, 2.7, and 1.1 times lower, respectively, than for 24-h events across all nonincorporated P rates, sites, and years, whereas runoff P loads were 3.8, 3.6, and 1.6 times lower, respectively. A 5- to 6-mo simulated rainfall delay reduced runoff P to levels similar to control plots. Incorporating swine manure when the probability of immediate rainfall is high reduces the risk of P loss in surface runoff; however, this benefit sharply decreases with time.

  16. Groundwater Recharge Rates and Surface Runoff Response to Land Use and Land Cover Changes in Semi-arid Environments

    Science.gov (United States)

    Owuor, Steven; Butterbach-Bahl, Klaus; Guzha, Alphonce; Rufino, Mariana; Pelster, David; Díaz-Pinés, Eugenio; Breuer, Lutz; Merbold, Lutz

    2017-04-01

    Conclusive evidence and understanding of the effects of land use and land cover (LULC) on both groundwater recharge and surface runoff is critical for effective management of water resources in semi-arid region as those heavily depend on groundwater resources. However, there is limited quantitative evidence on how changes to LULC in semi-arid tropical and subtropical regions affect the subsurface components of the hydrologic cycle, particularly groundwater recharge. In this study, we reviewed a total of 27 studies (2 modelling and 25 experimental), which reported on pre- and post-land use change groundwater recharge or surface runoff magnitude, and thus allowed to quantify the response of groundwater recharge rates and runoff to LULC. Restoration of bare land induces a decrease in groundwater recharge from 42 % of precipitation to between 6 and 12 % depending on the final LULC. If forests are cleared for rangelands, groundwater recharge increases by 7.8 ± 12.6 %, while conversion to cropland or grassland results in increases of 3.4 ± 2.5 and 4.4 ± 3.3 %, respectively. Rehabilitation of bare land to cropland results in surface runoff reductions of between 5.2 and 7.3 %. The conversion of forest vegetation to managed LULC shows an increase in surface runoff from 1 to 14.1 % depending on the final LULC. Surface runoff is reduced from 2.5 to 1.1 % when grassland is converted to forest vegetation. While there is general consistency in the results from the selected case studies, we conclude that there are few experimental studies that have been conducted in tropical and subtropical semi-arid regions, despite that many people rely heavily on groundwater for their livelihoods. Therefore, there is an urgent need to increase the body of quantitative evidence given the pressure of growing human population and climate change on water resources in the region.

  17. Determining phosphorus release rates to runoff from selected Alberta soils using laboratory rainfall simulation.

    Science.gov (United States)

    Wright, Charles R; Amrani, Mohamed; Akbar, Muhammad A; Heaney, Danial J; Vanderwel, Douwe S

    2006-01-01

    Phosphorus losses from agricultural land can cause accelerated eutrophication of surface water bodies. This study evaluated the use of soil test phosphorus (STP) levels to predict dissolved inorganic phosphorus (DIP) concentrations in runoff water from agricultural soils using laboratory rainfall simulation. The objectives of this study were to determine (i) to what extent STP concentrations can be used as a basis to predict P losses from Alberta soils and (ii) how extended rainfall simulation run times affected DIP losses. Soil samples collected from a total of 38 field sites, widely scattered throughout the southern half of Alberta, were subjected to rainfall simulation in the laboratory. The STP concentrations were determined using Miller-Axley, Norwest, Kelowna, Modified Kelowna Mehlich-III, and distilled water extraction methods. Each rainfall simulation event lasted for at least 90 min. Runoff samples were collected in time series for the duration of each simulation, during two distinct runoff intervals: (i) for the first 30 min of continuous runoff (T30) and (ii) for 40 min during runoff equilibrium (Teq). For all the STP extractants and both runoff intervals, the relationship with DIP-flow-weighted mean concentration (FWMC) was linear and highly significant with r2 values ranging from 0.74 to 0.96. However, the slopes of the resulting regression lines were, on average, 1.85 times greater for the T30 runoff interval over those computed for the Teq interval. Thus experimental methodology greatly influenced regression parameters, suggesting that more work was needed to verify these relationships under natural conditions. In addition, with many of the r2 values greater than 0.90 there would be little, if any, benefit derived by including soil properties in regression analysis.

  18. Runoff erosion

    OpenAIRE

    Evelpidou, Niki; Cordier, Stephane; Merino, Agustin (Ed.); Figueiredo, Tomás; Centeri, Csaba

    2013-01-01

    Table of Contents PART I – THEORY OF RUNOFF EROSION CHAPTER 1 - RUNOFF EROSION – THE MECHANISMS CHAPTER 2 - LARGE SCALE APPROACHES OF RUNOFF EROSION CHAPTER 3 - MEASURING PRESENT RUNOFF EROSION CHAPTER 4 - MODELLING RUNOFF EROSION CHAPTER 5 - RUNOFF EROSION AND HUMAN SOCIETIES: THE INFLUENCE OF LAND USE AND MANAGEMENT PRACTICES ON SOIL EROSION PART II - CASE STUDIES CASE STUDIES – INTRODUCTION: RUNOFF EROSION IN MEDITERRANEAN AREA CASE STUDY 1: Soil Erosion Risk...

  19. Corrosion and runoff rates of Cu and three Cu-alloys in marine environments with increasing chloride deposition rate.

    Science.gov (United States)

    Odnevall Wallinder, Inger; Zhang, Xian; Goidanich, Sara; Le Bozec, Nathalie; Herting, Gunilla; Leygraf, Christofer

    2014-02-15

    Bare copper sheet and three commercial Cu-based alloys, Cu15Zn, Cu4Sn and Cu5Al5Zn, have been exposed to four test sites in Brest, France, with strongly varying chloride deposition rates. The corrosion rates of all four materials decrease continuously with distance from the coast, i.e. with decreasing chloride load, and in the following order: Cu4Sn>Cu sheet>Cu15Zn>Cu5Al5Zn. The patina on all materials was composed of two main layers, Cu2O as the inner layer and Cu2(OH)3Cl as the outer layer, and with a discontinuous presence of CuCl in between. Additional minor patina constituents are SnO2 (Cu4Sn), Zn5(OH)6(CO3)2 (Cu15Zn and Cu5Al5Zn) and Zn6Al2(OH)16CO3·4H2O/Zn2Al(OH)6Cl·2H2O/Zn5Cl2(OH)8·H2O and Al2O3 (Cu5Al5Zn). The observed Zn- and Zn/Al-containing corrosion products might be important factors for the lower sensitivity of Cu15Zn and Cu5Al5Zn against chloride-induced atmospheric corrosion compared with Cu sheet and Cu4Sn. Decreasing corrosion rates with exposure time were observed for all materials and chloride loads and attributed to an improved adherence with time of the outer patina to the underlying inner oxide. Flaking of the outer patina layer was mainly observed on Cu4Sn and Cu sheet and associated with the gradual transformation of CuCl to Cu2(OH)3Cl of larger volume. After three years only Cu5Al5Zn remains lustrous because of a patina compared with the other materials that appeared brownish-reddish. Significantly lower release rates of metals compared with corresponding corrosion rates were observed for all materials. Very similar release rates of copper from all four materials were observed during the fifth year of marine exposure due to an outer surface patina that with time revealed similar constituents and solubility properties. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Bayesian uncertainty assessment of rainfall-runoff models for small urban basins - the influence of the rating curve

    Science.gov (United States)

    Sikorska, A. E.; Scheidegger, A.; Banasik, K.; Rieckermann, J.

    2012-04-01

    Keywords: uncertainty assessment, rating curve uncertainties, Bayesian inference, rainfall-runoff models, small urban basins In hydrological flood forecasting, the problem of quantitative assessment of predictive uncertainties has been widely recognized. Despite several important findings in recent years, which helped to distinguish uncertainty contribution from input uncertainty (e.g., due to poor rainfall data), model structure deficits, parameter uncertainties and measurement errors, uncertainty analysis still remains a challenging task. This is especially true for small urbanized basins, where monitoring data are often poor. Among other things, measurement errors have been generally assumed to be significantly smaller than the other sources of uncertainty. It has been also shown that input error and model structure deficits are contributing more to the predictive uncertainties than uncertainties regarding the model parameters (Sikorska et al., 2011). These assumptions, however, are only correct when the modeled output is directly measurable in the system. Unfortunately, river discharge usually cannot be directly measured but is converted from the measured water stage with a rating curve method. The uncertainty introduced by the rating curve was shown in resent studies (Di Baldassarre et al., 2011) to be potentially significant in flood forecasting. This is especially true when extrapolating a rating curve above the measured level, which is often the case in (urban) flooding. In this work, we therefore investigated how flood predictions for small urban basins are affected by the uncertainties associated with the rating curve. To this aim, we augmented the model structure of a conceptual rainfall-runoff model to include the applied rating curve. This enabled us not only to directly modeled measurable water levels instead of discharges, but also to propagate the uncertainty of the rating curve through the model. To compare the importance of the rating curve to the

  1. Phosphorus losses in simulated rainfall runoff from manured soils of Alberta.

    Science.gov (United States)

    Volf, Callie A; Ontkean, Gerald R; Bennett, D Rodney; Chanasyk, David S; Miller, Jim J

    2007-01-01

    Manure applied to agricultural land at rates that exceed annual crop nutrient requirements can be a source of phosphorus in runoff. Manure incorporation is often recommended to reduce phosphorus losses in runoff. A small plot rainfall simulation study was conducted at three sites in Alberta to evaluate the effects of manure rate and incorporation on phosphorus losses. Treatments consisted of three solid beef cattle manure application rates (50, 100, and 200 kg ha(-1) total phosphorus), an unmanured control, and two incorporation methods (nonincorporated and incorporated with one pass of a double disk). Simulated rain was applied to soils with freshly applied and residual (1 yr after application) manure at 70 mm h(-1) to produce 30 min of runoff. Soil test phosphorus (STP), total phosphorus (TP), and dissolved reactive phosphorus (DRP) concentrations in runoff increased with manure rate for fresh and residual manure. Initial abstraction and runoff volumes did not change with manure rate. Initial abstraction, runoff volumes, and phosphorus concentrations did not change with manure incorporation at Lacombe and Wilson, but initial abstraction volumes increased and runoff volumes and phosphorus concentrations decreased with incorporation of fresh manure at Beaverlodge. Phosphorus losses in runoff were directly related to phosphorus additions. Extraction coefficients (slopes of the regression lines) for the linear relationships between residual manure STP and phosphorus in runoff were 0.007 to 0.015 for runoff TP and 0.006 to 0.013 for runoff DRP. While incorporation of manure with a double disk had no significant effect on phosphorus losses in runoff from manure-amended soils 1 yr after application, incorporation of manure is still recommended to control nitrogen losses, improve crop nutrient uptake, and potentially reduce odor concerns.

  2. Volume de enxurrada e perda de solo em estradas florestais em condições de chuva natural Runoff volume and soil loss from forest roads under normal rainfall conditions

    Directory of Open Access Journals (Sweden)

    Alessandra Reis Garcia

    2003-08-01

    Full Text Available Foram determinados o volume total de água escoada e a perda de solo através da produção de sedimentos provenientes de segmentos de estradas florestais em condições de chuva natural, com diferentes valores de precipitações. As inclinações dos segmentos de 1 e 7% foram analisadas, enquanto os comprimentos variaram de 20 e 40 m, com 4 m de largura. Os segmentos de estrada foram delimitados com tábuas de 0,30 m de largura, envolvidas em lona plástica, para sua impermeabilização. Os dados de volume e intensidade de precipitação diária foram obtidos com a instalação de pluviômetro e pluviógrafo no local. O período de coleta de dados foi de um ano, concentrando-se na época das chuvas. O volume de enxurrada foi mais afetado pelo comprimento do segmento, ao passo que a massa de solo sofreu maior influência da declividade. A massa de solo erosinado cresceu exponencialmente em função do incremento do volume de enxurrada.The total runoff volume and soil loss caused by the production of sediments derived from forest road segments under normal rainfall conditions were determined. Segment slopes from 1 and 7% were analyzed, with segment lengths ranging from 20 and 40 m and width of 4 m. The road segments were marked with 0.30 m wide boards, protected with a plastic, waterproof film. Rainfall volume and intensity data were daily obtained by means of pluviometers and pluviographs. Data collection period was one year, concentrated in the rainy season. Runoff volume was most affected by segment length while soil loss was most affected by steepness. Soil sediment mass increased exponentially in function of the increased runoff volume.

  3. Stormwater runoff - modeling impacts of urbanization and climate change

    OpenAIRE

    Blair, Anne; Sanger, Denise; Holland, Frderick; White, David; Vandiver, Lisa; White, Susan

    2010-01-01

    Development pressure throughout the coastal areas of the United States continues to build, particularly in the southeast (Allen and Lu 2003, Crossett et al. 2004). It is well known that development alters watershed hydrology: as land becomes covered with surfaces impervious to rain, water is redirected from groundwater recharge and evapotranspiration to stormwater runoff, and as the area of impervious cover increases, so does the volume and rate of runoff (Schueler 1994, Corbett et al. 1997)....

  4. The order and volume fill rates in inventory control systems

    DEFF Research Database (Denmark)

    Thorstenson, Anders; Larsen, Christian

    2011-01-01

    measure. The main result shows how the order and volume fill rates are related in magnitude. Earlier results derived for a single-item, single-stage, continuous review inventory system with backordering and constant lead times controlled by a base-stock policy are extended in different directions......This paper differentiates between an order (line) fill rate and a volume fill rate and specifies their performance for different inventory control systems. When the focus is on filling complete customer orders rather than total quantities the order fill rate would be the preferred service level...

  5. The order and volume fill rates in inventory control systems

    DEFF Research Database (Denmark)

    Thorstenson, Anders; Larsen, Christian

    2011-01-01

    This paper differentiates between an order (line) fill rate and a volume fill rate and specifies their performance for different inventory control systems. When the focus is on filling complete customer orders rather than total quantities the order fill rate would be the preferred service level...... measure. The main result shows how the order and volume fill rates are related in magnitude. Earlier results derived for a single-item, single-stage, continuous review inventory system with backordering and constant lead times controlled by a base-stock policy are extended in different directions...

  6. Estimating the Effect of Urban Growth on Annual Runoff Volume Using GIS in the Erbil Sub-Basin of the Kurdistan Region of Iraq

    Directory of Open Access Journals (Sweden)

    Hasan Mohammed Hameed

    2017-02-01

    Full Text Available The growth and spread of impervious surfaces within urbanizing catchment areas pose signiificant threats to the quality of natural and built-up environments. Impervious surfaces prevent water infiltration into the soil, resulting in increased runoff generation. The Erbil Sub-basin was selected because the impervious cover is increasing rapidly and is affecting the hydrological condition of the watershed. The overall aim of this study is to examine the impact of urban growth and other changes in land use on runoff response during the study period of 1984 to 2014. The study describes long-term hydrologic responses within the rapidly developing catchment area of Erbil city, in the Kurdistan Region of Iraq. Data from six rainfall stations in and around the Erbil Sub-basin were used. A Digital Elevation Model (DEM was also used to extract the distribution of the drainage network. Historical levels of urban growth and the corresponding impervious areas, as well as land use/land cover changes were mapped from 1984 to 2014 using a temporal satellite image (Landsat to determine land use/land cover changes. Land use/land cover was combined with a hydrological model (SCS-CN to estimate the volume of runoff from the watershed. The study indicates that the urbanization of the watershed has increased the impervious land cover by 71% for the period from 1984 to 2004 and by 51% from 2004 to 2014. The volume of runoff was 85% higher in 2014 as compared to 1984 due to the increase in the impervious surface area; this is attributed to urban growth. The study also points out that the slope of the watershed in the Erbil sub-basin should be taken into account in surface runoff estimation as the upstream part of the watershed has a high gradient and the land is almost barren with very little vegetation cover; this causes an increase in the velocity of the flow and increases the risk of flooding in Erbil city.

  7. The order and volume fill rates in inventory control systems

    DEFF Research Database (Denmark)

    Thorstenson, Anders; Larsen, Christian

    2014-01-01

    level measure. The main result shows how the order and volume fill rates are related in magnitude. Earlier results derived for a single-item, single-stage, continuous review inventory system with backordering and constant lead times controlled by a base-stock policy are extended in different directions......This paper differentiates between an order (line) fill rate and a volume fill rate and specifies their performance for different inventory control systems. When the focus is on filling complete customer orders rather than total demanded quantity the order fill rate would be the preferred service...... extensions consider more general inventory control review policies with backordering, as well as some relations between service measures. A particularly important result in the paper concerns an alternative service measure, the customer order fill rate, and shows how this measure always exceeds the other two...

  8. Volume dilatation in a polycarbonate blend at varying strain rates

    Science.gov (United States)

    Hiermaier, S.; Huberth, F.

    2012-05-01

    Impact loaded polymers show a variety of strain-rate dependent mechanical properties in their elastic, plastic and failure behaviour. In contrast to purely crystalline materials, the volume of polymeric materials can significantly change under irreversible deformations. In this paper, uni-axial tensile tests were performed in order to measure the dilatation in the Polycarbonate-Acrylnitril-Butadien-Styrol (PC-ABS) Bayblend T65. The accumulation of dilatation was measured at deformation speeds of 0.1 and 500 [ mm/ s]. Instrumented with a pair of two high-speed cameras, volume segments in the samples were observed. The change in volume was quantified as relation between the deformed and initial volumes of the segments. It was observed that the measured dilatations are of great significance for the constitutive models. This is specifically demonstrated through comparisons of stress-strain relations derived from the two camera-perspectives with isochoric relations based on single-surface observations of the same experiments.

  9. Statistics for stochastic modeling of volume reduction, hydrograph extension, and water-quality treatment by structural stormwater runoff best management practices (BMPs)

    Science.gov (United States)

    Granato, Gregory E.

    2014-01-01

    The U.S. Geological Survey (USGS) developed the Stochastic Empirical Loading and Dilution Model (SELDM) in cooperation with the Federal Highway Administration (FHWA) to indicate the risk for stormwater concentrations, flows, and loads to be above user-selected water-quality goals and the potential effectiveness of mitigation measures to reduce such risks. SELDM models the potential effect of mitigation measures by using Monte Carlo methods with statistics that approximate the net effects of structural and nonstructural best management practices (BMPs). In this report, structural BMPs are defined as the components of the drainage pathway between the source of runoff and a stormwater discharge location that affect the volume, timing, or quality of runoff. SELDM uses a simple stochastic statistical model of BMP performance to develop planning-level estimates of runoff-event characteristics. This statistical approach can be used to represent a single BMP or an assemblage of BMPs. The SELDM BMP-treatment module has provisions for stochastic modeling of three stormwater treatments: volume reduction, hydrograph extension, and water-quality treatment. In SELDM, these three treatment variables are modeled by using the trapezoidal distribution and the rank correlation with the associated highway-runoff variables. This report describes methods for calculating the trapezoidal-distribution statistics and rank correlation coefficients for stochastic modeling of volume reduction, hydrograph extension, and water-quality treatment by structural stormwater BMPs and provides the calculated values for these variables. This report also provides robust methods for estimating the minimum irreducible concentration (MIC), which is the lowest expected effluent concentration from a particular BMP site or a class of BMPs. These statistics are different from the statistics commonly used to characterize or compare BMPs. They are designed to provide a stochastic transfer function to approximate

  10. Physically-Based One-Dimensional Distributed Rainfall-Runoff Model Using the Finite Volume Method and Grid Network Flow Analysis

    Directory of Open Access Journals (Sweden)

    Yun Seok Choi

    2014-01-01

    Full Text Available This work develops a grid based rainfall-runoff model (GRM, which is a physically based and spatially distributed model. Surface flow was analyzed using a kinematic wave model with the governing equations discretized using the finite volume method (FVM. This paper suggests a grid network flow analysis technique using variable rainfall intensity according to the flow directions to analyze one-dimensional flows between the grids. The model was evaluated by applying it to the Wuicheon watershed, a tributary of the Nakdonggang (Riv., in Korea. The results showed that the grid-based, one-dimensional kinematic wave model adopted the FVM and the grid network flow analysis technique well. The simulation results showed good agreement with the observed hydrographs and the initial soil saturation ratio was most sensitive to the modeling results.

  11. Landslide volumes and landslide mobilization rates in Umbria, central Italy

    Science.gov (United States)

    Guzzetti, Fausto; Ardizzone, Francesca; Cardinali, Mauro; Rossi, Mauro; Valigi, Daniela

    2009-03-01

    A catalogue of 677 landslides of the slide type was selected from a global database of geometrical measurements of individual landslides, including landslide area ( AL) and volume ( VL). The measurements were used to establish an empirical relationship to link AL (in m 2) to VL (in m 3). The relationship takes the form of a power law with a scaling exponent α = 1.450, covers eight orders of magnitude of AL and twelve orders of magnitude of VL, and is in general agreement with existing relationships published in the literature. The reduced scatter of the experiential data around the dependency line, and the fact that the considered landslides occurred in multiple physiographic and climatic environments and were caused by different triggers, indicate that the relationship between VL and AL is largely independent of the physiographical setting. The new relationship was used to determine the volume of individual landslides of the slide type in the Collazzone area, central Italy, a 78.9 km 2 area for which a multi-temporal landslide inventory covering the 69-year period from 1937 to 2005 is available. In the observation period, the total volume of landslide material was VLT = 4.78 × 10 7 m 3, corresponding to an average rate of landslide mobilization φL = 8.8 mm yr - 1 . Exploiting the temporal information in the landslide inventory, the volume of material produced during different periods by new and reactivated landslides was singled out. The wet period from 1937 to 1941 was recognized as an episode of accelerated landslide production. During this 5-year period, approximately 45% of the total landslide material inventoried in the Collazzone area was produced, corresponding to an average rate of landslide mobilization φL = 54 mm yr - 1 , six times higher than the long term rate. The volume of landslide material in an event or period was used as a proxy for the magnitude of the event or period, defined as the logarithm (base 10) of the total landslide volume produced

  12. Investigating source water Cryptosporidium concentration, species and infectivity rates during rainfall-runoff in a multi-use catchment.

    Science.gov (United States)

    Swaffer, Brooke A; Vial, Hayley M; King, Brendon J; Daly, Robert; Frizenschaf, Jacqueline; Monis, Paul T

    2014-12-15

    Protozoan pathogens present a significant human health concern, and prevention of contamination into potable networks remains a key focus for drinking water providers. Here, we monitored the change in Cryptosporidium concentration in source water during high flow events in a multi-use catchment. Furthermore, we investigated the diversity of Cryptosporidium species/genotypes present in the source water, and delivered an oocyst infectivity fraction. There was a positive and significant correlation between Cryptosporidium concentration and flow (ρ = 0.756) and turbidity (ρ = 0.631) for all rainfall-runoff events, despite variable source water pathogen concentrations. Cell culture assays measured oocyst infectivity and suggested an overall source water infectious fraction of 3.1%. No infectious Cryptosporidium parvum or Cryptosporidium hominis were detected, although molecular testing detected C. parvum in 7% of the samples analysed using PCR-based molecular techniques. Twelve Cryptosporidium species/genotypes were identified using molecular techniques, and were reflective of the host animals typically found in remnant vegetation and agricultural areas. The inclusion of molecular approaches to identify Cryptosporidium species and genotypes highlighted the diversity of pathogens in water, which originated from various sources across the catchment. We suggest this mixing of runoff water from a range of landuses containing diverse Cryptosporidium hosts is a key explanation for the often-cited difficulty forming strong pathogen-indicator relationships.

  13. Mass balance, runoff and surges of Bering Glacier, Alaska

    Directory of Open Access Journals (Sweden)

    W. Tangborn

    2013-05-01

    Full Text Available The historical net, ablation and accumulation daily balances, as well as runoff of Bering Glacier, Alaska are determined for the 1951–2011 period with the PTAA (precipitation-temperature-area-altitude model, using daily precipitation and temperature observations collected at the Cordova and Yakutat weather stations, together with the area-altitude distribution of the glacier. The model mean annual balance for this 61 yr period is −0.6 m w.e., the accumulation balance is +1.4 and the ablation balance is −2.0 m w.e. Average annual runoff is 2.5 m w.e. Periodic surges of this glacier transport large volumes of ice to lower elevations where the ablation rate is higher, producing more negative balances and increasing runoff. Runoff from Bering Glacier (derived from simulated ablation and precipitation as rain is highly correlated with four of the glacier surges that have occurred since 1951. Ice volume loss for the 1972–2003 period measured with the PTAA model is 2.7 km3 w.e. a−1 and closely agrees with losses for the same period measured with the geodetic method. It is proposed that the timing and magnitude of daily snow accumulation and runoff, both of which are controlled by the glacier's area-altitude distribution and are calculated with the PTAA model, can be used to determine the probability that a glacier will surge.

  14. The stochastic runoff-runon process: Extending its analysis to a finite hillslope

    Science.gov (United States)

    Jones, O. D.; Lane, P. N. J.; Sheridan, G. J.

    2016-10-01

    The stochastic runoff-runon process models the volume of infiltration excess runoff from a hillslope via the overland flow path. Spatial variability is represented in the model by the spatial distribution of rainfall and infiltration, and their "correlation scale", that is, the scale at which the spatial correlation of rainfall and infiltration become negligible. Notably, the process can produce runoff even when the mean rainfall rate is less than the mean infiltration rate, and it displays a gradual increase in net runoff as the rainfall rate increases. In this paper we present a number of contributions to the analysis of the stochastic runoff-runon process. Firstly we illustrate the suitability of the process by fitting it to experimental data. Next we extend previous asymptotic analyses to include the cases where the mean rainfall rate equals or exceeds the mean infiltration rate, and then use Monte Carlo simulation to explore the range of parameters for which the asymptotic limit gives a good approximation on finite hillslopes. Finally we use this to obtain an equation for the mean net runoff, consistent with our asymptotic results but providing an excellent approximation for finite hillslopes. Our function uses a single parameter to capture spatial variability, and varying this parameter gives us a family of curves which interpolate between known upper and lower bounds for the mean net runoff.

  15. Spot Spraying Reduces Herbicide Concentrations in Runoff.

    Science.gov (United States)

    Melland, Alice R; Silburn, D Mark; McHugh, Allen D; Fillols, Emilie; Rojas-Ponce, Samuel; Baillie, Craig; Lewis, Stephen

    2016-05-25

    Rainfall simulator trials were conducted on sugar cane paddocks across dry-tropical and subtropical Queensland, Australia, to examine the potential for spot spraying to reduce herbicide losses in runoff. Recommended rates of the herbicides glyphosate, 2,4-D, fluoroxypyr, atrazine, and diuron were sprayed onto 0, 20, 40, 50, 70, or 100% of the area of runoff plots. Simulated rainfall was applied 2 days after spraying to induce runoff at one plant cane and three ratoon crop sites. Over 50% of all herbicides were transported in the dissolved phase of runoff, regardless of the herbicide's sediment-water partition coefficient. For most sites and herbicides, runoff herbicide concentrations decreased with decreasing spray coverage and with decreasing herbicide load in the soil and cane residues. Importantly, sites with higher infiltration prior to runoff and lower total runoff had lower runoff herbicide concentrations.

  16. Effects of preferential flow on soil-water and surface runoff in a forested watershed in China

    Institute of Scientific and Technical Information of China (English)

    Jinhua CHENG; Hongjiang ZHANG; Youyan ZHANG; Yuhu SHI; Yun CHENG

    2009-01-01

    Preferential flow is a runoff mechanism intermediate between matrix flow and surface flow, transmitting water at high velocity through the subsurface zone. To assess the effect of preferential flow on soil-water flow and surface runoff in a forested watershed, precipitation and volumes of preferential flow, matrix flow and surface runoff were measured over a period of four years in a forested watershed in the Three Gorges area of southern China. Results show that preferential-flow hydrographs have gentler rises and steeper recessions than those for matrix flow and surface runoff. Preferential flow as a percentage of soil-water flow ranged from 2.40% to 8.72% and the maximum preferential-flow velocity exceeded as much as 5600 times that of matrix flow. This shows that preferential flow plays an important role in the movement of soil water. Preferential flow has a significant effect on peak surface runoff by increasing the surface runoff rate and accelerating the appearance of peak surface runoff. Preferential flow can also prolong the duration of surface runoff. Surface runoff was observed to be positively correlated with preferential flow. The greater the sum of rainfall amount and antecedent precipitation is, the greater the effect of preferential flow on surface runoff is.

  17. Estimation of infiltration rate, run-off and sediment yield under simulated rainfall experiments in upper Pravara Basin, India: Effect of slope angle and grass-cover

    Indian Academy of Sciences (India)

    Veena U Joshi; Devidas T Tambe

    2010-12-01

    The main objective of this study is to measure the effect of slope and grass-cover on in filtration rate, run-off and sediment yield under simulated rainfall conditions in a badland area located in the upper Pravara Basin in western India. An automatic rainfall simulator was designed following Dunne et al (1980) and considering the local conditions. Experiments were conducted on six selected experimental fields of 2 × 2 m within the catchment with distinct variations in surface characteristics –grass-covered area with gentle slope, recently ploughed gently sloping area, area covered by crop residue (moderate slope), bare badland with steep slope, gravelly surface with near flat slope and steep slope with grass-cover. The results indicate subtle to noteworthy variations amongst the plots depending on their slope angle and surface characteristics. An important finding that emerges from the study is that the grass-cover is the most effective measure in inducing infiltration and in turn minimizing run-off and sediment yield. Sediment yields are lowest in gently sloping grass-covered surfaces and highest in bare badland surfaces with steep slopes. These findings have enormous implication for this area, because over 2/3 area is characterized by bare and steep slopes.

  18. Evidence of equilibrium peak runoff rates in steep tropical terrain on the island of Dominica during Tropical Storm Erika, August 27, 2015

    Science.gov (United States)

    Ogden, Fred L.

    2016-11-01

    Tropical Storm Erika was a weakly organized tropical storm when its center of circulation passed more than 150 km north of the island of Dominica on August 27, 2015. Hurricane hunter flights had difficulty finding the center of circulation as the storm encountered a high shear environment. Satellite and radar observations showed gyres imbedded within the broader circulation. Radar observations from Guadeloupe show that one of these gyres formed in convergent mid-level flow triggered by orographic convection over the island of Dominica. Gauge-adjusted radar rainfall data indicated between 300 and 750 mm of rainfall on Dominica, most of it over a four hour period. The result was widespread flooding, destruction of property, and loss of life. The extremity of the rainfall on steep watersheds covered with shallow soils was hypothesized to result in near-equilibrium runoff conditions where peak runoff rates equal the watershed-average peak rainfall rate minus a small constant loss rate. Rain gauge adjusted radar rainfall estimates and indirect peak discharge (IPD) measurements from 16 rivers at watershed areas ranging from 0.9 to 31.4 km2 using the USGS Slope-Area method allowed testing of this hypothesis. IPD measurements were compared against the global envelope of maximum observed flood peaks versus drainage area and against simulations using the U.S. Army Corps of Engineers Gridded Surface/Subsurface Hydrologic Analysis (GSSHA) model to detect landslide-affected peak flows. Model parameter values were estimated from the literature. Reasonable agreement was found between GSSHA simulated peak flows and IPD measurements in some watersheds. Results showed that landslide dam failure affected peak flows in 5 of the 16 rivers, with peak flows significantly greater than the envelope curve values for the flood of record for like-sized watersheds on the planet. GSSHA simulated peak discharges showed that the remaining 11 peak flow values were plausible. Simulations of an

  19. Pollutant Removal and Hydraulic Reduction Performance of Field Grassed Swales during Runoff Simulation Experiments

    Directory of Open Access Journals (Sweden)

    Terry Lucke

    2014-06-01

    Full Text Available Four different field swales were tested in this study, using 24 standardised synthetic runoff simulation experiments to evaluate their performance in removing Total Suspended Solids (TSS, Total Nitrogen (TN and Total Phosphorous (TP from stormwater runoff. Hydraulic reduction capability of the swales was also assessed. The study demonstrated that a swale’s TSS removal performance is highly dependent on the inlet TSS concentrations. Results showed that between 50% and 80% of the TSS was generally removed within the first 10 m of the swale length. The study found no reduction in TN concentrations due to treatment by the swales. However, it did demonstrate a reduction in measured TP levels of between 20% and 23% between the inlet and the outlet. The study results demonstrated that swales can be successfully used to attenuate peak stormwater flow rates, reduce runoff volumes and to improve the quality of stormwater runoff, particularly in runoff with high concentrations of TSS and TP. The results from this study will assist designers to estimate the appropriate length of swale required to achieve specific TSS and TP pollution reductions in urban stormwater runoff and to reduce downstream runoff volumes.

  20. Highway runoff quality in Ireland.

    Science.gov (United States)

    Berhanu Desta, Mesfin; Bruen, Michael; Higgins, Neil; Johnston, Paul

    2007-04-01

    Highway runoff has been identified as a significant source of contaminants that impact on the receiving aquatic environment. Several studies have been completed documenting the characteristics of highway runoff and its implication to the receiving water in the UK and elsewhere. However, very little information is available for Ireland. The objective of this study was to determine the quality of highway runoff from major Irish roads under the current road drainage design and maintenance practice. Four sites were selected from the M4 and the M7 motorways outside Dublin. Automatic samplers and continuous monitoring devices were deployed to sample and monitor the runoff quality and quantity. More than 42 storm events were sampled and analysed for the heavy metals Cd, Cu, Pb, and Zn, 16 US EPA specified PAHs, volatile organic compounds including MTBE, and a number of conventional pollutants. All samples were analysed based on the Standard Methods. Significant quantities of solids and heavy metals were detected at all sites. PAHs were not detected very often, but when detected the values were different from quantities observed in UK highways. The heavy metal concentrations were strongly related to the total suspended solids concentrations, which has a useful implication for runoff management strategies. No strong relationship was discovered between pollutant concentrations and event characteristics such as rainfall intensity, antecedent dry days (ADD), or rainfall depth (volume). This study has demonstrated that runoff from Irish motorways was not any cleaner than in the UK although the traffic volume at the monitored sites was relatively smaller. This calls for a site specific investigation of highway runoff quality before adopting a given management strategy.

  1. [Runoff and sediment yielding processes on red soil engineering accumulation containing gravels by a simulated rainfall experiment].

    Science.gov (United States)

    Shi, Qian-hua; Wang, Wen-long; Guo, Ming-ming; Bai, Yun; Deng, Li-qiang; Li, Jian-ming; Li, Yao-lin

    2015-09-01

    Engineering accumulation formed in production and construction projects is characterized by unique structure and complex material composition. Characteristics of soil erosion on the engineering accumulation significantly differ from those on farmland. An artificially simulated rainfall experiment was carried out to investigate the effects of rainfall intensity on the processes of runoff and sediment yielding on the engineering accumulation of different gravel contents (0%, 10%, 20% and 30%) in red soil regions. Results showed that the initial time of runoff generation decreased with increases in rainfall intensity and gravel content, the decreased amplitudes being about 48.5%-77.9% and 4.2%-34.2%, respectively. The initial time was found to be a power function of rainfall intensity. Both runoff velocity and runoff rate manifested a trend of first rising and then in a steady state with runoff duration. Rainfall intensity was found to be the main factor influencing runoff velocity and runoff rate, whereas the influence of gravel content was not significant. About 10% of gravel content was determined to be a critical value in the influence of gravel content on runoff volume. For the underlying surface of 10% gravel content, the runoff volume was least at rainfall intensity of 1.0 mm · min(-1) and maximum at rainfall intensity of greater than 1.0 mm · min(-1). The runoff volume in- creased 10%-60% with increase in rainfall intensity. Sediment concentration showed a sharp decline in first 6 min and then in a stable state in rest of time. Influence of rainfall intensity on sediment concentration decreased as gravel content increased. Gravels could reduce sediment yield significantly at rainfall intensity of greater than 1.0 mm · min(-1). Sediment yield was found to be a linear function of rainfall intensity and gravel content.

  2. Total pollution effects of urban surface runoff

    Institute of Scientific and Technical Information of China (English)

    LUO Hong-bing; LUO Lin; HUANG Gu; LIU Ping; LI Jing-xian; HU Sheng; WANG Fu-xiang; XU Rui; HUANG Xiao-xue

    2009-01-01

    e values of MFFn (mass first flush ratio) and FF30 (first 30% of runoff volume) can be considered as split-flow control criteria to enable more effective and economical design of structural BMPs (best management practices) facilities.

  3. Modeling and assessing the effects of land use changes on runoff generation with the CLUE-s and WetSpa models

    Science.gov (United States)

    Mohammady, Majid; Moradi, Hamid Reza; Zeinivand, Hossein; Temme, A. J. A. M.; Yazdani, Mohammad Reza; Pourghasemi, Hamid Reza

    2017-06-01

    Land use change is an important determinant of hydrological processes and is known to affect hydrological parameters such as runoff volume, flood frequency, base flow, and the partitioning into surface flow and subsurface flow. The main objective of this research was to assess the magnitude of the effect of land use changes on runoff parameters, using the Baghsalian watershed in Iran as a case study site. At first, land use maps of years 1986 and 2012 were prepared using synthetic method, and then simulation was done based on land use changes in the 1986 to 2012 period. Land use map of year 2030 was simulated using CLUE-s model. Spatially distributed hydrological WetSpa model was used to simulate runoff at daily scale with land use maps of 1986, 2012, and 2030. Total volume of runoff, peak flow, and surface flow were compared. The accuracy of the WetSpa model simulation was assessed with the Nash-Sutcliffe efficiency, which had values of 0.61 and 0.56% for the calibration and validation dataset, respectively. The aggregation measure criterion was also calculated and had values of 64 and 62% for the calibration and validation periods, respectively. The main land use changes in Baghsalian watershed between 1986, 2012, and 2030 were the conversion of forest and rangeland to agriculture and residential land use types. Because of these conversions, simulated total runoff volume increased; and the rate of increase in surface runoff was larger than the rate of increase in subsurface runoff. In addition, surface and subsurface runoff increased in 2012 and 2030 compared to 1986 land use map, but the rate of increase of subsurface runoff was less than surface runoff.

  4. Soils - Potential Runoff

    Data.gov (United States)

    Kansas Data Access and Support Center — This digital spatial data set provides information on the spatial distribution of potential runoff-contributing areas in Kansas. Potential runoff-contributing areas...

  5. A protocol for conducting rainfall simulation to study soil runoff.

    Science.gov (United States)

    Kibet, Leonard C; Saporito, Louis S; Allen, Arthur L; May, Eric B; Kleinman, Peter J A; Hashem, Fawzy M; Bryant, Ray B

    2014-04-03

    Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial urea, a common form of nitrogen (N) fertilizer, following a rainfall event that occurs within 24 hr after fertilizer application. Although urea is assumed to be readily hydrolyzed to ammonium and therefore not often available for transport, recent studies suggest that urea can be transported from agricultural soils to coastal waters where it is implicated in harmful algal blooms. A rainfall simulator was used to apply a consistent rate of uniform rainfall across packed soil boxes that had been prewetted to different soil moisture contents. By controlling rainfall and soil physical characteristics, the effects of antecedent soil moisture on urea loss were isolated. Wetter soils exhibited shorter time from rainfall initiation to runoff initiation, greater total volume of runoff, higher urea concentrations in runoff, and greater mass loadings of urea in runoff. These results also demonstrate the importance of controlling for antecedent soil moisture content in studies designed to isolate other variables, such as soil physical or chemical characteristics, slope, soil cover, management, or rainfall characteristics. Because rainfall simulators are designed to deliver raindrops of similar size and velocity as natural rainfall, studies conducted under a standardized protocol can yield valuable data that, in turn, can be used to develop models for predicting the fate and transport of pollutants in runoff.

  6. County-Level Climate Uncertainty for Risk Assessments: Volume 26 Appendix Y - Historical Ridging Rate.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lowry, Thomas Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Shannon M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Barry L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Malczynski, Leonard A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.

  7. County-Level Climate Uncertainty for Risk Assessments: Volume 27 Appendix Z - Forecast Ridging Rate.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M; Walker, La Tonya Nicole; Roberts, Barry L; Malczynski, Leonard A.

    2017-06-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.

  8. Snowmelt runoff from northern alpine tundra hillslopes: major processes and methods of simulation

    Directory of Open Access Journals (Sweden)

    W. L. Quinton

    2004-01-01

    Full Text Available In northern alpine tundra, large slope gradients, late-lying snow drifts and shallow soils overlying impermeable substrates all contribute to large hillslope runoff volumes during the spring freshet. Understanding the processes and pathways of hillslope runoff in this environment is, therefore, critical to understanding the water cycle within northern alpine tundra ecosystems. This study: (a presents the results of a field study on runoff from a sub-alpine tundra hillslope with a large snow drift during the spring melt period; (b identifies the major runoff processes that must be represented in simulations of snowmelt runoff from sub-alpine tundra hillslopes; (c describes how these processes can be represented in a numerical simulation model; and d compares field measurements with modelled output to validate or refute the conceptual understanding of runoff generation embodied in the process simulations. The study was conducted at Granger Creek catchment, 15 km south of Whitehorse, Yukon Territory, Canada, on a north-facing slope below a late-lying snow drift. For the freshet period, the major processes to be represented in a runoff model include the rate of meltwater release from the late-lying snowdrift, the elevation and thickness of the saturated layer, the magnitude of the soil permeability and its variation with depth. The daily cycle of net all-wave radiation was observed to drive the diurnal pulses of melt water from the drift; this, in turn, was found to control the daily pulses of flow through the hillslope subsurface and in the stream channel. The computed rate of frost table lowering fell within the observed values; however, there was wide variation among the measured frost table depths. Spatial variability in frost table depth would result in spatial variabilities in saturated layer depth and thickness, which would, in turn, produce variations in subsurface flow rates over the slope, including preferential flowpaths. Keywords

  9. Tumor Volume Reduction Rate After Preoperative Chemoradiotherapy as a Prognostic Factor in Locally Advanced Rectal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yeo, Seung-Gu [Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Department of Radiation Oncology, Soonchunhyang University College of Medicine, Cheonan (Korea, Republic of); Kim, Dae Yong, E-mail: radiopiakim@hanmail.net [Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Park, Ji Won; Oh, Jae Hwan; Kim, Sun Young; Chang, Hee Jin; Kim, Tae Hyun; Kim, Byung Chang; Sohn, Dae Kyung; Kim, Min Ju [Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of)

    2012-02-01

    Purpose: To investigate the prognostic significance of tumor volume reduction rate (TVRR) after preoperative chemoradiotherapy (CRT) in locally advanced rectal cancer (LARC). Methods and Materials: In total, 430 primary LARC (cT3-4) patients who were treated with preoperative CRT and curative radical surgery between May 2002 and March 2008 were analyzed retrospectively. Pre- and post-CRT tumor volumes were measured using three-dimensional region-of-interest MR volumetry. Tumor volume reduction rate was determined using the equation TVRR (%) = (pre-CRT tumor volume - post-CRT tumor volume) Multiplication-Sign 100/pre-CRT tumor volume. The median follow-up period was 64 months (range, 27-99 months) for survivors. Endpoints were disease-free survival (DFS) and overall survival (OS). Results: The median TVRR was 70.2% (mean, 64.7% {+-} 22.6%; range, 0-100%). Downstaging (ypT0-2N0M0) occurred in 183 patients (42.6%). The 5-year DFS and OS rates were 77.7% and 86.3%, respectively. In the analysis that included pre-CRT and post-CRT tumor volumes and TVRR as continuous variables, only TVRR was an independent prognostic factor. Tumor volume reduction rate was categorized according to a cutoff value of 45% and included with clinicopathologic factors in the multivariate analysis; ypN status, circumferential resection margin, and TVRR were significant prognostic factors for both DFS and OS. Conclusions: Tumor volume reduction rate was a significant prognostic factor in LARC patients receiving preoperative CRT. Tumor volume reduction rate data may be useful for tailoring surgery and postoperative adjuvant therapy after preoperative CRT.

  10. Effects of respiratory rate and tidal volume on gas exchange in total liquid ventilation.

    Science.gov (United States)

    Bull, Joseph L; Tredici, Stefano; Fujioka, Hideki; Komori, Eisaku; Grotberg, James B; Hirschl, Ronald B

    2009-01-01

    Using a rabbit model of total liquid ventilation (TLV), and in a corresponding theoretical model, we compared nine tidal volume-respiratory rate combinations to identify a ventilator strategy to maximize gas exchange, while avoiding choked flow, during TLV. Nine different ventilation strategies were tested in each animal (n = 12): low [LR = 2.5 breath/min (bpm)], medium (MR = 5 bpm), or high (HR = 7.5 bpm) respiratory rates were combined with a low (LV = 10 ml/kg), medium (MV = 15 ml/kg), or high (HV = 20 ml/kg) tidal volumes. Blood gases and partial pressures, perfluorocarbon gas content, and airway pressures were measured for each combination. Choked flow occurred in all high respiratory rate-high volume animals, 71% of high respiratory rate-medium volume (HRMV) animals, and 50% of medium respiratory rate-high volume (MRHV) animals but in no other combinations. Medium respiratory rate-medium volume (MRMV) resulted in the highest gas exchange of the combinations that did not induce choke. The HRMV and MRHV animals that did not choke had similar or higher gas exchange than MRMV. The theory predicted this behavior, along with spatial and temporal variations in alveolar gas partial pressures. Of the combinations that did not induce choked flow, MRMV provided the highest gas exchange. Alveolar gas transport is diffusion dominated and rapid during gas ventilation but is convection dominated and slow during TLV. Consequently, the usual alveolar gas equation is not applicable for TLV.

  11. MODELING OF STORM WATER RUNOFF FROM GREEN ROOFS

    OpenAIRE

    Ewa Burszta-Adamiak; Wiesław Fiałkiewicz

    2014-01-01

    Apart from direct measurements, modelling of runoff from green roofs is valuable source of information about effectiveness of this type of structure from hydrological point of view. Among different type of models, the most frequently used are numerical models. They allow to assess the impact of green roofs on decrease and attenuation of runoff, reduction of peak runoff and value of water retention. This paper presents preliminary results of research on computing the rate of runoff from green ...

  12. Understanding the factors influencing the removal of heavy metals in urban stormwater runoff.

    Science.gov (United States)

    Maniquiz-Redillas, Marla C; Kim, Lee-Hyung

    2016-01-01

    In this research, an infiltration trench equipped with an extensive pretreatment and filter bed consisting of woodchip, sand and gravel was utilized as a low impact development technique to manage stormwater runoff from a highly impervious road with particular emphasis on heavy metal removal. Findings revealed that the major factors influencing the removal of heavy metals were the concentration of the particulate matters and heavy metals in runoff, runoff volume and flow rates. The reduction of heavy metals was enhanced by sedimentation of particulates through pretreatment. Fine particles (design considerations. Sediment was most highly attached on the surface area of woodchip than to other filter media like sand, gravel and geotextile. It is suggested that maintenance must be performed after the end of the winter season wherein high sediment rate was observed to maintain the efficiency of the treatment system.

  13. Mass balance, runoff and surges of the Bering Glacier, Alaska

    Directory of Open Access Journals (Sweden)

    W. Tangborn

    2012-12-01

    Full Text Available The historical net, ablation and accumulation daily balances and runoff of the Bering Glacier, Alaska are determined for the 1951–2011 period with the PTAA (precipitation-temperature-area-altitude model, using daily precipitation and temperature observations collected at the Cordova and Yakutat weather stations, together with the area-altitude distribution of the glacier. The mean annual balance for this 61-yr period is −0.6 mwe, the accumulation balance is +1.4 and the ablation balance is −2.0 mwe. Periodic surges of this glacier transport large volumes of ice to lower elevations where the ablation rate is higher, producing more negative balances and increasing runoff. During the 1993–1995 surge the average ablation balance is −3.3 mwe, over a meter greater than the 1951–2011 average. Runoff from the Bering Glacier (derived from simulated ablation and precipitation as rain is highly correlated with the four glacier surges that have been observed since 1951. Ice volume loss for the 1972–2003 period measured with the PTAA model is 2.3 km3 we a−1 and closely agrees with losses for the same period measured with the geodetic method.

  14. 基于计时与光照法的坡面径流量及含沙量动态检测系统%Dynamic measured system for hillslope runoff rate and sediment concentration based on time method and illumination method

    Institute of Scientific and Technical Information of China (English)

    曾为军; 张云伟; 陈岭; 王大龙; 董晓伟; 王彦钧

    2014-01-01

    In the research of soil erosion and loss, slope runoff volume and sediment concentration are two important hydrodynamic parameters to forecast slope runoff variation, reveal soil erosion mechanism and find movement rule of soil on hill slope. There is still no special instrument which can be widely used to measure runoff rate and sediment concentration. In fact, slope runoff volume and sediment concentration should be obtained in one testing at the same time, and then the testing data can be valuable for scientific research. Therefore, it has significant meaning to develop on-line equipments to measure slope runoff and sediment concentration accurately and synchronously. In order to resolve this problem, an automatic testing device for detection of runoff rate and sediment concentration was designed based on time method and illumination method, which could overcome the shortage of traditional methods. Its working principles and electronic controlling section were described. The automatic testing device is composed of two parts, the mechanical device and the electronic testing component. The mechanical device consists of funnel-shaped device and sampling device. The electronic testing component includes three parts, i.e. runoff volume measure and control, sediment concentration measure and control, and digital display. Data acquisition and processing are performed by electronic testing component. The software design employed automatic cycle way to control SCM (single chip microcomputer) working. The testing data was saved in EEPROM of SCM. An additional experimental system was proposed for measuring sediment concentration by using above system. It is composed of measure device and testing circuit control. During the measurement of sediment concentration, keeping stirring solution is necessary to avoid silt sinking at bottom, and this is helpful to improve testing accuracy. Testing accuracy of sediment concentration is mainly affected by two factors:distance from

  15. Stormwater runoff pollutant loading distributions and their correlation with rainfall and catchment characteristics in a rapidly industrialized city.

    Science.gov (United States)

    Li, Dongya; Wan, Jinquan; Ma, Yongwen; Wang, Yan; Huang, Mingzhi; Chen, Yangmei

    2015-01-01

    Fast urbanization and industrialization in developing countries result in significant stormwater runoff pollution, due to drastic changes in land-use, from rural to urban. A three-year study on the stormwater runoff pollutant loading distributions of industrial, parking lot and mixed commercial and residential catchments was conducted in the Tongsha reservoir watershed of Dongguan city, a typical, rapidly industrialized urban area in China. This study presents the changes in concentration during rainfall events, event mean concentrations (EMCs) and event pollution loads per unit area (EPLs). The first flush criterion, namely the mass first flush ratio (MFFn), was used to identify the first flush effects. The impacts of rainfall and catchment characterization on EMCs and pollutant loads percentage transported by the first 40% of runoff volume (FF40) were evaluated. The results indicated that the pollutant wash-off process of runoff during the rainfall events has significant temporal and spatial variations. The mean rainfall intensity (I), the impervious rate (IMR) and max 5-min intensity (Imax5) are the critical parameters of EMCs, while Imax5, antecedent dry days (ADD) and rainfall depth (RD) are the critical parameters of FF40. Intercepting the first 40% of runoff volume can remove 55% of TSS load, 53% of COD load, 58% of TN load, and 61% of TP load, respectively, according to all the storm events. These results may be helpful in mitigating stormwater runoff pollution for many other urban areas in developing countries.

  16. Stormwater Runoff Pollutant Loading Distributions and Their Correlation with Rainfall and Catchment Characteristics in a Rapidly Industrialized City

    Science.gov (United States)

    Li, Dongya; Wan, Jinquan; Ma, Yongwen; Wang, Yan; Huang, Mingzhi; Chen, Yangmei

    2015-01-01

    Fast urbanization and industrialization in developing countries result in significant stormwater runoff pollution, due to drastic changes in land-use, from rural to urban. A three-year study on the stormwater runoff pollutant loading distributions of industrial, parking lot and mixed commercial and residential catchments was conducted in the Tongsha reservoir watershed of Dongguan city, a typical, rapidly industrialized urban area in China. This study presents the changes in concentration during rainfall events, event mean concentrations (EMCs) and event pollution loads per unit area (EPLs). The first flush criterion, namely the mass first flush ratio (MFFn), was used to identify the first flush effects. The impacts of rainfall and catchment characterization on EMCs and pollutant loads percentage transported by the first 40% of runoff volume (FF40) were evaluated. The results indicated that the pollutant wash-off process of runoff during the rainfall events has significant temporal and spatial variations. The mean rainfall intensity (I), the impervious rate (IMR) and max 5-min intensity (Imax5) are the critical parameters of EMCs, while Imax5, antecedent dry days (ADD) and rainfall depth (RD) are the critical parameters of FF40. Intercepting the first 40% of runoff volume can remove 55% of TSS load, 53% of COD load, 58% of TN load, and 61% of TP load, respectively, according to all the storm events. These results may be helpful in mitigating stormwater runoff pollution for many other urban areas in developing countries. PMID:25774922

  17. Rainfall-runoff model HEC-HMS in a small inhomogeneous basin

    Science.gov (United States)

    Ponížilová, Iva; Unucka, Jan; Říhová, Veronika

    2014-05-01

    Ploucnice river and its tributaries corresponded to a 50- to 100-year recurrence period. The simulation showed the impact of inhomogeneity in the catchment of the Robecsky stream, especially in the runoff volume, which was more significant in the catchment of the Bobri stream. The peak flow in the Robecsky stream achieved 8.9 m3.s-1 in the simulation. The peak flow in the Bobri stream was 16.1 m3.s-1. For both parts of the examined catchment area, the HEC-HMS model suggests virtually the same time of the onset of the flood wave. The Robecsky stream is also influenced by the watersheds of Machovo Lake and Holansky pond which largely accumulate the flow in the catchment area. According to the model outputs the flow rate will be reduced by 21.8 m3.s-1 for Machovo Lake and by 27.8 m3.s-1 for Holansky pond. Their importance lies in runoff slowing and peak flow transformation. To some extent, they regulate runoff from the catchment area. Model HEC-HMS confirmed that the basin inhomogeneity has detectable influence on runoff. It also reflected the transformation of the flood wave in the watersheds.

  18. Change in heart rate variability following orthostasis relates to volume of exercise in healthy women.

    Science.gov (United States)

    Gilder, Michael; Ramsbottom, Roger

    2008-12-05

    Physically active individuals demonstrate increased heart rate variability (HRV) during rest compared to sedentary individuals, but the impact of different volumes of regular exercise on the HRV response to postural change is not well understood. This study investigates change in HRV following orthostasis in seventy-two young women who exercise at low (LV) or high (HV) volumes of physical activity. Supine and standing R-R intervals were analysed by time domain, frequency domain and Poincaré plot methods. All methods revealed greater change in the vagal response in the HV group, indicating that HRV following postural change is modulated by volume of exercise.

  19. Multi-Rate Digital Control Systems with Simulation Applications. Volume II. Computer Algorithms

    Science.gov (United States)

    1980-09-01

    34 ~AFWAL-TR-80-31 01 • • Volume II L IL MULTI-RATE DIGITAL CONTROL SYSTEMS WITH SIMULATiON APPLICATIONS Volume II: Computer Algorithms DENNIS G. J...29 Ma -8 - Volume II. Computer Algorithms ~ / ’+ 44MWLxkQT N Uwe ~~ 4 ~jjskYIF336l5-79-C-369~ 9. PER~rORMING ORGANIZATION NAME AND ADDRESS IPROG AMEL...additional options. The analytical basis for the computer algorithms is discussed in Ref. 12. However, to provide a complete description of the program, some

  20. Runoff of copper and zinc caused by atmospheric corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Leuenberger-Minger, A.U.; Faller, M.; Richner, P. [Swiss Federal Labs. for Materials Testing and Research (EMPA), Duebendorf (Switzerland)

    2002-03-01

    Runoff and total corrosion loss for copper and zinc were investigated at seven sites in Switzerland. The exposure sites were chosen near the stations of the national air pollution monitoring network (NABEL), where climatic and air pollution data are measured. Runoff and corrosion rates were investigated after 0.5, 1, 2 and 4 years of exposure. Runoff rates differ from corrosion rates depending on the material, the exposure time and the sampling site. (orig.)

  1. Runoff production on a slope with randomly distributed infiltrabilities

    Science.gov (United States)

    Mouche, E.; Harel, M.

    2013-12-01

    Runoff generated on one- and two-dimensional slopes with randomly distributed infiltrability is studied in the queuing theory and connectivity frameworks. The equivalence between the runoff-runon equation and the customers waiting time in a single server queue provides a theoretical link between the statistical descriptions of infiltrability and that of runoff flow rate. Different distributions of infiltrability, representing soil heterogeneities at different scales, are considered. Numerical simulations validate these results and improve our understanding of runoff-runon process. All of the quantities describing the generation of runoff (runoff one-point statistics) and its organization into patterns (patterns statistics and connectivity) are studied as functions of rainfall rate and runoff dimensionality.

  2. Derivation of Plastic Work Rate Done per Unit Volume for Mean Yield Criterion and Its Application

    Institute of Scientific and Technical Information of China (English)

    Dewen ZHAO; Yingjie XIE; Xiaowen WANG; Xianghua LIU

    2005-01-01

    In Haigh Westergaard stress space linear combination of twin shear stress and Tresca yield functions is called the mean yield (MY) criterion. The mathematical relationship of the criterion and its plastic work rate done per unit volume were derived. A generalized worked example of slab forging was analyzed by the criterion and its corresponding plastic work rate done per unit volume. Then, the precision of the solution was compared with those by Mises and Twin shear stress yield criterions, respectively. It turned out that the calculated results by MY criterion were in good agreement with those by Mises criterion.

  3. Value of volume measurements in evaluating abdominal aortic aneurysms growth rate and need for surgical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kontopodis, Nikolaos, E-mail: kontopodisn@yahoo.gr [Department of Vascular Surgery, University of Crete Medical School, Heraklion (Greece); Metaxa, Eleni, E-mail: emmetaxa@gmail.com [Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion, Crete (Greece); Papaharilaou, Yannis, E-mail: yannisp@iacm.forth.gr [Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion, Crete (Greece); Georgakarakos, Efstratios, E-mail: efstratiosgeorg@gmail.com [Vascular Surgery Department, “Demokritus” University of Thrace Medical School, Alexandroupolis (Greece); Tsetis, Dimitris, E-mail: tsetis@med.uoc.gr [Interventional Radiology Unit, Department of Radiology, University of Crete Medical School, Heraklion, Crete (Greece); Ioannou, Christos V., E-mail: ioannou@med.uoc.gr [Department of Vascular Surgery, University of Crete Medical School, Heraklion (Greece)

    2014-07-15

    Purpose: To examine whether indices other than the traditionally used abdominal aortic aneurysm (AAA) maximum diameter, such as AAA volume, intraluminal thrombus (ILT) thickness and ILT volume, may be superior to evaluate aneurismal enlargement. Materials and methods: Thirty-four small AAAs (initially presenting a maximum diameter <5.5 cm which is the threshold for surgical repair) with an initial and a follow-up CT were examined. Median increase and percentile annual change of these variables was calculated. Correlation between growth rates as determined by the new indices under evaluation and those of maximum diameter were assessed. AAAs were divided according to outcome (surveillance vs. elective repair after follow-up which is based on the maximum diameter criterion) and according to growth rate (high vs. low) based on four indices. Contingency between groups of high/low growth rate regarding each of the four indices on one hand and those regarding need for surgical repair on the other was assessed. Results: A strong correlation between growth rates of maximum diameter and those of AAA and ILT volumes could be established. Evaluation of contingency between groups of outcome and those of growth rate revealed significant associations only for AAA and ILT volumes. Subsequently AAAs with a rapid volumetric increase over time had a likelihood ratio of 10 to be operated compared to those with a slower enlargement. Regarding increase of maximum diameter, likelihood ratio between AAAs with rapid and those with slow expansion was only 3. Conclusion: Growth rate of aneurysms regarding 3Dimensional indices of AAA and ILT volumes is significantly associated with the need for surgical intervention while the same does not hold for growth rates determined by 2Dimensional indices of maximum diameter and ILT thickness.

  4. Haulage Vehicle Traffic and Runoff Effect on Gully Growth on Roadside Slopes of Unpaved Sand-Quarry Road, Uyo.

    Directory of Open Access Journals (Sweden)

    Obot Ekpo Essien

    2013-10-01

    Full Text Available Rainfall runoff and sand haulage truck traffic count were quantified and regressed on gully soil loss and gully morphometric volume growth on unpaved haulage roadside erosion. The gully erosion on unpaved roadside was accelerated by the agency of runoff in splash wash from the road, and high axle sand haulage trucks traffic. The effect of the Runoff discharge and traffic count, as independent variables and cumulativequantities, on the cumulative soil loss from jagged side slope gullies, and the gully volume growth were very significant at P < 0.01 generally. Predictive coefficient of determination, significant at P < 0.01, were very perfect at R2= 88.8 to 98.9%. Different regimes of association were obtained such as: high runoff and high traffic count; high flow rate and low traffic count, and low runoff and high traffic count for effect and on gully loss and gully volume growth, and they gave accurate and significant relationship. Regulation of sand-mining over a catchment is recommended as it has otherwise destroyed landform and initiated unrestrained gullying.

  5. Relationship between Formation Water Rate, Equivalent Penetration Rate and Volume Flow Rate of Air in Air Drilling

    Institute of Scientific and Technical Information of China (English)

    Wang Kexiong; Zhang Laibin; Jiang Hongwei

    2007-01-01

    Formation water invasion is the most troublesome problem associated with air drilling. However, it is not economical to apply mist drilling when only a small amount of water flows into wellbore from formation during air drilling. Formation water could be circulated out of the wellbore through increasing the gas injection rate. In this paper,the Angel model was modified by introducing Nikurade friction factor for the flow in coarse open holes and translating formation water rate into equivalent penetration rate. Thus the distribution of annular pressure and the relationship between minimum air injection rate and formation water rate were obtained. Real data verification indicated that the modified model is more accurate than the Angel model and can provide useful information for air drilling.

  6. Characteristics of runoff and sediment generation of forest vegetation on a hill slope by use of artificial rainfall apparatus

    Institute of Scientific and Technical Information of China (English)

    LI Xiang; NIU Jian-zhi; LI Jiao; XIE Bao-yuan; HAN Yi-ni; TAN Jing-ping; ZHANG Ying-hu

    2012-01-01

    We studied the impact of forest vegetation on soil erosion,surface runoff,and sediment generation by using field simulated rainfall apparatus.We measured runoff and sediment generation of five 4.5 × 2.1m runoff plots (a bare soil as a control; two Pinus tabulaeformis forest plots and two Platycladus orientalis forest with row spacing of 1m × 1m and 1.5 m × 1.5 m,respectively) in Beijing Jiu Feng National Forest Park under three rainfall intensities (0.42,0.83,1.26 mm per minute).Forest vegetation significantly reduced soil erosion and sediment yield.Mean total runoff volume in the four tree stand plots was 93% of that in the control plot,demonstrating the limited effectiveness of forest vegetation in runoff control.With increasing rainfall intensity,runoff reduction in forest plots declined from 28.32% to 2.1%.Similar trends in runoff coefficient and the relationship between runoffvolume and rainfall duration was observed.Mean total sediment yield and mean sediment yield reduction rate under different treatments was 55.05% and 43.17% of those in the bare soil control plot,respectively.Rainfall intensity played an important role in runoffand sediment generation processes,and had a greater impact on runoff than on soil erosion and sediment generation.When considering several factors in runoff and sediment transport processes,the P.tabulaeform plot with row spacing at 1 × 1 m had a greater effect on soil and water conservation than did other forested plots.

  7. Changes in extracellular muscle volume affect heart rate and blood pressure responses to static exercise

    Science.gov (United States)

    Baum, K.; Essfeld, D.; Stegemann, J.

    To investigate the effect of μg-induced peripheral extracellular fluid reductions on heart rate and blood pressure during isometric exercise, six healthy male subjects performed three calf ergometer test with different extracellular volumes of working muscles. In all tests, body positions during exercise were identical (supine with the knee joint flexed to 900). After a pre-exercise period of 25 min, during which calf volumes were manipulated, subjects had to counteract an external force of 180 N for 5 min. During the pre-exercise period three different protocols were applied. Test A: Subjects rested in the exercise position; test B: Body position was the same as in A but calf volume was increased by venous congestion (cuffs inflated to 80 mm Hg); test C: Calf volumes were decreased by a negative hydrostatic pressure (calves about 40 cm above heart level with the subjects supine). To clamp the changed calf volumes in tests B and C, cuffs were inflated to 300 mm Hg 5 min before the onset of exercise. This occlusion was maintained until termination of exercise. Compared to tests A and B, the reduced volume of test C led to significant increases in heart rate and blood pressure during exercise. Oxygen uptake did not exceed resting levels in B and C until cuffs were deflated, indicating that exclusively calf muscles contributed to the neurogenic peripheral drive. It is concluded that changes in extracellular muscle volume have to be taken into account when comparing heart rate and blood pressure during lg- and μg- exercise.

  8. Fabric inlet stratifiers for solar tanks with different volume flow rates

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2006-01-01

    in the centre of a glass tank (400 x 400 x 900 mm). The forced volume flow rate is in the range of 6 – 10 l/min, and water enters the stratification pipe from the bottom of the tank. The thermal behaviour of the stratification pipes is investigated for different realistic operation conditions...

  9. the effect of pellet volume, dilution rates prefreezing and at thawing ...

    African Journals Online (AJOL)

    Three experiments were conducted to examine the effects of dilution rates prefreezing and at thawing, pellet volume, and of thawing temperature on the ... Tris-75,8 mM citric acid-22,2 mM glucose-12% (v/v) egg ..... These temperatures drop-.

  10. Determinação da velocidade de infiltração da água no solo, por meio de diagramas de pluviografos e limnígrafos Determination op infiltration rates from rainfall and runoff records

    Directory of Open Access Journals (Sweden)

    José Bertoni

    1959-01-01

    Full Text Available Neste trabalho são apresentados os valores da velocidade de infiltração, obtidos com os dados de perdas por erosão dos talhões de comprimento de rampa, da Estação Experimental de Conservação do Solo, em Clarinda, Iowa, nos Estados Unidos. Usando os dados de intensidades de chuva e enxurrada, a velocidade de infiltração foi determinada pelo método gráfico de Sharp e Holtan para as 10 maiores chuvas, com apreciável enxurrada, que ocorreram durante um período de cinco anos. As 10 chuvas foram selecionadas com base na sua duração, intensidade e época do ano. Os problemas do cálculo da velocidade de infiltração com os dados de talhões de perdas por erosão e algumas das limitações dos valores determinados são apresentados.The Soil Conservation Experiment Station located near Clarinda, Iowa, was established in 1931 to study erosion problems on Marshall silt loam. One of the original experiment started in 1932 contained plots comparing slope lengths of 36.3, 72.6 and 145.2 feet. These plots were 6 feet wide with an average land slope of 9 percent. The plots were planted to continuous corn. Originally provision was made only for measurement of total runoff and erosion. However, during the years 1938 to 1942, devices were installed for measurement of rates of runoff. Using rainfall intensity rates and runoff rate measurements, infiltration rates were determined by the graphical method of Sharp and Holtan for 10 of the largest storms selected from a total of 82 storms, with appreciable runoff, that occurred during the 5-year period. The ten storms were selected on the basis of long duration, high intensity and different times of the year. On the basis of this study the following conclusions were drawn. a In general, mass infiltration increased with increased slope length; b The average initial infiltration rate for all storms and all slope lengths was 0.79 inch per hour and the final infiltration rate was 0.21 inch per hour. The

  11. Volume of activity and occupancy rate in intensive care units. Association with mortality.

    Science.gov (United States)

    Iapichino, Gaetano; Gattinoni, Luciano; Radrizzani, Danilo; Simini, Bruno; Bertolini, Guido; Ferla, Luca; Mistraletti, Giovanni; Porta, Francesca; Miranda, Dinis R

    2004-02-01

    Mortality after many procedures is lower in centers where more procedures are done. It is controversial whether this is true for intensive care units, too. We examined the relationship between the volume of activity of intensive care units (ICUs) and mortality by a measure of risk-adjusted volume of activity specific for ICUs. Prospective, multicenter, observational study. Eighty-nine ICUs in 12 European countries. During a 4-month study period, 12,615 patients were enrolled. Demographic and clinical statistics, severity at admission and a score of nursing complexity and workload were collected. Total volume of activity was defined as the number of patients admitted per bed per year, high-risk volume as the number of high-risk patients admitted per bed per year (selected combining of length of stay and severity of illness). A multi-step risk-adjustment process was planned. ICU volume corresponding both to overall [odds ratio (OR) 0.966] and 3,838 high-risk (OR 0.830) patients was negatively correlated with mortality. Relative mortality decreased by 3.4 and 17.0% for every five extra patients treated per bed per year in overall volume and high-risk volume, respectively. A direct relationship was found between mortality and the ICU occupancy rate (OR 1.324 and 1.351, respectively). Intensive care patients, whatever their level of risk, are best treated where more high-risk patients are treated. Moreover, the higher the ICU occupancy rate, the higher is the mortality.

  12. Granular and Dissolved Polyacrylamide Effects on Erosion and Runoff under Simulated Rainfall.

    Science.gov (United States)

    Kang, Jihoon; Amoozegar, Aziz; Heitman, Joshua L; McLaughlin, Richard A

    2014-11-01

    Polyacrylamide (PAM) has been demonstrated to reduce erosion under many conditions, but less is known about the effects of its application method on erosion and concentrations in the runoff water. A rainfall simulation study was conducted to evaluate the performance of an excelsior erosion control blanket (cover) and two PAM application methods. The treatments were (i) no cover + no PAM (control), (ii) cover + no PAM, (iii) cover + granular PAM (GPAM), and (iv) cover + dissolved PAM (DPAM) applied to soil packed in wooden runoff boxes. The GPAM or DPAM (500 mg L) was surface-applied at a rate of 30 kg ha 1 d before rainfall simulation. Rainfall was applied at 83 mm h for 50 min and then repeated for another 20 min after a 30-min rest period. Runoff samples were analyzed for volume, turbidity in nephelometric turbidity units (NTU), total suspended solids (TSS), sediment particle size distribution, and PAM concentration. The cover alone reduced turbidity and TSS in runoff by >60% compared with the control (2315 NTU, 2777 mg TSS L). The PAM further reduced turbidity and TSS by >30% regardless of the application method. The median particle diameter of eroded sediments for PAM treatments was seven to nine times that of the control (12.4 μm). Loss of applied PAM in the runoff water (not sediment) was 19% for the GPAM treatment but only 2% for the DPAM treatment. Both GPAM and DPAM were effective at improving groundcover performance, but DPAM resulted in much less PAM loss.

  13. Treatment of suspended solids and heavy metals from urban stormwater runoff by a tree box filter.

    Science.gov (United States)

    Geronimo, F K F; Maniquiz-Redillas, M C; Tobio, J A S; Kim, L H

    2014-01-01

    Particulates, inorganic and toxic constituents are the most common pollutants associated with urban stormwater runoff. Heavy metals such as chromium, nickel, copper, zinc, cadmium and lead are found to be in high concentration on paved roads or parking lots due to vehicle emissions. In order to control the rapid increase of pollutant loads in stormwater runoff, the Korean Ministry of Environment proposed the utilization of low impact developments. One of these was the application of tree box filters that act as a bioretention treatment system which executes filtration and sorption processes. In this study, a tree box filter located adjacent to an impervious parking lot was developed to treat suspended solids and heavy metal concentrations from urban stormwater runoff. In total, 11 storm events were monitored from July 2010 to August 2012. The results showed that the tree box filter was highly effective in removing particulates (up to 95%) and heavy metals (at least 70%) from the urban stormwater runoff. Furthermore, the tree box filter was capable of reducing the volume runoff by 40% at a hydraulic loading rate of 1 m/day and below.

  14. Keeping soil in the field - runoff and erosion management in asparagus crops

    Science.gov (United States)

    Niziolomski, Joanna; Simmons, Robert; Rickson, Jane; Hann, Mike

    2016-04-01

    Row crop production (including potatoes, onions, carrots, asparagus, bulbs and lettuce) is regarded as one of the most erosive agricultural cropping systems. This is a result of the many practices involved that increase erosion risk including: fine seedbed preparation, a typically short growing season where adequate ground cover protects the soil, permanent bare soil areas between crops, and often intensive harvesting methods that can damage soil structure and result in soil compaction. Sustained exposure of bare soil coupled with onsite compaction on slightly sloping land results in soil and water issues in asparagus production. Asparagus production is a growing British industry covering > 2000 ha and is worth approximately £30 million yr-1. However, no tried and tested erosion control measurements currently exist to manage associated problems. Research has recently been undertaken investigating the effectiveness of erosion control measures suitable for asparagus production systems. These consisted of surface applied wheat straw mulch and shallow soil disturbance (asparagus farm in Herefordshire, UK. Testing was conducted between May and November 2013. Rainfall-event based runoff and erosion measurements were taken including; runoff volume, runoff rate and total soil loss. Runoff and soil erosion was observed from all treatments. However, the surface application of straw mulch alone out performed each shallow soil disturbance practice. This suggests that runoff and erosion from asparagus production can be reduced using the simple surface application of straw.

  15. Effect of vegetative filter strips on herbicide runoff under various types of rainfall.

    Science.gov (United States)

    Otto, Stefan; Cardinali, Alessandra; Marotta, Ester; Paradisi, Cristina; Zanin, Giuseppe

    2012-06-01

    Narrow vegetative filter strips proved to effectively reduce herbicide runoff from cultivated fields mainly due to the ability of vegetation to delay surface runoff, promote infiltration and adsorb herbicides. A field trial was conducted from 2007 to 2009 in north-east Italy in order to evaluate the effectiveness of various types of vegetative filter strips to reduce spring-summer runoff of the herbicides mesotrione, metolachlor and terbuthylazine, widely used in maize, and to evaluate the effect of the rainfall characteristics on the runoff volume and concentration. Results show that without vegetative filter strip the herbicide load that reaches the surface water is about 5-6 g ha(-1)year(-1) for metolachlor and terbuthylazine (i.e. 0.5-0.9% of the applied rate), confirming that runoff from flat fields as in the Po Valley can have a minor effect on the water quality, and that most of the risk is posed by a few, or even just one extreme rainfall event with a return period of about 25-27 years, causing runoff with a maximum concentration of 64-77 μg L(-1). Mesotrione instead showed rapid soil disappearance and was observed at a concentration of 1.0-3.8 μg L(-1) only after one extreme (artificial) rainfall. Vegetative filter strips of any type are generally effective and can reduce herbicide runoff by 80-88%. Their effectiveness is steady even under severe rainfall conditions, and this supports their implementation in an environmental regulatory scheme at a catchment or regional scale.

  16. Deduction of plastic work rate per unit volume for unified yield criterion and its application

    Institute of Scientific and Technical Information of China (English)

    ZHAO De-wen; LI Jing; LIU Xiang-hua; WANG Guo-dong

    2009-01-01

    A unified linear expression of plastic work rate per unit volume is deduced from the unified linear yield criterion and the associated flow rule. The expression is suitable for various linear yield loci in the error triangle between Tresca's and twin shear stress yield loci on the π-plane. It exhibits generalization in which the different value of criterion parameter b corresponds to a specific linear formula of plastic work rate per unit volume. Finally, with the unified linear expression of plastic work rate and upper-bound parallel velocity field the strip forging without bulge is successfully analyzed and an analytical result is also obtained. The comparison with traditional solutions shows that when b=1/(1+(√3)) the result is the same as the upper bound result by Mises' yield criterion, and it also is identical to that by slab method with m=1, σ0=0.

  17. Urban runoff drainage : case of Kjelsrud in Oslo

    OpenAIRE

    Moheseen, Fida Amin

    2015-01-01

    The volume of the urban runoff is subjected to increase due to urbanization and climate change. The urbanisation plan for the catchment of Kjelsrud implies increasing the impervious surfaces in forms of roads and rooftops, in return this increases the generated runoff. The catchment area of 38 ha will be able to generate a considerable runoff volume of about 5069 l/s under current rainfall and 11406 l/s with climate change consideration. The goal of this thesis is t o provide V...

  18. 考虑水迁移率动态变化改进土壤溶质地表流失模型%Modified model for solute loss from soil to surface runoff considering with dynamic water transfer rate

    Institute of Scientific and Technical Information of China (English)

    夏传安; 童菊秀

    2016-01-01

    Solute loss from soil into surface runoff water plays a significant role in agricultural non-point source pollution. Thus, studying the mathematical model of solute loss in runoff is important for forecasting and controlling fertilizer loss in farmland. Water transfer rate is taken as the function of soil erosion in this study, and water transfer rate is not a constant but an exponent function of time, which decreases with time and finally achieves an unchangeable value, residual water transfer rate. The soil erosion based model is modified and the numerical solution of solute concentration in surface runoff water is obtained through modifying the Hydrus-1D code. And, only the solute numerical model is modified for coupling the surface loss model which is discrete with the implicit difference method in Hydrus-1D code. Two groups of published experiment data are used to verify our modified model. The results show that the related coefficients (r), between forecasted results and observed data are no less than 0.81 in all cases. Moreover, both average value of absolute residual and root-mean-square error are remarkably smaller in all cases than the values published before, with the average decrease value of 35.42 and 60.77 mg/L, respectively, which suggests that the modified model in our study is much better than original model to predict solute transfer from soil into surface runoff water. Solute concentrations in both runoff and soil profile could be simulated well. This result suggests that the modified model characterizes the solute loss process in surface runoff or in underground drainage. The solute curve for the condition with or without ponding water can be simulated with the modified model by just setting the proper parameters. The sum of solute loss in runoff increases with the rainfall increasing and decreases with the time in the single experiment. Residual water transfer rate does not change with rainfall intensity. Under non-infiltration condition

  19. Size dependence of volume and surface nucleation rates for homogeneous freezing of supercooled water droplets

    Directory of Open Access Journals (Sweden)

    T. Kuhn

    2009-10-01

    Full Text Available We investigated the relative roles of volume and surface nucleation in the freezing of water droplets. Nucleation experiments were carried out in a cryogenic laminar aerosol flow tube using supercooled liquid water aerosols with radii between about 1 and 3 μ m. Temperature- and size-dependent values of volume- and surface-based homogeneous nucleation rate between 234.8 and 236.2 K are derived with help of a microphysical model from aerosol compositions and size distributions based on infrared extinction measurements in the aerosol flow tube. The results show that the contribution from nucleation at the droplet surface increases with decreasing droplet radius and dominates over nucleation in the bulk droplet volume for droplets with radii smaller than approximately 5 μm. This is interpreted in terms of a lowered free energy of ice germ formation in the surface-based process and has implications for the parameterization of homogeneous ice nucleation in numerical models.

  20. Electromagnetic corrections to leptonic decay rates of charged pseudoscalar mesons: finite-volume effects

    CERN Document Server

    Tantalo, N; Martinelli, G; Sachrajda, C T; Sanfilippo, F; Simula, S

    2016-01-01

    In Carrasco et al. we have recently proposed a method to calculate $O(e^2)$ electromagnetic corrections to leptonic decay widths of pseudoscalar mesons. The method is based on the observation that the infrared divergent contributions (that appear at intermediate stages of the calculation and that cancel in physical quantities thanks to the Bloch-Nordsieck mechanism) are universal, i.e. depend on the charge and the mass of the meson but not on its internal structure. In this talk we perform a detailed analysis of the finite-volume effects associated with our method. In particular we show that also the leading $1/L$ finite-volume effects are universal and perform an analytical calculation of the finite-volume leptonic decay rate for a point-like meson.

  1. Runoff of the upper Yellow River above Tangnag:characteristics, evolution and changing trends

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Runoff and its evolution, based on hydrometeorological data fromsurface measurement stations, are analyzed for the upper reaches of the Yellow River above Tangnag. Some mathematical statistical models, for example, Period Extrapolation-Gradual Regression Model, Grey Topology Forecast Model and Box-Jinkins Model, are applied in predicting changing trends on the runoff The analysis indicates that the runoff volume in the upper Yellow River above Tangnag is ending a period of extended minimum flows. Increasing runoff is expected in the coming years.

  2. Variability in venom volume, flow rate and duration in defensive stings of five scorpion species.

    Science.gov (United States)

    van der Meijden, Arie; Coelho, Pedro; Rasko, Mykola

    2015-06-15

    Scorpions have been shown to control their venom usage in defensive encounters, depending on the perceived threat. Potentially, the venom amount that is injected could be controlled by reducing the flow speed, the flow duration, or both. We here investigated these variables by allowing scorpions to sting into an oil-filled chamber, and recording the accreting venom droplets with high-speed video. The size of the spherical droplets on the video can then be used to calculate their volume. We recorded defensive stings of 20 specimens representing 5 species. Significant differences in the flow rate and total expelled volume were found between species. These differences are likely due to differences in overall size between the species. Large variation in both venom flow speed and duration are described between stinging events of single individuals. Both venom flow rate and flow duration correlate highly with the total expelled volume, indicating that scorpions may control both variables in order to achieve a desired end volume of venom during a sting.

  3. A Novel Method for Extracting Respiration Rate and Relative Tidal Volume from Infrared Thermography

    Science.gov (United States)

    Lewis, Gregory F.; Gatto, Rodolfo G.; Porges, Stephen W.

    2010-01-01

    In psychophysiological research, measurement of respiration has been dependent on transducers having direct contact with the participant. The current study provides empirical data demonstrating that a noncontact technology, infrared video thermography, can accurately estimate breathing rate and relative tidal volume across a range of breathing patterns. Video tracking algorithms were applied to frame-by-frame thermal images of the face to extract time series of nostril temperature and to generate breath-by-breath measures of respiration rate and relative tidal volume. The thermal indices of respiration were contrasted with criterion measures collected with inductance plethysmography. The strong correlations observed between the technologies demonstrate the potential use of facial video thermography as a noncontact technology to monitor respiration. PMID:21214587

  4. A study of respiratory rate, tidal volume, inspiratory capacity and inspiratory reserve volume in different trimesters of pregnancy

    Directory of Open Access Journals (Sweden)

    Anita Teli

    2013-01-01

    Full Text Available Background: The anatomical, physiological and biochemical adaptations in pregnancy are profound. Many of these changes begin soon after fertilization and continue throughout the gestation and changes in the respiratory system are part of the same process. However there is insufficient information regarding the changes in respiratory parameters in different trimesters of pregnancy. Aims: The aim of the study was designed to evaluate the pulmonary function tests in 1 st , 2 nd and 3 rd trimesters of pregnancy and compare them with non-pregnant control group. Materials and Methods: A cross-sectional study was carried in 200 healthy women in the age range of 19-35 years. The subjects were distributed in four groups, as control (non-pregnant group and 1 st , 2 nd and 3 rd trimester pregnant groups. Number of subjects in each group was 50. Respiratory parameters in control and study groups were recorded. Statistical Analysis: By ′Z ′ test. Results: There was gradual significant increase in respiratory rate in all trimesters of pregnancy. There was a gradual decrease in tidal volume in 1 st , 2 nd and 3 rd trimesters of pregnancy when compared to non pregnant women. There was significant decrease in Inspiratory Reserve Volume and Inspiratory Capacity. Conclusion: The changes in pulmonary function are attributed to major adaptations in the maternal respiratory system and are influenced by the mechanical pressure of enlarging gravid uterus, elevating the diaphragm and restricting the movements of lungs thus hampering the forceful expiration and also might be due to decline in alveolar Pco 2 caused by hyperventilation which acts as bronchoconstrictor; in addition to sensitization of respiratory center due to progesterone

  5. Vapor diffusion, nucleation rates and the reservoir to crystallization volume ratio.

    Science.gov (United States)

    Forsythe, Elizabeth L; Maxwell, Daniel L; Pusey, Marc

    2002-10-01

    In a classical vapor diffusion crystallization, the protein solution is mixed in a 1:1 ratio with the reservoir solution, containing one or more precipitant species, after which the two are placed in an enclosed chamber. As the vapor pressure is lower for the reservoir solution, due to its higher solute concentration, there is a net transfer of water through the vapor phase from the protein droplet to the reservoir. In theory, the initial conditions in the droplet are such that the protein is in either a metastable or undersaturated state with respect to crystal nucleation. The loss of water serves to both concentrate the protein and the precipitant concentrations within the drop, bringing the protein past the metastable point to nucleation. The equilibration rate is a function of the precipitant(s) used, their concentration, the temperature, the distance between the two surfaces, and the droplet to reservoir volume ratio. For a given reservoir volume smaller droplets equilibrate faster, the rate being inversely linear with the droplet volume. In attempts to maximize the number of crystallization trials, and as crystals in the 100 - 200 micro m size range are sufficient, it has currently become standard practice to use starting droplet volumes of 2 - 4 micro l, with reservoir volumes typically in the 200 to 500 micro l range. The equilibration rates are maximized, and for most common salt concentrations and higher concentrations of polyethylene glycol (PEG) and 2-methyl-2,4-pentanediol (MPD) one can reasonably estimate that equilibration has occurred within 3 to 6 days at room temperature. Crystals appearing after this time are essentially grown under batch conditions. We experimentally find that altering the reservoir to droplet volume ratio, by changing the reservoir volume, from 50:1 (high ratio) to 5:1 (low ratio), on average increases the equilibration time by approximately 50 % when tested with solutions of 50% MPD, 1.5 M NaCl, or 30 % PEG 400. However

  6. The economic benefits of rainwater-runoff reduction by urban green spaces: a case study in Beijing, China.

    Science.gov (United States)

    Zhang, Biao; Xie, Gaodi; Zhang, Canqiang; Zhang, Jing

    2012-06-15

    Urbanization involves the replacement of vegetated surfaces with impervious built surfaces, and it often results in an increase in the rate and volume of rainwater surface runoff. Urban green spaces play a positive role in rainwater-runoff reduction. However, few studies have explored the benefits of rainwater-runoff reduction by urban green spaces. Based on inventory data of urban green spaces in Beijing, the paper evaluated the economic benefits of rainwater-runoff reduction by urban green spaces, using the rainwater-runoff-coefficient method as well as the economic valuation methods. The results showed that, 2494 cubic meters of potential runoff was reduced per hectare of green area and a total volume of 154 million cubic meters rainwater was stored in these urban green spaces, which almost corresponds to the annual water needs of the urban ecological landscape in Beijing. The total economic benefit was 1.34 billion RMB in 2009 (RMB: Chinese currency, US$1=RMB6.83), which is equivalent to three-quarters of the maintenance cost of Beijing's green spaces; the value of rainwater-runoff reduction was 21.77 thousand RMB per hectare. In addition, the benefits in different districts and counties were ranked in the same order as urban green areas, and the average benefits per hectare of green space showed different trends, which may be related to the impervious surface index in different regions. This research will contribute to an understanding of the role that Beijing's green spaces play in rainwater regulation and in the creation and scientific management of urban green spaces. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Stroke rates and diving air volumes of emperor penguins: implications for dive performance.

    Science.gov (United States)

    Sato, Katsufumi; Shiomi, Kozue; Marshall, Greg; Kooyman, Gerald L; Ponganis, Paul J

    2011-09-01

    Emperor penguins (Aptenodytes forsteri), both at sea and at an experimental dive hole, often have minimal surface periods even after performance of dives far beyond their measured 5.6 min aerobic dive limit (ADL: dive duration associated with the onset of post-dive blood lactate accumulation). Accelerometer-based data loggers were attached to emperor penguins diving in these two different situations to further evaluate the capacity of these birds to perform such dives without any apparent prolonged recovery periods. Minimum surface intervals for dives as long as 10 min were less than 1 min at both sites. Stroke rates for dives at sea were significantly greater than those for dives at the isolated dive hole. Calculated diving air volumes at sea were variable, increased with maximum depth of dive to a depth of 250 m, and decreased for deeper dives. It is hypothesized that lower air volumes for the deepest dives are the result of exhalation of air underwater. Mean maximal air volumes for deep dives at sea were approximately 83% greater than those during shallow (emperor penguins, (b) stroke rate at sea is greater than at the isolated dive hole and, therefore, a reduction in muscle stroke rate does not extend the duration of aerobic metabolism during dives at sea, and (c) a larger diving air volume facilitates performance of deep dives by increasing the total body O(2) store to 68 ml O(2) kg(-1). Although increased O(2) storage and cardiovascular adjustments presumably optimize aerobic metabolism during dives, enhanced anaerobic capacity and hypoxemic tolerance are also essential for longer dives. This was exemplified by a 27.6 min dive, after which the bird required 6 min before it stood up from a prone position, another 20 min before it began to walk, and 8.4 h before it dived again.

  8. Size dependence of volume and surface nucleation rates for homogeneous freezing of supercooled water droplets

    Directory of Open Access Journals (Sweden)

    T. Kuhn

    2011-03-01

    Full Text Available The relative roles of volume and surface nucleation were investigated for the homogeneous freezing of pure water droplets. Experiments were carried out in a cryogenic laminar aerosol flow tube using supercooled water aerosols with maximum volume densities at radii between 1 and 3 μm. Temperature- and size-dependent values of volume- and surface-based homogeneous nucleation rates between 234.8 and 236.2 K were derived using a microphysical model and aerosol phase compositions and size distributions determined from infrared extinction measurements in the flow tube. The results show that the contribution from nucleation at the droplet surface increases with decreasing droplet radius and dominates over nucleation in the bulk droplet volume for droplets with radii smaller than approximately 5 μm. This is interpreted in terms of a lowered free energy of ice germ formation in the surface-based process. The implications of surface nucleation for the parameterization of homogeneous ice nucleation in numerical models are considered.

  9. Finite Volume Numerical Methods for Aeroheating Rate Calculations from Infrared Thermographic Data

    Science.gov (United States)

    Daryabeigi, Kamran; Berry, Scott A.; Horvath, Thomas J.; Nowak, Robert J.

    2006-01-01

    The use of multi-dimensional finite volume heat conduction techniques for calculating aeroheating rates from measured global surface temperatures on hypersonic wind tunnel models was investigated. Both direct and inverse finite volume techniques were investigated and compared with the standard one-dimensional semi-infinite technique. Global transient surface temperatures were measured using an infrared thermographic technique on a 0.333-scale model of the Hyper-X forebody in the NASA Langley Research Center 20-Inch Mach 6 Air tunnel. In these tests the effectiveness of vortices generated via gas injection for initiating hypersonic transition on the Hyper-X forebody was investigated. An array of streamwise-orientated heating striations was generated and visualized downstream of the gas injection sites. In regions without significant spatial temperature gradients, one-dimensional techniques provided accurate aeroheating rates. In regions with sharp temperature gradients caused by striation patterns multi-dimensional heat transfer techniques were necessary to obtain more accurate heating rates. The use of the one-dimensional technique resulted in differences of 20% in the calculated heating rates compared to 2-D analysis because it did not account for lateral heat conduction in the model.

  10. Midlife exercise blood pressure, heart rate, and fitness relate to brain volume 2 decades later.

    Science.gov (United States)

    Spartano, Nicole L; Himali, Jayandra J; Beiser, Alexa S; Lewis, Gregory D; DeCarli, Charles; Vasan, Ramachandran S; Seshadri, Sudha

    2016-04-05

    To determine whether poor cardiovascular (CV) fitness and exaggerated exercise blood pressure (BP) and heart rate (HR) were associated with worse brain morphology in later life. Framingham Offspring participants (n = 1,094, 53.9% female) free from dementia and CV disease (CVD) underwent an exercise treadmill test at a mean age of 40 ± 9 years. A second treadmill test and MRI scans of the brain were administered 2 decades later at mean age of 58 ± 8 years. Poor CV fitness and greater diastolic BP and HR response to exercise at baseline were associated with a smaller total cerebral brain volume (TCBV) almost 2 decades later (all p exercise systolic BP was also associated with smaller TCBV (p exercise BP and HR responses in middle-aged adults are associated with smaller brain volume nearly 2 decades later. Promotion of midlife CV fitness may be an important step towards ensuring healthy brain aging. © 2016 American Academy of Neurology.

  11. Volume growth rate of acoustic neuromas on MRI post-stereotactic radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    To, S.Y.; Lufkin, R.B.; Rand, R.; Robinson, J.D.; Hanafee, W.

    1990-01-01

    Of the approximately 160 acoustic neuroma patients treated with stereotactic radiosurgery in the world up to 1987, 8 patients at UCLA Medical Center have had two or more magnetic resonance scans at least one year apart available for study (all 8 patients were treated with stereotactic radiosurgery for acoustic neuromas by the Department of Neurosurgery at the Karolinska Hospital, Stockholm, Sweden). The followup time after radiosurgery ranged from 4 to 8 years. The volume doubling rate post-stereotactic radiosurgery was calculated to be slow (763 to 888 days) in two patients, virtually arrested in five patients (doubling times larger than 2500 days) and negative (-563 days) in one patient indicating a shrinking tumor. Due to the limited sample size no radiological finding or clinical data correlated with the volume doubling times. A control patient that had no treatment for her tumor had a doubling time of 217 days for comparison.

  12. GREENROOF RUNOFF WATER QUALITY

    Science.gov (United States)

    Runoff samples were collected from 5 experimental green roof test plots on small buildings at the Center for Green Roof Research at Rock Springs, PA during the period from January 2005 through May 2006. Samples were either analyzed in-house for pH, Electrical Conductivity (EC), T...

  13. The power of runoff

    Science.gov (United States)

    Wörman, A.; Lindström, G.; Riml, J.

    2017-05-01

    Although the potential energy of surface water is a small part of Earth's energy budget, this highly variable physical property is a key component in the terrestrial hydrologic cycle empowering geomorphological and hydrological processes throughout the hydrosphere. By downscaling of the daily hydrometeorological data acquired in Sweden over the last half-century this study quantifies the spatial and temporal distribution of the dominating energy components in terrestrial hydrology, including the frictional resistance in surface water and groundwater as well as hydropower. The energy consumed in groundwater circulation was found to be 34.6 TWh/y or a heat production of approximately 13% of the geothermal heat flux. Significant climate driven, periodic fluctuations in the power of runoff, stream flows and groundwater circulation were revealed that have not previously been documented. We found that the runoff power ranged from 173 to 260 TWh/y even when averaged over the entire surface of Sweden in a five-year moving window. We separated short-term fluctuations in runoff due to precipitation filtered through the watershed from longer-term seasonal and climate driven modes. Strong climate driven correlations between the power of runoff and climate indices, wind and solar intensity were found over periods of 3.6 and 8 years. The high covariance that we found between the potential energy of surface water and wind energy implies significant challenges for the combination of these renewable energy sources.

  14. Controllability of runoff and soil loss from small plots treated by vinasse-produced biochar.

    Science.gov (United States)

    Sadeghi, Seyed Hamidreza; Hazbavi, Zeinab; Harchegani, Mahboobeh Kiani

    2016-01-15

    Many different amendments, stabilizers, and conditioners are usually applied for soil and water conservation. Biochar is a carbon-enriched substance produced by thermal decomposition of organic material in the absence of oxygen with the goal to be used as a soil amendment. Biochar can be produced from a wide range of biomass sources including straw, wood, manure, and other organic wastes. Biochar has been demonstrated to restore soil fertility and crop production under many conditions, but less is known about the effects of its application on soil erosion and runoff control. Therefore, a rainfall simulation study, as a pioneer research, was conducted to evaluate the performance of the application of vinasse-produced biochar on the soil erosion control of a sandy clay loam soil packed in small-sized runoff 0.25-m(2) plots with 3 replicates. The treatments were (i) no biochar (control), (ii) biochar (8 tha(-1)) application at 24h before the rainfall simulation and (iii) biochar (8 tha(-1)) application at 48 h before the rainfall simulation. Rainfall was applied at 50 mm h(-1) for 15 min. The mean change of effectiveness in time to runoff could be found in biochar application at 24 and 48 h before simulation treatment with rate of +55.10% and +71.73%, respectively. In addition, the mean runoff volume 24 and 48 h before simulation treatments decreased by 98.46% and 46.39%, respectively. The least soil loss (1.12 ± 0.57 g) and sediment concentration (1.44 ± 0.48 gl(-1)) occurred in the biochar-amended soil treated 48 h before the rainfall simulation. In conclusion, the application of vinasse-produced biochar could effectively control runoff and soil loss. This study provided a new insight into the effects of biochar on runoff, soil loss, and sediment control due to water erosion in sandy clay loam soils.

  15. Effects of impervious pavements on reducing runoff in an arid urban catchment

    Science.gov (United States)

    Epshtein, O.; Turnbull, L.; Earl, S.

    2011-12-01

    The progressive urbanization of US arid and semi-arid southwestern territories has transformed undeveloped aridlands into dynamic, radially expanding metropolitan centers. As these mature, infill development further reduces undeveloped area, inversely coupling surface imperviousness to infiltration rates, with a subsequent increase in runoff generation. Intensified runoff carries undesirable environmental consequences, magnifying urban flooding events and concentrations, transport, and propagation of contaminants. Pervious pavements offer one potential solution for decreased urban infiltration. At present, the application potential of pervious pavements as an effective urban infiltration management tool exceeds its exploitation. While entirely eliminating urban Total Impervious Area is not a feasible solution, pervious pavements significantly reduce Effective Impervious Area at costs competitive with traditional Best Management Practices. Previous research into pervious pavements has largely consisted of laboratory prototypes or small-scale field experiments, with a heavy bias towards parking lots. In this study we explore the effectiveness of pervious pavements in increasing infiltration, thus decreasing runoff volume during summer monsoonal and winter convective rainfall events in an 8 ha residential catchment in Scottsdale, Arizona. Analysis focuses on the interaction dynamics between surface area of pervious pavement application and its net effect on runoff response at the catchment level. Hydrological response was modeled using MAHLERAN (Model for Assessing Hillslope-Landscape Erosion, Runoff and Nutrients), a spatially explicit, event-based model, parameterized at a spatial resolution of 0.25 sq m. Data for model parameterization was obtained from analysis of aerial imagery and field-based monitoring of surface properties. The model was tested against measurements of flow at the catchment outlet for multiple rainfall events with total event rainfall ranging

  16. Sustainable Use of Pesticide Applications in Citrus: A Support Tool for Volume Rate Adjustment

    Directory of Open Access Journals (Sweden)

    Cruz Garcerá

    2017-06-01

    Full Text Available Rational application of pesticides by properly adjusting the amount of product to the actual needs and specific conditions for application is a key factor for sustainable plant protection. However, current plant protection product (PPP labels registered for citrus in EU are usually expressed as concentration (%; rate/hl and/or as the maximum dose of product per unit of ground surface, without taking into account those conditions. In this work, the fundamentals of a support tool, called CitrusVol, developed to recommend mix volume rates in PPP applications in citrus orchards using airblast sprayers, are presented. This tool takes into consideration crop characteristics (geometry, leaf area density, pests, and product and application efficiency, and it is based on scientific data obtained previously regarding the minimum deposit required to achieve maximum efficacy, efficiency of airblast sprayers in citrus orchards, and characterization of the crop. The use of this tool in several commercial orchards allowed a reduction of the volume rate and the PPPs used in comparison with the commonly used by farmers of between 11% and 74%, with an average of 31%, without affecting the efficacy. CitrusVol is freely available on a website and in an app for smartphones.

  17. Curve number estimation from Brazilian Cerrado rainfall and runoff data

    Science.gov (United States)

    The Curve Number (CN) method has been widely used to estimate runoff from rainfall events in Brazil, however, CN values for use in the Brazilian savanna (Cerrado) are poorly documented. In this study we used experimental plots to measure natural rainfall-driven rates of runoff under undisturbed Cerr...

  18. Evaluation of the impact of viscosity, injection volume, and injection flow rate on subcutaneous injection tolerance

    Directory of Open Access Journals (Sweden)

    Berteau C

    2015-11-01

    Full Text Available Cecile Berteau,1 Orchidée Filipe-Santos,1 Tao Wang,2 Humberto E Rojas,2 Corinne Granger,1 Florence Schwarzenbach1 1Becton-Dickinson Medical Pharmaceutical Systems, Le Pont de Claix, France; 2Eli Lilly and Company, Indianapolis, IN, USA Aim: The primary objective of this study was to evaluate the impact of fluid injection viscosity in combination with different injection volumes and flow rates on subcutaneous (SC injection pain tolerance. Methods: The study was a single-center, comparative, randomized, crossover, Phase I study in 24 healthy adults. Each participant received six injections in the abdomen area of either a 2 or 3 mL placebo solution, with three different fluid viscosities (1, 8–10, and 15–20 cP combined with two different injection flow rates (0.02 and 0.3 mL/s. All injections were performed with 50 mL syringes and 27G, 6 mm needles. Perceived injection pain was assessed using a 100 mm visual analog scale (VAS (0 mm/no pain, 100 mm/extreme pain. The location and depth of the injected fluid was assessed through 2D ultrasound echography images. Results: Viscosity levels had significant impact on perceived injection pain (P=0.0003. Specifically, less pain was associated with high viscosity (VAS =12.6 mm than medium (VAS =16.6 mm or low (VAS =22.1 mm viscosities, with a significant difference between high and low viscosities (P=0.0002. Target injection volume of 2 or 3 mL was demonstrated to have no significant impact on perceived injection pain (P=0.89. Slow (0.02 mL/s or fast (0.30 mL/s injection rates also showed no significant impact on perceived pain during SC injection (P=0.79. In 92% of injections, the injected fluid was located exclusively in SC tissue whereas the remaining injected fluids were found located in SC and/or intradermal layers. Conclusion: The results of this study suggest that solutions of up to 3 mL and up to 15–20 cP injected into the abdomen within 10 seconds are well tolerated without pain. High

  19. 'Orbital volume restoration rate after orbital fracture'; a CT-based orbital volume measurement for evaluation of orbital wall reconstructive effect.

    Science.gov (United States)

    Wi, J M; Sung, K H; Chi, M

    2017-01-13

    PurposeTo evaluate the effect of orbital reconstruction and factors related to the effect of orbital reconstruction by assessing of orbital volume using orbital computed tomography (CT) in cases of orbital wall fracture.MethodsIn this retrospective study, 68 patients with isolated blowout fractures were evaluated. The volumes of orbits and herniated orbital tissues were determined by CT scans using a three-dimensional reconstruction technique (the Eclipse Treatment Planning System). Orbital CT was performed preoperatively, immediately after surgery, and at final follow ups (minimum of 6 months). We evaluated the reconstructive effect of surgery making a new formula, 'orbital volume reconstruction rate' from orbital volume differences between fractured and contralateral orbits before surgery, immediately after surgery, and at final follow up.ResultsMean volume of fractured orbits before surgery was 23.01±2.60 cm(3) and that of contralateral orbits was 21.31±2.50 cm(3) (P=0.005). Mean volume of the fractured orbits immediately after surgery was 21.29±2.42 cm(3), and that of the contralateral orbits was 21.33±2.52 cm(3) (P=0.921). Mean volume of fractured orbits at final follow up was 21.50±2.44 cm(3), and that of contralateral orbits was 21.32±2.50 cm(3) (P=0.668). The mean orbital volume reconstruction rate was 100.47% immediately after surgery and 99.17% at final follow up. No significant difference in orbital volume reconstruction rate was observed with respect to fracture site or orbital implant type. Patients that underwent operation within 14 days of trauma had a better reconstruction rate at final follow up than patients who underwent operation over 14 days after trauma (P=0.039).ConclusionComputer-based measurements of orbital fracture volume can be used to evaluate the reconstructive effect of orbital implants and provide useful quantitative information. Significant reduction of orbital volume is observed immediately after orbital wall

  20. Modeling Atmospheric Emissions and Calculating Mortality Rates Associated with High Volume Hydraulic Fracturing Transportation

    Science.gov (United States)

    Mathews, Alyssa

    Emissions from the combustion of fossil fuels are a growing pollution concern throughout the global community, as they have been linked to numerous health issues. The freight transportation sector is a large source of these emissions and is expected to continue growing as globalization persists. Within the US, the expanding development of the natural gas industry is helping to support many industries and leading to increased transportation. The process of High Volume Hydraulic Fracturing (HVHF) is one of the newer advanced extraction techniques that is increasing natural gas and oil reserves dramatically within the US, however the technique is very resource intensive. HVHF requires large volumes of water and sand per well, which is primarily transported by trucks in rural areas. Trucks are also used to transport waste away from HVHF well sites. This study focused on the emissions generated from the transportation of HVHF materials to remote well sites, dispersion, and subsequent health impacts. The Geospatial Intermodal Freight Transport (GIFT) model was used in this analysis within ArcGIS to identify roadways with high volume traffic and emissions. High traffic road segments were used as emissions sources to determine the atmospheric dispersion of particulate matter using AERMOD, an EPA model that calculates geographic dispersion and concentrations of pollutants. Output from AERMOD was overlaid with census data to determine which communities may be impacted by increased emissions from HVHF transport. The anticipated number of mortalities within the impacted communities was calculated, and mortality rates from these additional emissions were computed to be 1 in 10 million people for a simulated truck fleet meeting stricter 2007 emission standards, representing a best case scenario. Mortality rates due to increased truck emissions from average, in-use vehicles, which represent a mixed age truck fleet, are expected to be higher (1 death per 341,000 people annually).

  1. Influence of solution volume on the dissolution rate of silicon dioxide in hydrofluoric acid.

    Science.gov (United States)

    Shvartsev, Boris; Gelman, Danny; Komissarov, Ilia; Epshtein, Alon; Starosvetsky, David; Ein-Eli, Yair

    2015-02-01

    Experimental data and modeling of the dissolution of various Si/SiO2 thermal coatings in different volumes of hydrofluoric acid (HF) are reported. The rates of SiO2 -film dissolution, measured by means of various electrochemical techniques, and alteration in HF activity depend on the thickness of the film coating. Despite the small volumes (0.6-1.2 mL) of the HF solution, an effect of SiO2 -coating thickness on the dissolution rate was detected. To explain alterations detected in HF activity after SiO2 dissolution, spectroscopic analyses (NMR and FTIR) of the chemical composition of the solutions were conducted. This is associated with a modification in the chemical composition of the HF solution, which results in either the formation of an oxidized species in solution or the precipitation of dissolution products. HF2 (-) accumulation in the HF solution, owing to SiO2 dissolution was identified as the source of the chemical alteration.

  2. Heavy metal contamination in surface runoff sediments of the urban area of Vilnius, Lithuania

    Directory of Open Access Journals (Sweden)

    Gytautas Ignatavičius

    2017-02-01

    Full Text Available Surface runoff from urbanized territories carries a wide range of pollutants. Sediments in untreated runoff from direct discharge stormwater systems significantly contribute to urban waterway pollution. In this study, heavy metal (Pb, Zn, Cu, Cr, Ba, As and Fe contamination in surface runoff sediments of the urban area of the city of Vilnius was investigated. The surface runoff sediment samples were collected from seven dischargers with the highest volume rate of water flow and concentrations of suspended solids. The geospatial analysis of the distribution of heavy metals shows that there are several active pollution sources supplying the dischargers with contaminated sediments. Most of these areas are located in the central part of the city and in old town with intense traffic. Principal components analysis and t-test results clearly depicted the significantly different chemical compositions of winter and autumn surface sediment samples. The sampling approach and assessment of results provide a useful tool to examine the contamination that is generated in urban areas, distinguish pollution sources and give a better understanding of the importance of permeable surfaces and green areas.

  3. [Sediment content and nitrogen and phosphorus load characteristics of surface runoff on bamboo forest slopes: a simulation test].

    Science.gov (United States)

    Zhang, Li-Ping; Fu, Xing-Tao; Wu, Xi-Yuan

    2012-04-01

    To understand the load characteristics and related mechanisms of surface runoff on two management types of bamboo forests (bamboo timber forest and bamboo shoot forest) slopes (gradient 20 degrees) in Zhejiang Province, this study measured the runoff volume, sediment yield, its total nitrogen (TN) and total phosphorus (TP) concentrations of runoff under six artificial simulated rainfall intensity (31.8-114.0 mm x h(-1)). In bamboo timber forest, the total runoff volume and runoff coefficient were higher, but the runoff sediment content and the total sediment yield were far lower, as compared with those in bamboo shoot forest. The runoff TN concentration in bamboo shoot forest decreased with increasing rainfall intensity. Under the same rainfall intensity, the runoff TN concentration in bamboo shoot forest was 5-6 times of that in bamboo timber forest. The runoff TP concentration was higher in bamboo timber forest than in bamboo shoot forest, but the TP loss from the sediment runoff in bamboo shoot forest was hundreds times of that in bamboo timber forest. During the processes of the TN and TP losses from the sediment runoff, the TN and TP concentrations at the prophase of runoff yield played a cardinal role, while the runoff volume and sediment yield at the anaphase played a decisive role.

  4. Aquaporins in ovine amnion: responses to altered amniotic fluid volumes and intramembranous absorption rates.

    Science.gov (United States)

    Cheung, Cecilia Y; Anderson, Debra F; Brace, Robert A

    2016-07-01

    Aquaporins (AQPs) are transmembrane channel proteins that facilitate rapid water movement across cell membranes. In amniotic membrane, the AQP-facilitated transfer of water across amnion cells has been proposed as a mechanism for amniotic fluid volume (AFV) regulation. To investigate whether AQPs modulate AFV by altering intramembranous absorption (IMA) rate, we tested the hypothesis that AQP gene expression in the amnion is positively correlated with IMA rate during experimental conditions when IMA rate and AFV are modified over a wide range. The relative abundances of AQP1, AQP3, AQP8, AQP9, and AQP11 mRNA and protein were determined in the amnion of 16 late-gestation ovine fetuses subjected to 2 days of control conditions, urine drainage, urine replacement, or intraamniotic fluid infusion. AQP mRNA levels were determined by RT-qPCR and proteins by western immunoblot. Under control conditions, mRNA levels among the five AQPs differed more than 20-fold. During experimental treatments, mean IMA rate in the experimental groups ranged from 100 ± 120 mL/day to 1370 ± 270 mL/day. The mRNA levels of the five AQPs did not change from control and were not correlated with IMA rates. The protein levels of AQP1 were positively correlated with IMA rates (r(2) = 38%, P = 0.01) while the remaining four AQPs were not. These findings demonstrate that five AQPs are differentially expressed in ovine amnion. Our study supports the hypothesis that AQP1 may play a positive role in regulating the rate of fluid transfer across the amnion, thereby participating in the dynamic regulation of AFV.

  5. Evaluation of the impact of viscosity, injection volume, and injection flow rate on subcutaneous injection tolerance.

    Science.gov (United States)

    Berteau, Cecile; Filipe-Santos, Orchidée; Wang, Tao; Rojas, Humberto E; Granger, Corinne; Schwarzenbach, Florence

    2015-01-01

    The primary objective of this study was to evaluate the impact of fluid injection viscosity in combination with different injection volumes and flow rates on subcutaneous (SC) injection pain tolerance. The study was a single-center, comparative, randomized, crossover, Phase I study in 24 healthy adults. Each participant received six injections in the abdomen area of either a 2 or 3 mL placebo solution, with three different fluid viscosities (1, 8-10, and 15-20 cP) combined with two different injection flow rates (0.02 and 0.3 mL/s). All injections were performed with 50 mL syringes and 27G, 6 mm needles. Perceived injection pain was assessed using a 100 mm visual analog scale (VAS) (0 mm/no pain, 100 mm/extreme pain). The location and depth of the injected fluid was assessed through 2D ultrasound echography images. Viscosity levels had significant impact on perceived injection pain (P=0.0003). Specifically, less pain was associated with high viscosity (VAS =12.6 mm) than medium (VAS =16.6 mm) or low (VAS =22.1 mm) viscosities, with a significant difference between high and low viscosities (P=0.0002). Target injection volume of 2 or 3 mL was demonstrated to have no significant impact on perceived injection pain (P=0.89). Slow (0.02 mL/s) or fast (0.30 mL/s) injection rates also showed no significant impact on perceived pain during SC injection (P=0.79). In 92% of injections, the injected fluid was located exclusively in SC tissue whereas the remaining injected fluids were found located in SC and/or intradermal layers. The results of this study suggest that solutions of up to 3 mL and up to 15-20 cP injected into the abdomen within 10 seconds are well tolerated without pain. High viscosity injections were shown to be the most tolerated, whereas injection volume and flow rates did not impact perceived pain.

  6. Limited Influence of Urban Stormwater Runoff on Salt Marsh Platform and Marsh Creek Oxygen Dynamics in Coastal Georgia.

    Science.gov (United States)

    Savidge, William B; Brink, Jonathan; Blanton, Jackson O

    2016-12-01

    Oxygen concentrations and oxygen utilization rates were monitored continuously for 23 months on marsh platforms and in small tidal creeks at two sites in coastal Georgia, USA, that receive urban stormwater runoff via an extensive network of drainage canals. These data were compared to nearby control sites that receive no significant surface runoff. Overall, rainfall and runoff per se were not associated with differences in the oxygen dynamics among the different locations. Because of the large tidal range and long tidal excursions in coastal Georgia, localized inputs of stormwater runoff are rapidly mixed with large volumes of ambient water. Oxygen concentrations in tidal creeks and on flooded marsh platforms were driven primarily by balances of respiration and photosynthesis in the surrounding regional network of marshes and open estuarine waters. Local respiration, while measurable, was of relatively minor importance in determining oxygen concentrations in tidal floodwaters. Water residence time on the marshes could explain differences in oxygen concentration between the runoff-influenced and control sites.

  7. Limited Influence of Urban Stormwater Runoff on Salt Marsh Platform and Marsh Creek Oxygen Dynamics in Coastal Georgia

    Science.gov (United States)

    Savidge, William B.; Brink, Jonathan; Blanton, Jackson O.

    2016-12-01

    Oxygen concentrations and oxygen utilization rates were monitored continuously for 23 months on marsh platforms and in small tidal creeks at two sites in coastal Georgia, USA, that receive urban stormwater runoff via an extensive network of drainage canals. These data were compared to nearby control sites that receive no significant surface runoff. Overall, rainfall and runoff per se were not associated with differences in the oxygen dynamics among the different locations. Because of the large tidal range and long tidal excursions in coastal Georgia, localized inputs of stormwater runoff are rapidly mixed with large volumes of ambient water. Oxygen concentrations in tidal creeks and on flooded marsh platforms were driven primarily by balances of respiration and photosynthesis in the surrounding regional network of marshes and open estuarine waters. Local respiration, while measurable, was of relatively minor importance in determining oxygen concentrations in tidal floodwaters. Water residence time on the marshes could explain differences in oxygen concentration between the runoff-influenced and control sites.

  8. Assessment of runoff response to landscape changes in the San Pedro subbasin (Nayarit, Mexico) using remote sensing data and GIS.

    Science.gov (United States)

    Hernández-Guzmán, Rafael; Ruiz-Luna, Arturo; Berlanga-Robles, César Alejandro

    2008-10-01

    Results on runoff estimates as a response to land-use and land-cover changes are presented. We used remote sensing and GIS techniques with rainfall time-series data, spatial ancillary information, and the curve-number method (NRCS-CN) to assess the runoff response in the San Pedro subbasin. Thematic maps with eight land-cover classes derived from satellite imagery classification (1973, 1990, and 2000) and hydrologic soil-group maps were used as the input for the runoff calculation. About 20% to 25% of the subbasin landscape has changed since 1973, mainly as consequence of the growth of agriculture. Forest is the main cover, although further analyses indicate that forest is degrading from good to poor conditions when evaluated as a function of the spectral response. Soils with low infiltration rates, classified as the hydrological soil-group "C", were dominant in the area (52%). The overlaying of all the hydrological soil groups with the land-use map produced a total of 43 hydro-group and land-use categories for which runoff was calculated using the curve-number method. Estimates of total runoff volumes (26 x 10(6) m3) were similar for the three dates analyzed in spite of landscape changes, but there were temporal variations among the hydro-group and land-use categories as a consequence. Changes are causing the rise of covers with high runoff potential and the increase of runoff depth is expected, but it can be reversed by different management of subbasin hydro-groups and land-use units.

  9. Estimating the rates of mass change, ice volume change and snow volume change in Greenland from ICESat and GRACE data

    NARCIS (Netherlands)

    Slobbe, D.C.; Ditmar, P.G.; Lindenbergh, R.C.

    2008-01-01

    The focus of this paper is on the quantification of ongoing mass and volume changes over the Greenland ice sheet. For that purpose, we used elevation changes derived from the Ice, Cloud, and land Elevation Satellite (ICESat) laser altimetry mission and monthly variations of the Earth’s gravity field

  10. Urban Runoff and Nutrients Loading Control from Sustainable BMPs (Invited)

    Science.gov (United States)

    Xiao, Q.

    2009-12-01

    Climate change alters hydrodynamic and nutrient dynamic in both large and small geographic scales. These changes in our freshwater system directly affect drinking water, food production, business, and all aspects of our life. Along with climate change is increasing urbanization which alters natural landscape. Urban runoff has been identified as one of many potential drivers of the decline of pelagic fishes in san Francisco Bay-Delta region. Recent found of Pyrethroids in American River has increased scientists, public, and policy makers’ concern about our fresh water system. Increasing our understanding about the fundamental hydrodynamic, nutrient dynamics, and the transport mechanics of runoff and nutrients are important for future water resource and ecosystem management. Urbanization has resulted in significantly increasing the amount of impervious land cover. Most impervious land covers are hydrophobic that alters surface runoff because of the effects on surface retention storage, rainfall interception, and infiltration. Large volumes of excess storm runoff from urbanized areas cause flooding, water pollution, groundwater recharge deficits, destroyed habitat, beach closures, and toxicity to aquatic organisms. Parking lot alone accounts for more than 11% of these impervious surfaces. Contrast to impervious parking lot, turfgrass can accouter for 12% of urban land in California. Irrigated urban landscapes create considerable benefits to our daily living. However, the use of fertilizers and pesticides has caused environmental problems. Preventing fertilizers and pesticides from entering storm drains is an important goal for both landscape and storm runoff managers. Studies of urban runoff have found that the most fertilizers and pesticides are from dry weather runoff which conveys pollutants to sidewalks, streets, and storm drains. Controlling surface runoff is critical to preventing these pollutants from entering storm drains and water bodies. Large scale

  11. Effect of blood volume in resting muscle on heart rate upward drift during moderately prolonged exercise.

    Science.gov (United States)

    Kimura, Takehide; Matsuura, Ryouta; Arimitsu, Takuma; Yunoki, Takahiro; Yano, Tokuo

    2010-01-01

    The aim of this study was to determine whether the increase in blood volume in resting muscle during moderately prolonged exercise is related to heart rate (HR) upward drift. Eight healthy men completed both arm-cranking moderately prolonged exercise (APE) and leg-pedaling moderately prolonged exercise (LPE) for 30 min. Exercise intensity was 120 bpm of HR that was determined by ramp incremental exercise. During both APE and LPE, HR significantly increased from 3 to 30 min (from 108±9.3 to 119±12 bpm and from 112±8.9 to 122±11 bpm, respectively). However, there was no significant difference between HR in APE and that in LPE. Oxygen uptake was maintained throughout the two exercises. Skin blood flow, deep temperature, and total Hb (blood volume) in resting muscle continuously increased for 30 min of exercise during both APE and LPE. During both APE and LPE, there was a significant positive correlation between total Hb and deep temperature in all subjects. Moreover, there was a significant positive correlation between HR and total Hb (in seven out of eight subjects) during LPE. However, during APE, there was no positive correlation between HR and total Hb (r=0.391). These findings suggest that an increase of blood pooling in resting muscle could be proposed as one of the mechanisms underlying HR upward drift during moderately prolonged exercise.

  12. STUDY OF RUNOFF IN UNDA WATERSHED

    Directory of Open Access Journals (Sweden)

    SATRIA WAHYU 0ETOM0

    2015-06-01

    Full Text Available When rain falls on the earth, it just does not sit there, it starts moving according to the laws of gravity. A portion of the precipitation seeps into the ground to replenish Earth's groundwater. Most of it flows downhill as runoff. Runoff is extremely important in that not only does it keep rivers and lakes full of water, but it also changes the landscape by the action of erosion. The purpose and objective in this study are to estimate the conditions of land cover of Unda Watershed based on the results of image processing, to estimate the monthly average runoff and discharge in outlet of Unda Watershed from 1999 to 2003. The research location is in Unda Watershed. This watershed lies in Province of Bali which has wide 233.1 km2 (23.310 Ha (Balai Wilayah Sungai Bali-Penida. Administratively this watershed lies in 3 Regencies that are Karangasem, Klungkung and Bangli Regency. Mostly the region lies in the Karangasem Regency. In this research, the monthly rainfall data employed to generate the runoff process. Analyze of contour map from topography map obtained the watershed area, physical parameter of river and concentration time. In this research used monthly average rainf all data (from 1999 to 2003 from Pempatan, Besakih, Singarata, Sidemen, Klungkung, Telengan, Rain Gauge Station and Polygon Thiesen method employed to analyze the datas. Apart of rainfall, there are a number of site specific factors which have a direct bearing on the occurrence and volume of runoff, they are soil type, land cover and slope. The soil types in this research area are all Regosol, this soil mapping does not need to be overlayed in obtaining the land unit. Analyze of land cover was employed by Supervised Classification method. By image processing obtained land cover of Unda Watershed estimated consists of 38.129 km2 of forest area (16.357°Ai, 19.122 km2 of grassland area (8.203%, 100.991 km2 of farmland area (43.325%, 62-412 km2 of area housing (26.775%, 2.625 km2

  13. [A review of green roof performance towards management of roof runoff].

    Science.gov (United States)

    Chen, Xiao-ping; Huang, Pei; Zhou, Zhi-xiang; Gao, Chi

    2015-08-01

    Green roof has a significant influence on reducing runoff volume, delaying runoff-yielding time, reducing the peak flow and improving runoff quality. This paper addressed the related research around the world and concluded from several aspects, i.e., the definition of green roof of different types, the mechanism how green roof manages runoff quantity and quality, the ability how green roof controls roof runoff, and the influence factors of green roof toward runoff quantity and quality. Afterwards, there was a need for more future work on research of green roof toward roof runoff, i.e., vegetation selection of green roof, efficient construction model selection of green roof, the regulating characteristics of green roof on roof runoff, the value assessment of green roof on roof runoff, analysis of source-sink function of green roof on the water pollutants of roof runoff and the research on the mitigation measures of roof runoff pollution. This paper provided a guideline to develop green roofs aiming to regulating roof runoff.

  14. SPATIAL DISTRIBUTION OF THE AVERAGE RUNOFF IN THE IZA AND VIȘEU WATERSHEDS

    Directory of Open Access Journals (Sweden)

    HORVÁTH CS.

    2015-03-01

    Full Text Available The average runoff represents the main parameter with which one can best evaluate an area’s water resources and it is also an important characteristic in al river runoff research. In this paper we choose a GIS methodology for assessing the spatial evolution of the average runoff, using validity curves we identifies three validity areas in which the runoff changes differently with altitude. The tree curves were charted using the average runoff values of 16 hydrometric stations from the area, eight in the Vișeu and eight in the Iza river catchment. Identifying the appropriate areas of the obtained correlations curves (between specific average runoff and catchments mean altitude allowed the assessment of potential runoff at catchment level and on altitudinal intervals. By integrating the curves functions in to GIS we created an average runoff map for the area; from which one can easily extract runoff data using GIS spatial analyst functions. The study shows that from the three areas the highest runoff corresponds with the third zone but because it’s small area the water volume is also minor. It is also shown that with the use of the created runoff map we can compute relatively quickly correct runoff values for areas without hydrologic control.

  15. Mandated recycling rates: Impacts on energy consumption and municipal waste volume

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.L. [Argonne National Lab., IL (United States); Stodolsky, F. [Argonne National Lab., Washington, DC (United States)

    1994-03-01

    In 1992, Congress sought to rewrite its comprehensive solid waste legislation the Resource Conservation and Recovery Act (RCRA). Commodity-specific recycling rates were proposed for consumer-goods packaging, materials and newsprint. In this paper, we compare the impacts on energy, materials use, and landfill volume of recycling at those rates to the impacts associated with alternative methods of disposition to determine, the optimal method for each material. Alternative paths for material disposition include reuse, recycling to the same product, recycling to a lower-valued product, combustion for energy recovery, incineration without energy recovery, and landfilling. The recovery rates considered during RCRA reauthorization are summarized. Combustion was specifically excluded by Congress to meet recovery goals. This exclusion is probably based on the idea that combustion is a form of disposal and therefore wastes resources and has negative environmental effects. Our paper does not make that assumption. A report by Gaines and Stodolsky, from which this paper is derived, offers a more complete discussion of energy and S impacts.

  16. The Effect of the Volume Flow rate on the Efficiency of a Solar Collector

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    rates. Theoretically, a simplified model of the solar collector panel is built by means of the CFD (Computational Fluid Dynamics) code Fluent, where the geometry of the collector panel except the casing is fully modeled. Both lateral and longitudinal heat conduction in the absorber fins, the heat...... transfer from the absorber to the solar collector fluid and the heat loss from the absorber are considered. Flow and temperature distribution in the collector panel are investigated with buoyancy effect. Measurements are carried out with the solar collector panel. Collector efficiencies are measured......The flow distribution inside a collector panel with an area of 12.5 m² and with 16 parallel connected horizontal fins and the effect of the flow nonuniformity on the risk of boiling and on the collector efficiency have been theoretically and experimentally investigated for different volume flow...

  17. Climate control on silicate weathering and physical erosion rates in young orogenic belts: Case study along a runoff gradient in Pacific and Amazonian Andean basins based on SNO-HYBAM Monitoring Program data

    Science.gov (United States)

    Moquet, Jean-Sébastien; Guyot, Jean-Loup; Viers, Jérôme; Crave, Alain; Morera, Sergio; Rau, Pedro; Armijos, Elisa; Lagane, Christelle; Sven Lavado Casimiro, Waldo; Pombosa, Rodrigo; Fraizy, Pascal; Santini, William; Timouk, Franck; Vauchel, Philippe; Martinez, Jean-Michel

    2017-04-01

    At the global scale and on geological time scales, mechanical erosion and chemical weathering budgets are linked. Together, these processes contribute to the formation and the degradation of the Earth's critical zone and to the biogeochemical cycles of elements. In young orogenic belts, climate and tectonic subsidence control together the rate of these matter balance budget and their relationships. The climate gradient observed along the Andean basin in both the Pacific and the Atlantic slopes offers the opportunity to explore the role of the climate variability on the erosion and weathering budgets and on their reciprocal relationships. Based on the SNO-HYBAM Monitoring Program database (Geodynamical, hydrological and Biogeochemical control of erosion/weathering and material transport in the Amazon, Orinoco and Congo basins), we explore the relationship between climate, the lithology, silicate weathering rates and physical erosion rates along a runoff gradient in Andean basins of the Amazon River (13 gauging stations) and Pacific drainage rivers (5 gauging stations). No homogenous relationship between erosion rates (E) and chemical weathering rate (W) is observed over the monitored basins. Only the volcanic basins respond to a global relationship defined in the literature while the other basins budget may depend on anthropogenic interferences on erosion/sedimentation budget, a lithology dependence of the W-E relationship parameters or/and on the existence of a threshold in this relationship. The results presented here contribute to better understanding the role of mountains belt formation in the biogeochemical cycles and in particular in the long-term carbon cycle.Your presentation type preference.

  18. A Synopsis of Technical Issues for Monitoring Sediment in Highway and Urban Runoff

    Science.gov (United States)

    Bent, Gardner C.; Gray, John R.; Smith, Kirk P.; Glysson, G. Douglas

    2000-01-01

    Accurate and representative sediment data are critical for assessing the potential effects of highway and urban runoff on receiving waters. The U.S. Environmental Protection Agency identified sediment as the most widespread pollutant in the Nation's rivers and streams, affecting aquatic habitat, drinking water treatment processes, and recreational uses of rivers, lakes, and estuaries. Representative sediment data are also necessary for quantifying and interpreting concentrations, loads, and effects of trace elements and organic constituents associated with highway and urban runoff. Many technical issues associated with the collecting, processing, and analyzing of samples must be addressed to produce valid (useful for intended purposes), current, complete, and technically defensible data for local, regional, and national information needs. All aspects of sediment data-collection programs need to be evaluated, and adequate quality-control data must be collected and documented so that the comparability and representativeness of data obtained for highway- and urban-runoff studies may be assessed. Collection of representative samples for the measurement of sediment in highway and urban runoff involves a number of interrelated issues. Temporal and spatial variability in runoff result from a combination of factors, including volume and intensity of precipitation, rate of snowmelt, and features of the drainage basin such as area, slope, infiltration capacity, channel roughness, and storage characteristics. In small drainage basins such as those found in many highway and urban settings, automatic samplers are often the most suitable method for collecting samples of runoff for a variety of reasons. Indirect sediment-measurement methods are also useful as supplementary and(or) surrogate means for monitoring sediment in runoff. All of these methods have limitations in addition to benefits, which must be identified and quantified to produce representative data. Methods for

  19. Precipitation-runoff modeling system; user's manual

    Science.gov (United States)

    Leavesley, G.H.; Lichty, R.W.; Troutman, B.M.; Saindon, L.G.

    1983-01-01

    The concepts, structure, theoretical development, and data requirements of the precipitation-runoff modeling system (PRMS) are described. The precipitation-runoff modeling system is a modular-design, deterministic, distributed-parameter modeling system developed to evaluate the impacts of various combinations of precipitation, climate, and land use on streamflow, sediment yields, and general basin hydrology. Basin response to normal and extreme rainfall and snowmelt can be simulated to evaluate changes in water balance relationships, flow regimes, flood peaks and volumes, soil-water relationships, sediment yields, and groundwater recharge. Parameter-optimization and sensitivity analysis capabilites are provided to fit selected model parameters and evaluate their individual and joint effects on model output. The modular design provides a flexible framework for continued model system enhancement and hydrologic modeling research and development. (Author 's abstract)

  20. MODELING OF STORM WATER RUNOFF FROM GREEN ROOFS

    Directory of Open Access Journals (Sweden)

    Ewa Burszta-Adamiak

    2014-10-01

    Full Text Available Apart from direct measurements, modelling of runoff from green roofs is valuable source of information about effectiveness of this type of structure from hydrological point of view. Among different type of models, the most frequently used are numerical models. They allow to assess the impact of green roofs on decrease and attenuation of runoff, reduction of peak runoff and value of water retention. This paper presents preliminary results of research on computing the rate of runoff from green roofs using GARDENIA model. The analysis has been carried out for selected rainfall events registered during measuring campaign on pilot-scale green roofs. Obtained results are promising and show good fit between observed and simulated runoff.

  1. Estimating degree day factors from MODIS for snowmelt runoff modeling

    Directory of Open Access Journals (Sweden)

    Z. H. He

    2014-07-01

    Full Text Available Degree-day factors are widely used to estimate snowmelt runoff in operational hydrological models. Usually, they are calibrated on observed runoff, and sometimes on satellite snow cover data. In this paper, we propose a new method for estimating the snowmelt degree-day factor (DDFS directly from MODIS snow covered area (SCA and ground based snow depth data without calibration. Subcatchment snow volume is estimated by combining SCA and snow depths. Snow density is estimated as the ratio of observed precipitation and changes in the snow volume for days with snow accumulation. Finally, DDFS values are estimated as the ratio of changes in the snow water equivalent and degree-day temperatures for days with snow melt. We compare simulations of basin runoff and snow cover patterns using spatially variable DDFS estimated from snow data with those using spatially uniform DDFS calibrated on runoff. The runoff performances using estimated DDFS are slightly improved, and the simulated snow cover patterns are significantly more plausible. The new method may help reduce some of the runoff model parameter uncertainty by reducing the total number of calibration parameters.

  2. Self-heating probe instrument and method for measuring high temperature melting volume change rate of material

    Science.gov (United States)

    Wang, Junwei; Wang, Zhiping; Lu, Yang; Cheng, Bo

    2013-03-01

    The castings defects are affected by the melting volume change rate of material. The change rate has an important effect on running safety of the high temperature thermal storage chamber, too. But the characteristics of existing measuring installations are complex structure, troublesome operation and low precision. In order to measure the melting volume change rate of material accurately and conveniently, a self-designed measuring instrument, self-heating probe instrument, and measuring method are described. Temperature in heating cavity is controlled by PID temperature controller; melting volume change rate υ and molten density are calculated based on the melt volume which is measured by the instrument. Positive and negative υ represent expansion and shrinkage of the sample volume after melting, respectively. Taking eutectic LiF+CaF2 for example, its melting volume change rate and melting density at 1 123 K are -20.6% and 2 651 kg·m-3 measured by this instrument, which is only 0.71% smaller than literature value. Density and melting volume change rate of industry pure aluminum at 973 K and analysis pure NaCl at 1 123 K are detected by the instrument too. The measure results are agreed with report values. Measuring error sources are analyzed and several improving measures are proposed. In theory, the measuring errors of the change rate and molten density which are measured by the self-designed instrument is nearly 1/20-1/50 of that measured by the refitted mandril thermal expansion instrument. The self-designed instrument and method have the advantages of simple structure, being easy to operate, extensive applicability for material, relatively high accuracy, and most importantly, temperature and sample vapor pressure have little effect on the measurement accuracy. The presented instrument and method solve the problems of complicated structure and procedures, and large measuring errors for the samples with high vapor pressure by existing installations.

  3. TRADABLE CREDITS FOR STORM WATER VOLUME: AN ALTERNATIVE APPROACH FOR SUSTAINABLE URBAN WATERSHED MANAGEMENT

    Science.gov (United States)

    The increased storm water runoff rate and volume caused by urbanization, and their detrimental effects on stream habitat and morphology, is well documented. In most cases, current storm water management policies are focused on attenuating peak flow rates. While these policies may...

  4. Can postoperative process of care utilization or complication rates explain the volume-cost relationship for cancer surgery?

    Science.gov (United States)

    Ho, Vivian; Short, Marah N; Aloia, Thomas A

    2017-08-01

    Past studies identify an association between provider volume and outcomes, but less is known about the volume-cost relationship for cancer surgery. We analyze the volume-cost relationship for 6 cancer operations and explore whether it is influenced by the occurrence of complications and/or utilization of processes of care. Medicare hospital and inpatient claims for the years 2005 through 2009 were analyzed for 6 cancer resections: colectomy, rectal resection, pulmonary lobectomy, pneumonectomy, esophagectomy, and pancreatic resection. Regressions were first estimated to quantify the association of provider volume with costs, excluding measures of complications and processes of care as explanatory variables. Next, these variables were added to the regressions to test whether they weakened any previously observed volume-cost relationship. Higher hospital volume is associated with lower patient costs for esophagectomy but not for other operations. Higher surgeon volume reduces costs for most procedures, but this result weakens when processes of care are added to the regressions. Processes of care that are frequently implemented in response to adverse events are associated with 14% to 34% higher costs. Utilization of these processes is more prevalent among low-volume versus high-volume surgeons. Processes of care implemented when complications occur explain much of the surgeon volume-cost relationship. Given that surgeon volume is readily observed, better outcomes and lower costs may be achieved by referring patients to high-volume surgeons. Increasing patient access to surgeons with lower rates of complications may be the most effective strategy for avoiding costly processes of care, controlling expenditure growth. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. 76 FR 21418 - Fiscal Year 2011 Allocation of Additional Tariff-Rate Quota Volume for Raw Cane Sugar and...

    Science.gov (United States)

    2011-04-15

    ... Sugar and Reallocation of Unused Fiscal Year 2011 Tariff-Rate Quota Volume for Raw Cane Sugar AGENCY... Fiscal Year (FY) 2011 in-quota quantity of the tariff-rate quota (TRQ) for imported raw cane sugar and of... raw cane sugar. DATES: Effective Date: April 15, 2011. ADDRESSES: Inquiries may be mailed or delivered...

  6. 77 FR 25012 - Fiscal Year 2012 Allocation of Additional Tariff-Rate Quota Volume for Raw Cane Sugar and...

    Science.gov (United States)

    2012-04-26

    ... Sugar and Reallocation of Unused Fiscal Year 2012 Tariff-Rate Quota Volume for Raw Cane Sugar AGENCY... Fiscal Year (FY) 2012 in-quota quantity of the tariff-rate quota (TRQ) for imported raw cane sugar and of... raw cane sugar. DATES: Effective Date: April 26, 2012. ADDRESSES: Inquiries may be mailed or delivered...

  7. 75 FR 14479 - Reallocation of Unused Fiscal Year 2010 Tariff-Rate Quota Volume for Raw Cane Sugar

    Science.gov (United States)

    2010-03-25

    ... TRADE REPRESENTATIVE Reallocation of Unused Fiscal Year 2010 Tariff-Rate Quota Volume for Raw Cane Sugar... fiscal year (FY) 2010 in-quota quantity of the tariff-rate quota (TRQ) for imported raw cane sugar. DATES... maintains TRQs for imports of raw cane and refined sugar. Section 404(d)(3) of the Uruguay Round Agreements...

  8. Effects of gravel on infiltration, runoff, and sediment yield in landslide deposit slope in Wenchuan earthquake area, China.

    Science.gov (United States)

    Li, Tianyang; He, Binghui; Chen, Zhanpeng; Zhang, Yi; Liang, Chuan; Wang, Renxin

    2016-06-01

    Amounts of landslide deposits were triggered by the Wenchuan earthquake with magnitude 8.0 on May 12, 2008. The landslide deposits were composed of soil and rock fragments, which play important roles in hydrological and erosion processes in the steep slope of landslide deposits. The mixtures of soil and gravels are common in the top layers of landslide deposits, and its processes are obviously different with the soil without gravels. Based on the data of field investigation, a series of simulated scouring flow experiments with four proportion of gravel (0, 25, 33.3, and 50 %) and three scouring flow rates (4, 8, 12 L/min) under two steep slopes (67.5, 72.7 %) were conducted sequentially to know the effects of proportion of gravel on infiltration capacity, runoff generation, and sediment production in the steep slope of landslide deposit. Results indicated that gravel had promoted or reduced effects on infiltration capacity which could affect further the cumulative runoff volume and cumulative sediment mass increase or decrease. The cumulative infiltration volume in 25 % proportion of gravel was less than those in 0, 33.3, and 50 % proportion of gravel. The cumulative runoff volume was in an order of 25 > 0 > 33.3 > 50 % while cumulative sediment mass ranked as 25 > 33.3 > 0 > 50 % with different proportions of gravel. A significant power relationship was found between scouring time and cumulative runoff volume as well as cumulative sediment mass. The relationship between average soil and water loss rate and proportion of gravel was able to express by quadratic function, with a high degree of reliability. The results have important implications for soil and water conservation and modeling in landslide deposit but also provide useful information for the similar conditions.

  9. [Local sensitivity and its stationarity analysis for urban rainfall runoff modelling].

    Science.gov (United States)

    Lin, Jie; Huang, Jin-Liang; Du, Peng-Fei; Tu, Zhen-Shun; Li, Qing-Sheng

    2010-09-01

    Sensitivity analysis of urban-runoff simulation is a crucial procedure for parameter identification and uncertainty analysis. Local sensitivity analysis using Morris screening method was carried out for urban rainfall runoff modelling based on Storm Water Management Model (SWMM). The results showed that Area, % Imperv and Dstore-Imperv are the most sensitive parameters for both total runoff volume and peak flow. Concerning total runoff volume, the sensitive indices of Area, % Imperv and Dstore-Imperv were 0.46-1.0, 0.61-1.0, -0.050(-) - 5.9, respectively; while with respect to peak runoff, they were 0.48-0.89, 0.59-0.83, 0(-) -9.6, respectively. In comparison, the most sensitive indices (Morris) for all parameters with regard to total runoff volume and peak flow appeared in the rainfall event with least rainfall; and less sensitive indices happened in the rainfall events with heavier rainfall. Furthermore, there is considerable variability in sensitive indices for each rainfall event. % Zero-Imperv's coefficient variations have the largest values among all parameters for total runoff volume and peak flow, namely 221.24% and 228.10%. On the contrary, the coefficient variations of conductivity among all parameters for both total runoff volume and peak flow are the smallest, namely 0.

  10. Multiple runoff processes and multiple thresholds control agricultural runoff generation

    Science.gov (United States)

    Saffarpour, Shabnam; Western, Andrew W.; Adams, Russell; McDonnell, Jeffrey J.

    2016-11-01

    Thresholds and hydrologic connectivity associated with runoff processes are a critical concept for understanding catchment hydrologic response at the event timescale. To date, most attention has focused on single runoff response types, and the role of multiple thresholds and flow path connectivities has not been made explicit. Here we first summarise existing knowledge on the interplay between thresholds, connectivity and runoff processes at the hillslope-small catchment scale into a single figure and use it in examining how runoff response and the catchment threshold response to rainfall affect a suite of runoff generation mechanisms in a small agricultural catchment. A 1.37 ha catchment in the Lang Lang River catchment, Victoria, Australia, was instrumented and hourly data of rainfall, runoff, shallow groundwater level and isotope water samples were collected. The rainfall, runoff and antecedent soil moisture data together with water levels at several shallow piezometers are used to identify runoff processes in the study site. We use isotope and major ion results to further support the findings of the hydrometric data. We analyse 60 rainfall events that produced 38 runoff events over two runoff seasons. Our results show that the catchment hydrologic response was typically controlled by the Antecedent Soil Moisture Index and rainfall characteristics. There was a strong seasonal effect in the antecedent moisture conditions that led to marked seasonal-scale changes in runoff response. Analysis of shallow well data revealed that streamflows early in the runoff season were dominated primarily by saturation excess overland flow from the riparian area. As the runoff season progressed, the catchment soil water storage increased and the hillslopes connected to the riparian area. The hillslopes transferred a significant amount of water to the riparian zone during and following events. Then, during a particularly wet period, this connectivity to the riparian zone, and

  11. Survival rate in nasopharyngeal carcinoma improved by high caseload volume: a nationwide population-based study in Taiwan

    Directory of Open Access Journals (Sweden)

    Chou Pesus

    2011-08-01

    Full Text Available Abstract Background Positive correlation between caseload and outcome has previously been validated for several procedures and cancer treatments. However, there is no information linking caseload and outcome of nasopharyngeal carcinoma (NPC treatment. We used nationwide population-based data to examine the association between physician case volume and survival rates of patients with NPC. Methods Between 1998 and 2000, a total of 1225 patients were identified from the Taiwan National Health Insurance Research Database. Survival analysis, the Cox proportional hazards model, and propensity score were used to assess the relationship between 10-year survival rates and physician caseloads. Results As the caseload of individual physicians increased, unadjusted 10-year survival rates increased (p p = 0.001 after adjusting for comorbidities, hospital, and treatment modality. When analyzed by propensity score, the adjusted 10-year survival rate differed significantly between patients treated by high-volume physicians and patients treated by low/medium-volume physicians (75% vs. 61%; p Conclusions Our data confirm a positive volume-outcome relationship for NPC. After adjusting for differences in the case mix, our analysis found treatment of NPC by high-volume physicians improved 10-year survival rate.

  12. Runoff inundation hazard cartography

    Science.gov (United States)

    Pineux, N.; Degré, A.

    2012-04-01

    Between 1998 and 2004, Europe suffered from more than hundred major inundations, responsible for some 700 deaths, for the moving of about half a million of people and the economic losses of at least 25 billions Euros covered by the insurance policies. Within this context, EU launched the 2007/60/CE directive. The inundations are natural phenomenon. They cannot be avoided. Nevertheless this directive permits to better evaluate the risks and to coordinate the management measures taken at member states level. In most countries, inundation maps only include rivers' overflowing. In Wallonia, overland flows and mudflows also cause huge damages, and must be included in the flood hazard map. Indeed, the cleaning operations for a village can lead to an estimated cost of 11 000 €. Average construction cost of retention dams to control off-site damage caused by floods and muddy flows was valued at 380 000€, and yearly dredging costs associated with these retention ponds at 15 000€. For a small city for which a study was done in a more specific way (Gembloux), the mean annual cost for the damages that can generate the runoff is about 20 000€. This cost consists of the physical damages caused to the real estate and movable properties of the residents as well as the emergency operations of the firemen and the city. On top of damages to public infrastructure (clogging of trenches, silting up of retention ponds) and to private property by muddy flows, runoff generates a significant loss of arable land. Yet, the soil resource is not an unlimited commodity. Moreover, sediments' transfer to watercourses alters their physical and chemical quality. And that is not to mention the increased psychological stress for people. But to map overland flood and mud flow hazard is a real challenge. This poster will present the methodology used to in Wallonia. The methodology is based on 3 project rainfalls: 25, 50 and 100 years return period (consistency with the cartography of the

  13. Surface Runoff in Watershed Modeling—Turbulent or Laminar Flows?

    Directory of Open Access Journals (Sweden)

    Mark E. Grismer

    2016-05-01

    Full Text Available Determination of overland sheet flow depths, velocities and celerities across the hillslope in watershed modeling is important towards estimation of surface storage, travel times to streams and soil detachment rates. It requires careful characterization of the flow processes. Similarly, determination of the temporal variation of hillslope-riparian-stream hydrologic connectivity requires estimation of the shallow subsurface soil hydraulic conductivity and soil-water retention (i.e., drainable porosities parameters. Field rainfall and runoff simulation studies provide considerable information and insight into these processes; in particular, that sheet flows are likely laminar and that shallow hydraulic conductivities and storage can be determined from the plot studies. Here, using a 1 m by 2 m long runoff simulation flume, we found that for overland flow rates per unit width of roughly 30–60 mm2/s and bedslopes of 10%–66% with varying sand roughness depths that all flow depths were predicted by laminar flow equations alone and that equivalent Manning’s n values were depth dependent and quite small relative to those used in watershed modeling studies. Even for overland flow rates greater than those typically measured or modeled and using Manning’s n values of 0.30–0.35, often assumed in physical watershed model applications for relatively smooth surface conditions, the laminar flow velocities were 4–5 times greater, while the laminar flow depths were 4–5 times smaller. This observation suggests that travel times, surface storage volumes and surface shear stresses associated with erosion across the landscape would be poorly predicted using turbulent flow assumptions. Filling the flume with fine sand and conducting runoff studies, we were unable to produce sheet flow, but found that subsurface flows were onflow rate, soil depth and slope dependent and drainable porosities were only soil depth and slope dependent. Moreover, both the sand

  14. Exercise stroke volume and heart rate response differ in right and left heart failure.

    Science.gov (United States)

    Groepenhoff, Herman; Westerhof, Nico; Jacobs, Wouter; Boonstra, Anco; Postmus, Piet E; Vonk-Noordegraaf, Anton

    2010-07-01

    In pulmonary arterial hypertension (PAH), the exercise-induced increase in stroke volume (SV) is limited by the increase in pulmonary artery pressure. In left heart failure (LHF), systemic arterial pressure increases little during exercise, and the SV increase is limited by the left ventricle itself. These differences might be reflected by a dissimilar SV and heart rate (HR) response to exercise, which could have important therapeutic implications, for example in beta-blocker therapy. Therefore, we tested the hypothesis that SV and HR responses during exercise are different between PAH and LHF patients. We included 28 PAH and 18 LHF patients (recruited from the heart failure unit) matched on a maximal oxygen uptake of exercise test. Only patients who had not been exposed to beta-blockers were included. Pulmonary arterial hypertension and LHF patient groups had equally impaired exercise tolerance (about 42% of predicted) with a maximal oxygen uptake of 0.80 +/- 0.29 and 0.86 +/- 0.19 L/min. The peak SV response to exercise was significantly lower in PAH patients (-14 mL, P = 0.01); this was compensated by a steeper slope of HR relating to oxygen uptake (0.03 beats/mL, P = 0.001). We conclude that PAH patients have a smaller SV response, but a larger HR response than LHF patients.

  15. Surface runoff in the Itaim Watershed

    Directory of Open Access Journals (Sweden)

    Getulio Teixeira Batista

    2007-06-01

    Full Text Available This paper describes a work done in the Itaim watershed at Taubaté, SP, and had the objective of estimating the surface runoff based on the Curve-Number (CN method in area with vegetation cover of grassland (Brachiaria Decumbens, that prevails in this watershed. The surface runoff was estimated using three different methods: 1st values of accumulated Infiltration (IAc obtained in the field were used, considered as the Potential Infiltration (S, which varied from 15.37 mm to 51.88 mm with an average value of 23.46 mm. With those measured infiltration rates and using the maximum precipitation values for Taubaté, SP, with duration time of 3 hours: P = 54.4; 70.3; 80.8; 86.7; 90.9; 94.1 and 103.9 mm, respectively, for the return times, Tr = 2, 5, 10, 15, 25, 50 and 100 years, the following values of surface runoff were generated: 34.83; 49.33; 59.14; 64.71; 68.69; 71.73 and 81.10 mm, respectively; In the 2nd method it was considered that the prevailing vegetation cover of the watershed was Dirty Pasture (Pasture with regrowth of natural vegetation and therefore, a value of CN = 75 was used and generated a potential infiltration, S = 84,7 mm and resulted in surface runoff values that varied from 11 to 44 mm; In the 3rd method, the value of CN was considered equal to 66.57. This value was calculated weighting the contribution of all land use cover classes of the watershed, and as a result a higher value of potential infiltration, S = 127 mm, was obtained. Consequently, the surface runoff values were 5.33; 11.64; 16.72; 19.83; 22.16; 23.98 and 29.83 mm, respectively. Therefore, the comparison with the results obtained by the two Curve-Number methods (conventional and weighted allowed to be concluded that the Curve-Number method applied in a conventional way underestimated the surface runoff in the studied area. However, results indicate that it is possible to use this method for surface runoff estimates as long as adjustments based on potential

  16. Modeling of the Monthly Rainfall-Runoff Process Through Regressions

    Directory of Open Access Journals (Sweden)

    Campos-Aranda Daniel Francisco

    2014-10-01

    Full Text Available To solve the problems associated with the assessment of water resources of a river, the modeling of the rainfall-runoff process (RRP allows the deduction of runoff missing data and to extend its record, since generally the information available on precipitation is larger. It also enables the estimation of inputs to reservoirs, when their building led to the suppression of the gauging station. The simplest mathematical model that can be set for the RRP is the linear regression or curve on a monthly basis. Such a model is described in detail and is calibrated with the simultaneous record of monthly rainfall and runoff in Ballesmi hydrometric station, which covers 35 years. Since the runoff of this station has an important contribution from the spring discharge, the record is corrected first by removing that contribution. In order to do this a procedure was developed based either on the monthly average regional runoff coefficients or on nearby and similar watershed; in this case the Tancuilín gauging station was used. Both stations belong to the Partial Hydrologic Region No. 26 (Lower Rio Panuco and are located within the state of San Luis Potosi, México. The study performed indicates that the monthly regression model, due to its conceptual approach, faithfully reproduces monthly average runoff volumes and achieves an excellent approximation in relation to the dispersion, proved by calculation of the means and standard deviations.

  17. The Effects of TM on Concurrent Heart Rate, Peripheral Blood Pulse Volume, and the Alpha Wave Frequency.

    Science.gov (United States)

    Lukas, Jerome S.

    Through observation of 26 subjects over a 3 month period, this research project measured the effects of transcendental meditation (TM) on concurrent heart rate, peripheral blood pulse volume, and the alpha wave frequency. The subjects were assigned randomly to three groups. One group practiced TM as prescribed by the International Meditation…

  18. High resolution rainfall – runoff measurement setup for green roof experiments in a tropical environment

    Directory of Open Access Journals (Sweden)

    T. Vergroesen

    2010-12-01

    Full Text Available This article describes the measurement setup that is used for green roof experiments in a tropical environment, the required data treatment to obtain reliable values of rainfall, runoff and evapotranspiration, and how to deal with external disturbances that can influence the experiment results. High resolution rainfall runoff measurements to identify, understand and properly model the relevant runoff processes in a green roof require both tailored equipment and data treatment. A tipping bucket rain gauge is calibrated for and installed to measure minute based rain intensities. A runoff measuring setup is developed that can accurately quantify the runoff up to 6 l/min, and has a high resolution in both time and volume. Two different measuring setups are used to verify the evapotranspiration that is derived from the rainfall and runoff measurements.

  19. Precipitation and runoff simulations of select perennial and ephemeral watersheds in the middle Carson River basin, Eagle, Dayton, and Churchill Valleys, west-central Nevada

    Science.gov (United States)

    Jeton, Anne E.; Maurer, Douglas K.

    2011-01-01

    allow for water budget comparisons to the ephemeral models, the two perennial models were then run from 1980 to 2007, the time period constrained somewhat by the later record for the high-altitude climate station used in the simulation. The daily mean values of precipitation, runoff, evapotranspiration, and groundwater inflow simulated from the watershed models were summed to provide mean annual rates and volumes derived from each year of the simulation. Mean annual bias for the calibration period for Ash Canyon Creek and Clear Creek watersheds was within 6 and 3 percent, and relative errors were about 18 and -2 percent, respectively. For the 1980-2007 period of record, mean recharge efficiency and runoff efficiency (percentage of precipitation as groundwater inflow and runoff) averaged 7 and 39 percent, respectively, for Ash Canyon Creek, and 8 and 31 percent, respectively, for Clear Creek. For this same period, groundwater inflow volumes averaged about 500 acre-feet for Ash Canyon and 1,200 acre-feet for Clear Creek. The simulation period for the ephemeral watersheds ranged from water years 1978 to 2007. Mean annual simulated precipitation ranged from 6 to 11 inches. Estimates of recharge efficiency for the ephemeral watersheds ranged from 3 percent for Eureka Canyon to 7 percent for Eldorado Canyon. Runoff efficiency ranged from 7 percent for Eureka Canyon and 15 percent at Brunswick Canyon. For the 1978-2007 period, mean annual groundwater inflow volumes ranged from about 40 acre-feet for Eureka Canyon to just under 5,000 acre-feet for Churchill Canyon watershed. Watershed model results indicate significant interannual variability in the volumes of groundwater inflow caused by climate variations. For most of the modeled watersheds, little to no groundwater inflow was simulated for years with less than 8 inches of precipitation, unless those years were preceded by abnormally high precipitation years with significant subsurface storage carryover.

  20. Modelling surface run-off and trends analysis over India

    Science.gov (United States)

    Gupta, P. K.; Chauhan, S.; Oza, M. P.

    2016-08-01

    The present study is mainly concerned with detecting the trend of run-off over the mainland of India, during a time period of 35 years, from 1971-2005 (May-October). Rainfall, soil texture, land cover types, slope, etc., were processed and run-off modelling was done using the Natural Resources Conservation Service (NRCS) model with modifications and cell size of 5×5 km. The slope and antecedent moisture corrections were incorporated in the existing model. Trend analysis of estimated run-off was done by taking into account different analysis windows such as cell, medium and major river basins, meteorological sub-divisions and elevation zones across India. It was estimated that out of the average 1012.5 mm of rainfall over India (considering the study period of 35 years), 33.8% got converted to surface run-off. An exponential model was developed between the rainfall and the run-off that predicted the run-off with an R 2 of 0.97 and RMSE of 8.31 mm. The run-off trend analysed using the Mann-Kendall test revealed that a significant pattern exists in 22 medium, two major river basins and three meteorological sub-divisions, while there was no evidence of a statistically significant trend in the elevation zones. Among the medium river basins, the highest positive rate of change in the run-off was observed in the Kameng basin (13.6 mm/yr), while the highest negative trend was observed in the Tista upstream basin (-21.4 mm/yr). Changes in run-off provide valuable information for understanding the region's sensitivity to climatic variability.

  1. Modelling surface run-off and trends analysis over India

    Indian Academy of Sciences (India)

    P K Gupta; S Chauhan; M P Oza

    2016-08-01

    The present study is mainly concerned with detecting the trend of run-off over the mainland of India, during a time period of 35 years, from 1971–2005 May–October). Rainfall, soil texture, land cover types, slope, etc., were processed and run-off modelling was done using the Natural Resources ConservationService (NRCS) model with modifications and cell size of 5×5 km. The slope and antecedent moisture corrections were incorporated in the existing model. Trend analysis of estimated run-off was done by taking into account different analysis windows such as cell, medium and major river basins, meteorologicalsub-divisions and elevation zones across India. It was estimated that out of the average 1012.5 mm of rainfall over India (considering the study period of 35 years), 33.8% got converted to surface run-off. An exponential model was developed between the rainfall and the run-off that predicted the run-off with an $R^2$ of 0.97 and RMSE of 8.31 mm. The run-off trend analysed using the Mann–Kendall test revealed that a significant pattern exists in 22 medium, two major river basins and three meteorological subdivisions, while there was no evidence of a statistically significant trend in the elevation zones. Among the medium river basins, the highest positive rate of change in the run-off was observed in the Kameng basin (13.6 mm/yr), while the highest negative trend was observed in the Tista upstream basin (−21.4 mm/yr). Changes in run-off provide valuable information for understanding the region’s sensitivity to climatic variability.

  2. Contrasting effects of microbiotic crusts on runoff in desert surfaces

    Science.gov (United States)

    Kidron, Giora J.; Monger, H. Curtis; Vonshak, Ahuva; Conrod, William

    2012-02-01

    Microbiotic crusts (MCs) play an important role in surface hydrology by altering runoff yield. In order to study the crust's role on water redistribution, rainfall and runoff were measured during 1998-2000 at three sites within the northern Chihuahuan Desert, New Mexico, USA: the Sevilleta National Wildlife Refuge (SEV), the White Sands National Monument (WS), and the Jornada Experimental Range (JER). Whereas quartz and gypsum sand characterize the SEV and WS sites, respectively, both of which have high infiltration rates, silty alluvial deposits characterize the JER site. Runoff was measured in four pairs of 1.8-6.4 m 2 plots having MCs, one of which was scalped in each pair. No runoff was generated at WS, whether on the crusted or the scalped plots. Runoff was however generated at SEV and JER, being higher on the crusted plots at SEV and lower on the JER plots. The results were explained by the combined effect of (a) parent material and (b) the crust properties, such as species composition, microrelief (surface roughness) and exopolysaccharide (EPS) content (reflected in the ratio of carbohydrates to chlorophyll). Whereas the effective rainfall, the fines and the EPS content were found to explain runoff initiation, the effective rainfall and the crust microrelief were found to explain the amount of runoff at SEV and JER where runoff generation took place. The findings attest to the fundamental role of the parent material and the crust's species composition and properties on runoff and hence to the complex interactions and the variable effects that MCs have on dryland hydrology.

  3. Potential effects of vinasse as a soil amendment to control runoff and soil loss

    Science.gov (United States)

    Hazbavi, Z.; Sadeghi, S. H. R.

    2016-02-01

    Application of organic materials are well known as environmental practices in soil restoration, preserving soil organic matter and recovering degraded soils of arid and semiarid lands. Therefore, the present research focused on evaluating the effectiveness of vinasse, a byproduct mainly of the sugar-ethanol industry, on soil conservation under simulated rainfall. Vinasse can be recycled as a soil amendment due to its organic matter content. Accordingly, the laboratory experiments were conducted by using 0.25 m2 experimental plots at 20 % slope and rainfall intensity of 72 mm h-1 with 0.5 h duration. The effect of vinasse was investigated on runoff and soil loss control. Experiments were set up as a control (with no amendment) and three treated plots with doses of 0.5, 1, and 1.5 L m-2 of vinasse subjected to simulated rainfall. Laboratory results indicated that vinasse at different levels could not significantly (P > 0.05) decrease the runoff amount and soil loss rate in the study plots compared to untreated plots. The average amounts of minimum runoff volume and soil loss were about 3985 mL and 46 g for the study plot at a 1 L m-2 level of vinasse application.

  4. Pollution from Urban Runoff

    DEFF Research Database (Denmark)

    Hvitved-Jacobsen, Thorkild; Schaarup-Jensen, Kjeld

    1992-01-01

    The main idea of this paper is to establish the following facts: Biodegradable organic matter discharged from combined sewer overflows (CSO) gives rise to an acute effect on the dissolved oxygen (DO) concentration of a river. This acute effect consist of two subeffects: an immediate oxygen deplet...... depletion which takes place in the polluted water volume passing down the river, and a delayed oxygen depletion which is associated with degradation of the organic matter accumulated at the river bottom during the passage of the polluted water volume....

  5. A Review of Adsorbents Used for Storm Water Runoff Cleaning

    Directory of Open Access Journals (Sweden)

    Andrius Agintas

    2011-04-01

    Full Text Available Heavy metals, petroleum products, sediments and other pollutants get in the environment with insufficiently cleaned storm water runoff. Contaminated storm water runoff is one of the most significant sources for pollution in rivers, lakes and estuaries. Storm water runoff must be treated using not only simple methods but also using adsorption processes. Adsorbents can be natural organic, natural nonorganic and synthetic. Main adsorption characteristic, way of utilization and storm water runoff inflow rate, quantity and pollution need to be investigated when trying to use adsorbents in reasonably way. It is very important to treat storm water properly during the primary mechanical treatment otherwise adsorbents will act as mechanical filters.Article in Lithuanian

  6. Comparative Analysis of Uncertainties in Urban Surface Runoff Modelling

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Schaarup-Jensen, Kjeld

    2007-01-01

    In the present paper a comparison between three different surface runoff models, in the numerical urban drainage tool MOUSE, is conducted. Analysing parameter uncertainty, it is shown that the models are very sensitive with regards to the choice of hydrological parameters, when combined overflow...... analysis, further research in improved parameter assessment for surface runoff models is needed....... volumes are compared - especially when the models are uncalibrated. The occurrences of flooding and surcharge are highly dependent on both hydrological and hydrodynamic parameters. Thus, the conclusion of the paper is that if the use of model simulations is to be a reliable tool for drainage system...

  7. Effects of check dams on runoff characteristics along gully reaches, the case of Northern Ethiopia

    Science.gov (United States)

    Guyassa, Etefa; Frankl, Amaury; Zenebe, Amanuel; Poesen, Jean; Nyssen, Jan

    2017-02-01

    -6%). Reduction of runoff volume between these 2 gully sections was also larger in treated gullies than in untreated gullies: i.e. 18%, 9% and 8% in SCV, LCV and LC, respectively while it was only 4% in S and 6% in L. This study shows that the implementation of check dams combined with vegetation reduced peak flow discharge and runoff volume as large sections of runoff infiltrated in the sediments deposited behind the check dams. As gully check dams are implemented in a large areas of the North Ethiopia Highlands, this contributes to groundwater recharge and increased river base flow.

  8. Effects of check dams on runoff characteristics along gully reaches, the case of Northern Ethiopia

    Science.gov (United States)

    Guyassa, Etefa; Frankl, Amaury; Zenebe, Amanuel; Poesen, Jean; Nyssen, Jan

    2017-04-01

    %). Reduction of runoff volume between these 2 gully sections was also larger in treated gullies than in untreated gullies: i.e. 18%, 9% and 8% in SCV, LCV and LC, respectively while it was only 4% in S and 6% in L. This study shows that the implementation of check dams combined with vegetation reduced peak flow discharge and runoff volume as large sections of runoff infiltrated in the sediments deposited behind the check dams. As gully check dams are implemented in a large areas of the North Ethiopia Highlands, this contributes to groundwater recharge and increased river baseflows.

  9. [Monitoring and analysis on evolution process of rainfall runoff water quality in urban area].

    Science.gov (United States)

    Dong, Wen; Li, Huai-En; Li, Jia-Ke

    2013-02-01

    In order to find the water quality evolution law and pollution characteristics of the rainfall runoff from undisturbed to the neighborhood exit, 6 times evolution process of rainfall runoff water quality were monitored and analyzed from July to October in 2011, and contrasted the clarification efficiency of the grassland to the roof runoff rudimentarily at the same time. The research showed: 1. the results of the comparison from "undisturbed, rainfall-roof, rainfall runoff-road, rainfall-runoff the neighborhood exit runoff " showed that the water quality of the undisturbed rain was better than that from the roof and the neighborhood exist, but the road rainfall runoff water quality was the worst; 2. the average concentrations of the parameters such as COD, ammonia nitrogen and total nitrogen all exceeded the Fifth Class of the Surface Water Quality Standard except for the soluble total phosphorus from undisturbed rainfall to the neighborhood exit; 3. the runoff water quality of the short early fine days was better than that of long early fine days, and the last runoff water quality was better than that of the initial runoff in the same rainfall process; 4. the concentration reduction of the grassland was notable, and the reduction rate of the grassland which is 1.0 meter wide of the roof runoff pollutants such as COD and nitrogen reached 30%.

  10. Logging Effects on Streamflow: Storm Runoff at Caspar Creek in Northwestern California

    Science.gov (United States)

    Wright, Kenneth A.; Sendek, Karen H.; Rice, Raymond M.; Thomas, Robert B.

    1990-07-01

    The effects of road building and selective tractor harvesting on storm runoff were assessed for a small (424 ha) coastal watershed in northern California. Road building alone did not significantly affect the storm runoff. After road building and logging, lag time was decreased approximately 1.5 hours, and the very small storm volumes (less than 1209 m3) and storm peaks (less than 566 L/s) were increased by about 132 and 111%, respectively. Storm volumes and peaks of large storms (occurring less frequently than eight times a year) were not significantly increased by either roads or logging, even though more than 15% of the watershed was compacted in roads, skid trails, and landings. Although a decrease in lag time showed that the average storm hydrograph was shifted forward in time, only the small storm hydrographs were changed in shape. We speculate that the rate of delivery of water to the stream channel during large channel-forming flows was governed by infiltration and subsurface flow rates on the 85% of the watershed that was unaffected by roads, landings, or skid trails. From these findings we conclude that, in a rain-dominated hydrologic environment, logging and forest road construction (as carried out in this study) are not likely to change the flow regime of a stream adversely.

  11. Calibration of Rainfall-Runoff Parameters in Peatlands

    Science.gov (United States)

    Walle Menberu, Meseret; Torabi Haghighi, Ali; Kløve, Bjørn

    2013-04-01

    Finland is a country where its possession of peatlands compared to the total surface area of the country puts in the leading categories globally in peatland possession having 33.5% of its total land area covered with peatlands. Recent interest has grown in using peatlands as temporary flood control barriers by taking advantage of the high water holding capacity of peat soils. Water holding capacity of peat soils enables to reduce high rate of runoff and peak flow which might endanger downstream of the flow and in the process of doing that, the rest of the water leaving the peatland areas is less polluted due to the wetlands' potential in purifying polluted water. Therefore, in order to understand how capable enough peatlands are in holding water by reducing the peak flow or slowing down the rate of runoff, this paper analyses the rainfall-runoff phenomena in peatland catchments through important runoff parameters. Among the most important runoff parameters; the initial abstraction, the curve number and lag time are selected for this paper due to their highest impact on rainfall-runoff process. For this study, two peatland catchments of drained and pristine are selected. Managing to explain the initial abstraction and curve number behaviour in the catchments will able to clearly understand and as well predict the rainfall-runoff process in the catchments. In the selected study sites, observed rainfall and runoff data are collected. The study sites are modelled with the help of Arc-GIS and Hec-GeoHMS and from that are exported to HEC-HMS (Hydrologic modelling software) for rainfall-runoff analysis. The two important parameters; the initial abstraction and curve number are used to calibrate the model. And finally, the parameters that have given the best fit between the modelled and observed rainfall-runoff process are suggested for the study sites. Having these parameters estimated eases to understand rainfall-runoff process in the catchments for whatsoever purpose

  12. New Approach to Purging Monitoring Wells: Lower Flow Rates Reduce Required Purging Volumes and Sample Turbidity

    Science.gov (United States)

    It is generally accepted that monitoring wells must be purged to access formation water to obtain “representative” ground water quality samples. Historically anywhere from 3 to 5 well casing volumes have been removed prior to sample collection to evacuate the standing well water...

  13. Expiratory computed tomographic techniques: a cause of a poor rate of change in lung volume.

    Science.gov (United States)

    Morikawa, Keiko; Okada, Fumito; Mori, Hiromu

    2015-01-01

    Ninety-nine patients (29 males and 70 females; mean age, 57.1 years; range, 22-81 years) were included in this study to evaluate the factors affecting smaller lung volume changes in expiratory high-resolution computed tomography performed to depict air trapping. All patients underwent inspiratory and expiratory chest thin-section CT examinations and pulmonary function tests. Air trapping on CT images was graded subjectively. All variables (age, sex, diagnosis, pulmonary function index, and air trapping score) were compared with the degree of change in lung volume between the inspiratory and expiratory CT examinations. The variables affecting a lower degree of volume change were vital capacity, forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1.0), and the FEV1.0/FVC ratio. Bronchiolitis obliterans was the dominant diagnosis in patients with insufficient degrees of breath holding and in patients with negative air trapping scores despite an abnormal air trapping index. An insufficient degree of lung changes between inspiration and expiration on CT examinations represented bronchiolitis obliterans, which resulted in low FEV1.0 and FEV1.0/FVC values. Changes in the time gap from the announcement of exhalation and breath holding to the start of scanning most effectively indicated air trapping in patients with bronchiolar disorders.

  14. Volume of activity and occupancy rate in intensive care units. Association with mortality

    NARCIS (Netherlands)

    Iapichino, G; Gattinoni, L; Radrizzani, D; Simini, B; Bertolini, G; Ferla, L; Mistraletti, G; Porta, F; Miranda, DR

    Objective. Mortality after many procedures is lower in centers where more procedures are done. It is controversial whether this is true for intensive care units, too. We examined the relationship between the volume of activity of intensive care units (ICUs) and mortality by a measure of

  15. Event-based stormwater management pond runoff temperature model

    Science.gov (United States)

    Sabouri, F.; Gharabaghi, B.; Sattar, A. M. A.; Thompson, A. M.

    2016-09-01

    Stormwater management wet ponds are generally very shallow and hence can significantly increase (about 5.4 °C on average in this study) runoff temperatures in summer months, which adversely affects receiving urban stream ecosystems. This study uses gene expression programming (GEP) and artificial neural networks (ANN) modeling techniques to advance our knowledge of the key factors governing thermal enrichment effects of stormwater ponds. The models developed in this study build upon and compliment the ANN model developed by Sabouri et al. (2013) that predicts the catchment event mean runoff temperature entering the pond as a function of event climatic and catchment characteristic parameters. The key factors that control pond outlet runoff temperature, include: (1) Upland Catchment Parameters (catchment drainage area and event mean runoff temperature inflow to the pond); (2) Climatic Parameters (rainfall depth, event mean air temperature, and pond initial water temperature); and (3) Pond Design Parameters (pond length-to-width ratio, pond surface area, pond average depth, and pond outlet depth). We used monitoring data for three summers from 2009 to 2011 in four stormwater management ponds, located in the cities of Guelph and Kitchener, Ontario, Canada to develop the models. The prediction uncertainties of the developed ANN and GEP models for the case study sites are around 0.4% and 1.7% of the median value. Sensitivity analysis of the trained models indicates that the thermal enrichment of the pond outlet runoff is inversely proportional to pond length-to-width ratio, pond outlet depth, and directly proportional to event runoff volume, event mean pond inflow runoff temperature, and pond initial water temperature.

  16. Linking landscape structure and rainfall runoff behaviour in a thermodynamic optimality context

    Science.gov (United States)

    Zehe, Erwin; Ehret, Uwe; Blume, Theresa; Kleidon, Axel; Scherer, Ulrike; Westhoff, Martijn

    2015-04-01

    The fact that persistent spatial organization in catchments exists has inspired many scientists to speculate whether this is the manifestation of an underlying organizing principle. In line with these studies we developed and tested a thermodynamic framework to link rainfall runoff generation and self-organization in catchments. From a thermodynamic perspective any water mass flux is equal to a "potential gradient" divided by a "resistance", and fluxes deplete due to the second law of thermodynamics their driving gradients. Relevant potentials controlling rainfall runoff are soil water potentials, piezometric heads and surface water levels and their gradients are associated with spatial differences in associated forms of free energy. Rainfall runoff processes thus are associated with conversions of capillary binding energy, potential energy and kinetic energy. These conversions reflect energy conservation and irreversibility as they imply small amounts of dissipation of free energy into heat and thus production of entropy. Energy conversions during rainfall runoff transformation are, though being small, nevertheless of key importance, because they are related to the partitioning of incoming rainfall mass into runoff components and storage dynamics. This splitting and the subsequent subsurface dynamics is strongly controlled by preferential flow paths, which in turn largely influence hydrologically relevant resistance fields in larger control volumes. The field of subsurface flow resistances depends for instance on soil hydraulic conductivity, its spatial covariance and soil moisture. Apparent preferential pathways reduce, depending on their density, topology and spatial extent, subsurface flow resistances along their main extent, resulting in accelerated fluxes against the driving gradient. This implies an enlarged power in the subsurface flux thereby either an enlarged free energy export from the control volume or an increased depletion of internal driving

  17. Using natural Chinese zeolite to remove ammonium from rainfall runoff following urea fertilization of a paddy rice field.

    Science.gov (United States)

    Wang, Xiao-Ling; Qiao, Bin; Li, Song-Min; Li, Jian-Sheng

    2016-03-01

    The potential of natural Chinese zeolite to remove ammonium from rainfall runoff following urea applications to a paddy rice field is assessed in this study. Laboratory batch kinetic and isotherm experiments were carried out first to investigate the ammonium adsorption capacity of the natural zeolite. Field experiments using zeolite adsorption barriers installed at drain outlets in a paddy rice field were also carried out during natural rainfall events to evaluate the barrier's dynamic removal capacity of ammonium. The results demonstrate that the adsorption kinetics are accurately described by the Elovich model, with a coefficient of determination (R (2)) ranging from 0.9705 to 0.9709, whereas the adsorption isotherm results indicate that the Langmuir-Freundlich model provides the best fit (R (2) = 0.992) for the equilibrium data. The field experiments show that both the flow rate and the barrier volume are important controls on ammonium removal from rainfall runoff. A low flow rate leads to a higher ammonium removal efficiency at the beginning of the tests, while a high flow rate leads to a higher quantity of ammonium adsorbed over the entire runoff process.

  18. Temporal dynamics of the circadian heart rate following low and high volume exercise training in sedentary male subjects.

    Science.gov (United States)

    Jelinek, Herbert F; Karmakar, C; Kiviniemi, A M; Hautala, A J; Tulppo, M P; Mäkikallio, T H; Huikuri, H V; Khandoker, A H; Palaniswami, M

    2015-10-01

    Increased risk of arrhythmic events occurs at certain times during the circadian cycle with the highest risk being in the second and fourth quarter of the day. Exercise improves treatment outcome in individuals with cardiovascular disease. How different exercise protocols affect the circadian rhythm and the associated decrease in adverse cardiovascular risk over the circadian cycle has not been shown. Fifty sedentary male participants were randomized into an 8-week high volume and moderate volume training and a control group. Heart rate was recorded using Polar Electronics and investigated with Cosinor analysis and by Poincaré plot derived features of SD1, SD2 and the complex correlation measure (CCM) at 1-h intervals over the 24-h period. Moderate exercise significantly increased vagal modulation and the temporal dynamics of the heart rate in the second quarter of the circadian cycle (p = 0.004 and p = 0.007 respectively). High volume exercise had a similar effect on vagal output (p = 0.003) and temporal dynamics (p = 0.003). Cosinor analysis confirms that the circadian heart rate displays a shift in the acrophage following moderate and high volume exercise from before waking (1st quarter) to after waking (2nd quarter of day). Our results suggest that exercise shifts vagal influence and increases temporal dynamics of the heart rate to the 2nd quarter of the day and suggest that this may be the underlying physiological change leading to a decrease in adverse arrhythmic events during this otherwise high-risk period.

  19. Relationship of blood pressure variability and heart rate variability with prostatic volume in patients with benign prostatic hyperplasia

    Institute of Scientific and Technical Information of China (English)

    金江丽

    2014-01-01

    Objective To investigate the relationship of blood pressure variability(BPV)and heart rate variability(HRV)with prostatic volume(PV)in patients with benign prostatic hyperplasia(BPH).Methods A total of133 patients admitted to our department between January2011 and April 2013 were analyzed retrospectively.The patients were divided into BPH group and non-BPH group according to the PV value.The ambulatory blood

  20. Zinc corrosion runoff process induced by humid tropical climate

    Energy Technology Data Exchange (ETDEWEB)

    Veleva, L. [Center for Investigation and Advanced Study (CINVESTAV-Merida), Applied Physics Department, Carr. Ant. a Progreso, Km.6, C.P. 97310, Merida, Yuc. (Mexico); Meraz, E. [Universidad Juarez Autonoma de Tabasco, Division Academica de Ingenieria y Arquitectura, Km 1 Carretera Cunduacan-Jalpa de M., A.P. 24, C.P. 86690, Cunduacan, Tabasco (Mexico); Acosta, M. [Universidad Juarez Autonoma de Tabasco, Division Academica de Ciencias Basicas, Km 1 Carretera Cunduacan-Jalpa de M., A.P. 24, C.P. 86690, Cunduacan, Tabasco (Mexico)

    2007-05-15

    Zinc and hot dip galvanized steel are frequently used metals in building application. They have relatively good atmospheric resistance to corrosion, due to its oxidation in air and formation of protective rust on its surface, which acts as barrier between the metal and environment. However, some part of the rust can be dissolved by pluvial precipitations and water condensed on the metal surface. This process, called metal runoff, contributes for zinc dispersion in soils and waters. In order to make accurate estimation of zinc runoff induced by atmosphere in humid tropical climate, samples of pure Zn and hot dip galvanized steel have been exposed in the Gulf of Mexico. The data reveal that this process is strongly influenced by factors which determine the aggressivity of the environment (pluvial precipitations, cycles of dry and rainy periods, atmospheric pollutants, air humidity). High annual rates of zinc runoff (6.5 - 8.5 {+-} 0.30 g Zn m{sup -2}yr{sup -1}) were released, being the runoff 63 - 87% of the zinc corrosion rust. The zinc mass loss has been related to several independent parameters, presenting linear equation, which indicates the air contaminant SO{sub 2} as the major factor controlling the runoff of zinc. The reported results show higher runoff of zinc samples, compared to that of hot dip galvanized steel. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  1. Characterization of surface runoff from a subtropics urban catchment

    Institute of Scientific and Technical Information of China (English)

    HUANG Jin-liang; DU Peng-fei; AO Chi-tan; LEI Mui-heong; ZHAO Dong-quan; HO Man-him; WANG Zhi-shi

    2007-01-01

    Characteristics of surface runoff from a 0.14-km2 urban catchment with separated sewer in Macau was investigated. Water quality measurements of surface runoff were carried out on five rainfall events during the period of August to November, 2005. Water quality parameters such as pH, turbidity, TSS, COD, TN, Zn, Pb, and Cu were analyzed. The results show that TN and COD are the major pollutants from surface runoff with mean concentration of 8.5 and 201.4 mg/L, both over 4-fold higher compared to the Class V surface water quality standard developed by China SEPA. Event mean concentration (EMC) for major pollutants showed considerable variations between rainfall events. The largest rainfall event with the longest length of antecedent dry weather period (ADWP) produced the highest EMC of TN, TSS and COD. From the pollutographs analysis, the peak concentration of TN precedes the peak runoff flow rate for all three rainfall events. The tendency of the concentration of TSS, turbidity and COD changing with runoff flow varies between rainfall events. The relationship between TSS and other parameters were analyzed to evaluate the efficiency of the physical treatment process to control the surface runoff in the urban catchment. Based on the correlation of parameters with TSS, high treatment efficiency of TSS, TN and COD was expected. The most significant event in term of first flush is the one with the strongest rainfall intensity and longest length of ADWP. TN always showed first flush phenomenon in all three rainfall events, which suggested that the surface runoff in the early stage of surface runoff should be dealt with for controlling TN losses during rainfall events.

  2. Design and Development of Electro-Mechanical Twins Tipping Buckets Runoff-Meter

    Directory of Open Access Journals (Sweden)

    Olotu Yahaya

    2014-07-01

    Full Text Available Electro-mechanical tipping bucket runoff-meter was designed and developed to measure surface runoff water using locally-sourced components. The instrument consists of metallic-fabricated runoff plot area of 2 m 2 , depth 0.25 m and metal gauge of 3mm. The tipping operation was initiated by arranging the sensitive electro-mechanical components such digital micro-switch (SW1,SW2, SW3 and SW4, pair of open/close circuit breakers (No,Nc, electronic speed gear and circular rotating disc to a pair of twins buckets of runoff volume 0.141 liter capacity per bucket which corresponds to 0.25 mm runoff depth. The whole arrangement was powered by a 12V by 75 AH battery and the tipping processes was being recorded by the electro-mechanical data logger. The instrument has a measuring accuracy of ±0.001 liter per tip. It was calibrated to measure minimum and maximum runoff volume from 0.14l to 200 liters, these values correspond to 0.25 mm and 800 mm runoff depths respectively. Therefore, precise results obtained using the instrument could be used to establish strong database for measuring and storing accurate surface runoff data which in turn could be applied for hydrological modeling for sustainable water resources management and design of hydraulic structures

  3. [Research on spatial differentiation of urban stormwater runoff quality by source area monitoring].

    Science.gov (United States)

    Li, Li-Qing; Zhu, Ren-Xiao; Guo, Shu-Gang; Yin, Cheng-Qing

    2010-12-01

    Runoff samples were collected from 14 source areas in Hanyang district during four rain events in an attempt to investigate the spatial differentiation and influencing factors of urban stormwater runoff quality. The outcomes are expected to offer practical guidance in sources control of urban runoff pollution. The results revealed that particle-bound proportion of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in stormwater runoff were 58% +/- 17%, 65% +/- 13% and 92% +/- 6%, respectively. The fractions of ammonia, nitrate and dissolved organic nitrogen were homogeneous in dissolved nitrogen composition. Urban surface function, traffic volume, land use, population density, and street sweeping practice are the main factors determining spatial differentiation of urban surface runoff quality. The highest magnitude of urban stormwater runoff pollution was expected in the old urban residential area, followed by general residential with restaurants, commercial and transport area, new developments and green land. In addition, the magnitude of road stormwater runoff pollution is positively correlated to traffic volume, in the following order: the first trunk road > the second trunk road > minor road. Street sweeping and critical source areas controls should be implemented to mitigate the adverse effects of urban stormwater runoff on receive waters.

  4. Identifying Landscape Areas Prone to Generating Storm Runoff in Central New York Agricultural Fields

    Science.gov (United States)

    Hofmeister, K.; Walter, M. T.

    2015-12-01

    Nonpoint source (NPS) pollution continues to be a leading cause of surface water degradation, especially in agricultural areas. In humid regions where variable source area (VSA) hydrology dominates storm runoff, NPS pollution is generated where VSAs coincide with polluting activities. Mapping storm runoff risks could allow for more precise and informed targeting of NPS pollution mitigation practices in agricultural landscapes. Topographic wetness indices (TWI) provide good approximations of relative soil moisture patterns and relative storm runoff risks. Simulation models are typically used in conjunction with TWIs to quantify VSA behavior. In this study we use empirically derived relationships between TWI values, volumetric water content (VWC) and rainfall frequencies to develop runoff probability maps. Rainfall and soil VWC were measured across regionally representative agricultural areas in central New York over three years (2012-2015) to determine the volume of runoff generated from agricultural fields in the area. We assumed the threshold for storm runoff occurs when the combination of antecedent soil water and rainfall are sufficient to saturate the soil. We determined that approximately 50% of the storm runoff volume is generated from 10% of the land area during spring, summer, and autumn seasons, while the risk of storm runoff generation is higher in the spring and autumn seasons than in the summer for the same area of land.

  5. Evaluation of economic and technical efficiency of diesel engines operation on the basis of volume combustion rate

    Directory of Open Access Journals (Sweden)

    І. О. Берестовой

    2016-11-01

    Full Text Available The article deals with a new approach to evaluation of complex efficiency of diesel engines. Traditionally, cylinder’s capacity, rotation frequency, average efficient pressure inside cylinder, piston’s stroke, average piston’s velocity, fuel specific consumption and other indices are used as generalizing criteria, characterizing diesel engine’s efficiency, but they do not reflect interrelation between engine’s complex efficiency and a set of economic, mass-dimensional, operational and ecological efficiency. The approach applied in the article makes it possible to reveal the existing and modify the existing methods of solving the problem of improving diesel engine’s efficiency with due regard to interrelation of the parameters, characterizing efficiency of their operation. Statistic analyses were carried out, on the basis of which an assumption regarding the existence of interrelation between specific fuel consumption and the analyzed engine’s parameters was made. Processing of statistical data for various analyzed functions of diesel engines helped offer a function, illustrating the link between volume combustion rate, piston’s area and nominal theoretical specific fuel consumption. Interrelation between volume combustion rate, nominal parameters of diesel operation and efficiency indices, obtained by processing statistical data of more than 500 models of diesels of different series was evaluated, the main feature of it being a mathematical trend. The analysis of the obtained function makes it possible to establish an interrelation between economic efficiency of a diesel, its main index being specific fuel consumption and volume combustion rate and design peculiarities

  6. Tillage management to mitigate herbicide loss in runoff under simulated rainfall conditions.

    Science.gov (United States)

    Locke, Martin A; Zablotowicz, Robert M; Reddy, Krishna N; Steinriede, R Wade

    2008-02-01

    Conservation tillage mitigates soil loss in cropland because plant residues help protect the soil, but effects on pesticide movement in surface runoff are not as straightforward. Effects of soil disturbance on surface runoff loss of chlorimuron and alachlor were evaluated utilizing runoff trays. Soil in the trays was either disturbed (tilled) and kept bare or was not tilled, and existing decomposed plant residue was left on the surface. Rainfall (25mm, 20min) was simulated 1d after alachlor (2.8kg ha(-1)) or chlorimuron (54g ha(-1)) application, and runoff was collected. Runoff fractions were analyzed for herbicide and sediment. Total alachlor loss from bare plots was greater than that in no-tillage plots (4.5% vs. 2.3%, respectively). More than one-third of total alachlor lost from bare plots occurred in the first l of runoff, while no-tillage plots had less runoff volume with a more even distribution of alachlor concentration in the runoff during the rainfall simulation and subsequent runoff period. In contrast, more chlorimuron was lost from no-tillage plots than bare plots (12% vs. 1.5%) even though total runoff volume was lower in the no-tillage plots (10.6mm vs. 13.6mm). This was attributed to dense coverage with partially decomposed plant residue in no-tillage plots (1652kg ha(-1)) that intercepted chlorimuron. It was likely that chlorimuron, a polar compound, was more easily washed off surface plant residues and transported in runoff.

  7. Multi-Rate Secure Processor Terminal Architecture Study. Volume 1. Terminal Architecture.

    Science.gov (United States)

    1981-06-01

    drift. In this method the weights of the equalizer are monitored to detecr. lateral motion due to symbol timing drift. A VCO, controlling the receiver...Terminal Controller is contained in Volume II (classified) of this report. 3.5 Mechanical Packaging Concept The mechanical packaging aproach for the...The primary I/O method intended for the HMSP is direct memory access (DMA). A polite form of DMA is utilized which incurs no overhead. This is

  8. On-chip acidification rate measurements from single cardiac cells confined in sub-nanoliter volumes

    OpenAIRE

    Ges, Igor A.; Dzhura, Igor A.; Baudenbacher, Franz J.

    2008-01-01

    The metabolic activity of cells can be monitored by measuring the pH in the extracellular environment. Microfabrication and microfluidic technologies allow the sensor size and the extracellular volumes to be comparable to single cells. A glass substrate with thin film pH sensitive IrOx electrodes was sealed to a replica-molded polydimethylsiloxane (PDMS) microfluidic network with integrated valves. The device, termed NanoPhysiometer, allows the trapping of single cardiac myocytes and the meas...

  9. Effect of change in blood volume in skin plus active muscle on heart rate drift during submaximal exercise

    OpenAIRE

    Yano,T.; T Yunoki; Matsuura, R.; Arimitsu, T.; Kimura, T.

    2008-01-01

    The purpose of the present study was to examine the effect of change in blood volume in skin plus active muscle on heart rate drift during moderate exercise and heavy exercise for 30 min. Total hemoglobin concentration (Total Hb) in the vastus lateralis muscle plus its skin was determined by near-infrared spectroscopy. Total Hb significantly increased and remained stable from 20 min in moderate exercise and from 10 min in heavy exercise. Heart rate (HR) rapidly increased until 3 min and showe...

  10. Role of rainfall intensity and hydrology in nutrient transport via surface runoff.

    Science.gov (United States)

    Kleinman, Peter J A; Srinivasan, M S; Dell, Curtis J; Schmidt, John P; Sharpley, Andrew N; Bryant, Ray B

    2006-01-01

    Loss of soil nutrients in runoff accelerates eutrophication of surface waters. This study evaluated P and N in surface runoff in relation to rainfall intensity and hydrology for two soils along a single hillslope. Experiments were initiated on 1- by 2-m plots at foot-slope (6%) and mid-slope (30%) positions within an alfalfa (Medicago sativa L.)-orchardgrass (Dactylis glomerata L.) field. Rain simulations (2.9 and 7.0 cm h(-1)) were conducted under wet (spring) and dry (late-summer) conditions. Elevated, antecedent soil moisture at the foot-slope during the spring resulted in less rain required to generate runoff and greater runoff volumes, compared with runoff from the well-drained mid-slope in spring and at both landscape positions in late summer. Phosphorus in runoff was primarily in dissolved reactive form (DRP averaged 71% of total P), with DRP concentrations from the two soils corresponding with soil test P levels. Nitrogen in runoff was mainly nitrate (NO3-N averaged 77% of total N). Site hydrology, not chemistry, was primarily responsible for variations in mass N and P losses with landscape position. Larger runoff volumes from the foot-slope produced higher losses of total P (0.08 kg ha(-1)) and N (1.35 kg ha(-1)) than did runoff from the mid-slope (0.05 total P kg ha(-1); 0.48 kg N ha(-1)), particularly under wet, spring-time conditions. Nutrient losses were significantly greater under the high intensity rainfall due to larger runoff volumes. Results affirm the critical source area concept for both N and P: both nutrient availability and hydrology in combination control nutrient loss.

  11. A data-driven SVR model for long-term runoff prediction and uncertainty analysis based on the Bayesian framework

    Science.gov (United States)

    Liang, Zhongmin; Li, Yujie; Hu, Yiming; Li, Binquan; Wang, Jun

    2017-06-01

    Accurate and reliable long-term forecasting plays an important role in water resources management and utilization. In this paper, a hybrid model called SVR-HUP is presented to predict long-term runoff and quantify the prediction uncertainty. The model is created based on three steps. First, appropriate predictors are selected according to the correlations between meteorological factors and runoff. Second, a support vector regression (SVR) model is structured and optimized based on the LibSVM toolbox and a genetic algorithm. Finally, using forecasted and observed runoff, a hydrologic uncertainty processor (HUP) based on a Bayesian framework is used to estimate the posterior probability distribution of the simulated values, and the associated uncertainty of prediction was quantitatively analyzed. Six precision evaluation indexes, including the correlation coefficient (CC), relative root mean square error (RRMSE), relative error (RE), mean absolute percentage error (MAPE), Nash-Sutcliffe efficiency (NSE), and qualification rate (QR), are used to measure the prediction accuracy. As a case study, the proposed approach is applied in the Han River basin, South Central China. Three types of SVR models are established to forecast the monthly, flood season and annual runoff volumes. The results indicate that SVR yields satisfactory accuracy and reliability at all three scales. In addition, the results suggest that the HUP cannot only quantify the uncertainty of prediction based on a confidence interval but also provide a more accurate single value prediction than the initial SVR forecasting result. Thus, the SVR-HUP model provides an alternative method for long-term runoff forecasting.

  12. T3 tongue cancer treated with low- and high-dose rate interstitial brachytherapy using two-plane or volume implant

    Energy Technology Data Exchange (ETDEWEB)

    Kakimoto, Naoya; Murakami, Shumei; Furukawa, Shohei [Osaka Univ., Suita (Japan). Graduate School of Dentistry; Tanaka, Eiichi; Yoshida, Ken; Yamazaki, Hideya; Inoue, Takehiro; Inoue, Toshihiko [Osaka Univ., Suita (Japan). Graduate School of Medicine; Shimizutani, Kimishige [Osaka Dental Coll., Hirakata (Japan)

    2002-11-01

    Fifty-two patients with T3 tongue cancer were treated with low- and high-dose rate interstitial brachytherapy using two-plane or volume implant method. Two-year local control rate was 60% and 3-year overall survival rate was 50%. Low- and high-dose rate interstitial brachytherapy using two-plane or volume implant was effective treatment for T3 tongue cancer with deep infiltration. (author)

  13. Measurement of the ratio of glomerular filtration rate to plasma volume from the technetium-99m diethylene triamine pentaacetic acid renogram: comparison with glomerular filtration rate in relation to extracellular fluid volume

    Energy Technology Data Exchange (ETDEWEB)

    Peters, A.M. (Dept. of Diagnostic Radiology, Hammersmith Hospital, London (United Kingdom)); Allison, H. (Dept. of Diagnostic Radiology, Hammersmith Hospital, London (United Kingdom)); Ussov, W.Yu. (Dept. of Diagnostic Radiology, Hammersmith Hospital, London (United Kingdom))

    1994-04-01

    We describe a technique which does not require a blood sample, is already normalised for plasma volume and uses the robust Patlak plot for measuring renal uptake. The rate of kidney uptake, dR(t)/dt, at time = 0, as a fraction of the injected dose, is equal to the fraction of the plasma volume (PV) filtered per minute, i.e. IKGFR/PV. The gradient dR(0)/dt cannot be accurately measured directly but is equal to [[alpha] . LV(0)], where [alpha] is the renal uptake constant (proportional to IKGFR) and LV is the count rate over a left ventricular ROI. LV(0) was obtained by extrapolation of LV(t), while [alpha] is the slope of the Patlak plot up to 3 min. GFR/PV (i.e. right plus left kidneys) in patients with normal renal function was about 0.04 min[sup -1], as would be expected from normal values of GFR (120 ml/min) and plasma volume (3 l). GFR/PV correlated significantly with the ratio of GFR to extracellular fluid volume (ECV), measured from the terminal exponential of the plasma clearance curve (GFR/PV = 3.2.GFR/ECV + 5.3 ml/min/l [r = 0.82, n = 82]). GFR/PV (r = 0.74) and GFR/ECV (r = 0.82) both correlated inversely and non-linearly with plasma creatinine in 43 studies where the measurement was made within 1 week of the [sup 99m]Tc-DTPA study. They also correlated significantly with the plasma cyclosporin trough level in 14 patients with dermatomyositis on the 30 occasions when this measurement was made within 1 week of the renogram (r = -0.38, P < 0.05 for GFR/PV and r = -0.77, P < 0.001 for GFR/ECV). The ratio of GFR/PV to GFR/ECV is the ratio of extracellular fluid volume to plasma volume, and this was 4.0 (SD 0.99). We conclude that both GFR/PV and GFR/ECV can be easily measured with [sup 99m]Tc-DTPA and are physiologically valid expressions of GFR. (orig./MG)

  14. Nano-liter droplet libraries from a pipette: step emulsificator that stabilizes droplet volume against variation in flow rate.

    Science.gov (United States)

    Dutka, Filip; Opalski, Adam S; Garstecki, Piotr

    2016-05-24

    Many modern analytical assays, for example, droplet digital PCR, or screening of the properties of single cells or single mutated genes require splitting a liquid sample into a number of small (typically ca. nano-liter in volume) independent compartments or droplets. This calls for a method that would allow splitting small (microliter) samples of liquid into libraries of nano-liter droplets without any dead volume or waste. Step emulsification allows for facile protocols that require delivery of only the sample liquid, yet they typically exhibit dependence of the droplet size on the rate at which the sample is injected. Here, we report a novel microfluidic junction that reduces the dependence of the volume of droplets on the rate of injection. We also demonstrate generation of tightly monodisperse nanoliter droplets by introduction of solely the dispersed phase into the system from an automatic pipette. The method presented here can readily be used and can replace the sophisticated devices typically used to generate libraries of nano-liter droplets from liquid samples.

  15. Multivariate analyses to assess the effects of surgeon and hospital volume on cancer survival rates: a nationwide population-based study in Taiwan.

    Directory of Open Access Journals (Sweden)

    Chun-Ming Chang

    Full Text Available BACKGROUND: Positive results between caseloads and outcomes have been validated in several procedures and cancer treatments. However, there is limited information available on the combined effects of surgeon and hospital caseloads. We used nationwide population-based data to explore the association between surgeon and hospital caseloads and survival rates for major cancers. METHODOLOGY: A total of 11,677 patients with incident cancer diagnosed in 2002 were identified from the Taiwan National Health Insurance Research Database. Survival analysis, the Cox proportional hazards model, and propensity scores were used to assess the relationship between 5-year survival rates and different caseload combinations. RESULTS: Based on the Cox proportional hazard model, cancer patients treated by low-volume surgeons in low-volume hospitals had poorer survival rates, and hazard ratios ranged from 1.3 in head and neck cancer to 1.8 in lung cancer after adjusting for patients' demographic variables, co-morbidities, and treatment modality. When analyzed using the propensity scores, the adjusted 5-year survival rates were poorer for patients treated by low-volume surgeons in low-volume hospitals, compared to those treated by high-volume surgeons in high-volume hospitals (P<0.005. CONCLUSIONS: After adjusting for differences in the case mix, cancer patients treated by low-volume surgeons in low-volume hospitals had poorer 5-year survival rates. Payers may implement quality care improvement in low-volume surgeons.

  16. Determination of Curve Number for snowmelt-runoff floods in a small catchment

    Science.gov (United States)

    Hejduk, L.; Hejduk, A.; Banasik, K.

    2015-06-01

    One of the widely used methods for predicting flood runoff depth from ungauged catchments is the curve number (CN) method, developed by Soil Conservation Service (SCS) of US Department of Agriculture. The CN parameter can be computed directly from recorded rainfall depths and direct runoff volumes in case of existing data. In presented investigations, the CN parameter has been computed for snowmelt-runoff events based on snowmelt and rainfall measurements. All required data has been gathered for a small agricultural catchment (A = 23.4 km2) of Zagożdżonka river, located in Central Poland. The CN number received from 28 snowmelt-runoff events has been compared with CN computed from rainfall-runoff events for the same catchment. The CN parameter, estimated empirically varies from 64.0 to 94.8. The relation between CN and snowmelt depth was investigated in a similar procedure to relation between CN and rainfall depth.

  17. Modeling urban storm rainfall runoff from diverse underlying surfaces and application for control design in Beijing.

    Science.gov (United States)

    Ouyang, Wei; Guo, Bobo; Hao, Fanghua; Huang, Haobo; Li, Junqi; Gong, Yongwei

    2012-12-30

    Managing storm rainfall runoff is paramount in semi-arid regions with urban development. In Beijing, pollution prevention in urban storm runoff and storm water utilization has been identified as the primary strategy for urban water management. In this paper, we sampled runoff during storm rainfall events and analyzed the concentration of chemical oxygen demand (COD), total suspended solids (TSS) and total phosphorus (TP) in the runoff. Furthermore, the first flush effect of storm rainfall from diverse underlying surfaces was also analyzed. With the Storm Water Management Model (SWMM), the different impervious rates of underlying surfaces during the storm runoff process were expressed. The removal rates of three typical pollutants and their interactions with precipitation and underlying surfaces were identified. From these rates, the scenarios regarding the urban storm runoff pollution loading from different designs of underlying previous rates were assessed with the SWMM. First flush effect analysis showed that the first 20% of the storm runoff should be discarded, which can help in utilizing the storm water resource. The results of this study suggest that the SWMM can express in detail the storm water pollution patterns from diverse underlying surfaces in Beijing, which significantly affected water quality. The scenario analysis demonstrated that impervious rate adjustment has the potential to reduce runoff peak and decrease pollution loading.

  18. Forecasting runoff from Pennsylvania landscapes

    Science.gov (United States)

    Identifying sites prone to surface runoff has been a cornerstone of conservation and nutrient management programs, relying upon site assessment tools that support strategic, as opposed to operational, decision making. We sought to develop simple, empirical models to represent two highly different me...

  19. Cortical volumes and atrophy rates in FTD-3 CHMP2B mutation carriers and related non-carriers

    DEFF Research Database (Denmark)

    Eskildsen, Simon F; Østergaard, Lasse R; Rodell, Anders B;

    2008-01-01

    Frontotemporal dementia constitutes the third most prevalent neurodegenerative disease with dementia. We compared cortical structural changes in nine presymptomatic CHMP2B frontotemporal dementia mutation positive individuals with seven mutation negative family members. Using serial MRI scans...... with a mean interval of 16 months and surface based cortical segmentation we measured cortical thickness and volume, and quantified atrophy rates. Cortical thickness and atrophy rates were averaged within major lobes and focal effects were determined by parametric statistical maps. The volumetric atrophy...... rates in the presymptomatic CHMP2B mutation carriers were statistically significant, though of a lower magnitude than those previously reported in patients of other types of frontotemporal dementia. Cortical thickness measurements revealed cortical thinning in mutation carriers bilaterally...

  20. Functional approach to exploring climatic and landscape controls on runoff generation. 2. Timing of runoff storm response

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongyi; Sivapalan, Murugesu

    2014-12-09

    Hortonian overland flow, Dunne overland flow and subsurface stormflow are the three dominant mechanisms contributing to both the volume and timing of streamflow. A previous study quantified the climatic and landscape controls on the relative dominance of the volumes of the different runoff components. In this paper we explore the impacts of climate, soil and topography on the timing of these runoff components in small catchments within the framework of the Connected Instantaneous Response Functions (CIRF). The CIRF here is viewed as a probability density function of travel times of water droplets associated with a given runoff generation mechanism (from the locations where they are generated to the catchment outlet). CIRF is a refinement of the traditional catchment IRF in that it explicitly accounts for variable contributing areas: only those partial areas of runoff generation which are hydrologically connected to the outlet are regarded as contributing areas. The CIRFs are derived for each runoff mechanism through the numerical simulations with a spatially distributed hydrological model which accounts for spatially distributed runoff generation and routing, involving all three mechanisms, under multiple combinations of climate, soil and topographic properties. The advective and dispersive aspects of catchment’s runoff routing response are captured through the use of, respectively, the mean travel times and dimensionless forms of the CIRFs (i.e., scaled by their respective mean travel times). It was found that the CIRFs, upon non-dimensionalization, collapsed to common characteristic shapes, which could be explained in terms of the relative contributions of hillslope and channel network flows, and especially of the size of the runoff contributing areas. The contributing areas are themselves governed by the competition between drainage and recharge to the water table, and could be explained by a dimensionless drainage index which quantifies this competition. On

  1. Modelling runoff from a Himalayan debris-covered glacier

    Directory of Open Access Journals (Sweden)

    K. Fujita

    2014-02-01

    Full Text Available Although the processes by which glacial debris-mantles alter the melting of glacier ice have been well studied, the mass balance and runoff patterns of Himalayan debris-covered glaciers and the response of these factors to climate change are not well understood. Many previous studies have addressed mechanisms of ice melt under debris mantles by applying multiplicative parameters derived from field experiments, and other studies have calculated the details of heat conduction through the debris layer. However, those approaches cannot be applied at catchment scales because debris distributions are heterogeneous and difficult to measure. Here, we establish a runoff model for a Himalayan debris-covered glacier in which the spatial distribution of the thermal properties of the debris mantle is estimated from remotely sensed multi-temporal data. We validated the model for the Tsho Rolpa Glacial Lake–Trambau Glacier basin in the Nepal Himalaya, using hydro-meteorological observations obtained for a 3.5 yr period (1993–1996. We calculated long-term averages of runoff components for the period 1980–2007 using gridded reanalysis datasets. Our calculations suggest that excess meltwater from the debris-covered area contributes significantly to the total runoff, mainly because of its location at lower elevations. Uncertainties in runoff values due to estimations of the thermal properties and albedo of the debris-covered surface were assessed to be approximately 8% of the runoff from the debris-covered area. We evaluated the sensitivities of runoff components to changes in air temperature and precipitation. As expected, warmer air temperatures increase the total runoff by increasing the melting rate; however, increased precipitation slightly reduces the total runoff, as ice melting is suppressed by the increased snow cover and associated high albedo. The response of total runoff to changing precipitation is complex because of the different responses of

  2. Dynamic behaviors of various volume rate steel-fiber reinforced reactive powder concrete after high temperature burnt

    Science.gov (United States)

    Pang, Baojun; Wang, Liwen; Yang, Zhenqi; Chi, Runqiang

    2009-06-01

    Dynamic strain-stress curves of reactive powder concrete under high strain rate (10/s-100/s) were determined by improved split Hopkinson pressure bar (SHPB) system. A plumbum pulse shaper was used to ensure the symmetrical stress in the specimens before fracture and avoid the fluctuation of test data due to input shaky stress pulse. A time modified method was induced for data processing in order to get accurate SHPB results. The results of experiment showed after high temperature burnt, different volume rate (0.0%, 0.5%, 1.0%, 1.5%) steel-fiber reinforced reactive power concrete had the same changing tendency of residual mechanics behaviors, e.g. after 400 centigrade burnt, the residual compression strength was about 70% of material strength without burnt under 100/s. After 800 centigrade burnt, the compression strength is about 30% under 100/s while the deformation ability increased. At meanwhile, steel fiber had improved the mechanism of reinforcing effect and toughening effect of concrete material after burnt. With increasing of steel fiber volume rate, dynamic residual behavior of samples was improved. Microcosmic characteristics and energy absorption were induced for explaining the experiment results.

  3. Dairy heifer manure management, dietary phosphorus, and soil test P effects on runoff phosphorus.

    Science.gov (United States)

    Jokela, William E; Coblentz, Wayne K; Hoffman, Patrick C

    2012-01-01

    Manure application to cropland can contribute to runoff losses of P and eutrophication of surface waters. We conducted a series of three rainfall simulation experiments to assess the effects of dairy heifer dietary P, manure application method, application rate, and soil test P on runoff P losses from two successive simulated rainfall events. Bedded manure (18-21% solids) from dairy heifers fed diets with or without supplemental P was applied on a silt loam soil packed into 1- by 0.2-m sheet metal pans. Manure was either surface-applied or incorporated (Experiment 1) or surface-applied at two rates (Experiment 2) to supply 26 to 63 kg P ha. Experiment 3 evaluated runoff P from four similar nonmanured soils with average Bray P1-extractable P levels of 11, 29, 51, and 75 mg kg. We measured runoff quantity, total P (TP), dissolved reactive P (DRP), and total and volatile solids in runoff collected for 30 min after runoff initiation from two simulated rain events (70 mm h) 3 or 4 d apart. Manure incorporation reduced TP and DRP concentrations and load by 85 to 90% compared with surface application. Doubling the manure rate increased runoff DRP and TP concentrations an average of 36%. In the same experiment, P diet supplementation increased water-extractable P in manure by 100% and increased runoff DRP concentration threefold. Concentrations of solids, TP, and DRP in runoff from Rain 2 were 25 to 75% lower than from Rain 1 in Experiments 1 and 2. Runoff DRP from nonmanured soils increased quadratically with increasing soil test P. These results show that large reductions in P runoff losses can be achieved by incorporation of manure, avoiding unnecessary diet P supplementation, limiting manure application rate, and managing soils to prevent excessive soil test P levels.

  4. Dynamics of chest wall volume regulation during constant work rate exercise in patients with chronic obstructive pulmonary disease

    Energy Technology Data Exchange (ETDEWEB)

    Takara, L.S.; Cunha, T.M.; Barbosa, P.; Rodrigues, M.K.; Oliveira, M.F.; Nery, L.E. [Setor de Função Pulmonar e Fisiologia Clínica do Exercício, Disciplina de Pneumologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Neder, J.A. [Setor de Função Pulmonar e Fisiologia Clínica do Exercício, Disciplina de Pneumologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Division of Respiratory and Critical Care Medicine, Department of Medicine, Queen' s University, Kingston, ON (Canada)

    2012-10-15

    This study evaluated the dynamic behavior of total and compartmental chest wall volumes [(V{sub CW}) = rib cage (V{sub RC}) + abdomen (V{sub AB})] as measured breath-by-breath by optoelectronic plethysmography during constant-load exercise in patients with stable chronic obstructive pulmonary disease. Thirty males (GOLD stages II-III) underwent a cardiopulmonary exercise test to the limit of tolerance (Tlim) at 75% of peak work rate on an electronically braked cycle ergometer. Exercise-induced dynamic hyperinflation was considered to be present when end-expiratory (EE) V{sub CW} increased in relation to resting values. There was a noticeable heterogeneity in the patterns of V{sub CW} regulation as EEV{sub CW} increased non-linearly in 17/30 “hyperinflators” and decreased in 13/30 “non-hyperinflators” (P < 0.05). EEV{sub AB} decreased slightly in 8 of the “hyperinflators”, thereby reducing and slowing the rate of increase in end-inspiratory (EI) V{sub CW} (P < 0.05). In contrast, decreases in EEV{sub CW} in the “non-hyperinflators” were due to the combination of stable EEV{sub RC} with marked reductions in EEV{sub AB}. These patients showed lower EIV{sub CW} and end-exercise dyspnea scores but longer Tlim than their counterparts (P < 0.05). Dyspnea increased and Tlim decreased non-linearly with a faster rate of increase in EIV{sub CW} regardless of the presence or absence of dynamic hyperinflation (P < 0.001). However, no significant between-group differences were observed in metabolic, pulmonary gas exchange and cardiovascular responses to exercise. Chest wall volumes are continuously regulated during exercise in order to postpone (or even avoid) their migration to higher operating volumes in patients with COPD, a dynamic process that is strongly dependent on the behavior of the abdominal compartment.

  5. Dynamics of chest wall volume regulation during constant work rate exercise in patients with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    L.S. Takara

    2012-12-01

    Full Text Available This study evaluated the dynamic behavior of total and compartmental chest wall volumes [(V CW = rib cage (V RC + abdomen (V AB] as measured breath-by-breath by optoelectronic plethysmography during constant-load exercise in patients with stable chronic obstructive pulmonary disease. Thirty males (GOLD stages II-III underwent a cardiopulmonary exercise test to the limit of tolerance (Tlim at 75% of peak work rate on an electronically braked cycle ergometer. Exercise-induced dynamic hyperinflation was considered to be present when end-expiratory (EE V CW increased in relation to resting values. There was a noticeable heterogeneity in the patterns of V CW regulation as EEV CW increased non-linearly in 17/30 "hyperinflators" and decreased in 13/30 "non-hyperinflators" (P < 0.05. EEV AB decreased slightly in 8 of the "hyperinflators", thereby reducing and slowing the rate of increase in end-inspiratory (EI V CW (P < 0.05. In contrast, decreases in EEV CW in the "non-hyperinflators" were due to the combination of stable EEV RC with marked reductions in EEV AB. These patients showed lower EIV CW and end-exercise dyspnea scores but longer Tlim than their counterparts (P < 0.05. Dyspnea increased and Tlim decreased non-linearly with a faster rate of increase in EIV CW regardless of the presence or absence of dynamic hyperinflation (P < 0.001. However, no significant between-group differences were observed in metabolic, pulmonary gas exchange and cardiovascular responses to exercise. Chest wall volumes are continuously regulated during exercise in order to postpone (or even avoid their migration to higher operating volumes in patients with COPD, a dynamic process that is strongly dependent on the behavior of the abdominal compartment.

  6. The Influence of Antecedent Soil Moisture on Springtime Runoff in the Sierra Nevada Mountains

    Science.gov (United States)

    Flint, A. L.; Flint, L. E.; Dettinger, M. D.

    2009-12-01

    As the changing climate influences precipitation, air temperature, and snowmelt, measurements in the Sierra Nevada are illustrating the contribution of antecedent soil moisture on the timing and volume of springtime runoff. Delays in runoff correspond to low antecedent soil moisture from the preceding fall when snow fell on dry soil. In the Tuolumne River streamgage at the Little Grand Canyon just above Hetch Hetchy reservoir, no delay occurred between runoff and snowmelt in 2007 when the soil was wetter due to a cooler summer and fall rains. However, a 26-day delay in runoff was observed after the onset of snowmelt in 2008 when the soil was drier than the preceding fall at the time of the first snowfall due to a hotter and drier summer. If soils are dry prior to snowfall then the soil moisture is first replenished by springtime snowmelt, which not only delays runoff, but also reduces runoff volume to less than that estimated from snow pack. Typical runoff forecasts rely heavily on snow survey data and snowpack conditions, and the exclusion of soil moisture data could lead to an overestimate of the amount of runoff and compromise reservoir operations. In an average snowfall year, for example, the Kaweah Basin in the southern Sierra Nevada could lose as much as 20 percent of its snow water equivalent and the Merced Basin could lose 12 percent of its snow water equivalent simply to recharge soil moisture. Analyses of measured soil moisture in the Sierra Nevada, corresponding high elevation streamflow records, regional hydrologic modeling, and analysis of future climate projections to define the nature of summer and fall temperature and precipitation, will be used to illustrate the important role antecedent soil moisture plays in the timing and volume of springtime runoff in a changing climate.

  7. Urbanisation impacts on storm runoff along a rural-urban gradient

    Science.gov (United States)

    Miller, James David; Hess, Tim

    2017-09-01

    Urbanisation alters the hydrological response of catchments to storm events and spatial measures of urban extent and imperviousness are routinely used in hydrological modelling and attribution of runoff response to land use changes. This study evaluates whether a measure of catchment urban extent can account for differences in runoff generation from storm events along an rural-urban gradient. We employed a high-resolution monitoring network across 8 catchments in the south of the UK - ranging from predominantly rural to heavily urbanised - over a four year period, and from this selected 336 storm events. Hydrological response was compared using volume- and scaled time-based hydrograph metrics within a statistical framework that considered the effect of antecedent soil moisture. Clear differences were found between rural and urban catchments, however above a certain threshold of urban extent runoff volume was relatively unaffected by changes and runoff response times were highly variable between catchments due to additional hydraulic controls. Results indicate a spatial measure of urbanisation can generally explain differences in the hydrological response between rural and urban catchments but is insufficient to explain differences between urban catchments along an urban gradient. Antecedent soil moisture alters the volume and timing of runoff generated in catchments with large rural areas, but was not found to affect the runoff response where developed areas are much greater. The results of this study suggest some generalised relationships between urbanisation and storm runoff are not represented in observed storm events and point to limitations in using a simplified representations of the urban environment for attribution of storm runoff in small urban catchments. The study points to the need for enhanced hydrologically relevant catchment descriptors specific to small urban catchments and more focused research on the role of urban soils and soil moisture in storm

  8. The Effect of the Volume Flow rate on the Efficiency of a Solar Collector

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    rates. Theoretically, a simplified model of the solar collector panel is built by means of the CFD (Computational Fluid Dynamics) code Fluent, where the geometry of the collector panel except the casing is fully modeled. Both lateral and longitudinal heat conduction in the absorber fins, the heat...

  9. Dropout and Graduation Rates 2009-2010. Research Brief. Volume 1101

    Science.gov (United States)

    Research Services, Miami-Dade County Public Schools, 2011

    2011-01-01

    The District conducts a "cross-sectional" analysis of student dropouts annually; it examines dropout rates among students enrolled in various grades at one point in time. A "longitudinal" analysis, also conducted annually, tracks a group of students in the same grade or cohort over a period of several years. Each method…

  10. Clouds enhance Greenland ice sheet meltwater runoff

    NARCIS (Netherlands)

    Van Tricht, K.; Lhermitte, S.; Lenaerts, J. T M|info:eu-repo/dai/nl/314850163; Gorodetskaya, I. V.; L'Ecuyer, T. S.; Noël, B.|info:eu-repo/dai/nl/370612345; Van Den Broeke, M. R.|info:eu-repo/dai/nl/073765643; Turner, D. D.; Van Lipzig, N. P M

    2016-01-01

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative

  11. Clouds enhance Greenland ice sheet meltwater runoff

    NARCIS (Netherlands)

    Van Tricht, K.; Lhermitte, S.; Lenaerts, J. T M|info:eu-repo/dai/nl/314850163; Gorodetskaya, I. V.; L'Ecuyer, T. S.; Noël, B.|info:eu-repo/dai/nl/370612345; Van Den Broeke, M. R.|info:eu-repo/dai/nl/073765643; Turner, D. D.; Van Lipzig, N. P M

    2016-01-01

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative

  12. Modeling relationship between runoff and soil properties in dry-farming lands, NW Iran

    Directory of Open Access Journals (Sweden)

    A. R. Vaezi

    2010-04-01

    Full Text Available The process of transformation of rainfall into runoff over a catchment is very complex and exhibits both temporal and spatial variability. However, in a semi-arid area this variability is mainly controlled by the physical and chemical properties of the soil surface. Developing an accurate and easily-used model that can appropriately determine the runoff generation value is of strong demand. In this study a simple, an empirically based model developed to explore effect of soil properties on runoff generation. Thirty six dry-farming lands under follow conditions in a semi-arid agricultural zone in Hashtroud, NW Iran were considered to installation of runoff plots. Runoff volume was measured at down part of standard plots under natural rainfall events from March 2005 to March 2007. Results indicated that soils were mainly clay loam having 36.7% sand, 31.6% silt and 32.0% clay, and calcareous with about 13% lime. During a 2-year period, 41 natural rainfall events produced surface runoff at the plots. Runoff was negatively (R2=0.61, p<0.001 affected by soil permeability. Runoff also significantly correlated with sand, coarse sand, silt, organic matter, lime, and aggregate stability, while its relationship with very fine sand, clay, gravel and potassium was not significant. Regression analysis showed that runoff was considerably (p<0.001, R2=0.64 related to coarse sand, organic matter and lime. Lime like to coarse sand and organic matter positively correlated with soil permeability and consequently decreased runoff. This result revealed that, lime is one of the most important factors controlling runoff in soils of the semi-arid regions.

  13. Rainfall–runoff model parameter estimation and uncertainty evaluation on small plots

    Science.gov (United States)

    Four seasonal rainfall simulations in 2009 and 2010were applied to a field containing 36 plots (0.75 × 2 m each), resulting in 144 runoff events. In all simulations, a constant rate of rainfall was applied then halted 60min after initiation of runoff, with plot-scale monitoring o...

  14. Modeling relationship between runoff and soil properties in dry-farming lands, NW Iran

    Science.gov (United States)

    Vaezi, A. R.; Bahrami, H. A.; Sadeghi, S. H. R.; Mahdian, M. H.

    2010-04-01

    The process of transformation of rainfall into runoff over a catchment is very complex and exhibits both temporal and spatial variability. However, in a semi-arid area this variability is mainly controlled by the physical and chemical properties of the soil surface. Developing an accurate and easily-used model that can appropriately determine the runoff generation value is of strong demand. In this study a simple, an empirically based model developed to explore effect of soil properties on runoff generation. Thirty six dry-farming lands under follow conditions in a semi-arid agricultural zone in Hashtroud, NW Iran were considered to installation of runoff plots. Runoff volume was measured at down part of standard plots under natural rainfall events from March 2005 to March 2007. Results indicated that soils were mainly clay loam having 36.7% sand, 31.6% silt and 32.0% clay, and calcareous with about 13% lime. During a 2-year period, 41 natural rainfall events produced surface runoff at the plots. Runoff was negatively (R2=0.61, pfactors controlling runoff in soils of the semi-arid regions.

  15. Stormwater Management: Calculation of Traffic Area Runoff Loads and Traffic Related Emissions

    Directory of Open Access Journals (Sweden)

    Maximilian Huber

    2016-07-01

    Full Text Available Metals such as antimony, cadmium, chromium, copper, lead, nickel, and zinc can be highly relevant pollutants in stormwater runoff from traffic areas because of their occurrence, toxicity, and non-degradability. Long-term measurements of their concentrations, the corresponding water volumes, the catchment areas, and the traffic volumes can be used to calculate specific emission loads and annual runoff loads that are necessary for mass balances. In the literature, the annual runoff loads are often specified by a distinct catchment area (e.g., g/ha. These loads were summarized and discussed in this paper for all seven metals and three types of traffic areas (highways, parking lots, and roads; 45 sites. For example, the calculated median annual runoff loads of all sites are 355 g/ha for copper, 110 g/ha for lead (only data of the 21st century, and 1960 g/ha for zinc. In addition, historical trends, annual variations, and site-specific factors were evaluated for the runoff loads. For Germany, mass balances of traffic related emissions and annual heavy metal runoff loads from highways and total traffic areas were calculated. The influences on the mass fluxes of the heavy metal emissions and the runoff pollution were discussed. However, a statistical analysis of the annual traffic related metal fluxes, in particular for different traffic area categories and land uses, is currently not possible because of a lack of monitoring data.

  16. Plasma volume, intravascular albumin and its transcapillary escape rate in patients with extensive skin disease

    DEFF Research Database (Denmark)

    Parving, H H; Worm, A M; Rossing, N

    1976-01-01

    less than 0-001). The transcapillary escape rate of albumin (TER alb) was significantly elevated, mean 8-6 +/- 1-1 (s.d.) % X h-1, as compared to normal subjects, mean 5-6 +/- 1-1 (s.d.) % X h-1, (+54%, P less than 0-001). The same patients were studied again after a 1-week treatment with prednisone...

  17. Efficient Rectangular Maximal-Volume Algorithm for Rating Elicitation in Collaborative Filtering

    KAUST Repository

    Fonarev, Alexander

    2017-02-07

    Cold start problem in Collaborative Filtering can be solved by asking new users to rate a small seed set of representative items or by asking representative users to rate a new item. The question is how to build a seed set that can give enough preference information for making good recommendations. One of the most successful approaches, called Representative Based Matrix Factorization, is based on Maxvol algorithm. Unfortunately, this approach has one important limitation - a seed set of a particular size requires a rating matrix factorization of fixed rank that should coincide with that size. This is not necessarily optimal in the general case. In the current paper, we introduce a fast algorithm for an analytical generalization of this approach that we call Rectangular Maxvol. It allows the rank of factorization to be lower than the required size of the seed set. Moreover, the paper includes the theoretical analysis of the method\\'s error, the complexity analysis of the existing methods and the comparison to the state-of-the-art approaches.

  18. SU-E-T-546: Use of Implant Volume for Quality Assurance of Low Dose Rate Brachytherapy Treatment Plans

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, D; Kolar, M [Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH (United States)

    2014-06-01

    Purpose: To analyze the application of volume implant (V100) data as a method for a global check of low dose rate (LDR) brachytherapy plans. Methods: Treatment plans for 335 consecutive patients undergoing permanent seed implants for prostate cancer and for 113 patients treated with plaque therapy for ocular melanoma were analyzed. Plaques used were 54 COMS (10 to 20 mm, notched and regular) and 59 Eye Physics EP917s with variable loading. Plots of treatment time x implanted activity per unit dose versus v100 ^.667 were made. V100 values were obtained using dose volume histograms calculated by the treatment planning systems (Variseed 8.02 and Plaque Simulator 5.4). Four different physicists were involved in planning the prostate seed cases; two physicists for the eye plaques. Results: Since the time and dose for the prostate cases did not vary, a plot of implanted activity vs V100 ^.667 was made. A linear fit with no intercept had an r{sup 2} = 0.978; more than 94% of the actual activities fell within 5% of the activities calculated from the linear fit. The greatest deviations were in cases where the implant volumes were large (> 100 cc). Both COMS and EP917 plaque linear fits were good (r{sup 2} = .967 and .957); the largest deviations were seen for large volumes. Conclusions: The method outlined here is effective for checking planning consistency and quality assurance of two types of LDR brachytherapy treatment plans (temporary and permanent). A spreadsheet for the calculations enables a quick check of the plan in situations were time is short (e.g. OR-based prostate planning)

  19. Fossil skulls reveal that blood flow rate to the brain increased faster than brain volume during human evolution

    Science.gov (United States)

    Seymour, Roger S.; Bosiocic, Vanya; Snelling, Edward P.

    2016-08-01

    The evolution of human cognition has been inferred from anthropological discoveries and estimates of brain size from fossil skulls. A more direct measure of cognition would be cerebral metabolic rate, which is proportional to cerebral blood flow rate (perfusion). The hominin cerebrum is supplied almost exclusively by the internal carotid arteries. The sizes of the foramina that transmitted these vessels in life can be measured in hominin fossil skulls and used to calculate cerebral perfusion rate. Perfusion in 11 species of hominin ancestors, from Australopithecus to archaic Homo sapiens, increases disproportionately when scaled against brain volume (the allometric exponent is 1.41). The high exponent indicates an increase in the metabolic intensity of cerebral tissue in later Homo species, rather than remaining constant (1.0) as expected by a linear increase in neuron number, or decreasing according to Kleiber's Law (0.75). During 3 Myr of hominin evolution, cerebral tissue perfusion increased 1.7-fold, which, when multiplied by a 3.5-fold increase in brain size, indicates a 6.0-fold increase in total cerebral blood flow rate. This is probably associated with increased interneuron connectivity, synaptic activity and cognitive function, which all ultimately depend on cerebral metabolic rate.

  20. The influence of ventilation variables on the volume rate of airflow delivered to the face of long drivages

    Energy Technology Data Exchange (ETDEWEB)

    Onder, M.; Sarac, S.; Cevik, E. [Osmangazi University, Eskisehir (Turkey). Dept. of Mining Engineering

    2006-09-15

    Auxiliary ventilation is performed by carrying intake or return air in ducts. The complete elimination of air leakage from or into the ducting system is impossible due to duct quality and numerous joints in ducting system. The auxiliary ventilation systems for long drivages often require the use of multiple fans. There are many methods proposed for the analysis air flow problems in leaky ducts. In this study, a method known as 'series-parallel combination of the duct and leakage path' has been introduced and a computer program has been developed based on this method. In order to design the conditions of an auxiliary ventilated drivage, in situ measurement have been made in the Omerler underground coal mine (Turkey) and the related data necessary for this study was collected. The presently developed program was tested using these data, and it was found that the measured and calculated values are quite close. The effective operational parameters governing auxiliary ventilation have been investigated and the effects of these variables on the volume rate of air flow reaching long drivage face have been examined by using linear regression analysis. Finally, it was concluded that the increase of duct diameter has prime importance in achieving the adequate air flow to the face and that for the auxiliary fans considered in this study the selection of fan does not greatly affect the volume rate reaching the face in a long duct line.

  1. Effect of change in blood volume in skin plus active muscle on heart rate drift during submaximal exercise.

    Science.gov (United States)

    Yano, T; Yunoki, T; Matsuura, R; Arimitsu, T; Kimura, T

    2008-12-01

    The purpose of the present study was to examine the effect of change in blood volume in skin plus active muscle on heart rate drift during moderate exercise and heavy exercise for 30 min. Total hemoglobin concentration (Total Hb) in the vastus lateralis muscle plus its skin was determined by near-infrared spectroscopy. Total Hb significantly increased and remained stable from 20 min in moderate exercise and from 10 min in heavy exercise. Heart rate (HR) rapidly increased until 3 min and showed a steady state in moderate exercise. HR at 30 min was significantly higher than that at 3 min in moderate exercise. HR rapidly increased until 3 min and then gradually but significantly increased in heavy exercise. Increase in total Hb was not significantly related with HR after 3 min of exercise when HR was around 120 beats per min in moderate exercise. Increase in total Hb was significantly related with HR from 3 min to 10 min in the heavy exercise (correlation coefficients ranged from 0.959 to 0.702). It is concluded that an increase in the blood volume in skin plus active muscle is not simply associated with HR drift.

  2. Why can postwildfire runoff and erosion vary from negligible to extreme?

    Science.gov (United States)

    Noske, P.; Nyman, P.; Lane, P. N. J.; Van der Sant, R.; Sheridan, G. J.

    2016-12-01

    Soil surface properties vary with aridity, as does runoff and erosion after wildfire. Here we draw on studies conducted in different upland eucalypt forests of Victoria Australia, to compare and contrast the hydrological effects of wildfire. The study central to this presentation was conducted in two small (0.2-0.3 ha) dry forested headwater catchments burned during the 2009 Black Saturday wildfire. Surface runoff ratios during rainfall events approached 0.45 in the first year postwildfire. High runoff ratios in these dry forests were attributed to wildfire-induced soil water repellency and inherently low hydraulic conductivity. Average annual sediment yields peaked at 10 t ha-1 during the first year before declining dramatically to background levels, suggesting high-magnitude erosion processes may become limited by sediment availability on hillslopes. Surface runoff and erosion differed substantially between the equatorial and polar-facing catchments; this was most likely due to higher rates of infiltration and surface roughness on polar-facing slopes. Data collected from a plot scale study from 5 different burned forest locations of differing aridity produced a range of runoff ratios that support the findings of the central study. Additional data from burned catchments supporting wetter forests are also presented to further illustrate the contrast in rates of runoff and recovery from a different forest type. Results show that rates of postwildfire erosion and runoff in eucalypt forests in south-east Australia are highly variable. Large differences in erosion and runoff occur with relatively small changes in aridity.

  3. A field study to evaluate runoff quality from green roofs.

    Science.gov (United States)

    Vijayaraghavan, K; Joshi, U M; Balasubramanian, R

    2012-03-15

    Green (vegetated) roofs are emerging as practical strategies to improve the environmental quality of cities. However, the impact of green roofs on the storm water quality remains a topic of concern to city planners and environmental policy makers. This study investigated whether green roofs act as a source or a sink of various metals (Na, K, Ca, Mg, Al, Fe, Cu, Cd, Pb, Zn, Mn, Cr, Ni, Li and Co), inorganic anions (NO3-, NO2-, PO4(3-), SO4(2-), Cl-, F- and Br-) and cation (NH4+). A series of green roof assemblies were constructed. Four different real rain events and several artificial rain events were considered for the study. Results showed that concentrations of most of the chemical components in runoff were highest during the beginning of rain events and subsided in the subsequent rain events. Some of the important components present in the runoff include Na, K, Ca, Mg, Li, Fe, Al, Cu, NO3-, PO4(3-) and SO4(2-). However, the concentration of these chemical components in the roof runoff strongly depends on the nature of substrates used in the green roof and the volume of rain. Based on the USEPA standards for freshwater quality, we conclude that the green roof used in this study is reasonably effective except that the runoff contains significant amounts of NO3- and PO4(3-).

  4. Pollutant Removal from Highway Runoff Using Retention/Detention Units

    Directory of Open Access Journals (Sweden)

    Ashraf El-Shahat Elsayed

    2001-01-01

    Full Text Available Highway runoff contains total suspended solids, hydrocarbons, oil and greases, chloride, and other contaminants that are transported in solution and particulate forms to adjacent floodplains, roadside swales, and retention/detention ponds. Oil and grit chambers represent a type of retention/detention unit used for removing heavy particulates and adsorbed hydrocarbon particulates. Storage/sediment units also represent a type of retention/detention unit used for controlling peak flow and removing suspended solids. The aim of this study is to evaluate the effect of traffic volume and site characteristics on highway runoff quality. The study also aims to evaluate the performance of retention/detention units that collect runoff from the Prague-Brno and Prague-Plzeň highways, Czech Republic. The results of this study indicate no definitive relationship between average daily traffic and concentration of runoff constituents, though the site characteristics have a strong relation to some constituents. The results also show that retention/detention units are effective in treating organic compounds.

  5. Effects of large gut volume in gelatinous zooplankton: ingestion rate, bolus production and food patch utilization by the jellyfish Sarsia tubulosa

    DEFF Research Database (Denmark)

    Hansson, L.J.; Kiørboe, Thomas

    2006-01-01

    Many gelatinous zooplankton consume a large amount of prey and have stomach volumes much greater than the volume of individual prey. We suggest that jellyfish can use their voluminous stomach as a buffering food-accumulating organ that allows the organism to feed at maximum clearance rate in a wide...

  6. A comparison between the order and the volume fill rate for a base-stock inventory control system under a compound renewal demand process

    DEFF Research Database (Denmark)

    Larsen, Christian; Thorstenson, Anders

    2008-01-01

    The order fill rate (OFR) is sometimes suggested as an alternative to the volume fill rate (VFR) (most often just denoted fill rate) as a performance measure for inventory control systems. We consider a continuous review, base-stock policy, where replenishment orders have a constant lead time...

  7. A comparison between the order and the volume fill rate for a base-stock inventory control system under a compound renewal demand process

    DEFF Research Database (Denmark)

    Larsen, Christian; Thorstenson, Anders

    2008-01-01

    The order fill rate (OFR) is sometimes suggested as an alternative to the volume fill rate (VFR) (most often just denoted fill rate) as a performance measure for inventory control systems. We consider a continuous review, base-stock policy, where replenishment orders have a constant lead time and...

  8. DOWNSLOPE EROSION PROCESS UNDER UPSLOPE RUNOFF AND SEDIMENT USING A DUAL-BOX SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Peiqing XIAO; Fenli ZHENG; Wenyi YAO

    2005-01-01

    Soil erosion at the hilly-gully region of the Loess Plateau has obvious vertical erosion zonation from watershed boundary to gully edge. Meanwhile, upslope runoff and sediment have a significant impact on the downslope erosion process. But due to the limits of research methods, there is not much data available to quantify the effects of upslope runoff and sediment on the downslope erosion process under different conditions. The objective of this study was to quantify the effects of upslope runoff and sediment on the downslope erosion process using a dual-box system with a 15° gradient consisting of a 2 m-long feeder box and a 5 m-long test box under different runoff rates and sediment concentrations in upslope runoff, rainfall intensities and soil surface conditions. The results showed that the sediment regime was detachment-transport dominant at steep hillslopes. The net sediment delivery S caused by upslope runoff was controlled by sediment concentration in upslope runoff, especially by interaction of the rainfall intensity, runoff rate, surface condition and dominant erosion process. The net sediment delivery S accounted for the total sediment delivery Sft at downslope 31.7% to 97.3% and 27.8 to 89.7% for both loose and compact surface treatments, respectively. Rainfall intensity, slope gradient, surface condition, and rill erosion development had important influences on the downslope erosion process.

  9. Estimation of future glaciation and runoff in the Tanimas basin, Eastern Pamirs

    Directory of Open Access Journals (Sweden)

    W. Hagg

    2011-01-01

    Full Text Available A conceptual hydrological model was set up in the upper Panj catchment, the main tributary of Amu-Darya river. Driven by daily temperature and precipitation, the model reproduced daily hydrographs of Tanimas river at the Rukhk gauging station in a very satisfactory way. Based on two glacier inventories from the mid-20st century (WGI, World Glacier Inventory and from 2003 (GLIMS, Global Land Ice Measurements from Space, a simple parameterization scheme based on steady state conditions was applied to infer the ice volumes and glacier areas for the two different time periods in the past. Assuming temperature rises of 2.2 °C and 3.1 °C, which mark the extreme values of regional climate scenarios, the same method was used to extrapolate glaciation to the year 2050. The results show that these temperature rises will reduce the current glacier extent of 431 km2 by 36% and 45%, respectively. To assess future changes in water availability, the hydrological model input was modified according to the regional climate scenarios and the resulting glacier changes. The use of an elevation distributed deglaciation pattern is a clear improvement over methods used previously, where the impact on runoff was tested by excluding either the lower half or the total glacier area. The runoff scenarios reveal no changes in annual runoff, because the glacier area decrease is balanced out by enhanced melt rates. However, there is an important seasonal shift of water resources from summer to spring, unfavorably affecting agriculture and irrigation in the lowlands.

  10. Assessment of runoff contributing catchment areas in rainfall runoff modelling

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Johansen, C.; Schaarup-Jensen, Kjeld

    2006-01-01

    recommended literature values for residential areas. It is proven by comparing rainfall-runoff measurements from four different residential catchments that the literature values of the hydrological reduction factor are over-estimated for this type of catchment. In addition, different catchment descriptions...... are presented in order to investigate how the hydrological reduction factor depends on the level of detail regarding the catchment description. When applying a total survey of the catchment area, including all possible impervious surfaces, a hydrological reduction factor of approximately 0.5 for residential...

  11. Assessment of Runoff Contributing Catchment Areas in Rainfall Runoff Modelling

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Johansen, C.; Schaarup-Jensen, Kjeld

    2005-01-01

    recommended literary values for residential areas. It is proven by comparing rainfall-runoff measurements from four different residential catchments that the literary values of the hydrological reduction factor are over-estimated for this type of catchments. In addition, different catchment descriptions...... are presented in order to investigate how the hydrological reduction factor depends on the level of detail regarding the catchment description. When applying a total survey of the catchment area, including all possible impervious surfaces, a hydrological reduction factor of approximately 0.5 for residential...

  12. Mean Platelet Volume in Patients with Obstructive Sleep Apnea and Its Relationship with Simpler Heart Rate Derivatives

    Directory of Open Access Journals (Sweden)

    Aydın Akyüz

    2014-01-01

    Full Text Available Some studies show increased mean platelet volume (MPV in obstructive sleep apnea (OSA. The aim of this study was to evaluate MPV in OSA patients without cardiovascular risk factors and the possible association of heart rate derivatives with MPV. A total of 82 patients (aged 30–70 years were divided into 2 groups according to the presence of either OSA or non-OSA as the control group. The OSA group consisted of 52 patients and the control group consisted of 30 subjects. Neither group was significantly different in terms of MPV values as well as heart rate (HR derivatives such as minimum HR, maximum HR, the difference between maximum HR and minimum HR, mean HR, and heart rate performance index (HRPI [(HR max. − HR min./HR mean] (P > 0.05 for all variables. In multivariate analysis, platelet count and percentages of recording time spent at arterial oxygen saturation < 90% significant variables are associated with MPV (β±SE: −0.004 ± 0.002, 95% CI, −0.008 to −0.001; P = 0.034 and (β±SE: 2.93 ± 1.93, 95% CI, 0.167 to 5.69; P = 0.038. Consequently, our findings predominantly suggest that there is a casual and reciprocal interaction between MPV and autonomic activation.

  13. International approaches to the hydraulic control of surface water runoff in mitigating flood and environmental risks

    Directory of Open Access Journals (Sweden)

    Ballard Bridget Woods

    2016-01-01

    Full Text Available This paper compares and contrasts a number of international approaches to the hydraulic control of surface water runoff from new development and redevelopment, known as sustainable drainage systems (SuDS or low impact development (LID. The paper provides a commentary on the progress and current status of national standards for SuDS in the UK to control the frequency, flow rate and volume of runoff from both frequent and extreme rainfall events, and the best practice design criteria presented in the revised UK CIRIA SuDS Manual, published in November 2015. The paper then compares these design criteria and standards with those developed and applied in China, USA, France and Germany and also looks at the drivers behind their development. The benefits of these different approaches are assessed in the context of flood risk mitigation, climate resilience and wider environmental protection objectives, including water quality, morphology and ecology. The paper also reviews the design approaches promoted by the new SuDS Manual and internationally for delivering additional benefits for urban spaces (such as recreation, visual character, education and economic growth through multi-functional urban design.

  14. Runoff estimation in residencial area

    Directory of Open Access Journals (Sweden)

    Meire Regina de Almeida Siqueira

    2013-12-01

    Full Text Available This study aimed to estimate the watershed runoff caused by extreme events that often result in the flooding of urban areas. The runoff of a residential area in the city of Guaratinguetá, São Paulo, Brazil was estimated using the Curve-Number method proposed by USDA-NRCS. The study also investigated current land use and land cover conditions, impermeable areas with pasture and indications of the reforestation of those areas. Maps and satellite images of Residential Riverside I Neighborhood were used to characterize the area. In addition to characterizing land use and land cover, the definition of the soil type infiltration capacity, the maximum local rainfall, and the type and quality of the drainage system were also investigated. The study showed that this neighborhood, developed in 1974, has an area of 792,700 m², a population of 1361 inhabitants, and a sloping area covered with degraded pasture (Guaratinguetá-Piagui Peak located in front of the residential area. The residential area is located in a flat area near the Paraiba do Sul River, and has a poor drainage system with concrete pipes, mostly 0.60 m in diameter, with several openings that capture water and sediments from the adjacent sloping area. The Low Impact Development (LID system appears to be a viable solution for this neighborhood drainage system. It can be concluded that the drainage system of the Guaratinguetá Riverside I Neighborhood has all of the conditions and characteristics that make it suitable for the implementation of a low impact urban drainage system. Reforestation of Guaratinguetá-Piagui Peak can reduce the basin’s runoff by 50% and minimize flooding problems in the Beira Rio neighborhood.

  15. Can arbuscular mycorrhiza and fertilizer management reduce phosphorus runoff from paddy fields?

    Science.gov (United States)

    Zhang, Shujuan; Wang, Li; Ma, Fang; Zhang, Xue; Li, Zhe; Li, Shiyang; Jiang, Xiaofeng

    2015-07-01

    Our study sought to assess how much phosphorus (P) runoff from paddy fields could be cut down by fertilizer management and inoculation with arbuscular mycorrhizal fungi. A field experiment was conducted in Lalin River basin, in the northeast China: six nitrogen-phosphorus-potassium fertilizer levels were provided (0, 20%, 40%, 60%, 80%, and 100% of the recommended fertilizer supply), with or without inoculation with Glomus mosseae. The volume and concentrations of particle P (PP) and dissolved P (DP) were measured for each runoff during the rice growing season. It was found that the seasonal P runoff, including DP and PP, under the local fertilization was 3.7 kg/ha, with PP, rather than DP, being the main form of P in runoff water. Additionally, the seasonal P runoff dropped only by 8.9% when fertilization decreased by 20%; rice yields decreased with declining fertilization. We also found that inoculation increased rice yields and decreased P runoff at each fertilizer level and these effects were lower under higher fertilization. Conclusively, while rice yields were guaranteed arbuscular mycorrhizal inoculation and fertilizer management would play a key role in reducing P runoff from paddy fields. Copyright © 2015. Published by Elsevier B.V.

  16. Lead Isotopes in Highway Runoff

    Science.gov (United States)

    Ferreira, M.; Lau, S.; Green, P. G.; Stenstrom, M. K.

    2011-12-01

    Lead (Pb) isotopes have been used extensively to study the provenance of lead pollution on air, water, and sediments. In this study, we measured Pb isotopes and Pb aqueous concentration in highway runoff in three west Los Angeles sites. Those three sites, part of a long-term study sponsored by the California Department of Transportation, represent small catchment areas, and host heavy traffic. In addition, there were no inputs of sand or salt to the highway because the sites are almost completely impervious and also due to the lack of snow to be controlled. Highway runoff from the three sites was collected for 7 storms during the 2004-2005 Winter. Grab samples were collected every 15 minutes during the first hour, and hourly afterwards. A total of 202 samples were collected and filtered into five size fractions (100μm). Aqueous concentration of Pb range from 0.08μg/L to 46.95μg/L (7.98±10.89μg/L) and it is not correlated with any of the lead isotope ratios. The 208Pb/206Pb ratio ranges from 1.983 to 2.075 (2.024±0.026) and there is no statistical difference for the mean value of the 208Pb/206Pb ratio for the four particulate size fractions (0.45-8μm, 8-20μm, 20-100μm, >100μm). However, the 208Pb/206Pb ratio of nearby soils yield 2.060±0.021 and it is statistically different from the ratios obtained for the highway runoff. This hints that the lead present in highway runoff does not come from local soils. The 207Pb/206Pb ratio ranges from 0.804 to 0.847 (0.827±0.011) and there is no statistical difference for the mean value of the 207Pb/206Pb ratio for the four particulate size fractions (0.45-8μm, 8-20μm, 20-100μm, >100μm). Surprisingly, there is also no statistical difference with the 207Pb/206Pb ratio of nearby soils (0.833±0.009).

  17. Experimental study of water and dissolved pollutant runoffs on impervious surfaces

    Institute of Scientific and Technical Information of China (English)

    肖洋; 张涛涛

    2016-01-01

    The water and dissolved pollutant runoffs on impervious surfaces are the essential factor to be considered in design methods to minimize the impacts of the diffuse water pollution. In this paper, experiments are conducted to study the water and dissolved pollutant runoffs on impervious surfaces for different rainfall intensities and surface roughnesses. It is shown that a larger rainfall intensity and a smaller surface roughness reduce the time of concentration and increase the pollutant transport rate. Most of the pollutant runoffs take place at the initial stage of the rainfall. The pollutant transport rate rapidly reaches a peak and then gradually drops to zero.

  18. Research on the characteristics of the water quality of rainwater runoff from green roofs.

    Science.gov (United States)

    Gong, Kena; Wu, Qing; Peng, Sen; Zhao, Xinhua; Wang, Xiaochen

    2014-01-01

    This paper investigates the water quality characteristics of rainwater runoff from dual-substrate-layer green roofs in Tianjin, China. The data were collected from four different assemblies and three types of simulated rains. The storm-water runoff quality was monitored from early June through late October 2012 and from July through late November 2013. The results revealed that the runoff water quality would be improved to some extent with the ageing of green roofs and that the quality retention rate better reflected the pollutant retention capacity of the green roof than the pollutant concentration in the runoff water. The investigation clearly demonstrated that green roofs also effectively reduced the chemical oxygen demand and turbidity value and neutralised acid rain to stabilise the pH of the runoff.

  19. Off site transport of fungicides with snowmelt and rainfall runoff from golf course fairway turf

    Science.gov (United States)

    Pesticides associated with the turfgrass industry have been detected in storm runoff and surface waters of urban watersheds; inferring contaminant contributions from residential, urban, and recreational sources. Golf course turf often requires multiple applications of pesticides at rates that exceed...

  20. Responses of Runoff and Soil Erosion to Vegetation Removal and Tillage on Steep Lands

    Institute of Scientific and Technical Information of China (English)

    XU Qing-Xue; WANG Tian-Wei; CAI Chong-Fa; LI Zhao-Xia; SHI Zhi-Hua; FANG Rong-Jie

    2013-01-01

    Land use and land cover change is a key driver of environmental change.To investigate the runoff and erosion responses to frequent land use change on the steep lands in the Three Gorges area,China,a rainfall simulation experiment was conducted in plots randomly selected at a Sloping Land Conversion Program site with three soil surface conditions:existing vegetation cover,vegetation removal,and freshly hoed.Simulated rainfall was applied at intensities of 60 (low),90 (medium),and 120 mm h-1 (high) in each plot.The results indicated that vegetation removal and hoeing significantly changed runoff generation.The proportion of subsurface runoff in the total runoff decreased from 30.3% to 6.2% after vegetation removal.In the hoed plots,the subsurface runoff comprised 29.1% of the total runoff under low-intensity rainfall simulation and the proportion rapidly decreased with increasing rainfall intensity.Vegetation removal and tillage also significantly increased soil erosion.The average soil erosion rates from the vegetation removal and hoed plots were 3.0 and 10.2 times larger than that in the existing vegetation cover plots,respectively.These identified that both the runoff generation mechanism and soil erosion changed as a consequence of altering land use on steep lands.Thus,conservation practices with maximum vegetation cover and minimum tillage should be used to reduce surface runoff and soil erosion on steep lands.

  1. Is April to July runoff really decreasing in the Western United States?

    Science.gov (United States)

    Wahl, Kenneth L.

    1991-01-01

    Global warming has been the topic of a great deal of heated discussion and debate in recent years, both in the lay press and in scientific journals. The debate is about whether we are beginning to detect signs of a buildup of greenhouse gases on a global scale. A major part of the debate concerns the possible effects on climate and on the future availability of water resources. The ongoing drought in California has added impetus to the debate, serving notice of the serious consequences of any prolonged decrease in the availability of adequate water supplies. This paper has three primary objectives: (1) To evaluate the ramifications of using fractional runoff rather than total runoff to define trends in runoff; (2) to analyze additional streamflow data for the presence and extent of trends in annual and seasonal runoff volume for the conterminous Western United States; and (3) to examine the influence of the current California drought on indicators of trend.

  2. Use of Entropy in the Assessment of Uncertainty of River Runoff Regime in Poland

    Science.gov (United States)

    Wrzesiński, Dariusz

    2016-10-01

    The objective of this paper is to describe spatial differences in the uncertainty of features of the runoff regimes of Polish rivers based on entropy in Shannon's information theory. They included: the entropy of monthly river runoff and the entropy of river runoff distribution over time. An analysis of monthly flow series for the years 1951-2010 from 395 gauging stations located on 248 rivers in Poland was performed. This allowed a quantitative determination of the degree of uncertainty of two regime characteristics indirectly establishing the predictability, regularity, and stability of their appearance and their spatial variability. An analysis of relations between the calculated entropy, as well as between the entropy and the classical parameters commonly used was performed in describing the hydrological regime. The obtained grouping of rivers into four categories in terms of entropy of volume and distribution of runoff in the annual cycle clearly coincides with the types of river regime distinguished in Poland.

  3. Erosivity, surface runoff, and soil erosion estimation using GIS-coupled runoff-erosion model in the Mamuaba catchment, Brazil.

    Science.gov (United States)

    Marques da Silva, Richarde; Guimarães Santos, Celso Augusto; Carneiro de Lima Silva, Valeriano; Pereira e Silva, Leonardo

    2013-11-01

    This study evaluates erosivity, surface runoff generation, and soil erosion rates for Mamuaba catchment, sub-catchment of Gramame River basin (Brazil) by using the ArcView Soil and Water Assessment Tool (AvSWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. Daily rainfall data between 1969 and 1989 from six rain gauges were used, and the monthly rainfall erosivity of each station was computed for all the studied years. In order to evaluate the calibration and validation of the model, monthly runoff data between January 1978 and April 1982 from one runoff gauge were used as well. The estimated soil loss rates were also realistic when compared to what can be observed in the field and to results from previous studies around of catchment. The long-term average soil loss was estimated at 9.4 t ha(-1) year(-1); most of the area of the catchment (60%) was predicted to suffer from a low- to moderate-erosion risk (catchment, the soil erosion was estimated to exceed > 12 t ha(-1) year(-1). Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the catchment was divided into four priority categories (low, moderate, high and very high) for conservation intervention. The study demonstrates that the AvSWAT model provides a useful tool for soil erosion assessment from catchments and facilitates the planning for a sustainable land management in northeastern Brazil.

  4. Observation-based gridded runoff estimates for Europe (E-RUN version 1.1)

    Science.gov (United States)

    Gudmundsson, Lukas; Seneviratne, Sonia I.

    2016-07-01

    River runoff is an essential climate variable as it is directly linked to the terrestrial water balance and controls a wide range of climatological and ecological processes. Despite its scientific and societal importance, there are to date no pan-European observation-based runoff estimates available. Here we employ a recently developed methodology to estimate monthly runoff rates on regular spatial grid in Europe. For this we first assemble an unprecedented collection of river flow observations, combining information from three distinct databases. Observed monthly runoff rates are subsequently tested for homogeneity and then related to gridded atmospheric variables (E-OBS version 12) using machine learning. The resulting statistical model is then used to estimate monthly runoff rates (December 1950-December 2015) on a 0.5° × 0.5° grid. The performance of the newly derived runoff estimates is assessed in terms of cross validation. The paper closes with example applications, illustrating the potential of the new runoff estimates for climatological assessments and drought monitoring. The newly derived data are made publicly available at doi:10.1594/PANGAEA.861371.

  5. Multi-objective optimization for combined quality-quantity urban runoff control

    Science.gov (United States)

    Oraei Zare, S.; Saghafian, B.; Shamsai, A.

    2012-12-01

    Urban development affects the quantity and quality of urban surface runoff. In recent years, the best management practices (BMPs) concept has been widely promoted for control of both quality and quantity of urban floods. However, means to optimize the BMPs in a conjunctive quantity/quality framework are still under research. In this paper, three objective functions were considered: (1) minimization of the total flood damages, cost of BMP implementation and cost of land-use development; (2) reducing the amount of TSS (total suspended solid) and BOD5 (biological oxygen demand), representing the pollution characteristics, to below the threshold level; and (3) minimizing the total runoff volume. The biological oxygen demand and total suspended solid values were employed as two measures of urban runoff quality. The total surface runoff volume produced by sub-basins was representative of the runoff quantity. The construction and maintenance costs of the BMPs were also estimated based on the local price standards. Urban runoff quantity and quality in the case study watershed were simulated with the Storm Water Management Model (SWMM). The NSGA-II (Non-dominated Sorting Genetic Algorithm II) optimization technique was applied to derive the optimal trade off curve between various objectives. In the proposed structure for the NSGA-II algorithm, a continuous structure and intermediate crossover were used because they perform better as far as the optimization efficiency is concerned. Finally, urban runoff management scenarios were presented based on the optimal trade-off curve using the k-means method. Subsequently, a specific runoff control scenario was proposed to the urban managers.

  6. Multi-objective optimization for combined quality–quantity urban runoff control

    Directory of Open Access Journals (Sweden)

    S. Oraei Zare

    2012-12-01

    Full Text Available Urban development affects the quantity and quality of urban surface runoff. In recent years, the best management practices (BMPs concept has been widely promoted for control of both quality and quantity of urban floods. However, means to optimize the BMPs in a conjunctive quantity/quality framework are still under research. In this paper, three objective functions were considered: (1 minimization of the total flood damages, cost of BMP implementation and cost of land-use development; (2 reducing the amount of TSS (total suspended solid and BOD5 (biological oxygen demand, representing the pollution characteristics, to below the threshold level; and (3 minimizing the total runoff volume. The biological oxygen demand and total suspended solid values were employed as two measures of urban runoff quality. The total surface runoff volume produced by sub-basins was representative of the runoff quantity. The construction and maintenance costs of the BMPs were also estimated based on the local price standards. Urban runoff quantity and quality in the case study watershed were simulated with the Storm Water Management Model (SWMM. The NSGA-II (Non-dominated Sorting Genetic Algorithm II optimization technique was applied to derive the optimal trade off curve between various objectives. In the proposed structure for the NSGA-II algorithm, a continuous structure and intermediate crossover were used because they perform better as far as the optimization efficiency is concerned. Finally, urban runoff management scenarios were presented based on the optimal trade-off curve using the k-means method. Subsequently, a specific runoff control scenario was proposed to the urban managers.

  7. Runoff generation mechanism at two distinct headwater catchments - isotopic evidence

    Science.gov (United States)

    Dohnal, Michal; Votrubová, Jana; Šanda, Martin; Tesař, Miroslav; Vogel, Tomáš; Dušek, Jaromír

    2016-04-01

    Data from two headwater catchments indicate considerably different runoff formation mechanisms. The contributions of different surface and subsurface runoff mechanisms to the catchment discharge formation at these two small forested headwater catchments are studied with help of the natural isotopic signatures of the observed fluxes. The Uhlirska catchment (1.78 sq. km, Jizera Mts., Czech Republic) is situated in headwater area of Cerna Nisa stream. Deluviofluvial granitic sediments in the valley bottom areas (riparian zones/wetlands) are surrounded by gentle hillslopes with shallow soils developed on crystalline bedrock. The Liz catchment (0.99 sq. km, Bohemian Forest, Czech Republic) belongs to hillslope-type catchments without riparian zones situated in headwater area of Volynka River. The soil at Liz is developed on biotite paragneiss bedrock. Autocorrelation analysis of the measured catchment discharge rates reveals different hydrograph characteristics for each of the two catchments. Estimated autocorrelation lengths differ by an order of magnitude. Variations of oxygen-18 isotope concentrations in precipitation, groundwater and streamflow were analyzed. Several significant rainfall-runoff events at each of the two catchments were analyzed in detail. These events exhibit substantial difference in isotopic compositions of event and pre-event water, which facilitates hydrograph separation. Clockwise and counterclockwise hysteretic relationships between the stream discharge and its isotope concentration were identified. Results were confronted with the previously published concepts of the runoff formation at the catchments under study. The research was funded by the Czech Science Foundation, project No. 14-15201J.

  8. Effect of age on heart rate, blood lactate concentration, packed cell volume and hemoglobin to exercise in Jeju crossbreed horses.

    Science.gov (United States)

    Kang, Ok-Deuk; Park, Yong-Soo

    2017-01-01

    This study aimed to analyze the on heart rate, blood lactate concentration, packed cell volume (PCV) and hemoglobin (Hb) response after conducting exercise in endurance horses. A total of 20 healthy 3-9-years-old Jeju crossbreed mares (5.95 ± 2.24 year) of age and 312.65 ± 13.59 kg of weight) currently participating the endurance competition were used. The field tests selected for the experiment was gallop (approximately 8.3 m/s) along the selected 2.5 km course (a natural forest trail, not artificial road; a closed loop course). The horses were divided into three groups according to their age; 3-4 years of age (G1, 3.29 ± 0.49 year), 6-7 years of age (G2, 6.42 ± 0.53), and 8-9 years of age (G3, 8.50 ± 0.55). The measurements times for the heart rate, blood lactate concentration, PCV, and Hb analysis were conducted before exercise (T0), shortly after exercise (T1), 15 min after exercise (T2), and 30 min after exercise (T3), respectively. Data was analyzed using an analysis of covariance (ANCOVA) for repeated measures with times and groups. The results of the comparison depending on the passage of rest time after exercise suggest that the heart rate and blood lactate concentration of three groups at T2 significantly decreased compared to T1 (p heart rate, blood lactate concentration, PCV and Hb level at T1 showed no difference in the comparison of horses from different age groups with the exception of G3 group in terms of heart rate. The physiologic and hematological responses of horses during recovery time after 2,500 m exercise with gallop were no significant difference among the groups. These data are useful as a response evaluation method for training of endurance horses.

  9. A new instrument to measure plot-scale runoff

    Directory of Open Access Journals (Sweden)

    R. D. Stewart

    2014-11-01

    Full Text Available Accurate measurement of the amount and timing of surface runoff at multiple scales is needed to understand fundamental hydrological processes. At the plot-scale (i.e., length scales on the order of 1 to 10 m current methods for direct measurement of runoff either store the water in a collection vessel, which is unconducive to long-term monitoring studies, or utilize expensive installations such as large-scale tipping buckets or flume/weir systems. We developed an alternative low-cost, robust and reliable instrument to measure runoff that we call the "Upwelling Bernoulli Tube" (UBeTube. The UBeTube instrument is a pipe with a slot machined in its side that is installed vertically at the base of a runoff collection system. The flow rate through the slot is inferred by measuring the water height within the pipe. The geometry of the slot can be modified to suit the range of flow rates expected for a given site; we demonstrate a slot geometry which is capable of measuring flow rates across more than three orders of magnitude (up to 300 L min−1 while requiring only 30 cm of hydraulic head. System accuracy is dependent on both the geometry of the slot and the accuracy of the water level measurements. With an off-the-shelf pressure transducer sensor, the mean theoretical error for the demonstrated slot geometry was ~17% (ranging from errors of more than 50% at low flow rates to less than 2% at high flow rates, while the observed error during validation was 1–25%. A simple correction factor reduced this mean error to −14%, and further reductions in error could be achieved through the use of taller, narrower slot dimensions (which requires greater head gradients to drive flow or through more accurate water level measurements. The UBeTube device has been successfully employed in a long-term rainfall-runoff study, demonstrating the ability of the instrument to measure surface runoff across a range of flows and conditions.

  10. A longitudinal study of the relationship between personality traits and the annual rate of volume changes in regional gray matter in healthy adults.

    Science.gov (United States)

    Taki, Yasuyuki; Thyreau, Benjamin; Kinomura, Shigeo; Sato, Kazunori; Goto, Ryoi; Wu, Kai; Kawashima, Ryuta; Fukuda, Hiroshi

    2013-12-01

    To investigate whether personality traits affect the rate of decline of gray matter volume, we analyzed the relationships between personality traits and the annual rate of changes of gray matter volume in 274 healthy community dwelling subjects with a large age range by applying a longitudinal design over 6 years, using brain magnetic resonance images (MRI) and the Revised NEO Personality Inventory (NEO-PI-R) at baseline. Brain MRI data were processed using voxel-based morphometry with a custom template by applying the DARTEL diffeomorphic registration tool. For each subject, we used NEO-PI-R to evaluate the five major personality traits, including neuroticism, extraversion, openness, agreeableness, and conscientiousness. The results show that the annual rate of change in regional gray matter volume in the right inferior parietal lobule was correlated significantly and negatively with a personality of openness, which is known to be related to intellect, intellectual curiosity, and creativity adjusting for age, gender, and intracranial volume. This result indicates that subjects with a personality trait of less openness have an accelerated loss of gray matter volume in the right inferior parietal lobule, compared with subjects with a personality trait of more openness. Because the right inferior parietal lobule is involved in higher cognitive function such as working memory and creativity, a personality trait of openness is thought to be important for preserving gray matter volume and cognitive function of the right inferior parietal lobule in healthy adults.

  11. Intermediate volume on computed tomography imaging defines a fibrotic compartment that predicts glomerular filtration rate decline in autosomal dominant polycystic kidney disease patients.

    Science.gov (United States)

    Caroli, Anna; Antiga, Luca; Conti, Sara; Sonzogni, Aurelio; Fasolini, Giorgio; Ondei, Patrizia; Perico, Norberto; Remuzzi, Giuseppe; Remuzzi, Andrea

    2011-08-01

    Total kidney and cyst volumes have been used to quantify disease progression in autosomal dominant polycystic kidney disease (ADPKD), but a causal relationship with progression to renal failure has not been demonstrated. Advanced image processing recently allowed to quantify extracystic tissue, and to identify an additional tissue component named "intermediate," appearing hypoenhanced on contrast-enhanced computed tomography (CT). The aim of this study is to provide a histological characterization of intermediate volume, investigate its relation with renal function, and provide preliminary evidence of its role in long-term prediction of functional loss. Three ADPKD patients underwent contrast-enhanced CT scans before nephrectomy. Histological samples of intermediate volume were drawn from the excised kidneys, and stained with hematoxylin and eosin and with saturated picrosirius solution for histological analysis. Intermediate volume showed major structural changes, characterized by tubular dilation and atrophy, microcysts, inflammatory cell infiltrate, vascular sclerosis, and extended peritubular interstitial fibrosis. A significant correlation (r = -0.69, P < 0.001) between relative intermediate volume and baseline renal function was found in 21 ADPKD patients. Long-term prediction of renal functional loss was investigated in an independent cohort of 13 ADPKD patients, followed for 3 to 8 years. Intermediate volume, but not total kidney or cyst volume, significantly correlated with glomerular filtration rate decline (r = -0.79, P < 0.005). These findings suggest that intermediate volume may represent a suitable surrogate marker of ADPKD progression and a novel therapeutic target.

  12. 1D Runoff-runon stochastic model in the light of queueing theory : heterogeneity and connectivity

    Science.gov (United States)

    Harel, M.-A.; Mouche, E.; Ledoux, E.

    2012-04-01

    Runoff production on a hillslope during a rainfall event may be simplified as follows. Given a soil of constant infiltrability I, which is the maximum amount of water that the soil can infiltrate, and a constant rainfall intensity R, runoff is observed where R is greater than I. The infiltration rate equals the infiltrability when runoff is produced, R otherwise. When ponding time, topography, and overall spatial and temporal variations of physical parameters, such as R and I, are neglected, the runoff equation remains simple. In this study, we consider soils of spatially variable infiltrability. As runoff can re-infiltrate on down-slope areas of higher infiltrabilities (runon), the resulting process is highly non-linear. The stationary runoff equation is: Qn+1 = max(Qn + (R - In)*Δx , 0) where Qn is the runoff arriving on pixel n of size Δx [L2/T], R and In the rainfall intensity and infiltrability on that same pixel [L/T]. The non-linearity is due to the dependence of infiltration on R and Qn, that is runon. This re-infiltration process generates patterns of runoff along the slope, patterns that organise and connect to each other differently depending on the rainfall intensity and the nature of the soil heterogeneity. The runoff connectivity, assessed using the connectivity function of Allard (1993), affects greatly the dynamics of the runoff hillslope. Our aim is to assess, in a stochastic framework, the runoff organization on 1D slopes with random infiltrabilities (log-normal, exponential, bimodal and uniform distributions) by means of theoretical developments and numerical simulations. This means linking the nature of soil heterogeneity with the resulting runoff organisation. In term of connectivity, we investigate the relations between structural (infiltrability) and functional (runoff) connectivity. A theoretical framework based on the queueing theory is developed. We implement the idea of Jones et al. (2009), who remarked that the above formulation is

  13. Estimating Runoff Coefficients Using Weather Radars

    DEFF Research Database (Denmark)

    Ahm, Malte; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2012-01-01

    This paper presents a method for estimating runoff coefficients of urban drainage catchments based on a combination of high resolution weather radar data and insewer flow measurements. By utilising the spatial variability of the precipitation it is possible to estimate the runoff coefficients...

  14. Estimating Runoff Coefficients Using Weather Radars

    DEFF Research Database (Denmark)

    Ahm, Malte; Thorndahl, Søren Liedtke; Rasmussen, Michael R.;

    2012-01-01

    This paper presents a method for estimating runoff coefficients of urban drainage catchments based on a combination of high resolution weather radar data and insewer flow measurements. By utilising the spatial variability of the precipitation it is possible to estimate the runoff coefficients...

  15. Simplified methods for assessment of renal function as the ratio of glomerular filtration rate to extracellular fluid volume

    DEFF Research Database (Denmark)

    Jødal, Lars; Brøchner-Mortensen, Jens

    2012-01-01

    Background: Instead of scaling glomerular filtration rate (GFR) to a body surface area of 1.73m2, it has been suggested to scale GFR to extracellular fluid volume (ECV). The ratio GFR/ECV has physiological meaning in that it indicates how often ‘that which is to be regulated’ (i.e. ECV) comes...... into contact with the ‘regulator’ (i.e. the kidneys). Aim: The aim of the present study was as follows: to analyse two published calculation methods for determining ECV and GFR/ECV; to develop a new simple and accurate formula for determining ECV; and to compare and evaluate these methods. Materials...... and methods: GFR was determined as 51Cr-EDTA clearance. The study comprised 128 individuals (35 women, 66 men and 27 children) with a full 51Cr-EDTA plasma concentration curve, determined from injection until 4–5 h p.i. Reference values for GFR and ECV were calculated from the full curve. One...

  16. The concept of runoff elements as a basis of scale-free approach to runoff formation modelling - the experience of the model "Hydrograph" development and implementation

    Science.gov (United States)

    Vinogradov, Yu. B.; Semenova, O.

    2009-04-01

    The concept of runoff elements used in proposed model as a base for calculating routine describing slope runoff transformation gives the opportunity to avoid the scale problem in hydrological modelling which, to our opinion, mainly refers to mathematical approaches (the framework of Navier-Stokes equations) widely used for description of water movement within the basin. River basin is a system of elementary watersheds of surface and underground ones of various layers. The topography of river basin surface conditionally can be presented by a system of the inclined surfaces each of them being an elementary slope. Within a surface elementary slope water flowing down is realized over non-channel rill system and within the underground elementary slope - over the underground drainage system. The elementary slopes and watersheds in their turn consist of a system of runoff elements - limited by micro-divides areas of the surface and underground elementary slopes and watersheds exposed with their open part to the slope non-channel or underground drainage system. Runoff elements are not the kind of idealization but they can be easily identified with the natural formations. Surface runoff elements depending on natural conditions but mainly on inclination can be measured from shares and ones up to tens of thousand square meters. Underground runoff elements can be much greater. For each runoff element there is a balance ratio (1) There is the unique nonlinear relation between W and outflow dischargeR: (2) Then, the corresponding equation of the outflow hydrograph from runoff elements of a given layer is the following: (3) Here R0 is the initial value of runoff R and S is the runoff rate (m3s-1); Δt is the computational time interval (sec) during which S is constant; a,b - hydraulic coefficients (which determine the conditions of outflow) with dimension m-3 and m3 s-1. In the general case, we assume that the number of runoff elements is proportional to the basin area F (m2

  17. Runoff initiation versus runoff yield: Understanding the complexity of the hydrological effect of biological soil crusts

    Science.gov (United States)

    Kidron, G. J.; Monger, H. C.; Büdel, B.; Vonshak, A.; Conrod, W.

    2012-04-01

    The differentiation between runoff initiation and runoff yield (amount) is not always clear. In many cases they often seem interchangeable. Some of the differences were pinpointed following research conducted at two sand fields in Israel (Nizzanim, NIM, at the southern coast and Nizzana, NIZ in the Negev) and three sites in the Chihuahuan Desert, New Mexico, USA (silty-loessial sediments at the Jornada Experimental Range, JER; quartzose sand in the Sevilleta Wildlife Refuge, SEV; gypseous sand at the White Sands National Monument, WS) during which intact plots were compared to scalped plots. While the parent material, the effective rain, and the exopolysacharide (EPS) content of the crust determined runoff initiation in the Chihuahuan Desert, the effective rain and the crust microrelief determined the amount (yield) of runoff in areas where runoff initiation took place. Low EPS-crusts did not facilitated runoff initiation, even at high-chlorophyll crusts such as in WS. Similar results were obtained for NIM. Data from NIZ also highlighted the fundamental role played by the EPS in the determination of the amounts of runoff. This however was not the case with the chlorophyll content per se, that did not determine runoff initiation or yield. The findings also indicate that under the conditions examined, microrelief could not have controlled runoff initiation. Nevertheless, it affected the runoff amounts, as found in the Chihuahuan Desert and the Negev. The presence of rills and gullies may be indicative of the potentiality of BSCs to initiate runoff.

  18. Average annual runoff in the United States, 1951-80

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This is a line coverage of average annual runoff in the conterminous United States, 1951-1980. Surface runoff Average runoff Surface waters United States

  19. Physical design optimization of an urban runoff treatment system using Stormwater Management Model (SWMM).

    Science.gov (United States)

    Tobio, J A S; Maniquiz-Redillas, M C; Kim, L H

    2015-01-01

    The study presented the application of Stormwater Management Model (SWMM) in determining the optimal physical design properties of an established low impact development (LID) system treating road runoff. The calibration of the model was based on monitored storm events occurring from May 2010 to July 2013. It was found that the total suspended solids was highly correlated with stormwater runoff volume and dominant heavy metal constituents in stormwater runoff, such lead, zinc and copper, with a Pearson correlation coefficient ranging from 0.88 to 0.95 (P<0.05). Reducing the original ratio of the storage volume to surface area (SV/SA) of the facility and depth by 25% could match the satisfactory performance efficiency achieved in the original design. The smaller SV/SA and depth would mean a less costly system, signifying the importance of optimization in designing LID systems.

  20. Corrosion and Runoff Behavior of Carbon Steel in Simulated Acid Rain

    Institute of Scientific and Technical Information of China (English)

    Baigang AN; Xueyuan ZHANG; Enhou HAN; Honxi LI

    2004-01-01

    Under the condition of simulated rain precipitation in the laboratory, with ElS and SEM observation, the effects of pH value of simulated rain on corrosion and runoff behavior of carbon steel A3 were studied. The corrosion rate of A3 steel increased and runoff action of rain precipitation on A3 steel surface was intensified with decreasing pH value, of simulated rainwater.The runoff and corrosion traces were formed along the flowing direction of rainwater, which appeared more apparently with decreasing pH value.

  1. Combined effects of constant versus variable intensity simulated rainfall and reduced tillage management on cotton preemergence herbicide runoff.

    Science.gov (United States)

    Potter, Thomas L; Truman, Clint C; Strickland, Timothy C; Bosch, David D; Webster, Theodore M; Franklin, Dorcas H; Bednarz, Craig W

    2006-01-01

    Pesticide runoff research relies heavily on rainfall simulation experiments. Most are conducted at a constant intensity, i.e., at a fixed rainfall rate; however, large differences in natural rainfall intensity is common. To assess implications we quantified runoff of two herbicides, fluometuron and pendimethalin, and applied preemergence after planting cotton on Tifton loamy sand. Rainfall at constant and variable intensity patterns representative of late spring thunderstorms in the Atlantic Coastal Plain region of Georgia (USA) were simulated on 6-m2 plots under strip- (ST) and conventional-tillage (CT) management. The variable pattern produced significantly higher runoff rates of both compounds from CT but not ST plots. However, on an event-basis, runoff totals (% applied) were not significantly different, with one exception: fluometuron runoff from CT plots. There was about 25% more fluometuron runoff with the variable versus the constant intensity pattern (P = 0.10). Study results suggest that conduct of simulations using variable intensity storm patterns may provide more representative rainfall simulation-based estimates of pesticide runoff and that the greatest impacts will be observed with CT. The study also found significantly more fluometuron in runoff from ST than CT plots. Further work is needed to determine whether this behavior may be generalized to other active ingredients with similar properties [low K(oc) (organic carbon partition coefficient) approximately 100 mL g(-1); high water solubility approximately 100 mg L(-1)]. If so, it should be considered when making tillage-specific herbicide recommendations to reduce runoff potential.

  2. 黄河流域径流变化%Natural runoff changes in the Yellow River Basin

    Institute of Scientific and Technical Information of China (English)

    李春晖; 杨志峰

    2004-01-01

    The driving factors of runoff changes can be divided into precipitation factor and non-precipitation factor, and they can also be divided into natural factor and human activity factor. In this paper, the ways and methods of these driving factors impacting on runoff changes are analyzed at first, and then according to the relationship between precipitation and runoff, the analytical method about impacts of precipitation and non-precipitation factors on basin's natural runoff is derived. The amount and contribution rates of the two factors impacting on natural runoff between every two adjacent decades during 1956-1998 are calculated in the Yellow River Basin (YRB). The results show that the amount and contribution rate of the two factors impacting on natural runoff are different in different periods and regions. For the YRB, the non-precipitation impact is preponderant for natural runoff reduction after the 1970s. Finally, by choosing main factors impacting on the natural runoff, one error back-propagation (BP) artificial neural network (ANN) model has been set up, and the impact of human activities on natural runoff reduction in the YRB is simulated. The result shows that the human background of 1956-1979.

  3. Effect of Polyacrylamide Application on Runoff, Erosion, and Soil Nutrient Loss Under Simulated Rainfall

    Institute of Scientific and Technical Information of China (English)

    WANG Ai-Ping; LI Fa-Hu; YANG Sheng-Min

    2011-01-01

    Soil erosion affects soil productivity and environmental quality.A laboratory research experiment under simulated heavy rainfall with tap water was conducted to investigate the effects of anionic polyacrylamide (PAM) application rates (0,0.5,1.0,and 2.0 g m-2) and molecular weights (12 and 18 Mg mol-1) on runoff,soil erosion,and soil nutrient loss at a slope of 5°.The results showed the two lower rates of PAM application decreased runoff while the highest rate increased runoff as compared with the control.Sediment concentration and soil mass loss increased significantly with the increasing PAM application rate.Compared with the control,PAM application decreased K+,NH+4,and NO-3 concentrations in sediment and K+ and NH+4 concentrations in runoff,but significantly increased the mass losses of K+,NH+4,and NO-3 over soil surface except for the NH+4 at PAM application rate lower than 1.0 g m-2.PAM application decreased the proportion of K+ loss with runoff to its total mass loss over soil surface from 60.1% to 16.4%.However,it did not affect the NH+4 and NO-3 losses with runoff,and more than 86% of them were lost with runoff.A higher PAM molecular weight resulted in lesssoil erosion and K+ mass loss but had little effect on runoff and NH+4 and NO-3 losses.PAM application did not prevent soil erosion and the mass losses of K+ and NO-3 under experimental conditions.

  4. Elevated HbA1c Levels Are Associated with the Blunted Autonomic Response Assessed by Heart Rate Variability during Blood Volume Reduction.

    Science.gov (United States)

    Kamakura, Miho; Maruyama, Ryoko

    2016-10-01

    A high glycemic status increases the risk for autonomic dysfunction and cardiovascular failure. The aim of this study was to investigate time-dependent changes in the autonomic response and cardiovascular dynamics and the association between the level of hemoglobin A1c (HbA1c) and autonomic response during blood volume reduction. The study population consisted of 26 preoperative participants who were scheduled for autologous blood donation (200-400 mL of whole blood) for intraoperative or postoperative use. These participants without circulatory, respiratory, or brain disease and diabetes mellitus were grouped according to their HbA1c levels: blood pressure (BP) and analyzed heart rate variability (HRV) to quantify cardiac autonomic regulation throughout blood donation. During blood volume reduction, which was about 10% of the circulating blood volume, the BP and heart rate varied within normal ranges in both groups. The high-frequency (HF) component, an index of parasympathetic nerve activity, and the ratio of low-frequency (LF) to HF components (LF/HF), an index of sympathetic nerve activity, significantly decreased and increased with the progression of blood volume reduction, respectively, in the HbA1c blood volume reduction only in the HbA1c blood volume reduction.

  5. Simulation of surface runoff in the Wujiang River watershed based on GIS

    Institute of Scientific and Technical Information of China (English)

    TANG Congguo; LIU Congqiang

    2007-01-01

    Surface runoff in the Wujiang River watershed was simulated by a GIS-based method using precipitation, hydrology data, and land-use data. The volume of surface runoff is chiefly controlled by climates, topographical characteristics and types of land use at the watershed. Five subwatersheds that can represent the whole watershed were chosen and their average annual precipitation, average annual surface runoff and current land use were calculated respectively in the grid model of the Wujiang River watershed based on the climate and hydrology data from 1965 to 2000 and the land-use data acquired in the year of 2000. Surface runoff is assumed to be a function of precipitation and land use and the multiple regression tool is used to determine the relationship between surface runoff, precipitation and present land use. Thus, the rainfall-runoff model for each land-use type has been established. When calibrating these models, the results show that the percent errors are all below 7%, which indicates that the accuracy of this simulation is high.

  6. Evaluating the Accuracy of Common Runoff Estimation Methods for New Impervious Hot-Mix Asphalt

    Science.gov (United States)

    Accurately predicting runoff volume from impervious surfaces for water quality design events (e.g., 25.4 mm) is important for sizing green infrastructure stormwater control measures to meet water quality and infiltration design targets. The objective of this research was to quan...

  7. Stochastic rainfall-runoff forecasting: parameter estimation, multi-step prediction, and evaluation of overflow risk

    DEFF Research Database (Denmark)

    Löwe, Roland; Mikkelsen, Peter Steen; Madsen, Henrik

    2014-01-01

    , research has primarily focused on one-step-ahead flow predictions for identifying, estimating, and evaluating greybox models. For control purposes, however, stochastic predictions are required for longer forecast horizons and for the prediction of runoff volumes, rather than flows. This article therefore...

  8. Attribution analysis of runoff decline in a semiarid region of the Loess Plateau, China

    Science.gov (United States)

    Li, Binquan; Liang, Zhongmin; Zhang, Jianyun; Wang, Guoqing; Zhao, Weimin; Zhang, Hongyue; Wang, Jun; Hu, Yiming

    2016-12-01

    Climate variability and human activities are two main contributing attributions for runoff changes in the Yellow River, China. In the loess hilly-gully regions of the middle Yellow River, water shortage has been a serious problem, and this results in large-scale constructions of soil and water conservation (SWC) measures in the past decades in order to retain water for agricultural irrigation and industrial production. This disturbed the natural runoff characteristics. In this paper, we focused on a typical loess hilly-gully region (Wudinghe and Luhe River basins) and investigated the effects of SWC measures and climate variability on runoff during the period of 1961-2013, while the SWC measures were the main representative of human activities in this region. The nonparametric Mann-Kendall test was used to analyze the changes of annual precipitation, air temperature, potential evapotranspiration (PET), and runoff. The analysis revealed the decrease in precipitation, significant rise in temperature, and remarkable runoff reduction with a rate of more than 0.4 mm per year. It was found that runoff capacity in this region also decreased. Using the change point detection methods, the abrupt change point of annual runoff series was found at 1970, and thus, the study period was divided into the baseline period (1961-1970) and changed period (1971-2013). A conceptual framework based on four statistical runoff methods was used for attribution analysis of runoff decline in the Wudinghe and Luhe River basins (-37.3 and -56.4%, respectively). Results showed that runoff reduction can be explained by 85.2-90.3% (83.3-85.7%) with the SWC measures in the Wudinghe (Luhe) River basin while the remaining proportions were caused by climate variability. The findings suggested that the large-scale SWC measures demonstrated a dominant influence on runoff decline, and the change of precipitation extreme was also a promoting factor of the upward trending of SWC measures' contribution to

  9. Real-time cardiac synchronization with fixed volume frame rate for reducing physiological instabilities in 3D FMRI.

    Science.gov (United States)

    Tijssen, Rob H N; Okell, Thomas W; Miller, Karla L

    2011-08-15

    Although 2D echo-planar imaging (EPI) remains the dominant method for functional MRI (FMRI), 3D readouts are receiving more interest as these sequences have favorable signal-to-noise ratio (SNR) and enable imaging at a high isotropic resolution. Spoiled gradient-echo (SPGR) and balanced steady-state free-precession (bSSFP) are rapid sequences that are typically acquired with highly segmented 3D readouts, and thus less sensitive to image distortion and signal dropout. They therefore provide a powerful alternative for FMRI in areas with strong susceptibility offsets, such as deep gray matter structures and the brainstem. Unfortunately, the multi-shot nature of the readout makes these sequences highly sensitive to physiological fluctuations, and large signal instabilities are observed in the inferior regions of the brain. In this work a characterization of the source of these instabilities is given and a new method is presented to reduce the instabilities observed in 3D SPGR and bSSFP. Rapidly acquired single-slice data, which critically sampled the respiratory and cardiac waveforms, showed that cardiac pulsation is the dominant source of the instabilities. Simulations further showed that synchronizing the readout to the cardiac cycle minimizes the instabilities considerably. A real-time synchronization method was therefore developed, which utilizes parallel-imaging techniques to allow cardiac synchronization without alteration of the volume acquisition rate. The implemented method significantly improves the temporal stability in areas that are affected by cardiac-related signal fluctuations. In bSSFP data the tSNR in the brainstem increased by 45%, at the cost of a small reduction in tSNR in the cortical areas. In SPGR the temporal stability is improved by approximately 20% in the subcortical structures and as well as cortical gray matter when synchronization was performed.

  10. Phosphorus losses in furrow irrigation runoff.

    Science.gov (United States)

    Westermann, D T; Bjorneberg, D L; Aase, J K; Robbins, C W

    2001-01-01

    Phosphorus (P) often limits the eutrophication of streams, rivers, and lakes receiving surface runoff. We evaluated the relationships among selected soil P availability indices and runoff P fractions where manure, whey, or commercial fertilizer applications had previously established a range of soil P availabilities on a Portneuf silt loam (coarse-silty, mixed, superactive, mesic Durinodic Xeric Haplocalcid) surface-irrigated with Snake River water. Water-soluble P, Olsen P (inorganic and organic P), and iron-oxide impregnated paper-extractable P (FeO-Ps) were determined on a 0.03-m soil sample taken from the bottom of each furrow before each irrigation in fall 1998 and spring 1999. Dissolved reactive phosphorus (DRP) in a 0.45-microm filtered runoff sample, and iron-oxide impregnated paper-extractable P (FeO-Pw), total P, and sediment in an unfiltered runoff sample were determined at selected intervals during a 4-h irrigation on 18.3-m field plots. The 1998 and 1999 data sets were combined because there were no significant differences. Flow-weighted average runoff DRP and FeO-Pw concentrations increased linearly as all three soil P test concentrations increased. The average runoff total P concentration was not related to any soil P test but was linearly related to sediment concentration. Stepwise regression selected the independent variables of sediment, soil lime concentration, and soil organic P extracted by the Olsen method as related to average runoff total P concentration. The average runoff total P concentration was 1.08 mg L(-1) at a soil Olsen P concentration of 10 mg kg(-1). Soil erosion control will be necessary to reduce P losses in surface irrigation runoff.

  11. Statistical determination of rainfall-runoff erosivity indices for single storms in the Chinese Loess Plateau.

    Science.gov (United States)

    Zheng, Mingguo; Chen, Xiaoan

    2015-01-01

    Correlation analysis is popular in erosion- or earth-related studies, however, few studies compare correlations on a basis of statistical testing, which should be conducted to determine the statistical significance of the observed sample difference. This study aims to statistically determine the erosivity index of single storms, which requires comparison of a large number of dependent correlations between rainfall-runoff factors and soil loss, in the Chinese Loess Plateau. Data observed at four gauging stations and five runoff experimental plots were presented. Based on the Meng's tests, which is widely used for comparing correlations between a dependent variable and a set of independent variables, two methods were proposed. The first method removes factors that are poorly correlated with soil loss from consideration in a stepwise way, while the second method performs pairwise comparisons that are adjusted using the Bonferroni correction. Among 12 rainfall factors, I30 (the maximum 30-minute rainfall intensity) has been suggested for use as the rainfall erosivity index, although I30 is equally correlated with soil loss as factors of I20, EI10 (the product of the rainfall kinetic energy, E, and I10), EI20 and EI30 are. Runoff depth (total runoff volume normalized to drainage area) is more correlated with soil loss than all other examined rainfall-runoff factors, including I30, peak discharge and many combined factors. Moreover, sediment concentrations of major sediment-producing events are independent of all examined rainfall-runoff factors. As a result, introducing additional factors adds little to the prediction accuracy of the single factor of runoff depth. Hence, runoff depth should be the best erosivity index at scales from plots to watersheds. Our findings can facilitate predictions of soil erosion in the Loess Plateau. Our methods provide a valuable tool while determining the predictor among a number of variables in terms of correlations.

  12. Basin-scale runoff prediction: An Ensemble Kalman Filter framework based on global hydrometeorological data sets

    Science.gov (United States)

    Kunstmann, Harald; Lorenz, Christof; Tourian, Mohammad; Devaraju, Balaji; Sneeuw, Nico

    2016-04-01

    In order to cope with the steady decline of the number of in situ gauges worldwide, there is a growing need for alternative methods to estimate runoff. We present an Ensemble Kalman Filter based approach that allows us to conclude on runoff for poorly or irregularly gauged basins. The approach focuses on the application of publicly available global hydrometeorological data sets for precipitation (GPCC, GPCP, CRU, UDEL), evapotranspiration (MODIS, FLUXNET, GLEAM, ERA interim, GLDAS), and water storage changes (GRACE, WGHM, GLDAS, MERRA LAND). Furthermore, runoff data from the GRDC and satellite altimetry derived estimates are used. We follow a least squares prediction that exploits the joint temporal and spatial auto- and cross-covariance structures of precipitation, evapotranspiration, water storage changes and runoff. We further consider time-dependent uncertainty estimates derived from all data sets. Our in-depth analysis comprises of 29 large river basins of different climate regions, with which runoff is predicted for a subset of 16 basins. Six configurations are analyzed: the Ensemble Kalman Filter (Smoother) and the hard (soft) Constrained Ensemble Kalman Filter (Smoother). Comparing the predictions to observed monthly runoff shows correlations larger than 0.5, percentage biases lower than ± 20%, and NSE-values larger than 0.5. A modified NSE-metric, stressing the difference to the mean annual cycle, shows an improvement of runoff predictions for 14 of the 16 basins. The proposed method is able to provide runoff estimates for nearly 100 poorly gauged basins covering an area of more than 11,500,000 km2 with a freshwater discharge, in volume, of more than 125,000 m3/s.

  13. Evaluation of Three Models for Simulating Pesticide Runoff from Irrigated Agricultural Fields.

    Science.gov (United States)

    Zhang, Xuyang; Goh, Kean S

    2015-11-01

    Three models were evaluated for their accuracy in simulating pesticide runoff at the edge of agricultural fields: Pesticide Root Zone Model (PRZM), Root Zone Water Quality Model (RZWQM), and OpusCZ. Modeling results on runoff volume, sediment erosion, and pesticide loss were compared with measurements taken from field studies. Models were also compared on their theoretical foundations and ease of use. For runoff events generated by sprinkler irrigation and rainfall, all models performed equally well with small errors in simulating water, sediment, and pesticide runoff. The mean absolute percentage errors (MAPEs) were between 3 and 161%. For flood irrigation, OpusCZ simulated runoff and pesticide mass with the highest accuracy, followed by RZWQM and PRZM, likely owning to its unique hydrological algorithm for runoff simulations during flood irrigation. Simulation results from cold model runs by OpusCZ and RZWQM using measured values for model inputs matched closely to the observed values. The MAPE ranged from 28 to 384 and 42 to 168% for OpusCZ and RZWQM, respectively. These satisfactory model outputs showed the models' abilities in mimicking reality. Theoretical evaluations indicated that OpusCZ and RZWQM use mechanistic approaches for hydrology simulation, output data on a subdaily time-step, and were able to simulate management practices and subsurface flow via tile drainage. In contrast, PRZM operates at daily time-step and simulates surface runoff using the USDA Soil Conservation Service's curve number method. Among the three models, OpusCZ and RZWQM were suitable for simulating pesticide runoff in semiarid areas where agriculture is heavily dependent on irrigation.

  14. Water quality of surface runoff and lint yield in cotton under furrow irrigation in Northeast Arkansas.

    Science.gov (United States)

    Adviento-Borbe, M Arlene A; Barnes, Brittany D; Iseyemi, Oluwayinka; Mann, Amanda M; Reba, Michele L; Robertson, William J; Massey, Joseph H; Teague, Tina G

    2017-09-11

    Use of furrow irrigation in row crop production is a common practice through much of the Midsouth US and yet, nutrients can be transported off-site through surface runoff. A field study with cotton (Gossypium hirsutum, L.) was conducted to understand the impact of furrow tillage practices and nitrogen (N) fertilizer placement on characteristics of runoff water quality during the growing season. The experiment was designed as a randomized complete block design with conventional (CT) and conservation furrow tillage (FT) in combination with either urea (URN) broadcast or 32% urea ammonium nitrate (UAN) injected, each applied at 101kgNha(-1). Concentrations of ammonium (NH4-N), nitrate (NO3-N), nitrite (NO2-N), and dissolved phosphorus (P) in irrigation runoff water and lint yields were measured in all treatments. The intensity and chemical form of nutrient losses were primarily controlled by water runoff volume and agronomic practice. Across tillage and fertilizer N treatments, median N concentrations in the runoff were irrigation water and less likely to impair pollution in waterways. Lint yields averaged 1111kgha(-1) and were higher (P-value=0.03) in FT compared to CT treatments. Runoff volumes across irrigation events were greater (P-value=0.02) in CT than FT treatments, which increased NO3-N mass loads in CT treatments (394gNO3-Nha(-1)season(-1)). Nitrate-N concentrations in CT treatments were still low and pose little threat to N contaminations in waterways. The findings support the adoption of conservation practices for furrow tillage and N fertilizer placement that can reduce nutrient runoff losses in furrow irrigation systems. Copyright © 2017. Published by Elsevier B.V.

  15. Sensitivity of point scale runoff predictions to rainfall resolution

    Directory of Open Access Journals (Sweden)

    A. J. Hearman

    2006-11-01

    Full Text Available This paper investigates the effects of using non-linear, high resolution rainfall, compared to time averaged rainfall on the triggering of hydrologic thresholds and therefore model predictions of infiltration excess and saturation excess runoff. The bounded random cascade model, parameterized to south western Australian rainfall, was used to scale rainfall intensities at various time resolutions ranging from 1.875 min to 2 h. A one dimensional, conceptual rainfall partitioning model was used that instantaneously partitions water into infiltration excess, infiltration, storage, deep drainage, saturation excess and surface runoff, where the fluxes into and out of the soil store are controlled by thresholds. For example, saturation excess is triggered when the soil water content reaches the storage capacity threshold. The results of the numerical modelling were scaled by relating soil infiltration properties to soil draining properties, and inturn, relating these to average storm intensities. By relating maximum soil infiltration capacities to saturated drainage rates (f*, we were able to split soils into two groups; those where all runoff is a result of infiltration excess alone (f*≤0.2 and those susceptible to both infiltration excess and saturation excess runoff (f*>0.2. For all soil types, we related maximum infiltration capacities to average storm intensities (k* and were able to show where model predictions of infiltration excess were most sensitive to rainfall resolution (ln k=0.4 and where using time averaged rainfall data can lead to an under prediction of infiltration excess and an over prediction of the amount of water entering the soil (ln k*>2. For soils susceptible to both infiltration excess and saturation excess, total runoff sensitivity was scaled by relating saturated drainage rates to average storm intensities (g* and parameter ranges where predicted runoff was dominated by

  16. Clouds enhance Greenland ice sheet meltwater runoff

    OpenAIRE

    2016-01-01

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2)Wm-2. Co...

  17. Clouds enhance Greenland ice sheet meltwater runoff

    OpenAIRE

    K. Van Tricht; Lhermitte, S.; Lenaerts, J. T. M.; Gorodetskaya, I. V.; L'Ecuyer, T. S.; Noël, B; Van Den Broeke, M.R.; Turner, D. D.; Van Lipzig, N. P. M.

    2016-01-01

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2)Wm-2. Co...

  18. A multi-stakeholder framework for urban runoff quality management: Application of social choice and bargaining techniques.

    Science.gov (United States)

    Ghodsi, Seyed Hamed; Kerachian, Reza; Zahmatkesh, Zahra

    2016-04-15

    In this paper, an integrated framework is proposed for urban runoff management. To control and improve runoff quality and quantity, Low Impact Development (LID) practices are utilized. In order to determine the LIDs' areas and locations, the Non-dominated Sorting Genetic Algorithm-II (NSGA-II), which considers three objective functions of minimizing runoff volume, runoff pollution and implementation cost of LIDs, is utilized. In this framework, the Storm Water Management Model (SWMM) is used for stream flow simulation. The non-dominated solutions provided by the NSGA-II are considered as management scenarios. To select the most preferred scenario, interactions among the main stakeholders in the study area with conflicting utilities are incorporated by utilizing bargaining models including a non-cooperative game, Nash model and social choice procedures of Borda count and approval voting. Moreover, a new social choice procedure, named pairwise voting method, is proposed and applied. Based on each conflict resolution approach, a scenario is identified as the ideal solution providing the LIDs' areas, locations and implementation cost. The proposed framework is applied for urban water quality and quantity management in the northern part of Tehran metropolitan city, Iran. Results show that the proposed pairwise voting method tends to select a scenario with a higher percentage of reduction in TSS (Total Suspended Solid) load and runoff volume, in comparison with the Borda count and approval voting methods. Besides, the Nash method presents a management scenario with the highest cost for LIDs' implementation and the maximum values for percentage of runoff volume reduction and TSS removal. The results also signify that selection of an appropriate management scenario by stakeholders in the study area depends on the available financial resources and the relative importance of runoff quality improvement in comparison with reducing the runoff volume.

  19. Should measurement of maximum urinary flow rate and residual urine volume be a part of a "minimal care" assessment programme in female incontinence?

    DEFF Research Database (Denmark)

    Sander, Pia; Mouritsen, L; Andersen, J Thorup

    2002-01-01

    OBJECTIVE: The aim of this study was to evaluate the value of routine measurements of urinary flow rate and residual urine volume as a part of a "minimal care" assessment programme for women with urinary incontinence in detecting clinical significant bladder emptying problems. MATERIAL AND METHOD...... female urinary incontinence. Thus, primary health care providers can assess women based on simple guidelines without expensive equipment for assessment of urine flow rate and residual urine....

  20. Bioretention column studies of phosphorus removal from urban stormwater runoff.

    Science.gov (United States)

    Hsieh, Chi-hsu; Davis, Allen P; Needelman, Brian A

    2007-02-01

    This study investigated the effectiveness of bioretention as a stormwater management practice using repetitive bioretention columns for phosphorus removal. Bioretention media, with a higher short-term phosphorus sorption capacity, retained more phosphorus from infiltrating runoff after 3 mg/L phosphorus loading. A surface mulch layer prevented clogging after repetitive total suspended solids input. Evidence suggests that long-term phosphorus reactions will regenerate active short-term phosphorus adsorption sites. A high hydraulic conductivity media overlaying one with low hydraulic conductivity resulted in a higher runoff infiltration rate, from 0.51 to 0.16 cm/min at a fixed 15-cm head, and was more efficient in phosphorus removal (85% mass removal) than a profile with low conductivity media over high (63% mass removal). Media extractions suggest that most of the retained phosphorus in the media layers is available for vegetative uptake and that environmental risk thresholds were not exceeded.

  1. Transport of three veterinary antimicrobials from feedlot pens via simulated rainfall runoff.

    Science.gov (United States)

    Sura, Srinivas; Degenhardt, Dani; Cessna, Allan J; Larney, Francis J; Olson, Andrew F; McAllister, Tim A

    2015-07-15

    Veterinary antimicrobials are introduced to wider environments by manure application to agricultural fields or through leaching or runoff from manure storage areas (feedlots, stockpiles, windrows, lagoons). Detected in manure, manure-treated soils, and surface and ground water near intensive cattle feeding operations, there is a concern that environmental contamination by these chemicals may promote the development of antimicrobial resistance in bacteria. Surface runoff and leaching appear to be major transport pathways by which veterinary antimicrobials eventually contaminate surface and ground water, respectively. A study was conducted to investigate the transport of three veterinary antimicrobials (chlortetracycline, sulfamethazine, tylosin), commonly used in beef cattle production, in simulated rainfall runoff from feedlot pens. Mean concentrations of veterinary antimicrobials were 1.4 to 3.5 times higher in surface material from bedding vs. non-bedding pen areas. Runoff rates and volumetric runoff coefficients were similar across all treatments but both were significantly higher from non-bedding (0.53Lmin(-1); 0.27) than bedding areas (0.40Lmin(-1); 0.19). In keeping with concentrations in pen surface material, mean concentrations of veterinary antimicrobials were 1.4 to 2.5 times higher in runoff generated from bedding vs. non-bedding pen areas. Water solubility and sorption coefficient of antimicrobials played a role in their transport in runoff. Estimated amounts of chlortetracycline, sulfamethazine, and tylosin that could potentially be transported to the feedlot catch basin during a one in 100-year precipitation event were 1.3 to 3.6ghead(-1), 1.9ghead(-1), and 0.2ghead(-1), respectively. This study demonstrates the magnitude of veterinary antimicrobial transport in feedlot pen runoff and supports the necessity of catch basins for runoff containment within feedlots.

  2. Tree ring-based reconstruction of October to November runoffs in the Jiaolai River since 1826

    Directory of Open Access Journals (Sweden)

    L. Ma

    2012-01-01

    Full Text Available The Horqin Sandy Land is a typical desertification region in China hounded by ecological and environmental problems, which continue to affect economic and social development.Hence,hydrological climate changes in this region need to be investigated. The current study reconstructed the runoff sequences in the southwest edge of the LiaoHe River into the XiaWa station of the JiaoLai River during the months of October to November from 1826 to 2005. A comprehensive timeline for the regional tree wheel width of the Horqin Sandy Land was employed. The timeline has been in use for 183 yr. For the past 180 yr, the runoff has experienced six and four consecutive Feng and dry sections, respectively. From 1982 to 2005, the runoff reached the longest section of a continuous low-flow runoff, with the mean average runoff amounting to only 63.58% of the entire period. Runoff has 3-, 11-, 15-, 24-, and 30-yr quasi-periodic variations, consistent with changes in similar areas worldwide. The period of 1826 to 1917 presents a more gentle change. In 1956, the runoff increased, and then significantly decreased for nearly 50 yr. The drop rate is 1.7766 million m3/10 yr, which shows a consistent downward trend with the precipitation (14.74 mm/10 yr. The overall reduction in precipitation accounts for 29.86% of the initial value, which is far less than 75.58% of the runoff. If the runoff and precipitation drop continue, more extensive and longer ecological and environmental problems are foreseen to occur.

  3. Surface runoff and nitrogen (N) loss in a bamboo (Phyllostachys pubescens) forest under different fertilization regimes.

    Science.gov (United States)

    Zhang, Qichun; Shamsi, Imran Haider; Wang, Jinwen; Song, Qiujin; Xue, Qiaoyun; Yu, Yan; Lin, Xianyong; Hussain, Sayed

    2013-07-01

    Nitrogen (N) losses from agricultural fields have been extensively studied. In contrast, surface runoff and N losses have rarely been considered for bamboo forests that are widespread in regions such as southern China. The thriving of bamboo industries has led to increasing fertilizer use in bamboo forests. In this study, we evaluated surface runoff and N losses in runoff following different fertilization treatments under field conditions in a bamboo (Phyllostachys pubescens) forest in the catchment of Lake Taihu in Jiangsu, China. Under three different fertilization regimes, i.e., control, site-specific nutrient management (SSNM), and farmer's fertilization practice (FFP), the water runoff rate amounted to 356, 361, and 342 m(3) ha(-1) and accounted for 1.91, 1.98, and 1.85% of the water input, respectively, from June 2009 to May 2010. The total N losses via surface runoff ranged from 1.2 to 1.8 kg ha(-1). Compared with FFP, the SSNM treatment reduced total nitrogen (TN) and dissolved nitrogen (DN) losses by 31 and 34%, respectively. The results also showed that variations in N losses depended mainly on runoff fluxes, not N concentrations. Runoff samples collected from all treatments throughout the year showed TN concentrations greater than 0.35 mg L(-1), with the mean TN concentration in the runoff from the FFP treatment reaching 8.97 mg L(-1). The loss of NO3(-)-N was greater than the loss of NH4(+)-N. The total loss of dissolved organic nitrogen (DON) reached 23-41% of the corresponding DN. Therefore, DON is likely the main N species in runoff from bamboo forests and should be emphasized in the assessment and management of N losses in bamboo forest.

  4. A comparison between the order and the volume fill rates for a base-stock inventory control system under a compound renewal demand process

    DEFF Research Database (Denmark)

    Larsen, Christian; Thorstenson, Anders

    process. We also elaborate on when the order fill rate can be interpreted as the (extended) ready rate. Furthermore, for the case when customer orders are generated by a negative binomial distribution, we show that it is the size of the shape parameter of this distribution that determines the relative......The order fill rate is less commonly used than the volume fill rate (most often just denoted fill rate) as a performance measure for inventory control systems. However, in settings where the focus is on filling customer orders rather than total quantities, the order fill rate should...... be the preferred measure. In this paper we consider a continuous review, base-stock policy, where all replenishment orders have the same constant lead time and all unfilled demands are backordered. We develop exact mathematical expressions for the two fill-rate measures when demand follows a compound renewal...

  5. Normal Expiratory Flow Rate and Lung Volumes in Patients with Combined Emphysema and Interstitial Lung Disease: A Case Series and Literature Review

    Directory of Open Access Journals (Sweden)

    Karen L Heathcote

    2011-01-01

    Full Text Available Pulmonary function tests in patients with idiopathic pulmonary fibrosis characteristically show a restrictive pattern including small lung volumes and increased expiratory flow rates resulting from a reduction in pulmonary compliance due to diffuse fibrosis. Conversely, an obstructive pattern with hyperinflation results in emphysema by loss of elastic recoil, expiratory collapse of the peripheral airways and air trapping. When the diseases coexist, pulmonary volumes are compensated, and a smaller than expected reduction or even normal lung volumes can be found. The present report describes 10 patients with progressive breathlessness, three of whom experienced severe limitation in their quality of life. All patients showed lung interstitial involvement and emphysema on computed tomography scan of the chest. The 10 patients showed normal spirometry and lung volumes with severe compromise of gas exchange. Normal lung volumes do not exclude diagnosis of idiopathic pulmonary fibrosis in patients with concomitant emphysema. The relatively preserved lung volumes may underestimate the severity of idiopathic pulmonary fibrosis and attenuate its effects on lung function parameters.

  6. Green Roofs for Stormwater Runoff Control - Abstract

    Science.gov (United States)

    This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs were compared. Evapotranspiration from planted green roofs and evaporation from unplanted media roofs were also compared. The influence...

  7. Runoff, Erosion and Nutrient Sedimentation due Vegetative Soil Conservation Applied on Oil Palm Plantation

    Directory of Open Access Journals (Sweden)

    Zahrul Fuady

    2014-07-01

    Full Text Available Land cover crops play an important role in influencing erosion. Cover crops provide protection against the destruction of soil aggregates by rain and runoff. This research aims to study the effectiveness of vegetation as soil conservation in controlling erosion and runoff. This study was a field experiment on erosion plots measuring 10 m x 5 m were arranged in Split Plot design with replications as blocks, consists of a combination of two factors: the age of the oil palm and slope as the first factor, and vegetative soil conservation techniques as a second factor. The results showed the soil conservation techniques in oil palm cultivation can reduce the rate of surface runoff, soil erosion and nutrient loss. Soil conservation with upland rice planted with soybean sequence + strip Mucuna bracteata (T3 most effectively reduce runoff and prevent soil erosion and nutrient loss.

  8. Understanding Greenland Ice Sheet Runoff Losses

    Science.gov (United States)

    Rennermalm, A. K.; Tedesco, M.; Smith, L. C.; Pitcher, L. H.; Mote, T. L.; Yager, P. L.; Moustafa, S.; Cooper, M. G.; van As, D.; Hasholt, B.; Mikkelsen, A. B.

    2016-12-01

    One of the main ways the ice sheet loses mass is by meltwater runoff. Because of Greenland's great size, regional surface mass balance models are key to understanding large-scale runoff patterns and trends. At the same time, remote sensing and field observations reveal a complex hydrological system on the ice sheet's surface that are not well captured by these models. Yet, understanding the fate and impact of the meltwater on the ocean depends on knowing these temporal and spatial details. Unusually thick, near surface, ice lenses found in firn cores, most likely formed during very large recent melt events signify meltwater refreezing, but may also prevent further infiltration while facilitating runoff. Maps derived from remote sensing show how this runoff flows through an extensive network of supraglacial streams and lakes before it drains into the ice via moulins. Observations of discharge on the ice sheet surface and its margin provide evidence of runoff delays and retention before it is exported to the surrounding oceans. Here, trends and spatial patterns in ice sheet runoff will be examined by using model outputs from the regional surface mass balance model Modèle Atmosphérique Régional and compared with recent remotely sensed and field observations.

  9. Nitrogen export by runoff and sediment under different types of land use in West Tiaoxi catchment

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Five typical land covers in West Tiaoxi catchment of China, including mulberry garden,bamboo forest, pinery, vegetable plot and paddy field, were studied on nitrogen loss in artificialrainstorm runoff and sediment. Triple duplication experiments have been carried out under the artificialrain condition with an intensity of 2 mm.min-1 and lasting 32 minutes in 3 m2 field. Export of variousspecies of nitrogen in runoff and sediment were investigated. The results show that nitrogen lossamount and rate are quite different among five kinds of land covers. The loss of total nitrogen inrunoff of mulberry is the largest and that of paddy field is the smallest. Particle nitrogen accounts for70-90% of total nitrogen in runoff of various kinds of land covers. Loss of dissolved nitrogen in pineryis much higher than in other kinds of land covers, which are similar among them. More detailedspecies of dissolved nitrogen show their respective features among various land covers. Total amountsof nitrogen loss from the top 10 cm layer of 5 kinds of soils are estimated as high as 4.66-9.40 g.m-2,of which nitrogen loss through sediment of runoff accounts for more than 90%. The rate of totalnitrogen losses are ranged in 2.68-14.48 mg.m-2.min-1 in runoff, which is much lower than that of100.01-172.67 mg.m-2.min-1 in sediment of runoff.

  10. Assessment of pollution in road runoff using a Bufo viridis biological assay

    Energy Technology Data Exchange (ETDEWEB)

    Dorchin, A., E-mail: adorchin@campus.haifa.ac.i [Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa 31905 (Israel); Shanas, U., E-mail: shanas@research.haifa.ac.i [Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa 31905 (Israel); Department of Biology, Faculty of Natural sciences, University of Haifa - Oranim, Tiv' on 36006 (Israel)

    2010-12-15

    Road runoff is a major source of environmental pollution, significantly threatening nearby aquatic habitats. Chemical analyses indicate high pollutant concentrations in the road's 'first flush', but bioassays are more advantageous for addressing the cumulative effects of the numerous pollutants within the runoff. We used Bufo viridis embryos and larvae to assess the toxicity of road runoff from two major highways in Israel. We show, for the first time, that exposure to midseason runoff not only has an adverse effect on growth and development rates of B. viridis larvae but can also lead to increased rates of morphological deformations. Seasonal first flushes, despite having higher metal concentrations, did not adversely affect the toad larvae, apparently due to a counter effect of organic matter that potentially served as a supplementary energy resource. Road runoff can be a major cause for a qualitative decrease in the quality of aquatic habitats threatening amphibians in Israel. - Highway runoff has detrimental effects on the development of B. viridis larvae.

  11. Model based historical runoff contribution from an Alpine glacier

    Science.gov (United States)

    Zoccatelli, Davide; Bonato, Paola; Carturan, Luca; Dalla Fontana, Giancarlo; De Blasi, Fabrizio; Borga, Marco

    2016-04-01

    The aim of this work is to analyze how climatic variability and glacier retreat impact the water balance of a small (8.5 km2) glaciarised catchment in the Eastern Italia Alps over a 30 year (1983-2013) period. The analysis is carried out by coupling local high quality data and a glacio-hydrological model able to simulate both the glacier and hydrology dynamics. Runoff contribution from glacier ice is related with trends in climatic variables and with glacier retreat. The area analyzed is the headwater of Noce Bianco river basin, lying in the Ortles-Cevedale group and including the La Mare glacier. During the study period the glacier area decreased from 4.7 km2 (50% basin area) to 3.47 km2 (40% basin area). In this area the following observations are available: 30 years of daily meteorological data at high elevation close to the catchment; three DTMs of the glacier, covering the entire period, which enable the calculation of the volume change and geodetic mass balance; direct glaciological mass balance observations over the period 2003-2013; discharge measurement at the catchment outlet over the period 2007-2013. The data availability and the significant shrinking of the glacier during the analyzed period make this catchment ideal for studying the hydrological impacts of glacier retreat. The semi-distributed conceptual model includes a snow and glacier accumulation and ablation module, based on temperature-radiation index and a glacier retreat model. The glacier retreat model allows to use the annual simulated glacier mass balance to update the glacier area (Huss et al., 2010). The model simulations are carried out from 1983 to 2013. We show that the model is able to capture adequately the measured daily discharge, the observed changes in glacier area and their spatial distribution. The contribution of glacier ice meltwater to annual runoff is below 10% in the first decade of simulation. This variable however showed a clear increasing trend, with peaks for single

  12. Rainfall–Runoff Simulations to Assess the Potential of SuDS for Mitigating Flooding in Highly Urbanized Catchments

    Directory of Open Access Journals (Sweden)

    Daniel Jato-Espino

    2016-01-01

    Full Text Available Sustainable Urban Drainage Systems (SuDS constitute an alternative to conventional drainage when managing stormwater in cities, reducing the impact of urbanization by decreasing the amount of runoff generated by a rainfall event. This paper shows the potential benefits of installing different types of SuDS in preventing flooding in comparison with the common urban drainage strategies consisting of sewer networks of manholes and pipes. The impact of these systems on urban water was studied using Geographic Information Systems (GIS, which are useful tools when both delineating catchments and parameterizing the elements that define a stormwater drainage system. Taking these GIS-based data as inputs, a series of rainfall–runoff simulations were run in a real catchment located in the city of Donostia (Northern Spain using stormwater computer models, in order to compare the flow rates and depths produced by a design storm before and after installing SuDS. The proposed methodology overcomes the lack of precision found in former GIS-based stormwater approaches when dealing with the modeling of highly urbanized catchments, while the results demonstrated the usefulness of these systems in reducing the volume of water generated after a rainfall event and their ability to prevent localized flooding and surcharges along the sewer network.

  13. Rainfall-Runoff Simulations to Assess the Potential of SuDS for Mitigating Flooding in Highly Urbanized Catchments.

    Science.gov (United States)

    Jato-Espino, Daniel; Charlesworth, Susanne M; Bayon, Joseba R; Warwick, Frank

    2016-01-21

    Sustainable Urban Drainage Systems (SuDS) constitute an alternative to conventional drainage when managing stormwater in cities, reducing the impact of urbanization by decreasing the amount of runoff generated by a rainfall event. This paper shows the potential benefits of installing different types of SuDS in preventing flooding in comparison with the common urban drainage strategies consisting of sewer networks of manholes and pipes. The impact of these systems on urban water was studied using Geographic Information Systems (GIS), which are useful tools when both delineating catchments and parameterizing the elements that define a stormwater drainage system. Taking these GIS-based data as inputs, a series of rainfall-runoff simulations were run in a real catchment located in the city of Donostia (Northern Spain) using stormwater computer models, in order to compare the flow rates and depths produced by a design storm before and after installing SuDS. The proposed methodology overcomes the lack of precision found in former GIS-based stormwater approaches when dealing with the modeling of highly urbanized catchments, while the results demonstrated the usefulness of these systems in reducing the volume of water generated after a rainfall event and their ability to prevent localized flooding and surcharges along the sewer network.

  14. Rainfall–Runoff Simulations to Assess the Potential of SuDS for Mitigating Flooding in Highly Urbanized Catchments

    Science.gov (United States)

    Jato-Espino, Daniel; Charlesworth, Susanne M.; Bayon, Joseba R.; Warwick, Frank

    2016-01-01

    Sustainable Urban Drainage Systems (SuDS) constitute an alternative to conventional drainage when managing stormwater in cities, reducing the impact of urbanization by decreasing the amount of runoff generated by a rainfall event. This paper shows the potential benefits of installing different types of SuDS in preventing flooding in comparison with the common urban drainage strategies consisting of sewer networks of manholes and pipes. The impact of these systems on urban water was studied using Geographic Information Systems (GIS), which are useful tools when both delineating catchments and parameterizing the elements that define a stormwater drainage system. Taking these GIS-based data as inputs, a series of rainfall–runoff simulations were run in a real catchment located in the city of Donostia (Northern Spain) using stormwater computer models, in order to compare the flow rates and depths produced by a design storm before and after installing SuDS. The proposed methodology overcomes the lack of precision found in former GIS-based stormwater approaches when dealing with the modeling of highly urbanized catchments, while the results demonstrated the usefulness of these systems in reducing the volume of water generated after a rainfall event and their ability to prevent localized flooding and surcharges along the sewer network. PMID:26805864

  15. Modeling runoff and runon in a desert shrubland ecosystem, Jornada Basin, New Mexico

    Science.gov (United States)

    Howes, David A.; Abrahams, Athol D.

    2003-07-01

    A new two-dimensional (2D) distributed parameter model is developed to simulate overland flow in two small, semiarid shrubland watersheds in the Jornada Basin, southern New Mexico. The model is event-based and represents the watershed by an array of 1-m 2 cells, in which the cell size is approximately equal to the average area of the shrubs. In the model, flow directions and volumes are computed by a second-order predictor-corrector finite difference scheme, which is employed to solve the 2D kinematic wave equation. Thus, flow routing is computed implicitly and may vary in response to flow conditions. The model uses only six parameters for which values are obtained from field surveys and rainfall simulation experiments. The model underpredicts runoff from the watersheds because the measured values of saturated hydraulic conductivity Ks for intershrub areas are too high. The likely reason for this overestimation is that values of Ks were obtained from runoff plot experiments conducted at the beginning of summer on surfaces with degraded seals, whereas most summer storms occur on surfaces that have experienced recent rainfall and have well-developed seals. Model performance is much improved when Ks is treated as a calibration parameter. The importance of runon infiltration in supplying water to shrubs is investigated for a range of rainfall and antecedent soil moisture conditions. On average, runon infiltration accounts for between 3% and 20% of the total infiltration under a shrub. The most favorable conditions for runon infiltration are an initially wet soil and a low mean rainfall rate.

  16. Comparison of tumor volumes derived from glucose metabolic rate maps and SUV maps in dynamic 18F-FDG PET.

    NARCIS (Netherlands)

    Visser, E.P.; Philippens, M.E.P.; Kienhorst, L.; Kaanders, J.H.A.M.; Corstens, F.H.M.; Geus-Oei, L.F. de; Oyen, W.J.G.

    2008-01-01

    Tumor delineation using noninvasive medical imaging modalities is important to determine the target volume in radiation treatment planning and to evaluate treatment response. It is expected that combined use of CT and functional information from 18F-FDG PET will improve tumor delineation. However, u

  17. The unsettled world of leak rate physics: 1 atm large-volume considerations do not apply to MEMS packages: a practitioner's perspective

    Science.gov (United States)

    Kullberg, Richard C.; Jonath, Arthur; Lowry, Robert K.

    2012-03-01

    The world of leak testing, and the applicable physics, is unsettled. While globally lower MIL-STD leak rate criteria are under consideration even for 1 atm-large volume packages, industry is conversely moving rapidly into very small volume MEMS and vacuum packaging for advanced devices. These changes point out serious conceptual disconnects between the reality of properly characterizing a leak and the conceptual tools used to ensure the desired lifetime. The physical understandings and associated tool sets used to test and model the leaks are described. We modeled two actual packages, a large, ~200 cc volume multichip module for aerospace applications and a small ~0.01cc volume MEMS package for sensor applications. Impacts of various physical models of leak flow into a package are compared to include Fickian Diffusion, The Davy Model, Howl-Mann, and an empirically derived model based on Kr-85 leak testing as called out in the most recent edition of MIL-STD-883. As shown in the comparisons, simple He leak testing and physical models based thereon fall apart in the small volume MEMS packaging space.

  18. A MATLAB toolbox for correcting within-individual effects of respiration rate and tidal volume on respiratory sinus arrhythmia during variable breathing.

    Science.gov (United States)

    Schulz, Stefan M; Ayala, Erica; Dahme, Bernhard; Ritz, Thomas

    2009-11-01

    Respiratory sinus arrhythmia (RSA) is a common estimator of vagal outflow to the heart, dependent on parasympathetic activity. During variable breathing, both respiration rate and tidal volume contribute substantially to within-individual RSA variance. A respiratory control method allows for within-individual correction of the time-domain index of RSA. rsaToolbox is a set of MATLAB programs for scoring respiration-corrected RSA using measurements of cardiac interbeat intervals, respiratory-cycle times, and tidal volumes, recorded at different paced-breathing frequencies. The within-individual regression of RSA divided by tidal volume upon total respiratory cycle time is then used to estimate the baseline vagal tone for each breath of a given total respiratory-cycle time. During a subsequent analysis, the difference between the observed RSA (divided by the tidal volume at each breath) and the RSA divided by the tidal volume that was predicted by the baseline equation serves as an estimate of changes in vagal tone. rsaToolbox includes a graphical user interface for intuitive handling. Modular implementation of the algorithm also allows for flexible integration within other analytic strategies or for batch processing.

  19. Runoff production from intercrater plains on Mars

    Science.gov (United States)

    Irwin, R. P., III; Matsubara, Y.; Cawley, J. C.

    2016-12-01

    Ancient fluvial paleochannels and paleolakes constrain the hydrology of a wetter epoch in the early history of Mars. The cross-sectional dimensions of fluvial channels scale with discharge, watershed topography is generally well preserved, and adjustments can be made for gravity. These factors have supported conservative estimates of runoff production during event floods more than 3.5 billion years ago. Assuming weak channel banks, such that discharge is low per unit channel width, event floods in smaller watersheds had estimated runoff production of 1 cm/day. Highland surfaces generated runoff inefficiently, such that channel width increases with only the 0.3 power of watershed area. Inefficient runoff production on Mars is also suggested by new landscape evolution modeling. In long-term simulations that accurately reproduce the present landscape, forming and degrading all of the Middle and Late Noachian impact craters in selected study areas, inefficient runoff production is needed to degrade craters without intensely dissecting intercrater surfaces. The model shows that discharge generally cannot increase at more than the 0.3 power of watershed area. Paleolakes provide useful constraints on paleohydrology over intermediate timescales of years to millennia. Most local highland basins were never integrated into regional drainage systems, but some have both a contributing valley network and an outlet valley, indicating that they overflowed. Paleolake overflows require a medium-term water supply that exceeds losses to evaporation. Reasonable evaporation of 0.1 to 1 m/yr and watersheds that are mostly >10 times the area of overflowed paleolakes suggest runoff production of gardening, and lesser aeolian erosion. Low drainage density is an obvious explanation for inefficient runoff production, but it may be the consequence of moderate rainfall or snowmelt, as well as incision of valley networks over a finite timescale.

  20. Simulation of response law for soil surface roughness and hydraulics parameters of runoff%地表糙度与径流水力学参数响应规律模拟

    Institute of Scientific and Technical Information of China (English)

    梁心蓝; 赵龙山; 吴佳; 吴发启

    2014-01-01

    Soil surface roughness (SSR) is used to describe irregularities in the soil surface at a small scale. It is affected by tillage systems, soil properties, runoff, micro topography, and climate. The objective of this paper was to study the mutual influence of SSR and characteristic of runoff as well as its hydraulic parameter under four different tillage systems. Artificial shallow plowing (ASP), artificial deep plowing (ADP), contour plowing (CP), and no treatment tillage (CK) were simulated in the laboratory to form four different soil surface roughness. Soil sample was filled into a 2.0 m × 1.0 m × 0.5 m iron slope-adjustable box. The soil in the box were exposed to 60 mm/h and 120 mm/h simulated rainfall for 90 min at slope 36%. Soil surface roughness was measured before and after each rainfall event. Runoff was measured in every two min since runoff occurred. The shape of runoff and runoff pattern were observed during the rainfall events. Reynolds number, Froude number, Resistance coefficient and Flow shear stress were calculated. Results showed that SSR was in an order of CP>ADP>ASP>CK before and after the rainfall simulation. In the same condition of rainfall intensity and duration, soil surfaces with different SSR showed significant difference in runoff. The higher the initial SSR was, the easier the runoff was in stable state and the flow was a laminar flow. On the contrary, the smaller initial SSR was, the easier the runoff was in turbulent flow state. Tillage with bigger initial SSR showed smaller quantity of flow, runoff, and sediment yield. Under 60 mm/h rainfall, the initial SSR of CP was 6.51 mm, which had the smallest runoff volume of 75.79 L. The initial SSR of ADP and ASP were 4.90 mm and 4.17 mm, respectively. The runoff volume of ADP and ASP were respectively 85.93 L and 87.13 L. The initial SSR of CK was the smallest one (0.36 mm). Its runoff volume was 97.83 L. The initial SSR was negatively correlated to the runoff volume significantly as

  1. Development of ultrasonic velocity profile method for flow rate measurements of power plant (effect of measurement volume on turbulent flow measurement)

    Energy Technology Data Exchange (ETDEWEB)

    Hiroshige, Kikura; Gentaro, Yamanaka; Tsuyoshi, Taishi; Masanori, Aritomi [Tokyo Institute of Technology, Tokyo (Japan); Yasushi, Takeda [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Michitsugu, Mori [Tokyo Electric Power Co., Inc. (Japan)

    2001-07-01

    Ultrasonic Velocity Profile method has many advantages for flow rate measurement of power plant over the conventional flow measurement methods, such as measurement of the instantaneous velocity profile along the measuring line and its applicability to opaque liquids. Furthermore, the method has an advantage of being non-intrusive. Hence, it is applicable to various flow conditions, although it requires a relatively large measurement volume. In this paper, the effects of the measurement volume on the mean velocity profile for flow rate measurements of power plant and the Reynolds stress measurement have been investigated for fully developed turbulent pipe flows in a vertical pipe. The results are then compared with data obtained by Direct Numerical Simulation (DNS). (authors)

  2. Computation of order and volume fill rates for a base stock inventory control system with heterogeneous demand to investigate which customer class gets the best service

    DEFF Research Database (Denmark)

    Larsen, Christian

    We consider a base stock inventory control system serving two customer classes whose demands are generated by two independent compound renewal processes. We show how to derive order and volume fill rates of each class. Based on assumptions about first order stochastic dominance we prove when one ...... customer class will get the best service. That theoretical result is validated through a series of numerical experiments which also reveal that it is quite robust.......We consider a base stock inventory control system serving two customer classes whose demands are generated by two independent compound renewal processes. We show how to derive order and volume fill rates of each class. Based on assumptions about first order stochastic dominance we prove when one...

  3. Impact of landuse/land cover change on run-off in the catchment of a hydro power project

    Science.gov (United States)

    Khare, Deepak; Patra, Diptendu; Mondal, Arun; Kundu, Sananda

    2017-05-01

    The landuse/land cover change and rainfall have a significant influence on the hydrological response of the river basins. The run-off characteristics are changing naturally due to reduction of initial abstraction that increases the run-off volume. Therefore, it is necessary to quantify the changes in the run-off characteristics of a catchment under the influence of changed landuse/land cover. Soil conservation service model has been used in the present study to analyse the impact of various landuse/land cover (past, present and future time period) change in the run-off characteristics of a part of Narmada basin at the gauge discharge site of Mandaleswar in Madhya Pradesh, India. Calculated run-off has been compared with the observed run-off data for the study. The landuse/land cover maps of 1990, 2000 and 2009 have been prepared by digital classification method with proper accuracy using satellite imageries. The impact of the run-off change on hydro power potential has been assessed in the study along with the estimation of the future changes in hydro power potential. Five types of conditions (+10, +5 %, average, -5, -10 % of average rainfall) have been applied with 90 and 75 % dependability status. The generated energy will be less in 90 % dependable flow in respect to the 75 % dependable flow. This work will be helpful for future planning related to establishment of hydropower setup.

  4. An at-grade stabilization structure impact on runoff and suspended sediment

    Science.gov (United States)

    Minks, Kyle R.; Lowery, Birl; Madison, Fred W.; Ruark, Matthew; Frame, Dennis R.; Stuntebeck, Todd D.; Komiskey, Matthew J.

    2012-01-01

    In recent years, agricultural runoff has received more attention as a major contributor to surface water pollution. This is especially true for the unglaciated area of Wisconsin, given this area's steep topography, which makes it highly susceptible to runoff and soil loss. We evaluated the ability of an at-grade stabilization structure (AGSS), designed as a conservation practice to reduce the amount of overland runoff and suspended sediment transported to the surface waters of an agricultural watershed. Eight years of storm and baseflow data collected by the US Geological Survey–Wisconsin Water Science Center on a farm in west central Wisconsin were analyzed for changes in precipitation, storm runoff volume, and suspended sediment concentration before and after installation of an AGSS. The agricultural research site was designed as a paired watershed study in which monitoring stations were installed on the perennial streams draining both control and treatment watersheds. Linear mixed effects model analyses were conducted to determine if any statistically significant changes occurred in the water quality parameters before and after the AGSS was installed. Results indicated no significant changes (p = 0.51) in average event precipitation and runoff volumes before and after installation of the AGSS in either the treatment (NW) or control (SW) watersheds. However, the AGSS did significantly reduce the average suspended sediment concentration in the event runoff water (p = 0.02) in the NW from 972 to 263 mg L–1. In addition, particle size analyses, using light diffraction techniques, were conducted on soil samples taken from within the AGSS and adjacent valley and ridge top to determine if suspended sediments were being retained within the structure. Statistical analysis revealed a significantly (p waters. The cost of an AGSS can range from US$3,500 to US$8,000, depending on size. Thus, these structures provide a cheap and effective means of improving water quality

  5. Chlorpyrifos and atrazine removal from runoff by vegetated filter strips: experiments and predictive modeling.

    Science.gov (United States)

    Poletika, N N; Coody, P N; Fox, G A; Sabbagh, G J; Dolder, S C; White, J

    2009-01-01

    Runoff volume and flow concentration are hydrological factors that limit effectiveness of vegetated filter strips (VFS) in removing pesticides from surface runoff. Empirical equations that predict VFS pesticide effectiveness based solely on physical characteristics are insufficient on the event scale because they do not completely account for hydrological processes. This research investigated the effect of drainage area ratio (i.e., the ratio of field area to VFS area) and flow concentration (i.e., uniform versus concentrated flow) on pesticide removal efficiency of a VFS and used these data to provide further field verification of a recently proposed numerical/empirical modeling procedure for predicting removal efficiency under variable flow conditions. Runoff volumes were used to simulate drainage area ratios of 15:1 and 30:1. Flow concentration was investigated based on size of the VFS by applying artificial runoff to 10% of the plot width (i.e., concentrated flow) or the full plot width (i.e., uniform flow). Artificial runoff was metered into 4.6-m long VFS plots for 90 min after a simulated rainfall of 63 mm applied over 2 h. The artificial runoff contained sediment and was dosed with chlorpyrifos and atrazine. Pesticide removal efficiency of VFS for uniform flow conditions (59% infiltration; 88% sediment removal) was 85% for chlorpyrifos and 62% for atrazine. Flow concentration reduced removal efficiencies regardless of drainage area ratio (i.e., 16% infiltration, 31% sediment removal, 21% chlorpyrifos removal, and 12% atrazine removal). Without calibration, the predictive modeling based on the integrated VFSMOD and empirical hydrologic-based pesticide trapping efficiency equation predicted atrazine and chlorpyrifos removal efficiency under uniform and concentrated flow conditions. Consideration for hydrological processes, as opposed to statistical relationships based on buffer physical characteristics, is required to adequately predict VFS pesticide trapping

  6. Unsteady Unidirectional Flow of Voigt Fluid through the Parallel Microgap Plates with Wall Slip and Given Inlet Volume Flow Rate Variations

    OpenAIRE

    Yinwei Lin; Chen, C. K.

    2015-01-01

    In order to solve the velocity profile and pressure gradient of the unsteady unidirectional slip flow of Voigt fluid, Laplace transform method is adopted in this research. Between the parallel microgap plates, the flow motion is induced by a prescribed arbitrary inlet volume flow rate which varies with time. The velocity slip condition on the wall and the flow conditions are known. In this paper, two basic flow situations are solved, which are a suddenly started and a constant acc...

  7. Runoff and erosion in a pinon-juniper woodland: Influence of vegetation patches

    Energy Technology Data Exchange (ETDEWEB)

    Reid, K.D.; Wilcox, B.P.; Breshears, D.D.; MacDonald, L.

    1999-12-01

    In many semiarid regions, runoff and erosion differ according to vegetation patch type. These differences, although hypothesized to fundamentally affect ecological processes, have been poorly quantified. In a semiarid pinion-juniper woodland [Pinus edulis Engelm. and Juniperus monosperma (Engelm) Sarg.] in northern New Mexico, the authors measured runoff and erosion from the three patch types that compose these woodlands: Canopy patches (those beneath woody plants), vegetated patched in intercanopy areas, and bare patches in intercanopy areas. The bare intercanopy patches exhibited the highest rates, followed by vegetated intercanopy patches and then by canopy patches. Large convective summer storms, though relatively infrequent, generated much of the runoff and most of the sediment; prolonged frontal storms were capable of generating considerable runoff but little sediment. A portion of the runoff and most of the sediment generated from bare intercanopy patches was redistributed down-slope, probably to adjacent vegetated intercanopy patches, demonstrating connectivity between these two patch types. Their results indicate that there are significant and important differences in runoff and sediment production from the three patch types; that bare intercanopy patches act as sources of both water and sediment for the vegetated intercanopy patches; and that the transfer of water and sediment at small scales is both frequent enough and substantial enough to be considered ecologically significant.

  8. Multiple Time Scale Analysis of River Runoff Using Wavelet Transform for Dagujia River Basin, Yantai, China

    Institute of Scientific and Technical Information of China (English)

    LIU Delin; LIU Xianzhao; LI Bicheng; ZHAO Shiwei; LI Xiguo

    2009-01-01

    Based on monOdy river runoff and meteorological data, a method of Morlet wavelet transform was used to analyze the multiple time scale characteristics of river runoffin the Dagnjia River Basin, Yantai City, Shandong Province. The results showed that the total annual river runoff in the Dagujia River Basin decreased significantly from 1966 to 2004, and the rate of decrease was 48×106m3/10yr, which was higher than the mean value of most rivers in China. Multiple time scale characteristics existed, which accounted for different aspects of the changes in annual river runoff, and the major periods of the runoff time series were identified as about 28 years, 14 years and 4 years with decreasing levels of fluctuation. The river runoff evolution process was controlled by changes in precipitation to a certain extent, but it was also greatly influenced by human activities. Also, for different time periods and scales, the impacts of climate changes and human activities on annual river runoff evolution occurred at the same time. Changes in the annual river runoffwere mainly associated with climate change before the 1980s and with human activities after 1981.

  9. Evaluation of liver functional reserve by combining D-sorbitol clearance rate and CT measured liver volume

    Institute of Scientific and Technical Information of China (English)

    Yi-Ming Li; Fan Lv; Xin Xu; Hong Ji; Wen-Tao Gao; Tuan-Jie Lei; Gui-Bing Ren; Zhi-Lan Bai; Qiang Li

    2003-01-01

    AIM: Our research attempted to evaluate the overall functional reserve of cirrhotic liver by combination of hepatic functional blood flow, liver volume, and ChildPugh′s classification, and to discuss its value of clinical application.METHODS: Ninety two patients with portal hypertension due to hepatic cirrhosis were investigated. All had a historyof haematemesis and hematochezia, esophageal and gastric fundus varices, splenomegaly and hypersplenia.A 2-year follow-up was routinely performed and no one was lost. Twenty two healthy volunteers were used as control group. Blood and urine samples were collected 4times before and after intravenous D-sorbitol infusion.The hepatic clearance (CLH) of D-sorbitol was then calculated according to enzymatic spectrophotometric method while the total blood flow (QToTAL) and intrahepatic shunt (RINs) were detected by multicolor Doppler ultrasound, and the liver volume was measured by spiral CT. Data were estimated by t-test, variance calculation and chi-squared test. The relationships between all these parameters and different groups were investigated according to Child-Pugh classification and postoperative complications respectively.RESULTS: Steady blood concentration was achieved 120 mins after D-sorbitol intravenous infusion, which was (0.358±0.064) mmoⅠ@L-1 in cirrhotic group and (0.189±0.05)mmol@L-1 in control group (P<0.01). CLH=(812.7±112.4) ml@min-1,QTOTAL=(1280.6±131.4) ml@min-1, and RINS=(36.54±10.65)%in cirrhotic group and CLH=(1248.3±210.5) ml.min-1, QTOTAL=(1362.4-±126.9) ml@min-1, and RINS=(8.37±3.32) % in control group (P<0.01). The liver volume of cirrhotic group was 1057±249 cm3, 851±148 cm3 and 663±77 cm3 in Child A, B and C group respectively with significant difference (P<0.001).The average volume of cirrhotic liver in Child B, C group was significantly reduced in comparison with that in control group (P<0.001). The patient, whose liver volume decreased by 40 % with the CLH below 600 ml

  10. Consequences of future increased Arctic runoff on Arctic Ocean stratification, circulation, and sea ice cover

    Science.gov (United States)

    Nummelin, Aleksi; Ilicak, Mehmet; Li, Camille; Smedsrud, Lars H.

    2016-01-01

    The Arctic Ocean has important freshwater sources including river runoff, low evaporation, and exchange with the Pacific Ocean. In the future, we expect even larger freshwater input as the global hydrological cycle accelerates, increasing high-latitude precipitation, and river runoff. Previous modeling studies show some robust responses to high-latitude freshwater perturbations, including a strengthening of Arctic stratification and a weakening of the large-scale ocean circulation; some idealized modeling studies also document a stronger cyclonic circulation within the Arctic Ocean itself. With the broad range of scales and processes involved, the overall effect of increasing runoff requires an understanding of both the local processes and the broader linkages between the Arctic and surrounding oceans. Here we adopt a more comprehensive modeling approach by increasing river runoff to the Arctic Ocean in a coupled ice-ocean general circulation model, and show contrasting responses in the polar and subpolar regions. Within the Arctic, the stratification strengthens, the halocline and Atlantic Water layer warm, and the cyclonic circulation spins up, in agreement with previous work. In the subpolar North Atlantic, the model simulates a colder and fresher water column with weaker barotropic circulation. In contrast to the estuarine circulation theory, the volume exchange between the Arctic Ocean and the surrounding oceans does not increase with increasing runoff. While these results are robust in our model, we require experiments with other model systems and more complete observational syntheses to better constrain the sensitivity of the climate system to high-latitude freshwater perturbations.

  11. Hydrologic sensitivity of flood runoff and inundation: 2011 Thailand floods in the Chao Phraya River basin

    Science.gov (United States)

    Sayama, T.; Tatebe, Y.; Iwami, Y.; Tanaka, S.

    2015-07-01

    The Thailand floods in 2011 caused unprecedented economic damage in the Chao Phraya River basin. To diagnose the flood hazard characteristics, this study analyses the hydrologic sensitivity of flood runoff and inundation to rainfall. The motivation is to address why the seemingly insignificant monsoon rainfall, or 1.2 times more rainfall than for past large floods, including the ones in 1995 and 2006, resulted in such devastating flooding. To quantify the hydrologic sensitivity, this study simulated long-term rainfall-runoff and inundation for the entire river basin (160 000 km2). The simulation suggested that the flood inundation volume was 1.6 times more in 2011 than for the past flood events. Furthermore, the elasticity index suggested that a 1 % increase in rainfall causes a 2.3 % increase in runoff and a 4.2 % increase in flood inundation. This study highlights the importance of sensitivity quantification for a better understanding of flood hazard characteristics; the presented basin-wide rainfall-runoff-inundation simulation was an effective approach to analyse the sensitivity of flood runoff and inundation at the river basin scale.

  12. Runoff quality from no-till cotton fertilized with broiler litter in subsurface bands.

    Science.gov (United States)

    Adeli, A; Tewolde, H; Shankle, M W; Way, T R; Brooks, J P; McLaughlin, M R

    2013-01-01

    Surface broadcast of broiler litter to no-till row crops exposes the litter and its nutrients to risks of loss in runoff water and volatilization and may limit the potential benefit of litter to the crops. Subsurface banding of litter could alleviate these risks. A field study was conducted in 2008 and 2009 on an upland Falkner silt loam soil to determine the effect of broiler litter placement on runoff nutrient losses from no-till cotton ( L.). Treatments included surface broadcast broiler litter applied manually, subsurface-banded litter applied by tractor-drawn equipment, and no broiler litter, all in combination with or without winter wheat ( L.) cover crop residue. Broiler litter rate was 5.6 Mg ha. The experimental design was a randomized complete block with a split-plot arrangement of treatments replicated three times. In 2008, simulated rainfall was used to generate runoff 27 d after litter application. Subsurface-banded litter reduced runoff total C, N, P, NH, NO, Cu, Zn and water-soluble P (WP) concentrations by 72, 64, 51, 49, 70, 36, 65, and 77%, respectively, compared with surface broadcast. The reductions were greater in 2009 where runoff occurred 1 d after litter application. Bacterial runoff was decreased by one log with subsurface-banded litter compared to surface broadcast. Except for C, NH, N, and WP, the presence of winter cover crop residue did not affect the load or runoff nutrient concentrations in either year. The results indicate that subsurface banding litter to no-till cotton substantially reduces nutrient and bacterial losses in runoff compared with surface broadcasting.

  13. A new field method to characterise the runoff generation potential of burned hillslopes

    Science.gov (United States)

    Sheridan, Gary; Lane, Patrick; Langhans, Christoph

    2016-04-01

    The prediction of post fire runoff generation is critical for the estimation of post fire erosion processes and rates. Typical field measures for determining infiltration model parameters include ring infiltrometers, tension infiltrometers, rainfall simulators and natural runoff plots. However predicting the runoff generating potential of post-fire hillslopes is difficult due to the high spatial variability of soil properties relative to the size of the measurement method, the poorly understood relationship between water repellence and runoff generation, known scaling issues with all the above hydraulic measurements, and logistical limitations for measurements in remote environments. In this study we tested a new field method for characterizing surface runoff generation potential that overcomes these limitations and is quick, simple and cheap to apply in the field. The new field method involves the manual application of a 40mm depth of Brilliant Blue FCF food dye along a 10cm wide and 5m long transect along the contour under slightly-ponded conditions. After 24 hours the transect is excavated to a depth of 10cm and the percentage dyed area within the soil profile recorded manually. The dyed area is an index of infiltration potential of the soil during intense rainfall events, and captures both spatial variability and water repellence effects. The dye measurements were made adjacent to long term instrumented post fire rainfall-runoff plots on 7 contrasting soil types over a 6 month period, and the results show surprisingly strong correlations (r2 = 0.9) between the runoff-ratio from the plots and the dyed area. The results are used to develop an initial conceptual model that links the dye index with an infiltration model and parameters suited to burnt hillslopes. The capacity of this method to provide a simple, and reliable indicator of post fire runoff potential from different fire severities, soil types and treatments is explored in this presentation.

  14. Scale dependence of Hortonian rainfall-runoff processes in a semiarid environment

    Science.gov (United States)

    Chen, L.; Sela, S.; Svoray, T.; Assouline, S.

    2016-07-01

    Scale dependence of Hortonian rainfall-runoff processes has received much attention in the literature but has not been fully resolved. To further explore this issue, a recently developed model was applied to simulate rainfall-infiltration-runoff processes at multiple spatial scales. The model consists of the coupling between a two-dimensional runoff routing module and a two-layer infiltration module, thus accounting for spatial variability in soil properties, soil surface sealing, topography, and partial vegetation cover. A 76 m2 semiarid experimental plot with sparse cover of vegetation patches and a sealed soil surface in inter-patch bare areas was used as a representative elementary area (REA). A series of four larger artificial plots of different areas was created based on this REA to examine the scale dependence of rainfall-runoff relationships in the case of stationary heterogeneity. Results show that runoff depth (or runoff coefficient) decreases with increasing scale. This trend is more prominent at scales less than 10 times the REA length. Power law relationships can quantitatively describe the scaling law. The major mechanism of the scale effect is run-on infiltration. However, rainfall intensity and soil properties can both affect the scaling trend through their interaction with run-on. Higher intensity and less temporal variability of rainfall can both reduce the scale effect. Temporally intermittent rainfall may produce spatially oscillating infiltration rates at large scales. Vegetation patterns are another factor that may affect the scaling. Random-vegetation patterns, compared with regular patterns with similar statistical properties, change the spatial distributions, but do not significantly change either the total amount and statistical properties of infiltration and runoff or the scale dependence of the rainfall-runoff process.

  15. A Probabilistic Model for Propagating Ungauged Basin Runoff Prediction Variability and Uncertainty Into Estuarine Water Quality Dynamics and Water Quality-Based Management Decisions

    Science.gov (United States)

    Anderson, R.; Gronewold, A.; Alameddine, I.; Reckhow, K.

    2008-12-01

    probabilistic modeling software program Analytica. This approach not only reflects uncertainty in parameter estimates but, by modeling the predicted daily runoff rate as a random variable, propagates that variability into the tidal prism model as well. The tidal prism model has the advantage of having only one hydrodynamic calibration parameter, the tidal exchange ratio (the ratio between the volume of water returning to an estuary on an incoming tide and the volume of water which exited the estuary on the previous outgoing tide). We estimate the tidal exchange ratio by calibrating the tidal prism model to salinity data using a Bayesian Markov chain Monte Carlo (MCMC) procedure and, as with other parameters, encode it as a random variable in the comprehensive model. We compare our results to those of a purely deterministic model, and find that intrinsic sources of variability in ungauged basin runoff predictions, when ignored, lead to pollutant concentration forecasts with unnecessarily large prediction intervals, and to potentially over-conservative management decisions. By demonstrating an innovative approach to capturing and explicitly acknowledging uncertainty in runoff model parameter estimates, our modeling approach serves as an ideal building block for future comprehensive model-based pollutant mitigation planning efforts in ungauged coastal watersheds, including those implemented through the US Environmental Protection Agency total maximum daily load program.

  16. Runoff scenarios of the Ötz catchment (Tyrol, Austria) considering climate change driven changes of the cryosphere

    Science.gov (United States)

    Helfricht, Kay; Schneeberger, Klaus; Welebil, Irene; Schöber, Johannes; Huss, Matthias; Formayer, Herbert; Huttenlau, Matthias; Schneider, Katrin

    2014-05-01

    The seasonal distribution of runoff in alpine catchments is markedly influenced by the cryospheric contribution (snow and ice). Long-term climate change will alter these reservoirs and consequently have an impact on the water balance. Glacierized catchments like the Ötztal (Tyrol, Austria) are particularly sensitive to changes in the cryosphere and the hydrological changes related to them. The Ötztal possesses an outstanding role in Austrian and international cryospheric research and reacts sensitive to changes in hydrology due to its socio-economic structure (e.g. importance of tourism, hydro-power). In this study future glacier scenarios for the runoff calculations in the Ötztal catchment are developed. In addition to climatological scenario data, glacier scenarios were established for the hydrological simulation of future runoff. Glacier outlines and glacier surface elevation changes of the Austrian Glacier Inventory were used to derive present ice thickness distribution and scenarios of glacier area distribution. Direct effects of climate change (i.e. temperature and precipitation change) and indirect effects in terms of variations in the cryosphere were considered for the analysis of the mean runoff and particularly flood frequencies. Runoff was modelled with the hydrological model HQSim, which was calibrated for the runoff gauges at Brunau, Obergurgl and Vent. For a sensitivity study, the model was driven by separate glacier scenarios. Keeping glacier area constant, variable climate input was used to separate the effect of climate sensitivity. Results of the combination of changed glacier areas and changed climate input were subsequently analysed. Glacier scenarios show first a decrease in volume, before glacier area shrinks. The applied method indicates a 50% ice volume loss by 2050 relative to today. Further, model results show a reduction in glacier volume and area to less than 20% of the current ice cover towards the end of the 21st century. The effect

  17. A GIS-based Upscaling Estimation of Nutrient Runoff Losses from Rice Paddy Fields to a Regional Level.

    Science.gov (United States)

    Sun, Xiaoxiao; Liang, Xinqiang; Zhang, Feng; Fu, Chaodong

    2016-11-01

    Nutrient runoff losses from cropping fields can lead to nonpoint source pollution; however, the level of nutrient export is difficult to evaluate, particularly at the regional scale. This study aimed to establish a novel yet simple approach for estimating total nitrogen (TN) and total phosphorus (TP) runoff losses from regional paddy fields. In this approach, temporal changes of nutrient concentrations in floodwater were coupled with runoff-processing functions in rice ( L.) fields to calculate nutrient runoff losses for three site-specific field experiments. Validation experiments verified the accuracy of this method. The geographic information system technique was used to upscale and visualize the TN and TP runoff losses from field to regional scales. The results indicated that nutrient runoff losses had significant spatio-temporal variation characteristics during rice seasons, which were positively related to fertilizer rate and precipitation. The average runoff losses over five study seasons were 20.21 kg N ha for TN and 0.76 kg P ha for TP. Scenario analysis showed that TN and TP losses dropped by 7.64 and 3.0%, respectively, for each 10% reduction of fertilizer input. For alternate wetting and drying water management, the corresponding reduction ratio was 24.7 and 14.0% respectively. Our results suggest that, although both water and fertilizer management can mitigate nutrient runoff losses, the former is significantly more effective. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. The role of climatic and anthropogenic stresses on long-term runoff reduction from the Loess Plateau, China.

    Science.gov (United States)

    Feng, Xiaoming; Cheng, Wei; Fu, Bojie; Lü, Yihe

    2016-11-15

    Human intervention has strongly altered patterns of river runoff. Yet, few studies have addressed the complexity and nonlinearity of the anthropogenic stresses on runoff or their interaction with climate. We study the Loess Plateau in China, whose river runoff contributes 65% of the discharge to the middle reach of the Yellow River; this landscape has been shaped by human activity and is intensively managed. Our purpose is to characterize the interactive roles of climate and human activities in defining river runoff from the Loess Plateau. Applying a transient analysis to discover the time-varying runoff trend and impact factors, we found that the average runoff in the Loess Plateau decreased continuously during the period 1961-2009 (average rate of -0.9mmyear(-1), Prunoff mainly occurred in three stages, with transitions in 1970, 1981 and 1996. Reduced precipitation was the main reason for the decrease in runoff over the entire study period. However, human intervention played a dominant role in creating the transition points. Water yield (i.e., the ratio of runoff to precipitation) decreased following each anthropogenic transition, causing a 56% reduction in available freshwater resources during the period 1961-2009. These findings highlight the need for studies that address the dynamic and nonlinear processes controlling the availability of freshwater resources in the light of anthropogenic influences applied under a changing climate. Such studies are essential if we are to meet the human water demand in the Loess Plateau region.

  19. Transfer of pesticides and copper in a stormwater wetland receiving contaminated runoff from a vineyard catchment

    Science.gov (United States)

    Maillard, E.; Babcsanyi, I.; Payraudeau, S.; Imfeld, G.

    2012-04-01

    Wetlands can collect contaminated runoff from urban and agricultural catchments, and have intrinsic physical, chemical and biological processes useful for mitigating pesticides. However, knowledge about the ability of wetlands to mitigate pesticide mixtures in runoff is currently very limited. Our results show that stormwater wetlands that primarily serve for flood protection can also be effective tools for reducing concentrations and loads of runoff-related pesticides. Concentrations and loads of 20 pesticides and degradation products, as well as copper were continuously recorded during the period of pesticide application (April to September 2009, 2010 and 2011) at the inlet, the outlet and in sediments of a stormwater wetland that collects runoff from a vineyard catchment. Removal rates of dissolved loads ranged from 39% (simazine) to 100% (cymoxanil, gluphosinate, kresoxim methyl and terbuthylazine). Dimethomorph, diuron, glyphosate and metalaxyl were more efficiently removed in spring than in summer. The calculation of sedimentation rates from discharge measurements and total suspended solids (TSS) values revealed that the wetland retained more than 77% of the input mass of suspended solids, underscoring the capability of the wetland to trap pesticide-laden particles. Only flufenoxuron was frequently detected in the wetland sediments. An inter-annual comparison showed that changes in the removal of aminomethylphosphonic acid (AMPA, a degradation product of glyphosate), isoxaben or simazine can be attributed mainly to the larger vegetation cover in 2010 compared to 2009. More than 80% of the copper load entering the wetland was retained in the sediments and the plants. Our results demonstrate that stormwater wetlands can efficiently remove pesticide mixtures and copper in agricultural runoff during critical periods of pesticide application. Nevertheless, fluctuations in the runoff regime, as well as the vegetation and hydrochemical characteristics affect the

  20. Chemical weathering and runoff chemistry in a steep headwater catchment

    Science.gov (United States)

    Anderson, Suzanne Prestrud; Dietrich, William E.

    2001-07-01

    We present here deductions about the location, rate, and mechanisms of chemical weathering in a small catchment based on a catchment-scale sprinkling experiment. In this experiment demineralized water was applied at an approximately steady rate in the CB1 catchment in the Oregon Coast Range to reach and maintain a quasi-steady discharge for a period of 4 days. Because of nearly steady flow conditions within the catchment, the contribution to solute fluxes from soil and bedrock could be partitioned. One half of the solute flux from the catchment derived from colluvial soil, and one half from weathering in bedrock. This implies more intense weathering in the thin colluvium mantling the catchment than in the thick underlying weathered bedrock. The annual solute flux from the catchment, scaled to the annual runoff from the catchment, is 32 +/- 10 t km-2 year-1, equivalent to published chemical denudation rates for nearby rivers with drainage areas 106 times greater than the experiment site. Soil waters sampled during the sprinkling experiment had steady compositions following a period of transient water flow conditions, implying steady-state chemical evolution in the soil. The waters leached organic anions from shallow depths in the soil, which solubilized aluminium and iron, indicating that podzolization is occurring in these soils. Carbonate dissolution appears to be an important source of solutes from the bedrock, despite being present as only a minor phase in the rock. Water balance suggests that the residence time of water in the catchment is about 2 months, and that typical 24 h storms displace only a fraction of the stored water. A consequence is that runoff chemistry is dominated by old water, which imposes strong limits on the variability of runoff composition.

  1. Runoff and erosion response of simulated waste burial covers in a semi-arid environment

    Science.gov (United States)

    Bent, G.C.; Goff, B.F.; Rightmire, K.G.; Sidle, R.C.

    1999-01-01

    Control of runoff (reducing infiltration) and erosion at shallow land burials is necessary in order to assure environmentally safe disposal of low-level radioactive-waste and other waste products. This study evaluated the runoff and erosion response of two perennial grass species on simulated waste burial covers at Idaho National Engineering and Environmental Laboratory (INEEL). Rainfall simulations were applied to three plots covered by crested wheatgrass [Agropyron desertorum (Fischer ex Link) Shultes], three plots covered by streambank wheatgrass [Elymus lanceolatus (Scribner and Smith) Gould spp. lanceolatus], and one bare plot. Average total runoff for rainfall simulations in 1987, 1989, and 1990 was 42 percent greater on streambank wheatgrass plots than on crested wheatgrass plots. Average total soil loss for rainfall simulations in 1987 and 1990 was 105 percent greater on streambank wheatgrass plots than on crested wheatgrass plots. Total runoff and soil loss from natural rainfall and snowmelt events during 1987 were 25 and 105 percent greater, respectively, on streambank wheatgrass plots than on crested wheatgrass plots. Thus, crested wheatgrass appears to be better suited in revegetation of waste burial covers at INEEL than streambank wheatgrass due to its much lower erosion rate and only slightly higher infiltration rate (lower runoff rate).

  2. Acute Effects of Caffeine on Heart Rate Variability, Blood Pressure and Tidal Volume in Paraplegic and Tetraplegic Compared to Able-Bodied Individuals: A Randomized, Blinded Trial

    Science.gov (United States)

    Flueck, Joelle Leonie; Schaufelberger, Fabienne; Lienert, Martina; Schäfer Olstad, Daniela; Wilhelm, Matthias; Perret, Claudio

    2016-01-01

    Caffeine increases sympathetic nerve activity in healthy individuals. Such modulation of nervous system activity can be tracked by assessing the heart rate variability. This study aimed to investigate the influence of caffeine on time- and frequency-domain heart rate variability parameters, blood pressure and tidal volume in paraplegic and tetraplegic compared to able-bodied participants. Heart rate variability was measured in supine and sitting position pre and post ingestion of either placebo or 6 mg caffeine in 12 able-bodied, 9 paraplegic and 7 tetraplegic participants in a placebo-controlled, randomized and double-blind study design. Metronomic breathing was applied (0.25 Hz) and tidal volume was recorded during heart rate variability assessment. Blood pressure, plasma caffeine and epinephrine concentrations were analyzed pre and post ingestion. Most parameters of heart rate variability did not significantly change post caffeine ingestion compared to placebo. Tidal volume significantly increased post caffeine ingestion in able-bodied (p = 0.021) and paraplegic (p = 0.036) but not in tetraplegic participants (p = 0.34). Systolic and diastolic blood pressure increased significantly post caffeine in able-bodied (systolic: p = 0.003; diastolic: p = 0.021) and tetraplegic (systolic: p = 0.043; diastolic: p = 0.042) but not in paraplegic participants (systolic: p = 0.09; diastolic: p = 0.33). Plasma caffeine concentrations were significantly increased post caffeine ingestion in all three groups of participants (p<0.05). Plasma epinephrine concentrations increased significantly in able-bodied (p = 0.002) and paraplegic (p = 0.032) but not in tetraplegic participants (p = 0.63). The influence of caffeine on the autonomic nervous system seems to depend on the level of lesion and the extent of the impairment. Therefore, tetraplegic participants may be less influenced by caffeine ingestion. Trial Registration ClinicalTrials.gov NCT02083328 PMID:27776149

  3. First flush of storm runoff pollution from an urban catchment in China

    Institute of Scientific and Technical Information of China (English)

    LI Li-qing; YIN Cheng-qing; HE Qing-ci; KONG Ling-li

    2007-01-01

    Storm runoff pollution process was investigated in an urban catchment with an area of 1.3 km2 in Wuhan City of China.The results indicate that the pollutant concentration peaks preceded the flow peaks in all of 8 monitored storm events.The intervals between pollution peak and flow peak were shorter in the rain events with higher intensity in the initial period than those with lower intensity.The fractions of pollution load transported by the first 30%of runoff volume(FF30)were 52.2%-72.1%for total suspended solids(TSS).53.0%-65.3%for chemical oxygen demand(COD),40.4%-50.6%for total nitrogen(TN),and 45.8%-63.2%for total phosphorus(TP),respectively.Runoff pollution was positively related to non-raining days before the rainfall.Intercepting the first 30%of runoff volume can remove 62.4% of TSS load.59.4%Of COD load,46.8% Of TN load,and 54.1%of TP load,respectively,according to all the storm events.It is suggested that controlling the first flush is a critical measure in reduction of urban stormwater pollution.

  4. Dose-volume parameters and clinical outcome of CT-guided free-hand high-dose-rate interstitial brachytherapy for cervical cancer

    Science.gov (United States)

    Wang, Yi; Ye, Wei-Jun; Du, Le-Hui; Li, Ai-Ju; Ren, Yu-Feng; Cao, Xin-Ping

    2012-01-01

    Currently, image-based 3-dimentional (3D) planning brachytherapy allows for a better assessment of gross tumor volume (GTV) and the definition and delineation of target volume in cervix cancer. In this study, we investigated the feasibility of our novel computed tomography (CT)-guided free-hand high-dose-rate interstitial brachytherapy (HDRISBT) technique for cervical cancer by evaluating the dosimetry and preliminary clinical outcome of this approach. Dose-volume histogram (DVH) parameters were analyzed according to the Gynecological GEC-ESTRO Working Group recommendations for image-based 3D treatment in cervical cancer. Twenty cervical cancer patients who underwent CT-guided free-hand HDRISBT between March 2009 and June 2010 were studied. With a median of 5 (range, 4–7) implanted needles for each patient, the median dose of brachytherapy alone delivered to 90% of the target volume (D90) was 45 (range, 33–54) Gyα/β10 for high-risk clinical target volume (HR-CTV) and 30 (range, 20–36) Gyα/β10 for intermediate-risk clinical target volume (IR-CTV). The percentage of the CTV covered by the prescribed dose (V100) of HR-CTV with brachytherapy alone was 81.9%–99.2% (median, 96.7%). With an additional dose of external beam radiotherapy (EBRT), the median D90 was 94 (range, 83–104) Gyα/β10 for HR-CTV and 77 (range, 70–87) Gyα/β10 for IR-CTV; the median dose delivered to 100% of the target volume (D100) was 75 (range, 66–84) Gyα/β10 for HR-CTV and 65 (range, 57–73) Gyα/β10 for IR-CTV. The minimum dose to the most irradiated 2 cc volume (D2cc) was 73–96 (median, 83) Gyα/β3 for the bladder, 64–98 (median, 73) Gyα/β3 for the rectum, and 52–69 (median, 61) Gyα/β3 for the sigmoid colon. After a median follow-up of 15 months (range, 3–24 months), two patients experienced local failure, and 1 showed internal iliac nodal metastasis. Despite the relatively small number of needles used, CT-guided HDRISBT for cervical cancer showed favorable

  5. Application of wavelet transform in runoff sequence analysis

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A wavelet transform is applied to runoff analysis to obtain the composition of the runoff sequence and to forecast future runoff. An observed runoff sequence is firstly decomposed and reconstructed by wavelet transform and its expanding tendency is derived. Then, the runoff sequence is forecasted by the back propagation artificial neural networks (BPANN) and by a wavelet transform combined with BPANN. The earlier researches seldom involve the problem of how to choose wavelet function, which is important and cannot be ignored when the wavelet transform is used. With application of the developed approach to the analysis of runoff sequence, several kinds of wavelet functions have been tested.

  6. Physicochemical conditions and properties of particles in urban runoff and rivers: Implications for runoff pollution.

    Science.gov (United States)

    Wang, Qian; Zhang, Qionghua; Wu, Yaketon; Wang, Xiaochang C

    2017-04-01

    In this study, to gain an improved understanding of the fate and fractionation of particle-bound pollutants, we evaluated the physicochemical conditions and the properties of particles in rainwater, urban runoff, and rivers of Yixing, a city with a large drainage density in the Taihu Lake Basin, China. Road runoff and river samples were collected during the wet and dry seasons in 2015 and 2016. There were significant differences between the physicochemical conditions (pH, oxidation-reduction potential (ORP), and electroconductivity (EC)) of rainwater, runoff, and rivers. The lowest pH and highest ORP values of rainwater provide the optimal conditions for leaching of particle-bound pollutants such as heavy metals. The differences in the physicochemical conditions of the runoff and rivers may contribute to the redistribution of pollutants between particulate and dissolved phases after runoff is discharged into waterways. Runoff and river particles were mainly composed of silt and clay (pollutants and settling ability of particles, which shows that it can be used as an index when monitoring runoff pollution.

  7. Estimating Subcatchment Runoff Coefficients using Weather Radar and a Downstream Runoff Sensor

    DEFF Research Database (Denmark)

    Ahm, Malte; Thorndahl, Søren Liedtke; Rasmussen, Michael R.;

    2013-01-01

    This paper presents a method for estimating runoff coefficients of urban drainage subcatchments based on a combination of high resolution weather radar data and flow measurements from a downstream runoff sensor. By utilising the spatial variability of the precipitation it is possible to estimate...... the runoff coefficients of the separate subcatchments. The method is demonstrated through a case study of an urban drainage catchment (678 ha) located in the city of Aarhus, Denmark. The study has proven that it is possible to use corresponding measurements of the relative rainfall distribution over...

  8. Whole-exome sequencing and imaging genetics identify functional variants for rate of change in hippocampal volume in mild cognitive impairment.

    Science.gov (United States)

    Nho, K; Corneveaux, J J; Kim, S; Lin, H; Risacher, S L; Shen, L; Swaminathan, S; Ramanan, V K; Liu, Y; Foroud, T; Inlow, M H; Siniard, A L; Reiman, R A; Aisen, P S; Petersen, R C; Green, R C; Jack, C R; Weiner, M W; Baldwin, C T; Lunetta, K; Farrer, L A; Furney, S J; Lovestone, S; Simmons, A; Mecocci, P; Vellas, B; Tsolaki, M; Kloszewska, I; Soininen, H; McDonald, B C; Farlow, M R; Ghetti, B; Huentelman, M J; Saykin, A J

    2013-07-01

    Whole-exome sequencing of individuals with mild cognitive impairment, combined with genotype imputation, was used to identify coding variants other than the apolipoprotein E (APOE) ε4 allele associated with rate of hippocampal volume loss using an extreme trait design. Matched unrelated APOE ε3 homozygous male Caucasian participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were selected at the extremes of the 2-year longitudinal change distribution of hippocampal volume (eight subjects with rapid rates of atrophy and eight with slow/stable rates of atrophy). We identified 57 non-synonymous single nucleotide variants (SNVs) which were found exclusively in at least 4 of 8 subjects in the rapid atrophy group, but not in any of the 8 subjects in the slow atrophy group. Among these SNVs, the variants that accounted for the greatest group difference and were predicted in silico as 'probably damaging' missense variants were rs9610775 (CARD10) and rs1136410 (PARP1). To further investigate and extend the exome findings in a larger sample, we conducted quantitative trait analysis including whole-brain search in the remaining ADNI APOE ε3/ε3 group (N=315). Genetic variation within PARP1 and CARD10 was associated with rate of hippocampal neurodegeneration in APOE ε3/ε3. Meta-analysis across five independent cross sectional cohorts indicated that rs1136410 is also significantly associated with hippocampal volume in APOE ε3/ε3 individuals (N=923). Larger sequencing studies and longitudinal follow-up are needed for confirmation. The combination of next-generation sequencing and quantitative imaging phenotypes holds significant promise for discovery of variants involved in neurodegeneration.

  9. Effects of Changes in Lung Volume on Oscillatory Flow Rate During High-Frequency Chest Wall Oscillation

    Directory of Open Access Journals (Sweden)

    Scott J Butcher

    2007-01-01

    Full Text Available BACKGROUND: The effectiveness of high-frequency chest wall oscillation (HFCWO in mucolysis and mucous clearance is thought to be dependant on oscillatory flow rate (Fosc. Therefore, increasing Fosc during HFCWO may have a clinical benefit.

  10. Ice sheet runoff and Dansgaard-Oeschger Cycles

    Science.gov (United States)

    Hewitt, Ian; Wolff, Eric; Fowler, Andrew; Clark, Chris; Evatt, Geoff; Johnson, Helen; Munday, David; Rickaby, Ros; Stokes, Chris

    2016-04-01

    Many northern hemisphere climate records, particularly those from around the North Atlantic, show a series of rapid climate changes that recurred on centennial to millennial timescales throughout most of the last glacial period. These Dansgaard-Oeschger (D-O) sequences are observed most prominently in Greenland ice cores, although they have a global signature, including an out of phase Antarctic signal. They consist of warming jumps of order 10°C, occurring in typically 40 years, followed generally by a slow cooling (Greenland Interstadial, GI) lasting between a few centuries and a few millennia, and then a final rapid temperature drop into a cold Greenland Stadial (GS) that lasts for a similar period. Most explanations for D-O events call on changes in Atlantic meridional overturning circulation strength, and the majority of such explanations use changes in freshwater delivery from ice sheets as a trigger. Many have relied on large inputs of freshwater from singular events (such as lake outbursts or iceberg armadas) to push the AMOC into its cold state. However the evidence for such events at the right time in each cycle is sparse. Here we investigate mechanisms that would arise from a change in the rate of ice sheet runoff, which would be a natural feedback from each rapid warming or cooling event. Recent work has suggested that AMOC is most easily disrupted by freshwater delivered through the Arctic. We investigate whether the proposed AMOC changes could have occurred as part of a natural oscillation, in which runoff from the Laurentide ice sheet into the Arctic is controlled by temperature around the North Atlantic. The Arctic buffers the salinity changes, but under warm conditions, high runoff eventually leads to water entering the North Atlantic with low enough salinity to switch AMOC into its weaker state. Under the colder conditions now prevailing, the Arctic is starved of runoff, and the salinity rises until a further switch occurs. Contrary to many

  11. Medicare program; physician fee schedule update for calendar year 1996 and physician volume performance standard rates of increase for federal fiscal year 1996--HCFA. Final notice.

    Science.gov (United States)

    1995-12-08

    This final notice announces the calendar year 1996 updates to the Medicare physician fee schedule and the Federal fiscal year 1996 volume performance standard rates of increase for expenditures for physicians' services under the Medicare Supplementary Medical Insurance (Part B) program as required by sections 1848 (d) and (f), respectively, of the Social Security Act. The fee schedule update for calendar year 1996 is 3.8 percent for surgical services, -2.3 percent for primary care services, and 0.4 percent for other nonsurgical services. While it does not affect payment for any particular service, there was a 0.8 percent increase in the update for all physicians' services for 1996. The physician volume performance standard rates of increase for Federal fiscal year 1996 are -0.5 percent for surgical services, 9.3 percent for primary care services, 0.6 percent for other nonsurgical services, and a weighted average of 1.8 percent for all physicians' services. In our July 26, 1995 proposed rule concerning revisions to payment policies under the Medicare physician fee schedule for calendar year 1996, we proposed using category-specific volume and intensity growth allowances in calculating the default Medicare Volume Performance Standard (MVPS). We received 20 comments on this proposal. Since this proposal is related to the MVPS and this notice deals with MVPS issues, we are responding to those comments in this notice instead of in the final rule for the fee schedule entitled "Medicare Program; Revisions to Payment Policies and Adjustments to the Relative Value Units Under the Physician Fee Schedule for Calendar Year 1996" published elsewhere in this Federal Register issue.

  12. Results of volume-staged fractionated Gamma Knife radiosurgery for large complex arteriovenous malformations: obliteration rates and clinical outcomes of an evolving treatment paradigm.

    Science.gov (United States)

    Franzin, Alberto; Panni, Pietro; Spatola, Giorgio; Vecchio, Antonella Del; Gallotti, Alberto L; Gigliotti, Carmen R; Cavalli, Andrea; Donofrio, Carmine A; Mortini, Pietro

    2016-12-01

    OBJECTIVE There are few reported series regarding volume-staged Gamma Knife radiosurgery (GKRS) for the treatment of large, complex, cerebral arteriovenous malformations (AVMs). The object of this study was to report the results of using volume-staged Gamma Knife radiosurgery for patients affected by large and complex AVMs. METHODS Data from 20 patients with large AVMs were prospectively included in the authors' AVM database between 2004 and 2012. A staging strategy was used when treating lesion volumes larger than 10 cm(3). Hemorrhage and seizures were the presenting clinical feature for 6 (30%) and 8 (40%) patients, respectively. The median AVM volume was 15.9 cm(3) (range 10.1-34.3 cm(3)). The mean interval between stages (± standard deviation) was 15 months (± 9 months). The median margin dose for each stage was 20 Gy (range 18-25 Gy). RESULTS Obliteration was confirmed in 8 (42%) patients after a mean follow-up of 45 months (range 19-87 months). A significant reduction (> 75%) of the original nidal volume was achieved in 4 (20%) patients. Engel Class I-II seizure status was reported by 75% of patients presenting with seizures (50% Engel Class I and 25% Engel Class II) after radiosurgery. After radiosurgery, 71.5% (5/7) of patients who had presented with a worsening neurological deficit reported a complete resolution or amelioration. None of the patients who presented acutely because of hemorrhage experienced a new bleeding episode during follow-up. One (5%) patient developed radionecrosis that caused sensorimotor hemisyndrome. Two (10%) patients sustained a bleeding episode after GKRS, although only 1 (5%) was symptomatic. High nidal flow rate and a time interval between stages of less than 11.7 months were factors significantly associated with AVM obliteration (p = 0.021 and p = 0.041, respectively). Patient age younger than 44 years was significantly associated with a greater than 75% reduction in AVM volume but not with AVM obliteration (p = 0

  13. RAINFALL-RUNOFF MODELING IN THE TURKEY RIVER USING NUMERICAL AND REGRESSION METHODS

    Directory of Open Access Journals (Sweden)

    J. Behmanesh

    2015-01-01

    Full Text Available Modeling rainfall-runoff relationships in a watershed have an important role in water resources engineering. Researchers have used numerical models for modeling rainfall-runoff process in the watershed because of non-linear nature of rainfall-runoff relationship, vast data requirement and physical models hardness. The main object of this research was to model the rainfall-runoff relationship at the Turkey River in Mississippi. In this research, two numerical models including ANN and ANFIS were used to model the rainfall-runoff process and the best model was chosen. Also, by using SPSS software, the regression equations were developed and then the best equation was selected from regression analysis. The obtained results from the numerical and regression modeling were compared each other. The comparison showed that the model obtained from ANFIS modeling was better than the model obtained from regression modeling. The results also stated that the Turkey river flow rate had a logical relationship with one and two days ago flow rate and one, two and three days ago rainfall values.

  14. RAINFALL-RUNOFF MODELING IN THE TURKEY RIVER USING NUMERICAL AND REGRESSION METHODS

    Directory of Open Access Journals (Sweden)

    J. Behmanesh

    2015-03-01

    Full Text Available Modeling rainfall-runoff relationships in a watershed have an important role in water resources engineering. Researchers have used numerical models for modeling rainfall-runoff process in the watershed because of non-linear nature of rainfall-runoff relationship, vast data requirement and physical models hardness. The main object of this research was to model the rainfall-runoff relationship at the Turkey River in Mississippi. In this research, two numerical models including ANN and ANFIS were used to model the rainfall-runoff process and the best model was chosen. Also, by using SPSS software, the regression equations were developed and then the best equation was selected from regression analysis. The obtained results from the numerical and regression modeling were compared each other. The comparison showed that the model obtained from ANFIS modeling was better than the model obtained from regression modeling. The results also stated that the Turkey river flow rate had a logical relationship with one and two days ago flow rate and one, two and three days ago rainfall values.

  15. Chlortetracycline and tylosin runoff from soils treated with antimicrobial containing manure.

    Science.gov (United States)

    Hoese, A; Clay, S A; Clay, D E; Oswald, J; Trooien, T; Thaler, R; Carlson, C G

    2009-05-01

    This study assessed the runoff potential of tylosin and chlortetracycline (CTC) from soils treated with manure from swine fed rations containing the highest labeled rate of each chemical. Slurry manures from the swine contained either CTC at 108 microg/g or tylosin at 0.3 microg/g. These manures were surface applied to clay loam, silty clay loam, and silt loam soils at a rate of 0.22 Mg/ha. In one trial, tylosin was applied directly to the soil surface to examine runoff potential of water and chemical when manure was not present. Water was applied using a sprinkler infiltrometer 24-hr after manure application with runoff collected incrementally every 5 min for about 45 min. A biofilm crust formed on all manure-treated surfaces and infiltration was impeded with > 70% of the applied water collected as runoff. The total amount of CTC collected ranged from 0.9 to 3.5% of the amount applied whereas tylosin ranged from 8.4 to 12%. These data indicate that if surface-applied manure contains antimicrobials, runoff could lead to offsite contamination.

  16. Linking structural and functional connectivity in a simple runoff-runon model over soils with heterogeneous infiltrability

    Science.gov (United States)

    Harel, M.; Mouche, E.

    2012-12-01

    Runoff production on a hillslope during a rainfall event may be simplified as follows. Given a soil of constant infiltrability I, which is the maximum amount of water that the soil can infiltrate, and a constant rainfall intensity R, runoff is observed wherever R is greater than I. The infiltration rate equals the infiltrability where runoff is produced, R otherwise. When ponding time, topography, and overall spatial and temporal variations of physical parameters, such as R and I, are neglected, the runoff equation remains simple. In this study, we consider soils of spatially variable infiltrability. As runoff can re-infiltrate on down-slope areas of higher infiltrabilities (runon process), the resulting process is highly non-linear. The stationary runoff equation is: Qn+1 = max (Qn + (R - In)*Δx , 0) where Qn is the runoff arriving on pixel n of size Δx [L2/T], R and In the rainfall intensity and infiltrability on that same pixel [L/T]. The non-linearity is due to the dependence of infiltration on R and Qn, that is runon. This re-infiltration process generates patterns of runoff along the slope, patterns that organise and connect differently to each other depending on the rainfall intensity and the nature of the soil heterogeneity. In order to characterize the runoff patterns and their connectivity, we use the connectivity function defined by Allard (1993) in Geostatistics. Our aim is to assess, in a stochastic framework, the runoff organization on 1D and 2D slopes with random infiltrabilities (log-normal, exponential and bimodal distributions) by means of numerical simulations. Firstly, we show how runoff is produced and organized in patterns along a 2D slope according to the infiltrability distribution. We specifically illustrate and discuss the link between the statistical nature of the infiltrability and that of the flow-rate, with a special focus on the relations between the connectivities of both fields: the structural connectivity (infiltrability patterns

  17. Clouds enhance Greenland ice sheet meltwater runoff

    Science.gov (United States)

    Van Tricht, Kristof; Lhermitte, Stef; Lenaerts, Jan T. M.; Gorodetskaya, Irina V.; L'Ecuyer, Tristan S.; Noël, Brice; van den Broeke, Michiel R.; Turner, David D.; van Lipzig, Nicole P. M.

    2016-04-01

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2) W m-2. Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise.

  18. Groundwater Recharge, Evapotranspiration and Surface Runoff ...

    African Journals Online (AJOL)

    Bheema

    Department of Earth Science, CNCS, P.O. Box 231, Mekelle University, ... The mean annual groundwater recharge, evapotranspiration and runoff were ... Accordingly, recharge accounts for 12% of the precipitation .... So, to apply the WetSpass for Illala catchment, input of the meteorological grid map ..... Review of Australian.

  19. Green Roofs for Stormwater Runoff Control

    Science.gov (United States)

    This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs were compared. Evapotranspiration from planted green roofs and evaporation from unplanted media roofs were also compared. The influence...

  20. water infiltration, conductivity and runoff under fallow

    African Journals Online (AJOL)

    sections of sloping terraces on water infiltration and subsequent runoff on a Haplic ... Infiltration measurements, done by a tension infiltrometer, were conducted under 3-year old tree .... head first avoid hysteresis (Reynolds and Elrick, ..... terrace (60%), perhaps reflecting the influence of ..... Water Resources Research 14:.

  1. Characterization of chromium species in urban runoff

    DEFF Research Database (Denmark)

    Cederkvist, Karin; Jensen, Marina Bergen; Holm, Peter Engelund

    2013-01-01

    Little is known about the presence of the element Cr in its toxic hexavalent form Cr(VI) in stormwater runoff from urban areas. Most studies report only total Cr concentration, i.e., including also the nontoxic Cr(III) molecular form. The objective of this study was to evaluate a field method bas...

  2. Urban Runoff and Combined Sewer Overflow.

    Science.gov (United States)

    Field, Richard; Gardner, Bradford B.

    1978-01-01

    Presents a literature review of wastewater treatment, covering publications of 1976-77. This review includes areas such as: (1) urban runoff quality and quantity; (2) urban hydrology; (3) management practices; and (4) combined sewer overflows. A list of 140 references is also presented. (HM)

  3. Clouds enhance Greenland ice sheet meltwater runoff.

    Science.gov (United States)

    Van Tricht, K; Lhermitte, S; Lenaerts, J T M; Gorodetskaya, I V; L'Ecuyer, T S; Noël, B; van den Broeke, M R; Turner, D D; van Lipzig, N P M

    2016-01-12

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2) W m(-2). Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise.

  4. Clouds enhance Greenland ice sheet meltwater runoff

    Science.gov (United States)

    Van Tricht, K.; Lhermitte, S.; Lenaerts, J. T. M.; Gorodetskaya, I. V.; L'Ecuyer, T. S.; Noël, B.; van den Broeke, M. R.; Turner, D. D.; van Lipzig, N. P. M.

    2016-01-01

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2) W m−2. Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise. PMID:26756470

  5. How useful are Green-Ampt parameters derived from small rainfall simulation plots for modelling runoff at different plot lengths?

    Science.gov (United States)

    Langhans, Christoph; Engels, Lien; Tegenbos, Lize; Govers, Gerard; Diels, Jan

    2010-05-01

    Rainfall simulation on small field plots is an invaluable method to derive effective field parameters for infiltration models such as Green-Ampt. Plot scales of ca. 1m² integrate much of the micro-scale variability and processes, which ring-infiltrometers or soil core measurements cannot capture. However, these parameters have to be used with caution on larger scales, because processes such as run-on infiltration can be considerable. The Green-Ampt parameters suction across the wetting front (psi) and effective hydraulic conductivity (Ke) were estimated from rainfall simulations on two ridged fields in Togo, West Africa. Additionally, rainfall events were recorded, and on plots of 1m width and lengths of 1, 4 and 16m, total runoff volume and sediment concentration were measured. The storm runoff hydrographs of the plots were modelled with Chu's Green-Ampt variable rainfall intensity infiltration model, using the field-average parameters derived from the simulations. Potential effects of runoff lag time were assumed negligible. Calculated total runoff volumes were compared to measured runoff volumes. For the 1m plots, runoff was underestimated, as patches of seal in the furrows produced runoff already at rainfall intensities much lower than the average infiltration capacity. For the longer plots, no run-on infiltration or other scale dependent processes were assumed, so the relative error due to scale effects was proportional to the average difference or runoff depth. In contrast to the 1m plots, runoff was overestimated by a factor of 1.2 and 2 for the 4m and 16m plots, respectively. It appears that the application of the Green-Ampt effective hydraulic conductivity derived from rainfall simulations faces two main problems, which are their dependence on one single rainfall intensity and scale-effects by run-on infiltration. Errors necessarily propagate into the scale dependency of erosion and sediment transport, as these processes are directly dependent on runoff

  6. Runoff initiation, soil detachment and connectivity are enhanced as a consequence of vineyards plantations.

    Science.gov (United States)

    Cerdà, A; Keesstra, S D; Rodrigo-Comino, J; Novara, A; Pereira, P; Brevik, E; Giménez-Morera, A; Fernández-Raga, M; Pulido, M; di Prima, S; Jordán, A

    2017-11-01

    Rainfall-induced soil erosion is a major threat, especially in agricultural soils. In the Mediterranean belt, vineyards are affected by high soil loss rates, leading to land degradation. Plantation of new vines is carried out after deep ploughing, use of heavy machinery, wheel traffic, and trampling. Those works result in soil physical properties changes and contribute to enhanced runoff rates and increased soil erosion rates. The objective of this paper is to assess the impact of the plantation of vineyards on soil hydrological and erosional response under low frequency - high magnitude rainfall events, the ones that under the Mediterranean climatic conditions trigger extreme soil erosion rates. We determined time to ponding, Tp; time to runoff, Tr; time to runoff outlet, Tro; runoff rate, and soil loss under simulated rainfall (55 mm h(-1), 1 h) at plot scale (0.25 m(2)) to characterize the runoff initiation and sediment detachment. In recent vine plantations (50 years; O). Slope gradient, rock fragment cover, soil surface roughness, bulk density, soil organic matter content, soil water content and plant cover were determined. Plantation of new vineyards largely impacted runoff rates and soil erosion risk at plot scale in the short term. Tp, Tr and Tro were much shorter in R plots. Tr-Tp and Tro-Tr periods were used as connectivity indexes of water flow, and decreased to 77.5 and 33.2% in R plots compared to O plots. Runoff coefficients increased significantly from O (42.94%) to R plots (71.92%) and soil losses were approximately one order of magnitude lower (1.8 and 12.6 Mg ha(-1) h(-1) for O and R plots respectively). Soil surface roughness and bulk density are two key factors that determine the increase in connectivity of flows and sediments in recently planted vineyards. Our results confirm that plantation of new vineyards strongly contributes to runoff initiation and sediment detachment, and those findings confirms that soil erosion control strategies

  7. Physician fee schedule update for calendar year 1995 and physician volume performance standard rates of increase for federal fiscal year 1995--HCFA. Final notice.

    Science.gov (United States)

    1994-12-08

    This final notice announces the calendar year (CY) 1995 updates to the Medicare physician fee schedule and the Federal fiscal year (FY) 1995 volume performance standard rates of increase for expenditures for physicians' services under the Medicare Supplementary Medical Insurance (Part B) program as required by sections 1848(d) and (f), respectively, of the Social Security Act. The fee schedule update for CY 1995 is 12.2 percent for surgical services, 7.9 percent for primary care services, and 5.2 percent for other nonsurgical services. While it does not affect payment, there was a 7.7 percent increase in the update for all physicians' services for 1995. The physician volume performance standard rates of increase for Federal FY 1995 are 9.2 percent for surgical services, 13.8 percent for primary care services, 4.4 percent for other nonsurgical services, and a weighted average of 7.5 percent for all physicians' services. In our December 2, 1993 notice announcing the CY 1994 update to the Medicare physician fee schedule and FY 1994 volume performance standard rates of increase, we invited public comment on the update indicators for surgical and nonsurgical procedures that were new or revised in 1994. There were no public comments on those indicators. We have decided not to establish a public comment period for the codes that are new and revised in 1995 since, although these codes are initially classified as surgical or nonsurgical based on the clinical judgment of our medical staff, that classification ultimately rests on charge data that we use when they become available to determine whether the codes classified as surgical meet the criteria specified in our December 1993 notice.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. 29 CFR 452.30 - Run-off elections.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 2 2010-07-01 2010-07-01 false Run-off elections. 452.30 Section 452.30 Labor Regulations... OF 1959 Frequency and Kinds of Elections § 452.30 Run-off elections. A run-off election must meet the... example, if the run-off is to be held at the same meeting as the original election, the original notice...

  9. Revisiting Runoff Model Calibration: Airborne Snow Observatory Results Allow Improved Modeling Results

    Science.gov (United States)

    McGurk, B. J.; Painter, T. H.

    2014-12-01

    Deterministic snow accumulation and ablation simulation models are widely used by runoff managers throughout the world to predict runoff quantities and timing. Model fitting is typically based on matching modeled runoff volumes and timing with observed flow time series at a few points in the basin. In recent decades, sparse networks of point measurements of the mountain snowpacks have been available to compare with modeled snowpack, but the comparability of results from a snow sensor or course to model polygons of 5 to 50 sq. km is suspect. However, snowpack extent, depth, and derived snow water equivalent have been produced by the NASA/JPL Airborne Snow Observatory (ASO) mission for spring of 20013 and 2014 in the Tuolumne River basin above Hetch Hetchy Reservoir. These high-resolution snowpack data have exposed the weakness in a model calibration based on runoff alone. The U.S. Geological Survey's Precipitation Runoff Modeling System (PRMS) calibration that was based on 30-years of inflow to Hetch Hetchy produces reasonable inflow results, but modeled spatial snowpack location and water quantity diverged significantly from the weekly measurements made by ASO during the two ablation seasons. The reason is that the PRMS model has many flow paths, storages, and water transfer equations, and a calibrated outflow time series can be right for many wrong reasons. The addition of a detailed knowledge of snow extent and water content constrains the model so that it is a better representation of the actual watershed hydrology. The mechanics of recalibrating PRMS to the ASO measurements will be described, and comparisons in observed versus modeled flow for both a small subbasin and the entire Hetch Hetchy basin will be shown. The recalibrated model provided a bitter fit to the snowmelt recession, a key factor for water managers as they balance declining inflows with demand for power generation and ecosystem releases during the final months of snow melt runoff.

  10. Influence of land development on stormwater runoff from a mixed land use and land cover catchment.

    Science.gov (United States)

    Paule-Mercado, M A; Lee, B Y; Memon, S A; Umer, S R; Salim, I; Lee, C-H

    2017-12-01

    Mitigating for the negative impacts of stormwater runoff is becoming a concern due to increased land development. Understanding how land development influences stormwater runoff is essential for sustainably managing water resources. In recent years, aggregate low impact development-best management practices (LID-BMPs) have been implemented to reduce the negative impacts of stormwater runoff on receiving water bodies. This study used an integrated approach to determine the influence of land development and assess the ecological benefits of four aggregate LID-BMPs in stormwater runoff from a mixed land use and land cover (LULC) catchment with ongoing land development. It used data from 2011 to 2015 that monitored 41 storm events and monthly LULC, and a Personalized Computer Storm Water Management Model (PCSWMM). The four aggregate LID-BMPs are: ecological (S1), utilizing pervious covers (S2), and multi-control (S3) and (S4). These LID-BMPs were designed and distributed in the study area based on catchment characteristics, cost, and effectiveness. PCSWMM was used to simulate the monitored storm events from 2014 (calibration: R(2) and NSE>0.5; RMSE 0.5; RMSE land and impervious cover, soil alteration, and high amount of precipitation influenced the stormwater runoff variability during different phases of land development. The four aggregate LID-BMPs reduced runoff volume (34%-61%), peak flow (6%-19%), and pollutant concentrations (53%-83%). The results of this study, in addition to supporting local LULC planning and land development activities, also could be applied to input data for empirical modeling, and designing sustainable stormwater management guidelines and monitoring strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Significant Increase in Hydrogen Photoproduction Rates and Yields by Wild-Type Algae is Detected at High Photobioreactor Gas Phase Volume (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-07-01

    This NREL Hydrogen and Fuel Cell Technical Highlight describes how hydrogen photoproduction activity in algal cultures can be improved dramatically by increasing the gas-phase to liquid-phase volume ratio of the photobioreactor. NREL, in partnership with subcontractors from the Institute of Basic Biological Problems in Pushchino, Russia, demonstrated that the hydrogen photoproduction rate in algal cultures always decreases exponentially with increasing hydrogen partial pressure above the culture. The inhibitory effect of high hydrogen concentrations in the photobioreactor gas phase on hydrogen photoproduction by algae is significant and comparable to the effect observed with some anaerobic bacteria.

  12. Changes in plasma volume, in transcapillary escape rate of albumin and in subcutaneous blood flow during hypoglycaemia in man

    DEFF Research Database (Denmark)

    Hilsted, J; Bonde-Petersen, F; Madsbad, S

    1985-01-01

    and transcapillary escape rate increased significantly during hypoglycaemia. Skin temperature and local subcutaneous adipose tissue blood flow were measured in four different regions. Both tended to decrease during hypoglycaemia and decreased significantly 2 h after hypoglycaemia. There was no correlation between...... changes in the two measurements, suggesting that there is no simple relationship between subcutaneous blood flow and skin temperature during hypoglycaemia....

  13. [Treatment of Urban Runoff Pollutants by a Multilayer Biofiltration System].

    Science.gov (United States)

    Wang, Xiao-lu; Zuo, Jian-e; Gan, Li-li; Xing, Wei; Miao, Heng-feng; Ruan, Wen-quan

    2015-07-01

    In order to control the non-point source pollution from road runoff in Wuxi City effectively, a multilayer biofiltration system was designed to remove a variety of pollutants according to the characteristics of road runoff in Wuxi, and the experimental research was carried out to study the effect on rainwater pollution purification. The results show that the system has a good performance on removing suspended solids (SS), organic pollutant (COD), nitrogen and phosphorus: all types of multilayer biofiltration systems have a high removal rate for SS, which can reach 90%. The system with activated carbon (GAC) has higher removal rates for COD and phosphorus. The system with zeolite (ZFM) has a relatively better removal efficiency for nitrogen. The addition of wood chips in the system can significantly improve the system efficiency for nitrogen removal. Between the two configurations of layered and distributed wood chips, configurations of distributed wood chips reach higher COD, phosphorus and nitrogen pollutants removal efficiencies since they can reduce the release of wood chips dissolution.

  14. Formation of runoff at the hillslope scale during intense precipitation

    Directory of Open Access Journals (Sweden)

    S. Scherrer

    2007-01-01

    Full Text Available On 60 m2 hillslope plots, at 18 mainly grassland locations in Switzerland rain was applied at rates of 50–100 mm/h for between 3 and 6 h. The generated flows were measured, including overland flow, near surface and subsurface flow 0.5–1.3 m below the surface. At some locations less than 2% of the rain flowed down the slope either on or below the surface, whereas at some others more than 90% of the rain ran off. At the majority of sites most runoff was overland flow, though at a few sites subsurface flow, usually via macropores was dominant. Data collected during each of 48 high intensity sprinkling experiments were used to distinguish, which processes were dominant in each experiment. Which dominant and subsidiary processes occurred depended on interactions between infiltration rate, change in soil water storage and drainage of the soil water. These attributes were often not directly linked to parameters usually considered important like vegetation, slope, soil clay content and antecedent soil moisture. Considering the structure of the soil in combination with these attributes, process determination was in many cases fairly straightforward, indicating the possibility of reliably predicting runoff processes at a site. However, at some sites, effects occurred that were not easily recognizable and led to surprising results.

  15. Phosphorus forms in biosolids-amended soils and losses in runoff: effects of wastewater treatment process.

    Science.gov (United States)

    Penn, Chad J; Sims, J Thomas

    2002-01-01

    Continuous addition of municipal biosolids to soils based on plant nitrogen (N) requirements can cause buildup of soil phosphorus (P) in excess of crop requirements; runoff from these soils can potentially contribute to nonpoint P pollution of surface waters. However, because biosolids are often produced using lime and/or metal salts, the potential for biosolids P to cause runoff P losses can vary with wastewater treatment plant (WWTP) process. This study was conducted to determine the effect of wastewater treatment process on the forms and amounts of P in biosolids, biosolids-amended soils, and in runoff from biosolids-amended soils. We amended two soil types with eight biosolids and a poultry litter (PL) at equal rates of total P (200 kg ha(-1); unamended soils were used as controls. All biosolids and amended soils were analyzed for various types of extractable P, inorganic P fractions, and the degree of P saturation (acid ammonium oxalate method). Amended soils were placed under a simulated rainfall and all runoff was collected and analyzed for dissolved reactive phosphorus (DRP), iron-oxide-coated filter paper strip-extractable phosphorus (FeO-P), and total phosphorus (EPA3050 P). Results showed that biosolids produced with a biological nutrient removal (BNR) process caused the highest increases in extractable soil P and runoff DRP. Alternatively, biosolids produced with iron only consistently had the lowest extractable P and caused the lowest increases in extractable soil P and runoff DRP when added to soils. Differences in soil and biosolids extractable P levels as well as P runoff losses were related to the inorganic P forms of the biosolids.

  16. Woody plant encroachment reduces annual runoff and shifts runoff mechanisms in the tallgrass prairie, USA

    Science.gov (United States)

    Qiao, Lei; Zou, Chris B.; Stebler, Elaine; Will, Rodney E.

    2017-06-01

    Woody plant encroachment into semiarid and subhumid rangelands is a global phenomenon with important hydrological implications. Observational and experimental results reported both increases and decreases in annual runoff for encroached watersheds and little is known regarding the underlying runoff generation mechanisms. To systematically study the effect of woody plant encroachment on runoff generation processes, seven experimental watersheds were instrumented in 2010, three on grassland sites and four on adjacent sites that were heavily encroached by eastern redcedar (Juniperus virginiana) in the southern Great Plains, USA. Results showed that the runoff coefficient was 1.4 ± 0.6% in eastern redcedar encroached watersheds, significantly lower than 4.4 ± 0.7% in grassland watersheds for the four water years from 2011 to 2014. Eastern redcedar encroachment resulted in reduction of both surface and subsurface flows and the magnitude of reduction depended on annual precipitation. While there were nearly equal contributions between overland flow and subsurface flow, 87% of the total runoff from grassland watersheds occurred under saturated or nearly saturated soil condition, while 86% of runoff under encroached watersheds was generated under unsaturated soil condition, suggesting a shift from saturation excess overland flow to infiltration excess overland flow. These results permitted reconciliation of observed difference of streamflow responses associated with Juniperus spp. encroachment in the region and provided insights to better predict change in water resources under vegetation changes in subhumid regions of the south-central USA.

  17. Physically based modelling of rainfall-runoff processes

    NARCIS (Netherlands)

    Diermanse, F.L.M.

    2001-01-01

    This PhD. research was set up to investigate the use of rainfall-runoff models for simulation of high water events in hillslope areas. First, dominant parameters for runoff production during high water events have been identified. Subsequently, the influence of antecedent conditions on runoff percen

  18. APPROACHES FOR DETERMINING SWALE PERFORMANCE FOR STORMWATER RUNOFF - Wilmington, NC

    Science.gov (United States)

    Swales are “engineered vegetated ditches” that provide stable routing for stormwater runoff and a low-cost drainage option for highways, farms, industrial sites, and commercial areas. It is reported in the literature that swales mitigate runoff-carried pollutants, reduce runoff ...

  19. APPROACHES FOR DETERMINING SWALE PERFORMANCE FOR STORMWATER RUNOFF

    Science.gov (United States)

    Swales are “engineered vegetated ditches” that provide stable routing for stormwater runoff and a low-cost drainage option for highways, farms, industrial sites, and commercial areas. It is reported in the literature that swales mitigate runoff-carried pollutants, reduce runoff v...

  20. Patient-To-Physician Messaging: Volume Nearly Tripled As More Patients Joined System, But Per Capita Rate Plateaued

    Science.gov (United States)

    Crotty, Bradley H.; Tamrat, Yonas; Mostaghimi, Arash; Safran, Charles; Landon, Bruce E.

    2015-01-01

    Patients want to be able to communicate with their physicians by e-mail. However, physicians are often concerned about the impact that such communications will have on their time, productivity, and reimbursement. Typically, physicians are not reimbursed for time spent communicating with patients electronically. But under federal meaningful-use criteria for information technology, physicians can receive a modest incentive for such communications. Little is known about trends in secure e-mail messaging between physicians and patients. To understand these trends, we analyzed the volume of messages in a large academic health care system’s patient portal in the period 2001–10. At the end of 2010, 49,778 patients (22.7 percent of all patients seen within the system) had enrolled in the portal, and 36.9 percent of enrolled patients (8.4 percent of all patients) had sent at least one message to a physician. Physicians in the aggregate saw a near tripling of e-mail messages during the study period. However, the number of messages per hundred patients per month stabilized between 2005 and 2010, at an average of 18.9 messages. As physician reimbursement moves toward global payments, physicians’ and patients’ participation in secure messaging will likely increase, and electronic communication should be considered part of physicians’ job descriptions. PMID:25288428

  1. Patient-to-physician messaging: volume nearly tripled as more patients joined system, but per capita rate plateaued.

    Science.gov (United States)

    Crotty, Bradley H; Tamrat, Yonas; Mostaghimi, Arash; Safran, Charles; Landon, Bruce E

    2014-10-01

    Patients want to be able to communicate with their physicians by e-mail. However, physicians are often concerned about the impact that such communications will have on their time, productivity, and reimbursement. Typically, physicians are not reimbursed for time spent communicating with patients electronically. But under federal meaningful-use criteria for information technology, physicians can receive a modest incentive for such communications. Little is known about trends in secure e-mail messaging between physicians and patients. To understand these trends, we analyzed the volume of messages in a large academic health system's patient portal in the period 2001-10. At the end of 2010, 49,778 patients (22.7 percent of all patients seen within the system) had enrolled in the portal, and 36.9 percent of enrolled patients (8.4 percent of all patients) had sent at least one message to a physician. Physicians in the aggregate saw a near tripling of e-mail messages during the study period. However, the number of messages per hundred patients per month stabilized between 2005 and 2010, at an average of 18.9 messages. As physician reimbursement moves toward global payments, physicians' and patients' participation in secure messaging will likely increase, and electronic communication should be considered part of physicians' job descriptions.

  2. Rate and peak concentrations of off-gas emissions in stored wood pellets--sensitivities to temperature, relative humidity, and headspace volume.

    Science.gov (United States)

    Kuang, Xingya; Shankar, Tumuluru Jaya; Bi, Xiaotao T; Lim, C Jim; Sokhansanj, Shahab; Melin, Staffan

    2009-11-01

    Wood pellets emit CO, CO(2), CH(4), and other volatiles during storage. Increased concentration of these gases in a sealed storage causes depletion of concentration of oxygen. The storage environment becomes toxic to those who operate in and around these storages. The objective of this study was to investigate the effects of temperature, moisture, and the relative size of storage headspace on emissions from wood pellets in an enclosed space. Twelve 10-l plastic containers were used to study the effects of headspace ratio (25, 50, and 75% of container volume) and temperatures (10-50 degrees C). Another eight containers were set in uncontrolled storage relative humidity (RH) and temperature. Concentrations of CO(2), CO, and CH(4) were measured by gas chromatography (GC). The results showed that emissions of CO(2), CO, and CH(4) from stored wood pellets are more sensitive to storage temperature than to RH and the relative volume of headspace. Higher peak emission factors are associated with higher temperatures. Increased headspace volume ratio increases peak off-gas emissions because of the availability of oxygen associated with pellet decomposition. Increased RH in the enclosed container increases the rate of off-gas emissions of CO(2), CO, and CH(4) and oxygen depletion.

  3. Fractional rate of change of swim-bladder volume is reliably related to absolute depth during vertical displacements in teleost fish.

    Science.gov (United States)

    Taylor, Graham K; Holbrook, Robert Iain; de Perera, Theresa Burt

    2010-09-06

    Fish must orient in three dimensions as they navigate through space, but it is unknown whether they are assisted by a sense of depth. In principle, depth can be estimated directly from hydrostatic pressure, but although teleost fish are exquisitely sensitive to changes in pressure, they appear unable to measure absolute pressure. Teleosts sense changes in pressure via changes in the volume of their gas-filled swim-bladder, but because the amount of gas it contains is varied to regulate buoyancy, this cannot act as a long-term steady reference for inferring absolute pressure. In consequence, it is generally thought that teleosts are unable to sense depth using hydrostatic pressure. Here, we overturn this received wisdom by showing from a theoretical physical perspective that absolute depth could be estimated during fast, steady vertical displacements by combining a measurement of vertical speed with a measurement of the fractional rate of change of swim-bladder volume. This mechanism works even if the amount of gas in the swim-bladder varies, provided that this variation occurs over much longer time scales than changes in volume during displacements. There is therefore no a priori physical justification for assuming that teleost fish cannot sense absolute depth by using hydrostatic pressure cues.

  4. Left ventricular layer function in hypertension assessed by myocardial strain rate using novel one-beat real-time three-dimensional speckle tracking echocardiography with high volume rates.

    Science.gov (United States)

    Saeki, Maki; Sato, Noriaki; Kawasaki, Masanori; Tanaka, Ryuhei; Nagaya, Maki; Watanabe, Takatomo; Ono, Koji; Noda, Toshiyuki; Zile, Michael R; Minatoguchi, Shinya

    2015-08-01

    We recently developed novel software to measure phasic strain rate (SR) using automated one-beat real-time three-dimensional speckle tracking echocardiography (3D-STE) with high volume rates. We tested the hypothesis that left ventricular (LV) systolic function and relaxation analyzed by SR with the novel 3D-STE in hypertension (HTN) with hypertrophy may be impaired in the endocardium before there is LV systolic dysfunction. We measured LV longitudinal, radial and circumferential SR in patients with HTN (n=80, 69±7 years) and age-matched normotensive controls (n= 60, 69±10 years) using 3D-STE. HTN patients were divided into four groups according to LV geometry: normal, concentric remodeling, concentric hypertrophy and eccentric hypertrophy. We measured SR during systole as an index of systolic function, SR during isovolumic relaxation (IVR) as an index of relaxation and E/e' as an index of filling pressure. Endocardial SR during systole in HTN with concentric and eccentric hypertrophy decreased compared with that in controls despite no reduction in ejection fraction or epicardial SR. Endocardial radial SR during IVR decreased even in normal geometry, and it was further reduced in concentric remodeling and hypertrophy despite no reduction in epicardial SR. LV phasic SR assessed by 3D-STE with high volume rates is a useful index to detect early decreases in LV systolic function and to predict subclinical LV layer dysfunction in patients with HTN.

  5. The relationship between oxygen consumption rate and viability of in vivo-derived pig embryos vitrified by the micro volume air cooling method.

    Science.gov (United States)

    Sakagami, N; Nishida, K; Misumi, K; Hirayama, Y; Yamashita, S; Hoshi, H; Misawa, H; Akiyama, K; Suzuki, C; Yoshioka, K

    2016-01-01

    The aim of this study was to assess the viability of vitrified-warmed in vivo-derived pig embryos after measuring the oxygen consumption rate. Six days after artificial insemination, blastocysts were collected from gilts and vitrified by the micro volume air cooling method. The oxygen consumption rate was measured in 60 vitrified-warmed embryos, which were then cultured for 48h to assess the viability. The survival (re-expansion) rate of embryos after warming was 85.0%. The average oxygen consumption rate of embryos immediately after warming was greater in embryos which could re-expand during subsequent culture (F=0.75±0.04) than that in those which failed to re-expand (F=0.33±0.05). Moreover, the oxygen consumption rate of vitrified-warmed embryos was greater in the hatched (F=0.88±0.06) than that in the not-hatched group (F=0.53±0.04). When the oxygen consumption rate of the vitrified-warmed embryos and the numbers of viable and dead cells in embryos were determined, there was a positive correlation between the oxygen consumption rate and the number of live cells (Pconsumption rate were surgically transferred into uterine horns of two recipients. Both of the recipients become pregnant and farrowed 12 healthy piglets. These results demonstrate that the oxygen consumption rate of vitrified-warmed pig embryos can be related to the number of live cells and that the measurement of oxygen consumption of embryos after cryopreservation may be useful for estimating embryo survivability.

  6. Integration of Volterra model with artificial neural networks for rainfall-runoff simulation in forested catchment of northern Iran

    Science.gov (United States)

    Kashani, Mahsa H.; Ghorbani, Mohammad Ali; Dinpashoh, Yagob; Shahmorad, Sedaghat

    2016-09-01

    Rainfall-runoff simulation is an important task in water resources management. In this study, an integrated Volterra model with artificial neural networks (IVANN) was presented to simulate the rainfall-runoff process. The proposed integrated model includes the semi-distributed forms of the Volterra and ANN models which can explore spatial variation in rainfall-runoff process without requiring physical characteristic parameters of the catchments, while taking advantage of the potential of Volterra and ANNs models in nonlinear mapping. The IVANN model was developed using hourly rainfall and runoff data pertaining to thirteen storms to study short-term responses of a forest catchment in northern Iran; and its performance was compared with that of semi-distributed integrated ANN (IANN) model and lumped Volterra model. The Volterra model was applied as a nonlinear model (second-order Volterra (SOV) model) and solved using the ordinary least square (OLS) method. The models performance were evaluated and compared using five performance criteria namely coefficient of efficiency, root mean square error, error of total volume, relative error of peak discharge and error of time for peak to arrive. Results showed that the IVANN model performs well than the other semi-distributed and lumped models to simulate the rainfall-runoff process. Comparing to the integrated models, the lumped SOV model has lower precision to simulate the rainfall-runoff process.

  7. Runoff quality prediction from small urban catchments using SWMM

    Science.gov (United States)

    Tsihrintzis, Vassilios A.; Hamid, Rizwan

    1998-02-01

    The RUNOFF block of EPA's storm water management model (SWMM) was used to simulate the quantity and quality of urban storm water runoff from four relatively small sites (i.e. 5·97-23·56 ha) in South Florida, each with a specific predominant land use (i.e. low density residential, high density residential, highway and commercial). The objectives of the study were to test the applicability of this model in small subtropical urban catchments and provide modellers with a way to select appropriate input parameters to be used in planning studies. A total of 58 storm events, measured by the US Geological Survey (USGS), provided hyetographs, hydrographs and pollutant loadings for biological oxygen demand (BOD5), total suspended solids (TSS), total Kjeldahl nitrogen (TKN) and lead (Pb), and were used for calibration of the model. Several other catchment characteristics, also measured or estimated by USGS, were used in model input preparation. Application of the model was done using the Green-Ampt equation for infiltration loss computation, a pollutant accumulation equation using a power build-up equation dependent on the number of dry days, and a power wash-off equation dependent on the predicted runoff rate. Calibrated quantity input parameters are presented and compared with suggested values in the literature. The impervious depression storage was generally found to be the most sensitive calibration parameter, followed by the Manning's roughness coefficients of conduit and overland flow, the Green-Ampt infiltration parameters and, finally, the pervious depression storage. Calibrated quality input parameters are presented in the form of regression equations, as a function of rainfall depth and the number of antecedent dry days. A total of 16 independent rainfall events were used for verification of the model, which showed a good comparison with observed data for both hydrographs and pollutant loadings. Average model predictions for the four constituent concentrations

  8. Comparison of the treatment performance of hybrid constructed wetlands treating stormwater runoff.

    Science.gov (United States)

    Choi, J Y; Maniquiz-Redillas, M C; Hong, J S; Lee, S Y; Kim, L H

    2015-01-01

    This study was conducted to compare the treatment performance of two hybrid constructed wetlands (CWs) in treating stormwater runoff. The hybrid CWs were composed of a combination of free water surface (FWS) and horizontal subsurface flow (HSSF) CWs. Based on the results, strong correlation exists between potential runoff impacts and stormwater characteristics; however, the low correlations also suggest that not only the monitored parameters contribute to stormwater event mean concentrations (EMC) of pollutants, but other factors should also be considered as well. In the hydraulic and treatment performance of the hybrid CWs, a small surface area to catchment area (SA/CA) ratio, receiving a high concentration of influent EMC, will find it hard to achieve great removal efficiency; also a large SA/CA ratio, receiving low concentration of influent EMC, will find it hard to achieve great removal efficiency. With this, SA/CA ratio and influent characteristics such as EMC or load should be considered among the design factors of CWs. The performance data of the two CWs were used to consider the most cost-effective design of a hybrid CW. The optimum facility capacity (ratio of total runoff volume to storage volume) that is applicable for a target volume reduction and removal efficiency was provided in this study.

  9. Effects of changes in lung volume on oscillatory flow rate during high-frequency chest wall oscillation

    OpenAIRE

    Scott J Butcher; Pasiorowski, Michal P; Jones, Richard L

    2007-01-01

    BACKGROUND: The effectiveness of high-frequency chest wall oscillation (HFCWO) in mucolysis and mucous clearance is thought to be dependant on oscillatory flow rate (Fosc). Therefore, increasing Fosc during HFCWO may have a clinical benefit.OBJECTIVES: To examine effects of continuous positive airway pressure (CPAP) on Fosc at two oscillation frequencies in healthy subjects and patients with airway obstruction.METHODS: Five healthy subjects and six patients with airway obstruction underwent 1...

  10. Application and Evaluation of a Snowmelt Runoff Model in the Tamor River Basin, Eastern Himalaya Using a Markov Chain Monte Carlo (MCMC) Data Assimilation Approach

    Science.gov (United States)

    Panday, Prajjwal K.; Williams, Christopher A.; Frey, Karen E.; Brown, Molly E.

    2013-01-01

    Previous studies have drawn attention to substantial hydrological changes taking place in mountainous watersheds where hydrology is dominated by cryospheric processes. Modelling is an important tool for understanding these changes but is particularly challenging in mountainous terrain owing to scarcity of ground observations and uncertainty of model parameters across space and time. This study utilizes a Markov Chain Monte Carlo data assimilation approach to examine and evaluate the performance of a conceptual, degree-day snowmelt runoff model applied in the Tamor River basin in the eastern Nepalese Himalaya. The snowmelt runoff model is calibrated using daily streamflow from 2002 to 2006 with fairly high accuracy (average Nash-Sutcliffe metric approx. 0.84, annual volume bias model is most sensitive (e.g. lapse rate and recession coefficient) and maximizes model fit and performance. Model simulated streamflow using an interpolated precipitation data set decreases the fractional contribution from rainfall compared with simulations using observed station precipitation. The average snowmelt contribution to total runoff in the Tamor River basin for the 2002-2006 period is estimated to be 29.7+/-2.9% (which includes 4.2+/-0.9% from snowfall that promptly melts), whereas 70.3+/-2.6% is attributed to contributions from rainfall. On average, the elevation zone in the 4000-5500m range contributes the most to basin runoff, averaging 56.9+/-3.6% of all snowmelt input and 28.9+/-1.1% of all rainfall input to runoff. Model simulated streamflow using an interpolated precipitation data set decreases the fractional contribution from rainfall versus snowmelt compared with simulations using observed station precipitation. Model experiments indicate that the hydrograph itself does not constrain estimates of snowmelt versus rainfall contributions to total outflow but that this derives from the degree-day melting model. Lastly, we demonstrate that the data assimilation approach is

  11. Dosimetric coverage of the prostate, normal tissue sparing, and acute toxicity with high-dose-rate brachytherapy for large prostate volumes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, George; Strom, Tobin J.; Shrinath, Kushagra; Mellon, Eric A.; Fernandez, Daniel C.; Biagioli, Matthew C. [Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL (United States); Wilder, Richard B., E-mail: mcbiagioli@yahoo.com [Cancer Treatment Centers of America, Newnan, GA (United States)

    2015-05-15

    Purpose: to evaluate dosimetric coverage of the prostate, normal tissue sparing, and acute toxicity with HDR brachytherapy for large prostate volumes. Materials and methods: one hundred and two prostate cancer patients with prostate volumes >50 mL (range: 5-29 mL) were treated with high-dose-rate (HDR) brachytherapy ± intensity modulated radiation therapy (IMRT) to 4,500 cGy in 25 daily fractions between 2009 and 2013. HDR brachytherapy monotherapy doses consisted of two 1,350-1,400 cGy fractions separated by 2-3 weeks, and HDR brachytherapy boost doses consisted of two 950-1,150 cGy fractions separated by 4 weeks. Twelve of 32 (38%) unfavorable intermediate risk, high risk, and very high risk patients received androgen deprivation therapy. Acute toxicity was graded according to the Common Terminology Criteria for Adverse Events (CTCAE) version 4. Results: median follow-up was 14 months. Dosimetric goals were achieved in over 90% of cases. Three of 102 (3%) patients developed Grade 2 acute proctitis. No variables were significantly associated with Grade 2 acute proctitis. Seventeen of 102 (17%) patients developed Grade 2 acute urinary retention. American Urological Association (AUA) symptom score was the only variable significantly associated with Grade 2 acute urinary retention (p-0.04). There was no ≥ Grade 3 acute toxicity. Conclusions: dosimetric coverage of the prostate and normal tissue sparing were adequate in patients with prostate volumes >50 mL. Higher pre-treatment AUA symptom scores increased the relative risk of Grade 2 acute urinary retention. However, the overall incidence of acute toxicity was acceptable in patients with large prostate volumes. (author)

  12. Dosimetric Coverage of the Prostate, Normal Tissue Sparing, and Acute Toxicity with High-Dose-Rate Brachytherapy for Large Prostate Volumes

    Directory of Open Access Journals (Sweden)

    George Yang

    2015-06-01

    Full Text Available ABSTRACTPurposeTo evaluate dosimetric coverage of the prostate, normal tissue sparing, and acute toxicity with HDR brachytherapy for large prostate volumes.Materials and MethodsOne hundred and two prostate cancer patients with prostate volumes >50 mL (range: 5-29 mL were treated with high-dose-rate (HDR brachytherapy ± intensity modulated radiation therapy (IMRT to 4,500 cGy in 25 daily fractions between 2009 and 2013. HDR brachytherapy monotherapy doses consisted of two 1,350-1,400 cGy fractions separated by 2-3 weeks, and HDR brachytherapy boost doses consisted of two 950-1,150 cGy fractions separated by 4 weeks. Twelve of 32 (38% unfavorable intermediate risk, high risk, and very high risk patients received androgen deprivation therapy. Acute toxicity was graded according to the Common Terminology Criteria for Adverse Events (CTCAE version 4.ResultsMedian follow-up was 14 months. Dosimetric goals were achieved in over 90% of cases. Three of 102 (3% patients developed Grade 2 acute proctitis. No variables were significantly associated with Grade 2 acute proctitis. Seventeen of 102 (17% patients developed Grade 2 acute urinary retention. American Urological Association (AUA symptom score was the only variable significantly associated with Grade 2 acute urinary retention (p=0.04. There was no ≥ Grade 3 acute toxicity.ConclusionsDosimetric coverage of the prostate and normal tissue sparing were adequate in patients with prostate volumes >50 mL. Higher pre-treatment AUA symptom scores increased the relative risk of Grade 2 acute urinary retention. However, the overall incidence of acute toxicity was acceptable in patients with large prostate volumes.

  13. Effects of cropping systems on water runoff, soil erosion and nutrient loss in the Moldavian Plateau, Romania

    Energy Technology Data Exchange (ETDEWEB)

    Ailincai, C.; Jitareanu, G.; Bucur, D.; Ailincai, D.; Raus, L.; Filipov, F.

    2009-07-01

    The experiments carried out at the Podu-lloaiei Agricultural Research Sation, during 1986-2008, had the following objectives: the study of water runoff and soil losses, by erosion, in different crops; the annual rate of erosion process under the influence of anti-erosion protection of different crops; the influence of water runoff and soil erosion on losses of organic matter and mineral elements from soil. (Author) 7 refs.

  14. Influence of soil water repellency on runoff and solute loss from New Zealand pasture

    Science.gov (United States)

    Jeyakumar, P.; Müller, K.; Deurer, M.; van den Dijssel, C.; Mason, K.; Green, S.; Clothier, B. E.

    2012-04-01

    Soil water repellency (SWR) has been reported in New Zealand, but knowledge on its importance for the country's economy and environment is limited. Our recent survey on the occurrence of SWR under pasture across the North Island of New Zealand showed that most soils exhibited SWR when dry independent of climate but influenced by the soil order. SWR is discussed as an important soil surface condition enhancing run-off and the transfer of fertilizers and pesticides from agricultural land into waterways. So far, the impact of SWR on run-off has rarely been measured. We developed a laboratory-scale run-off measurement apparatus (ROMA) to quantify directly the impact of SWR on run-off from undisturbed soil slabs. We compared the run-off resulting from the run-on of water with that resulting from an ethanol (30% v/v) solution, which is a fully-wetting liquid even in severely hydrophobic soils. Thus, the experiments with the ethanol solution can be understood as a proxy measure of the wetting-up behaviour of hydrophilic soils. We conducted ROMA run-off experiments with air-dried soil slabs (460 mm long x 190 mm wide x 50 mm deep) collected from pastoral sites, representing three major soil orders in the North Island: Recent Soil (Fluvisol), Gley Soil (Gleysol), and Organic Soil (Histosol), with water followed by the ethanol solution at a run-on rate of 60 mm/h. Bromide was applied at 80 kg KBr/ha prior to the water experiments to assess potential solute losses via run-off. The air-dried soils had a high degree and persistence of SWR (contact angles, 97, 98 and 104° , and potential water drop penetration times, 42, 54 and 231 min for the Fluvisol, Gleysol and Histosol, respectively). Under identical soil and experimental conditions, water generated run-off from all soils, but in the experiments with the ethanol solution, the entire ethanol solution infiltrated into the soils. The ranking of the run-off coefficients of the soils directly reflected their ranking in

  15. Dependence of lung injury on inflation rate during low-volume ventilation in normal open-chest rabbits.

    Science.gov (United States)

    D'Angelo, Edgardo; Pecchiari, Matteo; Saetta, Marina; Balestro, Elisabetta; Milic-Emili, Joseph

    2004-07-01

    Lung mechanics and morphometry were assessed in two groups of nine normal open-chest rabbits mechanically ventilated (MV) for 3-4 h at zero end-expiratory pressure (ZEEP) with physiological tidal volumes (Vt; 11 ml/kg) and high (group A) or low (group B) inflation flow (44 and 6.1 ml x kg(-1) x s(-1), respectively). Relative to initial MV on positive end-expiratory pressure (PEEP; 2.3 cmH(2)O), MV on ZEEP increased quasi-static elastance and airway and viscoelastic resistance more in group A (+251, +393, and +225%, respectively) than in group B (+180, +247, and +183%, respectively), with no change in viscoelastic time constant. After restoration of PEEP, quasi-static elastance and viscoelastic resistance returned to control, whereas airway resistance, still relative to initial values, remained elevated more in group A (+86%) than in group B (+33%). In contrast, prolonged high-flow MV on PEEP had no effect on lung mechanics of seven open-chest rabbits (group C). Gas exchange on PEEP was equally preserved in all groups, and the lung wet-to-dry ratios were normal. Relative to group C, both groups A and B had an increased percentage of abnormal alveolar-bronchiolar attachments and number of polymorphonuclear leukocytes in alveolar septa, the latter being significantly larger in group A than in group B. Thus prolonged MV on ZEEP with cyclic opening-closing of peripheral airways causes alveolar-bronchiolar uncoupling and parenchymal inflammation with concurrent, persistent increase in airway resistance, which are worsened by high-inflation flow.

  16. Exercise order affects the total training volume and the ratings of perceived exertion in response to a super-set resistance training session

    Directory of Open Access Journals (Sweden)

    Balsamo S

    2012-02-01

    Full Text Available Sandor Balsamo1–3, Ramires Alsamir Tibana1,2,4, Dahan da Cunha Nascimento1,2, Gleyverton Landim de Farias1,2, Zeno Petruccelli1,2, Frederico dos Santos de Santana1,2, Otávio Vanni Martins1,2, Fernando de Aguiar1,2, Guilherme Borges Pereira4, Jéssica Cardoso de Souza4, Jonato Prestes41Department of Physical Education, Centro Universitário UNIEURO, Brasília, 2GEPEEFS (Resistance training and Health Research Group, Brasília/DF, 3Graduate Program in Medical Sciences, School of Medicine, Universidade de Brasília (UnB, Brasília, 4Graduation Program in Physical Education, Catholic University of Brasilia (UCB, Brasília/DF, BrazilAbstract: The super-set is a widely used resistance training method consisting of exercises for agonist and antagonist muscles with limited or no rest interval between them – for example, bench press followed by bent-over rows. In this sense, the aim of the present study was to compare the effects of different super-set exercise sequences on the total training volume. A secondary aim was to evaluate the ratings of perceived exertion and fatigue index in response to different exercise order. On separate testing days, twelve resistance-trained men, aged 23.0 ± 4.3 years, height 174.8 ± 6.75 cm, body mass 77.8 ± 13.27 kg, body fat 12.0% ± 4.7%, were submitted to a super-set method by using two different exercise orders: quadriceps (leg extension + hamstrings (leg curl (QH or hamstrings (leg curl + quadriceps (leg extension (HQ. Sessions consisted of three sets with a ten-repetition maximum load with 90 seconds rest between sets. Results revealed that the total training volume was higher for the HQ exercise order (P = 0.02 with lower perceived exertion than the inverse order (P = 0.04. These results suggest that HQ exercise order involving lower limbs may benefit practitioners interested in reaching a higher total training volume with lower ratings of perceived exertion compared with the leg extension plus leg curl

  17. Early treatment volume reduction rate as a prognostic factor in patients treated with chemoradiotherapy for limited stage small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo Hwan; Lee, Jeong Shin; Lee, Chang Geol; Cho, Jae Ho [Dept. of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul (Korea, Republic of); Choi, Jin Hyun; Kim, Jun Won [Dept. of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2015-06-15

    To investigate the relationship between early treatment response to definitive chemoradiotherapy (CRT) and survival outcome in patients with limited stage small cell lung cancer (LS-SCLC). We retrospectively reviewed 47 patients with LS-SCLC who received definitive CRT between January 2009 and December 2012. Patients were treated with systemic chemotherapy regimen of etoposide/carboplatin (n = 15) or etoposide/cisplatin (n = 32) and concurrent thoracic radiotherapy at a median dose of 54 Gy (range, 46 to 64 Gy). Early treatment volume reduction rate (ETVRR) was defined as the percentage change in gross tumor volume between diagnostic computed tomography (CT) and simulation CT for adaptive RT planning and was used as a parameter for early treatment response. The median dose at adaptive RT planning was 36 Gy (range, 30 to 43 Gy), and adaptive CT was performed in 30 patients (63.8%). With a median follow-up of 27.7 months (range, 5.9 to 75.8 months), the 2-year locoregional progression-free survival (LRPFS) and overall survival (OS) rates were 74.2% and 56.5%, respectively. The mean diagnostic and adaptive gross tumor volumes were 117.9 mL (range, 5.9 to 447 mL) and 36.8 mL (range, 0.3 to 230.6 mL), respectively. The median ETVRR was 71.4% (range, 30 to 97.6%) and the ETVRR >45% group showed significantly better OS (p < 0.0001) and LRPFS (p = 0.009) than the other group. ETVRR as a parameter for early treatment response may be a useful prognostic factor to predict treatment outcome in LS-SCLC patients treated with CRT.

  18. Multiple-event study of bioretention for treatment of urban storm water runoff.

    Science.gov (United States)

    Hsieh, C H; Davis, A P

    2005-01-01

    Bioretention is a novel best management practice for urban storm water, employed to minimize the impact of urban runoff during storm events. Bioretention consists of porous media layers that can remove pollutants from infiltrating runoff via mechanisms that include adsorption, precipitation, and filtration. However, the effectiveness of bioretention in treating repetitive inputs of runoff has not been investigated. In this study, a bioretention test column was set up and experiments proceeded once every week for a total of 12 tests. Through all 12 repetitions, the infiltration rate remained constant (0.35 cm/min). All 12 tests demonstrated excellent removal efficiency for TSS, oil/grease, and lead (99%). For total phosphorus, the removal efficiency was about 47% the system removal efficiency ranged from 2.3% to 23%. Effluent nitrate concentration became higher than the influent concentration during the first 28 days and removal efficiency ranged from 9% to 20% afterward. Some degree of denitrification was apparently proceeding in the bioretention system. Overall, the top mulch layer filtered most of TSS in the runoff and prevented the bioretention media from clogging during 12 repetitions. Runoff quality was improved by the bioretention column.

  19. The interaction between concrete pavement and corrosion-induced copper runoff from buildings.

    Science.gov (United States)

    Bahar, B; Herting, G; Wallinder, I Odnevall; Hakkila, K; Leygraf, C; Virta, M

    2008-05-01

    Changes in chemical speciation of copper and the capacity of concrete pavement to retain copper in runoff water from external buildings have been investigated at urban field conditions, and in parallel laboratory experiments simulating outdoor scenarios. The research study showed the concrete surface to form a copper rich surface layer ( approximately 50 microm thick) upon exposure, and a high capacity to significantly reduce the bioavailable fraction of released copper (20-95%). The retention capacity of copper varied between 5 and 20% during single runoff events in the laboratory, and between 10 and 40% of the total copper release during single natural runoff events. The capacity to retain and reduce the bioavailable fraction of non-retained copper increased with increasing wetness of the concrete surfaces, increasing pH of the runoff water and decreasing flow rates. Bioassay testing with bacterial and yeast bioreporters showed the bioavailable fraction of non-retained copper to be significantly lower than the total copper concentration in the runoff water, between 22 and 40% for bacteria and between 8 and 31% for yeast. The application of generated data to simulate a fictive outdoor scenario, suggests a significant reduction of bioavailable and total copper to background values during environmental entry as a result of dilution, and the interaction with solid surfaces, organic matter and complexing agents already in the drainage system.

  20. Using native riparian barriers to reduce Giardia in agricultural runoff to freshwater ecosystems.

    Science.gov (United States)

    Winkworth, Cynthia L; Matthaei, Christoph D; Townsend, Colin R

    2010-12-01

    Waterway degradation in agricultural settings is caused by direct and diffuse sources of pollution. Waterway fencing focuses on reducing direct faecal contamination, but the extent to which it reduces overland surface runoff of pathogens is unknown. This study evaluated the potential of four riparian treatments to reduce Giardia in saturation excess surface runoff entering the waterway. Treatment 1 comprised exotic pasture grass and weeds that regenerated from bare soil between the fence and the waterway in the absence of cattle grazing and was compared with three others comprising monocultural plantings of New Zealand native grassland plants. Runoff experiments involving Giardia were performed after planting, both prior to and following the summer growing season. Giardia was not detected from any plot prior to cyst addition. In spring the native 'C. secta', 'A. lessoniana' and 'C. richardii' treatments showed significantly greater reductions in Giardia in runoff than the 'exotic grasses' treatment, while in autumn the 'C. richardii' treatment reduced Giardia more than the 'exotic grasses/weeds'. A reduction in public health risk should follow from riparian vegetation, whether exotic or native, but with an added benefit in the case of the native tussock grass C. richardii, due to the associated lower runoff rate.

  1. Medicare program; physician fee schedule update for calendar year 1997 and physician volume performance standard rates of increase for Federal fiscal year 1997--HCFA. Final notice.

    Science.gov (United States)

    1996-11-22

    This final notice announces the calendar year 1997 updates to the Medicare physician fee schedule and the Federal fiscal year 1997 volume performance standard rates of increase for expenditures for physicians' services under the Medicare Supplementary Medical Insurance (Part B) program as required by sections 1848 (d) and, (f), respectively, of the Social Security Act. The fee schedule updates for calendar year 1997 are 1.9 percent for surgical services, 2.5 percent for primary care services, and -0.8 percent for other nonsurgical services. While it does not affect payment for any particular service, there was a 0.6 percent increase in the update for all physicians' services for 1997. The physician volume performance standard rates of increase for Federal fiscal year 1997 are -3.7 percent for surgical services, 4.5 percent for primary care services, -0.5 percent for other nonsurgical services, and a weighted average of -0.3 percent for all physicians' services.

  2. [Parameter identification and validation of SWMM in simulation of impervious urban land surface runoff].

    Science.gov (United States)

    Dong, Xin; Du, Peng-fei; Li, Zhi-yi; Wang, Hao-chang

    2008-06-01

    The purpose of this paper is the application of storm water management model (SWMM) in simulating runoff hydrology and water quality. The study chose a roof as the typical impervious urban land surface, and monitored several rainfall-runoff events for parameter identification. We identified and validated hydrological and water quality parameters, using Monte Carlo sampling method and HSY algorithm, which are based on uncertainty analysis. Results show that impervious urban land surface runoff model includes 6 critical parameters, which are depression storage (S-imperv), Manning's n (N-imperv), maximum buildup possible (max buildup), buildup rate constant (rate constant), washoff coefficient (coefficient), and washoff exponent (exponent). Identification of S-imperv and N-imperv could use least square error as objectives, while others could use errors of event pollution load and peak concentration of pollutant as objectives. The identification results of the 6 parameters are N-imperv 0.012-0.025,S-imperv 0-0.7, max buildup 15-30,rate constant 0.2-0.8,coefficient 0.01-0.05, and exponent 1.0-1.2. Regional sensitivities of these parameters in non-ascending order are coefficient, S-imperv, N-imperv, max buildup, exponent, and rate constant. Identified parameters are able to be validated by SWMM model. However, current model structures still have some difficulties in simulating runoff pollutant concentration curves caused by some special rain patterns.

  3. Runoff and erosion effects after prescribed fire and wildfire on volcanic ash-cap soils

    Science.gov (United States)

    AFTER PRESCRIBED BURNS AT THREE LOCATIONS AND ONE WILDFIRE, RAINFALL SIMULATIONS STUDIES WERE COMPLETED TO COMPARE POSTFIRE RUNOFF RATES AND SEDIMENT YIELDS ON ASH-CAP SOIL IN CONIFER FOREST REGIONS OF NOTHERN IDAHO AND WESTERN MONTANA. THE MEASURED FIRE EFFECTS WERE DIFFERENTIATED BY BURN SEVERITY ...

  4. RUNON a hitherto little noticed factor - Field experiments comparing RUNOFF/RUNON processes

    Science.gov (United States)

    Kohl, Bernhard; Achleitner, Stefan; Lumassegger, Simon

    2017-04-01

    When ponded water moves downslope as overland flow, an important process called runon manifests itself, but is often ignored in rainfall-runoff studies (Nahar et al. 2004) linking infiltration exclusively to rainfall. Runon effects on infiltration have not yet or only scarcely been evaluated (e.g. Zheng et al. 2000). Runoff-runon occurs when spatially variable infiltration capacities result in runoff generated in one location potentially infiltrating further downslope in an area with higher infiltration capacity (Jones et al. 2013). Numerous studies report inverse relationships between unit area volumes of overland flow and plot lengths (Jones et al. 2016). This is an indication that the effects of rainfall and runon often become blurred. We use a coupled hydrological/2D hydrodynamic model to simulate surface runoff and pluvial flooding including the associated infiltration process. In frame of the research project SAFFER-CC (sensitivity assessment of critical condition for local flash floods - evaluating the recurrence under climate change) the influence of land use and soil conservation on pluvial flash flood modeling is assessed. Field experiments are carried out with a portable irrigation spray installation at different locations with a plot size 5m width and 10m length. The test plots were subjected first to a rainfall with constant intensity of 100 mm/h for one hour. Consecutively a super intense, one hour mid accentuated rainfall hydrograph was applied after 30 minutes at the same plots, ranging from 50 mm/h to 200 mm/h for 1hour. Finally, runon was simulated by upstream feeding of the test plots using two different inflow intensities. The irrigation test showed expected differences of runoff coefficients depending on the various agricultural management. However, these runoff coefficients change with the applied process (rainfall or runon). While a decrease was observed on a plot with a closed litter layer, runoff coefficient from runon increases on poor

  5. Integration of rainfall/runoff and geomorphological analyses flood hazard in small catchments: case studies from the southern Apennines (Italy)

    Science.gov (United States)

    Palumbo, Manuela; Ascione, Alessandra; Santangelo, Nicoletta; Santo, Antonio

    2017-04-01

    We present the first results of an analysis of flood hazard in ungauged mountain catchments that are associated with intensely urbanized alluvial fans. Assessment of hydrological hazard has been based on the integration of rainfall/runoff modelling of drainage basins with geomorphological analysis and mapping. Some small and steep, ungauged mountain catchments located in various areas of the southern Apennines, in southern Italy, have been chosen as test sites. In the last centuries, the selected basins have been subject to heavy and intense precipitation events, which have caused flash floods with serious damages in the correlated alluvial fan areas. Available spatial information (regional technical maps, DEMs, land use maps, geological/lithological maps, orthophotos) and an automated GIS-based procedure (ArcGis tools and ArcHydro tools) have been used to extract morphological, hydrological and hydraulic parameters. Such parameters have been used to run the HEC (Hydrologic Engineering Center of the US Army Corps of Engineers) software (GeoHMS, GeoRAS, HMS and RAS) based on rainfall-runoff models, which have allowed the hydrological and hydraulic simulations. As the floods occurred in the studied catchments have been debris flows dominated, the solid load simulation has been also performed. In order to validate the simulations, we have compared results of the modelling with the effects produced by past floods. Such effects have been quantified through estimations of both the sediment volumes within each catchment that have the potential to be mobilised (pre-event) during a sediment transfer event, and the volume of sediments delivered by the debris flows at basins' outlets (post-event). The post-event sediment volume has been quantified through post-event surveys and Lidar data. Evaluation of the pre-event sediment volumes in single catchments has been based on mapping of sediment storages that may constitute source zones of bed load transport and debris flows. For

  6. Comparing flow duration curve and rainfall-runoff modelling for predicting daily runoff in ungauged catchments

    Science.gov (United States)

    Zhang, Yongqiang; Vaze, Jai; Chiew, Francis H. S.; Li, Ming

    2015-06-01

    Predicting daily runoff time series in ungauged catchments is both important and challenging. For the last few decades, the rainfall-runoff (RR) modelling approach has been the method of choice. There have been very few studies reported in literature which attempt to use flow duration curve (FDC) to predict daily runoff time series. This study comprehensively compares the two approaches using an extensive dataset (228 catchments) for a large region of south-eastern Australia and provides guidelines for choosing the suitable method. For each approach we used the nearest neighbour method and two weightings - a 5-donor simple mathematical average (SA) and a 5-donor inverse-distance weighting (5-IDW) - to predict daily runoff time series. The results show that 5-IDW was noticeably better than a single donor to predict daily runoff time series, especially for the FDC approach. The RR modelling approach calibrated against daily runoff outperformed the FDC approach for predicting high flows. The FDC approach was better at predicting medium to low flows in traditional calibration against the Nash-Sutcliffe-Efficiency or Root Mean Square Error, but when calibrated against a low flow objective function, both the FDC and rainfall-runoff models performed equally well in simulating the low flows. These results indicate that both methods can be further improved to simulate daily hydrographs describing the range of flow metrics in ungauged catchments. Further studies should be carried out for improving the accuracy of predicted FDC in ungauged catchments, including improving the FDC model structure and parameter fitting.

  7. Impact of the rainfall pattern on synthetic pesticides and copper runoff from a vineyard catchment

    Science.gov (United States)

    Payraudeau, Sylvain; Meite, Fatima; Wiegert, Charline; Imfeld, Gwenaël

    2017-04-01

    the applications. The copper mass exported represented about 1% (i.e. 2,085 g at the plot's scale) of the seasonal input, and mainly occurred during the major storm event. Copper were mainly exported in association with suspended particulate matter (SPM) (>80% of the total load). The partitioning between dissolved and SPM phases differs for the synthetic pesticides as expected by their properties. The rainfall pattern influences concentrations and loads of copper and the pesticides. Dissolved pesticide loads normalized by the pesticide mass in soil varied with larger rainfall intensities, runoff discharges and volumes. Contrasted relationships between rainfall characteristics (i.e. intensity, duration and total amount) and the load exported suggest that mechanisms of contaminant delivery from the vineyard soil differs among the pesticides and for copper. The results support the idea that, even in small catchment areas, the rainfall pattern (i.e. rainfall intensity and duration) partly controls the transport of pesticide and copper loads in runoff. Though other factors, such as the chemical characteristics and the amount and timing of applications, are important drivers for pesticide runoff, the rainfall patterns also determine the transport of pesticides from catchment to downstream aquatic ecosystems, and thus the ecotoxicological risk.

  8. Applicability of open rainfall data to event-scale urban rainfall-runoff modelling

    Science.gov (United States)

    Niemi, Tero J.; Warsta, Lassi; Taka, Maija; Hickman, Brandon; Pulkkinen, Seppo; Krebs, Gerald; Moisseev, Dmitri N.; Koivusalo, Harri; Kokkonen, Teemu

    2017-04-01

    Rainfall-runoff simulations in urban environments require meteorological input data with high temporal and spatial resolutions. The availability of precipitation data is constantly increasing due to the shift towards more open data sharing. However, the applicability of such data for urban runoff assessments is often unknown. Here, the feasibility of Finnish Meteorological Institute's open rain gauge and open weather radar data as input sources was studied by conducting Storm Water Management Model simulations at a very small (33.5 ha) urban catchment in Helsinki, Finland. In addition to the open data sources, data were also available from two research gauges, one of them located on-site, and from a research radar. The results confirmed the importance of local precipitation measurements for urban rainfall-runoff simulations, implying the suitability of open gauge data to be largely dictated by the gauge's distance from the catchment. Performance of open radar data with 5 min and 1 km2 resolution was acceptable in terms of runoff reproduction, albeit peak flows were constantly and flow volumes often underestimated. Gauge adjustment and advection interpolation were found to improve the quality of the radar data, and at least gauge adjustment should be performed when open radar data are used. Finally, utilizing dual-polarization capabilities of radars has a potential to improve rainfall estimates for high intensity storms although more research is still needed.

  9. Stochastic rainfall-runoff forecasting: parameter estimation, multi-step prediction, and evaluation of overflow risk

    DEFF Research Database (Denmark)

    Löwe, Roland; Mikkelsen, Peter Steen; Madsen, Henrik

    2014-01-01

    Probabilistic runoff forecasts generated by stochastic greybox models can be notably useful for the improvement of the decision-making process in real-time control setups for urban drainage systems because the prediction risk relationships in these systems are often highly nonlinear. To date, res...... in this analysis. In conclusion, further research must focus on the development of model structures that allow the proper separation of dry and wet weather uncertainties and simulate runoff uncertainties depending on the rainfall input.......Probabilistic runoff forecasts generated by stochastic greybox models can be notably useful for the improvement of the decision-making process in real-time control setups for urban drainage systems because the prediction risk relationships in these systems are often highly nonlinear. To date......, research has primarily focused on one-step-ahead flow predictions for identifying, estimating, and evaluating greybox models. For control purposes, however, stochastic predictions are required for longer forecast horizons and for the prediction of runoff volumes, rather than flows. This article therefore...

  10. A new data assimilation approach for improving runoff prediction using remotely-sensed soil moisture retrievals

    Directory of Open Access Journals (Sweden)

    W. T. Crow

    2009-01-01

    Full Text Available A number of recent studies have focused on enhancing runoff prediction via the assimilation of remotely-sensed surface soil moisture retrievals into a hydrologic model. The majority of these approaches have viewed the problem from purely a state or parameter estimation perspective in which remotely-sensed soil moisture estimates are assimilated to improve the characterization of pre-storm soil moisture conditions in a hydrologic model, and consequently, its simulation of runoff response to subsequent rainfall. However, recent work has demonstrated that soil moisture retrievals can also be used to filter errors present in satellite-based rainfall accumulation products. This result implies that soil moisture retrievals have potential benefit for characterizing both antecedent moisture conditions (required to estimate sub-surface flow intensities and subsequent surface runoff efficiencies and storm-scale rainfall totals (required to estimate the total surface runoff volume. In response, this work presents a new sequential data assimilation system that exploits remotely-sensed surface soil moisture retrievals to simultaneously improve estimates of both pre-storm soil moisture conditions and storm-scale rainfall accumulations. Preliminary testing of the system, via a synthetic twin data assimilation experiment based on the Sacramento hydrologic model and data collected from the Model Parameterization Experiment, suggests that the new approach is more efficient at improving stream flow predictions than data assimilation techniques focusing solely on the constraint of antecedent soil moisture conditions.

  11. Influence of glacier runoff on ecosystem structure in Gulf of Alaska fjords

    Science.gov (United States)

    Arimitsu, Mayumi; Piatt, John F.; Mueter, Franz J.

    2016-01-01

    To better understand the influence of glacier runoff on fjord ecosystems, we sampled oceanographic conditions, nutrients, zooplankton, forage fish and seabirds within 4 fjords in coastal areas of the Gulf Alaska. We used generalized additive models and geostatistics to identify the range of glacier runoff influence into coastal waters within fjords of varying estuarine influence and topographic complexity. We also modeled the response of depth-integrated chlorophyll a concentration, copepod biomass, fish and seabird abundance to physical, nutrient and biotic predictor variables. The effects of glacial runoff were traced at least 10 km into coastal fjords by cold, turbid, stratified and generally nutrient-rich near-surface conditions. Glacially modified physical gradients, nutrient availability and among-fjord differences explained 67% of the variation in phytoplankton abundance, which is a driver of ecosystem structure at higher trophic levels. Copepod, euphausiid, fish and seabird distribution and abundance were related to environmental gradients that could be traced to glacial freshwater input, particularly turbidity and temperature. Seabird density was predicted by prey availability and silicate concentrations, which may be a proxy for upwelling areas where this nutrient is in excess. Similarities in ecosystem structure among fjords were attributable to an influx of cold, fresh and sediment-laden water, whereas differences were likely related to fjord topography and local differences in estuarine vs. ocean influence. We anticipate that continued changes in the timing and volume of glacial runoff will ultimately alter coastal ecosystems in the future.

  12. Chemical composition of runoff water in Raipur city, central India

    Science.gov (United States)

    Ambade, Balram

    2015-03-01

    Runoff water is an important transporting medium for various pollutants from land to surface water. Several mobiles and stationary sources such as vehicles, steel cement and thermal power plants, cooking, street, construction debris, etc. are emitting effluents in the environment of the central India. The rain runoff water washes out the air as well as land pollutants and flushes out into water bodies. Therefore, rain runoff water pollution in most urbanized and industrialized city of central India, i.e., Raipur during rainy season (May-September 2012) is analyzed statistically using cluster and principal component analysis to assess sources. The cluster analysis grouped runoff water samples into two clusters based on the similarity of runoff water quality characteristics of the total variance. The factor analysis differentiated the diffused sources of runoff water contaminants. The enrichment factors and runoff fluxes of the contaminants are discussed.

  13. Characterizing dry deposition of mercury in urban runoff

    Science.gov (United States)

    Fulkerson, M.; Nnadi, F.N.; Chasar, L.S.

    2007-01-01

    Stormwater runoff from urban surfaces often contains elevated levels of toxic metals. When discharged directly into water bodies, these pollutants degrade water quality and impact aquatic life and human health. In this study, the composition of impervious surface runoff and associated rainfall was investigated for several storm events at an urban site in Orlando, Florida. Total mercury in runoff consisted of 58% particulate and 42% filtered forms. Concentration comparisons at the start and end of runoff events indicate that about 85% of particulate total mercury and 93% of particulate methylmercury were removed from the surface before runoff ended. Filtered mercury concentrations showed less than 50% reduction of both total and methylmercury from first flush to final flush. Direct comparison between rainfall and runoff at this urban site indicates dry deposition accounted for 22% of total inorganic mercury in runoff. ?? 2007 Springer Science+Business Media B.V.

  14. RUNOFF POTENTIAL OF MUREŞ RIVER UPPER BASIN TRIBUTARIES

    Directory of Open Access Journals (Sweden)

    V. SOROCOVSCHI

    2012-03-01

    Full Text Available Runoff Potential of Mureş River Upper Basin Tributaries. The upper basin of the Mureş River includes a significant area of the Eastern Carpathians central western part with different runoff formation conditions. In assessing the average annual runoff potential we used data from six gauging stations and made assessments on three distinct periods. Identifying the appropriate areas of the obtained correlations curves (between specific average runoff and catchments mean altitude allowed the assessment of potential runoff at catchment level and on geographical units. The potential average runoff is also assessed on altitude intervals of the mentioned areas. The runoff potential analysis on hydrographic basins, geographical units and altitude intervals highlights the variant spatial distribution of this general water resources indicator in the different studied areas.

  15. Comparison of Conventional Angiographic Findings between Trauma Patients with or without Runoff

    Directory of Open Access Journals (Sweden)

    Hassan Ravari

    2014-04-01

    Full Text Available Objective: To compare the conventional angiographic findings in extremity trauma patients with or without runoff. Methods: This was cross-sectional study including all the patients with extremity trauma who underwent conventional angiography during the 2 year period from 2011 to 2013 in Angiography departments of Mashhad University of Medical Sciences. Mechanism of trauma, type of injury and angiographic findings were recorded in a questionnaire for each patient. After completion of treatment and discharge, the treatment type was added. The characteristics as well as clinical findings were compared between those who were diagnosed to have arterial runoff ad those who did not. Results: One hundred and forty eight traumatic patients including 15 female with age range of 11-82 years and 133 men ranging from 25 to 40 years were enrolled. Abnormal angiographic findings were provided in 99 (66.9% patients including cutoff with distal runoff (n=60, 60.6% of abnormalities, cut off without distal runoff (n=21, 21.2% and spasm (n=14, 14.1% and other findings (n=4, 4%. Fifty one cases were treated under open surgery and amputation of traumatic limb was done for 13 patients. Amputation rate was higher in patients with cutoff and without runoff than those with cutoff and runoff (33.3% vs. 6.78%; p=0.002. Conclusion: Causes and types of traumatic arterial injury in our study were different with other reports. It was shown that angiographic findings were less important in prognosis and management of patients. Patients with spasm in angiographic findings had a better prognosis than other patients and mostly did not need any vascular surgery. The presence or absence of a distal run off in primary angiographic findings can have a predictive value in the final amputation rate.

  16. Multifractal modelling of runoffs of karstic springs

    Science.gov (United States)

    Márkus, L.

    2003-04-01

    A new multifractal stochastic process, Terdik and Iglói call the Limit of the Integrated Superposition of Diffusion processes with Linear differential Generator (LISDLG) , has been defined for modelling network traffic multifractality. The process is stationary, and exhibits long range dependency or long memory. Its characteristic property is that its bispectrum is real. It serves as the basis of distinction e.g. from the superposition of Levy-processes driven Ornstein-Uhlenbeck processes. Its further appealing property is that its finite dimensional distribution stems from multivariate Gamma, therefore it is inherently positive and skewed (and hence non-Gaussian). All together, this makes it a very promising candidate for modelling e.g. runoff data of springs or river flows. Quite recently Labat et al. (2002, J. of Hydrology, Vol 256, pp.176-195) pointed out multifractal properties of the runoff time series of French karstic springs. We show that runoff data of karstic springs in north-east Hungary possesses multifractal and cumulant-multifractal property as well as long range dependency and fit the above described LISDLG process, to model the phenomenon. Acknowledgement: This research was supported by the Nat. Sci. Research Fund OTKA, grant No.: T 032725.

  17. Poultry manure runoff and its influence on fluorescence characteristics of dissolved organic matter (DOM)

    Science.gov (United States)

    Singh, S.; Dutta, S.; Inamdar, S. P.

    2013-12-01

    Land application of poultry manure as a substitute for synthetic fertilizer is a common practice in states like Delaware which have a surplus of this animal waste. However, this practice can generate large amounts of labile DOM and nutrients in agricultural runoff that can cause eutrophication of downstream aquatic ecosystems. We determined the concentrations of dissolved organic carbon (DOC) and dissolved inorganic nitrogen (DIN) and the quality of DOM for a cropland receiving poultry manure in the coastal plain soils of Delaware. Manure was applied at the rate of 9 Mg ha-1 in the spring (March 10) of 2010 to an agricultural field planted in corn. Sampling was performed for surface runoff and soil waters at four landscape positions - field edge, upper and lower riparian zones and the stream. Sampling was conducted for eight storm events, one before manure application and seven after (March through July spanning over 100 days). DOM quality was characterized using spectrofluorometric techniques and the development of a site-specific PARAFAC model. DOC and DIN concentrations in surface runoff ranged from 18.1 to 77.2 mg/l and 4.2 to 22.6 mg/l, respectively. The percent of protein-like and humic-like DOM in surface runoff ranged between 3.9 to 23.5% and 12.3 to 41.6%, respectively. Highest concentrations of DOC and DIN were observed at the field edge and lowest in the stream. Protein-like and humic-like DOM decreased from the field edge to stream in surface runoff and soil waters. Temporally, both humic-like and protein-like DOM showed significant increases in storm runoff following manure application. After manure application, humic-like DOM increased by 70% while protein-like DOM increased by more than 200% in surface runoff indicating elevated content of labile DOM in poultry manure. These concentrations remained high for more than 60 days following manure application. Protein-like DOM was significantly correlated with nitrate-nitrogen (r = 0.43; p < 0

  18. Comparison of H-alpha and UV Star Formation Rates in the Local Volume: Systematic Discrepancies for Dwarf Galaxies

    CERN Document Server

    Lee, Janice C; Tremonti, Christy; Kennicutt, Robert C; Salim, Samir; Bothwell, Matthew; Calzetti, Daniela; Dalcanton, Julianne; Dale, Daniel; Engelbracht, Chad; J., Jose G Funes S; Johnson, Benjamin; Sakai, Shoko; Skillman, Evan; van Zee, Liese; Walter, Fabian; Weisz, Daniel

    2009-01-01

    (abridged) Using a complete sample of ~300 star-forming galaxies within 11 Mpc, we evaluate the consistency between star formation rates (SFRs) inferred from the far ultraviolet (FUV) non-ionizing continuum and H-alpha nebular emission, assuming standard conversion recipes in which the SFR scales linearly with luminosity at a given wavelength. Our analysis probes SFRs over 5 orders of magnitude, down to ultra-low activities on the order of ~0.0001 M_sun/yr. The data are drawn from the 11 Mpc H-alpha and Ultraviolet Galaxy Survey (11HUGS), which has obtained H-alpha fluxes from ground-based narrowband imaging, and UV fluxes from imaging with GALEX. For normal spiral galaxies (SFR~1 M_sun/yr), our results are consistent with previous work which has shown that FUV SFRs tend to be lower than H-alpha SFRs before accounting for internal dust attenuation, but that there is relative consistency between the two tracers after proper corrections are applied. However, a puzzle is encountered at the faint end of the lumin...

  19. Land cover effects on thresholds for surface runoff generation in Eastern Madagascar

    Science.gov (United States)

    van Meerveld, Ilja H. J.; Prasad Ghimire, Chandra; Zwartendijk, Bob W.; Ravelona, Maafaka; Lahitiana, Jaona; Bruijnzeel, L. Adrian

    2016-04-01

    Reforestation and natural regrowth in the tropics are promoted for a wide range of benefits, including carbon sequestration, land rehabilitation and streamflow regulation. However, their effects on runoff generation mechanisms and streamflow are still poorly understood. Evaporative losses (transpiration and interception) likely increase with forest regrowth, while infiltration rates are expected to increase and surface runoff occurrence is, therefore, expected to decrease. As part of a larger project investigating the effects of land use on hydrological processes in upland Eastern Madagascar, this presentation reports on a comparison of the thresholds for surface runoff generation at a degraded grassland site, a young secondary forest site (5-7 years; LAI 1.83) and a mature secondary forest site (ca. 20 years; LAI 3.39). Surface runoff was measured on two (young and mature secondary forest) or three (degraded site) 3 m by 10 m plots over a one-year period (October 2014-September 2015). Soil moisture was measured at four (degraded site) to six depths (both forests), while perched groundwater levels were measured in piezometers installed at 30 cm below the soil surface. Soil hydraulic conductivity was measured in situ at the surface and at 10-20 and 20-30 cm depths at three locations in each plot. Porosity, moisture content at field capacity and bulk density were determined from soil cores taken at 2.5-7.5, 12.5-17.5 and 22.5-27.5 cm depth. The porosity and texture of the different plots were comparable. The hydraulic conductivity of the soil differed between the different land uses and declined sharply at 20-30 cm below the soil surface. Total surface runoff during the study period was 11% of incident rainfall at the degraded site vs. 2% for the two secondary forest sites. Maximum monthly runoff coefficients were 22%, 3.5% and 2.7% for the degraded site, the young forest site and the mature forest site, respectively, but individual event runoff coefficients could be

  20. Modelling runoff at the plot scale taking into account rainfall partitioning by vegetation: application to stemflow of banana (Musa spp. plant

    Directory of Open Access Journals (Sweden)

    Y.-M. Cabidoche

    2009-06-01

    Full Text Available Rainfall partitioning by vegetation modifies the intensity of rainwater reaching the ground, which affects runoff generation. Incident rainfall is intercepted by the plant canopy and then redistributed into throughfall and stemflow. Rainfall intensities at the soil surface are therefore not spatially uniform, generating local variations of runoff production that are disregarded in runoff models. The aim of this paper was to model runoff at the plot scale, accounting for rainfall partitioning by vegetation in the case of plants concentrating rainwater at the plant foot and promoting stemflow. We developed a lumped modelling approach, including a stemflow function that divided the plot into two compartments: one compartment including stemflow and the relative water pathways and one compartment for the rest of the plot. This stemflow function was coupled with a production function and a transfer function to simulate a flood hydrograph using the MHYDAS model. Calibrated parameters were a "stemflow coefficient", which compartmented the plot; the saturated hydraulic conductivity (Ks, which controls infiltration and runoff; and the two parameters of the diffusive wave equation. We tested our model on a banana plot of 3000 m2 on permeable Andosol (mean Ks=75 mm h−1 under tropical rainfalls, in Guadeloupe (FWI. Runoff simulations without and with the stemflow function were performed and compared to 18 flood events from 10 to 130 mm rainfall depth. Modelling results showed that the stemflow function improved the calibration of hydrographs according to the error criteria on volume and on peakflow and to the Nash and Sutcliffe coefficient. This was particularly the case for low flows observed during residual rainfall, for which the stemflow function allowed runoff to be simulated for rainfall intensities lower than the Ks measured at the soil surface. This approach also allowed us to take into account the experimental data, without needing to calibrate

  1. The impact of domestic rainwater harvesting systems in storm water runoff mitigation at the urban block scale.

    Science.gov (United States)

    Palla, A; Gnecco, I; La Barbera, P

    2017-04-15

    In the framework of storm water management, Domestic Rainwater Harvesting (DRWH) systems are recently recognized as source control solutions according to LID principles. In order to assess the impact of these systems in storm water runoff control, a simple methodological approach is proposed. The hydrologic-hydraulic modelling is undertaken using EPA SWMM; the DRWH is implemented in the model by using a storage unit linked to the building water supply system and to the drainage network. The proposed methodology has been implemented for a residential urban block located in Genoa (Italy). Continuous simulations are performed by using the high-resolution rainfall data series for the ''do nothing'' and DRWH scenarios. The latter includes the installation of a DRWH system for each building of the urban block. Referring to the test site, the peak and volume reduction rate evaluated for the 2125 rainfall events are respectively equal to 33 and 26 percent, on average (with maximum values of 65 percent for peak and 51 percent for volume). In general, the adopted methodology indicates that the hydrologic performance of the storm water drainage network equipped with DRWH systems is noticeable even for the design storm event (T = 10 years) and the rainfall depth seems to affect the hydrologic performance at least when the total depth exceeds 20 mm.

  2. Predictive value of FSH, testicular volume, and histopathological findings for the sperm retrieval rate of microdissection TESE in nonobstructive azoospermia: a meta-analysis.

    Science.gov (United States)

    Li, Hao; Chen, Li-Ping; Yang, Jun; Li, Ming-Chao; Chen, Rui-Bao; Lan, Ru-Zhu; Wang, Shao-Gang; Liu, Ji-Hong; Wang, Tao

    2017-03-24

    We performed this meta-analysis to evaluate the predictive value of different parameters in the sperm retrieval rate (SRR) of microdissection testicular sperm extraction (TESE) in patients with nonobstructive azoospermia (NOA). All relevant studies were searched in PubMed, Web of Science, EMBASE, Cochrane Library, and EBSCO. We chose three parameters to perform the meta-analysis: follicle-stimulating hormone (FSH), testicular volume, and testicular histopathological findings which included three patterns: hypospermatogenesis (HS), maturation arrest (MA), and Sertoli-cell-only syndrome (SCOS). If there was a threshold effect, only the area under the summary receiver operating characteristic curve (AUSROC) was calculated. Otherwise, the pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and the diagnostic odds ratio (DOR) were also calculated. Twenty-one articles were included in our study finally. There was a threshold effect among studies investigating FSH and SCOS. The AUSROCs of FSH, testicular volume, HS, MA, and SCOS were 0.6119, 0.6389, 0.6758, 0.5535, and 0.2763, respectively. The DORs of testicular volume, HS, and MA were 1.98, 16.49, and 1.26, respectively. The sensitivities of them were 0.80, 0.30, and 0.27, while the specificities of them were 0.35, 0.98, and 0.76, respectively. The PLRs of them were 1.49, 10.63, and 1.15, respectively. And NLRs were 0.73, 0.72, and 0.95, respectively. All the investigated factors in our study had limited predictive value. However, the histopathological findings were helpful to some extent. Most patients with HS could get sperm by microdissection TESE.

  3. Close range photogrammetry in soil erosion monitoring: Mass loss comparison between runoff plots and high resolution DEMs

    Science.gov (United States)

    Ahner, Mario; Seitz, Steffen; Scholten, Thomas; Song, Zhengshan; Schmidt, Karsten

    2017-04-01

    Soil erosion is a major environmental problem and can lead to severe negative impacts on terrestrial ecosystems. When raindrops hit a bare soil surface, the applied kinetic energy successively detaches soil particles. This rainsplash effect marks the initial stage of soil erosion, which can result in serious sediment losses with beginning surface runoff. Mini-runoff plots are often used to monitor soil erosion rates in comparative field experiments. However, this method is time-consuming, the sampling of detached soil is difficult and the accuracy heavily depends on thorough maintenance and control of the measurement setup. To optimize the acquisition of soil erosion data from splash and interrill processes, a digital method using close range photogrammetry was tested in 2015. Therefore, a photogrammetric workflow was applied to process high resolution digital elevation models (DEMs) from overlapping stereo-images. By calculating the differences between multi-temporal DEMs with a sub-millimetre resolution, the volume of detached sediment was assessed. We performed rainfall simulations with a single nozzle rainfall simulator and a light weight tent. Micro-scale runoff plots (ROPs, 0.4 m x 0.4 m) were used with two different treatments, namely a Hortic Anthrosol and sand (grain size 0.10-0.45 mm). Five repetitions of rainfall-exposure with an intensity of 60 mm h-1 were performed and each repetition divided into three intervals (0-15 min, 15-30 min and 30-60 min). Before the first and every following interval, a block of 25 stereo-images was acquired with a single lens reflex camera system and processed in Agisoft PhotoScan for DEM-generation. After every interval, the discharged sediment was dried and weighed in order to derive the ground-truth validation data for comparison. Results show that ROPs with the sand treatment generally showed a larger volume of detached sediment than the garden soil treatment. As sediment discharge increased, the modelled and measured

  4. From runoff to rainfall: inverse rainfall–runoff modelling in a high temporal resolution

    Directory of Open Access Journals (Sweden)

    M. Herrnegger

    2014-12-01

    Full Text Available This paper presents a novel technique to calculate mean areal rainfall in a high temporal resolution of 60 min on the basis of an inverse conceptual rainfall–runoff model and runoff observations. Rainfall exhibits a large spatio-temporal variability, especially in complex alpine terrain. Additionally, the density of the monitoring network in mountainous regions is low and measurements are subjected to major errors, which lead to significant uncertainties in areal rainfall estimates. The most reliable hydrological information available refers to runoff, which in the presented work is used as input for a rainfall–runoff model. Thereby a conceptual, HBV-type model is embedded in an iteration algorithm. For every time step a rainfall value is determined, which results in a simulated runoff value that corresponds to the observation. To verify the existence, uniqueness and stability of the inverse rainfall, numerical experiments with synthetic hydrographs as inputs into the inverse model are carried out successfully. The application of the inverse model with runoff observations as driving input is performed for the Krems catchment (38.4 km2, situated in the northern Austrian Alpine foothills. Compared to station observations in the proximity of the catchment, the inverse rainfall sums and time series have a similar goodness of fit, as the independent INCA rainfall analysis of Austrian Central Institute for Meteorology and Geodynamics (ZAMG. Compared to observations, the inverse rainfall estimates show larger rainfall intensities. Numerical experiments show, that cold state conditions in the inverse model do not influence the inverse rainfall estimates, when considering an adequate spin-up time. The application of the inverse model is a feasible approach to obtain improved estimates of mean areal rainfall. These can be used to enhance interpolated rainfall fields, e.g. for the estimation of rainfall correction factors, the parameterisation of

  5. Derivation of climate elasticity of runoff to assess the effects of climate change on annual runoff

    Science.gov (United States)

    Yang, Hanbo; Yang, Dawen

    2011-07-01

    Climate elasticity of runoff is an important indicator for evaluating the effects of climate change on runoff. Consequently, this paper proposes an analytical derivation of climate elasticity. Based on the mean annual water-energy balance equation, two dimensionless numbers (the elasticities of runoff to precipitation and potential evaporation) were derived. Combining the first-order differential of the Penman equation, the elasticities of runoff to precipitation, net radiation, air temperature, wind speed, and relative humidity were derived to separate the contributions of different climatic variables. The case study was carried out in the Futuo River catchment in the Hai River basin, as well as in 89 catchments of the Hai River and the Yellow River basins of China. Based on the mean annual of climatic variables, the climate elasticity in the Futuo River basin was estimated as follows: precipitation elasticity ?, net radiation elasticity ?, air temperature elasticity ?, wind speed elasticity ?, and relative humidity elasticity ?. In this catchment, precipitation decrease was mainly responsible for runoff decline, and wind speed decline had the second greatest effect on runoff. In the 89 catchments of the Hai River and the Yellow River basins of China, climate elasticity was estimated as follows: ? ranging from 1.6 to 3.9, ? ranging from -1.9 to -0.3, ? ranging from -0.11 to -0.02°C-1, ? ranging from -0.8 to -0.1, and ? ranging from 0.2 to 1.9. Additional analysis shows that climate elasticity was sensitive to catchment characteristics.

  6. The impact of road and railway embankments on runoff and soil erosion in eastern Spain

    Directory of Open Access Journals (Sweden)

    P. Pereira

    2015-12-01

    Full Text Available Road and railway infrastructure increased in the Mediterranean region during the last three decades. This included the building of embankments, which are assumed to be a~large source of sediments and runoff. However, little is known about soil erosion rates, the factors that control them, and the processes that contribute to detachment, transport and deposition of sediments from road and railway embankments. The objective of this study was therefore to assess the impacts of road and railway embankments as a source of sediment and water, and compare them to other land use types (citrus plantations and shrublands representative of the Cànyoles watershed to evaluate the importance of road embankments as a~source of water and sediment under high magnitude low frequency rainfall events. Sixty rainfall experiments (1 m2 plots; 60 min duration; 78 mm h−1 rainfall intensity were carried out on these land use types: 20 on two railway embankments (10 + 10, 20 on two road embankments (10 + 10, and 10 on citrus and 10 on shrubland. Road and railway embankments were characterized by bare soils with low organic matter and high bulk density. Erosion processes were more active in road, railway and citrus plots, and null in the shrublands. The non-sustainable soil erosion rates of 3 Mg ha−1 y−1 measured on the road embankments were due to the efficient runoff connectivity plus low infiltration rates within the plot as the runoff took less than one minute to reach the runoff outlet. Road and railway embankments are both an active source of sediments and runoff, and soil erosion control strategies must be applied. The citrus plantations also act as a~source of water and sediments (1.5 Mg ha−1 y−1, while shrublands are sediment sinks, as no overland flow was observed due to the high infiltration rates.

  7. Hydrology in a mediterranean mountain environment. The Vallcebre research catchment (north eastern Spain) II. Rainfall-runoff relationships and runoff processes; Hidrologia de un ambiente Mediterraneo de montana. Las cuencas de Vallcebre (Pirineo Oriental) II. Relaciones precipitacion-escorrentia y procesos hidrologicos

    Energy Technology Data Exchange (ETDEWEB)

    Latron, J.; Solar, M.; Nord, G.; Llorens, P.; Gallart, F.

    2009-07-01

    Hydrological response and runoff processes have been studied in the Vallcebre research basins (North Eastern Spain) for almost 20 years. Results obtained allowed to build a more complete perceptual model of the hydrological functioning of Mediterranean mountains basins. On a seasonal and monthly scale, there was no simple relationship between rainfall and runoff depths. Monthly rainfall and runoff values revealed the existence of a threshold in the relationship between rainfall and runoff depths. At the event scale, the storm-flow coefficient had a clear seasonal pattern. The effect of the water table position on how rainfall and runoff volumes relate was observed. Examination of soil water potential and water table dynamics during representative floods helped to identify 3 types of characteristic hydrological behaviour during the year. Under dry conditions, runoff was generated essentially as infiltration excess runoff in low permeable areas, whereas saturation excess runoff dominated during wetting-up and wet conditions. During wetting-up transition, saturated areas resulted from the development of scattered perched water tables, whereas in wet conditions they were linked to the rise of the shallow water table. (Author) 8 refs.

  8. A finite-volume fast diffusion-limited aggregation model for predicting the coagulation rate of mixed low-ionized system

    Science.gov (United States)

    Feng, Yu; Wang, Guang; Ruan, Leidan; Du, Ai

    2017-03-01

    Accompanied with the changing of coagulation time, the micro-structure of aerogel can be controlled by adding Polyacrylic acid (PAA) into sol system. We simulate the process of particles aggregation contains attracting molecular chains based on diffusion-limited cluster aggregation (DLCA). Compared with the normal coagulation system, the coagulation rate of the system that contains attracting chains are sped up first and then slowed down. The results of the stimulation point out that the interaction between particles and chains not only accelerates the motion of particles, but also separates the region and constrains the clusters' motion. These two effects are coexisting but the attracting interaction play a dominant role in the early state while the volume of chains has a dramatic influence on cluster's motion in late states.

  9. Role of heart rate and stroke volume during muscle metaboreflex-induced cardiac output increase: differences between activation during and after exercise.

    Science.gov (United States)

    Crisafulli, Antonio; Piras, Francesco; Filippi, Michele; Piredda, Carlo; Chiappori, Paolo; Melis, Franco; Milia, Raffaele; Tocco, Filippo; Concu, Alberto

    2011-09-01

    We hypothesized that the role of stroke volume (SV) in the metaboreflex-induced cardiac output (CO) increase was blunted when the metaboreflex was stimulated by exercise muscle ischemia (EMI) compared with post-exercise muscle ischemia (PEMI), because during EMI heart rate (HR) increases and limits diastolic filling. Twelve healthy volunteers were recruited and their hemodynamic responses to the metaboreflex evoked by EMI, PEMI, and by a control dynamic exercise were assessed. The main finding was that the blood pressure increment was very similar in the EMI and PEMI settings. In both conditions the main mechanism used to raise blood pressure was a CO elevation. However, during the EMI test CO was increased as a result of HR elevation whereas during the PEMI test CO was increased as a result of an increase in SV. These results were explainable on the basis of the different HR behavior between the two settings, which in turn led to different diastolic time and myocardial performance.

  10. Embryo survival and birth rate after minimum volume vitrification or slow freezing of in vivo and in vitro produced ovine embryos.

    Science.gov (United States)

    Dos Santos-Neto, P C; Cuadro, F; Barrera, N; Crispo, M; Menchaca, A

    2017-10-01

    The objective was to evaluate pregnancy outcomes and birth rate of in vivo derived vs. in vitro produced ovine embryos submitted to different cryopreservation methods. A total of 197 in vivo and 240 in vitro produced embryos were cryopreserved either by conventional freezing, or by vitrification with Cryotop or Spatula MVD methods on Day 6 after insemination/fertilization. After thawing/warming and transfer, embryo survival rate on Day 30 of gestation was affected by the source of the embryos (in vivo 53.3%, in vitro 20.8%; P vitro produced embryos, survival rate was 7.3% for conventional freezing, 38.7% for Cryotop, and 11.4% for Spatula MVD. Fetal loss from Day 30 to birth showed a tendency to be greater for in vitro (15.0%) rather than for in vivo produced embryos (5.7%), and was not affected by the cryopreservation method. Gestation length, weight at birth and lamb survival rate after birth were not affected by the source of the embryo, the cryopreservation method or stage of development (average: 150.5 ± 1.8 days; 4232.8 ± 102.8 g; 85.4%; respectively). This study demonstrates that embryo survival and birth rate of both in vivo and in vitro produced ovine embryos are improved by vitrification with the minimum volume Cryotop method. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The agreement between 3D, standard 2D and triplane 2D speckle tracking: effects of image quality and 3D volume rate.

    Science.gov (United States)

    Trache, Tudor; Stöbe, Stephan; Tarr, Adrienn; Pfeiffer, Dietrich; Hagendorff, Andreas

    2014-12-01

    Comparison of 3D and 2D speckle tracking performed on standard 2D and triplane 2D datasets of normal and pathological left ventricular (LV) wall-motion patterns with a focus on the effect that 3D volume rate (3DVR), image quality and tracking artifacts have on the agreement between 2D and 3D speckle tracking. 37 patients with normal LV function and 18 patients with ischaemic wall-motion abnormalities underwent 2D and 3D echocardiography, followed by offline speckle tracking measurements. The values of 3D global, regional and segmental strain were compared with the standard 2D and triplane 2D strain values. Correlation analysis with the LV ejection fraction (LVEF) was also performed. The 3D and 2D global strain values correlated good in both normally and abnormally contracting hearts, though systematic differences between the two methods were observed. Of the 3D strain parameters, the area strain showed the best correlation with the LVEF. The numerical agreement of 3D and 2D analyses varied significantly with the volume rate and image quality of the 3D datasets. The highest correlation between 2D and 3D peak systolic strain values was found between 3D area and standard 2D longitudinal strain. Regional wall-motion abnormalities were similarly detected by 2D and 3D speckle tracking. 2DST of triplane datasets showed similar results to those of conventional 2D datasets. 2D and 3D speckle tracking similarly detect normal and pathological wall-motion patterns. Limited image quality has a significant impact on the agreement between 3D and 2D numerical strain values.

  12. Strain and strain rate by speckle-tracking echocardiography correlate with pressure-volume loop-derived contractility indices in a rat model of athlete's heart.

    Science.gov (United States)

    Kovács, Attila; Oláh, Attila; Lux, Árpád; Mátyás, Csaba; Németh, Balázs Tamás; Kellermayer, Dalma; Ruppert, Mihály; Török, Marianna; Szabó, Lilla; Meltzer, Anna; Assabiny, Alexandra; Birtalan, Ede; Merkely, Béla; Radovits, Tamás

    2015-04-01

    Contractile function is considered to be precisely measurable only by invasive hemodynamics. We aimed to correlate strain values measured by speckle-tracking echocardiography (STE) with sensitive contractility parameters of pressure-volume (P-V) analysis in a rat model of exercise-induced left ventricular (LV) hypertrophy. LV hypertrophy was induced in rats by swim training and was compared with untrained controls. Echocardiography was performed using a 13-MHz linear transducer to obtain LV long- and short-axis recordings for STE analysis (GE EchoPAC). Global longitudinal (GLS) and circumferential strain (GCS) and longitudinal (LSr) and circumferential systolic strain rate (CSr) were measured. LV P-V analysis was performed using a pressure-conductance microcatheter, and load-independent contractility indices [slope of the end-systolic P-V relationship (ESPVR), preload recruitable stroke work (PRSW), and maximal dP/dt-end-diastolic volume relationship (dP/dtmax-EDV)] were calculated. Trained rats had increased LV mass index (trained vs. control; 2.76 ± 0.07 vs. 2.14 ± 0.05 g/kg, P rats (GLS: -18.8 ± 0.3 vs. -15.8 ± 0.4%; LSr: -5.0 ± 0.2 vs. -4.1 ± 0.1 Hz; GCS: -18.9 ± 0.8 vs. -14.9 ± 0.6%; CSr: -4.9 ± 0.2 vs. -3.8 ± 0.2 Hz, P rat model, strain and strain rate parameters closely reflected the improvement in intrinsic contractile function induced by exercise training.

  13. Storm runoff as related to urbanization in the Portland, Oregon-Vancouver, Washington Area

    Science.gov (United States)

    Laenen, Antonius

    1980-01-01

    A series of equations was developed to provide a better method of determining flood frequencies in the Portland-Vancouver urban area than is now available. The resulting regression equations can be used to compute peak discharge and storm runoff with a standard error of estimate of approximately 30 percent. Basins used to define the regression equations ranged in size from 0.2 to 26 square miles. Those physical basin parameters that proved to be significant are: drainage area, effective impervious area, storage, rainfall intensity, basin slope, and soil infiltration. The equations indicate that total urbanization of an undeveloped basin can increase peak discharge as much as 3? times and almost double the volume of storm runoff. Impervious area, as delineated by mapping techniques, proved to be an inadequate physical parameter for use in the regression equations because builders and planners have devised many methods of routing storm runoff from impervious areas to the main channel (in effect, speeding up or slowing down the response to the storm). In some parts of the study area, storm runoff was diverted into dry wells and never entered the main channel. To define the effect of this rerouting, the digital model was used to find an effective impervious area that would 'best fit' the rainfall-runoff data. Field estimates to verify the effectiveness of the impervious area for two of the basins showed that optimizations were within 20 percent of those shown by the digital model. Users of these data who may find the effective impervious area a difficult, expensive, and time-consuming parameter to obtain have an alternative. The combination of land-use type I (parks, forests, and vacant lots) and Type II (agriculture) proved to be an excellent inverse indicator of impervious area. Land-use types I and II, coupled with the street-gutter density, an indication of effective routing, provide the user with alternative indices of urbanization.

  14. 4 Living roofs in 3 locations: Does configuration affect runoff mitigation?

    Science.gov (United States)

    Fassman-Beck, Elizabeth; Voyde, Emily; Simcock, Robyn; Hong, Yit Sing

    2013-05-01

    Four extensive living roofs and three conventional (control) roofs in Auckland, New Zealand have been evaluated over periods of 8 months to over 2 yrs for stormwater runoff mitigation. Up to 56% cumulative retention was measured from living roofs with 50-150 mm depth substrates installed over synthetic drainage layers, and with >80% plant coverage. Variation in cumulative %-retention amongst sites is attributed to different durations of monitoring, rather than actual performance. At all sites, runoff rarely occurred at all from storms with less than 25 mm of precipitation, from the combined effects of substrates designed to maximize moisture storage and because >90% of individual events were less than 25 mm. Living roof runoff depth per event is predicted well by a 2nd order polynomial model (R2 = 0.81), again demonstrating that small storms are well managed. Peak flow per event from the living roofs was 62-90% less than a corresponding conventional roof's runoff. Seasonal retention performance decreased slightly in winter, but was nonetheless substantial, maintaining 66% retention at one site compared to 45-93% in spring-autumn at two sites. Peak flow mitigation did not vary seasonally. During a 4-month period of concurrent monitoring at all sites, varied substrate depth did not influence runoff depth (volume), %-retention, or %-peak flow mitigation compared to a control roof at the same site. The magnitude of peak flow was greater from garden shed-scale living roofs compared to the full-scale living roofs. Two design aspects that could be manipulated to increase peak flow mitigation include lengthening the flow path through the drainage layer to vertical gutters and use of flow-retarding drainage layer materials.

  15. Modelling the impact of retention–detention units on sewer surcharge and peak and annual runoff reduction

    DEFF Research Database (Denmark)

    Locatelli, Luca; Gabriel, S.; Mark, O.

    2015-01-01

    Stormwater management using water sensitive urban design is expected to be part of future drainage systems. This paper aims to model the combination of local retention units, such as soakaways, with subsurface detention units. Soakaways are employed to reduce (by storage and infiltration) peak...... and volume stormwater runoff; however, large retention volumes are required for a significant peak reduction. Peak runoff can therefore be handled by combining detention units with soakaways. This paper models the impact of retrofitting retention-detention units for an existing urbanized catchment in Denmark....... The impact of retrofitting a retention-detention unit of 3.3 m(3)/100 m(2) (volume/impervious area) was simulated for a small catchment in Copenhagen using MIKE URBAN. The retention-detention unit was shown to prevent flooding from the sewer for a 10-year rainfall event. Statistical analysis of continuous...

  16. Repeated experimental fires and window of disturbance in relation to runoff in a Mediterranean shrubland

    Directory of Open Access Journals (Sweden)

    E. Gimeno-García

    2013-05-01

    Full Text Available This study is focused on exploring the effect of repeated experimental fires on post-fire runoff generation through a sixteen years monitoring runoff yield from erosion plots (eight years after the first fire and other eight years after the second one in a Mediterranean shrubland area (La Concordia Experimental Station, considering the fire severity and the post-fire erosive rainfall events. The conceptual framework of the window of disturbance is used to analyze how long the runoff yield in burned plots shows clear differences respect to the unburned ones, as well as, the recovery-rate model for multiple fire events. Results show that the effect of repeated fires on runoff yield is related to a combination of fire severity, climatic conditions (mainly rainfall intensity, I30, soil hydrological properties (infiltration capacity, steady state infiltration and soil water retention capacity, and rate of vegetation recovery. Eight years after the first fire, even though soil hydrological properties are recovered as well as vegetation cover did, rainfall events with I30 ≥20 mm h-1 still promoted differences between burned and control plots. The second post-fire disturbance period was associated with the low vegetation recovery, and also with rainfall events with I30 ≥20 mm h-1 even seven years after the repeated fires.

  17. Predicting characteristics of rainfall driven estrogen runoff and transport from swine AFO spray fields.

    Science.gov (United States)

    Lee, Boknam; Kullman, Seth W; Yost, Erin E; Meyer, Michael T; Worley-Davis, Lynn; Williams, C Michael; Reckhow, Kenneth H

    2015-11-01

    Animal feeding operations (AFOs) have been implicated as potentially major sources of estrogenic contaminants into the aquatic environment due to the relatively minimal treatment of waste and potential mobilization and transport of waste components from spray fields. In this study a Bayesian network (BN) model was developed to inform management decisions and better predict the transport and fate of natural steroidal estrogens from these sites. The developed BN model integrates processes of surface runoff and sediment loss with the modified universal soil loss equation (MUSLE) and the soil conservation service curve number (SCS-CN) runoff model. What-if scenario simulations of lagoon slurry wastes to the spray fields were conducted for the most abundant natural estrogen estrone (E1) observed in the system. It was found that E1 attenuated significantly after 2 months following waste slurry application in both spring and summer seasons, with the overall attenuation rate predicted to be higher in the summer compared to the spring. Using simulations of rainfall events in conjunction with waste slurry application rates, it was predicted that the magnitude of E1 runoff loss is significantly higher in the spring as compared to the summer months, primarily due to spray field crop management plans. Our what-if scenario analyses suggest that planting Bermuda grass in the spray fields is likely to reduce runoff losses of natural estrogens near the water bodies and ecosystems, as compared to planting of soybeans.

  18. Polyacrylamide application versus forest residue mulching for reducing post-fire runoff and soil erosion.

    Science.gov (United States)

    Prats, Sergio Alegre; Martins, Martinho António Dos Santos; Malvar, Maruxa Cortizo; Ben-Hur, Meni; Keizer, Jan Jacob

    2014-01-15

    For several years now, forest fires have been known to increase overland flow and soil erosion. However, mitigation of these effects has been little studied, especially outside the USA. This study aimed to quantify the effectiveness of two so-called emergency treatments to reduce post-fire runoff and soil losses at the microplot scale in a eucalyptus plantation in north-central Portugal. The treatments involved the application of chopped eucalyptus bark mulch at a rate of 10-12 Mg ha(-1), and surface application of a dry, granular, anionic polyacrylamide (PAM) at a rate of 50 kg ha(-1). During the first year after a wildfire in 2010, 1419 mm of rainfall produced, on average, 785 mm of overland flow in the untreated plots and 8.4 Mg ha(-1) of soil losses. Mulching reduced these two figures significantly, by an average 52 and 93%, respectively. In contrast, the PAM-treated plots did not differ from the control plots, despite slightly lower runoff but higher soil erosion figures. When compared to the control plots, mean key factors for runoff and soil erosion were different in the case of the mulched but not the PAM plots. Notably, the plots on the lower half of the slope registered bigger runoff and erosion figures than those on the upper half of the slope. This could be explained by differences in fire intensity and, ultimately, in pre-fire standing biomass.

  19. Testing the Runoff Tool in Sicilian vineyards: adopting best management practices to prevent agricultural surface runoff

    Science.gov (United States)

    Singh, Manpriet; Dyson, Jeremy; Capri, Ettore

    2016-04-01

    Over the last decades rainfall has become more intense in Sicily, making large proportions of steeply sloping agricultural land more vulnerable to soil erosion, mainly orchards and vineyards (Diodato and Bellocchi 2010). The prevention of soil degradation is indirectly addressed in the European Union's Water Framework Directive (2000/60/EC) and Sustainable Use Directive (2009/128/EC). As a consequence, new EU compliance conditions for food producers requires them to have tools and solutions for on-farm implementation of sustainable practices (Singh et al. 2014). The Agricultural Runoff and Best Management Practice Tool has been developed by Syngenta to help farm advisers and managers diagnose the runoff potential from fields with visible signs of soil erosion. The tool consists of 4 steps including the assessment of three key landscape factors (slope, topsoil permeability and depth to restrictive horizon) and 9 mainly soil and crop management factors influencing the runoff potential. Based on the runoff potential score (ranging from 0 to 10), which is linked to a runoff potential class, the Runoff Tool uses in-field and edge-of-the-field Best Management Practices (BMPs) to mitigate runoff (aligned with advice from ECPA's TOPPS-prowadis project). The Runoff tool needs testing in different regions and crops to create a number of use scenarios with regional/crop specific advice on BMPs. For this purpose the Tool has been tested in vineyards of the Tasca d'Almerita and Planeta wineries, which are large family-owned estates with long-standing tradition in viticulture in Sicily. In addition to runoff potential scores, Visual Soil Assessment (VSA) scores have been calculated to allow for a comparison between different diagnostic tools. VSA allows for immediate diagnosis of soil quality (a higher score means a better soil quality) including many indicators of runoff (Shepherd 2008). Runoff potentials were moderate to high in all tested fields. Slopes were classified as

  20. Water quality of runoff from revegetated mine spoil

    Energy Technology Data Exchange (ETDEWEB)

    Trouart, J.E.; Knight, R.W.

    1985-03-01

    Permanent vegetation plots were established on mixed overburden and topsoiled overburden on a lignite test pit in eastern Texas in 1982. Vegetative treatments included two grass-legume treatments (switchgrass (Panicum virgatum) - sideoats grama (Bouteloua curtipendula) - subterranean clover (Trifolium subterranean) and little bluestem (Schizachyrium scoparium) - sideoats grama (Bouteloua curtipendula) - Illinois bundleflower (Desmanthus illinoiensis)) and three monocultures (Coastal bermudagrass (Cynodon dactylon), bahia grass (Paspalum notatum) and yellow Indiangrass (Sorghastrum nutans)). Water was applied to the 0.5 m/sup 2/ plots using a sprinkler-type rainfall simulator and quality of runoff was determined for each plot. Parameters analyzed included: settleable solids, total filterable solids, sediment production, infiltration rate, nitrites, nitrates, total iron and total manganese. Topsoiling significantly increased infiltration and significantly decreased filterable sediments, sediment production and settleable solids. The hydrologic qualities of the switchgrass-sideoats grama-subterranean clover mixture coincided closely with those of the Coastal bermudagrass monoculture. 11 references.

  1. On the role of the runoff coefficient in the mapping of rainfall to flood return periods

    Directory of Open Access Journals (Sweden)

    A. Viglione

    2009-01-01

    Full Text Available While the correspondence of rainfall return period TP and flood return period TQ is at the heart of the design storm procedure, their relationship is still poorly understood. The purpose of this paper is to shed light on the controls on this relationship examining in particular the effect of the variability of event runoff coefficients. A simplified world with block rainfall and linear catchment response is assumed and a derived flood frequency approach, both in analytical and Monte-Carlo modes, is used. The results indicate that TQ can be much higher than TP of the associated storm. The ratio TQ/TP depends on the average wetness of the system. In a dry system, TQ can be of the order of hundreds of times of TP. In contrast, in a wet system, the maximum flood return period is never more than a few times that of the corresponding storm. This is because a wet system cannot be much worse than it normally is. The presence of a threshold effect in runoff generation related to storm volume reduces the maximum ratio of TQ/TP since it decreases the randomness of the runoff coefficients and increases the probability to be in a wet situation. We also examine the question which runoff coefficients produce a flood return period equal to the rainfall return period if the design storm procedure is applied. For the systems analysed here, this runoff coefficient is always larger than the median of the runoff coefficients that cause the maximum annual floods. It depends on the average wetness of the system and on the return period considered, and its variability is particularly high when a threshold effect in runoff generation is present.

  2. Sensitivity of runoff behaviour of Alpine catchments to system conditions - looking at the current and future situation

    Science.gov (United States)

    Meißl, Gertraud; Klebinder, Klaus; Kerl, Florian; Dobler, Christian; Geitner, Clemens; Schöberl, Friedrich; Kohl, Bernhard; Markart, Gerhard; Sotier, Bernadette; Formayer, Herbert; Goler, Robert; Gorgas, Theresa; Bürger, Gerd; Bronstert, Axel

    2014-05-01

    Alpine settlements are often situated on alluvial fans at the outlet of small catchments. Thus they are - due to the short response time - exposed to a high risk in case of flash floods. Within the project "Sensitivity of the runoff characteristics of small Alpine catchments to climate change" we aim at identifying the critical combinations of event characteristics (intensity and duration of rain) and system conditions (soil moisture, state of vegetation and land use, snow cover) producing flash floods in order to improve the predictability of such events. We have investigated three Alpine catchments in western Austria with different altitudes and precipitation regimes. On the plot scale, field measurements, especially irrigation experiments, revealed that the rainfall-runoff reaction of slopes producing a high or low amount of surface runoff is relatively independent of the actual soil moisture content. However, plots producing a medium amount of surface runoff at dry conditions may generate significantly increased surface runoff volumes at moist conditions. Intensive grazing raises the amount of surface runoff with the duration of pasture season. Event analysis and mapping of the catchment inventories showed that the catchments with low (Ruggbachtal, 400 - 1000 m a.s.l, Vorarlberg) and medium altitude (Brixenbachtal, 800 - 2000 m a.s.l., Tyrol) tend to be sensitive to antecedent precipitation. Due to the high amount of pastured areas, the Brixenbach catchment shows a seasonal variation of runoff behaviour with a maximum of surface runoff in the late summer. The highly situated catchment (Längental, 2000 - 3000 m a.s.l., Tyrol) may show an increased runoff response at rain-on-snow-events. Because of its high portion of rock and talus slopes the runoff reaction of the catchment is quite insensitive to antecedent soil moisture content and grazing intensity. Currently ongoing hydrological modelling will show how seasonal system conditions (duration of snow cover

  3. Effects of roof and rainwater characteristics on copper concentrations in roof runoff.

    Science.gov (United States)

    Bielmyer, Gretchen K; Arnold, W Ray; Tomasso, Joseph R; Isely, Jeff J; Klaine, Stephen J

    2012-05-01

    Copper sheeting is a common roofing material used in many parts of the world. However, copper dissolved from roof sheeting represents a source of copper ions to watersheds. Researchers have studied and recently developed a simple and efficient model to predict copper runoff rates. Important input parameters include precipitation amount, rain pH, and roof angle. We hypothesized that the length of a roof also positively correlates with copper concentration (thus, runoff rates) on the basis that runoff concentrations should positively correlate with contact time between acidic rain and the copper sheet. In this study, a novel system was designed to test and model the effects of roof length (length of roof from crown to the drip edge) on runoff copper concentrations relative to rain pH and roof angle. The system consisted of a flat-bottom copper trough mounted on an apparatus that allowed run length and slope to be varied. Water of known chemistry was trickled down the trough at a constant rate and sampled at the bottom. Consistent with other studies, as pH of the synthetic rainwater decreased, runoff copper concentrations increased. At all pH values tested, these results indicated that run length was more important in explaining variability in copper concentrations than was the roof slope. The regression equation with log-transformed data (R(2) = 0.873) accounted for slightly more variability than the equation with untransformed data (R(2) = 0.834). In log-transformed data, roof angle was not significant in predicting copper concentrations.

  4. Spatial variations of storm runoff pollution and their correlation with land-use in a rapidly urbanizing catchment in China.

    Science.gov (United States)

    Qin, Hua-Peng; Khu, Soon-Thiam; Yu, Xiang-Ying

    2010-09-15

    The composition of land use for a rapidly urbanizing catchment is usually heterogeneous, and this may result in significant spatial variations of storm runoff pollution and increase the difficulties of water quality management. The Shiyan Reservoir catchment, a typical rapidly urbanizing area in China, is chosen as a study area, and temporary monitoring sites were set at the downstream of its 6 sub-catchments to synchronously measure rainfall, runoff and water quality during 4 storm events in 2007 and 2009. Due to relatively low frequency monitoring, the IHACRES and exponential pollutant wash-off simulation models are used to interpolate the measured data to compensate for data insufficiency. Three indicators, event pollutant loads per unit area (EPL), event mean concentration (EMC) and pollutant loads transported by the first 50% of runoff volume (FF50), were used to describe the runoff pollution for different pollutants in each sub-catchment during the storm events, and the correlations between runoff pollution spatial variations and land-use patterns were tested by Spearman's rank correlation analysis. The results indicated that similar spatial variation trends were found for different pollutants (EPL or EMC) in light storm events, which strongly correlate with the proportion of residential land use; however, they have different trends in heavy storm events, which correlate with not only the residential land use, but also agricultural and bare land use. And some pairs of pollutants (such as COD/BOD, NH(3)-N/TN) might have the similar source because they have strong or moderate positive spatial correlation. Moreover, the first flush intensity (FF50) varies with impervious land areas and different interception ratio of initial storm runoff volume should be adopted in different sub-catchments. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Forest Harvesting of a Rocky Mountain Headwater Catchment: Assessing the Impacts on Runoff and Sediment Transport Into and Through Riparian Buffers

    Science.gov (United States)

    Puntenney, K.; Bladon, K. D.; Silins, U.

    2015-12-01

    Mitigating forest harvesting impacts by retaining a vegetated riparian buffer along headwater streams is a widely implemented best management practice. However, there is still debate over current retention practices and their effectiveness at regulating runoff, erosion, and sediment transport from harvested areas to streams. Forested, headwater catchments on the eastern slopes of the Rocky Mountains (49°37' N, 114°40' W) were harvested in winter 2015. Fixed-width (30 m) riparian buffers were retained based on the regional operating ground rules for all of the identified and mapped hydrologic features. Modified Gerlach troughs (total n=40) were installed along the cutblock-buffer interface, 10 m into the vegetated buffer, and in unharvested control sites to collect runoff and sediment. Site characteristics, including surface soil moisture, slope, vegetation cover, soil type, litter depth, and upslope accumulated area will be used to describe differences in runoff volumes and sediment concentrations between sites. Rainfall simulations are also being used to quantify and compare the initiation of runoff, runoff volumes, and sediment concentrations under high intensity precipitation events in cutblocks, at the cutblock-buffer interface, and within vegetated buffers. Broad objectives of this ongoing study are to identify spatio-temporal hotspots of runoff and sediment transport from cutblocks into and through riparian buffers.

  6. Pollutants in stormwater runoff in Shanghai (China): Implications for management of urban runoff pollution

    Institute of Scientific and Technical Information of China (English)

    Siaka Ballo; Min Liu; Lijun Hou; Jing Chang

    2009-01-01

    Runoff samples were collected from four functional areas (traffic, residential, commercial and industrial) and four roof types (old con-crete, new concrete, old clay and new clay) in central Shanghai, China, during rain events. The event mean concentrations (EMCs) of three forms of nitrogen (NH4+-N,NO3--N,NO2--N) and the temporal variations of total phosphorus (TP) were then measured to evaluate the effects of runoff from different areas on water quality management. The results revealed that the TP levels varied significantly in the samples collected from different functional areas and roof types during rain events. In addition, although the NO3--N and NO2--N concentrations in runoff remained well below the fifth class values of the national surface water quality standards, the NH4+-N levels were 1.36, 1.17, 1.10 and 0.85 times higher than the standard value in samples collected from commercial, traffic, indus-trial, and residential areas, respectively. Similarly, the concentrations of NH4+-N in samples collected from old concrete, new concrete, old clay and new clay roofs exceeded the fifth class standard by 6.66, 5.72, 4.32 and 3.32 times, respectively. And the NO3--N levels were 1.86 and 1.53 times higher than the standard values in runoff samples collected from new and old concrete roofs, respectively.

  7. Transient runoff-runon model for a 1-D slope with random infiltrability: flow statistics and connectivity

    Science.gov (United States)

    Harel, Marie-Alice; Mouche, Emmanuel

    2015-04-01

    Despite the recent research focused on runoff pattern connectivity in hydrology, there is a surprising lack of theoretical knowledge regarding hillslope runoff generation and dynamics during a rainfall event. The transient problem is especially unaddressed. In this paper we propose a model based on queueing theory formalism for the infiltration-excess overland flow generation on soils with random infiltration properties. The influence of rainfall intensity and duration on runoff dynamics and connectivity is studied thanks to this model, numerical simulation and available steady-state results. We limit our study to a rainfall intensity that is a rectangular function of time. Exact solutions for the case of spatially random exponential distributions of soil infiltrability and rainfall intensity are developed. Simulations validate these analytical results and allow for the study the rising and recession limbs of the hydrograph for different rainfall characteristics. The case of a deterministic uniform rainfall rate and different infiltrability distributions is also discussed in light of runoff connectivity. We show that the connectivity framework contributes to a better understanding and prediction of runoff pattern formation and evolution with time. A fragmented overland flow is shown to have shorter charge and discharge periods after the onset and offset of rainfall compared to well connected runoff fields. These results demonstrate that the transient regime characteristics are linked with connectivity parameters, rainstorm properties and scale issues.

  8. Small drains, big problems: the impact of dry weather runoff on shoreline water quality at enclosed beaches.

    Science.gov (United States)

    Rippy, Megan A; Stein, Robert; Sanders, Brett F; Davis, Kristen; McLaughlin, Karen; Skinner, John F; Kappeler, John; Grant, Stanley B

    2014-12-16

    Enclosed beaches along urban coastlines are frequent hot spots of fecal indicator bacteria (FIB) pollution. In this paper we present field measurements and modeling studies aimed at evaluating the impact of small storm drains on FIB pollution at enclosed beaches in Newport Bay, the second largest tidal embayment in Southern California. Our results suggest that small drains have a disproportionate impact on enclosed beach water quality for five reasons: (1) dry weather surface flows (primarily from overirrigation of lawns and ornamental plants) harbor FIB at concentrations exceeding recreational water quality criteria; (2) small drains can trap dry weather runoff during high tide, and then release it in a bolus during the falling tide when drainpipe outlets are exposed; (3) nearshore turbulence is low (turbulent diffusivities approximately 10(-3) m(2) s(-1)), limiting dilution of FIB and other runoff-associated pollutants once they enter the bay; (4) once in the bay, runoff can form buoyant plumes that further limit vertical mixing and dilution; and (5) local winds can force buoyant runoff plumes back against the shoreline, where water depth is minimal and human contact likely. Outdoor water conservation and urban retrofits that minimize the volume of dry and wet weather runoff entering the local storm drain system may be the best option for improving beach water quality in Newport Bay and other urban-impacted enclosed beaches.

  9. Effects of extender type, sperm volume, cryoprotectant concentration, cryopreservation and time duration on motility, survival and fertilisation rates of Mekong giant catfish sperm

    Directory of Open Access Journals (Sweden)

    Kriangsak Mengumphan

    2010-10-01

    Full Text Available The objectives of this study are to evaluate the effects of some basic factors, namely extender type, sperm volume, cryoprotectant concentration, cryopreservation and storage time, on the quality of Mekong giant catfish (MGC sperm. The following results are obtained from conducted experiments. The sperm kept in Hanks balanced salt solution (HBSS extender consistently produced good results in terms of motility. The highest motility grade (4.0 was observed after 12 hours of examination and still a very satisfactory grade (3.3 was observed after 48 hours. The percentage of live cells of the sperm kept in HBSS was also highest (45.3%. The optimal amount of cryoprotectant (DMSO prior to cryopreservation was 8%, which gave the best motility grade (4.0 up to the first 72 hours of observation while at 120 hours the motility grade was 3.3. The fertilisation rate of MGC fresh sperm in HBSS (2 ml and 1 gram eggs was 47.1% while that of cryopreserved sperm under the same conditions was 36.2%. When crossed with P. hypophthalmus, the fertilisation rates of a 2-week- and a 1-year-cryopreserved sperm sample were 36.2% and 30.9% respectively.

  10. Response of the snowmelt and glacier runoff to the climate warming-up in the last 40 years in Xinjiang Autonomous Region, China

    Institute of Scientific and Technical Information of China (English)

    叶佰生; 丁永建; 康尔泗; 李纲; 韩添丁

    1999-01-01

    Some analytical results of the measured runoff during 1950s to 1980s at outlet hydrological stations of 33 main rivers and climatic data collected from 84 meteorological stations in Xinjiang Autonomous Region are presented.Comparison of hydrological and climatic parameters before and after 1980 shows that the spring runoff for most rivers after 1980s increased obviously at a rate of about 10%, though the spring air temperature did not rise very much. Especially,an increment by 20% for alpine runoff is observed during May when intensive snow melting occurred in the alpine region. To the contrary, the runoff in June decreased about 5%. When the summer or annual runoff is taken into account,direct relationship can be found between the change in runoff and the ratio of glacier-coverage, except the runoff in August when the glacier melting is strong, indicating that climatic warming has an obvious effect on the contribution of glacier melting to the runoff increase.

  11. Effects of Rainfall Intensity and Slope Gradient on Runoff and Soil Moisture Content on Different Growing Stages of Spring Maize

    Directory of Open Access Journals (Sweden)

    Wenbin Mu

    2015-06-01

    Full Text Available The rainfall-runoff process (RRP is an important part of hydrologic process. There is an effective measure to study RRP through artificial rainfall simulation. This paper describes a study on three growing stages (jointing stage, tasseling stage, and mature stage of spring maize in which simulated rainfall events were used to study the effects of various factors (rainfall intensity and slope gradient on the RRP. The RRP was tested with three different rainfall intensities (0.67, 1.00, and 1.67 mm/min and subjected to three different slopes (5°, 15°, and 20° so as to study RRP characteristics in semiarid regions. Regression analysis was used to study the results of this test. The following key results were obtained: (1 With the increase in rainfall intensity and slope, the increasing relationship with rainfall duration, overland flow, and cumulative runoff, respectively, complied with logarithmic and quadratic functions before reaching stable runoff in each growing stage of spring maize; (2 The runoff coefficient increased with the increase in rainfall intensity and slope in each growing stages of spring maize. The relationship between runoff coefficient, slope, rainfall intensity, rainfall duration, antecedent soil moisture, and vegetation coverage was multivariate and nonlinear; (3 The runoff lag time decreased with the increase in rainfall intensity and slope within the same growing stage. In addition, the relationship between runoff lag time, slope, rainfall intensity, antecedent soil moisture, and vegetation coverage could also be expressed by a multivariate nonlinear equation; (4 The descent rate of soil infiltration rate curve increased with the increased rainfall intensity and slope in the same growing stage. Furthermore, by comparing the Kostiakov, Horton, and Philip models, it was found that the Horton infiltration model was the best for estimating soil infiltration rate and cumulative infiltration under the condition of test.

  12. Modeling Rainfall-Runoff Response to Land Use and Land Cover Change in Rwanda (1990–2016

    Directory of Open Access Journals (Sweden)

    Fidele Karamage

    2017-02-01

    Full Text Available Stormwater runoff poses serious environmental problems and public health issues in Rwanda, a tropical country that is increasingly suffering from severe floods, landslides, soil erosion and water pollution. Using the WetSpa Extension model, this study assessed the changes in rainfall runoff depth in Rwanda from 1990 to 2016 in response to precipitation and land use changes. Our results show that Rwanda has experienced a significant conversion of natural forest and grassland to cropland and built-up areas. During the period 1990–2016, 7090.02 km2 (64.5% and 1715.26 km2 (32.1% of forest and grassland covers were lost, respectively, while the cropland and built-up areas increased by 135.3% (8503.75 km2 and 304.3% (355.02 km2, respectively. According to our estimates, the land use change effect resulted in a national mean runoff depth increase of 2.33 mm/year (0.38%. Although precipitation change affected the inter-annual fluctuation of runoff, the long-term trend of runoff was dominated by land use change. The top five districts that experienced the annual runoff depth increase (all >3.8 mm/year are Rubavu, Nyabihu, Ngororero, Gakenke, and Musanze. Their annual runoff depths increased at a rate of >3.8 mm/year during the past 27 years, due to severe deforestation (ranging from 62% to 85% and cropland expansion (ranging from 123% to 293%. These areas require high priority in runoff control using terracing in croplands and rainwater harvesting systems such as dam/reservoirs, percolation tanks, storage tanks, etc. The wet season runoff was three times higher than the dry season runoff in Rwanda; appropriate rainwater management and reservation could provide valuable irrigation water for the dry season or drought years (late rainfall onsets or early rainfall cessations. It was estimated that a reservation of 30.5% (3.99 km3 of the runoff in the wet season could meet the cropland irrigation water gap during the dry season in 2016.

  13. Improved visual [(123)I]FP-CIT SPECT interpretation for evaluation of parkinsonism by visual rating of parametric distribution volume ratio images.

    Science.gov (United States)

    Meyer, P T; Winz, O H; Dafotakis, M; Werner, C J; Krohn, T; Schäfer, W M

    2011-06-01

    Imaging of presynaptic dopamine transporters (DAT) by single-photon emission computed tomography (SPECT) and [(123)I]FP-CIT is an established method for differentiating between neurodegenerative and non-neurodegenerative parkinsonism. Whereas a region-of-interest (ROI) analysis is the method of choice for analyzing [(123)I]FP-CIT SPECT studies, visual image interpretations can also provide highly accurate results. The present study was undertaken to validate a visual reading system for parametric volume of distribution (DVR) [(123)I]FP-CIT SPECT images that combines the quantitative nature of ROI analyses and the simplicity of visual readings. A 9-step linear visual rating template for semi-quantitative DVR ratings of caudate nucleus and putamen was developed (VRDVR). The conventional 4-step visual reading system that is mainly based on the [(123)I]FP-CIT uptake pattern was used for comparison (VRP method). Six independent observers retrospectively rated the [(123)I]FP-CIT scans of 30 consecutive parkinsonism and tremor patients (N.=16 neurodegenerative, N.=14 non-neurodegenerative) using VRDVR and VRP. In addition, a highly trained investigator performed manual ROI analyses. The ROI analysis provided complete separation of both patient groups by comparing the lower DAT binding of both putamina (i.e., putamen contralateral to clinically most affected side in neurodegenerative parkinsonism). Using VRP, the two most experienced observers correctly classified all patients while 20 false-positive ratings occurred in the less experienced observers (mean area under the receiver operating characteristic curve [AUCROC] of all observers 0.93±0.07). The VRDVR ratings of the two most experienced observers did not overlap between patient groups, although at different VRDVR score cut-offs. Using the same VRDVR score cut-off for all observers, only six false-negative and one false-positive ratings occurred in total (AUCROC 0.99±0.01). Inter-observer agreement was good for VRP

  14. The geomorphic structure of the runoff peak

    Directory of Open Access Journals (Sweden)

    R. Rigon

    2011-06-01

    Full Text Available This paper develops a theoretical framework to investigate the core dependence of peak flows on the geomorphic properties of river basins. Based on the theory of transport by travel times, and simple hydrodynamic characterization of floods, this new framework invokes the linearity and invariance of the hydrologic response to provide analytical and semi-analytical expressions for peak flow, time to peak, and area contributing to the peak runoff. These results are obtained for the case of constant-intensity hyetograph using the Intensity-Duration-Frequency (IDF curves to estimate extreme flow values as a function of the rainfall return period. Results show that, with constant-intensity hyetographs, the time-to-peak is greater than rainfall duration and usually shorter than the basin concentration time. Moreover, the critical storm duration is shown to be independent of rainfall return period as well as the area contributing to the flow peak. The same results are found when the effects of hydrodynamic dispersion are accounted for. Further, it is shown that, when the effects of hydrodynamic dispersion are negligible, the basin area contributing to the peak discharge does not depend on the channel velocity, but is a geomorphic propriety of the basin. As an example this framework is applied to three watersheds. In particular, the runoff peak, the critical rainfall durations and the time to peak are calculated for all links within a network to assess how they increase with basin area.

  15. Foliar and soil deposition of pesticide sprays in peanuts and their washoff and runoff under simulated worst-case rainfall conditions.

    Science.gov (United States)

    Wauchope, R Don; Johnson, W Carroll; Sumner, Harold R

    2004-11-17

    There are few studies that relate the timing and amounts of pesticide washoff from plant foliage during rainfall to runoff losses at the edge of the field. We hypothesized that foliar deposits, if washed onto the soil slowly during rainfall, may then undergo less leaching during the period of infiltration that occurs prior to soil saturation and runoff, thus exhibiting larger runoff losses than pesticides on/in the soil at the beginning of rain. We measured the runoff of ethalfluralin, metolachlor, chlorothalonil, and rhodamine WT dye using simulated rainfall on 450 m2 mesoplots planted in peanut. Ethalfluralin was applied preplant incorporated, and metolachlor was applied preemergence on bare soil. Chlorothalonil and rhodamine WT were applied to the peanut canopy at maturity. Rainfall was simulated 24 h after each chemical application (in May and July, 1998, and May and August, 1999) using raindrop sprinklers, applying 5.5 +/- 0.5 cm over a 2 h period to create reasonable worst-case conditions; between 3 and 9 mm of runoff was generated. Volume-weighted average concentrations of chemicals in runoff were 7, 104, 163, and 179 ug L(-1) for ethalfluralin, metolachlor, chlorothalonil, and rhodamine WT, respectively. The total amounts of chemicals lost in the runoff events were 0.04 +/- 0.01, 0.2 +/- 0.1, 0.6 +/- 0.5, and 0.2 +/- 0.1, as percents of amounts applied, respectively. Rhodamine WT formed a vivid red solution on wetting and provided visual clues to the dynamics of chemical washoff/runoff. The washoff from rain-exposed peanut foliage appeared to be complete within a few minutes of the beginning of rainfall, and disappearance of dye from rain-exposed soil surface occurred within the first 10 min of rainfall. However, dye was present in runoff water at near-constant concentrations throughout the 2 h runoff event, indicating that near-constant amounts of chemical remained in the soil extraction zone. These results confirm earlier studies showing that soil

  16. Modeling runoff and erosion risk in a~small steep cultivated watershed using different data sources: from on-site measurements to farmers' perceptions

    Science.gov (United States)

    Auvet, B.; Lidon, B.; Kartiwa, B.; Le Bissonnais, Y.; Poussin, J.-C.

    2015-09-01

    This paper presents an approach to model runoff and erosion risk in a context of data scarcity, whereas the majority of available models require large quantities of physical data that are frequently not accessible. To overcome this problem, our approach uses different sources of data, particularly on agricultural practices (tillage and land cover) and farmers' perceptions of runoff and erosion. The model was developed on a small (5 ha) cultivated watershed characterized by extreme conditions (slopes of up to 55 %, extreme rainfall events) on the Merapi volcano in Indonesia. Runoff was modelled using two versions of STREAM. First, a lumped version was used to determine the global parameters of the watershed. Second, a distributed version used three parameters for the production of runoff (slope, land cover and roughness), a precise DEM, and the position of waterways for runoff distribution. This information was derived from field observations and interviews with farmers. Both surface runoff models accurately reproduced runoff at the outlet. However, the distributed model (Nash-Sutcliffe = 0.94) was more accurate than the adjusted lumped model (N-S = 0.85), especially for the smallest and biggest runoff events, and produced accurate spatial distribution of runoff production and concentration. Different types of erosion processes (landslides, linear inter-ridge erosion, linear erosion in main waterways) were modelled as a combination of a hazard map (the spatial distribution of runoff/infiltration volume provided by the distributed model), and a susceptibility map combining slope, land cover and tillage, derived from in situ observations and interviews with farmers. Each erosion risk map gives a spatial representation of the different erosion processes including risk intensities and frequencies that were validated by the farmers and by in situ observations. Maps of erosion risk confirmed the impact of the concentration of runoff, the high susceptibility of long steep

  17. Lowering bronchoaspiration rate in an acute stroke unit by means of a 2 volume/3 texture dysphagia screening test with pulsioximetry.

    Science.gov (United States)

    Cocho, D; Sagales, M; Cobo, M; Homs, I; Serra, J; Pou, M; Perez, G; Pujol, G; Tantinya, S; Bao, P; Aloy, A; Sabater, R; Gendre, J; Otermin, P

    During acute stroke, 30% of all patients present dysphagia and 50% of that subgroup will experience bronchoaspiration. Our aim was to compare mortality and bronchoaspiration rates associated with the water test compared to those associated with a 2 volume/3 texture test controlled with pulse oximetry (2v/3t-P test) in our stroke unit. Over a 5-year period, we performed a prospective analysis of all consecutive acute ischaemic stroke patients hospitalised in the Stroke Unit. Dysphagia was evaluated using the water test between 2008 and 2010 (group 0 or G0), and the 2v/3t-P test (group 1 or G1) between 2011 and 2012. We analysed demographic data, vascular risk factors, neurological deficit on the NIHSS, aetiological subtype according to TOAST criteria, clinical subtype according to the Oxfordshire classification, prevalence of dysphagia, percentage of patients with bronchoaspiration, and mortality. We examined 418 patients with acute stroke (G0=275, G1=143). There were significant differences between the 2 groups regarding the percentage of patients with TACI (17% in G0 vs. 29% in G1, P=.005) and median NIHSS score (4 points in G0 vs. 7 points in G1, P=.003). Since adopting the new swallowing test, we detected a non-significant increase in the percentage of dysphagia (22% in G0 vs. 25% in G1, P=.4), lower mortality (1.7% in G0 vs. 0.7% in G1, P=.3) and a significant decrease in the bronchoaspiration rate (6.2% in G0 vs. 2.1% in G1, P=.05). Compared to the water test used for dysphagia screening, the new 2v/3t-P test lowered bronchoaspiration rates in acute stroke patients. Copyright © 2014 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Injury rates in martial art athletes: anthropometric parameters and training volume, but not foot morphology indexes, are predictive risk factors for lower limb injuries.

    Science.gov (United States)

    Vitale, Jacopo A; Bassani, Tito; Galbusera, Fabio; Bianchi, Alberto; Martinelli, Nicolò

    2017-09-22

    Previous studies attempted to identify possible risk factors for acute and overuse injuries in several sports disciplines such as running, gymnastics or team sports. Given the lack of scientific works focused on risk factors for lower limb injuries in martial arts, the present study was aimed to investigate foot anatomy, anthropometric measures, and other background information as possible risk factors of injury in barefoot athletes practicing judo, karate, kung fu, thai boxe, or aikido. In addition, the injury rates were evaluated in relation with the different martial art styles. One group of 130 martial artists was retrospectively evaluated. Data of three foot morphological variables were collected: navicular height (NH), navicular drop (ND) and the rear foot (RF). In addition, each participant filled an interview questionnaire providing the following information: age, sex, body weight, height, BMI, hours of training per week, the kind of injury occurred to the lower limbs in the preceding year. Of 130 subjects, 70 (53.8%) did not sustain injuries, 35 (27.0%) suffered an acute injury and the remaining 25 (19.2%) reported an overuse injury. No significant differences were observed in the injury rates in relation to style and kind of martial art. Age, training volume and BMI were found as significant predictors of injury, while NH, ND and RF were not able to predict acute or overuse injury at lower limbs. The injury rates were similar in karate, judo, kung fu, aikido, and thai boxe. The foot morphology variables were not related with the presence or absence of acute and overuse injuries. Conversely, older and heavier martial artists, performing more hours of barefoot training, are at higher risk of acute and overuse injury. Athletic trainers should strongly take into account the present information in order to develop more accurate and specific injury prevention programs for martial artists.

  19. Investigation of the direct runoff generation mechanism for the analysis of the SCS-CN method applicability to a partial area experimental watershed

    Directory of Open Access Journals (Sweden)

    K. X. Soulis

    2009-05-01

    Full Text Available The Soil Conservation Service Curve Number (SCS-CN method is widely used for predicting direct runoff volume for a given rainfall event. The applicability of the SCS-CN method and the direct runoff generation mechanism were thoroughly analysed in a Mediterranean experimental watershed in Greece. The region is characterized by a Mediterranean semi-arid climate. A detailed land cover and soil survey using remote sensing and GIS techniques, showed that the watershed is dominated by coarse soils with high hydraulic conductivities, whereas a smaller part is covered with medium textured soils and impervious surfaces. The analysis indicated that the SCS-CN method fails to predict runoff for the storm events studied, and that there is a strong correlation between the CN values obtained from measured runoff and the rainfall depth. The hypothesis that this correlation could be attributed to the existence of an impermeable part in a very permeable watershed was examined in depth, by developing a numerical simulation water flow model for predicting surface runoff generated from each of the three soil types of the watershed. Numerical runs were performed using the HYDRUS-1D code. The results support the validity of this hypothesis for most of the events examined where the linear runoff formula provides better results than the SCS-CN method. The runoff coefficient of this formula can be taken equal to the percentage of the impervious area. However, the linear formula should be applied with caution in case of extreme events with very high rainfall intensities. In this case, the medium textured soils may significantly contribute to the total runoff and the linear formula may significantly underestimate the runoff produced.

  20. A two-stage storage routing model for green roof runoff detention.

    Science.gov (United States)

    Vesuviano, Gianni; Sonnenwald, Fred; Stovin, Virginia

    2014-01-01

    Green roofs have been adopted in urban drainage systems to control the total quantity and volumetric flow rate of runoff. Modern green roof designs are multi-layered, their main components being vegetation, substrate and, in almost all cases, a separate drainage layer. Most current hydrological models of green roofs combine the modelling of the separate layers into a single process; these models have limited predictive capability for roofs not sharing the same design. An adaptable, generic, two-stage model for a system consisting of a granular substrate over a hard plastic 'egg box'-style drainage layer and fibrous protection mat is presented. The substrate and drainage layer/protection mat are modelled separately by previously verified sub-models. Controlled storm events are applied to a green roof system in a rainfall simulator. The time-series modelled runoff is compared to the monitored runoff for each storm event. The modelled runoff profiles are accurate (mean Rt(2) = 0.971), but further characterization of the substrate component is required for the model to be generically applicable to other roof configurations with different substrate.

  1. Biological water contamination in some cattle production fields of Argentina subjected to runoff and erosion

    Directory of Open Access Journals (Sweden)

    Celio I. Chagas

    2014-10-01

    Full Text Available Grain production has displaced livestock to marginal lands in most of the productive regions in Argentina since 1990. In the fertile Rolling Pampa region, extensive cattle production has been concentrated in lowlands subjected to flooding, salt excess, erosion and sedimentation processes but also in some feedlots recently located in sloping arable lands prone to soil erosion. We studied the concentration of microbiological contamination indicators in runoff water and sediments accumulated in depressions along the tributary network from these lands devoted to cattle production. The aims of this work were: (i to gather a reliable set of data from different monitoring periods and scales, (ii to search for simple and sensible variables to be used as indicators for surface water quality advising purposes and (iii to corroborate previous biological contamination conceptual models for this region. Concentration of pollution indicators in these ponds was related to mean stocking rates from nearby fields and proved to depend significantly on the accumulated water and sediments. Viable mesophiles and total coliforms were found mainly attached to large sediments rather than in the runoff water phase. Seasonal sampling showed that the time period between the last significant runoff event and each sampling date regarding enterococci proved to be a sensible variable for predicting contamination. Enterococci concentration tended to increase gradually until the next extraordinary runoff event washed away contaminants. The mentioned relationship may be useful for designing early warning surface water contamination programs regarding enterococci dynamics and other related microbial pollutants as well.

  2. EFFECTS OF SOIL CRUSTING ON SOIL MOISTURE, RUNOFF AND EROSION: FIELD OBSERVATIONS

    Institute of Scientific and Technical Information of China (English)

    Tongxin ZHU

    2002-01-01

    Soil crusting may have significant impacts on infiltration, runoff generation and erosion in agricultural lands or semi-arid and arid soils. The previous investigations on soil crusting were often conducted under simulated rainfall conditions. This study aims to evaluate the effects of soil crusting on soil moisture during inter-storm periods and soil and water losses during storm periods under natural rainfalls. The study site was located in the Loess Plateau of China. Four plots with a uniform slope and size were selected. Soil crusts were kept intact on the two plots throughout the monitoring periods of 1999 and 2000,but were broken after each rain storm event on the other two plots. Soil moisture was measured on all plots with an interval of one week at three depths and total event runoff and sediment discharges were measured in each storm. It was found that no marked difference in soil moisture and runoff exists between the crusted and uncrusted plots. This is because the rapid development of new crusts on the uncrusted plots during the storm events. However, the erosion rate on the uncrusted plots was significantly higher than that on the crusted plots, which was mainly caused by the disturbance of the surface soils on the uncrusted plots. This study questions the effectiveness of a common agricultural practice in the Loess Plateau, hoeing lands after rainfall, in reducing runoff and erosion.

  3. The Influence of Woodland Encroachment on Runoff and Erosion in Sagebrush Steppe Systems, Great Basin, USA.

    Science.gov (United States)

    Pierson, F. B.; Kormos, P. R.; Williams, C. J.

    2007-12-01

    Pinyon and juniper woodlands have expanded 10 to 30% in the past 30 years and now occupy nearly 20 million hectares of sagebrush shrub steppe in the Great Basin Region and Colorado Plateau, USA. The conversion of sagebrush steppe to pinyon and juniper woodlands has been linked to changes in plant community structure and composition and respective increases in overland flow and erosion from these landscapes. The Sagebrush Steppe Treatment Evaluation Project (SageSTEP, www.sagestep.org) was implemented in 2005 as a 5 year interdisciplinary research study to evaluate restoration methodologies for sagebrush rangelands degraded by woodland and grassland encroachment over a six state area within the Great Basin. The hydrology component of SageSTEP focuses on the relationships between changes in vegetation and groundcover and runoff/erosion processes. In 2006, 140 small scale (0.5 m2) rainfall simulations were conducted at 2 locations within the Great Basin to determine whether critical thresholds exist in vegetation and ground cover that significantly influence infiltration, runoff, and erosion in pinyon and juniper woodlands. Simulation plots were distributed on interspaces (areas between shrub/tree canopies) and juniper, pinyon, and shrub coppices (areas underneath canopy). Water drop penetration times and litter depths were also collected for each plot to explore controls on soil hydrophobicity. Preliminary results suggest a positive correlation between litter depth and hydrophobicity, as soils under thick pinyon and juniper coppices are strongly water repellant and soils in interspaces and under shrub coppices are easily wettable. Interspace plots with varying amounts of grasses and forbs have the highest erosion and runoff rates due to higher percentages of bare ground and relatively low soil stability. Pinyon coppices have the least runoff and erosion due to very high litter depths and low bare ground cover, even though surface soils are hydrophobic. Juniper and

  4. Annual runoff and erosion in a recently burn Mediterranean forest - The effects of plowing and time-since-fire

    Science.gov (United States)

    Vieira, D. C. S.; Malvar, M. C.; Fernández, C.; Serpa, D.; Keizer, J. J.

    2016-10-01

    The impacts of forest fires on runoff and soil erosion have been assessed by many studies, so the effects of fires on the hydrological and geomorphological processes of burnt forest areas, globally and in the Mediterranean region, are well established. Few studies, however, have assessed post-fire runoff and erosion on large time scales. In addition, a limited number of studies are available that consider the effect of pre-fire land management practices on post-fire runoff and erosion. This study evaluated annual runoff and sediment losses, at micro plot scale, for 4 years after a wildfire in three eucalypt plantations with different pre-fire land management practices (i.e., plowed and unplowed). During the four years following the fire, runoff amounts and coefficients at the downslope plowed (1257 mm, 26%) and contour plowed eucalypt sites (1915 mm, 40%) were higher than at the unplowed site (865 mm, 14%). Sediment losses over the 4 years of study were also consistently higher at the two plowed sites (respectively, 0.47 and 0.83 Mg ha- 1 y- 1 at the downslope and contour plowed eucalypt site) than at the unplowed site (0.11 Mg ha- 1 y- 1). Aside from pre-fire land management, time-since-fire also seemed to significantly affect post-fire annual runoff and erosion. In general, annual runoff amounts and erosion rates followed the rainfall pattern. Runoff amounts presented a peak during the third year of monitoring while erosion rates reached their maximum one year earlier, in the second year. Runoff coefficients increased over the 4 years of monitoring, in disagreement to the window of disturbance post-fire recovery model, but sediment concentrations decreased over the study period. When compared with other long-term post-fire studies and with studies evaluating the effects of pre- and post-fire management practices, the results of the present work suggest that an ecosystem's recovery after fire is highly dependent on the background of disturbances of each site, as

  5. Therapeutic analysis of high-dose-rate {sup 192}Ir vaginal cuff brachytherapy for endometrial cancer using a cylindrical target volume model and varied cancer cell distributions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hualin, E-mail: hualin.zhang@northwestern.edu; Donnelly, Eric D.; Strauss, Jonathan B. [Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Northwestern Memorial Hospital, Chicago, Illinois 60611 (United States); Qi, Yujin [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2016-01-15

    Purpose: To evaluate high-dose-rate (HDR) vaginal cuff brachytherapy (VCBT) in the treatment of endometrial cancer in a cylindrical target volume with either a varied or a constant cancer cell distributions using the linear quadratic (LQ) model. Methods: A Monte Carlo (MC) technique was used to calculate the 3D dose distribution of HDR VCBT over a variety of cylinder diameters and treatment lengths. A treatment planning system (TPS) was used to make plans for the various cylinder diameters, treatment lengths, and prescriptions using the clinical protocol. The dwell times obtained from the TPS were fed into MC. The LQ model was used to evaluate the therapeutic outcome of two brachytherapy regimens prescribed either at 0.5 cm depth (5.5 Gy × 4 fractions) or at the vaginal mucosal surface (8.8 Gy × 4 fractions) for the treatment of endometrial cancer. An experimentally determined endometrial cancer cell distribution, which showed a varied and resembled a half-Gaussian distribution, was used in radiobiology modeling. The equivalent uniform dose (EUD) to cancer cells was calculated for each treatment scenario. The therapeutic ratio (TR) was defined by comparing VCBT with a uniform dose radiotherapy plan in term of normal cell survival at the same level of cancer cell killing. Calculations of clinical impact were run twice assuming two different types of cancer cell density distributions in the cylindrical target volume: (1) a half-Gaussian or (2) a uniform distribution. Results: EUDs were weakly dependent on cylinder size, treatment length, and the prescription depth, but strongly dependent on the cancer cell distribution. TRs were strongly dependent on the cylinder size, treatment length, types of the cancer cell distributions, and the sensitivity of normal tissue. With a half-Gaussian distribution of cancer cells which populated at the vaginal mucosa the most, the EUDs were between 6.9 Gy × 4 and 7.8 Gy × 4, the TRs were in the range from (5.0){sup 4} to (13

  6. Therapeutic analysis of high-dose-rate (192)Ir vaginal cuff brachytherapy for endometrial cancer using a cylindrical target volume model and varied cancer cell distributions.

    Science.gov (United States)

    Zhang, Hualin; Donnelly, Eric D; Strauss, Jonathan B; Qi, Yujin

    2016-01-01

    To evaluate high-dose-rate (HDR) vaginal cuff brachytherapy (VCBT) in the treatment of endometrial cancer in a cylindrical target volume with either a varied or a constant cancer cell distributions using the linear quadratic (LQ) model. A Monte Carlo (MC) technique was used to calculate the 3D dose distribution of HDR VCBT over a variety of cylinder diameters and treatment lengths. A treatment planning system (TPS) was used to make plans for the various cylinder diameters, treatment lengths, and prescriptions using the clinical protocol. The dwell times obtained from the TPS were fed into MC. The LQ model was used to evaluate the therapeutic outcome of two brachytherapy regimens prescribed either at 0.5 cm depth (5.5 Gy × 4 fractions) or at the vaginal mucosal surface (8.8 Gy × 4 fractions) for the treatment of endometrial cancer. An experimentally determined endometrial cancer cell distribution, which showed a varied and resembled a half-Gaussian distribution, was used in radiobiology modeling. The equivalent uniform dose (EUD) to cancer cells was calculated for each treatment scenario. The therapeutic ratio (TR) was defined by comparing VCBT with a uniform dose radiotherapy plan in term of normal cell survival at the same level of cancer cell killing. Calculations of clinical impact were run twice assuming two different types of cancer cell density distributions in the cylindrical target volume: (1) a half-Gaussian or (2) a uniform distribution. EUDs were weakly dependent on cylinder size, treatment length, and the prescription depth, but strongly dependent on the cancer cell distribution. TRs were strongly dependent on the cylinder size, treatment length, types of the cancer cell distributions, and the sensitivity of normal tissue. With a half-Gaussian distribution of cancer cells which populated at the vaginal mucosa the most, the EUDs were between 6.9 Gy × 4 and 7.8 Gy × 4, the TRs were in the range from (5.0)(4) to (13.4)(4) for the radiosensitive normal

  7. Therapeutic analysis of high-dose-rate 192Ir vaginal cuff brachytherapy for endometrial cancer using a cylindrical target volume model and varied cancer cell distributions

    Science.gov (United States)

    Zhang, Hualin; Donnelly, Eric D.; Strauss, Jonathan B.; Qi, Yujin

    2016-01-01

    Purpose: To evaluate high-dose-rate (HDR) vaginal cuff brachytherapy (VCBT) in the treatment of endometrial cancer in a cylindrical target volume with either a varied or a constant cancer cell distributions using the linear quadratic (LQ) model. Methods: A Monte Carlo (MC) technique was used to calculate the 3D dose distribution of HDR VCBT over a variety of cylinder diameters and treatment lengths. A treatment planning system (TPS) was used to make plans for the various cylinder diameters, treatment lengths, and prescriptions using the clinical protocol. The dwell times obtained from the TPS were fed into MC. The LQ model was used to evaluate the therapeutic outcome of two brachytherapy regimens prescribed either at 0.5 cm depth (5.5 Gy × 4 fractions) or at the vaginal mucosal surface (8.8 Gy × 4 fractions) for the treatment of endometrial cancer. An experimentally determined endometrial cancer cell distribution, which showed a varied and resembled a half-Gaussian distribution, was used in radiobiology modeling. The equivalent uniform dose (EUD) to cancer cells was calculated for each treatment scenario. The therapeutic ratio (TR) was defined by comparing VCBT with a uniform dose radiotherapy plan in term of normal cell survival at the same level of cancer cell killing. Calculations of clinical impact were run twice assuming two different types of cancer cell density distributions in the cylindrical target volume: (1) a half-Gaussian or (2) a uniform distribution. Results: EUDs were weakly dependent on cylinder size, treatment length, and the prescription depth, but strongly dependent on the cancer cell distribution. TRs were strongly dependent on the cylinder size, treatment length, types of the cancer cell distributions, and the sensitivity of normal tissue. With a half-Gaussian distribution of cancer cells which populated at the vaginal mucosa the most, the EUDs were between 6.9 Gy × 4 and 7.8 Gy × 4, the TRs were in the range from (5.0)4 to (13.4)4 for the

  8. Quantifying volume reduction and peak flow mitigation for three bioretention cells in clay soils in northeast Ohio.

    Science.gov (United States)

    Winston, Ryan J; Dorsey, Jay D; Hunt, William F

    2016-05-15

    Green infrastructure aims to restore watershed hydrologic function by more closely mimicking pre-development groundwater recharge and evapotranspiration (ET). Bioretention has become a popular stormwater control due to its ability to reduce runoff volume through these pathways. Three bioretention cells constructed in low permeability soils in northeast Ohio were monitored for non-winter quantification of inflow, drainage, ET, and exfiltration. The inclusion of an internal water storage (IWS) zone allowed the three cells to reduce runoff by 59%, 42%, and 36% over the monitoring period, in spite of the tight underlying soils. The exfiltration rate and the IWS zone thickness were the primary determinants of volume reduction performance. Post-construction measured drawdown rates were higher than pre-construction soil vertical hydraulic conductivity tests in all cases, due to lateral exfiltration from the IWS zones and ET, which are not typically accounted for in pre-construction soil testing. The minimum rainfall depths required to produce outflow for the three cells were 5.5, 7.4, and 13.8mm. During events with 1-year design rainfall intensities, peak flow reduction varied from 24 to 96%, with the best mitigation during events where peak rainfall rate occurred before the centroid of the rainfall volume, when adequate bowl storage was available to limit overflow.

  9. Geometric dependency of Tibetan lakes on glacial runoff

    NARCIS (Netherlands)

    Phan Hien, V.; Lindenbergh, R.C.; Menenti, M.

    2013-01-01

    The Tibetan plateau is an essential source of water for South-East Asia. The run-off from its ~ 34 000 glaciers, which occupy an area of ~ 50 000 km2, feed Tibetan lakes and major Asian rivers like Indus and Brahmaputra. Reported glacial shrinkage likely has its impact on the run-off. Unfortunately,

  10. Geometric dependency of Tibetan lakes on glacial runoff

    NARCIS (Netherlands)

    Phan Hien, V.; Lindenbergh, R.C.; Menenti, M.

    2013-01-01

    The Tibetan Plateau is an essential source of water for Southeast Asia. The runoff from its ~34 000 glaciers, which occupy an area of ~50 000 km2, feeds Tibetan lakes and major Asian rivers like the Indus and Brahmaputra. Reported glacial shrinkage likely has an impact on the runoff. Unfortunately,

  11. Runoff Characterization and Variations at McMurdo Station, Antarctica

    Science.gov (United States)

    2014-05-13

    can potentially migrate into the permeable thawed ground and into the drainage channels during runoff. A review of the runoff data collection and...sensors. 7. We used long nails /stakes to center the sensor in the ditch as best as pos- sible (Figure A4a). 8. We installed stake upstream and

  12. Modeling tropical river runoff:A time dependent approach

    Institute of Scientific and Technical Information of China (English)

    Rashmi Nigam; Sudhir Nigam; Sushil K.Mittal

    2014-01-01

    Forecasting of rainfall and subsequent river runoff is important for many operational problems and applications related to hydrol-ogy. Modeling river runoff often requires rigorous mathematical analysis of vast historical data to arrive at reasonable conclusions. In this paper we have applied the stochastic method to characterize and predict river runoff of the perennial Kulfo River in south-ern Ethiopia. The time series analysis based auto regressive integrated moving average (ARIMA) approach is applied to mean monthly runoff data with 10 and 20 years spans. The varying length of the input runoff data is shown to influence the forecasting efficiency of the stochastic process. Preprocessing of the runoff time series data indicated that the data do not follow a seasonal pattern. Our forecasts were made using parsimonious non seasonal ARIMA models and the results were compared to actual 10-year and 20-year mean monthly runoff data of the Kulfo River. Our results indicate that river runoff forecasts based upon the 10-year data are more accurate and efficient than the model based on the 20-year time series.

  13. Specifics of surface runoff contents and treatment in large cities

    Directory of Open Access Journals (Sweden)

    V.N. Chechevichkin

    2014-10-01

    Full Text Available The degree of surface runoff pollution in large cities has been assessed in modern conditions in the case study of production sites of St. Petersburg. Increased content of petroleum derivatives and heavy metal ions both in rainwater runoff and especially in snowmelt runoff has been revealed. It has been established that the composition of infiltration runoff from the newly built-up sites within the city limits commonly depends on their background, especially in the places of former unauthorized dumps, which are usually buried under the building sites. The content of petroleum derivatives in such surface runoff can exceed significantly their content in the runoff of landfills. Most petroleum derivatives appear in the surface runoff as emulsified and associated with suspended matters forms, which are a source of secondary pollution of waste water as it is accumulated in settlers and traps of local waste water treatment plants. Filtrational-sorptive technologies of surface runoff treatment are the most effective and simple in terms of both treatment and waste disposal.

  14. Microchannels affect runoff and sediment yield from a shortgrass prairie

    Science.gov (United States)

    Runoff and sediment yield from rangelands are extremely important variables that affect productivity, but are difficult to quantify. Studies have been conducted to assess erosion on rangelands, but very little has been done to determine if microchannels (rills) affect runoff and sediment yield. Rain...

  15. Herbicide volatilization trumps runoff losses, a multi-year investigation

    Science.gov (United States)

    Surface runoff and volatilization are two processes critical to herbicide off-site transport. To determine the relevance of these off-site transport mechanisms, runoff and turbulent vapor fluxes were simultaneously monitored on the same site for eight years. Site location, herbicide formulations, ...

  16. CONTROLLING EXCESS STORM WATER RUNOFF WITH TRADABLE CREDITS

    Science.gov (United States)

    Development that increases the impervious surface in a watershed causes excess storm water runoff (SWR) that has been identified as a major contributor to stream and riparian habitat degradation. Reduction of storm water runoff can be achieved through establishment of a number of...

  17. Separation of drainage runoff during rainfall-runoff episodes using the stable isotope method and drainage water temperature

    Science.gov (United States)

    Zajíček, Antonín; Kvítek, Tomáš; Pomije, Tomáš

    2014-05-01

    Stabile isotopes of 2H 18O and drainage water temperature were used as natural tracers for separation rainfall-runoff event hydrograph on several tile drained catchments located in Bohemian-Moravian Highland, Czech Republic. Small agricultural catchments with drainage systems built in slopes are typical for foothill areas in the Czech and Moravian highland. Often without permanent surface runoff, the drainage systems represent an important portion of runoff and nitrogen leaching out of the catchment. The knowledge of the drainage runoff formation and the origin of its components are prerequisites for formulation of measures leading to improvement of the drainage water quality and reduction of nutrient leaching from the drained catchments. The results have proved presence of event water in the drainage runoff during rainfall-runoff events. The proportion of event water observed in the drainage runoff varied between 15 - 60 % in the summer events and 0 - 50 % in winter events, while the sudden water temperature change was between 0,1 - 4,2 °C (2 - 35 %). The comparison of isotope separation of the drainage runoff and monitoring the drainage water temperature have demonstrated that in all cases of event water detected in the runoff, a rapid change in the drainage water temperature was observed as well. The portion of event water in the runoff grows with the growing change in water temperature. Using component mixing model, it was demonstrated that water temperature can be successfully used at least as a qualitative and with some degree of inaccuracy as a quantitative tracer as well. The drawback of the non-conservative character of this tracer is compensated by both its economic and technical accessibility. The separation results also resemble results of separations at small streams. Together with a similarly high speed of the discharge reaction to beginning of precipitation, it is obvious that the mechanism of surface runoff formation and drainage runoff formation

  18. Comparative analysis of the heat transfer rates in constant (CAV) and variable (VAV) volumes type multi zone acclimation system operating in hot and humid climate; Analise comparativa das taxas transferencia de calor em sistemas de climatizacao do tipo volume de ar constante (CAV) e volume de ar variavel (VAV) multizona operando em clima quente e umido

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Cesar A.G.; Correa, Jorge E. [Para Univ., Belem (Brazil). Centro Tecnologico. Dept. de Engenharia Mecanica]. E-mails: gsantos@ufpa.br; jecorrea@amazon.com.br

    2000-07-01

    This work performs a comparative analysis among the constant and variable air volume multi zones acclimation systems, used for provide the thermal comfort in buildings. The work used the simulation HVAC2KIT computer program. The results of sensible and latent heats transfer rates on the cooling and dehumidification, inflating fan capacity, and heat transfer on the final heating condenser were obtained and analysed for the climate conditions of the Brazilian city of Belem from Para State, presenting hot and humid climate during all the year.

  19. Enhancing a rainfall-runoff model to assess the impacts of BMPs and LID practices on storm runoff.

    Science.gov (United States)

    Liu, Yaoze; Ahiablame, Laurent M; Bralts, Vincent F; Engel, Bernard A

    2015-01-01

    Best management practices (BMPs) and low impact development (LID) practices are increasingly being used as stormwater management techniques to reduce the impacts of urban development on hydrology and water quality. To assist planners and decision-makers at various stages of development projects (planning, implementation, and evaluation), user-friendly tools are needed to assess the effectiveness of BMPs and LID practices. This study describes a simple tool, the Long-Term Hydrologic Impact Assessment-LID (L-THIA-LID), which is enhanced with additional BMPs and LID practices, improved approaches to estimate hydrology and water quality, and representation of practices in series (meaning combined implementation). The tool was used to evaluate the performance of BMPs and LID practices individually and in series with 30 years of daily rainfall data in four types of idealized land use units and watersheds (low density residential, high density residential, industrial, and commercial). Simulation results were compared with the results of other published studies. The simulated results showed that reductions in runoff volume and pollutant loads after implementing BMPs and LID practices, both individually and in series, were comparable with the observed impacts of these practices. The L-THIA-LID 2.0 model is capable of assisting decision makers in evaluating environmental impacts of BMPs and LID practices, thereby improving the effectiveness of stormwater management decisions.

  20. Hillslope soil erosion and runoff model for natural rainfall events

    Institute of Scientific and Technical Information of China (English)

    Zhanyu Zhang; Guohua Zhang; Changqing Zuo; Xiaoyu Pi

    2008-01-01

    By using the momentum theorem and water balance principle, basic equations of slope runoff were derived, soil erosion by raindrop splash and runoff were discussed and a model was established for decribing hillslope soil erosion processes. The numerical solution of the model was obtained by adopting the Preissmann format and considering the common solution-determining conditions, from which not only the runoff and soil erosion but also their processes can be described. The model was validated by ten groups of observation data of Soil Conservation Ecological Science and Technology Demonstration Park of Jiangxi Province. Comparisons show that the maximum relative error between simulation and experimental data is about 10.98% for total runoff and 15% for total erosion, 5.2% for runoff process and 6.1% for erosion process, indicating that the model is conceptually realistic and reliable and offers a feasible approach for further studies on the soil erosion process.

  1. Modelling the impact of increasing soil sealing on runoff coefficients at regional scale: a hydropedological approach

    Directory of Open Access Journals (Sweden)

    Ungaro Fabrizio

    2014-03-01

    Full Text Available Soil sealing is the permanent covering of the land surface by buildings, infrastructures or any impermeable artificial material. Beside the loss of fertile soils with a direct impact on food security, soil sealing modifies the hydrological cycle. This can cause an increased flooding risk, due to urban development in potential risk areas and to the increased volumes of runoff. This work estimates the increase of runoff due to sealing following urbanization and land take in the plain of Emilia Romagna (Italy, using the Green and Ampt infiltration model for two rainfall return periods (20 and 200 years in two different years, 1976 and 2008. To this goal a hydropedological approach was adopted in order to characterize soil hydraulic properties via locally calibrated pedotransfer functions (PTF. PTF inputs were estimated via sequential Gaussian simulations coupled with a simple kriging with varying local means, taking into account soil type and dominant land use. Results show that in the study area an average increment of 8.4% in sealed areas due to urbanization and sprawl induces an average increment in surface runoff equal to 3.5 and 2.7% respectively for 20 and 200-years return periods, with a maximum > 20% for highly sealed coast areas.

  2. Initiation processes for run-off generated debris flows in the Wenchuan earthquake area of China

    Science.gov (United States)

    Hu, W.; Dong, X. J.; Xu, Q.; Wang, G. H.; van Asch, T. W. J.; Hicher, P. Y.

    2016-01-01

    The frequency of huge debris flows greatly increased in the epicenter area of the Wenchuan earthquake. Field investigation revealed that runoff during rainstorm played a major role in generating debris flows on the loose deposits, left by coseismic debris avalanches. However, the mechanisms of these runoff-generated debris flows are not well understood due to the complexity of the initiation processes. To better understand the initiation mechanisms, we simulated and monitored the initiation process in laboratory flume test, with the help of a 3D laser scanner. We found that run-off incision caused an accumulation of material down slope. This failed as shallow slides when saturated, transforming the process into debris in a second stage. After this initial phase, the debris flow volume increased rapidly by a chain of subsequent cascading processes starting with collapses of the side walls, damming and breaching, leading to a rapid widening of the erosion channel. In terms of erosion amount, the subsequent mechanisms were much more important than the initial one. The damming and breaching were found to be the main reasons for the huge magnitude of the debris flows in the post-earthquake area. It was also found that the tested material was susceptible to excess pore pressure and liquefaction in undrained triaxial, which may be a reason for the fluidization in the flume tests.

  3. Can Urban Trees Reduce the Impact of Climate Change on Storm Runoff?

    Directory of Open Access Journals (Sweden)

    Katarina ZABRET

    2015-11-01

    Full Text Available The process of urbanisation leads to significant changes in surface cover, which influence the hydrological properties of an area. The infiltration of precipitation into the soil is reduced, so that both surface water runoff and the velocity at which water travels have increased drastically. In recent decades climate change has also been observed to affect precipitation trends. Many studies have shown that the amount of rainfall is increasing and that heavy rainfall events are becoming more frequent. These changes are producing more runoff, which has to be drained. Urban trees can reduce the amount of precipitation reaching the ground due to rainfall interception, and are becoming increasingly recognized as an effective means for the regulation of storm water volumes and costs. The study measured rainfall interception in an urban area. It shows that Betula pendula can intercept 20.6% of annual rainfall, whereas Pinus nigra could intercept as much as 51.0% of annual rainfall. The advantage of rainfall interception was shown in the case of a parking lot where the planting of trees was able to reduce runoff by up to 17%.

  4. Rainfall simulation in greenhouse microcosms to assess bacterial-associated runoff from land-applied poultry litter.

    Science.gov (United States)

    Brooks, John P; Adeli, Ardeshir; Read, John J; McLaughlin, Michael R

    2009-01-01

    Runoff water following a rain event is one possible source of environmental contamination after a manure application. This greenhouse study used a rainfall simulator to determine bacterial-associated runoff from troughs of common bermudagrass [Cynodon dactylon (L.) Pers.] that were treated with P-based, N-based, and N plus lime rates of poultry (Gallus gallus) litter, recommended inorganic fertilizer, and control. Total heterotrophic plate count (HPC) bacteria, total and thermotolerant coliforms, enterococci, staphylococci, Clostridium perfringens, Salmonella, and Campylobacter, as well as antibiotic resistance profiles for the staphylococci and enterococci isolates were all monitored in runoff waters. Analysis following five rainfall events indicated that staphylococci, enterococci, and clostridia levels were related to manure application rate. Runoff release of staphylococci, enterococci, and C. perfringens were approximately 3 to 6 log10 greater in litter vs. control treatment. In addition, traditional indicators such as thermotolerant and total coliforms performed poorly as fecal indicators. Some isolated enterococci demonstrated increased antibiotic resistance to polymixin b and/or select aminoglyocosides, while many staphylococci were susceptible to most antimicrobials tested. Results indicated poultry litter application can lead to microbial runoff following simulated rain events. Future studies should focus on the use of staphylococci, enterococci, and C. perfringens as indicators.

  5. River Channel Expansion Reveals Ice Sheet Runoff Variations

    Science.gov (United States)

    Overeem, I.; Hudson, B. D.; Welty, E.; LeWinter, A.; Mikkelsen, A. B.

    2013-12-01

    . Whereas direct calibration is essential to establish total annual volumes, intra-annual variation of river runoff can be mapped for proglacial river systems along the Greenland margin.

  6. Predicting urban stormwater runoff with quantitative precipitation estimates from commercial microwave links

    Science.gov (United States)

    Pastorek, Jaroslav; Fencl, Martin; Stránský, David; Rieckermann, Jörg; Bareš, Vojtěch

    2017-04-01

    Reliable and representative rainfall data are crucial for urban runoff modelling. However, traditional precipitation measurement devices often fail to provide sufficient information about the spatial variability of rainfall, especially when heavy storm events (determining design of urban stormwater systems) are considered. Commercial microwave links (CMLs), typically very dense in urban areas, allow for indirect precipitation detection with desired spatial and temporal resolution. Fencl et al. (2016) recognised the high bias in quantitative precipitation estimates (QPEs) from CMLs which significantly limits their usability and, in order to reduce the bias, suggested a novel method for adjusting the QPEs to existing rain gauge networks. Studies evaluating the potential of CMLs for rainfall detection so far focused primarily on direct comparison of the QPEs from CMLs to ground observations. In contrast, this investigation evaluates the suitability of these innovative rainfall data for stormwater runoff modelling on a case study of a small ungauged (in long-term perspective) urban catchment in Prague-Letňany, Czech Republic (Fencl et al., 2016). We compare the runoff measured at the outlet from the catchment with the outputs of a rainfall-runoff model operated using (i) CML data adjusted by distant rain gauges, (ii) rainfall data from the distant gauges alone and (iii) data from a single temporary rain gauge located directly in the catchment, as it is common practice in drainage engineering. Uncertainties of the simulated runoff are analysed using the Bayesian method for uncertainty evaluation incorporating a statistical bias description as formulated by Del Giudice et al. (2013). Our results show that adjusted CML data are able to yield reliable runoff modelling results, primarily for rainfall events with convective character. Performance statistics, most significantly the timing of maximal discharge, reach better (less uncertain) values with the adjusted CML data

  7. Impacts of climate change scenarios on runoff regimes in the southern Alps

    Directory of Open Access Journals (Sweden)

    S. Barontini

    2009-04-01

    Full Text Available The potential impact of climate change scenarios on the runoff regime in the Italian Alpine area was investigated. A preliminary analysis of the output of three Global Circulation Models (PCM, HADCM, ECHAM was needed to select IPCC-based scenarios for the 2000–2099 period. Two basins, 1840 and 236 km2 in size, respectively, and with different glaciated areas and storage capacity of reservoirs were selected as case studies. The PCM model, the one capable to better reproduce the observed rainfall regime in the investigated area, with the IPCC SRES A2 scenario was adopted for the meteorological forcing. On average for the two basins, an increase of annual precipitation of about 3% is expected for the 2050 scenario and should not significantly vary at the end of this century compared to present conditions. At the same time temperature should increase of 1.1°C in 2050 and 2.4°C for 2090. Because of the coarse resolution of the climate models' output, the statistics of the simulated rainy days and daily precipitation were adapted to the scale of the two selected basins using a modified version of the multiplicative cascade β-model, proposed in the literature to explain the statistics of intermittent fully developed turbulence. As regards to land cover, glaciated areas are decreased, in the future scenarios, according to the Kuhn's concept of equilibrium line adaptation to climate fluctuations. The tree-line altitude is increased, according to the observed trend since the end of the Little Ice Age: thus boundary conditions for evapotranspiration changed. The resulting meteorological variables and hydrological parameters were used to run the WATFLOOD hydrological model in order to assess the changes of runoff regimes in the two watersheds. A decrease of about 7% of annual runoff volume for the 2050 scenario and of 13% for the 2090 scenario was estimated, on average, at the outlet of the Oglio river basin, the largest one. In

  8. Mapping dominant runoff processes: an evaluation of different approaches using similarity measures and synthetic runoff simulations

    Science.gov (United States)

    Antonetti, Manuel; Buss, Rahel; Scherrer, Simon; Margreth, Michael; Zappa, Massimiliano

    2016-07-01

    The identification of landscapes with similar hydrological behaviour is useful for runoff and flood predictions in small ungauged catchments. An established method for landscape classification is based on the concept of dominant runoff process (DRP). The various DRP-mapping approaches differ with respect to the time and data required for mapping. Manual approaches based on expert knowledge are reliable but time-consuming, whereas automatic GIS-based approaches are easier to implement but rely on simplifications which restrict their application range. To what extent these simplifications are applicable in other catchments is unclear. More information is also needed on how the different complexities of automatic DRP-mapping approaches affect hydrological simulations. In this paper, three automatic approaches were used to map two catchments on the Swiss Plateau. The resulting maps were compared to reference maps obtained with manual mapping. Measures of agreement and association, a class comparison, and a deviation map were derived. The automatically derived DRP maps were used in synthetic runoff simulations with an adapted version of the PREVAH hydrological model, and simulation results compared with those from simulations using the reference maps. The DRP maps derived with the automatic approach with highest complexity and data requirement were the most similar to the reference maps, while those derived with simplified approaches without original soil information differed significantly in terms of both extent and distribution of the DRPs. The runoff simulations derived from the simpler DRP maps were more uncertain due to inaccuracies in the input data and their coarse resolution, but problems were also linked with the use of topography as a proxy for the storage capacity of soils. The perception of the intensity of the DRP classes also seems to vary among the different authors, and a standardised definition of DRPs is still lacking. Furthermore, we argue not to use

  9. Flood damage claims reveal insights about surface runoff in Switzerland

    Science.gov (United States)

    Bernet, D. B.; Prasuhn, V.; Weingartner, R.

    2015-12-01

    A few case studies in Switzerland exemplify that not only overtopping water bodies frequently cause damages to buildings. Reportedly, a large share of the total loss due to flooding in Switzerland goes back to surface runoff that is formed and is propagating outside of regular watercourses. Nevertheless, little is known about when, where and why such surface runoff occurs. The described process encompasses surface runoff formation, followed by unchannelised overland flow until a water body is reached. It is understood as a type of flash flood, has short response times and occurs diffusely in the landscape. Thus, the process is difficult to observe and study directly. A promising source indicating surface runoff indirectly are houseowners' damage claims recorded by Swiss Public Insurance Companies for Buildings (PICB). In most of Switzerland, PICB hold a monopoly position and insure (almost) every building. Consequently, PICB generally register all damages to buildings caused by an insured natural hazard (including surface runoff) within the respective zones. We have gathered gapless flood related claim records of most of all Swiss PICB covering more than the last two decades on average. Based on a subset, we have developed a methodology to differentiate claims related to surface runoff from other causes. This allows us to assess the number of claims as well as total loss related to surface runoff and compare these to the numbers of overtopping watercourses. Furthermore, with the good data coverage, we are able to analyze surface runoff related claims in space and time, from which we can infer spatial and temporal characteristics of surface runoff. Although the delivered data of PICB are heterogeneous and, consequently, time-consuming to harmonize, our first results show that exploiting these damage claim records is feasible and worthwhile to learn more about surface runoff in Switzerland.

  10. What Controls Runoff Ratios in the Congo Basin?

    Science.gov (United States)

    Durand, M. T.; Wei, R.

    2014-12-01

    As the second-largest river globally, the Congo is a critical part of large-scale water, energy, and carbon cycles, and thus has a significant influence on regional climate. The runoff ratio is a coefficient relating runoff to precipitation; it is a parameter that integrates and summarizes upstream hydrologic processes. The Budyko equation depicts the expected partitioning of precipitation (P) into evapotranspiration (E) and runoff (R): P=R+E. It is hypothesized that radiation and precipitation are primary controls of the partitioning process; the effects of the surface control (e.g. soil and slope) are implicitly assumed to be minor. In this study, we explored thirty years of data in the Congo River basin. We will correlate the runoff ratio to a variety of factors, including precipitation, radiation and surface controls (e.g. soil, slope). Global Precipitation Climatology Project (GPCP) by pentad precipitation was used as primary precipitation data, and Climatic Research Unit (CRU) by data was used for comparison. For discharge and drainage area were derived from Global Runoff Data Centre (GRDC), and net radiation is from NASA Earth Observatory. Congo sub basins are analyzed as well. Interannual variability in the runoff ratio for the Congo basin ranged from 0.2 to 0.3, but was generally uncorrelated with precipitation. Runoff is generally uncorrelated with precipitation, whereas evapotranspiration calculated as residual (P-R) is highly correlated with precipitation, with E ranging from 1000 to 1300 mm per year, and P explaining 85% of the variance. Spatial variability was explored by analysis of long-term mean runoff ratio for 10 sub-basins. Spatially, both R and runoff ratio are highly correlated with P, with P explaining 59% of the variance in the runoff ratio. Physical mechanisms to explain these results are explored, and the implications for the Congo's role in partitioning rainfall over sub-Saharan Africa are discussed.

  11. Fate of endogenous steroid hormones in steer feedlots under simulated rainfall-induced runoff.

    Science.gov (United States)

    Mansell, D Scott; Bryson, Reid J; Harter, Thomas; Webster, Jackson P; Kolodziej, Edward P; Sedlak, David L

    2011-10-15

    Steroid hormones pose potential risks to fish and other aquatic organisms at extremely low concentrations. To assess the factors affecting the release of endogenous estrogenic and androgenic steroids from feedlots during rainfall, runoff, and soil samples were collected after simulated rainfall on a 14-steer feedlot under different rainfall rates and aging periods and analyzed for six steroid hormones. While only 17α-estradiol, testosterone, and progesterone were detected in fresh manure, 17β-estradiol, estrone, and androstenedione were present in the surficial soil after two weeks. In the feedlot surficial soil, concentrations of 17α-estradiol decreased by approximately 25% accompanied by an equivalent increase in estrone and 17β-estradiol. Aging of the feedlot soils for an additional 7 days had no effect on estrogen and testosterone concentrations, but androstenedione concentrations decreased substantially, and progesterone concentrations increased. Androstenedione and progesterone concentrations in the surficial soil were much higher than could be accounted for by excretion or conversion from testosterone, suggesting that other potential precursors, such as sterols, were converted after excretion. The concentration of androgens and progesterone in the soil were approximately 85% lower after simulated rainfall, but the estrogen concentrations remained approximately constant. The decreased masses could not be accounted for by runoff, suggesting the possibility of rapid microbial transformation upon wetting. All six steroids in the runoff, with the exception of 17β-estradiol, were detected in both the filtered and particle-associated phases at concentrations well above thresholds for biological responses. Runoff from the aged plots contained less 17α-estradiol and testosterone, but more estrone, androstenedione, and progesterone relative to the runoff from the unaged plots, and most of the steroids had a lower particle-associated fraction.

  12. How runoff begins (and ends): characterizing hydrologic response at the catchment scale

    Science.gov (United States)

    Mirus, Benjamin B.; Loague, Keith

    2013-01-01

    Improved understanding of the complex dynamics associated with spatially and temporally variable runoff response is needed to better understand the hydrology component of interdisciplinary problems. The objective of this study was to quantitatively characterize the environmental controls on runoff generation for the range of different streamflow-generation mechanisms illustrated in the classic Dunne diagram. The comprehensive physics-based model of coupled surface-subsurface flow, InHM, is employed in a heuristic mode. InHM has been employed previously to successfully simulate the observed hydrologic response at four diverse, well-characterized catchments, which provides the foundation for this study. The C3 and CB catchments are located within steep, forested terrain; the TW and R5 catchments are located in gently sloping rangeland. The InHM boundary-value problems for these four catchments provide the corner-stones for alternative simulation scenarios designed to address the question of how runoff begins (and ends). Simulated rainfall-runoff events are used to systematically explore the impact of soil-hydraulic properties and rainfall characteristics. This approach facilitates quantitative analysis of both integrated and distributed hydrologic responses at high-spatial and temporal resolution over the wide range of environmental conditions represented by the four catchments. The results from 140 unique simulation scenarios illustrate how rainfall intensity/depth, subsurface permeability contrasts, characteristic curve shapes, and topography provide important controls on the hydrologic-response dynamics. The processes by which runoff begins (and ends) are shown, in large part, to be defined by the relative rates of rainfall, infiltration, lateral flow convergence, and storage dynamics within the variably saturated soil layers.

  13. A study of non-linearity in rainfall-runoff response using 120 UK catchments

    Science.gov (United States)

    Mathias, Simon A.; McIntyre, Neil; Oughton, Rachel H.

    2016-09-01

    This study presents a catchment characteristic sensitivity analysis concerning the non-linearity of rainfall-runoff response in 120 UK catchments. Two approaches were adopted. The first approach involved, for each catchment, regression of a power-law to flow rate gradient data for recession events only. This approach was referred to as the recession analysis (RA). The second approach involved calibrating a rainfall-runoff model to the full data set (both recession and non-recession events). The rainfall-runoff model was developed by combining a power-law streamflow routing function with a one parameter probability distributed model (PDM) for soil moisture accounting. This approach was referred to as the rainfall-runoff model (RM). Step-wise linear regression was used to derive regionalization equations for the three parameters. An advantage of the RM approach is that it utilizes much more of the observed data. Results from the RM approach suggest that catchments with high base-flow and low annual precipitation tend to exhibit greater non-linearity in rainfall-runoff response. In contrast, the results from the RA approach suggest that non-linearity is linked to low evaporative demand. The difference in results is attributed to the aggregation of storm-flow and base-flow into a single system giving rise to a seemingly more non-linear response when applying the RM approach to catchments that exhibit a strongly dual storm-flow base-flow response. The study also highlights the value and limitations in a regionlization context of aggregating storm-flow and base-flow pathways into a single non-linear routing function.

  14. A watershed scale assessment of the impacts of suburban turf management on runoff water quality

    Science.gov (United States)

    Bachman, M.; Inamdar, S. P.; Barton, S.; Duke, J.; Tallamy, D.; Bruck, J.

    2014-12-01

    Steadily increasing rates of urbanization have raised concerns about the negative impacts of urban runoff on receiving surface water quality. These concerns have been further amplified by landscaping paradigms that encourage high-input, intensively-managed and mono-culture turf and lawn landscapes. We conducted a watershed-scale assessment of turf management practices on water quality vis-à-vis less-intensive management practices that preserve and enhance more diverse and native vegetation. The study treatments with existing/established vegetation and landscaping practices included turf, urban, forest, meadow, and a mixed site with a professional golf course. Stream water sampling was performed during baseflow and storm events. Highest nutrient (nitrate and total nitrogen) concentrations in runoff were observed for the mixed watershed draining the golf course. In contrast, nutrient concentrations in baseflow from the turf watershed were lower than expected and were comparable to those measured in the surrounding meadow and forest sites. Runoff losses from the turf site may have been minimal due to the optimal quality of management implemented. Total nitrogen concentrations from the turf site increased sharply during the first storms following fertilization, suggesting that despite optimal management there exists a risk for nutrient runoff following fertilization. Dissolved organic carbon (DOC) concentrations from the turf site were elevated and aromatic in content while the mixed watershed site yielded more labile DOM. Overall, this study suggests that turf lawns, when managed properly, pose minimal environmental risk to surrounding surface waters. Based on the results of this study, providing homeowners with increased information regarding best management practices for lawn maintenance may serve as a cost-efficient method for reducing suburban runoff pollution.

  15. Runoff of trifluralin, metolachlor, and metribuzin from a clay loam soil of Louisiana.

    Science.gov (United States)

    Kim, Jung-Ho; Feagley, Sam E

    2002-09-01

    Trifluralin[2,6-dinitro-N,N-dipropyl-4-(trifluormethyl)benzenamine], metolachlor[2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] and metribuzin[4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)one] were applied as pre-emergent herbicides to soybean plots in Louisiana (LA) at the rate of 1683 g/ha, 2759 g/ha and 609 g/ha, respectively. The concentrations of trifluralin in the runoff water ranged between 0.09 ng/mL and 0.02 ng/mL, which is lower than the 2 ng/mL US Environmental Protection Agency (EPA) advisory level for trifuralin in drinking water. Metolachlor concentrations in the runoff water ranged from 9.0 ng/mL to 221.5 ng/mL, which is both lower and higher than the 175 ng/mL EPA advisory level for metolachlor. Similarly, metribuzin concentrations in the runoff water ranged between 1.5 ng/mL and 56.2 ng/mL, which is also lower and higher than the 10 ng/mL EPA advisory level for metribuzin. Accordingly, from the field plots located on a Commerce clay loam soil in LA, although the concentration of trifluralin in runoff water were substantially lower than the EPA advisory level, metolachlor and metribuzin concentrations are likely to exceed the EPA advisory levels early on in the application season with a subsequent rapid decrease to safe levels. The total loss of trifluralin in runoff water was 0.005% of the applied amount over an 89 day period after application. The total loss of metolachlor and metribuzin in the runoff water was 4.67% and 5.36% of the applied amount, respectively, over a 22 day period after application. As such, there was almost no movement of trifluralin in the runoff water, whereas metolachlor and metribuzin were much m