WorldWideScience

Sample records for volumes neuronal densities

  1. Neuron volumes in hippocampal subfields in delayed poststroke and aging-related dementias.

    Science.gov (United States)

    Gemmell, Elizabeth; Tam, Edward; Allan, Louise; Hall, Roslyn; Khundakar, Ahmad; Oakley, Arthur E; Thomas, Alan; Deramecourt, Vincent; Kalaria, Raj N

    2014-04-01

    Hippocampal atrophy is widely recognized in Alzheimer disease (AD). Whether neurons within hippocampal subfields are similarly affected in other aging-related dementias, particularly after stroke, remains an open question. We investigated hippocampal CA3 and CA4 pyramidal neuron volumes and densities using 3-dimensional stereologic techniques in postmortem samples from a total of 67 subjects: poststoke demented (PSD; n = 11), nondemented stroke survivors (PSND) and PSD patients from the CogFAST (Cognitive Function After Stroke) cohort (n = 13), elderly controls (n = 12), and subjects diagnosed as having vascular dementia (n = 11), AD (n = 10), and mixed AD and vascular dementia (n = 10). We found that CA3 and CA4 neuron volumes were reduced in PSD samples compared with those in PSND samples. The CA3 and CA4 neuron volumes were positively correlated with poststroke global cognitive function but were not associated with the burden of AD pathology. There were no differences in total neuron densities in either subfield in any of the groups studied. Our results indicate that selective reductions in CA4 and to a lesser extent CA3 neuron volumes may be related to post stroke cognitive impairment and aging-related dementias. These data suggest that CA4 neurons are vulnerable to disease processes and support our previous finding that a reduction in hippocampal neuron volume predominantly reflects vascular mechanisms as contributing to dementia after stroke.

  2. Estimating neuronal connectivity from axonal and dendritic density fields

    Science.gov (United States)

    van Pelt, Jaap; van Ooyen, Arjen

    2013-01-01

    Neurons innervate space by extending axonal and dendritic arborizations. When axons and dendrites come in close proximity of each other, synapses between neurons can be formed. Neurons vary greatly in their morphologies and synaptic connections with other neurons. The size and shape of the arborizations determine the way neurons innervate space. A neuron may therefore be characterized by the spatial distribution of its axonal and dendritic “mass.” A population mean “mass” density field of a particular neuron type can be obtained by averaging over the individual variations in neuron geometries. Connectivity in terms of candidate synaptic contacts between neurons can be determined directly on the basis of their arborizations but also indirectly on the basis of their density fields. To decide when a candidate synapse can be formed, we previously developed a criterion defining that axonal and dendritic line pieces should cross in 3D and have an orthogonal distance less than a threshold value. In this paper, we developed new methodology for applying this criterion to density fields. We show that estimates of the number of contacts between neuron pairs calculated from their density fields are fully consistent with the number of contacts calculated from the actual arborizations. However, the estimation of the connection probability and the expected number of contacts per connection cannot be calculated directly from density fields, because density fields do not carry anymore the correlative structure in the spatial distribution of synaptic contacts. Alternatively, these two connectivity measures can be estimated from the expected number of contacts by using empirical mapping functions. The neurons used for the validation studies were generated by our neuron simulator NETMORPH. An example is given of the estimation of average connectivity and Euclidean pre- and postsynaptic distance distributions in a network of neurons represented by their population mean density

  3. Cortical cell and neuron density estimates in one chimpanzee hemisphere.

    Science.gov (United States)

    Collins, Christine E; Turner, Emily C; Sawyer, Eva Kille; Reed, Jamie L; Young, Nicole A; Flaherty, David K; Kaas, Jon H

    2016-01-19

    The density of cells and neurons in the neocortex of many mammals varies across cortical areas and regions. This variability is, perhaps, most pronounced in primates. Nonuniformity in the composition of cortex suggests regions of the cortex have different specializations. Specifically, regions with densely packed neurons contain smaller neurons that are activated by relatively few inputs, thereby preserving information, whereas regions that are less densely packed have larger neurons that have more integrative functions. Here we present the numbers of cells and neurons for 742 discrete locations across the neocortex in a chimpanzee. Using isotropic fractionation and flow fractionation methods for cell and neuron counts, we estimate that neocortex of one hemisphere contains 9.5 billion cells and 3.7 billion neurons. Primary visual cortex occupies 35 cm(2) of surface, 10% of the total, and contains 737 million densely packed neurons, 20% of the total neurons contained within the hemisphere. Other areas of high neuron packing include secondary visual areas, somatosensory cortex, and prefrontal granular cortex. Areas of low levels of neuron packing density include motor and premotor cortex. These values reflect those obtained from more limited samples of cortex in humans and other primates.

  4. Primary visual cortex volume and total neuron number are reduced in schizophrenia

    DEFF Research Database (Denmark)

    Dorph-Petersen, Karl-Anton; Pierri, Joseph H.; Wu, Qiang

    2007-01-01

    with schizophrenia reported an increased density of neurons in the primary visual cortex (Brodmann's area 17, BA17). The observed changes in visual processing may thus be reflected in structural changes in the circuitry of BA17. To characterize the structural changes further we used stereological methods based...... on unbiased principles of sampling (Cavalieri's principle and the optical fractionator) to estimate the total volume and neuron number of BA17 in postmortem brains from 10 subjects with schizophrenia and 10 matched normal comparison subjects. In addition, we assessed cortical thickness. We found a marked...... and significant reduction in total neuron number (25%) and volume (22%) of BA17 in the schizophrenia group relative to the normal comparison subjects. In contrast, we found no changes in neuronal density or cortical thickness between the two groups. Subjects with schizophrenia therefore have a smaller cortical...

  5. Current Source Density Estimation for Single Neurons

    Directory of Open Access Journals (Sweden)

    Dorottya Cserpán

    2014-03-01

    Full Text Available Recent developments of multielectrode technology made it possible to measure the extracellular potential generated in the neural tissue with spatial precision on the order of tens of micrometers and on submillisecond time scale. Combining such measurements with imaging of single neurons within the studied tissue opens up new experimental possibilities for estimating distribution of current sources along a dendritic tree. In this work we show that if we are able to relate part of the recording of extracellular potential to a specific cell of known morphology we can estimate the spatiotemporal distribution of transmembrane currents along it. We present here an extension of the kernel CSD method (Potworowski et al., 2012 applicable in such case. We test it on several model neurons of progressively complicated morphologies from ball-and-stick to realistic, up to analysis of simulated neuron activity embedded in a substantial working network (Traub et al, 2005. We discuss the caveats and possibilities of this new approach.

  6. Design-based estimation of neuronal number and individual neuronal volume in the rat hippocampus

    DEFF Research Database (Denmark)

    Hosseini-Sharifabad, Mohammad; Nyengaard, Jens Randel

    2007-01-01

    vertical sections from the hippocampus. The volume of hippocampal neurons was estimated using the rotator principle on 40 microm thick plastic vertical uniform random sections and corrected for tissue shrinkage. Application of the proposed new design should result in more accurate estimates of neuron......Tools recently developed in stereology were employed for unbiased estimation of the neuronal number and volume in three major subdivisions of rat hippocampus (dentate granular, CA1 and CA3 pyramidal layers). The optical fractionator is used extensively in quantitative studies of the hippocampus......; however, the classical optical fractionator design may be affected by tissue deformation in the z-axis of the section. In this study, we applied an improved optical fractionator design to estimate total number of neurons on 100 microm thick vibratome sections that had been deformed, in the z...

  7. Alterations in cortical thickness and neuronal density in the frontal cortex of Albert Einstein.

    Science.gov (United States)

    Anderson, B; Harvey, T

    1996-06-07

    Neuronal density, neuron size, and the number of neurons under 1 mm2 of cerebral cortical surface area were measured in the right pre-frontal cortex of Albert Einstein and five elderly control subjects. Measurement of neuronal density used the optical dissector technique on celloidin-embedded cresyl violet-stained sections. The neurons counted provided a systematic random sample for the measurement of cell body cross-sectional area. Einstein's cortex did not differ from the control subjects in the number of neurons under 1 mm2 of cerebral cortex or in mean neuronal size. Because Einstein's cortex was thinner than the controls he had a greater neuronal density.

  8. The influence of neuronal density and maturation on network activity of hippocampal cell cultures: a methodological study

    National Research Council Canada - National Science Library

    Biffi, Emilia; Regalia, Giulia; Menegon, Andrea; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2013-01-01

    .... Neuronal cultures plated with different cell densities differ in number of synapses per neuron and thus in single neuron synaptic transmission, which results in a density-dependent neuronal network activity...

  9. Neuronal actin dynamics, spine density and neuronal dendritic complexity are regulated by CAP2

    Directory of Open Access Journals (Sweden)

    Atul Kumar

    2016-07-01

    Full Text Available Actin remodeling is crucial for dendritic spine development, morphology and density. CAP2 is a regulator of actin dynamics through sequestering G-actin and severing F-actin. In a mouse model, ablation of CAP2 leads to cardiovascular defects and delayed wound healing. This report investigates the role of CAP2 in the brain using Cap2gt/gt mice. Dendritic complexity, the number and morphology of dendritic spines were altered in Cap2gt/gt with increased number of excitatory synapse. This was accompanied by increased F-actin content and F-actin accumulation in cultured Cap2gt/gt neurons. Moreover, reduced surface GluA1 was observed in mutant neurons under basal condition and after induction of chemical LTP. Additionally, we show an interaction between CAP2 and n-cofilin, presumably mediated through the C-terminal domain of CAP2 and dependent on cofilin ser3 phosphorylation. In vivo, the consequences of this interaction were altered phosphorylated cofilin levels and formation of cofilin aggregates in the neurons. Thus, our studies identify a novel role of CAP2 in neuronal development and neuronal actin dynamics.

  10. Automated computation of arbor densities: a step toward identifying neuronal cell types.

    Science.gov (United States)

    Sümbül, Uygar; Zlateski, Aleksandar; Vishwanathan, Ashwin; Masland, Richard H; Seung, H Sebastian

    2014-01-01

    The shape and position of a neuron convey information regarding its molecular and functional identity. The identification of cell types from structure, a classic method, relies on the time-consuming step of arbor tracing. However, as genetic tools and imaging methods make data-driven approaches to neuronal circuit analysis feasible, the need for automated processing increases. Here, we first establish that mouse retinal ganglion cell types can be as precise about distributing their arbor volumes across the inner plexiform layer as they are about distributing the skeletons of the arbors. Then, we describe an automated approach to computing the spatial distribution of the dendritic arbors, or arbor density, with respect to a global depth coordinate based on this observation. Our method involves three-dimensional reconstruction of neuronal arbors by a supervised machine learning algorithm, post-processing of the enhanced stacks to remove somata and isolate the neuron of interest, and registration of neurons to each other using automatically detected arbors of the starburst amacrine interneurons as fiducial markers. In principle, this method could be generalizable to other structures of the CNS, provided that they allow sparse labeling of the cells and contain a reliable axis of spatial reference.

  11. Automated computation of arbor densities: a step toward identifying neuronal cell types

    Directory of Open Access Journals (Sweden)

    Uygar eSümbül

    2014-11-01

    Full Text Available The shape and position of a neuron convey information regarding its molecular and functional identity. The identification of cell types from structure, a classic method, relies on the time-consuming step of arbor tracing. However, as genetic tools and imaging methods make data-driven approaches to neuronal circuit analysis feasible, the need for automated processing increases. Here, we first establish that mouse retinal ganglion cell types can be as precise about distributing their arbor volumes across the inner plexiform layer as they are about distributing the skeletons of the arbors. Then, we describe an automated approach to computing the spatial distribution of the dendritic arbors, or arbor density, with respect to a global depth coordinate based on this observation. Our method involves three-dimensional reconstruction of neuronal arbors by a supervised machine learning algorithm, post-processing of the enhanced stacks to remove somata and isolate the neuron of interest, and registration of neurons to each other using automatically detected arbors of the starburst amacrine interneurons as fiducial markers. In principle, this method could be generalizable to other structures of the CNS, provided that they allow sparse labeling of the cells and contain a reliable axis of spatial reference.

  12. Thermodynamics of the low density excluded volume hadron gas

    CERN Document Server

    Zalewski, Kacper

    2015-01-01

    We discuss the influence of the excluded volume of hadrons on macroscopic variables and thermal parameters of the hadron gas at finite temperature and chemical potential in the low density approximation. Based solely on elementary thermodynamics we show that when the excluded volume grows at constant temperature, pressure, and number of particles, the overall volume increases just as much as the excluded volume, while the entropy and energy remain unchanged. The growth of the chemical potentials is equal to the work needed to create the respective excluded volumes. Consequently, the bulk density functions of a gas with excluded volume are expressed by the corresponding variables in a system of point particles with the shifted chemical potentials. Our results are fully consistent with the previous findings obtained upon applications of more advanced methods of statistical physics. A validity limit for the low density approximation is derived and discussed in the context of the hadron gas created in heavy ion c...

  13. Effect of different densities of silver nanoparticles on neuronal growth

    Science.gov (United States)

    Nissan, Ifat; Schori, Hadas; Lipovsky, Anat; Alon, Noa; Gedanken, Aharon; Shefi, Orit

    2016-08-01

    Nerve regeneration has become a subject of great interest, and much effort is devoted to the design and manufacturing of effective biomaterials. In this paper, we report the capability of surfaces coated with silver nanoparticles (AgNPs) to serve as platforms for nerve regeneration. We fabricated substrates coated with silver nanoparticles at different densities using sonochemistry, and grew neuroblastoma cells on the AgNPs. The effect of the different densities on the development of the neurites during the initiation and elongation growth phases was studied. We found that the AgNPs function as favorable anchoring sites for the neuroblastoma cells, significantly enhancing neurite outgrowth. One of the main goals of this study is to test whether the enhanced growth of the neurites is due to the mere presence of AgNPs or whether their topography also plays a vital role. We found that this phenomenon was repeated for all the tested densities, with a maximal effect for the substrates that are coated with 45 NPs/μm2. We also studied the amount of reactive oxygen spices (ROS) in the presence of AgNPs as indicator of cell activation. Our results, combined with the well-known antibacterial effects of AgNPs, suggest that substrates coated with AgNP are attractive nanomaterials—with dual activity—for neuronal repair studies and therapeutics.

  14. Minimum neuron density for synchronized bursts in a rat cortical culture on multi-electrode arrays.

    Science.gov (United States)

    Ito, D; Tamate, H; Nagayama, M; Uchida, T; Kudoh, S N; Gohara, K

    2010-11-24

    To investigate the minimum neuron and neurite densities required for synchronized bursts, we cultured rat cortical neurons on planar multi-electrode arrays (MEAs) at five plating densities (2500, 1000, 500, 250, and 100 cells/mm(2)) using two culture media: Neuron Culture Medium and Dulbecco's Modified Eagle Medium supplemented with serum (DMEM/serum). Long-term recording of spontaneous electrical activity clarified that the cultures exhibiting synchronized bursts required an initial plating density of at least 250 cells/mm(2) for Neuron Culture Medium and 500 cells/mm(2) for DMEM/serum. Immediately after electrical recording, immunocytochemistry of microtubule-associated protein 2 (MAP2) and Neurofilament 200 kD (NF200) was performed directly on MEAs to investigate the actual densities of neurons and neurites forming the networks. Immunofluorescence observation revealed that the construction of complicated neuronal networks required the same initial plating density as for synchronized bursts, and that overly sparse cultures showed significant decreases of neurons and neurites. We also found that the final densities of surviving neurons at 1 month decreased greatly compared with the initial plating densities and became saturated in denser cultures. In addition, the area of neurites and the number of nuclei were saturated in denser cultures. By comparing both the results of electrophysiological recording and immunocytochemical observation, we revealed that there is a minimum threshold of neuron densities that must be met for the exhibition of synchronized bursts. Interestingly, these minimum densities of MAP2-positive final neurons did not differ between the two culture media; the density was approximately 50 neurons/mm(2). This value was obtained in the cultures with the initial plating densities of 250 cells/mm(2) for Neuron Culture Medium and 500 cells/mm(2) for DMEM/serum.

  15. Finding the Density of Objects without Measuring Mass and Volume

    Science.gov (United States)

    Mumba, Frackson; Tsige, Mesfin

    2007-01-01

    A simple method based on the moment of forces and Archimedes' principle is described for finding density without measuring the mass and volume of an object. The method involves balancing two unknown objects of masses M[subscript 1] and M[subscript 2] on each side of a pivot on a metre rule and measuring their corresponding moment arms. The object…

  16. Stereological analysis of the mediodorsal thalamic nucleus in schizophrenia: volume, neuron number, and cell types

    DEFF Research Database (Denmark)

    Dorph-Petersen, Karl-Anton; Pierri, Joseph N; Sun, Zhuoxin

    2004-01-01

    The mediodorsal thalamic nucleus (MD) is the principal relay nucleus for the prefrontal cortex, a brain region thought to be dysfunctional in schizophrenia. Several, but not all, postmortem studies of the MD in schizophrenia have reported decreased volume and total neuronal number. However......, it is not clear whether the findings are specific for schizophrenia nor is it known which subtypes of thalamic neurons are affected. We studied the left MD in 11 subjects with schizophrenia, 9 control subjects, and 12 subjects with mood disorders. Based on morphological criteria, we divided the neurons into two...... subclasses, presumably corresponding to projection neurons and local circuit neurons. We estimated MD volume and the neuron number of each subclass using methods based on modern unbiased stereological principles. We also estimated the somal volumes of each subclass using a robust, but biased, approach...

  17. Gas Density and the Volume Schmidt Law for Spiral Galaxies

    CERN Document Server

    Abramova, O V

    2007-01-01

    The thickness of the equilibrium isothermal gaseous layers and their volume densities \\rho_{gas}(R) in the disc midplane are calculated for 7 spiral galaxies (including our Galaxy) in the frame of self-consistent axisymmetric model. Local velocity dispersions of stellar discs were assumed to be close to marginal values necessary for the discs to be in a stable equilibrium state. Under this condition the stellar discs of at least 5 of 7 galaxies reveal a flaring. Their volume densities decrease with R faster than \\rho_{gas}, and, as a result, the gas dominates by the density at the disc periphery. Comparison of the azimuthally averaged star formation rate SFR with the gas density shows that there is no universal Schmidt law SFR \\rho_{gas}^n, common to all galaxies. Nevertheless, SFR in different galaxies reveals better correlation with the volume gas density than with the column one. Parameter n in the Schmidt law SFR \\rho_{gas}^n, formally calculated by the least square method, lies within 0.8-2.4 range and i...

  18. Atomic volumes and polarizabilities in density-functional theory.

    Science.gov (United States)

    Kannemann, Felix O; Becke, Axel D

    2012-01-21

    Becke and Johnson introduced an ad hoc definition of atomic volume [J. Chem. Phys. 124, 014204 (2006)] in order to obtain atom-in-molecule polarizabilities from free-atom polarizabilities in their nonempirical exchange-hole dipole moment model of dispersion interactions. Here we explore the dependence of Becke-Johnson atomic volumes on basis sets and density-functional approximations and provide reference data for all atoms H-Lr. A persuasive theoretical foundation for the Becke-Johnson definition is also provided.

  19. Selective regulation of current densities underlies spontaneous changes in the activity of cultured neurons.

    Science.gov (United States)

    Turrigiano, G; LeMasson, G; Marder, E

    1995-05-01

    We study the electrical activity patterns and the expression of conductances in adult stomatogastric ganglion (STG) neurons as a function of time in primary cell culture. When first plated in culture, these neurons had few active properties. After 1 d in culture they produced small action potentials that rapidly inactivated during maintained depolarization. After 2 d in culture they fired large action potentials tonically when depolarized, and their properties resembled very closely the properties of STG neurons pharmacologically isolated in the ganglion. After 3-4 d in culture, however, their electrical properties changed and they fired in bursts when depolarized. We characterized the currents expressed by these neurons in culture. They included two TTX-sensitive sodium currents, a calcium current, a delayed-rectifier-like current, a calcium-dependent potassium current, and two A-type currents. The changes in firing properties with time in culture were accompanied by an increase in inward and decrease in outward current densities. A single-compartment conductance-based model of an STG neuron was constructed by fitting the currents measured in the biological neurons. When the current densities in the model neuron were matched to those measured for the biological neurons in each activity state, the model neuron closely reproduced each state, indicating that the changes in current densities are sufficient to account for the changes in intrinsic properties. These data indicate that STG neurons isolated in culture change their intrinsic electrical properties by selectively adjusting the magnitudes of their ionic conductances.

  20. Dietary Restriction reduces hippocampal neurogenesis and granule cell neuron density without affecting the density of mossy fibers.

    Science.gov (United States)

    Staples, Miranda C; Fannon-Pavlich, McKenzie J; Mysore, Karthik K; Dutta, Rahul R; Ongjoco, Alexandria T; Quach, Leon W; Kharidia, Khush M; Somkuwar, Sucharita S; Mandyam, Chitra D

    2017-03-08

    The hippocampal formation undergoes significant morphological and functional changes after prolonged caloric and dietary restriction (DR). In this study we tested whether prolonged DR results in deleterious alterations in hippocampal neurogenesis, density of granule cell neurons and mossy fibers, all of which support plasticity in the dentate gyrus. Young adult animals either experienced free access to food (control condition), or every-other-day feeding regimen (DR condition) for 3 months. The number of Ki-67 cells and 28-day old 5-bromo-2'-deoxyuridine (BrdU) cells were quantified in the dorsal and ventral dentate gyrus to determine the effect of DR on cellular proliferation and survival of neural progenitor cells in the anatomically defined regions of the dentate gyrus. The density of granule cell neurons and synaptoporin were also quantified to determine the effect of DR on granule cell neurons and mossy fiber projections in the dentate gyrus. Our results show that DR increases cellular proliferation and concurrently reduces survival of newly born neurons in the ventral dentate gyrus without effecting the number of cells in the dorsal dentate gyrus. DR reduced density of granule cell neurons in the dorsal dentate gyrus. These alterations in the number of granule cell neurons did not affect mossy fiber density in DR animals, which was visualized as no differences in synaptoporin expression. Our findings demonstrate that granule cell neurons in the dentate gyrus are vulnerable to chronic DR and that the reorganization of granule cells in the dentate gyrus subregions is not producing concomitant alterations in dentate gyrus neuronal circuitry with this type of dietary restriction.

  1. Bowel movement frequency in late-life and substantia nigra neuron density at death.

    Science.gov (United States)

    Petrovitch, Helen; Abbott, Robert D; Ross, G Webster; Nelson, James; Masaki, Kamal H; Tanner, Caroline M; Launer, Lenore J; White, Lon R

    2009-02-15

    Constipation is associated with future risk of Parkinson's disease (PD) and with incidental Lewy bodies (LB) in the locus ceruleus or substantia nigra (SN). Our purpose is to examine the independent association between bowel movement frequency in late-life and postmortem SN neuron density. Bowel movement frequency was assessed in the Honolulu-Asia Aging Study from 1991 to 1993 in 414 men aged 71 to 93 years with later postmortem evaluations. Brains were examined for LB in the SN and locus ceruleus and neurons were counted in four quadrants from a transverse section of SN. In nonsmokers, neuron densities (counts/mm(2)) for men with >1, 1, and coffee drinking, tricep skinfold thickness, excessive daytime sleepiness, cognitive function, PD, and incidental LB, density ratios in nonsmokers with 1 or more bowel movement(s) daily were significantly higher compared to those with <1 daily. Constipation is associated with low SN neuron density independent of the presence of LB.

  2. Mineral density volume gradients in normal and diseased human tissues.

    Directory of Open Access Journals (Sweden)

    Sabra I Djomehri

    Full Text Available Clinical computed tomography provides a single mineral density (MD value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca to phosphorus (P and Ca to zinc (Zn elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT benchtop unit were correlated with elemental mapping obtained from a microprobe X-ray fluorescence (XRF using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males contained significant mineral density variations (enamel: 2820-3095 mg/cc, bone: 570-1415 mg/cc, cementum: 1240-1340 mg/cc, dentin: 1480-1590 mg/cc, cementum affected by periodontitis: 1100-1220 mg/cc, hypomineralized carious dentin: 345-1450 mg/cc, hypermineralized carious dentin: 1815-2740 mg/cc, and dental calculus: 1290-1770 mg/cc. A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49, hypomineralized dentin (0.32-0.46, cementum (1.51, and bone (1.68 were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765 and in cementum (595-990, highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations.

  3. Reduced Neurite Density in Neuronal Cell Cultures Exposed to Serum of Patients with Bipolar Disorder

    Science.gov (United States)

    Wollenhaupt-Aguiar, Bianca; Pfaffenseller, Bianca; Chagas, Vinicius de Saraiva; Castro, Mauro A A; Passos, Ives Cavalcante; Kauer-Sant’Anna, Márcia; Kapczinski, Flavio

    2016-01-01

    Background: Increased inflammatory markers and oxidative stress have been reported in serum among patients with bipolar disorder (BD). The aim of this study is to assess whether biochemical changes in the serum of patients induces neurotoxicity in neuronal cell cultures. Methods: We challenged the retinoic acid-differentiated human neuroblastoma SH-SY5Y cells with the serum of BD patients at early and late stages of illness and assessed neurite density and cell viability as neurotoxic endpoints. Results: Decreased neurite density was found in neurons treated with the serum of patients, mostly patients at late stages of illness. Also, neurons challenged with the serum of late-stage patients showed a significant decrease in cell viability. Conclusions: Our findings showed that the serum of patients with bipolar disorder induced a decrease in neurite density and cell viability in neuronal cultures. PMID:27207915

  4. Axonal and dendritic density field estimation from incomplete single-slice neuronal reconstructions

    Directory of Open Access Journals (Sweden)

    Jaap evan Pelt

    2014-06-01

    Full Text Available Neuronal information processing in cortical networks critically depends on the organization of synaptic connectivity. Synaptic connections can form when axons and dendrites come in close proximity of each other. The spatial innervation of neuronal arborizations can be described by their axonal and dendritic density fields. Recently we showed that potential locations of synapses between neurons can be estimated from their overlapping axonal and dendritic density fields. However, deriving density fields from single-slice neuronal reconstructions is hampered by incompleteness because of cut branches.Here, we describe a method for recovering the lost axonal and dendritic mass. This so-called completion method is based on an estimation of the mass inside the slice and an extrapolation to the space outside the slice, assuming axial symmetry in the mass distribution. We validated the method using a set of neurons generated with our NETMORPH simulator. The model-generated neurons were artificially sliced and subsequently recovered by the completion method. Depending on slice thickness and arbor extent, branches that have lost their outside parents (orphan branches may occur inside the slice. Not connected anymore to the contiguous structure of the sliced neuron, orphan branches result in an underestimation of neurite mass. For 300 m thick slices, however, the validation showed a full recovery of dendritic and an almost full recovery of axonal mass.The completion method was applied to three experimental data sets of reconstructed rat cortical L2/3 pyramidal neurons. The results showed that in 300 m thick slices intracortical axons lost about 50% and dendrites about 16% of their mass. The completion method can be applied to single-slice reconstructions as long as axial symmetry can be assumed in the mass distribution. This opens up the possibility of using incomplete neuronal reconstructions from open-access data bases to determine population mean

  5. CREB regulates spine density of lateral amygdala neurons: implications for memory allocation

    Directory of Open Access Journals (Sweden)

    Derya eSargin

    2013-12-01

    Full Text Available Neurons may compete against one another for integration into a memory trace. Specifically, neurons in the lateral nucleus of the amygdala with relatively higher levels of CREB seem to be preferentially allocated to a fear memory trace, while neurons with relatively decreased CREB function seem to be excluded from a fear memory trace. CREB is a ubiquitous transcription factor that modulates many diverse cellular processes, raising the question as to which of these CREB-mediated processes underlie memory allocation. CREB is implicated in modulating dendritic spine number and morphology. As dendritic spines are intimately involved in memory formation, we investigated whether manipulations of CREB function alter spine number or morphology of neurons at the time of fear conditioning. We used viral vectors to manipulate CREB function in the lateral amygdala principal neurons in mice maintained in their homecages. At the time that fear conditioning normally occurs, we observed that neurons with high levels of CREB had more dendritic spines, while neurons with low CREB function had relatively fewer spines compared to control neurons. These results suggest that the modulation of spine density provides a potential mechanism for preferential allocation of a subset of neurons to the memory trace.

  6. The effect of cell size and channel density on neuronal information encoding and energy efficiency.

    Science.gov (United States)

    Sengupta, Biswa; Faisal, A Aldo; Laughlin, Simon B; Niven, Jeremy E

    2013-09-01

    Identifying the determinants of neuronal energy consumption and their relationship to information coding is critical to understanding neuronal function and evolution. Three of the main determinants are cell size, ion channel density, and stimulus statistics. Here we investigate their impact on neuronal energy consumption and information coding by comparing single-compartment spiking neuron models of different sizes with different densities of stochastic voltage-gated Na(+) and K(+) channels and different statistics of synaptic inputs. The largest compartments have the highest information rates but the lowest energy efficiency for a given voltage-gated ion channel density, and the highest signaling efficiency (bits spike(-1)) for a given firing rate. For a given cell size, our models revealed that the ion channel density that maximizes energy efficiency is lower than that maximizing information rate. Low rates of small synaptic inputs improve energy efficiency but the highest information rates occur with higher rates and larger inputs. These relationships produce a Law of Diminishing Returns that penalizes costly excess information coding capacity, promoting the reduction of cell size, channel density, and input stimuli to the minimum possible, suggesting that the trade-off between energy and information has influenced all aspects of neuronal anatomy and physiology.

  7. Mean expression of the X chromosome is associated with neuronal density

    Directory of Open Access Journals (Sweden)

    James Thomas Swingland

    2012-11-01

    Full Text Available Neurodegenerative diseases are characterised by neuronal loss. Neuronal loss causes a varying density of neurons across samples which confounds results from gene expression studies. Chromosome X is known to be specifically important in brain. We hypothesised the existence of a chromosomal signature of gene expression associated with the X-chromosome for neurological conditions not normally associated with that chromosome. The hypothesis was investigated using microarray datasets from studies on Parkinson's disease, Alzheimer's disease and Huntington's disease. Data were analysed using Chromowave, an analytical tool for detecting spatially extended expression changes across chromosomes. To examine associations with neuronal density, expressions from a set of neuron specific genes were extracted. The association between these genes and the expression patterns extracted by Chromowave was then analyzed. We observed an extended pattern of low expression of ChrX consistent in all the neurodegenerative disease brain datasets. There was a strong correlation between mean ChrX expression and the pattern extracted from the autosomal neuronal specific genes, but no correlation with mean autosomal expression. No chromosomal patterns associated with the neuron specific genes were found on other chromosomes. The chromosomal expression pattern was not present in datasets from blood cells. The ChrX:Autosome expression ratio was also higher in neuronal cells than in tissues with a mix of cell types.The results suggest that a loss of neurons manifests in gene expression experiments primarily as a reduction in mean expression of genes along ChrX. The most likely explanation for this finding relates to the documented general up-regulation of ChrX in brain tissue which, this work suggests, occurs primarily in neurons. The purpose and mechanisms behind this cell specific higher expression warrant further research, which may also help elucidate connectio

  8. Neuronal pentraxin 1 negatively regulates excitatory synapse density and synaptic plasticity.

    Science.gov (United States)

    Figueiro-Silva, Joana; Gruart, Agnès; Clayton, Kevin Bernard; Podlesniy, Petar; Abad, Maria Alba; Gasull, Xavier; Delgado-García, José María; Trullas, Ramon

    2015-04-08

    In mature neurons, the number of synapses is determined by a neuronal activity-dependent dynamic equilibrium between positive and negative regulatory factors. We hypothesized that neuronal pentraxin (NP1), a proapoptotic protein induced by low neuronal activity, could be a negative regulator of synapse density because it is found in dystrophic neurites in Alzheimer's disease-affected brains. Here, we report that knockdown of NP1 increases the number of excitatory synapses and neuronal excitability in cultured rat cortical neurons and enhances excitatory drive and long-term potentiation in the hippocampus of behaving mice. Moreover, we found that NP1 regulates the surface expression of the Kv7.2 subunit of the Kv7 family of potassium channels that control neuronal excitability. Furthermore, pharmacological activation of Kv7 channels prevents, whereas inhibition mimics, the increase in synaptic proteins evoked by the knockdown of NP1. These results indicate that NP1 negatively regulates excitatory synapse number by modulating neuronal excitability and show that NP1 restricts excitatory synaptic plasticity. Copyright © 2015 the authors 0270-6474/15/355504-18$15.00/0.

  9. Anions Govern Cell Volume: A Case Study of Relative Astrocytic and Neuronal Swelling in Spreading Depolarization.

    Directory of Open Access Journals (Sweden)

    Niklas Hübel

    Full Text Available Cell volume changes are ubiquitous in normal and pathological activity of the brain. Nevertheless, we know little about the dynamics of cell and tissue swelling, and the differential changes in the volumes of neurons and glia during pathological states such as spreading depolarizations (SD under ischemic and non-ischemic conditions, and epileptic seizures. By combining the Hodgkin-Huxley type spiking dynamics, dynamic ion concentrations, and simultaneous neuronal and astroglial volume changes into a comprehensive model, we elucidate why glial cells swell more than neurons in SD and the special case of anoxic depolarization (AD, and explore the relative contributions of the two cell types to tissue swelling. Our results demonstrate that anion channels, particularly Cl-, are intrinsically connected to cell swelling and blocking these currents prevents changes in cell volume. The model is based on a simple and physiologically realistic description. We introduce model extensions that are either derived purely from first physical principles of electroneutrality, osmosis, and conservation of particles, or by a phenomenological combination of these principles and known physiological facts. This work provides insights into numerous studies related to neuronal and glial volume changes in SD that otherwise seem contradictory, and is broadly applicable to swelling in other cell types and conditions.

  10. Developmental patterns of doublecortin expression and white matter neuron density in the postnatal primate prefrontal cortex and schizophrenia.

    Directory of Open Access Journals (Sweden)

    Samantha J Fung

    Full Text Available Postnatal neurogenesis occurs in the subventricular zone and dentate gyrus, and evidence suggests that new neurons may be present in additional regions of the mature primate brain, including the prefrontal cortex (PFC. Addition of new neurons to the PFC implies local generation of neurons or migration from areas such as the subventricular zone. We examined the putative contribution of new, migrating neurons to postnatal cortical development by determining the density of neurons in white matter subjacent to the cortex and measuring expression of doublecortin (DCX, a microtubule-associated protein involved in neuronal migration, in humans and rhesus macaques. We found a striking decline in DCX expression (human and macaque and density of white matter neurons (humans during infancy, consistent with the arrival of new neurons in the early postnatal cortex. Considering the expansion of the brain during this time, the decline in white matter neuron density does not necessarily indicate reduced total numbers of white matter neurons in early postnatal life. Furthermore, numerous cells in the white matter and deep grey matter were positive for the migration-associated glycoprotein polysialiated-neuronal cell adhesion molecule and GAD65/67, suggesting that immature migrating neurons in the adult may be GABAergic. We also examined DCX mRNA in the PFC of adult schizophrenia patients (n = 37 and matched controls (n = 37 and did not find any difference in DCX mRNA expression. However, we report a negative correlation between DCX mRNA expression and white matter neuron density in adult schizophrenia patients, in contrast to a positive correlation in human development where DCX mRNA and white matter neuron density are higher earlier in life. Accumulation of neurons in the white matter in schizophrenia would be congruent with a negative correlation between DCX mRNA and white matter neuron density and support the hypothesis of a migration deficit in

  11. Firing statistics of inhibitory neuron with delayed feedback. I. Output ISI probability density.

    Science.gov (United States)

    Vidybida, A K; Kravchuk, K G

    2013-06-01

    Activity of inhibitory neuron with delayed feedback is considered in the framework of point stochastic processes. The neuron receives excitatory input impulses from a Poisson stream, and inhibitory impulses from the feedback line with a delay. We investigate here, how does the presence of inhibitory feedback affect the output firing statistics. Using binding neuron (BN) as a model, we derive analytically the exact expressions for the output interspike intervals (ISI) probability density, mean output ISI and coefficient of variation as functions of model's parameters for the case of threshold 2. Using the leaky integrate-and-fire (LIF) model, as well as the BN model with higher thresholds, these statistical quantities are found numerically. In contrast to the previously studied situation of no feedback, the ISI probability densities found here both for BN and LIF neuron become bimodal and have discontinuity of jump type. Nevertheless, the presence of inhibitory delayed feedback was not found to affect substantially the output ISI coefficient of variation. The ISI coefficient of variation found ranges between 0.5 and 1. It is concluded that introduction of delayed inhibitory feedback can radically change neuronal output firing statistics. This statistics is as well distinct from what was found previously (Vidybida and Kravchuk, 2009) by a similar method for excitatory neuron with delayed feedback.

  12. PGC-1α and PGC-1β Regulate Mitochondrial Density in Neurons*

    Science.gov (United States)

    Wareski, Przemyslaw; Vaarmann, Annika; Choubey, Vinay; Safiulina, Dzhamilja; Liiv, Joanna; Kuum, Malle; Kaasik, Allen

    2009-01-01

    Recent studies indicate that regulation of cellular oxidative capacity through enhancing mitochondrial biogenesis may be beneficial for neuronal recovery and survival in human neurodegenerative disorders. The peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) has been shown to be a master regulator of mitochondrial biogenesis and cellular energy metabolism in muscle and liver. The aim of our study was to establish whether PGC-1α and PGC-1β control mitochondrial density also in neurons and if these coactivators could be up-regulated by deacetylation. The results demonstrate that PGC-1α and PGC-1β control mitochondrial capacity in an additive and independent manner. This effect was observed in all studied subtypes of neurons, in cortical, midbrain, and cerebellar granule neurons. We also observed that endogenous neuronal PGC-1α but not PGC-1β could be activated through its repressor domain by suppressing it. Results demonstrate also that overexpression of SIRT1 deacetylase or suppression of GCN5 acetyltransferase activates transcriptional activity of PGC-1α in neurons and increases mitochondrial density. These effects were mediated exclusively via PGC-1α, since overexpression of SIRT1 or suppression of GCN5 was ineffective where PGC-1α was suppressed by short hairpin RNA. Moreover, the results demonstrate that overexpression of PGC-1β or PGC-1α or activation of the latter by SIRT1 protected neurons from mutant α-synuclein- or mutant huntingtin-induced mitochondrial loss. These evidences demonstrate that activation or overexpression of the PGC-1 family of coactivators could be used to compensate for neuronal mitochondrial loss and suggest that therapeutic agents activating PGC-1 would be valuable for treating neurodegenerative diseases in which mitochondrial dysfunction and oxidative damage play an important pathogenic role. PMID:19542216

  13. Preservation of hippocampal neuron numbers and hippocampal subfield volumes in behaviorally characterized aged tree shrews.

    Science.gov (United States)

    Keuker, Jeanine I H; de Biurrun, Gabriel; Luiten, Paul G M; Fuchs, Eberhard

    2004-01-19

    Aging is associated with a decreased ability to store and retrieve information. The hippocampal formation plays a critical role in such memory processes, and its integrity is affected during normal aging. We used tree shrews (Tupaia belangeri) as an animal model of aging, because in many characteristics, tree shrews are closer to primates than they are to rodents. Young and aged male tree shrews performed a holeboard spatial memory task, which permits assessment of reference and working memory. Upon completion of the behavioral measurements, we carried out modified stereological analyses of neuronal numbers in various subdivisions of the hippocampus and used the Cavalieri method to calculate the volumes of these subfields. Results showed that the working memory of aged tree shrews was significantly impaired compared with that of young animals, whereas the hippocampus-dependent reference memory remained unchanged by aging. Estimation of the number of neurons revealed preserved neuron numbers in the subiculum, in the subregions CA1, CA2, CA3, and in the hilus of the dentate gyrus. Volume measurements showed no aging-related changes in the volume of any of these hippocampal subregions, or in the molecular and granule cell layers of the dentate gyrus of tree shrews. We conclude that the observed changes in memory performance in aging tree shrews are not accompanied by observable reductions of hippocampal neuron numbers or hippocampal volume, rather, the changes in memory performance are more likely the result of modified subcellular mechanisms that are affected by the aging process.

  14. A Pipeline for Neuron Reconstruction Based on Spatial Sliding Volume Filter Seeding

    Directory of Open Access Journals (Sweden)

    Dong Sui

    2014-01-01

    Full Text Available Neuron’s shape and dendritic architecture are important for biosignal transduction in neuron networks. And the anatomy architecture reconstruction of neuron cell is one of the foremost challenges and important issues in neuroscience. Accurate reconstruction results can facilitate the subsequent neuron system simulation. With the development of confocal microscopy technology, researchers can scan neurons at submicron resolution for experiments. These make the reconstruction of complex dendritic trees become more feasible; however, it is still a tedious, time consuming, and labor intensity task. For decades, computer aided methods have been playing an important role in this task, but none of the prevalent algorithms can reconstruct full anatomy structure automatically. All of these make it essential for developing new method for reconstruction. This paper proposes a pipeline with a novel seeding method for reconstructing neuron structures from 3D microscopy images stacks. The pipeline is initialized with a set of seeds detected by sliding volume filter (SVF, and then the open curve snake is applied to the detected seeds for reconstructing the full structure of neuron cells. The experimental results demonstrate that the proposed pipeline exhibits excellent performance in terms of accuracy compared with traditional method, which is clearly a benefit for 3D neuron detection and reconstruction.

  15. The interstitial nuclei of the human anterior hypothalamus: an investigation of sexual variation in volume and cell size, number and density.

    Science.gov (United States)

    Byne, W; Lasco, M S; Kemether, E; Shinwari, A; Edgar, M A; Morgello, S; Jones, L B; Tobet, S

    2000-02-21

    The four interstitial nuclei of the anterior hypothalamus (INAH) have been considered as candidate human nuclei for homology with the much studied sexually dimorphic nucleus of the preoptic area of the rat. Assessment of the INAH for sexual dimorphism has produced discrepant results. This study reports the first systematic examination of all four INAH in the human for sexual variation in volume, neuronal number and neuronal size. Serial Nissl-stained coronal sections through the medial preoptic area and anterior hypothalamus were examined from 18 males and 20 females who died between the ages of 17 and 65 without evidence of hypothalamic pathology or infection with the human immunodeficiency virus. A computer-assisted image-analysis system and commercial stereology software package were employed to assess total volume, neuronal number and mean neuronal size for each INAH. INAH3 occupied a significantly greater volume and contained significantly more neurons in males than in females. No sex differences in volume were detected for any of the other INAH. No sexual variation in neuronal size or packing density was observed in any nucleus. The present data corroborate two previous reports of sexual dimorphism of INAH3 but provide no support for previous reports of sexual variation in other INAH.

  16. Information in a Network of Neuronal Cells: Effect of Cell Density and Short-Term Depression

    KAUST Repository

    Onesto, Valentina

    2016-05-10

    Neurons are specialized, electrically excitable cells which use electrical to chemical signals to transmit and elaborate information. Understanding how the cooperation of a great many of neurons in a grid may modify and perhaps improve the information quality, in contrast to few neurons in isolation, is critical for the rational design of cell-materials interfaces for applications in regenerative medicine, tissue engineering, and personalized lab-on-a-chips. In the present paper, we couple an integrate-and-fire model with information theory variables to analyse the extent of information in a network of nerve cells. We provide an estimate of the information in the network in bits as a function of cell density and short-term depression time. In the model, neurons are connected through a Delaunay triangulation of not-intersecting edges; in doing so, the number of connecting synapses per neuron is approximately constant to reproduce the early time of network development in planar neural cell cultures. In simulations where the number of nodes is varied, we observe an optimal value of cell density for which information in the grid is maximized. In simulations in which the posttransmission latency time is varied, we observe that information increases as the latency time decreases and, for specific configurations of the grid, it is largely enhanced in a resonance effect.

  17. Ion channel density and threshold dynamics of repetitive firing in a cortical neuron model.

    Science.gov (United States)

    Arhem, Peter; Blomberg, Clas

    2007-01-01

    Modifying the density and distribution of ion channels in a neuron (by natural up- and down-regulation, by pharmacological intervention or by spontaneous mutations) changes its activity pattern. In the present investigation, we analyze how the impulse patterns are regulated by the density of voltage-gated channels in a model neuron, based on voltage clamp measurements of hippocampal interneurons. At least three distinct oscillatory patterns, associated with three distinct regions in the Na-K channel density plane, were found. A stability analysis showed that the different regions are characterized by saddle-node, double-orbit, and Hopf bifurcation threshold dynamics, respectively. Single strongly graded action potentials occur in an area outside the oscillatory regions, but less graded action potentials occur together with repetitive firing over a considerable range of channel densities. The presently found relationship between channel densities and oscillatory behavior may be relevance for understanding principal spiking patterns of cortical neurons (regular firing and fast spiking). It may also be of relevance for understanding the action of pharmacological compounds on brain oscillatory activity.

  18. Transgenic miR132 alters neuronal spine density and impairs novel object recognition memory.

    Directory of Open Access Journals (Sweden)

    Katelin F Hansen

    Full Text Available Inducible gene expression plays a central role in neuronal plasticity, learning, and memory, and dysfunction of the underlying molecular events can lead to severe neuronal disorders. In addition to coding transcripts (mRNAs, non-coding microRNAs (miRNAs appear to play a role in these processes. For instance, the CREB-regulated miRNA miR132 has been shown to affect neuronal structure in an activity-dependent manner, yet the details of its physiological effects and the behavioral consequences in vivo remain unclear. To examine these questions, we employed a transgenic mouse strain that expresses miR132 in forebrain neurons. Morphometric analysis of hippocampal neurons revealed that transgenic miR132 triggers a marked increase in dendritic spine density. Additionally, miR132 transgenic mice exhibited a decrease in the expression of MeCP2, a protein implicated in Rett Syndrome and other disorders of mental retardation. Consistent with these findings, miR132 transgenic mice displayed significant deficits in novel object recognition. Together, these data support a role for miR132 as a regulator of neuronal structure and function, and raise the possibility that dysregulation of miR132 could contribute to an array of cognitive disorders.

  19. Primary visual cortex volume and total neuron number are reduced in schizophrenia

    DEFF Research Database (Denmark)

    Dorph-Petersen, Karl-Anton; Pierri, Joseph H.; Wu, Qiang;

    2007-01-01

    with schizophrenia reported an increased density of neurons in the primary visual cortex (Brodmann's area 17, BA17). The observed changes in visual processing may thus be reflected in structural changes in the circuitry of BA17. To characterize the structural changes further we used stereological methods based...

  20. Dendritic spine density of prefrontal layer 6 pyramidal neurons in relation to apical dendrite sculpting by nicotinic acetylcholine receptors

    Directory of Open Access Journals (Sweden)

    Lily eKang

    2015-10-01

    Full Text Available Prefrontal layer 6 (L6 pyramidal neurons play an important role in the adult control of attention, facilitated by their strong activation by nicotinic acetylcholine receptors. These neurons in mouse association cortex are distinctive morphologically when compared to L6 neurons in primary cortical regions. Roughly equal proportions of the prefrontal L6 neurons have apical dendrites that are long (reaching to the pial surface versus short (terminating in the deep layers, as in primary cortical regions. This distinct prefrontal morphological pattern is established in the post-juvenile period and appears dependent on nicotinic receptors. Here, we examine dendritic spine densities in these two subgroups of prefrontal L6 pyramidal neurons under control conditions as well as after perturbation of nicotinic acetylcholine receptors. In control mice, the long neurons have significantly greater apical and basal dendritic spine density compared to the short neurons. Furthermore, manipulations of nicotinic receptors (chrna5 deletion or chronic developmental nicotine exposure have distinct effects on these two subgroups of L6 neurons: apical spine density is significantly reduced in long neurons, and basal spine density is significantly increased in short neurons. These changes appear dependent on the α5 nicotinic subunit encoded by chrna5. Overall, the two subgroups of prefrontal L6 neurons appear positioned to integrate information either across cortex (long neurons or within the deep layers (short neurons, and nicotinic perturbations differently alter spine density within each subgroup. Such changes have ramifications for adult executive function and possibly also for the morphological vulnerability of prefrontal cortex to subsequent stress exposure.

  1. The influence of increased rearing density on medial protocerebral neurosecretory neurons of Lymantria dispar L. caterpillars

    Directory of Open Access Journals (Sweden)

    Ilijin Larisa

    2010-01-01

    Full Text Available Morphometric changes of A1, A1' and A2 protocerebral dorsomedial neurosecretory neurons, total brain protein content and brain protein profiles were analyzed in 4th instar Lymantria dispar larvae under elevated rearing density, i.e. under intense stress when 5 larvae were kept in a petri dish (V = 80 ml, less intense stress when 5 larvae were kept in a plastic cup (V = 300 ml. In the control samples the larvae were reared in isolated conditions. Protein pattern changes in the brain were observed. Proteins with the following molecular masses: 30, 14, 10 and 3.4-2.5 kD were detected in the experimental groups. The size and cytological characteristics of protocerebral dorsomedial neurosecretory neurons were changed under elevated rearing density.

  2. Increased white matter neuron density in a rat model of maternal immune activation - Implications for schizophrenia.

    Science.gov (United States)

    Duchatel, Ryan J; Jobling, Phillip; Graham, Brett A; Harms, Lauren R; Michie, Patricia T; Hodgson, Deborah M; Tooney, Paul A

    2016-02-01

    Interstitial neurons are located among white matter tracts of the human and rodent brain. Post-mortem studies have identified increased interstitial white matter neuron (IWMN) density in the fibre tracts below the cortex in people with schizophrenia. The current study assesses IWMN pathology in a model of maternal immune activation (MIA); a risk factor for schizophrenia. Experimental MIA was produced by an injection of polyinosinic:polycytidylic acid (PolyI:C) into pregnant rats on gestational day (GD) 10 or GD19. A separate control group received saline injections. The density of neuronal nuclear antigen (NeuN(+)) and somatostatin (SST(+)) IWMNs was determined in the white matter of the corpus callosum in two rostrocaudally adjacent areas in the 12week old offspring of GD10 (n=10) or GD19 polyI:C dams (n=18) compared to controls (n=20). NeuN(+) IWMN density trended to be higher in offspring from dams exposed to polyI:C at GD19, but not GD10. A subpopulation of these NeuN(+) IWMNs was shown to express SST. PolyI:C treatment of dams induced a significant increase in the density of SST(+) IWMNs in the offspring when delivered at both gestational stages with more regionally widespread effects observed at GD19. A positive correlation was observed between NeuN(+) and SST(+) IWMN density in animals exposed to polyI:C at GD19, but not controls. This is the first study to show that MIA increases IWMN density in adult offspring in a similar manner to that seen in the brain in schizophrenia. This suggests the MIA model will be useful in future studies aimed at probing the relationship between IWMNs and schizophrenia.

  3. Quantitative analysis of the change in neuronal numerical density of the human nucleus dentatus within development

    Directory of Open Access Journals (Sweden)

    Gudović Radmila

    2011-01-01

    Full Text Available Background/Aim. The role of the dentate nucleus is to coordinate input information coming from the lower olivary complex and various parts of the brainstem of the spinal marrow with the output information from the cerebellar cortex. To better understand functions and relations of the dentate nucleus it is highly important to study its development process. The aim of this study was to determine a possible mathematical model of decrease in neuronal numerical density of the human nucleus dentatus at different stages of development. Methods. This study included 25 fetal brains of different age (12.5-31 weeks of gestational age and one brain of a 6-day-old newborn. The brains were fixed in 10% formalin-alcohol solution and embedded in paraffin. Sections were cut at a thickness of 6, 15, and 30 μm and stained with cresyl violet. Each fifth section was analyzed using a light microscope, and numerical density of dentate nucleus neurons was established using the M42 Weibel's grid system. Results. The obtained results revealed a constant decrease in numerical density value. The changes of numerical densities at different stages of development correspond with Boltzmann function principles. The first, almost perpendicular part of Boltzmann function corresponds with the development of the dorsomedial lamina and the appearance of ventrolateral lamina primordium. The second, more or less horizontal part of Boltzmann function corresponds with the development of both laminae. Conclusion. The obtained results indicate that Boltzmann function can be considered a mathematical model of change in neuronal numerical density of dentate nucleus at different stage of development.

  4. Sensing magnetic flux density of artificial neurons with a MEMS device.

    Science.gov (United States)

    Tapia, Jesus A; Herrera-May, Agustin L; García-Ramírez, Pedro J; Martinez-Castillo, Jaime; Figueras, Eduard; Flores, Amira; Manjarrez, Elías

    2011-04-01

    We describe a simple procedure to characterize a magnetic field sensor based on microelectromechanical systems (MEMS) technology, which exploits the Lorentz force principle. This sensor is designed to detect, in future applications, the spiking activity of neurons or muscle cells. This procedure is based on the well-known capability that a magnetic MEMS device can be used to sense a small magnetic flux density. In this work, an electronic neuron (FitzHugh-Nagumo) is used to generate controlled spike-like magnetic fields. We show that the magnetic flux density generated by the hardware of this neuron can be detected with a new MEMS magnetic field sensor. This microdevice has a compact resonant structure (700 × 600 × 5 μm) integrated by an array of silicon beams and p-type piezoresistive sensing elements, which need an easy fabrication process. The proposed microsensor has a resolution of 80 nT, a sensitivity of 1.2 V.T(-1), a resonant frequency of 13.87 kHz, low power consumption (2.05 mW), quality factor of 93 at atmospheric pressure, and requires a simple signal processing circuit. The importance of our study is twofold. First, because the artificial neuron can generate well-controlled magnetic flux density, we suggest it could be used to analyze the resolution and performance of different magnetic field sensors intended for neurobiological applications. Second, the introduced MEMS magnetic field sensor may be used as a prototype to develop new high-resolution biomedical microdevices to sense magnetic fields from cardiac tissue, nerves, spinal cord, or the brain.

  5. Cannabinoid Receptors Modulate Neuronal Morphology and AnkyrinG Density at the Axon Initial Segment

    Science.gov (United States)

    Tapia, Mónica; Dominguez, Ana; Zhang, Wei; del Puerto, Ana; Ciorraga, María; Benitez, María José; Guaza, Carmen; Garrido, Juan José

    2017-01-01

    Neuronal polarization underlies the ability of neurons to integrate and transmit information. This process begins early in development with axon outgrowth, followed by dendritic growth and subsequent maturation. In between these two steps, the axon initial segment (AIS), a subcellular domain crucial for generating action potentials (APs) and maintaining the morphological and functional polarization, starts to develop. However, the cellular/molecular mechanisms and receptors involved in AIS initial development and maturation are mostly unknown. In this study, we have focused on the role of the type-1 cannabinoid receptor (CB1R), a highly abundant G-protein coupled receptor (GPCR) in the nervous system largely involved in different phases of neuronal development and differentiation. Although CB1R activity modulation has been related to changes in axons or dendrites, its possible role as a modulator of AIS development has not been yet explored. Here we analyzed the potential role of CB1R on neuronal morphology and AIS development using pharmacological and RNA interference approaches in cultured hippocampal neurons. CB1R inhibition, at a very early developmental stage, has no effect on axonal growth, yet CB1R activation can promote it. By contrast, subsequent dendritic growth is impaired by CB1R inhibition, which also reduces ankyrinG density at the AIS. Moreover, our data show a significant correlation between early dendritic growth and ankyrinG density. However, CB1R inhibition in later developmental stages after dendrites are formed only reduces ankyrinG accumulation at the AIS. In conclusion, our data suggest that neuronal CB1R basal activity plays a role in initial development of dendrites and indirectly in AIS proteins accumulation. Based on the lack of CB1R expression at the AIS, we hypothesize that CB1R mediated modulation of dendritic arbor size during early development indirectly determines the accumulation of ankyrinG and AIS development. Further studies

  6. A High Density Electrophysiological Data Analysis System for a Peripheral Nerve Interface Communicating with Individual Neurons in the Brain

    Science.gov (United States)

    2016-11-14

    of-the-art instrumentation to communicate with individual neurons in the brain and the peripheral nervous system. The major theme of the research is...Nerve Interface Communicating with Individual Neurons in the Brain The views, opinions and/or findings contained in this report are those of the author...Communicating with Individual Neurons in the Brain Report Title The high density electrophysiological data acquisition system obtained through this

  7. Multiscale functional connectivity estimation on low-density neuronal cultures recorded by high-density CMOS Micro Electrode Arrays.

    Science.gov (United States)

    Maccione, Alessandro; Garofalo, Matteo; Nieus, Thierry; Tedesco, Mariateresa; Berdondini, Luca; Martinoia, Sergio

    2012-06-15

    We used electrophysiological signals recorded by CMOS Micro Electrode Arrays (MEAs) at high spatial resolution to estimate the functional-effective connectivity of sparse hippocampal neuronal networks in vitro by applying a cross-correlation (CC) based method and ad hoc developed spatio-temporal filtering. Low-density cultures were recorded by a recently introduced CMOS-MEA device providing simultaneous multi-site acquisition at high-spatial (21 μm inter-electrode separation) as well as high-temporal resolution (8 kHz per channel). The method is applied to estimate functional connections in different cultures and it is refined by applying spatio-temporal filters that allow pruning of those functional connections not compatible with signal propagation. This approach permits to discriminate between possible causal influence and spurious co-activation, and to obtain detailed maps down to cellular resolution. Further, a thorough analysis of the links strength and time delays (i.e., amplitude and peak position of the CC function) allows characterizing the inferred interconnected networks and supports a possible discrimination of fast mono-synaptic propagations, and slow poly-synaptic pathways. By focusing on specific regions of interest we could observe and analyze microcircuits involving connections among a few cells. Finally, the use of the high-density MEA with low density cultures analyzed with the proposed approach enables to compare the inferred effective links with the network structure obtained by staining procedures.

  8. Molar Volume Analysis of Molten Ni-Al-Co Alloy by Measuring the Density

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; FANG Liang; FU Yuechao; YANG Lingchuan

    2004-01-01

    The density of molten Ni-Al-Co alloys was measured in the temperature range of 1714~1873K using a modified pycnometric method, and the molar volume of molten alloys was analyzed. The density of molten Ni-Al-Co alloys was found to decrease with increasing temperature and Co concentration in alloys. The molar volume of molten Ni-Al-Co alloys increases with increasing Co concentration in alloys. The molar volume of molten Ni-Al-Co alloys shows a negative deviation from the linear molar volume.

  9. Mammalian Brains Are Made of These: A Dataset of the Numbers and Densities of Neuronal and Nonneuronal Cells in the Brain of Glires, Primates, Scandentia, Eulipotyphlans, Afrotherians and Artiodactyls, and Their Relationship with Body Mass.

    Science.gov (United States)

    Herculano-Houzel, Suzana; Catania, Kenneth; Manger, Paul R; Kaas, Jon H

    2015-01-01

    Comparative studies amongst extant species are one of the pillars of evolutionary neurobiology. In the 20th century, most comparative studies remained restricted to analyses of brain structure volume and surface areas, besides estimates of neuronal density largely limited to the cerebral cortex. Over the last 10 years, we have amassed data on the numbers of neurons and other cells that compose the entirety of the brain (subdivided into cerebral cortex, cerebellum, and rest of brain) of 39 mammalian species spread over 6 clades, as well as their densities. Here we provide that entire dataset in a format that is readily useful to researchers of any area of interest in the hope that it will foster the advancement of evolutionary and comparative studies well beyond the scope of neuroscience itself. We also reexamine the relationship between numbers of neurons, neuronal densities and body mass, and find that in the rest of brain, but not in the cerebral cortex or cerebellum, there is a single scaling rule that applies to average neuronal cell size, which increases with the linear dimension of the body, even though there is no single scaling rule that relates the number of neurons in the rest of brain to body mass. Thus, larger bodies do not uniformly come with more neurons--but they do fairly uniformly come with larger neurons in the rest of brain, which contains a number of structures directly connected to sources or targets in the body. © 2015 S. Karger AG, Basel.

  10. Activity of gypsy moth dorsolateral neurosecretory neurons under increased rearing density

    Directory of Open Access Journals (Sweden)

    Mrdaković Marija

    2012-01-01

    Full Text Available Lymantria dispar caterpillars were reared under two different rearing densities for the first three days of the 4th larval instar: 5 larvae that were kept in a Petri dish (V = 80 ml belonged to the intense stress (D1 group; 5 larvae that were kept in a plastic cup (V = 300ml belonged to the group exposed to less intense stress (D2 group. In the control group, single larvae were reared in a Petri dish. Morphometric changes in L1, L2 and L2’ dorsolateral neurosecretory neurons (nsn were analyzed. After keeping 5 larvae in a Petri dish, the size of L2 neurosecretory neurons (nsn significantly increased. Rearing 5 larvae in a plastic cup significantly increased the size of L1 nsn nuclei and the number of L2’nsn. A decrease in relative band densities in the region of molecular masses (11-15 kD that correspond to prothoracicotropic hormones in the gypsy moth was observed in the electrophoretic profiles that were obtained after both treatments in comparison to the control group. [Acknowledgments. This study was supported by the Serbian Ministry of Education and Science (Grant No. 173027.

  11. Discontinuous Galerkin finite element method for solving population density functions of cortical pyramidal and thalamic neuronal populations.

    Science.gov (United States)

    Huang, Chih-Hsu; Lin, Chou-Ching K; Ju, Ming-Shaung

    2015-02-01

    Compared with the Monte Carlo method, the population density method is efficient for modeling collective dynamics of neuronal populations in human brain. In this method, a population density function describes the probabilistic distribution of states of all neurons in the population and it is governed by a hyperbolic partial differential equation. In the past, the problem was mainly solved by using the finite difference method. In a previous study, a continuous Galerkin finite element method was found better than the finite difference method for solving the hyperbolic partial differential equation; however, the population density function often has discontinuity and both methods suffer from a numerical stability problem. The goal of this study is to improve the numerical stability of the solution using discontinuous Galerkin finite element method. To test the performance of the new approach, interaction of a population of cortical pyramidal neurons and a population of thalamic neurons was simulated. The numerical results showed good agreement between results of discontinuous Galerkin finite element and Monte Carlo methods. The convergence and accuracy of the solutions are excellent. The numerical stability problem could be resolved using the discontinuous Galerkin finite element method which has total-variation-diminishing property. The efficient approach will be employed to simulate the electroencephalogram or dynamics of thalamocortical network which involves three populations, namely, thalamic reticular neurons, thalamocortical neurons and cortical pyramidal neurons.

  12. Volume regulated anion channel currents of rat hippocampal neurons and their contribution to oxygen-and-glucose deprivation induced neuronal death.

    Directory of Open Access Journals (Sweden)

    Huaqiu Zhang

    Full Text Available Volume-regulated anion channels (VRAC are widely expressed chloride channels that are critical for the cell volume regulation. In the mammalian central nervous system, the physiological expression of neuronal VRAC and its role in cerebral ischemia are issues largely unknown. We show that hypoosmotic medium induce an outwardly rectifying chloride conductance in CA1 pyramidal neurons in rat hippocampal slices. The induced chloride conductance was sensitive to some of the VRAC inhibitors, namely, IAA-94 (300 µM and NPPB (100 µM, but not to tamoxifen (10 µM. Using oxygen-and-glucose deprivation (OGD to simulate ischemic conditions in slices, VRAC activation appeared after OGD induced anoxic depolarization (AD that showed a progressive increase in current amplitude over the period of post-OGD reperfusion. The OGD induced VRAC currents were significantly inhibited by inhibitors for glutamate AMPA (30 µM NBQX and NMDA (40 µM AP-5 receptors in the OGD solution, supporting the view that induction of AD requires an excessive Na(+-loading via these receptors that in turn to activate neuronal VRAC. In the presence of NPPB and DCPIB in the post-OGD reperfusion solution, the OGD induced CA1 pyramidal neuron death, as measured by TO-PRO-3-I staining, was significantly reduced, although DCPIB did not appear to be an effective neuronal VRAC blocker. Altogether, we show that rat hippocampal pyramidal neurons express functional VRAC, and ischemic conditions can initial neuronal VRAC activation that may contribute to ischemic neuronal damage.

  13. Volume and surface contributions to the nuclear symmetry energy within the coherent density fluctuation model

    CERN Document Server

    Antonov, A N; Sarriguren, P; de Guerra, E Moya

    2016-01-01

    The volume and surface components of the nuclear symmetry energy (NSE) and their ratio are calculated within the coherent density fluctuation model (CDFM). The estimations use the results of the model for the NSE in finite nuclei based on the Brueckner energy-density functional for nuclear matter. In addition, we present results for the NSE and its volume and surface contributions obtained by using the Skyrme energy-density functional. The CDFM weight function is obtained using the proton and neutron densities from the self-consistent HF+BCS method with Skyrme interactions. We present and discuss the values of the volume and surface contributions to the NSE and their ratio obtained for the Ni, Sn, and Pb isotopic chains studying their isotopic sensitivity. The results are compared with estimations of other approaches which have used available experimental data on binding energies, neutron-skin thicknesses, excitation energies to isobaric analog states (IAS) and also with results of other theoretical methods.

  14. A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia.

    Science.gov (United States)

    Zhang, Zhi Jun; Reynolds, Gavin P

    2002-05-01

    Neuropathological studies have demonstrated deficits of GABAergic interneurons in the hippocampus in schizophrenia. and selective deficits in some GABAergic sub-populations defined by calcium-binding proteins (CBPs) have been reported in the cortex in schizophrenia. In the present study, the relative densities of cells immunoreactive for the CBPs parvalbumnin (PV) and calretinin (CR) were determined in hippocampal tissue sections taken from patients with schizophrenia, bipolar disorder and major depression and from matched control subjects (15 per group). No significant difference in the density of CR-immunoreactive neurons was found between subject groups. Relative to normal controls, schizophrenic patients showed a significant and profound deficit in the relative density of PV-immunoreactive neurons in all hippocampal sub-fields. These reductions were more apparent in male than female schizophrenic patients, and were unrelated to antipsychotic drug treatment, age or duration of illness. The density of PV-immunoreactive neurons did not differ significantly from controls in the depression group, although a trend toward decreased relative density of PV-immunoreactive neurons was apparent in bipolar disorder that reached significance in one sub-field. The findings provide further evidence to support a profound and selective abnormality of a sub-population of GABAergic neurons in the hippocampus in schizophrenia.

  15. Millimeter-wave Line Ratios and Sub-beam Volume Density Distributions

    Science.gov (United States)

    Leroy, Adam K.; Usero, Antonio; Schruba, Andreas; Bigiel, Frank; Kruijssen, J. M. Diederik; Kepley, Amanda; Blanc, Guillermo A.; Bolatto, Alberto D.; Cormier, Diane; Gallagher, Molly; Hughes, Annie; Jiménez-Donaire, Maria J.; Rosolowsky, Erik; Schinnerer, Eva

    2017-02-01

    We explore the use of mm-wave emission line ratios to trace molecular gas density when observations integrate over a wide range of volume densities within a single telescope beam. For observations targeting external galaxies, this case is unavoidable. Using a framework similar to that of Krumholz & Thompson, we model emission for a set of common extragalactic lines from lognormal and power law density distributions. We consider the median density of gas that produces emission and the ability to predict density variations from observed line ratios. We emphasize line ratio variations because these do not require us to know the absolute abundance of our tracers. Patterns of line ratio variations have the potential to illuminate the high-end shape of the density distribution, and to capture changes in the dense gas fraction and median volume density. Our results with and without a high-density power law tail differ appreciably; we highlight better knowledge of the probability density function (PDF) shape as an important area. We also show the implications of sub-beam density distributions for isotopologue studies targeting dense gas tracers. Differential excitation often implies a significant correction to the naive case. We provide tabulated versions of many of our results, which can be used to interpret changes in mm-wave line ratios in terms of adjustments to the underlying density distributions.

  16. Pulse-Density Modulation with an Ensemble of Single-Electron Circuits Employing Neuronal Heterogeneity to Achieve High Temporal Resolution

    Science.gov (United States)

    Kikombo, Andrew Kilinga; Asai, Tetsuya; Amemiya, Yoshihito

    We investigated the implications of static noises in a pulse-density modulator based on Vestibulo-ocular Reflex model. We constructed a simple neuromorphic circuit consisting of an ensemble of single-electron devices and confirmed that static noises (heterogeneity in circuit parameters) introduced into the network indeed played an important role in improving the fidelity with which neurons could encode signals whose input frequencies are higher than the intrinsic response frequencies of single neurons. Through Monte-Carlo based computer simulations, we demonstrated that the heterogeneous network could corectly encode signals with input frequencies as high as 1 GHz, twice the range for single (or a network of homogeneous) neurons.

  17. Maternal separation altered behavior and neuronal spine density without influencing amphetamine sensitization.

    Science.gov (United States)

    Muhammad, Arif; Kolb, Bryan

    2011-09-30

    We studied the long-term influence of maternal separation (MS) on periadolescent behavior, adult amphetamine (AMPH) sensitization, and structural plasticity in the corticolimbic regions in rats. Male and female pups, separated daily for 3h from the dam during postnatal day 3-21, were tested for periadolescent exploratory, emotional, cognitive, and social behaviors. The development and persistence of drug-induced behavioral sensitization were tested by repeated AMPH administration and a challenge, respectively. The spine density was examined in the nucleus accumbens (NAc), the medial prefrontal cortex (mPFC), and the orbital frontal cortex (OFC) from Golgi-Cox stained neurons. The results showed that MS enhanced anxiety-like behavior in males. MS abolished the sex difference in playful attacks observed in controls with resultant feminization of male play behavior. Furthermore, the probability of complete rotation defense to face an attack was decreased in females. AMPH administration resulted in the development of behavioral sensitization that persisted at least for two weeks. Sensitization was not influenced by MS. MS increased the spine density in the NAc, the mPFC, and the OFC. Repeated AMPH administration increased the spine density in the NAc and the mPFC, and decreased it in the OFC. MS blocked the drug-induced alteration in these regions. In sum, MS during development influenced periadolescent behavior in males, and structurally reorganized cortical and subcortical brain regions without affecting AMPH-induced behavioral sensitization.

  18. Density assumptions for converting geodetic glacier volume change to mass change

    Directory of Open Access Journals (Sweden)

    M. Huss

    2013-05-01

    Full Text Available The geodetic method is widely used for assessing changes in the mass balance of mountain glaciers. However, comparison of repeated digital elevation models only provides a glacier volume change that must be converted to a change in mass using a density assumption or model. This study investigates the use of a constant factor for the volume-to-mass conversion based on a firn compaction model applied to simplified glacier geometries with idealized climate forcing, and two glaciers with long-term mass balance series. It is shown that the "density" of geodetic volume change is not a constant factor and is systematically smaller than ice density in most cases. This is explained by the accretion/removal of low-density firn layers, and changes in the firn density profile with positive/negative mass balance. Assuming a value of 850 ± 60 kg m−3 to convert volume change to mass change is appropriate for a wide range of conditions. For short time intervals (≤3 yr, periods with limited volume change, and/or changing mass balance gradients, the conversion factor can however vary from 0–2000 kg m−3 and beyond, which requires caution when interpreting glacier mass changes based on geodetic surveys.

  19. The densities of calbindin and parvalbumin, but not calretinin neurons, are sexually dimorphic in the amygdala of the guinea pig.

    Science.gov (United States)

    Równiak, Maciej; Bogus-Nowakowska, Krystyna; Robak, Anna

    2015-04-16

    In the amygdala, the calcium-binding proteins (calbindin, parvalbumin or calretinin) are useful markers of specific subpopulations of γ-aminobutyric acid (GABA) containing neurons. In the rat and monkey they together mark the vast majority of GABA-containing neurons in this brain region. As GABA involvement in the control of various behaviors in a sex-specific manner and sexual dimorphism of the GABAergic system itself were recently proven, the question is how much dimorphic may be various subpopulations of this system. Thus, the present study investigates for the first time the presence/absence of sexual dimorphism among neurons expressing calbindin (CB), parvalbumin (PV) and calretinin (CR) which form in the amygdala main subsets of GABAergic system. The results show that in the amygdala of the guinea pig the densities of CB and/or PV expressing neurons are sexually dimorphic with the female>male pattern of sex differences in the basolateral amygdala. In the medial and cortical amygdala respectively CB and PV values are also sexually dimorphic, favoring males. The densities of CR expressing neurons are in the amygdala of the guinea pig sexually isomorphic. In conclusion, the results of the present study provide an evidence that in the amygdala of the guinea pig the densities of neurons expressing CB and/or PV are sexually dimorphic what supports the idea that GABA participates in the mediation of sexually dimorphic functions, controlled by this brain area.

  20. Correction volumes and densities in Vitrea Program; Correcao de volumes e densidades no Programa Vitrea

    Energy Technology Data Exchange (ETDEWEB)

    Abrantes, Marcos E.S.; Oliveira, A.H. de, E-mail: marcosabrantes2003@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Abrantes, R.C., E-mail: abrantes.rafa1@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Eletrica; Magalhaes, M.J., E-mail: mjuliano100@yahoo.com.br [Ambienttal Protecao Radiologica, Belo Horizonte, MG (Brazil)

    2014-07-01

    Introduction: with the increased use of 3D reconstruction techniques to assist in diagnosis, Vitrea® program is widely used. To use this program you need to know the correction values to generate the volumes and number of real CT human tissues. Objective: provide correction values for volumes and number of CT, read the Vitrea program, of the tissues generated by DICOM images from CT. Methodology: this study used a PMMA chest phantom to generate the DICOM images on a scanner. To check the calibration of the scanner was used Catphan phantom and compared the manufacturer of the values associated with its straight linearity. Results: the volume of PMMA phantom was of 11166.58 cm³ and CT number (123.5 ± 33.4) UH. For the volume found in Vitrea program, according to the structures of interest, were 11897.29 cm{sup 3}, 10901.65 cm³, 16906.49 cm{sup 3} and 11848.34 cm³ and corrections values are -6.14%, + 2.43% -6.94% -5.75% respectively for the tissues: lung, bone, soft and full. For the CT numbers found in this program were (97.60 ± 58.9) UH, (72.00 ± 176.00) UH, (143.20 ± 19.50) UH and (31.90 ± 239,10) UH and corrections of + 26.54%, + 71.53%, -13.64% and 387.15% respectively for tissues: lung, bone, soft and full. Conclusion: the procedure performed can be used in other 3D reconstruction programs and where there are tools to reading CT number, observing the necessary corrections.

  1. Volume adjustment of lung density by computed tomography scans in patients with emphysema

    DEFF Research Database (Denmark)

    Shaker, S B; Dirksen, A; Laursen, Lars Christian

    2004-01-01

    package that detected the lung in contiguous images and subsequently generated a histogram of the pixel attenuation values. The total lung volume (TLV), lung weight, percentile density (PD), and relative area of emphysema (RA) were calculated from this histogram. RA and PD are commonly applied measures......PURPOSE: To determine how to adjust lung density measurements for the volume of the lung calculated from computed tomography (CT) scans in patients with emphysema. MATERIAL AND METHODS: Fifty patients with emphysema underwent 3 CT scans at 2-week intervals. The scans were analyzed with a software...... of pulmonary emphysema derived from CT scans. These parameters are markedly influenced by changes in the level of inspiration. The variability of lung density due to within-subject variation in TLV was explored by plotting TLV against PD and RA. RESULTS: The coefficients for volume adjustment for PD were...

  2. Volume Transmission in Central Dopamine and Noradrenaline Neurons and Its Astroglial Targets.

    Science.gov (United States)

    Fuxe, Kjell; Agnati, Luigi F; Marcoli, Manuela; Borroto-Escuela, Dasiel O

    2015-12-01

    Already in the 1960s the architecture and pharmacology of the brainstem dopamine (DA) and noradrenaline (NA) neurons with formation of vast numbers of DA and NA terminal plexa of the central nervous system (CNS) indicated that they may not only communicate via synaptic transmission. In the 1980s the theory of volume transmission (VT) was introduced as a major communication together with synaptic transmission in the CNS. VT is an extracellular and cerebrospinal fluid transmission of chemical signals like transmitters, modulators etc. moving along energy gradients making diffusion and flow of VT signals possible. VT interacts with synaptic transmission mainly through direct receptor-receptor interactions in synaptic and extrasynaptic heteroreceptor complexes and their signaling cascades. The DA and NA neurons are specialized for extrasynaptic VT at the soma-dendrtitic and terminal level. The catecholamines released target multiple DA and adrenergic subtypes on nerve cells, astroglia and microglia which are the major cell components of the trophic units building up the neural-glial networks of the CNS. DA and NA VT can modulate not only the strength of synaptic transmission but also the VT signaling of the astroglia and microglia of high relevance for neuron-glia interactions. The catecholamine VT targeting astroglia can modulate the fundamental functions of astroglia observed in neuroenergetics, in the Glymphatic system, in the central renin-angiotensin system and in the production of long-distance calcium waves. Also the astrocytic and microglial DA and adrenergic receptor subtypes mediating DA and NA VT can be significant drug targets in neurological and psychiatric disease.

  3. Density assumptions for converting geodetic glacier volume change to mass change

    Directory of Open Access Journals (Sweden)

    M. Huss

    2013-01-01

    Full Text Available The geodetic method is widely used for assessing changes in the mass balance of mountain glaciers. However, comparison of repeated digital elevation models only provides a glacier volume change that must be converted to a change in mass using a density assumption. This study investigates this conversion factor based on a firn compaction model applied to simplified glacier geometries with idealized climate forcing, and two glaciers with long-term mass balance series. It is shown that the "density" of geodetic volume change is not a constant factor and is systematically smaller than ice density in most cases. This is explained by the accretion/removal of low-density firn layers, and changes in the firn density profile with positive/negative mass balance. Assuming a value of 850 ± 60 kg m−3 to convert volume change to mass change is appropriate for a wide range of conditions. For short time intervals (≤3 yr, periods with limited volume change, and/or changing mass balance gradients, the conversion factor can however vary from 0–2000 kg m−3 and beyond which requires caution when interpreting glacier mass changes based on geodetic surveys.

  4. Millimeter-Wave Line Ratios and Sub-beam Volume Density Distributions

    CERN Document Server

    Leroy, Adam K; Schruba, Andreas; Bigiel, Frank; Kruijssen, J M Diederik; Kepley, Amanda; Blanc, Guillermo A; Bolatto, Alberto D; Cormier, Diane; Gallagher, Molly; Hughes, Annie; Jimenez-Donaire, Maria J; Rosolowsky, Erik; Schinnerer, Eva

    2016-01-01

    We explore the use of mm-wave emission line ratios to trace molecular gas density when observations integrate over a wide range of volume densities within a single telescope beam. For observations targeting external galaxies, this case is unavoidable. Using a framework similar to that of Krumholz and Thompson (2007), we model emission for a set of common extragalactic lines from lognormal and power law density distributions. We consider the median density of gas producing emission and the ability to predict density variations from observed line ratios. We emphasize line ratio variations, because these do not require knowing the absolute abundance of our tracers. Patterns of line ratio variations have the prospect to illuminate the high-end shape of the density distribution, and to capture changes in the dense gas fraction and median volume density. Our results with and without a high density power law tail differ appreciably; we highlight better knowledge of the PDF shape as an important area. We also show th...

  5. Simultaneous analysis of dendritic spine density, morphology and excitatory glutamate receptors during neuron maturation in vitro by quantitative immunocytochemistry.

    Science.gov (United States)

    Nwabuisi-Heath, Evelyn; LaDu, Mary Jo; Yu, Chunjiang

    2012-06-15

    Alterations in the density and morphology of dendritic spines are characteristic of multiple cognitive disorders. Elucidating the molecular mechanisms underlying spine alterations are facilitated by the use of experimental and analytical methods that permit concurrent evaluation of changes in spine density, morphology and composition. Here, an automated and quantitative immunocytochemical method for the simultaneous analysis of changes in the density and morphology of spines and excitatory glutamate receptors was established to analyze neuron maturation, in vitro. In neurons of long-term neuron-glia co-cultures, spine density as measured by drebrin cluster fluorescence, increased from DIV (days in vitro)10 to DIV18 (formation phase), remained stable from DIV18 to DIV21 (maintenance phase), and decreased from DIV21 to DIV26 (loss phase). The densities of spine-localized NMDAR and AMPAR clusters followed a similar trend. Spine head sizes as measured by the fluorescence intensities of drebrin clusters increased from DIV10 to DIV21 and decreased from DIV21 to DIV26. Changes in the densities of NR1-only, GluR2-only, and NR1+GluR2 spines were measured by the colocalizations of NR1 and GluR2 clusters with drebrin clusters. The densities of NR1-only spines remained stable from the maintenance to the loss phases, while GluR2-only and NR1+GluR2 spines decreased during the loss phase, thus suggesting GluR2 loss as a proximal molecular event that may underlie spine alterations during neuron maturation. This study demonstrates a sensitive and quantitative immunocytochemical method for the concurrent analysis of changes in spine density, morphology and composition, a valuable tool for determining molecular events involved in dendritic spine alterations. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Differences in relative hippocampus volume and number of hippocampus neurons among five corvid species.

    Science.gov (United States)

    Gould, Kristy L; Gilbertson, Karl E; Hrvol, Andrew J; Nelson, Joseph C; Seyfer, Abigail L; Brantner, Rose M; Kamil, Alan C

    2013-01-01

    The relative size of the avian hippocampus (Hp) has been shown to be related to spatial memory and food storing in two avian families, the parids and corvids. Basil et al. [Brain Behav Evol 1996;47:156-164] examined North American food-storing birds in the corvid family and found that Clark's nutcrackers had a larger relative Hp than pinyon jays and Western scrub jays. These results correlated with the nutcracker's better performance on most spatial memory tasks and their strong reliance on stored food in the wild. However, Pravosudov and de Kort [Brain Behav Evol 2006;67:1-9] raised questions about the methodology used in the 1996 study, specifically the use of paraffin as an embedding material and recalculation for shrinkage. Therefore, we measured relative Hp volume using gelatin as the embedding material in four North American species of food-storing corvids (Clark's nutcrackers, pinyon jays, Western scrub jays and blue jays) and one Eurasian corvid that stores little to no food (azure-winged magpies). Although there was a significant overall effect of species on relative Hp volume among the five species, subsequent tests found only one pairwise difference, blue jays having a larger Hp than the azure-winged magpies. We also examined the relative size of the septum in the five species. Although Shiflett et al. [J Neurobiol 2002;51:215-222] found a difference in relative septum volume amongst three species of parids that correlated with storing food, we did not find significant differences amongst the five species in relative septum. Finally, we calculated the number of neurons in the Hp relative to body mass in the five species and found statistically significant differences, some of which are in accord with the adaptive specialization hypothesis and some are not.

  7. ERK1/2 Activation Is Necessary for BDNF to Increase Dendritic Spine Density in Hippocampal CA1 Pyramidal Neurons

    Science.gov (United States)

    Alonso, Mariana; Medina, Jorge H.; Pozzo-Miller, Lucas

    2004-01-01

    Brain-derived neurotrophic factor (BDNF) is a potent modulator of synaptic transmission and plasticity in the CNS, acting both pre- and postsynaptically. We demonstrated recently that BDNF/TrkB signaling increases dendritic spine density in hippocampal CA1 pyramidal neurons. Here, we tested whether activation of the prominent ERK (MAPK) signaling…

  8. The volume-regulated anion channel (LRRC8) in nodose neurons is sensitive to acidic pH

    Science.gov (United States)

    Wang, Runping; Lu, Yongjun; Gunasekar, Susheel; Zhang, Yanhui; Benson, Christopher J.; Chapleau, Mark W.; Sah, Rajan; Abboud, François M.

    2017-01-01

    The leucine rich repeat containing protein 8A (LRRC8A), or SWELL1, is an essential component of the volume-regulated anion channel (VRAC) that is activated by cell swelling and ionic strength. We report here for the first time to our knowledge its expression in a primary cell culture of nodose ganglia neurons and its localization in the soma, neurites, and neuronal membrane. We show that this neuronal VRAC/SWELL1 senses low external pH (pHo) in addition to hypoosmolarity. A robust sustained chloride current is seen in 77% of isolated nodose neurons following brief exposures to extracellular acid pH. Its activation involves proton efflux, intracellular alkalinity, and an increase in NOX-derived H2O2. The molecular identity of both the hypoosmolarity-induced and acid pHo–conditioned VRAC as LRRC8A (SWELL1) was confirmed by Cre-flox–mediated KO, shRNA-mediated knockdown, and CRISPR/Cas9-mediated LRRC8A deletion in HEK cells and in primary nodose neuronal cultures. Activation of VRAC by low pHo reduces neuronal injury during simulated ischemia and N-methyl-D-aspartate–induced (NMDA-induced) apoptosis. These results identify the VRAC (LRRC8A) as a dual sensor of hypoosmolarity and low pHo in vagal afferent neurons and define the mechanisms of its activation and its neuroprotective potential. PMID:28289711

  9. The volume-regulated anion channel (LRRC8) in nodose neurons is sensitive to acidic pH.

    Science.gov (United States)

    Wang, Runping; Lu, Yongjun; Gunasekar, Susheel; Zhang, Yanhui; Benson, Christopher J; Chapleau, Mark W; Sah, Rajan; Abboud, François M

    2017-03-09

    The leucine rich repeat containing protein 8A (LRRC8A), or SWELL1, is an essential component of the volume-regulated anion channel (VRAC) that is activated by cell swelling and ionic strength. We report here for the first time to our knowledge its expression in a primary cell culture of nodose ganglia neurons and its localization in the soma, neurites, and neuronal membrane. We show that this neuronal VRAC/SWELL1 senses low external pH (pHo) in addition to hypoosmolarity. A robust sustained chloride current is seen in 77% of isolated nodose neurons following brief exposures to extracellular acid pH. Its activation involves proton efflux, intracellular alkalinity, and an increase in NOX-derived H2O2. The molecular identity of both the hypoosmolarity-induced and acid pHo-conditioned VRAC as LRRC8A (SWELL1) was confirmed by Cre-flox-mediated KO, shRNA-mediated knockdown, and CRISPR/Cas9-mediated LRRC8A deletion in HEK cells and in primary nodose neuronal cultures. Activation of VRAC by low pHo reduces neuronal injury during simulated ischemia and N-methyl-D-aspartate-induced (NMDA-induced) apoptosis. These results identify the VRAC (LRRC8A) as a dual sensor of hypoosmolarity and low pHo in vagal afferent neurons and define the mechanisms of its activation and its neuroprotective potential.

  10. Constraining the supersaturation density equation of state from core-collapse supernova simulations - Excluded volume extension of the baryons

    CERN Document Server

    Fischer, Tobias

    2016-01-01

    In this article the role of the supersaturation density equation of state (EOS) is explored in simulations of failed core-collapse supernova explosions. Therefore the nuclear EOS is extended via a one-parameter excluded volume description for baryons, taking into account their finite and increasing volume with increasing density in excess of saturation density. Parameters are selected such that the resulting supernova EOS represent extreme cases, with high pressure variations at supersaturation density which feature extreme stiff and soft EOS variants of the reference case, i.e. without excluded volume corrections. Unlike in the interior of neutron stars with central densities in excess of several times saturation density, central densities of core-collapse supernovae reach only slightly above saturation density. Hence, the impact of the supersaturation density EOS on the supernova dynamics as well as the neutrino signal is found to be negligible. It is mainly determined from the low- and intermediate-density...

  11. Extracerebellar role for Cerebellin1: modulation of dendritic spine density and synapses in striatal medium spiny neurons.

    Science.gov (United States)

    Kusnoor, S V; Parris, J; Muly, E C; Morgan, J I; Deutch, A Y

    2010-07-01

    Cerebellin1 (Cbln1) is a secreted glycoprotein that was originally isolated from the cerebellum and subsequently found to regulate synaptic development and stability. Cbln1 has a heterogeneous distribution in brain, but the only site in which it has been shown to have central effects is the cerebellar cortex, where loss of Cbln1 causes a reduction in granule cell-Purkinje cell synapses. Neurons of the thalamic parafascicular nucleus (PF), which provide glutamatergic projections to the striatum, also express high levels of Cbln1. We first examined Cbln1 in thalamostriatal neurons and then determined if cbln1 knockout mice exhibit structural deficits in striatal neurons. Virtually all PF neurons express Cbln1-immunoreactivity (-ir). In contrast, only rare Cbln1-ir neurons are present in the central medial complex, the other thalamic region that projects heavily to the dorsal striatum. In the striatum Cbln1-ir processes are apposed to medium spiny neuron (MSN) dendrites; ultrastructural studies revealed that Cbln1-ir axon terminals form axodendritic synapses with MSNs. Tract-tracing studies found that all PF cells retrogradely labeled from the striatum express Cbln1-ir. We then examined the dendritic structure of Golgi-impregnated MSNs in adult cbln1 knockout mice. MSN dendritic spine density was markedly increased in cbln1(-/-) mice relative to wildtype littermates, but total dendritic length was unchanged. Ultrastructural examination revealed an increase in the density of MSN axospinous synapses in cbln1(-/-) mice, with no change in postsynaptic density length. Thus, Cbln1 determines the dendritic structure of striatal MSNs, with effects distinct from those seen in the cerebellum.

  12. AFM-porosimetry: density and pore volume measurements of particulate materials.

    Science.gov (United States)

    Sörensen, Malin H; Valle-Delgado, Juan J; Corkery, Robert W; Rutland, Mark W; Alberius, Peter C

    2008-06-01

    We introduced the novel technique of AFM-porosimetry and applied it to measure the total pore volume of porous particles with a spherical geometry. The methodology is based on using an atomic force microscope as a balance to measure masses of individual particles. Several particles within the same batch were measured, and by plotting particle mass versus particle volume, the bulk density of the sample can be extracted from the slope of the linear fit. The pore volume is then calculated from the densities of the bulk and matrix materials, respectively. In contrast to nitrogen sorption and mercury porosimetry, this method is capable of measuring the total pore volume regardless of pore size distribution and pore connectivity. In this study, three porous samples were investigated by AFM-porosimetry: one ordered mesoporous sample and two disordered foam structures. All samples were based on a matrix of amorphous silica templated by a block copolymer, Pluronic F127, swollen to various degrees with poly(propylene glycol). In addition, the density of silica spheres without a template was measured by two independent techniques: AFM and the Archimedes principle.

  13. Analysis of maize ( Zea mays ) kernel density and volume using microcomputed tomography and single-kernel near-infrared spectroscopy.

    Science.gov (United States)

    Gustin, Jeffery L; Jackson, Sean; Williams, Chekeria; Patel, Anokhee; Armstrong, Paul; Peter, Gary F; Settles, A Mark

    2013-11-20

    Maize kernel density affects milling quality of the grain. Kernel density of bulk samples can be predicted by near-infrared reflectance (NIR) spectroscopy, but no accurate method to measure individual kernel density has been reported. This study demonstrates that individual kernel density and volume are accurately measured using X-ray microcomputed tomography (μCT). Kernel density was significantly correlated with kernel volume, air space within the kernel, and protein content. Embryo density and volume did not influence overall kernel density. Partial least-squares (PLS) regression of μCT traits with single-kernel NIR spectra gave stable predictive models for kernel density (R(2) = 0.78, SEP = 0.034 g/cm(3)) and volume (R(2) = 0.86, SEP = 2.88 cm(3)). Density and volume predictions were accurate for data collected over 10 months based on kernel weights calculated from predicted density and volume (R(2) = 0.83, SEP = 24.78 mg). Kernel density was significantly correlated with bulk test weight (r = 0.80), suggesting that selection of dense kernels can translate to improved agronomic performance.

  14. Hippocampal serotonin-2A receptor-immunoreactive neurons density increases after testosterone therapy in the gonadectomized male mice

    Science.gov (United States)

    Nikmahzar, Emsehgol; Ghaemi, Amir; Naseri, Gholam Reza; Moharreri, Ali Reza; Lotfinia, Ahmad Ali

    2016-01-01

    The change of steroid levels may also exert different modulatory effects on the number and class of serotonin receptors present in the plasma membrane. The effects of chronic treatment of testosterone for anxiety were examined and expression of 5-HT2A serotonergic receptor, neuron, astrocyte, and dark neuron density in the hippocampus of gonadectomized male mice was determined. Thirty-six adult male NMRI mice were randomly divided into six groups: intact-no testosterone treatment (No T), gonadectomy (GDX)-No T, GDX-Vehicle, GDX-6.25 mg/kg testosterone (T), GDX-12.5 mg/kg T, and GDX-25 mg/kg T. Anxiety-related behavior was evaluated using elevated plus maze apparatus. The animals were anesthetized after 48 hours after behavioral testing, and decapitated and micron slices were prepared for immunohistochemical as well as histopathological assessment. Subcutaneous injection of testosterone (25 mg/kg) may induce anxiogenic-like behavior in male mice. In addition, immunohistochemical data reveal reduced expression of 5-HT2A serotonergic receptor after gonadectomy in all areas of the hippocampus. However, treatment with testosterone could increase the mean number of dark neurons as well as immunoreactive neurons in CA1 and CA3 area, dose dependently. The density of 5-HT2A receptor-immunoreactive neurons may play a crucial role in the induction of anxiety like behavior. As reduction in such receptor expression have shown to significantly enhance anxiety behaviors. However, replacement of testosterone dose dependently enhances the number of 5-HT2A receptor-immunoreactive neurons and interestingly also reduced anxiety like behaviors. PMID:28127501

  15. Steady-state probability density function in wave turbulence under large volume limit

    Institute of Scientific and Technical Information of China (English)

    Yeontaek Choia; Sang Gyu Job

    2011-01-01

    We investigate the possibility for two-mode probability density function (PDF) to have a non-zero flux steady state solution. We take the large volume limit so that the space of modes becomes continuous. It is shown that in this limit all the steady-state two- or higher-mode PDFs are the product of one-mode PDFs. The flux of this steady-state solution turns out to be zero for any finite mode PDF.

  16. Serotonin 5-HT7 receptor increases the density of dendritic spines and facilitates synaptogenesis in forebrain neurons.

    Science.gov (United States)

    Speranza, Luisa; Labus, Josephine; Volpicelli, Floriana; Guseva, Daria; Lacivita, Enza; Leopoldo, Marcello; Bellenchi, Gian Carlo; di Porzio, Umberto; Bijata, Monika; Perrone-Capano, Carla; Ponimaskin, Evgeni

    2017-06-01

    Precise control of dendritic spine density and synapse formation is critical for normal and pathological brain functions. Therefore, signaling pathways influencing dendrite outgrowth and remodeling remain a subject of extensive investigations. Here, we report that prolonged activation of the serotonin 5-HT7 receptor (5-HT7R) with selective agonist LP-211 promotes formation of dendritic spines and facilitates synaptogenesis in postnatal cortical and striatal neurons. Critical role of 5-HT7R in neuronal morphogenesis was confirmed by analysis of neurons isolated from 5-HT7R-deficient mice and by pharmacological inactivation of the receptor. Acute activation of 5-HT7R results in pronounced neurite elongation in postnatal striatal and cortical neurons, thus extending previous data on the morphogenic role of 5-HT7R in embryonic and hippocampal neurons. We also observed decreased number of spines in neurons with either genetically (i.e. 5-HT7R-knock-out) or pharmacologically (i.e. antagonist treatment) blocked 5-HT7R, suggesting that constitutive 5-HT7R activity is critically involved in the spinogenesis. Moreover, cyclin-dependent kinase 5 and small GTPase Cdc42 were identified as important downstream effectors mediating morphogenic effects of 5-HT7R in neurons. Altogether, our data suggest that the 5-HT7R-mediated structural reorganization during the postnatal development might have a crucial role for the development and plasticity of forebrain areas such as cortex and striatum, and thereby can be implicated in regulation of the higher cognitive functions. Read the Editorial Highlight for this article on page 644. © 2017 International Society for Neurochemistry.

  17. Prostate cancer volume associates with preoperative plasma levels of testosterone that independently predicts high grade tumours which show low densities (quotient testosterone/tumour volume

    Directory of Open Access Journals (Sweden)

    Antonio B. Porcaro

    2016-01-01

    Conclusion: The investigation shows that TT relates to volume and grade of PCa; moreover, the density of TT relative to TV inversely associates with rate of increase of cancer that depends on the grade of the tumour.

  18. Measurement of Single Cell Refractive Index, Dry Mass, Volume, and Density Using a Transillumination Microscope

    Science.gov (United States)

    Phillips, Kevin G.; Jacques, Steven L.; McCarty, Owen J. T.

    2012-09-01

    Phase contrast microscopy has become ubiquitous in the field of biology, particularly in qualitative investigations of cellular morphology. However, the use of quantitative phase retrieval methods and their connection to cellular refractive index and dry mass density remain under utilized. This is due in part to the restriction of phase and cellular mass determination to custom built instruments, involved mathematical analysis, and prohibitive sample perturbations. We introduce tomographic bright field imaging, an accessible optical imaging technique enabling the three dimensional measurement of cellular refractive index and dry mass density using a standard transillumination optical microscope. The validity of the technique is demonstrated on polystyrene spheres. The technique is then applied to the measurement of the refractive index, dry mass, volume, and density of red blood cells. This optical technique enables a simple and robust means to perform quantitative investigations of engineered and biological specimens in three dimensions using standard optical microscopes.

  19. Bacterial spore heat resistance correlated with water content, wet density, and protoplast/sporoplast volume ratio.

    Science.gov (United States)

    Beaman, T C; Greenamyre, J T; Corner, T R; Pankratz, H S; Gerhardt, P

    1982-05-01

    Five types of dormant Bacillus spores, between and within species, were selected representing a 600-fold range in moist-heat resistance determined as a D100 value. The wet and dry density and the solids and water content of the entire spore and isolated integument of each type were determined directly from gram masses of material, with correction for interstitial water. The ratio between the volume occupied by the protoplast (the structures bounded by the inner pericytoplasm membrane) and the volume occupied by the sporoplast (the structures bounded by the outer pericortex membrane) was calculated from measurements made on electron micrographs of medially thin-sectioned spores. Among the various spore types, an exponential increase in the heat resistance correlated directly with the wet density and inversely with the water content and with the protoplast/sporoplast volume ratio. Altogether with results supported a hypothesis that the extent of heat resistance is based in whole or in part on the extent of dehydration and diminution of the protoplast in the dormant spore, without implications about physiological mechanisms for attaining this state.

  20. Relationship of Terminal Duct Lobular Unit Involution of the Breast with Area and Volume Mammographic Densities

    Science.gov (United States)

    Gierach, Gretchen L.; Patel, Deesha A.; Pfeiffer, Ruth M.; Figueroa, Jonine D.; Linville, Laura; Papathomas, Daphne; Johnson, Jason M.; Chicoine, Rachael E.; Herschorn, Sally D.; Shepherd, John A.; Wang, Jeff; Malkov, Serghei; Vacek, Pamela M.; Weaver, Donald L.; Fan, Bo; Mahmoudzadeh, Amir Pasha; Palakal, Maya; Xiang, Jackie; Oh, Hannah; Horne, Hisani N.; Sprague, Brian L.; Hewitt, Stephen M.; Brinton, Louise A.; Sherman, Mark E.

    2016-01-01

    Elevated mammographic density (MD) is an established breast cancer risk factor. Reduced involution of terminal duct lobular units (TDLUs), the histologic source of most breast cancers, has been associated with higher MD and breast cancer risk. We investigated relationships of TDLU involution with area and volumetric MD, measured throughout the breast and surrounding biopsy targets (peri-lesional). Three measures inversely related to TDLU involution (TDLU count/mm2, median TDLU span, median acini count/TDLU) assessed in benign diagnostic biopsies from 348 women, ages 40–65, were related to MD area (quantified with thresholding software) and volume (assessed with a density phantom) by analysis of covariance, stratified by menopausal status and adjusted for confounders. Among premenopausal women, TDLU count was directly associated with percent peri-lesional MD (P-trend=0.03), but not with absolute dense area/volume. Greater TDLU span was associated with elevated percent dense area/volume (P-trendbreast cancer risk suggest that associations of MD with breast cancer may partly reflect amounts of at-risk epithelium. If confirmed, these results could suggest a prevention paradigm based on enhancing TDLU involution and monitoring efficacy by assessing MD reduction. PMID:26645278

  1. Non Destructive Method for Biomass Prediction Combining TLS Derived Tree Volume and Wood Density

    Directory of Open Access Journals (Sweden)

    Jan Hackenberg

    2015-04-01

    Full Text Available This paper presents a method for predicting the above ground leafless biomass of trees in a non destructive way. We utilize terrestrial laserscan data to predict the volume of the trees. Combining volume estimates with density measurements leads to biomass predictions. Thirty-six trees of three different species are analyzed: evergreen coniferous Pinus massoniana, evergreen broadleaved Erythrophleum fordii and leafless deciduous Quercus petraea. All scans include a large number of noise points; denoising procedures are presented in detail. Density values are considered to be a minor source of error in the method if applied to stem segments, as comparison to ground truth data reveals that prediction errors for the tree volumes are in accordance with biomass prediction errors. While tree compartments with a diameter larger than 10 cm can be modeled accurately, smaller ones, especially twigs with a diameter smaller than 4 cm, are often largely overestimated. Better prediction results could be achieved by applying a biomass expansion factor to the biomass of compartments with a diameter larger than 10 cm. With this second method the average prediction error for Q. petraea could be reduced from 33.84% overestimation to 3.56%. E. fordii results could also be improved reducing the average prediction error from

  2. Thermodynamic analysis of energy density in pressure retarded osmosis: The impact of solution volumes and costs

    Energy Technology Data Exchange (ETDEWEB)

    Reimund, Kevin K. [Univ. of Connecticut, Storrs, CT (United States). Dept. of Chemical and Biomolecular Engineering; McCutcheon, Jeffrey R. [Univ. of Connecticut, Storrs, CT (United States). Dept. of Chemical and Biomolecular Engineering; Wilson, Aaron D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    A general method was developed for estimating the volumetric energy efficiency of pressure retarded osmosis via pressure-volume analysis of a membrane process. The resulting model requires only the osmotic pressure, π, and mass fraction, w, of water in the concentrated and dilute feed solutions to estimate the maximum achievable specific energy density, uu, as a function of operating pressure. The model is independent of any membrane or module properties. This method utilizes equilibrium analysis to specify the volumetric mixing fraction of concentrated and dilute solution as a function of operating pressure, and provides results for the total volumetric energy density of similar order to more complex models for the mixing of seawater and riverwater. Within the framework of this analysis, the total volumetric energy density is maximized, for an idealized case, when the operating pressure is π/(1+√w⁻¹), which is lower than the maximum power density operating pressure, Δπ/2, derived elsewhere, and is a function of the solute osmotic pressure at a given mass fraction. It was also found that a minimum 1.45 kmol of ideal solute is required to produce 1 kWh of energy while a system operating at “maximum power density operating pressure” requires at least 2.9 kmol. Utilizing this methodology, it is possible to examine the effects of volumetric solution cost, operation of a module at various pressure, and operation of a constant pressure module with various feed.

  3. Cadherin-13 Deficiency Increases Dorsal Raphe 5-HT Neuron Density and Prefrontal Cortex Innervation in the Mouse Brain

    Directory of Open Access Journals (Sweden)

    Andrea Forero

    2017-09-01

    Full Text Available Background: During early prenatal stages of brain development, serotonin (5-HT-specific neurons migrate through somal translocation to form the raphe nuclei and subsequently begin to project to their target regions. The rostral cluster of cells, comprising the median and dorsal raphe (DR, innervates anterior regions of the brain, including the prefrontal cortex. Differential analysis of the mouse 5-HT system transcriptome identified enrichment of cell adhesion molecules in 5-HT neurons of the DR. One of these molecules, cadherin-13 (Cdh13 has been shown to play a role in cell migration, axon pathfinding, and synaptogenesis. This study aimed to investigate the contribution of Cdh13 to the development of the murine brain 5-HT system.Methods: For detection of Cdh13 and components of the 5-HT system at different embryonic developmental stages of the mouse brain, we employed immunofluorescence protocols and imaging techniques, including epifluorescence, confocal and structured illumination microscopy. The consequence of CDH13 loss-of-function mutations on brain 5-HT system development was explored in a mouse model of Cdh13 deficiency.Results: Our data show that in murine embryonic brain Cdh13 is strongly expressed on 5-HT specific neurons of the DR and in radial glial cells (RGCs, which are critically involved in regulation of neuronal migration. We observed that 5-HT neurons are intertwined with these RGCs, suggesting that these neurons undergo RGC-guided migration. Cdh13 is present at points of intersection between these two cell types. Compared to wildtype controls, Cdh13-deficient mice display increased cell densities in the DR at embryonic stages E13.5, E17.5, and adulthood, and higher serotonergic innervation of the prefrontal cortex at E17.5.Conclusion: Our findings provide evidence for a role of CDH13 in the development of the serotonergic system in early embryonic stages. Specifically, we indicate that Cdh13 deficiency affects the cell

  4. Market Competition and Density in Liver Transplantation: Relationship to Volume and Outcomes.

    Science.gov (United States)

    Adler, Joel T; Yeh, Heidi; Markmann, James F; Nguyen, Louis L

    2015-08-01

    Liver transplantation centers are unevenly distributed within the Donor Service Areas (DSAs) of the United States. This study assessed how market competition and liver transplantation center density are associated with liver transplantation volume within individual DSAs. We conducted a retrospective cohort study of 53,156 adult liver transplants in 45 DSAs with 110 transplantation centers identified from the Scientific Registry of Transplant Recipients between 2003 and 2012. The following measures were derived annually for each DSA: market competition using the Herfindahl Hirschman Index, transplantation center density by the Average Nearest Neighbor method, liver quality by the Liver Donor Risk Index, and patient risk by the Model for End-Stage Liver Disease. A hierarchical mixed effects negative binomial regression model of the relationship between liver transplants and market factors was created annually. Patient and graft survival were investigated with a Cox proportional hazards model. Transplantation center density was associated with market competition (p market competition (IRR = 1.36; p = 0.02), increased listings (IRR = 1.14; p market variables were associated with increased mortality after transplantation. After controlling for demographic and market factors, a greater concentration of centers was associated with more liver transplants without impacting overall survival. These results warrant additional investigation into the relationship between geospatial factors and liver transplantation volume with consideration for the optimization of scarce resources. Copyright © 2015 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  5. Species richness, habitable volume, and species densities in freshwater, the sea, and on land

    Directory of Open Access Journals (Sweden)

    Michael N Dawson

    2012-09-01

    Full Text Available Approximately 0.5–2.0 million eukaryotic species inhabit the seas, whereas 2.0–10.0 million inhabit freshwater or the land. Much has been made of this several-fold difference in species richness but there is little consensus about the causes. Here, I ask a related question: what is the relative density of species in marine and non-marine realms? I use recent estimates of global eukaryotic species richness and published estimates of the areal coverage and depth of habitat for freshwater, marine, and terrestrial biomes. I find that the marine realm harbors ~99.83% of the habitable volume on this planet. Eukaryotic species density of the marine realm is ~3600-fold (i.e., 3-4 orders of magnitude less than that of non-marine environments. Species–volume relationships (SVRs help reconcile actinopterygian fish diversity with global primary productivity and emphasize the interacting roles of abiotic and biotic complexity in shaping patterns of biodiversity in freshwater, the sea, and on land. Comparing SVRs of habitats within and across realms may help resolve the factors and interactions that influence species density.

  6. The relationships between breast volume, breast dense volume and volumetric breast density with body mass index, body fat mass and ethnicity

    Science.gov (United States)

    Zakariyah, N.; Pathy, N. B.; Taib, N. A. M.; Rahmat, K.; Judy, C. W.; Fadzil, F.; Lau, S.; Ng, K. H.

    2016-03-01

    It has been shown that breast density and obesity are related to breast cancer risk. The aim of this study is to investigate the relationships of breast volume, breast dense volume and volumetric breast density (VBD) with body mass index (BMI) and body fat mass (BFM) for the three ethnic groups (Chinese, Malay and Indian) in Malaysia. We collected raw digital mammograms from 2450 women acquired on three digital mammography systems. The mammograms were analysed using Volpara software to obtain breast volume, breast dense volume and VBD. Body weight, BMI and BFM of the women were measured using a body composition analyser. Multivariable logistic regression was used to determine the independent predictors of increased overall breast volume, breast dense volume and VBD. Indians have highest breast volume and breast dense volume followed by Malays and Chinese. While Chinese are highest in VBD, followed by Malay and Indian. Multivariable analysis showed that increasing BMI and BFM were independent predictors of increased overall breast volume and dense volume. Moreover, BMI and BFM were independently and inversely related to VBD.

  7. The generalization of charged AdS black hole specific volume and number density

    Science.gov (United States)

    Wang, Zi-Liang; He, Miao; Fang, Chao; Sun, Dao-Quan; Deng, Jian-Bo

    2017-04-01

    In this paper, by proposing a generalized specific volume, we restudy the P- V criticality of charged AdS black holes in the extended phase space. The results show that most of the previous conclusions can be generalized without change, but the ratio {\\tilde{ρ }}_c should be 3 {\\tilde{α }}/16 in general case. Further research on the thermodynamical phase transition of black hole leads us to a natural interpretation of our assumption, and more black hole properties can be generalized. Finally, we study the number density for charged AdS black hole in higher dimensions, the results show the necessity of our assumption.

  8. An hybrid finite volume finite element method for variable density incompressible flows

    Science.gov (United States)

    Calgaro, Caterina; Creusé, Emmanuel; Goudon, Thierry

    2008-04-01

    This paper is devoted to the numerical simulation of variable density incompressible flows, modeled by the Navier-Stokes system. We introduce an hybrid scheme which combines a finite volume approach for treating the mass conservation equation and a finite element method to deal with the momentum equation and the divergence free constraint. The breakthrough relies on the definition of a suitable footbridge between the two methods, through the design of compatibility condition. In turn, the method is very flexible and allows to deal with unstructured meshes. Several numerical tests are performed to show the scheme capabilities. In particular, the viscous Rayleigh-Taylor instability evolution is carefully investigated.

  9. Constraining the supersaturation density equation of state from core-collapse supernova simulations? Excluded volume extension of the baryons

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Tobias [University of Wroclaw, Wroclaw (Poland)

    2016-03-15

    In this article the role of the supersaturation density equation of state (EOS) is explored in simulations of failed core-collapse supernova explosions. Therefore the nuclear EOS is extended via a one-parameter excluded-volume description for baryons, taking into account their finite and increasing volume with increasing density in excess of saturation density. Parameters are selected such that the resulting supernova EOS represent extreme cases, with high pressure variations at supersaturation density which feature extreme stiff and soft EOS variants of the reference case, i.e. without excluded-volume corrections. Unlike in the interior of neutron stars with central densities in excess of several times saturation density, central densities of core-collapse supernovae reach only slightly above saturation density. Hence, the impact of the supersaturation density EOS on the supernova dynamics as well as the neutrino signal is found to be negligible. It is mainly determined from the low- and intermediate-density domain, which is left unmodified within this generalized excluded volume approach. (orig.)

  10. Measurement of average density and relative volumes in a dispersed two-phase fluid

    Science.gov (United States)

    Sreepada, Sastry R.; Rippel, Robert R.

    1992-01-01

    An apparatus and a method are disclosed for measuring the average density and relative volumes in an essentially transparent, dispersed two-phase fluid. A laser beam with a diameter no greater than 1% of the diameter of the bubbles, droplets, or particles of the dispersed phase is directed onto a diffraction grating. A single-order component of the diffracted beam is directed through the two-phase fluid and its refraction is measured. Preferably, the refracted beam exiting the fluid is incident upon a optical filter with linearly varing optical density and the intensity of the filtered beam is measured. The invention can be combined with other laser-based measurement systems, e.g., laser doppler anemometry.

  11. Density-viscosity product of small-volume ionic liquid samples using quartz crystal impedance analysis.

    Science.gov (United States)

    McHale, Glen; Hardacre, Chris; Ge, Rile; Doy, Nicola; Allen, Ray W K; MacInnes, Jordan M; Bown, Mark R; Newton, Michael I

    2008-08-01

    Quartz crystal impedance analysis has been developed as a technique to assess whether room-temperature ionic liquids are Newtonian fluids and as a small-volume method for determining the values of their viscosity-density product, rho eta. Changes in the impedance spectrum of a 5-MHz fundamental frequency quartz crystal induced by a water-miscible room-temperature ionic liquid, 1-butyl-3-methylimiclazolium trifluoromethylsulfonate ([C4mim][OTf]), were measured. From coupled frequency shift and bandwidth changes as the concentration was varied from 0 to 100% ionic liquid, it was determined that this liquid provided a Newtonian response. A second water-immiscible ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C4mim][NTf2], with concentration varied using methanol, was tested and also found to provide a Newtonian response. In both cases, the values of the square root of the viscosity-density product deduced from the small-volume quartz crystal technique were consistent with those measured using a viscometer and density meter. The third harmonic of the crystal was found to provide the closest agreement between the two measurement methods; the pure ionic liquids had the largest difference of approximately 10%. In addition, 18 pure ionic liquids were tested, and for 11 of these, good-quality frequency shift and bandwidth data were obtained; these 12 all had a Newtonian response. The frequency shift of the third harmonic was found to vary linearly with square root of viscosity-density product of the pure ionic liquids up to a value of square root(rho eta) approximately 18 kg m(-2) s(-1/2), but with a slope 10% smaller than that predicted by the Kanazawa and Gordon equation. It is envisaged that the quartz crystal technique could be used in a high-throughput microfluidic system for characterizing ionic liquids.

  12. Density and molar volumes of imidazolium-based ionic liquid mixtures and prediction by the Jouyban-Acree model

    Science.gov (United States)

    Ghani, Noraini Abd; Sairi, Nor Asrina; Mat, Ahmad Nazeer Che; Khoubnasabjafari, Mehry; Jouyban, Abolghasem

    2016-11-01

    The density of imidazolium-based ionic liquid, 1-ethyl-3-methylimidazolium diethylphosphate with sulfolane were measured at atmospheric pressure. The experiments were performed at T= (293 - 343) K over the complete mole fractions. Physical and thermodynamic properties such as molar volumes, V0, and excess molar volumes, VE for this binary mixtures were derived from the experimental density data. The Jouyban-Acree model was exploited to correlate the physicochemical properties (PCPs) of binary mixtures at various mole fractions and temperatures.

  13. Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons.

    Science.gov (United States)

    Colbert, C M; Johnston, D

    1996-11-01

    A long-standing hypothesis is that action potentials initiate first in the axon hillock/initial segment (AH-IS) region because of a locally high density of Na+ channels. We tested this idea in subicular pyramidal neurons by using patch-clamp recordings in hippocampal slices. Simultaneous recordings from the soma and IS confirmed that orthodromic action potentials initiated in the axon and then invaded the soma. However, blocking Na+ channels in the AH-IS with locally applied tetrodotoxin (TTX) did not raise the somatic threshold membrane potential for orthodromic spikes. TTX applied to the axon beyond the AH-IS (30-60 microm from the soma) raised the apparent somatic threshold by approximately 8 mV. We estimated the Na+ current density in the AH-IS and somatic membranes by using cell-attached patch-clamp recordings and found similar magnitudes (3-4 pA/microm2). Thus, the present results suggest that orthodromic action potentials initiate in the axon beyond the AH-IS and that the minimum threshold for spike initiation of the neuron is not determined by a high density of Na+ channels in the AH-IS region.

  14. Effect of prenatal loud music and noise on total number of neurons and glia, neuronal nuclear area and volume of chick brainstem auditory nuclei, field L and hippocampus: a stereological investigation.

    Science.gov (United States)

    Sanyal, Tania; Palanisamy, Pradeep; Nag, T C; Roy, T S; Wadhwa, Shashi

    2013-06-01

    The present study explores whether prenatal patterned and unpatterned sound of high sound pressure level (110 dB) has any differential effect on the morphology of brainstem auditory nuclei, field L (auditory cortex analog) and hippocampus in chicks (Gallus domesticus). The total number of neurons and glia, mean neuronal nuclear area and total volume of the brainstem auditory nuclei, field L and hippocampus of post-hatch day 1 chicks were determined in serial, cresyl violet-stained sections, using stereology software. All regions studied showed a significantly increased total volume with increase in total neuron number and mean neuronal nuclear area in the patterned music stimulated group as compared to control. Contrastingly the unpatterned noise stimulated group showed an attenuated volume with reduction in the total neuron number. The mean neuronal nuclear area was significantly reduced in the auditory nuclei and hippocampus but increased in the field L. Glial cell number was significantly increased in both experimental groups, being highest in the noise group. The brainstem auditory nuclei and field L showed an increase in glia to neuron ratio in the experimental groups as compared to control. In the hippocampus the ratio remained unaltered between control and music groups, but was higher in the noise group. It is thus evident that though the sound pressure level in both experimental groups was the same there were differential changes in the morphological parameters of the brain regions studied, indicating that the characteristics of the sound had a role in mediating these effects.

  15. Penicillin-induced epilepsy model in rats: dose-dependant effect on hippocampal volume and neuron number.

    Science.gov (United States)

    Akdogan, Ilgaz; Adiguzel, Esat; Yilmaz, Ismail; Ozdemir, M Bulent; Sahiner, Melike; Tufan, A Cevik

    2008-10-22

    This study was designed to evaluate the penicillin-induced epilepsy model in terms of dose-response relationship of penicillin used to induce epilepsy seizure on hippocampal neuron number and hippocampal volume in Sprague-Dawley rats. Seizures were induced with 300, 500, 1500 and 2000IU of penicillin-G injected intracortically in rats divided in four experimental groups, respectively. Control group was injected intracortically with saline. Animals were decapitated on day 7 of treatment and brains were removed. The total neuron number of pyramidal cell layer from rat hippocampus was estimated using the optical fractionator method. The volume of same hippocampal areas was estimated using the Cavalieri method. Dose-dependent decrease in hippocampal neuron number was observed in three experimental groups (300, 500 and 1500IU of penicillin-G), and the effects were statistically significant when compared to the control group (P<0.009). Dose-dependent decrease in hippocampal volume, on the other hand, was observed in all three of these groups; however, the difference compared to the control group was only statistically significant in 1500IU of penicillin-G injected group (P<0.009). At the dose of 2000IU penicillin-G, all animals died due to status seizures. These results suggest that the appropriate dose of penicillin has to be selected for a given experimental epilepsy study in order to demonstrate the relevant epileptic seizure and its effects. Intracortical 1500IU penicillin-induced epilepsy model may be a good choice to practice studies that investigate neuroprotective mechanisms of the anti-epileptic drugs.

  16. Hydrogen bonding interactions between ethylene glycol and water: density, excess molar volume, and spectral study

    Institute of Scientific and Technical Information of China (English)

    ZHANG JianBin; ZHANG PengYan; MA Kai; HAN Fang; CHEN GuoHua; WEI XiongHui

    2008-01-01

    Studies of the density and the excess molar volume of ethylene glycol (EG)-water mixtures were carried out to illustrate the hydrogen bonding interactions of EG with water at different temperatures, The re-sults suggest that a likely complex of 3 ethylene glycol molecules bonding with 4 water molecules in an ethylene glycol-water mixture (EGW) is formed at the maximal excess molar volume, which displays stronger absorption capabilities for SO2 when the concentration of SO2 reaches 400×106 (volume ratio) in the gas phase. Meanwhile, FTIR and UV spectra of EGWs were recorded at various EG concentra-tions to display the hydrogen bonding interactions of EG with water. The FTIR spectra show that the stretching vibrational band of hydroxyl in the EGWs shifts to a lower frequency and the bending vibra-tional band of water shifts to a higher frequency with increasing the EG concentration, respectively. Furthermore, the UV spectra show that the electron transferring band of the hydroxyl oxygen in EG shows red shift with increasing the EG concentration. The frequency shifts in FTIR spectra and the shifts of absorption bands in UV absorption spectra of EGWs are interpreted as the strong hydrogen bonding interactions of the hydrogen atoms in water with the hydroxyl oxygen atoms of EG.

  17. Relations between slow extracellular potential changes, glial potassium buffering, and electrolyte and cellular volume changes during neuronal hyperactivity in cat brain.

    Science.gov (United States)

    Dietzel, I; Heinemann, U; Lux, H D

    1989-01-01

    The aim of this investigation is to estimate the contribution of spatial glial K+ buffer currents to extracellular K+ homeostasis during enhanced neuronal activity. Neuronal hyperactivity was induced by electrical stimulation of the cortical surface or the ventrobasal thalamic nuclei of cats (5-50 Hz, 0.1-0.2 ms, two to three times threshold stimulation intensity, 5-20 s). The accompanying slow field potential changes were recorded simultaneously across the grey matter with vertical assemblies of eight micropipettes glued 300 microns apart. Using the Poisson equation, the amplitudes of the underlying current sources and sinks were calculated. The current source densities depended on the depth of recording, frequency, strength, and duration of the stimulation. Current sinks, corresponding to a removal of 0.1-0.5 mmoles of monovalent cations per liter of brain tissue and second from the extracellular space, were observed in middle cortical layers, whereas sources appeared at superficial and deeper sites. These sinks and sources might represent K+ moved across glial membranes by spatial buffer currents. The consequences of glial buffer currents of this magnitude were investigated with model calculations. It turned out that measurements of electrolyte and volume changes of the extracellular space (Dietzel et al. Exp. Brain Res. 40:432-439, 1980; Exp. Brain Res. 46:73-84, 1982) could only partially be explained by spatial buffer currents of this magnitude. Comparison of the calculated values with intracellular measurements in neurons and glial cells (Coles et al. Ann. N.Y. Acad. Sci. 481:303-317, 1986; Ballanyi et al. J. Physiol. 382:159-174, 1987) suggests that spatial buffering combines with an approximately equimolar KCl transport and, depending on the preparation, also K+/Na+-exchange across glial membranes.

  18. VOLUME STUDY WITH HIGH DENSITY OF PARTICLES BASED ON CONTOUR AND CORRELATION IMAGE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Tatyana Yu. Nikolaeva

    2014-11-01

    Full Text Available The subject of study is the techniques of particle statistics evaluation, in particular, processing methods of particle images obtained by coherent illumination. This paper considers the problem of recognition and statistical accounting for individual images of small scattering particles in an arbitrary section of the volume in case of high concentrations. For automatic recognition of focused particles images, a special algorithm for statistical analysis based on contouring and thresholding was used. By means of the mathematical formalism of the scalar diffraction theory, coherent images of the particles formed by the optical system with high numerical aperture were simulated. Numerical testing of the method proposed for the cases of different concentrations and distributions of particles in the volume was performed. As a result, distributions of density and mass fraction of the particles were obtained, and the efficiency of the method in case of different concentrations of particles was evaluated. At high concentrations, the effect of coherent superposition of the particles from the adjacent planes strengthens, which makes it difficult to recognize images of particles using the algorithm considered in the paper. In this case, we propose to supplement the method with calculating the cross-correlation function of particle images from adjacent segments of the volume, and evaluating the ratio between the height of the correlation peak and the height of the function pedestal in the case of different distribution characters. The method of statistical accounting of particles considered in this paper is of practical importance in the study of volume with particles of different nature, for example, in problems of biology and oceanography. Effective work in the regime of high concentrations expands the limits of applicability of these methods for practically important cases and helps to optimize determination time of the distribution character and

  19. Density, Molar Volume, and Surface Tension of Liquid Al-Ti

    Science.gov (United States)

    Wessing, Johanna Jeanette; Brillo, Jürgen

    2017-02-01

    Al-Ti-based alloys are of enormous technical relevance due to their specific properties. For studies in atomic dynamics, surface physics and industrial processing the precise knowledge of the thermophysical properties of the liquid phase is crucial. In the present work, we systematically measure mass density, ρ (g cm-3), and the surface tension, γ (N m-1), as functions of temperature, T, and compositions of binary Al-Ti melts. Electromagnetic levitation in combination with the optical dilatometry method is used for density measurements and the oscillating drop method for surface tension measurements. It is found that, for all compositions, density and surface tension increase linearly upon decreasing temperature in the liquid phase. Within the Al-Ti system, we find the largest values for pure titanium and the smallest for pure aluminum, which amount to ρ(L,Ti) = 4.12 ± 0.04 g cm-3 and γ(L,Ti) = 1.56 ± 0.02 N m-1; and ρ(L,Al) = 2.09 ± 0.01 g cm-3 and γ(L,Al) = 0.87 ± 0.06 N m-1, respectively. The data are analyzed concerning the temperature coefficients, ρ T and γ T, excess molar volume, V E, excess surface tension, γ E, and surface segregation of the surface active component, Al. The results are compared with thermodynamic models. Generally, it is found that Al-Ti is a highly nonideal system.

  20. Excluded volume effects in compressed polymer brushes: A density functional theory

    Science.gov (United States)

    Chen, Cangyi; Tang, Ping; Qiu, Feng; Shi, An-Chang

    2015-03-01

    A classical density functional theory (DFT) is applied to investigate the behavior of compressed polymer brushes composed of hard-sphere chains. The excluded volume interactions among the chain segments are explicitly treated. Two compression systems are used to study the behavior of brush-wall and brush-brush interactions. For the brush-brush systems, an obvious interpenetration zone has been observed. The extent of the interpenetration depends strongly on the grafting density. Furthermore, the repulsive force between the brush and wall or between the two brushes has been obtained as a function of the compression distance. Compared to the prediction of the analytic self-consistent field theory, such force increases more rapidly in the brush-wall compression with high polymer grafting densities or at higher compressions. In the brush-brush compression system, the interpenetration between the two compressed brushes creates a "softer" interaction. The influence of hard-sphere solvents on the behavior of compressed brushes is also discussed.

  1. Asymmetries in numerical density of pyramidal neurons in the fifth layer of the human posterior parietal cortex

    Directory of Open Access Journals (Sweden)

    Đukić-Macut Nataša

    2012-01-01

    Full Text Available Background/Aim. Both superior parietal lobule (SPL of dorsolateral hemispheric surface and precuneus (PEC of medial surface are the parts of posterior parietal cortex. The aim of this study was to determine the numerical density (NV of pyramidal neurons in the layer V of SPL and PEC and their potential differences. Methods. From 20 (40 hemispheres formaline fixed human brains (both sexes; 27- 65 years tissue blocks from SPL and PEC from the left and right hemisphere were used. According to their size the brains were divided into two groups, the group I with the larger left (15 brains and the group II with the larger right hemisphere (5 brains. Serial Nissl sections (5 μm of the left and right SPL and PEC were used for stereological estimation of NV of the layer V pyramidal neurons. Results. NV of pyramidal neurons in the layer V in the left SPL of brains with larger left hemispheres was significantly higher than in the left SPL of brains with larger right hemisphere. Comparing sides in brains with larger left hemisphere, the left SPL had higher NV than the right one, and then the left PEC, and the right SPL had significantly higher NV than the right PEC. Comparing sides in brains with the larger right hemisphere, the left SPL had significantly higher NV than left PEC, but the right SPL had significantly higher NV than left SPL and the right PEC. Conclusion. Generally, there is an inverse relationship of NV between the medial and lateral areas of the human posterior parietal cortex. The obtained values were different between the brains with larger left and right hemispheres, as well as between the SPL and PEC. In all the comparisons the left SPL had the highest values of NV of pyramidal neurons in the layer V (4771.80 mm-3, except in brains with the larger right hemisphere.

  2. Quantification of volume, mass, and density of thrombus formation using brightfield and differential interference contrast microscopy

    Science.gov (United States)

    Baker-Groberg, Sandra M.; Phillips, Kevin G.; McCarty, Owen J. T.

    2013-01-01

    Flow chamber assays, in which blood is perfused over surfaces of immobilized extracellular matrix proteins, are used to investigate the formation of platelet thrombi and aggregates under shear flow conditions. Elucidating the dynamic response of thrombi/aggregate formation to different coagulation pathway perturbations in vitro has been used to develop an understanding of normal and pathological cardiovascular states. Current microscopy techniques, such as differential interference contrast (DIC) or fluorescent confocal imaging, respectively, do not provide a simple, quantitative understanding of the basic physical features (volume, mass, and density) of platelet thrombi/aggregate structures. The use of two label-free imaging techniques applied, for the first time, to platelet aggregate and thrombus formation are introduced: noninterferometric quantitative phase microscopy, to determine mass, and Hilbert transform DIC microscopy, to perform volume measurements. Together these techniques enable a quantitative biophysical characterization of platelet aggregates and thrombi formed on three surfaces: fibrillar collagen, fibrillar collagen +0.1 nM tissue factor (TF), and fibrillar collagen +1 nM TF. It is demonstrated that label-free imaging techniques provide quantitative insight into the mechanisms by which thrombi and aggregates are formed in response to exposure to different combinations of procoagulant agonists under shear flow.

  3. Activation volume of selected liquid crystals in the density scaling regime

    Science.gov (United States)

    Grzybowski, A.; Urban, S.; Mroz, S.; Paluch, M.

    2017-01-01

    In this paper, we demonstrate and thoroughly analyze the activation volumetric properties of selected liquid crystals in the nematic and crystalline E phases in comparison with those reported for glass-forming liquids. In the analysis, we have employed and evaluated two entropic models (based on either total or configurational entropies) to describe the longitudinal relaxation times of the liquid crystals in the density scaling regime. In this study, we have also exploited two equations of state: volumetric and activation volumetric ones. As a result, we have established that the activation volumetric properties of the selected liquid crystals are quite opposite to such typical properties of glass-forming materials, i.e., the activation volume decreases and the isothermal bulk modulus increases when a liquid crystal is isothermally compressed. Using the model based on the configurational entropy, we suggest that the increasing pressure dependences of the activation volume in isothermal conditions and the negative curvature of the pressure dependences of isothermal longitudinal relaxation times can be related to the formation of antiparallel doublets in the examined liquid crystals. A similar pressure effect on relaxation dynamics may be also observed for other material groups in case of systems, the molecules of which form some supramolecular structures. PMID:28181530

  4. α-Actinin-2 mediates spine morphology and assembly of the post-synaptic density in hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Jennifer L Hodges

    Full Text Available Dendritic spines are micron-sized protrusions that constitute the primary post-synaptic sites of excitatory neurotransmission in the brain. Spines mature from a filopodia-like protrusion into a mushroom-shaped morphology with a post-synaptic density (PSD at its tip. Modulation of the actin cytoskeleton drives these morphological changes as well as the spine dynamics that underlie learning and memory. Several PSD molecules respond to glutamate receptor activation and relay signals to the underlying actin cytoskeleton to regulate the structural changes in spine and PSD morphology. α-Actinin-2 is an actin filament cross-linker, which localizes to dendritic spines, enriched within the post-synaptic density, and implicated in actin organization. We show that loss of α-actinin-2 in rat hippocampal neurons creates an increased density of immature, filopodia-like protrusions that fail to mature into a mushroom-shaped spine during development. α-Actinin-2 knockdown also prevents the recruitment and stabilization of the PSD in the spine, resulting in failure of synapse formation, and an inability to structurally respond to chemical stimulation of the N-methyl-D-aspartate (NMDA-type glutamate receptor. The Ca2+-insensitive EF-hand motif in α-actinin-2 is necessary for the molecule's function in regulating spine morphology and PSD assembly, since exchanging it for the similar but Ca2+-sensitive domain from α-actinin-4, another α-actinin isoform, inhibits its function. Furthermore, when the Ca2+-insensitive domain from α-actinin-2 is inserted into α-actinin-4 and expressed in neurons, it creates mature spines. These observations support a model whereby α-actinin-2, partially through its Ca2+-insensitive EF-hand motif, nucleates PSD formation via F-actin organization and modulates spine maturation to mediate synaptogenesis.

  5. Changes in hippocampal volume and neuron number co-occur with memory decline in old homing pigeons (Columba livia).

    Science.gov (United States)

    Coppola, Vincent J; Kanyok, Nate; Schreiber, Austin J; Flaim, Mary E; Bingman, Verner P

    2016-05-01

    The mammalian hippocampus is particularly susceptible to age-related structural changes, which have been used to explain, in part, age-related memory decline. These changes are generally characterized by atrophy (e.g., a decrease in volume and number of synaptic contacts). Recent studies have reported age-related spatial memory deficits in older pigeons similar to those seen in older mammals. However, to date, little is known about any co-occurring changes in the aging avian hippocampal formation (HF). In the current study, it was found that the HF of older pigeons was actually larger and contained more neurons than the HF of younger pigeons, a finding that suggests that the pattern of structural changes during aging in the avian HF is different from that seen in the mammalian hippocampus. A working hypothesis for relating the observed structural changes with spatial-cognitive decline is offered.

  6. Reactive oxygen species are related to ionic fluxes and volume decrease in apoptotic cerebellar granule neurons: role of NOX enzymes.

    Science.gov (United States)

    Hernández-Enríquez, Berenice; Guemez-Gamboa, Alicia; Morán, Julio

    2011-05-01

    Reactive oxygen species (ROS) are produced early during apoptosis of cerebellar granule neurons induced by low potassium (K5) and staurosporine (Sts). In addition, K5 and Sts activate NADPH oxidases (NOX). Recently, we described that K5 and Sts induce apoptotic volume decrease (AVD) at a time when ROS generation and NOX activity occur. In the present study, we evaluated the relationship between ROS generation and ionic fluxes during AVD. Here, we showed that K5- and Sts-induced AVD was inhibited by antioxidants and that direct ROS production induced AVD. Moreover, NOX inhibitors eliminated AVD induced by both K5 and Sts. Sts, but not K5, failed to induce AVD in cerebellar granule neurons from NOX2 knockout mice. These findings suggest that K5- and Sts-induced AVD is largely mediated by ROS produced by NOX. On the other hand, we also found that the blockage of ionic fluxes involved in AVD inhibited both ROS generation and NOX activity. These findings suggest that ROS generation and NOX activity are involved in ionic fluxes activation, which in turn could maintain ROS generation by activating NOX, leading to a self-amplifying cycle.

  7. SURFACE AREA, VOLUME, MASS, AND DENSITY DISTRIBUTIONS FOR SIZED BOMASS PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan Sampath

    2004-05-01

    This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FC26-04NT42130 during the period July 01, 2004 to December 31, 2004 which covers the first six months of the project. Presently work is in progress to characterize surface area, volume, mass, and density distributions for sized biomass particles. During this reporting period, supply requests were processed and supplies including biomass test particles (hardwood sawdust AI14546) in the size range of 100-200 microns were obtained from a cofiring pilot plant research facility owned by Southern Company, Birmingham, AL. Morehouse has completed setting up of the gravimetric technique measurement system in the heat transfer laboratory, department of physics and dual degree engineering, Morehouse College. Simultaneously, REM, our subcontractor, has completed setting up of the electrodynamic balance (EDB) measurement system to characterize shape and mass for individual biomass particles. Testing of the gravimetric system, and calibration of the cameras and imaging systems using known sizes of polystyrene particles are in progress.

  8. Mapping Bone Mineral Density Obtained by Quantitative Computed Tomography to Bone Volume Fraction

    Science.gov (United States)

    Pennline, James A.; Mulugeta, Lealem

    2017-01-01

    Methods for relating or mapping estimates of volumetric Bone Mineral Density (vBMD) obtained by Quantitative Computed Tomography to Bone Volume Fraction (BVF) are outlined mathematically. The methods are based on definitions of bone properties, cited experimental studies and regression relations derived from them for trabecular bone in the proximal femur. Using an experimental range of values in the intertrochanteric region obtained from male and female human subjects, age 18 to 49, the BVF values calculated from four different methods were compared to the experimental average and numerical range. The BVF values computed from the conversion method used data from two sources. One source provided pre bed rest vBMD values in the intertrochanteric region from 24 bed rest subject who participated in a 70 day study. Another source contained preflight vBMD values from 18 astronauts who spent 4 to 6 months on the ISS. To aid the use of a mapping from BMD to BVF, the discussion includes how to formulate them for purpose of computational modeling. An application of the conversions would be used to aid in modeling of time varying changes in vBMD as it relates to changes in BVF via bone remodeling and/or modeling.

  9. Layer 5 Pyramidal Neurons' Dendritic Remodeling and Increased Microglial Density in Primary Motor Cortex in a Murine Model of Facial Paralysis.

    Science.gov (United States)

    Urrego, Diana; Troncoso, Julieta; Múnera, Alejandro

    2015-01-01

    This work was aimed at characterizing structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with microglial density induced by facial nerve lesion using a murine facial paralysis model. Adult transgenic mice, expressing green fluorescent protein in microglia and yellow fluorescent protein in projecting neurons, were submitted to either unilateral section of the facial nerve or sham surgery. Injured animals were sacrificed either 1 or 3 weeks after surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1). It was found that facial nerve lesion induced long-lasting changes in the dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Dendritic arborization of the pyramidal cells underwent overall shrinkage. Apical dendrites suffered transient shortening while basal dendrites displayed sustained shortening. Moreover, dendrites suffered transient spine pruning. Significantly higher microglial cell density was found surrounding vM1 layer 5 pyramidal neurons after facial nerve lesion with morphological bias towards the activated phenotype. These results suggest that facial nerve lesions elicit active dendrite remodeling due to pyramidal neuron and microglia interaction, which could be the pathophysiological underpinning of some neuropathic motor sequelae in humans.

  10. Experimental density data and excess molar volumes of coconut biodiesel + n-hexadecane and coconut biodiesel + diesel at different temperatures

    Directory of Open Access Journals (Sweden)

    F. M. R. Mesquita

    2014-06-01

    Full Text Available The density of the pure component (n-hexadecane, pure pseudo-components (coconut biodiesel and diesel and pseudo-binary mixtures of coconut biodiesel with n-hexadecane (or + diesel were measured at temperatures 293.15, 313.15, 333.15, 353.15 and 373.15 K and atmospheric pressure, over the entire composition range (mole fractions from 0.1 to 0.9, with a step de 0.1. Densities were determined using an Anton Paar SVM 3000 viscodensimeter. Experimental density values decreased with the increase of the temperature. The excess molar volumes of the pseudo-binary mixtures were calculated by using the experimental values of density. Excess molar volumes were correlated with the Redlich-Kister polynomial expansions. Excess molar volumes show positive and negative values in the two systems studied. Excess partial volumes at infinite dilution were calculated for coconut biodiesel, n-hexadecane and diesel in the mixtures studied.

  11. DENSITY, REFRACTIVE INDEX, APPARENT VOLUMES AND EXCESS MOLAR VOLUMES OF FOUR PROTIC IONIC LIQUIDS + WATER AT T=298.15 AND 323.15 K

    Directory of Open Access Journals (Sweden)

    R. Rocha Pinto

    2015-09-01

    Full Text Available AbstractDensities and refractive index of binay mixtures of water with four protic ionic liquids, based on ammonium and fatty acids, were measured at 298.15 and 323.15 K, under atmospheric pressure. Apparent and excess molar volumes were obtained by experiments and fitting data to the Redlich-Meyer (RM, Redlich-Kister (RK and Prigogine-Flory-Patterson (PFP equations. The molar volume values were high, suggesting strong ion-solvent interaction. The same interaction also became stronger as the temperature increased. Excess volume values were negative, indicating that packing efficiency ability or attractive interactions occurred in mixtures of ionic liquid + water. The errors (AARD for the properties in excess were in the range of 1.8% to 7.2%. The PFP error for the apparent volume was in the range of 0.34% to 0.06%, lower than the RM error for the same property, which was in the range of 0.70 to 1.55%. The Gladstone-Dale model was applied to correlate the refractive index of the binary mixture with the density from the values of both pure components.

  12. Effect of NGF, BDNF, bFGF, aFGF and cell density on NPY expression in cultured rat dorsal root ganglion neurones.

    Science.gov (United States)

    Kerekes, N; Landry, M; Lundmark, K; Hökfelt, T

    2000-07-01

    The effect of neurotrophic factors on neuropeptide Y (NPY) expression was studied in adult rat dispersed dorsal root ganglion (DRG) cultures. Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), acidic fibroblast growth factor (aFGF) or basic FGF was included in the culture medium during incubation for 72 h. In untreated cultures, around 18% of all neurones (visualized by antibodies to PGP 9.5) expressed NPY-like immunoreactivity (LI). In contrast, in vivo uninjured neurones do not contain detectable levels of NPY-LI. In the immunohistochemical analysis aFGF increased the percentage of NPY-immunoreactive (-IR) neurones 1.8-fold, while NGF, BDNF or bFGF had no significant effect on NPY expression. When the effect of these growth factors was monitored with non-radioactive in situ hybridization, both aFGF and bFGF caused a significant increase (2.25- and 1.8-fold, respectively), whereas, again, NGF and BDNF had no effect. The results also showed an effect of cell density on NPY expression, whereby fewer neurones expressed NPY in high than in low density cultures. This difference was seen in untreated as well as growth factor-treated cultures. The present results support the hypothesis that DRG neurones in culture are in an axotomized state, since they express NPY to about the same extent as axotomized DRG neurones in vivo. Surprisingly, two growth factors of the FGF family enhance NPY expression in DRG neurones, which is in apparent contrast to a published in vivo study [Ji, R.-R., Zhang, Q., Pettersson, R.F., Hökfelt, T., 1996. aFGF, bFGF and NGF differentially regulate neuropeptide expression in dorsal root ganglia after axotomy and induce autotomy. Reg. Pept. 66, 179-189.]. Finally, NPY expression was also influenced by cell density.

  13. Scaling of neuron number and volume of the pulvinar complex in New World primates: comparisons with humans, other primates, and mammals.

    Science.gov (United States)

    Chalfin, Brandon P; Cheung, Desmond T; Muniz, José Augusto P C; de Lima Silveira, Luiz Carlos; Finlay, Barbara L

    2007-09-20

    The lateral posterior nucleus and pulvinar (LP-pulvinar complex) are the principal thalamic nuclei associated with the elaborate development of the dorsal and ventral streams of the parietal cortex in primates. In humans, a novel site of origin for a subpopulation of pulvinar neurons has been observed, the ganglionic eminence of the telencephalon. This additional site of neuron origin has been proposed to contribute to the pulvinar's evolutionary expansion (Letinic and Rakic [2001] Nat Neurosci 4:930-936). Studies of neuron number in the LP-pulvinar complex in gibbon, chimpanzee, and gorilla compared to humans, however, did not show that the human LP-pulvinar was unexpectedly large (Armstrong [1981] Am J Phys Anthropol 55:369-383). Here we enlarge the allometric basis for comparison by determining neuron number in the LP-pulvinar complex of six New World primates (Cebus apella, Saimiri ustius, Saguinus midas niger, Alouatta caraya, Aotus azarae, and Callicebus moloch) as well as measuring LP-pulvinar volume in a further set of 24 species including additional primates, carnivores, and rodents. The volume of the LP-pulvinar complex scaled with positive allometry with respect to brain volume across all species examined. The scaling of the number of neurons in the LP-pulvinar complex was extremely similar in New World primates and anthropoid apes, with the human LP-pulvinar value close to the regression line. Comparison of the relative volumes of the LP-pulvinar in the larger sample confirmed this observation, and further demonstrated that both primates and carnivores showed a "grade shift" in its size compared to rodents, with the pulvinar comprising a greater proportion of total brain volume across the board. Diurnal, nocturnal, or crepuscular niche did not discriminate LP-pulvinar size across taxa.

  14. Somatosensory and visual deprivation each decrease the density of parvalbumin neurons and their synapse terminals in the prefrontal cortex and hippocampus of mice.

    Science.gov (United States)

    Ueno, Hiroshi; Shoshi, Chikafumi; Suemitsu, Shunsuke; Usui, Shinichi; Sujiura, Hiroko; Okamoto, Motoi

    2013-01-01

    In the phenomenon known as cross-modal plasticity, the loss of one sensory system is followed by improved functioning of other intact sensory systems. MRI and functional MRI studies suggested a role of the prefrontal cortex and the temporal lobe in cross-modal plasticity. We used a mouse model to examine the effects of sensory deprivation achieved by whisker trimming and visual deprivation achieved by dark rearing in neonatal mice on the appearance of parvalbumin (PV) neurons and the formation of glutamic acid decarboxylase 67 (GAD67)-positive puncta around pyramidal neurons in the prefrontal cortex and hippocampus. Whisker trimming, but not dark rearing, decreased the density of PV neurons in the hippocampus at postnatal day 28 (P28). In the prefrontal cortex, whisker trimming and dark rearing decreased the density of PV neurons in layer 5/6 (L5/6) at P28 and in L2/3 at P56, respectively, whereas dark rearing increased the density of PV neurons in L5/6 at P56. Whisker trimming decreased the density of GAD67-positive puncta in CA1 of the hippocampus at both P28 and P56 and in L5/6 of the prefrontal cortex at P28. Dark rearing decreased the density of GAD67-positive puncta in CA1 of the hippocampus and in both L2/3 and L5/6 of the prefrontal cortex at P28, and in L2/3 of the prefrontal cortex at P56. These results demonstrate that somatosensory or visual deprivation causes changes in the PV-interneuronal network in the mouse prefrontal cortex and hippocampus. The results also suggest that the alteration of the PV-interneuronal network, especially in the prefrontal cortex, may contribute to cross-modal plasticity.

  15. Somatosensory and Visual Deprivation Each Decrease the Density of Parvalbumin Neurons and Their Synapse Terminals in the Prefrontal Cortex and Hippocampus of Mice

    Directory of Open Access Journals (Sweden)

    Sujiura,Hiroko

    2013-06-01

    Full Text Available In the phenomenon known as cross-modal plasticity, the loss of one sensory system is followed by improved functioning of other intact sensory systems. MRI and functional MRI studies suggested a role of the prefrontal cortex and the temporal lobe in cross-modal plasticity. We used a mouse model to examine the effects of sensory deprivation achieved by whisker trimming and visual deprivation achieved by dark rearing in neonatal mice on the appearance of parvalbumin (PV neurons and the formation of glutamic acid decarboxylase 67 (GAD67-positive puncta around pyramidal neurons in the prefrontal cortex and hippocampus. Whisker trimming, but not dark rearing, decreased the density of PV neurons in the hippocampus at postnatal day 28 (P28. In the prefrontal cortex, whisker trimming and dark rearing decreased the density of PV neurons in layer 5/6 (L5/6 at P28 and in L2/3 at P56, respectively, whereas dark rearing increased the density of PV neurons in L5/6 at P56. Whisker trimming decreased the density of GAD67-positive puncta in CA1 of the hippocampus at both P28 and P56 and in L5/6 of the prefrontal cortex at P28. Dark rearing decreased the density of GAD67-positive puncta in CA1 of the hippocampus and in both L2/3 and L5/6 of the prefrontal cortex at P28, and in L2/3 of the prefrontal cortex at P56. These results demonstrate that somatosensory or visual deprivation causes changes in the PV-interneuronal network in the mouse prefrontal cortex and hippocampus. The results also suggest that the alteration of the PV-interneuronal network, especially in the prefrontal cortex, may contribute to cross-modal plasticity.

  16. RELN-expressing neuron density in layer I of the superior temporal lobe is similar in human brains with autism and in age-matched controls.

    Science.gov (United States)

    Camacho, Jasmin; Ejaz, Ehsan; Ariza, Jeanelle; Noctor, Stephen C; Martínez-Cerdeño, Verónica

    2014-09-05

    Reelin protein (RELN) level is reduced in the cerebral cortex and cerebellum of subjects with autism. RELN is synthesized and secreted by a subpopulation of neurons in the developing cerebral cortex termed Cajal-Retzius (CR) cells. These cells are abundant in the marginal zone during cortical development, many die after development is complete, but a small population persists into adulthood. In adult brains, RELN is secreted by the surviving CR cells, by a subset of GABAergic interneurons in layer I, and by pyramidal cells and GABAergic interneurons in deeper cortical layers. It is widely believed that decreased RELN in layer I of the cerebral cortex of subjects with autism may result from a decrease in the density of RELN expressing neurons in layer I; however, this hypothesis has not been tested. We examined RELN expression in layer I of the adult human cortex and found that 70% of cells express RELN in both control and autistic subjects. We quantified the density of neurons in layer I of the superior temporal cortex of subjects with autism and age-matched control subjects. Our data show that there is no change in the density of neurons in layer I of the cortex of subjects with autism, and therefore suggest that reduced RELN expression in the cerebral cortex of subjects with autism is not a consequence of decreased numbers of RELN-expressing neurons in layer I. Instead reduced RELN may result from abnormal RELN processing, or a decrease in the number of other RELN-expressing neuronal cell types. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Impact of particle density and initial volume on mathematical compression models

    DEFF Research Database (Denmark)

    Sonnergaard, Jørn

    2000-01-01

    on the derived apparent yield pressures. Substances with ionic bonds or macromolecular materials with amorphous structures do not show this dependency on the particle density. The influence of density is demonstrated by performing non-linear regression on the Heckel equation where the optimal particle density...... equations. The problems are illustrated by investigations on compaction profiles of 17 materials with different molecular structures and particle densities. It is shown that the particle density of materials with covalent bonds in the Heckel model acts as a key parameter with a dominating influence...

  18. Reduced astrocyte density underlying brain volume reduction in activity-based anorexia rats

    NARCIS (Netherlands)

    Frintrop, Linda; Liesbrock, Johanna; Paulukat, Lisa; Johann, Sonja; Kas, Martien J; Tolba, Rene; Heussen, Nicole; Neulen, Joseph; Konrad, Kerstin; Herpertz-Dahlmann, Beate; Beyer, Cordian; Seitz, Jochen

    2017-01-01

    OBJECTIVES: Severe grey and white matter volume reductions were found in patients with anorexia nervosa (AN) that were linked to neuropsychological deficits while their underlying pathophysiology remains unclear. For the first time, we analysed the cellular basis of brain volume changes in an animal

  19. Prenatal exposure to ethanol stimulates hypothalamic CCR2 chemokine receptor system: Possible relation to increased density of orexigenic peptide neurons and ethanol drinking in adolescent offspring.

    Science.gov (United States)

    Chang, G-Q; Karatayev, O; Leibowitz, S F

    2015-12-01

    Clinical and animal studies indicate that maternal consumption of ethanol during pregnancy increases alcohol drinking in the offspring. Possible underlying mechanisms may involve orexigenic peptides, which are stimulated by prenatal ethanol exposure and themselves promote drinking. Building on evidence that ethanol stimulates neuroimmune factors such as the chemokine CCL2 that in adult rats is shown to colocalize with the orexigenic peptide, melanin-concentrating hormone (MCH) in the lateral hypothalamus (LH), the present study sought to investigate the possibility that CCL2 or its receptor CCR2 in LH is stimulated by prenatal ethanol exposure, perhaps specifically within MCH neurons. Our paradigm of intraoral administration of ethanol to pregnant rats, at low-to-moderate doses (1 or 3g/kg/day) during peak hypothalamic neurogenesis, caused in adolescent male offspring twofold increase in drinking of and preference for ethanol and reinstatement of ethanol drinking in a two-bottle choice paradigm under an intermittent access schedule. This effect of prenatal ethanol exposure was associated with an increased expression of MCH and density of MCH(+) neurons in LH of preadolescent offspring. Whereas CCL2(+) cells at this age were low in density and unaffected by ethanol, CCR2(+) cells were dense in LH and increased by prenatal ethanol, with a large percentage (83-87%) identified as neurons and found to colocalize MCH. Prenatal ethanol also stimulated the genesis of CCR2(+) and MCH(+) neurons in the embryo, which co-labeled the proliferation marker, BrdU. Ethanol also increased the genesis and density of neurons that co-expressed CCR2 and MCH in LH, with triple-labeled CCR2(+)/MCH(+)/BrdU(+) neurons that were absent in control rats accounting for 35% of newly generated neurons in ethanol-exposed rats. With both the chemokine and MCH systems believed to promote ethanol consumption, this greater density of CCR2(+)/MCH(+) neurons in the LH of preadolescent rats suggests that

  20. An SV-GMR Needle Sensor-Based Estimation of Volume Density of Magnetic Fluid inside Human Body

    Directory of Open Access Journals (Sweden)

    C. P. Gooneratne

    2008-01-01

    Full Text Available A spin-valve giant magneto-resistive (SV-GMR sensor of needle-type configuration is reported to estimate the volume density of magnetic fluid inside human body. The magnetic fluid is usually injected into human body to kill cancerous cell using hyperthermia-based treatment. To control the heat treatment, a good knowledge of temperature is very much essential. The SV-GMR-based needle-type sensor is used to measure the magnetic flux density of the magnetic fluid inside the human body from which the temperature is estimated. The needle-type sensor provides a semi-invasive approach of temperature determination.

  1. The Neuroprotective Effect of Alcoholic Extract of Cannabis Sativa on Neuronal Density of Spinal Cord Alpha Motoneurons after Sciatic Nerve Injury in Rats

    Directory of Open Access Journals (Sweden)

    M Tehranipour

    2011-07-01

    Full Text Available Introduction: Injuries of the peripheral nerve system affect the neurons cell body leading to axon injury. Cannabis sativa plant has anti oxidant and anti apoptotic effects. Therefore the aim of present study was to study the neuroprotective effect of alcoholic extract of cannabis sativa leaves on neuronal density of alpha motoneurons in spinal cord after sciatic nerve injury in rats. Methods: In this experimental research, animals were divided into four groups; A: control, B: compression, C: compression+ treatment with 25 mg/kg alcoholic extract, D: compression + treatment with 50 mg/kg extract (n=8. At first, sciatic nerve compression in B, C and D groups was achieved for 60 seconds using locker pincers. Alcoholic extract was injected intra peritoneally in the first and second weeks after compression. Then 28 days after compression, under profusion method, the lumbar spinal cord was sampled and the numerical density in each group was compared with the compression group. The data was analyzed with the use of Minitab 14 software and ANOVA statistical test. Results: Neuronal density showed a meaningful difference in the compression and control groups(P<0.001. Neuronal density in treatment groups(25, 50 mg/kg also had a meaningful increase(P<0.001 as compared to the compression group. Conclusion: Alcoholic extract of cannabis sativa leaves has a neuroprotective effect on spinal cord alpha motoneurons after injury. This could be due to growth and regeneration factors present in the alcoholic extract of cannabis sativa leaves that induce regeneration process in injured neurons or prevent degeneration.

  2. Mitogen-activated protein kinase signaling pathways promote low-density lipoprotein receptor-related protein 1-mediated internalization of beta-amyloid protein in primary cortical neurons.

    Science.gov (United States)

    Yang, Wei-Na; Ma, Kai-Ge; Qian, Yi-Hua; Zhang, Jian-Shui; Feng, Gai-Feng; Shi, Li-Li; Zhang, Zhi-Chao; Liu, Zhao-Hui

    2015-07-01

    Mounting evidence suggests that the pathological hallmarks of Alzheimer's disease (AD) are caused by the intraneuronal accumulation of beta-amyloid protein (Aβ). Reuptake of extracellular Aβ is believed to contribute significantly to the intraneuronal Aβ pool in the early stages of AD. Published reports have claimed that the low-density lipoprotein receptor-related protein 1 (LRP1) mediates Aβ1-42 uptake and lysosomal trafficking in GT1-7 neuronal cells and mouse embryonic fibroblast non-neuronal cells. However, there is no direct evidence supporting the role of LRP1 in Aβ internalization in primary neurons. Our recent study indicated that p38 MAPK and ERK1/2 signaling pathways are involved in regulating α7 nicotinic acetylcholine receptor (α7nAChR)-mediated Aβ1-42 uptake in SH-SY5Y cells. This study was designed to explore the regulation of MAPK signaling pathways on LRP1-mediated Aβ internalization in neurons. We found that extracellular Aβ1-42 oligomers could be internalized into endosomes/lysosomes and mitochondria in cortical neurons. Aβ1-42 and LRP1 were also found co-localized in neurons during Aβ1-42 internalization, and they could form Aβ1-42-LRP1 complex. Knockdown of LRP1 expression significantly decreased neuronal Aβ1-42 internalization. Finally, we identified that p38 MAPK and ERK1/2 signaling pathways regulated the internalization of Aβ1-42 via LRP1. Therefore, these results demonstrated that LRP1, p38 MAPK and ERK1/2 mediated the internalization of Aβ1-42 in neurons and provided evidence that blockade of LRP1 or inhibitions of MAPK signaling pathways might be a potential approach to lowering brain Aβ levels and served a potential therapeutic target for AD.

  3. Neuronal activity and brain-derived neurotrophic factor regulate the density of inhibitory synapses in organotypic slice cultures of postnatal hippocampus.

    Science.gov (United States)

    Marty, S; Wehrlé, R; Sotelo, C

    2000-11-01

    Hippocampal interneurons inhibit pyramidal neurons through the release of the neurotransmitter GABA. Given the importance of this inhibition for the proper functioning of the hippocampus, the development of inhibitory synapses must be tightly regulated. In this study, the possibility that neuronal activity and neurotrophins regulate the density of GABAergic inhibitory synapses was investigated in organotypic slice cultures taken from postnatal day 7 rats. In hippocampal slices cultured for 13 d in the presence of the GABA(A) receptor antagonist bicuculline, the density of glutamic acid decarboxylase (GAD) 65-immunoreactive terminals was increased in the CA1 area when compared with control slices. Treatment with the glutamate receptor antagonist 6,7-dinitroquinoxaline-2,3-dione decreased the density of GAD65-immunoreactive terminals in the stratum oriens of CA1. These treatments had parallel effects on the density of GABA-immunoreactive processes. Electron microscopic analysis after postembedding immunogold labeling with antibodies against GABA indicated that bicuculline treatment increased the density of inhibitory but not excitatory synapses. Application of exogenous BDNF partly mimicked the stimulatory effect of bicuculline on GAD65-immunoreactive terminals. Finally, antibodies against BDNF, but not antibodies against nerve growth factor, decrease the density of GAD65-immunoreactive terminals in bicuculline-treated slices. Thus, neuronal activity regulates the density of inhibitory synapses made by postnatal hippocampal interneurons, and BDNF could mediate part of this regulation. This regulation of the density of inhibitory synapses could represent a feedback mechanism aimed at maintaining an appropriate level of activity in the developing hippocampal networks.

  4. Free D-aspartate regulates neuronal dendritic morphology, synaptic plasticity, gray matter volume and brain activity in mammals.

    Science.gov (United States)

    Errico, F; Nisticò, R; Di Giorgio, A; Squillace, M; Vitucci, D; Galbusera, A; Piccinin, S; Mango, D; Fazio, L; Middei, S; Trizio, S; Mercuri, N B; Teule, M A; Centonze, D; Gozzi, A; Blasi, G; Bertolino, A; Usiello, A

    2014-01-01

    D-aspartate (D-Asp) is an atypical amino acid, which is especially abundant in the developing mammalian brain, and can bind to and activate N-methyl-D-Aspartate receptors (NMDARs). In line with its pharmacological features, we find that mice chronically treated with D-Asp show enhanced NMDAR-mediated miniature excitatory postsynaptic currents and basal cerebral blood volume in fronto-hippocampal areas. In addition, we show that both chronic administration of D-Asp and deletion of the gene coding for the catabolic enzyme D-aspartate oxidase (DDO) trigger plastic modifications of neuronal cytoarchitecture in the prefrontal cortex and CA1 subfield of the hippocampus and promote a cytochalasin D-sensitive form of synaptic plasticity in adult mouse brains. To translate these findings in humans and consistent with the experiments using Ddo gene targeting in animals, we performed a hierarchical stepwise translational genetic approach. Specifically, we investigated the association of variation in the gene coding for DDO with complex human prefrontal phenotypes. We demonstrate that genetic variation predicting reduced expression of DDO in postmortem human prefrontal cortex is mapped on greater prefrontal gray matter and activity during working memory as measured with MRI. In conclusion our results identify novel NMDAR-dependent effects of D-Asp on plasticity and physiology in rodents, which also map to prefrontal phenotypes in humans.

  5. Correlation between Cohesive Energy Density, Fractional Free Volume, and Gas Transport Properties of Poly(ethylene-co-vinyl acetate Materials

    Directory of Open Access Journals (Sweden)

    Piotr Kubica

    2015-01-01

    Full Text Available The transport properties of the poly(ethylene-co-vinyl acetate (EVA materials to He, N2, O2, and CO2 are correlated with two polymer molecular structure parameters, that is, cohesive energy density (CED and fractional free volume (FFV, determined by the group contribution method. In our preceding paper, the attempt was made to approximate EVA permeability using a linear function of 1/FFV as predicted by the free volume theory. However, the deviations from this relationship appeared to be significant. In this paper, it is shown that permeation of gas molecules is controlled not only by free volume but also by the polymer cohesive energy. Moreover, the behavior of CO2 was found to differ significantly from that of other gases. In this instance, the correlation is much better when diffusivity instead of permeability is taken into account in a modified transport model.

  6. Metallothionein and a peptide modeled after metallothionein, EmtinB, induce neuronal differentiation and survival through binding to receptors of the low-density lipoprotein receptor family

    DEFF Research Database (Denmark)

    Ambjørn, Malene; Asmussen, Johanne W; Lindstam, Mats;

    2007-01-01

    Accumulating evidence suggests that metallothionein (MT)-I and -II promote neuronal survival and regeneration in vivo. The present study investigated the molecular mechanisms underlying the differentiation and survival-promoting effects of MT and a peptide modeled after MT, EmtinB. Both MT...... and EmtinB directly stimulated neurite outgrowth and promoted survival in vitro using primary cultures of cerebellar granule neurons. In addition, expression and surface localization of megalin, a known MT receptor, and the related lipoprotein receptor-related protein-1 (LRP) are demonstrated in cerebellar...... granule neurons. By means of surface plasmon resonance MT and EmtinB were found to bind to both megalin and LRP. The bindings were abrogated in the presence of receptor-associated protein-1, an antagonist of the low-density lipoprotein receptor family, which also inhibited MT- and EmtinB-induced neurite...

  7. Direct space decomposition of ELI-D: interplay of charge density and pair-volume function for different bonding situations.

    Science.gov (United States)

    Wagner, Frank R; Kohout, Miroslav; Grin, Yuri

    2008-10-01

    The topological features, i.e., gradients and curvatures of the same-spin electron pair restricted electron localizability indicator (ELI-D) in position space are analyzed in terms of those of the electron density and the pair-volume function. The analysis of the topology of these constituent functions and their interplay on ELI-D attractor formation for a number of molecules representing chemically different bonding situations allows distinguishing between different chemical bonding scenarios on a quantum mechanical basis without the recourse to orbitals. The occurrence of the Laplacian of the electron density in the expression for the Laplacian of ELI-D allows us to establish a physical link between electron localizability and electron pairing as displayed by ELI-D and the role of Laplacian of the density in this context.

  8. A mouse model of visual perceptual learning reveals alterations in neuronal coding and dendritic spine density in the visual cortex

    Directory of Open Access Journals (Sweden)

    Yan eWang

    2016-03-01

    Full Text Available Visual perceptual learning (VPL can improve spatial vision in normally sighted and visually impaired individuals. Although previous studies of humans and large animals have explored the neural basis of VPL, elucidation of the underlying cellular and molecular mechanisms remains a challenge. Owing to the advantages of molecular genetic and optogenetic manipulations, the mouse is a promising model for providing a mechanistic understanding of VPL. Here, we thoroughly evaluated the effects and properties of VPL on spatial vision in C57BL/6J mice using a two-alternative, forced-choice visual water task. Briefly, the mice underwent prolonged training at near the individual threshold of contrast or spatial frequency (SF for pattern discrimination or visual detection for 35 consecutive days. Following training, the contrast-threshold trained mice showed an 87% improvement in contrast sensitivity (CS and a 55% gain in visual acuity (VA. Similarly, the SF-threshold trained mice exhibited comparable and long-lasting improvements in VA and significant gains in CS over a wide range of SFs. Furthermore, learning largely transferred across eyes and stimulus orientations. Interestingly, learning could transfer from a pattern discrimination task to a visual detection task, but not vice versa. We validated that this VPL fully restored VA in adult amblyopic mice and old mice. Taken together, these data indicate that mice, as a species, exhibit reliable VPL. Intrinsic signal optical imaging revealed that mice with perceptual training had higher cut-off SFs in primary visual cortex (V1 than those without perceptual training. Moreover, perceptual training induced an increase in the dendritic spine density in layer 2/3 pyramidal neurons of V1. These results indicated functional and structural alterations in V1 during VPL. Overall, our VPL mouse model will provide a platform for investigating the neurobiological basis of VPL.

  9. Technical Note: Stored grain volume measurement using a low density point cloud

    Science.gov (United States)

    The mass of stored grain is often determined from volume measurements by crop insurers, government auditors, and stored grain managers conducting inventories. Recent increases in bin size have accentuated the difficulty of accounting for irregularities and variations in surface conditions in calcula...

  10. Low density lipoprotein for oxidation and metabolic studies. Isolation from small volumes of plasma using a tabletop ultracentrifuge.

    Science.gov (United States)

    Himber, J; Bühler, E; Moll, D; Moser, U K

    1995-01-01

    A rapid method is described for the isolation of small volumes of plasma low density lipoprotein (LDL) free of plasma protein contaminants using the TL-100 Tabletop Ultracentrifuge (Beckman). The isolation of LDL was achieved by a 25 min discontinuous gradient density centrifugation between the density range of 1.006 and 1.21 g/ml, recovery of LDL by tube slicing followed by a 90 min flotation step (d = 1.12 g/ml). The purity of LDL and apolipoprotein B100 (apo B100) were monitored by agarose electrophoresis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), radial immunodiffusion and micropreparative fast protein liquid chromatography (FPLC). The ability of LDL oxidation was assessed by following absorbance at 234 nm after addition of copper ions. The functional integrity of the isolated LDL was checked by clearance kinetics after injection of [125I]-labelled LDL in estrogen-treated rats. The additional purification step led to LDL fractions free of protein contamination and left apo B100, alpha-tocopherol and beta-carotene intact. The LDL prepared in this way was free of albumin, as evident from analytic tests and from its enhanced oxidative modification by copper ions. Used for analytical purposes, this method allows LDL preparations from plasma volumes up to 570 microliters. This method is also convenient for metabolic studies in small animals, especially those relating to the determination of kinetic parameters of LDL in which LDL-apo B100 has to be specifically radiolabelled.

  11. Extension of Finite Volume Compressible Flow Solvers to Multi-dimensional, Variable Density Zero Mach Number Flows

    Science.gov (United States)

    Schneider, T.; Botta, N.; Geratz, K. J.; Klein, R.

    1999-11-01

    When attempting to compute unsteady, variable density flows at very small or zero Mach number using a standard finite volume compressible flow solver one faces at least the following difficulties: (i) Spatial pressure variations vanish as the Mach number M→0, but they do affect the velocity field at leading order; (ii) the resulting spatial homogeneity of the leading order pressure implies an elliptic divergence constraint for the energy flux; (iii) violations of this constraint crucially affect the transport of mass, preventing a code to properly advect even a constant density distribution. We overcome these difficulties through a new algorithm for constructing numerical fluxes in the context of multi-dimensional finite volume methods in conservation form. The construction of numerical fluxes involves: (1) An explicit upwind step yielding predictions for the nonlinear convective flux components. (2) A first correction step that introduces pressure gradients which guarantee compliance of the convective fluxes with a divergence constraint. This step requires the solution of a first Poisson-type equation. (3) A second projection step which provides the yet unknown (non-convective) pressure contribution to the total flux of momentum. This second projection requires the solution of another Poisson-type equation and yields the cell centered velocity field at the new time. This velocity field exactly satisfies a divergence constraint consistent with the asymptotic limit. Step (1) can be done by any standard finite volume compressible flow solver. The input to steps (2) and (3) involves solely the fluxes from step (1) and is independent of how these were obtained. Thus, our approach allows any such solver to be extended to compute variable density incompressible flows.

  12. Miniaturized volume holographic optical data storage and correlation system with a storage density of 10 Gb/cm3

    Institute of Scientific and Technical Information of China (English)

    CAO Liangcai; HE Qingsheng; WEI Haoyun; LIU Guodong; OUYANG Chuan; ZHAO Jian; WU Minxian; JIN Guofan

    2004-01-01

    The general idea of holographic optical data storage (HODS) is briefly introduced. Based on the recent advances of HODS, the key techniques and the challenges of HODS are discussed. Some new techniques are proposed to improve the system. A miniaturized volume holographic data storage and correlation system is presented. It can achieve a density of 10 Gb/cm3 and a fast correlation recognition rate of more than 2000 images per second. It shows the attracting potential advantages over other conventional storage methods in the information storage as well as information processing.

  13. Theoretical Model for Volume Fraction of UC, 235U Enrichment, and Effective Density of Final U 10Mo Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Prabhakaran, Ramprashad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Hu, Shenyang Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); McGarrah, Eric J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)

    2016-04-12

    The purpose of this document is to provide a theoretical framework for (1) estimating uranium carbide (UC) volume fraction in a final alloy of uranium with 10 weight percent molybdenum (U 10Mo) as a function of final alloy carbon concentration, and (2) estimating effective 235U enrichment in the U 10Mo matrix after accounting for loss of 235U in forming UC. This report will also serve as a theoretical baseline for effective density of as-cast low-enriched U 10Mo alloy. Therefore, this report will serve as the baseline for quality control of final alloy carbon content

  14. Influence of Zinc on the Surface Tension, Density and Molar Volume of (Ag-Sneut +Zn Liquid Alloys

    Directory of Open Access Journals (Sweden)

    Gąsior W.

    2016-03-01

    Full Text Available The dilatometric and maximum bubble pressure methods were applied for the measurements of the density and surface tension of liquid (Ag-Sneut +Zn lead-free solders. The experiments were carried out in the temperature range from 515 to 1223 K for the alloys of the zinc concentration equaling 0.01, 0.02, 0.04, 0.05, 0.1 and 0.2 of the mole fraction. It was found that the temperature dependence of both the density and the surface tension could be thought as linear, so they were interpreted by straight line equations. The experimental data of the molar volume of the investigated alloys were described by the polynomial dependent on the composition and temperature.

  15. Theory of excluded volume equation of state: higher approximations and new generation of equations of state for entire density range.

    Science.gov (United States)

    Rusanov, Anatoly I

    2004-07-22

    A novel theory of an equation of state based on excluded volume and formulated in two preceding papers for gases and gaseous mixtures is extended to the entire density range by considering higher (beginning from the third) approximations of the theory. The algorithm of constructing higher approximations is elaborated. Equations of state are deduced using the requirement of maximum simplicity and contain a single free parameter to be chosen by reason of convenience or simplicity or to be used as a fitting parameter with respect to the computer simulation database. In this way, precise equations of state are derived for the hard-sphere fluid in the entire density range. On the side, the theory reproduces most known earlier equations of state for hard spheres and determines their place in the hierarchy of approximations. Equations of state for van der Waals fluids are also presented, and their critical parameters are estimated.

  16. ELUCID - Exploring the Local Universe with reConstructed Initial Density field III: Constrained Simulation in the SDSS Volume

    CERN Document Server

    Wang, Huiyuan; Yang, Xiaohu; Zhang, Youcai; Shi, JingJing; Jing, Y P; Liu, Chengze; Li, Shijie; Kang, Xi; Gao, Yang

    2016-01-01

    A method we developed recently for the reconstruction of the initial density field in the nearby Universe is applied to the Sloan Digital Sky Survey Data Release 7. A high-resolution N-body constrained simulation (CS) of the reconstructed initial condition, with $3072^3$ particles evolved in a 500 Mpc/h box, is carried out and analyzed in terms of the statistical properties of the final density field and its relation with the distribution of SDSS galaxies. We find that the statistical properties of the cosmic web and the halo populations are accurately reproduced in the CS. The galaxy density field is strongly correlated with the CS density field, with a bias that depend on both galaxy luminosity and color. Our further investigations show that the CS provides robust quantities describing the environments within which the observed galaxies and galaxy systems reside. Cosmic variance is greatly reduced in the CS so that the statistical uncertainties can be controlled effectively even for samples of small volumes...

  17. Influence of inoculum density and aeration volume on biomass and bioactive compound production in bulb-type bubble bioreactor cultures of Eleutherococcus koreanum Nakai.

    Science.gov (United States)

    Lee, Eun-Jung; Moh, Sang-Hyun; Paek, Kee-Yoeup

    2011-07-01

    This study deals with the effects of initial inoculum density and aeration volume on biomass and bioactive compound production in adventitious roots of Eleutherococcus koreanum Nakai in bulb-type bubble bioreactors (3-L capacity). While the fresh and dry weights of the roots increased with increasing inoculum density, the highest percentage dry weight and accumulation of total target compounds (eleutheroside B and E, chlorogenic acid, total phenolics, and flavonoids) were noted at an inoculum density of 5.0 g L(-1). Poor aeration volume (0.05 vvm) stunted root growth, and high aeration volume (0.4 vvm) caused physiological disorders. Moreover, an inoculum density of 5.0 g L(-1) and an aeration volume of 0.1 vvm resulted in the highest concentration of total target compounds and least root death. Such optimization of culture conditions will be beneficial for the large-scale production of E. koreanum biomass and bioactive compounds.

  18. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 Catchments (Version 2.1) for the Conterminous United States: Dam Density and Storage Volume

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset represents the dam density and storage volumes within individual, local NHDPlusV2 catchments and upstream, contributing watersheds based on National...

  19. Curcumin and sertraline prevent the reduction of the number of neurons and glial cells and the volume of rats' medial prefrontal cortex induced by stress.

    Science.gov (United States)

    Noorafshan, Ali; Abdollahifar, Mohammad-Amin; Asadi-Golshan, Reza; Rashidian-Rashidabadi, Ali; Karbalay-Doust, Saied

    2014-01-01

    Chronic stress induces morphological changes in the neurons of several brain regions, including medial prefrontal cortex (mPFC). This region is involved in variety of behavioral tasks, including learning and memory. Our previous work showed that stress impaired function. The present work extends the earlier work to study mPFC in stressed and non-stressed rats with or without sertraline or curcumin treatments using stereological methods. Sertraline is a selective serotonin reuptake inhibitor and curcumin is the main ingredient of turmeric with neuroprotective effects. In this study, 42 male rats were randomly assigned to seven groups: stress + distilled water, stress + olive oil, stress + curcumin (100 mg/kg/day), stress + sertraline (10 mg/kg/day), curcumin, sertraline, and control groups. After 56 days, the right mPFC was removed. The volume of mPFC and its subdivisions and the total number of neurons and glia were estimated. The results showed ~8%, ~8%, and 24% decrease in the volume of the mPFC and its prelimbic and infralimbic subdivisions, respectively. However, the anterior cingulated cortex remained unchanged. Also, the total number of the neurons and glial cells was significantly reduced (11% and 5%, respectively) in stress (+distilled water or olive oil) group in comparison to the non-stressed rats (Psertraline and stress + curcumin groups in comparison to the non-treated stressed rats (Psertraline could prevent the stress-induced changes in mPFC.

  20. High density matter in AGS, SPS and RHIC collisions: Proceedings. Volume 9

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    This 1-day workshop focused on phenomenological models regarding the specific question of the maximum energy density achievable in collisions at AGS, SPS and RHIC. The idea was to have 30-minute (or less) presentations of each model--but not the model as a whole, rather then that strongly narrowed to the above physics question. The key topics addressed were: (1) to estimate the energy density in heavy-ion collisions within a model, and to discuss its physical implications; (2) to suggest experimental observables that may confirm the correctness of a model approach--with respect to the energy density estimate; (3) to compare with existing data from AGS and SPS heavy-ion collisions, and to give predictions for the future RHIC experiments. G. Ogilvie started up the workshop with a critical summary of experimental manifestations of high-density matter at the AGS, and gave a personal outlook on RHIC physics. R. Mattiello talked about his newly developed hadron cascade model for applications to AGS and SPS collisions. Next, D. Kharzeev gave a nice introduction of the Glauber approach to high-energy collisions and illustrated the predictive power of this approach in nucleus-nucleus collisions at the SPS. It followed S. Vance with a presentation of the baryon-junction model to explain the observed baryon stopping phenomenon in collisions of heavy nuclei. S. Bass continued with a broad perspective of the UrQMD model, and provided insight into the details of the microscopic dynamical features of nuclear collisions at high energy. J. Sandweiss and J. Kapusta addressed the interesting aspect of photon production in peripherical nuclear collisions due to intense electromagnetic bremstrahlung by the highly charged, fast moving ions. Finally, H. Sorge closed up the one-day workshop with a presentation of his recent work with the RQMD model. This report consists of a summary and vugraphs of the presentations.

  1. Temperature and relative density of atomic hydrogen in a multicusp H sup minus volume source

    Energy Technology Data Exchange (ETDEWEB)

    Bruneteau, A.M.; Hollos, G.; Bacal, M. (Laboratoire de Physique des Milieux Ionises, Laboratoire du Centre National de la Recherche Scientifique, Ecole Polytechnique, 91128 Palaiseau Cedex, (France)); Bretagne, J. (Laboratoire de Physique des Gaz et des Plasmas, LA73 du Centre National de la Recherche Scientifique, Universite de Paris-Sud, 91405 Orsay (France))

    1990-06-15

    The Balmer {beta} and {gamma} line shapes have been analyzed to determine the relative density and the temperature of hydrogen atoms in magnetic multicusp plasma generators. Results for a 90-V, 4--40-mTorr, 1--18-A conventional multicusp plasma generator and a 50-V, 4-mTorr, 1--15-A hybrid multicusp plasma generator are presented. The relative number density of hydrogen atoms increased smoothly with pressure and discharge current but never exceeded 10%. The absolute atomic number density in a 90-V 10-A discharge varied in proportion with pressure. The atomic temperature (in the 0.1--0.4-eV range) decreased with pressure and slowly increased with the discharge current. The role of atoms in the processes determining the H{sup {minus}} temperature and the H{sub 2} vibrational and rotational temperatures is discussed. The results confirm that in multicusp negative-ion sources collisional excitation of ground state atoms and molecules by energetic electrons is the dominant process in Balmer-{beta} and -{gamma} light emission.

  2. Atomic temperature and density in multicusp H sup minus volume sources

    Energy Technology Data Exchange (ETDEWEB)

    Bruneteau, A.M.; Hollos, G.; Leroy, R.; Berlemont, P.; Bacal, M. (Laboratoire du C.N.R.S., Ecole Polytechnique, 91128 Palaiseau Cedex (France)); Bertagne, J. (Laboratoire de Physique des Gaz et des Plasmas, LA73 du CNRS, Universite de Paris-Sud, 91405 Orsay (France))

    1990-08-05

    The Balmer {beta} and {gamma} line shapes have been analyzed to determine the relative density and the temperature of hydrogen atoms in magnetic multicusp plasma generators. Results for a 90 V, 4--40 mTorr, 1--18 A conventional multicusp plasma generator and a 50 V, 4 mTorr, 1--15 A hybrid multicusp plasma generator are presented. The relative number density of hydrogen atoms increases smoothly with pressure and discharge current but never exceeds 10%. The absolute atomic number density in a 90 V--10 A discharge varies in proportion with pressure. The atomic temperature (in the 0.1--0.4 eV range) decreases with pressure and slowly increases with the discharge current. The role of atoms in the processes determining the H{sup {minus}} temperature and the H{sub 2} vibrational and rotational temperatures is discussed. The results confirm that in multicusp negative ion sources collisional excitation of ground-state atoms and molecules by energetic electrons is the dominant process in Balmer {beta} and {gamma} light emission.

  3. Hydrogen bonding interactions between ethylene glycol and water:density,excess molar volume,and spectral study

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Studies of the density and the excess molar volume of ethylene glycol (EG)-water mixtures were carried out to illustrate the hydrogen bonding interactions of EG with water at different temperatures. The re-sults suggest that a likely complex of 3 ethylene glycol molecules bonding with 4 water molecules in an ethylene glycol-water mixture (EGW) is formed at the maximal excess molar volume,which displays stronger absorption capabilities for SO2 when the concentration of SO2 reaches 400×10?6 (volume ratio) in the gas phase. Meanwhile,FTIR and UV spectra of EGWs were recorded at various EG concentra-tions to display the hydrogen bonding interactions of EG with water. The FTIR spectra show that the stretching vibrational band of hydroxyl in the EGWs shifts to a lower frequency and the bending vibra-tional band of water shifts to a higher frequency with increasing the EG concentration,respectively. Furthermore,the UV spectra show that the electron transferring band of the hydroxyl oxygen in EG shows red shift with increasing the EG concentration. The frequency shifts in FTIR spectra and the shifts of absorption bands in UV absorption spectra of EGWs are interpreted as the strong hydrogen bonding interactions of the hydrogen atoms in water with the hydroxyl oxygen atoms of EG.

  4. RELATIONSHIP BETWEEN TRAINING VOLUME AND BONE MINERAL DENSITY CHANGES IN ELDERLY WOMEN

    Directory of Open Access Journals (Sweden)

    Juan José Rábade Espinosa

    Full Text Available ABSTRACT Introduction: Several studies have analyzed the relationship between physical activity and bone density. However, the prescription of exercise is not entirely clear as to the type, quantity and intensity. Objective: The objective of this study was to determine if there is a relationship between the amount of exercise and changes in bone mineral density. Methods: Fifty-two women, members of the Municipal Program of Physical Activity for Seniors, voluntarily underwent two ultrasonographies of the calcaneus within a 6-month interval. During this period, all physical activity was recorded. Afterwards, a lineal correlation study was carried out between the amount of exercise and bone changes, expressed as T-Score variation, first in total number of participants and then in groups. Considering the average body weight obtained for all women, two groups were created ("light" 69 kg. Later, women who had participated in less than 72% of the targeted program were excluded from both groups, and the differences between the groups "light and trained" and "heavy and trained" were analyzed. To do so, the nonparametric Mann-Whitney U test was used. Results: A significant relationship of r= -0.59 was found between the total amount of exercise and the T-Score variation in the group of women above 69 kg. Significant differences were found between the "light and trained" group and the "heavy and trained" group with respect to the variation of T-Score. Conclusion: The effect of exercise on bone mineral density is determined, somehow, by body weight. This interaction is due, possibly, to mechanical demands difference.

  5. Optical quantification of cellular mass, volume and density of circulating tumor cells identified in an ovarian cancer patient

    Directory of Open Access Journals (Sweden)

    Kevin Gregory Phillips

    2012-07-01

    Full Text Available Clinical studies have demonstrated that circulating tumor cells (CTCs are present in the blood of cancer patients with known metastatic disease across the major types of epithelial malignancies. Recent studies have shown that the concentration of CTCs in the blood is prognostic of overall survival in breast, prostate, colorectal and non-small cell lung cancer. This study characterizes CTCs identified using the high-definition (HD-CTC assay in an ovarian cancer patient with stage IIIC disease. We characterized the physical properties of 31 HD-CTCs and 50 normal leukocytes from a single blood draw taken just prior to the initial debulking surgery. We utilized a non-interferometric quantitative phase microscopy technique using brightfield imagery to measure cellular dry mass. Next we used a quantitative differential interference contrast microscopy technique to measure cellular volume. These techniques were combined to determine cellular dry mass density. We found that HD-CTCs were more massive than leukocytes: 33.6 ± 3.2 pg (HD-CTC compared to 18.7 ± 0.6 pg (leukocytes, p < 0.001; had greater volumes: 518.3 ± 24.5 fL (HD-CTC compared to 230.9 ± 78.5 fL (leukocyte, p<0.001; and possessed a decreased dry mass density with respect to leukocytes: 0.065 ± 0.006 pg/fL (HD-CTC compared to 0.085 ± 0.004 pg/fL (leukocyte, p < 0.006. Quantification of HD-CTC dry mass content and volume provide key insights into the fluid dynamics of cancer, and may provide the rationale for strategies to isolate, monitor or target CTCs based on their physical properties. The parameters reported here can also be incorporated into blood cell flow models to better understand metastasis.

  6. Comparison of the Volume Charge Density of Nanofiltration Membranes Obtained from Retention and Conductivity Experiments

    DEFF Research Database (Denmark)

    Benavente, J.; Silva, V.; Pradanos, P.

    2010-01-01

    A version of the Donnan steric-partitioning pore model with dielectrical exclusion (DSPM-DE) has been used to get information on the pore size and charge density of a commercial membrane, NF45 from FilmTec, from its retention of KCl solutions. The conductivity inside the pores has been measured...... of the membrane. These two methods give results in fair accordance which probes that the sometimes controversial method of DSPM-DE can give accurate results for the charge as well as for the mean pore size of a nanofiltration membrane. Sonic clues to improve the way this model can be used are given as well....

  7. MeCP2 mutation results in compartment-specific reductions in dendritic branching and spine density in layer 5 motor cortical neurons of YFP-H mice.

    Directory of Open Access Journals (Sweden)

    David P Stuss

    Full Text Available Rett Syndrome (RTT is a neurodevelopmental disorder predominantly caused by mutations in the X-linked gene MECP2. A primary feature of the syndrome is the impaired maturation and maintenance of excitatory synapses in the central nervous system (CNS. Different RTT mouse models have shown that particular Mecp2 mutations have highly variable effects on neuronal architecture. Distinguishing MeCP2 mutant cellular phenotypes therefore demands analysis of specific mutations in well-defined neuronal subpopulations. We examined a transgenically labeled subset of cortical neurons in YFP-H mice crossed with the Mecp2(tm1.1Jae mutant line. YFP(+ Layer 5 pyramidal neurons in the motor cortex of wildtype and hemizygous mutant male mice were examined for differences in dendrite morphology and spine density. Total basal dendritic length was decreased by 18.6% due to both shorter dendrites and reduced branching proximal to the soma. Tangential dendrite lengths in the apical tuft were reduced by up to 26.6%. Spine density was reduced by 47.4% in the apical tuft and 54.5% in secondary apical dendrites, but remained unaffected in primary apical and proximal basal dendrites. We also found that MeCP2 mutation reduced the number of YFP(+ cells in YFP-H mice by up to 72% in various cortical regions without affecting the intensity of YFP expression in individual cells. Our results support the view that the effects of MeCP2 mutation are highly context-dependent and cannot be generalized across mutation types and cell populations.

  8. Relationships among parvalbumin-immunoreactive neuron density, phase-locked gamma oscillations, and autistic/schizophrenic symptoms in PDGFR-β knock-out and control mice.

    Directory of Open Access Journals (Sweden)

    Tomoya Nakamura

    Full Text Available Cognitive deficits and negative symptoms are important therapeutic targets for schizophrenia and autism disorders. Although reduction of phase-locked gamma oscillation has been suggested to be a result of reduced parvalbumin-immunoreactive (putatively, GABAergic neurons, no direct correlations between these have been established in these disorders. In the present study, we investigated such relationships during pharmacological treatment with a newly synthesized drug, T-817MA, which displays neuroprotective and neurotrophic effects. In this study, we used platelet-derived growth factor receptor-β gene knockout (PDGFR-β KO mice as an animal model of schizophrenia and autism. These mutant mice display a reduction in social behaviors; deficits in prepulse inhibition (PPI; reduced levels of parvalbumin-immunoreactive neurons in the medical prefrontal cortex, hippocampus, amygdala, and superior colliculus; and a deficit in of auditory phase-locked gamma oscillations. We found that oral administration of T-817MA ameliorated all these symptoms in the PDGFR-β KO mice. Furthermore, phase-locked gamma oscillations were significantly correlated with the density of parvalbumin-immunoreactive neurons, which was, in turn, correlated with PPI and behavioral parameters. These findings suggest that recovery of parvalbumin-immunoreactive neurons by pharmacological intervention relieved the reduction of phase-locked gamma oscillations and, consequently, ameliorated PPI and social behavioral deficits. Thus, our findings suggest that phase-locked gamma oscillations could be a useful physiological biomarker for abnormality of parvalbumin-immunoreactive neurons that may induce cognitive deficits and negative symptoms of schizophrenia and autism, as well as of effective pharmacological interventions in both humans and experimental animals.

  9. Effect of explant density and volume of cultivation medium on in-vitro multiplication of blueberry (Vaccinium corymbosum L. varieties "Brigitta" and "Legacy"

    Directory of Open Access Journals (Sweden)

    Mario Rodríguez Beraud

    2015-03-01

    Full Text Available The objective of the investigation was to evaluate the in-vitro multiplication of two varieties of blueberry (Vaccinium corymbosum L., “Brigitta” and “Legacy” in response to five explants densities (5, 10, 15, 20 and 25 and four flask volumes (10, 20, 30 and 40 mL for cultivation. For both varieties the cultivation medium WPM (Woody Plant Medium was used. The experiment was completely randomized with 20 treatments and 12 repetitions per treatment. After 45 days of cultivation we evaluated the height of shoots, number of shoots/explant, number of nodes/shoot and number of shoots/flask. Variety “Brigitta” had highest shoots at higher densities and flask volumes, while variety “Legacy” had the highest average shoot height with intermediate densities and high volumes. Regarding the number of shoots/explant, the volume of the medium had no influence on “Brigitta”, however, higher plant densities affected this parameter. With variety “Legacy” the maximum number of shoots was achieved with lower plant densities and intermediate culture volumes per flask. In relation to the number of nodes per explant "Brigitta had lower numbers as compared to “Legacy”, but with both varieties the number of nodes decresed with smaller volumes of medium in the flasks. For the number of shoots per flask, “Brigitta” responsed best at higher densities exceeding 40 shoots per flask. In contrast, “Legacy” produced maximum results at density of 25 explants in 30 mL of medium. It is concluded that for the optimum multiplication of both varieties the correct selection of both, the planting density and the volume of multiplication medium are important.

  10. Neuron-specific enolase, but not S100B or myelin basic protein, increases in peripheral blood corresponding to lesion volume after cortical impact in piglets.

    Science.gov (United States)

    Costine, Beth A; Quebeda-Clerkin, Patricia B; Dodge, Carter P; Harris, Brent T; Hillier, Simon C; Duhaime, Ann-Christine

    2012-11-20

    A peripheral indicator of the presence and magnitude of brain injury has been a sought-after tool by clinicians. We measured neuron-specific enolase (NSE), myelin basic protein (MBP), and S100B, prior to and after scaled cortical impact in immature pigs, to determine if these purported markers increase after injury, correlate with the resulting lesion volume, and if these relationships vary with maturation. Scaled cortical impact resulted in increased lesion volume with increasing age. Concentrations of NSE, but not S100B or MBP, increased after injury in all age groups. The high variability of S100B concentrations prior to injury may have precluded detection of an increase due to injury. Total serum markers were estimated, accounting for the allometric growth of blood volume, and resulted in a positive correlation of both NSE and S100B with lesion volume. Even with allometric scaling of blood volume and a uniform mechanism of injury, NSE had only a fair to poor predictive value. In a clinical setting, where the types of injuries are varied, more investigation is required to yield a panel of serum markers that can reliably predict the extent of injury. Allometric scaling may improve estimation of serum marker release in pediatric populations.

  11. COLOR SUPERCONDUCTIVITY, INSTANTONS AND PARITY (NON?)-CONSERVATION AT HIGH BARYON DENSITY-VOLUME 5.

    Energy Technology Data Exchange (ETDEWEB)

    GYULASSY,M.

    1997-11-11

    This one day Riken BNL Research Center workshop was organized to follow-up on the rapidly developing theoretical work on color super-conductivity, instanton dynamics, and possible signatures of parity violation in strong interactions that was stimulated by the talk of Frank Wilczek during the Riken BNL September Symposium. The workshop was held on November 11, 1997 at the center with over 30 participants. The program consisted of four talks on theory in the morning followed by two talks in the afternoon by experimentalists and open discussion. Krishna Rajagopal (MIT) first reviewed the status of the chiral condensate calculations at high baryon density within the instanton model and the percolation transition at moderate densities restoring chiral symmetry. Mark Alford (Princeton) then discussed the nature of the novel color super-conducting diquark condensates. The main result was that the largest gap on the order of 100 MeV was found for the 0{sup +} condensate, with only a tiny gap << MeV for the other possible 1{sup +}. Thomas Schaefer (INT) gave a complete overview of the instanton effects on correlators and showed independent calculations in collaboration with Shuryak (SUNY) and Velkovsky (BNL) confirming the updated results of the Wilczek group (Princeton, MIT). Yang Pang (Columbia) addressed the general question of how breaking of discrete symmetries by any condensate with suitable quantum numbers could be searched for experimentally especially at the AGS through longitudinal A polarization measurements. Nicholas Samios (BNL) reviewed the history of measurements on {Lambda} polarization and suggested specific kinematical variables for such analysis. Brian Cole (Columbia) showed recent E910 measurements of {Lambda} production at the AGS in nuclear collisions and focused on the systematic biases that must be considered when looking for small symmetry breaking effects. Lively discussions led by Robert Jaffe (MIT) focused especially on speculations on the still

  12. Antagomirs targeting microRNA-134 increase hippocampal pyramidal neuron spine volume in vivo and protect against pilocarpine-induced status epilepticus.

    Science.gov (United States)

    Jimenez-Mateos, Eva M; Engel, Tobias; Merino-Serrais, Paula; Fernaud-Espinosa, Isabel; Rodriguez-Alvarez, Natalia; Reynolds, James; Reschke, Cristina R; Conroy, Ronan M; McKiernan, Ross C; deFelipe, Javier; Henshall, David C

    2015-07-01

    Emerging data support roles for microRNA (miRNA) in the pathogenesis of various neurologic disorders including epilepsy. MicroRNA-134 (miR-134) is enriched in dendrites of hippocampal neurons, where it negatively regulates spine volume. Recent work identified upregulation of miR-134 in experimental and human epilepsy. Targeting miR-134 in vivo using antagomirs had potent anticonvulsant effects against kainic acid-induced seizures and was associated with a reduction in dendritic spine number. In the present study, we measured dendritic spine volume in mice injected with miR-134-targeting antagomirs and tested effects of the antagomirs on status epilepticus triggered by the cholinergic agonist pilocarpine. Morphometric analysis of over 6,400 dendritic spines in Lucifer yellow-injected CA3 pyramidal neurons revealed increased spine volume in mice given antagomirs compared to controls that received a scrambled sequence. Treatment of mice with miR-134 antagomirs did not alter performance in a behavioral test (novel object location). Status epilepticus induced by pilocarpine was associated with upregulation of miR-134 within the hippocampus of mice. Pretreatment of mice with miR-134 antagomirs reduced the proportion of animals that developed status epilepticus following pilocarpine and increased animal survival. In antagomir-treated mice that did develop status epilepticus, seizure onset was delayed and total seizure power was reduced. These studies provide in vivo evidence that miR-134 regulates spine volume in the hippocampus and validation of the seizure-suppressive effects of miR-134 antagomirs in a model with a different triggering mechanism, indicating broad conservation of anticonvulsant effects.

  13. Distribution of neurons in functional areas of the mouse cerebral cortex reveals quantitatively different cortical zones.

    Science.gov (United States)

    Herculano-Houzel, Suzana; Watson, Charles; Paxinos, George

    2013-01-01

    How are neurons distributed along the cortical surface and across functional areas? Here we use the isotropic fractionator (Herculano-Houzel and Lent, 2005) to analyze the distribution of neurons across the entire isocortex of the mouse, divided into 18 functional areas defined anatomically. We find that the number of neurons underneath a surface area (the N/A ratio) varies 4.5-fold across functional areas and neuronal density varies 3.2-fold. The face area of S1 contains the most neurons, followed by motor cortex and the primary visual cortex. Remarkably, while the distribution of neurons across functional areas does not accompany the distribution of surface area, it mirrors closely the distribution of cortical volumes-with the exception of the visual areas, which hold more neurons than expected for their volume. Across the non-visual cortex, the volume of individual functional areas is a shared linear function of their number of neurons, while in the visual areas, neuronal densities are much higher than in all other areas. In contrast, the 18 functional areas cluster into three different zones according to the relationship between the N/A ratio and cortical thickness and neuronal density: these three clusters can be called visual, sensory, and, possibly, associative. These findings are remarkably similar to those in the human cerebral cortex (Ribeiro et al., 2013) and suggest that, like the human cerebral cortex, the mouse cerebral cortex comprises two zones that differ in how neurons form the cortical volume, and three zones that differ in how neurons are distributed underneath the cortical surface, possibly in relation to local differences in connectivity through the white matter. Our results suggest that beyond the developmental divide into visual and non-visual cortex, functional areas initially share a common distribution of neurons along the parenchyma that become delimited into functional areas according to the pattern of connectivity established later.

  14. Vorinostat positively regulates synaptic plasticity genes expression and spine density in HIV infected neurons: role of nicotine in progression of HIV-associated neurocognitive disorder

    Science.gov (United States)

    2014-01-01

    Background HIV-associated neurocognitive disorder (HAND) is characterized by development of cognitive, behavioral and motor abnormalities, and occurs in approximately 50% of HIV infected individuals. In the United States, the prevalence of cigarette smoking ranges from 35-70% in HIV-infected individuals compared to 20% in general population. Cognitive impairment in heavy cigarette smokers has been well reported. However, the synergistic effects of nicotine and HIV infection and the underlying mechanisms in the development of HAND are unknown. Results In this study, we explored the role of nicotine in the progression of HAND using SK-N-MC, a neuronal cell line. SK-N-MC cells were infected with HIV-1 in the presence or absence of nicotine for 7 days. We observed significant increase in HIV infectivity in SK-N-MC treated with nicotine compared to untreated HIV-infected neuronal cells. HIV and nicotine synergize to significantly dysregulate the expression of synaptic plasticity genes and spine density; with a concomitant increase of HDAC2 levels in SK-N-MC cells. In addition, inhibition of HDAC2 up-regulation with the use of vorinostat resulted in HIV latency breakdown and recovery of synaptic plasticity genes expression and spine density in nicotine/HIV alone and in co-treated SK-N-MC cells. Furthermore, increased eIF2 alpha phosphorylation, which negatively regulates eukaryotic translational process, was observed in HIV alone and in co-treatment with nicotine compared to untreated control and nicotine alone treated SK-N-MC cells. Conclusions These results suggest that nicotine and HIV synergize to negatively regulate the synaptic plasticity gene expression and spine density and this may contribute to the increased risk of HAND in HIV infected smokers. Apart from disrupting latency, vorinostat may be a useful therapeutic to inhibit the negative regulatory effects on synaptic plasticity in HIV infected nicotine abusers. PMID:24886748

  15. Chronic oestradiol reduces the dendritic spine density of KNDy (kisspeptin/neurokinin B/dynorphin) neurones in the arcuate nucleus of ovariectomised Tac2-enhanced green fluorescent protein transgenic mice.

    Science.gov (United States)

    Cholanian, M; Krajewski-Hall, S J; McMullen, N T; Rance, N E

    2015-04-01

    Neurones in the arcuate nucleus that express neurokinin B (NKB), kisspeptin and dynorphin (KNDy) play an important role in the reproductive axis. Oestradiol modulates the gene expression and somatic size of these neurones, although there is limited information available about whether their dendritic structure, a correlate of cellular plasticity, is altered by oestrogens. In the present study, we investigated the morphology of KNDy neurones by filling fluorescent neurones in the arcuate nucleus of Tac2-enhanced green fluorescent protein (EGFP) transgenic mice with biocytin. Filled neurones from ovariectomised (OVX) or OVX plus 17β-oestradiol (E2)-treated mice were visualised with anti-biotin immunohistochemistry and reconstructed in three dimensions with computer-assisted microscopy. KNDy neurones exhibited two primary dendrites, each with a few branches confined to the arcuate nucleus. Quantitative analysis revealed that E2 treatment of OVX mice decreased the cell size and dendritic spine density of KNDy neurones. The axons of KNDy neurones originated from the cell body or proximal dendrite and gave rise to local branches that appeared to terminate within the arcuate nucleus. Numerous terminal boutons were also visualised within the ependymal layer of the third ventricle adjacent to the arcuate nucleus. Axonal branches also projected to the adjacent median eminence and exited the arcuate nucleus. Confocal microscopy revealed close apposition of EGFP and gonadotrophin-releasing hormone-immunoreactive fibres within the median eminence and confirmed the presence of KNDy axon terminals in the ependymal layer of the third ventricle. The axonal branching pattern of KNDy neurones suggests that a single KNDy neurone could influence multiple arcuate neurones, tanycytes in the wall of the third ventricle, axon terminals in the median eminence and numerous areas outside of the arcuate nucleus. In parallel with its inhibitory effects on electrical excitability, E2 treatment

  16. Early changes of parotid density and volume predict modifications at the end of therapy and intensity of acute xerostomia

    Energy Technology Data Exchange (ETDEWEB)

    Belli, Maria Luisa; Broggi, Sara [Ospedale San Raffaele Scientific Institute, Medical Physics, Milano (Italy); Scalco, Elisa; Rizzo, Giovanna [CNR, Istituto di Bioimmagini e Fisiologia Molecolare, Milano (Italy); Sanguineti, Giuseppe [Regina Elena National Cancer Institute, Department of Radiation Oncology, Rome (Italy); Fiorino, Claudio; Cattaneo, Giovanni Mauro [Ospedale San Raffaele Scientific Institute, Medical Physics, Milano (Italy); CNR, Istituto di Bioimmagini e Fisiologia Molecolare, Milano (Italy); Dinapoli, Nicola; Valentini, Vincenzo [Universita Cattolica del Sacro Cuore, Radiotherapy, Rome (Italy); Ricchetti, Francesco [Ospedale Sacro Cuore, Radiotherapy, Negrar (Italy)

    2014-11-15

    To quantitatively assess the predictive power of early variations of parotid gland volume and density on final changes at the end of therapy and, possibly, on acute xerostomia during IMRT for head-neck cancer. Data of 92 parotids (46 patients) were available. Kinetics of the changes during treatment were described by the daily rate of density (rΔρ) and volume (rΔvol) variation based on weekly diagnostic kVCT images. Correlation between early and final changes was investigated as well as the correlation with prospective toxicity data (CTCAEv3.0) collected weekly during treatment for 24/46 patients. A higher rΔρ was observed during the first compared to last week of treatment (-0,50 vs -0,05HU, p-value = 0.0001). Based on early variations, a good estimation of the final changes may be obtained (Δρ: AUC = 0.82, p = 0.0001; Δvol: AUC = 0.77, p = 0.0001). Both early rΔρ and rΔvol predict a higher ''mean'' acute xerostomia score (≥ median value, 1.57; p-value = 0.01). Median early density rate changes for patients with mean xerostomia score ≥ / < 1.57 were -0.98 vs -0.22 HU/day respectively (p = 0.05). Early density and volume variations accurately predict final changes of parotid glands. A higher longitudinally assessed score of acute xerostomia is well predicted by higher rΔρ and rΔvol in the first two weeks of treatment: best cut-off values were -0.50 HU/day and -380 mm{sup 3}/day for rΔρ and rΔvol respectively. Further studies are necessary to definitively assess the potential of early density/volume changes in identifying more sensitive patients at higher risk of experiencing xerostomia. (orig.) [German] Ziel der Studie ist die Untersuchung der praediktiven Aussagekraft von fruehen Veraenderungen in Volumen und Dichte der Ohrspeicheldruese in Bezug auf die finale Verformung zum Ende der Therapie sowie das Risiko von Xerostomie waehrend der intesitaetsmodulierten Strahlentherapie (IMRT) bei Kopf und Hals Tumoren. Die Studie

  17. Association of the AMPA receptor-related postsynaptic density proteins GRIP and ABP with subsets of glutamate-sensitive neurons in the rat retina.

    Science.gov (United States)

    Gábriel, Robert; de Souza, Sunita; Ziff, Edward B; Witkovsky, Paul

    2002-07-22

    We used specific antibodies against two postsynaptic density proteins, GRIP (glutamate receptor interacting protein) and ABP (AMPA receptor-binding protein), to study their distribution in the rat retina. In the central nervous system, it has been shown that both proteins bind strongly to the AMPA glutamate receptor (GluR) 2/3 subunits, but not other GluRs, through a set of three PDZ domains. Western blots detected a single GRIP protein that was virtually identical in retina and brain, whereas retinal ABP corresponded to only one of three ABP peptides found in brain. The retinal distributions of GluR2/3, GRIP, and ABP immunoreactivity (IR) were similar but not identical. GluR2/3 immunoreactivity (IR) was abundant in both plexiform layers and in large perikarya. ABP IR was concentrated in large perikarya but was sparse in the plexiform layers, whereas GRIP IR was relatively more abundant in the plexiform layers than in perikarya. Immunolabel for these three antibodies consisted of puncta ABP IR was examined by double labeling subclasses of retinal neuron with characteristic marker proteins, e.g., calbindin. GRIP, ABP, and GluR2/3 IR were detected in horizontal cells, dopaminergic and glycinergic AII amacrine cells and large ganglion cells. Immunolabel was absent in rod bipolar and weak or absent in cholinergic amacrine cells. By using the tyramide method of signal amplification, a colocalization of GluR2/3 was found with either GRIP or ABP in horizontal cell terminals, and perikarya of amacrine and ganglion cells. Our results show that ABP and GRIP colocalize with GluR2/3 in particular subsets of retinal neuron, as was previously established for certain neurons in the brain.

  18. Neuronal apoptosis and synaptic density in the dentate gyrus of ischemic rats' response to chronic mild stress and the effects of Notch signaling.

    Directory of Open Access Journals (Sweden)

    Shaohua Wang

    Full Text Available Our previous research highlighted an inconsistency with Notch1 signaling-related compensatory neurogenesis after chronic mild stress (CMS in rodents suffering from cerebral ischemia, which continue to display post-stroke depressive symptoms. Here, we hypothesize that CMS aggrandized ischemia-related apoptosis injury and worsened synaptic integrity via gamma secretase-meditated Notch1 signaling. Adult rats were exposed to a CMS paradigm after left middle cerebral artery occlusion (MCAO. Open-field and sucrose consumption testing were employed to assess depression-like behavior. Gene expression of pro-apoptotic Bax, anti-apoptotic Bcl-2, and synaptic density-related synaptophysin were measured by western blotting and real-time PCR on Day 28 after MCAO surgery. CMS induced depressive behaviors in ischemic rats, which was accompanied by an elevation in Bax/bcl-2 ratio, TUNEL staining in neurons and reduced synaptophysin expression in the dentate gyrus. These collective effects were reversed by the gamma-secretase inhibitor DAPT (N-[N-(3,5-difluorophenacetyl-L-alanyl]-S-phenyl-glycine t-butyl ester. We found that post-stroke stressors made neurons in the dentate gyrus vulnerable to apoptosis, which supports a putative role for Notch signaling in neural integrity, potentially in newborn cells' synaptic deficit with regard to preexisting cells. These findings suggest that post-stroke depression therapeutically benefits from blocking gamma secretase mediated Notch signaling, and whether this signaling pathway could be a therapeutic target needs to be further investigated.

  19. Long-term Effects of Maternal Deprivation on the Volume, Number and Size of Neurons in the Amygdala and Nucleus Accumbens of Rats.

    Science.gov (United States)

    Aleksić, Dubravka; Aksić, Milan; Radonjić, Nevena V; Jovanović, Aleksandar; Marković, Branka; Petronijević, Nataša; Radonjić, Vidosava; Mališ, Miloš; Filipović, Branislav

    2016-09-01

    Maternal deprivation (MD) in rodents is an important neurodevelopmental model for studying a variety of behavioral changes which closely resemble the symptoms of schizophrenia in humans. To determine whether early-life stress leads to changes in the limbic system structures: the amygdala and the nucleus accumbens, 9-day-old Wistar rats were exposed to 24 hour MD. On P60 the rats were sacrificed for morphometric analysis and their brains were compared to the control group. Results show that MD affected important limbic system structures: the amygdala and the nucleus accumbens, whose volume was decreased (17% of the control value for the amygdala and 9% of the control value for the nucleus accumbens ), as well as the number of neurons (41% of the control value for the amygdala and 43% of the control value for the nucleus accumbens ) and the size of their cells soma (12% of the control value for the amygdala and 33% of the control value for the nucleus accumbens ). This study indicates that early stress in life leads to changes in the morphology of the limbic areas of the brain, most probably due to the loss of neurons during postnatal development, and it further contributes to our understanding of the effects of maternal deprivation on brain development.

  20. Linear and curvilinear correlations of brain gray matter volume and density with age using voxel-based morphometry with the Akaike information criterion in 291 healthy children.

    Science.gov (United States)

    Taki, Yasuyuki; Hashizume, Hiroshi; Thyreau, Benjamin; Sassa, Yuko; Takeuchi, Hikaru; Wu, Kai; Kotozaki, Yuka; Nouchi, Rui; Asano, Michiko; Asano, Kohei; Fukuda, Hiroshi; Kawashima, Ryuta

    2013-08-01

    We examined linear and curvilinear correlations of gray matter volume and density in cortical and subcortical gray matter with age using magnetic resonance images (MRI) in a large number of healthy children. We applied voxel-based morphometry (VBM) and region-of-interest (ROI) analyses with the Akaike information criterion (AIC), which was used to determine the best-fit model by selecting which predictor terms should be included. We collected data on brain structural MRI in 291 healthy children aged 5-18 years. Structural MRI data were segmented and normalized using a custom template by applying the diffeomorphic anatomical registration using exponentiated lie algebra (DARTEL) procedure. Next, we analyzed the correlations of gray matter volume and density with age in VBM with AIC by estimating linear, quadratic, and cubic polynomial functions. Several regions such as the prefrontal cortex, the precentral gyrus, and cerebellum showed significant linear or curvilinear correlations between gray matter volume and age on an increasing trajectory, and between gray matter density and age on a decreasing trajectory in VBM and ROI analyses with AIC. Because the trajectory of gray matter volume and density with age suggests the progress of brain maturation, our results may contribute to clarifying brain maturation in healthy children from the viewpoint of brain structure.

  1. It’s what’s inside that counts: Egg contaminant concentrations are influenced by estimates of egg density, egg volume, and fresh egg mass

    Science.gov (United States)

    Herzog, Mark; Ackerman, Josh; Eagles-Smith, Collin A.; Hartman, Christopher

    2016-01-01

    In egg contaminant studies, it is necessary to calculate egg contaminant concentrations on a fresh wet weight basis and this requires accurate estimates of egg density and egg volume. We show that the inclusion or exclusion of the eggshell can influence egg contaminant concentrations, and we provide estimates of egg density (both with and without the eggshell) and egg-shape coefficients (used to estimate egg volume from egg morphometrics) for American avocet (Recurvirostra americana), black-necked stilt (Himantopus mexicanus), and Forster’s tern (Sterna forsteri). Egg densities (g/cm3) estimated for whole eggs (1.056 ± 0.003) were higher than egg densities estimated for egg contents (1.024 ± 0.001), and were 1.059 ± 0.001 and 1.025 ± 0.001 for avocets, 1.056 ± 0.001 and 1.023 ± 0.001 for stilts, and 1.053 ± 0.002 and 1.025 ± 0.002 for terns. The egg-shape coefficients for egg volume (K v ) and egg mass (K w ) also differed depending on whether the eggshell was included (K v = 0.491 ± 0.001; K w = 0.518 ± 0.001) or excluded (K v = 0.493 ± 0.001; K w = 0.505 ± 0.001), and varied among species. Although egg contaminant concentrations are rarely meant to include the eggshell, we show that the typical inclusion of the eggshell in egg density and egg volume estimates results in egg contaminant concentrations being underestimated by 6–13 %. Our results demonstrate that the inclusion of the eggshell significantly influences estimates of egg density, egg volume, and fresh egg mass, which leads to egg contaminant concentrations that are biased low. We suggest that egg contaminant concentrations be calculated on a fresh wet weight basis using only internal egg-content densities, volumes, and masses appropriate for the species. For the three waterbirds in our study, these corrected coefficients are 1.024 ± 0.001 for egg density, 0.493 ± 0.001 for K v , and 0.505 ± 0.001 for K w .

  2. SynPAnal: software for rapid quantification of the density and intensity of protein puncta from fluorescence microscopy images of neurons.

    Directory of Open Access Journals (Sweden)

    Eric Danielson

    Full Text Available Continuous modification of the protein composition at synapses is a driving force for the plastic changes of synaptic strength, and provides the fundamental molecular mechanism of synaptic plasticity and information storage in the brain. Studying synaptic protein turnover is not only important for understanding learning and memory, but also has direct implication for understanding pathological conditions like aging, neurodegenerative diseases, and psychiatric disorders. Proteins involved in synaptic transmission and synaptic plasticity are typically concentrated at synapses of neurons and thus appear as puncta (clusters in immunofluorescence microscopy images. Quantitative measurement of the changes in puncta density, intensity, and sizes of specific proteins provide valuable information on their function in synaptic transmission, circuit development, synaptic plasticity, and synaptopathy. Unfortunately, puncta quantification is very labor intensive and time consuming. In this article, we describe a software tool designed for the rapid semi-automatic detection and quantification of synaptic protein puncta from 2D immunofluorescence images generated by confocal laser scanning microscopy. The software, dubbed as SynPAnal (for Synaptic Puncta Analysis, streamlines data quantification for puncta density and average intensity, thereby increases data analysis throughput compared to a manual method. SynPAnal is stand-alone software written using the JAVA programming language, and thus is portable and platform-free.

  3. Differential emotional experience induces elevated spine densities on basal dendrites of pyramidal neurons in the anterior cingulate cortex of Octodon degus.

    Science.gov (United States)

    Helmeke, C; Poeggel, G; Braun, K

    2001-01-01

    It appears likely that, in analogy to the synaptic development of sensory and motor cortices, which critically depends on sensory or motor stimulation (Rosenzweig and Bennett, 1996), the synaptic development of limbic cortical regions are modulated by early postnatal cognitive and emotional experiences. The very first postnatal experience, which takes place in a confined and stable familial environment, is the interaction of the newborn individual with the parents and siblings (Gray, 1958). The aim of this quantitative morphological study was to analyze the impact of different degrees of juvenile emotional experience on the synaptic development in a limbic cortical area, the dorsal anterior cingulate cortex, a region which is involved in the perception and regulation of emotions. We study the precocious trumpet-tailed rat (Octodon degus) as the animal model, because, like human babies, this species is born with functional visual and acoustic systems and the pups are therefore capable of detecting even subtle environmental changes immediately after birth (Reynolds and Wright, 1979; Poeggel and Braun, 1996; Braun et al., 2000; Ovtscharoff and Braun, 2001). The results demonstrate that already a subtle disturbance of the familial environment such as handling induced significantly elevated spine densities on the basal dendrites of layer III cortical pyramidal neurons. More severe disturbances of the emotional environment, such as periodic parental deprivation with or without subsequent chronic social isolation, resulted in an elevation of spine densities of similar magnitude as seen after handling and in addition, altered spine densities confined to specific dendritic segments were observed in these groups. These observations unveil the remarkable sensitivity of the dorsal anterior cingulate cortex towards environmental influences and behavioral experiences during phases of postnatal development. The behavioral consequences of these experience-induced synaptic changes

  4. Ab initio full charge-density study of the atomic volume of α-phase Fr, Ra, Ac, Th, Pa, U, Np, and Pu

    DEFF Research Database (Denmark)

    Vitos, Levente; Kollár, J.; Skriver, Hans Lomholt

    1997-01-01

    We have used a full charge-density technique based on the linear muffin-tin orbitals method in first-principles calculations of the atomic volumes of the light actinides including Fr, Ra, and Ac in their low-temperature crystallographic phases. The good agreement between the theoretical and exper...... and experimental values along the series support the picture of itinerant 5f electronic states in Th to Pu. The increased deviation between theory and experiment found in Np and Pu may be an indication of correlation effects not included in the local density approximation....

  5. Apparent and partial molar volumes of long-chain alkyldimethylbenzylammonium chlorides and bromides in aqueous solutions at T=15 deg. C and T=25 deg. C[Alkyldimethylbenzylammonium chlorides; Alkyldimethylbenzylammonium bromides; Micellization; Density; Apparent molar volumes

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Perez, A.; Ruso, J.M.; Nimo, J.; Rodriguez, J.R. E-mail: fmjulio@usc.es

    2003-12-01

    Density measurements of dodecyl- (C{sub 12}DBACl), tetradecyl- (C{sub 14}DBACl), hexadecyldimethylbenzylammonium chloride (C{sub 16}DBACl) and of decyl- (C{sub 10}DBABr) and dodecyldimethylbenzylammonium bromide (C{sub 12}DBABr) in aqueous solutions at T=15 deg. C and T=25 deg. C have been carried out. From these results, apparent and partial molar volumes were calculated. Positive deviations from the Debye-Hueckel limiting law provide evidence for limited association at concentrations below the critical micelle concentration. The change of the apparent molar volume upon micellization was calculated. The relevant parameters have been presented in function of the alkyl chain length. Apparent molar volumes of the present compounds in the micellar phase, V{sub phi}{sup m}, and the change upon micellization, {delta}V{sub phi}{sup m}, have been discussed in terms of temperature and type of counterion.

  6. An evaluation of the role of nuclear cytoplasmic ratios and nuclear volume densities as diagnostic indicators in metaplastic, dysplastic and neoplastic lesions of the human cheek

    OpenAIRE

    1997-01-01

    The increase in nuclear cytoplasmic (NIC) ratio is one of the features of cellular atypia which is used in the histopathological assessment of premalignant lesions of the oral mucosa. Since this feature is readily quantifiable using morphometry, we have analysed both N/C and nuclear volume densities in basal and spinous cells from human cheek lesions with and without malignant potential in order to ascertain the validity of this parameter as a predictor. Using ...

  7. Excess molar volume of the acetonitrile + alcohol systems at 298.15 K. Part I: Density measurements for acetonitrile + methanol, + ethanol systems

    Directory of Open Access Journals (Sweden)

    SLOBODAN P. SERBANOVIC

    2002-09-01

    Full Text Available The excess molar volume VE of the binary liquid systems acetonitrile + methanol and acetonitrile + ethanol has been evaluated from density measurements at 298.15 K and at atmospheric pressure over the entire composition range. A vibrating tube densimeter, type Anton Paar DMA 55, was applied for these measurements. The Redlich–Kister equation was used to fit the experimental VE data.

  8. The alterations of cortical volume, thickness, surface and density in the intermediate sporadic Parkinson's disease from the Han population of Mainland China

    Directory of Open Access Journals (Sweden)

    Xia Deng

    2016-08-01

    Full Text Available Many symptoms of sporadic Parkinson's disease (sPD can’t be completely explained by the lesion of simple typical extrapyramidal circuit between striatum and substantia nigra. Therefore, we investigated the alteration of cortical volume, thickness, surface and density in the intermediate sPD from the Han population of Mainland China in order to find the new pathological brain regions associated with the complex clinical manifestations of sPD. The cortical volume, thickness, surface and density were examined using the voxel-based cortical morphometry and corticometry on magnetic resonance image (MRI in 67 intermediate sPD and 35 controls, the multiple adjusted comparisons analysis of all MRI data were employed to assess the relationships between the cortical morphometric alteration in the specific brain regions and sPD. Results showed that a significantly shrunk volume, thinned thickness and enlarged or reduced surface of cortex in some specific brain regions were closely associated with sPD, but all cortical densities were not different. The majority of morphometric alteration of hemisphere cortex was symmetric, but that in the left hemisphere was more significant. The cortical morphometric alterations in the frontal, temporal, parietal, occipital and limbic lobe, cerebellum, caudate and thalamus were closely related to the clinical neural dysfunction (Clinical manifestations of sPD. Our data indicated that the deficits of extensive brain regions involved in the development of sPD, resulted in a series of correspondent complex clinical manifestations in the disease.

  9. Attenuated Sensory Deprivation-induced Changes of Parvalbumin Neuron Density in the Barrel Cortex of FcγRllB-deficient Mice

    Directory of Open Access Journals (Sweden)

    Watanabe,Makiko

    2012-04-01

    Full Text Available Recent studies have demonstrated the important role of immune molecules in the development of neuronal circuitry and synaptic plasticity. We have detected the presence of FcγRllB protein in parvalbumin- containing inhibitory interneurons (PV neurons. In the present study, we examined the appearance of PV neurons in the barrel cortex and the effect of sensory deprivation in FcγRllB-deficient mice (FcγRllB-/- and wild-type mice. There was no substantial difference in the appearance of PV neurons in the developing barrel cortex between FcγRllB-/- and wild-type mice. Sensory deprivation from immediately after birth (P0 or P7 to P12-P14 induced an increase in PV neurons. In contrast, sensory deprivation from P7 or P14 to P28, but not from P21 to P28, decreased PV neurons in wild-type mice. However, sensory deprivation from P0 or P7 to P12-P14 did not increase PV neurons and sensory deprivation from P7 or P14 to P28 did not decrease or only modestly decreased PV neurons in FcγRllB-/- mice. The results indicate that expression of PV is regulated by sensory experience and the second and third postnatal weeks are a sensitive period for sensory deprivation, and suggest that FcγRllB contributes to sensory experience-regulated expression of PV.

  10. Attenuated sensory deprivation-induced changes of parvalbumin neuron density in the barrel cortex of FcγRllB-deficient mice.

    Science.gov (United States)

    Watanabe, Makiko; Ueno, Hiroshi; Suemitsu, Shunsuke; Yokobayashi, Eriko; Matsumoto, Yosuke; Usui, Shinichi; Sujiura, Hiroko; Okamoto, Motoi

    2012-01-01

    Recent studies have demonstrated the important role of immune molecules in the development of neuronal circuitry and synaptic plasticity. We have detected the presence of FcγRllB protein in parvalbumin-containing inhibitory interneurons (PV neurons). In the present study, we examined the appearance of PV neurons in the barrel cortex and the effect of sensory deprivation in FcγRllB-deficient mice (FcγRllB-/-) and wild-type mice. There was no substantial difference in the appearance of PV neurons in the developing barrel cortex between FcγRllB-/- and wild-type mice. Sensory deprivation from immediately after birth (P0) or P7 to P12-P14 induced an increase in PV neurons. In contrast, sensory deprivation from P7 or P14 to P28, but not from P21 to P28, decreased PV neurons in wild-type mice. However, sensory deprivation from P0 or P7 to P12-P14 did not increase PV neurons and sensory deprivation from P7 or P14 to P28 did not decrease or only modestly decreased PV neurons in FcγRllB-/- mice. The results indicate that expression of PV is regulated by sensory experience and the second and third postnatal weeks are a sensitive period for sensory deprivation, and suggest that FcγRllB contributes to sensory experience-regulated expression of PV.

  11. Volume-translated cubic EoS and PC-SAFT density models and a free volume-based viscosity model for hydrocarbons at extreme temperature and pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, Ward A.; Tapriyal, Deepak; Morreale, Bryan D.; Soong, Yee; Baled, Hseen O.; Enick, Robert M.; Wu, Yue; Bamgbade, Babatunde A.; McHugh, Mark A.

    2013-12-01

    This research focuses on providing the petroleum reservoir engineering community with robust models of hydrocarbon density and viscosity at the extreme temperature and pressure conditions (up to 533 K and 276 MPa, respectively) characteristic of ultra-deep reservoirs, such as those associated with the deepwater wells in the Gulf of Mexico. Our strategy is to base the volume-translated (VT) Peng–Robinson (PR) and Soave–Redlich–Kwong (SRK) cubic equations of state (EoSs) and perturbed-chain, statistical associating fluid theory (PC-SAFT) on an extensive data base of high temperature (278–533 K), high pressure (6.9–276 MPa) density rather than fitting the models to low pressure saturated liquid density data. This high-temperature, high-pressure (HTHP) data base consists of literature data for hydrocarbons ranging from methane to C{sub 40}. The three new models developed in this work, HTHP VT-PR EoS, HTHP VT-SRK EoS, and hybrid PC-SAFT, yield mean absolute percent deviation values (MAPD) for HTHP hydrocarbon density of ~2.0%, ~1.5%, and <1.0%, respectively. An effort was also made to provide accurate hydrocarbon viscosity models based on literature data. Viscosity values are estimated with the frictional theory (f-theory) and free volume (FV) theory of viscosity. The best results were obtained when the PC-SAFT equation was used to obtain both the attractive and repulsive pressure inputs to f-theory, and the density input to FV theory. Both viscosity models provide accurate results at pressures to 100 MPa but experimental and model results can deviate by more than 25% at pressures above 200 MPa.

  12. Neurons of human nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Sazdanović Maja

    2011-01-01

    Full Text Available Background/Aim. Nucleus accumbens is a part of the ventral striatum also known as a drug active brain region, especially related with drug addiction. The aim of the study was to investigate the Golgi morphology of the nucleus accumbens neurons. Methods. The study was performed on the frontal and sagittal sections of 15 human brains by the Golgi Kopsch method. We classified neurons in the human nucleus accumbens according to their morphology and size into four types: type I - fusiform neurons; type II - fusiform neurons with lateral dendrite, arising from a part of the cell body; type III - pyramidal-like neuron; type IV - multipolar neuron. The medium spiny neurons, which are mostly noted regarding to the drug addictive conditions of the brain, correspond to the type IV - multipolar neurons. Results. Two regions of human nucleus accumbens could be clearly recognized on Nissl and Golgi preparations each containing different predominant neuronal types. Central part of nucleus accumbens, core region, has a low density of impregnated neurons with predominant type III, pyramidal-like neurons, with spines on secondary branches and rare type IV, multipolar neurons. Contrary to the core, peripheral region, shell of nucleus, has a high density of impregnated neurons predominantly contained of type I and type IV - multipolar neurons, which all are rich in spines on secondary and tertiary dendritic branches. Conclusion. Our results indicate great morphological variability of human nucleus accumbens neurons. This requires further investigations and clarifying clinical significance of this important brain region.

  13. Linear correlation between the number of olfactory sensory neurons expressing a given mouse odorant receptor gene and the total volume of the corresponding glomeruli in the olfactory bulb

    Science.gov (United States)

    Bressel, Olaf Christian; Khan, Mona

    2015-01-01

    ABSTRACT Chemosensory specificity in the main olfactory system of the mouse relies on the expression of ∼1,100 odorant receptor (OR) genes across millions of olfactory sensory neurons (OSNs) in the main olfactory epithelium (MOE), and on the coalescence of OSN axons into ∼3,600 glomeruli in the olfactory bulb. A traditional approach for visualizing OSNs and their axons consists of tagging an OR gene genetically with an axonal marker that is cotranslated with the OR by virtue of an internal ribosome entry site (IRES). Here we report full cell counts for 15 gene‐targeted strains of the OR‐IRES‐marker design coexpressing a fluorescent protein. These strains represent 11 targeted OR genes, a 1% sample of the OR gene repertoire. We took an empirical, “count every cell” strategy: we counted all fluorescent cell profiles with a nuclear profile within the cytoplasm, on all serial coronal sections under a confocal microscope, a total of 685,673 cells in 56 mice at postnatal day 21. We then applied a strain‐specific Abercrombie correction to these OSN counts in order to obtain a closer approximation of the true OSN numbers. We found a 17‐fold range in the average (corrected) OSN number across these 11 OR genes. In the same series of coronal sections, we then determined the total volume of the glomeruli (TGV) formed by coalescence of the fluorescent axons. We found a strong linear correlation between OSN number and TGV, suggesting that TGV can be used as a surrogate measurement for estimating OSN numbers in these gene‐targeted strains. J. Comp. Neurol. 524:199–209, 2016. © 2015 Wiley Periodicals, Inc. PMID:26100963

  14. Diagnosis of drowning using post-mortem computed tomography based on the volume and density of fluid accumulation in the maxillary and sphenoid sinuses

    Energy Technology Data Exchange (ETDEWEB)

    Kawasumi, Yusuke, E-mail: ssu@rad.med.tohoku.ac.jp [Tohoku University Graduate School of Medicine, Department of Clinical Imaging, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 (Japan); Kawabata, Tomoyoshi; Sugai, Yusuke [Tohoku University Graduate School of Medicine, Department of Clinical Imaging, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 (Japan); Usui, Akihito, E-mail: t7402r0506@med.tohoku.ac.jp [Tohoku University Graduate School of Medicine, Department of Diagnostic Image Analysis, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 (Japan); Hosokai, Yoshiyuki, E-mail: hosokai@med.tohoku.ac.jp [Tohoku University Graduate School of Medicine, Department of Diagnostic Image Analysis, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 (Japan); Sato, Miho, E-mail: meifan58@m.tains.tohoku.ac.jp [Tohoku University Graduate School of Medicine, Department of Clinical Imaging, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 (Japan); Saito, Haruo, E-mail: hsaito@med.tohoku.ac.jp [Tohoku University Graduate School of Medicine, Department of Diagnostic Image Analysis, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 (Japan); Ishibashi, Tadashi, E-mail: tisibasi@med.tohoku.ac.jp [Tohoku University Graduate School of Medicine, Department of Clinical Imaging, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 (Japan); Hayashizaki, Yoshie, E-mail: yoshie@forensic.med.tohoku.ac.jp [Tohoku University Graduate School of Medicine, Department of Forensic Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 (Japan); Funayama, Masato, E-mail: funayama@forensic.med.tohoku.ac.jp [Tohoku University Graduate School of Medicine, Department of Forensic Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 (Japan)

    2013-10-01

    Recent studies have reported that drowning victims frequently have fluid accumulation in the paranasal sinuses, most notably the maxillary and sphenoid sinuses. However, in our previous study, many non-drowning victims also had fluid accumulation in the sinuses. Therefore, we evaluated the qualitative difference in fluid accumulation between drowning and non-drowning cases in the present study. Thirty-eight drowning and 73 non-drowning cases were investigated retrospectively. The fluid volume and density of each case were calculated using a DICOM workstation. The drowning cases were compared with the non-drowning cases using the Mann–Whitney U-test because the data showed non-normal distribution. The median fluid volume was 1.82 (range 0.02–11.7) ml in the drowning cases and 0.49 (0.03–8.7) ml in the non-drowning cases, and the median fluid density was 22 (−14 to 66) and 39 (−65 to 77) HU, respectively. Both volume and density differed significantly between the drowning and non-drowning cases (p = 0.001, p = 0.0007). Regarding cut-off levels in the ROC analysis, the points on the ROC curve closest (0, 1) were 1.03 ml (sensitivity 68%, specificity 68%, PPV 53%, NPV 81%) and 27.5 HU (61%, 70%, 51%, 77%). The Youden indices were 1.03 ml and 37.8 HU (84%, 51%, 47%, 86%). When the cut-off level was set at 1.03 ml and 27.5 HU, the sensitivity was 42%, specificity 45%, PPV 29% and NPV 60%. When the cut-off level was set at 1.03 ml and 37.8 HU, sensitivity was 58%, specificity 32%, PPV 31% and NPV 59%.

  15. Effect of artificial rearing of piglets on the volume densities of M cells in the tonsils of the soft palate and ileal Peyer's patches.

    Science.gov (United States)

    Prims, S; Pintens, N; Vergauwen, H; Van Cruchten, S; Van Ginneken, C; Casteleyn, C

    2017-02-01

    The high prolificacy of modern hybrid sows has increased the mean litter size during the last decades. However, rearing large litters is challenging and has increased the use of alternative management strategies such as euthanasia of weak piglets, cross-fostering, supplementing piglets with milk, split-nursing and split-weaning. The latter includes artificial rearing on brooders where piglets have ad libitum access to milk replacer. The effect of this artificial rearing on the immune system of the piglet is the subject of various studies. The present study focused on the M cells in the tonsil of the soft palate and in the ileal Peyer's patch (iPP). These epithelial cells are specialized in antigen sampling and play a pivotal role in the induction of adaptive immune responses. The volume densities of the M cells were assessed by stereological analysis of tissue samples from piglets of 0, 3, 8 and 19days of age. During the first three days, piglets suckled the sow, permitting them to ingest colostrum. At the third day, the piglets were either allowed to continue to suckle the sow or were transferred to brooders. The six experimental groups, each containing six piglets, thus consisted of newborn piglets, 3-day-old sow-suckled piglets, and conventionally and artificially reared piglets of 8 and 19days of age. To identify M cells, tissue samples were immersed in 4% phosphate-buffered paraformaldehyde and paraffin sections were immunohistochemically stained against cytokeratin 18. The volume densities of M cells in both the crypt epithelium of the tonsils of the soft palate and the follicle-associated epithelium of the iPPs did not show any difference between the various age groups of conventionally reared piglets. However, values were twice as high in the iPPs compared to the tonsils of the soft palate. In contrast, a decrease in volume densities of M cells was observed in the iPPs of piglets after they had been transferred to commercial brooders (P=0.05), resulting in

  16. [Circadian changes of the density of melatonin receptors 1A in the neurons of the suprachiasmatic nuclei of the rat hypothalamus under conditions of diverse functional activiity of the pineal gland].

    Science.gov (United States)

    Pishak, V P; Bulyk, R Ie

    2008-01-01

    An immunohistochemical study of the density of melatonin receptors 1A in the neurons of the rat suprachiasmatic nuclei with diverse functional activity of the pineal gland has been carried out. The density of melatonin receptors 1A under conditions of the physiological function of the pineal gland was characterized by clear-cut diurnal variations. Simultaneously, a dysfunction of the gland results in their marked disturbance. In case of a hypofunction of the pineal body the density of the structures was reliably lower than in case of hyperfunction. It has been demonstrated that in case of a suppressed activity of the pineal body the maximum number of melatonin receptors 1A in the neurons of the hypothalamic suprachiasmatic nuclei shifts from 02.00 a.m. to 02.00 p.m. and constitutes 0.35+/-0.012 conventional units (c.u.) of density, whereas a larger index is noticed at 20 hours making up 0.43+/-0.015 c.u. of density when the gland is activated.

  17. Characterization of Aluminum Honeycomb and Experimentation for Model Development and Validation, Volume I: Discovery and Characterization Experiments for High-Density Aluminum Honeycomb

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Yang [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials; Korellis, John S. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials; Lee, Kenneth L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials; Scheffel, Simon [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials; Hinnerichs, Terry Dean [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Solid Mechanics; Neilsen, Michael K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Applied Mechanics Development; Scherzinger, William Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Solid Mechanics

    2006-08-01

    Honeycomb is a structure that consists of two-dimensional regular arrays of open cells. High-density aluminum honeycomb has been used in weapon assemblies to mitigate shock and protect payload because of its excellent crush properties. In order to use honeycomb efficiently and to certify the payload is protected by the honeycomb under various loading conditions, a validated honeycomb crush model is required and the mechanical properties of the honeycombs need to be fully characterized. Volume I of this report documents an experimental study of the crush behavior of high-density honeycombs. Two sets of honeycombs were included in this investigation: commercial grade for initial exploratory experiments, and weapon grade, which satisfied B61 specifications. This investigation also includes developing proper experimental methods for crush characterization, conducting discovery experiments to explore crush behaviors for model improvement, and identifying experimental and material uncertainties.

  18. The changes of condylar density and volume after SSRO surgery using CBCT%CBCT探讨SSRO术对髁突骨密度及体积的影响

    Institute of Scientific and Technical Information of China (English)

    李欣欣; 华泽权; 李树华; 王燕; 张斌; 张力; 鲍海宏

    2013-01-01

    Objective:The aim of the study was to using CBCT investigate the condyles of osteal bimaxillary protrusion patients (AnglesⅢ)and measure the density (Hounsfield) and volume of condyle preoperative and after surgery,further discuss the influence of temporomandibular joint after SSRO.Method:The preoperative and after surgery pictures of 20 osteal bimaxillary protrusion patients (Angles Ⅲ)were corrected.A special software was used to measure the maximal density and the volume of condyle.Result:The result of the maximal density of condyle (Hounsfield):preoperative the maximum is 273,the minimum is 252,the mean value is 260,after surgery the maximum is 261,the minimum is 207,the mean value is 211.The result of the volume of condyle (mm3):preoperative the maximum is 407,the minimum is 378,the mean value is 401,after surgery the maximum is 492,the minimum is 444,the mean value is 465.Conclusion:CBCT can measure the density and volume of condyle by rule and line and with high application value in maxillofacial anatomy.In both groups,compared with before operation,the maximal density of condyle decreased and the density of condyle the volume of condyle increased after operation.%目的:运用锥形束CT(CBCT)观察AnglesⅢ类下颌骨性前突患者髁突,测量下颌支矢状劈开术(SSRO)术前术后髁突骨密度(亨氏单位)及体积,进一步探讨SSRO术对颞颌关节的影响.方法:收集20例AnglesⅢ类双侧下颌骨性前突患者SSRO术前术后的CBCT图像,应用CBCT配套的软件观察髁突变化并计算SSRO术前术后髁突最高密度及髁突体积.结果:①髁突最高密度测量结果(亨氏单位):治疗前髁突最高密度最大值273,最小值252,均数260,治疗后髁突最高密度最大值261,最小值207,均数211.两组均数自身比较,有显著性差异(P<0.05).②髁突体积测量结果(mm3):治疗前髁突体积最大407,最小378,均数401;治疗后髁突体积最大492,最小444,均数465.两组均数自

  19. On-line micro-volume introduction system developed for lower density than water extraction solvent and dispersive liquid-liquid microextraction coupled with flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Anthemidis, Aristidis N., E-mail: anthemid@chem.auth.gr [Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University, Thessaloniki 54124 (Greece); Mitani, Constantina; Balkatzopoulou, Paschalia; Tzanavaras, Paraskevas D. [Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University, Thessaloniki 54124 (Greece)

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer A dispersive liquid-liquid micro extraction method for lead and copper determination. Black-Right-Pointing-Pointer A micro-volume transportation system for extractant solvent lighter than water. Black-Right-Pointing-Pointer Analysis of natural water samples. - Abstract: A simple and fast preconcentration/separation dispersive liquid-liquid micro extraction (DLLME) method for metal determination based on the use of extraction solvent with lower density than water has been developed. For this purpose a novel micro-volume introduction system was developed enabling the on-line injection of the organic solvent into flame atomic absorption spectrometry (FAAS). The effectiveness and efficiency of the proposed system were demonstrated for lead and copper preconcentration in environmental water samples using di-isobutyl ketone (DBIK) as extraction solvent. Under the optimum conditions the enhancement factor for lead and copper was 187 and 310 respectively. For a sample volume of 10 mL, the detection limit (3 s) and the relative standard deviation were 1.2 {mu}g L{sup -1} and 3.3% for lead and 0.12 {mu}g L{sup -1} and 2.9% for copper respectively. The developed method was evaluated by analyzing certified reference material and it was applied successfully to the analysis of environmental water samples.

  20. Prostate-specific Antigen Mass Density--A Measure Predicting Prostate Cancer Volume and Accounting for Overweight and Obesity-related Prostate-specific Antigen Hemodilution.

    Science.gov (United States)

    Kryvenko, Oleksandr N; Diaz, Mireya; Matoso, Andres; Kates, Max; Cohen, Jason; Swanson, Gregory P; Epstein, Jonathan I

    2016-04-01

    To test prostate-specific antigen mass density (PSAMD) as a predictor of total tumor volume (TTV) at radical prostatectomy (RP). We conducted a detailed pathologic analysis of 469 RP from men with NCCN low-risk prostate cancer who had Gleason score of 3 + 3 = 6 (grade group 1) at RP. We then compared the ability of PSA, PSA density (PSAD), PSA mass (PSAM-absolute amount of PSA in patient's circulation), and PSAM density (PSAM divided by prostate weight without seminal vesicles) to predict TTV at RP. PSAM was calculated by multiplying plasma volume (estimated body surface [weight, kg(0.425) × height, m(0.72) × 0.007184] × 1.67) by PSA. Performance of the above measures in different BMI categories was assessed. Kruskal-Wallis test was used to compare the means and Spearman's rank correlation coefficient to assess the correlations. The 469 men were normal weight (n = 129), overweight (n = 253), and obese (n = 87). Mean age of the patients' was 57.4 years and PSA of 4.53 ng/ml. Increase of prostate weight with body mass index (BMI) was reflected in PSAM (both P Prostate weight had stronger (negative) association with PSAMD (r = -0.394; <.001) than TTV. PSAMD is the biochemical measure with the best correlation with TTV at RP. Unlike other measures, it is not affected by BMI-related hemodilution. Thresholds should be established to use this more objective measure clinically in surveillance algorithms and in planning radical prostatectomy. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Changes of growth hormone-releasing hormone and somatostatin neurons in the rat hypothalamus induced by genistein: a stereological study.

    Science.gov (United States)

    Trifunović, Svetlana; Manojlović-Stojanoski, Milica; Ristić, Nataša; Nestorović, Nataša; Medigović, Ivana; Živanović, Jasmina; Milošević, Verica

    2016-12-01

    Genistein is a plant-derived estrogenic isoflavone commonly found in dietary and therapeutic supplements, due to its potential health benefits. Growth hormone-releasing hormone (GHRH) and somatostatin (SS) are neurosecretory peptides synthesized in neurons of the hypothalamus and regulate the growth hormone secretion. Early reports indicate that estrogens have highly involved in the regulation of GHRH and SS secretions. Since little is known about the potential effects of genistein on GHRH and SS neurons, we exposed rats to genistein. Genistein were administered to adult rats in dose of 30 mg/kg, for 3 weeks. The estradiol-dipropionate treatment was used as the adequate controls to genistein. Using applied stereology on histological sections of hypothalamus, we obtained the quantitative information on arcuate (Arc) and periventricular (Pe) nucleus volume and volume density of GHRH neurons and SS neurons. Image analyses were used to obtain GHRH and SS contents in the median eminence (ME). Administration of estradiol-dipropionate caused the increase of Arc and Pe nucleus volume, SS neuron volume density, GHRH and SS staining intensity in the ME, when compared with control. Genistein treatment increased: Arc nucleus volume and the volume density of GHRH neurons (by 26%) and SS neurons (1.5 fold), accompanied by higher GHRH and SS staining intensity in the ME, when compared to the orhidectomized group. These results suggest that genistein has a significant effect on hypothalamic region, involved in the regulation of somatotropic system function, and could contribute to the understanding of genistein as substance that alter the hormonal balance.

  2. Down-sizing of neuronal network activity and density of presynaptic terminals by pathological acidosis are efficiently prevented by Diminazene Aceturate.

    Science.gov (United States)

    de Ceglia, Roberta; Chaabane, Linda; Biffi, Emilia; Bergamaschi, Andrea; Ferrigno, Giancarlo; Amadio, Stefano; Del Carro, Ubaldo; Mazzocchi, Nausicaa; Comi, Giancarlo; Bianchi, Veronica; Taverna, Stefano; Forti, Lia; D'Adamo, Patrizia; Martino, Gianvito; Menegon, Andrea; Muzio, Luca

    2015-03-01

    Local acidosis is associated with neuro-inflammation and can have significant effects in several neurological disorders, including multiple sclerosis, brain ischemia, spinal cord injury and epilepsy. Despite local acidosis has been implicated in numerous pathological functions, very little is known about the modulatory effects of pathological acidosis on the activity of neuronal networks and on synaptic structural properties. Using non-invasive MRI spectroscopy we revealed protracted extracellular acidosis in the CNS of Experimental Autoimmune Encephalomyelitis (EAE) affected mice. By multi-unit recording in cortical neurons, we established that acidosis affects network activity, down-sizing firing and bursting behaviors as well as amplitudes. Furthermore, a protracted acidosis reduced the number of presynaptic terminals, while it did not affect the postsynaptic compartment. Application of the diarylamidine Diminazene Aceturate (DA) during acidosis significantly reverted both the loss of neuronal firing and bursting and the reduction of presynaptic terminals. Finally, in vivo DA delivery ameliorated the clinical disease course of EAE mice, reducing demyelination and axonal damage. DA is known to block acid-sensing ion channels (ASICs), which are proton-gated, voltage-insensitive, Na(+) permeable channels principally expressed by peripheral and central nervous system neurons. Our data suggest that ASICs activation during acidosis modulates network electrical activity and exacerbates neuro-degeneration in EAE mice. Therefore pharmacological modulation of ASICs in neuroinflammatory diseases could represent a new promising strategy for future therapies aimed at neuro-protection.

  3. Decreased Bone Volume and Bone Mineral Density in the Tibial Trabecular Bone Is Associated with Per2 Gene by 405 nm Laser Stimulation

    Directory of Open Access Journals (Sweden)

    Yeong-Min Yoo

    2015-11-01

    Full Text Available Low-level laser therapy/treatment (LLLT using a minimally invasive laser needle system (MILNS might enhance bone formation and suppress bone resorption. In this study, the use of 405 nm LLLT led to decreases in bone volume and bone mineral density (BMD of tibial trabecular bone in wild-type (WT and Per2 knockout (KO mice. Bone volume and bone mineral density of tibial trabecular bone was decreased by 405 nm LLLT in Per2 KO compared to WT mice at two and four weeks. To determine the reduction in tibial bone, mRNA expressions of alkaline phosphatase (ALP and Per2 were investigated at four weeks after 405 nm laser stimulation using MILNS. ALP gene expression was significantly reduced in the LLLT-stimulated right tibial bone of WT and Per2 KO mice compared to the non-irradiated left tibia (p < 0.001. Per2 mRNA expression in WT mice was significantly reduced in the LLLT-stimulated right tibial bone compared to the non-irradiated left tibia (p < 0.001. To identify the decrease in tibial bone mediated by the Per2 gene, levels of runt-related transcription factor 2 (Runx2 and ALP mRNAs were determined in non-irradiated WT and Per2 KO mice. These results demonstrated significant downregulation of Runx2 and ALP mRNA levels in Per2 KO mice (p < 0.001. Therefore, the reduction in tibial trabecular bone resulting from 405 nm LLLT using MILNS might be associated with Per2 gene expression.

  4. Densities and volume properties of (water + tert-butanol) over the temperature range of (274.15 to 348.15) K at pressure of 0.1 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Egorov, Gennadiy I., E-mail: gie@isc-ras.r [Laboratory of Structure and Dynamics of Molecular and Ion-Molecular Solutions, Institute of Solution Chemistry, Russian Academy of Sciences, 1 Akademicheskaya Street, 153045 Ivanovo (Russian Federation); Makarov, Dmitriy M. [Laboratory of Structure and Dynamics of Molecular and Ion-Molecular Solutions, Institute of Solution Chemistry, Russian Academy of Sciences, 1 Akademicheskaya Street, 153045 Ivanovo (Russian Federation)

    2011-03-15

    The densities of {l_brace}water (1) + tert-butanol (2){r_brace} binary mixture were measured over the temperature range (274.15 to 348.15) K at atmospheric pressure using 'Anton Paar' digital vibrating-tube densimeter. Density measurements were carried out over the whole concentration range at (308.15 to 348.15) K. The following volume parameters were calculated: excess molar volumes and thermal isobaric expansivities of the mixture, partial molar volumes and partial molar thermal isobaric expansivities of the components. Concentration dependences of excess molar volumes were fitted with Redlich-Kister equation. The results of partial molar volume calculations using four equations were compared. It was established that for low alcohol concentrations at T {<=} 208 K the inflection points at x{sub 2} {approx} 0.02 were observed at concentration dependences of specific volume. The concentration dependences of partial molar volumes of both water and tert-butanol had extremes at low alcohol content. The temperature dependence of partial molar volumes of water had some inversion at x{sub 2} {approx} 0.65. The temperature dependence of partial molar volumes of tert-butanol at infinite dilution had minimum at {approx}288 K. It was discovered that concentration dependences of thermal isobaric expansivities of the mixture at small alcohol content and low temperatures passed through minimum.

  5. Estimate of size and total number of neurons in superior cervical ganglion of rat, capybara and horse.

    Science.gov (United States)

    Ribeiro, Antonio Augusto Coppi Maciel; Davis, Christine; Gabella, Giorgio

    2004-08-01

    The superior (cranial) cervical ganglion was investigated by light microscopy in adult rats, capybaras (Hydrochaeris hydrochaeris) and horses. The ganglia were vascularly perfused, embedded in resin and cut into semi-thin sections. An unbiased stereological procedure (disector method) was used to estimate ganglion neuron size, total number of ganglion neurons, neuronal density. The volume of the ganglion was 0.5 mm3 in rats, 226 mm3 in capybaras and 412 mm3 in horses. The total number of neurons per ganglion was 18,800, 1,520,000 and 3,390,000 and the number of neurons per cubic millimetre was 36,700, 7,000 and 8,250 in rats, capybaras and horses, respectively. The average neuronal size (area of the largest sectional profile of a neuron) was 358, 982 and 800 microm2, and the percentage of volume occupied by neurons was 33, 21 and 17% in rats, capybaras and horses, respectively. When comparing the three species (average body weight: 200 g, 40 kg and 200 kg), most of the neuronal quantitative parameters change in line with the variation of body weight. However, the average neuronal size in the capybara deviates from this pattern in being larger than that of in the horse. The rat presented great interindividual variability in all the neuronal parameters. From the data in the literature and our new findings in the capybara and horse, we conclude that some correlations exist between average size of neurons and body size and between total number of neurons and body size. However, these correlations are only approximate and are based on averaged parameters for large populations of neurons: they are less likely to be valid if one considers a single quantitative parameter. Several quantitative features of the nervous tissue have to be taken into account together, rather than individually, when evolutionary trends related to size are considered.

  6. Downregulation of postsynaptic density-95-interacting regulator of spine morphogenesis reduces glutamate-induced excitotoxicity by differentially regulating glutamate receptors in rat cortical neurons.

    Science.gov (United States)

    Luo, Peng; Yang, Yuefan; Liu, Wei; Rao, Wei; Bian, Huan; Li, Xin; Chen, Tao; Liu, Mengdong; Zhao, Yongbo; Dai, Shuhui; Yan, Xu; Fei, Zhou

    2013-12-01

    Glutamate-induced excitotoxicity is involved in many neurological diseases. Preso, a novel postsynaptic scaffold protein, mediates excitatory synaptic transmission and various synaptic functions. In this study, we investigated the role of Preso in the regulation of glutamate-induced excitotoxicity in rat cortical neurons. Knockdown of Preso with small interfering RNA improved neuronal viability and attenuated the elevation of lactate dehydrogenase (LDH) release after glutamate treatment. Downregulation of Preso also inhibited an increase in the BAX/Bcl-2 ratio and cleavage of caspase-9 and caspase-3. Although the expression and distribution of metabotropic glutamate receptor (mGluR) 1/5, NR1, NR2A and NR2B were not changed by knockdown of Preso, downregulation of Preso protected neurons from glutamate-induced excitotoxicity by inhibiting mGluR and N-methyl-D-aspartate receptor function. However, downregulation of Preso neither affected the expression of GluR1 and GluR2 nor influenced the function of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor after glutamate treatment. Furthermore, intracellular Ca(2+) was an important downstream effector of Preso in the regulation of excitotoxicity. These results suggest that expression of Preso promotes the induction of excitotoxicity by facilitating different glutamate receptor signaling pathways. Therefore, Preso might be a potential pharmacological target for preventing and treating neurological diseases.

  7. Space density distribution of galaxies in the absolute magnitude - rotation velocity plane: a volume-complete Tully-Fisher relation from CALIFA stellar kinematics

    Science.gov (United States)

    Bekeraité, S.; Walcher, C. J.; Falcón-Barroso, J.; Garcia Lorenzo, B.; Lyubenova, M.; Sánchez, S. F.; Spekkens, K.; van de Ven, G.; Wisotzki, L.; Ziegler, B.; Aguerri, J. A. L.; Barrera-Ballesteros, J.; Bland-Hawthorn, J.; Catalán-Torrecilla, C.; García-Benito, R.

    2016-10-01

    We measured the distribution in absolute magnitude - circular velocity space for a well-defined sample of 199 rotating galaxies of the Calar Alto Legacy Integral Field Area Survey (CALIFA) using their stellar kinematics. Our aim in this analysis is to avoid subjective selection criteria and to take volume and large-scale structure factors into account. Using stellar velocity fields instead of gas emission line kinematics allows including rapidly rotating early-type galaxies. Our initial sample contains 277 galaxies with available stellar velocity fields and growth curve r-band photometry. After rejecting 51 velocity fields that could not be modelled because of the low number of bins, foreground contamination, or significant interaction, we performed Markov chain Monte Carlo modelling of the velocity fields, from which we obtained the rotation curve and kinematic parameters and their realistic uncertainties. We performed an extinction correction and calculated the circular velocity vcirc accounting for the pressure support of a given galaxy. The resulting galaxy distribution on the Mr-vcirc plane was then modelled as a mixture of two distinct populations, allowing robust and reproducible rejection of outliers, a significant fraction of which are slow rotators. The selection effects are understood well enough that we were able to correct for the incompleteness of the sample. The 199 galaxies were weighted by volume and large-scale structure factors, which enabled us to fit a volume-corrected Tully-Fisher relation (TFR). More importantly, we also provide the volume-corrected distribution of galaxies in the Mr-vcirc plane, which can be compared with cosmological simulations. The joint distribution of the luminosity and circular velocity space densities, representative over the range of -20 > Mr > -22 mag, can place more stringent constraints on the galaxy formation and evolution scenarios than linear TFR fit parameters or the luminosity function alone. Galaxies main

  8. Lung density

    DEFF Research Database (Denmark)

    Garnett, E S; Webber, C E; Coates, G

    1977-01-01

    The density of a defined volume of the human lung can be measured in vivo by a new noninvasive technique. A beam of gamma-rays is directed at the lung and, by measuring the scattered gamma-rays, lung density is calculated. The density in the lower lobe of the right lung in normal man during quiet...... breathing in the sitting position ranged from 0.25 to 0.37 g.cm-3. Subnormal values were found in patients with emphsema. In patients with pulmonary congestion and edema, lung density values ranged from 0.33 to 0.93 g.cm-3. The lung density measurement correlated well with the findings in chest radiographs...... but the lung density values were more sensitive indices. This was particularly evident in serial observations of individual patients....

  9. MEASURED DENSITIES, REFRACTIVE INDICES, EXCESS MOLAR VOLUMES AND DEVIATIONS CALCULATED FROM MOLAR REFRACTION OF THE BINARY MIXTURE OF ETHANOL + 1-NONANOL AND TERNARY MIXTURE ETHANOL + 1-NONANOL + WATER AT 293.15 K

    Directory of Open Access Journals (Sweden)

    Mehmet MAHRAMANLIOĞLU

    2000-03-01

    Full Text Available Densities, and refractive indices were measured for the binary system ethanol + 1-nonanol and ternary system ethanol + 1-nonanol + water at 293.15 K. The excess molar volumes, and the deviations molar refraction were calculated for binary and ternary system. Redlich-Kister type equation was fitted to the excess molar volumes and, the deviations from a mole fraction average of the molar refraction, and the values of coefficients were calculated

  10. Distribution of SMI-32-immunoreactive neurons in the central auditory system of the rat.

    Science.gov (United States)

    Ouda, Ladislav; Druga, Rastislav; Syka, Josef

    2012-01-01

    SMI-32 antibody recognizes a non-phosphorylated epitope of neurofilament proteins, which are thought to be necessary for the maintenance of large neurons with highly myelinated processes. We investigated the distribution and quantity of SMI-32-immunoreactive(-ir) neurons in individual parts of the rat auditory system. SMI-32-ir neurons were present in all auditory structures; however, in most regions they constituted only a minority of all neurons (10-30%). In the cochlear nuclei, a higher occurrence of SMI-32-ir neurons was found in the ventral cochlear nucleus. Within the superior olivary complex, SMI-32-ir cells were particularly abundant in the medial nucleus of the trapezoid body (MNTB), the only auditory region where SMI-32-ir neurons constituted an absolute majority of all neurons. In the inferior colliculus, a region with the highest total number of neurons among the rat auditory subcortical structures, the percentage of SMI-32-ir cells was, in contrast to the MNTB, very low. In the medial geniculate body, SMI-32-ir neurons were prevalent in the ventral division. At the cortical level, SMI-32-ir neurons were found mainly in layers III, V and VI. Within the auditory cortex, it was possible to distinguish the Te1, Te2 and Te3 areas on the basis of the variable numerical density and volumes of SMI-32-ir neurons, especially when the pyramidal cells of layer V were taken into account. SMI-32-ir neurons apparently form a representative subpopulation of neurons in all parts of the rat central auditory system and may belong to both the inhibitory and excitatory systems, depending on the particular brain region.

  11. Neurostereology Protocol for Unbiased Quantification of Neuronal Injury and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Victoria M Golub

    2015-10-01

    Full Text Available Neuronal injury and neurodegeneration are the hallmark pathologies in a variety of neurological conditions such as epilepsy, stroke, traumatic brain injury, Parkinson’s disease and Alzheimer’s disease. Quantification of absolute neuron and interneuron counts in various brain regions is essential to understand the impact of neurological insults or neurodegenerative disease progression in animal models. However, conventional qualitative scoring-based protocols are superficial and less reliable for use in studies of neuroprotection evaluations. Here we describe an optimized stereology protocol for quantification of neuronal injury and neurodegeneration by unbiased counting of neurons and interneurons. Every 20th section in each series of 20 sections was processed for NeuN(+ total neuron and parvalbumin(+ interneuron immunostaining. The sections that contain the hippocampus were then delineated into five reliably predefined subregions. Each region was separately analyzed with a microscope driven by the stereology software. Regional tissue volume was determined by using the Cavalieri estimator, and cell density and cell number were determined by using the optical disector and optical fractionator. This protocol yielded an estimate of 1.5 million total neurons and 0.05 million PV(+ interneurons within the rat hippocampus. The protocol has greater predictive power for absolute counts as it is based on 3D features rather than 2D images. The total neuron counts were consistent with literature values from sophisticated systems, which are more expensive than our stereology system. This unbiased stereology protocol allows for sensitive, medium-throughput counting of total neurons in any brain region, and thus provides a quantitative tool for studies of neuronal injury and neurodegeneration in a variety of acute brain injury and chronic neurological models.

  12. Mass transport of low density lipoprotein in reconstructed hemodynamic environments of human carotid arteries: the role of volume and solute flux through the endothelium.

    Science.gov (United States)

    Kim, Sungho; Giddens, Don P

    2015-04-01

    The accumulation of low density lipoprotein (LDL) in the arterial intima is a critical step in the initiation and progression of atheromatous lesions. In this study we examine subject-specific LDL transport into the intima of carotid bifurcations in three human subjects using a three-pore model for LDL mass transfer. Subject-specific carotid artery computational models were derived using magnetic resonance imaging (MRI) to obtain the geometry and phase-contract MRI (PC-MRI) to acquire pulsatile inflow and outflow boundary conditions for each subject. The subjects were selected to represent a wide range of anatomical configurations and different stages of atherosclerotic development from mild to moderate intimal thickening. A fluid-solid interaction (FSI) model was implemented in the computational fluid dynamics (CFD) approach in order to consider the effects of a compliant vessel on wall shear stress (WSS). The WSS-dependent response of the endothelium to LDL mass transfer was modeled by multiple pathways to include the contributions of leaky junctions, normal junctions, and transcytosis to LDL solute and plasma volume flux from the lumen into the intima. Time averaged WSS (TAWSS) over the cardiac cycle was computed to represent the spatial WSS distribution, and wall thickness (WTH) was determined from black blood MRI (BBMRI) so as to visualize intimal thickening patterns in the bifurcations. The regions which are exposed to low TAWSS correspond to elevated WTH and higher mass and volume flux via the leaky junctions. In all subjects, the maximum LDL solute flux was observed to be immediately downstream of the stenosis, supporting observations that existing atherosclerotic lesions tend to progress in the downstream direction of the stenosis.

  13. Prenatal infection decreases calbindin, decreases Purkinje cell volume and density and produces long-term motor deficits in Sprague-Dawley rats.

    Science.gov (United States)

    Wallace, K; Veerisetty, S; Paul, I; May, W; Miguel-Hidalgo, J J; Bennett, W

    2010-01-01

    The cerebellum is involved in the control of motor functions with Purkinje cells serving as the only output from the cerebellum. Purkinje cells are important targets for toxic substances and are vulnerable to prenatal insults. Intrauterine infection (IUI) has been shown to selectively target the developing cerebral white matter through lesioning, necrosis and inflammatory cytokine activation. Developmental and cognitive delays have been associated with animal models of IUI. The aim of this study was to determine if IUI leads to damage to Purkinje cells in the developing cerebellum and if any damage is associated with decreases in calbindin and motor behaviors in surviving pups. Pregnant rats were injected with Escherichia coli (1 × 10⁵ colony-forming units) or sterile saline at gestational day 17. Beginning at postnatal day (PND) 2, the pups were subjected to a series of developmental tests to examine developmental milestones. At PND 16, some pups were sacrificed and their brains extracted and processed for histology or protein studies. Hematoxylin and eosin (HE) staining was done to examine the general morphology of the Purkinje cells and to examine Purkinje cell density, area and volume. Calbindin expression was examined in the cerebellum via immunohistochemistry and Western blot techniques. The remaining rat pups were used to examine motor coordination and balance on a rotating rotarod at the prepubertal and adult ages. Prenatal E. coli injection did not significantly change birth weight or delivery time, but did delay surface righting and negative geotaxis in pups. Pups in the E. coli group also had a decrease in the number of Purkinje cells, as well as a decrease in Purkinje cell density and volume. HE staining demonstrated a change in Purkinje cell morphology. Calbindin expression was decreased in rats from the E. coli group as well. Locomotor tests indicated that while there were no significant changes in gross motor activity, motor coordination and

  14. A Modified Technique for Culturing Primary Fetal Rat Cortical Neurons

    Directory of Open Access Journals (Sweden)

    Sui-Yi Xu

    2012-01-01

    Full Text Available The study explored a modified primary culture system for fetal rat cortical neurons. Day E18 embryos from pregnant Sprague Dawley rats were microdissected under a stereoscope. To minimize enzymatic damage to the cultured neurons, we applied a sequential digestion protocol using papain and Dnase I. The resulting sifted cell suspension was seeded at a density of 50,000 cells per cm2 onto 0.1 mg/mL L-PLL-covered vessels. After a four-hour incubation in high-glucose Dulbecco’s Modified Eagle’s Medium (HG-DMEM to allow the neurons to adhere, the media was changed to neurobasal medium that was refreshed by changing half of the volume after three days followed by a complete medium change every week. The cells displayed progressively robust neurite extension, and nonneuronal-like cells could barely be detected by five days in vitro (DIV; cell growth was still substantial at 14 DIV. Neurons were identified by β-tubulin III immunofluorescence, and neuronal purity within the cultures was assessed at over 95% by both flow cytometry and by dark-field counting of β-tubulin III-positive cells. These results suggest that the protocol was successful and that the high purity of neurons in this system could be used as the basis for generating various cell models of neurological disease.

  15. Density dependent neurodynamics.

    Science.gov (United States)

    Halnes, Geir; Liljenström, Hans; Arhem, Peter

    2007-01-01

    The dynamics of a neural network depends on density parameters at (at least) two different levels: the subcellular density of ion channels in single neurons, and the density of cells and synapses at a network level. For the Frankenhaeuser-Huxley (FH) neural model, the density of sodium (Na) and potassium (K) channels determines the behaviour of a single neuron when exposed to an external stimulus. The features of the onset of single neuron oscillations vary qualitatively among different regions in the channel density plane. At a network level, the density of neurons is reflected in the global connectivity. We study the relation between the two density levels in a network of oscillatory FH neurons, by qualitatively distinguishing between three regions, where the mean network activity is (1) spiking, (2) oscillating with enveloped frequencies, and (3) bursting, respectively. We demonstrate that the global activity can be shifted between regions by changing either the density of ion channels at the subcellular level, or the connectivity at the network level, suggesting that different underlying mechanisms can explain similar global phenomena. Finally, we model a possible effect of anaesthesia by blocking specific inhibitory ion channels.

  16. Effects of conidial densities and spray volume of Metarhizium anisopliae and Beauveria bassiana fungal suspensions on conidial viability, droplet size and deposition coverage in bioassay using a novel bioassay spray system

    Science.gov (United States)

    Experiments were conducted to study the conidial viability during bioassay spray with different suspensions of Metarhizium anisopliae ATCC 62176 and Beauveria bassiana NI8, and to investigate the effects of conidial density and spray volume on the distribution of droplet size and deposit coverage us...

  17. Compressed liquid densities and excess molar volumes for (CO{sub 2} + 1-pentanol) binary system at temperatures from 313 to 363 K and pressures up to 25 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Zuniga-Moreno, Abel [Instituto Politecnico Nacional, ESIQIE, Laboratorio de Termodinamica, Edif. Z, Secc. 6, 1er piso, UPALM Zacatenco, 07738, Lindavista, Mexico, D.F. (Mexico); Galicia-Luna, Luis A. [Instituto Politecnico Nacional, ESIQIE, Laboratorio de Termodinamica, Edif. Z, Secc. 6, 1er piso, UPALM Zacatenco, 07738, Lindavista, Mexico, D.F. (Mexico)], E-mail: lgalicial@ipn.mx; Sandler, Stanley I. [Department of Chemical Engineering, University of Delaware, Newark, DE 19716-3119 (United States)

    2008-02-15

    Measurements of compressed liquid densities for 1-pentanol and for {l_brace}CO{sub 2} (1) + 1-pentanol (2){r_brace} system were carried out at temperatures from 313 K to 363 K and pressures up to 25 MPa. Densities were measured for binary mixtures at 10 different compositions, x{sub 1} = 0.0816, 0.1347, 0.3624, 0.4651, 0.6054, 0.7274, 0.8067, 0.8573, 0.9216, and 0.9757. A vibrating tube densimeter was used to perform density measurements using two reference calibration fluids. The uncertainty is estimated to be better than {+-}0.2 kg . m{sup -3} for the experimental density measurements. For each mixture and for 1-pentanol, the experimental densities were correlated using an explicit volume equation of six parameters and an 11-parameter equation of state (EoS). Excess molar volumes were determined for the (CO{sub 2} + 1-pentanol) system using 1-pentanol densities calculated from the 11-parameter EoS and CO{sub 2} densities calculated from a multiparameter reference EoS.

  18. Current-source density estimation based on inversion of electrostatic forward solution: effects of finite extent of neuronal activity and conductivity discontinuities.

    Science.gov (United States)

    Pettersen, Klas H; Devor, Anna; Ulbert, Istvan; Dale, Anders M; Einevoll, Gaute T

    2006-06-30

    A new method for estimation of current-source density (CSD) from local field potentials is presented. This inverse CSD (iCSD) method is based on explicit inversion of the electrostatic forward solution and can be applied to data from multielectrode arrays with various geometries. Here, the method is applied to linear-array (laminar) electrode data. Three iCSD methods are considered: the CSD is assumed to have cylindrical symmetry and be (i) localized in infinitely thin discs, (ii) step-wise constant or (iii) continuous and smoothly varying (using cubic splines) in the vertical direction. For spatially confined CSD distributions the standard CSD method, involving a discrete double derivative, is seen in model calculations to give significant estimation errors when the lateral source dimension is comparable to the size of a cortical column (less than approximately 1 mm). Further, discontinuities in the extracellular conductivity are seen to potentially give sizable errors for even wider source distributions. The iCSD methods are seen to give excellent estimates when the correct lateral source dimension and spatial distribution of conductivity are incorporated. To illustrate the application to real data, iCSD estimates of stimulus-evoked responses measured with laminar electrodes in the rat somatosensory (barrel) cortex are compared to estimates from the standard CSD method.

  19. Chronic caffeine consumption prevents cognitive decline from young to middle age in rats, and is associated with increased length, branching, and spine density of basal dendrites in CA1 hippocampal neurons.

    Science.gov (United States)

    Vila-Luna, S; Cabrera-Isidoro, S; Vila-Luna, L; Juárez-Díaz, I; Bata-García, J L; Alvarez-Cervera, F J; Zapata-Vázquez, R E; Arankowsky-Sandoval, G; Heredia-López, F; Flores, G; Góngora-Alfaro, J L

    2012-01-27

    Chronic caffeine consumption has been inversely associated with the risk of developing dementia and Alzheimer's disease. Here we assessed whether chronic caffeine treatment prevents the behavioral and cognitive decline that male Wistar rats experience from young (≈3 months) to middle age (≈10 months). When animals were young they were evaluated at weekly intervals in three tests: motor activity habituation in the open field (30-min sessions at the same time on consecutive days), continuous spontaneous alternation in the Y-maze (8 min), and elevated plus-maze (5 min). Afterward, rats from the same litter were randomly assigned either to a caffeine-treated group (n=13) or a control group (n=11), which received only tap water. Caffeine treatment (5 mg/kg/day) began when animals were ≈4 months old, and lasted for 6 months. Behavioral tests were repeated from day 14 to day 28 after caffeine withdrawal, a time period that is far in excess for the full excretion of a caffeine dose in this species. Thirty days after caffeine discontinuation brains were processed for Golgi-Cox staining. Compared with controls, we found that middle-aged rats that had chronically consumed low doses of caffeine (1) maintained their locomotor habituation during the second consecutive day exposure to the open field (an index of non-associative learning), (2) maintained their exploratory drive to complete the conventional minimum of nine arm visits required to calculate the alternation performance in the Y-maze in a greater proportion, (3) maintained their alternation percentage above chance level (an index of working memory), and (4) did not increase the anxiety indexes assessed by measuring the time spent in the open arms of the elevated plus maze. In addition, morphometric analysis of hippocampal neurons revealed that dendritic branching (90-140 μm from the soma), length of 4th and 5th order branches, total dendritic length, and spine density in distal dendritic branches were greater in

  20. Density, viscosity, surface tension, and molar volume of propylene glycol + water mixtures from 293 to 323 K and correlations by the Jouyban–Acree model

    Directory of Open Access Journals (Sweden)

    Ibrahim S. Khattab

    2017-02-01

    Full Text Available Density, viscosity, surface tension and molar volume of propylene glycol + water mixtures at 293, 298, 303, 308, 313, 318, and 323 K are reported, compared with the available literature data and the Jouyban–Acree model was used for mathematical correlation of the data. The mean relative deviation (MRD was used as an error criterion and the MRD values for data correlation of density, viscosity, surface tension and molar volume at different investigated temperatures are 0.1 ± 0.1%, 7.6 ± 6.4%, 3.4 ± 3.7%, and 0.4 ± 0.4%, respectively. The corresponding MRDs for the predicted properties after training the model using the experimental data at 298 K are 0.1 ± 0.2%, 12.8 ± 9.3%, 4.7 ± 4.1% and 0.6 ± 0.5%, respectively for density, viscosity, surface tension, and molar volume data.

  1. Mirror neurons

    National Research Council Canada - National Science Library

    Rubia Vila, Francisco José

    2011-01-01

    Mirror neurons were recently discovered in frontal brain areas of the monkey. They are activated when the animal makes a specific movement, but also when the animal observes the same movement in another animal...

  2. Shaping of the axial power density distribution in the core to minimize the vapor volume fraction at the outlet of the VVER-1200 fuel assemblies

    Science.gov (United States)

    Savander, V. I.; Shumskiy, B. E.; Pinegin, A. A.

    2016-12-01

    The possibility of decreasing the vapor fraction at the VVER-1200 fuel assembly outlet by shaping the axial power density field is considered. The power density field was shaped by axial redistribution of the concentration of the burnable gadolinium poison in the Gd-containing fuel rods. The mathematical modeling of the VVER-1200 core was performed using the NOSTRA computer code.

  3. [Mirror neurons].

    Science.gov (United States)

    Rubia Vila, Francisco José

    2011-01-01

    Mirror neurons were recently discovered in frontal brain areas of the monkey. They are activated when the animal makes a specific movement, but also when the animal observes the same movement in another animal. Some of them also respond to the emotional expression of other animals of the same species. These mirror neurons have also been found in humans. They respond to or "reflect" actions of other individuals in the brain and are thought to represent the basis for imitation and empathy and hence the neurobiological substrate for "theory of mind", the potential origin of language and the so-called moral instinct.

  4. Characterization of age-dependent and progressive cortical neuronal degeneration in presenilin conditional mutant mice.

    Directory of Open Access Journals (Sweden)

    Mary Wines-Samuelson

    Full Text Available Presenilins are the major causative genes of familial Alzheimer's disease (AD. Our previous study has demonstrated essential roles of presenilins in memory and neuronal survival. Here, we explore further how loss of presenilins results in age-related, progressive neurodegeneration in the adult cerebral cortex, where the pathogenesis of AD occurs. To circumvent the requirement of presenilins for embryonic development, we used presenilin conditional double knockout (Psen cDKO mice, in which presenilin inactivation is restricted temporally and spatially to excitatory neurons of the postnatal forebrain beginning at 4 weeks of age. Increases in the number of degenerating (Fluoro-Jade B+, 7.6-fold and apoptotic (TUNEL+, 7.4-fold neurons, which represent approximately 0.1% of all cortical neurons, were first detected at 2 months of age when there is still no significant loss of cortical neurons and volume in Psen cDKO mice. By 4 months of age, significant loss of cortical neurons (approximately 9% and gliosis was found in Psen cDKO mice. The apoptotic cell death is associated with caspase activation, as shown by increased numbers of cells immunoreactive for active caspases 9 and 3 in the Psen cDKO cortex. The vulnerability of cortical neurons to loss of presenilins is region-specific with cortical neurons in the lateral cortex most susceptible. Compared to the neocortex, the increase in apoptotic cell death and the extent of neurodegeneration are less dramatic in the Psen cDKO hippocampus, possibly in part due to increased neurogenesis in the aging dentate gyrus. Neurodegeneration is also accompanied with mitochondrial defects, as indicated by reduced mitochondrial density and altered mitochondrial size distribution in aging Psen cortical neurons. Together, our findings show that loss of presenilins in cortical neurons causes apoptotic cell death occurring in a very small percentage of neurons, which accumulates over time and leads to substantial loss

  5. Seasonal and spatial distribution of Bacterioplankton in a fluvial-lagunar system of a tropical region: density, biomass, cellular volume and morphologic variation

    Directory of Open Access Journals (Sweden)

    Magnólia Fernandes Florêncio de Araújo

    2008-02-01

    Full Text Available The temporal and spatial fluctuations of Bacterioplankton in a fluvial-lagunar system of a tropical region (Pitimbu River and Jiqui Lake, RN were studied during the dry and the rainy periods. The bacterial abundance varied from 2.67 to 5.1 Cells10(7mL-1 and did not show a typical temporal variation, presenting only small oscillations between the rainy and the dry periods. The bacterial biomass varied from 123 µgC L-1 to 269 µgC L-1 in the sampling sites and the average cellular volume varied from 0.12 to 0.54µm³, showing a predominance of the rods. The temperature showed a positive correlation with the cellular volume of the rods (R=0.55; p=0.02 and vibrio (R=0.53; p=0.03. Significant spatial differences of biomass (Mann Whitney: p=0.01 and cellular volume of the morphotypes (Mann Whitney: p=0.003 were found between the sampling sites. The strong positive correlations of the water temperature and oxygen with bacterioplankton showed a probable high bacterial activity in this system.A variação temporal e espacial do bacterioplâncton em um sistema fluvial-lagunar de região tropical foi estudada em períodos seco e chuvoso. As médias da abundância bacteriana variaram de 2,67 a 5,1 x 10(7 e não exibiram uma variação temporal marcante, tendo apresentado apenas pequenas oscilações entre os períodos chuvoso e seco. A biomassa bacteriana variou de 123 µg C L-1 a 269 µg C L-1 entre os locais de coleta e o volume celular médio de 0,12µm³ a 0,54µm³, ocorrendo predominância de bacilos. A temperatura mostrou correlação positiva com o volume celular de bacilos (R=0,55; p=0,02 e de vibriões (R=0,53; p=0,03. Foram encontradas diferenças espaciais significativas de biomassa (Mann Whitney: p=0,01 e volume celular dos morfotipos (Mann Whitney: p= 0,003, entre os locais de coleta. As fortes correlações positivas da temperatura da água e do oxigênio, com o bacterioplâncton, são sugestivas de uma provavelmente elevada atividade

  6. Excess Volumes, Densities, Speeds of Sound, and Viscosities for the Binary Systems of 1-Octanol with Hexadecane and Squalane at (298.15, 303.15 and 308.15) K

    Science.gov (United States)

    Dubey, Gyan P.; Sharma, Monika

    2008-08-01

    Excess molar volumes, {V_m^E } , excess molar isentropic compressibilities, {K_{S,m}^E } , and deviations of the speeds of sound, u D, from their ideal values u id in an ideal mixture for binary mixtures of 1-octanol, C8H17OH, with hexadecane, C16H34, and squalane (2,6,10,15,19,23-hexamethyltetracosane), C30H62, at T = (298.15, 303.15, and 308.15) K and at atmospheric pressure were derived from experimental density, ρ, and speed-of-sound data, u. Viscosity measurements were also carried out for the same mixtures. The Prigogine-Flory-Patterson (PFP) theory has been applied to analyze {V_m^E} of these systems. Furthermore, the apparent molar volumes, {overline{{V}}_{\\varphi ,i}^0 } and apparent molar compressibility, {overline{{K}}_{\\varphi ,i}^{ 0} } of the components at infinite dilution have been calculated.

  7. Reciprocal regulation of very low density lipoprotein receptors (VLDLRs) in neurons by brain-derived neurotrophic factor (BDNF) and Reelin: involvement of the E3 ligase Mylip/Idol.

    Science.gov (United States)

    Do, Hai Thi; Bruelle, Céline; Tselykh, Timofey; Jalonen, Pilvi; Korhonen, Laura; Lindholm, Dan

    2013-10-11

    BDNF positively influences various aspects of neuronal migration, maturation, and survival in the developing brain. Reelin in turn mediates inhibitory signals to migrating neuroblasts, which is crucial for brain development. The interplay between BDNF and Reelin signaling in neurodevelopment is not fully understood. We show here that BDNF increased the levels of the Reelin receptor (VLDL receptor (VLDLR)) in hippocampal neurons by increasing gene expression. In contrast, Reelin decreased VLDLRs, which was accompanied by an increase in the levels of the E3 ligase Mylip/Idol in neurons. Down-regulation of Mylip/Idol using shRNAs abrogated the decrease in VLDLRs induced by Reelin. These results show that VLDLRs are tightly regulated in hippocampal neurons by both transcriptional and post-transcriptional mechanisms. The regulation of VLDLR by BDNF and Reelin may affect the migration of neurons and contribute to neurodevelopmental disorders in the nervous system.

  8. Proceedings of Workshop on Atmospheric Density and Aerodynamic Drag Models for Air Force Operations Held at Air Force Geophysics Laboratory on 20-22 October 1987. Volume 1

    Science.gov (United States)

    1990-02-13

    that DE measurements and dam fr m multiple GBFI stations could be used to provide cowis t deterrminations of the globa -scale thermopheric...soiid t p r o ile 1 )e 4 - 12 1.1 stratospheric warming . 4 - 13 4.3 GRAVITY WAVE DENSITY VARIATIONS INFERRED FROM GROUND BASED RADAR MEASUREMENTS OF

  9. Impaired synaptic clustering of postsynaptic density proteins and altered signal transmission in hippocampal neurons, and disrupted learning behavior in PDZ1 and PDZ2 ligand binding-deficient PSD-95 knockin mice

    Directory of Open Access Journals (Sweden)

    Nagura Hitoshi

    2012-12-01

    Full Text Available Abstract Background Postsynaptic density (PSD-95-like membrane-associated guanylate kinases (PSD-MAGUKs are scaffold proteins in PSDs that cluster signaling molecules near NMDA receptors. PSD-MAGUKs share a common domain structure, including three PDZ (PDZ1/2/3 domains in their N-terminus. While multiple domains enable the PSD-MAGUKs to bind various ligands, the contribution of each PDZ domain to synaptic organization and function is not fully understood. Here, we focused on the PDZ1/2 domains of PSD-95 that bind NMDA-type receptors, and studied the specific roles of the ligand binding of these domains in the assembly of PSD proteins, synaptic properties of hippocampal neurons, and behavior, using ligand binding-deficient PSD-95 cDNA knockin (KI mice. Results The KI mice showed decreased accumulation of mutant PSD-95, PSD-93 and AMPA receptor subunits in the PSD fraction of the hippocampus. In the hippocampal CA1 region of young KI mice, basal synaptic efficacy was reduced and long-term potentiation (LTP was enhanced with intact long-term depression. In adult KI mice, there was no significant change in the magnitude of LTP in CA1, but robustly enhanced LTP was induced at the medial perforant path-dentate gyrus synapses, suggesting that PSD-95 has an age- and subregion-dependent role. In a battery of behavioral tests, KI mice showed markedly abnormal anxiety-like behavior, impaired spatial reference and working memory, and impaired remote memory and pattern separation in fear conditioning test. Conclusions These findings reveal that PSD-95 including its ligand binding of the PDZ1/2 domains controls the synaptic clustering of PSD-MAGUKs and AMPA receptors, which may have an essential role in regulating hippocampal synaptic transmission, plasticity, and hippocampus-dependent behavior.

  10. Impaired synaptic clustering of postsynaptic density proteins and altered signal transmission in hippocampal neurons, and disrupted learning behavior in PDZ1 and PDZ2 ligand binding-deficient PSD-95 knockin mice.

    Science.gov (United States)

    Nagura, Hitoshi; Ishikawa, Yasuyuki; Kobayashi, Katsunori; Takao, Keizo; Tanaka, Tomo; Nishikawa, Kouki; Tamura, Hideki; Shiosaka, Sadao; Suzuki, Hidenori; Miyakawa, Tsuyoshi; Fujiyoshi, Yoshinori; Doi, Tomoko

    2012-12-26

    Postsynaptic density (PSD)-95-like membrane-associated guanylate kinases (PSD-MAGUKs) are scaffold proteins in PSDs that cluster signaling molecules near NMDA receptors. PSD-MAGUKs share a common domain structure, including three PDZ (PDZ1/2/3) domains in their N-terminus. While multiple domains enable the PSD-MAGUKs to bind various ligands, the contribution of each PDZ domain to synaptic organization and function is not fully understood. Here, we focused on the PDZ1/2 domains of PSD-95 that bind NMDA-type receptors, and studied the specific roles of the ligand binding of these domains in the assembly of PSD proteins, synaptic properties of hippocampal neurons, and behavior, using ligand binding-deficient PSD-95 cDNA knockin (KI) mice. The KI mice showed decreased accumulation of mutant PSD-95, PSD-93 and AMPA receptor subunits in the PSD fraction of the hippocampus. In the hippocampal CA1 region of young KI mice, basal synaptic efficacy was reduced and long-term potentiation (LTP) was enhanced with intact long-term depression. In adult KI mice, there was no significant change in the magnitude of LTP in CA1, but robustly enhanced LTP was induced at the medial perforant path-dentate gyrus synapses, suggesting that PSD-95 has an age- and subregion-dependent role. In a battery of behavioral tests, KI mice showed markedly abnormal anxiety-like behavior, impaired spatial reference and working memory, and impaired remote memory and pattern separation in fear conditioning test. These findings reveal that PSD-95 including its ligand binding of the PDZ1/2 domains controls the synaptic clustering of PSD-MAGUKs and AMPA receptors, which may have an essential role in regulating hippocampal synaptic transmission, plasticity, and hippocampus-dependent behavior.

  11. A novel perspective on neuron study: damaging and promoting effects in different neurons induced by mechanical stress.

    Science.gov (United States)

    Wang, Yazhou; Wang, Wei; Li, Zong; Hao, Shilei; Wang, Bochu

    2016-10-01

    A growing volume of experimental evidence demonstrates that mechanical stress plays a significant role in growth, proliferation, apoptosis, gene expression, electrophysiological properties and many other aspects of neurons. In this review, first, the mechanical microenvironment and properties of neurons under in vivo conditions are introduced and analyzed. Second, research works in recent decades on the effects of different mechanical forces, especially compression and tension, on various neurons, including dorsal root ganglion neurons, retinal ganglion cells, cerebral cortex neurons, hippocampus neurons, neural stem cells, and other neurons, are summarized. Previous research results demonstrate that mechanical stress can not only injure neurons by damaging their morphology, impacting their electrophysiological characteristics and gene expression, but also promote neuron self-repair. Finally, some future perspectives in neuron research are discussed.

  12. Renormalized Volume

    Science.gov (United States)

    Gover, A. Rod; Waldron, Andrew

    2017-09-01

    We develop a universal distributional calculus for regulated volumes of metrics that are suitably singular along hypersurfaces. When the hypersurface is a conformal infinity we give simple integrated distribution expressions for the divergences and anomaly of the regulated volume functional valid for any choice of regulator. For closed hypersurfaces or conformally compact geometries, methods from a previously developed boundary calculus for conformally compact manifolds can be applied to give explicit holographic formulæ for the divergences and anomaly expressed as hypersurface integrals over local quantities (the method also extends to non-closed hypersurfaces). The resulting anomaly does not depend on any particular choice of regulator, while the regulator dependence of the divergences is precisely captured by these formulæ. Conformal hypersurface invariants can be studied by demanding that the singular metric obey, smoothly and formally to a suitable order, a Yamabe type problem with boundary data along the conformal infinity. We prove that the volume anomaly for these singular Yamabe solutions is a conformally invariant integral of a local Q-curvature that generalizes the Branson Q-curvature by including data of the embedding. In each dimension this canonically defines a higher dimensional generalization of the Willmore energy/rigid string action. Recently, Graham proved that the first variation of the volume anomaly recovers the density obstructing smooth solutions to this singular Yamabe problem; we give a new proof of this result employing our boundary calculus. Physical applications of our results include studies of quantum corrections to entanglement entropies.

  13. A hybrid pressure-density-based Mach uniform algorithm for 2D Euler equations on unstructured grids by using multi-moment finite volume method

    Science.gov (United States)

    Xie, Bin; Deng, Xi; Sun, Ziyao; Xiao, Feng

    2017-04-01

    We propose a novel Mach-uniform numerical model for 2D Euler equations on unstructured grids by using multi-moment finite volume method. The model integrates two key components newly developed to solve compressible flows on unstructured grids with improved accuracy and robustness. A new variant of AUSM scheme, so-called AUSM+-pcp (AUSM+ with pressure-correction projection), has been devised including a pressure-correction projection to the AUSM+ flux splitting, which maintains the exact numerical conservativeness and works well for all Mach numbers. A novel 3th-order, non-oscillatory and less-dissipative reconstruction has been proposed by introducing a multi-dimensional limiting and a BVD (boundary variation diminishing) treatment to the VPM (volume integrated average (VIA) and point value (PV) based multi-moment) reconstruction. The resulting reconstruction scheme, the limited VPM-BVD formulation, is able to resolve both smooth and non-smooth solutions with high fidelity. Benchmark tests have been used to verify the present model. The numerical results substantiate the present model as an accurate and robust unstructured-grid formulation for flows of all Mach numbers.

  14. Motor Neurons

    DEFF Research Database (Denmark)

    Hounsgaard, Jorn

    2017-01-01

    Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional...... properties of this facility in the path from synaptic sites to the motor axon is reviewed with emphasis on voltage sensitive ion channels and regulatory metabotropic transmitter pathways. The catalog of the intrinsic response properties, their underlying mechanisms, and regulation obtained from motoneurons...... in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems....

  15. Density and Molar Volume of Molten Ni-Based Commercial Alloys Measured by Modified Sessile Drop Method%用改良静滴法测量液态Ni基合金的密度和摩尔体积

    Institute of Scientific and Technical Information of China (English)

    肖锋; 杨仁辉; 刘兰霄; 赵红凯; 方亮; 张弛

    2009-01-01

    The densities of four kinds of molten Ni-based commercial alloys were measured with a modified sessile drop method, and calculated using the calculating software. It is found that the densities of the molten Ni-based commercial alloys decrease and their molar volume increase with increasing of temperature. Compared with the ideal mixing, the molar volumes of the molten Ni-based commercial alloys show negative deviations. It can be attributed to an accommodation between various atoms in the alloys.%采用改良静滴法测量并通过软件的计算得到了4种商用镍基合金的密度.结果表明,随着温度的升高,4种液态镍基合金的密度逐渐减小,摩尔体积逐渐增大.与理想混合状态相比,液体镍基合金的摩尔体积出现负偏差.从而可以推测在合金中各种原子之间发生了调整.

  16. Selective reduction of cerebral cortex GABA neurons in a late gestation model of fetal alcohol spectrum disorder.

    Science.gov (United States)

    Smiley, John F; Saito, Mariko; Bleiwas, Cynthia; Masiello, Kurt; Ardekani, Babak; Guilfoyle, David N; Gerum, Scott; Wilson, Donald A; Vadasz, Csaba

    2015-09-01

    Fetal alcohol spectrum disorders (FASD) are associated with cognitive and behavioral deficits, and decreased volume of the whole brain and cerebral cortex. Rodent models have shown that early postnatal treatments, which mimic ethanol toxicity in the third trimester of human pregnancy, acutely induce widespread apoptotic neuronal degeneration and permanent behavioral deficits. However, the lasting cellular and anatomical effects of early ethanol treatments are still incompletely understood. This study examined changes in neocortex volume, thickness, and cellular organization that persist in adult mice after postnatal day 7 (P7) ethanol treatment. Post mortem brain volumes, measured by both MRI within the skull and by fluid displacement of isolated brains, were reduced 10-13% by ethanol treatment. The cerebral cortex showed a similar reduction (12%) caused mainly by lower surface area (9%). In spite of these large changes, several features of cortical organization showed little evidence of change, including cortical thickness, overall neuron size, and laminar organization. Estimates of total neuron number showed a trend level reduction of about 8%, due mainly to reduced cortical volume but unchanged neuron density. However, counts of calretinin (CR) and parvalbumin (PV) subtypes of GABAergic neurons showed a striking >30% reduction of neuron number. Similar ethanol effects were found in male and female mice, and in C57BL/6By and BALB/cJ mouse strains. Our findings indicate that the cortex has substantial capacity to develop normal cytoarchitectonic organization after early postnatal ethanol toxicity, but there is a selective and persistent reduction of GABA cells that may contribute to the lasting cognitive and behavioral deficits in FASD.

  17. Acceleration of the effect of solute on the entropy-volume cross fluctuation density in aqueous 2-butoxyethanol, 1-propanol, and glycerol: The fourth derivative of Gibbs energy

    Science.gov (United States)

    Yoshida, Koh; Baluja, Shipra; Inaba, Akira; Koga, Yoshikata

    2011-06-01

    Using a differential pressure perturbation calorimetry developed by us recently [K. Yoshida, S. Baluja, A. Inaba, K. Tozaki, and Y. Koga, "Experimental determination of third derivative of G (III): Differential pressure perturbation calorimetry (II)," J. Solution Chem. (in press)], we experimentally determined the partial molar S-V cross fluctuation density of solute B, SVδB, in binary aqueous solutions for B = 1-propanol (1P) and glycerol (Gly). This third derivative of G provides information about the effect of solute B on the S-V cross fluctuation density, SVδ, in aqueous solution as the concentration of B varies. Having determined SVδB by better than 1% uncertainty, we evaluated for the first time the fourth derivative quantity SVδB-B = N(∂SVδB /∂nB) for B = 1P and Gly graphically without resorting to any fitting functions within several percent. This model-free quantity gives information about the acceleration of the effect of solute B on SVδ. By comparing fourth derivative quantities, SVδB-B, among B = 1P, Gly, and 2-butoxyethanol obtained previously, the distinction of the effect of solute on H2O becomes clearer than before when only the third derivative quantities were available.

  18. Ultrasonic velocities, densities, and excess molar volumes of binary mixtures of N,N-dimethyl formamide with methyl acrylate, or ethyl acrylate, or butyl acrylate, or 2-ethyl hexyl acrylate at T = 308.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Kondaiah, M. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Andhra Pradesh (India); Sravana Kumar, D. [Dr. V.S. Krishna Govt. Degree College, Visakhapatnam, Andhra Pradesh (India); Sreekanth, K. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Andhra Pradesh (India); Krishna Rao, D., E-mail: krdhanekula@yahoo.co.in [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Andhra Pradesh (India)

    2011-12-15

    Highlights: > Positive values of V{sub m}{sup E}, indicate dispersion forces between acrylic esters and DMF. > V{sub m}{sup E} values compared with Redlich-Kister polynomial. > Partial molar volumes data conclude that weak interactions exist in the systems. > Measured velocity values compared with theoretical values obtained by polynomials. - Abstract: Ultrasonic velocities, u, densities, {rho}, of binary mixtures of N,N-dimethyl formamide (DMF) with methyl acrylate (MA), ethyl acrylate (EA), butyl acrylate (BA), and 2-ethyl hexyl acrylate (EHA), including pure liquids, over the entire composition range have been measured at T = 308.15 K. Using the experimental results, the excess molar volume, V{sub m}{sup E}, partial molar volumes, V-bar {sub m,1}, V-bar{sub m,2}, and excess partial molar volumes, V-bar{sub m,1}{sup E}, V-bar{sub m,2}{sup E} have been calculated. Molecular interactions in the systems have been studied in the light of variation of excess values of calculated properties. The excess properties have been fitted to Redlich-Kister type polynomial and the corresponding standard deviations have been calculated. The positive values of V{sub m}{sup E} indicate the presence of dispersion forces between the DMF and acrylic ester molecules. Further theoretical values of sound velocity in the mixtures have been evaluated using various theories and have been compared with experimental sound velocities to verify the applicability of such theories to the systems studied. Theoretical ultrasonic velocity data have been used to study molecular interactions in the binary systems investigated.

  19. Flutter parametric studies of cantilevered twin-engine transport type wing with and without winglet. Volume 2: Transonic and density effect investigations

    Science.gov (United States)

    Bhatia, K. G.; Nagaraja, K. S.

    1984-01-01

    Flutter characteristics of a cantilevered high aspect ratio wing with winglet were investigated. The configuration represented a current technology, twin engine airplane. Compressibility effects through transonic Mach numbers and a wide range of mass-density ratios were evaluated on a low speed and high speed model. Four flutter mechanisms were obtained from test, and analysis from various combinations of configuration parameters. It is shown that the coupling between wing tip vertical and chordwise motions have significant effect under some conditions. It is concluded that for the flutter model configurations studied, the winglet related flutter is amenable to the conventional flutter analysis techniques. The low speed model flutter and the high-speed model flutter results are described.

  20. Effects of planting density on the growth and stand volume of young Anthocephalus chinensis plantation%造林密度对黄梁木幼林生长和林分蓄积的影响

    Institute of Scientific and Technical Information of China (English)

    张立超; 高婕; 林佳慧; 陈晓阳; 彭昌操; 邓小梅; 林家怡; 曾曙才

    2016-01-01

    【目的】通过分析造林密度对3年生黄梁木Anthocephalus chinensis幼林的树高、冠幅、枝下高、胸径、单株材积和林分蓄积等的影响,探究造林密度与黄梁木人工幼林生长的关系。【方法】采用完全随机区组设计,共设5个造林密度,分别为625、667、833、1667和2500株·hm-2。采用每木检尺法,测量每个小区内9株试验树主要生长指标。采用单因素方差分析和Duncan’ s多重极差检验法比较不同造林密度间的差异,采用相关性分析对不同数据组间的相关性进行分析。【结果】造林密度对黄梁木的树高、冠幅、枝下高和林分蓄积生长有极显著影响(P <0.01)。树高(y)与密度(x)呈极显著正相关关系,回归方程为y =-4.0000×10-7x2+0.0016x +8.2703;林分蓄积(y)与密度(x)呈极显著正相关关系,回归方程为y =-1.0000×10-5x2+0.1127x-12.6640;冠幅(y)与密度( x)呈极显著负相关关系,回归方程为y =15.9425-4.0000×10-5x。研究还发现,胸径( y)与冠幅( x)存在极显著正相关关系,回归方程为y =9.6613x2-103.9500x +293.8700。【结论】就黄梁木幼林而言,造林密度为2500株·hm-2幼林的树高和林分蓄积最大。%[Objective] To explore the effects of planting density on the growth of Anthocephalus chinensis plantation, namely, on tree height, canopy width, height under branch, diameter at breast height (DBH), individual tree volume and stand volume. [Method]Planting densities of 625,667,833,1 667 and 2 500 trees·hm-2 were established in a complete randomized block design. Based on the method of tally, the major growth indicators of nine experimental trees in each block were measured. Differences among different planting densities were analyzed using one-way ANOVA and Duncan ’ s Multiple Range Test. Relationship among different traits and planting density were explored using correlation analysis.[Result]Planting density had

  1. Quantitative sodium MRI of the human brain at 9.4 T provides assessment of tissue sodium concentration and cell volume fraction during normal aging.

    Science.gov (United States)

    Thulborn, Keith; Lui, Elaine; Guntin, Jonathan; Jamil, Saad; Sun, Ziqi; Claiborne, Theodore C; Atkinson, Ian C

    2016-02-01

    Sodium ion homeostasis is a fundamental property of viable tissue, allowing the tissue sodium concentration to be modeled as the tissue cell volume fraction. The modern neuropathology literature using ex vivo tissue from selected brain regions indicates that human brain cell density remains constant during normal aging and attributes the volume loss that occurs with advancing age to changes in neuronal size and dendritic arborization. Quantitative sodium MRI performed with the enhanced sensitivity of ultrahigh-field 9.4 T has been used to investigate tissue cell volume fraction during normal aging. This cross-sectional study (n = 49; 21-80 years) finds that the in vivo tissue cell volume fraction remains constant in all regions of the brain with advancing age in individuals who remain cognitively normal, extending the ex vivo literature reporting constant neuronal cell density across the normal adult age range. Cell volume fraction, as measured by quantitative sodium MRI, is decreased in diseases of cell loss, such as stroke, on a time scale of minutes to hours, and in response to treatment of brain tumors on a time scale of days to weeks. Neurodegenerative diseases often have prodromal periods of decades in which regional neuronal cell loss occurs prior to clinical presentation. If tissue cell volume fraction can detect such early pathology, this quantitative parameter may permit the objective measurement of preclinical disease progression. This current study in cognitively normal aging individuals provides the basis for the pursuance of investigations directed towards such neurodegenerative diseases.

  2. A primal analysis system of brain neurons data.

    Science.gov (United States)

    Pu, Dong-Mei; Gao, Da-Qi; Yuan, Yu-Bo

    2014-01-01

    It is a very challenging work to classify the 86 billions of neurons in the human brain. The most important step is to get the features of these neurons. In this paper, we present a primal system to analyze and extract features from brain neurons. First, we make analysis on the original data of neurons in which one neuron contains six parameters: room type, X, Y, Z coordinate range, total number of leaf nodes, and fuzzy volume of neurons. Then, we extract three important geometry features including rooms type, number of leaf nodes, and fuzzy volume. As application, we employ the feature database to fit the basic procedure of neuron growth. The result shows that the proposed system is effective.

  3. Extremely Small Sizes for Faint z~2-8 Galaxies in the Hubble Frontier Fields: A Key Input For Establishing their Volume Density and UV Emissivity

    CERN Document Server

    Bouwens, R J; Oesch, P A; Atek, H; Lam, D; Stefanon, M

    2016-01-01

    We provide the first observational constraints on the sizes of the faintest galaxies lensed by the Hubble Frontier Fields (HFF) clusters. Ionizing radiation from faint galaxies likely drives cosmic reionization, and the HFF initiative provides a key opportunity to find such galaxies. Yet, we cannot really assess their ionizing emissivity without a robust measurement of their sizes, since this is key to quantifying both their prevalence and the faint-end slope to the UV luminosity function. Here we provide the first such size constraints with 2 new techniques. The first utilizes the fact that the detectability of highly-magnified galaxies as a function of shear is very dependent on a galaxy's size. Only the most compact galaxies will remain detectable in regions of high shear (vs. a larger detectable size range for low shear), a phenomenon we carefully quantify using simulations. Remarkably, however, no correlation is found between the surface density of faint galaxies and the predicted shear, using 87 faint h...

  4. Sex differences in neuronal morphology in the killifish hypothalamus.

    Science.gov (United States)

    Lauer, Lisa E; McCarthy, Margaret M; Mong, Jessica; Kane, Andrew S

    2006-01-27

    This study examined the neuroarchitecture of the male and female killifish (Fundulus heteroclitus) hypothalamus to evaluate whether sexual dimorphism of this brain region exists in fishes as it does in mammals and other vertebrates. The rostral medulla, a brain region distinct from the hypothalamic-pituitary-gonadal axis, was also examined to determine if any observed differences were region-specific. With the use of Golgi-Cox impregnation, five dendritic characteristics were measured from neurons of both the hypothalamus and medulla including: spine density, number of branch points, dendrite length, surface area and volume. Dendritic spines are associated with excitatory synapses, and changes in density are associated with a variety of normal and pathological changes. Consistent with mammalian studies, we found that adult female killifish have 25% greater dendritic spine densities in the hypothalamus than male killifish (densities of 0.34+/-0.06 microm-1 and 0.25+/-0.08 microm-1, respectively). By contrast, no statistically significant difference between males and females was detected in spine densities in the rostral medulla. This finding supports the conclusion that hypothalamic sexual dimorphism is conserved in killifish.

  5. Inflammation without neuronal death triggers striatal neurogenesis comparable to stroke.

    Science.gov (United States)

    Chapman, Katie Z; Ge, Ruimin; Monni, Emanuela; Tatarishvili, Jemal; Ahlenius, Henrik; Arvidsson, Andreas; Ekdahl, Christine T; Lindvall, Olle; Kokaia, Zaal

    2015-11-01

    Ischemic stroke triggers neurogenesis from neural stem/progenitor cells (NSPCs) in the subventricular zone (SVZ) and migration of newly formed neuroblasts toward the damaged striatum where they differentiate to mature neurons. Whether it is the injury per se or the associated inflammation that gives rise to this endogenous neurogenic response is unknown. Here we showed that inflammation without corresponding neuronal loss caused by intrastriatal lipopolysaccharide (LPS) injection leads to striatal neurogenesis in rats comparable to that after a 30 min middle cerebral artery occlusion, as characterized by striatal DCX+ neuroblast recruitment and mature NeuN+/BrdU+ neuron formation. Using global gene expression analysis, changes in several factors that could potentially regulate striatal neurogenesis were identified in microglia sorted from SVZ and striatum of LPS-injected and stroke-subjected rats. Among the upregulated factors, one chemokine, CXCL13, was found to promote neuroblast migration from neonatal mouse SVZ explants in vitro. However, neuroblast migration to the striatum was not affected in constitutive CXCL13 receptor CXCR5(-/-) mice subjected to stroke. Infarct volume and pro-inflammatory M1 microglia/macrophage density were increased in CXCR5(-/-) mice, suggesting that microglia-derived CXCL13, acting through CXCR5, might be involved in neuroprotection following stroke. Our findings raise the possibility that the inflammation accompanying an ischemic insult is the major inducer of striatal neurogenesis after stroke.

  6. Effect of brain-derived neurotrophic factor haploinsufficiency on stress-induced remodeling of hippocampal neurons.

    Science.gov (United States)

    Magariños, A M; Li, C J; Gal Toth, J; Bath, K G; Jing, D; Lee, F S; McEwen, B S

    2011-03-01

    Chronic restraint stress (CRS) induces the remodeling (i.e., retraction and simplification) of the apical dendrites of hippocampal CA3 pyramidal neurons in rats, suggesting that intrahippocampal connectivity can be affected by a prolonged stressful challenge. Since the structural maintenance of neuronal dendritic arborizations and synaptic connectivity requires neurotrophic support, we investigated the potential role of brain derived neurotrophic factor (BDNF), a neurotrophin enriched in the hippocampus and released from neurons in an activity-dependent manner, as a mediator of the stress-induced dendritic remodeling. The analysis of Golgi-impregnated hippocampal sections revealed that wild type (WT) C57BL/6 male mice showed a similar CA3 apical dendritic remodeling in response to three weeks of CRS to that previously described for rats. Haploinsufficient BDNF mice (BDNF(±) ) did not show such remodeling, but, even without CRS, they presented shorter and simplified CA3 apical dendritic arbors, like those observed in stressed WT mice. Furthermore, unstressed BDNF(±) mice showed a significant decrease in total hippocampal volume. The dendritic arborization of CA1 pyramidal neurons was not affected by CRS or genotype. However, only in WT mice, CRS induced changes in the density of dendritic spine shape subtypes in both CA1 and CA3 apical dendrites. These results suggest a complex role of BDNF in maintaining the dendritic and spine morphology of hippocampal neurons and the associated volume of the hippocampal formation. The inability of CRS to modify the dendritic structure of CA3 pyramidal neurons in BDNF(±) mice suggests an indirect, perhaps permissive, role of BDNF in mediating hippocampal dendritic remodeling.

  7. 色谱仪大体积进样技术在全密度装置的应用%Application of chromatography with large volume injection technology in full density polyethylene equipments

    Institute of Scientific and Technical Information of China (English)

    郭江明; 刘怡; 涂丽蓉; 张晓红

    2013-01-01

      This paper introduces the application of Siemens chromatograph in ful density polyethylene plant,emphasizes the transformation of sample loop,and provides one method:increase the volume of sample in order to increase the detection of very low concentration of H2 TCD detector,to ensure he control system of circulating gas H2 measurement accuracy.%  本文简介了西门子色谱仪在全密度聚乙烯装置中的应用,重点介绍了改造样品定量管,并提出了一种方法:增大进样体积以提高TCD检测器对极低浓度H2的准确检测,保证循环气控制系统的H2测量准确性。

  8. Extremely Small Sizes for Faint z ˜ 2-8 Galaxies in the Hubble Frontier Fields: A Key Input for Establishing Their Volume Density and UV Emissivity

    Science.gov (United States)

    Bouwens, R. J.; Illingworth, G. D.; Oesch, P. A.; Atek, H.; Lam, D.; Stefanon, M.

    2017-07-01

    We provide the first observational constraints on the sizes of the faintest galaxies lensed by the Hubble Frontier Fields (HFF) clusters. Ionizing radiation from faint galaxies likely drives cosmic reionization, and the HFF initiative provides a key opportunity to find such galaxies. However, we cannot assess their ionizing emissivity without a robust measurement of their sizes, since this is key to quantifying both their prevalence and the faint-end slope to the UV luminosity function. Here we provide the first size constraints with two new techniques. The first utilizes the fact that the detectability of highly magnified galaxies as a function of shear is very dependent on a galaxy’s size. Only the most compact galaxies remain detectable in high-shear regions (versus a larger detectable size range for low shear), a phenomenon we quantify using simulations. Remarkably, however, no correlation is found between the surface density of faint galaxies and the predicted shear, using 87 high-magnification (μ =10-100) z˜ 2-8 galaxies seen behind the first four HFF clusters. This can only be the case if faint (˜ -15 mag) galaxies have significantly smaller sizes than more luminous galaxies, i.e., ≲ 30 mas or 160-240 pc. As a second size probe, we rotate and stack 26 faint high-magnification sources along the major shear axis. Less elongation is found even for objects with an intrinsic half-light radius of 10 mas. Together, these results indicate that extremely faint z˜ 2-8 galaxies have near point-source profiles (half-light radii <30 mas and perhaps 5-10 mas). These results suggest smaller completeness corrections and hence shallower faint-end slopes for the z˜ 2-8 LFs than derived in some recent studies (by {{Δ }}α ≳ 0.1-0.3).

  9. Local and commissural IC neurons make axosomatic inputs on large GABAergic tectothalamic neurons.

    Science.gov (United States)

    Ito, Tetsufumi; Oliver, Douglas L

    2014-10-15

    Large GABAergic (LG) neurons are a distinct type of neuron in the inferior colliculus (IC) identified by their dense vesicular glutamate transporter 2 (VGLUT2)-containing axosomatic synaptic terminals. Yet the sources of these terminals are unknown. Since IC glutamatergic neurons express VGLUT2, and IC neurons are known to have local collaterals, we tested the hypothesis that these excitatory, glutamatergic axosomatic inputs on LG neurons come from local axonal collaterals and commissural IC neurons. We injected a recombinant viral tracer into the IC which enabled Golgi-like green fluorescent protein (GFP) labeling in both dendrites and axons. In all cases, we found terminals positive for both GFP and VGLUT2 (GFP+/VGLUT2+) that made axosomatic contacts on LG neurons. One to six axosomatic contacts were made on a single LG cell body by a single axonal branch. The GFP-labeled neurons giving rise to the VGLUT2+ terminals on LG neurons were close by. The density of GFP+/VGLUT2+ terminals on the LG neurons was related to the number of nearby GFP-labeled cells. On the contralateral side, a smaller number of LG neurons received axosomatic contacts from GFP+/VGLUT2+ terminals. In cases with a single GFP-labeled glutamatergic neuron, the labeled axonal plexus was flat, oriented in parallel to the fibrodendritic laminae, and contacted 9-30 LG cell bodies within the plexus. Our data demonstrated that within the IC microcircuitry there is a convergence of inputs from local IC excitatory neurons on LG cell bodies. This suggests that LG neurons are heavily influenced by the activity of the nearby laminar glutamatergic neurons in the IC.

  10. [Neuronal network].

    Science.gov (United States)

    Langmeier, M; Maresová, D

    2005-01-01

    Function of the central nervous system is based on mutual relations among the nerve cells. Description of nerve cells and their processes, including their contacts was enabled by improvement of optical features of the microscope and by the development of impregnation techniques. It is associated with the name of Antoni van Leeuwenhoek (1632-1723), J. Ev. Purkyne (1787-1869), Camillo Golgi (1843-1926), and Ramón y Cajal (1852-1934). Principal units of the neuronal network are the synapses. The term synapse was introduced into neurophysiology by Charles Scott Sherrington (1857-1952). Majority of the interactions between nerve cells is mediated by neurotransmitters acting at the receptors of the postsynaptic membrane or at the autoreceptors of the presynaptic part of the synapse. Attachment of the vesicles to the presynaptic membrane and the release of the neurotransmitter into the synaptic cleft depend on the intracellular calcium concentration and on the presence of several proteins in the presynaptic element.

  11. High-Degree Neurons Feed Cortical Computations.

    Directory of Open Access Journals (Sweden)

    Nicholas M Timme

    2016-05-01

    Full Text Available Recent work has shown that functional connectivity among cortical neurons is highly varied, with a small percentage of neurons having many more connections than others. Also, recent theoretical developments now make it possible to quantify how neurons modify information from the connections they receive. Therefore, it is now possible to investigate how information modification, or computation, depends on the number of connections a neuron receives (in-degree or sends out (out-degree. To do this, we recorded the simultaneous spiking activity of hundreds of neurons in cortico-hippocampal slice cultures using a high-density 512-electrode array. This preparation and recording method combination produced large numbers of neurons recorded at temporal and spatial resolutions that are not currently available in any in vivo recording system. We utilized transfer entropy (a well-established method for detecting linear and nonlinear interactions in time series and the partial information decomposition (a powerful, recently developed tool for dissecting multivariate information processing into distinct parts to quantify computation between neurons where information flows converged. We found that computations did not occur equally in all neurons throughout the networks. Surprisingly, neurons that computed large amounts of information tended to receive connections from high out-degree neurons. However, the in-degree of a neuron was not related to the amount of information it computed. To gain insight into these findings, we developed a simple feedforward network model. We found that a degree-modified Hebbian wiring rule best reproduced the pattern of computation and degree correlation results seen in the real data. Interestingly, this rule also maximized signal propagation in the presence of network-wide correlations, suggesting a mechanism by which cortex could deal with common random background input. These are the first results to show that the extent to

  12. Culture systems: embryo density.

    Science.gov (United States)

    Reed, Michael L

    2012-01-01

    Embryo density is defined as the embryo-to-volume ratio achieved during in vitro culture; in other words, it is the number of embryos in a defined volume of culture medium. The same density can be achieved by manipulating either the number of embryos in a given volume of medium, or manipulating the volume of the medium for a given number of embryos: for example, a microdrop with five embryos in a 50 μl volume under oil has the same embryo-to-volume ratio (1:10 μl) as a microdrop with one embryo in a 10 μl volume under oil (1:10 μl). Increased embryo density can improve mammalian embryo development in vitro; however, the mechanism(s) responsible for this effect may be different with respect to which method is used to increase embryo density.Standard, flat sterile plastic petri dishes are the most common, traditional platform for embryo culture. Microdrops under a mineral oil overlay can be prepared to control embryo density, but it is critical that dish preparation is consistent, where appropriate techniques are applied to prevent microdrop dehydration during preparation, and results of any data collection are reliable, and repeatable. There are newer dishes available from several manufacturers that are specifically designed for embryo culture; most are readily available for use with human embryos. The concept behind these newer dishes relies on fabrication of conical and smaller volume wells into the dish design, so that embryos rest at the lowest point in the wells, and where putative embryotrophic factors may concentrate.Embryo density is not usually considered by the embryologist as a technique in and of itself; rather, the decision to culture embryos in groups or individually is protocol-driven, and is based more on convenience or the need to collect data on individual embryos. Embryo density can be controlled, and as such, it can be utilized as a simple, yet effective tool to improve in vitro development of human embryos.

  13. Melatonin improves neuroplasticity by upregulating the growth-associated protein-43 (GAP-43) and NMDAR postsynaptic density-95 (PSD-95) proteins in cultured neurons exposed to glutamate excitotoxicity and in rats subjected to transient focal cerebral ischemia even during a long-term recovery period.

    Science.gov (United States)

    Juan, Wei-Sheng; Huang, Sheng-Yang; Chang, Che-Chao; Hung, Yu-Chang; Lin, Yu-Wen; Chen, Tsung-Ying; Lee, Ai-Hua; Lee, Ai-Chiang; Wu, Tian-Shung; Lee, E-Jian

    2014-03-01

    Recent evidence shows that the NMDAR postsynaptic density-95 (PSD-95), growth-associated protein-43 (GAP-43), and matrix metalloproteinase-9 (MMP-9) protein enhance neuroplasticity at the subacute stage of stroke. Here, we evaluated whether melatonin would modulate the PSD-95, GAP-43, and MMP-9 proteins in cultured neurons exposed to glutamate excitotoxicity and in rats subjected to experimental stroke. Adult male Sprague-Dawley rats were treated with melatonin (5 mg/kg) or vehicle at reperfusion onset after transient occlusion of the right middle cerebral artery (tMCAO) for 90 min. Animals were euthanized for Western immunoblot analyses for the PSD-95 and GAP-43 proteins and gelatin zymography for the MMP-9 activity at 7 days postinsult. Another set of animals was sacrificed for histologic and Golgi-Cox-impregnated sections at 28 days postinsult. In cultured neurons exposed to glutamate excitotoxicity, melatonin significantly upregulated the GAP-43 and PSD-95 expressions and improved dendritic aborizations (PPSD-95 expressions as well as the MMP-9 activity in the ischemic brain (PPSD-95, and MMP-9 proteins, which likely accounts for its actions to improve neuroplasticity in cultured neurons exposed to glutamate excitotoxicity and to enhance long-term neuroprotection, neuroplasticity, and brain remodeling in stroke rats. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Low-intensity treadmill exercise-related changes in the rat stellate ganglion neurons.

    Science.gov (United States)

    Cavalcanti, Renato Albuquerque de Oliveira; da Pureza, Demilto Yamaguchi; de Melo, Mariana Pereira; de Souza, Romeu Rodrigues; Bergamaschi, Cássia T; do Amaral, Sandra Lia; Tang, Helen; Loesch, Andrzej; Ribeiro, Antonio Augusto Coppi Maciel

    2009-05-01

    Stellate ganglion (SG) represents the main sympathetic input to the heart. This study aimed at investigating physical exercise-related changes in the quantitative aspects of SG neurons in treadmill-exercised Wistar rats. By applying state-of-the-art design-based stereology, the SG volume, total number of SG neurons, mean perikaryal volume of SG neurons, and the total volume of neurons in the whole SG have been examined. Arterial pressure and heart rate were also measured at the end of the exercise period. The present study showed that a low-intensity exercise training program caused a 12% decrease in the heart rate of trained rats. In contrast, there were no effects on systolic pressure, diastolic pressure, or mean arterial pressure. As to quantitative changes related to physical exercise, the main findings were a 21% increase in the fractional volume occupied by neurons in the SG, and an 83% increase in the mean perikaryal volume of SG neurons in treadmill-trained rats, which shows a remarkable neuron hypertrophy. It seems reasonable to infer that neuron hypertrophy may have been the result of a functional overload imposed on the SG neurons by initial posttraining sympathetic activation. From the novel stereological data we provide, further investigations are needed to shed light on the mechanistic aspect of neuron hypertrophy: what role does neuron hypertrophy play? Could neuron hypertrophy be assigned to the functional overload induced by physical exercise?

  15. A selective reduction in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia patients%精神分裂症患者海马parvalbumin-免疫反应神经元密度选择性减低

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    目的以钙结合蛋白-parvalbumin和calretinin为标记,确定海马本体γ-氨基丁酸能神经元亚群,并定量分析精神分裂症海马γ-氨基丁酸能中间神经元相对密度的改变及其在发病机理中的作用.方法用免疫组化法结合抗parvalbumin 和抗calretinin 抗体,测定这些钙结合蛋白免疫反应阳性细胞在精神分裂症和相匹配的正常对照(每组15例)海马齿状回和CA1-CA4区的分布、胞体大小、相对密度及海马亚区面积.结果与正常对照相比,精神分裂症患者calretinin-免疫反应中间神经元相对密度无显著性差异;而parvalbumin-免疫反应中间神经元密度于海马各亚区均严重缺失,以男性患者为著,且与抗精神病药物治疗、年龄、疾病持续时间无显著相关.结论精神分裂症患者海马区含parvalbumin 的γ-氨基丁酸能抑制性中间神经元亚群选择性丢失,并可能与精神分裂症早期神经发育异常的病因假说相一致.%Objectives To determine the relative densities of the GABAergic subpopulation defined by calcium-binding proteins and to further study the importance of changes in GABAergic interneurons on neuropathology in the hippocampus in schizophrenia cases. Methods The relative densities and neuronal body size of cells immunoreactive for the calcium-binding proteins parvalbumin and calretinin as well as the area size of the hippocampal sub-fields were determined from the hippocampal tissue sections taken from schizophrenic patients and well-matched control subjects (15 per group). Results No significant difference in the density of calretinin-immunoreactive neurons and the neuronal body size of calretinin-positive neurons was found between subject groups. Relative to normal controls, schizophrenic patients showed a significant and profound deficit in the relative densities of parvalbumin-immunoreactive neurons in all hippocampal sub-fields. These reductions were more apparent in male schizophrenic

  16. Pyramidal neurons of the prefrontal cortex in post-stroke, vascular and other ageing-related dementias.

    Science.gov (United States)

    Foster, Vincent; Oakley, Arthur E; Slade, Janet Y; Hall, Roslyn; Polvikoski, Tuomo M; Burke, Matthew; Thomas, Alan J; Khundakar, Ahmad; Allan, Louise M; Kalaria, Raj N

    2014-09-01

    Dementia associated with cerebrovascular disease is common. It has been reported that ∼30% of elderly patients who survive stroke develop delayed dementia (post-stroke dementia), with most cases being diagnosed as vascular dementia. The pathological substrates associated with post-stroke or vascular dementia are poorly understood, particularly those associated with executive dysfunction. Three separate yet interconnecting circuits control executive function within the frontal lobe involving the dorsolateral prefrontal cortex, anterior cingulate cortex and the orbitofrontal cortex. We used stereological methods, along with immunohistological and related cell morphometric analysis, to examine densities and volumes of pyramidal neurons of the dorsolateral prefrontal cortex, anterior cingulate cortex and orbitofrontal cortex in the frontal lobe from a total of 90 elderly subjects (age range 71-98 years). Post-mortem brain tissues from post-stroke dementia and post-stroke patients with no dementia were derived from our prospective Cognitive Function After Stroke study. We also examined, in parallel, samples from ageing controls and similar age subjects pathologically diagnosed with Alzheimer's disease, mixed Alzheimer's disease and vascular dementia, and vascular dementia. We found pyramidal cell volumes in layers III and V in the dorsolateral prefrontal cortex of post-stroke and vascular dementia and, of mixed and Alzheimer's disease subjects to be reduced by 30-40% compared to post-stroke patients with no dementia and controls. There were no significant changes in neuronal volumes in either the anterior cingulate or orbitofrontal cortices. Remarkably, pyramidal neurons within the orbitofrontal cortex were also found to be smaller in size when compared to those in the other two neocortical regions. To relate the cell changes to cognitive function, we noted significant correlations between neuronal volumes and total CAMCOG, orientation and memory scores and clinical

  17. What can volumes reveal about human brain evolution? A framework for bridging behavioral, histometric and volumetric perspectives

    Directory of Open Access Journals (Sweden)

    Alexandra A de Sousa

    2014-06-01

    Full Text Available An overall relationship between brain size and cognitive ability exists across primates. Can more specific information about neural function be gleaned from cortical area volumes? Numerous studies have found significant relationships between brain structures and behaviors. However, few studies have speculated about brain structure-function relationships from the microanatomical to the macroanatomical level. Here we address this problem in comparative neuroanatomy, where the functional relevance of overall brain size and the sizes of cortical regions have been poorly understood, by considering comparative psychology, with measures of visual acuity and the perception of visual illusions. We outline a model where the macroscopic size (volume or surface area of a cortical region (such as the primary visual cortex, V1 is related to the microstructure of discrete brain regions. The hypothesis developed here is that a larger absolute V1 can process more information with greater fidelity due to having more neurons to represent a field of space. This is the first time that the necessary comparative neuroanatomical research at the microstructural level has been brought to bear on the issue. The evidence suggests that as the size of V1 increases: the number of neurons increases, the neuron density decreases, and the density of neuronal connections increases. Thus, we describe how information about gross neuromorphology, using V1 as a model for the study of other cortical areas, may permit interpretations of cortical function.

  18. What can volumes reveal about human brain evolution? A framework for bridging behavioral, histometric, and volumetric perspectives.

    Science.gov (United States)

    de Sousa, Alexandra A; Proulx, Michael J

    2014-01-01

    An overall relationship between brain size and cognitive ability exists across primates. Can more specific information about neural function be gleaned from cortical area volumes? Numerous studies have found significant relationships between brain structures and behaviors. However, few studies have speculated about brain structure-function relationships from the microanatomical to the macroanatomical level. Here we address this problem in comparative neuroanatomy, where the functional relevance of overall brain size and the sizes of cortical regions have been poorly understood, by considering comparative psychology, with measures of visual acuity and the perception of visual illusions. We outline a model where the macroscopic size (volume or surface area) of a cortical region (such as the primary visual cortex, V1) is related to the microstructure of discrete brain regions. The hypothesis developed here is that an absolutely larger V1 can process more information with greater fidelity due to having more neurons to represent a field of space. This is the first time that the necessary comparative neuroanatomical research at the microstructural level has been brought to bear on the issue. The evidence suggests that as the size of V1 increases: the number of neurons increases, the neuron density decreases, and the density of neuronal connections increases. Thus, we describe how information about gross neuromorphology, using V1 as a model for the study of other cortical areas, may permit interpretations of cortical function.

  19. Compact SMES with a superconducting film in a spiral groove on a Si wafer formed by MEMS technology with possible high-energy storage volume density comparable to that of rechargeable batteries

    Science.gov (United States)

    Sugimoto, N.; Iguchi, N.; Kusano, Y.; Fukano, T.; Hioki, T.; Ichiki, A.; Bessho, T.; Motohiro, T.

    2017-01-01

    The concept of a novel approach to make a compact SMES unit composed of a stack of Si wafers using a well-established MEMS process was proposed. The concept was backed up by pilot estimations for energy storage capacity and mechanical strength to endure electromagnetic stress. The estimated volume density of the storable energy is comparable to that of rechargeable batteries and the mechanical strength of Si wafer endures the electromagnetic stress imposed on it. These estimations support the feasibility of this novel concept, although there needs to be more detailed design of the system for its practical realization. Furthermore, there are a lot of challenges to overcome. The first step of the experimental proof of this new concept was successfully performed through several repeated test fabrications. In one of these test fabrications, the theoretically estimated upper limit value of the energy storage corresponding to a pilot design of a spiral superconducting NbN coil in the spiral trench formed on a Si wafer 10.15 cm in diameter was attained.

  20. NPY neuron-specific Y2 receptors regulate adipose tissue and trabecular bone but not cortical bone homeostasis in mice.

    Directory of Open Access Journals (Sweden)

    Yan-Chuan Shi

    Full Text Available BACKGROUND: Y2 receptor signalling is known to be important in neuropeptide Y (NPY-mediated effects on energy homeostasis and bone physiology. Y2 receptors are located post-synaptically as well as acting as auto receptors on NPY-expressing neurons, and the different roles of these two populations of Y2 receptors in the regulation of energy homeostasis and body composition are unclear. METHODOLOGY/PRINCIPAL FINDINGS: We thus generated two conditional knockout mouse models, Y2(lox/lox and NPYCre/+;Y2(lox/lox, in which Y2 receptors can be selectively ablated either in the hypothalamus or specifically in hypothalamic NPY-producing neurons of adult mice. Specific deletion of hypothalamic Y2 receptors increases food intake and body weight compared to controls. Importantly, specific ablation of hypothalamic Y2 receptors on NPY-containing neurons results in a significantly greater adiposity in female but not male mice, accompanied by increased hepatic triglyceride levels, decreased expression of liver carnitine palmitoyltransferase (CPT1 and increased expression of muscle phosphorylated acetyl-CoA carboxylase (ACC. While food intake, body weight, femur length, bone mineral content, density and cortical bone volume and thickness are not significantly altered, trabecular bone volume and number were significantly increased by hypothalamic Y2 deletion on NPY-expressing neurons. Interestingly, in situ hybridisation reveals increased NPY and decreased proopiomelanocortin (POMC mRNA expression in the arcuate nucleus of mice with hypothalamus-specific deletion of Y2 receptors in NPY neurons, consistent with a negative feedback mechanism between NPY expression and Y2 receptors on NPY-ergic neurons. CONCLUSIONS/SIGNIFICANCE: Taken together these data demonstrate the anti-obesogenic role of Y2 receptors in the brain, notably on NPY-ergic neurons, possibly via inhibition of NPY neurons and concomitant stimulation of POMC-expressing neurons in the arcuate nucleus of

  1. Reconstruction of phrenic neuron identity in embryonic stem cell-derived motor neurons.

    Science.gov (United States)

    Machado, Carolina Barcellos; Kanning, Kevin C; Kreis, Patricia; Stevenson, Danielle; Crossley, Martin; Nowak, Magdalena; Iacovino, Michelina; Kyba, Michael; Chambers, David; Blanc, Eric; Lieberam, Ivo

    2014-02-01

    Air breathing is an essential motor function for vertebrates living on land. The rhythm that drives breathing is generated within the central nervous system and relayed via specialised subsets of spinal motor neurons to muscles that regulate lung volume. In mammals, a key respiratory muscle is the diaphragm, which is innervated by motor neurons in the phrenic nucleus. Remarkably, relatively little is known about how this crucial subtype of motor neuron is generated during embryogenesis. Here, we used direct differentiation of motor neurons from mouse embryonic stem cells as a tool to identify genes that direct phrenic neuron identity. We find that three determinants, Pou3f1, Hoxa5 and Notch, act in combination to promote a phrenic neuron molecular identity. We show that Notch signalling induces Pou3f1 in developing motor neurons in vitro and in vivo. This suggests that the phrenic neuron lineage is established through a local source of Notch ligand at mid-cervical levels. Furthermore, we find that the cadherins Pcdh10, which is regulated by Pou3f1 and Hoxa5, and Cdh10, which is controlled by Pou3f1, are both mediators of like-like clustering of motor neuron cell bodies. This specific Pcdh10/Cdh10 activity might provide the means by which phrenic neurons are assembled into a distinct nucleus. Our study provides a framework for understanding how phrenic neuron identity is conferred and will help to generate this rare and inaccessible yet vital neuronal subtype directly from pluripotent stem cells, thus facilitating subsequent functional investigations.

  2. General artificial neuron

    Science.gov (United States)

    Degeratu, Vasile; Schiopu, Paul; Degeratu, Stefania

    2007-05-01

    In this paper the authors present a model of artificial neuron named the general artificial neuron. Depending on application this neuron can change self number of inputs, the type of inputs (from excitatory in inhibitory or vice versa), the synaptic weights, the threshold, the type of intensifying functions. It is achieved into optoelectronic technology. Also, into optoelectronic technology a model of general McCulloch-Pitts neuron is showed. The advantages of these neurons are very high because we have to solve different applications with the same neural network, achieved from these neurons, named general neural network.

  3. Volume Entropy

    CERN Document Server

    Astuti, Valerio; Rovelli, Carlo

    2016-01-01

    Building on a technical result by Brunnemann and Rideout on the spectrum of the Volume operator in Loop Quantum Gravity, we show that the dimension of the space of the quadrivalent states --with finite-volume individual nodes-- describing a region with total volume smaller than $V$, has \\emph{finite} dimension, bounded by $V \\log V$. This allows us to introduce the notion of "volume entropy": the von Neumann entropy associated to the measurement of volume.

  4. On thermodynamic limits of entropy densities

    NARCIS (Netherlands)

    Moriya, H; Van Enter, A

    1998-01-01

    We give some sufficient conditions which guarantee that the entropy density in the thermodynamic limit is equal to the thermodynamic limit of the entropy densities of finite-volume (local) Gibbs states.

  5. Juvenil neuronal ceroid lipofuscinosis

    DEFF Research Database (Denmark)

    Ostergaard, J R; Hertz, Jens Michael

    1998-01-01

    Neuronal ceroid-lipofuscinosis is a group of neurodegenerative diseases which are characterized by an abnormal accumulation of lipopigment in neuronal and extraneuronal cells. The diseases can be differentiated into several subgroups according to age of onset, the clinical picture...

  6. Road density

    Data.gov (United States)

    U.S. Environmental Protection Agency — Road density is generally highly correlated with amount of developed land cover. High road densities usually indicate high levels of ecological disturbance. More...

  7. 对、邻二甲苯和醋酸二元液体混合物在不同温度和压力下的密度和超额摩尔体积%Density and Excess Molar Volume of Binary Mixtures of p-Xylene+Acetic Acid and o-Xylene+Acetic Acid at Different Temperatures and Pressures

    Institute of Scientific and Technical Information of China (English)

    杨天宇; 夏淑倩; 邸志国; 马沛生

    2008-01-01

    A new apparatus was designed with a thick-walled glass capillary, electric heater tube with red copper and heat preservation. The thick-walled glass capillary was used for its advantages of resistance to acid corrosion and pressure, and ease of observation. The experimental densities over the entire range of mole fraction for the bi- nary mixture of p-xylene+acetic acid and o-xylene+acetic acid were measured using the new apparatus at tempera- tures ranging from 313.15K to 473.15K and pressure ranging from 0.20 to 2.0 MPa. The density values were used in the determination of excess molar volumes, VE. The Redlich-Kister equation was used to fit the excess molar volume values, and the coefficients and estimate of the standard error values were presented. The experimental re- suits prove that the density measurement apparatus is successful.

  8. NEURON and Python

    OpenAIRE

    Michael Hines; Davison, Andrew P.; Eilif Muller

    2009-01-01

    The NEURON simulation program now allows Python to be used, alone or in combination with NEURON's traditional Hoc interpreter. Adding Python to NEURON has the immediate benefit of making available a very extensive suite of analysis tools written for engineering and science. It also catalyzes NEURON software development by offering users a modern programming tool that is recognized for its flexibility and power to create and maintain complex programs. At the same time, nothing is lost because ...

  9. Neocortical Maturation during Adolescence: Change in Neuronal Soma Dimension

    Science.gov (United States)

    Rabinowicz, Theodore; Petetot, Jean MacDonald-Comber; Khoury, Jane C.; de Courten-Myers, Gabrielle M.

    2009-01-01

    During adolescence, cognitive abilities increase robustly. To search for possible related structural alterations of the cerebral cortex, we measured neuronal soma dimension (NSD = width times height), cortical thickness and neuronal densities in different types of neocortex in post-mortem brains of five 12-16 and five 17-24 year-olds (each 2F,…

  10. Sloppiness in spontaneously active neuronal networks.

    Science.gov (United States)

    Panas, Dagmara; Amin, Hayder; Maccione, Alessandro; Muthmann, Oliver; van Rossum, Mark; Berdondini, Luca; Hennig, Matthias H

    2015-06-01

    Various plasticity mechanisms, including experience-dependent, spontaneous, as well as homeostatic ones, continuously remodel neural circuits. Yet, despite fluctuations in the properties of single neurons and synapses, the behavior and function of neuronal assemblies are generally found to be very stable over time. This raises the important question of how plasticity is coordinated across the network. To address this, we investigated the stability of network activity in cultured rat hippocampal neurons recorded with high-density multielectrode arrays over several days. We used parametric models to characterize multineuron activity patterns and analyzed their sensitivity to changes. We found that the models exhibited sloppiness, a property where the model behavior is insensitive to changes in many parameter combinations, but very sensitive to a few. The activity of neurons with sloppy parameters showed faster and larger fluctuations than the activity of a small subset of neurons associated with sensitive parameters. Furthermore, parameter sensitivity was highly correlated with firing rates. Finally, we tested our observations from cell cultures on an in vivo recording from monkey visual cortex and we confirm that spontaneous cortical activity also shows hallmarks of sloppy behavior and firing rate dependence. Our findings suggest that a small subnetwork of highly active and stable neurons supports group stability, and that this endows neuronal networks with the flexibility to continuously remodel without compromising stability and function.

  11. GaAs optoelectronic neuron arrays

    Science.gov (United States)

    Lin, Steven; Grot, Annette; Luo, Jiafu; Psaltis, Demetri

    1993-01-01

    A simple optoelectronic circuit integrated monolithically in GaAs to implement sigmoidal neuron responses is presented. The circuit integrates a light-emitting diode with one or two transistors and one or two photodetectors. The design considerations for building arrays with densities of up to 10,000/sq cm are discussed.

  12. Study of a new neuron

    CERN Document Server

    Adler, Stephen Louis; Weckel, J D

    1994-01-01

    We study a modular neuron alternative to the McCulloch-Pitts neuron that arises naturally in analog devices in which the neuron inputs are represented as coherent oscillatory wave signals. Although the modular neuron can compute XOR at the one neuron level, it is still characterized by the same Vapnik-Chervonenkis dimension as the standard neuron. We give the formulas needed for constructing networks using the new neuron and training them using back-propagation. A numerical study of the modular neuron on two data sets is presented, which demonstrates that the new neuron performs at least as well as the standard neuron.

  13. Intrinsic and integrative properties of substantia nigra pars reticulata neurons

    Science.gov (United States)

    Zhou, Fu-Ming; Lee, Christian R.

    2011-01-01

    The GABA projection neurons of the substantia nigra pars reticulata (SNr) are output neurons for the basal ganglia and thus critical for movement control. Their most striking neurophysiological feature is sustained, spontaneous high frequency spike firing. A fundamental question is: what are the key ion channels supporting the remarkable firing capability in these neurons? Recent studies indicate that these neurons express tonically active TRPC3 channels that conduct a Na-dependent inward current even at hyperpolarized membrane potentials. When the membrane potential reaches −60 mV, a voltage-gated persistent sodium current (INaP) starts to activate, further depolarizing the membrane potential. At or slightly below −50 mV, the large transient voltage-activated sodium current (INaT) starts to activate and eventually triggers the rapid rising phase of action potentials. SNr GABA neurons have a higher density of (INaT), contributing to the faster rise and larger amplitude of action potentials, compared with the slow-spiking dopamine neurons. INaT also recovers from inactivation more quickly in SNr GABA neurons than in nigral dopamine neurons. In SNr GABA neurons, the rising phase of the action potential triggers the activation of high-threshold, inactivation-resistant Kv3-like channels that can rapidly repolarize the membrane. These intrinsic ion channels provide SNr GABA neurons with the ability to fire spontaneous and sustained high frequency spikes. Additionally, robust GABA inputs from direct pathway medium spiny neurons in the striatum and GABA neurons in the globus pallidus may inhibit and silence SNr GABA neurons, whereas glutamate synaptic input from the subthalamic nucleus may induce burst firing in SNr GABA neurons. Thus, afferent GABA and glutamate synaptic inputs sculpt the tonic high frequency firing of SNr GABA neurons and the consequent inhibition of their targets into an integrated motor control signal that is further fine-tuned by neuromodulators

  14. Cajal bodies in neurons.

    Science.gov (United States)

    Lafarga, Miguel; Tapia, Olga; Romero, Ana M; Berciano, Maria T

    2016-09-14

    Cajal is commonly regarded as the father of modern neuroscience in recognition of his fundamental work on the structure of the nervous system. But Cajal also made seminal contributions to the knowledge of nuclear structure in the early 1900s, including the discovery of the "accessory body" later renamed "Cajal body" (CB). This important nuclear structure has emerged as a center for the assembly of ribonucleoproteins (RNPs) required for splicing, ribosome biogenesis and telomere maintenance. The modern era of CB research started in the 1990s with the discovery of coilin, now known as a scaffold protein of CBs, and specific probes for small nuclear RNAs (snRNAs). In this review, we summarize what we have learned in the recent decades concerning CBs in post-mitotic neurons, thereby ruling out dynamic changes in CB functions during the cell cycle. We show that CBs are particularly prominent in neurons, where they frequently associate with the nucleolus. Neuronal CBs are transcription-dependent nuclear organelles. Indeed, their number dynamically accommodates to support the high neuronal demand for splicing and ribosome biogenesis required for sustaining metabolic and bioelectrical activity. Mature neurons have canonical CBs enriched in coilin, survival motor neuron protein and snRNPs. Disruption and loss of neuronal CBs associate with severe neuronal dysfunctions in several neurological disorders such as motor neuron diseases. In particular, CB depletion in motor neurons seems to reflect a perturbation of transcription and splicing in spinal muscular atrophy, the most common genetic cause of infant mortality.

  15. A STEREOLOGICAL ANALYSIS OF THE EFFECT OF EARLY POSTNATAL ETHANOL EXPOSURE ON NEURONAL NUMBERS IN RAT DENTATE GYRUS

    Directory of Open Access Journals (Sweden)

    Takanori Miki

    2011-05-01

    Full Text Available Maternal ethanol ingestion during pregnancy can cause fetal alcohol syndrome (FAS in their offspring. Among the symptoms of FAS, damage to the central nervous system has emerged as one of the most serious problems. We have previously shown that a relatively high dose of ethanol exposure during early postnatal life can cause alterations in spatial learning ability. This ability is controlled, at least in part, by the hippocampal formation. The purpose of the present study was to determine whether exposure of rat pups to ethanol during early postnatal life had effects on the total number of the dentate gyrus neurons. Wistar rats were exposed to a relatively high daily dose of ethanol between postnatal days 10 to 15. Ethanol exposure was achieved by placing rat pups in a chamber containing ethanol vapour for 3 hours a day. The blood ethanol concentration was found to be about 430 mg/dL at the end of the exposure period. Groups of ethanol treated (ET, separation controls (SC and mother reared controls (MRC were anaesthetised and killed at 16-days-of-age by perfusion with phosphate-buffered 2.5% glutaraldehyde. The Cavalieri principle was used to determine the volume of subdivisions of the dentate gyrus, and the physical disector method was used to estimate the numerical densities of neurons within each subdivision. The total number of neurons was calculated by multiplying estimates of the numerical density with the volume. There was, on average, about 421,000 granule cells in all three treatment groups. In the hilus region, ET rats had about 27,000 neuronal cells. This value was significantly smaller than the average of 38,000 such neurons estimated to be present in both MRC and SC animals. It is concluded that neurons in the hilus region of the dentate gyrus may be particularly vulnerable to the effects of a high dose of ethanol exposure during PND 10-15. It is likely that this deficit was due to neuronal death induced by some mechanisms related to

  16. Mammographic density estimation with automated volumetric breast density measurement.

    Science.gov (United States)

    Ko, Su Yeon; Kim, Eun-Kyung; Kim, Min Jung; Moon, Hee Jung

    2014-01-01

    To compare automated volumetric breast density measurement (VBDM) with radiologists' evaluations based on the Breast Imaging Reporting and Data System (BI-RADS), and to identify the factors associated with technical failure of VBDM. In this study, 1129 women aged 19-82 years who underwent mammography from December 2011 to January 2012 were included. Breast density evaluations by radiologists based on BI-RADS and by VBDM (Volpara Version 1.5.1) were compared. The agreement in interpreting breast density between radiologists and VBDM was determined based on four density grades (D1, D2, D3, and D4) and a binary classification of fatty (D1-2) vs. dense (D3-4) breast using kappa statistics. The association between technical failure of VBDM and patient age, total breast volume, fibroglandular tissue volume, history of partial mastectomy, the frequency of mass > 3 cm, and breast density was analyzed. The agreement between breast density evaluations by radiologists and VBDM was fair (k value = 0.26) when the four density grades (D1/D2/D3/D4) were used and moderate (k value = 0.47) for the binary classification (D1-2/D3-4). Twenty-seven women (2.4%) showed failure of VBDM. Small total breast volume, history of partial mastectomy, and high breast density were significantly associated with technical failure of VBDM (p = 0.001 to 0.015). There is fair or moderate agreement in breast density evaluation between radiologists and VBDM. Technical failure of VBDM may be related to small total breast volume, a history of partial mastectomy, and high breast density.

  17. Mammography density estimation with automated volumetic breast density measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Su Yeon; Kim, Eun Kyung; Kim, Min Jung; Moon, Hee Jung [Dept. of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2014-06-15

    To compare automated volumetric breast density measurement (VBDM) with radiologists' evaluations based on the Breast Imaging Reporting and Data System (BI-RADS), and to identify the factors associated with technical failure of VBDM. In this study, 1129 women aged 19-82 years who underwent mammography from December 2011 to January 2012 were included. Breast density evaluations by radiologists based on BI-RADS and by VBDM (Volpara Version 1.5.1) were compared. The agreement in interpreting breast density between radiologists and VBDM was determined based on four density grades (D1, D2, D3, and D4) and a binary classification of fatty (D1-2) vs. dense (D3-4) breast using kappa statistics. The association between technical failure of VBDM and patient age, total breast volume, fibroglandular tissue volume, history of partial mastectomy, the frequency of mass > 3 cm, and breast density was analyzed. The agreement between breast density evaluations by radiologists and VBDM was fair (k value = 0.26) when the four density grades (D1/D2/D3/D4) were used and moderate (k value = 0.47) for the binary classification (D1-2/D3-4). Twenty-seven women (2.4%) showed failure of VBDM. Small total breast volume, history of partial mastectomy, and high breast density were significantly associated with technical failure of VBDM (p 0.001 to 0.015). There is fair or moderate agreement in breast density evaluation between radiologists and VBDM. Technical failure of VBDM may be related to small total breast volume, a history of partial mastectomy, and high breast density.

  18. Scaling of brain metabolism with a fixed energy budget per neuron: implications for neuronal activity, plasticity and evolution.

    Science.gov (United States)

    Herculano-Houzel, Suzana

    2011-03-01

    It is usually considered that larger brains have larger neurons, which consume more energy individually, and are therefore accompanied by a larger number of glial cells per neuron. These notions, however, have never been tested. Based on glucose and oxygen metabolic rates in awake animals and their recently determined numbers of neurons, here I show that, contrary to the expected, the estimated glucose use per neuron is remarkably constant, varying only by 40% across the six species of rodents and primates (including humans). The estimated average glucose use per neuron does not correlate with neuronal density in any structure. This suggests that the energy budget of the whole brain per neuron is fixed across species and brain sizes, such that total glucose use by the brain as a whole, by the cerebral cortex and also by the cerebellum alone are linear functions of the number of neurons in the structures across the species (although the average glucose consumption per neuron is at least 10× higher in the cerebral cortex than in the cerebellum). These results indicate that the apparently remarkable use in humans of 20% of the whole body energy budget by a brain that represents only 2% of body mass is explained simply by its large number of neurons. Because synaptic activity is considered the major determinant of metabolic cost, a conserved energy budget per neuron has several profound implications for synaptic homeostasis and the regulation of firing rates, synaptic plasticity, brain imaging, pathologies, and for brain scaling in evolution.

  19. Density of Liquid Ni-Cr Alloy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The density of liquid Ni-Cr alloy was measured by a modified sessile drop method. The density of liquid Ni-Cr alloywas found to decrease with increasing temperature and Cr concentration in the alloy. The molar volume of liquidNi-Cr alloy increases with increasing the Cr concentration in the alloy. The molar volume of Ni-Cr alloy determinedin the present work shows a positive deviation from the linear molar volume.

  20. Mathematical modeling of the neuron morphology using two dimensional images.

    Science.gov (United States)

    Rajković, Katarina; Marić, Dušica L; Milošević, Nebojša T; Jeremic, Sanja; Arsenijević, Valentina Arsić; Rajković, Nemanja

    2016-02-01

    In this study mathematical analyses such as the analysis of area and length, fractal analysis and modified Sholl analysis were applied on two dimensional (2D) images of neurons from adult human dentate nucleus (DN). Using mathematical analyses main morphological properties were obtained including the size of neuron and soma, the length of all dendrites, the density of dendritic arborization, the position of the maximum density and the irregularity of dendrites. Response surface methodology (RSM) was used for modeling the size of neurons and the length of all dendrites. However, the RSM model based on the second-order polynomial equation was only possible to apply to correlate changes in the size of the neuron with other properties of its morphology. Modeling data provided evidence that the size of DN neurons statistically depended on the size of the soma, the density of dendritic arborization and the irregularity of dendrites. The low value of mean relative percent deviation (MRPD) between the experimental data and the predicted neuron size obtained by RSM model showed that model was suitable for modeling the size of DN neurons. Therefore, RSM can be generally used for modeling neuron size from 2D images.

  1. Efeito da densidade de mudas por célula e do volume da célula na produção de mudas e cultivo da rúcula Effect of seedlings density per cells and cells volume on seedlings production and yield of rocket press

    Directory of Open Access Journals (Sweden)

    Marie Yamamoto Reghin

    2004-04-01

    seedlings quality was obtained using trays with 200 cells, compared to 288 cells. Increasing the seedlings density/cell it was observed higher effect of seedlings competition, mainly on trays of 288 cells on the characteristics of leaves number, fresh weight of up ground material and lenght of upper part and root. However these differences were diluted during plants development on the field, being at the harvesting only the characteristic of leaves number still superior on trays of 200 cells (volume of 16 cm3 compared to 288 cells (12 cm3. On the other hand the seedlings density/cell promoted yield response on rocket press. It was observed linear response on yield. It was observed decreasing on lenght of upper part, leaves number, fresh and dry weight of up ground material, in response of competition pressure among plants promoted by density increasing. However it was observed linear increment on yield/area with the increasing of the seedlings/density. The increment on fresh weight was significative considering yield average of 1,4 kg m-2 on density of single seedling and 6,4 kg m-2 when it was used four seedlings/cell. It was observed that when density was increased, higher was the yield on fresh weight to both trays. Considering the commercialization of rocket press mainly on bunch, it seems more interesting a higher density with four seedlings, on trays with 200 or 288 cells.

  2. Noise and Neuronal Heterogeneity

    CERN Document Server

    Barber, Michael J

    2010-01-01

    We consider signal transaction in a simple neuronal model featuring intrinsic noise. The presence of noise limits the precision of neural responses and impacts the quality of neural signal transduction. We assess the signal transduction quality in relation to the level of noise, and show it to be maximized by a non-zero level of noise, analogous to the stochastic resonance effect. The quality enhancement occurs for a finite range of stimuli to a single neuron; we show how to construct networks of neurons that extend the range. The range increases more rapidly with network size when we make use of heterogeneous populations of neurons with a variety of thresholds, rather than homogeneous populations of neurons all with the same threshold. The limited precision of neural responses thus can have a direct effect on the optimal network structure, with diverse functional properties of the constituent neurons supporting an economical information processing strategy that reduces the metabolic costs of handling a broad...

  3. Morphometric characteristics of the neurons of the human subiculum proper

    Directory of Open Access Journals (Sweden)

    Živanović-Mačužić Ivana

    2012-01-01

    Full Text Available The human subiculum is a significant part of the hippocampal formation positioned between the hippocampus proper and the entorhinal and other cortices. It plays an important role in spatial navigation, memory processing and control of the response to stress. The aim of our study was identification of the morphometric characteristics of the neurons of the human subiculum proper: the maximum length and width of cell body and total dendritic length and volume of cell body. Comparing the measured parameters of different types of subicular neurons (bipolar, multipolar, pyramidal neurons with triangular-shaped soma and neurons with oval-shaped soma, we can conclude that bipolar neurons have the lowest values of the measured parameters: the maximum length of their cell body is 14.1 ± 0.2 µm, the maximum width is 13.9 ± 0.5 µm, and total dendritic length is 14597 ± 3.1 µm. The lowest volume value was observed in bipolar neurons; the polymorphic layer is 1152.99 ± 662.69 µm3. The pyramidal neurons of the pyramidal layer have the highest value for the maximal length of the cell body (44.43 ± 7.94 µm, maximum width (23.64 ± 1.89 µm, total dendritic length (1830 ± 466.3 µm and volume (11768.65±4004.9 µm3 These characteristics of the pyramidal neurons indicate their importance, because the axons of these neurons make up the greatest part of the fornix, along with the axons of neurons of the CA1 hippocampal field.

  4. Neurons and tumor suppressors.

    Science.gov (United States)

    Zochodne, Douglas W

    2014-08-20

    Neurons choose growth pathways with half hearted reluctance, behavior that may be appropriate to maintain fixed long lasting connections but not to regenerate them. We now recognize that intrinsic brakes on regrowth are widely expressed in these hesitant neurons and include classical tumor suppressor molecules. Here, we review how two brakes, PTEN (phosphatase and tensin homolog deleted on chromosome 10) and retinoblastoma emerge as new and exciting knockdown targets to enhance neuron plasticity and improve outcome from damage or disease.

  5. Energy in density gradient

    Energy Technology Data Exchange (ETDEWEB)

    Vranjes, J., E-mail: jvranjes@yahoo.com [Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife (Spain); Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife (Spain); Kono, M., E-mail: kono@fps.chuo-u.ac.jp [Faculty of Policy Studies, Chuo University, Tokyo (Japan)

    2015-01-15

    Inhomogeneous plasmas and fluids contain energy stored in inhomogeneity and they naturally tend to relax into lower energy states by developing instabilities or by diffusion. But the actual amount of energy in such inhomogeneities has remained unknown. In the present work, the amount of energy stored in a density gradient is calculated for several specific density profiles in a cylindrical configuration. This is of practical importance for drift wave instability in various plasmas, and, in particular, in its application in models dealing with the heating of solar corona because the instability is accompanied with stochastic heating, so the energy contained in inhomogeneity is effectively transformed into heat. It is shown that even for a rather moderate increase of the density at the axis in magnetic structures in the corona by a factor 1.5 or 3, the amount of excess energy per unit volume stored in such a density gradient becomes several orders of magnitude greater than the amount of total energy losses per unit volume (per second) in quiet regions in the corona. Consequently, within the life-time of a magnetic structure such energy losses can easily be compensated by the stochastic drift wave heating.

  6. Properties of persistent postnatal cortical subplate neurons.

    Science.gov (United States)

    Torres-Reveron, Juan; Friedlander, Michael J

    2007-09-12

    Subplate (SP) neurons are important for the proper development of thalamocortical innervation. They are necessary for formation of ocular dominance and orientation columns in visual cortex. During the perinatal period, many SP neurons die. The surviving cohort forms interstitial cells in the white matter (WM) and a band of horizontally oriented cells below layer VI (layer VIb, layer VII, or subplate cells). Although the function of embryonic SP neurons has been well established, the functional roles of WM and postnatal SP cells are not known. We used a combination of anatomical, immunohistochemical, and electrophysiological techniques to explore the dendritic morphology, neurotransmitter phenotype, intrinsic electrophysiological, and synaptic input properties of these surviving cells in the rat visual cortex. The density of SP and WM cells significantly decreases during the first month of life. Both populations express neuronal markers and have extensive dendritic arborizations within the SP, WM, and to the overlying visual cortex. Some intrinsic electrophysiological properties of SP and WM cells are similar: each generates high-frequency slowly adapting trains of action potentials in response to a sustained depolarization. However, SP cells exhibit greater frequency-dependent action potential broadening than WM neurons. Both cell types receive predominantly AMPA/kainate receptor-mediated excitatory synaptic input that undergoes paired-pulse facilitation as well as NMDA receptor and GABAergic input. Synaptic inputs to these cells can also undergo long-term synaptic plasticity. Thus, surviving SP and WM cells are functional electrogenic neurons integrated within the postnatal visual cortical circuit.

  7. Mapping the energy and diffusion landscapes of membrane proteins at the cell surface using high-density single-molecule imaging and Bayesian inference: application to the multi-scale dynamics of glycine receptors in the neuronal membrane

    CERN Document Server

    Masson, Jean-Baptiste; Salvatico, Charlotte; Renner, Marianne; Specht, Christian G; Triller, Antoine; Dahan, Maxime

    2015-01-01

    Protein mobility is conventionally analyzed in terms of an effective diffusion. Yet, this description often fails to properly distinguish and evaluate the physical parameters (such as the membrane friction) and the biochemical interactions governing the motion. Here, we present a method combining high-density single-molecule imaging and statistical inference to separately map the diffusion and energy landscapes of membrane proteins across the cell surface at ~100 nm resolution (with acquisition of a few minutes). When applying these analytical tools to glycine neurotransmitter receptors (GlyRs) at inhibitory synapses, we find that gephyrin scaffolds act as shallow energy traps (~3 kBT) for GlyRs, with a depth modulated by the biochemical properties of the receptor-gephyrin interaction loop. In turn, the inferred maps can be used to simulate the dynamics of proteins in the membrane, from the level of individual receptors to that of the population, and thereby, to model the stochastic fluctuations of physiologi...

  8. Altered Astrocyte-Neuron Interactions and Epileptogenesis in Tuberous Sclerosis Complex Disorder

    Science.gov (United States)

    2015-06-01

    Tsc1-deficient astrocytes on neuronal morphology and neuronal activity associated with seizures. 2. KEY WORDS epilepsy, seizure, tuberous sclerosis...seizures; and F) increased spine density on recombinant pyramidal neuron dendrites prior to the onset of spontaneous seizures. What was accomplished: We...soma size and morphology , suggesting that these neurons possess a negative feedback mechanism that in part counteracts the effect of the TSC1 deletion

  9. Pacemaking Kisspeptin Neurons

    Science.gov (United States)

    Kelly, Martin J.; Zhang, Chunguang; Qiu, Jian; Rønnekleiv, Oline K.

    2013-01-01

    Kisspeptin (Kiss1) neurons are vital for reproduction. GnRH neurons express the kisspeptin receptor, GPR 54, and kisspeptins potently stimulate the release of GnRH by depolarising and inducing sustained action potential firing in GnRH neurons. As such Kiss1 neurons may be the pre-synaptic pacemaker neurons in the hypothalamic circuitry that controls reproduction. There are at least two different populations of Kiss1 neurons: one in the rostral periventricular area (RP3V) that is stimulated by oestrogens and the other in the arcuate nucleus that is inhibited by oestrogens. How each of these Kiss1 neuronal populations participate in the regulation of the reproductive cycle is currently under intense investigation. Based on electrophysiological studies in the guinea pig and mouse, Kiss1 neurons in general are capable of generating burst firing behavior. Essentially all Kiss1 neurons, which have been studied thus far in the arcuate nucleus, express the ion channels necessary for burst firing, which include hyperpolarization-activated, cyclic nucleotide gated cation (HCN) channels and the T-type calcium (Cav3.1) channels. Under voltage clamp conditions, these channels produce distinct currents that under current clamp conditions can generate burst firing behavior. The future challenge is to identify other key channels and synaptic inputs involved in the regulation of the firing properties of Kiss1 neurons and the physiological regulation of the expression of these channels and receptors by oestrogens and other hormones. The ultimate goal is to understand how Kiss1 neurons control the different phases of GnRH neurosecretion and hence reproduction. PMID:23884368

  10. Computational properties of networks of synchronous groups of spiking neurons.

    Science.gov (United States)

    Dayhoff, Judith E

    2007-09-01

    We demonstrate a model in which synchronously firing ensembles of neurons are networked to produce computational results. Each ensemble is a group of biological integrate-and-fire spiking neurons, with probabilistic interconnections between groups. An analogy is drawn in which each individual processing unit of an artificial neural network corresponds to a neuronal group in a biological model. The activation value of a unit in the artificial neural network corresponds to the fraction of active neurons, synchronously firing, in a biological neuronal group. Weights of the artificial neural network correspond to the product of the interconnection density between groups, the group size of the presynaptic group, and the postsynaptic potential heights in the synchronous group model. All three of these parameters can modulate connection strengths between neuronal groups in the synchronous group models. We give an example of nonlinear classification (XOR) and a function approximation example in which the capability of the artificial neural network can be captured by a neural network model with biological integrate-and-fire neurons configured as a network of synchronously firing ensembles of such neurons. We point out that the general function approximation capability proven for feedforward artificial neural networks appears to be approximated by networks of neuronal groups that fire in synchrony, where the groups comprise integrate-and-fire neurons. We discuss the advantages of this type of model for biological systems, its possible learning mechanisms, and the associated timing relationships.

  11. Identification of neuronal network properties from the spectral analysis of calcium imaging signals in neuronal cultures.

    Science.gov (United States)

    Tibau, Elisenda; Valencia, Miguel; Soriano, Jordi

    2013-01-01

    Neuronal networks in vitro are prominent systems to study the development of connections in living neuronal networks and the interplay between connectivity, activity and function. These cultured networks show a rich spontaneous activity that evolves concurrently with the connectivity of the underlying network. In this work we monitor the development of neuronal cultures, and record their activity using calcium fluorescence imaging. We use spectral analysis to characterize global dynamical and structural traits of the neuronal cultures. We first observe that the power spectrum can be used as a signature of the state of the network, for instance when inhibition is active or silent, as well as a measure of the network's connectivity strength. Second, the power spectrum identifies prominent developmental changes in the network such as GABAA switch. And third, the analysis of the spatial distribution of the spectral density, in experiments with a controlled disintegration of the network through CNQX, an AMPA-glutamate receptor antagonist in excitatory neurons, reveals the existence of communities of strongly connected, highly active neurons that display synchronous oscillations. Our work illustrates the interest of spectral analysis for the study of in vitro networks, and its potential use as a network-state indicator, for instance to compare healthy and diseased neuronal networks.

  12. Identification of Neuronal Network Properties from the Spectral Analysis of Calcium Imaging Signals in Neuronal Cultures

    Directory of Open Access Journals (Sweden)

    Elisenda eTibau

    2013-12-01

    Full Text Available Neuronal networks in vitro are prominent systems to study the development of connections in living neuronal networks and the interplay between connectivity, activity and function. These cultured networks show a rich spontaneous activity that evolves concurrently with the connectivity of the underlying network. In this work we monitor the development of neuronal cultures, and record their activity using calcium fluorescence imaging. We use spectral analysis to characterize global dynamical and structural traits of the neuronal cultures. We first observe that the power spectrum can be used as a signature of the state of the network, for instance when inhibition is active or silent, as well as a measure of the network's connectivity strength. Second, the power spectrum identifies prominent developmental changes in the network such as GABAA switch. And third, the analysis of the spatial distribution of the spectral density, in experiments with a controlled disintegration of the network through CNQX, an AMPA-glutamate receptor antagonist in excitatory neurons, reveals the existence of communities of strongly connected, highly active neurons that display synchronous oscillations. Our work illustrates the interest of spectral analysis for the study of in vitro networks, and its potential use as a network-state indicator, for instance to compare healthy and diseased neuronal networks.

  13. Corticospinal mirror neurons.

    Science.gov (United States)

    Kraskov, A; Philipp, R; Waldert, S; Vigneswaran, G; Quallo, M M; Lemon, R N

    2014-01-01

    Here, we report the properties of neurons with mirror-like characteristics that were identified as pyramidal tract neurons (PTNs) and recorded in the ventral premotor cortex (area F5) and primary motor cortex (M1) of three macaque monkeys. We analysed the neurons' discharge while the monkeys performed active grasp of either food or an object, and also while they observed an experimenter carrying out a similar range of grasps. A considerable proportion of tested PTNs showed clear mirror-like properties (52% F5 and 58% M1). Some PTNs exhibited 'classical' mirror neuron properties, increasing activity for both execution and observation, while others decreased their discharge during observation ('suppression mirror-neurons'). These experiments not only demonstrate the existence of PTNs as mirror neurons in M1, but also reveal some interesting differences between M1 and F5 mirror PTNs. Although observation-related changes in the discharge of PTNs must reach the spinal cord and will include some direct projections to motoneurons supplying grasping muscles, there was no EMG activity in these muscles during action observation. We suggest that the mirror neuron system is involved in the withholding of unwanted movement during action observation. Mirror neurons are differentially recruited in the behaviour that switches rapidly between making your own movements and observing those of others.

  14. Culturing rat hippocampal neurons.

    Science.gov (United States)

    Audesirk, G; Audesirk, T; Ferguson, C

    2001-01-01

    Cultured neurons are widely used to investigate the mechanisms of neurotoxicity. Embryonic rat hippocampal neurons may be grown as described under a wide variety of conditions to suit differing experimental procedures, including electrophysiology, morphological analysis of neurite development, and various biochemical and molecular analyses.

  15. Imaging calcium in neurons.

    Science.gov (United States)

    Grienberger, Christine; Konnerth, Arthur

    2012-03-08

    Calcium ions generate versatile intracellular signals that control key functions in all types of neurons. Imaging calcium in neurons is particularly important because calcium signals exert their highly specific functions in well-defined cellular subcompartments. In this Primer, we briefly review the general mechanisms of neuronal calcium signaling. We then introduce the calcium imaging devices, including confocal and two-photon microscopy as well as miniaturized devices that are used in freely moving animals. We provide an overview of the classical chemical fluorescent calcium indicators and of the protein-based genetically encoded calcium indicators. Using application examples, we introduce new developments in the field, such as calcium imaging in awake, behaving animals and the use of calcium imaging for mapping single spine sensory inputs in cortical neurons in vivo. We conclude by providing an outlook on the prospects of calcium imaging for the analysis of neuronal signaling and plasticity in various animal models.

  16. NEURON and Python

    Directory of Open Access Journals (Sweden)

    Michael Hines

    2009-01-01

    Full Text Available The NEURON simulation program now allows Python to be used, alone or in combination with NEURON's traditional Hoc interpreter. Adding Python to NEURON has the immediate benefit of making available a very extensive suite of analysis tools written for engineering and science. It also catalyzes NEURON software development by offering users a modern programming tool that is recognized for its flexibility and power to create and maintain complex programs. At the same time, nothing is lost because all existing models written in Hoc, including GUI tools, continue to work without change and are also available within the Python context. An example of the benefits of Python availability is the use of the XML module in implementing NEURON's Import3D and CellBuild tools to read MorphML and NeuroML model specifications.

  17. NEURON and Python.

    Science.gov (United States)

    Hines, Michael L; Davison, Andrew P; Muller, Eilif

    2009-01-01

    The NEURON simulation program now allows Python to be used, alone or in combination with NEURON's traditional Hoc interpreter. Adding Python to NEURON has the immediate benefit of making available a very extensive suite of analysis tools written for engineering and science. It also catalyzes NEURON software development by offering users a modern programming tool that is recognized for its flexibility and power to create and maintain complex programs. At the same time, nothing is lost because all existing models written in Hoc, including graphical user interface tools, continue to work without change and are also available within the Python context. An example of the benefits of Python availability is the use of the xml module in implementing NEURON's Import3D and CellBuild tools to read MorphML and NeuroML model specifications.

  18. Genetically targeted 3D visualisation of Drosophila neurons under Electron Microscopy and X-Ray Microscopy using miniSOG

    Science.gov (United States)

    Ng, Julian; Browning, Alyssa; Lechner, Lorenz; Terada, Masako; Howard, Gillian; Jefferis, Gregory S. X. E.

    2016-01-01

    Large dimension, high-resolution imaging is important for neural circuit visualisation as neurons have both long- and short-range patterns: from axons and dendrites to the numerous synapses at terminal endings. Electron Microscopy (EM) is the favoured approach for synaptic resolution imaging but how such structures can be segmented from high-density images within large volume datasets remains challenging. Fluorescent probes are widely used to localise synapses, identify cell-types and in tracing studies. The equivalent EM approach would benefit visualising such labelled structures from within sub-cellular, cellular, tissue and neuroanatomical contexts. Here we developed genetically-encoded, electron-dense markers using miniSOG. We demonstrate their ability in 1) labelling cellular sub-compartments of genetically-targeted neurons, 2) generating contrast under different EM modalities, and 3) segmenting labelled structures from EM volumes using computer-assisted strategies. We also tested non-destructive X-ray imaging on whole Drosophila brains to evaluate contrast staining. This enabled us to target specific regions for EM volume acquisition. PMID:27958322

  19. Power laws from linear neuronal cable theory

    DEFF Research Database (Denmark)

    Pettersen, Klas H; Lindén, Henrik Anders; Tetzlaff, Tom

    2014-01-01

    Power laws, that is, power spectral densities (PSDs) exhibiting [Formula: see text] behavior for large frequencies f, have been observed both in microscopic (neural membrane potentials and currents) and macroscopic (electroencephalography; EEG) recordings. While complex network behavior has been...... expressions for the PSD transfer functions for a set of measures of neuronal activity: the soma membrane current, the current-dipole moment (corresponding to the single-neuron EEG contribution), and the soma membrane potential. These PSD transfer functions relate the PSDs of the respective measurements...... to the PSDs of the noisy input currents. With homogeneously distributed input currents across the neuronal membrane we find that all PSD transfer functions express asymptotic high-frequency [Formula: see text] power laws with power-law exponents analytically identified as [Formula: see text] for the soma...

  20. A morpho-density approach to estimating neural connectivity.

    Directory of Open Access Journals (Sweden)

    Michael P McAssey

    Full Text Available Neuronal signal integration and information processing in cortical neuronal networks critically depend on the organization of synaptic connectivity. Because of the challenges involved in measuring a large number of neurons, synaptic connectivity is difficult to determine experimentally. Current computational methods for estimating connectivity typically rely on the juxtaposition of experimentally available neurons and applying mathematical techniques to compute estimates of neural connectivity. However, since the number of available neurons is very limited, these connectivity estimates may be subject to large uncertainties. We use a morpho-density field approach applied to a vast ensemble of model-generated neurons. A morpho-density field (MDF describes the distribution of neural mass in the space around the neural soma. The estimated axonal and dendritic MDFs are derived from 100,000 model neurons that are generated by a stochastic phenomenological model of neurite outgrowth. These MDFs are then used to estimate the connectivity between pairs of neurons as a function of their inter-soma displacement. Compared with other density-field methods, our approach to estimating synaptic connectivity uses fewer restricting assumptions and produces connectivity estimates with a lower standard deviation. An important requirement is that the model-generated neurons reflect accurately the morphology and variation in morphology of the experimental neurons used for optimizing the model parameters. As such, the method remains subject to the uncertainties caused by the limited number of neurons in the experimental data set and by the quality of the model and the assumptions used in creating the MDFs and in calculating estimating connectivity. In summary, MDFs are a powerful tool for visualizing the spatial distribution of axonal and dendritic densities, for estimating the number of potential synapses between neurons with low standard deviation, and for obtaining

  1. FAO/INFOODS density database, version 1.0

    Science.gov (United States)

    Density is the ratio of mass to volume. This has application in dietary assessment, in that if the volume and density are known of a food, then gram weight (mass) can be calculated and hence nutrient intake determined. Several national food composition tables contain auxiliary tables of density, p...

  2. FAO/INFOODS Density Database, Version 2.0 (2012)

    Science.gov (United States)

    Density is the ratio of mass to volume. This has application in dietary assessment, in that if the volume and density are known of a food, then gram weight (mass) can be calculated and hence nutrient intake determined. Several national food composition tables contain auxiliary tables of density, pr...

  3. Single neuron computation

    CERN Document Server

    McKenna, Thomas M; Zornetzer, Steven F

    1992-01-01

    This book contains twenty-two original contributions that provide a comprehensive overview of computational approaches to understanding a single neuron structure. The focus on cellular-level processes is twofold. From a computational neuroscience perspective, a thorough understanding of the information processing performed by single neurons leads to an understanding of circuit- and systems-level activity. From the standpoint of artificial neural networks (ANNs), a single real neuron is as complex an operational unit as an entire ANN, and formalizing the complex computations performed by real n

  4. Mesmerising mirror neurons.

    Science.gov (United States)

    Heyes, Cecilia

    2010-06-01

    Mirror neurons have been hailed as the key to understanding social cognition. I argue that three currents of thought-relating to evolution, atomism and telepathy-have magnified the perceived importance of mirror neurons. When they are understood to be a product of associative learning, rather than an adaptation for social cognition, mirror neurons are no longer mesmerising, but they continue to raise important questions about both the psychology of science and the neural bases of social cognition. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Channel properties of Nax expressed in neurons.

    Directory of Open Access Journals (Sweden)

    Masahito Matsumoto

    Full Text Available Nax is a sodium-concentration ([Na+]-sensitive Na channel with a gating threshold of ~150 mM for extracellular [Na+] ([Na+]o in vitro. We previously reported that Nax was preferentially expressed in the glial cells of sensory circumventricular organs including the subfornical organ, and was involved in [Na+] sensing for the control of salt-intake behavior. Although Nax was also suggested to be expressed in the neurons of some brain regions including the amygdala and cerebral cortex, the channel properties of Nax have not yet been adequately characterized in neurons. We herein verified that Nax was expressed in neurons in the lateral amygdala of mice using an antibody that was newly generated against mouse Nax. To investigate the channel properties of Nax expressed in neurons, we established an inducible cell line of Nax using the mouse neuroblastoma cell line, Neuro-2a, which is endogenously devoid of the expression of Nax. Functional analyses of this cell line revealed that the [Na+]-sensitivity of Nax in neuronal cells was similar to that expressed in glial cells. The cation selectivity sequence of the Nax channel in cations was revealed to be Na+ ≈ Li+ > Rb+ > Cs+ for the first time. Furthermore, we demonstrated that Nax bound to postsynaptic density protein 95 (PSD95 through its PSD95/Disc-large/ZO-1 (PDZ-binding motif at the C-terminus in neurons. The interaction between Nax and PSD95 may be involved in promoting the surface expression of Nax channels because the depletion of endogenous PSD95 resulted in a decrease in Nax at the plasma membrane. These results indicated, for the first time, that Nax functions as a [Na+]-sensitive Na channel in neurons as well as in glial cells.

  6. Magnetic skyrmion-based artificial neuron device

    Science.gov (United States)

    Li, Sai; Kang, Wang; Huang, Yangqi; Zhang, Xichao; Zhou, Yan; Zhao, Weisheng

    2017-08-01

    Neuromorphic computing, inspired by the biological nervous system, has attracted considerable attention. Intensive research has been conducted in this field for developing artificial synapses and neurons, attempting to mimic the behaviors of biological synapses and neurons, which are two basic elements of a human brain. Recently, magnetic skyrmions have been investigated as promising candidates in neuromorphic computing design owing to their topologically protected particle-like behaviors, nanoscale size and low driving current density. In one of our previous studies, a skyrmion-based artificial synapse was proposed, with which both short-term plasticity and long-term potentiation functions have been demonstrated. In this work, we further report on a skyrmion-based artificial neuron by exploiting the tunable current-driven skyrmion motion dynamics, mimicking the leaky-integrate-fire function of a biological neuron. With a simple single-device implementation, this proposed artificial neuron may enable us to build a dense and energy-efficient spiking neuromorphic computing system.

  7. Neuromorphic silicon neuron circuits

    Directory of Open Access Journals (Sweden)

    Giacomo eIndiveri

    2011-05-01

    Full Text Available Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance based Hodgkin-Huxley models to bi-dimensional generalized adaptive Integrate and Fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.

  8. Charge density waves in solids

    CERN Document Server

    Gor'kov, LP

    2012-01-01

    The latest addition to this series covers a field which is commonly referred to as charge density wave dynamics.The most thoroughly investigated materials are inorganic linear chain compounds with highly anisotropic electronic properties. The volume opens with an examination of their structural properties and the essential features which allow charge density waves to develop.The behaviour of the charge density waves, where interesting phenomena are observed, is treated both from a theoretical and an experimental standpoint. The role of impurities in statics and dynamics is considered and an

  9. Motor neurone disease.

    Science.gov (United States)

    2016-03-23

    Essential facts Motor neurone disease describes a group of related diseases, affecting the neurones in the brain and spinal cord. Progressive, incurable and life-limiting, MND is rare, with about 1,100 people developing it each year in the UK and up to 5,000 people affected at any one time. One third of people will die within a year of diagnosis and more than half within two years. About 5% to 10% are alive at ten years.

  10. Neurons and Tumor Suppressors

    OpenAIRE

    Douglas W Zochodne

    2014-01-01

    Neurons choose growth pathways with half hearted reluctance, behavior that may be appropriate to maintain fixed long lasting connections but not to regenerate them. We now recognize that intrinsic brakes on regrowth are widely expressed in these hesitant neurons and include classical tumor suppressor molecules. Here, we review how two brakes, PTEN (phosphatase and tensin homolog deleted on chromosome 10) and retinoblastoma emerge as new and exciting knockdown targets to e...

  11. Neuron division or enucleation.

    Science.gov (United States)

    Sotnikov, O S; Laktionova, A A; Solovieva, I A; Krasnova, T V

    2010-10-01

    The classical Bielschowsky-Gross neurohistological method was used to reproduce all the morphological phenomena interpreted by many authors as signs of neuron division, budding, and fission. It is suggested that these signs are associated with the effects of enucleation, which occurs in many cells of other tissue types in response to a variety of chemical and physical treatments. Studies were performed using neurons isolated from the mollusk Lymnaea stagnalis and exposed in tissue culture to the actin microfilament inhibitor cytochalasin B. Phase contrast time-lapse video recording over periods of 4-8 h demonstrated nuclear displacement, ectopization, and budding, to the level of almost complete fission of the neuron body. This repeats the pattern seen in static fixed preparations in "normal" conditions and after different experimental treatments. Budding of the cytoplasm was also sometimes seen at the early stages of the experiments. Control experiments in which cultured neurons were exposed to the solvent for cytochalasin B, i.e., dimethylsulfoxide (DMSO), did not reveal any changes in neurons over a period of 8 h. We take the view that the picture previously interpreted as neuron division and fission can be explained in terms of the inhibition of actin microfilaments, sometimes developing spontaneously in cells undergoing individual metabolic changes preventing the maintenance of cytoskeleton stability.

  12. [Transient brain ischemia: NMDA receptor modulation and delayed neuronal death].

    Science.gov (United States)

    Benquet, Pascal; Gee, Christine E; Gerber, Urs

    2008-02-01

    Transient global ischemia induces delayed neuronal death in certain cell types and brain regions while sparing cells in other areas. A key process through which oxygen-glucose deprivation triggers cell death is the excessive accumulation of the neurotransmitter glutamate leading to over excitation of neurons. In certain neurons this increase in glutamate will potentiate the NMDA type of glutamate receptor, which can then initiate cell death. This review provides an update of the neurophysiological, cellular and molecular mechanisms inducing post-ischemic plasticity of NMDA receptors, focusing on the sensitive CA1 pyramidal neurons in the hippocampus as compared to the relatively resistant neighboring CA3 neurons. Both a change in the equilibrium between protein tyrosine kinases/phosphatases and an increased density of surface NMDA receptors in response to ischemia may explain the selective vulnerability of specific cell types. Implications for the treatment of stroke and reasons for the failures of human clinical trials utilizing NMDA receptor antagonists are also discussed.

  13. Energy in density gradient

    CERN Document Server

    Vranjes, J

    2015-01-01

    Inhomogeneous plasmas and fluids contain energy stored in inhomogeneity and they naturally tend to relax into lower energy states by developing instabilities or by diffusion. But the actual amount of energy in such inhomogeneities has remained unknown. In the present work the amount of energy stored in a density gradient is calculated for several specific density profiles in a cylindric configuration. This is of practical importance for drift wave instability in various plasmas, and in particular in its application in models dealing with the heating of solar corona because the instability is accompanied with stochastic heating, so the energy contained in inhomogeneity is effectively transformed into heat. It is shown that even for a rather moderate increase of the density at the axis in magnetic structures in the corona by a factor 1.5 or 3, the amount of excess energy per unit volume stored in such a density gradient becomes several orders of magnitude greater than the amount of total energy losses per unit ...

  14. NeuronBank: A Tool for Cataloging Neuronal Circuitry.

    Science.gov (United States)

    Katz, Paul S; Calin-Jageman, Robert; Dhawan, Akshaye; Frederick, Chad; Guo, Shuman; Dissanayaka, Rasanjalee; Hiremath, Naveen; Ma, Wenjun; Shen, Xiuyn; Wang, Hsui C; Yang, Hong; Prasad, Sushil; Sunderraman, Rajshekhar; Zhu, Ying

    2010-01-01

    The basic unit of any nervous system is the neuron. Therefore, understanding the operation of nervous systems ultimately requires an inventory of their constituent neurons and synaptic connectivity, which form neural circuits. The presence of uniquely identifiable neurons or classes of neurons in many invertebrates has facilitated the construction of cellular-level connectivity diagrams that can be generalized across individuals within a species. Homologous neurons can also be recognized across species. Here we describe NeuronBank.org, a web-based tool that we are developing for cataloging, searching, and analyzing neuronal circuitry within and across species. Information from a single species is represented in an individual branch of NeuronBank. Users can search within a branch or perform queries across branches to look for similarities in neuronal circuits across species. The branches allow for an extensible ontology so that additional characteristics can be added as knowledge grows. Each entry in NeuronBank generates a unique accession ID, allowing it to be easily cited. There is also an automatic link to a Wiki page allowing an encyclopedic explanation of the entry. All of the 44 previously published neurons plus one previously unpublished neuron from the mollusc, Tritonia diomedea, have been entered into a branch of NeuronBank as have 4 previously published neurons from the mollusc, Melibe leonina. The ability to organize information about neuronal circuits will make this information more accessible, ultimately aiding research on these important models.

  15. NeuronBank: a tool for cataloging neuronal circuitry

    Directory of Open Access Journals (Sweden)

    Paul S Katz

    2010-04-01

    Full Text Available The basic unit of any nervous system is the neuron. Therefore, understanding the operation of nervous systems ultimately requires an inventory of their constituent neurons and synaptic connectivity, which form neural circuits. The presence of uniquely identifiable neurons or classes of neurons in many invertebrates has facilitated the construction of cellular-level connectivity diagrams that can be generalized across individuals within a species. Homologous neurons can also be recognized across species. Here we describe NeuronBank.org, a web-based tool that we are developing for cataloging, searching, and analyzing neuronal circuitry within and across species. Information from a single species is represented in an individual branch of NeuronBank. Users can search within a branch or perform queries across branches to look for similarities in neuronal circuits across species. The branches allow for an extensible ontology so that additional characteristics can be added as knowledge grows. Each entry in NeuronBank generates a unique accession ID, allowing it to be easily cited. There is also an automatic link to a Wiki page allowing an encyclopedic explanation of the entry. All of the 44 previously published neurons plus one previously unpublished neuron from the mollusc, Tritonia diomedea, have been entered into a branch of NeuronBank as have 4 previously published neurons from the mollusc, Melibe leonina. The ability to organize information about neuronal circuits will make this information more accessible, ultimately aiding research on these important models.

  16. NeuronBank: A Tool for Cataloging Neuronal Circuitry

    Science.gov (United States)

    Katz, Paul S.; Calin-Jageman, Robert; Dhawan, Akshaye; Frederick, Chad; Guo, Shuman; Dissanayaka, Rasanjalee; Hiremath, Naveen; Ma, Wenjun; Shen, Xiuyn; Wang, Hsui C.; Yang, Hong; Prasad, Sushil; Sunderraman, Rajshekhar; Zhu, Ying

    2010-01-01

    The basic unit of any nervous system is the neuron. Therefore, understanding the operation of nervous systems ultimately requires an inventory of their constituent neurons and synaptic connectivity, which form neural circuits. The presence of uniquely identifiable neurons or classes of neurons in many invertebrates has facilitated the construction of cellular-level connectivity diagrams that can be generalized across individuals within a species. Homologous neurons can also be recognized across species. Here we describe NeuronBank.org, a web-based tool that we are developing for cataloging, searching, and analyzing neuronal circuitry within and across species. Information from a single species is represented in an individual branch of NeuronBank. Users can search within a branch or perform queries across branches to look for similarities in neuronal circuits across species. The branches allow for an extensible ontology so that additional characteristics can be added as knowledge grows. Each entry in NeuronBank generates a unique accession ID, allowing it to be easily cited. There is also an automatic link to a Wiki page allowing an encyclopedic explanation of the entry. All of the 44 previously published neurons plus one previously unpublished neuron from the mollusc, Tritonia diomedea, have been entered into a branch of NeuronBank as have 4 previously published neurons from the mollusc, Melibe leonina. The ability to organize information about neuronal circuits will make this information more accessible, ultimately aiding research on these important models. PMID:20428500

  17. Planar multipolar cells in the cochlear nucleus project to medial olivocochlear neurons in mouse.

    Science.gov (United States)

    Darrow, Keith N; Benson, Thane E; Brown, M Christian

    2012-05-01

    Medial olivocochlear (MOC) neurons originate in the superior olivary complex and project to the cochlea, where they act to reduce the effects of noise masking and protect the cochlea from damage. MOC neurons respond to sound via a reflex pathway; however, in this pathway the cochlear nucleus cell type that provides input to MOC neurons is not known. We investigated whether multipolar cells of the ventral cochlear nucleus have projections to MOC neurons by labeling them with injections into the dorsal cochlear nucleus. The projections of one type of labeled multipolar cell, planar neurons, were traced into the ventral nucleus of the trapezoid body, where they were observed terminating on MOC neurons (labeled in some cases by a second cochlear injection of FluoroGold). These terminations formed what appear to be excitatory synapses, i.e., containing small, round vesicles and prominent postsynaptic densities. These data suggest that cochlear nucleus planar multipolar neurons drive the MOC neuron's response to sound.

  18. Prenatal cocaine exposure decreases parvalbumin-immunoreactive neurons and GABA-to-projection neuron ratio in the medial prefrontal cortex.

    Science.gov (United States)

    McCarthy, Deirdre M; Bhide, Pradeep G

    2012-01-01

    Cocaine abuse during pregnancy produces harmful effects not only on the mother but also on the unborn child. The neurotransmitters dopamine and serotonin are known as the principal targets of the action of cocaine in the fetal and postnatal brain. However, recent evidence suggests that cocaine can impair cerebral cortical GABA neuron development and function. We sought to analyze the effects of prenatal cocaine exposure on the number and distribution of GABA and projection neurons (inhibitory interneurons and excitatory output neurons, respectively) in the mouse cerebral cortex. We found that the prenatal cocaine exposure decreased GABA neuron numbers and GABA-to-projection neuron ratio in the medial prefrontal cortex of 60-day-old mice. The neighboring prefrontal cortex did not show significant changes in either of these measures. However, there was a significant increase in projection neuron numbers in the prefrontal cortex but not in the medial prefrontal cortex. Thus, the effects of cocaine on GABA and projection neurons appear to be cortical region specific. The population of parvalbumin-immunoreactive GABA neurons was decreased in the medial prefrontal cortex following the prenatal cocaine exposure. The cocaine exposure also delayed the developmental decline in the volume of the medial prefrontal cortex. Thus, prenatal cocaine exposure produced persisting and region-specific effects on cortical cytoarchitecture and impaired the physiological balance between excitatory and inhibitory neurotransmission. These structural changes may underlie the electrophysiological and behavioral effects of prenatal cocaine exposure observed in animal models and human subjects.

  19. Early exposure to bisphenol A alters neuron and glia number in the rat prefrontal cortex of adult males, but not females.

    Science.gov (United States)

    Sadowski, R N; Wise, L M; Park, P Y; Schantz, S L; Juraska, J M

    2014-10-24

    Previous work has shown that exposure to bisphenol A (BPA) during early development can alter sexual differentiation of the brain in rodents, although few studies have examined effects on areas of the brain associated with cognition. The current study examined if developmental BPA exposure alters the total number of neurons and glia in the medial prefrontal cortex (mPFC) in adulthood. Pregnant Long-Evans rats were orally exposed to 0, 4, 40, or 400-μg/kg BPA in corn oil throughout pregnancy. From postnatal days 1 to 9, pups were given daily oral doses of oil or BPA, at doses corresponding to those given during gestation. Brains were examined in adulthood, and the volume of layers 2/3 and layers 5/6 of the mPFC was parcellated. The density of neurons and glia in these layers was quantified stereologically with the optical disector, and density was multiplied by volume for each animal. Males exposed to 400-μg/kg BPA were found to have increased numbers of neurons and glia in layers 5/6. Although there were no significant effects of BPA in layers 2/3, the pattern of increased neuron number in males exposed to 400-μg/kg BPA was similar to that seen in layers 5/6. No effects of BPA were seen in females or in males exposed to the other doses of BPA. This study indicates that males are more susceptible to the long-lasting effects of BPA on anatomy of the mPFC, an area implicated in neurological disorders.

  20. Neuronal avalanches and learning

    Energy Technology Data Exchange (ETDEWEB)

    Arcangelis, Lucilla de, E-mail: dearcangelis@na.infn.it [Department of Information Engineering and CNISM, Second University of Naples, 81031 Aversa (Italy)

    2011-05-01

    Networks of living neurons represent one of the most fascinating systems of biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behaviour of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behaviour is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. Spontaneous neuronal activity has recently shown features in common to other complex systems. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. These avalanches are characterized by a power law distribution for the size and duration, features found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behaviour. In this contribution we discuss a statistical mechanical model for the complex activity in a neuronal network. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. Then, we discuss the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules, in particular the exclusive OR (XOR) and a random rule with three inputs. The learning dynamics exhibits universal features as function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.

  1. Hippocampal neuron populations are reduced in vervet monkeys with fetal alcohol exposure

    DEFF Research Database (Denmark)

    Burke, Mark W; Ptito, Maurice; Ervin, Frank R

    2015-01-01

    of pregnancy. Here, we report significant numerical reductions in the principal hippocampal neurons of fetal alcohol-exposed (FAE) offspring, as compared to age-matched, similarly housed conspecifics with isocaloric sucrose exposure. These deficits, particularly marked in CA1 and CA3, are present neonatally...... late pregnancy results in a stable loss of hippocampal neurons and a progressive reduction of hippocampal volume....

  2. Global dynamics of a stochastic neuronal oscillator

    Science.gov (United States)

    Yamanobe, Takanobu

    2013-11-01

    Nonlinear oscillators have been used to model neurons that fire periodically in the absence of input. These oscillators, which are called neuronal oscillators, share some common response structures with other biological oscillations such as cardiac cells. In this study, we analyze the dependence of the global dynamics of an impulse-driven stochastic neuronal oscillator on the relaxation rate to the limit cycle, the strength of the intrinsic noise, and the impulsive input parameters. To do this, we use a Markov operator that both reflects the density evolution of the oscillator and is an extension of the phase transition curve, which describes the phase shift due to a single isolated impulse. Previously, we derived the Markov operator for the finite relaxation rate that describes the dynamics of the entire phase plane. Here, we construct a Markov operator for the infinite relaxation rate that describes the stochastic dynamics restricted to the limit cycle. In both cases, the response of the stochastic neuronal oscillator to time-varying impulses is described by a product of Markov operators. Furthermore, we calculate the number of spikes between two consecutive impulses to relate the dynamics of the oscillator to the number of spikes per unit time and the interspike interval density. Specifically, we analyze the dynamics of the number of spikes per unit time based on the properties of the Markov operators. Each Markov operator can be decomposed into stationary and transient components based on the properties of the eigenvalues and eigenfunctions. This allows us to evaluate the difference in the number of spikes per unit time between the stationary and transient responses of the oscillator, which we show to be based on the dependence of the oscillator on past activity. Our analysis shows how the duration of the past neuronal activity depends on the relaxation rate, the noise strength, and the impulsive input parameters.

  3. The density minimum at the Earth's magnetic equator

    OpenAIRE

    1992-01-01

    Journal of Geophysical Research,Volume 97, pp. 1135-1150 Observations of the density structure in the plasmapause region reveal the existence of a local minimum in the total electron density at the magnetic equator.

  4. Altered balance of glutamatergic/GABAergic synaptic input and associated changes in dendrite morphology after BDNF expression in BDNF-deficient hippocampal neurons

    OpenAIRE

    Singh, B; Henneberger, C.; Betances, D.; Arevalo, M. A.; Rodriguez-Tebar, A.; Meier, J C; Grantyn, R.

    2006-01-01

    Cultured neurons from bdnf-/- mice display reduced densities of synaptic terminals, although in vivo these deficits are small or absent. Here we aimed at clarifying the local responses to postsynaptic brain-derived neurotrophic factor (BDNF). To this end, solitary enhanced green fluorescent protein (EGFP)-labeled hippocampal neurons from bdnf-/- mice were compared with bdnf-/- neurons after transfection with BDNF, bdnf-/- neurons after transient exposure to exogenous BDNF, and bdnf+/+ neurons...

  5. 5,7-Dimethoxycoumarin inhibits neuronal apoptosis by targeting ...

    African Journals Online (AJOL)

    However, those in the normal control and model groups received the same volume of ... cerebral infarction in animals the rate of neuronal apoptosis is ... Department of Health and Human Services, and guidelines ... The complex development was performed using an ECL .... and reproduction in any medium, provided the.

  6. Neuronal survival in the brain: neuron type-specific mechanisms.

    Science.gov (United States)

    Pfisterer, Ulrich; Khodosevich, Konstantin

    2017-03-02

    Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial numbers of neurons that are not yet completely integrated into the local circuits helps to ensure that maturation and homeostatic function of neuronal networks in the brain proceed correctly. External signals from brain microenvironment together with intrinsic signaling pathways determine whether a particular neuron will die. To accommodate this signaling, immature neurons in the brain express a number of transmembrane factors as well as intracellular signaling molecules that will regulate the cell survival/death decision, and many of these factors cease being expressed upon neuronal maturation. Furthermore, pro-survival factors and intracellular responses depend on the type of neuron and region of the brain. Thus, in addition to some common neuronal pro-survival signaling, different types of neurons possess a variety of 'neuron type-specific' pro-survival constituents that might help them to adapt for survival in a certain brain region. This review focuses on how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various types of immature neurons. Importantly, we mainly focus on in vivo data to describe neuronal survival specifically in the brain, without extrapolating data obtained in the PNS or spinal cord, and thus emphasize the influence of the complex brain environment on neuronal survival during development.

  7. Kappe neurons, a novel population of olfactory sensory neurons

    Science.gov (United States)

    Ahuja, Gaurav; Nia, Shahrzad Bozorg; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I.

    2014-02-01

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons are identified by their Go-like immunoreactivity, and show a distinct spatial distribution within the olfactory epithelium, similar to, but significantly different from that of crypt neurons. Furthermore, kappe neurons project to a single identified target glomerulus within the olfactory bulb, mdg5 of the mediodorsal cluster, whereas crypt neurons are known to project exclusively to the mdg2 glomerulus. Kappe neurons are negative for established markers of ciliated, microvillous and crypt neurons, but appear to have microvilli. Kappe neurons constitute the fourth type of olfactory sensory neurons reported in teleost fishes and their existence suggests that encoding of olfactory stimuli may require a higher complexity than hitherto assumed already in the peripheral olfactory system.

  8. Stochastic neuron models

    CERN Document Server

    Greenwood, Priscilla E

    2016-01-01

    This book describes a large number of open problems in the theory of stochastic neural systems, with the aim of enticing probabilists to work on them. This includes problems arising from stochastic models of individual neurons as well as those arising from stochastic models of the activities of small and large networks of interconnected neurons. The necessary neuroscience background to these problems is outlined within the text, so readers can grasp the context in which they arise. This book will be useful for graduate students and instructors providing material and references for applying probability to stochastic neuron modeling. Methods and results are presented, but the emphasis is on questions where additional stochastic analysis may contribute neuroscience insight. An extensive bibliography is included. Dr. Priscilla E. Greenwood is a Professor Emerita in the Department of Mathematics at the University of British Columbia. Dr. Lawrence M. Ward is a Professor in the Department of Psychology and the Brain...

  9. The Survival Effects of Electeromagnetic Fields on Dorsal Root Ganglia Neurons of the Crushed Sciatic Nerve in the Rat

    Directory of Open Access Journals (Sweden)

    M.R. Nikravesh

    2003-07-01

    Full Text Available Previous studies have been shown that electromagnetic fields (EMF result in increasing the rate of nerve regeneration. Therefore it could be assumed following axotomy the signal induction of these fields may protect neural cells from death. For this study 24 male wistar rats (2 month age divided to 4 groups (experimental 1, 2, control and sham. For axotomy, the animals were anesthetized and their right Sciatic Nerve (SN were exposed and crushed in the mid portion of the thigh in experimental and control groups. In the sham group the SN just exposed (no compression. In the next phase experimental groups were exposed to the 50 HZ electeromagnetic field (EMF, 1.1mTl 2-4 hr/day (for 10 days. After 8 weeks, Dorsal Root Ganglions (DRGs in the lumbar segments (L4-L6 of spinal cord were sampled, processed sectioned serially and stained with toluidine blue (pH=4.5. By using stereological quantitative technique (physical disector, the neurons in the crushed side (DRGs were counted and compared in the all of groups. Statistical analyses of results have been shown a remarkable reduction in neuronal density in (DRGs of control. On the other hand we observed a cell death DRG significant among experimental groups (p<0/05. In addition we compared DRG volume in all groups but they didn’t show any significant difference. These findings indicate that the EMF may play a survival role against neuronal death during nerve injuries.

  10. Epilepsy induced by extended amygdala-kindling in rats: lack of clear association between development of spontaneous seizures and neuronal damage.

    Science.gov (United States)

    Brandt, C; Ebert, U; Löscher, W

    2004-12-01

    Most patients with temporal lobe epilepsy (TLE), the most common type of epilepsy, show pronounced loss of neurons in limbic brain regions, including the hippocampus, amygdala, and parahippocampal regions. Hippocampal damage in patients with TLE is characterized by extensive neuronal loss in the CA3 and CA1 sectors and the hilus of the dentate gyrus. There is a long and ongoing debate on whether this type of hippocampal damage, referred to as hippocampal sclerosis, is the cause or consequence of TLE. Furthermore, hippocampal damage may contribute to the progressive features of TLE. The present study was designed to determine whether development of spontaneous recurrent seizures (SRS) after extended kindling of the amygdala in rats is associated with neuronal damage. The kindling model of TLE was chosen because previous studies have shown that only part of the rats develop SRS after extended kindling, thus allowing to compare the brain pathology of rats that received the same number of amygdala stimulation but did or did not develop SRS. For extended kindling, rats were stimulated twice daily 3-5 days a week for up to about 280 stimulations. During long-term EEG/video monitoring, SRS were observed in 50% of the rats over the period of extended kindling. SRS often started with myoclonic jerks or focal seizures and subsequently progressed into secondarily generalized seizures, so that the development of SRS recapitulated the earlier kindling of elicited seizures. No obvious neurodegeneration was observed in the CA1 and CA3 sectors of the hippocampus, the amygdala, parahippocampal regions or thalamus. A significant bilateral reduction in neuronal density was determined in the dentate hilus after extended kindling, but this reduction in hilar cell density did not significantly differ between rats with and without observed SRS. Determination of the total number of hilar neurons and of hilar volume indicated that the reduced neuronal density in the dentate hilus was due

  11. From Neurons to Newtons

    DEFF Research Database (Denmark)

    Nielsen, Bjørn Gilbert

    2001-01-01

    proteins generate forces, to the macroscopic levels where overt arm movements are vol- untarily controlled within an unpredictable environment by legions of neurons¯ring in orderly fashion. An extensive computer simulation system has been developed for this thesis, which at present contains a neural...... network scripting language for specifying arbitrary neural architectures, de¯nition ¯les for detailed spinal networks, various biologically realistic models of neurons, and dynamic synapses. Also included are structurally accurate models of intrafusal and extra-fusal muscle ¯bers and a general body...

  12. Neuronal survival in the brain: neuron type-specific mechanisms

    DEFF Research Database (Denmark)

    Pfisterer, Ulrich Gottfried; Khodosevich, Konstantin

    2017-01-01

    Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial...... a particular neuron will die. To accommodate this signaling, immature neurons in the brain express a number of transmembrane factors as well as intracellular signaling molecules that will regulate the cell survival/death decision, and many of these factors cease being expressed upon neuronal maturation...... for survival in a certain brain region. This review focuses on how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various...

  13. Characterization of astrocytic and neuronal benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Bender, A.S.

    1988-01-01

    Primary cultures of astrocytes and neurons express benzodiazepine receptors. Neuronal benzodiazepine receptors were of high-affinity, K{sub D} values were 7.5-43 nM and the densities of receptors (B{sub max}) were 924-4131 fmol/mg protein. Astrocytes posses a high-affinity benzodiazepine receptor, K{sub D} values were 6.6-13 nM. The B{sub max} values were 6,033-12,000 fmol/mg protein. The pharmacological profile of the neuronal benzodiazepine receptor was that of the central-type benzodiazepine receptor, where clonazepam has a high-affinity and Ro 5-4864 (4{prime}-chlorodiazepam) has a low-affinity. Whereas astrocytic benzoidazepine receptor was characteristic of the so called peripheral-type benzodiazepine receptors, which shows a high-affinity towards Ro 5-4863, and a low-affinity towards clonazepam. The astrocytic benzodiazepine receptors was functionally correlated with voltage dependent calcium channels, since dihydropyridines and benzodiazepines interacted with ({sup 3}H) diazepam and ({sup 3}H) nitrendipine receptors with the same rank order of potency, showing a statistically significant correlation. No such correlation was observed in neurons.

  14. Determination of the density of zinc powders for alkaline battery

    Institute of Scientific and Technical Information of China (English)

    Beatriz Ares Tejero; David Guede Carnero

    2007-01-01

    The density of zinc powder for alkaline battery was determined using a pyknometer.The results showed that powders made before the end of 2003 could reach relative densities above 99% of the theoretical density.Investigating the relative volume swelling of electrolysed gels of zinc powders,no evident relation between swelling and pyknometer density was found.

  15. Densidades y Propiedades Volumétricas de Mezclas N,N-Dimetilformamida + Agua a Presión Constante de 98.93 kPa y a varias Temperaturas Densities and Volumetric Properties of Mixtures N,N-Dimethylformamide + Water at Constant Pressure of 98.93 kPa and various Temperatures

    Directory of Open Access Journals (Sweden)

    Manuel S Páez

    2009-01-01

    Full Text Available Este trabajo proporciona un conjunto de datos volumétricos para evaluar la influencia de la concentración y la temperatura sobre las interacciones moleculares entre N, N-Dimetilformamida (DMF y agua. Con este propósito e midió la densidad de mezclas acuosas binarias de DMF sobre el rango completo de concentración, a la presión de 98.93 kPa y a temperaturas desde 293,15K a 313,15K usando un densímetro de tubo vibratorio. Se calculó los volúmenes molares de exceso, volúmenes molares parciales y volúmenes molares parciales a dilución infinita. Los volúmenes molares parciales a dilución infinita de DMF en solución acuosa fueron obtenidos por extrapolación a cada temperatura. Los volúmenes molares de exceso fueron calculados a partir de los datos de densidad y correlacionados usando la ecuación polinomial de Redlich-Kister. La DMF presenta un comportamiento hidrofóbico similar a otros solutos orgánicos en medio acuoso, como alcoholes y polioles.This work provides a set of volumetric data to evaluate the influence of the concentration and the temperature on the molecular interactions between N, N-Dimetilformamida (DMF and water. Densities of binary aqueous mixtures of N, N-Dimethylformamide (DMF were measured over the entire composition range at constant pressure of 98.93 kPa and at temperatures from 293,15K and 313,15K using a vibrating-tube densimeter. Excess molar volumes and partial molar volume at infinite dilution were also calculated. The partial molar volumes at infinite dilution of DMF in aqueous solution were obtained by extrapolation at each temperature. The excess molar volumes were calculated from density data and fitted to the Redlich-Kister polynomial equation. The DMF presents a hydrophobic behavior similar to other organic solutes in water such alcohols and polyols.

  16. Nanoresolution radiology of neurons

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H.R.; Chen, S.T.; Chu, Y.S.; Conley, R.; Bouet, N.; Chien, C.C.; Chen, H.H.; Lin, C.H.; Tung, H.T.; Chen, Y.S.; Margaritondo, G.; Je, J.H.; Hwu, Y. (IP-Taiwan); (Ecole); (BNL); (POSTECH)

    2013-04-08

    We report recent advances in hard-x-ray optics - including record spatial resolution - and in staining techniques that enable synchrotron microradiology to produce neurobiology images of quality comparable to electron and visible microscopy. In addition, microradiology offers excellent penetration and effective three-dimensional detection as required for many neuron studies. Our tests include tomographic reconstruction based on projection image sets.

  17. New findings on neuron development

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ A mature neuron receives inputs from multiple dendrites and sends its output to other neurons via a single axon.This polarized morphology requires proper axonal/dendritic differentiation during development.

  18. Exploring neuronal activity with photons

    Science.gov (United States)

    Bourdieu, Laurent; Léger, Jean-François

    2015-10-01

    The following sections are included: * Introduction * Information coding * Optical recordings of neuronal activity * Functional organization of the cortex at the level of a cortical column * Microarchitecture of a cortical column * Dynamics of neuronal populations * Outlook * Bibliography

  19. Energy density of marine pelagic fish eggs

    DEFF Research Database (Denmark)

    Riis-Vestergaard, J.

    2002-01-01

    Analysis of the literature on pelagic fish eggs enabled generalizations to be made of their energy densities, because the property of being buoyant in sea water appears to constrain the proximate composition of the eggs and thus to minimize interspecific variation. An energy density of 1.34 J mul......(-1) of total egg volume is derived for most species spawning eggs without visible oil globules. The energy density of eggs with oil globules is predicted by (σ) over cap = 1.34 + 40.61 x (J mul(-1)) where x is the fractional volume of the oil globule. (C) 2002 The Fisheries Society of the British...

  20. Measuring physical properties of neuronal and glial cells with resonant microsensors.

    Science.gov (United States)

    Corbin, Elise A; Millet, Larry J; Keller, Katrina R; King, William P; Bashir, Rashid

    2014-05-20

    Microelectromechanical systems (MEMS) resonant sensors provide a high degree of accuracy for measuring the physical properties of chemical and biological samples. These sensors enable the investigation of cellular mass and growth, though previous sensor designs have been limited to the study of homogeneous cell populations. Population heterogeneity, as is generally encountered in primary cultures, reduces measurement yield and limits the efficacy of sensor mass measurements. This paper presents a MEMS resonant pedestal sensor array fabricated over through-wafer pores compatible with vertical flow fields to increase measurement versatility (e.g., fluidic manipulation and throughput) and allow for the measurement of heterogeneous cell populations. Overall, the improved sensor increases capture by 100% at a flow rate of 2 μL/min, as characterized through microbead experiments, while maintaining measurement accuracy. Cell mass measurements of primary mouse hippocampal neurons in vitro, in the range of 0.1-0.9 ng, demonstrate the ability to investigate neuronal mass and changes in mass over time. Using an independent measurement of cell volume, we find cell density to be approximately 1.15 g/mL.

  1. Genetic Modification of Neurons to Express Bevacizumab for Local Anti-angiogenesis Treatment of Glioblastoma

    Science.gov (United States)

    Wang, Lan; Aronowitz, Eric; Dyke, Jonathan P.; Ballon, Douglas J.; Havlicek, David F.; Frenk, Esther Z.; De, Bishnu P.; Chiuchiolo, Maria J.; Sondhi, Dolan; Hackett, Neil R.; Kaminsky, Stephen M.; Tabar, Viviane; Crystal, Ronald G.

    2014-01-01

    The median survival of glioblastoma multiforme (GBM) approximately 1 yr. Following surgical removal, systemic therapies are limited by the blood-brain barrier. To circumvent this, we developed a method to modify neurons with the genetic sequence for therapeutic monoclonal antibodies using adeno-associated virus (AAV) gene transfer vectors, directing persistent, local expression in the tumor milieu. The human U87MG GBM cell line or patient-derived early passage GBM cells were administered to the striatum of NOD/SCID immunodeficient mice. AAVrh.10BevMab, an AAVrh.10-based vector coding for bevacizumab (Avastin®), an anti-human vascular endothelial growth factor (VEGF) monoclonal antibody, was delivered to the area of the GBM xenograft. Localized expression of bevacizumab was demonstrated by quantitative PCR, ELISA and Western. Immunohistochemistry showed the bevacizumab was expressed in neurons. Concurrent administration of AAVrh.10BevMab with the U87MG tumor reduced tumor blood vessel density, and tumor volume and increased survival. Administration of AAVrh.10BevMab 1 wk after U87MG xenograft reduced growth and increased survival. Studies with patient-derived early passage GBM primary cells showed a reduction in primary tumor burden with an increased survival. This data supports the strategy of AAV-mediated CNS gene therapy to treat GBM, overcoming the blood-brain barrier through local, persistent delivery of an anti-angiogenesis monoclonal antibody. PMID:25501993

  2. Binary neuron with optical devices

    Science.gov (United States)

    Degeratu, Vasile; Degeratu, Ştefania; Şchiopu, Paul; Şchiopu, Carmen

    2009-01-01

    In this paper the authors present a model of binary neuron, a model of McCulloch-Pitts neuron with optical devices. This model of neuron can be implemented not only in the optic integrated circuits but also in the classic optical circuits it being cheap and immune not only into electromagnetic fields but also into any kind of radiation. The transfer speed of information through the neuron is very higher, it being limited only by the light speed from the received medium.

  3. Cholinergic Neurons Excite Cortically Projecting Basal Forebrain GABAergic Neurons

    Science.gov (United States)

    Yang, Chun; McKenna, James T.; Zant, Janneke C.; Winston, Stuart; Basheer, Radhika

    2014-01-01

    The basal forebrain (BF) plays an important role in the control of cortical activation and attention. Understanding the modulation of BF neuronal activity is a prerequisite to treat disorders of cortical activation involving BF dysfunction, such as Alzheimer's disease. Here we reveal the interaction between cholinergic neurons and cortically projecting BF GABAergic neurons using immunohistochemistry and whole-cell recordings in vitro. In GAD67-GFP knock-in mice, BF cholinergic (choline acetyltransferase-positive) neurons were intermingled with GABAergic (GFP+) neurons. Immunohistochemistry for the vesicular acetylcholine transporter showed that cholinergic fibers apposed putative cortically projecting GABAergic neurons containing parvalbumin (PV). In coronal BF slices from GAD67-GFP knock-in or PV-tdTomato mice, pharmacological activation of cholinergic receptors with bath application of carbachol increased the firing rate of large (>20 μm diameter) BF GFP+ and PV (tdTomato+) neurons, which exhibited the intrinsic membrane properties of cortically projecting neurons. The excitatory effect of carbachol was blocked by antagonists of M1 and M3 muscarinic receptors in two subpopulations of BF GABAergic neurons [large hyperpolarization-activated cation current (Ih) and small Ih, respectively]. Ion substitution experiments and reversal potential measurements suggested that the carbachol-induced inward current was mediated mainly by sodium-permeable cation channels. Carbachol also increased the frequency of spontaneous excitatory and inhibitory synaptic currents. Furthermore, optogenetic stimulation of cholinergic neurons/fibers caused a mecamylamine- and atropine-sensitive inward current in putative GABAergic neurons. Thus, cortically projecting, BF GABAergic/PV neurons are excited by neighboring BF and/or brainstem cholinergic neurons. Loss of cholinergic neurons in Alzheimer's disease may impair cortical activation, in part, through disfacilitation of BF cortically

  4. Local connections of layer 5 GABAergic interneurons to corticospinal neurons

    Directory of Open Access Journals (Sweden)

    Yasuyo H Tanaka

    2011-09-01

    Full Text Available In the local circuit of the cerebral cortex, GABAergic inhibitory interneurons are considered to work in collaboration with excitatory neurons. Although many interneuron subgroups have been described in the cortex, local inhibitory connections of each interneuron subgroup are only partially understood with respect to the functional neuron groups that receive these inhibitory connections. In the present study, we morphologically examined local inhibitory inputs to corticospinal neurons (CSNs in motor areas using transgenic rats in which GABAergic neurons expressed fluorescent protein Venus. By analysis of biocytin-filled axons obtained with whole-cell recording/staining in cortical slices, we classified fast-spiking (FS neurons in layer (L 5 into two types, FS1 and FS2, by their high and low densities of axonal arborization, respectively. We then investigated the connections of FS1, FS2, somatostatin-immunopositive (SOM and other (non-FS/non-SOM interneurons to CSNs that were retrogradely labeled in a Golgi-like manner in motor areas. When close appositions between the axon boutons of the intracellularly labeled interneurons and the somata/dendrites of the retrogradely labeled CSNs were examined electron-microscopically, 74% of these appositions made symmetric synaptic contacts. The axon boutons of single FS1 neurons were 2–4-fold more frequent in appositions to the somata/dendrites of CSNs than those of FS2, SOM and non-FS/non-SOM neurons. Axosomatic appositions were most frequently formed with axon boutons of FS1 and FS2 neurons (approximately 30% and least frequently formed with those of SOM neurons (7%. In contrast, SOM neurons most extensively sent axon boutons to the apical dendrites of CSNs. These results might suggest that motor outputs are controlled differentially by the subgroups of L5 GABAergic interneurons in cortical motor areas. 

  5. Pharmacological characterization of cultivated neuronal networks: relevance to synaptogenesis and synaptic connectivity.

    Science.gov (United States)

    Verstraelen, Peter; Pintelon, Isabel; Nuydens, Rony; Cornelissen, Frans; Meert, Theo; Timmermans, Jean-Pierre

    2014-07-01

    Mental disorders, such as schizophrenia or Alzheimer's disease, are associated with impaired synaptogenesis and/or synaptic communication. During development, neurons assemble into neuronal networks, the primary supracellular mediators of information processing. In addition to the orchestrated activation of genetic programs, spontaneous electrical activity and associated calcium signaling have been shown to be critically involved in the maturation of such neuronal networks. We established an in vitro model that recapitulates the maturation of neuronal networks, including spontaneous electrical activity. Upon plating, mouse primary hippocampal neurons grow neurites and interconnect via synapses to form a dish-wide neuronal network. Via live cell calcium imaging, we identified a limited period of time in which the spontaneous activity synchronizes across neurons, indicative of the formation of a functional network. After establishment of network activity, the neurons grow dendritic spines, the density of which was used as a morphological readout for neuronal maturity and connectivity. Hence, quantification of neurite outgrowth, synapse density, spontaneous neuronal activity, and dendritic spine density allowed to study neuronal network maturation from the day of plating until the presence of mature neuronal networks. Via acute pharmacological intervention, we show that synchronized network activity is mediated by the NMDA-R. The balance between kynurenic and quinolinic acid, both neuro-active intermediates in the tryptophan/kynurenine pathway, was shown to be decisive for the maintenance of network activity. Chronic modulation of the neurotrophic support influenced the network formation and revealed the extreme sensitivity of calcium imaging to detect subtle alterations in neuronal physiology. Given the reproducible cultivation in a 96-well setup in combination with fully automated analysis of the calcium recordings, this approach can be used to build a high

  6. Electrical Identification and Selective Microstimulation of Neuronal Compartments Based on Features of Extracellular Action Potentials

    Science.gov (United States)

    Radivojevic, Milos; Jäckel, David; Altermatt, Michael; Müller, Jan; Viswam, Vijay; Hierlemann, Andreas; Bakkum, Douglas J.

    2016-08-01

    A detailed, high-spatiotemporal-resolution characterization of neuronal responses to local electrical fields and the capability of precise extracellular microstimulation of selected neurons are pivotal for studying and manipulating neuronal activity and circuits in networks and for developing neural prosthetics. Here, we studied cultured neocortical neurons by using high-density microelectrode arrays and optical imaging, complemented by the patch-clamp technique, and with the aim to correlate morphological and electrical features of neuronal compartments with their responsiveness to extracellular stimulation. We developed strategies to electrically identify any neuron in the network, while subcellular spatial resolution recording of extracellular action potential (AP) traces enabled their assignment to the axon initial segment (AIS), axonal arbor and proximal somatodendritic compartments. Stimulation at the AIS required low voltages and provided immediate, selective and reliable neuronal activation, whereas stimulation at the soma required high voltages and produced delayed and unreliable responses. Subthreshold stimulation at the soma depolarized the somatic membrane potential without eliciting APs.

  7. Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering

    KAUST Repository

    Sicat, Ronell Barrera

    2014-12-31

    This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs.

  8. Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering.

    Science.gov (United States)

    Sicat, Ronell; Krüger, Jens; Möller, Torsten; Hadwiger, Markus

    2014-12-01

    This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs.

  9. Volumetric measurement of tank volume

    Science.gov (United States)

    Walter, Richard T. (Inventor); Vanbuskirk, Paul D. (Inventor); Weber, William F. (Inventor); Froebel, Richard C. (Inventor)

    1991-01-01

    A method is disclosed for determining the volume of compressible gas in a system including incompressible substances in a zero-gravity environment consisting of measuring the change in pressure (delta P) for a known volume change rate (delta V/delta t) in the polytrophic region between isothermal and adiabatic conditions. The measurements are utilized in an idealized formula for determining the change in isothermal pressure (delta P sub iso) for the gas. From the isothermal pressure change (delta iso) the gas volume is obtained. The method is also applicable to determination of gas volume by utilizing work (W) in the compression process. In a passive system, the relationship of specific densities can be obtained.

  10. Neuronal substrate of eating disorders

    OpenAIRE

    Timofeeva, Elena; Calvez, Juliane

    2014-01-01

    Eating disorders are devastating and life-threatening psychiatric diseases. Although clinical and experimental investigations have significantly progressed in discovering the neuronal causes of eating disorders, the exact neuronal and molecular mechanisms of the development and maintenance of these pathologies are not fully understood. The complexity of the neuronal substrate of eating disorders hampers progress in revealing the precise mechanisms. The present re...

  11. Rhythm dynamics of complex neuronal networks with mixed bursting neurons

    Institute of Scientific and Technical Information of China (English)

    Lü Yong-Bing; Shi Xia; Zheng Yan-Hong

    2013-01-01

    The spatiotemporal order and rhythm dynamics of a complex neuronal network with mixed bursting neurons are studied in this paper.A quantitative characteristic,the width factor,is introduced to describe the rhythm dynamics of an individual neuron,and the average width factor is used to characterize the rhythm dynamics of a neuronal network.An r parameter is introduced to denote the ratio of the short bursting neurons in the network.Then we investigate the effect of the ratio on the rhythm dynamics of the neuronal network.The critical value of r is derived,and the neurons in the network always remain short bursting when the r ratio is larger than the critical value.

  12. Recording large-scale neuronal ensembles with silicon probes in the anesthetized rat.

    Science.gov (United States)

    Schjetnan, Andrea Gomez Palacio; Luczak, Artur

    2011-10-19

    Large scale electrophysiological recordings from neuronal ensembles offer the opportunity to investigate how the brain orchestrates the wide variety of behaviors from the spiking activity of its neurons. One of the most effective methods to monitor spiking activity from a large number of neurons in multiple local neuronal circuits simultaneously is by using silicon electrode arrays. Action potentials produce large transmembrane voltage changes in the vicinity of cell somata. These output signals can be measured by placing a conductor in close proximity of a neuron. If there are many active (spiking) neurons in the vicinity of the tip, the electrode records combined signal from all of them, where contribution of a single neuron is weighted by its 'electrical distance'. Silicon probes are ideal recording electrodes to monitor multiple neurons because of a large number of recording sites (+64) and a small volume. Furthermore, multiple sites can be arranged over a distance of millimeters, thus allowing for the simultaneous recordings of neuronal activity in the various cortical layers or in multiple cortical columns (Fig. 1). Importantly, the geometrically precise distribution of the recording sites also allows for the determination of the spatial relationship of the isolated single neurons. Here, we describe an acute, large-scale neuronal recording from the left and right forelimb somatosensory cortex simultaneously in an anesthetized rat with silicon probes (Fig. 2).

  13. Chimera states in uncoupled neurons induced by a multilayer structure

    CERN Document Server

    Majhi, Soumen; Ghosh, Dibakar

    2016-01-01

    Spatial coexistence of coherent and incoherent dynamics in network of coupled oscillators is called a chimera state. We study such chimera states in a network of neurons without any direct interactions but connected through another medium of neurons, forming a multilayer structure. The upper layer is thus made up of uncoupled neurons and the lower layer plays the role of a medium through which the neurons in the upper layer share information among each other. Hindmarsh-Rose neurons with square wave bursting dynamics are considered as nodes in both layers. In addition, we also discuss the existence of chimera states in presence of inter layer heterogeneity. The neurons in the bottom layer are globally connected through electrical synapses, while across the two layers chemical synapses are formed. According to our research, the competing effects of these two types of synapses can lead to chimera states in the upper layer of uncoupled neurons. Remarkably, we find a density-dependent threshold for the emergence o...

  14. Correlations between histology and neuronal activity recorded by microelectrodes implanted chronically in the cerebral cortex

    Science.gov (United States)

    McCreery, Douglas; Cogan, Stuart; Kane, Sheryl; Pikov, Victor

    2016-06-01

    Objective. To quantify relations between the neuronal activity recorded with chronically-implanted intracortical microelectrodes and the histology of the surrounding tissue, using radial distance from the tip sites and time after array implantation as parameters. Approach. ‘Utah’-type intracortical microelectrode arrays were implanted into cats’ sensorimotor cortex for 275-364 days. The brain tissue around the implants was immuno-stained for the neuronal marker NeuN and for the astrocyte marker GFAP. Pearson’s product-moment correlations were used to quantify the relations between these markers and the amplitudes of the recorded neuronal action potentials (APs) and their signal-to-noise ratios (S/N). Main results. S/N was more stable over post-implant time than was AP amplitude, but its increased correlation with neuronal density after many months indicates ongoing loss of neurons around the microelectrodes. S/N was correlated with neuron density out to at least 140 μm from the microelectrodes, while AP amplitude was correlated with neuron density and GFAP density within ˜80 μm. Correlations between AP amplitude and histology markers (GFAP and NeuN density) were strongest immediately after implantation, while correlation between the neuron density and S/N was strongest near the time the animals were sacrificed. Unlike AP amplitude, there was no significant correlation between S/N and density of GFAP around the tip sites. Significance. Our findings indicate an evolving interaction between changes in the tissue surrounding the microelectrodes and the microelectrode’s electrical properties. Ongoing loss of neurons around recording microelectrodes, and the interactions between their delayed electrical deterioration and early tissue scarring around the tips appear to pose the greatest threats to the microelectrodes’ long-term functionality.

  15. Low Bone Density

    Science.gov (United States)

    ... Information › Bone Density Exam/Testing › Low Bone Density Low Bone Density Low bone density is when your ... compared to people with normal bone density. Detecting Low Bone Density A bone density test will determine ...

  16. Renormalized Volume

    CERN Document Server

    Gover, A Rod

    2016-01-01

    For any conformally compact manifold with hypersurface boundary we define a canonical renormalized volume functional and compute an explicit, holographic formula for the corresponding anomaly. For the special case of asymptotically Einstein manifolds, our method recovers the known results. The anomaly does not depend on any particular choice of regulator, but the coefficients of divergences do. We give explicit formulae for these divergences valid for any choice of regulating hypersurface; these should be relevant to recent studies of quantum corrections to entanglement entropies. The anomaly is expressed as a conformally invariant integral of a local Q-curvature that generalizes the Branson Q-curvature by including data of the embedding. In each dimension this canonically defines a higher dimensional generalization of the Willmore energy/rigid string action. We show that the variation of these energy functionals is exactly the obstruction to solving a singular Yamabe type problem with boundary data along the...

  17. Neuronal synchrony 

    OpenAIRE

    Buzsáki, Gyorgy

    2010-01-01

    1. Neuronal synchrony: metabolic and wiring costs of excitatory and inhibitory systems The major part of the brain’s energy budget (~ 60-80%) is devoted to its communication activities. While inhibition is critical to brain function, relatively little attention has been paid to its metabolic costs. Understanding how inhibitory interneurons contribute to brain energy consumption (brain work) is not only of interest in understanding a fundamental aspect of brain function but also in understandi...

  18. Density-dependent acoustic properties of PBX 9502

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Geoffrey W [Los Alamos National Laboratory; Thompson, Darla G [Los Alamos National Laboratory; Deluca, Racci [Los Alamos National Laboratory; Hartline, Ernest L [Los Alamos National Laboratory; Hagelberg, Stephanie I [Los Alamos National Laboratory

    2009-07-31

    We have measured the longitudinal and shear acoustic velocities of PBX 9502 as a function of density for die-pressed samples over the range 1.795 g/cc to 1.888 g/cc. The density dependence of the velocities is linear. Thermal cycling of PBX 9502 is known to induce irreversible volume growth. We have measured this volume growth dependence on density for a subset of the pressed parts and find that the most growth occurs for the samples with lowest initial density. The acoustic velocity changes due to the volume growth are significant and reflect damage in the samples.

  19. Micropatterning neuronal networks.

    Science.gov (United States)

    Hardelauf, Heike; Waide, Sarah; Sisnaiske, Julia; Jacob, Peter; Hausherr, Vanessa; Schöbel, Nicole; Janasek, Dirk; van Thriel, Christoph; West, Jonathan

    2014-07-01

    Spatially organised neuronal networks have wide reaching applications, including fundamental research, toxicology testing, pharmaceutical screening and the realisation of neuronal implant interfaces. Despite the large number of methods catalogued in the literature there remains the need to identify a method that delivers high pattern compliance, long-term stability and is widely accessible to neuroscientists. In this comparative study, aminated (polylysine/polyornithine and aminosilanes) and cytophobic (poly(ethylene glycol) (PEG) and methylated) material contrasts were evaluated. Backfilling plasma stencilled PEGylated substrates with polylysine does not produce good material contrasts, whereas polylysine patterned on methylated substrates becomes mobilised by agents in the cell culture media which results in rapid pattern decay. Aminosilanes, polylysine substitutes, are prone to hydrolysis and the chemistries prove challenging to master. Instead, the stable coupling between polylysine and PLL-g-PEG can be exploited: Microcontact printing polylysine onto a PLL-g-PEG coated glass substrate provides a simple means to produce microstructured networks of primary neurons that have superior pattern compliance during long term (>1 month) culture.

  20. Elucidating the Neuronal Architecture of Olfactory Glomeruli in the Drosophila Antennal Lobe

    Directory of Open Access Journals (Sweden)

    Veit Grabe

    2016-09-01

    Full Text Available Olfactory glomeruli are morphologically conserved spherical compartments of the olfactory system, distinguishable solely by their chemosensory repertoire, anatomical position, and volume. Little is known, however, about their numerical neuronal composition. We therefore characterized their neuronal architecture and correlated these anatomical features with their functional properties in Drosophila melanogaster. We quantitatively mapped all olfactory sensory neurons (OSNs innervating each glomerulus, including sexually dimorphic distributions. Our data reveal the impact of OSN number on glomerular dimensions and demonstrate yet unknown sex-specific differences in several glomeruli. Moreover, we quantified uniglomerular projection neurons for each glomerulus, which unraveled a glomerulus-specific numerical innervation. Correlation between morphological features and functional specificity showed that glomeruli innervated by narrowly tuned OSNs seem to possess a larger number of projection neurons and are involved in less lateral processing than glomeruli targeted by broadly tuned OSNs. Our study demonstrates that the neuronal architecture of each glomerulus encoding crucial odors is unique.

  1. No postnatal doubling of number of neurons in human Broca's areas (Brodmann areas 44 and 45)? A stereological study.

    Science.gov (United States)

    Uylings, H B M; Malofeeva, L I; Bogolepova, I N; Jacobsen, A M; Amunts, K; Zilles, K

    2005-01-01

    In this study we explored whether a postnatal doubling of the total number of neurons occurs in the human Brodmann areas 44 and 45 (Broca's area). We describe the most recent error prediction formulae and their application for the modern stereological estimators for volume and number of neurons. We estimated the number of neurons in 3D optical disector probes systematically random sampled throughout the entire Brodmann areas (BA) 44 and 45 in developing and young adult cases. In the relatively small number of male and female cases studied no substantial postnatal increase in total number of neurons occurred in areas 44 and 45; the volume of these areas reached adult values around 7 years. In addition, we did find indications that a shift from a right-over-left to a left-over-right asymmetry may occur in the volume of BA 45 during postnatal development. No major asymmetry in total number of neurons in BA 44 and 45 was detected.

  2. Morphine decreases enteric neuron excitability via inhibition of sodium channels.

    Directory of Open Access Journals (Sweden)

    Tricia H Smith

    Full Text Available Gastrointestinal peristalsis is significantly dependent on the enteric nervous system. Constipation due to reduced peristalsis is a major side-effect of morphine, which limits the chronic usefulness of this excellent pain reliever in man. The ionic basis for the inhibition of enteric neuron excitability by morphine is not well characterized as previous studies have mainly utilized microelectrode recordings from whole mount myenteric plexus preparations in guinea pigs. Here we have developed a Swiss-Webster mouse myenteric neuron culture and examined their electrophysiological properties by patch-clamp techniques and determined the mechanism for morphine-induced decrease in neuronal excitability. Isolated neurons in culture were confirmed by immunostaining with pan-neuronal marker, β-III tubulin and two populations were identified by calbindin and calretinin staining. Distinct neuronal populations were further identified based on the presence and absence of an afterhyperpolarization (AHP. Cells with AHP expressed greater density of sodium currents. Morphine (3 µM significantly reduced the amplitude of the action potential, increased the threshold for spike generation but did not alter the resting membrane potential. The decrease in excitability resulted from inhibition of sodium currents. In the presence of morphine, the steady-state voltage dependence of Na channels was shifted to the left with almost 50% of channels unavailable for activation from hyperpolarized potentials. During prolonged exposure to morphine (two hours, action potentials recovered, indicative of the development of tolerance in single enteric neurons. These results demonstrate the feasibility of isolating mouse myenteric neurons and establish sodium channel inhibition as a mechanism for morphine-induced decrease in neuronal excitability.

  3. PWM Converter Power Density Barriers

    Science.gov (United States)

    Kolar, Johann W.; Drofenik, Uwe; Biela, Juergen; Heldwein, Marcelo; Ertl, Hans; Friedli, Thomas; Round, Simon

    Power density of power electronic converters has roughly doubled every 10 years since 1970. Behind this trajectory is the continuous advancement of power semiconductor devices, which has increased the converter switching frequencies by a factor of 10 every decade. However, today's cooling concepts and passive components are major barriers for a continuation of this trend. To identify such technological barriers, this paper investigates the volume of the cooling system and passive components as a function of the switching frequency for power electronic converters and determines the switching frequency that minimizes the total volume. A power density limit of 28kW/dm3 at 300kHz is calculated for an isolated DC-DC converter, 44kW/dm3 at 820kHz for a three-phase unity power factor PWM rectifier, and 26kW/dm3 at 21kHz for a sparse matrix converter. For single-phase AC-DC conversion a general limit of 35kW/dm3 results from the DC link capacitor. These power density limits highlight the need to broaden the scope of power electronics research to include cooling systems, high frequency electromagnetics, interconnection and packaging technology, and multi-domain modelling and simulation to ensure further advancement along the power density trajectory.

  4. Impact of entrainment and impingement on fish populations in the Hudson River Estuary. Volume II. Impingement impact analyses, evaluations of alternative screening devices, and critiques of utility testimony relating to density-dependent growth, the age-composition of the striped bass spawning stock, and the LMS real-time life cycle model

    Energy Technology Data Exchange (ETDEWEB)

    Barnthouse, L. W.; Van Winkle, W.; Golumbek, J.; Cada, G. F.; Goodyear, C. P.; Christensen, S. W.; Cannon, J. B.; Lee, D. W.

    1982-04-01

    This volume includes a series of four exhibits relating to impacts of impingement on fish populations, together with a collection of critical evaluations of testimony prepared for the utilities by their consultants. The first exhibit is a quantitative evaluation of four sources of bias (collection efficiency, reimpingement, impingement on inoperative screens, and impingement survival) affecting estimates of the number of fish killed at Hudson River power plants. The two following exhibits contain, respectively, a detailed assessment of the impact of impingement on the Hudson River white perch population and estimates of conditional impingement mortality rates for seven Hudson River fish populations. The fourth exhibit is an evaluation of the engineering feasibility and potential biological effectiveness of several types of modified intake structures proposed as alternatives to cooling towers for reducing impingement impacts. The remainder of Volume II consists of critical evaluations of the utilities' empirical evidence for the existence of density-dependent growth in young-of-the-year striped bass and white perch, of their estimate of the age-composition of the striped bass spawning stock in the Hudson River, and of their use of the Lawler, Matusky, and Skelly (LMS) Real-Time Life Cycle Model to estimate the impact of entrainment and impingement on the Hudson River striped bass population.

  5. Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus

    Science.gov (United States)

    Hernández, Vivian M.; Hegeman, Daniel J.; Cui, Qiaoling; Kelver, Daniel A.; Fiske, Michael P.; Glajch, Kelly E.; Pitt, Jason E.; Huang, Tina Y.; Justice, Nicholas J.

    2015-01-01

    Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. SIGNIFICANCE STATEMENT Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping

  6. Interactions of neurons with topographic nano cues affect branching morphology mimicking neuron-neuron interactions.

    Science.gov (United States)

    Baranes, Koby; Kollmar, Davida; Chejanovsky, Nathan; Sharoni, Amos; Shefi, Orit

    2012-08-01

    We study the effect of topographic nano-cues on neuronal growth-morphology using invertebrate neurons in culture. We use photolithography to fabricate substrates with repeatable line-pattern ridges of nano-scale heights of 10-150 nm. We plate leech neurons atop the patterned-substrates and compare their growth pattern to neurons plated atop non-patterned substrates. The model system allows us the analysis of single neurite-single ridge interactions. The use of high resolution electron microscopy reveals small filopodia processes that attach to the line-pattern ridges. These fine processes, that cannot be detected in light microscopy, add anchoring sites onto the side of the ridges, thus additional physical support. These interactions of the neuronal process dominantly affect the neuronal growth direction. We analyze the response of the entire neuronal branching tree to the patterned substrates and find significant effect on the growth patterns compared to non-patterned substrates. Moreover, interactions with the nano-cues trigger a growth strategy similarly to interactions with other neuronal cells, as reflected in their morphometric parameters. The number of branches and the number of neurites originating from the soma decrease following the interaction demonstrating a tendency to a more simplified neuronal branching tree. The effect of the nano-cues on the neuronal function deserves further investigation and will strengthen our understanding of the interplay between function and form.

  7. Nonsmooth dynamics in spiking neuron models

    Science.gov (United States)

    Coombes, S.; Thul, R.; Wedgwood, K. C. A.

    2012-11-01

    Large scale studies of spiking neural networks are a key part of modern approaches to understanding the dynamics of biological neural tissue. One approach in computational neuroscience has been to consider the detailed electrophysiological properties of neurons and build vast computational compartmental models. An alternative has been to develop minimal models of spiking neurons with a reduction in the dimensionality of both parameter and variable space that facilitates more effective simulation studies. In this latter case the single neuron model of choice is often a variant of the classic integrate-and-fire model, which is described by a nonsmooth dynamical system. In this paper we review some of the more popular spiking models of this class and describe the types of spiking pattern that they can generate (ranging from tonic to burst firing). We show that a number of techniques originally developed for the study of impact oscillators are directly relevant to their analysis, particularly those for treating grazing bifurcations. Importantly we highlight one particular single neuron model, capable of generating realistic spike trains, that is both computationally cheap and analytically tractable. This is a planar nonlinear integrate-and-fire model with a piecewise linear vector field and a state dependent reset upon spiking. We call this the PWL-IF model and analyse it at both the single neuron and network level. The techniques and terminology of nonsmooth dynamical systems are used to flesh out the bifurcation structure of the single neuron model, as well as to develop the notion of Lyapunov exponents. We also show how to construct the phase response curve for this system, emphasising that techniques in mathematical neuroscience may also translate back to the field of nonsmooth dynamical systems. The stability of periodic spiking orbits is assessed using a linear stability analysis of spiking times. At the network level we consider linear coupling between voltage

  8. Pure state consciousness and its local reduction to neuronal space

    Science.gov (United States)

    Duggins, A. J.

    2013-01-01

    The single neuronal state can be represented as a vector in a complex space, spanned by an orthonormal basis of integer spike counts. In this model a scalar element of experience is associated with the instantaneous firing rate of a single sensory neuron over repeated stimulus presentations. Here the model is extended to composite neural systems that are tensor products of single neuronal vector spaces. Depiction of the mental state as a vector on this tensor product space is intended to capture the unity of consciousness. The density operator is introduced as its local reduction to the single neuron level, from which the firing rate can again be derived as the objective correlate of a subjective element. However, the relational structure of perceptual experience only emerges when the non-local mental state is considered. A metric of phenomenal proximity between neuronal elements of experience is proposed, based on the cross-correlation function of neurophysiology, but constrained by the association of theoretical extremes of correlation/anticorrelation in inseparable 2-neuron states with identical and opponent elements respectively.

  9. Spindle neurons of the human anterior cingulate cortex

    Science.gov (United States)

    Nimchinsky, E. A.; Vogt, B. A.; Morrison, J. H.; Hof, P. R.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The human anterior cingulate cortex is distinguished by the presence of an unusual cell type, a large spindle neuron in layer Vb. This cell has been noted numerous times in the historical literature but has not been studied with modern neuroanatomic techniques. For instance, details regarding the neuronal class to which these cells belong and regarding their precise distribution along both ventrodorsal and anteroposterior axes of the cingulate gyrus are still lacking. In the present study, morphological features and the anatomic distribution of this cell type were studied using computer-assisted mapping and immunocytochemical techniques. Spindle neurons are restricted to the subfields of the anterior cingulate cortex (Brodmann's area 24), exhibiting a greater density in anterior portions of this area than in posterior portions, and tapering off in the transition zone between anterior and posterior cingulate cortex. Furthermore, a majority of the spindle cells at any level is located in subarea 24b on the gyral surface. Immunocytochemical analysis revealed that the neurofilament protein triple was present in a large percentage of these neurons and that they did not contain calcium-binding proteins. Injections of the carbocyanine dye DiI into the cingulum bundle revealed that these cells are projection neurons. Finally, spindle cells were consistently affected in Alzheimer's disease cases, with an overall loss of about 60%. Taken together, these observations indicate that the spindle cells of the human cingulate cortex represent a morphological subpopulation of pyramidal neurons whose restricted distribution may be associated with functionally distinct areas.

  10. STDP in recurrent neuronal networks

    Directory of Open Access Journals (Sweden)

    Matthieu Gilson

    2010-09-01

    Full Text Available Recent results about spike-timing-dependent plasticity (STDP in recurrently connected neurons are reviewed, with a focus on the relationship between the weight dynamics and the emergence of network structure. In particular, the evolution of synaptic weights in the two cases of incoming connections for a single neuron and recurrent connections are compared and contrasted. A theoretical framework is used that is based upon Poisson neurons with a temporally inhomogeneous firing rate and the asymptotic distribution of weights generated by the learning dynamics. Different network configurations examined in recent studies are discussed and an overview of the current understanding of STDP in recurrently connected neuronal networks is presented.

  11. The straintronic spin-neuron.

    Science.gov (United States)

    Biswas, Ayan K; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2015-07-17

    In artificial neural networks, neurons are usually implemented with highly dissipative CMOS-based operational amplifiers. A more energy-efficient implementation is a 'spin-neuron' realized with a magneto-tunneling junction (MTJ) that is switched with a spin-polarized current (representing weighted sum of input currents) that either delivers a spin transfer torque or induces domain wall motion in the soft layer of the MTJ to mimic neuron firing. Here, we propose and analyze a different type of spin-neuron in which the soft layer of the MTJ is switched with mechanical strain generated by a voltage (representing weighted sum of input voltages) and term it straintronic spin-neuron. It dissipates orders of magnitude less energy in threshold operations than the traditional current-driven spin neuron at 0 K temperature and may even be faster. We have also studied the room-temperature firing behaviors of both types of spin neurons and find that thermal noise degrades the performance of both types, but the current-driven type is degraded much more than the straintronic type if both are optimized for maximum energy-efficiency. On the other hand, if both are designed to have the same level of thermal degradation, then the current-driven version will dissipate orders of magnitude more energy than the straintronic version. Thus, the straintronic spin-neuron is superior to current-driven spin neurons.

  12. Neuronal Atrophy Early in Degenerative Ataxia Is a Compensatory Mechanism to Regulate Membrane Excitability.

    Science.gov (United States)

    Dell'Orco, James M; Wasserman, Aaron H; Chopra, Ravi; Ingram, Melissa A C; Hu, Yuan-Shih; Singh, Vikrant; Wulff, Heike; Opal, Puneet; Orr, Harry T; Shakkottai, Vikram G

    2015-08-12

    Neuronal atrophy in neurodegenerative diseases is commonly viewed as an early event in a continuum that ultimately results in neuronal loss. In a mouse model of the polyglutamine disorder spinocerebellar ataxia type 1 (SCA1), we tested the hypothesis that cerebellar Purkinje neuron atrophy serves an adaptive role rather than being simply a nonspecific response to injury. In acute cerebellar slices from SCA1 mice, we find that Purkinje neuron pacemaker firing is initially normal but, with the onset of motor dysfunction, becomes disrupted, accompanied by abnormal depolarization. Remarkably, subsequent Purkinje cell atrophy is associated with a restoration of pacemaker firing. The early inability of Purkinje neurons to support repetitive spiking is due to unopposed calcium currents resulting from a reduction in large-conductance calcium-activated potassium (BK) and subthreshold-activated potassium channels. The subsequent restoration of SCA1 Purkinje neuron firing correlates with the recovery of the density of these potassium channels that accompanies cell atrophy. Supporting a critical role for BK channels, viral-mediated increases in BK channel expression in SCA1 Purkinje neurons improves motor dysfunction and partially restores Purkinje neuron morphology. Cerebellar perfusion of flufenamic acid, an agent that restores the depolarized membrane potential of SCA1 Purkinje neurons by activating potassium channels, prevents Purkinje neuron dendritic atrophy. These results suggest that Purkinje neuron dendritic remodeling in ataxia is an adaptive response to increases in intrinsic membrane excitability. Similar adaptive remodeling could apply to other vulnerable neuronal populations in neurodegenerative disease. In neurodegenerative disease, neuronal atrophy has long been assumed to be an early nonspecific event preceding neuronal loss. However, in a mouse model of spinocerebellar ataxia type 1 (SCA1), we identify a previously unappreciated compensatory role for neuronal

  13. Hybrid Scheme for Modeling Local Field Potentials from Point-Neuron Networks

    DEFF Research Database (Denmark)

    Hagen, Espen; Dahmen, David; Stavrinou, Maria L

    2016-01-01

    and electrophysiological features of neurons near the recording electrode, as well as synaptic inputs from the entire network. Here we propose a hybrid modeling scheme combining efficient point-neuron network models with biophysical principles underlying LFP generation by real neurons. The LFP predictions rely...... on populations of network-equivalent multicompartment neuron models with layer-specific synaptic connectivity, can be used with an arbitrary number of point-neuron network populations, and allows for a full separation of simulated network dynamics and LFPs. We apply the scheme to a full-scale cortical network...... model for a ∼1 mm(2) patch of primary visual cortex, predict laminar LFPs for different network states, assess the relative LFP contribution from different laminar populations, and investigate effects of input correlations and neuron density on the LFP. The generic nature of the hybrid scheme and its...

  14. Complete and phase synchronization in a heterogeneous small-world neuronal network

    Institute of Scientific and Technical Information of China (English)

    Han Fang; Lu Qi-Shao; Wiercigroch Marian; Ji Quan-Bao

    2009-01-01

    Synchronous firing of neurons is thought to be important for information communication in neuronal networks. This paper investigates the complete and phase synchronization in a heterogeneous small-world chaotic Hindmarsh-Rose neuronal network. The effects of various network parameters on synchronization behaviour are discussed with some biological explanations. Complete synchronization of small-world neuronal nctworks is studied theoretically by the master stability function method. It is shown that the coupling strength necessary for complete or phase synchronization decreases with the neuron number, the node degree and the connection density are increased. The cffect of heterogeneity of neuronal networks is also considered and it is found that the network heterogeneity has an advcrse effect on synchrony.

  15. An Atomic Force Microscopy based investigation of specific biomechanical properties for various types of neuronal cells

    Science.gov (United States)

    Spedden, Elise; White, James; Kaplan, David; Staii, Cristian

    2012-02-01

    Here we describe the use of Atomic Force Microscope (AFM) based techniques to characterize and explore the influence of biochemical and biomechanical cues on the growth and interaction of neuronal cells with surrounding guidance factors. Specifically, we use AFM topography and AFM force spectroscopy measurements to systematically investigate the morphology, elasticity, and real time growth of neuronal processes in the presence of different types of extracellular matrix proteins and growth factors. We therefore create a series of systems containing specified neuron densities where the type of the underlying growth promoting protein is different from sample to sample. For each system we measure key biomechanical parameters related to neuronal growth such as height and elastic modulus at multiple growth points on several types of neurons. We show that systematic measurements of these parameters yield fundamental information about the role played by substrate-plated guidance factors in determining elastic and morphological properties of neurons during growth.

  16. Bilaminar co-culture of primary rat cortical neurons and glia.

    Science.gov (United States)

    Shimizu, Saori; Abt, Anna; Meucci, Olimpia

    2011-11-12

    This video will guide you through the process of culturing rat cortical neurons in the presence of a glial feeder layer, a system known as a bilaminar or co-culture model. This system is suitable for a variety of experimental needs requiring either a glass or plastic growth substrate and can also be used for culture of other types of neurons. Rat cortical neurons obtained from the late embryonic stage (E17) are plated on glass coverslips or tissue culture dishes facing a feeder layer of glia grown on dishes or plastic coverslips (known as Thermanox), respectively. The choice between the two configurations depends on the specific experimental technique used, which may require, or not, that neurons are grown on glass (e.g. calcium imaging versus Western blot). The glial feeder layer, an astroglia-enriched secondary culture of mixed glia, is separately prepared from the cortices of newborn rat pups (P2-4) prior to the neuronal dissection. A major advantage of this culture system as compared to a culture of neurons only is the support of neuronal growth, survival, and differentiation provided by trophic factors secreted from the glial feeder layer, which more accurately resembles the brain environment in vivo. Furthermore, the co-culture can be used to study neuronal-glial interactions(1). At the same time, glia contamination in the neuronal layer is prevented by different means (low density culture, addition of mitotic inhibitors, lack of serum and use of optimized culture medium) leading to a virtually pure neuronal layer, comparable to other established methods(1-3). Neurons can be easily separated from the glial layer at any time during culture and used for different experimental applications ranging from electrophysiology(4), cellular and molecular biology(5-8), biochemistry(5), imaging and microscopy(4,6,7,9,10). The primary neurons extend axons and dendrites to form functional synapses(11), a process which is not observed in neuronal cell lines, although some

  17. Loss of glutathione homeostasis associated with neuronal senescence facilitates TRPM2 channel activation in cultured hippocampal pyramidal neurons

    Directory of Open Access Journals (Sweden)

    Belrose Jillian C

    2012-04-01

    Full Text Available Abstract Background Glutathione (GSH plays an important role in neuronal oxidant defence. Depletion of cellular GSH is observed in neurodegenerative diseases and thereby contributes to the associated oxidative stress and Ca2+ dysregulation. Whether depletion of cellular GSH, associated with neuronal senescence, directly influences Ca2+ permeation pathways is not known. Transient receptor potential melastatin type 2 (TRPM2 is a Ca2+ permeable non-selective cation channel expressed in several cell types including hippocampal pyramidal neurons. Moreover, activation of TRPM2 during oxidative stress has been linked to cell death. Importantly, GSH has been reported to inhibit TRPM2 channels, suggesting they may directly contribute to Ca2+ dysregulation associated with neuronal senescence. Herein, we explore the relation between cellular GSH and TRPM2 channel activity in long-term cultures of hippocampal neurons. Results In whole-cell voltage-clamp recordings, we observe that TRPM2 current density increases in cultured pyramidal neurons over time in vitro. The observed increase in current density was prevented by treatment with NAC, a precursor to GSH synthesis. Conversely, treatment of cultures maintained for 2 weeks in vitro with L-BSO, which depletes GSH by inhibiting its synthesis, augments TRPM2 currents. Additionally, we demonstrate that GSH inhibits TRPM2 currents through a thiol-independent mechanism, and produces a 3.5-fold shift in the dose-response curve generated by ADPR, the intracellular agonist for TRPM2. Conclusion These results indicate that GSH plays a physiologically relevant role in the regulation of TRPM2 currents in hippocampal pyramidal neurons. This interaction may play an important role in aging and neurological diseases associated with depletion of GSH.

  18. Does Piroxicam really protect ischemic neurons and influence neuronal firing in cerebral ischemia? An exploration towards therapeutics.

    Science.gov (United States)

    Bhattacharya, Pallab; Pandey, Anand Kumar; Paul, Sudip; Patnaik, Ranjana

    2013-09-01

    Cerebral ischemia is still one of the most confusing and enigmatic neurological disorders with least understood injuries. The EEG measures have been traditionally used to detect residual neural dysfunctions after cerebral ischemia although having several shortcomings, yielding controversial and inconsistent results. It is feasible to hypothesize that advanced EEG research can overcome these shortcomings and provide more clear information regarding the long lasting neural impairment in the subjects suffered from brain stroke. To our understanding, EEG power spectrum density measures can significantly contribute towards intervening drug administered diseased model and give us correct status of neuronal firing after an insult. On the basis of our findings we hypothesize that Piroxicam, a non-steroidal anti-inflammatory drug (NSAID) can protect neurons and improves neuronal firing after ischemia/reperfusion injury in animal model of focal cerebral ischemia. This is the first ever finding which advocates the role of Piroxicam, a NSAID in neuronal firing apart from its other neuroprotective roles. Thus, we consider the possibility of modulation of neuronal firing as a therapeutic strategy to help prevent neuronal dysfunctions in cerebral ischemia.

  19. Growth and morphogenesis of an autonomic ganglion. I. Matching neurons with target.

    Science.gov (United States)

    Heathcote, R D; Sargent, P B

    1987-08-01

    Regulation of the number and size of neurons presumably plays a role in the matching of a group of neurons to their target. In this paper the relationship of the cardiac ganglion neurons of the frog to their target is examined. Neurons in this ganglion first appear in the embryo and continue to accumulate for several months, even after the animal has completed metamorphosis, and eventually reach a fixed number of cells in the adult. This prolonged period of neuron production has provided an opportunity to manipulate development and test various mechanisms of neuronal regulation. Manipulation of animal culture conditions and hormone levels has shown that the addition of neurons to the ganglion continues up to the characteristic adult number and depends upon neither the chronological age nor the developmental stage of the animal. The size of neurons also changes markedly during development. The average cell body size initially decreases due to the addition of many smaller cells to the ganglion. After metamorphosis neuron size increases dramatically. The changes in size and number complement one another such that the total volume of neuronal cell bodies increases in proportion with the size of both the target and the entire body. The relationship holds for changes in animal size that extend over 4 orders of magnitude and follows a power function of the form y = bxm. Regulation of cardiac ganglion size can be divided into 3 overlapping phases: (1) the arrival of neurons and precursors from the neural crest, (2) an increase in neuron number, (3) and an increase in neuron size. A common denominator for all phases is that the size of the ganglion is, in a coherent way, precisely matched to the size of its target.

  20. Measurement and analyses of molten Ni-Co alloy density

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; K. MUKAI; FANG Liang; FU Ya; YANG Ren-hui

    2006-01-01

    With the advent of powerful mathematical modeling techniques for material phenomena, there is renewed interest in reliable data for the density of the Ni-based superalloys. Up to now, there has been few report on the density of molten Ni-Co alloy.In order to obtain more accurate density data for molten Ni-Co alloy, the density of molten Ni-Co alloy was measured with a modified sessile drop method, and the accommodation of different atoms in molten Ni-Co alloy was analyzed. The density of alloy is found to decrease with increasing temperature and Co concentration in the alloy. The molar volume of molten Ni-Co alloy increases with increasing Co concentration. The molar volume of Ni-Co alloy determined shows a positive deviation from the linear molar volume, and the deviation of molar volume from ideal mixing increases with increasing Co concentration over the experimental concentration range.

  1. Measuring liquid density using Archimedes' principle

    Science.gov (United States)

    Hughes, Stephen W.

    2006-09-01

    A simple technique is described for measuring absolute and relative liquid density based on Archimedes' principle. The technique involves placing a container of the liquid under test on an electronic balance and suspending a probe (e.g. a glass marble) attached to a length of line beneath the surface of the liquid. If the volume of the probe is known, the density of liquid is given by the difference between the balance reading before and after immersion of the probe divided by the volume of the probe. A test showed that the density of water at room temperature could be measured to an accuracy and precision of 0.01 ± 0.1%. The probe technique was also used to measure the relative density of milk, Coca-Cola, fruit juice, olive oil and vinegar.

  2. Sleep spindle density in narcolepsy.

    Science.gov (United States)

    Christensen, Julie Anja Engelhard; Nikolic, Miki; Hvidtfelt, Mathias; Kornum, Birgitte Rahbek; Jennum, Poul

    2017-06-01

    Patients with narcolepsy type 1 (NT1) show alterations in sleep stage transitions, rapid-eye-movement (REM) and non-REM sleep due to the loss of hypocretinergic signaling. However, the sleep microstructure has not yet been evaluated in these patients. We aimed to evaluate whether the sleep spindle (SS) density is altered in patients with NT1 compared to controls and patients with narcolepsy type 2 (NT2). All-night polysomnographic recordings from 28 NT1 patients, 19 NT2 patients, 20 controls (C) with narcolepsy-like symptoms, but with normal cerebrospinal fluid hypocretin levels and multiple sleep latency tests, and 18 healthy controls (HC) were included. Unspecified, slow, and fast SS were automatically detected, and SS densities were defined as number per minute and were computed across sleep stages and sleep cycles. The between-cycle trends of SS densities in N2 and NREM sleep were evaluated within and between groups. Between-group comparisons in sleep stages revealed no significant differences in any type of SS. Within-group analyses of the SS trends revealed significant decreasing trends for NT1, HC, and C between first and last sleep cycle. Between-group analyses of SS trends between first and last sleep cycle revealed that NT2 differ from NT1 patients in the unspecified SS density in NREM sleep, and from HC in the slow SS density in N2 sleep. SS activity is preserved in NT1, suggesting that the ascending neurons to thalamic activation of SS are not significantly affected by the hypocretinergic system. NT2 patients show an abnormal pattern of SS distribution. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The BDNF effects on dendritic spines of mature hippocampal neurons depend on neuronal activity

    Directory of Open Access Journals (Sweden)

    Yves eKellner

    2014-03-01

    Full Text Available The fine tuning of neural networks during development and learning relies upon both functional and structural plastic processes. Changes in the number as well as in the size and shape of dendritic spines are associated to long-term activity-dependent synaptic plasticity. However, the molecular mechanisms translating functional into structural changes are still largely unknown. In this context, neurotrophins, like Brain-Derived Neurotrophic Factor (BDNF, are among promising candidates. Specifically BDNF-TrkB receptor signaling is crucial for activity-dependent strengthening of synapses in different brain regions. BDNF application has been shown to positively modulate dendritic and spine architecture in cortical and hippocampal neurons as well as structural plasticity in vitro. However, a global BDNF deprivation throughout the central nervous system (CNS resulted in very mild structural alterations of dendritic spines, questioning the relevance of the endogenous BDNF signaling in modulating the development and the mature structure of neurons in vivo. Here we show that a loss-of-function approach, blocking BDNF results in a significant reduction in dendritic spine density, associated with an increase in spine length and a decrease in head width. These changes are associated with a decrease in F-actin levels within spine heads. On the other hand, a gain-of-function approach, applying exogenous BDNF, could not reproduce the increase in spine density or the changes in spine morphology previously described. Taken together, we show here that the effects exerted by BDNF on the dendritic architecture of hippocampal neurons are dependent on the neuron’s maturation stage. Indeed, in mature hippocampal neurons in vitro as shown in vivo BDNF is specifically required for the activity-dependent maintenance of the mature spine phenotype.

  4. Kernel current source density method.

    Science.gov (United States)

    Potworowski, Jan; Jakuczun, Wit; Lȩski, Szymon; Wójcik, Daniel

    2012-02-01

    Local field potentials (LFP), the low-frequency part of extracellular electrical recordings, are a measure of the neural activity reflecting dendritic processing of synaptic inputs to neuronal populations. To localize synaptic dynamics, it is convenient, whenever possible, to estimate the density of transmembrane current sources (CSD) generating the LFP. In this work, we propose a new framework, the kernel current source density method (kCSD), for nonparametric estimation of CSD from LFP recorded from arbitrarily distributed electrodes using kernel methods. We test specific implementations of this framework on model data measured with one-, two-, and three-dimensional multielectrode setups. We compare these methods with the traditional approach through numerical approximation of the Laplacian and with the recently developed inverse current source density methods (iCSD). We show that iCSD is a special case of kCSD. The proposed method opens up new experimental possibilities for CSD analysis from existing or new recordings on arbitrarily distributed electrodes (not necessarily on a grid), which can be obtained in extracellular recordings of single unit activity with multiple electrodes.

  5. Local impermeant anions establish the neuronal chloride concentration

    DEFF Research Database (Denmark)

    Glykys, J; Dzhala, V; Egawa, K

    2014-01-01

    , but accumulating evidence suggests factors other than the bulk concentrations of transported ions determine [Cl(-)](i). Measurement of [Cl(-)](i) in murine brain slice preparations expressing the transgenic fluorophore Clomeleon demonstrated that cytoplasmic impermeant anions ([A](i)) and polyanionic extracellular...... anions determine the homeostatic set point for [Cl(-)], and hence, neuronal volume and the polarity of local GABA(A)R signaling....

  6. Neurones and neuropeptides in coelenterates

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Ebbesen, Ditte Graff; McFarlane, I D

    1989-01-01

    The first nervous system probably evolved in coelenterates. Many neurons in coelenterates have morphological characteristics of both sensory and motor neurones, and appear to be multifunctional. Using immunocytochemistry with antisera to the sequence Arg-Phe-NH2 (RFamide), RFamide-like peptides w...... that these neuropeptides play a role in neurotransmission....

  7. The Neuronal Ceroid-Lipofuscinoses

    Science.gov (United States)

    Bennett, Michael J.; Rakheja, Dinesh

    2013-01-01

    The neuronal ceroid-lipofuscinoses (NCL's, Batten disease) represent a group of severe neurodegenerative diseases, which mostly present in childhood. The phenotypes are similar and include visual loss, seizures, loss of motor and cognitive function, and early death. At autopsy, there is massive neuronal loss with characteristic storage in…

  8. Cryopreservation of adherent neuronal networks.

    Science.gov (United States)

    Ma, Wu; O'Shaughnessy, Thomas; Chang, Eddie

    2006-07-31

    Neuronal networks have been widely used for neurophysiology, drug discovery and toxicity testing. An essential prerequisite for future widespread application of neuronal networks is the development of efficient cryopreservation protocols to facilitate their storage and transportation. Here is the first report on cryopreservation of mammalian adherent neuronal networks. Dissociated spinal cord cells were attached to a poly-d-lysine/laminin surface and allowed to form neuronal networks. Adherent neuronal networks were embedded in a thin film of collagen gel and loaded with trehalose prior to transfer to a freezing medium containing DMSO, FBS and culture medium. This was followed by a slow rate of cooling to -80 degrees C for 24 h and then storage for up to 2 months in liquid nitrogen at -196 degrees C. The three components: DMSO, collagen gel entrapment and trehalose loading combined provided the highest post-thaw viability, relative to individual or two component protocols. The post-thaw cells with this protocol demonstrated similar neuronal and astrocytic markers and morphological structure as those detected in unfrozen cells. Fluorescent dye FM1-43 staining revealed active recycling of synaptic vesicles upon depolarizing stimulation in the post-thaw neuronal networks. These results suggest that a combination of DMSO, collagen gel entrapment and trehalose loading can significantly improve conventional slow-cooling methods in cryopreservation of adherent neuronal networks.

  9. Phenotypic checkpoints regulate neuronal development.

    Science.gov (United States)

    Ben-Ari, Yehezkel; Spitzer, Nicholas C

    2010-11-01

    Nervous system development proceeds by sequential gene expression mediated by cascades of transcription factors in parallel with sequences of patterned network activity driven by receptors and ion channels. These sequences are cell type- and developmental stage-dependent and modulated by paracrine actions of substances released by neurons and glia. How and to what extent these sequences interact to enable neuronal network development is not understood. Recent evidence demonstrates that CNS development requires intermediate stages of differentiation providing functional feedback that influences gene expression. We suggest that embryonic neuronal functions constitute a series of phenotypic checkpoint signatures; neurons failing to express these functions are delayed or developmentally arrested. Such checkpoints are likely to be a general feature of neuronal development and constitute presymptomatic signatures of neurological disorders when they go awry.

  10. Cell biology of neuronal endocytosis.

    Science.gov (United States)

    Parton, R G; Dotti, C G

    1993-09-01

    Endocytosis is the process by which cells take in fluid and components of the plasma membrane. In this way cells obtain nutrients and trophic factors, retrieve membrane proteins for degradation, and sample their environment. In neuronal cells endocytosis is essential for the recycling of membrane after neurotransmitter release and plays a critical role during early developmental stages. Moreover, alterations of the endocytic pathway have been attributed a crucial role in the pathophysiology of certain neurological diseases. Although well characterized at the ultrastructural level, little is known of the dynamics and molecular organization of the neuronal endocytic pathways. In this respect most of our knowledge comes from studies of non-neuronal cells. In this review we will examine the endocytic pathways in neurons from a cell biological viewpoint by making comparisons with non-neuronal cells and in particular with another polarized cell, the epithelial cell.

  11. Human endogenous retrovirus-K contributes to motor neuron disease.

    Science.gov (United States)

    Li, Wenxue; Lee, Myoung-Hwa; Henderson, Lisa; Tyagi, Richa; Bachani, Muzna; Steiner, Joseph; Campanac, Emilie; Hoffman, Dax A; von Geldern, Gloria; Johnson, Kory; Maric, Dragan; Morris, H Douglas; Lentz, Margaret; Pak, Katherine; Mammen, Andrew; Ostrow, Lyle; Rothstein, Jeffrey; Nath, Avindra

    2015-09-30

    The role of human endogenous retroviruses (HERVs) in disease pathogenesis is unclear. We show that HERV-K is activated in a subpopulation of patients with sporadic amyotrophic lateral sclerosis (ALS) and that its envelope (env) protein may contribute to neurodegeneration. The virus was expressed in cortical and spinal neurons of ALS patients, but not in neurons from control healthy individuals. Expression of HERV-K or its env protein in human neurons caused retraction and beading of neurites. Transgenic animals expressing the env gene developed progressive motor dysfunction accompanied by selective loss of volume of the motor cortex, decreased synaptic activity in pyramidal neurons, dendritic spine abnormalities, nucleolar dysfunction, and DNA damage. Injury to anterior horn cells in the spinal cord was manifested by muscle atrophy and pathological changes consistent with nerve fiber denervation and reinnervation. Expression of HERV-K was regulated by TAR (trans-activation responsive) DNA binding protein 43, which binds to the long terminal repeat region of the virus. Thus, HERV-K expression within neurons of patients with ALS may contribute to neurodegeneration and disease pathogenesis. Copyright © 2015, American Association for the Advancement of Science.

  12. Visualization of Sensory Neurons and Their Projections in an Upper Motor Neuron Reporter Line.

    Science.gov (United States)

    Genç, Barış; Lagrimas, Amiko Krisa Bunag; Kuru, Pınar; Hess, Robert; Tu, Michael William; Menichella, Daniela Maria; Miller, Richard J; Paller, Amy S; Özdinler, P Hande

    2015-01-01

    Visualization of peripheral nervous system axons and cell bodies is important to understand their development, target recognition, and integration into complex circuitries. Numerous studies have used protein gene product (PGP) 9.5 [a.k.a. ubiquitin carboxy-terminal hydrolase L1 (UCHL1)] expression as a marker to label sensory neurons and their axons. Enhanced green fluorescent protein (eGFP) expression, under the control of UCHL1 promoter, is stable and long lasting in the UCHL1-eGFP reporter line. In addition to the genetic labeling of corticospinal motor neurons in the motor cortex and degeneration-resistant spinal motor neurons in the spinal cord, here we report that neurons of the peripheral nervous system are also fluorescently labeled in the UCHL1-eGFP reporter line. eGFP expression is turned on at embryonic ages and lasts through adulthood, allowing detailed studies of cell bodies, axons and target innervation patterns of all sensory neurons in vivo. In addition, visualization of both the sensory and the motor neurons in the same animal offers many advantages. In this report, we used UCHL1-eGFP reporter line in two different disease paradigms: diabetes and motor neuron disease. eGFP expression in sensory axons helped determine changes in epidermal nerve fiber density in a high-fat diet induced diabetes model. Our findings corroborate previous studies, and suggest that more than five months is required for significant skin denervation. Crossing UCHL1-eGFP with hSOD1G93A mice generated hSOD1G93A-UeGFP reporter line of amyotrophic lateral sclerosis, and revealed sensory nervous system defects, especially towards disease end-stage. Our studies not only emphasize the complexity of the disease in ALS, but also reveal that UCHL1-eGFP reporter line would be a valuable tool to visualize and study various aspects of sensory nervous system development and degeneration in the context of numerous diseases.

  13. Nuclear trafficking of Pten after brain injury leads to neuron survival not death.

    Science.gov (United States)

    Goh, Choo-Peng; Putz, Ulrich; Howitt, Jason; Low, Ley-Hian; Gunnersen, Jenny; Bye, Nicole; Morganti-Kossmann, Cristina; Tan, Seong-Seng

    2014-02-01

    There is controversy whether accumulation of the tumor suppressor PTEN protein in the cell nucleus under stress conditions such as trauma and stroke causes cell death. A number of in vitro studies have reported enhanced apoptosis in neurons possessing nuclear PTEN, with the interpretation that its nuclear phosphatase activity leads to reduction of the survival protein phospho-Akt. However, there have been no in vivo studies to show that nuclear PTEN in neurons under stress is detrimental. Using a mouse model of injury, we demonstrate here that brain trauma altered the nucleo-cytoplasmic distribution of Pten, resulting in increased nuclear Pten but only in surviving neurons near the lesion. This event was driven by Ndfip1, an adaptor and activator of protein ubiquitination by Nedd4 E3 ligases. Neurons next to the lesion with nuclear PTEN were invariably negative for TUNEL, a marker for cell death. These neurons also showed increased Ndfip1 which we previously showed to be associated with neuron survival. Biochemical assays revealed that overall levels of Pten in the affected cortex were unchanged after trauma, suggesting that Pten abundance globally had not increased but rather Pten subcellular location in affected neurons had changed. Following experimental injury, the number of neurons with nuclear Pten was reduced in heterozygous mice (Ndfip1(+/-)) although lesion volumes were increased. We conclude that nuclear trafficking of Pten following injury leads to neuron survival not death.

  14. Disinhibition Bursting of Dopaminergic Neurons

    Directory of Open Access Journals (Sweden)

    Collin J Lobb

    2011-05-01

    Full Text Available Substantia nigra pars compacta (SNpc dopaminergic neurons receive strong tonic inputs from GABAergic neurons in the substantia nigra pars reticulata (SNpr and globus pallidus (GP, and glutamatergic neurons in the subthalamic nucleus. The presence of these tonic inputs raises the possibility that phasic disinhibition may trigger phasic bursts in dopaminergic neurons. We first applied constant NMDA and GABAA conductances onto a two-compartment single cell model of the dopaminergic neuron (Kuznetsov et al., 2006. The model exhibited disinhibition bursting upon stepwise removal of inhibition. A further bifurcation analysis suggests that disinhibition may be more robust than excitation alone in that for most levels of NMDA conductance, the cell remains capable of bursting even after a complete removal of inhibition, whereas too much excitatory input will drive the cell into depolarization block. To investigate the network dynamics of disinhibition, we used a modified version of an integrate-and-fire based model of the basal ganglia (Humphries et al., 2006. Synaptic activity generated in the network was delivered to the two-compartment single cell dopaminergic neuron. Phasic activation of the D1-expressing medium spiny neurons in the striatum (D1STR produced disinhibition bursts in dopaminergic neurons through the direct pathway (D1STR to SNpr to SNpc. Anatomical studies have shown that D1STR neurons have collaterals that terminate in GP. Adding these collaterals to the model, we found that striatal activation increased the intra-burst firing frequency of the disinhibition burst as the weight of this connection was increased. Our studies suggest that striatal activation is a robust means by which disinhibition bursts can be generated by SNpc dopaminergic neurons, and that recruitment of the indirect pathway via collaterals may enhance disinhibition bursting.

  15. Orexin neurons receive glycinergic innervations.

    Directory of Open Access Journals (Sweden)

    Mari Hondo

    Full Text Available Glycine, a nonessential amino-acid that acts as an inhibitory neurotransmitter in the central nervous system, is currently used as a dietary supplement to improve the quality of sleep, but its mechanism of action is poorly understood. We confirmed the effects of glycine on sleep/wakefulness behavior in mice when administered peripherally. Glycine administration increased non-rapid eye movement (NREM sleep time and decreased the amount and mean episode duration of wakefulness when administered in the dark period. Since peripheral administration of glycine induced fragmentation of sleep/wakefulness states, which is a characteristic of orexin deficiency, we examined the effects of glycine on orexin neurons. The number of Fos-positive orexin neurons markedly decreased after intraperitoneal administration of glycine to mice. To examine whether glycine acts directly on orexin neurons, we examined the effects of glycine on orexin neurons by patch-clamp electrophysiology. Glycine directly induced hyperpolarization and cessation of firing of orexin neurons. These responses were inhibited by a specific glycine receptor antagonist, strychnine. Triple-labeling immunofluorescent analysis showed close apposition of glycine transporter 2 (GlyT2-immunoreactive glycinergic fibers onto orexin-immunoreactive neurons. Immunoelectron microscopic analysis revealed that GlyT2-immunoreactive terminals made symmetrical synaptic contacts with somata and dendrites of orexin neurons. Double-labeling immunoelectron microscopy demonstrated that glycine receptor alpha subunits were localized in the postsynaptic membrane of symmetrical inhibitory synapses on orexin neurons. Considering the importance of glycinergic regulation during REM sleep, our observations suggest that glycine injection might affect the activity of orexin neurons, and that glycinergic inhibition of orexin neurons might play a role in physiological sleep regulation.

  16. Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size

    Directory of Open Access Journals (Sweden)

    Suzana eHerculano-Houzel

    2014-08-01

    Full Text Available Enough species have now been subject to systematic quantitative analysis of the relationship between the morphology and cellular composition of their brain that patterns begin to emerge and shed light on the evolutionary path that led to mammalian brain diversity. Based on an analysis of the shared and clade-specific characteristics of 41 modern mammalian species in 6 clades, and in light of the phylogenetic relationships among them, here we propose that ancestral mammal brains were composed and scaled in their cellular composition like modern afrotherian and glire brains: with an addition of neurons that is accompanied by a decrease in neuronal density and very little modification in glial cell density, implying a significant increase in average neuronal cell size in larger brains, and the allocation of approximately 2 neurons in the cerebral cortex and 8 neurons in the cerebellum for every neuron allocated to the rest of brain. We also propose that in some clades the scaling of different brain structures has diverged away from the common ancestral layout through clade-specific (or clade-defining changes in how average neuronal cell mass relates to numbers of neurons in each structure, and how numbers of neurons are differentially allocated to each structure relative to the number of neurons in the rest of brain. Thus, the evolutionary expansion of mammalian brains has involved both concerted and mosaic patterns of scaling across structures. This is, to our knowledge, the first mechanistic model that explains the generation of brains large and small in mammalian evolution, and it opens up new horizons for seeking the cellular pathways and genes involved in brain evolution.

  17. The firing patterns of spinal neurons: in situ patch-clamp recordings reveal a key role for potassium currents.

    Science.gov (United States)

    Winlove, Crawford I P; Roberts, Alan

    2012-10-01

    Neuron firing patterns underpin the detection and processing of stimuli, influence synaptic interactions, and contribute to the function of networks. To understand how intrinsic membrane properties determine firing patterns, we investigated the biophysical basis of single and repetitive firing in spinal neurons of hatchling Xenopus laevis tadpoles, a well-understood vertebrate model; experiments were conducted in situ. Primary sensory Rohon-Beard (RB) neurons fire singly in response to depolarising current, and dorsolateral (DL) interneurons fire repetitively. RB neurons exhibited a large tetrodotoxin-sensitive sodium current; in DL neurons, the sodium current density was significantly lower. High-voltage-activated calcium currents were similar in both neuron types. There was no evidence of persistent sodium currents, low-voltage-activated calcium currents, or hyperpolarisation-activated currents. In RB neurons, the potassium current was dominated by a tetraethylammonium-sensitive slow component (I(Ks) ); a fast component (I(Kf) ), sensitive to 4-aminopyridine, predominated in DL neurons. Sequential current-clamp and voltage-clamp recordings in individual neurons suggest that high densities of I(Ks) prevent repetitive firing; where I(Ks) is small, I(Kf) density determines the frequency of repetitive firing. Intermediate densities of I(Ks) and I(Kf) allow neurons to fire a few additional spikes on strong depolarisation; this property typifies a novel subset of RB neurons, and may activate escape responses. We discuss how this ensemble of currents and firing patterns underpins the operation of the Xenopus locomotor network, and suggest how simple mechanisms might underlie the similar firing patterns seen in the neurons of diverse species.

  18. Effects of GSM 1800 MHz on dendritic development of cultured hippo-campal neurons

    Institute of Scientific and Technical Information of China (English)

    Wei NING; Shu-jun XU; Huai CHIANG; Zheng-ping XU; Su-ya ZHOU; Wei YANG; Jian-hong LUO

    2007-01-01

    Aim: To evaluate the effects of global system for mobile communications (GSM)1800 MHz microwaves on dendritic filopodia, dendritic arborization, and spine maturation during development in cultured hippocampal neurons in rats. Methods: The cultured hippocampal neurons were exposed to GSM 1800 MHz microwaves with 2.4 and 0.8 W/kg, respectively, for 15 min each day from 6 days in vitro (DIV6) to DIV14. The subtle structures of dendrites were displayed by transfection with farnesylated enhanced green fluorescent protein (F-GFP) and GFP-actin on DIV5 into the hippocampal neurons. Results: There was a significant decrease in the density and mobility of dendritic filopodia at DIV8 and in the density of mature spines at DIV14 in the neurons exposed to GSM 1800 MHz microwaves with 2.4 W/kg. In addition, the average length of dendrites per neuron at DIV10 and DIV14 was decreased, while the dendritic arborization was unaltered in these neurons. However, there were no significant changes found in the neurons ex- posed to the GSM 1800 MHz microwaves with 0.8 W/kg. Conclusion: These data indicate that the chronic exposure to 2.4 W/kg GSM 1800 MHz micro- waves during the early developmental stage may affect dendritic development and the formation of excitatory synapses of hippocampal neurons in culture.

  19. Matrix stiffness modulates formation and activity of neuronal networks of controlled architectures.

    Science.gov (United States)

    Lantoine, Joséphine; Grevesse, Thomas; Villers, Agnès; Delhaye, Geoffrey; Mestdagh, Camille; Versaevel, Marie; Mohammed, Danahe; Bruyère, Céline; Alaimo, Laura; Lacour, Stéphanie P; Ris, Laurence; Gabriele, Sylvain

    2016-05-01

    The ability to construct easily in vitro networks of primary neurons organized with imposed topologies is required for neural tissue engineering as well as for the development of neuronal interfaces with desirable characteristics. However, accumulating evidence suggests that the mechanical properties of the culture matrix can modulate important neuronal functions such as growth, extension, branching and activity. Here we designed robust and reproducible laminin-polylysine grid micropatterns on cell culture substrates that have similar biochemical properties but a 100-fold difference in Young's modulus to investigate the role of the matrix rigidity on the formation and activity of cortical neuronal networks. We found that cell bodies of primary cortical neurons gradually accumulate in circular islands, whereas axonal extensions spread on linear tracks to connect circular islands. Our findings indicate that migration of cortical neurons is enhanced on soft substrates, leading to a faster formation of neuronal networks. Furthermore, the pre-synaptic density was two times higher on stiff substrates and consistently the number of action potentials and miniature synaptic currents was enhanced on stiff substrates. Taken together, our results provide compelling evidence to indicate that matrix stiffness is a key parameter to modulate the growth dynamics, synaptic density and electrophysiological activity of cortical neuronal networks, thus providing useful information on scaffold design for neural tissue engineering.

  20. Effect of reinforcement volume fraction on the density & elastic ...

    African Journals Online (AJOL)

    صﺧﻟﻣ. ق. ﻲﻧدﻌﻣﻟا جﺎﺟزﻟا نﻣ سﮐﯾرﺗﺎﻣ وﻧ طﯾﻟﺧﻟﻟ ﺔﯾﻟوطﻟا ﺔﻧورﻣﻟا تﺑاوﺛ و ﺔﻓﺎﺛﮐﻟا ﯽﻟﻋ ﺔﯾوﻘﻣﻟا فﺎﯾﻟﻷا ﺔﺑﺳﻧ رﯾﻐﺗ رﯾﺛﺄﺗ ﺔﺳاردﺑ ﺎﻧﻣ. ) Zr41.2Ti13.8Cu12.5Ni10Be22.5. (. نﻣ فﺎﯾﻟﺄﺑ ﺔﻣﻋدﻣﻟا. : glass E. ,. Fe.

  1. Affine density in wavelet analysis

    CERN Document Server

    Kutyniok, Gitta

    2007-01-01

    In wavelet analysis, irregular wavelet frames have recently come to the forefront of current research due to questions concerning the robustness and stability of wavelet algorithms. A major difficulty in the study of these systems is the highly sensitive interplay between geometric properties of a sequence of time-scale indices and frame properties of the associated wavelet systems. This volume provides the first thorough and comprehensive treatment of irregular wavelet frames by introducing and employing a new notion of affine density as a highly effective tool for examining the geometry of sequences of time-scale indices. Many of the results are new and published for the first time. Topics include: qualitative and quantitative density conditions for existence of irregular wavelet frames, non-existence of irregular co-affine frames, the Nyquist phenomenon for wavelet systems, and approximation properties of irregular wavelet frames.

  2. Simultaneous whole-animal 3D-imaging of neuronal activity using light field microscopy

    CERN Document Server

    Prevedel, R; Hoffmann, M; Pak, N; Wetzstein, G; Kato, S; Schrödel, T; Raskar, R; Zimmer, M; Boyden, E S; Vaziri, A

    2014-01-01

    3D functional imaging of neuronal activity in entire organisms at single cell level and physiologically relevant time scales faces major obstacles due to trade-offs between the size of the imaged volumes, and spatial and temporal resolution. Here, using light-field microscopy in combination with 3D deconvolution, we demonstrate intrinsically simultaneous volumetric functional imaging of neuronal population activity at single neuron resolution for an entire organism, the nematode Caenorhabditis elegans. The simplicity of our technique and possibility of the integration into epi-fluoresence microscopes makes it an attractive tool for high-speed volumetric calcium imaging.

  3. Decreased pyramidal neuron size in Brodmann areas 44 and 45 in patients with autism.

    Science.gov (United States)

    Jacot-Descombes, Sarah; Uppal, Neha; Wicinski, Bridget; Santos, Micaela; Schmeidler, James; Giannakopoulos, Panteleimon; Heinsen, Helmut; Heinsein, Helmut; Schmitz, Christoph; Hof, Patrick R

    2012-07-01

    Autism is a neurodevelopmental disorder characterized by deficits in social interaction and social communication, as well as by the presence of repetitive and stereotyped behaviors and interests. Brodmann areas 44 and 45 in the inferior frontal cortex, which are involved in language processing, imitation function, and sociality processing networks, have been implicated in this complex disorder. Using a stereologic approach, this study aims to explore the presence of neuropathological differences in areas 44 and 45 in patients with autism compared to age- and hemisphere-matched controls. Based on previous evidence in the fusiform gyrus, we expected to find a decrease in the number and size of pyramidal neurons as well as an increase in volume of layers III, V, and VI in patients with autism. We observed significantly smaller pyramidal neurons in patients with autism compared to controls, although there was no difference in pyramidal neuron numbers or layer volumes. The reduced pyramidal neuron size suggests that a certain degree of dysfunction of areas 44 and 45 plays a role in the pathology of autism. Our results also support previous studies that have shown specific cellular neuropathology in autism with regionally specific reduction in neuron size, and provide further evidence for the possible involvement of the mirror neuron system, as well as impairment of neuronal networks relevant to communication and social behaviors, in this disorder.

  4. Measurement of Density Inhomogeneity for Glass Pendulum

    Institute of Scientific and Technical Information of China (English)

    LIU Lin-Xia; LIU Qi; SHAO Cheng-Gang; ZHANG Ya-Ting; LUO Jun; Vadim Milyukov

    2008-01-01

    @@ The density inhomogeneity of a glass pendulum is determined by an optical interference method.The relative variations of the densities over a volume with sizes of 5 × 5 × 5mm3 are (0.64±0.97) × 10-5 and (0.99 ± 0.92) ×10-5 for the K9 glass and silica glass pendulum, respectively.These variations of densities contributing to the relative uncertainties of the Newtonian gravitational constant G are 0.20 ppm and 0.21 ppm in our experiment on measurement of G.

  5. Pathogenesis of motor neuron disease

    Institute of Scientific and Technical Information of China (English)

    Xuefei Wang

    2006-01-01

    OBJECTIVE: To summarize and analyze the factors and theories related to the attack of motor neuron disease, and comprehensively investigate the pathogenesis of motor neuron disease.DATA SOURCES: A search of Pubmed database was undertaken to identify articles about motor neuron disease published in English from January 1994 to June 2006 by using the keywords of "neurodegenerative diseases". Other literatures were collected by retrieving specific journals and articles.STUDY SELECTION: The data were checked primarily, articles related to the pathogenesis of motor neuron disease were involved, and those obviously irrelated to the articles were excluded.DATA EXTRACTION: Totally 54 articles were collected, 30 of them were involved, and the other 24 were excluded.DATA SYNTHESIS: The pathogenesis of motor neuron disease has multiple factors, and the present related theories included free radical oxidation, excitotoxicity, genetic and immune factors, lack of neurotrophic factor,injury of neurofilament, etc. The studies mainly come from transgenic animal models, cell culture in vitro and patients with familial motor neuron disease, but there are still many restrictions and disadvantages.CONCLUSION: It is necessary to try to find whether there is internal association among different mechanisms,comprehensively investigate the pathogenesis of motor neuron diseases, in order to provide reliable evidence for the clinical treatment.

  6. Salsolinol modulation of dopamine neurons

    Directory of Open Access Journals (Sweden)

    Guiqin eXie

    2013-05-01

    Full Text Available Salsolinol, a tetrahydroisoquinoline present in the human and rat brains, is the condensation product of dopamine and acetaldehyde, the first metabolite of ethanol. Previous evidence obtained in vivo links salsolinol with the mesolimbic dopaminergic system: salsolinol is self-administered into the posterior of the ventral tegmental area (pVTA of rats; intra-VTA administration of salsolinol induces a strong conditional place preference and increases dopamine release in the nucleus accumbens. However, the underlying neuronal mechanisms are unclear. Here we present an overview of some of the recent research on this topic. Electrophysiological studies reveal that dopaminergic neurons in the posterior ventral tegmental area (pVTA are a target of salsolinol. In acute brain slices from rats, salsolinol increases the excitability and accelerates the ongoing firing of dopamine neurons in the pVTA. Intriguingly, this action of salsolinol involves multiple pre- and post-synaptic mechanisms, including: (a depolarizing the membrane potential of dopamine neurons; (b activating mu opioid receptors on the GABAergic inputs to dopamine neurons, which decreases GABAergic activity and dopamine neurons are disinhibited; and (c enhancing presynaptic glutamatergic transmission onto dopamine neurons via activation of dopamine type 1 receptors, probably situated on the glutamatergic terminals. These novel mechanisms may contribute to the rewarding/reinforcing properties of salsolinol observed in vivo.

  7. Role of carotid body for neuronal protection in experimental subarachnoid haemorrhage

    Directory of Open Access Journals (Sweden)

    Mehmet Dumlu Aydın

    2013-01-01

    Full Text Available Objective: Carotid bodies are known as main arterialchemoregulatory units. Despite well known that carotidbodies have an important role in cerebral circulation andblood pH regulation, their roles has not been investigatedin subarachnoid haemorrhage. We investigated whetherthere is neuroprotective effect of neuron density of carotidbodies on the brain in subarachnoid haemorrhage.Methods: Twenty hybrid rabbits were studied. Four ofthem were used as reference group (n=4 and the remainingwas obliged to subarachnoid haemorrhage by injectingautologous blood into their cisterna magna (n=16and sacrificed after one month. All carotid bodies andbrains examined histopathologically using by stereologicmethods. The relationship between the neuronal densityof carotid body and degenerated neuron density of thehippocampus were compared statistically.Results: Five rabbits with subarachnoid haemorrhagedead during the follow-up time (n=5. The average neuronaldensity of carotid body was 4500±500 cells/mm3and of hippocampus 170.000±17.000 cell/mm3 in normalrabbit family. The degenerated neuron density ofthe hippocampus was 20.000±3.000 cells/mm3 in rabbitswith have high neuron density of carotid body and was65.000±8.000 cells/mm3 in rabbits with low neuron densityof carotid body. The differences between the neuronaldensity of carotid body and the degenerated neuron numbersof the hippocampus were significant.Conclusion: The neuron density of carotid body mayplay an important role on the protection of brain in subarachnoidhaemorrhage.Key words: Subarachnoid haemorrhage, carotid body,hippocampus, neurodegeneration, cerebral ischemia

  8. The Fourier transform of tubular densities

    KAUST Repository

    Prior, C B

    2012-05-18

    We consider the Fourier transform of tubular volume densities, with arbitrary axial geometry and (possibly) twisted internal structure. This density can be used to represent, among others, magnetic flux or the electron density of biopolymer molecules. We consider tubes of both finite radii and unrestricted radius. When there is overlap of the tube structure the net density is calculated using the super-position principle. The Fourier transform of this density is composed of two expressions, one for which the radius of the tube is less than the curvature of the axis and one for which the radius is greater (which must have density overlap). This expression can accommodate an asymmetric density distribution and a tube structure which has non-uniform twisting. In addition we give several simpler expressions for isotropic densities, densities of finite radius, densities which decay at a rate sufficient to minimize local overlap and finally individual surfaces of the tube manifold. These simplified cases can often be expressed as arclength integrals and can be evaluated using a system of first-order ODEs. © 2012 IOP Publishing Ltd.

  9. Active Free Surface Density Maps

    Science.gov (United States)

    Çelen, S.

    2016-10-01

    Percolation problems were occupied to many physical problems after their establishment in 1957 by Broadbent and Hammersley. They can be used to solve complex systems such as bone remodeling. Volume fraction method was adopted to set some algorithms in the literature. However, different rate of osteoporosis could be observed for different microstructures which have the same mass density, mechanical stimuli, hormonal stimuli and nutrition. Thus it was emphasized that the bone might have identical porosity with different specific surfaces. Active free surface density of bone refers the used total area for its effective free surface. The purpose of this manuscript is to consolidate a mathematical approach which can be called as “active free surface density maps” for different surface patterns and derive their formulations. Active free surface density ratios were calculated for different Archimedean lattice models according to Helmholtz free energy and they were compared with their site and bond percolation thresholds from the background studies to derive their potential probability for bone remodeling.

  10. A Neuron Model for FPGA Spiking Neuronal Network Implementation

    Directory of Open Access Journals (Sweden)

    BONTEANU, G.

    2011-11-01

    Full Text Available We propose a neuron model, able to reproduce the basic elements of the neuronal dynamics, optimized for digital implementation of Spiking Neural Networks. Its architecture is structured in two major blocks, a datapath and a control unit. The datapath consists of a membrane potential circuit, which emulates the neuronal dynamics at the soma level, and a synaptic circuit used to update the synaptic weight according to the spike timing dependent plasticity (STDP mechanism. The proposed model is implemented into a Cyclone II-Altera FPGA device. Our results indicate the neuron model can be used to build up 1K Spiking Neural Networks on reconfigurable logic suport, to explore various network topologies.

  11. Intermittent hypoxia stimulates formation of binuclear neurons in brain cortex- a role of cell fusion in neuroprotection?

    Science.gov (United States)

    Paltsyn, Alexander A; Manukhina, Eugenia B; Goryacheva, Anna V; Downey, H Fred; Dubrovin, Ivan P; Komissarova, Svetlana V; Kubatiev, Aslan A

    2014-05-01

    Oligodendrocyte fusion with neurons in the brain cortex is a part of normal ontogenesis and is a possible means of neuroregeneration. Following such fusion, the oligodendrocyte nucleus undergoes neuron-specific reprogramming, resulting in the formation of binuclear neurons, which doubles the functional capability of the neuron. In this study, we tested the hypothesis that the formation of binuclear neurons is involved in long-term adaptation of the brain to intermittent hypobaric hypoxia, which is known to be neuroprotective. Rats were adapted to hypoxia in an altitude chamber at a simulated altitude of 4000 m above sea level for 14 days (30 min increasing to 4 h, daily). One micrometer sections of the left motor cortex were analyzed by light microscopy. Phases of the fusion and reprogramming process were recorded, and the number of binuclear neurons was counted for all section areas containing pyramidal neurons of layers III-V. For the control group subjected to sham hypoxia, the density of binuclear neurons was 4.49 ± 0.32 mm(2). In the hypoxia-adapted group, this density increased to 5.71 ± 0.39 mm(2) (P neurons did not differ from the number observed in the control group. We suggest that the increased content of binuclear neurons may serve as a structural basis for the neuroprotective effects of the adaptation to hypoxia.

  12. Single neuron dynamics and computation.

    Science.gov (United States)

    Brunel, Nicolas; Hakim, Vincent; Richardson, Magnus J E

    2014-04-01

    At the single neuron level, information processing involves the transformation of input spike trains into an appropriate output spike train. Building upon the classical view of a neuron as a threshold device, models have been developed in recent years that take into account the diverse electrophysiological make-up of neurons and accurately describe their input-output relations. Here, we review these recent advances and survey the computational roles that they have uncovered for various electrophysiological properties, for dendritic arbor anatomy as well as for short-term synaptic plasticity.

  13. Nonsulfated cholecystokinins in cerebral neurons

    DEFF Research Database (Denmark)

    Agersnap, Mikkel; Zhang, Ming-Dong; Harkany, Tibor

    2016-01-01

    Cholecystokinin (CCK) is a widely expressed neuropeptide system originally discovered in the gut. Both cerebral and peripheral neurons as well as endocrine I-cells in the small intestine process proCCK to tyrosyl-O-sulfated and α-carboxyamidated peptides. Recently, we reported that gut endocrine I...... for nonsulfated CCK-8 with an antibody recognizing both sulfated and nonsulfated CCK. However, nonsulfated CCK immunoreactivity was stronger than that of sulfated CCK in cell bodies and weaker in nerve terminals. We conclude that only a small fraction of neuronal CCK is nonsulfated. The intracellular distribution...... of nonsulfated CCK in neurons suggests that they contribute only modestly to the CCK transmitter activity....

  14. Swelling and eicosanoid metabolites differentially gate TRPV4 channels in retinal neurons and glia

    DEFF Research Database (Denmark)

    Ryskamp, Daniel A; Jo, Andrew O; Frye, Amber M

    2014-01-01

    Activity-dependent shifts in ionic concentrations and water that accompany neuronal and glial activity can generate osmotic forces with biological consequences for brain physiology. Active regulation of osmotic gradients and cellular volume requires volume-sensitive ion channels. In the vertebrate...... retina, critical support to volume regulation is provided by Müller astroglia, but the identity of their osmosensor is unknown. Here, we identify TRPV4 channels as transducers of mouse Müller cell volume increases into physiological responses. Hypotonic stimuli induced sustained [Ca(2+)]i elevations...

  15. Actin Tyrosine-53-Phosphorylation in Neuronal Maturation and Synaptic Plasticity.

    Science.gov (United States)

    Bertling, Enni; Englund, Jonas; Minkeviciene, Rimante; Koskinen, Mikko; Segerstråle, Mikael; Castrén, Eero; Taira, Tomi; Hotulainen, Pirta

    2016-05-11

    Rapid reorganization and stabilization of the actin cytoskeleton in dendritic spines enables cellular processes underlying learning, such as long-term potentiation (LTP). Dendritic spines are enriched in exceptionally short and dynamic actin filaments, but the studies so far have not revealed the molecular mechanisms underlying the high actin dynamics in dendritic spines. Here, we show that actin in dendritic spines is dynamically phosphorylated at tyrosine-53 (Y53) in rat hippocampal and cortical neurons. Our findings show that actin phosphorylation increases the turnover rate of actin filaments and promotes the short-term dynamics of dendritic spines. During neuronal maturation, actin phosphorylation peaks at the first weeks of morphogenesis, when dendritic spines form, and the amount of Y53-phosphorylated actin decreases when spines mature and stabilize. Induction of LTP transiently increases the amount of phosphorylated actin and LTP induction is deficient in neurons expressing mutant actin that mimics phosphorylation. Actin phosphorylation provides a molecular mechanism to maintain the high actin dynamics in dendritic spines during neuronal development and to induce fast reorganization of the actin cytoskeleton in synaptic plasticity. In turn, dephosphorylation of actin is required for the stabilization of actin filaments that is necessary for proper dendritic spine maturation and LTP maintenance. Dendritic spines are small protrusions from neuronal dendrites where the postsynaptic components of most excitatory synapses reside. Precise control of dendritic spine morphology and density is critical for normal brain function. Accordingly, aberrant spine morphology is linked to many neurological diseases. The actin cytoskeleton is a structural element underlying the proper morphology of dendritic spines. Therefore, defects in the regulation of the actin cytoskeleton in neurons have been implicated in neurological diseases. Here, we revealed a novel mechanism for

  16. Statins induce differentiation and cell death in neurons and astroglia.

    Science.gov (United States)

    März, Pia; Otten, Uwe; Miserez, André R

    2007-01-01

    Statins are potent inhibitors of the hydroxy-methyl-glutaryl-coenzyme A reductase, the rate limiting enzyme for cholesterol biosynthesis. Experimental and clinical studies with statins suggest that they have beneficial effects on neurodegenerative disorders. Thus, it was of interest to characterize the direct effects of statins on CNS neurons and glial cells. We have treated defined cultures of neurons and astrocytes of newborn rats with two lipophilic statins, atorvastatin and simvastatin, and analyzed their effects on morphology and survival. Treatment of astrocytes with statins induced a time- and dose-dependent stellation, followed by apoptosis. Similarly, statins elicited programmed cell death of cerebellar granule neurons but with a higher sensitivity. Analysis of different signaling cascades revealed that statins fail to influence classical pathways such as Akt or MAP kinases, known to be activated in CNS cells. In addition, astrocyte stellation triggered by statins resembled dibutryl-cyclic AMP (db-cAMP) induced morphological differentiation. However, in contrast to db-cAMP, statins induced upregulation of low-density lipoprotein receptors, without affecting GFAP expression, indicating separate underlying mechanisms. Analysis of the cholesterol biosynthetic pathway revealed that lack of mevalonate and of its downstream metabolites, mainly geranylgeranyl-pyrophosphate (GGPP), is responsible for the statin-induced apoptosis of neurons and astrocytes. Moreover, astrocytic stellation triggered by statins was inhibited by mevalonate and GGPP. Interestingly, neuronal cell death was significantly reduced in astrocyte/neuron co-cultures treated with statins. We postulate that under these conditions signals provided by astrocytes, e.g., isoprenoids play a key role in neuronal survival.

  17. Laboratory Density Functionals

    OpenAIRE

    Giraud, B. G.

    2007-01-01

    We compare several definitions of the density of a self-bound system, such as a nucleus, in relation with its center-of-mass zero-point motion. A trivial deconvolution relates the internal density to the density defined in the laboratory frame. This result is useful for the practical definition of density functionals.

  18. Laboratory Density Functionals

    OpenAIRE

    Giraud, B G

    2007-01-01

    We compare several definitions of the density of a self-bound system, such as a nucleus, in relation with its center-of-mass zero-point motion. A trivial deconvolution relates the internal density to the density defined in the laboratory frame. This result is useful for the practical definition of density functionals.

  19. Class-II neurons display a higher degree of stochastic synchronization than class-I neurons.

    Science.gov (United States)

    Marella, Sashi; Ermentrout, G Bard

    2008-04-01

    We describe the relationship between the shape of the phase-resetting curve (PRC) and the degree of stochastic synchronization observed between a pair of uncoupled general oscillators receiving partially correlated Poisson inputs in addition to inputs from independent sources. We use perturbation methods to derive an expression relating the shape of the PRC to the probability density function (PDF) of the phase difference between the oscillators. We compute various measures of the degree of synchrony and cross correlation from the PDF's and use the same to compare and contrast differently shaped PRCs, with respect to their ability to undergo stochastic synchronization. Since the shape of the PRC depends on underlying dynamical details of the oscillator system, we utilize the results obtained from the analysis of general oscillator systems to study specific models of neuronal oscillators. It is shown that the degree of stochastic synchronization is controlled both by the firing rate of the neuron and the membership of the PRC (type I or type II). It is also shown that the circular variance for the integrate and fire neuron and the generalized order parameter for a hippocampal interneuron model have a nonlinear relationship to the input correlation.

  20. Serotonin modulates glutamatergic transmission to neurons in the lateral habenula.

    Science.gov (United States)

    Xie, Guiqin; Zuo, Wanhong; Wu, Liangzhi; Li, Wenting; Wu, Wei; Bekker, Alex; Ye, Jiang-Hong

    2016-04-01

    The lateral habenula (LHb) is bilaterally connected with serotoninergic raphe nuclei, and expresses high density of serotonin receptors. However, actions of serotonin on the excitatory synaptic transmission to LHb neurons have not been thoroughly investigated. The LHb contains two anatomically and functionally distinct regions: lateral (LHbl) and medial (LHbm) divisions. We compared serotonin's effects on glutamatergic transmission across the LHb in rat brains. Serotonin bi-directionally and differentially modulated glutamatergic transmission. Serotonin inhibited glutamatergic transmission in higher percentage of LHbl neurons but potentiated in higher percentage of LHbm neurons. Magnitude of potentiation was greater in LHbm than in LHbl. Type 2 and 3 serotonin receptor antagonists attenuated serotonin's potentiation. The serotonin reuptake blocker, and the type 2 and 3 receptor agonists facilitated glutamatergic transmission in both LHbl and LHbm neurons. Thus, serotonin via activating its type 2, 3 receptors, increased glutamate release at nerve terminals in some LHb neurons. Our data demonstrated that serotonin affects both LHbm and LHbl. Serotonin might play an important role in processing information between the LHb and its downstream-targeted structures during decision-making. It may also contribute to a homeostatic balance underlying the neural circuitry between the LHb and raphe nuclei.

  1. Homeostatic plasticity of striatal neurons intrinsic excitability following dopamine depletion.

    Directory of Open Access Journals (Sweden)

    Karima Azdad

    Full Text Available The striatum is the major input structure of basal ganglia and is involved in adaptive control of behaviour through the selection of relevant informations. Dopaminergic neurons that innervate striatum die in Parkinson disease, leading to inefficient adaptive behaviour. Neuronal activity of striatal medium spiny neurons (MSN is modulated by dopamine receptors. Although dopamine signalling had received substantial attention, consequences of dopamine depletion on MSN intrinsic excitability remain unclear. Here we show, by performing perforated patch clamp recordings on brain slices, that dopamine depletion leads to an increase in MSN intrinsic excitability through the decrease of an inactivating A-type potassium current, I(A. Despite the large decrease in their excitatory synaptic inputs determined by the decreased dendritic spines density and the increase in minimal current to evoke the first EPSP, this increase in intrinsic excitability resulted in an enhanced responsiveness to their remaining synapses, allowing them to fire similarly or more efficiently following input stimulation than in control condition. Therefore, this increase in intrinsic excitability through the regulation of I(A represents a form of homeostatic plasticity allowing neurons to compensate for perturbations in synaptic transmission and to promote stability in firing. The present observations show that this homeostatic ability to maintain firing rates within functional range also occurs in pathological conditions, allowing stabilizing neural computation within affected neuronal networks.

  2. All-memristive neuromorphic computing with level-tuned neurons.

    Science.gov (United States)

    Pantazi, Angeliki; Woźniak, Stanisław; Tuma, Tomas; Eleftheriou, Evangelos

    2016-09-02

    In the new era of cognitive computing, systems will be able to learn and interact with the environment in ways that will drastically enhance the capabilities of current processors, especially in extracting knowledge from vast amount of data obtained from many sources. Brain-inspired neuromorphic computing systems increasingly attract research interest as an alternative to the classical von Neumann processor architecture, mainly because of the coexistence of memory and processing units. In these systems, the basic components are neurons interconnected by synapses. The neurons, based on their nonlinear dynamics, generate spikes that provide the main communication mechanism. The computational tasks are distributed across the neural network, where synapses implement both the memory and the computational units, by means of learning mechanisms such as spike-timing-dependent plasticity. In this work, we present an all-memristive neuromorphic architecture comprising neurons and synapses realized by using the physical properties and state dynamics of phase-change memristors. The architecture employs a novel concept of interconnecting the neurons in the same layer, resulting in level-tuned neuronal characteristics that preferentially process input information. We demonstrate the proposed architecture in the tasks of unsupervised learning and detection of multiple temporal correlations in parallel input streams. The efficiency of the neuromorphic architecture along with the homogenous neuro-synaptic dynamics implemented with nanoscale phase-change memristors represent a significant step towards the development of ultrahigh-density neuromorphic co-processors.

  3. All-memristive neuromorphic computing with level-tuned neurons

    Science.gov (United States)

    Pantazi, Angeliki; Woźniak, Stanisław; Tuma, Tomas; Eleftheriou, Evangelos

    2016-09-01

    In the new era of cognitive computing, systems will be able to learn and interact with the environment in ways that will drastically enhance the capabilities of current processors, especially in extracting knowledge from vast amount of data obtained from many sources. Brain-inspired neuromorphic computing systems increasingly attract research interest as an alternative to the classical von Neumann processor architecture, mainly because of the coexistence of memory and processing units. In these systems, the basic components are neurons interconnected by synapses. The neurons, based on their nonlinear dynamics, generate spikes that provide the main communication mechanism. The computational tasks are distributed across the neural network, where synapses implement both the memory and the computational units, by means of learning mechanisms such as spike-timing-dependent plasticity. In this work, we present an all-memristive neuromorphic architecture comprising neurons and synapses realized by using the physical properties and state dynamics of phase-change memristors. The architecture employs a novel concept of interconnecting the neurons in the same layer, resulting in level-tuned neuronal characteristics that preferentially process input information. We demonstrate the proposed architecture in the tasks of unsupervised learning and detection of multiple temporal correlations in parallel input streams. The efficiency of the neuromorphic architecture along with the homogenous neuro-synaptic dynamics implemented with nanoscale phase-change memristors represent a significant step towards the development of ultrahigh-density neuromorphic co-processors.

  4. Unidirectional signal propagation in primary neurons micropatterned at a single-cell resolution

    Science.gov (United States)

    Yamamoto, H.; Matsumura, R.; Takaoki, H.; Katsurabayashi, S.; Hirano-Iwata, A.; Niwano, M.

    2016-07-01

    The structure and connectivity of cultured neuronal networks can be controlled by using micropatterned surfaces. Here, we demonstrate that the direction of signal propagation can be precisely controlled at a single-cell resolution by growing primary neurons on micropatterns. To achieve this, we first examined the process by which axons develop and how synapses form in micropatterned primary neurons using immunocytochemistry. By aligning asymmetric micropatterns with a marginal gap, it was possible to pattern primary neurons with a directed polarization axis at the single-cell level. We then examined how synapses develop on micropatterned hippocampal neurons. Three types of micropatterns with different numbers of short paths for dendrite growth were compared. A normal development in synapse density was observed when micropatterns with three or more short paths were used. Finally, we performed double patch clamp recordings on micropatterned neurons to confirm that these synapses are indeed functional, and that the neuronal signal is transmitted unidirectionally in the intended orientation. This work provides a practical guideline for patterning single neurons to design functional neuronal networks in vitro with the direction of signal propagation being controlled.

  5. Spatial wavelet analysis of calcium oscillations in developing neurons.

    Directory of Open Access Journals (Sweden)

    Federico Alessandro Ruffinatti

    Full Text Available Calcium signals play a major role in the control of all key stages of neuronal development, and in particular in the growth and orientation of neuritic processes. These signals are characterized by high spatial compartmentalization, a property which has a strong relevance in the different roles of specific neuronal regions in information coding. In this context it is therefore important to understand the structural and functional basis of this spatial compartmentalization, and in particular whether the behavior at each compartment is merely a consequence of its specific geometry or the result of the spatial segregation of specific calcium influx/efflux mechanisms. Here we have developed a novel approach to separate geometrical from functional differences, regardless on the assumptions on the actual mechanisms involved in the generation of calcium signals. First, spatial indices are derived with a wavelet-theoretic approach which define a measure of the oscillations of cytosolic calcium concentration in specific regions of interests (ROIs along a cell, in our case developing chick ciliary ganglion neurons. The resulting spatial profile demonstrates clearly that different ROIs along the neuron are characterized by specific patterns of calcium oscillations. Next we have investigated whether this inhomogeneity is due just to geometrical factors, namely the surface to volume ratio in the different subcompartments (e.g. soma vs. growth cone or it depends on their specific biophysical properties. To this aim correlation functions are computed between the activity indices and the surface/volume ratio along the cell: the data thus obtained are validated by a statistical analysis on a dataset of [Formula: see text] different cells. This analysis shows that whereas in the soma calcium dynamics is highly correlated to the surface/volume ratio, correlations drop in the growth cone-neurite region, suggesting that in this latter case the key factor is the

  6. Different scaling of white matter volume, cortical connectivity, and gyrification across rodent and primate brains

    Directory of Open Access Journals (Sweden)

    Lissa eVentura-Antunes

    2013-04-01

    Full Text Available Expansion of the cortical grey matter in evolution has been accompanied by an even faster expansion of the subcortical white matter volume and by folding of the grey matter surface, events traditionally considered to occur homogeneously across mammalian species. Here we investigate how white matter expansion and cortical folding scale across species of rodents and primates as the grey matter gains neurons. We find very different scaling rules of white matter expansion across the two orders, favoring volume conservation and smaller propagation times in primates. For a similar number of cortical neurons, primates have a smaller connectivity fraction and less white matter volume than rodents; moreover, as the cortex gains neurons, there is a much faster increase in white matter volume and in its ratio to grey matter volume in rodents than in primates. Order-specific scaling of the white matter can be attributed to different scaling of average fiber caliber and neuronal connectivity in rodents and primates. Finally, cortical folding increases as different functions of the number of cortical neurons in rodents and primates, scaling faster in the latter than in the former. While the neuronal rules that govern grey and white matter scaling are different across rodents and primates, we find that they can be explained by the same unifying model, with order-specific exponents. The different scaling of the white matter has implications for the scaling of propagation time and computational capacity in evolution, and calls for a reappraisal of developmental models of cortical expansion in evolution.

  7. Tinbergen on mirror neurons.

    Science.gov (United States)

    Heyes, Cecilia

    2014-01-01

    Fifty years ago, Niko Tinbergen defined the scope of behavioural biology with his four problems: causation, ontogeny, survival value and evolution. About 20 years ago, there was another highly significant development in behavioural biology-the discovery of mirror neurons (MNs). Here, I use Tinbergen's original four problems (rather than the list that appears in textbooks) to highlight the differences between two prominent accounts of MNs, the genetic and associative accounts; to suggest that the latter provides the defeasible 'best explanation' for current data on the causation and ontogeny of MNs; and to argue that functional analysis, of the kind that Tinbergen identified somewhat misleadingly with studies of 'survival value', should be a high priority for future research. In this kind of functional analysis, system-level theories would assign MNs a small, but potentially important, role in the achievement of action understanding-or another social cognitive function-by a production line of interacting component processes. These theories would be tested by experimental intervention in human and non-human animal samples with carefully documented and controlled developmental histories.

  8. Neuronal intestinal dysplasia.

    Science.gov (United States)

    Rintala, R; Rapola, J; Louhimo, I

    1989-01-01

    A series of 21 patients with NID is presented. A histologic and histochemical picture of NID was seen in an heterogenous group of patients. NID was associated with bowel obstruction and/or perforation in six neonates and infants. One neonate died. During follow-up the bowel histology gradually normalized in four of the five patients. NID was found incidentally in four patients with anorectal malformations and two with Hirschsprung's disease. Three patients with Hirschsprung's disease and associated NID had chronic proctitis; one patient with an anorectal anomaly had chronic obstipation and megacolon and one proctitis. Two children with multiple endocrine neoplasia 2b syndrome and chronic obstipation had typical NID in their rectum biopsies, as did a 50-year-old woman with CIIP. The clinical heterogeneity of patients with NID suggests that NID may not be a distinct clinical entity but rather a reaction of the neuronal network of the bowel wall and could be caused either by congenital or secondary factors.

  9. Hydrophobic Volume Effects in Albumin Solutions.

    Science.gov (United States)

    Schrade, P.; Klein, H.; Egry, I.; Ademovic, Z.; Klee, D.

    2001-02-15

    Density measurements of aqueous albumin solutions as a function of concentration and temperature are reported. The solvents were H(2)O, D(2)O, and a physiological H(2)O-based buffer. An anomaly of the density at very small concentrations of albumin in D(2)O was found. Furthermore, the partial specific volume of albumin is remarkably different in D(2)O and H(2)O. We attribute both effects to structural differences of the solvents. Copyright 2001 Academic Press.

  10. Velocity neurons improve performance more than goal or position neurons do in a simulated closed-loop BCI arm-reaching task.

    Directory of Open Access Journals (Sweden)

    James Yu-Chang Liao

    2015-07-01

    Full Text Available Brain-Computer Interfaces (BCIs that convert brain-recorded neural signals into intended movement commands could eventually be combined with Functional Electrical Stimulation to allow individuals with Spinal Cord Injury to regain effective and intuitive control of their paralyzed limbs. To accelerate the development of such an approach, we developed a model of closed-loop BCI control of arm movements that (1 generates realistic arm movements (based on experimentally measured, visually-guided movements with real-time error correction, (2 simulates cortical neurons with firing properties consistent with literature reports, and (3 decodes intended movements from the noisy neural ensemble. With this model we explored (1 the relative utility of neurons tuned for different movement parameters (position, velocity, and goal and (2 the utility of recording from larger numbers of neurons – critical issues for technology development and for determining appropriate brain areas for recording. We simulated arm movements that could be practically restored to individuals with severe paralysis, i.e., movements from an armrest to a volume in front of the person. Performance was evaluated by calculating the smallest movement endpoint target radius within which the decoded cursor position could dwell for one second. Our results show that goal, position, and velocity neurons all contribute to improve performance. However, velocity neurons enabled smaller targets to be reached in shorter amounts of time than goal or position neurons. Increasing the number of neurons also improved performance, although performance saturated at 30-50 neurons for most neuron types. Overall, our work presents a closed-loop BCI simulator that models error corrections and the firing properties of various movement-related neurons that can be easily modified to incorporate different neural properties. We anticipate that this kind of tool will be important for development of future BCIs.

  11. Neuronal boost to evolutionary dynamics.

    Science.gov (United States)

    de Vladar, Harold P; Szathmáry, Eörs

    2015-12-06

    Standard evolutionary dynamics is limited by the constraints of the genetic system. A central message of evolutionary neurodynamics is that evolutionary dynamics in the brain can happen in a neuronal niche in real time, despite the fact that neurons do not reproduce. We show that Hebbian learning and structural synaptic plasticity broaden the capacity for informational replication and guided variability provided a neuronally plausible mechanism of replication is in place. The synergy between learning and selection is more efficient than the equivalent search by mutation selection. We also consider asymmetric landscapes and show that the learning weights become correlated with the fitness gradient. That is, the neuronal complexes learn the local properties of the fitness landscape, resulting in the generation of variability directed towards the direction of fitness increase, as if mutations in a genetic pool were drawn such that they would increase reproductive success. Evolution might thus be more efficient within evolved brains than among organisms out in the wild.

  12. Neuronal boost to evolutionary dynamics

    Science.gov (United States)

    de Vladar, Harold P.; Szathmáry, Eörs

    2015-01-01

    Standard evolutionary dynamics is limited by the constraints of the genetic system. A central message of evolutionary neurodynamics is that evolutionary dynamics in the brain can happen in a neuronal niche in real time, despite the fact that neurons do not reproduce. We show that Hebbian learning and structural synaptic plasticity broaden the capacity for informational replication and guided variability provided a neuronally plausible mechanism of replication is in place. The synergy between learning and selection is more efficient than the equivalent search by mutation selection. We also consider asymmetric landscapes and show that the learning weights become correlated with the fitness gradient. That is, the neuronal complexes learn the local properties of the fitness landscape, resulting in the generation of variability directed towards the direction of fitness increase, as if mutations in a genetic pool were drawn such that they would increase reproductive success. Evolution might thus be more efficient within evolved brains than among organisms out in the wild. PMID:26640653

  13. Modeling neuronal vulnerability in ALS.

    Science.gov (United States)

    Roselli, Francesco; Caroni, Pico

    2014-08-20

    Using computational models of motor neuron ion fluxes, firing properties, and energy requirements, Le Masson et al. (2014) reveal how local imbalances in energy homeostasis may self-amplify and contribute to neurodegeneration in ALS.

  14. Comparing measurements of breast density

    Energy Technology Data Exchange (ETDEWEB)

    Highnam, R [Highnam Associates Limited, Wellington (New Zealand); Jeffreys, M [Massey University, Wellington (New Zealand); McCormack, V [Department of Epidemiology and Population Health, London School of Hygiene and Medicine, London (United Kingdom); Warren, R [Addenbrooke' s Hospital, Cambridge (United Kingdom); Smith, G Davey [Department of Clinical Epidemiology, University of Bristol, Bristol (United Kingdom); Brady, M [Department of Engineering Science, University of Oxford, Oxford (United Kingdom)

    2007-09-21

    Breast density measurements can be made from mammograms using either area-based methods, such as the six category classification (SCC), or volumetric based methods, such as the standard mammogram form (SMF). Previously, we have shown how both types of methods generate breast density estimates which are generally close. In this paper, we switch our attention to the question of why, for certain cases, they provide widely differing estimates. First, we show how the underlying physical models of the breast employed in the methods need to be consistent, and how area-based methods are susceptible to projection effects. We then analyse a set of patients whose mammograms show large differences between their SCC and SMF assessments. More precisely, 12% of 657 patients were found to fall into this category. Of these, 2.7% were attributable to errors either in the SMF segmentation algorithms, human error in SCC categorization or poor image exposure. More importantly, 9.3% of the cases appear to be due to fundamental differences between the area- and volume-based techniques. We conclude by suggesting how we might remove half of those discrepancies by introducing a new categorization of the SMF estimates based on the breast thickness. We note however, that this still leaves 6% of patients with large differences between SMF and SCC estimates. We discuss why it might not be appropriate to assume SMF (or any volume measure) has a similar breast cancer risk prediction capability to SCC.

  15. Modeling the electric potential across neuronal membranes: the effect of fixed charges on spinal ganglion neurons and neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    Thiago M Pinto

    Full Text Available We present a model for the electric potential profile across the membranes of neuronal cells. We considered the resting and action potential states, and analyzed the influence of fixed charges of the membrane on its electric potential, based on experimental values of membrane properties of the spinal ganglion neuron and the neuroblastoma cell. The spinal ganglion neuron represents a healthy neuron, and the neuroblastoma cell, which is tumorous, represents a pathological neuron. We numerically solved the non-linear Poisson-Boltzmann equation for the regions of the membrane model we have adopted, by considering the densities of charges dissolved in an electrolytic solution and fixed on both glycocalyx and cytoplasmic proteins. Our model predicts that there is a difference in the behavior of the electric potential profiles of the two types of cells, in response to changes in charge concentrations in the membrane. Our results also describe an insensitivity of the neuroblastoma cell membrane, as observed in some biological experiments. This electrical property may be responsible for the low pharmacological response of the neuroblastoma to certain chemotherapeutic treatments.

  16. Modeling the electric potential across neuronal membranes: the effect of fixed charges on spinal ganglion neurons and neuroblastoma cells.

    Science.gov (United States)

    Pinto, Thiago M; Wedemann, Roseli S; Cortez, Célia M

    2014-01-01

    We present a model for the electric potential profile across the membranes of neuronal cells. We considered the resting and action potential states, and analyzed the influence of fixed charges of the membrane on its electric potential, based on experimental values of membrane properties of the spinal ganglion neuron and the neuroblastoma cell. The spinal ganglion neuron represents a healthy neuron, and the neuroblastoma cell, which is tumorous, represents a pathological neuron. We numerically solved the non-linear Poisson-Boltzmann equation for the regions of the membrane model we have adopted, by considering the densities of charges dissolved in an electrolytic solution and fixed on both glycocalyx and cytoplasmic proteins. Our model predicts that there is a difference in the behavior of the electric potential profiles of the two types of cells, in response to changes in charge concentrations in the membrane. Our results also describe an insensitivity of the neuroblastoma cell membrane, as observed in some biological experiments. This electrical property may be responsible for the low pharmacological response of the neuroblastoma to certain chemotherapeutic treatments.

  17. A new density model of Cryptomeria fortunei plantation

    Institute of Scientific and Technical Information of China (English)

    Jiang Xidian; Huang Langzeng; Chen Baohui

    2006-01-01

    According to the volume increase model of an average individual tree in a plant population and the theory of invariable final output,we put forward a new density model of plant population: V-β=ANβ+B.Here N means the stand density and V stands for average individual tree volume;A,B and β are parameters that change with growth stage.Using the density variation of standard plots of Cryptromeriafortunei plantation to verify the new model,it turns out that this model can well simulate the population density effect law of C.fortunei plantation,and it is markedly better and shows higher accuracy than the commonly used reciprocal model of density effect and secondary-effect model.Let β=1,we can obtain the reciprocal model of density effect,which means the reciprocal model of density effect is only a special case of this new model.

  18. Neuromagnetic field strength outside the human head due to impedance changes from neuronal depolarization.

    Science.gov (United States)

    Ahadzi, G M; Liston, A D; Bayford, R H; Holder, D S

    2004-02-01

    The holy grail of neuroimaging would be to have an imaging system, which could image neuronal electrical activity over milliseconds. One way to do this would be by imaging the impedance changes associated with ion channels opening in neuronal membranes in the brain during activity. In principle, we could measure this change by using electrical impedance tomography (EIT) but it is close to its threshold of detectability. With the inherent limitation in the use of electrodes, we propose a new scheme based on recording the magnetic field resulting from an injected current with superconducting quantum interference devices (SQUIDs), used in magnetoencephalography (MEG). We have performed a feasibility study using computer simulation. The head was modelled as concentric spheres to mimic the scalp, skull, cerebrospinal fluid and brain using the finite element method. The magnetic field 1 cm away from the scalp was estimated. An impedance change of 1% in a 2 cm radius volume in the brain was modelled as the region of depolarization. A constant current of 100 microA was injected into the head from diametrically opposite electrodes. The model predicts that the standing magnetic field is about 10 pT and changed by about 3 fT (0.03%) on depolarization. The spectral noise density in a typical MEG system in the frequency band 1-100 Hz is about 7 fT, so this places the change at the limit of detectability. This is similar to electrical recording, as in conventional EIT systems, but there may be advantages to MEG in that the magnetic field directly traverses the skull and instrumentation errors from the electrode-skin interface will be obviated.

  19. Is realistic neuronal modeling realistic?

    Science.gov (United States)

    Almog, Mara; Korngreen, Alon

    2016-11-01

    Scientific models are abstractions that aim to explain natural phenomena. A successful model shows how a complex phenomenon arises from relatively simple principles while preserving major physical or biological rules and predicting novel experiments. A model should not be a facsimile of reality; it is an aid for understanding it. Contrary to this basic premise, with the 21st century has come a surge in computational efforts to model biological processes in great detail. Here we discuss the oxymoronic, realistic modeling of single neurons. This rapidly advancing field is driven by the discovery that some neurons don't merely sum their inputs and fire if the sum exceeds some threshold. Thus researchers have asked what are the computational abilities of single neurons and attempted to give answers using realistic models. We briefly review the state of the art of compartmental modeling highlighting recent progress and intrinsic flaws. We then attempt to address two fundamental questions. Practically, can we realistically model single neurons? Philosophically, should we realistically model single neurons? We use layer 5 neocortical pyramidal neurons as a test case to examine these issues. We subject three publically available models of layer 5 pyramidal neurons to three simple computational challenges. Based on their performance and a partial survey of published models, we conclude that current compartmental models are ad hoc, unrealistic models functioning poorly once they are stretched beyond the specific problems for which they were designed. We then attempt to plot possible paths for generating realistic single neuron models. Copyright © 2016 the American Physiological Society.

  20. NO-generating neurons in the medullary cardiovascular centers of rodents and carnivores.

    Science.gov (United States)

    Maisky, Vladimir A; Datsenko, Vladimir V; Moibenko, Alexei A; Bugaychenko, Larisa A; Pilyavskii, Alexander I; Kostyukov, Alexander I; Kalezic, Ivana; Johansson, Håkan

    2003-11-01

    The aim of the study was to characterize the species-related differences in the distribution of nitric oxide synthase (NOS)-containing neurons in rodents and carnivores medullary cardiovascular centers that take part in regulation of the sympathetic or parasympathetic drives. The order of the mean number of NOS-containing neurons in the dorsomedial and ventrolateral medulla (per section) in different animals was as follows: dog>cat>rat. Although the density of the positive cells in the both regions was changed in the following sequence: rat=cat>dog. Within the dorsal motor nucleus of vagus significant exceeding of the mean number and density of positive cells (preganglionic vagal neurons) in dog were found. Differences in the distribution of NO-generating neurons in the medullary cardiovascular centers and the heterogeneity in the basal level of NO release may contribute to the distinctive alterations of the hemodynamic reactions in the studied species after administration of NOS inhibitors.

  1. Asymmetry of Radial and Symmetry of Tangential Neuronal Migration Pathways in Developing Human Fetal Brains.

    Science.gov (United States)

    Miyazaki, Yuta; Song, Jae W; Takahashi, Emi

    2016-01-01

    The radial and tangential neural migration pathways are two major neuronal migration streams in humans that are critical during corticogenesis. Corticogenesis is a complex process of neuronal proliferation that is followed by neuronal migration and the formation of axonal connections. Existing histological assessments of these two neuronal migration pathways have limitations inherent to microscopic studies and are confined to small anatomic regions of interest (ROIs). Thus, little evidence is available about their three-dimensional (3-D) fiber pathways and development throughout the entire brain. In this study, we imaged and analyzed radial and tangential migration pathways in the whole human brain using high-angular resolution diffusion MR imaging (HARDI) tractography. We imaged ten fixed, postmortem fetal (17 gestational weeks (GW), 18 GW, 19 GW, three 20 GW, three 21 GW and 22 GW) and eight in vivo newborn (two 30 GW, 34 GW, 35 GW and four 40 GW) brains with no neurological/pathological conditions. We statistically compared the volume of the left and right radial and tangential migration pathways, and the volume of the radial migration pathways of the anterior and posterior regions of the brain. In specimens 22 GW or younger, the volume of radial migration pathways of the left hemisphere was significantly larger than that of the right hemisphere. The volume of posterior radial migration pathways was also larger when compared to the anterior pathways in specimens 22 GW or younger. In contrast, no significant differences were observed in the radial migration pathways of brains older than 22 GW. Moreover, our study did not identify any significant differences in volumetric laterality in the tangential migration pathways. These results suggest that these two neuronal migration pathways develop and regress differently, and radial neuronal migration varies regionally based on hemispheric and anterior-posterior laterality, potentially explaining regional differences in

  2. [Some characteristics of vertigo in vestibular neuronitis].

    Science.gov (United States)

    Skliut, I A; Likhachev, S A; Rybina, O V

    2004-01-01

    The authors present a detailed clinical analysis of objective neurological symptoms and vertigo in patients with vestibular neuronitis. Diagnostic criteria are specified allowing differentiation between vertigo and dizziness, pathognomonic signs of vestibular neuronitis are outlined. Peripheral location of the pathological process in vestibular neuronitis is suggested. How rotating vertigo is forming in patients with vestibular neuronitis is hypothesized.

  3. Calcium Homeostasis in ageing neurons

    Directory of Open Access Journals (Sweden)

    Vassiliki eNikoletopoulou

    2012-10-01

    Full Text Available The nervous system becomes increasingly vulnerable to insults and prone to dysfunction during ageing. Age-related decline of neuronal function is manifested by the late onset of many neurodegenerative disorders, as well as by reduced signalling and processing capacity of individual neuron populations. Recent findings indicate that impairment of Ca2+ homeostasis underlies the increased susceptibility of neurons to damage, associated with the ageing process. However, the impact of ageing on Ca2+ homeostasis in neurons remains largely unknown. Here, we survey the molecular mechanisms that mediate neuronal Ca2+ homeostasis and discuss the impact of ageing on their efficacy. To address the question of how ageing impinges on Ca2+ homeostasis, we consider potential nodes through which mechanisms regulating Ca2+ levels interface with molecular pathways known to influence the process of ageing and senescent decline. Delineation of this crosstalk would facilitate the development of interventions aiming to fortify neurons against age-associated functional deterioration and death by augmenting Ca2+ homeostasis.

  4. Dynamic State Transitions in the Nervous System: From Ion Channels to Neurons to Networks

    Science.gov (United States)

    Århem, Peter; Braun, Hans A.; Huber, Martin T.; Liljenström, Hans

    The following sections are included: * Introduction * Ion channels: The microscopic scale * The variety of ion channels * Channel kinetics * Neurons: The mesoscopic scale * The feedback loops between membrane potential and ion currents * Neuron models: Concepts and examples * Impulse pattern modulation by ion channel densities * Oscillatory patterns * Irregular patterns * Impulse pattern modulation by subthreshold oscillations * The cold receptor model * Deterministic patterns and noise induced state-transitions on temperature scaling * Neuronal networks: The oscopic scale * Random channel events cause network state transitions * A hippocampal neural network model * Simulating noise-induced state transitions * Functional significance of oscopic neurodynamics * Conclusions * Appendix A: Computation of the neuron models * Hippocampal neuron model * The cold receptor model * Appendix B: Neural network model * References

  5. Firing patterns of long-term cultured neuronal network on multi-electrode array

    Institute of Scientific and Technical Information of China (English)

    LI Xiangning; ZHOU Wei; LIU Man; ZENG Shaoqun; LUO Qingming

    2006-01-01

    Spontaneous neuronal activity plays an important role in the development and plasticity of brain. To explore the developmental changes in the firing pattern of the neuronal networks in vitro, the hippocampal neurons were cultured on the multi-microelectrode array dish for over 14 weeks and the spontaneous activity was recorded. The results showed that random firing was observed in the 1st week and transformed into synchronized activity after two weeks, then tightly synchronized activity appeared in week 2 to 7 and finally the activities transformed into the random firing pattern. These results suggested three stages in the long-term development of neuronal network in vitro: the stage for connection, the stage of synchronized activity and the mature stage. Synchronized firing shown by spontaneous activity was an important phenomenon in high density cultured neuronal network and transformed patterns during development.

  6. Transient oxytocin signaling primes the development and function of excitatory hippocampal neurons.

    Science.gov (United States)

    Ripamonti, Silvia; Ambrozkiewicz, Mateusz C; Guzzi, Francesca; Gravati, Marta; Biella, Gerardo; Bormuth, Ingo; Hammer, Matthieu; Tuffy, Liam P; Sigler, Albrecht; Kawabe, Hiroshi; Nishimori, Katsuhiko; Toselli, Mauro; Brose, Nils; Parenti, Marco; Rhee, JeongSeop

    2017-02-23

    Beyond its role in parturition and lactation, oxytocin influences higher brain processes that control social behavior of mammals, and perturbed oxytocin signaling has been linked to the pathogenesis of several psychiatric disorders. However, it is still largely unknown how oxytocin exactly regulates neuronal function. We show that early, transient oxytocin exposure in vitro inhibits the development of hippocampal glutamatergic neurons, leading to reduced dendrite complexity, synapse density, and excitatory transmission, while sparing GABAergic neurons. Conversely, genetic elimination of oxytocin receptors increases the expression of protein components of excitatory synapses and excitatory synaptic transmission in vitro. In vivo, oxytocin-receptor-deficient hippocampal pyramidal neurons develop more complex dendrites, which leads to increased spine number and reduced γ-oscillations. These results indicate that oxytocin controls the development of hippocampal excitatory neurons and contributes to the maintenance of a physiological excitation/inhibition balance, whose disruption can cause neurobehavioral disturbances.

  7. More sensitivity of cortical GABAergic neurons than glutamatergic neurons in response to acidosis.

    Science.gov (United States)

    Liu, Hua; Li, Fang; Wang, Chunyan; Su, Zhiqiang

    2016-05-25

    Acidosis impairs brain functions. Neuron-specific mechanisms underlying acidosis-induced brain dysfunction remain elusive. We studied the sensitivity of cortical GABAergic neurons and glutamatergic neurons to acidosis by whole-cell recording in brain slices. The acidification to the neurons was induced by perfusing artificial cerebral spinal fluid with lower pH. This acidification impairs excitability and synaptic transmission in the glutamatergic and GABAergic neurons. Acidosis impairs spiking capacity in the GABAergic neurons more than in the glutamatergic neurons. Acidosis also strengthens glutamatergic synaptic transmission and attenuates GABAergic synaptic transmission on the GABAergic neurons more than the glutamatergic neurons, which results in the functional impairment of these GABAergic neurons. This acidosis-induced dysfunction predominantly in the cortical GABAergic neurons drives the homeostasis of neuronal networks toward overexcitation and exacerbates neuronal impairment.

  8. Mechanosensitive enteric neurons in the guinea pig gastric corpus.

    Science.gov (United States)

    Mazzuoli-Weber, Gemma; Schemann, Michael

    2015-01-01

    For long it was believed that a particular population of enteric neurons, referred to as intrinsic primary afferent neuron (IPAN)s, encodes mechanical stimulation. We recently proposed a new concept suggesting that there are in addition mechanosensitive enteric neurons (MEN) that are multifunctional. Based on firing pattern MEN behaved as rapidly, slowly, or ultra-slowly adapting RAMEN, SAMEN, or USAMEN, respectively. We aimed to validate this concept in the myenteric plexus of the gastric corpus, a region where IPANs were not identified and existence of enteric sensory neurons was even questioned. The gastric corpus is characterized by a particularly dense extrinsic sensory innervation. Neuronal activity was recorded with voltage sensitive dye imaging after deformation of ganglia by compression (intraganglionic volume injection or von Fry hair) or tension (ganglionic stretch). We demonstrated that 27% of the gastric neurons were MEN and responded to intraganglionic volume injection. Of these 73% were RAMEN, 25% SAMEN, and 2% USAMEN with a firing frequency of 1.7 (1.1/2.2), 5.1 (2.2/7.7), and of 5.4 (5.0/15.5) Hz, respectively. The responses were reproducible and stronger with increased stimulus strength. Even after adaptation another deformation evoked spike discharge again suggesting a resetting mode of the mechanoreceptors. All MEN received fast synaptic input. Fifty five percent of all MEN were cholinergic and 45% nitrergic. Responses in some MEN significantly decreased after perfusion of TTX, low Ca(++)/high Mg(++) Krebs solution, capsaicin induced nerve defunctionalization and capsazepine indicating the involvement of TRPV1 expressing extrinsic mechanosensitive nerves. Half of gastric MEN responded to intraganglionic volume injection as well as to ganglionic stretch and 23% responded to stretch only. Tension-sensitive MEN were to a large proportion USAMEN (44%). In summary, we demonstrated for the first time compression and tension-sensitive MEN in the

  9. Mechanosensitive enteric neurons in the guinea pig gastric corpus

    Directory of Open Access Journals (Sweden)

    Gemma eMazzuoli-Weber

    2015-11-01

    Full Text Available For long it was believed that a particular population of enteric neurons, referred to as intrinsic primary afferent neuron (IPANs, encodes mechanical stimulation. We recently proposed a new concept suggesting that there are in addition mechanosensitive enteric neurons (MEN that are multifunctional. Based on firing pattern MEN behaved as rapidly, slowly or ultra-slowly adapting RAMEN, SAMEN or USAMEN, respectively. We aimed to validate this concept in the myenteric plexus of the gastric corpus, a region where IPANs were not identified and existence of enteric sensory neurons was even questioned. The gastric corpus is characterized by a particularly dense extrinsic sensory innervation. Neuronal activity was recorded with voltage sensitive dye imaging after deformation of ganglia by compression (intraganglionic volume injection or von Fry hair or tension (ganglionic stretch. We demonstrated that 27% of the gastric neurons were MEN and responded to intraganglionic volume injection. Of these 73% were RAMEN, 25% SAMEN and 2% USAMEN with a firing frequency of 1.7 (1.1/ 2.2 Hz, 5.1 (2.2/7.7 Hz and of 5.4 (5.0/15.5 Hz, respectively. The responses were reproducible and stronger with increased stimulus strength. Even after adaptation another deformation evoked spike discharge again suggesting a resetting mode of the mechanoreceptors. All MEN received fast synaptic input. 55% of all MEN were cholinergic and 45% nitrergic. Responses in some MEN significantly decreased after perfusion of TTX, low Ca++/high Mg++ Krebs solution, capsaicin induced nerve defunctionalization and capsazepine indicating the involvement of TRPV1 expressing extrinsic mechanosensitive nerves. Half of gastric MEN responded to intraganglionic volume injection as well as to ganglionic stretch and 23% responded to stretch only. Tension-sensitive MEN were to a large proportion USAMEN (44%. In summary, we demonstrated for the first time compression and tension-sensitive MEN in the stomach

  10. Automated identification of neurons and their locations

    CERN Document Server

    Inglis, Andrew; Roe, Dan L; Stanley, H E; Rosene, Douglas L; Urbanc, Brigita

    2007-01-01

    Individual locations of many neuronal cell bodies (>10^4) are needed to enable statistically significant measurements of spatial organization within the brain such as nearest-neighbor and microcolumnarity measurements. In this paper, we introduce an Automated Neuron Recognition Algorithm (ANRA) which obtains the (x,y) location of individual neurons within digitized images of Nissl-stained, 30 micron thick, frozen sections of the cerebral cortex of the Rhesus monkey. Identification of neurons within such Nissl-stained sections is inherently difficult due to the variability in neuron staining, the overlap of neurons, the presence of partial or damaged neurons at tissue surfaces, and the presence of non-neuron objects, such as glial cells, blood vessels, and random artifacts. To overcome these challenges and identify neurons, ANRA applies a combination of image segmentation and machine learning. The steps involve active contour segmentation to find outlines of potential neuron cell bodies followed by artificial ...

  11. Inhibiting cholesterol degradation induces neuronal sclerosis and epileptic activity in mouse hippocampus.

    Science.gov (United States)

    Chali, Farah; Djelti, Fathia; Eugene, Emmanuel; Valderrama, Mario; Marquer, Catherine; Aubourg, Patrick; Duykaerts, Charles; Miles, Richard; Cartier, Nathalie; Navarro, Vincent

    2015-05-01

    Elevations in neuronal cholesterol have been associated with several degenerative diseases. An enhanced excitability and synchronous firing in surviving neurons are among the sequels of neuronal death in these diseases and also in some epileptic syndromes. Here, we attempted to increase neuronal cholesterol levels, using a short hairpin RNA to suppress expression of the enzyme cytochrome P450 family 46, subfamily A, polypeptide 1 gene (CYP46A1). This protein hydroxylates cholesterol and so facilitates transmembrane extrusion. A short hairpin RNA CYP46A1construction coupled to the adeno-associated virus type 5 was injected focally and unilaterally into mouse hippocampus. It was selectively expressed first in neurons of the cornu ammonis (hippocampus) (CA)3a region. Cytoplasmic and membrane cholesterol increased, and the neuronal soma volume increased and then decreased before pyramidal cells died. As CA3a pyramidal cells died, interictal electroencephalographic (EEG) events occurred during exploration and non-rapid eye movement sleep. With time, neuronal death spread to involve pyramidal cells and interneurons of the CA1 region. CA1 neuronal death was correlated with a delayed local expression of phosphorylated tau. Astrocytes were activated throughout the hippocampus and microglial activation was specific to regions of neuronal death. CA1 neuronal death was correlated with distinct aberrant EEG activity. During exploratory behaviour and rapid eye movement sleep, EEG oscillations at 7-10 Hz (theta) could accelerate to 14-21 Hz (beta) waves. They were accompanied by low-amplitude, high-frequency oscillations of peak power at ~300 Hz and a range of 250-350 Hz. Although episodes of EEG acceleration were not correlated with changes in exploratory behaviour, they were followed in some animals by structured seizure-like discharges. These data strengthen links between increased cholesterol, neuronal sclerosis and epileptic behaviour.

  12. Cell-Autonomous Regulation of Dendritic Spine Density by PirB

    Science.gov (United States)

    2016-01-01

    Synapse density on cortical pyramidal neurons is modulated by experience. This process is highest during developmental critical periods, when mechanisms of synaptic plasticity are fully engaged. In mouse visual cortex, the critical period for ocular dominance (OD) plasticity coincides with the developmental pruning of synapses. At this time, mice lacking paired Ig-like receptor B (PirB) have excess numbers of dendritic spines on L5 neurons; these spines persist and are thought to underlie the juvenile-like OD plasticity observed in adulthood. Here we examine whether PirB is required specifically in excitatory neurons to exert its effect on dendritic spine and synapse density during the critical period. In mice with a conditional allele of PirB (PirBfl/fl), PirB was deleted only from L2/3 cortical pyramidal neurons in vivo by timed in utero electroporation of Cre recombinase. Sparse mosaic expression of Cre produced neurons lacking PirB in a sea of wild-type neurons and glia. These neurons had significantly elevated dendritic spine density, as well as increased frequency of miniature EPSCs, suggesting that they receive a greater number of synaptic inputs relative to Cre– neighbors. The effect of cell-specific PirB deletion on dendritic spine density was not accompanied by changes in dendritic branching complexity or axonal bouton density. Together, results imply a neuron-specific, cell-autonomous action of PirB on synaptic density in L2/3 pyramidal cells of visual cortex. Moreover, they are consistent with the idea that PirB functions normally to corepress spine density and synaptic plasticity, thereby maintaining headroom for cells to encode ongoing experience-dependent structural change throughout life.

  13. Chronic stress affects the number of GABAergic neurons in the orbitofrontal cortex of rats.

    Science.gov (United States)

    Varga, Zsófia; Csabai, Dávid; Miseta, Attila; Wiborg, Ove; Czéh, Boldizsár

    2017-01-01

    Cortical GABAergic dysfunctions have been documented by clinical studies in major depression. We used here an animal model for depression and investigated whether long-term stress exposure can affect the number of GABAergic neurons in the orbitofrontal cortex (OFC). Adult male rats were subjected to 7-weeks of daily stress exposure and behaviorally phenotyped as anhedonic or stress-resilient animals. GABAergic interneurons were identified by immunohistochemistry and systematically quantified. We analyzed calbindin-(CB), calretinin-(CR), cholecystokinin-(CCK), parvalbumin-(PV), neuropeptide Y-(NPY) and somatostatin-positive (SST+) neurons in the following specific subareas of the OFC: medial orbital (MO), ventral orbital (VO), lateral orbital (LO) and dorsolateral orbital (DLO) cortex. For comparison, we also analyzed the primary motor cortex (M1) as a non-limbic cortical area. Stress had a pronounced effect on CB+ neurons and reduced their densities by 40-50% in the MO, VO and DLO. Stress had no effect on CCK+, CR+, PV+, NPY+ and SST+ neurons in any cortical areas. None of the investigated GABAergic neurons were affected by stress in the primary motor cortex. Interestingly, in the stress-resilient animals, we observed a significantly increased density of CCK+ neurons in the VO. NPY+ neuron densities were also significantly different between the anhedonic and stress-resilient rats, but only in the LO. Our present data demonstrate that chronic stress can specifically reduce the density of calbindin-positive GABAergic neurons in the orbitofrontal cortex and suggest that NPY and CCK expression in the OFC may relate to the stress resilience of the animals. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A First-Order Non-Homogeneous Markov Model for the Response of Spiking Neurons Stimulated by Small Phase-Continuous Signals

    CERN Document Server

    Tapson, J; van Schaik, A; Etienne-Cummings, R

    2008-01-01

    We present a first-order non-homogeneous Markov model for the interspike-interval density of a continuously stimulated spiking neuron. The model allows the conditional interspike-interval density and the stationary interspike-interval density to be expressed as products of two separate functions, one of which describes only the neuron characteristics, and the other of which describes only the signal characteristics. This allows the use of this model to predict the response when the underlying neuron model is not known or well determined. The approximation shows particularly clearly that signal autocorrelations and cross-correlations arise as natural features of the interspike-interval density, and are particularly clear for small signals and moderate noise. We show that this model simplifies the design of spiking neuron cross-correlation systems, and describe a four-neuron mutual inhibition network that generates a cross-correlation output for two input signals.

  15. Ovarian volume throughout life

    DEFF Research Database (Denmark)

    Kelsey, Thomas W; Dodwell, Sarah K; Wilkinson, A Graham

    2013-01-01

    cancer. To date there is no normative model of ovarian volume throughout life. By searching the published literature for ovarian volume in healthy females, and using our own data from multiple sources (combined n=59,994) we have generated and robustly validated the first model of ovarian volume from...... to about 2.8 mL (95% CI 2.7-2.9 mL) at the menopause and smaller volumes thereafter. Our model allows us to generate normal values and ranges for ovarian volume throughout life. This is the first validated normative model of ovarian volume from conception to old age; it will be of use in the diagnosis...

  16. NeuriteQuant: An open source toolkit for high content screens of neuronal Morphogenesis

    Directory of Open Access Journals (Sweden)

    Hwang Eric

    2011-10-01

    Full Text Available Abstract Background To date, some of the most useful and physiologically relevant neuronal cell culture systems, such as high density co-cultures of astrocytes and primary hippocampal neurons, or differentiated stem cell-derived cultures, are characterized by high cell density and partially overlapping cellular structures. Efficient analytical strategies are required to enable rapid, reliable, quantitative analysis of neuronal morphology in these valuable model systems. Results Here we present the development and validation of a novel bioinformatics pipeline called NeuriteQuant. This tool enables fully automated morphological analysis of large-scale image data from neuronal cultures or brain sections that display a high degree of complexity and overlap of neuronal outgrowths. It also provides an efficient web-based tool to review and evaluate the analysis process. In addition to its built-in functionality, NeuriteQuant can be readily extended based on the rich toolset offered by ImageJ and its associated community of developers. As proof of concept we performed automated screens for modulators of neuronal development in cultures of primary neurons and neuronally differentiated P19 stem cells, which demonstrated specific dose-dependent effects on neuronal morphology. Conclusions NeuriteQuant is a freely available open-source tool for the automated analysis and effective review of large-scale high-content screens. It is especially well suited to quantify the effect of experimental manipulations on physiologically relevant neuronal cultures or brain sections that display a high degree of complexity and overlap among neurites or other cellular structures.

  17. Neuronize: a tool for building realistic neuronal cell morphologies

    Science.gov (United States)

    Brito, Juan P.; Mata, Susana; Bayona, Sofia; Pastor, Luis; DeFelipe, Javier; Benavides-Piccione, Ruth

    2013-01-01

    This study presents a tool, Neuronize, for building realistic three-dimensional models of neuronal cells from the morphological information extracted through computer-aided tracing applications. Neuronize consists of a set of methods designed to build 3D neural meshes that approximate the cell membrane at different resolution levels, allowing a balance to be reached between the complexity and the quality of the final model. The main contribution of the present study is the proposal of a novel approach to build a realistic and accurate 3D shape of the soma from the incomplete information stored in the digitally traced neuron, which usually consists of a 2D cell body contour. This technique is based on the deformation of an initial shape driven by the position and thickness of the first order dendrites. The addition of a set of spines along the dendrites completes the model, building a final 3D neuronal cell suitable for its visualization in a wide range of 3D environments. PMID:23761740

  18. Isoflurane-induced neuronal apoptosis in developing hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Hongliang Liu; Tijun Dai; Weitao Guo

    2013-01-01

    We hypothesized that the P2X7 receptor may be the target of isoflurane, so we investigated the roles of the P2X7 receptor and inositol triphosphate receptor in calcium overload and neuronal apoptosis induced by isoflurane in cultured embryonic rat hippocampal neurons. Results showed that isoflurane induced widespread neuronal apoptosis and significantly increased cytoplasmic Ca2+. Blockade of P2X7 receptors or removal of extracellular Ca2+ combined with blockade of inositol triphosphate receptors completely inhibited apoptosis or increase in cytoplasmic Ca2+. Removal of extracellular Ca2+ or blockade of inositol triphosphate receptor alone could partly inhibit these effects of isoflurane. Isoflurane could directly activate P2X7-gated channels and induce inward currents, but did not affect the expression of P2X7 receptor protein in neurons. These findings indicate that the mechanism by which isoflurane induced neuronal apoptosis in rat developing brain was mediated by intracellular calcium overload, which was caused by P2X7 receptor mediated calcium influx and inositol triphosphate receptor mediated calcium release.

  19. The NG2 Protein Is Not Required for Glutamatergic Neuron-NG2 Cell Synaptic Signaling.

    Science.gov (United States)

    Passlick, Stefan; Trotter, Jacqueline; Seifert, Gerald; Steinhäuser, Christian; Jabs, Ronald

    2016-01-01

    NG2 glial cells (as from now NG2 cells) are unique in receiving synaptic input from neurons. However, the components regulating formation and maintenance of these neuron-glia synapses remain elusive. The transmembrane protein NG2 has been considered a potential mediator of synapse formation and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) clustering, because it contains 2 extracellular Laminin G/Neurexin/Sex Hormone-Binding Globulin domains, which in neurons are crucial for formation of transsynaptic neuroligin-neurexin complexes. NG2 is connected via Glutamate Receptor-Interacting Protein with GluA2/3-containing AMPARs, thereby possibly mediating receptor clustering in glial postsynaptic density. To elucidate the role of NG2 in neuron-glia communication, we investigated glutamatergic synaptic transmission in juvenile and aged hippocampal NG2 cells of heterozygous and homozygous NG2 knockout mice. Neuron-NG2 cell synapses readily formed in the absence of NG2. Short-term plasticity, synaptic connectivity, postsynaptic AMPAR current kinetics, and density were not affected by NG2 deletion. During development, an NG2-independent acceleration of AMPAR current kinetics and decreased synaptic connectivity were observed. Our results indicate that the lack of NG2 does not interfere with genesis and basic properties of neuron-glia synapses. In addition, we demonstrate frequent expression of neuroligins 1-3 in juvenile and aged NG2 cells, suggesting a role of these molecules in synapse formation between NG2 glia and neurons.

  20. Active Pore Volume in Danish Peat Soils

    DEFF Research Database (Denmark)

    Forsmann, Ditte M.; Kjærgaard, Charlotte

    2012-01-01

    cm3 intact soil samples. Finally, breakthrough of tritium (3H2O) was used to construct breakthrough curves for each peat soil, which indicates the flow pattern in the soil. A mobile-immobile domain model (MIM-model) in CXTFIT was used to derive parameters describing the size of the immobile...... and mobile domains as well as the exchange between the two domains. Finally, the samples were dried in the own for determination of the bulk density. The bulk density was correlated to parameters from the MIM-model and to the macropore volume to determine, whether bulk density can be used as a key parameter....

  1. Finite volume renormalization scheme for fermionic operators

    Energy Technology Data Exchange (ETDEWEB)

    Monahan, Christopher; Orginos, Kostas [JLAB

    2013-11-01

    We propose a new finite volume renormalization scheme. Our scheme is based on the Gradient Flow applied to both fermion and gauge fields and, much like the Schr\\"odinger functional method, allows for a nonperturbative determination of the scale dependence of operators using a step-scaling approach. We give some preliminary results for the pseudo-scalar density in the quenched approximation.

  2. Cajal body number and nucleolar size correlate with the cell body mass in human sensory ganglia neurons.

    Science.gov (United States)

    Berciano, Maria T; Novell, Mariona; Villagra, Nuria T; Casafont, Iñigo; Bengoechea, Rocio; Val-Bernal, J Fernado; Lafarga, Miguel

    2007-06-01

    This paper studies the cell size-dependent organization of the nucleolus and Cajal bodies (CBs) in dissociated human dorsal root ganglia (DRG) neurons from autopsy tissue samples of patients without neurological disease. The quantitative analysis of nucleoli with an anti-fibrillarin antibody showed that all neurons have only one nucleolus. However, the nucleolar volume and the number of fibrillar centers per nucleolus significantly increase as a function of cell body size. Immunostaining for coilin demonstrated the presence of numerous CBs in DRG neurons (up to 20 in large size neurons). The number of CBs per neuron correlated positively with the cell body volume. Light and electron microscopy immunocytochemical analysis revealed the concentration of coilin, snRNPs, SMN and fibrillarin in CBs of DRG neurons. CBs were frequently associated with the nucleolus, active chromatin domains and PML bodies, but not with telomeres. Our results support the view that the nucleolar volume and number of both fibrillar centers and CBs depend on the cell body mass, a parameter closely related to transcriptional and synaptic activity in mammalian neurons. Moreover, the unusual large number of CBs could facilitate the transfer of RNA processing components from CBs to nucleolar and nucleoplasmic sites of RNA processing.

  3. Brain-derived neurotrophic factor mediates estradiol-induced dendritic spine formation in hippocampal neurons.

    Science.gov (United States)

    Murphy, D D; Cole, N B; Segal, M

    1998-09-15

    Dendritic spines are of major importance in information processing and memory formation in central neurons. Estradiol has been shown to induce an increase of dendritic spine density on hippocampal neurons in vivo and in vitro. The neurotrophin brain-derived neurotrophic factor (BDNF) recently has been implicated in neuronal maturation, plasticity, and regulation of GABAergic interneurons. We now demonstrate that estradiol down-regulates BDNF in cultured hippocampal neurons to 40% of control values within 24 hr of exposure. This, in turn, decreases inhibition and increases excitatory tone in pyramidal neurons, leading to a 2-fold increase in dendritic spine density. Exogenous BDNF blocks the effects of estradiol on spine formation, and BDNF depletion with a selective antisense oligonucleotide mimics the effects of estradiol. Addition of BDNF antibodies also increases spine density, and diazepam, which facilitates GABAergic neurotransmission, blocks estradiol-induced spine formation. These observations demonstrate a functional link between estradiol, BDNF as a potent regulator of GABAergic interneurons, and activity-dependent formation of dendritic spines in hippocampal neurons.

  4. Neuronal injury and cytogenesis after simple febrile seizures in the hippocampal dentate gyrus of juvenile rat.

    Science.gov (United States)

    Nazem, Amir; Jafarian, Amir Hossein; Sadraie, Seyed Homayoon; Gorji, Ali; Kheradmand, Hamed; Radmard, Mahla; Haghir, Hossein

    2012-11-01

    Although simple febrile seizures are frequently described as harmless, there is evidence which suggests that hippocampal damage may occur after simple febrile seizures. This study aimed to investigate possible neuronal damages as well as alterations in cytogenesis in the hippocampal dentate gyrus following simple febrile seizures. Simple febrile seizure was modeled by hyperthermia-induced seizures in 22-day-old male rats. The brains were removed 2 or 15 days after hyperthermia in all rats with (n=20) and without (n=10) occurrence of seizures as well as in control animals (n=10). The sections were stained with hematoxylin and eosin to estimate the surface numerical density of dark neurons. Ki-67 immunohistochemistry was performed to evaluate changes of cytogenesis following simple febrile seizures. Hyperthermia induced behavioral seizure activities in 67 % of the rats. The numerical densities of dark neurons as well as the mean Ki-67 index (the fraction of Ki-67-positive cells) were significantly increased in dentate gyrus after induction of seizures by hyperthermia compared to both controls and rats without seizure after hyperthermia. Both the seizure duration and intensity were correlated significantly with numerical densities of dark neurons (but not with Ki-67 index). The data indicate that simple febrile seizures can cause neuronal damages and enhancement of cytogenesis in the hippocampal dentate gyrus, which were still visible for at least 2 weeks. These findings also suggest the correlation of febrile seizure intensity and duration with neuronal damage.

  5. Pan-neuronal imaging in roaming Caenorhabditis elegans.

    Science.gov (United States)

    Venkatachalam, Vivek; Ji, Ni; Wang, Xian; Clark, Christopher; Mitchell, James Kameron; Klein, Mason; Tabone, Christopher J; Florman, Jeremy; Ji, Hongfei; Greenwood, Joel; Chisholm, Andrew D; Srinivasan, Jagan; Alkema, Mark; Zhen, Mei; Samuel, Aravinthan D T

    2016-02-23

    We present an imaging system for pan-neuronal recording in crawling Caenorhabditis elegans. A spinning disk confocal microscope, modified for automated tracking of the C. elegans head ganglia, simultaneously records the activity and position of ∼80 neurons that coexpress cytoplasmic calcium indicator GCaMP6s and nuclear localized red fluorescent protein at 10 volumes per second. We developed a behavioral analysis algorithm that maps the movements of the head ganglia to the animal's posture and locomotion. Image registration and analysis software automatically assigns an index to each nucleus and calculates the corresponding calcium signal. Neurons with highly stereotyped positions can be associated with unique indexes and subsequently identified using an atlas of the worm nervous system. To test our system, we analyzed the brainwide activity patterns of moving worms subjected to thermosensory inputs. We demonstrate that our setup is able to uncover representations of sensory input and motor output of individual neurons from brainwide dynamics. Our imaging setup and analysis pipeline should facilitate mapping circuits for sensory to motor transformation in transparent behaving animals such as C. elegans and Drosophila larva.

  6. Future Road Density

    Data.gov (United States)

    U.S. Environmental Protection Agency — Road density is generally highly correlated with amount of developed land cover. High road densities usually indicate high levels of ecological disturbance. More...

  7. GDNF family ligands display distinct action profiles on cultured GABAergic and serotonergic neurons of rat ventral mesencephalon

    DEFF Research Database (Denmark)

    Ducray, Angélique; Krebs, Sandra H:; Schaller, Benoft;

    2006-01-01

    of the GFLs affected soma size of GABA-ir neurons. In contrast, only NRTN treatment significantly increased 5-HT-ir cells densities at 10 ng/ml (1.3-fold), while an augmentation was seen for GDNF and PSPN at 100 ng/ml (2.4-fold and 1.7-fold, respectively). ARTN had no effect on 5-HT-ir cell densities....... Morphological analysis of 5-HT-ir neurons revealed a significant increase of soma size, number of primary neurites/neuron and neurite length/neuron after GDNF exposure, while PSPN only affected soma size, and NRTN and ARTN failed to exert any effect. In conclusion, we identified GFLs as effective neurotrophic...... factors for VM GABAergic and serotonergic neurons, demonstrating characteristic individual action profiles emphasizing their important and distinct roles during brain development....

  8. Mean nuclear volume

    DEFF Research Database (Denmark)

    Mogensen, O.; Sørensen, Flemming Brandt; Bichel, P.

    1999-01-01

    We evaluated the following nine parameters with respect to their prognostic value in females with endometrial cancer: four stereologic parameters [mean nuclear volume (MNV), nuclear volume fraction, nuclear index and mitotic index], the immunohistochemical expression of cancer antigen (CA125...

  9. Crowding and Density

    Science.gov (United States)

    Design and Environment, 1972

    1972-01-01

    Three-part report pinpointing problems and uncovering solutions for the dual concepts of density (ratio of people to space) and crowding (psychological response to density). Section one, A Primer on Crowding,'' reviews new psychological and social findings; section two, Density in the Suburbs,'' shows conflict between status quo and increased…

  10. Npas1+ Pallidal Neurons Target Striatal Projection Neurons.

    Science.gov (United States)

    Glajch, Kelly E; Kelver, Daniel A; Hegeman, Daniel J; Cui, Qiaoling; Xenias, Harry S; Augustine, Elizabeth C; Hernández, Vivian M; Verma, Neha; Huang, Tina Y; Luo, Minmin; Justice, Nicholas J; Chan, C Savio

    2016-05-18

    Compelling evidence demonstrates that the external globus pallidus (GPe) plays a key role in processing sensorimotor information. An anatomical projection from the GPe to the dorsal striatum has been described for decades. However, the cellular target and functional impact of this projection remain unknown. Using cell-specific transgenic mice, modern monosynaptic tracing techniques, and optogenetics-based mapping, we discovered that GPe neurons provide inhibitory inputs to direct and indirect pathway striatal projection neurons (SPNs). Our results indicate that the GPe input to SPNs arises primarily from Npas1-expressing neurons and is strengthened in a chronic Parkinson's disease (PD) model. Alterations of the GPe-SPN input in a PD model argue for the critical position of this connection in regulating basal ganglia motor output and PD symptomatology. Finally, chemogenetic activation of Npas1-expressing GPe neurons suppresses motor output, arguing that strengthening of the GPe-SPN connection is maladaptive and may underlie the hypokinetic symptoms in PD. An anatomical projection from the pallidum to the striatum has been described for decades, but little is known about its connectivity pattern. The authors dissect the presynaptic and postsynaptic neurons involved in this projection, and show its cell-specific remodeling and strengthening in parkinsonian mice. Chemogenetic activation of Npas1(+) pallidal neurons that give rise to the principal pallidostriatal projection increases the time that the mice spend motionless. This argues that maladaptive strengthening of this connection underlies the paucity of volitional movements, which is a hallmark of Parkinson's disease. Copyright © 2016 the authors 0270-6474/16/365472-17$15.00/0.

  11. Density and Specific Gravity Metrics in Biomass Research

    Science.gov (United States)

    Micheal C. Wiemann; G. Bruce Williamson

    2012-01-01

    Following the 2010 publication of Measuring Wood Specific Gravity… Correctly in the American Journal of Botany, readers contacted us to inquire about application of wood density and specific gravity to biomass research. Here we recommend methods for sample collection, volume measurement, and determination of wood density and specific gravity for...

  12. Probing the density content of the nuclear symmetry energy

    Indian Academy of Sciences (India)

    B K Agrawal; J N De; S K Samaddar

    2014-05-01

    The nature of equation of state for the neutron star matter is crucially governed by the density dependence of the nuclear symmetry energy. We attempt to probe the behaviour of the nuclear symmetry energy around the saturation density by exploiting the empirical values for volume and surface symmetry energy coefficients extracted from the precise data on the nuclear masses.

  13. Information diversity in structure and dynamics of simulated neuronal networks.

    Science.gov (United States)

    Mäki-Marttunen, Tuomo; Aćimović, Jugoslava; Nykter, Matti; Kesseli, Juha; Ruohonen, Keijo; Yli-Harja, Olli; Linne, Marja-Leena

    2011-01-01

    Neuronal networks exhibit a wide diversity of structures, which contributes to the diversity of the dynamics therein. The presented work applies an information theoretic framework to simultaneously analyze structure and dynamics in neuronal networks. Information diversity within the structure and dynamics of a neuronal network is studied using the normalized compression distance. To describe the structure, a scheme for generating distance-dependent networks with identical in-degree distribution but variable strength of dependence on distance is presented. The resulting network structure classes possess differing path length and clustering coefficient distributions. In parallel, comparable realistic neuronal networks are generated with NETMORPH simulator and similar analysis is done on them. To describe the dynamics, network spike trains are simulated using different network structures and their bursting behaviors are analyzed. For the simulation of the network activity the Izhikevich model of spiking neurons is used together with the Tsodyks model of dynamical synapses. We show that the structure of the simulated neuronal networks affects the spontaneous bursting activity when measured with bursting frequency and a set of intraburst measures: the more locally connected networks produce more and longer bursts than the more random networks. The information diversity of the structure of a network is greatest in the most locally connected networks, smallest in random networks, and somewhere in between in the networks between order and disorder. As for the dynamics, the most locally connected networks and some of the in-between networks produce the most complex intraburst spike trains. The same result also holds for sparser of the two considered network densities in the case of full spike trains.

  14. More questions for mirror neurons.

    Science.gov (United States)

    Borg, Emma

    2013-09-01

    The mirror neuron system is widely held to provide direct access to the motor goals of others. This paper critically investigates this idea, focusing on the so-called 'intentional worry'. I explore two answers to the intentional worry: first that the worry is premised on too limited an understanding of mirror neuron behaviour (Sections 2 and 3), second that the appeal made to mirror neurons can be refined in such a way as to avoid the worry (Section 4). I argue that the first response requires an account of the mechanism by which small-scale gestures are supposedly mapped to larger chains of actions but that none of the extant accounts of this mechanism are plausible. Section 4 then briefly examines refinements of the mirror neuron-mindreading hypothesis which avoid the intentional worry. I conclude that these refinements may well be plausible but that they undermine many of the claims standardly made for mirror neurons. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. [Neurons that encode sound direction].

    Science.gov (United States)

    Peña, J L

    In the auditory system, the inner ear breaks down complex signals into their spectral components, and encodes the amplitude and phase of each. In order to infer sound direction in space, a computation on each frequency component of the sound must be performed. Space specific neurons in the owl s inferior colliculus respond only to sounds coming from a particular direction and represent the results of this computation. The interaural time difference (ITD) and interaural level difference (ILD define the auditory space for the owl and are processed in separate neural pathways. The parallel pathways that process these cues merge in the external nucleus of the inferior colliculus where the space specific neurons are selective to combinations of ITD and ILD. How do inputs from the two sources interact to produce combination selectivity to ITD ILD pairs? A multiplication of postsynaptic potentials tuned to ITD and ILD can account for the subthreshold responses of these neurons to ITD ILD pairs. Examples of multiplication by neurons or neural circuits are scarce, but many computational models assume the existence of this basic operation. The owl s auditory system uses such operation to create a 2 dimensional map of auditory space. The map of space in the owl s auditory system shows important similarities with representations of space in the cerebral cortex and other sensory systems. In encoding space or other stimulus features, individual neurons appear to possess analogous functional properties related to the synthesis of high order receptive fields.

  16. Stochastic phase-change neurons

    Science.gov (United States)

    Tuma, Tomas; Pantazi, Angeliki; Le Gallo, Manuel; Sebastian, Abu; Eleftheriou, Evangelos

    2016-08-01

    Artificial neuromorphic systems based on populations of spiking neurons are an indispensable tool in understanding the human brain and in constructing neuromimetic computational systems. To reach areal and power efficiencies comparable to those seen in biological systems, electroionics-based and phase-change-based memristive devices have been explored as nanoscale counterparts of synapses. However, progress on scalable realizations of neurons has so far been limited. Here, we show that chalcogenide-based phase-change materials can be used to create an artificial neuron in which the membrane potential is represented by the phase configuration of the nanoscale phase-change device. By exploiting the physics of reversible amorphous-to-crystal phase transitions, we show that the temporal integration of postsynaptic potentials can be achieved on a nanosecond timescale. Moreover, we show that this is inherently stochastic because of the melt-quench-induced reconfiguration of the atomic structure occurring when the neuron is reset. We demonstrate the use of these phase-change neurons, and their populations, in the detection of temporal correlations in parallel data streams and in sub-Nyquist representation of high-bandwidth signals.

  17. Brain Neurons as Quantum Computers:

    Science.gov (United States)

    Bershadskii, A.; Dremencov, E.; Bershadskii, J.; Yadid, G.

    The question: whether quantum coherent states can sustain decoherence, heating and dissipation over time scales comparable to the dynamical timescales of brain neurons, has been actively discussed in the last years. A positive answer on this question is crucial, in particular, for consideration of brain neurons as quantum computers. This discussion was mainly based on theoretical arguments. In the present paper nonlinear statistical properties of the Ventral Tegmental Area (VTA) of genetically depressive limbic brain are studied in vivo on the Flinders Sensitive Line of rats (FSL). VTA plays a key role in the generation of pleasure and in the development of psychological drug addiction. We found that the FSL VTA (dopaminergic) neuron signals exhibit multifractal properties for interspike frequencies on the scales where healthy VTA dopaminergic neurons exhibit bursting activity. For high moments the observed multifractal (generalized dimensions) spectrum coincides with the generalized dimensions spectrum calculated for a spectral measure of a quantum system (so-called kicked Harper model, actively used as a model of quantum chaos). This observation can be considered as a first experimental (in vivo) indication in the favor of the quantum (at least partially) nature of brain neurons activity.

  18. Density-dependence of functional spiking networks in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Michael I [Los Alamos National Laboratory; Gintautuas, Vadas [Los Alamos National Laboratory; Rodriguez, Marko A [Los Alamos National Laboratory; Bettencourt, Luis M A [Los Alamos National Laboratory; Bennett, Ryan [UNIV OF NORTH TEXAS; Santa Maria, Cara L [UNIV OF NORTH TEXAS

    2008-01-01

    During development, the mammalian brain differentiates into specialized regions with unique functional abilities. While many factors contribute to this functional specialization, we explore the effect neuronal density can have on neuronal interactions. Two types of networks, dense (50,000 neurons and glia support cells) and sparse (12,000 neurons and glia support cells), are studied. A competitive first response model is applied to construct activation graphs that represent pairwise neuronal interactions. By observing the evolution of these graphs during development in vitro we observe that dense networks form activation connections earlier than sparse networks, and that link-!llltropy analysis of the resulting dense activation graphs reveals that balanced directional connections dominate. Information theoretic measures reveal in addition that early functional information interactions (of order 3) are synergetic in both dense and sparse networks. However, during development in vitro, such interactions become redundant in dense, but not sparse networks. Large values of activation graph link-entropy correlate strongly with redundant ensembles observed in the dense networks. Results demonstrate differences between dense and sparse networks in terms of informational groups, pairwise relationships, and activation graphs. These differences suggest that variations in cell density may result in different functional specialization of nervous system tissue also in vivo.

  19. Characterizing the Spatial Density Functions of Neural Arbors

    Science.gov (United States)

    Teeter, Corinne Michelle

    Recently, it has been proposed that a universal function describes the way in which all arbors (axons and dendrites) spread their branches over space. Data from fish retinal ganglion cells as well as cortical and hippocampal arbors from mouse, rat, cat, monkey and human provide evidence that all arbor density functions (adf) can be described by a Gaussian function truncated at approximately two standard deviations. A Gaussian density function implies that there is a minimal set of parameters needed to describe an adf: two or three standard deviations (depending on the dimensionality of the arbor) and an amplitude. However, the parameters needed to completely describe an adf could be further constrained by a scaling law found between the product of the standard deviations and the amplitude of the function. In the following document, I examine the scaling law relationship in order to determine the minimal set of parameters needed to describe an adf. First, I find that the at, two-dimensional arbors of fish retinal ganglion cells require only two out of the three fundamental parameters to completely describe their density functions. Second, the three-dimensional, volume filling, cortical arbors require four fundamental parameters: three standard deviations and the total length of an arbor (which corresponds to the amplitude of the function). Next, I characterize the shape of arbors in the context of the fundamental parameters. I show that the parameter distributions of the fish retinal ganglion cells are largely homogenous. In general, axons are bigger and less dense than dendrites; however, they are similarly shaped. The parameter distributions of these two arbor types overlap and, therefore, can only be differentiated from one another probabilistically based on their adfs. Despite artifacts in the cortical arbor data, different types of arbors (apical dendrites, non-apical dendrites, and axons) can generally be differentiated based on their adfs. In addition, within

  20. Chronic murine toxoplasmosis is defined by subtle changes in neuronal connectivity

    Directory of Open Access Journals (Sweden)

    Alexandru Parlog

    2014-04-01

    Full Text Available Recent studies correlate chronic Toxoplasma gondii (T. gondii infection with behavioral changes in rodents; additionally, seropositivity in humans is reported to be associated with behavioral and neuropsychiatric diseases. In this study we investigated whether the described behavioral changes in a murine model of chronic toxoplasmosis are associated with changes in synaptic plasticity and brain neuronal circuitry. In mice chronically infected with T. gondii, magnetic resonance imaging (MRI data analysis displayed the presence of heterogeneous lesions scattered throughout all brain areas. However, a higher density of lesions was observed within specific regions such as the somatosensory cortex (SSC. Further histopathological examination of these brain areas indicated the presence of activated resident glia and recruited immune cells accompanied by limited alterations of neuronal viability. In vivo diffusion-tensor MRI analysis of neuronal fiber density within the infected regions revealed connectivity abnormalities in the SSC. Altered fiber density was confirmed by morphological analysis of individual, pyramidal and granule neurons, showing a reduction in dendritic arbor and spine density within the SSC, as well as in the hippocampus. Evaluation of synapse efficacy revealed diminished levels of two key synaptic proteins, PSD95 and synaptophysin, within the same brain areas, indicating deficits in functionality of the synaptic neurotransmission in infected mice. Our results demonstrate that persistent T. gondii infection in a murine model results in synaptic deficits within brain structures leading to disturbances in the morphology of noninfected neurons and modified brain connectivity, suggesting a potential explanation for the behavioral and neuropsychiatric alterations.

  1. Hyperactivity of Newborn Pten Knock-out Neurons Results from Increased Excitatory Synaptic Drive

    Science.gov (United States)

    Williams, Michael R.; DeSpenza, Tyrone; Li, Meijie; Gulledge, Allan T.

    2015-01-01

    Developing neurons must regulate morphology, intrinsic excitability, and synaptogenesis to form neural circuits. When these processes go awry, disorders, including autism spectrum disorder (ASD) or epilepsy, may result. The phosphatase Pten is mutated in some patients having ASD and seizures, suggesting that its mutation disrupts neurological function in part through increasing neuronal activity. Supporting this idea, neuronal knock-out of Pten in mice can cause macrocephaly, behavioral changes similar to ASD, and seizures. However, the mechanisms through which excitability is enhanced following Pten depletion are unclear. Previous studies have separately shown that Pten-depleted neurons can drive seizures, receive elevated excitatory synaptic input, and have abnormal dendrites. We therefore tested the hypothesis that developing Pten-depleted neurons are hyperactive due to increased excitatory synaptogenesis using electrophysiology, calcium imaging, morphological analyses, and modeling. This was accomplished by coinjecting retroviruses to either “birthdate” or birthdate and knock-out Pten in granule neurons of the murine neonatal dentate gyrus. We found that Pten knock-out neurons, despite a rapid onset of hypertrophy, were more active in vivo. Pten knock-out neurons fired at more hyperpolarized membrane potentials, displayed greater peak spike rates, and were more sensitive to depolarizing synaptic input. The increased sensitivity of Pten knock-out neurons was due, in part, to a higher density of synapses located more proximal to the soma. We determined that increased synaptic drive was sufficient to drive hypertrophic Pten knock-out neurons beyond their altered action potential threshold. Thus, our work contributes a developmental mechanism for the increased activity of Pten-depleted neurons. PMID:25609613

  2. Sodium sensing in neurons with a dendrimer-based nanoprobe.

    Science.gov (United States)

    Lamy, Christophe M; Sallin, Olivier; Loussert, Céline; Chatton, Jean-Yves

    2012-02-28

    Ion imaging is a powerful methodology to assess fundamental biological processes in live cells. The limited efficiency of some ion-sensing probes and their fast leakage from cells are important restrictions to this approach. In this study, we present a novel strategy based on the use of dendrimer nanoparticles to obtain better intracellular retention of fluorescent probes and perform prolonged fluorescence imaging of intracellular ion dynamics. A new sodium-sensitive nanoprobe was generated by encapsulating a sodium dye in a PAMAM dendrimer nanocontainer. This nanoprobe is very stable and has high sodium sensitivity and selectivity. When loaded in neurons in live brain tissue, it homogenously fills the entire cell volume, including small processes, and stays for long durations, with no detectable alterations of cell functional properties. We demonstrate the suitability of this new sodium nanosensor for monitoring physiological sodium responses such as those occurring during neuronal activity.

  3. Regulation of Cerebral Cortical Size and Neuron Number by Fibroblast Growth Factors: Implications for Autism

    Science.gov (United States)

    Vaccarino, Flora M.; Grigorenko, Elena L.; Smith, Karen Muller; Stevens, Hanna E.

    2009-01-01

    Increased brain size is common in children with autism spectrum disorders. Here we propose that an increased number of cortical excitatory neurons may underlie the increased brain volume, minicolumn pathology and excessive network excitability, leading to sensory hyper-reactivity and seizures, which are often found in autism. We suggest that…

  4. The origin of cortical neurons

    Directory of Open Access Journals (Sweden)

    J.G. Parnavelas

    2002-12-01

    Full Text Available Neurons of the mammalian cerebral cortex comprise two broad classes: pyramidal neurons, which project to distant targets, and the inhibitory nonpyramidal cells, the cortical interneurons. Pyramidal neurons are generated in the germinal ventricular zone, which lines the lateral ventricles, and migrate along the processes of radial glial cells to their positions in the developing cortex in an `inside-out' sequence. The GABA-containing nonpyramidal cells originate for the most part in the ganglionic eminence, the primordium of the basal ganglia in the ventral telencephalon. These cells follow tangential migratory routes to enter the cortex and are in close association with the corticofugal axonal system. Once they enter the cortex, they move towards the ventricular zone, possibly to obtain positional information, before they migrate radially in the direction of the pial surface to take up their positions in the developing cortex. The mechanisms that guide interneurons throughout these long and complex migratory routes are currently under investigation.

  5. Correlations and Neuronal Population Information.

    Science.gov (United States)

    Kohn, Adam; Coen-Cagli, Ruben; Kanitscheider, Ingmar; Pouget, Alexandre

    2016-07-01

    Brain function involves the activity of neuronal populations. Much recent effort has been devoted to measuring the activity of neuronal populations in different parts of the brain under various experimental conditions. Population activity patterns contain rich structure, yet many studies have focused on measuring pairwise relationships between members of a larger population-termed noise correlations. Here we review recent progress in understanding how these correlations affect population information, how information should be quantified, and what mechanisms may give rise to correlations. As population coding theory has improved, it has made clear that some forms of correlation are more important for information than others. We argue that this is a critical lesson for those interested in neuronal population responses more generally: Descriptions of population responses should be motivated by and linked to well-specified function. Within this context, we offer suggestions of where current theoretical frameworks fall short.

  6. Turning skin into dopamine neurons

    Institute of Scientific and Technical Information of China (English)

    Malin Parmar; Johan Jakobsson

    2011-01-01

    The possibility to generate neurons from fibroblasts became a reality with the development of iPS technology a few years ago.By reprogramming somatic cells using transcription factor (TF) overexpression,it is possible to generate pluripotent stem cells that then can be differentiated into any somatic cell type including various subtypes of neurons.This raises the possibility of using donor-matched or even patientspecific cells for cell therapy of neurological disorders such as Parkinson's disease (PD),Huntington's disease and stroke.Supporting this idea,dopamine neurons,which are the cells dying in PD,derived from human iPS cells have been demonstrated to survive transplantation and reverse motor symptoms in animal models of PD [1].

  7. The neuronal code for number.

    Science.gov (United States)

    Nieder, Andreas

    2016-06-01

    Humans and non-human primates share an elemental quantification system that resides in a dedicated neural network in the parietal and frontal lobes. In this cortical network, 'number neurons' encode the number of elements in a set, its cardinality or numerosity, irrespective of stimulus appearance across sensory motor systems, and from both spatial and temporal presentation arrays. After numbers have been extracted from sensory input, they need to be processed to support goal-directed behaviour. Studying number neurons provides insights into how information is maintained in working memory and transformed in tasks that require rule-based decisions. Beyond an understanding of how cardinal numbers are encoded, number processing provides a window into the neuronal mechanisms of high-level brain functions.

  8. Prospective Coding by Spiking Neurons.

    Directory of Open Access Journals (Sweden)

    Johanni Brea

    2016-06-01

    Full Text Available Animals learn to make predictions, such as associating the sound of a bell with upcoming feeding or predicting a movement that a motor command is eliciting. How predictions are realized on the neuronal level and what plasticity rule underlies their learning is not well understood. Here we propose a biologically plausible synaptic plasticity rule to learn predictions on a single neuron level on a timescale of seconds. The learning rule allows a spiking two-compartment neuron to match its current firing rate to its own expected future discounted firing rate. For instance, if an originally neutral event is repeatedly followed by an event that elevates the firing rate of a neuron, the originally neutral event will eventually also elevate the neuron's firing rate. The plasticity rule is a form of spike timing dependent plasticity in which a presynaptic spike followed by a postsynaptic spike leads to potentiation. Even if the plasticity window has a width of 20 milliseconds, associations on the time scale of seconds can be learned. We illustrate prospective coding with three examples: learning to predict a time varying input, learning to predict the next stimulus in a delayed paired-associate task and learning with a recurrent network to reproduce a temporally compressed version of a sequence. We discuss the potential role of the learning mechanism in classical trace conditioning. In the special case that the signal to be predicted encodes reward, the neuron learns to predict the discounted future reward and learning is closely related to the temporal difference learning algorithm TD(λ.

  9. Probability densities and Lévy densities

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler

    For positive Lévy processes (i.e. subordinators) formulae are derived that express the probability density or the distribution function in terms of power series in time t. The applicability of the results to finance and to turbulence is briefly indicated.......For positive Lévy processes (i.e. subordinators) formulae are derived that express the probability density or the distribution function in terms of power series in time t. The applicability of the results to finance and to turbulence is briefly indicated....

  10. Probability densities and Lévy densities

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler

    For positive Lévy processes (i.e. subordinators) formulae are derived that express the probability density or the distribution function in terms of power series in time t. The applicability of the results to finance and to turbulence is briefly indicated.......For positive Lévy processes (i.e. subordinators) formulae are derived that express the probability density or the distribution function in terms of power series in time t. The applicability of the results to finance and to turbulence is briefly indicated....

  11. Density and Structure Analysis of Molten Ni-W Alloys

    Institute of Scientific and Technical Information of China (English)

    Feng XIAO; Liang FANG

    2004-01-01

    Density of molten Ni and Ni-W alloys was measured in the temperature range of 1773~1873 K with a sessile drop method.The density of molten Ni and Ni-W alloys trends to decrease with increasing temperature. The density and molar volume of the alloys trend to increase with increasing W concentration in the alloys. The calculation result shows an ideal mixing of Ni-W alloys.

  12. Cellular Automaton Simulation For Volume Changes Of Solidifying Nodular Cast Iron

    Directory of Open Access Journals (Sweden)

    Burbelko A.

    2015-09-01

    Full Text Available Volume changes of the binary Fe-C alloy with nodular graphite were forecast by means of the Cellular Automaton Finite Differences (CA-FD model of solidification. Simulations were performed in 2D space for differing carbon content. Dependences of phase density on temperature were considered in the computations; additionally density</