WorldWideScience

Sample records for volumes heat capacities

  1. Experimental heat capacity of solid hydrogen as a function of molar volume

    International Nuclear Information System (INIS)

    Krause, J.K.

    1978-01-01

    Constant volume heat capacity measurements have been made on six solid hydrogen samples with low orthohydrogen concentrations. The measurements extend from approximately 1.5 K to the melting line, with molar volumes ranging from 22.787 cm 3 /mole to 16.193 cm 3 /mole. Although clustering of the ortho molecules was observed, the low temperature heat capacity anomaly due to the orthohydrogen pairs could be described quite well by the assumption of a fixed distribution. The data were corrected to obtain a lattice heat capacity which on extrapolation to T = 0 yielded Debye temperatures and a volume dependent Grueneisen parameter. A modified Mie-Grueneisen approximation was used to define a volume and temperature dependent Grueneisen parameter which was used to calculate the equation of state, P(V,T), and isothermal bulk modulus, B/sub T/(V,T), for the six isochores. An extrapolation of the equation of state to T = 0 and P = 0 by two different methods yields a molar volume which, when compared with other determinations, gives a recommended value of 23.20 +- 0.05 cm 3 /mole. A rapid increase in the conversion rate of orthohydrogen to parahydrogen was observed at approximately theta/sub o/12. The molar volumes along the melting curve also have been determined directly for the first time in this volume range. These results have been used to show that a low temperature Lindemann melting relation is only approximately valid for solid hydrogen to 50 K

  2. Heat capacity measurements of sub-nanoliter volumes of liquids using bimaterial microchannel cantilevers

    Science.gov (United States)

    Khan, M. F.; Miriyala, N.; Lee, J.; Hassanpourfard, M.; Kumar, A.; Thundat, T.

    2016-05-01

    Lab-on-a-Chip compatible techniques for thermal characterization of miniaturized volumes of liquid analytes are necessary in applications such as protein blotting, DNA melting, and drug development, where samples are either rare or volume-limited. We developed a closed-chamber calorimeter based on a bimaterial microchannel cantilever (BMC) for sub-nanoliter level thermal analysis. When the liquid-filled BMC is irradiated with infrared (IR) light at a specific wavelength, the IR absorption by the liquid analyte results in localized heat generation and the subsequent deflection of the BMC, due to a thermal expansion mismatch between the constituent materials. The time constant of the deflection, which is dependent upon the heat capacity of the liquid analyte, can be directly measured by recording the time-dependent bending of the BMC. We have used the BMC to quantitatively measure the heat capacity of five volatile organic compounds. With a deflection noise level of ˜10 nm and a signal-to-noise ratio of 68:1, the BMC offers a sensitivity of 30.5 ms/(J g-1 K-1) and a resolution of 23 mJ/(g K) for ˜150 pl liquid for heat capacity measurements. This technique can be used for small-scale thermal characterization of different chemical and biological samples.

  3. Heat capacity measurements of sub-nanoliter volumes of liquids using bimaterial microchannel cantilevers

    International Nuclear Information System (INIS)

    Khan, M. F.; Miriyala, N.; Hassanpourfard, M.; Thundat, T.; Lee, J.; Kumar, A.

    2016-01-01

    Lab-on-a-Chip compatible techniques for thermal characterization of miniaturized volumes of liquid analytes are necessary in applications such as protein blotting, DNA melting, and drug development, where samples are either rare or volume-limited. We developed a closed-chamber calorimeter based on a bimaterial microchannel cantilever (BMC) for sub-nanoliter level thermal analysis. When the liquid-filled BMC is irradiated with infrared (IR) light at a specific wavelength, the IR absorption by the liquid analyte results in localized heat generation and the subsequent deflection of the BMC, due to a thermal expansion mismatch between the constituent materials. The time constant of the deflection, which is dependent upon the heat capacity of the liquid analyte, can be directly measured by recording the time-dependent bending of the BMC. We have used the BMC to quantitatively measure the heat capacity of five volatile organic compounds. With a deflection noise level of ∼10 nm and a signal-to-noise ratio of 68:1, the BMC offers a sensitivity of 30.5 ms/(J g"−"1" K"−"1) and a resolution of 23 mJ/(g K) for ∼150 pl liquid for heat capacity measurements. This technique can be used for small-scale thermal characterization of different chemical and biological samples.

  4. Prediction of nanofluids properties: the density and the heat capacity

    Science.gov (United States)

    Zhelezny, V. P.; Motovoy, I. V.; Ustyuzhanin, E. E.

    2017-11-01

    The results given in this report show that the additives of Al2O3 nanoparticles lead to increase the density and decrease the heat capacity of isopropanol. Based on the experimental data the excess molar volume and the excess molar heat capacity were calculated. The report suggests new method for predicting the molar volume and molar heat capacity of nanofluids. It is established that the values of the excess thermodynamic functions are determined by the properties and the volume of the structurally oriented layers of the base fluid molecules near the surface of nanoparticles. The heat capacity of the structurally oriented layers of the base fluid is less than the heat capacity of the base fluid for given parameters due to the greater regulation of its structure. It is shown that information on the geometric dimensions of the structured layers of the base fluid near nanoparticles can be obtained from data on the nanofluids density and at ambient temperature - by the dynamic light scattering method. For calculations of the nanofluids heat capacity over a wide range of temperatures a new correlation based on the extended scaling is proposed.

  5. Aqueous partial molar heat capacities and volumes for NaReO4 and NaTcO4

    International Nuclear Information System (INIS)

    Lemire, R.J.; Saluja, P.P.S.; Campbell, A.B.

    1989-01-01

    As part of the Canadian Nuclear Fuel Waste Management Program, data are required to model the equilibrium thermodynamic behavior of key radionuclides at temperatures above 25 degree C. A flow microcalorimeter/densimeter system has been commissioned to measure heat capacities and densities of solutions containing radioactive species. Measurements for solutions of aqueous NaReO 4 (a common analogue for NaTcO 4 ) were made at seven temperatures (15 to 100 degree C) over the concentration range 0.05 to 0.2 mol·kg -1 . Subsequently, measurements were made for NaTcO 4 solutions under similar conditions. The heat capacity and density data are analyzed using Pitzer's ion-interaction model, and values of the NaReO 4 partial molar heat capacities are compared to literature values based on integral heats of solution. The agreement between the two sets of NaReO 4 data is good below 75 degree C, but only fair at the higher temperatures. Values of the partial molar volumes have also been derived. The uncertainties introduced by using thermodynamic data for ReO 4 - , in the absence of data for TcO 4 - , are discussed

  6. Hybrid Heat Capacity - Moving Slab Laser Concept

    International Nuclear Information System (INIS)

    Stappaerts, E A

    2002-01-01

    A hybrid configuration of a heat capacity laser (HCL) and a moving slab laser (MSL) has been studied. Multiple volumes of solid-state laser material are sequentially diode-pumped and their energy extracted. When a volume reaches a maximum temperature after a ''sub-magazine depth'', it is moved out of the pumping region into a cooling region, and a new volume is introduced. The total magazine depth equals the submagazine depth times the number of volumes. The design parameters are chosen to provide high duty factor operation, resulting in effective use of the diode arrays. The concept significantly reduces diode array cost over conventional heat capacity lasers, and it is considered enabling for many potential applications. A conceptual design study of the hybrid configuration has been carried out. Three concepts were evaluated using CAD tools. The concepts are described and their relative merits discussed. Because of reduced disk size and diode cost, the hybrid concept may allow scaling to average powers on the order of 0.5 MW/module

  7. Account of volume heat capacity on interface in numerical solution of the Stephen problem using the strained coordinates method

    International Nuclear Information System (INIS)

    Latynin, V.A.; Reshetov, V.A.; Karaseva, L.N.

    1988-01-01

    Numerical solution of the Stephen problem by the strained coordinate method is presented for an one-dimensional sphere. Differential formulae of heat fluxes from moving interfaces do not take into account volume heat capacities of the front nodes. Calculations, carried out according to these balanced formulae, as well as according to those usually used, have shown that the balanced formulae permit to reduce approximately by an order the number of nodes on the sphere radius, if similar accuracy of heat balance of the whole process of melting or crystallization is observed. 2 refs.; 1 fig

  8. Standard molar volumes and heat capacities of aqueous solutions of sodium trifluoromethanesulfonate at temperatures up to 573 K and pressures to 28 MPa

    International Nuclear Information System (INIS)

    Pourtier, Emilie; Ballerat-Busserolles, Karine; Majer, Vladimir; Šedlbauer, Josef

    2013-01-01

    Highlights: ► Original HT/HP data for NaTr(aq) obtained using non-commercial instruments. ► First heat capacity data for NaTr(aq) at conditions remote from ambient. ► Correction for association when calculating stand. therm. properties of Tr(aq) anion. - Abstract: Densities and heat capacities of aqueous solutions of sodium trifluoromethanesulfonate (sodium triflate) of concentrations from 0.025 to 0.3 mol · kg −1 were measured with high temperature, high pressure custom-made instruments at temperatures up to 573 K and at pressures up to 28 MPa. Standard molar volumes and standard molar heat capacities were obtained via extrapolation of the apparent molar properties to infinite dilution. The results for volumetric properties are consistent with earlier literature data, but no previous measurements exist for heat capacities of sodium triflate at superambient conditions. The new data were used for calculating the standard molar volumes and heat capacities for the triflate anion and compared with the results for triflic acid that should be essentially identical within the expected error margins. At temperatures above 473 K an effort was made to refine the processing of literature data for HCl(aq), taking into account its partial association, and subsequently to modify the value for Na + ion calculated from the standard thermodynamic values of NaCl(aq) where its ion pairing was already considered. This approach yields reasonable agreement at high temperatures between the values for triflate ion calculated from its salt and those for triflic acid.

  9. Heat Capacity Analysis Report

    International Nuclear Information System (INIS)

    Findikakis, A.

    2004-01-01

    The purpose of this report is to provide heat capacity values for the host and surrounding rock layers for the waste repository at Yucca Mountain. The heat capacity representations provided by this analysis are used in unsaturated zone (UZ) flow, transport, and coupled processes numerical modeling activities, and in thermal analyses as part of the design of the repository to support the license application. Among the reports that use the heat capacity values estimated in this report are the ''Multiscale Thermohydrologic Model'' report, the ''Drift Degradation Analysis'' report, the ''Ventilation Model and Analysis Report, the Igneous Intrusion Impacts on Waste Packages and Waste Forms'' report, the ''Dike/Drift Interactions report, the Drift-Scale Coupled Processes (DST and TH Seepage) Models'' report, and the ''In-Drift Natural Convection and Condensation'' report. The specific objective of this study is to determine the rock-grain and rock-mass heat capacities for the geologic stratigraphy identified in the ''Mineralogic Model (MM3.0) Report'' (BSC 2004 [DIRS 170031], Table 1-1). This report provides estimates of the heat capacity for all stratigraphic layers except the Paleozoic, for which the mineralogic abundance data required to estimate the heat capacity are not available. The temperature range of interest in this analysis is 25 C to 325 C. This interval is broken into three separate temperature sub-intervals: 25 C to 95 C, 95 C to 114 C, and 114 C to 325 C, which correspond to the preboiling, trans-boiling, and postboiling regimes. Heat capacity is defined as the amount of energy required to raise the temperature of a unit mass of material by one degree (Nimick and Connolly 1991 [DIRS 100690], p. 5). The rock-grain heat capacity is defined as the heat capacity of the rock solids (minerals), and does not include the effect of water that exists in the rock pores. By comparison, the rock-mass heat capacity considers the heat capacity of both solids and pore

  10. Apparent and standard molar volumes and heat capacities of aqueous Ni(ClO4)2 from 25 to 85oC

    International Nuclear Information System (INIS)

    Pan, P.; Campbell, A.B.

    1997-01-01

    Apparent molar heat capacities and volumes of aqueous Ni(ClO 4 ) 2 were measured from 25 to 85 o C over a concentration range of 0.02 to 0.8 mol-kg -1 using a Picker flow microcalorimeter and a Picker vibrating-tube densimeter. An extended Debye-Huckel equation was fitted to the experimental data to obtain expressions for the apparent molar properties as functions of ionic strength for Ni(ClO 4 ) 2 (aq). The standard-state partial molar properties for Ni(ClO 4 ) 2 (aq) in the temperature range 25 to 85 o C were obtained and can be expressed by empirical equations. The standard partial molar heat capacities and volumes for Ni 2+ (aq) from 25 to 86 o C were obtained by using the additivity rule and data for ClO - 4 (aq) in the literature. These values were extrapolated to 300 o C by employing the Helgeson-Kirkham-Flower (HKF) equations, amended to include a standard-state correction term. (author)

  11. Determination of the Temperature Dependence of Heat Capacity for Some Molecular Crystals of Nitro Compounds

    Science.gov (United States)

    Kovalev, Yu. M.; Kuropatenko, V. F.

    2018-05-01

    An analysis of the existing approximations used for describing the dependence of heat capacity at a constant volume on the temperature of a molecular crystal has been carried out. It is shown that the considered Debye and Einstein approximations do not enable one to adequately describe the dependence of heat capacity at a constant volume on the temperature of the molecular crystals of nitro compounds. This inference requires the development of special approximations that would describe both low-frequency and high-frequency parts of the vibrational spectra of molecular crystals. This work presents a universal dependence allowing one to describe the dependence of heat capacity at a constant volume on temperature for a number of molecular crystals of nitro compounds.

  12. Excess Molar Volume,Viscosity and Heat Capacity for the Mixture of 1,2—Propanediol—Water at Different Temperatures

    Institute of Scientific and Technical Information of China (English)

    杨长生; 马沛生; 唐多强; 靳凤民

    2003-01-01

    Experimental densities,viscosities and heat capacities at different emperatures were presented over the entire mole fraction range for the binary mixture of 1,2-propanediol and water,Density values were used in the determination of excess molar volumes,VE,At the same time,the excess viscosity was in vestigated,The values of VE and ηE were fitted to the Redlich-kister equation.Good agreement was observed,The excess volumes are negative over the entire range of composition.They show an U-shaped-concentration dependence and decrease in abolute values with increase of temperature,Values of ηE are negative over the entire range of the composition,and has a trend very similar to that of VE ,The analysis shows that at any temperature the specific heat of mixture is a linear function of the composition as x1>20%,All the extended lines intersect at one point.An empirical equation is obtained to calculate the specific heat to mixture at any composition and temperature in the experimental range.

  13. Apparent and standard partial molar heat capacities and volumes of aqueous tartaric acid and its sodium salts at elevated temperature and pressure

    International Nuclear Information System (INIS)

    Xie Wei; Trevani, Liliana; Tremaine, Peter R.

    2004-01-01

    Apparent molar heat capacities and volumes have been determined for aqueous solutions of tartaric acid (H 2 Tar, Tar=C 4 H 4 O 6 ), two buffer solutions of (H 2 Tar/NaHTar) and (NaHTar/Na 2 Tar), and solutions of disodium tartrate (Na 2 Tar) at four temperatures in the range 283.15≤T/K≤328.15 at p=1 MPa. Apparent molar volumes for H 2 Tar(aq) and Na 2 Tar(aq) have been measured at temperatures 377.15≤T/K≤529.15 and p=10.4 MPa. The experimental results have been represented with a model to describe the molality and temperature dependence. Extrapolations to infinite dilution yielded standard partial molar heat capacities C p 0 and volumes V 0 for the species H 2 Tar(aq), HTar - (aq) and Tar 2- (aq) over the range of experimental measurements. The temperature dependence of V 0 for Na 2 Tar(aq) is consistent with other aqueous electrolytes, while that of H 2 Tar(aq) may be anomalous, in that it does not show divergence towards increasingly positive values with increasing temperature

  14. Performance of heat engines with non-zero heat capacity

    International Nuclear Information System (INIS)

    Odes, Ron; Kribus, Abraham

    2013-01-01

    Highlights: ► Finite heat capacity is a second irreversibility mechanism in addition to thermal resistance. ► Heat capacity introduces thermal transients and reverse heat flow. ► Engine maximum power and efficiency are lower for finite heat capacity. ► Implementing the optimal engine cycle requires active control. - Abstract: The performance of a heat engine is analyzed subject to two types of irreversibility: a non-zero heat capacity, together with the more common finite heat transfer rate between the engine and the external heat reservoirs. The heat capacity represents an engine body that undergoes significant temperature variations during the engine cycle. An option to cut off the heat exchange between the engine and the external surrounding for part of the engine cycle is also explored. A variational approach was taken to find the engine’s internal temperature profile (which defines the internal thermodynamic cycle) that would produce maximum power. The maximum power is shown to be lower than the case of zero heat capacity, due to a loss of heat that is stored in the engine body and then lost, bypassing the thermodynamic cycle. The maximum efficiency and the efficiency at maximum power are also lower than the zero heat capacity case. Similar to the Curzon–Ahlborn analysis, power can be traded for increased efficiency, but for high heat capacity, the range of efficiency that is available for such a trade is diminished. Isolating the engine during part of the cycle reduces maximum power, but the efficiency at maximum power and the maximum efficiency are improved, due to better exploitation of heat stored in the engine body. This might be useful for real engines that are limited by the internal energy change during a single engine cycle or by the operating frequency, leading to a broader power–efficiency curve.

  15. Measurement and Model Validation of Nanofluid Specific Heat Capacity with Differential Scanning Calorimetry

    Directory of Open Access Journals (Sweden)

    Harry O'Hanley

    2012-01-01

    Full Text Available Nanofluids are being considered for heat transfer applications; therefore it is important to know their thermophysical properties accurately. In this paper we focused on nanofluid specific heat capacity. Currently, there exist two models to predict a nanofluid specific heat capacity as a function of nanoparticle concentration and material. Model I is a straight volume-weighted average; Model II is based on the assumption of thermal equilibrium between the particles and the surrounding fluid. These two models give significantly different predictions for a given system. Using differential scanning calorimetry (DSC, a robust experimental methodology for measuring the heat capacity of fluids, the specific heat capacities of water-based silica, alumina, and copper oxide nanofluids were measured. Nanoparticle concentrations were varied between 5 wt% and 50 wt%. Test results were found to be in excellent agreement with Model II, while the predictions of Model I deviated very significantly from the data. Therefore, Model II is recommended for nanofluids.

  16. Anomalous heat capacity of nanoparticles

    International Nuclear Information System (INIS)

    Likhachev, V.N.; Vinogradov, G.A.; Alymov, M.I.

    2006-01-01

    The heat capacity of nanosized particles exceeds (from few to tenth percents) the same values of the corresponding bulk materials, and this difference increases with the diminishing of the sizes. In the present Letter we give an explanation of this phenomenon on an example of a nanocrystal with simple cubic lattice and an arbitrary shape. The simplest harmonic interaction potential of the nearest neighbors is used. A qualitative agreement with experimental data is obtained. The decisive role is attributed to the choice of boundary conditions: free boundaries provide the 'softening' of vibrational spectrum thus giving larger contribution to the heat capacity. The increase in heat capacity depends on the particle size, shape and sample perfection

  17. Transient heat transfer to laminar flow from a flat plate with heat capacity

    International Nuclear Information System (INIS)

    Hanawa, Juichi

    1975-01-01

    As the most basic problem in transient heat transfer, a plate with heat capacity was studied, which is placed in uniform laminar flow in parallel with it, is initially at the same temperature as that of the fluid, and then abruptly is given a specific heating value. The equation of transient heat transfer in this case was solved by numerical calculation. The following matters were revealed. (1) The equation was able to be solved by the application of Laplace transformation and numerical inverse transformation. (2) Wall temperature when the heat capacity of a plate was zero initially agreed well with heat conduction solution. With increase of the heat capacity, the delay in wall temperature rise was increased. (3) Heat transfer rate in case of the heat capacity of zero initially agreed well with the heat-conduction solution. With increase of the heat capacity, the Nusselt number increased. (4) Temperature distribution in case of the heat capacity of zero initially agreed well with the heat-conduction solution. (Mori, K.)

  18. Heat capacity of poly(lactic acid)

    International Nuclear Information System (INIS)

    Pyda, M.; Bopp, R.C.; Wunderlich, B.

    2004-01-01

    The heat capacity of poly(lactic acid) (PLA) is reported from T=(5 to 600) K as obtained by differential scanning calorimetry (d.s.c.) and adiabatic calorimetry. The heat capacity of solid PLA is linked to its group vibrational spectrum and the skeletal vibrations, the latter being described by a Tarasov equation with Θ 1 =574 K, Θ 2 =Θ 3 =52 K, and nine skeletal vibrations. The calculated and experimental heat capacities agree to ±3% between T=(5 and 300) K. The experimental heat capacity of liquid PLA can be expressed by C p (liquid)=(120.17+0.076T) J · K -1 · mol -1 and has been compared to the ATHAS Data Bank, using contributions of other polymers with the same constituent groups. The glass transition temperature of amorphous PLA occurs at T=332.5 K with a change in heat capacity of 43.8 J · K -1 · mol -1 . Depending on thermal history, semi-crystalline PLA has a melting endotherm between T=(418 and 432) K with variable heats of fusion. For 100% crystalline PLA, the heat of fusion is estimated to be (6.55 ± 0.02) kJ · mol -1 at T=480 K. With these results, the enthalpy, entropy, and Gibbs function of crystalline and amorphous PLA were obtained. For semi-crystalline samples, one can check changes of crystallinity with temperature and judge the presence of rigid-amorphous fractions

  19. MEASUREMENT OF SPECIFIC HEAT CAPACITY OF SALTSTONE

    International Nuclear Information System (INIS)

    Harbour, J.; Williams, V.

    2008-01-01

    One of the goals of the Saltstone variability study is to identify (and quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. The heat capacity of the Saltstone waste form is one of the important properties of Saltstone mixes that was last measured at SRNL in 1997. It is therefore important to develop a core competency for rapid and accurate analysis of the specific heat capacity of the Saltstone mixes in order to quantify the impact of compositional and operational variations on this property as part of the variability study. The heat capacity, coupled with the heat of hydration data obtained from isothermal calorimetry for a given Saltstone mix, can be used to predict the maximum temperature increase in the cells within the vaults of the Saltstone Disposal Facility (SDF). The temperature increase controls the processing rate and the pour schedule. The maximum temperature is also important to the performance properties of the Saltstone. For example, in mass pours of concrete or grout of which Saltstone is an example, the maximum temperature increase and the maximum temperature difference (between the surface and the hottest location) are controlled to ensure durability of the product and prevent or limit the cracking caused by the thermal gradients produced during curing. This report details the development and implementation of a method for the measurement of the heat capacities of Saltstone mixes as well as the heat capacities of the cementitious materials of the premix and the simulated salt solutions used to batch the mixes. The developed method utilizes the TAM Air isothermal calorimeter and takes advantage of the sophisticated heat flow measurement capabilities of the instrument. Standards and reference materials were identified and used to validate the procedure and ensure accuracy of testing. Heat capacities of Saltstone mixes were

  20. MEASUREMENT OF SPECIFIC HEAT CAPACITY OF SALTSTONE

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, J; Vickie Williams, V

    2008-09-29

    One of the goals of the Saltstone variability study is to identify (and quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. The heat capacity of the Saltstone waste form is one of the important properties of Saltstone mixes that was last measured at SRNL in 1997. It is therefore important to develop a core competency for rapid and accurate analysis of the specific heat capacity of the Saltstone mixes in order to quantify the impact of compositional and operational variations on this property as part of the variability study. The heat capacity, coupled with the heat of hydration data obtained from isothermal calorimetry for a given Saltstone mix, can be used to predict the maximum temperature increase in the cells within the vaults of the Saltstone Disposal Facility (SDF). The temperature increase controls the processing rate and the pour schedule. The maximum temperature is also important to the performance properties of the Saltstone. For example, in mass pours of concrete or grout of which Saltstone is an example, the maximum temperature increase and the maximum temperature difference (between the surface and the hottest location) are controlled to ensure durability of the product and prevent or limit the cracking caused by the thermal gradients produced during curing. This report details the development and implementation of a method for the measurement of the heat capacities of Saltstone mixes as well as the heat capacities of the cementitious materials of the premix and the simulated salt solutions used to batch the mixes. The developed method utilizes the TAM Air isothermal calorimeter and takes advantage of the sophisticated heat flow measurement capabilities of the instrument. Standards and reference materials were identified and used to validate the procedure and ensure accuracy of testing. Heat capacities of Saltstone mixes were

  1. Apparent molar volumes and apparent molar heat capacities of aqueous magnesium nitrate, strontium nitrate, and manganese nitrate at temperatures from 278.15 K to 393.15 K and at the pressure 0.35 MPa

    International Nuclear Information System (INIS)

    Jones, J.S.; Ziemer, S.P.; Brown, B.R.; Woolley, E.M.

    2007-01-01

    Apparent molar volumes V φ and apparent molar heat capacities C p,φ were determined at the pressure 0.35 MPa for aqueous solutions of magnesium nitrate Mg(NO 3 ) 2 at molalities m = (0.02 to 1.0) mol . kg -1 , strontium nitrate Sr(NO 3 ) 2 at m = (0.05 to 3.0) mol . kg -1 , and manganese nitrate Mn(NO 3 ) 2 at m = (0.01 to 0.5) mol . kg -1 . Our V φ values were calculated from solution densities obtained at T = (278.15 to 368.15) K using a vibrating-tube densimeter, and our C p,φ values were calculated from solution heat capacities obtained at T = (278.15 to 393.15) K using a twin fixed-cell, differential, temperature-scanning calorimeter. Empirical functions of m and T were fitted to our results, and standard state partial molar volumes and heat capacities were obtained over the ranges of T investigated

  2. Apparent molar volumes and apparent molar heat capacities of Pr(NO3)3(aq), Gd(NO3)3(aq), Ho(NO3)3(aq), and Y(NO3)3(aq) at T (288.15, 298.15, 313.15, and 328.15) K and p = 0.1 MPa

    International Nuclear Information System (INIS)

    Hakin, Andrew W.; Liu Jinlian; Erickson, Kristy; Munoz, Julie-Vanessa; Rard, Joseph A.

    2005-01-01

    Relative densities and relative massic heat capacities have been measured for acidified solutions of Y(NO 3 ) 3 (aq), Pr(NO 3 ) 3 (aq), and Gd(NO 3 ) 3 (aq) at T = (288.15, 298.15, 313.15, and 328.15) K and p = 0.1 MPa. In addition, relative densities and massic heat capacities have been measured at the same temperatures and pressure for Y(NO 3 ) 3 (aq) and Ho(NO 3 ) 3 (aq) solutions without excess acid (n.b. measurements at T = 328.15 K for Ho(NO 3 ) 3 (aq) were not performed due to the limited volume of solution available). Apparent molar volumes and apparent molar heat capacities for the aqueous salt solutions have been calculated from the experimental apparent molar properties of the acidified solutions using Young's rule, whereas the apparent molar properties of the solutions without excess acid were calculated directly from the measured densities and massic heat capacities. The two sets of data for the Y(NO 3 ) 3 (aq) systems provide a check of the internal consistency of the Young's rule approach we have utilised. The concentration dependences of the apparent molar volumes and heat capacities of the aqueous salt solutions have been modelled at each investigated temperature using the Pitzer ion interaction equations to yield apparent molar properties at infinite dilution. Complex formation within the aqueous rare earth nitrate systems is discussed qualitatively by probing the concentration dependence of apparent molar volumes and heat capacities. In spite of the complex formation in the aqueous rare earth nitrate systems, there is a high degree of self-consistency between the apparent molar volumes and heat capacities at infinite dilution reported in this manuscript and those previously reported for aqueous rare earth perchlorates

  3. Mass-action model analysis of the apparent molar volume and heat capacity of pluronics in water and liposome suspensions at 25 °C.

    Science.gov (United States)

    Quirion, François; Meilleur, Luc; Lévesque, Isabelle

    2013-07-09

    Pluronics are block copolymers composed of a central block of polypropylene oxide and two side chains of polyethylene oxide. They are used in water to generate aggregates and gels or added to phospholipid suspensions to prepare microparticles for drug delivery applications. The structure of these systems has been widely investigated. However, little is known about the mechanisms leading to these structures. This investigation compares the apparent molar volumes and heat capacities of Pluronics F38, F108, F127, P85, P104, and P103 at 25 °C in water and in the presence of lecithin liposomes. The changes in molar volumes, heat capacities, and enthalpies generated by a mass-action model are in good agreement with the loss of hydrophobic hydration of the polypropylene oxide central block of the Pluronics. However, the molecularity of the endothermic transitions is much smaller than the aggregation numbers reported in the literature for the same systems. It is suggested that Pluronics go through dehydration of their central block to form unimolecular or small entities having a hydrophobic polypropylene oxide core. In water, these entities would assemble athermally to form larger aggregates. In the presence of liposomes, they would be transferred into the hydrophobic lecithin bilayers of the liposomes. Light transmission experiments suggest that the liposome suspensions are significantly altered only when the added Pluronics are in the dehydrated state.

  4. The Heat Capacity of Ideal Gases

    Science.gov (United States)

    Scott, Robert L.

    2006-01-01

    The heat capacity of an ideal gas has been shown to be calculable directly by statistical mechanics if the energies of the quantum states are known. However, unless one makes careful calculations, it is not easy for a student to understand the qualitative results. Why there are maxima (and occasionally minima) in heat capacity-temperature curves…

  5. Debye temperature, thermal expansion, and heat capacity of TcC up to 100 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Song, T., E-mail: songting@mail.lzjtu.cn [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Ma, Q. [School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Tian, J.H. [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Liu, X.B. [School of Physics and Information Science, Tianshui Normal University, Tianshui 741000 (China); Ouyang, Y.H.; Zhang, C.L.; Su, W.F. [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China)

    2015-01-15

    Highlights: • A number of thermodynamic properties of rocksalt TcC are investigated for the first time. • The quasi-harmonic Debye model is applied to take into account the thermal effect. • The pressure and temperature up to about 100 GPa and 3000 K, respectively. - Abstract: Debye temperature, thermal expansion coefficient, and heat capacity of ideal stoichiometric TcC in the rocksalt structure have been studied systematically by using ab initio plane-wave pseudopotential density functional theory method within the generalized gradient approximation. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the dependences of Debye temperature, thermal expansion coefficient, constant-volume heat capacity, and constant-pressure heat capacity on pressure and temperature are successfully predicted. All the thermodynamic properties of TcC with rocksalt phase have been predicted in the entire temperature range from 300 to 3000 K and pressure up to 100 GPa.

  6. Apparent molar volumes and apparent molar heat capacities of dilute aqueous solutions of ethanol, 1-propanol, and 2-propanol at temperatures from 278.15 K to 393.15 K and at the pressure 0.35 MPa

    International Nuclear Information System (INIS)

    Origlia-Luster, M.L.; Woolley, E.M.

    2003-01-01

    Apparent molar volumes V phi and apparent molar heat capacities C p,phi have been determined for dilute aqueous solutions of ethanol, 1-propanol, and 2-propanol at temperatures from 278.15 K to 393.15 K and at the pressure 0.35 MPa. The molalities investigated ranged from 0.05 mol·kg -1 to 1.0 mol·kg -1 . We used a vibrating tube densimeter (DMA 512P, Anton PAAR, Austria) to determine the densities and volumetric properties. Heat capacities were obtained using a twin fixed-cell, power-compensation, differential-output, temperature-scanning calorimeter (NanoDSC 6100, Calorimetry Sciences Corporation, American Fork, UT, USA). The results were fit by regression to equations that describe the surfaces (V phi ,T,m) and (C p,phi ,T,m). Infinite dilution partial molar volumes V 2 0 and heat capacities C 0 p,2 were obtained over the range of temperatures by extrapolation of these surfaces to m=0 mol·kg -1

  7. Forecasting of heat capacity of molecular inorganic liquids

    International Nuclear Information System (INIS)

    Sladkov, I.B.; Neganov, O.S.

    1992-01-01

    On the basis of analysis of experimental material on heat capacity of liquids, covering 350 molecular inorganic compounds, atomic parts of heat capacity for 58 elements of the Periodic system were obtained. Data on the accuracy of heat capacity calculation by the Neumann-Kopp rule using the recommended atomic parts C p are presented. For the Kelli rule it is assertained that the factor of proportiomality between heat capacity and the number of atoms in compound molecule in the general case depends on the type of anion and compound coordination. The Neumann-Kopp-Kelli rules provide a satisfactory accuracy of prediction

  8. Heat capacities and asymmetric criticality of the (liquid + liquid) coexistence curves for {dimethyl carbonate + n-undecane, or n-tridecane}

    International Nuclear Information System (INIS)

    Chen, Zhiyun; Shi, Aiqin; Liu, Shixia; Yin, Tianxiang; Shen, Weiguo

    2014-01-01

    Highlights: • Coexistence curves of dimethyl carbonate + n-undecane (or + n-tridecane) were measured. • Isobaric heat capacity per unit volume of critical binary solutions dimethyl carbonate + n-undecane (or + n-tridecane) were determined. • The critical exponent β are consistent with the 3D-Ising value. • The asymmetry of the coexistence curves were discussed by the complete scaling theory. - Abstract: The (liquid + liquid) coexistences and the critical behavior of isobaric heat capacity per unit volume for critical binary solutions {dimethyl carbonate + n-undecane, or n-tridecane} have been studied. The critical exponents β and α were deduced and found to be consistent with the 3D-Ising values. The critical amplitudes were determined and used to test the asymmetric criticality of coexistence curves. It was found that the heat capacity does play an important role in describing the asymmetric criticality of the coexistence curves

  9. The capacity credit of micro-combined heat and power

    International Nuclear Information System (INIS)

    Hawkes, A.D.; Leach, M.A.

    2008-01-01

    This article is concerned with development of a methodology to determine the capacity credit of micro-combined heat and power (micro-CHP), and application of the method for the UK. Capacity credit is an important parameter in electricity system planning because it measures the amount of conventional generation that would be displaced by an alternative technology. Firstly, a mathematical formulation is presented. Capacity credit is then calculated for three types of micro-CHP units-Stirling engine, internal combustion engine, and fuel cell systems-operating under various control strategies. It is found that low heat-to-power ratio fuel cell technologies achieve the highest capacity credit of approximately 85% for a 1.1 GW penetration when a heat-led control strategy is applied. Higher heat-to-power ratio Stirling engine technology achieves approximately 33% capacity credit for heat-led operation. Low heat-to-power ratio technologies achieve higher capacity credit because they are able to continue operating even when heat demand is relatively low. Capacity credit diminishes as penetration of the technology increases. Overall, the high capacity credit of micro-CHP contributes to the viewpoint that the technology can help meet a number of economic and environmental energy policy aims

  10. Gaseous phase heat capacity of benzoic acid

    NARCIS (Netherlands)

    Santos, L.M.N.B.F.; Alves da Rocha, M.A.; Gomes, L.R.; Schröder, B.; Coutinho, J.A.P.

    2010-01-01

    The gaseous phase heat capacity of benzoic acid (BA) was proven using the experimental technique called the "in vacuum sublimation/vaporization Calvet microcalorimetry drop method". To overcome known experimental shortfalls, the gaseous phase heat capacity of BA monomer was estimated by ab initio

  11. Apparent molar volumes and apparent molar heat capacities of aqueous D-lactose · H2O at temperatures from (278.15 to 393.15) K and at the pressure 0.35 MPa

    International Nuclear Information System (INIS)

    Sargent, J.D.; Niederhauser, T.L.; Woolley, E.M.

    2004-01-01

    Apparent molar volumes V phi and apparent molar heat capacities C p,phi were determined for aqueous solutions of D-lactose · H 2 O at molalities (0.01 to 0.34) mol · kg -1 at temperatures (278.15 to 393.15) K, and at the pressure 0.35 MPa. Our V phi values were calculated from densities obtained using a vibrating tube densimeter, and our C p,phi values were obtained using a twin fixed-cell, power-compensation, differential-output, temperature-scanning calorimeter. Our results for D-lactose(aq) and for D-lactcose · H 2 O were fitted to functions of m and T and compared with the literature results for aqueous D-glucose and D-galactose solutions. Infinite dilution partial molar volumes V 2 compfn and heat capacities C p,2 compfn are given over the range of temperatures

  12. Heat capacity measurements on Ybx Gd2–x Zr2 O7 (x= 0, 1, 2 ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 32; Issue 6. Heat capacity measurements on YbGd2–Zr2O7 ( = 0, 1, 2) ceramics by differential scanning calorimetry. Zhan-Guo Liu Jia-Hu Ouyang Yu Zhou. Ceramics and Glasses Volume 32 Issue 6 December 2009 pp 603-606 ...

  13. Heat capacity of solid parahydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Bagatskij, M I; Minchina, I Ya; Manzhelij, V G [AN Ukrainskoj SSR, Kharkov. Fiziko-Tekhnicheskij Inst. Nizkikh Temperatur

    1984-10-01

    A vacuum adiabatic calorimeter has been developed to investigate cryocrystals and their solutions in the range 0.4-300 K. Heat capacity of hydrogen with the orthomodification concentration 5 x 10/sup -3/ at.% between 0.5 and 8 K has been investigated. The limiting Debye temperature at T ..-->.. 0 has been obtained: (THETA/sub 0/=118.5 +- 0.5 K). It has been shown that heat capacity of solid parahydrogen, as that of other cryocrystals with the central interaction and closely packed lattices (/sup 4/He, Ne, Ar, Kr, Xe), low temperatures is given by the universal relation proposed by Barron and Morrison Csub(V) AT/sup 3/(1+..cap alpha../sub 1/(T/THETA/sub 0/)/sup 2/ + ..cap alpha../sub 2/(T/THETA/sub 0/)/sup 4/ ...). The effect of the sample time prehistory on the experimental heat capacity values of hydrogen with g.21 at.% orthomodification has been studied, and the times during which configurational equilibration in this solution is reached have been estimated.

  14. Apparent molar heat capacities and apparent molar volumes of Pr(ClO4)3(aq), Gd(ClO4)3(aq), Ho(ClO4)3(aq), and Tm(ClO4)3(aq) at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa

    International Nuclear Information System (INIS)

    Hakin, Andrew W.; Lian Liu, Jin; Erickson, Kristy; Munoz, Julie-Vanessa

    2004-01-01

    Acidified aqueous solutions of Pr(ClO 4 ) 3 (aq), Gd(ClO 4 ) 3 (aq), Ho(ClO 4 ) 3 (aq), and Tm(ClO 4 ) 3 (aq) were prepared from the corresponding oxides by dissolution in dilute perchloric acid. Once characterized with respect to trivalent metal cation and acid content, the relative densities of the solutions were measured at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa using a Sodev O2D vibrating tube densimeter. The relative massic heat capacities of the aqueous systems were also determined, under the same temperature and pressure conditions, using a Picker Flow Microcalorimeter. All measurements were made on solutions containing rare earth salt in the concentration range 0.01 ≤ m/(mol · kg -1 ) ≤ 0.2. Relative densities and relative massic heat capacities were used to calculate the apparent molar volumes and apparent molar heat capacities of the acidified salt solutions from which the apparent molar properties of the aqueous salt solutions were extracted by the application of Young's Rule. The concentration dependences of the isothermal apparent molar volumes and heat capacities of each aqueous salt solution were modelled using Pitzer ion-interaction equations. These models produced estimates of apparent molar volumes and apparent molar heat capacities at infinite dilution for each set of isothermal V phi,2 and C pphi,2 values. In addition, the temperature and concentration dependences of the apparent molar volumes and apparent molar heat capacities of the aqueous rare earth perchlorate salt solutions were modelled using modified Pitzer ion-interaction equations. The latter equations utilized the Helgeson, Kirkham, and Flowers equations of state to model the temperature dependences (at p=0.1 MPa) of apparent molar volumes and apparent molar heat capacities at infinite dilution. The results of the latter models were compared to those previously published in the literature. Apparent molar volumes and apparent heat capacities at infinite dilution

  15. Low-temperature heat capacity of molybdenum borides

    International Nuclear Information System (INIS)

    Bolgar, A.S.; Klinder, A.V.; Novoseletskaya, L.M.; Turov, V.P.; Klochkov, L.A.; Lyashchenko, A.B.

    1988-01-01

    Heat capacity of molybdenum borides Mo 2 B, MoB, Mo 2 B 5 is studied for the first time in the 60-300 K range using the adiabatic method. Standard (at 298.15 K) thermodynamic functions (enthalpy, heat capacity, entropy, reduced Gibbs energy) of molybdenum borides are calculated

  16. Free energy and heat capacity

    International Nuclear Information System (INIS)

    Kurata, M.; Devanathan, R.

    2015-01-01

    Free energy and heat capacity of actinide elements and compounds are important properties for the evaluation of the safety and reliable performance of nuclear fuel. They are essential inputs for models that describe complex phenomena that govern the behaviour of actinide compounds during nuclear fuels fabrication and irradiation. This chapter introduces various experimental methods to measure free energy and heat capacity to serve as inputs for models and to validate computer simulations. This is followed by a discussion of computer simulation of these properties, and recent simulations of thermophysical properties of nuclear fuel are briefly reviewed. (authors)

  17. Prediction of Liquid Specific Heat Capacity of Food Lipids.

    Science.gov (United States)

    Zhu, Xiaoyi; Phinney, David M; Paluri, Sravanti; Heldman, Dennis R

    2018-04-01

    Specific heat capacity (c p ) is a temperature dependent physical property of foods. Lipid-being a macromolecular component of food-provides some fraction of the food's overall heat capacity. Fats/oils are complex chemicals that are generally defined by carbon length and degree of unsaturation. The objective of this investigation was to use advanced specific heat capacity measurement to determine the effect of fatty acid chemical structure on specific heat capacity of food lipids. In this investigation, the specific heat capacity of a series of triacylglycerols were measured to quantify the influence of fatty acid composition on specific heat capacity based on two parameters; the -average carbon number (C) and the average number of double bonds (U). A prediction model for specific heat capacity of food lipids as a function of C, U and temperature (T) has been developed. A multiple linear regression to the three-parameter model (R 2 = 0.87) provided a good fit to the experimental data. The prediction model was evaluated by comparison with previously published specific heat capacity values of vegetable oils. It was found that the model provided a 0.53% error, while three other models from the literature predicted c p values with 0.85% to 1.83% average relative deviation from experimental data. The outcomes from this research confirm that the thermophysical properties of fat present in foods are directly related to the physical chemical properties. The specific heat capacity of food products is widely used in process design. Improvements of current models to predict specific heat capacity of food products will assist in the development of efficient processes and in the control of food quality and safety. Furthermore, the understanding of how changes in chemical structure of macromolecular components of foods effect thermophysical properties may begin to allude to models that are not just empirical, but represent portions of the differences in chemistry. © 2018

  18. Reassembling and testing of a high-precision heat capacity drop calorimeter. Heat capacity of some polyphenyls at T = 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Luis M.N.B.F., E-mail: lbsantos@fc.up.pt [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Rocha, Marisa A.A.; Rodrigues, Ana S.M.C. [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Stejfa, Vojtech; Fulem, Michal [Department of Physical Chemistry, Institute of Chemical Technology, Technicka 5, CZ-166 28 Prague 6 (Czech Republic); Bastos, Margarida [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal)

    2011-12-15

    Graphical abstract: Highlights: > We present the reassembling, improvement and testing of a high-precision C{sub p} drop calorimeter. > The apparatus was tested, using benzoic acid and hexafluorobenzene. > The high sensitivity of the apparatus is comparable to the one obtained in adiabatic calorimetry. > Heat capacities at T = 298.15 K of some polyphenyls were measured. > Subtle heat capacity differences among position isomers (ortho, meta, para) were detected. - Abstract: The description of the reassembling and testing of a twin heat conduction, high-precision, drop microcalorimeter for the measurement of heat capacities of small samples are presented. The apparatus, originally developed and used at the Thermochemistry Laboratory, Lund, Sweden, has now been reassembled and modernized, with changes being made as regarding temperature sensors, electronics and data acquisition system. The apparatus was thereafter thoroughly tested, using benzoic acid and hexafluorobenzene as test substances. The accuracy of the C{sub p,m}{sup 0} (298.15 K) data obtained with this apparatus is comparable to that achieved by high-precision adiabatic calorimetry. Here we also present the results of heat capacity measurements on of some polyphenyls (1,2,3-triphenylbenzene, 1,3,5-triphenylbenzene, p-terphenyl, m-terphenyl, o-terphenyl, p-quaterphenyl) at T = 298.15 K, measured with the renewed high precision heat capacity drop calorimeter system. The high resolution and accuracy of the obtained heat capacity data enabled differentiation among the ortho-, meta-, and para-phenyl isomers.

  19. Thermodynamics of aqueous methyldiethanolamine (MDEA) and methyldiethanolammonium chloride (MDEAH+Cl-) over a wide range of temperature and pressure: Apparent molar volumes, heat capacities, and isothermal compressibilities

    International Nuclear Information System (INIS)

    Hawrylak, B.; Palepu, R.; Tremaine, Peter R.

    2006-01-01

    Apparent molar volumes of aqueous methyldiethanolamine and its salt were determined with platinum vibrating tube densitometers over a range of temperatures from 283K= o , heat capacities C p o , and isothermal compressibilities κ T o . The standard partial molar volumes V o for the neutral amine and its salt show increasingly positive and negative values, respectively, at high temperatures and pressures, as predicted by corresponding states and group additivity arguments. The density model and the revised Helgeson-Kirkham-Flowers (HKF) model have been used to represent the temperature and pressure dependence of the standard partial molar properties to yield a full thermodynamic description of the system

  20. Heat capacity of ThO2

    International Nuclear Information System (INIS)

    Peng Shian

    1996-01-01

    The heat capacity C p of ThO 2 can be calculated as the phonon part of C p for other actinide dioxides used as fuel in nuclear reactors. Precise determination of the phonon part of C p of actinide dioxides is helpful to find out the contributions of other factors to C p . In this paper we have, through studying the heat capacity of ThO 2 , developed a general method applicable to the study of C p of other solids. In the developed method the three type -- different experimental measurements made on a solid-heat capacity, thermal expansion and Debye Waller factor -- can be brought together for comparison. The application of this method to the study of C p of ThO 2 has enabled us to propose a better description of C p of ThO 2 than the generally accepted expression

  1. Classical fluids of negative heat capacity

    Energy Technology Data Exchange (ETDEWEB)

    Landsberg, P.T. [Southampton Univ., (United Kingdom). Faculty of Mathematical Studies; Woodard, R.P. [Florida Univ., Gainesville, FL (United States). Dept. of Physics

    1992-06-01

    It is shown that new parameters X can be defined such that the heat capacity C{sub X} {equivalent_to} T({partial_derivative}S/{partial_derivative}T)X is negative, even when the canonical ensemble (i.e. at fixed T = ({partial_derivative}U/{partial_derivative}S) and Y {ne} X) is stable. As examples we treat black body radiation and general gas systems with nonsingular {kappa}{sub T}. For the case of a simple ideal gas we even exhibit an apparatus which enforces a constraint X(p,V) = const. that makes C{sub X} < 0. Since it is possible to invent constraints for which canonically stable systems have negative heat capacity we speculate that it may also be possible to infer the statistical mechanics of canonically unstable systems - for which even the traditional heat capacities are negative - by imposing constraints that stabilize the associated, inoncanonical ensembles.

  2. Classical fluids of negative heat capacity

    Energy Technology Data Exchange (ETDEWEB)

    Landsberg, P.T. (Southampton Univ., (United Kingdom). Faculty of Mathematical Studies); Woodard, R.P. (Florida Univ., Gainesville, FL (United States). Dept. of Physics)

    1992-06-01

    It is shown that new parameters X can be defined such that the heat capacity C{sub X} {equivalent to} T({partial derivative}S/{partial derivative}T)X is negative, even when the canonical ensemble (i.e. at fixed T = ({partial derivative}U/{partial derivative}S) and Y {ne} X) is stable. As examples we treat black body radiation and general gas systems with nonsingular {kappa}{sub T}. For the case of a simple ideal gas we even exhibit an apparatus which enforces a constraint X(p,V) = const. that makes C{sub X} < 0. Since it is possible to invent constraints for which canonically stable systems have negative heat capacity we speculate that it may also be possible to infer the statistical mechanics of canonically unstable systems - for which even the traditional heat capacities are negative - by imposing constraints that stabilize the associated, inoncanonical ensembles.

  3. Heat capacity for systems with excited-state quantum phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Cejnar, Pavel; Stránský, Pavel, E-mail: stransky@ipnp.troja.mff.cuni.cz

    2017-03-18

    Heat capacities of model systems with finite numbers of effective degrees of freedom are evaluated using canonical and microcanonical thermodynamics. Discrepancies between both approaches, which are observed even in the infinite-size limit, are particularly large in systems that exhibit an excited-state quantum phase transition. The corresponding irregularity of the spectrum generates a singularity in the microcanonical heat capacity and affects smoothly the canonical heat capacity. - Highlights: • Thermodynamics of systems with excited-state quantum phase transitions • ESQPT-generated singularities of the microcanonical heat capacity • Non-monotonous dependences of the canonical heat capacity • Discord between canonical and microcanonical pictures in the infinite-size limit.

  4. Determination of Heat Capacity of Yucca Mountain Stratigraphic Layers

    International Nuclear Information System (INIS)

    T. Hadgu; C. Lum; J.E. Bean

    2006-01-01

    The heat generated from the radioactive waste to be placed in the proposed geologic repository at Yucca Mountain, Nevada, will affect the thermal-hydrology of the Yucca Mountain stratigraphic layers. In order to assess the effect of the movement of repository heat into the fractured rocks accurate determination of thermodynamic and hydraulic properties is important. Heat capacity is one of the properties that are required to evaluate energy storage in the fractured rock. Rock-grain heat capacity, the subject of this study, is the heat capacity of the solid part of the rock. Yucca Mountain consists of alternating lithostratigraphic units of welded and non-welded ash-flow tuff, mainly rhyolitic in composition and displaying varying degrees of vitrification and alteration. A number of methods exist that can be used to evaluate heat capacity of the stratigraphic layers that consist of different compositions. In this study, the mineral summation method has been used to quantify the heat capacity of the stratigraphic layers based on Kopp's rule. The mineral summation method is an addition of the weighted heat capacity of each mineral found in a specific layer. For this study the weighting was done based on the mass percentage of each mineral in the layer. The method utilized a mineralogic map of the rocks at the Yucca Mountain repository site. The Calico Hills formation and adjacent bedded tuff layers display a bimodal mineral distribution of vitric and zeolitic zones with differing mineralogies. Based on this bimodal distribution in zeolite abundance, the boundary between the vitric and zeolitic zones was selected to be 15% zeolitic abundance. Thus, based on the zeolite abundance, subdivisions have been introduced to these layers into ''vitric'' and ''zeolitic'' zones. Heat capacity values have been calculated for these layers both as ''layer average'' and ''zone average''. The heat capacity determination method presented in this report did not account for spatial

  5. Apparent molar volumes and apparent molar heat capacities of Pr(NO{sub 3}){sub 3}(aq), Gd(NO{sub 3}){sub 3}(aq), Ho(NO{sub 3}){sub 3}(aq), and Y(NO{sub 3}){sub 3}(aq) at T (288.15, 298.15, 313.15, and 328.15) K and p = 0.1 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Hakin, Andrew W. [Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, T1K 3M4 (Canada)]. E-mail: hakin@uleth.ca; Liu Jinlian [Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, T1K 3M4 (Canada); Erickson, Kristy [Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, T1K 3M4 (Canada); Munoz, Julie-Vanessa [Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, T1K 3M4 (Canada); Rard, Joseph A. [Energy and Environment Directorate, Lawrence Livermore National Laboratory, University of California, Livermore, CA 94550 (United States)

    2005-02-01

    Relative densities and relative massic heat capacities have been measured for acidified solutions of Y(NO{sub 3}){sub 3}(aq), Pr(NO{sub 3}){sub 3}(aq), and Gd(NO{sub 3}){sub 3}(aq) at T = (288.15, 298.15, 313.15, and 328.15) K and p = 0.1 MPa. In addition, relative densities and massic heat capacities have been measured at the same temperatures and pressure for Y(NO{sub 3}){sub 3}(aq) and Ho(NO{sub 3}){sub 3}(aq) solutions without excess acid (n.b. measurements at T = 328.15 K for Ho(NO{sub 3}){sub 3}(aq) were not performed due to the limited volume of solution available). Apparent molar volumes and apparent molar heat capacities for the aqueous salt solutions have been calculated from the experimental apparent molar properties of the acidified solutions using Young's rule, whereas the apparent molar properties of the solutions without excess acid were calculated directly from the measured densities and massic heat capacities. The two sets of data for the Y(NO{sub 3}){sub 3}(aq) systems provide a check of the internal consistency of the Young's rule approach we have utilised. The concentration dependences of the apparent molar volumes and heat capacities of the aqueous salt solutions have been modelled at each investigated temperature using the Pitzer ion interaction equations to yield apparent molar properties at infinite dilution. Complex formation within the aqueous rare earth nitrate systems is discussed qualitatively by probing the concentration dependence of apparent molar volumes and heat capacities. In spite of the complex formation in the aqueous rare earth nitrate systems, there is a high degree of self-consistency between the apparent molar volumes and heat capacities at infinite dilution reported in this manuscript and those previously reported for aqueous rare earth perchlorates.

  6. Prediction of Heat Removal Capacity of Horizontal Condensation Heat Exchanger submerged in Pool

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong-Su; Hong, Soon-Joon [FNC Tech., Yongin (Korea, Republic of); Cho, Hyoung-Kyu [Seoul National University, Seoul (Korea, Republic of); Park, Goon-Cherl [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    As representative passive safety systems, there are the passive containment cooling system (PCCS) of ESBWR, the emergency condenser system (ECS) of the SWR-1000, the passive auxiliary feed-water system (PAFS) of the APR+ and etc. During the nuclear power plant accidents, these passive safety systems can cool the nuclear system effectively via the heat transfer through the steam condensation, and then mitigate the accidents. For the optimum design and the safety analysis of the passive safety system, it is essential to predict the heat removal capacity of the heat exchanger well. The heat removal capacity of the horizontal condensation heat exchanger submerged in a pool is determined by a combination of a horizontal in-tube condensation heat transfer and a boiling heat transfer on the horizontal tube. Since most correlations proposed in the previous nuclear engineering field were developed for the vertical tube, there is a certain limit to apply these correlations to the horizontal tube. Therefore, this study developed the heat transfer model for the horizontal Ushaped condensation heat exchanger submerged in a pool to predict well the horizontal in-tube condensation heat transfer, the boiling heat transfer on the horizontal tube and the overall heat removal capacity of the heat exchanger using the best-estimate system analysis code, MARS.

  7. Frequency-dependent heat capacity

    DEFF Research Database (Denmark)

    Behrens, Claus Flensted

    The frequency–dependent heat capacity of super-cooled glycerol near the glass transition is measured using the 3w detection technique. An electrical conducting thin film with a temperature–dependent electrical resistance is deposited on a substrate. The thin film is used simultaneously as a heater...

  8. Temperature fluctuation and heat capacity in relativistic heavy-ion collisions

    CERN Document Server

    Ma, Guo Liang; Chen Jin Gen; He Ze-Jun; Long Jia-Li; Lu Zhao-Hui; Ma Yu-Gang; Sá Ben-Hao; Shen Wen-Qing; Wang Kun; Wei Yi-Bin; Zhang Hu-Yong; Zhong Chen

    2004-01-01

    We used LUCIAE3.0 model to simulate the Pb+Pb and C+C in SPS energy. The heat capacity was then extracted from event-by-event temperature fluctuation. It is found that the heat capacity per hadron multiplicity decreases with the increasing of beam energy and impact parameter for a given reaction system. While the hadron mass increases, the heat capacity per hadron multiplicity rises. In addition, we found that, for a given hadron, the heat capacity per hadron multiplicity is almost the same regardless of the reaction system. Some discussions were also given.

  9. Densities, viscosities, and isobaric heat capacities of the system (1-butanol + cyclohexane) at high pressures

    International Nuclear Information System (INIS)

    Torín-Ollarves, Geraldine A.; Martín, M. Carmen; Chamorro, César R.; Segovia, José J.

    2014-01-01

    Highlights: • The densities of cyclohexane and its mixtures with 1-butanol were measured. • The excess molar volumes were calculated and correlated. • The viscosities were measured at atmospheric pressure. • The isobaric heat capacities were measured at p = (0.1 to 25) MPa at T = (293.15 and 313.15) K. • A positive deviation from the ideal behavior is observed. - Abstract: The cyclohexane and the system of 1-butanol + cyclohexane have been characterized using densities, viscosities and isobaric heat capacities measurements. For that, the densities were measured in a high-pressure vibrating tube densimeter at five temperatures from (293.15 to 333.15) K and pressures up to 100 MPa. The measurements were correlated with the empirical Tamman–Tait equation. Moreover, the isobaric heat capacities of the binary system were measured in a high-pressure automated flow calorimeter at T = (293.15 and 313.15) K and pressures up to 25 MPa for pure cyclohexane and in admixture with 1-butanol. The excess molar heat capacities were assessed for the mixture and a positive deviation from the ideality was obtained, except for a small part in the region rich in alkanol. The viscosity measurements were carried out, at the calorimeter conditions, for correcting the experimental values of isobaric heat capacities due to friction along the tube. The viscosity was measured at atmospheric pressure in a Stabinger Anton Paar SVM 3000 viscometer in the temperature range of (293.15 to 333.15) K for cyclohexane and the mixtures. At high pressure, the viscosities were estimated using Lucas method

  10. Heat capacities of aqueous polar aromatic compounds over a wide range of conditions. Part I: phenol, cresols, aniline, and toluidines

    International Nuclear Information System (INIS)

    Censky, Miroslav; Hnedkovsky, Lubomir; Majer, Vladimir

    2005-01-01

    The heat capacities of dilute aqueous solutions of phenol (hydroxybenzene), three cresols (2-, 3- and 4-methylhydroxybenzene), aniline (aminobenzene) and three toluidines (2-, 3- and 4-methylaminobenzene) were determined using a modified flow Picker-type high temperature calorimeter. The measurements were performed at temperatures between (303 and 623) K or 573 K for compounds containing hydroxy or amino group, respectively, and at several pressures up to 30 MPa. Standard heat capacities (partial molar heat capacities at infinite dilution) obtained from the experimental data exhibit a strong increase with temperature above 500 K consistent with the evolution of the standard volumes reported earlier. The data for aqueous phenol were used for testing several semiempiric models proposed for description of the standard thermodynamic properties of aqueous solutes. Their ability to reproduce the temperature and pressure dependence of standard heat capacities and to extrapolate towards higher conditions were examined

  11. Flow dynamics of volume-heated boiling pools

    International Nuclear Information System (INIS)

    Ginsberg, T.; Jones, O.C.; Chen, J.C.

    1979-01-01

    Safety analyses of fast breeder reactors require understanding of the two-phase fluid dynamic and heat transfer characteristics of volume-heated boiling pool systems. Design of direct contact three-phase boilers, of practical interest in the chemical industries also requires understanding of the fundamental two-phase flow and heat transfer behavior of volume boiling systems. Several experiments have been recently reported relevant to the boundary heat-loss mechanisms of boiling pool systems. Considerably less is known about the two-phase fluid dynamic behavior of such systems. This paper describes an experimental investigation of the steady-state flow dynamics of volume-heated boiling pool systems

  12. Vibrational dynamics and heat capacity of polyglycine I.

    Science.gov (United States)

    Porwal, Vikas; Misra, Radha Mohan; Tandon, Poonam; Gupta, Vishwambhar Dayal

    2004-02-01

    Earlier works on polyglycine I suffer from several infirmities, such as the dynamic methylene group being replaced by a mass unit and the use of poorly resolved inelastic neutron spectra, which have resulted in wrong assignments and imprecise profile of dispersion curves. In addition, the density-of-states and heat capacity variation as a function of temperature are being reported for the first time. The heat capacity is in good agreement with the measurements reported earlier by Roles and Wunderlich within a certain range (230-350 K). Deviations set in beyond this could be due to the presence of two crystalline states (I and II) in the sample used for the heat capacity measurements.

  13. Apparatus intended for measuring heat capacity and heat transfer down to mK range

    International Nuclear Information System (INIS)

    Hebral, B.; Frossati, G.; Godfrin, H.; Schumacher, G.; Thoulouze, D.

    1978-01-01

    A cryogenic apparatus to perform heat capacity and heat transfer measurements in the range 1.5 mK-50 mK is described. Measurements are performed in an adiabatic demagnetization cell attached to a dilution refrigerator. Heat capacity measurements were effected on CMN-helium systems; the CMN specific heat was deduced above 1.6 mK when using liquid 3 He or a mixture 1.1% 3 He - 98.9% 4 He. A specific heat anomaly was observed with 4 He below 10 mK. It does not seen possible to interprete it by simple thermal equilibrium considerations. The superfluid 3 He heat capacity was also deduced from the results obtained with liquid 3 He under pressure. In heat transfer measurements at the interface CMN-mixture 3 He- 4 He, the temperature dependence of the thermal boundary resistance is in rather good agreement with other powder results. The measured resistances are larger than those predicted by the classical phonon process [fr

  14. Anomalous Behavior of Electronic Heat Capacity of Strongly Correlated Iron Monosilicide

    Science.gov (United States)

    Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.

    2018-04-01

    The paper deals with the electronic heat capacity of iron monosilicide FeSi subjected to semiconductor-metal thermal transition during which the formation of its spintronic properties is observed. The proposed model which considers pd-hybridization of strongly correlated d-electrons with non-correlated p-electrons, demonstrates a connection of their contribution to heat capacity in the insulator phase with paramagnon effects and fluctuations of occupation numbers for p- and d-states. In a slitless state, the temperature curve of heat capacity is characterized by a maximum appeared due to normalization of the electron density of states using fluctuating exchange fields. At higher temperatures, a linear growth in heat capacity occurs due to paramagnon effects. The correlation between the model parameters and the first-principles calculation provides the electron contribution to heat capacity, which is obtained from the experimental results on phonon heat capacity. Anharmonicity of phonons is connected merely with the thermal expansion of the crystal lattice.

  15. Experimental study on heat capacity of paraffin/water phase change emulsion

    International Nuclear Information System (INIS)

    Huang, L.; Noeres, P.; Petermann, M.; Doetsch, C.

    2010-01-01

    A paraffin/water phase change emulsion is a multifunctional fluid in which fine paraffin droplets are dispersed in water by a surfactant. This paper presents an experimental study on the heat capacity of an emulsion containing 30 wt.% paraffin in a test rig. The results show that the heat capacity of the emulsion consists of the sensible heat capacity of water and that of the paraffin as well as the latent heat capacity of the paraffin during the phase transition solid-liquid. The emulsion is an attractive alternative to chilled water for comfort cooling applications, because it has a heat capacity of 50 kJ/kg from 5 to 11 deg. C, which is two times as high as that of water in the same temperature range.

  16. Low-temperature heat capacities and standard molar enthalpy of formation of 4-(2-aminoethyl)-phenol(C8H11NO)

    Institute of Scientific and Technical Information of China (English)

    Di You-Ying; Kong Yu-Xia; Yang Wei-Wei; Tan Zhi-Cheng

    2008-01-01

    This paper reports that low-temperature heat capacities of 4-(2-aminoethyl)-phenol(C8H11NO)are measured by a precision automated adiabatic calorimeter over the temperature range from 78 to 400 K.A polynomial equation of heat capacities as a function of the temperature was fitted by the least square method.Based on the fitted polynomial,the smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15 K were calculated and tabulated at the interval of 5 K.The energy equivalent,gcalor,of the oxygen-bomb The constant-volume energy of combustion of the compound at T=298.15 K was measured by a precision oxygen-bomb combustion and other thermodynamic principles.Finally,the standard molar enthalpy of formation of the compound

  17. Liquid heat capacity of the solvent system (piperazine + n-methyldiethanolamine + water)

    International Nuclear Information System (INIS)

    Chen, Y.-R.; Caparanga, Alvin R.; Soriano, Allan N.; Li, M.-H.

    2010-01-01

    A new set of values for the heat capacity of aqueous mixtures of piperazine (PZ) and n-methyldiethanolamine (MDEA) at different concentrations and temperatures are reported in this paper. The differential scanning calorimetry technique was used to measure the property over the range T = 303.2 K to T = 353.2 K for mixtures containing 0.60 to 0.90 mole fraction water with 15 different concentrations of the system (PZ + MDEA + H 2 O). Heat capacity for four concentrations of the binary system (PZ + MDEA) was also measured. A Redlich-Kister-type equation was adopted to estimate the excess molar heat capacity, which was used to predict the value of the molar heat capacity at a particular concentration and temperature, which would then be compared against the measured value. A total of 165 data points fit into the model resulted in a low overall average absolute deviation of 4.6% and 0.3% for the excess molar heat capacity and molar heat capacity, respectively. Thus, the results presented here are of acceptable accuracy for use in engineering process design.

  18. Apparent molar heat capacities and apparent molar volumes of Pr(ClO{sub 4}){sub 3}(aq), Gd(ClO{sub 4}){sub 3}(aq), Ho(ClO{sub 4}){sub 3}(aq), and Tm(ClO{sub 4}){sub 3}(aq) at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Hakin, Andrew W. E-mail: hakin@uleth.ca; Lian Liu, Jin; Erickson, Kristy; Munoz, Julie-Vanessa

    2004-09-01

    Acidified aqueous solutions of Pr(ClO{sub 4}){sub 3}(aq), Gd(ClO{sub 4}){sub 3}(aq), Ho(ClO{sub 4}){sub 3}(aq), and Tm(ClO{sub 4}){sub 3}(aq) were prepared from the corresponding oxides by dissolution in dilute perchloric acid. Once characterized with respect to trivalent metal cation and acid content, the relative densities of the solutions were measured at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa using a Sodev O2D vibrating tube densimeter. The relative massic heat capacities of the aqueous systems were also determined, under the same temperature and pressure conditions, using a Picker Flow Microcalorimeter. All measurements were made on solutions containing rare earth salt in the concentration range 0.01 {<=} m/(mol {center_dot} kg{sup -1}) {<=} 0.2. Relative densities and relative massic heat capacities were used to calculate the apparent molar volumes and apparent molar heat capacities of the acidified salt solutions from which the apparent molar properties of the aqueous salt solutions were extracted by the application of Young's Rule. The concentration dependences of the isothermal apparent molar volumes and heat capacities of each aqueous salt solution were modelled using Pitzer ion-interaction equations. These models produced estimates of apparent molar volumes and apparent molar heat capacities at infinite dilution for each set of isothermal V{sub phi,2} and C{sub pphi,2} values. In addition, the temperature and concentration dependences of the apparent molar volumes and apparent molar heat capacities of the aqueous rare earth perchlorate salt solutions were modelled using modified Pitzer ion-interaction equations. The latter equations utilized the Helgeson, Kirkham, and Flowers equations of state to model the temperature dependences (at p=0.1 MPa) of apparent molar volumes and apparent molar heat capacities at infinite dilution. The results of the latter models were compared to those previously published in the literature. Apparent

  19. Critical behavior of binary mixture of {(1 − x) C6H5CN + x CH3(CH2)9CH3}: Measurements of coexistence curves, turbidity, and heat capacity

    International Nuclear Information System (INIS)

    Yin Tianxiang; Lei Yuntao; Mao Chunfeng; Chen Zhiyun; An Xueqin; Shen Weiguo

    2012-01-01

    Highlights: ► Coexistence curve, isobaric heat capacity and turbidity measurements have been reported. ► Asymmetry of the coexistence curves has been analyzed by the complete scaling theory. ► Heat capacity has been shown to be important in describing the asymmetric criticality. ► Universal amplitude ratios have been tested. - Abstract: (Liquid + liquid) coexistence curve, turbidity, and isobaric heat capacity per unit volume for the critical solution of {benzonitrile + n-undecane} have been measured. The critical exponents β, ν, γ, and α have been deduced, which were found to be consistent with the theoretic predictions. Meanwhile, the experimental data have also been analyzed to obtain the system-dependent critical amplitudes B, ξ 0 , χ 0 , A ± , and D corresponding to the difference of the general density variable of two coexisting phases Δρ, the correlation length ξ, the osmotic compressibility χ, the isobaric heat capacity per unit volume C p V −1 , and the first term of correction-to-scaling for the isobaric heat capacity per unit volume, which were used to test some universal ratios. It was found that the coexistence curve may be well described by the crossover model proposed by Gutkowski et al. The critical-fluctuation induced contribution to the background heat capacity B cr was obtained and used to analyze the asymmetric behavior of the diameter of the coexistence curve. The result indicated that the asymmetry of the coexistence curve can be well described by the complete scaling theory proposed by Anisimov et al., and the heat capacity does make a significant contribution to this asymmetric behavior.

  20. Physical Properties and Specific Heat Capacity of Tamarind (Tamarindus indica Seed

    Directory of Open Access Journals (Sweden)

    A. Dauda

    2017-04-01

    Full Text Available This study investigated the effect of moisture content on physical properties and specific heat capacity of Tamarindus indica seed. Physical properties investigated were axial dimensions, one thousand seed weight, bulk and true densities, porosity, roundness and sphericity, surface area, angle of repose and static coefficient of friction. The thermal property determined was the specific heat. These properties of Tamarindus indica seed were investigated within the moisture content range of 7.55 - 10.47% (d.b. The length, width and thickness increased from 9.979 to 10.634mm, 8.909 to 10.089mm and 5.039 to 5.658mm, respectively in the above moisture range. One thousand seed weight, surface area, seed volume, true density and porosity, increased from 388.4 to 394.8g, 86.916 to 87.58cm2, 0.353 to 0.366cm3, 1217.5 to 1287.00kg/m3 and 28.22 to 33.87%, respectively, as moisture content increased in the above range, while bulk density decreased from 873.9 to 851.4kg/m3. Roundness and sphericity, and angle of repose also increased from 41 to 42.4% and 73.7 to 76.3% and 36.1 to 38.93o, respectively. Specific heat capacity values increased linearly from 589.00J/kgK to 638.61 J/kgK in the above moisture range.

  1. Heat loss mechanisms in a measurement of specific heat capacity of graphite

    International Nuclear Information System (INIS)

    Shipley, D.R.; Duane, S.

    1996-01-01

    Absorbed dose to graphite in electron beams with nominal energies in the range 3-20 MeV is determined by measuring the temperature rise in the core of a primary standard graphite calorimeter. This temperature rise is related to absorbed dose by a separate measurement of the specific heat capacity of the graphite core. There is, however, a small but significant amount of heat loss from the sample in the determination of specific heat capacity and corrections for these losses are required. This report discusses the sources of heat loss in the measurements and, where possible, provides estimates for the magnitude of these losses. For those mechanisms which are significant, a more realistic model of the measurement system is analysed and corrections for the losses are provided. (UK)

  2. Thermodynamics of proton dissociation from aqueous bicarbonate: apparent molar volumes and apparent molar heat capacities of potassium carbonate and potassium bicarbonate at T=(278.15 to 393.15) K and at the pressure 0.35 MPa

    International Nuclear Information System (INIS)

    Sorenson, E.C.; Woolley, E.M.

    2004-01-01

    We have determined the apparent molar volumes V phi and apparent molar heat capacities C p,phi of aqueous potassium carbonate and potassium bicarbonate solutions in the ranges (0.014≤m/(mol · kg -1 )≤0.51) and (278.15≤T/K≤393.15) at the pressure p=0.35 MPa. Corrections for speciation due to hydrolysis and disproportionation in solution were applied using Young's rule, and semi-empirical equations representing (V phi ,m,T) and (C p,phi ,m,T) for the species {2K + , CO 3 2- (aq)} and {K + , HCO 3 - (aq)} were fitted to the experimental results. We have used these equations to estimate the change in volume Δ r V m , change in heat capacity Δ r C p,m , enthalpy change Δ r H m , entropy change Δ r S m , and equilibrium molality quotient pQ for the second proton dissociation reaction from aqueous carbonic acid

  3. Low-temperature heat capacities and standard molar enthalpy of formation of N-methylnorephedrine C211H17NO(s)

    Institute of Scientific and Technical Information of China (English)

    Di You-Ying; Wang Da-Qi; Shi Quan; Tan Zhi-Cheng

    2008-01-01

    This paper reports that low-temperature heat capacities of N-methylnorephedrine C11H17NO(s) have been mea- sured by a precision automated adiabatic calorimeter over the temperature range from T=78 K to T=400 K. A solid to liquid phase transition of the compound was found in the heat capacity curve in the temperature range of T=342- 364 K. The peak temperature, molar enthalpy and entropy of fusion of the substance were determined. The experimental values of the molar heat capacities in the temperature regions of T=78-342 K and T=364-400 K were fitted to two poly- nomial equations of heat capacities with the reduced temperatures by least squares method. The smoothed molar heat capacities and thermodynamic functions of N-methylnorephedrine C11H17NO(s) relative to the standard refer- ence temperature 298.15 K were calculated based on the fitted polynomials and tabulated with an interval of 5 K. The constant-volume energy of combustion of the compound at T=298.15 K was measured by means of an isoperibol preci- sion oxygen-bomb combustion calorimeter. The standard molar enthalpy of combustion of the sample was calculated. The standard molar enthalpy of formation of the compound was determined from the combustion enthalpy and other auxiliary thermodynamic data through a Hess thermochemical cycle.

  4. Heat capacity measurement of CeNbO4(s)

    International Nuclear Information System (INIS)

    Bhojane, S.M.; Kulkarni, Jayanthi; Kulkarni, S.G.

    2012-01-01

    Molar heat capacity of CeNbO 4 (s) was determined using differential scanning calorimeter in the temperature range of 550 to 900 K. The molar heat capacity values were least squares analysed and the dependence of molar heat capacity with temperature for CeNbO 4 (s) can be given as, J K -1 mol -1 = 94.7320 + 0.0852T-1.6073 x 10 6 T -2 (550≤T(K)≤900) Cerium is commonly used as an inactive analogue to plutonium; also it is an important fission product with moderate yield. Various Nb alloys are used as cladding material in nuclear industry. Hosts of thermodynamic data are needed to understand the various phenomena that occur in a nuclear reactor. In the present study, the molar heat capacity of CeNbO 4 (s) has been determined using high temperature differential scanning calorimeter in temperature range 550 to 900 K. This is one of the important compounds in the ternary system of Ce-Nb-O

  5. Preliminary Analysis on Heat Removal Capacity of Passive Air-Water Combined Cooling Heat Exchanger Using MARS

    International Nuclear Information System (INIS)

    Kim, Seung-Sin; Jeon, Seong-Su; Hong, Soon-Joon; Bae, Sung-Won; Kwon, Tae-Soon

    2015-01-01

    Current design requirement for working time of PAFS heat exchanger is about 8 hours. Thus, it is not satisfied with the required cooling capability for the long term SBO(Station Black-Out) situation that is required to over 72 hours cooling. Therefore PAFS is needed to change of design for 72 hours cooling. In order to acquirement of long terms cooling using PAFS, heat exchanger tube has to be submerged in water tank for long time. However, water in the tank is evaporated by transferred heat from heat exchanger tubes, so water level is gradually lowered as time goes on. The heat removal capacity of air cooling heat exchanger is core parameter that is used for decision of applicability on passive air-water combined cooling system using PAFS in long term cooling. In this study, the development of MARS input model and plant accident analysis are performed for the prediction of the heat removal capacity of air cooling heat exchanger. From analysis result, it is known that inflow air velocity is the decisive factor of the heat removal capacity and predicted air velocity is lower than required air velocity. But present heat transfer model and predicted air velocity have uncertainty. So, if changed design of PAFS that has over 4.6 kW heat removal capacity in each tube, this type heat exchanger can be applied to long term cooling of the nuclear power plant

  6. Parametric Study on the Dynamic Heat Storage Capacity of Building Elements

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Manz, H.; Heiselberg, Per

    2007-01-01

    as their interrelation. The potential of increasing thermal mass by using phase change materials (PCM) was estimated assuming increased thermal capacity. The results show a significant impact of the heat transfer coefficient on heat storage capacity, especially for thick, thermally heavy elements. The storage capacity...... of onedimensional heat conduction in a slab with convective boundary condition was applied to quantify the dynamic heat storage capacity of a particular building element. The impact of different parameters, such as slab thickness, material properties and the heat transfer coefficient was investigated, as well......In modern, extensively glazed office buildings, due to high solar and internal loads and increased comfort expectations, air conditioning systems are often used even in moderate and cold climates. Particularly in this case, passive cooling by night-time ventilation seems to offer considerable...

  7. Heat capacity of xenon adsorbed in nanobundle grooves

    International Nuclear Information System (INIS)

    Chishko, K.A.; Sokolova, E.S.

    2016-01-01

    A model of one-dimensional real gas under external transverse force field is applied to interpret the experimentally observed thermodynamical properties of xenon deposited into groves on the surface of carbon nanobundles. This non-ideal gas model with pair interaction is not quite adequate to describe the dense adsorbates (especially at low temperature limit), but it makes possible to take into account easily the particle exchange between 1D adsorbate and 3D atmosphere which becomes an essential factor since intermediate (for xenon - of order 35 K) up to high (approx 100 K) temperatures. In this paper we treat the 1D real gas with only Lennard-Jones pair interaction, but at presence of exact equilibrium conditions on the atom numbers between low-dimensional adsorbate and three-dimensional atmosphere of the experimental cell. The low-temperature branch of the heat capacity has been fitted separately within the elastic atomic chain model to get the best agreement between theory and experiment in as wide as possible region just from zero temperature. The gas approximation is introduced from the temperatures where the chain heat capacity tends definitely to 1D equipartition law. In this case the principal parameters for both models can be chosen in such a way that the heat capacity C(T) of the chain goes continuously into the corresponding curve of the gas approximation. So, it seems to be expected that adequate interpretation for temperature dependences of the atomic adsorbate heat capacity can be obtained through a reasonable combination of 1D gas and phonon approaches. The principal parameters of the gas approximation (such a desorption energy) found from the fitting between theory and experiment for xenon heat capacity are in good agreement with corresponding data known in literature.

  8. Effect of surface hydroxyl groups on heat capacity of mesoporous silica

    Science.gov (United States)

    Marszewski, Michal; Butts, Danielle; Lan, Esther; Yan, Yan; King, Sophia C.; McNeil, Patricia E.; Galy, Tiphaine; Dunn, Bruce; Tolbert, Sarah H.; Hu, Yongjie; Pilon, Laurent

    2018-05-01

    This paper quantifies the effect of surface hydroxyl groups on the effective specific and volumetric heat capacities of mesoporous silica. To achieve a wide range of structural diversity, mesoporous silica samples were synthesized by various methods, including (i) polymer-templated nanoparticle-based powders, (ii) polymer-templated sol-gel powders, and (iii) ambigel silica samples dried by solvent exchange at room temperature. Their effective specific heat capacity, specific surface area, and porosity were measured using differential scanning calorimetry and low-temperature nitrogen adsorption-desorption measurements. The experimentally measured specific heat capacity was larger than the conventional weight-fraction-weighted specific heat capacity of the air and silica constituents. The difference was attributed to the presence of OH groups in the large internal surface area. A thermodynamic model was developed based on surface energy considerations to account for the effect of surface OH groups on the specific and volumetric heat capacity. The model predictions fell within the experimental uncertainty.

  9. Peculiar features of heat capacity for Cu and Ni nanoclusters

    International Nuclear Information System (INIS)

    Gafner, S. L.; Redel, L. V.; Gafner, Yu. Ya.; Samsonov, V. M.

    2011-01-01

    The heat capacity of copper and nickel clusters (from 2 to 6 nm in diameter) was investigated in the temperature range 200–800 K using molecular dynamics method and a modified tight-binding potential. The simulation results demonstrate a very good agreement with the available experimental data at T = 200 K and a fairy good agreement at higher temperatures. A number of regular trends are revealed in computer experiments which agree with the corresponding theoretical predictions. A conclusion is made that in the case of single free clusters the heat capacity may exceed the capacity of the corresponding bulk material. It is found that at 200 K, the copper nanocluster (D = 6 nm) heat capacity is higher by 10% and for nickel cluster by 13%. The difference diminishes with increasing the nanoparticles size proportionally to the relative number of surface atoms. A conclusion is made that very high values of the nanostructure heat capacity observed in laboratory experiments should not be attributed to free clusters, i.e., the effect in question is caused by other reasons.

  10. Spirometry, Static Lung Volumes, and Diffusing Capacity.

    Science.gov (United States)

    Vaz Fragoso, Carlos A; Cain, Hilary C; Casaburi, Richard; Lee, Patty J; Iannone, Lynne; Leo-Summers, Linda S; Van Ness, Peter H

    2017-09-01

    Spirometric Z-scores from the Global Lung Initiative (GLI) rigorously account for age-related changes in lung function and are thus age-appropriate when establishing spirometric impairments, including a restrictive pattern and air-flow obstruction. However, GLI-defined spirometric impairments have not yet been evaluated regarding associations with static lung volumes (total lung capacity [TLC], functional residual capacity [FRC], and residual volume [RV]) and gas exchange (diffusing capacity). We performed a retrospective review of pulmonary function tests in subjects ≥40 y old (mean age 64.6 y), including pre-bronchodilator measures for: spirometry ( n = 2,586), static lung volumes by helium dilution with inspiratory capacity maneuver ( n = 2,586), and hemoglobin-adjusted single-breath diffusing capacity ( n = 2,508). Using multivariable linear regression, adjusted least-squares means (adj LS Means) were calculated for TLC, FRC, RV, and hemoglobin-adjusted single-breath diffusing capacity. The adj LS Means were expressed with and without height-cubed standardization and stratified by GLI-defined spirometry, including normal ( n = 1,251), restrictive pattern ( n = 663), and air-flow obstruction (mild, [ n = 128]; moderate, [ n = 150]; and severe, [ n = 394]). Relative to normal spirometry, restrictive-pattern had lower adj LS Means for TLC, FRC, RV, and hemoglobin-adjusted single-breath diffusing capacity ( P ≤ .001). Conversely, relative to normal spirometry, mild, moderate, and severe air-flow obstruction had higher adj LS Means for FRC and RV ( P < .001). However, only mild and moderate air-flow obstruction had higher adj LS Means for TLC ( P < .001), while only moderate and severe air-flow obstruction had higher adj LS Means for RV/TLC ( P < .001) and lower adj LS Means for hemoglobin-adjusted single-breath diffusing capacity ( P < .001). Notably, TLC (calculated as FRC + inspiratory capacity) was not increased in severe air-flow obstruction ( P ≥ .11

  11. Landau-Placzek ratio for heat density dynamics and its application to heat capacity of liquids.

    Science.gov (United States)

    Bryk, Taras; Ruocco, Giancarlo; Scopigno, Tullio

    2013-01-21

    Exact relation for contributions to heat capacity of liquids is obtained from hydrodynamic theory. It is shown from analysis of the long-wavelength limit of heat density autocorrelation functions that the heat capacity of simple liquids is represented as a sum of two contributions due to "phonon-like" collective excitations and heat relaxation. The ratio of both contributions being the analogy of Landau-Placzek ratio for heat processes depends on the specific heats ratio. The theory of heat density autocorrelation functions in liquids is verified by computer simulations. Molecular dynamics simulations for six liquids having the ratio of specific heats γ in the range 1.1-2.3, were used for evaluation of the heat density autocorrelation functions and predicted Landau-Placzek ratio for heat processes. The dependence of contributions from collective excitations and heat relaxation process to specific heat on γ is shown to be in excellent agreement with the theory.

  12. Reductions in labour capacity from heat stress under climate warming

    Science.gov (United States)

    Dunne, John P.; Stouffer, Ronald J.; John, Jasmin G.

    2013-06-01

    A fundamental aspect of greenhouse-gas-induced warming is a global-scale increase in absolute humidity. Under continued warming, this response has been shown to pose increasingly severe limitations on human activity in tropical and mid-latitudes during peak months of heat stress. One heat-stress metric with broad occupational health applications is wet-bulb globe temperature. We combine wet-bulb globe temperatures from global climate historical reanalysis and Earth System Model (ESM2M) projections with industrial and military guidelines for an acclimated individual's occupational capacity to safely perform sustained labour under environmental heat stress (labour capacity)--here defined as a global population-weighted metric temporally fixed at the 2010 distribution. We estimate that environmental heat stress has reduced labour capacity to 90% in peak months over the past few decades. ESM2M projects labour capacity reduction to 80% in peak months by 2050. Under the highest scenario considered (Representative Concentration Pathway 8.5), ESM2M projects labour capacity reduction to less than 40% by 2200 in peak months, with most tropical and mid-latitudes experiencing extreme climatological heat stress. Uncertainties and caveats associated with these projections include climate sensitivity, climate warming patterns, CO2 emissions, future population distributions, and technological and societal change.

  13. The lumped heat capacity method applied to target heating

    OpenAIRE

    Rickards, J.

    2013-01-01

    The temperature of metal samples was measured while they were bombarded by the beam from the a particle accelerator. The evolution of the temperature with time can be explained using the lumped heat capacity method of heat transfer. A strong dependence on the type of mounting was found. Se midió la temperatura de muestras metálicas al ser bombardeadas por el haz de iones del Acelerador Pelletron del Instituto de Física. La evolución de la temperatura con el tiempo se puede explicar usando ...

  14. ISOCHORIC HEAT CAPACITY OF 1% AQUEOUS SOLUTION OF MAGNESIUM CHLORIDE

    Directory of Open Access Journals (Sweden)

    V. I. Dvoryanchikov

    2016-01-01

    Full Text Available Aim. The aim is to conduct an experimental study of isochoric heat capacity of 1% aqueous solution of magnesium chloride along the phase boundary curve.Method. In order to determine the isochoric heat capacity at the phase boundary curve we used the adiabatic calorimeter of KH. I. Amirkhanov.Results. Results of the study of the isochoric heat capacity depending on the temperature are given in tables and figures; the findings are compared with those of other researchers. When evaluating a complex system, we ought not to evaluate its effectiveness on the basis of only one criterion, even a very important, in this case must take into account the requirements of the technical, economic, environmental and of other natures.Conclusions. When solving optimization problems of efficiency in geothermal energy it is necessary to take into account the fact of the temperature dependence of the heat and density. The temperature dependence of the density and heat capacity in the calculations significantly affect the value of the efficiency criterion to be taken into account, otherwise the calculation error can be up to 20%. The data obtained from the isochoric heat capacity of aqueous solutions of magnesium chloride is compared with the data for water and aqueous solutions of NaCl and NaOH, obtained previously, which may be represented as a model of geothermal and sea water.

  15. Evaluation of Heat Capacity and Resistance to Cyclic Oxidation of Nickel Superalloys

    Directory of Open Access Journals (Sweden)

    Przeliorz R.

    2014-08-01

    Full Text Available Paper presents the results of evaluation of heat resistance and specific heat capacity of MAR-M-200, MAR-M-247 and Rene 80 nickel superalloys. Heat resistance was evaluated using cyclic method. Every cycle included heating in 1100°C for 23 hours and cooling for 1 hour in air. Microstructure of the scale was observed using electron microscope. Specific heat capacity was measured using DSC calorimeter. It was found that under conditions of cyclically changing temperature alloy MAR-M-247 exhibits highest heat resistance. Formed oxide scale is heterophasic mixture of alloying elements, under which an internal oxidation zone was present. MAR-M-200 alloy has higher specific heat capacity compared to MAR-M-247. For tested alloys in the temperature range from 550°C to 800°C precipitation processes (γ′, γ″ are probably occurring, resulting in a sudden increase in the observed heat capacity.

  16. Heat capacity characterization at phase transition temperature of Agl superionic

    International Nuclear Information System (INIS)

    Widowati, Arie

    2000-01-01

    The phase transition of Agl superionic conductor was investigated by calorometric. A single phase transition was found at (153±5) o C which corresponds to the α - β transition. Calorimetric measurement showed an anomalously high heat capacity with a large discontinues change in the Arrhenius plot, was found above the transition temperature of β - α phase. The maximum heat capacity was found to be ±19.7 cal/gmol. Key words : superionic conductor, thermal capacity

  17. Solvation thermodynamics and heat capacity of polar and charged solutes in water

    Science.gov (United States)

    Sedlmeier, Felix; Netz, Roland R.

    2013-03-01

    The solvation thermodynamics and in particular the solvation heat capacity of polar and charged solutes in water is studied using atomistic molecular dynamics simulations. As ionic solutes we consider a F- and a Na+ ion, as an example for a polar molecule with vanishing net charge we take a SPC/E water molecule. The partial charges of all three solutes are varied in a wide range by a scaling factor. Using a recently introduced method for the accurate determination of the solvation free energy of polar solutes, we determine the free energy, entropy, enthalpy, and heat capacity of the three different solutes as a function of temperature and partial solute charge. We find that the sum of the solvation heat capacities of the Na+ and F- ions is negative, in agreement with experimental observations, but our results uncover a pronounced difference in the heat capacity between positively and negatively charged groups. While the solvation heat capacity ΔCp stays positive and even increases slightly upon charging the Na+ ion, it decreases upon charging the F- ion and becomes negative beyond an ion charge of q = -0.3e. On the other hand, the heat capacity of the overall charge-neutral polar solute derived from a SPC/E water molecule is positive for all charge scaling factors considered by us. This means that the heat capacity of a wide class of polar solutes with vanishing net charge is positive. The common ascription of negative heat capacities to polar chemical groups might arise from the neglect of non-additive interaction effects between polar and apolar groups. The reason behind this non-additivity is suggested to be related to the second solvation shell that significantly affects the solvation thermodynamics and due to its large spatial extent induces quite long-ranged interactions between solvated molecular parts and groups.

  18. Specific heat capacities of different clayey samples obtained by differential scanning calorimetry

    International Nuclear Information System (INIS)

    Fernandez, A.M.

    2012-01-01

    1600 C. The furnace is made of a graphite tube and it is cooled down by water circulation. The temperature regulation is performed by an S type Pt/Pt-Rh 10% thermocouple. The weighing module has a maximum capacity of 35 g, the balance being well suited for the analysis of samples ranging from micro-quantities to a bulky and dense materials, maintaining a measuring resolution equivalent to a microgram whatever the mass analysed. The crucibles containing the samples can be of various materials and volumes: a) alumina (up to 1750 C), b) platinum (up to 1750 C), and c) aluminium (up to 500 C). The specific heat capacity was determined by using the stepwise method with sapphire as reference material. Prior to performing the tests, the equipment was calibrated in temperature by using aluminium crucibles and a DSC plate rod transducer. Eight tests were carried out with four Standards elements (In, Sn, Pb, and Zn) at two scan rates: 5 and 10 C. The heat flow (HF) signal correction or calorimetric sensitivity was obtained for each test by using sapphire as reference material. The selected clayey materials used for the C p determination were: a) FEBEX bentonite (92 wt% di-octahedral Ca-Mg smectite) from Serrata de Nijar (Almeria, Spain); b) MX-80 bentonite (85 wt.% di-octahedral Na-smectite) from Wyoming (USA); c) Ibeco RWC 16 (82% di-octahedral Ca-Mg smectite) from Milos (Greece); d) Opalinus Clay from a core sample of the borehole BHT-1 (Mont Terri, Switzerland); e) Callovo-Oxfordian clay-rock from core samples of the boreholes PAC-1002 and EPT1201 (Meuse/Haute-Marne URL, France); f) MX-80 bentonite pellets from HE-E experiment at Mont Terri (Switzerland); and g) 65:35 Sand:MX-80 mixture material from HE-E experiment at Mont Terri (Switzerland). The tests were performed from 7 to 300 C. After several analyses with sapphire, the step method and a scan rate of 20 C/min was selected to carry out the experiments. Prior to perform the experiments, the samples were dried at 110 C

  19. Heat Capacity of Room-Temperature Ionic Liquids: A Critical Review

    Science.gov (United States)

    Paulechka, Yauheni U.

    2010-09-01

    Experimental data on heat capacity of room-temperature ionic liquids in the liquid state were compiled and critically evaluated. The compilation contains data for 102 aprotic ionic liquids from 63 literature references and covers the period of time from 1998 through the end of February 2010. Parameters of correlating equations for temperature dependence of the heat capacities were developed.

  20. Negative heat capacities in central Xe+Sn reactions

    International Nuclear Information System (INIS)

    Le Neindre, N.; Bougault, R.; Gulminelli, F.

    2000-02-01

    In this study the fluctuation method is applied to the 32-50 A.MeV Xe + Sn central collisions detected with the INDRA multidetector. This method based on kinetic energy fluctuations allows the authors to provide information on the liquid gas phase transition in nuclear multifragmentation. In the case of Xe + Sn central reactions a divergence in the total heat capacity is observed. This divergence corresponds to large fluctuations on the detected fragment partitions. A negative heat capacity branch is measured and so tends to confirm the observation of a first order phase transition in heavy-ion collisions. (A.C.)

  1. Heat capacities of several Co{sub 2}YZ Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ming, E-mail: myin1@hawk.iit.edu; Nash, Philip; Chen, Song

    2013-12-20

    Highlights: • Heat contents from 600 K to 1500 K of selected Co{sub 2}YZ were measured by drop calorimeters. • Heat capacities were obtained by taking derivatives of heats contents which were fitted with second order polynomial with respect to temperature. • Melting points determined by DSC were consistent with literature data. • Heats of fusion determined by DSC were comparable with those obtained by extrapolation of heat contents. - Abstract: Heat contents of several Co{sub 2}-based Heusler compounds Co{sub 2}YZ (Y = Fe, Mn, Ti; Z = Al, Ga, Si, Ge, Sn) were measured from 500 K to 1500 K using a Setaram MTHC 96 drop calorimeter. Second order polynomials were adopted to fit the data and heat capacities were obtained by taking the derivatives with respect to temperature. Melting points were determined by differential scanning calorimetry (DSC) and measured heats of fusion were compared with those obtained from extrapolation of heat contents.

  2. Optimum performance analysis of an irreversible Diesel heat engine affected by variable heat capacities of working fluid

    International Nuclear Information System (INIS)

    Zhao, Yingru; Chen, Jincan

    2007-01-01

    An irreversible cycle model of the Diesel heat engine is established in which the temperature dependent heat capacities of the working fluid, the irreversibilities resulting from non-isentropic compression and expansion processes and heat leak losses through the cylinder wall are taken into account. The adiabatic equation of ideal gases with temperature dependent heat capacity is strictly deduced without using the additional approximation condition in the relevant literature and is used to analyze the performance of the Diesel heat engine. Expressions for the work output and efficiency of the cycle are derived by introducing the pressure ratio and the compression and expansion efficiencies. The performance characteristic curves of the Diesel heat engine are presented for a set of given parameters. The optimum criteria of some important parameters such as the work output, efficiency, pressure ratio and temperatures of the working fluid are obtained. Moreover, the influence of the compression and expansion efficiencies, variable heat capacities, heat leak and other parameters on the performance of the cycle is discussed in detail. The results obtained may provide a theoretical basis for both optimal design and operation of real Diesel heat engines

  3. An experimental study of the enhanced heating capacity of an electric heat pump (EHP) using the heat recovered from a gas engine generator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Min; Chang, Se Dong [HAC R and D Laboratory, LG Electronics, 327-23 Gasan-Dong, Geumcheon-gu, Seoul 153-802 (Korea); Lee, Jaekeun; Hwang, Yujin [School of Mechanical Engineering, Pusan National University, San 30, Changjeon-Dong, Keumjeong-Ku, Busan 609-735 (Korea)

    2009-11-15

    This paper is concerned with the effect of recovered heat on the heating capacity of an Electric Heat Pump (EHP), which is supplied with electric power and recovered heat from a gas engine generator system. Two methods of supplying recovery heat are examined: (i) to the refrigerant with the discharge line heat exchanger (HEX), and (ii) to the refrigerant of the evaporator with the sub-evaporator. Heating capacity, input power and coefficient of performance (COP) were investigated and compared for each heat recovery method. Conclusively, we found that the second method was most reasonable to recover wasted heat and increased system COP by 215%. (author)

  4. Determination of the heat capacities of Lithium/BCX (bromide chloride in thionyl chloride) batteries

    Science.gov (United States)

    Kubow, Stephen A.; Takeuchi, Kenneth J.; Takeuchi, Esther S.

    1989-12-01

    Heat capacities of twelve different Lithium/BCX (BrCl in thionyl chloride) batteries in sizes AA, C, D, and DD were determined. Procedures and measurement results are reported. The procedure allowed simple, reproducible, and precise determinations of heat capacities of industrially important Lithium/BCX cells, without interfering with performance of the cells. Use of aluminum standards allowed the accuracy of the measurements to be maintained. The measured heat capacities were within 5 percent of calculated heat capacity values.

  5. Specific Heat Capacity of Alloy 690 for Simulating Neutron Irradiation

    International Nuclear Information System (INIS)

    Park, Dae Gyu; Kim, Hee Moon; Song, Woong Sub; Baik, Seung Je; Joo, Young Sun; Ahn, Sang Bok; Park, Jin Seok; Lee, Won Jae; Ryu, Woo Seok

    2011-01-01

    The KAERI(Korea Atomic Energy Research Institute) is developing new type of nuclear reactor, so called 'SMART'(System Integrated Modular Advanced Reactor) which has many features of small power and system integrated modular type. Alloy 690 was selected as the candidate material for the heat exchanger tube of the steam generator of SMART. The SMART R and D is now facing the stage of engineering verification and approval of standard design to apply to DEMO reactors. Therefore, the material performance under the relevant environment is required to be evaluated. The important material performance issues are mechanical properties i.e. (fracture toughness, tensile and hardness) and thermal properties i.e. (thermal diffusivity, specific heat capacity and thermal conductivity) for which the engineering database is necessary to design a steam generator. However, the neutron post irradiation characteristics of the alloy 690 are barely known. As a result, PIE(Post Irradiation Examination) of thermal properties are planed and performed successfully. But specific heat capacity measurement is not performed because of not having proper test system for irradiated materials. Therefore in order to verify the effect of neutron irradiation for alloy 690, simulation method is adopted. In general, high energy neutron bombardment in material bring about lattice defects i.e. void, pore and dislocation. Dominant factor to impact to heat capacity is mainly dislocation in material. Therefore, simulation of neutron irradiation is devised by material rolling method in order to make artificial dislocation in alloy 690 as same effect of neutron irradiation. After preparing test specimens, heat capacity measurements are performed and results are compared with rolled materials and un-rolled materials to verify the effect of neutron irradiation simulation. Main interest of simulation is that heat capacity value is changed by neutron irradiation

  6. Low-tmperature Heat Capacities and Standard Molar Enthalpy of Formation of 4-Nitrobenzyl Alcohol

    Institute of Scientific and Technical Information of China (English)

    MENG, Qingfen; TAN, Zhicheng; WANG, Xiaohuan; DONG, Yaping; LI, Wu; SHI, Quan

    2009-01-01

    Low-temperature heat capacities of 4-nitrobenzyl alcohol (4-NBA) have been measured by a high precision automated adiabatic calorimeter over the temperature range from 78 to 396 K. The melting temperature, the molar calculated in the range from 80 to 400 K at the interval of 5 K. The constant-volume energy and standard molar en- at T=298.15 K. The standard molar enthalpy of formation has been derived, ΔfHom(C7H7NO3, s)=-(206.49± namic quantities through a Hess thermochemical cycle.

  7. Cooling and Heating Season Impacts of Right-Sizing of Fixed- and Variable-Capacity Heat Pumps With Attic and Indoor Ductwork

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, James [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Withers, Charles [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Kono, Jamie [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States)

    2015-06-01

    A new generation of central, ducted variable-capacity heat pump systems has come on the market, promising very high cooling and heating efficiency. They are controlled differently than standard fixed-capacity systems. Instead of cycling on at full capacity and then cycling off when the thermostat is satisfied, they vary their cooling and heating output over a wide range (approximately 40% - 118% of nominal full capacity), thus staying 'on' for 60% - 100% more hours per day compared to fixed -capacity systems. Experiments in this research examined the performance of 2-ton and 3-ton fixed- and variable-capacity systems and the impacts of system oversizing.

  8. Apparent molar volumes and apparent molar heat capacities of aqueous lead nitrate at temperatures from 278.15 K to 393.15 K and at the pressure 0.35 MPa

    International Nuclear Information System (INIS)

    Brown, B.R.; Niederhauser, T.L.; Merkley, E.D.; Woolley, E.M.

    2004-01-01

    Apparent molar volumes V phi and apparent molar heat capacities C p,phi were determined for aqueous solutions of lead nitrate [Pb(NO 3 ) 2 ] at m=(0.02 to 0.5) mol · kg -1 , at T=(278.15 to 393.15) K, and at the pressure 0.35 MPa. Our V phi values were calculated from densities obtained using a vibrating-tube densimeter, and our C p,phi values were obtained using a twin fixed-cell, power-compensation, differential-output, temperature-scanning calorimeter. Our results were fitted to functions of m and T and compared with results from the literature

  9. Heat capacity and thermal expansion of the itinerant helimagnet MnSi

    International Nuclear Information System (INIS)

    Stishov, S M; Petrova, A E; Khasanov, S; Panova, G Kh; Shikov, A A; Lashley, J C; Wu, D; Lograsso, T A

    2008-01-01

    The heat capacity and thermal expansion of a high quality single crystal of MnSi were measured at ambient pressure at zero and high magnetic fields. The calculated magnetic entropy change in the temperature range 0-30 K is less than 0.1R, a low value that emphasizes the itinerant nature of magnetism in MnSi. A linear temperature term dominates the thermal expansion coefficient in the range 30-150 K, which correlates with an enhancement of the linear electronic term in the heat capacity. A surprising similarity among the variations of the heat capacity, thermal expansion coefficient and temperature derivative of the resistivity is observed through the phase transition in MnSi. Specific forms of the heat capacity, thermal expansion coefficient and temperature derivative of resistivity at the phase transition to a helical magnetic state near 29 K are interpreted as the combination of sharp first-order features and broad peaks or shallow valleys of as yet unknown origin. The appearance of these broad satellites probably hints at a frustrated magnetic state slightly above the transition temperature in MnSi

  10. High temperature heat capacities and electrical conductivities of boron carbides

    International Nuclear Information System (INIS)

    Matsui, Tsuneo; Arita, Yuri; Naito, Keiji; Imai, Hisashi

    1991-01-01

    The heat capacities and the electrical conductivities of B x C(x=3, 4, 5) were measured by means of direct heating pulse calorimetry in the temperature range from 300 to 1500 K. The heat capacities of B x C increased with increasing x value. This increase in the heat capacity is probably related to the change of the lattice vibration mode originated from the reduction of the stiffness of the intericosahedral chain accompanied with a change from C-B-C to C-B-B chains. A linear relationship between the logarithm of σT (σ is the electrical conductivity and T is the absolute temperature) of B x C and the reciprocal temperature was observed, indicating the presence of small polaron hopping as the predominant conduction mechanism. The electrical conductivity of B x C also increased with increasing x value (from 4 to 5) due to an increase of the polaron hopping of holes between carbon atoms at geometrically nonequivalent sites, since these nonequivalent sites of carbon atoms were considered to increase in either B 11 C icosahedra or in icosahedral chains with increasing x. The electrical conductivity of B 3 C was higher than that of B 4 C, which is probably due to the precipitation of high-conducting carbon. The thermal conductivity and the thermodynamic quantities of B 4 C were also determined precisely from the heat capacity value. (orig.)

  11. Colloid volume loading does not mitigate decreases in central blood volume during simulated hemorrhage while heat stressed

    DEFF Research Database (Denmark)

    Crandall, Craig G; Wilson, Thad E; Marving, Jens

    2012-01-01

    attenuates the reduction in regional blood volumes during a simulated hemorrhagic challenge imposed via lower-body negative pressure (LBNP). Seven subjects underwent 30 mmHg LBNP while normothermic, during passive heat stress (increased internal temperature ~1°C), and while continuing to be heated after...... intravenous colloid volume loading (11 ml/kg). Relative changes in torso and regional blood volumes were determined by gamma camera imaging with technetium-99m labeled erythrocytes. Heat stress reduced blood volume in all regions (ranging from 7 to 16%), while subsequent volume loading returned those values...... to normothermic levels. While normothermic, LBNP reduced blood volume in all regions (torso: 22±8%; heart: 18±6%; spleen: 15±8%). During LBNP while heat stressed, the reductions in blood volume in each region were markedly greater when compared to LBNP while normothermic (torso: 73±2%; heart: 72±3%; spleen: 72...

  12. Retrofitting of heat exchanger networks involving streams with variable heat capacity: Application of single and multi-objective optimization

    International Nuclear Information System (INIS)

    Sreepathi, Bhargava Krishna; Rangaiah, G.P.

    2015-01-01

    Heat exchanger network (HEN) retrofitting improves the energy efficiency of the current process by reducing external utilities. In this work, HEN retrofitting involving streams having variable heat capacity is studied. For this, enthalpy values of a stream are fitted to a continuous cubic polynomial instead of a stepwise approach employed in the previous studies [1,2]. The former methodology is closer to reality as enthalpy or heat capacity changes gradually instead of step changes. Using the polynomial fitting formulation, single objective optimization (SOO) and multi-objective optimization (MOO) of a HEN retrofit problem are investigated. The results obtained show an improvement in the utility savings, and MOO provides many Pareto-optimal solutions to choose from. Also, Pareto-optimal solutions involving area addition in existing heat exchangers only (but no new exchangers and no structural modifications) are found and provided for comparison with those involving new exchangers and structural modifications as well. - Highlights: • HEN retrofitting involving streams with variable heat capacities is studied. • A continuous approach to handle variable heat capacity is proposed and tested. • Better and practical solutions are obtained for HEN retrofitting in process plants. • Pareto-optimal solutions provide many alternate choices for HEN retrofitting

  13. Pulmonary tissue volume, cardiac output, and diffusing capacity in sustained microgravity

    Science.gov (United States)

    Verbanck, S.; Larsson, H.; Linnarsson, D.; Prisk, G. K.; West, J. B.; Paiva, M.

    1997-01-01

    In microgravity (microG) humans have marked changes in body fluids, with a combination of an overall fluid loss and a redistribution of fluids in the cranial direction. We investigated whether interstitial pulmonary edema develops as a result of a headward fluid shift or whether pulmonary tissue fluid volume is reduced as a result of the overall loss of body fluid. We measured pulmonary tissue volume (Vti), capillary blood flow, and diffusing capacity in four subjects before, during, and after 10 days of exposure to microG during spaceflight. Measurements were made by rebreathing a gas mixture containing small amounts of acetylene, carbon monoxide, and argon. Measurements made early in flight in two subjects showed no change in Vti despite large increases in stroke volume (40%) and diffusing capacity (13%) consistent with increased pulmonary capillary blood volume. Late in-flight measurements in four subjects showed a 25% reduction in Vti compared with preflight controls (P volume, to the extent that it was no longer significantly different from preflight control. Diffusing capacity remained elevated (11%; P pulmonary perfusion and pulmonary capillary blood volume, interstitial pulmonary edema does not result from exposure to microG.

  14. Heat capacity and thermal expansion of the itinerant helimagnet MnSi.

    Science.gov (United States)

    Stishov, S M; Petrova, A E; Khasanov, S; Kh Panova, G; Shikov, A A; Lashley, J C; Wu, D; Lograsso, T A

    2008-06-11

    The heat capacity and thermal expansion of a high quality single crystal of MnSi were measured at ambient pressure at zero and high magnetic fields. The calculated magnetic entropy change in the temperature range 0-30 K is less than 0.1R, a low value that emphasizes the itinerant nature of magnetism in MnSi. A linear temperature term dominates the thermal expansion coefficient in the range 30-150 K, which correlates with an enhancement of the linear electronic term in the heat capacity. A surprising similarity among the variations of the heat capacity, thermal expansion coefficient and temperature derivative of the resistivity is observed through the phase transition in MnSi. Specific forms of the heat capacity, thermal expansion coefficient and temperature derivative of resistivity at the phase transition to a helical magnetic state near 29 K are interpreted as the combination of sharp first-order features and broad peaks or shallow valleys of as yet unknown origin. The appearance of these broad satellites probably hints at a frustrated magnetic state slightly above the transition temperature in MnSi.

  15. Low-temperature heat capacity and thermodynamic functions of vitamin B12

    International Nuclear Information System (INIS)

    Knyazev, A.V.; Smirnova, N.N.; Plesovskikh, A.S.; Shushunov, A.N.; Knyazeva, S.S.

    2014-01-01

    Graphical abstract: - Highlights: • Temperature dependence of heat capacity of vitamin B 12 has been measured by precision adiabatic vacuum calorimetry. • The thermodynamic functions of the vitamin B 12 have been determined for the range from T → 0 to 343 K. • The character of heterodynamics of structure was detected. • The thermal stability of cyanocobalamin was studied by differential scanning calorimetry. - Abstract: In the present work temperature dependence of heat capacity of vitamin B 12 (cyanocobalamin) has been measured for the first time in the range from 6 to 343 K by precision adiabatic vacuum calorimetry. Based on the experimental data, the thermodynamic functions of the vitamin B 12 , namely, the heat capacity, enthalpy H°(T) − H°(0), entropy S°(T) − S°(0) and Gibbs function G°(T) − H°(0) have been determined for the range from T → 0 to 343 K. The value of the fractal dimension D in the function of multifractal generalization of Debye's theory of the heat capacity of solids was estimated and the character of heterodynamics of structure was detected. The thermal stability of cyanocobalamin was also studied by differential scanning calorimetry

  16. Working Fluids for Increasing Capacities of Heat Pipes

    Science.gov (United States)

    Chao, David F.; Zhang, Nengli

    2004-01-01

    A theoretical and experimental investigation has shown that the capacities of heat pipes can be increased through suitable reformulation of their working fluids. The surface tensions of all of the working fluids heretofore used in heat pipes decrease with temperature. As explained in more detail below, the limits on the performance of a heat pipe are associated with the decrease in the surface tension of the working fluid with temperature, and so one can enhance performance by reformulating the working fluid so that its surface tension increases with temperature. This improvement is applicable to almost any kind of heat pipe in almost any environment. The heat-transfer capacity of a heat pipe in its normal operating-temperature range is subject to a capillary limit and a boiling limit. Both of these limits are associated with the temperature dependence of surface tension of the working fluid. In the case of a traditional working fluid, the decrease in surface tension with temperature causes a body of the liquid phase of the working fluid to move toward a region of lower temperature, thus preventing the desired spreading of the liquid in the heated portion of the heat pipe. As a result, the available capillary-pressure pumping head decreases as the temperature of the evaporator end of the heat pipe increases, and operation becomes unstable. Water has widely been used as a working fluid in heat pipes. Because the surface tension of water decreases with increasing temperature, the heat loads and other aspects of performance of heat pipes that contain water are limited. Dilute aqueous solutions of long-chain alcohols have shown promise as substitutes for water that can offer improved performance, because these solutions exhibit unusual surface-tension characteristics: Experiments have shown that in the cases of an aqueous solution of an alcohol, the molecules of which contain chains of more than four carbon atoms, the surface tension increases with temperature when the

  17. Heat capacity, enthalpy and entropy of bismuth niobate and bismuth tantalate

    Czech Academy of Sciences Publication Activity Database

    Hampl, M.; Strejc, A.; Sedmidubský, D.; Růžička, K.; Hejtmánek, Jiří; Leitner, J.

    2006-01-01

    Roč. 179, - (2006), s. 77-80 ISSN 0022-4596 Institutional research plan: CEZ:AV0Z10100521 Keywords : heat capacity * heat of formation * heat content * bismuth perovskite Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.107, year: 2006

  18. Cooling and Heating Season Impacts of Right-Sizing of Fixed- and Variable-Capacity Heat Pumps With Attic and Indoor Ductwork

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, James [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Withers, Charles [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Kono, Jamie [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States)

    2015-06-24

    A new generation of full variable-capacity air-conditioning (A/C) and heat pump units has come on the market that promises to deliver very high cooling and heating efficiency. The units are controlled differently than standard single-capacity (fixed-capacity) systems. Instead of cycling on at full capacity and cycling off when the thermostat is satisfied, the new units can vary their capacity over a wide range (approximately 40%–118% of nominal full capacity) and stay on for 60%–100% more hours per day than the fixed-capacity systems depending on load-to-capacity ratios. Two-stage systems were not evaluated in this research effort.

  19. Building America Case Study: Impact of Improved Duct Insulation on Fixed-Capacity (SEER 13) and Variable-Capacity (SEER 22) Heat Pumps, Cocoa, Florida

    Energy Technology Data Exchange (ETDEWEB)

    2017-04-01

    A new generation of central, ducted variable-capacity heat pump systems has come on the market, promising very high cooling and heating efficiency. Instead of cycling on at full capacity and then cycling off when the thermostat is satisfied, they vary their cooling and heating output over a wide range (approximately 40 to 118% of nominal full capacity); thus, staying 'on' for 60% to 100% more hours per day compared to fixed-capacity systems. Current Phase 4 experiments in an instrumented lab home with simulated occupancy evaluate the impact of duct R-value enhancement on the overall operating efficiency of the variable-capacity system compared to the fixed-capacity system.

  20. Theoretical study of the magnetic heat capacity of praseodymium metal

    International Nuclear Information System (INIS)

    Glenn, R.L.

    1976-01-01

    The heat capacity of praseodymium metal at low temperatures is calculated using a valence change model. The effect of the presence of a small temperature-dependent and field-dependent percentage of 4+ ions is computed using crystalfield techniques. Good agreement with the experimentally determined values is obtained for polycrystalline and single-crystal praseodymium in zero field and various other fields up to 30 koe. In addition, the effects of selected exchange models on the heat capacity and susceptibility are computed. The model is shown to be compatible with both the parallel and perpendicular susceptibilities

  1. Determination of Specific Heat Capacity on Composite Shape-Stabilized Phase Change Materials and Asphalt Mixtures by Heat Exchange System.

    Science.gov (United States)

    Ma, Biao; Zhou, Xue-Yan; Liu, Jiang; You, Zhanping; Wei, Kun; Huang, Xiao-Feng

    2016-05-19

    Previous research has shown that composite shape-stabilized phase change material (CPCM) has a remarkable capacity for thermal storage and stabilization, and it can be directly applied to highway construction without leakage. However, recent studies on temperature changing behaviors of CPCM and asphalt mixture cannot intuitively reflect the thermoregulation mechanism and efficiency of CPCM on asphalt mixture. The objective of this paper is to determine the specific heat capacity of CPCM and asphalt mixtures mixed with CPCM using the heat exchange system and the data acquisition system. Studies have shown that the temperature-rise curve of 5 °C CPCM has an obvious temperature plateau, while an asphalt mixture mixed with 5 °C CPCM does not; with increasing temperature, the specific heat capacities of both 5 °C CPCM and asphalt mixture first increase and then decrease, while the variation rate of 5 °C CPCM is larger than that of the asphalt mixture, and the maximum specific heat capacity of 5 °C CPCM appears around the initial phase change temperature. It is concluded that the temperature intervals of 5 °C CPCM are -18 °C-7 °C, 7 °C-25 °C and 25 °C-44 °C, respectively, and that of the asphalt mixture are -18 °C~10 °C, -10 °C~5 °C and 5 °C~28 °C. A low dosage of 5 °C CPCM has little influence on the specific heat capacity of asphalt mixture. Finally, the functions of specific heat capacities and temperature for CPCM and asphalt mixture mixed with CPCM were recommended by the sectional regression method.

  2. On the nature of the excess heat capacity of mixing

    Science.gov (United States)

    Benisek, Artur; Dachs, Edgar

    2011-03-01

    The excess vibrational entropy (Δ S {vib/ex}) of several silicate solid solutions are found to be linearly correlated with the differences in end-member volumes (Δ V i ) and end-member bulk moduli (Δκ i ). If a substitution produces both, larger and elastically stiffer polyhedra, then the substituted ion will find itself in a strong enlarged structure. The frequency of its vibration is decreased because of the increase in bond lengths. Lowering of frequencies produces larger heat capacities, which give rise to positive excess vibrational entropies. If a substitution produces larger but elastically softer polyhedra, then increase and decrease of mean bond lengths may be similar in magnitude and their effect on the vibrational entropy tends to be compensated. The empirical relationship between Δ S {vib/ex}, Δ V i and Δκ i , as described by Δ S {vib/ex} = (Δ V i + mΔκ i ) f, was calibrated on six silicate solid solutions (analbite-sanidine, pyrope-grossular, forsterite-fayalite, analbite-anorthite, anorthite-sanidine, CaTs-diopside) yielding m = 0.0246 and f = 2.926. It allows the prediction of Δ S {vib/ex} behaviour of a solid solution based on its volume and bulk moduli end-member data.

  3. The heat capacity of polyethylene fibers measured by multi-frequency temperature-modulated calorimetry

    International Nuclear Information System (INIS)

    Pyda, M.; Nowak-Pyda, E.; Wunderlich, B.

    2006-01-01

    The apparent heat capacity of polyethylene fibers in the melting region was measured by quasi-isothermal, temperature-modulated differential scanning calorimetry (TMDSC) and compared with results from standard differential scanning calorimetry (DSC) and the solid and liquid thermodynamic heat capacity as references from the ATHAS Data Bank. Using a multi-frequency, complex sawtooth modulation in the quasi-isothermal mode disclosed for the first time that the uncorrected apparent heat capacity C p =A Φ /(A T s ω) of the liquid polyethylene fiber increases with increasing frequency (A Φ is the differential heat-flow rate and A T s is the sample temperature). The frequency-dependent heat capacity cannot be represented by the expression: C p =A Φ /(A T s νω)[1+(τνω) 2 ] 0.5 because of a negative τ 2 . The results were later confirmed by independent measurements on single sinusoidal quasi-isothermal TMDSC on the same material. The error is caused by shrinking of the fiber, which deforms the sample pan

  4. Effect of phase behavior, density, and isothermal compressibility on the constant-volume heat capacity of ethane + n-pentane mixed fluids in different phase regions

    International Nuclear Information System (INIS)

    Mu, Tiancheng; Liu, Zhimin; Han, Buxing.; Li, Zhonghao; Zhang, Jianling; Zhang, Xiaogang

    2003-01-01

    The phase behavior, density, and constant-volume molar heat capacity (C v,m ) of ethane + n-pentane binary mixtures have been measured in the supercritical region and subcritical region at T=309.45 K. In addition, the isothermal compressibility (κ T ) has been calculated using the density data determined. For a mixed fluid with a composition close to the critical composition, C v,m and κ T increase sharply as the pressure approaches the critical point (CP), the dew point (DP), or the bubble point (BP). However, C v,m is not sensitive to pressure in the entire pressure range if the composition of the mixed fluid is far from the critical composition. To tune the properties of the binary mixtures effectively by pressure, both the composition and the pressure should be close to the critical point of the mixture. The intermolecular interactions in the mixture are also discussed on the basis of the experimental results

  5. Low temperature heat capacity of lutetium and lutetium hydrogen alloys

    International Nuclear Information System (INIS)

    Thome, D.K.

    1977-10-01

    The heat capacity of high purity electrotransport refined lutetium was measured between 1 and 20 0 K. Results for theta/sub D/ were in excellent agreement with theta values determined from elastic constant measurements. The heat capacity of a series of lutetium-hydrogen solid solution alloys was determined and results showed an increase in γ from 8.2 to about 11.3 mJ/g-atom-K 2 for hydrogen content increasing from zero to about one atomic percent. Above one percent hydrogen γ decreased with increasing hydrogen contents. The C/T data showed an increase with temperature decreasing below about 2.5 0 K for samples with 0.1 to 1.5 atomic percent hydrogen. This accounts for a large amount of scatter in theta/sub D/ versus hydrogen content in this range. The heat capacity of a bulk sample of lutetium dihydride was measured between 1 and 20 0 K and showed a large increase in theta/sub D/ and a large decrease in γ compared to pure lutetium

  6. Heat capacity of NdB.sub.6./sub..

    Czech Academy of Sciences Publication Activity Database

    Reiffers, M.; Šebek, Josef; Šantavá, Eva; Shitsevalova, N.; Gabáni, S.; Pristáš, G.; Flachbart, K.

    2007-01-01

    Roč. 310, - (2007), e595-e597 ISSN 0304-8853 Institutional research plan: CEZ:AV0Z10100520 Keywords : heat capacity * NdB 6 * magnetic contribution Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.704, year: 2007

  7. Transient convective heat transfer to laminar flow from a flat plate with constant heat capacity

    International Nuclear Information System (INIS)

    Hanawa, Juichi

    1980-01-01

    Most basic transient heat transfer problem is the transient response characteristics of forced convection heat transfer in the flow along a flat plate or in a tube. In case of the laminar flow along a flat plate, the profile method using steady temperature distribution has been mostly adopted, but its propriety has not been clarified yet. About the unsteady heat transfer in the laminar flow along a flat plate, the analysis or experiment evaluating the heat capacity of the flat plate exactly was never carried out. The purpose of this study is to determine by numerical calculation the unsteady characteristics of the boundary layer in laminar flow and to confirm them by experiment concerning the unsteady heat transfer when a flat plate with a certain heat capacity is placed in parallel in uniform flow and given a certain quantity of heat generation suddenly. The basic equation and the solution are given, and the method of numerical calculation and the result are explained. The experimental setup and method, and the experimental results are shown. Both results were in good agreement, and the response of wall temperature, the response of Nusselt number and the change of temperature distribution in course of time were able to be determined by applying Laplace transformation and numerical Laplace inverse transformation to the equation. (Kako, I.)

  8. Heat capacity of liquids: A hydrodynamic approach

    Directory of Open Access Journals (Sweden)

    T. Bryk

    2015-03-01

    Full Text Available We study autocorrelation functions of energy, heat and entropy densities obtained by molecular dynamics simulations of supercritical Ar and compare them with the predictions of the hydrodynamic theory. It is shown that the predicted by the hydrodynamic theory single-exponential shape of the entropy density autocorrelation functions is perfectly reproduced for small wave numbers by the molecular dynamics simulations and permits the calculation of the wavenumber-dependent specific heat at constant pressure. The estimated wavenumber-dependent specific heats at constant volume and pressure, Cv(k and Cp(k, are shown to be in the long-wavelength limit in good agreement with the macroscopic experimental values of Cv and Cp for the studied thermodynamic points of supercritical Ar.

  9. Constructal entransy dissipation minimization for 'volume-point' heat conduction

    International Nuclear Information System (INIS)

    Chen Lingen; Wei Shuhuan; Sun Fengrui

    2008-01-01

    The 'volume to point' heat conduction problem, which can be described as to how to determine the optimal distribution of high conductivity material through the given volume such that the heat generated at every point is transferred most effectively to its boundary, has became the focus of attention in the current constructal theory literature. In general, the minimization of the maximum temperature difference in the volume is taken as the optimization objective. A new physical quantity, entransy, has been identified as a basis for optimizing heat transfer processes in terms of the analogy between heat and electrical conduction recently. Heat transfer analyses show that the entransy of an object describes its heat transfer ability, just as the electrical energy in a capacitor describes its charge transfer ability. Entransy dissipation occurs during heat transfer processes, as a measure of the heat transfer irreversibility with the dissipation related thermal resistance. By taking equivalent thermal resistance (it corresponds to the mean temperature difference), which reflects the average heat conduction effect and is defined based on entransy dissipation, as an optimization objective, the 'volume to point' constructal problem is re-analysed and re-optimized in this paper. The constructal shape of the control volume with the best average heat conduction effect is deduced. For the elemental area and the first order construct assembly, when the thermal current density in the high conductive link is linear with the length, the optimized shapes of assembly based on the minimization of entransy dissipation are the same as those based on minimization of the maximum temperature difference, and the mean temperature difference is 2/3 of the maximum temperature difference. For the second and higher order construct assemblies, the thermal current densities in the high conductive link are not linear with the length, and the optimized shapes of the assembly based on the

  10. Heat capacity and magnetocaloric effect in polycrystalline Gd 1-xSm xMn 2Si 2

    Science.gov (United States)

    Kumar, Pramod; Singh, Niraj K.; Suresh, K. G.; Nigam, A. K.; Malik, S. K.

    2007-12-01

    We report the magnetocaloric effect in terms of isothermal magnetic entropy change as well as adiabatic temperature change, calculated using the heat capacity data. Using the zero-field heat capacity data, the magnetic contribution to the heat capacity has been estimated. The variations in the magnetocaloric behavior have been explained on the basis of the magnetic structure of these compounds. The refrigerant capacities have also been calculated for these compounds.

  11. Standard partial molar heat capacities and enthalpies of formation of aqueous aluminate under hydrothermal conditions from integral heat of solution measurements

    International Nuclear Information System (INIS)

    Coulier, Yohann; Tremaine, Peter R.

    2014-01-01

    Highlights: • Heats of solution of NaAlO 2 (s) were measured at five temperatures up to 250 °C. • Standard molar enthalpies of solution were determined from the measured heats of solution. • Standard molar enthalpies of solution were correlated with the density model. • The density model allows us to determine the standard molar heat capacities of reaction. - Abstract: Heats of solution of sodium aluminum oxide, NaAlO 2 (s), were measured in aqueous sodium hydroxide solutions using a Tian–Calvet heat-flow calorimeter (Setaram, Model C80) with high pressure “batch cells” made of hastelloy C-276, at five temperatures from (373.15 to 523.15) K, steam saturation pressure, and concentrations from (0.02 to 0.09) mol · kg −1 . Standard molar enthalpies of solution, Δ soln H ∘ , and relative standard molar enthalpies, [H ∘ (T) − H ∘ (298.15 K)], of NaAl(OH) 4 (aq) were determined from the measured heats of solution. The results were fitted with the “density” model. The temperature dependence of Δ soln H ∘ from the model yielded the standard molar heat capacities of reaction, Δ soln C p ∘ , from which standard partial molar heat capacities for aqueous aluminate, C p ∘ [A1(OH) 4 − ,aq], were calculated. Standard partial molar enthalpies of formation, Δ f H ∘ , and entropies, S ∘ , of A1(OH) 4 − (aq) were also determined. The values for C p ∘ [A1(OH) 4 − ,aq] agree with literature data determined up to T = 413 K from enthalpy of solution and heat capacity measurements to within the combined experimental uncertainties. They are consistent with differential heat capacity measurements up to T = 573 K from Schrödle et al. (2010) [29] using the same calorimeter, but this method has the advantage that measurements could be made at much lower concentrations in the presence of an excess concentration of ligand. To our knowledge, these are the first standard partial molar heat capacities measured under hydrothermal conditions by the

  12. Effects of passive heating on central blood volume and ventricular dimensions in humans

    DEFF Research Database (Denmark)

    Crandall, C.G.; Wilson, T.E.; Marving, J.

    2008-01-01

    Mixed findings regarding the effects of whole-body heat stress on central blood volume have been reported. This study evaluated the hypothesis that heat stress reduces central blood volume and alters blood volume distribution. Ten healthy experimental and seven healthy time control (i.e. non-heat...... stressed) subjects participated in this protocol. Changes in regional blood volume during heat stress and time control were estimated using technetium-99m labelled autologous red blood cells and gamma camera imaging. Whole-body heating increased internal temperature (> 1.0 degrees C), cutaneous vascular...... conductance (approximately fivefold), and heart rate (52 +/- 2 to 93 +/- 4 beats min(-1)), while reducing central venous pressure (5.5 +/- 07 to 0.2 +/- 0.6 mmHg) accompanied by minor decreases in mean arterial pressure (all P heat stress reduced the blood volume of the heart (18 +/- 2%), heart...

  13. Final Report: Cooling Seasonal Energy and Peak Demand Impacts of Improved Duct Insulation on Fixed-Capacity (SEER 13) and Variable-Capacity (SEER 22) Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Withers, C. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Florida Solar Energy Center (FSEC), Cocoa, FL (United States); Cummings, J. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Florida Solar Energy Center (FSEC), Cocoa, FL (United States); Nigusse, B. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Florida Solar Energy Center (FSEC), Cocoa, FL (United States)

    2016-09-01

    A new generation of full variable-capacity, central, ducted air-conditioning (AC) and heat pump units has come on the market, and they promise to deliver increased cooling (and heating) efficiency. They are controlled differently than standard single-capacity (fixed-capacity) systems. Instead of cycling on at full capacity and then cycling off when the thermostat is satisfied, they can vary their capacity over a wide range (approximately 40% to 118% of nominal full capacity), thus staying “on” for up to twice as many hours per day compared to fixed-capacity systems of the same nominal capacity. The heating and cooling capacity is varied by adjusting the indoor fan air flow rate, compressor, and refrigerant flow rate as well as the outdoor unit fan air flow rate. Note that two-stage AC or heat pump systems were not evaluated in this research effort. The term dwell is used to refer to the amount of time distributed air spends inside ductwork during space-conditioning cycles. Longer run times mean greater dwell time and therefore greater exposure to conductive gains and losses.

  14. Final Report: Cooling Seasonal Energy and Peak Demand Impacts of Improved Duct Insulation on Fixed-Capacity (SEER 13) and Variable-Capacity (SEER 22) Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Withers, C. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Florida Solar Energy Center, Cocoa, FL (United States); Cummings, J. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Florida Solar Energy Center, Cocoa, FL (United States); Nigusse, B. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Florida Solar Energy Center, Cocoa, FL (United States)

    2016-09-08

    A new generation of full variable-capacity, central, ducted air-conditioning (AC) and heat pump units has come on the market, and they promise to deliver increased cooling (and heating) efficiency. They are controlled differently than standard single-capacity (fixed-capacity) systems. Instead of cycling on at full capacity and then cycling off when the thermostat is satisfied, they can vary their capacity over a wide range (approximately 40% to 118% of nominal full capacity), thus staying “on” for up to twice as many hours per day compared to fixed-capacity systems of the same nominal capacity. The heating and cooling capacity is varied by adjusting the indoor fan air flow rate, compressor, and refrigerant flow rate as well as the outdoor unit fan air flow rate. Note that two-stage AC or heat pump systems were not evaluated in this research effort. The term dwell is used to refer to the amount of time distributed air spends inside ductwork during space-conditioning cycles. Longer run times mean greater dwell time and therefore greater exposure to conductive gains and losses.

  15. Effect of volume loading on the Frank-Starling relation during reductions in central blood volume in heat-stressed humans

    DEFF Research Database (Denmark)

    Bundgaard-Nielsen, Morten; Wilson, T E; Seifert, Thomas

    2010-01-01

    During reductions in central blood volume while heat stressed, a greater decrease in stroke volume (SV) for a similar decrease in ventricular filling pressure, compared to normothermia, suggests that the heart is operating on a steeper portion of a Frank-Starling curve. If so, volume loading...... of heat-stressed individuals would shift the operating point to a flatter portion of the heat stress Frank-Starling curve thereby attenuating the reduction in SV during subsequent decreases in central blood volume. To investigate this hypothesis, right heart catheterization was performed in eight males...... from whom pulmonary capillary wedge pressure (PCWP), central venous pressure and SV (via thermodilution) were obtained while central blood volume was reduced via lower-body negative pressure (LBNP) during normothermia, whole-body heating (increase in blood temperature 1 degrees C), and during whole...

  16. Enhanced specific heat capacity of molten salt-based nanomaterials: Effects of nanoparticle dispersion and solvent material

    International Nuclear Information System (INIS)

    Jo, Byeongnam; Banerjee, Debjyoti

    2014-01-01

    This study investigated the effect of nanoparticle dispersion on the specific heat capacity for carbonate salt mixtures doped with graphite nanoparticles. The effect of the solvent material was also examined. Binary carbonate salt mixtures consisting of lithium carbonate and potassium carbonate were used as the base material for the graphite nanomaterial. The different dispersion uniformity of the nanoparticles was created by employing two distinct synthesis protocols for the nanomaterial. Different scanning calorimetry was employed to measure the specific heat capacity in both solid and liquid phases. The results showed that doping the molten salt mixture with the graphite nanoparticles significantly raised the specific heat capacity, even in minute concentrations of graphite nanoparticles. Moreover, greater enhancement in the specific heat capacity was observed from the nanomaterial samples with more homogeneous dispersion of the nanoparticles. A molecular dynamics simulation was also performed for the nanomaterials used in the specific heat capacity measurements to explain the possible mechanisms for the enhanced specific heat capacity, including the compressed layering and the species concentration of liquid solvent molecules

  17. Critical behavior of binary mixture of {x C6H5CN + (1 - x) CH3(CH2)12CH3}: Measurements of coexistence curves, turbidity, and heat capacity

    International Nuclear Information System (INIS)

    Yin Tianxiang; Lei Yuntao; Huang Meijun; Chen Zhiyun; Mao Chunfeng; An Xueqin; Shen Weiguo

    2011-01-01

    Research highlights: → Coexistence curve, turbidity and heat capacity of critical solution were measured. → Critical amplitudes were determined to test universal ratios. → Complete scaling theory was verified. → Monotonic critical crossover behavior was demonstrated. - Abstract: (Liquid + liquid) coexistence curve, turbidity, and isobaric heat capacity per unit volume for the critical solution of {benzonitrile + n-tetradecane} have been measured. The critical exponents β, ν, γ, and α and system-dependent critical amplitudes B, ξ 0 , χ 0 , and A ± , corresponding to the difference of the general density variable of two coexisting phases Δρ, the correlation length ξ, the osmotic compressibility χ, and the isobaric heat capacity per unit volume C p V -1 , have been deduced and were used to test some universal ratios. The behavior of the diameter of the coexistence curves showed good agreement with the complete scaling theory. The analysis of effective critical exponent β eff , which was well described by the crossover model proposed by Anisimov and Sengers, and effective critical exponent α eff indicated monotonic crossover phenomena from 3D-Ising behavior to mean-field one as the temperature departed from the critical point.

  18. Comparison of Moving Boundary and Finite-Volume Heat Exchanger Models in the Modelica Language

    Directory of Open Access Journals (Sweden)

    Adriano Desideri

    2016-05-01

    Full Text Available When modeling low capacity energy systems, such as a small size (5–150 kWel organic Rankine cycle unit, the governing dynamics are mainly concentrated in the heat exchangers. As a consequence, the accuracy and simulation speed of the higher level system model mainly depend on the heat exchanger model formulation. In particular, the modeling of thermo-flow systems characterized by evaporation or condensation requires heat exchanger models capable of handling phase transitions. To this aim, the finite volume (FV and the moving boundary (MB approaches are the most widely used. The two models are developed and included in the open-source ThermoCycle Modelica library. In this contribution, a comparison between the two approaches is presented. An integrity and accuracy test is designed to evaluate the performance of the FV and MB models during transient conditions. In order to analyze how the two modeling approaches perform when integrated at a system level, two organic Rankine cycle (ORC system models are built using the FV and the MB evaporator model, and their responses are compared against experimental data collected on an 11 kWel ORC power unit. Additionally, the effect of the void fraction value in the MB evaporator model and of the number of control volumes (CVs in the FV one is investigated. The results allow drawing general guidelines for the development of heat exchanger dynamic models involving two-phase flows.

  19. Evaluation of the quasi-isothermal method of modulated DSC for heat capacity measurement

    International Nuclear Information System (INIS)

    Venkata Krishnan, R.; Nagarajan, K.

    2004-01-01

    Heat capacity measurements were carried out on ThO 2 by Modulated Differential Scanning Calorimetry (MDSC) using quasi-isothermal method in the temperature range 323-723 K. The highest accuracy of the heat capacity data obtained by this method was ± 2-3% which is much lower than that reported in the literature. (author)

  20. Space qualification of high capacity grooved heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, M; Mullender, B; Druart, J [SABCA, Societe Anomyme Belgel de Construction Aeronautique (Belgium); Supper, W; Beddows, A [ESTEC-The (Netherlands)

    1997-12-31

    Based on the thermal requirements of the future telecommunication satellites, the development of a High Capacity Grooved Heat Pipe (HPG), was contracted by ESA to SABCA leading to an aluminium extruded heat pipe (outer diameter of 25 mm) based on a multi re-entrant grooves design. After an intensive acceptance test campaign whose results showed a good confidence in the design and the fulfillment of the required specifications of heat transport and on tilt capability (experimental maximum heat transport capability of 1500 Watt metres for a vapour temperature of 20 deg C), similar heat pipes have been developed with various outer diameters (11 mm, 15 mm and 20 mm) and with various shapes (circular outer shapes, integrated saddles). Several of these heat pipes were tested during two parabolic flight campaigns, by varying the heat loads during the micro-gravity periods. This HGP heat pipe family is now being submitted to a space qualification program according to ESA standards (ESA PSS-49), both in straight and bent configuration. Within this qualification, the heat pipes are submitted to an extended test campaign including environmental (random/sinus vibration, constant acceleration) and thermal tests (thermal performance, thermal cycle, thermal soak, ageing). (authors) 9 refs.

  1. Space qualification of high capacity grooved heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, M.; Mullender, B.; Druart, J. [SABCA, Societe Anomyme Belgel de Construction Aeronautique (Belgium); Supper, W.; Beddows, A. [ESTEC-The (Netherlands)

    1996-12-31

    Based on the thermal requirements of the future telecommunication satellites, the development of a High Capacity Grooved Heat Pipe (HPG), was contracted by ESA to SABCA leading to an aluminium extruded heat pipe (outer diameter of 25 mm) based on a multi re-entrant grooves design. After an intensive acceptance test campaign whose results showed a good confidence in the design and the fulfillment of the required specifications of heat transport and on tilt capability (experimental maximum heat transport capability of 1500 Watt metres for a vapour temperature of 20 deg C), similar heat pipes have been developed with various outer diameters (11 mm, 15 mm and 20 mm) and with various shapes (circular outer shapes, integrated saddles). Several of these heat pipes were tested during two parabolic flight campaigns, by varying the heat loads during the micro-gravity periods. This HGP heat pipe family is now being submitted to a space qualification program according to ESA standards (ESA PSS-49), both in straight and bent configuration. Within this qualification, the heat pipes are submitted to an extended test campaign including environmental (random/sinus vibration, constant acceleration) and thermal tests (thermal performance, thermal cycle, thermal soak, ageing). (authors) 9 refs.

  2. Low-temperature heat capacity and thermodynamic functions of vitamin B{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Knyazev, A.V., E-mail: knyazevav@gmail.com; Smirnova, N.N.; Plesovskikh, A.S.; Shushunov, A.N.; Knyazeva, S.S.

    2014-04-01

    Graphical abstract: - Highlights: • Temperature dependence of heat capacity of vitamin B{sub 12} has been measured by precision adiabatic vacuum calorimetry. • The thermodynamic functions of the vitamin B{sub 12} have been determined for the range from T → 0 to 343 K. • The character of heterodynamics of structure was detected. • The thermal stability of cyanocobalamin was studied by differential scanning calorimetry. - Abstract: In the present work temperature dependence of heat capacity of vitamin B{sub 12} (cyanocobalamin) has been measured for the first time in the range from 6 to 343 K by precision adiabatic vacuum calorimetry. Based on the experimental data, the thermodynamic functions of the vitamin B{sub 12}, namely, the heat capacity, enthalpy H°(T) − H°(0), entropy S°(T) − S°(0) and Gibbs function G°(T) − H°(0) have been determined for the range from T → 0 to 343 K. The value of the fractal dimension D in the function of multifractal generalization of Debye's theory of the heat capacity of solids was estimated and the character of heterodynamics of structure was detected. The thermal stability of cyanocobalamin was also studied by differential scanning calorimetry.

  3. Influence of Fuel Meat Porosity on Heat Capacities of Fuel Element Plate U3Si2-Al

    International Nuclear Information System (INIS)

    Ginting, Aslina Br.; Supardjo; Sutri Indaryati

    2007-01-01

    Analyze of heat capacities of Al powder, AIMg 2 cladding, U 3 Si 2 powder and PEB U 3 Si 2 -Al with the meat porosity of 4.9; 5.53 ; 6.25 ; 6.95 %; 7.90; 8.66% have been done. Analysis was conducted by using Differential Scanning Calorimeter (DSC) at temperature 30℃ to 450℃ with heating rate 1℃ /minute in Argon gas media. The purpose of analyze is to know the influence of increasing of fuel meat porosity on heat capacities because increasing of percentage of meat porosity will cause degradation the of heat capacities of PEB U 3 Si 2 -Al. Result of analysis showed that the heat capacities of Al powder, AIMg 2 cladding increase by temperature, while heat capacities of U 3 Si 2 powder was stable with increasing of temperature up to 450℃. Analysis of heat capacities toward PEB U 3 Si 2 -Al indicate that increasing of fuel meat porosity of caused degradation of the heat capacities of PEB U 3 Si 2 -Al. Data obtained were expected to serve the purpose of input to fabricator of research reactor fuel in for design of fuel element type silicide with high loading. (author)

  4. Heat capacity measurements on ThO2 by temperature modulated differential scanning calorimetry (TMDSC)

    International Nuclear Information System (INIS)

    Venkatakrishnan, R.; Nagarajan, K.; Vasudeva Rao, P.R.

    2001-01-01

    Heat capacity measurements were carried out on ThO 2 in the temperature range 330-820 K by using temperature modulated DSC. An underlying heating rate of 5 K. min -1 , a temperature modulation with an amplitude of 0.398K and a period of 150s were used for these measurements. The heat capacity values are within ± 2-4% of the literature data. (author)

  5. Heat capacity of iron, aluminum, and chromium vanadates at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Cheshnitskii, S.M.; Fotiev, A.A.; Ignashin, V.P.; Kesler, Y.A.

    1985-09-01

    The thermodynamic characteristics of compounds participating in the processing of vanadium-containing raw materials have not been sufficiently investigated. In this paper the authors report on measurements of the heat capacities of the compounds FeVO/sub 4/, CrVO/sub 4/, AIVO/sub 4/, Fe/sub 2/V/sub 4/O/sub 13/ and FeCr(VO/sub 4/)/sub 2/ at high temperatures. The obtained experimental data on the high-temperature heat capacity of iron, aluminum, and chromium vanadates makes it possible to calculate the thermodynamic functions of these compounds at high temperatures.

  6. High energy bursts from a solid state laser operated in the heat capacity limited regime

    Science.gov (United States)

    Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

    1996-06-11

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

  7. Acute volume expansion preserves orthostatic tolerance during whole-body heat stress in humans.

    Science.gov (United States)

    Keller, David M; Low, David A; Wingo, Jonathan E; Brothers, R Matthew; Hastings, Jeff; Davis, Scott L; Crandall, Craig G

    2009-03-01

    Whole-body heat stress reduces orthostatic tolerance via a yet to be identified mechanism(s). The reduction in central blood volume that accompanies heat stress may contribute to this phenomenon. The purpose of this study was to test the hypothesis that acute volume expansion prior to the application of an orthostatic challenge attenuates heat stress-induced reductions in orthostatic tolerance. In seven normotensive subjects (age, 40 +/- 10 years: mean +/- S.D.), orthostatic tolerance was assessed using graded lower-body negative pressure (LBNP) until the onset of symptoms associated with ensuing syncope. Orthostatic tolerance (expressed in cumulative stress index units, CSI) was determined on each of 3 days, with each day having a unique experimental condition: normothermia, whole-body heating, and whole-body heating + acute volume expansion. For the whole-body heating + acute volume expansion experimental day, dextran 40 was rapidly infused prior to LBNP sufficient to return central venous pressure to pre-heat stress values. Whole-body heat stress alone reduced orthostatic tolerance by approximately 80% compared to normothermia (938 +/- 152 versus 182 +/- 57 CSI; mean +/- S.E.M., P body heating completely ameliorated the heat stress-induced reduction in orthostatic tolerance (1110 +/- 69 CSI, P stress results in many cardiovascular and neural responses that directionally challenge blood pressure regulation, reduced central blood volume appears to be an underlying mechanism responsible for impaired orthostatic tolerance in the heat-stressed human.

  8. First-principles calculations of heat capacities of ultrafast laser-excited electrons in metals

    International Nuclear Information System (INIS)

    Bévillon, E.; Colombier, J.P.; Recoules, V.; Stoian, R.

    2015-01-01

    Ultrafast laser excitation can induce fast increases of the electronic subsystem temperature. The subsequent electronic evolutions in terms of band structure and energy distribution can determine the change of several thermodynamic properties, including one essential for energy deposition; the electronic heat capacity. Using density functional calculations performed at finite electronic temperatures, the electronic heat capacities dependent on electronic temperatures are obtained for a series of metals, including free electron like, transition and noble metals. The effect of exchange and correlation functionals and the presence of semicore electrons on electronic heat capacities are first evaluated and found to be negligible in most cases. Then, we tested the validity of the free electron approaches, varying the number of free electrons per atom. This shows that only simple metals can be correctly fitted with these approaches. For transition metals, the presence of localized d electrons produces a strong deviation toward high energies of the electronic heat capacities, implying that more energy is needed to thermally excite them, compared to free sp electrons. This is attributed to collective excitation effects strengthened by a change of the electronic screening at high temperature

  9. Predictive model for the heat capacity of ionic liquids using the mass connectivity index

    International Nuclear Information System (INIS)

    Valderrama, Jose O.; Martinez, Gwendolyn; Rojas, Roberto E.

    2011-01-01

    A simple and accurate model to predict the heat capacity of ionic liquids is presented. The proposed model considers variables readily available for ionic liquids and that have important effect on heat capacity, according to the literature information. Additionally a recently defined structural parameter known as mass connectivity index is incorporated into the model. A set of 602 heat capacity data for 146 ionic liquids have been used in the study. The results were compared with experimental data and with values reported by other available estimation methods. Results show that the new simple correlation gives low deviations and can be used with confidence in thermodynamic and engineering calculations.

  10. The volumetric and thermochemical properties of YCl{sub 3}(aq), YbCl{sub 3}(aq), DyCl{sub 3}(aq), SmCl{sub 3}(aq), and GdCl{sub 3}(aq) at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa[Trivalent metal chlorides; Densities; Heat capacities; Single ion properties; Calorimetry; Densimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hakin, Andrew W. E-mail: hakin@uleth.ca; Lukacs, Michael J.; Liu, Jin Lian; Erickson, Kristy

    2003-11-01

    Relative densities and massic heat capacities have been measured for acidified aqueous solutions of YCl{sub 3}(aq), YbCl{sub 3}(aq), DyCl{sub 3}(aq), SmCl{sub 3}(aq), and GdCl{sub 3}(aq) at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa. These measurements have been used to calculate experimental apparent molar volumes and heat capacities which, when used in conjunction with Young's rule, were used to calculate the apparent molar properties of the aqueous chloride salt solutions. The latter calculations required the use of volumetric and thermochemical data for aqueous solutions of hydrochloric acid that have been previously reported in the literature. The concentration dependences of the apparent molar properties have been modeled using Pitzer ion interaction equations to yield apparent molar volumes and heat capacities at infinite dilution. The temperature and concentration dependences of the apparent molar volumes and heat capacities of each trivalent salt system were modeled using modified Pitzer ion interaction equations. These equations utilized the revised Helgeson, Kirkham, and Flowers equations of state to model the temperature dependences of apparent molar volumes and heat capacities at infinite dilution. Calculated apparent molar volumes and heat capacities at infinite dilution have been used to calculate single ion properties for the investigated trivalent metal cations. These values have been compared to those previously reported in the literature. The differences between single ion values calculated in this study and those values calculated from thermodynamic data for aqueous perchlorate salts are also discussed.

  11. Measurement of the specific heat capacity of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Picard, S.; Burns, D.T.; Roger, P

    2006-01-15

    With the objective of implementing graphite calorimetry at the BIPM to measure absorbed dose, an experimental assembly has recently been constructed to measure the specific heat capacity of graphite. A status description of the apparatus and results from the first measurements are given. The outcome is discussed and the experimental uncertainty is reviewed. (authors)

  12. Measurement of the specific heat capacity of graphite

    International Nuclear Information System (INIS)

    Picard, S.; Burns, D.T.; Roger, P.

    2006-01-01

    With the objective of implementing graphite calorimetry at the BIPM to measure absorbed dose, an experimental assembly has recently been constructed to measure the specific heat capacity of graphite. A status description of the apparatus and results from the first measurements are given. The outcome is discussed and the experimental uncertainty is reviewed. (authors)

  13. Apparent molar volumes and apparent molar heat capacities of aqueous adonitol, dulcitol, glycerol, meso-erythritol, myo-inositol, D-sorbitol, and xylitol at temperatures from (278.15 to 368.15) K and at the pressure 0.35 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Blodgett, M.B. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602-5700 (United States); Ziemer, S.P. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602-5700 (United States); Brown, B.R. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602-5700 (United States); Niederhauser, T.L. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602-5700 (United States); Woolley, E.M. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602-5700 (United States)]. E-mail: earl_woolley@byu.edu

    2007-04-15

    Apparent molar volumes V {sub {phi}} were determined for aqueous adonitol, dulcitol, glycerol, meso-erythritol, myo-inositol, D-sorbitol, and xylitol at temperatures from (278.15 to 368.15) K and at the pressure 0.35 MPa, and apparent molar heat capacities C {sub p,{phi}} of the same solutions were determined at temperatures from (278.15 to 363.15) K at the same pressure. Molalities m/(mol . kg{sup -1}) of the solutions were in the range (0.02 {<=} m {<=} 3.2) for adonitol, (0.02 {<=} m {<=} 0.15) for dulcitol, (0.02 {<=} m {<=} 5.0) for glycerol, (0.02 {<=} m {<=} 3.0) for meso-erythritol, (0.02 {<=} m {<=} 0.5) for myo-inositol, (0.02 {<=} m {<=} 2.0) for D-sorbitol, and (0.02 {<=} m {<=} 2.7) for xylitol. A vibrating tube densimeter was used to obtain solution densities and a fixed-cell temperature scanning calorimeter was used to obtain heat capacities. Values of V {sub {phi}} and C {sub p,{phi}} for these sugar alcohols are discussed relative to one another and compared to values from the literature, where available.

  14. Apparent heat capacity measurements and thermodynamic functions of D(−)-fructose by standard and temperature-modulated calorimetry

    International Nuclear Information System (INIS)

    Magoń, A.; Pyda, M.

    2013-01-01

    Highlights: ► Experimental, apparent heat capacity of fructose was investigated by advanced thermal analysis. ► Equilibrium melting parameters of fructose were determined. ► Decomposition, superheating of crystalline fructose during melting process were presented. ► TGA, DSC, and TMDSC are useful tools for characterisation of fructose. - Abstract: The qualitative and quantitative thermal analyses of crystalline and amorphous D(−)-fructose were studied utilising methods of standard differential scanning calorimetry (DSC), quasi-isothermal temperature-modulated differential scanning calorimetry (quasi-isothermal TMDSC), and thermogravimetric analysis (TGA). Advanced thermal analysis of fructose was performed based on heat capacity. The apparent total and apparent reversing heat capacities, as well as phase transition parameters were examined on heating and cooling. The melting temperature, T m , of crystalline D(−)-fructose shows a heating rate dependency, which increases with raising the heating rate and leads to superheating. The equilibrium melting temperatures: T m ∘ (onset) = 370 K and T m ∘ (peak) = 372 K, and the equilibrium enthalpy of fusion Δ fus H ° = 30.30 kJ · mol −1 , of crystalline D(−)-fructose were estimated on heating for the results at zero heating rate. Anomalies in the heat capacity in the liquid state of D(−)-fructose, assigned as possible tautomerisation equilibrium, were analysed by DSC and quasi-isothermal TMDSC, both on heating and cooling. Thermal stability of crystals in the region of the melting temperature was examined by TGA and quasi-isothermal TMDSC. Melting, mutarotation, and degradation processes occur simultaneously and there are differences in values of the liquid heat capacity of D(−)-fructose with varied thermal history, measured by quasi-isothermal TMDSC. Annealing of amorphous D(−)-fructose between the glass transition temperature, T g , and the melting temperature, T m , also leads to

  15. Low-temperature heat capacity and standard molar enthalpy of formation of 9-fluorenemethanol (C14H12O)

    International Nuclear Information System (INIS)

    Di, You-Ying; Tan, Zhi-Cheng.; Sun, Xiao-Hong; Wang, Mei-Han; Xu, Fen; Liu, Yuan-Fa; Sun, Li-Xian; Zhang, Hong-Tao

    2004-01-01

    Low-temperature heat capacities of the 9-fluorenemethanol (C 14 H 12 O) have been precisely measured with a small sample automatic adiabatic calorimeter over the temperature range between T=78 K and T=390 K. The solid-liquid phase transition of the compound has been observed to be T fus =(376.567±0.012) K from the heat-capacity measurements. The molar enthalpy and entropy of the melting of the substance were determined to be Δ fus H m =(26.273±0.013) kJ · mol -1 and Δ fus S m =(69.770±0.035) J · K -1 · mol -1 . The experimental values of molar heat capacities in solid and liquid regions have been fitted to two polynomial equations by the least squares method. The constant-volume energy and standard molar enthalpy of combustion of the compound have been determined, Δ c U(C 14 H 12 O, s)=-(7125.56 ± 4.62) kJ · mol -1 and Δ c H m compfn (C 14 H 12 O, s)=-(7131.76 ± 4.62) kJ · mol -1 , by means of a homemade precision oxygen-bomb combustion calorimeter at T=(298.15±0.001) K. The standard molar enthalpy of formation of the compound has been derived, Δ f H m compfn (C 14 H 12 O,s)=-(92.36 ± 0.97) kJ · mol -1 , from the standard molar enthalpy of combustion of the compound in combination with other auxiliary thermodynamic quantities through a Hess thermochemical cycle

  16. Heat capacity measurements and XPS studies on uranium-lanthanum mixed oxides

    International Nuclear Information System (INIS)

    Venkata Krishnan, R.; Mittal, V.K.; Babu, R.; Senapati, Abhiram; Bera, Santanu; Nagarajan, K.

    2011-01-01

    Research highlights: → Heat capacity measurements were carried out on (U 1-y La y )O 2±x (y = 0.2, 0.4, 0.6, and 0.8) using differential scanning calorimeter (DSC) in the temperature range 298-800 K. → Enthalpy increment measurements were carried out on the above solid solution using high temperature drop calorimetry in the temperature range 800-1800 K. → Chemical states of U and La in the solid solutions of mixed oxides were determined using X-ray photoelectron spectroscopy (XPS). → The anomalous increase in the heat capacity is attributed to certain thermal excitation process namely Frenkel pair defect of oxygen. → From the XPS investigation, it is observed that the O/M ratio at the surface is higher than that to the bulk. → In uranium rich mixed oxide samples, the surface O/M is greater than 2 whereas that in La rich mixed oxides, it is less than 2, though the bulk O/M in all the samples are less than 2. - Abstract: Heat capacity measurements were carried out on (U 1-y La y )O 2±x (y = 0.2, 0.4, 0.6, and 0.8) using differential scanning calorimeter (DSC) in the temperature range 298-800 K. Enthalpy increment measurements were carried out on the above solid solutions using high temperature drop calorimetry in the temperature range 800-1800 K. Chemical states of U and La in the solid solutions of mixed oxides were determined using X-ray photoelectron spectroscopy (XPS). Oxygen to metal ratios of (U 1-y La y )O 2±x were estimated from the ratios of different chemical states of U present in the sample. Anomalous increase in the heat capacity is observed for (U 1-y La y )O 2±x (y = 0.4, 0.6 and 0.8) with onset temperatures in the range of 1000-1200 K. The anomalous increase in the heat capacity is attributed to certain thermal excitation process, namely, Frenkel pair defect of oxygen. The heat capacity value of (U 1-y La y )O 2±x (y = 0.2, 0.4, 0.6, and 0.8) at 298 K are 65.3, 64.1, 57.7, 51.9 J K -1 mol -1 , respectively. From the XPS investigations

  17. The low-temperature heat capacities of Tb, Lu and Y

    International Nuclear Information System (INIS)

    Wells, P.; Lanchester, P.C.; Jones, D.W.; Jordan, R.G.

    1976-01-01

    The heat capacities of Tb, Lu and Y, refined by solid state electro-transport processing have been measured between 1.5 and 16 K. Below 4 K the results were fitted to the expression C = γT + AT 3 where for Tb the nuclear and magnetic contributions were first calculated and subtracted from the total heat capacity. The resultant values of γ(mJ mol -1 K -2 ) and limiting Debye temperatures thetasub(D) (T → 0) were as follows. Tb: γ = 4.4 +- 0.1, thetasub(D) = 178 +- 2 K; Lu: γ = 6.8 +- 0.1, thetasub(D) 205 +- 3 K; Y: γ = 8.2 +- 0.1, thetasub(D) = 248 +- 3 K. The Debye temperature was found in all instances to decrease by about 10% between 4 and 16 K. (author)

  18. Low temperature heat capacity of scandium and alloys of scandium

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, T. W.E.

    1977-12-01

    The heat capacity of three electrotransport purified scandium samples has been measured from 1 to 20/sup 0/K. The resultant electronic specific heat constant and Debye temperature are 10.337 +- 0.015 mJ/gm-atom K/sup 2/ and 346.7 +- 0.8/sup 0/K respectively, and these values are believed to be truly representative of intrinsic scandium. Alloying studies have also been carried out to investigate the band structure of scandium based on the rigid band model, with zirconium to raise the electron concentration and magnesium to lower it. The results are then compared to the theoretical band structure calculations. Low temperature heat capacity measurements have also been made on some dilute Sc-Fe alloys. An anomaly is observed in the C/T vs. T/sup 2/ plot, but the C vs. T curve shows no evidence of magnetic ordering down to 1/sup 0/K, and electrical resistance measurement from 4 to 0.3/sup 0/K also indicates that no magnetic ordering took place.

  19. Immediate effect of suryanadi pranayama on pulmonary function (ventilatory volumes and capacities in healthy volunteers

    Directory of Open Access Journals (Sweden)

    Shravya Keerthi G, Hari Krishna Bandi, Suresh M, Mallikarjuna Reddy N

    2013-10-01

    Full Text Available Objectives: we found only effects of at least a short term practice extended over a period of a few days to weeks of pranayama (alternate nostril breathing rather than acute effects of unilateral right nostril breathing (suryanadi pranayama. Keeping this in mind the present study was designed to test the hypothesis that 10 min. of right nostril breathing have any immediate effect on ventilatory volumes and capacities in healthy volunteers. Methodology: Forced vital capacity (FVC, Forced expiratory volume in the first second (FEV1, Forced expiratory volume percent (FEV1/FVC%, Peak expiratory flow rate (PEFR, Forced expiratory flow25-75% (FEF25-75%, Maximum voluntary ventilation (MVV, Slow vital capacity (SVC, Expiratory reserve volume (ERV, Inspiratory reserve volume (IRV and Tidal volume (TV were recorded before and after Surya Nadi Pranayama. Results & Conclusion: There was a significant increase in FVC (p<0.0001, FEV1 (p<0.0007, PEFR (p<0.0001, FEF25-75% (p<0.0001, MVV (p<0.0001, SVC (p<0.0001, ERV (0.0006, IRV (p<0.0001 and TV (0.0055 after suryanadi pranayama. The immediate effect of suryanadi pranayama practice showed alleviation of ventilatory capacities and volumes. Any practice that increases PEFR and FEF25–75% is expected to retard the development of COPD’s. The increase in PEFR, vital capacities and flow rates by suryanadi pranayama practice obviously offers an increment in respiratory efficiency and it can be advocated to the patients of early bronchitis and as a preventive measure for COPD.

  20. Computer calculation of heat capacity of natural gases over a wide range of pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dranchuk, P.M. (Alberta Univ., Edmonton, AB (Canada)); Abou-Kassem, J.H. (Pennsylvania State Univ., University Park, PA (USA))

    1992-04-01

    A method is presented whereby specific heats or heat capacities of natural gases, both sweet and sour, at elevated pressures and temperatures may be made suitable to modern-day machine calculation. The method involves developing a correlation for ideal isobaric heat capacity as a function of gas gravity and pseudo reduced temperature over the temperature range of 300 to 1500 K, and a mathematical equation for the isobaric heat capacity departure based on accepted thermodynamic principles applied to an equation of state that adequately describes the behavior of gases to which the Standing and Katz Z factor correlation applies. The heat capacity departure equation is applicable over the range of 0.2 {le} Pr {le} 15 and 1.05 {le} Tr {le} 3, where Pr and Tr refer to the reduced pressure and temperature respectively. The significance of the method presented lies in its utility and adaptability to computer applications. 25 refs., 2 figs., 4 tabs.

  1. Effect of volume loading on the Frank-Starling relation during reductions in central blood volume in heat-stressed humans

    DEFF Research Database (Denmark)

    Bundgaard-Nielsen, Morten; Wilson, T E; Seifert, Thomas

    2010-01-01

    -body heating after intravascular volume expansion. Volume expansion was accomplished by administration of a combination of a synthetic colloid (HES 130/0.4, Voluven) and saline. Before LBNP, SV was not affected by heating (122 +/- 30 ml; mean +/- s.d.) compared to normothermia (110 +/- 20 ml; P = 0...

  2. Model study on steady heat capacity in driven stochastic systems

    Czech Academy of Sciences Publication Activity Database

    Pešek, Jiří; Boksenbojm, E.; Netočný, Karel

    2012-01-01

    Roč. 10, č. 3 (2012), 692-701 ISSN 1895-1082 Institutional research plan: CEZ:AV0Z10100520 Keywords : nonequilibrium steady state * quasistatic process * heat capacity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.905, year: 2012

  3. Excess Molar Volume, Viscosity and Heat Capacity for the Binary Mixture of p-Xylene and Acetic Acid at Different Temperatures%对二甲苯和醋酸二元液体混合物在不同温度下的超额摩尔体积、粘度和热容

    Institute of Scientific and Technical Information of China (English)

    杨长生; 马沛生; 唐多强; 尹秋响; 赵长伟

    2002-01-01

    Experimental densities, viscosities and heat capacities at different temperatures were presented overthe entire range of mole fraction for the binary mixture of p-xylene and acetic acid. Density values were used in thedetermination of excess molar volumes, VE. At the same time, the excess viscosity and excess molar heat capacitieswere calculated. The values of VE, ηE and cpE were fitted to the Redlich-Kister equation. Good agreements wereobserved. The excess molar volumes are positive with a large maximum value located in the central concentrationrange. The excess viscosity has an opposite trend to the excess molar volume VE. ηE values are negative over theentire range of the mixture. The cure of dependence of cEp on concentration has a special shape. The molecularinteraction between p-xylene and acetic acid is discussed.

  4. Apparent molar volumes and apparent molar heat capacities of aqueous adonitol, dulcitol, glycerol, meso-erythritol, myo-inositol, D-sorbitol, and xylitol at temperatures from (278.15 to 368.15) K and at the pressure 0.35 MPa

    International Nuclear Information System (INIS)

    Blodgett, M.B.; Ziemer, S.P.; Brown, B.R.; Niederhauser, T.L.; Woolley, E.M.

    2007-01-01

    Apparent molar volumes V φ were determined for aqueous adonitol, dulcitol, glycerol, meso-erythritol, myo-inositol, D-sorbitol, and xylitol at temperatures from (278.15 to 368.15) K and at the pressure 0.35 MPa, and apparent molar heat capacities C p,φ of the same solutions were determined at temperatures from (278.15 to 363.15) K at the same pressure. Molalities m/(mol . kg -1 ) of the solutions were in the range (0.02 ≤ m ≤ 3.2) for adonitol, (0.02 ≤ m ≤ 0.15) for dulcitol, (0.02 ≤ m ≤ 5.0) for glycerol, (0.02 ≤ m ≤ 3.0) for meso-erythritol, (0.02 ≤ m ≤ 0.5) for myo-inositol, (0.02 ≤ m ≤ 2.0) for D-sorbitol, and (0.02 ≤ m ≤ 2.7) for xylitol. A vibrating tube densimeter was used to obtain solution densities and a fixed-cell temperature scanning calorimeter was used to obtain heat capacities. Values of V φ and C p,φ for these sugar alcohols are discussed relative to one another and compared to values from the literature, where available

  5. Electrolytic conductivity and molar heat capacity of two aqueous solutions of ionic liquids at room-temperature: Measurements and correlations

    International Nuclear Information System (INIS)

    Lin Peiyin; Soriano, Allan N.; Leron, Rhoda B.; Li Menghui

    2010-01-01

    As part of our systematic study on physicochemical characterization of ionic liquids, in this work, we report new measurements of electrolytic conductivity and molar heat capacity for aqueous solutions of two 1-ethyl-3-methylimidazolium-based ionic liquids, namely: 1-ethyl-3-methylimidazolium dicyanamide and 1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy) ethylsulfate, at normal atmospheric condition and for temperatures up to 353.2 K. The electrolytic conductivity and molar heat capacity were measured by a commercial conductivity meter and a differential scanning calorimeter (DSC), respectively. The estimated experimental uncertainties for the electrolytic conductivity and molar heat capacity measurements were ±1% and ±2%, respectively. The property data are reported as functions of temperature and composition. A modified empirical equation from another researcher was used to correlate the temperature and composition dependence of the our electrolytic conductivity results. An excess molar heat capacity expression derived using a Redlich-Kister type equation was used to represent the temperature and composition dependence of the measured molar heat capacity and calculated excess molar heat capacity of the solvent systems considered. The correlations applied represent the our measurements satisfactorily as shown by an acceptable overall average deviation of 6.4% and 0.1%, respectively, for electrolytic conductivity and molar heat capacity.

  6. Personalized Hydration Strategy Attenuates the Rise in Heart Rate and in Skin Temperature Without Altering Cycling Capacity in the Heat.

    Science.gov (United States)

    de Melo-Marins, Denise; Souza-Silva, Ana Angélica; da Silva-Santos, Gabriel Lucas Leite; Freire-Júnior, Francisco de Assis; Lee, Jason Kai Wei; Laitano, Orlando

    2018-01-01

    The optimal hydration plan [i.e., drink to thirst, ad libitum (ADL), or personalized plan] to be adopted during exercise in recreational athletes has recently been a matter of debate and, due to conflicting results, consensus does not exist. In the present investigation, we tested whether a personalized hydration strategy based on sweat rate would affect cardiovascular and thermoregulatory responses and exercise capacity in the heat. Eleven recreational male cyclists underwent two familiarization cycling sessions in the heat (34°C, 40% RH) where sweat rate was also determined. A fan was used to enhance sweat evaporation. Participants then performed three randomized time-to-exhaustion (TTE) trials in the heat with different hydration strategies: personalized volume (PVO), where water was consumed, based on individual sweat rate, every 10 min; ADL, where free access to water was allowed; and a control (CON) trial with no fluids. Blood osmolality and urine-specific gravity were measured before each trial. Heart rate (HR), rectal, and skin temperatures were monitored throughout trials. Time to exhaustion at 70% of maximal workload was used to define exercise capacity in the heat, which was similar in all trials ( p  = 0.801). Body mass decreased after ADL ( p  = 0.008) and CON ( p  skin temperature during PVO trial in comparison with CON (2.1 ± 0.6 vs. 2.9 ± 0.5°C, p  = 0.0038). HR was lower toward the end of TTE in PVO (162 ± 8 bpm) in comparison with ADL (168 ± 12 bpm) and CON (167 ± 10 bpm), p  hydration strategy can reduce HR during a moderate to high intensity exercise session in the heat and halt the increase in skin temperature. Despite these advantages, cycling capacity in the heat remained unchanged.

  7. Excess Molar Volume, Viscosity and Heat Capacity for the Mixture of 1,2-Propanediol-Water at Different Temperatures%1,2-丙二醇水溶液在不同温度下的超额摩尔体积黏度和热容

    Institute of Scientific and Technical Information of China (English)

    杨长生; 马沛生; 唐多强; 靳凤民

    2003-01-01

    Experimental densities, viscosities and heat capacities at different temperatures were presented over the entire mole fraction range for the binary mixture of 1,2-propanediol and water. Density values were used in the determination of excess molar volumes, VE. At the same time, the excess viscosity was investigated. The values of VE and ηE were fitted to the Redlich-Kister equation. Good agreement was observed. The excess volumes are negative over the entire range of composition. They show an U-shaped-concentration dependence and decrease in absolute values with increase of temperature. Values of ηE are negative over the entire range of the composition, and has a trend very similar to that of VE . The analysis shows that at any temperature the specific heat of mixture is a linear function of the composition as x1>20%. All the extended lines intersect at one point. An empirical equation is obtained to calculate the specific heat to mixture at any composition and temperature in the experimental range.

  8. Neutron behavior, reactor control, and reactor heat transfer. Volume four

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Volume four covers neutron behavior (neutron absorption, how big are nuclei, neutron slowing down, neutron losses, the self-sustaining reactor), reactor control (what is controlled in a reactor, controlling neutron population, is it easy to control a reactor, range of reactor control, what happens when the fuel burns up, controlling a PWR, controlling a BWR, inherent safety of reactors), and reactor heat transfer (heat generation in a nuclear reactor, how is heat removed from a reactor core, heat transfer rate, heat transfer properties of the reactor coolant)

  9. Thermodynamic performance analysis of sequential Carnot cycles using heat sources with finite heat capacity

    International Nuclear Information System (INIS)

    Park, Hansaem; Kim, Min Soo

    2014-01-01

    The maximum efficiency of a heat engine is able to be estimated by using a Carnot cycle. Even though, in terms of efficiency, the Carnot cycle performs the role of reference very well, its application is limited to the case of infinite heat reservoirs, which is not that realistic. Moreover, considering that one of the recent key issues is to produce maximum work from low temperature and finite heat sources, which are called renewable energy sources, more advanced theoretical cycles, which can present a new standard, and the research about them are necessary. Therefore, in this paper, a sequential Carnot cycle, where multiple Carnot cycles are connected in parallel, is studied. The cycle adopts a finite heat source, which has a certain initial temperature and heat capacity, and an infinite heat sink, which is assumed to be ambient air. Heat transfer processes in the cycle occur with the temperature difference between a heat reservoir and a cycle. In order to resolve the heat transfer rate in those processes, the product of an overall heat transfer coefficient and a heat transfer area is introduced. Using these conditions, the performance of a sequential Carnot cycle is analytically calculated. Furthermore, as the efforts for enhancing the work of the cycle, the optimization research is also conducted with numerical calculation. - Highlights: • Modified sequential Carnot cycles are proposed for evaluating low grade heat sources. • Performance of sequential Carnot cycles is calculated analytically. • Optimization study for the cycle is conducted with numerical solver. • Maximum work from a heat source under a certain condition is obtained by equations

  10. Heat capacity and transition behavior of sucrose by standard, fast scanning and temperature-modulated calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Magoń, A. [Department of Chemistry, University of Technology, 35-959 Rzeszów (Poland); Wurm, A.; Schick, C. [Department of Physics, University of Rostock, 18057 Rostock (Germany); Pangloli, Ph.; Zivanovic, S. [Department of Food Science and Technology, University of Tennessee, Knoxville, TN 37996 (United States); Skotnicki, M. [Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań (Poland); Pyda, M., E-mail: mpyda@utk.edu [Department of Chemistry, University of Technology, 35-959 Rzeszów (Poland)

    2014-08-10

    Highlights: • Experimental, apparent heat capacity of sucrose was investigated by advanced thermal analysis. • Vibrational heat capacity of solid state was linked with a low temperature experimental heat capacity of sucrose. • Equilibrium melting parameters of sucrose were determined. • Decomposition, superheating of crystalline sucrose during melting process were presented. • TGA, DSC, TMDSC, and FSC are useful tools for characterization of sucrose. - Abstract: The heat capacity (C{sub p}) of crystalline and amorphous sucrose was determined using standard and quasi-isothermal temperature modulated differential scanning calorimetry. The results were combined with the published data determined by adiabatic calorimetry, and the C{sub p} values are now reported for the wide 5–600 K range. The experimental C{sub p} of solid sucrose at 5–300 K was used to calculate the vibrational, solid C{sub p} based on the vibrational molecular motions. The calculated solid and liquid C{sub p} together with the transition parameters for equilibrium conditions were used as references for detailed quantitative thermal analysis of crystalline and amorphous sucrose. Melting temperature (T{sub m}) of the crystalline sucrose was identified in a broad 442–465 K range with a heat of fusion of 40–46 J/mol determined at heating rates 0.5–20 K/min, respectively. The equilibrium T{sub m} and heat of fusion of crystalline sucrose were estimated at zero heating rate as T{sup o}{sub m} = 424.4 K and ΔH{sup o}{sub f} = 32 kJ/mol, respectively. The glass transition temperature (T{sub g}) of amorphous sucrose was at 331 K with a change in C{sub p} of 267 J/(mol K) as it was estimated from reversing heat capacity by quasi-isothermal TMDSC on cooling. At heating rates less than 30 K/min, thermal decomposition occurred during melting, while at extreme rate of 1000 K/s, degradation was not observed. Data obtained by fast scanning calorimetry (FSC) at 1000 K/s, showed that T{sub m} was

  11. Bimodality and negative heat capacity in multifragmentation

    International Nuclear Information System (INIS)

    Tamain, B.; Bougault, R.; Lopez, O.; Pichon, M.

    2003-01-01

    This contribution addresses the question of the possible link between multifragmentation and the liquid-gas phase transition of nuclear matter. Bi-modality seems to be a robust signal of this link in the sense that theoretical calculations indicate that it is preserved even if a sizeable fraction of the available energy has not been shared among all the degrees of freedom. The corresponding measured properties are coherent with what is expected in a liquid-gas phase transition picture. Moreover, bi-modality and negative heat capacity are observed for the same set of events. (authors)

  12. Prediction of heat capacities and heats of vaporization of organic liquids by group contribution methods

    DEFF Research Database (Denmark)

    Ceriani, Roberta; Gani, Rafiqul; Meirelles, A.J.A.

    2009-01-01

    In the present work a group contribution method is proposed for the estimation of the heat capacity of organic liquids as a function of temperature for fatty compounds found in edible oil and biofuels industries. The data bank used for regression of the group contribution parameters (1395 values...

  13. A risk management approach to double-shell tank waste volume versus storage capacity

    Energy Technology Data Exchange (ETDEWEB)

    Coles, G.A. [Westinghouse Hanford Co., Richland, WA (United States); Thurkow, T.J.; Fritz, R.L.; Nuhlestein, L.O.; Allen, M.R.; Stuart, R.J. [ARES Corp. (United States)

    1996-01-01

    A risk-based assessment of the overall waste volume versus double-shell tank storage capacity was conducted to develop fallback positions for projections where the waste volume was at a high risk of exceeding capacity. This study was initiated to provide that assessment. A working simulation model was the primary deliverable of this study. The model validates the approach and demonstrates that simulation analysis can provide a method of tracking uncertainties in available data, assessing probabilities, and serves as a tool to be used by management to determine the consequences of various off-normal occurrences.

  14. A risk management approach to double-shell tank waste volume versus storage capacity

    International Nuclear Information System (INIS)

    Coles, G.A.; Thurkow, T.J.; Fritz, R.L.; Nuhlestein, L.O.; Allen, M.R.; Stuart, R.J.

    1996-01-01

    A risk-based assessment of the overall waste volume versus double-shell tank storage capacity was conducted to develop fallback positions for projections where the waste volume was at a high risk of exceeding capacity. This study was initiated to provide that assessment. A working simulation model was the primary deliverable of this study. The model validates the approach and demonstrates that simulation analysis can provide a method of tracking uncertainties in available data, assessing probabilities, and serves as a tool to be used by management to determine the consequences of various off-normal occurrences

  15. Determination of the thermal conductivity and specific heat capacity of neem seeds by inverse problem method

    Directory of Open Access Journals (Sweden)

    S.N. Nnamchi

    2010-01-01

    Full Text Available Determination of the thermal conductivity and the specific heat capacity of neem seeds (Azadirachta indica A. Juss usingthe inverse method is the main subject of this work. One-dimensional formulation of heat conduction problem in a spherewas used. Finite difference method was adopted for the solution of the heat conduction problem. The thermal conductivityand the specific heat capacity were determined by least square method in conjunction with Levenberg-Marquardt algorithm.The results obtained compare favourably with those obtained experimentally. These results are useful in the analysis ofneem seeds drying and leaching processes.

  16. Radiation from Large Gas Volumes and Heat Exchange in Steam Boiler Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, A. N., E-mail: tgtu-kafedra-ese@mail.ru [Tver State Technical University (Russian Federation)

    2015-09-15

    Radiation from large cylindrical gas volumes is studied as a means of simulating the flare in steam boiler furnaces. Calculations of heat exchange in a furnace by the zonal method and by simulation of the flare with cylindrical gas volumes are described. The latter method is more accurate and yields more reliable information on heat transfer processes taking place in furnaces.

  17. Microcomputer based program for predicting heat transfer under reactor accident conditions. Volume I

    International Nuclear Information System (INIS)

    Cheng, S.C.; Groeneveld, D.C.; Leung, L.K.H.; Wong, Y.L.; Nguyen, C.

    1987-07-01

    A microcomputer based program called Heat Transfer Prediction Software (HTPS) has been developed. It calculates the heat transfer for the tube and bundle geometries for steady state and transient conditions. This program is capable of providing the best estimated of the hot pin temperatures during slow transients for 37- and 28-element CANDU type fuel bundles. The program is designed for an IBM-PC AT/XT (or IBM-PC compatible computer) equipped with a Math Co-processor. The following input parameters are required: pressure, mass flux, hydraulic diameter, and quality. For the steady state case, the critical heat flux (CHF), the critical heat flux temperature, the minimum film boiling temperature, and the minimum film boiling heat flux are the primary outputs. With either the surface heat flux or wall temperature specified, the program determines the heat transfer regime and calculates the surface heat flux, wall temperatures and heat transfer coefficient. For the slow transient case, the pressure, mass flux, quality, and volumetric heat generation rate are the time dependent input parameters required to calculate the hot pin sheath temperatures and surface heat fluxes. A simple routine for generating properties has been developed for light water to support the above program. It contains correlations that have been verified for pressures ranging from 0.6kPa to 30 MPa, and temperatures up to 1100 degrees Celcius. The thermodynamic and transport properties that can be generated from this routine are: density, specific volume, enthalpy, specific heat capacity, conductivity, viscosity, surface tension and Prandtl number for saturated liquid, saturated vapour, subcooled liquid for superheated vapour. A software for predicting flow regime has also been developed. It determines the flow pattern at specific flow conditions, and provides a correction factor for calculating the CHF during partially stratified horizontal flow. The technical bases for the program and its

  18. Microcomputer based program for predicting heat transfer under reactor accident conditions. Volume II

    International Nuclear Information System (INIS)

    Cheng, S.C.; Groeneveld, D.C.; Leung, L.K.H.; Wong, Y.L.; Nguyen, C.

    1987-07-01

    A microcomputer based program called Heat Transfer Prediction Software (HTPS) has been developed. It calculates the heat transfer for tube and bundle geometries for steady state and transient conditions. This program is capable of providing the best estimated of the hot pin temperatures during slow transients for 37- and 28-element CANDU type fuel bundles. The program is designed for an IBM-PC AT/XT (or IBM-PC compatible computer) equipped with a Math Co-processor. The following input parameters are required: pressure, mass flux, hydraulic diameter, and quality. For the steady state case, the critical heat flux (CHF), the critical heat flux temperature, the minimum film boiling temperature, and the minimum film boiling heat flux are the primary outputs. With either the surface heat flux or wall temperature specified, the program determines the heat transfer regime and calculates the surface heat flux, wall temperature and heat transfer coefficient. For the slow transient case, the pressure, mass flux, quality, and volumetric heat generation rate are the time dependent input parameters are required to calculate the hot pin sheath temperatures and surface heat fluxes. A simple routine for generating properties has been developed for light water to support the above program. It contains correlations that have been verified for pressures ranging from 0.6kPa to 30 MPa, and temperatures up to 1100 degrees Celcius. The thermodynamic and transport properties that can be generated from this routine are: density, specific volume, enthalpy, specific heat capacity, conductivity, viscosity, surface tension and Prandtle number for saturated liquid, saturated vapour, subcooled liquid of superheated vapour. A software for predicting flow regime has also been developed. It determines the flow pattern at specific flow conditions, and provides a correction factor for calculating the CHF during partially stratified horizontal flow. The technical bases for the program and its structure

  19. Low-temperature heat capacity of Al(C11H19O2)3

    International Nuclear Information System (INIS)

    Bespyatov, Michael A.; Chernyaikin, Ivan S.; Naumov, Viktor N.; Stabnikov, Pavel A.; Gelfond, Nikolay V.

    2014-01-01

    Highlights: • The temperature dependence of heat capacity of Al(C 11 H 19 O 2 ) 3 has been measured. • The experimental data were used to calculate standard thermodynamic functions. • The thermodynamic functions at 298.15 K are presented. - Abstract: The heat capacity of Al(C 11 H 19 O 2 ) 3 was measured by adiabatic-shield calorimetry in the temperature range 6–320 K; no transition or thermal anomalies were found. The thermodynamic functions (entropy, enthalpy, and reduced Gibbs free energy) at 298.15 K have been calculated using the obtained experimental heat capacity data. The obtained standard values are as follows: C° p,m = (882.3 ± 1.3) J mol −1 K −1 , Δ 0 298.15 S° m = J(980 ± 2) mol −1 K −1 , Δ 0 298.15 H° m = (145.1 ± 0.2) kJ mol −1 , Φ° m = (493.4 ± 1.7) J mol −1 K −1

  20. Handbook of heat and mass transfer. Volume 2

    International Nuclear Information System (INIS)

    Cheremisinoff, N.P.

    1986-01-01

    This two-volume series, the work of more than 100 contributors, presents advanced topics in industrial heat and mass transfer operations and reactor design technology. Volume 2 emphasizes mass transfer and reactor design. Some of the contents discussed are: MASS TRANSFER PRINCIPLES - Effect of turbulence promoters on mass transfer. Mass transfer principles with homogeneous and heterogeneous reactions. Convective diffusion with reactions in a tube. Transient mass transfer onto small particles and drops. Modeling heat and mass transport in falling liquid films. Heat and mass transfer in film absorption. Multicomponent mass transfer: theory and applications. Diffusion limitation for reaction in porous catalysts. Kinetics and mechanisms of catalytic deactivation. DISTILLATION AND EXTRACTION - Generalized equations of state for process design. Mixture boiling. Estimating vapor pressure from normal boiling points of hydrocarbons. Estimating liquid and vapor molar fractions in distillation columns. Principles of multicomponent distillation. Generalized design methods for multicomponent distillation. Interfacial films in inorganic substances extraction. Liquid-liquid extraction in suspended slugs. MULTIPHASE REACTOR SYSTEMS - Reaction and mass transport in two-phase reactors. Mass transfer and kinetics in three-phase reactors. Estimating liquid film mass transfer coefficients in randomly packed columns. Designing packed tower wet scrubbers - emphasis on nitrogen oxides. Gas absorption in aerated mixers. Axial dispersion and heat transfer in gas-liquid bubble columns. Operation and design of trickle-bed reactors

  1. Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method.

    Science.gov (United States)

    Liu, Jun; Zhu, Jie; Tian, Miao; Gu, Xiaokun; Schmidt, Aaron; Yang, Ronggui

    2013-03-01

    The increasing interest in the extraordinary thermal properties of nanostructures has led to the development of various measurement techniques. Transient thermoreflectance method has emerged as a reliable measurement technique for thermal conductivity of thin films. In this method, the determination of thermal conductivity usually relies much on the accuracy of heat capacity input. For new nanoscale materials with unknown or less-understood thermal properties, it is either questionable to assume bulk heat capacity for nanostructures or difficult to obtain the bulk form of those materials for a conventional heat capacity measurement. In this paper, we describe a technique for simultaneous measurement of thermal conductivity κ and volumetric heat capacity C of both bulk and thin film materials using frequency-dependent time-domain thermoreflectance (TDTR) signals. The heat transfer model is analyzed first to find how different combinations of κ and C determine the frequency-dependent TDTR signals. Simultaneous measurement of thermal conductivity and volumetric heat capacity is then demonstrated with bulk Si and thin film SiO2 samples using frequency-dependent TDTR measurement. This method is further testified by measuring both thermal conductivity and volumetric heat capacity of novel hybrid organic-inorganic thin films fabricated using the atomic∕molecular layer deposition. Simultaneous measurement of thermal conductivity and heat capacity can significantly shorten the development∕discovery cycle of novel materials.

  2. Experimental study on heat pipe heat removal capacity for passive cooling of spent fuel pool

    International Nuclear Information System (INIS)

    Xiong, Zhenqin; Wang, Minglu; Gu, Hanyang; Ye, Cheng

    2015-01-01

    Highlights: • A passively cooling SFP heat pipe with an 8.2 m high evaporator was tested. • Heat removed by the heat pipe is in the range of 3.1–16.8 kW. • The heat transfer coefficient of the evaporator is 214–414 W/m 2 /K. • The heat pipe performance is sensitive to the hot water temperature. - Abstract: A loop-type heat pipe system uses natural flow with no electrically driven components. Therefore, such a system was proposed to passively cool spent fuel pools during accidents to improve nuclear power station safety especially for station blackouts such as those in Fukushima. The heat pipe used for a spent fuel pool is large due to the spent fuel pool size. An experimental heat pipe test loop was developed to estimate its heat removal capacity from the spent fuel pool during an accident. The 7.6 m high evaporator is heated by hot water flowing vertically down in an assistant tube with a 207-mm inner diameter. R134a was used as the potential heat pipe working fluid. The liquid R134a level was 3.6 m. The tests were performed for water velocities from 0.7 to 2.1 × 10 −2 m/s with water temperatures from 50 to 90 °C and air velocities from 0.5 m/s to 2.5 m/s. The results indicate significant heat is removed by the heat pipe under conditions that may occur in the spent fuel pool

  3. Comparative analysis of the heat transfer rates in constant (CAV) and variable (VAV) volumes type multi zone acclimation system operating in hot and humid climate; Analise comparativa das taxas transferencia de calor em sistemas de climatizacao do tipo volume de ar constante (CAV) e volume de ar variavel (VAV) multizona operando em clima quente e umido

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Cesar A.G.; Correa, Jorge E. [Para Univ., Belem (Brazil). Centro Tecnologico. Dept. de Engenharia Mecanica]. E-mails: gsantos@ufpa.br; jecorrea@amazon.com.br

    2000-07-01

    This work performs a comparative analysis among the constant and variable air volume multi zones acclimation systems, used for provide the thermal comfort in buildings. The work used the simulation HVAC2KIT computer program. The results of sensible and latent heats transfer rates on the cooling and dehumidification, inflating fan capacity, and heat transfer on the final heating condenser were obtained and analysed for the climate conditions of the Brazilian city of Belem from Para State, presenting hot and humid climate during all the year.

  4. Heat capacity of 1-pentylamine and 1-hexylamine: Experimental determination and modeling through a two-state association model (TSAM)

    International Nuclear Information System (INIS)

    Navia, P.; Bessières, D.; Plantier, F.

    2013-01-01

    Highlights: ► Experimental determination of heat capacity of two primary amines, over wide ranges of pressure and temperature. ► Comprehensive description of the association effect between amines molecules. ► Thermodynamics of complex fluids. ► Statistical thermodynamic approach. - Abstract: We report new experimental data of heat capacity of two primary amines, namely 1-pentylamine and 1-hexylamine over wide ranges of pressure [0.1–60 (MPa)] and temperature [303.15–403.15 (K)]. The experimental behaviour of the heat capacity versus temperature and pressure is analyzed. An attempt to rationalize this behaviour is performed through a two-state association model (TSAM), which allows expressing the specific effect due to association at molecular level. It appears that the heat capacity trend versus temperature is clearly governed by auto-association between amines molecules. The physical meaningful of the (TSAM) model parameters highlights the capability of this approach to capture the heat capacity behavior of the amines.

  5. The influence of working memory capacity on experimental heat pain.

    Science.gov (United States)

    Nakae, Aya; Endo, Kaori; Adachi, Tomonori; Ikeda, Takashi; Hagihira, Satoshi; Mashimo, Takashi; Osaka, Mariko

    2013-10-01

    Pain processing and attention have a bidirectional interaction that depends upon one's relative ability to use limited-capacity resources. However, correlations between the size of limited-capacity resources and pain have not been evaluated. Working memory capacity, which is a cognitive resource, can be measured using the reading span task (RST). In this study, we hypothesized that an individual's potential working memory capacity and subjective pain intensity are related. To test this hypothesis, we evaluated 31 healthy participants' potential working memory capacity using the RST, and then applied continuous experimental heat stimulation using the listening span test (LST), which is a modified version of the RST. Subjective pain intensities were significantly lower during the challenging parts of the RST. The pain intensity under conditions where memorizing tasks were performed was compared with that under the control condition, and it showed a correlation with potential working memory capacity. These results indicate that working memory capacity reflects the ability to process information, including precise evaluations of changes in pain perception. In this work, we present data suggesting that changes in subjective pain intensity are related, depending upon individual potential working memory capacities. Individual working memory capacity may be a phenotype that reflects sensitivity to changes in pain perception. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.

  6. New equations for density, entropy, heat capacity, and potential temperature of a saline thermal fluid

    Science.gov (United States)

    Sun, Hongbing; Feistel, Rainer; Koch, Manfred; Markoe, Andrew

    2008-10-01

    A set of fitted polynomial equations for calculating the physical variables density, entropy, heat capacity and potential temperature of a thermal saline fluid for a temperature range of 0-374 °C, pressure range of 0.1-100 MPa and absolute salinity range of 0-40 g/kg is established. The freshwater components of the equations are extracted from the recently released tabulated data of freshwater properties of Wagner and Pruß [2002. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. Journal of Physical and Chemical Reference Data 31, 387-535]. The salt water component of the equation is based on the near-linear relationship between density, salinity and specific heat capacity and is extracted from the data sets of Feistel [2003. A new extended Gibbs thermodynamic potential of seawater. Progress in Oceanography 58, 43-114], Bromley et al. [1970. Heat capacities and enthalpies of sea salt solutions to 200 °C. Journal of Chemical and Engineering Data 15, 246-253] and Grunberg [1970. Properties of sea water concentrates. In: Third International Symposium on Fresh Water from the Sea, vol. 1, pp. 31-39] in a temperature range 0-200 °C, practical salinity range 0-40, and varying pressure and is also calibrated by the data set of Millero et al. [1981. Summary of data treatment for the international high pressure equation of state for seawater. UNESCO Technical Papers in Marine Science 38, 99-192]. The freshwater and salt water components are combined to establish a workable multi-polynomial equation, whose coefficients were computed through standard linear regression analysis. The results obtained in this way for density, entropy and potential temperature are comparable with those of existing models, except that our new equations cover a wider temperature—(0-374 °C) than the traditional (0-40 °C) temperature range. One can apply these newly established equations to the calculation of in-situ or

  7. Analysis of the Storage Capacity in an Aggregated Heat Pump Portfolio

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Andersen, Palle; Pedersen, Tom Søndergård

    2015-01-01

    Energy storages connected to the power grid will be of great importance in the near future. A pilot project has investigated more than 100 single family houses with heat pumps all connected to the internet. The houses have large heat capacities and it is possible to move energy consumption to sui...... (scheduling) algorithm. The properties of this scheduling are investigated in the paper especially the flexibility and ability to trade on the intra-day regulating market is in focus....

  8. Advanced Analysis of Isobaric Heat Capacities by Mathematical Gnostics

    Czech Academy of Sciences Publication Activity Database

    Wagner, Zdeněk; Bendová, Magdalena; Rotrekl, Jan; Velíšek, Petr; Storch, Jan; Uchytil, Petr; Setničková, Kateřina; Řezníčková Čermáková, Jiřina

    2017-01-01

    Roč. 46, 9-10 (2017), s. 1836-1853 ISSN 0095-9782. [International Symposium on Solubility Phenomena and Related Equilibrium Processes. Geneva, 24.07.2016-29.07.2016] R&D Projects: GA MŠk LD14090 Institutional support: RVO:67985858 Keywords : isobaric heat capacity * ionic liquids * mathematical gnostics Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 1.342, year: 2016

  9. Beneficial effects of elevating cardiac preload on left-ventricular diastolic function and volume during heat stress

    DEFF Research Database (Denmark)

    Brothers, R M; Pecini, Redi; Dalsgaard, Morten

    2014-01-01

    via volume loading while heat stressed would 1) increase indices of left ventricular diastolic function, and 2) preserve left ventricular end-diastolic volume (LVEDV) during a subsequent simulated hemorrhagic challenge induced by lower-body negative pressure (LBNP). Indices of left ventricular......Volume loading normalizes tolerance to a simulated hemorrhagic challenge in heat-stressed individuals, relative to when these individuals are thermoneutral. The mechanism(s) by which this occurs is unknown. This project tested two unique hypotheses; that is, the elevation of central blood volume...... diastolic function were evaluated in nine subjects during the following conditions: thermoneutral, heat stress, and heat stress after acute volume loading sufficient to return ventricular filling pressures toward thermoneutral levels. LVEDV was also measured in these subjects during the aforementioned...

  10. Current and future prospects for heat recovery from waste in European district heating systems: A literature and data review

    DEFF Research Database (Denmark)

    Persson, Urban; Münster, Marie

    2016-01-01

    Municipal solid waste has seen increasing annual volumes for many decades in contemporary Europe and constitutes, if not properly managed, an environmental problem due to local pollution and greenhouse gas emissions. From an energy perspective, waste is also an alternative fuel for power and heat...... to establish and assess current and future EU (European Union) waste generation and management. Main conclusions are that more heat can be recovered from current Waste-to-Energy facilities operating at low average heat recovery efficiencies, that efficient incineration capacity is geographically concentrated...... heat distribution infrastructures, without which no large-scale recovery and utilisation of excess heat is possible. In this paper, which aims to estimate municipal solid waste volumes available for heat recovery in European district heating systems in 2030, a literature and data review is performed...

  11. The effect of molybdenum content with changes in phase and heat capacity of UMo alloy

    International Nuclear Information System (INIS)

    Aslina Br Ginting; Supardjo; Agoeng Kadarjono; Dian Anggraini

    2011-01-01

    Has done the analysis of phase and heat capacity change of the UMo alloy by variation of 7% Mo, 8% and 9% Mo. Analysis performed using phase change Differential Thermal Analysis (DTA) at a temperature between 30°C until 1400°C with heating rate 10°C/minute and heat capacity analysis carried out using Differential Scanning Calorimetry (DSC) at a temperature between 30°C to 450°C with heating rate 5°C/minute. The purpose of this study was to determine the character of the UMo alloy include phase change and heat capacity variation with Mo content due to higher content of Mo is expected to change both the character U-7% Mo alloy, U-8% Mo and U-9% Mo. The analysis showed that of 7% Mo, 8% Mo and 9% Mo the combination experiencing α+ δ a phase change becomes α + β phase at temperatures of 578.63°C to 580.16°C. At the temperature 606.50°C to 627.58°C having a phase change of α+ β to β + γ be followed by the endothermic reaction in the content of 9% Mo with the enthalpy ΔH = 6.5989 J / g. At temperatures 1075.45°C up to 1160.51°C phase change β + γ into γ phase. The increase in Mo content to heating at a temperature 1100°C not cause a significant phase change. At temperatures above 1177.21°C, the increase in Mo content leads to changes in the γ phase of forming L + γ phase which followed the reaction of uranium with Mo to form γ phase - solid solution. The higher content of Mo, the reaction heat is needed and released the greater. The results of the analysis of the heat capacity is obtained that the increase in Mo content in the U-7% Mo, U-8% Mo, and U-9% Mo alloy does not give a significant difference in heat capacity. This is attested by doing different test (F test) at 95% degree of confidence. This data is expected to be as a first step to study the manufacture of UMo alloy as a fuel of high uranium density for research reactor. (author)

  12. Critical behaviour of binary mixture of {xC6H5CN + (1 - x)CH3(CH2)7CH3}: Measurements of coexistence curves, light scattering, and heat capacity

    International Nuclear Information System (INIS)

    Lei Yuntao; Chen Zhiyun; Wang Nong; Mao Chunfeng; An Xueqin; Shen Weiguo

    2010-01-01

    Liquid + liquid coexistence, light scattering, and isobaric heat capacity per unit volume for the critical solutions of (benzonitrile + n-nonane) have been measured. The critical exponents relating to the coexistence curve β, the osmotic compressibility γ, the correlation length ν, and the heat capacity α have been deduced and the values are consistent with the 3D-Ising values in the range close to the critical point. The experimental results of the liquid + liquid coexistence were analyzed to examine the Wegner correction terms and the behaviour of the diameter of the coexistence curves. The light scattering data were well described by the crossover model proposed by Anisimov and Sengers, and showed a tendency of monotonic crossover of the critical exponents γ and ν from the 3D-Ising values to the mean-field values as the temperature departures from the critical point. From calorimetric measurements, the amplitude A ± and the critical background B cr of the heat capacity in the critical region have been deduced and some universal ratios are tested.

  13. Personalized Hydration Strategy Attenuates the Rise in Heart Rate and in Skin Temperature Without Altering Cycling Capacity in the Heat

    Directory of Open Access Journals (Sweden)

    Denise de Melo-Marins

    2018-04-01

    Full Text Available The optimal hydration plan [i.e., drink to thirst, ad libitum (ADL, or personalized plan] to be adopted during exercise in recreational athletes has recently been a matter of debate and, due to conflicting results, consensus does not exist. In the present investigation, we tested whether a personalized hydration strategy based on sweat rate would affect cardiovascular and thermoregulatory responses and exercise capacity in the heat. Eleven recreational male cyclists underwent two familiarization cycling sessions in the heat (34°C, 40% RH where sweat rate was also determined. A fan was used to enhance sweat evaporation. Participants then performed three randomized time-to-exhaustion (TTE trials in the heat with different hydration strategies: personalized volume (PVO, where water was consumed, based on individual sweat rate, every 10 min; ADL, where free access to water was allowed; and a control (CON trial with no fluids. Blood osmolality and urine-specific gravity were measured before each trial. Heart rate (HR, rectal, and skin temperatures were monitored throughout trials. Time to exhaustion at 70% of maximal workload was used to define exercise capacity in the heat, which was similar in all trials (p = 0.801. Body mass decreased after ADL (p = 0.008 and CON (p < 0.001 and was maintained in PVO trials (p = 0.171. Participants consumed 0 ml in CON, 166 ± 167 ml in ADL, and 1,080 ± 166 ml in PVO trials. The increase in mean body temperature was similar among trials despite a lower increase in skin temperature during PVO trial in comparison with CON (2.1 ± 0.6 vs. 2.9 ± 0.5°C, p = 0.0038. HR was lower toward the end of TTE in PVO (162 ± 8 bpm in comparison with ADL (168 ± 12 bpm and CON (167 ± 10 bpm, p < 0.001. In conclusion, a personalized hydration strategy can reduce HR during a moderate to high intensity exercise session in the heat and halt the increase in skin

  14. Heat capacity of the neutron star inner crust within an extended nuclear statistical equilibrium model

    Science.gov (United States)

    Burrello, S.; Gulminelli, F.; Aymard, F.; Colonna, M.; Raduta, Ad. R.

    2015-11-01

    Background: Superfluidity in the crust is a key ingredient for the cooling properties of proto-neutron stars. Present theoretical calculations employ the quasiparticle mean-field Hartree-Fock-Bogoliubov theory with temperature-dependent occupation numbers for the quasiparticle states. Purpose: Finite temperature stellar matter is characterized by a whole distribution of different nuclear species. We want to assess the importance of this distribution on the calculation of heat capacity in the inner crust. Method: Following a recent work, the Wigner-Seitz cell is mapped into a model with cluster degrees of freedom. The finite temperature distribution is then given by a statistical collection of Wigner-Seitz cells. We additionally introduce pairing correlations in the local density BCS approximation both in the homogeneous unbound neutron component, and in the interface region between clusters and neutrons. Results: The heat capacity is calculated in the different baryonic density conditions corresponding to the inner crust, and in a temperature range varying from 100 KeV to 2 MeV. We show that accounting for the cluster distribution has a small effect at intermediate densities, but it considerably affects the heat capacity both close to the outer crust and close to the core. We additionally show that it is very important to consider the temperature evolution of the proton fraction for a quantitatively reliable estimation of the heat capacity. Conclusions: We present the first modelization of stellar matter containing at the same time a statistical distribution of clusters at finite temperature, and pairing correlations in the unbound neutron component. The effect of the nuclear distribution on the superfluid properties can be easily added in future calculations of the neutron star cooling curves. A strong influence of resonance population on the heat capacity at high temperature is observed, which deserves to be further studied within more microscopic calculations.

  15. Magnon heat capacity and magnetic susceptibility of the spin Lieb lattice

    Energy Technology Data Exchange (ETDEWEB)

    Yarmohammadi, Mohsen, E-mail: m.yarmohammadi69@gamil.com

    2016-11-01

    Using linear response theory, Heisenberg model Hamiltonian and Green's function technique, the influences of Dzyaloshinskii–Moriya interaction (DMI), external magnetic field and next-nearest-neighbor (NNN) coupling on the density of magnon modes (DMM), the magnetic susceptibility (MS) and the magnon heat capacity (MHC) of a spin Lieb lattice, a face-centered square lattice, are investigated. The results reveal a band gap in the DMM and we witness an extension in the bandwidth and an increase in the number of van-Hove singularities as well. As a notable point, besides the magnetic nature which includes ferromagnetism in spin Lieb-based nanosystems, MS is investigated. Further, we report a Schottky anomaly in the MHC. The results show that the effects of the magnetic field on the MHC and MS have different behaviors in two temperature regions. In the low temperature region, MHC and MS increase when the magnetic field strength increases. On the other hand, the MHC and MS reduce with increasing the magnetic field strength in the high temperature region. Also comprehensive numerical modelling of the DMM, the MS and the MHC of a spin Lieb lattice yields excellent qualitative agreement with the experimental data. - Highlights: • Theoretical calculation of density of states of the spin Lieb lattice. • The investigation of the effect of external magnetic field on the magnon heat capacity and magnetic susceptibility. • The investigation of the effect of NNN coupling and the DMI strength on the magnon heat capacity and magnetic susceptibility.

  16. Capacity Decay Mitigation by Asymmetric Positive/Negative Electrolyte Volumes in Vanadium Redox Flow Batteries.

    Science.gov (United States)

    Park, Jong Ho; Park, Jung Jin; Park, O Ok; Yang, Jung Hoon

    2016-11-23

    Capacity decay in vanadium redox flow batteries during charge-discharge cycling has become an important issue because it lowers the practical energy density of the battery. The battery capacity tends to drop rapidly within the first tens of cycles and then drops more gradually over subsequent cycles during long-term operation. This paper analyzes and discusses the reasons for this early capacity decay. The imbalanced crossover rate of vanadium species was found to remain high until the total difference in vanadium concentration between the positive and negative electrolytes reached almost 1 mol dm -3 . To minimize the initial crossover imbalance, we introduced an asymmetric volume ratio between the positive and negative electrolytes during cell operation. Changing this ratio significantly reduced the capacity fading rate of the battery during the early cycles and improved its capacity retention at steady state. As an example, the practical energy density of the battery increased from 15.5 to 25.2 Wh L -1 simply after reduction of the positive volume by 25 %. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Heat capacity of SrThO3

    International Nuclear Information System (INIS)

    Kumar, Ginish; Raut, Sheetal; Agarwal, Renu; Mukerjee, S.K.

    2016-01-01

    Thorium is more abundant in nature than uranium, therefore, it is expected to play an important role in the third stage of Indian nuclear power generation program. An advanced heavy water reactor, with thorium oxide based fuels, is being developed in India, with an aim of utilizing thorium for power generation. Alkaline earth elements, Ba and Sr, with significant fission yield (6.3%), react with fuel and precipitate out as a separate phase. Thermodynamic properties of fuel-fission product compounds are needed to understand behaviour of fuel at high burn-ups, therefore, it was decided to investigate heat capacity of SrThO 3

  18. Quadrupolar interactions in non-cubic crystal and related extra heat capacities. Possible effects on a sapphire bolometer

    Energy Technology Data Exchange (ETDEWEB)

    Bassou, M. [Tunis Univ. (Tunisia)]|[CEA/DSM/DRECAM/SPEC, Gif-wur-Yvette (France); Rotter, M. [Karlova Univ., Prague (Czech Republic)]|[CEA/DSM/DRECAM/SPEC, Gif-wur-Yvette (France); Bernier, M. [CEA/DSM/DRECAM/SPEC, Gif-wur-Yvette (France); Chapellier, M. [CEA/DSM/DRECAM/SPEC, Gif-wur-Yvette (France)

    1996-02-11

    It is shown that in a non-cubic crystal, the extra heat capacity due to quadrupolar interaction of nuclear spins >1/2 could be much bigger than the phonon heat capacity when the temperature decreases. The possible coupling between quadrupolar and phonon heat reservoir via paramagnetic impurities is stressed. A NMR experiment done on sapphire is presented with an evaluation of the coupling between the two reservoirs and its consequence on the performance of the bolometer. (orig.).

  19. Quadrupolar interactions in non-cubic crystal and related extra heat capacities. Possible effects on a sapphire bolometer

    International Nuclear Information System (INIS)

    Bassou, M.; Rotter, M.; Bernier, M.; Chapellier, M.

    1996-01-01

    It is shown that in a non-cubic crystal, the extra heat capacity due to quadrupolar interaction of nuclear spins >1/2 could be much bigger than the phonon heat capacity when the temperature decreases. The possible coupling between quadrupolar and phonon heat reservoir via paramagnetic impurities is stressed. A NMR experiment done on sapphire is presented with an evaluation of the coupling between the two reservoirs and its consequence on the performance of the bolometer. (orig.)

  20. Thermochemical Storage of Middle Temperature Wasted Heat by Functionalized C/Mg(OH2 Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Emanuela Mastronardo

    2017-01-01

    Full Text Available For the thermochemical performance implementation of Mg(OH2 as a heat storage medium, several hybrid materials have been investigated. For this study, high-performance hybrid materials have been developed by exploiting the authors’ previous findings. Expanded graphite (EG/carbon nanotubes (CNTs-Mg(OH2 hybrid materials have been prepared through Mg(OH2 deposition-precipitation over functionalized, i.e., oxidized, or un-functionalized EG or CNTs. The heat storage performances of the carbon-based hybrid materials have been investigated through a laboratory-scale experimental simulation of the heat storage/release cycles, carried out by a thermogravimetric apparatus. This study offers a critical evaluation of the thermochemical performances of developed materials through their comparison in terms of heat storage and output capacities per mass and volume unit. It was demonstrated that both EG and CNTs improves the thermochemical performances of the storage medium in terms of reaction rate and conversion with respect to pure Mg(OH2. With functionalized EG/CNTs-Mg(OH2, (i the potential heat storage and output capacities per mass unit of Mg(OH2 have been completely exploited; and (ii higher heat storage and output capacities per volume unit were obtained. That means, for technological applications, as smaller volume at equal stored/released heat.

  1. Measurement of the molar heat capacities of MoO2 and MoO3 from 350 to 950 K

    International Nuclear Information System (INIS)

    Inaba, H.; Miyahara, K.; Naito, K.

    1984-01-01

    Molar heat capacities of MoO 2 and MoO 3 were measured in the range between 350 and 950 K by means of adiabatic scanning calorimetry. For MoO 2 , a sharp heat-capacity anomaly with a molar enthalpy change of (178 +- 24) J.mol -1 and a molar entropy change of (0.207 +- 0.028) J.K -1 .mol -1 was observed at 865 K, which had not been detected by drop calorimetry. For MoO 3 , two heat-capacity anomalies with molar enthalpy changes of (88 +- 21) and (60 +- 36) J.mol -1 were found at 808 K and 857 K, respectively; neither anomaly had been detected by the drop method. The lattice molar heat capacities of MoO 2 and MoO 3 are estimated as Csub(l,m)(MoO 2 ) = D(469 K/T) + E(578 K/T) + E(876 K/T) and Csub(l,m)(MoO 3 ) = D(208 K/T) + 2E(488 K/T) + E(1170 K/T), where D(x) and E(x) are the Debye and Einstein functions, respectively. The temperature coefficient of the electronic molar heat capacity of MoO 2 is estimated as (6.0 +- 0.5) mJ.K -2 .mol -1 . The excess heat capacity in MoO 3 found at higher temperatures is interpreted as being due to vacancy formation with a molar activation energy of (98 +-5) kJ.mol -1 . The origin of the heat-capacity anomalies is inferred as arising from the slight movement of distorted MoO 6 octahedra in the MoO 2 and MoO 3 structures. (author)

  2. Device for determining heat capacity of gases and gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Nachev, N

    1980-01-01

    This article describes the use of a capillary-flow colorimeter to determine the heat capacity of gases and gaseous mixtures. The research and tests confirm the possibility and advisability of making these measurements. The calorimeters are graduated to allow for the influence of the pressure and temperature of the investigated gas and exchange with the environment.

  3. A new experimental method to determine specific heat capacity of inhomogeneous concrete material with incorporated microencapsulated-PCM

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2014-01-01

    PCM. This paper describes the development of the new material and the experimental set-up to determine the specific heat capacity of the PCM concrete material. Moreover, various methods are proposed and compared to calculate the specific heat capacity of the PCM concrete. Finally, it is hoped......The study presented in this paper focuses on an experimental investigation of the specific heat capacity as a function of the temperature Cp (T) of concrete mixed with various amounts of phase change material (PCM). The tested specimens are prepared by directly mixing concrete and microencapsulated...... that this work can be used as an inspiration and guidance to perform measurements on the various composite materials containing PCM....

  4. Investigation of the variation of the specific heat capacity of local soil samples from the Niger delta, Nigeria with moisture content

    International Nuclear Information System (INIS)

    Ofoegbu, C.O.; Adjepong, S.K.

    1987-11-01

    Results of an investigation of the variation, with moisture content, of the specific heat capacity of samples of three texturally different types of soil (clayey, sandy and sandy loam) obtained from the Niger delta area of Nigeria, are presented. The results show that the specific heat capacities of the soils studied, increase with moisture content. This increase is found to be linear for the entire range of moisture contents considered (0-25%), in the case of the sandy loam soil while for the clayey and sandy soils the specific heat capacity is found to increase linearly with moisture content up to about 15% after which the increase becomes parabolic. The rate of increase of specific heat capacity with moisture content appears to be highest in the clayey soil and lowest in the sandy soil. It is thought that the differences in the rates of increase of specific heat capacity with moisture content, observed for the soils, reflect the soils' water-retention capacities. (author) 3 refs, 5 figs

  5. Heat-capacity behaviour of Ce{sub 2}Pd{sub 2}In

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, R; Sampathkumaran, E V [Tata Institute of Fundamental Research, Mumbai (India)

    1997-12-31

    We report here the magnetic behaviour of Ce{sub 2}Pd{sub 2}In by heat capacity (C) and magnetization studies and propose that this compound exhibits two magnetic transitions, T{sub N}=4.5K and T{sub C}=3.6K. 3 refs., 1 fig.

  6. Negative heat capacity at phase-separation in macroscopic systems

    OpenAIRE

    Gross, D. H. E.

    2005-01-01

    Systems with long-range as well with short-range interactions should necessarily have a convex entropy S(E) at proper phase transitions of first order, i.e. when a separation of phases occurs. Here the microcanonical heat capacity c(E)= -\\frac{(\\partial S/\\partial E)^2}{\\partial^2S/\\partial E^2} is negative. This should be observable even in macroscopic systems when energy fluctuations with the surrounding world can be sufficiently suppressed.

  7. Experimental and Numerical Study of Effect of Thermal Management on Storage Capacity of the Adsorbed Natural Gas Vessel

    KAUST Repository

    Ybyraiymkul, Doskhan

    2017-07-08

    One of the main challenges in the adsorbed natural gas (ANG) storage system is the thermal effect of adsorption, which significantly lowers storage capacity. These challenges can be solved by efficient thermal management system. In this paper, influence of thermal management on storage capacity of the ANG vessel was studied experimentally and numerically. 3D numerical model was considered in order to understand heat transfer phenomena and analyze influence of thermal control comprehensively. In addition, a detailed 2D axisymmetric unit cell model of adsorbent layer with heat exchanger was developed, followed by optimization of heat exchanging device design to minimize volume occupied by fins and tubes. Heat transfer, mass transfer and adsorption kinetics, which occur in ANG vessel during charging process, are accounted for in models. Nelder-Mead method is implemented to obtain the geometrical parameters, which lead to the optimal characteristics of heat exchange. A new optimized configuration of ANG vessel was developed with compact heat exchanger. Results show that storage capacity of the ANG vessel increased significantly due to lowering of heat exchanger volume for 3 times from 13.5% to 4.3% and effective temperature control.

  8. Thermophysical data for various transition metals at high temperatures obtained by a submicrosecond-pulse-heating method

    International Nuclear Information System (INIS)

    Seydel, U.; Bauhof, H.; Fucke, W.; Wadle, H.

    1979-01-01

    Thermophysical data for several transition metals are reported including enthalpies, electric resistivities, and specific volumes at the melting transition, and volume expansion coefficients and heat capacities in the liquid phase. Values for the critical temperatures, pressures, and volumes are given for molybdenum and tungsten. All data have been obtained by a submicrosecond-pulse-heating method. (author)

  9. Complex Heat Capacity of Lithium Borate Glasses Studied by Modulated DSC

    International Nuclear Information System (INIS)

    Matsuda, Yu; Ike, Yuji; Matsui, Chihiro; Kodama, Masao; Kojima, Seiji

    2006-01-01

    Complex heat capacity, C p * = C p ' - iC p '', of lithium borate glasses Li2O·(1-x)B2O3 (x = 0.00 - 0.33) has been investigated by Modulated DSC (MDSC). We have successfully observed the frequency dependent C p * by MDSC in the frequency range 0.01 to 0.1 Hz, and the average relaxation time of glass transition has been determined as a function of temperature. Moreover, the composition dependence of the thermal properties has been investigated. The calorimetric glass transition temperatures become higher with the increase of concentration of Li2O and show the board maximum around x = 0.26-0.28. The width of glass transition region becomes narrower as Li2O increases. These results relate to the change of the fragility of the system. It has been proven that the complex heat capacity spectroscopy by MDSC is a powerful tool to investigate the glass transition phenomena

  10. Complex Heat Capacity of Lithium Borate Glasses Studied by Modulated DSC

    Science.gov (United States)

    Matsuda, Yu; Matsui, Chihiro; Ike, Yuji; Kodama, Masao; Kojima, Seiji

    2006-05-01

    Complex heat capacity, Cp* = Cp' - iCp″, of lithium borate glasses Li2Oṡ(1-x)B2O3 (x = 0.00 - 0.33) has been investigated by Modulated DSC (MDSC). We have successfully observed the frequency dependent Cp* by MDSC in the frequency range 0.01 to 0.1 Hz, and the average relaxation time of glass transition has been determined as a function of temperature. Moreover, the composition dependence of the thermal properties has been investigated. The calorimetric glass transition temperatures become higher with the increase of concentration of Li2O and show the board maximum around x = 0.26-0.28. The width of glass transition region becomes narrower as Li2O increases. These results relate to the change of the fragility of the system. It has been proven that the complex heat capacity spectroscopy by MDSC is a powerful tool to investigate the glass transition phenomena.

  11. A study on the characteristics of the decay heat removal capacity for a large thermal rated LMR design

    International Nuclear Information System (INIS)

    Uh, J. H.; Kim, E. K.; Kim, S. O.

    2003-01-01

    The design characteristics and the decay heat removal capacity according to the type of DHR (Decay Heat Removal) system in LMR are quantitatively analyzed, and the general relationship between the rated core thermal power and decay heat removal capacity is created in this study. Based on these analyses results, a feasibility of designing a larger thermal rating KALIMER plant is investigated in view of decay heat removal capacity, and DRC (Direct Reactor Cooling) type DHR system which rejects heat from the reactor pool to air is proper to satisfy the decay heat removal capacity for a large thermal rating plant above 1,000 MWth. Some defects, however, including the heat loss under normal plant operation and the lack of reliance associated with system operation should be resolved in order to adopt the total passive concept. Therefore, the new concept of DHR system for a larger thermal rating KALIMER design, named as PDRC (passive decay heat removal circuit), is established in this study. In the newly established concept of PDRC, the Na-Na heat exchanger is located above the sodium cold pool and is prevented from the direct sodium contact during normal operation. This total passive feature has the superiority in the aspect of the minimizing the normal heat loss and the increasing the operation reliance of DHR system by removing either any operator action or any external operation signal associated with system operation. From this study, it is confirmed that the new concept of PDRC is useful to the designing of a large thermal rating power plant of KALIMER-600 in view of decay heat removal capability

  12. Energy density and storage capacity cost comparison of conceptual solid and liquid sorption seasonal heat storage systems for low-temperature space heating

    NARCIS (Netherlands)

    Scapino, L.; Zondag, H.A.; Van Bael, J.; Diriken, J.; Rindt, C.C.M.

    Sorption heat storage can potentially store thermal energy for long time periods with a higher energy density compared to conventional storage technologies. A performance comparison in terms of energy density and storage capacity costs of different sorption system concepts used for seasonal heat

  13. Relation of exercise capacity with lung volumes before and after 6-minute walk test in subjects with COPD.

    Science.gov (United States)

    Wibmer, Thomas; Rüdiger, Stefan; Kropf-Sanchen, Cornelia; Stoiber, Kathrin M; Rottbauer, Wolfgang; Schumann, Christian

    2014-11-01

    There is growing evidence that exercise-induced variation in lung volumes is an important source of ventilatory limitation and is linked to exercise intolerance in COPD. The aim of this study was to compare the correlations of walk distance and lung volumes measured before and after a 6-min walk test (6MWT) in subjects with COPD. Forty-five subjects with stable COPD (mean pre-bronchodilator FEV1: 47 ± 18% predicted) underwent a 6MWT. Body plethysmography was performed immediately pre- and post-6MWT. Correlations were generally stronger between 6-min walk distance and post-6MWT lung volumes than between 6-min walk distance and pre-6MWT lung volumes, except for FEV1. These differences in Pearson correlation coefficients were significant for residual volume expressed as percent of total lung capacity (-0.67 vs -0.58, P = .043), percent of predicted residual volume expressed as percent of total lung capacity (-0.68 vs -0.59, P = .026), inspiratory vital capacity (0.65 vs 0.54, P = .019), percent of predicted inspiratory vital capacity (0.49 vs 0.38, P = .037), and percent of predicted functional residual capacity (-0.62 vs -0.47, P = .023). In subjects with stable COPD, lung volumes measured immediately after 6MWT are more closely related to exercise limitation than baseline lung volumes measured before 6MWT, except for FEV1. Therefore, pulmonary function testing immediately after exercise should be included in future studies on COPD for the assessment of exercise-induced ventilatory constraints to physical performance that cannot be adequately assessed from baseline pulmonary function testing at rest. Copyright © 2014 by Daedalus Enterprises.

  14. Effect of heat treatment on CO2 adsorption of KOH-activated graphite nanofibers.

    Science.gov (United States)

    Meng, Long-Yue; Park, Soo-Jin

    2010-12-15

    In this work, graphite nanofibers (GNFs) were successfully expanded intercalating KOH followed by heat treatment in the temperature range of 700-1000 °C. The aim was to improve the CO(2) adsorption capacity of the GNFs by increasing the porosity of GNFs. The effects of heat treatment on the pore structures of GNFs were investigated by N(2) full isotherms, XRD, SEM, and TEM. The CO(2) adsorption capacity was measured by CO(2) isothermal adsorption at 25 °C and 1 atm. From the results, it was found that the activation temperature had a major influence on CO(2) adsorption capacity and textural properties of GNFs. The specific surface area, total pore volume, and mesopore volume of the GNFs increased after heat treatment. The CO(2) adsorption isotherms showed that G-900 exhibited the best CO(2) adsorption capacity with 59.2 mg/g. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Thermophysical properties of heat-treated U-7Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Tae Won; Kim, Yeon Soo; Park, Jong Man; Lee, Kyu Hong; Kim, Sunghwan; Lee, Chong Tak; Yang, Jae Ho; Oh, Jang Soo; Sohn, Dong-Seong

    2018-04-01

    In this study, the effects of interaction layer (IL) on thermophysical properties of U-7Mo/Al dispersion fuel were examined. Microstructural analyses revealed that ILs were formed uniformly on U-Mo particles during heating of U-7Mo/Al samples. The IL volume fraction was measured by applying image analysis methods. The uranium loadings of the samples were calculated based on the measured meat densities at 298 K. The density of the IL was estimated by using the measured density and IL volume fraction. Thermal diffusivity and heat capacity of the samples after the heat treatment were measured as a function of temperature and volume fractions of U-Mo and IL. The thermal conductivity of IL-formed U-7Mo/Al was derived by using the measured thermal diffusivity, heat capacity, and density. The thermal conductivity obtained in the present study was lower than that predicted by the modified Hashin–Shtrikman model due to the theoretical model’s inability to consider the thermal resistance at interfaces between the meat constituents.

  16. Thermophysical properties of heat-treated U-7Mo/Al dispersion fuel

    Science.gov (United States)

    Cho, Tae Won; Kim, Yeon Soo; Park, Jong Man; Lee, Kyu Hong; Kim, Sunghwan; Lee, Chong Tak; Yang, Jae Ho; Oh, Jang Soo; Sohn, Dong-Seong

    2018-04-01

    In this study, the effects of interaction layer (IL) on thermophysical properties of U-7Mo/Al dispersion fuel were examined. Microstructural analyses revealed that ILs were formed uniformly on U-Mo particles during heating of U-7Mo/Al samples. The IL volume fraction was measured by applying image analysis methods. The uranium loadings of the samples were calculated based on the measured meat densities at 298 K. The density of the IL was estimated by using the measured density and IL volume fraction. Thermal diffusivity and heat capacity of the samples after the heat treatment were measured as a function of temperature and volume fractions of U-Mo and IL. The thermal conductivity of IL-formed U-7Mo/Al was derived by using the measured thermal diffusivity, heat capacity, and density. The thermal conductivity obtained in the present study was lower than that predicted by the modified Hashin-Shtrikman model due to the theoretical model's inability to consider the thermal resistance at interfaces between the meat constituents.

  17. A completely automated flow, heat-capacity, calorimeter for use at high temperatures and pressures

    Science.gov (United States)

    Rogers, P. S. Z.; Sandarusi, Jamal

    1990-11-01

    An automated, flow calorimeter has been constructed to measure the isobaric heat capacities of concentrated, aqueous electrolyte solutions using a differential calorimetry technique. The calorimeter is capable of operation to 700 K and 40 MPa with a measurement accuracy of 0.03% relative to the heat capacity of the pure reference fluid (water). A novel design encloses the calorimeter within a double set of separately controlled, copper, adiabatic shields that minimize calorimeter heat losses and precisely control the temperature of the inlet fluids. A multistage preheat train, used to efficiently heat the flowing fluid, includes a counter-current heat exchanger for the inlet and outlet fluid streams in tandem with two calorimeter preheaters. Complete system automation is accomplished with a distributed control scheme using multiple processors, allowing the major control tasks of calorimeter operation and control, data logging and display, and pump control to be performed simultaneously. A sophisticated pumping strategy for the two separate syringe pumps allows continuous fluid delivery. This automation system enables the calorimeter to operate unattended except for the reloading of sample fluids. In addition, automation has allowed the development and implementation of an improved heat loss calibration method that provides calorimeter calibration with absolute accuracy comparable to the overall measurement precision, even for very concentrated solutions.

  18. Heat capacity and Joule-Thomson coefficient of selected n-alkanes at 0.1 and 10 MPa in broad temperature ranges

    DEFF Research Database (Denmark)

    Regueira Muñiz, Teresa; Varzandeh, Farhad; Stenby, Erling Halfdan

    2017-01-01

    Isobaric heat capacity of six n-alkanes, i.e. n-hexane, n-octane, n-decane, n-dodecane, n-tetradecane and n-hexadecane, was determined with a Calvet type differential heat-flux calorimeter at 0.1 and 10 MPa in a broad temperature range. The measured isobaric heat capacity data were combined...

  19. Heat capacity jumps induced by magnetic field in the Er{sub 2}HoAl{sub 5}O{sub 12} garnet

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, E.V. [Centre for Diagnostics of Functional Materials for Medicine, Pharmacology and Nanoelectronics, St. Petersburg State University, St. Petersburg, 198504 (Russian Federation); Charnaya, E.V., E-mail: charnaya@live.com [Physics Department, St. Petersburg State University, St. Petersburg, 198504 (Russian Federation); Lee, M.K. [Department of Physics, National Cheng Kung University, Tainan, 70101 Taiwan (China); NSC Instrument Center at NCKU, Tainan, 70101 Taiwan (China); Chang, L.J. [Department of Physics, National Cheng Kung University, Tainan, 70101 Taiwan (China); Khazanov, E.N.; Taranov, A.V. [Kotel' nikov Institute of Radio Engineering and Electronics RAS, 125009 (Russian Federation); Bugaev, A.S. [Moscow Institute of Physics and Technology, Moscow, 141700 (Russian Federation)

    2017-01-30

    Measurements of the heat capacity were carried out for the mixed Er{sub 2}HoAl{sub 5}O{sub 12} garnet at magnetic fields up to 15 T. The heat capacity variations at low temperatures were dominated by the Schottky anomalies. In addition, anomalous sharp steps in the heat capacity were observed in magnetic fields stronger than 8 T upon cooling as well as upon warming. The temperatures of the steps increased with increasing magnetic field. Jumps found upon cooling and warming were shifted relative to each other showing the thermal hysteresis. The sharp decrease in the heat capacity at low temperatures suggested the blocking of magnetic flips induced by strong enough magnetic fields. - Highlights: • Anomalous steps of the heat capacity were observed in the Er{sub 2}HoAl{sub 5}O{sub 12} garnet. • The steps are induced by magnetic field at low temperatures. • The temperatures of the steps increased with increasing magnetic field. • The steps show a pronounced thermal hysteresis. • The findings suggest the blocking of the magnetic moment flips at field.

  20. Thermodynamic investigation of several natural polyols (I): Heat capacities and thermodynamic properties of xylitol

    Energy Technology Data Exchange (ETDEWEB)

    Tong Bo [Thermochemistry Laboratory, Dalian Institute of Chemical physics, Chinese Academy of Sciences, Dalian 116023 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Tan Zhicheng [Thermochemistry Laboratory, Dalian Institute of Chemical physics, Chinese Academy of Sciences, Dalian 116023 (China) and College of Environmental Science and Engineering, Dalian Jiaotong University, Dalian 116028 (China)]. E-mail: tzc@dicp.ac.cn; Shi Quan [Thermochemistry Laboratory, Dalian Institute of Chemical physics, Chinese Academy of Sciences, Dalian 116023 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Li Yansheng [College of Environmental Science and Engineering, Dalian Jiaotong University, Dalian 116028 (China); Yue Danting [Thermochemistry Laboratory, Dalian Institute of Chemical physics, Chinese Academy of Sciences, Dalian 116023 (China); Wang Shaoxu [College of Environmental Science and Engineering, Dalian Jiaotong University, Dalian 116028 (China)

    2007-06-15

    The low-temperature heat capacity C{sub p,m}{sup 0} of xylitol was precisely measured in the temperature range from 80 to 390K by means of a small sample automated adiabatic calorimeter. A solid-liquid phase transition was found from the experimental C{sub p}-T curve in the temperature range 360-375K with the peak heat capacity at 369.04K. The dependence of heat capacity on the temperature was fitted to the following polynomial equations with least square method. In the temperature range of 80-360K, C{sub p,m}{sup 0}(JK{sup -1}mol{sup -1})=165.87+105.19x+1.8011x{sup 2}-41.445x{sup 3}-41.851x{sup 4}+65.152x{sup =} 5+66.744x{sup 6},x=[T(K)-220]/140. In the temperature range of 370-390K, C{sub p,m}{sup 0}(JK{sup -1}mol{sup -1})=426.19+5.6366x,x=[T(K)-380]/10. The molar enthalpy and entropy of this transition were determined to be 33.26+/-0.17kJmol{sup -1} and 90.12+/-0.45JK{sup -1}mol{sup -1}, respectively. The standard thermodynamic functions (H{sub T}{sup 0}-H{sub 298.15}{sup 0}) and (S{sub T}{sup 0}-S{sub 298.15}{sup 0}), were derived from the heat capacity data in the temperature range of 80 to 390K with an interval of 5K. The standard molar enthalpy of combustion and the standard molar enthalpy of formation of the compound have been determined, {delta}{sub c}H{sub m}{sup 0} (C{sub 5}H{sub 12}O{sub 5}, cr)=(-2463.2+/-1.2)kJmol{sup -1}and {delta}{sub f}H{sub m}{sup 0} (C{sub 5}H{sub 12}O{sub 5}, cr)=(-1219.3+/-0.3)kJmol{sup -1}, by means of a precision oxygen bomb combustion calorimeter at T=298.15K. DSC and TG measurements were performed to study the thermal stability of the compound. The results were in agreement with those obtained from heat capacity measurements.

  1. Mechanical Properties and Shear Strengthening Capacity of High Volume Fly Ash-Cementitious Composite

    Science.gov (United States)

    Joseph, Aswin K.; Anand, K. B.

    2018-02-01

    This paper discusses development of Poly Vinyl Alcohol (PVA) fibre reinforced cementitious composites taking into account environmental sustainability. Composites with fly ash to cement ratios from 0 to 3 are investigated in this study. The mechanical properties of HVFA-cement composite are discussed in this paper at PVA fiber volume fraction maintained at 1% of total volume of composite. The optimum replacement of cement with fly ash was found to be 75%, i.e. fly ash to cement ratio (FA/C) of 3. The increase in fiber content from 1% to 2% showed better mechanical performance. A strain capacity of 2.38% was obtained for FA/C ratio of 3 with 2% volume fraction of fiber. With the objective of evaluating the performance of cementitious composites as a strengthening material in reinforced concrete beams, the beams deficient in shear capacity were strengthened with optimal mix having 2% volume fraction of fiber as the strengthening material and tested under four-point load. The reinforced concrete beams designed as shear deficient were loaded to failure and retrofitted with the composite in order to assess the efficiency as a repair material under shear.

  2. Thermoeconomic analysis of storage systems for solar heating and cooling systems: A comparison between variable-volume and fixed-volume tanks

    International Nuclear Information System (INIS)

    Buonomano, Annamaria; Calise, Francesco; Ferruzzi, Gabriele

    2013-01-01

    The paper investigates different control strategies for the thermal storage management in SHC (Solar Heating and Cooling) systems. The SHC system under investigation is based on a field of evacuated solar collectors coupled with a single-stage LiBr–H 2 O absorption chiller; auxiliary thermal energy is supplied by a gas-fired boiler. The SHC is also equipped with a novel thermal storage system, consisting in a variable volume storage tank. It includes three separate tanks and a number of mixers and diverters managed by novel control strategies, based on combinations of series/parallel charging and discharging approaches. The aim of this component is to vary the thermal storage capacity as a function of the combinations of solar radiation availability and user thermal/cooling energy demands. The system allows one to increase the number of active tanks when the time shift between solar energy and user demand is high. Conversely, when this time shift is low, the number of active tanks is automatically reduced. In addition, when the solar energy in excess cannot be stored in such tanks, a heat exchanger is also used in the solar loop for producing DHW (Domestic Hot Water). The analysis is carried out by means of a zero-dimensional transient simulation model, developed by using the TRNSYS software. In order to assess the operating and capital costs of the systems under analysis, an economic model is also proposed. In addition, in order to determine the set of the synthesis/design variables which maximize the system profitability, a parametric analysis was implemented. The novel variable-volume storage system, in both the proposed configurations, was also compared with a constant-volume storage system from the energy and economic points of view. The results showed that the presented storage system allows one to save up to 20% of the natural gas used by the auxiliary boiler only for very high solar fractions. In all the other cases, marginal savings are achieved by the

  3. Pulmonary diffusing capacity, capillary blood volume, and cardiac output during sustained microgravity

    Science.gov (United States)

    Prisk, G. K.; Guy, Harold J. B.; Elliott, Ann R.; Deutschman, Robert A., III; West, John B.

    1993-01-01

    We measured pulmonary diffusing capacity (DL), diffusing capacity per unit lung volume, pulmonary capillary blood volume (Vc), membrane diffusing capacity (Dm), pulmonary capillary blood flow or cardiac output (Qc), and cardiac stroke volume (SV) in four subjects exposed to nine days of microgravity. DL in microgravity was elevated compared with preflight standing values and was higher than preflight supine because of the elevation of both Vc and Dm. The elevation in Vc was comparable to that measured supine in 1 G, but the increase in Dm was in sharp contrast to the supine value. We postulate that, in 0 G, pulmonary capillary blood is evenly distributed throughout the lung, providing for uniform capillary filling, leading to an increase in the surface area available for diffusion. By contrast, in the supine 1-G state, the capillaries are less evenly filled, and although a similar increase in blood volume is observed, the corresponding increase in surface area does not occur. DL and its subdivisions showed no adaptive changes from the first measurement 24 h after the start of 0 G to eight days later. Similarly, there were no trends in the postflight data, suggesting that the principal mechanism of these changes was gravitational. The increase in Dm suggests that subclinical pulmonary edema did not result from exposure to 0 G. Qc was modestly increased inflight and decreased postflight compared with preflight standing. Compared with preflight standing, SV was increased 46 percent inflight and decreased 14 percent in the 1st week postflight. There were temporal changes in Qc and SV during 0 G, with the highest values recorded at the first measurement, 24 h into the flight. The lowest values of Qc and SV occurred on the day of return.

  4. Effect of high energy electron beam (10 MeV) on specific heat capacity of low-density polyethylene/hydroxyapatite nano-composite

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Z., E-mail: zhr_soltani@yahoo.com [Health Physics and Radiation Dosimetry Research Laboratory, Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Ziaie, F. [Radiation Application Research School, Nuclear Science & Technology Research Institute, Tehran (Iran, Islamic Republic of); Ghaffari, M. [Polymer Group, Golestan University, Golestan (Iran, Islamic Republic of); Beigzadeh, A.M. [Radiation Application Research School, Nuclear Science & Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2017-02-01

    In the present work, thermal properties of low density polyethylene (LDPE) and its nano composites are investigated. For this purpose LDPE reinforced with different weight percents of hydroxyapatite (HAP) powder which was synthesized via hydrolysis method are produced. The samples were irradiated with 10 MeV electron beam at doses of 75 to 250 kGy. Specific heat capacity measurement have been carried out at different temperatures, i.e. 25, 50, 75 and 100 °C using modulated temperature differential scanning calorimetry (MTDSC) apparatus and the effect of three parameters include of temperature, irradiation dose and the amount of HAP nano particles as additives on the specific heat capacity of PE/HAP have been investigated precisely. The MTDSC results indicate that the specific heat capacity have decreased by addition of nano sized HAP as reinforcement for LDPE. On the other hand, the effect of radiation dose is reduction in the specific heat capacity in all materials including LDPE and its nano composites. The HAP nano particles along with cross-link junctions due to radiation restrain the movement of the polymer chains in the vicinity of each particle and improve the immobility of polymer chains and consequently lead to reduction in specific heat capacity. Also, the obtained results confirm that the radiation effect on the specific heat capacity is more efficient than the reinforcing effect of nano-sized hydroxyapatite.

  5. Experimental investigation of a PCM-HP heat sink on its thermal performance and anti-thermal-shock capacity for high-power LEDs

    International Nuclear Information System (INIS)

    Wu, Yuxuan; Tang, Yong; Li, Zongtao; Ding, Xinrui; Yuan, Wei; Zhao, Xuezhi; Yu, Binhai

    2016-01-01

    Highlights: • A phase-change material (PCM) base heat pipe heat sink (PCM-HP heat sink) is designed. • The PCM-HP heat sink can significantly lower the LED heating rate and temperature. • The PCM-HP heat sink achieves a best anti-thermal-shock capacity in LED cyclic working modes. - Abstract: High-power LEDs demonstrate a number of benefits compared with conventional incandescent lamps and fluorescent lamps, including a longer lifetime, higher brightness and lower power consumption. However, owing to their severe high heat flux, it is difficult to develop effective thermal management of high-power LEDs, especially under cyclic working modes, which cause serious periodic thermal stress and limit further development. Focusing on the above problem, this paper designed a phase-change material (PCM) base heat pipe heat sink (PCM-HP heat sink) that consists of a PCM base, adapter plate, heat pipe and finned radiator. Different parameters, such as three types of interior materials to fill the heat sink, three LED power inputs and eight LED cyclic working modes, were separately studied to investigate the thermal performance and anti-thermal-shock capacity of the PCM-HP heat sink. The results show that the PCM-HP heat sink possesses remarkable thermal performance owing to the reduction of the LED heating rate and peak temperature. More importantly, an excellent anti-thermal-shock capacity of the PCM-HP heat sink is also demonstrated when applied in LED cyclic working modes, and this capacity demonstrates the best range.

  6. 1995 national heat transfer conference: Proceedings. Volume 12: Falling films; Fundamentals of subcooled flow boiling; Compact heat exchanger technology for the process industry; HTD-Volume 314

    International Nuclear Information System (INIS)

    Sernas, V.; Boyd, R.D.; Jensen, M.K.

    1995-01-01

    The papers in the first section cover falling films and heat transfer. Papers in the second section address issues associated with heat exchangers, such as: plate-and-frame heat exchanger technology; thermal design issues; condensation; and single-phase flows. The papers in the third section deal with studies related to: the turbulent velocity field in a vertical annulus; the effects of curvature and a dissolved noncondensable gas on nucleate boiling heat transfer; the effects of flow obstruction on the onset of a Ledinegg-type flow instability; pool boiling from a large-diameter tube; and two-dimensional wall temperature distributions and convection in a single-sided heated vertical tube. Separate abstracts were prepared for most papers in this volume

  7. Low-temperature heat capacity and the standard molar enthalpy of formation of compound chromium(III) tri(pyrazine-2-carboxylate)

    International Nuclear Information System (INIS)

    Gao, Shengli; Zhang, Sheng; Chen, Sanping; Yang, Desuo

    2012-01-01

    Highlights: ► Low-temperature heat capacities of chromium(III) tri(pyrazine-2-carboxylate) were measured from 78 to 400 K. ► Thermodynamic functions of the compound at 298.15 K were calculated based on low-temperature heat capacity. ► The standard molar enthalpy of formation of the target was determined to be −1207.86 ± 3.39 kJ mol −1 through a designed thermochemical cycle. - Abstract: Low-temperature heat capacities of the coordination compound, chromium(III) tri(pyrazine-2-carboxylate), formulated as Cr(pyza) 3 (pyza = pyrazine-2-carboxylate), were measured by a precision automated adiabatic calorimeter over the temperature range of 78–400 K. A polynomial equation of heat capacities as a function of the temperature was fitted by the least square method. Based on the fitted polynomial equation, the fitted heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15 K were calculated at the interval of 5 K. In accordance with a reasonable thermochemical cycle designed, the standard molar enthalpy of formation of the title complex was determined to be −1207.86 ± 3.39 kJ mol −1 by an isoperibol solution–reaction calorimeter.

  8. Heat capacity and monogamy relations in the mixed-three-spin XXX Heisenberg model at low temperatures

    Science.gov (United States)

    Zad, Hamid Arian; Movahhedian, Hossein

    2016-08-01

    Heat capacity of a mixed-three-spin (1/2,1,1/2) antiferromagnetic XXX Heisenberg chain is precisely investigated by use of the partition function of the system for which, spins (1,1/2) have coupling constant J1 and spins (1/2,1/2) have coupling constant J2. We verify tripartite entanglement for the model by means of the convex roof extended negativity (CREN) and concurrence as functions of temperature T, homogeneous magnetic field B and the coupling constants J1 and J2. As shown in our previous work, [H. A. Zad, Chin. Phys. B 25 (2016) 030303.] the temperature, the magnetic field and the coupling constants dependences of the heat capacity for such spin system have different behaviors for the entangled and separable states, hence, we did some useful comparisons between this quantity and negativities of its organized bipartite (sub)systems at entangled and separable states. Here, we compare the heat capacity of the mixed-three-spin (1/2,1,1/2) system with the CREN and the tripartite concurrence (as measures of the tripartite entanglement) at low temperature. Ground state phase transitions, and also, transition from ground state to some excited states are explained in detail for this system at zero temperature. Finally, we investigate the heat capacity behavior around those critical points in which these quantum phase transitions occur.

  9. Investigations of the trend followed in heat capacity of Re_6UO_1_2 (s) along lanthanide series

    International Nuclear Information System (INIS)

    Sahu, Manjulata; Saxena, M.K.; Rawat, Deepak; Dash, Smruti

    2017-01-01

    The compound RE_6UO_1_2 (s) (RE = Ho, Er, Tm, Yb and Lu) was synthesized by complex polymerisation method and characterised using X-ray diffraction (XRD). Heat capacity measurements of RE_6UO_1_2 (s) were performed with heat flux-type differential scanning calorimeter in the temperature range of 300-870 K. The trend in heat capacity along the rare earth series was proposed for RE_6UO_1_2 (s) and thermodynamic functions were generated. (author)

  10. Low temperature heat capacities and thermodynamic functions described by Debye-Einstein integrals.

    Science.gov (United States)

    Gamsjäger, Ernst; Wiessner, Manfred

    2018-01-01

    Thermodynamic data of various crystalline solids are assessed from low temperature heat capacity measurements, i.e., from almost absolute zero to 300 K by means of semi-empirical models. Previous studies frequently present fit functions with a large amount of coefficients resulting in almost perfect agreement with experimental data. It is, however, pointed out in this work that special care is required to avoid overfitting. Apart from anomalies like phase transformations, it is likely that data from calorimetric measurements can be fitted by a relatively simple Debye-Einstein integral with sufficient precision. Thereby, reliable values for the heat capacities, standard enthalpies, and standard entropies at T  = 298.15 K are obtained. Standard thermodynamic functions of various compounds strongly differing in the number of atoms in the formula unit can be derived from this fitting procedure and are compared to the results of previous fitting procedures. The residuals are of course larger when the Debye-Einstein integral is applied instead of using a high number of fit coefficients or connected splines, but the semi-empiric fit coefficients keep their meaning with respect to physics. It is suggested to use the Debye-Einstein integral fit as a standard method to describe heat capacities in the range between 0 and 300 K so that the derived thermodynamic functions are obtained on the same theory-related semi-empiric basis. Additional fitting is recommended when a precise description for data at ultra-low temperatures (0-20 K) is requested.

  11. Low-energy vibrational excitations in carbon nanotubes studied by heat capacity

    Science.gov (United States)

    Lasjaunias, J. C.; Biljakovic, K.; Monceau, P.; Sauvajol, J. L.

    2003-09-01

    We present low-temperature heat capacity measurements performed on two different kinds of single-walled carbon nanotube bundles which essentially differ in their mean number of tubes (NT) per bundle. For temperatures below a few kelvin, the vibrational heat capacity can be analysed as the sum of two contributions. The first one is a regular T3 phononic one, characteristic of the three-dimensional (3D) elastic character of the bundle for long-wavelength phonons. A crossover to a lower effective dimensionality appears at a few kelvin. From the 3D contribution, we estimate a mean sound velocity, and hence a mean shear modulus of the bundle. The difference in amplitude of the acoustic term and in the crossover temperature between the two samples is ascribed to the different bundle topology (i.e. NT). The second contribution, of similar amplitude in both kinds of samples, shows a peculiar power law Talpha variation (alpha < 1) indicative of localized excitations, very probably due to intrinsic structural defects of the nanotubes.

  12. BWR spent fuel storage cask performance test. Volume 2. Pre- and post-test decay heat, heat transfer, and shielding analyses

    International Nuclear Information System (INIS)

    Wiles, L.E.; Lombardo, N.J.; Heeb, C.M.; Jenquin, U.P.; Michener, T.E.; Wheeler, C.L.; Creer, J.M.; McCann, R.A.

    1986-06-01

    This report describes the decay heat, heat transfer, and shielding analyses conducted in support of performance testing of a Ridhihalgh, Eggers and Associates REA 2033 boiling water reactor (BWR) spent fuel storage cask. The cask testing program was conducted for the US Department of Energy (DOE) Commercial Spent Fuel Management Program by the Pacific Northwest Laboratory (PNL) and by General Electric at the latters' Morris Operation (GE-MO) as reported in Volume I. The analyses effort consisted of performing pretest calculations to (1) select spent fuel for the test; (2) symmetrically load the spent fuel assemblies in the cask to ensure lateral symmetry of decay heat generation rates; (3) optimally locate temperature and dose rate instrumentation in the cask and spent fuel assemblies; and (4) evaluate the ORIGEN2 (decay heat), HYDRA and COBRA-SFS (heat transfer), and QAD and DOT (shielding) computer codes. The emphasis of this second volume is on the comparison of code predictions to experimental test data in support of the code evaluation process. Code evaluations were accomplished by comparing pretest (actually pre-look, since some predictions were not completed until testing was in progress) predictions with experimental cask testing data reported in Volume I. No attempt was made in this study to compare the two heat transfer codes because results of other evaluations have not been completed, and a comparison based on one data set may lead to erroneous conclusions

  13. Optimization of Solar Water Heating System under Time and Spatial Partition Heating in Rural Dwellings

    Directory of Open Access Journals (Sweden)

    Yanfeng Liu

    2017-10-01

    Full Text Available This paper proposes the application of time and spatial partition heating to a solar water heating system. The heating effect and system performance were analyzed under the continuous and whole space heating and time and spatial partition heating using TRNSYS. The results were validated by comparing with the test results of the demonstration building. Compared to continuous and whole space heating, the use of time and spatial partition heating increases the solar fraction by 16.5%, reduces the auxiliary heating by 7390 MJ, and reduces the annual operation cost by 2010 RMB. Under time and spatial partition heating, optimization analyses were conducted for the two system capacity parameters of the solar collector area and tank volume and the one operation parameter of auxiliary heater setting outlet temperature. The results showed that a reasonable choice of the solar collector area can reduce the dynamic annual cost, the increased tank volume is advantageous to heat storage, and the auxiliary heater setting outlet temperature have greater influence on the indoor heating effect. The advanced opening of solar water heating system and the normal opening of passive air vents are recommended. Based on the comparison of the two modes, the time and spatial partition heating technology is a better choice for rural dwellings.

  14. Demonstration, testing, and evaluation of in situ heating of soil. Volume 1, Final report

    International Nuclear Information System (INIS)

    Dev, H.; Enk, J.; Jones, D.; Sabato, W.

    1996-01-01

    This document is a final reports in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cubic yards of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. It was demonstrated that the mass flow rate of the volatile organic chemicals was enhanced in the recovered soil gas as a result of heating

  15. Demonstration, testing, and evaluation of in situ heating of soil. Volume 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dev, H.; Enk, J.; Jones, D.; Sabato, W.

    1996-04-05

    This document is a final reports in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cubic yards of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. It was demonstrated that the mass flow rate of the volatile organic chemicals was enhanced in the recovered soil gas as a result of heating.

  16. Heat capacity of amorphous and disordered Nb3Ge thin films

    International Nuclear Information System (INIS)

    Rao, N.A.H.K.

    1979-06-01

    Heat capacity measurements on 1000 to 1500A thick amorphous Nb 3 Ge and granular Al films have been carried out using an ac technique. The major goal of the experiment was to study the effect of thermal fluctuations, both above and below the superconducting transition temperature T/sub c/, in dirty, short meanfree path materials

  17. Reprint of “Heat capacity and transition behavior of sucrose by standard, fast scanning and temperature-modulated calorimetry”

    Energy Technology Data Exchange (ETDEWEB)

    Magoń, A. [Department of Chemistry, University of Technology, 35-959 Rzeszów (Poland); Wurm, A.; Schick, C. [Department of Physics, University of Rostock, 18057 Rostock (Germany); Pangloli, Ph.; Zivanovic, S. [Department of Food Science and Technology, University of Tennessee, Knoxville, TN 37996 (United States); Skotnicki, M. [Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań (Poland); Pyda, M., E-mail: mpyda@utk.edu [Department of Chemistry, University of Technology, 35-959 Rzeszów (Poland)

    2015-03-10

    Highlights: • Experimental, apparent heat capacity of sucrose was investigated by advanced thermal analysis. • Vibrational heat capacity of solid state was linked with a low temperature experimental heat capacity of sucrose. • Equilibrium melting parameters of sucrose were determined. • Decomposition, superheating of crystalline sucrose during melting process were presented. • TGA, DSC, TMDSC, and FSC are useful tools for characterization of sucrose. - Abstract: The heat capacity (C{sub p}) of crystalline and amorphous sucrose was determined using standard and quasi-isothermal temperature modulated differential scanning calorimetry. The results were combined with the published data determined by adiabatic calorimetry, and the C{sub p} values are now reported for the wide 5–600 K range. The experimental C{sub p} of solid sucrose at 5–300 K was used to calculate the vibrational, solid C{sub p} based on the vibrational molecular motions. The calculated solid and liquid C{sub p} together with the transition parameters for equilibrium conditions were used as references for detailed quantitative thermal analysis of crystalline and amorphous sucrose. Melting temperature (T{sub m}) of the crystalline sucrose was identified in a broad 442–465 K range with a heat of fusion of 40–46 J/mol determined at heating rates 0.5–20 K/min, respectively. The equilibrium T{sub m} and heat of fusion of crystalline sucrose were estimated at zero heating rate as T{sup o}{sub m} = 424.4 K and ΔH{sup o}{sub f} = 32 kJ/mol, respectively. The glass transition temperature (T{sub g}) of amorphous sucrose was at 331 K with a change in C{sub p} of 267 J/(mol K) as it was estimated from reversing heat capacity by quasi-isothermal TMDSC on cooling. At heating rates less than 30 K/min, thermal decomposition occurred during melting, while at extreme rate of 1000 K/s, degradation was not observed. Data obtained by fast scanning calorimetry (FSC) at 1000 K/s, showed that T{sub m} was

  18. On the Einstein-Stern model of rotational heat capacities

    DEFF Research Database (Denmark)

    Dahl, Jens Peder

    1998-01-01

    The Einstein-Stern model for the rotational contribution to the heat capacity of a diatomic gas has recently been resuscitated. In this communication, we show that the apparent success of the model is illusory, because it is based on what has turned out to be an unfortunate comparison with experi...... with experiment. We also take exception to the possibility of assigning any meaning to the rotational zero-point energy introduced by the model. (C) 1998 American Institute of Physics. [S0021-9606(98)02448-9]....

  19. Technical-and-Economic Efficiency of Draft Enriched with Oxygen in Small-Capacity Heating Boilers

    Directory of Open Access Journals (Sweden)

    P. Ratnikov

    2013-01-01

    Full Text Available Data on complex experimental and theoretical investigations pertaining to efficiency of oxygen-enriched draft in the small-capacity heating boilers as exemplified by the plant HEIZA (HW-S-10/K have been presented in the paper. The paper provides a calculation model of heating processes in heat generator burner (as exemplified by HEIZA plant. Simulation of heating processes in the operational zone has been executed in paper. The experimental data have proved model adequacy. The calculation scheme of the plant will be used in future for determination of power and ecological efficiency of draft enrichment with oxygen.

  20. Vapor pressure, heat capacities, and phase transitions of tetrakis(tert-butoxy)hafnium

    Czech Academy of Sciences Publication Activity Database

    Fulem, Michal; Růžička, K.

    2011-01-01

    Roč. 311, Dec. (2011), s. 25-29 ISSN 0378-3812 Institutional research plan: CEZ:AV0Z10100521 Keywords : tetrakis(tert-butoxy)hafnium * MO precursor * vapor pressure * heat capacity * vaporization enthalpy * enthalpy of fusion Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.139, year: 2011

  1. New waste heat district heating system with combined heat and power based on absorption heat exchange cycle in China

    International Nuclear Information System (INIS)

    Sun Fangtian; Fu Lin; Zhang Shigang; Sun Jian

    2012-01-01

    A new waste heat district heating system with combined heat and power based on absorption heat exchange cycle (DHAC) was developed to increase the heating capacity of combined heat and power (CHP) through waste heat recovery, and enhance heat transmission capacity of the existing primary side district heating network through decreasing return water temperature by new type absorption heat exchanger (AHE). The DHAC system and a conventional district heating system based on CHP (CDH) were analyzed in terms of both thermodynamics and economics. Compared to CDH, the DHAC increased heating capacity by 31% and increased heat transmission capacity of the existing primary side district heating network by 75%. The results showed that the exergetic efficiency of DHAC was 10.41% higher and the product exergy monetary cost was 36.6¥/GJ less than a CHD. DHAC is an effective way to increase thermal utilization factor of CHP, and to reduce district heating cost. - Highlights: ► Absorption heat pumps are used to recover waste heat in CHP. ► Absorption heat exchanger can reduce exergy loss in the heat transfer process. ► New waste heat heating system (DHAC) can increase heating capacity of CHP by 31%. ► DHAC can enhance heat transmission capacity of the primary pipe network by 75%. ► DHAC system has the higher exergetic efficiency and the better economic benefit.

  2. Measurements of thermal diffusivity, specific heat capacity and thermal conductivity with LFA 447 apparatus

    DEFF Research Database (Denmark)

    Zajas, Jan Jakub; Heiselberg, Per

    The LFA 447 can be successfully used for measurements of thermal diffusivity, specific heat and thermal conductivity of various samples. It is especially useful when determining the properties of materials on a very small scale. The matrix measurement mode allows for determining the local...... that the heat losses from both samples during the measurement are similar. Finally, the leveling of the samples is very important. Very small discrepancies can cause a massive error in the derivation of specific heat capacity and, as a result, thermal conductivity....

  3. Methods for determining enzymatic activity comprising heating and agitation of closed volumes

    Science.gov (United States)

    Thompson, David Neil; Henriksen, Emily DeCrescenzo; Reed, David William; Jensen, Jill Renee

    2016-03-15

    Methods for determining thermophilic enzymatic activity include heating a substrate solution in a plurality of closed volumes to a predetermined reaction temperature. Without opening the closed volumes, at least one enzyme is added, substantially simultaneously, to the closed volumes. At the predetermined reaction temperature, the closed volumes are agitated and then the activity of the at least one enzyme is determined. The methods are conducive for characterizing enzymes of high-temperature reactions, with insoluble substrates, with substrates and enzymes that do not readily intermix, and with low volumes of substrate and enzyme. Systems for characterizing the enzymes are also disclosed.

  4. Heat release determination in a constant volume combustion chamber from the instantaneous cylinder pressure

    International Nuclear Information System (INIS)

    Lapuerta, Magín; Sanz-Argent, Josep; Raine, Robert

    2014-01-01

    A diagnostic method has been developed to interpret the results of basic combustion studies with diesel-like fuels performed in a constant volume reactor originally conceived for cetane number measurements. The main target of the method is to calculate the instantaneous heat release over time from the chamber pressure experimental signal. The method incorporates filtering of the raw data to eliminate the oscillations recorded as a consequence of the location of the pressure sensor. It considers homogeneity of the gaseous mixture (single zone model) and change in its composition due to the combustion process. A semi-empirical heat transfer model was also proposed and its coefficients were fitted from experimental results obtained in the constant volume chamber using diesel fuel. -- Highlights: • A diagnostic model for constant volume reactors has been developed and tested. • Updating the gas composition after combustion improves accuracy of the method. • Heat transfer coefficients are used for the fulfillment of boundary conditions. • The model provides a deeper insight than the apparent heat release analysis

  5. Highly macroscopically degenerated single-point ground states as source of specific heat capacity anomalies in magnetic frustrated systems

    Science.gov (United States)

    Jurčišinová, E.; Jurčišin, M.

    2018-04-01

    Anomalies of the specific heat capacity are investigated in the framework of the exactly solvable antiferromagnetic spin- 1 / 2 Ising model in the external magnetic field on the geometrically frustrated tetrahedron recursive lattice. It is shown that the Schottky-type anomaly in the behavior of the specific heat capacity is related to the existence of unique highly macroscopically degenerated single-point ground states which are formed on the borders between neighboring plateau-like ground states. It is also shown that the very existence of these single-point ground states with large residual entropies predicts the appearance of another anomaly in the behavior of the specific heat capacity for low temperatures, namely, the field-induced double-peak structure, which exists, and should be observed experimentally, along with the Schottky-type anomaly in various frustrated magnetic system.

  6. Heat capacity anomalies associated with structural transformations in. beta. -W and perovskite compounds

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, R [Brookhaven National Lab., Upton, NY; Ho, J C

    1977-01-01

    The similarity of the heat capacity anomalies, often observed with structural transformations driven by soft phonons, in both ..beta..-W and perovskite compounds is discussed referring to our recent work on V/sub 3/Si and RbCaF/sub 3/.

  7. Sub-μL measurements of the thermal conductivity and heat capacity of liquids.

    Science.gov (United States)

    López-Bueno, C; Bugallo, D; Leborán, V; Rivadulla, F

    2018-03-07

    We present the analysis of the thermal conductivity, κ, and heat capacity, C p , of a wide variety of liquids, covering organic molecular solvents, ionic liquids and water-polymer mixtures. These data were obtained from ≈0.6 μL samples, using an experimental development based on the 3ω method, capable of the simultaneous measurement of κ and C p . In spite of the different type and strength of interactions, expected in a priori so different systems, the ratio of κ to the sound velocity is approximately constant for all of them. This is the consequence of a similar atomic density for all these liquids, notwithstanding their different molecular structures. This was corroborated experimentally by the observation of a C p /V ≈ 1.89 × 10 6 J K -1 m -3 (≈3R/2 per atom), for all liquids studied in this work. Finally, the very small volume of the sample required in this experimental method is an important advantage for the characterization of systems like nanofluids, in which having a large amount of the dispersed phase is sometimes extremely challenging.

  8. Itopride for gastric volume, gastric emptying and drinking capacity in functional dyspepsia.

    Science.gov (United States)

    Abid, Shahab; Jafri, Wasim; Zaman, Maseeh Uz; Bilal, Rakhshanda; Awan, Safia; Abbas, Aamir

    2017-02-06

    To study the effect of itopride on gastric accommodation, gastric emptying and drinking capacity in functional dyspepsia (FD). Randomized controlled trial was conducted to check the effect of itopride on gastric accommodation, gastric emptying, capacity of tolerating nutrient liquid and symptoms of FD. We recruited a total of 31 patients having FD on the basis of ROME III criteria. After randomization, itopride was received by 15 patients while 16 patients received placebo. Gastric accommodation was determined using Gastric Scintigraphy. 13 C labeled octanoic breadth test was performed to assess gastric emptying. Capacity of tolerating nutrient liquid drink was checked using satiety drinking capacity test. The intervention group comprised of 150 mg itopride. Patients in both arms were followed for 4 wk. Mean age of the recruited participant 33 years (SD = 7.6) and most of the recruited individuals, i.e ., 21 (67.7%) were males. We found that there was no effect of itopride on gastric accommodation as measured at different in volumes in the itopride and control group with the empty stomach ( P = 0.14), at 20 min ( P = 0.38), 30 min ( P = 0.30), 40 min ( P = 0.43), 50 min ( P = 0.50), 60 min ( P = 0.81), 90 min ( P = 0.25) and 120 min ( P = 0.67). Gastric emptying done on a sub sample ( n = 11) showed no significant difference ( P = 0.58) between itopride and placebo group. There was no significant improvement in the capacity to tolerate liquid in the itopride group as compared to placebo ( P = 0.51). Similarly there was no significant improvement of symptoms as assessed through a composite symptom score ( P = 0.74). The change in QT interval in itopride group was not significantly different from placebo (0.10). Our study found no effect of itopride on gastric accommodation, gastric emptying and maximum tolerated volume in patients with FD.

  9. Estimation of work capacity of welded mounting joints of pipelines of heat resisting steel

    International Nuclear Information System (INIS)

    Gorynin, I.V.; Ignatov, V.A.; Timofeev, B.T.; Blyumin, A.A.

    1982-01-01

    The analysis of a work capacity of circular welds made for the Dsub(y)850 pipeline connection with high pressure vessels of heat resisting steel of the 15Kh1NMFA type has been carried out on the base of test results with small samples and real units. Welds were performed using the manual electric arc welding without the following heat treatment. It has been shown that residual stresses in such welds do not produce an essential effect on the resistance of weld metal and heat affected zone on the formation and developments of cracks

  10. Guide for the calculation of heating capacity and heating coils for deep tanks / Handleiding bij de berekening van verwarmingskapasiteit en spiraallengte voor dieptanks

    NARCIS (Netherlands)

    Heeden, D.J. van der; Koppenol, A.D.

    1972-01-01

    This report deals with a method for calculating the heating capacity and the length of heating coils, required for deep tanks in dry cargo ships. It is based on the theory of natural convection and on experiments, carried out on tanks loaded with mineral oils. The calculating method is set up for

  11. Enthalpy measurement of lithium meta-titanate by drop calorimetry and its derived heat capacity

    International Nuclear Information System (INIS)

    Ishioka, Rika; Mukai, Keisuke; Terai, Takayuki; Suzuki, Akihiro

    2013-01-01

    Highlights: • Li 2 TiO 3 was synthesized by a neutralizing method. • Enthalpy of Li 2 TiO 3 was measured by a drop calorimeter. • Heat capacity of Li 2 TiO 3 was derived as a function of temperature. -- Abstract: Enthalpy of Li 2 TiO 3 , which was synthesized by a neutralizing method and its Li/Ti ratio was determined to be Li/Ti ratio (mol/mol) = 1.97, was measured by a drop calorimeter, and its heat capacity was derived as a function of temperature. XRD (X-ray diffraction) analysis of the sample before and after the enthalpy measurement indicated no phase change during the measurement and a single phase of Li 2 TiO 3 was observed. The enthalpy data were expressed as H(T) − H(323.17) (J/g) = 2.2 × 10 −5 ·T 2 + 1.4·T + 2.7 × 10 4 /T − 5.6 × 10 2 (373–1273 K), where T is temperature in K. The heat capacity was calculated as C p (J/g K) = 2.2 × 2 × 10 −5 ·T + 1.4–2.7 × 10 4 /T 2 by differentiating the equation by temperature. These equations have accuracy of 3%

  12. Heating entrepreneur activity in 2009; Laempoeyrittaejatoiminta vuonna 2009

    Energy Technology Data Exchange (ETDEWEB)

    Solmio, H. (TTS Research (Finland)); Alanen, V.-M. (Puuwatti Oy (Finland))

    2010-10-22

    At the end of 2009 there were heating entrepreneurs responsible for fuel management and heat production in at least 455 heating plants in Finland. The number of operative plants increased by 32 ie. 8 percent from previous year. Heating entrepreneurship was most common in west Finland, where 40 percent of the plants were located. The total boiler capacity for solid fuel in the plants managed by the heating entrepreneurs increased 10 percent. The total capacity was 250 megawatts and average boiler capacity 0.55 megawatts. 29 percent of all heating plants managed by heating entrepreneurs were district heating plants. The rest were single building heating plants. There were some 244 heating plants managed by co-operatives or limited companies. Single entrepreneurs or entrepreneur networks consisting of several entrepreneurs were responsible for heat production in 203 plants. Heating entrepreneurs used approximately 1,000,000 loose cubic metres of forest chips, which is 7,2 percent of the volume used for heating and power plant energy production in 2009. In addition, the heating entrepreneurs used approximately 80,000 loose cubic metres of other wood fuel and an estimated 40,000 loose cubic metres of sod and milled peat. Municipalities were still the most important customer group for heating entrepreneurs. However, the number of private customers is growing. When looking at new heating plants, investment was done by entrepreneur in two of three cases. (orig.)

  13. A study on specific heat capacities of Li-ion cell components and their influence on thermal management

    Science.gov (United States)

    Loges, André; Herberger, Sabrina; Seegert, Philipp; Wetzel, Thomas

    2016-12-01

    Thermal models of Li-ion cells on various geometrical scales and with various complexity have been developed in the past to account for the temperature dependent behaviour of Li-ion cells. These models require accurate data on thermal material properties to offer reliable validation and interpretation of the results. In this context a thorough study on the specific heat capacities of Li-ion cells starting from raw materials and electrode coatings to representative unit cells of jelly rolls/electrode stacks with lumped values was conducted. The specific heat capacity is reported as a function of temperature and state of charge (SOC). Seven Li-ion cells from different manufactures with different cell chemistry, application and design were considered and generally applicable correlations were developed. A 2D thermal model of an automotive Li-ion cell for plug-in hybrid electric vehicle (PHEV) application illustrates the influence of specific heat capacity on the effectivity of cooling concepts and the temperature development of Li-ion cells.

  14. Interpretation of heat capacity anomalies: low temperature antiferromagnetism in YbSnPd2

    Science.gov (United States)

    Giudicelli, P.; Bernhoeft, N.

    2004-07-01

    Since the early experiments on critical opalescence, heat capacity anomalies, which herald continuous transitions of phase, are frequently given microscopic interpretation through an appropriate space-time correlation function. Unfortunately, the global nature of the probe often results in an ill-defined spectral representation of the integrated modes and, as such, help is often sought in the general theoretical consensus of the temporal slowing down and spatial divergence of the critical modes. In this letter it is explicitly shown how a large and continuous anomaly in the heat capacity, which announces the antiferromagnetic phase transition in YbSnPd2 as established by independent neutron diffraction techniques, is not associated with a critical slowing down of spatially correlated modes but, surprisingly, with a stiffening of spatially local excitations. It appears that the results may be of relevance in the study of other strongly correlated electron systems.

  15. Heating entrepreneur activity in 2003

    International Nuclear Information System (INIS)

    Nikkola, A.; Solmio, H.

    2004-01-01

    According to TTS Institute information, at the end of 2003 there were heating entrepreneurs responsible for fuel management and heat production in at least 212 heating plants in Finland. The number of operative plants increased by 36 from the previous year. At the end of 2003, the total boiler capacity for solid fuel in the plants managed by the heating entrepreneurs exceeded 100 megawatts. The average boiler capacity of the plants was 0.5 megawatts. Heating entrepreneur-ship was most common in west Finland, where 40 percent of the plants are located. There were some 94 heating plants managed by cooperatives or limited companies. Single entrepre neurs or entrepreneur networks consisting of several entrepreneurs were responsible for heat production in 117 plants. Heating entrepreneurs used approximately 290,000 loose cubic metres of forest chips, which is about seven percent of the volume used for heating and power plant energy production in 2003. In addition, the heating entrepreneurs used a total of 40,000 loose cubic metres of other wood fuel and an estimated 20,000 loose cubic metres of sod and milled peat. Municipalities are still the most important customer group for heating entrepreneurs. However, thenumber of private customers is growing. Industrial company, other private company or properly was the main customer already for every fourth plant established during 2003. (orig.)

  16. Current and future prospects for heat recovery from waste in European district heating systems: A literature and data review

    International Nuclear Information System (INIS)

    Persson, Urban; Münster, Marie

    2016-01-01

    Municipal solid waste has seen increasing annual volumes for many decades in contemporary Europe and constitutes, if not properly managed, an environmental problem due to local pollution and greenhouse gas emissions. From an energy perspective, waste is also an alternative fuel for power and heat generation; energy recovery from waste represents an effective measure to reduce landfilling and avoid disposal emissions while simultaneously reducing the equivalent demand for primary energy supply. A key factor for obtaining the full synergetic benefits of this energy recovery is the presence of local heat distribution infrastructures, without which no large-scale recovery and utilisation of excess heat is possible. In this paper, which aims to estimate municipal solid waste volumes available for heat recovery in European district heating systems in 2030, a literature and data review is performed to establish and assess current and future EU (European Union) waste generation and management. Main conclusions are that more heat can be recovered from current Waste-to-Energy facilities operating at low average heat recovery efficiencies, that efficient incineration capacity is geographically concentrated, and that waste available for heat recovery in 2030 is equally determined by total generation volumes by this year as by future EU deployment levels of district heating. - Highlights: • European municipal solid waste time series data analysed from 1995 to 2012. • Review of modelling approaches to assess future European waste generation. • Weather corrected district heat data for EU Member States in 1995 and 2012. • Low average heat recovery efficiency in current European waste incineration. • Future heat recovery efficiencies as determinant as future generation volumes.

  17. Heat capacity measurements of atoms and molecules adsorbed on evaporated metal films

    International Nuclear Information System (INIS)

    Kenny, T.W.

    1989-05-01

    Investigations of the properties of absorbed monolayers have received great experimental and theoretical attention recently, both because of the importance of surface processes in practical applications such as catalysis, and the importance of such systems to the understanding of the fundamentals of thermodynamics in two dimensions. We have adapted the composite bolometer technology to the construction of microcalorimeters. For these calorimeters, the adsorption substrate is an evaporated film deposited on one surface of an optically polished sapphire wafer. This approach has allowed us to make the first measurements of the heat capacity of submonolayer films of 4 He adsorbed on metallic films. In contrast to measurements of 4 He adsorbed on all other insulating substrates, we have shown that 4 He on silver films occupies a two-dimensional gas phase over a broad range of coverages and temperatures. Our apparatus has been used to study the heat capacity of Indium flakes. CO multilayers, 4 He adsorbed on sapphire and on Ag films and H 2 adsorbed on Ag films. The results are compared with appropriate theories. 68 refs., 19 figs

  18. Experimental Analysis of Variable Capacity Heat Pump Systems equipped with a liquid-cooled frequency inverter

    OpenAIRE

    Ebraheem, Thair

    2013-01-01

    Using an inverter-driven compressor in variable capacity heat pump systems has a main drawback, which is the extra loss in the inverter. The present experimental study aims to recover the inverter losses by using brine-cooled and water-cooled inverters, thereby improving the total efficiency of the heat pump system. In order to achieve this goal, a test rig with the air-cooled, water-cooled and brine-cooled inverters is designed and built, and a comparative analysis of the recovered heat, inv...

  19. Bizarre behavior of heat capacity in crystals due to interplay between two types of anharmonicities.

    Science.gov (United States)

    Yurchenko, Stanislav O; Komarov, Kirill A; Kryuchkov, Nikita P; Zaytsev, Kirill I; Brazhkin, Vadim V

    2018-04-07

    The heat capacity of classical crystals is determined by the Dulong-Petit value C V ≃ D (where D is the spatial dimension) for softly interacting particles and has the gas-like value C V ≃ D/2 in the hard-sphere limit, while deviations are governed by the effects of anharmonicity. Soft- and hard-sphere interactions, which are associated with the enthalpy and entropy of crystals, are specifically anharmonic owing to violation of a linear relation between particle displacements and corresponding restoring forces. Here, we show that the interplay between these two types of anharmonicities unexpectedly induces two possible types of heat capacity anomalies. We studied thermodynamics, pair correlations, and collective excitations in 2D and 3D crystals of particles with a limited range of soft repulsions to prove the effect of interplay between the enthalpy and entropy types of anharmonicities. The observed anomalies are triggered by the density of the crystal, changing the interaction regime in the zero-temperature limit, and can provide about 10% excess of the heat capacity above the Dulong-Petit value. Our results facilitate understanding effects of complex anharmonicity in molecular and complex crystals and demonstrate the possibility of new effects due to the interplay between different types of anharmonicities.

  20. Dual capacity reciprocating compressor

    Science.gov (United States)

    Wolfe, Robert W.

    1984-01-01

    A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

  1. Generation capacity issues in deregulated markets : a Canadian perspective, volume 1

    International Nuclear Information System (INIS)

    Ayres, M.; Brereton, B.; Czamanski, D.; Van Melle, B.; Penman, A.

    2004-01-01

    A study was conducted by the Canadian Energy Research Institute (CERI) to assess generation capacity issues in deregulated electricity markets in Canada. This first volume is based on observations of the restructuring experience in several jurisdictions. It describes how, or if, energy-only markets are succeeding in ensuring capacity additions, and under what conditions. Supply-side and demand-side mechanisms have been proposed as solutions to address these problems. The report focuses on theoretical and practical issues of adequacy that are most relevant from a Canadian perspective. In fully developed energy markets, the price of energy reflects scarcity. Prices are low when generating resources are abundant, and owners make investment decisions based on price expectations. Although deregulated markets may theoretically offer a solution to the capacity adequacy problem, experience has shown that it is not easy to make the rules that make markets operate efficiently. It was concluded that it seems unlikely that deregulated markets in their current state will be able to offer adequate generation for the long term. The challenge lies in moving to competitive markets that encourage long term investment, and adding a capacity mechanism to the market design. refs., tabs., figs

  2. Unprecedented Integral-Free Debye Temperature Formulas: Sample Applications to Heat Capacities of ZnSe and ZnTe

    Directory of Open Access Journals (Sweden)

    R. Pässler

    2017-01-01

    Full Text Available Detailed analytical and numerical analyses are performed for combinations of several complementary sets of measured heat capacities, for ZnSe and ZnTe, from the liquid-helium region up to 600 K. The isochoric (harmonic parts of heat capacities, CVh(T, are described within the frame of a properly devised four-oscillator hybrid model. Additional anharmonicity-related terms are included for comprehensive numerical fittings of the isobaric heat capacities, Cp(T. The contributions of Debye and non-Debye type due to the low-energy acoustical phonon sections are represented here for the first time by unprecedented, integral-free formulas. Indications for weak electronic contributions to the cryogenic heat capacities are found for both materials. A novel analytical framework has been constructed for high-accuracy evaluations of Debye function integrals via a couple of integral-free formulas, consisting of Debye’s conventional low-temperature series expansion in combination with an unprecedented high-temperature series representation for reciprocal values of the Debye function. The zero-temperature limits of Debye temperatures have been detected from published low-temperature Cp(T data sets to be significantly lower than previously estimated, namely, 270 (±3 K for ZnSe and 220 (±2 K for ZnTe. The high-temperature limits of the “true” (harmonic lattice Debye temperatures are found to be 317 K for ZnSe and 262 K for ZnTe.

  3. Experimental study on two-stage compression refrigeration/heat pump system with dual-cylinder rolling piston compressor

    International Nuclear Information System (INIS)

    Shuxue, Xu; Guoyuan, Ma

    2014-01-01

    A thermodynamically analytical model on the two-stage compression refrigeration/heat pump system with vapor injection was derived. The optimal volume ratio of the high-pressure cylinder to the low-pressure one has been discussed under both cooling and heating conditions. Based on the above research, the prototype was developed and its experimental setup established. A comprehensive experiments for the prototype have been conducted, and the results show that, compared with the single-stage compression heat pump system, the cooling capacity and cooling COP can increase 5%–15% and 10–12%, respectively. Also, the heating capacity with the evaporating temperature ranging from 0.3 to 3 °C is 92–95% of that under the rate condition with the evaporating temperature of 7 °C, and 58% when the evaporation temperature is between −28 °C and −24 °C. -- Highlights: • The volume ratio of the compressor is between 0.65 and 0.78 and the relative vapor injection mass ranges from 15% to 20%. • The cooling capacity and COP of the two-stage compression system can improve 5%–15% and 10%–12%. • The heating capacity can also be improved under low temperature condition

  4. Apparent and partial molal heat capacities of aqueous rare earth nitrate solutions at 250C

    International Nuclear Information System (INIS)

    Spedding, F.H.; Baker, J.L.; Walters, J.P.

    1979-01-01

    Specific heats of aqueous solutions of the trinitrates of La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu were measured from 0.1 m to saturation at 25 0 C. Apparent molal heat capacities, phi/sub cp/, were calculated for these solutions, and empirical polynomial equations were obtained which expressed phi/sub cp/ as a function of m/sup 1/2/ for each salt. The partial molal heat capacities of the solvent, anti C 1 /sub p/, and solute, anti C 2 /sub p/, were calculated from these equations. Unlike chloride and perchlorate data reported earlier, values of anti C 1 /sub p/ for nitrate solutions across the rare earth series did not show a two series effect. Instead, anti C 1 /sub p/ values at lower concentrations (0.5 and 1.0 m) appear correlated with reported first formation constants for rare earth-nitrate complexes. 31 references, 9 figures, 2 tables

  5. It is time to abandon "expected bladder capacity." Systematic review and new models for children's normal maximum voided volumes.

    Science.gov (United States)

    Martínez-García, Roberto; Ubeda-Sansano, Maria Isabel; Díez-Domingo, Javier; Pérez-Hoyos, Santiago; Gil-Salom, Manuel

    2014-09-01

    There is an agreement to use simple formulae (expected bladder capacity and other age based linear formulae) as bladder capacity benchmark. But real normal child's bladder capacity is unknown. To offer a systematic review of children's normal bladder capacity, to measure children's normal maximum voided volumes (MVVs), to construct models of MVVs and to compare them with the usual formulae. Computerized, manual and grey literature were reviewed until February 2013. Epidemiological, observational, transversal, multicenter study. A consecutive sample of healthy children aged 5-14 years, attending Primary Care centres with no urologic abnormality were selected. Participants filled-in a 3-day frequency-volume chart. Variables were MVVs: maximum of 24 hr, nocturnal, and daytime maximum voided volumes. diuresis and its daytime and nighttime fractions; body-measure data; and gender. The consecutive steps method was used in a multivariate regression model. Twelve articles accomplished systematic review's criteria. Five hundred and fourteen cases were analysed. Three models, one for each of the MVVs, were built. All of them were better adjusted to exponential equations. Diuresis (not age) was the most significant factor. There was poor agreement between MVVs and usual formulae. Nocturnal and daytime maximum voided volumes depend on several factors and are different. Nocturnal and daytime maximum voided volumes should be used with different meanings in clinical setting. Diuresis is the main factor for bladder capacity. This is the first model for benchmarking normal MVVs with diuresis as its main factor. Current formulae are not suitable for clinical use. © 2013 Wiley Periodicals, Inc.

  6. Effect of crystalline electric field on heat capacity of LnBaCuFeO5 (Ln = Gd, Ho, Yb)

    Science.gov (United States)

    Lal, Surender; Mukherjee, K.; Yadav, C. S.

    2018-02-01

    Structural, magnetic and thermodynamic properties of layered perovskite compounds LnBaCuFeO5 (Ln = Ho, Gd, Yb) have been investigated. Unlike the iso-structural compound YBaCuFeO5, which shows commensurate antiferromagnetic to incommensurate antiferromagnetic ordering below ∼200 K, the studied compounds do not show any magnetic transition in measured temperature range of 2-350 K. The high temperature heat capacity of the compounds is understood by employing contributions from both optical and acoustic phonons. At low temperature, the observed upturn in the heat capacity is attributed to the Schottky anomaly. The magnetic field dependent heat capacity shows the variation in position of the anomaly with temperature, which appears due to the removal of ground state degeneracy of the rare earth ions, by the crystalline electric field.

  7. Method of calculating heat transfer in furnaces of small power

    Directory of Open Access Journals (Sweden)

    Khavanov Pavel

    2016-01-01

    Full Text Available This publication presents the experiences and results of generalization criterion equation of importance in the analysis of the processes of heat transfer and thermal calculations of low-power heat generators cooled combustion chambers. With generalizing depending estimated contribution of radiation and convective heat transfer component in the complex for the combustion chambers of small capacity boilers. Determined qualitative and quantitative dependence of the integrated radiative-convective heat transfer from the main factors working combustion chambers of small volume.

  8. Seasonal and geographical variation in heat tolerance and evaporative cooling capacity in a passerine bird.

    Science.gov (United States)

    Noakes, Matthew J; Wolf, Blair O; McKechnie, Andrew E

    2016-03-01

    Intraspecific variation in avian thermoregulatory responses to heat stress has received little attention, despite increasing evidence that endothermic animals show considerable physiological variation among populations. We investigated seasonal (summer versus winter) variation in heat tolerance and evaporative cooling in an Afrotropical ploceid passerine, the white-browed sparrow-weaver (Plocepasser mahali; ∼ 47 g) at three sites along a climatic gradient with more than 10 °C variation in mid-summer maximum air temperature (Ta). We measured resting metabolic rate (RMR) and total evaporative water loss (TEWL) using open flow-through respirometry, and core body temperature (Tb) using passive integrated transponder tags. Sparrow-weavers were exposed to a ramped profile of progressively higher Ta between 30 and 52 °C to elicit maximum evaporative cooling capacity (N=10 per site per season); the maximum Ta birds tolerated before the onset of severe hyperthermia (Tb ≈ 44 °C) was considered to be their hyperthermia threshold Ta (Ta,HT). Our data reveal significant seasonal acclimatisation of heat tolerance, with a desert population of sparrow-weavers reaching significantly higher Ta in summer (49.5 ± 1.4 °C, i.e. higher Ta,HT) than in winter (46.8 ± 0.9 °C), reflecting enhanced evaporative cooling during summer. Moreover, desert sparrow-weavers had significantly higher heat tolerance and evaporative cooling capacity during summer compared with populations from more mesic sites (Ta,HT=47.3 ± 1.5 and 47.6 ± 1.3 °C). A better understanding of the contributions of local adaptation versus phenotypic plasticity to intraspecific variation in avian heat tolerance and evaporative cooling capacity is needed for modelling species' responses to changing climates. © 2016. Published by The Company of Biologists Ltd.

  9. Heat capacity of the white pine biocarbon preform and the related biocarbon/copper composite

    Science.gov (United States)

    Smirnov, I. A.; Orlova, T. S.; Smirnov, B. I.; Wlosewicz, D. W.; Misiorek, H.; Jezowski, A.; Wilkes, T. E.; Faber, K. T.

    2009-11-01

    This paper reports on measurements in the 80-300-K temperature interval of the heat capacity at constant pressure C p ( T) of high-porosity amorphous white pine carbon preforms (biocarbon) prepared by pyrolysis (carbonization) at T carb = 1000 and 2400°C in an argon flow. The dependences C p ( T) for biocarbon/copper composites based on the carbon preforms obtained have also been determined. It is shown that the mixture rule holds for the composites, i.e., that C p ( T) of the composite is a sum of the heat capacities of the constituent materials taken in the corresponding ratios. Phonon mean free paths for the white pine carbon preforms prepared at T carb = 1000 and 2400°C have been calculated and used to estimate the size of the nanocrystallites contributing to formation of the carbon frameworks of these preforms.

  10. The partial molar heat capacity, expansion, isentropic, and isothermal compressions of thymidine in aqueous solution at T = 298.15 K

    International Nuclear Information System (INIS)

    Hedwig, Gavin R.; Jameson, Geoffrey B.; Hoiland, Harald

    2011-01-01

    Highlights: → Solution densities and sound speeds were measured for aqueous solutions of thymidine. → Partial molar volumetric properties at infinite dilution and T = 298.15 K were derived. → The partial molar isentropic and isothermal compressions are of opposite signs. → The partial molar heat capacity for thymidine at infinite dilution was determined. - Abstract: Solution densities have been determined for aqueous solutions of thymidine at T = (288.15, 298.15, 303.15, and 313.15) K. The partial molar volumes at infinite dilution, V 2 0 , obtained from the density data were used to derive the partial molar isobaric expansion at infinite dilution for thymidine at T = 298.15 K, E 2 0 {E 2 0 =(∂V 2 0 /∂T) p }. The partial molar heat capacity at infinite dilution for thymidine, C p,2 0 , at T = 298.15 K has also been determined. Sound speeds have been measured for aqueous solutions of thymidine at T = 298.15 K. The partial molar isentropic compression at infinite dilution, K S,2 0 , and the partial molar isothermal compression at infinite dilution, K T,2 0 {K T,2 0 =-(∂V 2 0 /∂P) T }, have been derived from the sound speed data. The V 2 0 , E 2 0 , C p,2 0 , and K S,2 0 results for thymidine are critically compared with those available from the literature.

  11. Utilizing Forced Vital Capacity to Predict Low Lung Compliance and Select Intraoperative Tidal Volume During Thoracic Surgery.

    Science.gov (United States)

    Hoftman, Nir; Eikermann, Eric; Shin, John; Buckley, Jack; Navab, Kaveh; Abtin, Fereidoun; Grogan, Tristan; Cannesson, Maxime; Mahajan, Aman

    2017-12-01

    Tidal volume selection during mechanical ventilation utilizes dogmatic formulas that only consider a patient's predicted body weight (PBW). In this study, we investigate whether forced vital capacity (FVC) (1) correlates better to total lung capacity (TLC) than PBW, (2) predicts low pulmonary compliance, and (3) provides an alternative method for tidal volume selection. One hundred thirty thoracic surgery patients had their preoperative TLC calculated via 2 methods: (1) pulmonary function test (PFT; TLCPFT) and (2) computed tomography 3D reconstruction (TLCCT). We compared the correlation between TLC and PBW with the correlation between TLC and FVC to determine which was stronger. Dynamic pulmonary compliance was then calculated from intraoperative ventilator data and logistic regression models constructed to determine which clinical measure best predicted low compliance. Ratios of tidal volume/FVC plotted against peak inspiratory pressure were utilized to construct a new model for tidal volume selection. Calculated tidal volumes generated by this model were then compared with those generated by the standard lung-protective formula Vt = 7 cc/kg. The correlation between FVC and TLC (0.82 for TLCPFT and 0.76 for TLCCT) was stronger than the correlation between PBW and TLC (0.65 for TLCPFT and 0.58 for TLCCT). Patients with very low compliance had significantly smaller lung volumes (forced expiratory volume at 1 second, FVC, TLC) and lower diffusion capacity of the lungs for carbon monoxide when compared with patients with normal compliance. An FVC cutoff of 3470 cc was 100% sensitive and 51% specific for predicting low compliance. The proposed equation Vt = FVC/8 significantly reduced calculated tidal volume by a mean of 22.5% in patients with low pulmonary compliance without affecting the mean tidal volume in patients with normal compliance (mean difference 0.9%). FVC is more strongly correlated to TLC than PBW and a cutoff of about 3.5 L can be utilized to predict

  12. Liquid-liquid phase equilibrium and heat capacity of binary solution {2-propanol + 1-octyl-3-methylimidazolium hexafluorophosphate}

    International Nuclear Information System (INIS)

    Guo, Yimin; Zhang, Xianshuo; Xu, Chen; Shen, Weiguo

    2017-01-01

    Highlights: • Liquid-liquid equilibrium of binary {2-propanol + RTIL} solution was measured. • The critical exponents were deduced and found to belong to 3D-Ising universality. • Asymmetry of the coexistence curve was analyzed by the complete scaling theory. • The dependences of critical parameters on the permittivity of alkanols were discussed. - Abstract: The liquid-liquid coexistence curve and the heat capacity for binary solution of {2-propanol + 1-octyl-3-methylimidazolium hexafluorophosphate} have been precisely measured. The values of the critical exponents α and β, characterizing the critical anomalies of the heat capacity and the coexistence curve respectively, were deduced and found to be consistent with theoretical predictions. The asymmetric behavior of the diameter of the coexistence curve was studied in the frame of the complete scaling theory, demonstrating that the heat capacity related term is of importance. Furthermore, the restricted primitive model (RPM) was used to calculate the reduced upper consolute temperature and density, which together with a comparative larger value of A + indicated a character of solvophobic criticality.

  13. Demonstration, testing, & evaluation of in situ heating of soil. Draft final report, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Dev, H.; Enk, J.; Jones, D.; Saboto, W.

    1996-02-12

    This document is a draft final report (Volume 1) for US DOE contract entitled, {open_quotes}Demonstration Testing and Evaluation of In Situ Soil Heating,{close_quotes} Contract No. DE-AC05-93OR22160, IITRI Project No. C06787. This report is presented in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cu. yd. of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOCs and other organic chemicals boiling up to 120{degrees} to 130{degrees}C in the vadose zone. Although it may applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by low air flow.

  14. Identification of pitfalls in the analysis of heat capacity changes of β-lactoglobulin A

    NARCIS (Netherlands)

    Teeffelen, A.M.M. van; Meinders, M.B.J.; Jongh, H.H.J. de

    2005-01-01

    Information on changes in heat capacity (ΔCp) of proteins upon unfolding is used frequently in literature to understand possible follow-up reactions of protein denaturation, like their aggregation propensity. This thermodynamic property is intrinsic to the protein's architecture and unfolding and

  15. Hydride heat pump. Volume I. Users manual for HYCSOS system design program. [HYCSOS code

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, R.; Moritz, P.

    1978-05-01

    A method for the design and costing of a metal hydride heat pump for residential use and a computer program, HYCSOS, which automates that method are described. The system analyzed is one in which a metal hydride heat pump can provide space heating and space cooling powered by energy from solar collectors and electric power generated from solar energy. The principles and basic design of the system are presented, and the computer program is described giving detailed design and performance equations used in the program. The operation of the program is explained, and a sample run is presented. This computer program is part of an effort to design, cost, and evaluate a hydride heat pump for residential use. The computer program is written in standard Fortran IV and was run on a CDC Cyber 74 and Cyber 174 computer. A listing of the program is included as an appendix. This report is Volume 1 of a two-volume document.

  16. Thermodynamics of micellization from heat-capacity measurements.

    Science.gov (United States)

    Šarac, Bojan; Bešter-Rogač, Marija; Lah, Jurij

    2014-06-23

    Differential scanning calorimetry (DSC), the most important technique for studying the thermodynamics of structural transitions of biological macromolecules, is seldom used in quantitative thermodynamic studies of surfactant micellization/demicellization. The reason for this could be ascribed to an insufficient understanding of the temperature dependence of the heat capacity of surfactant solutions (DSC data) in terms of thermodynamics, which leads to problems with the design of experiments and interpretation of the output signals. We address these issues by careful design of DSC experiments performed with solutions of ionic and nonionic surfactants at various surfactant concentrations, and individual and global mass-action model analysis of the obtained DSC data. Our approach leads to reliable thermodynamic parameters of micellization for all types of surfactants, comparable with those obtained by using isothermal titration calorimetry (ITC). In summary, we demonstrate that DSC can be successfully used as an independent method to obtain temperature-dependent thermodynamic parameters for micellization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Heat Acclimation and Water-Immersion Deconditioning: Responses to Exercise

    Science.gov (United States)

    Shvartz, E.; Bhattacharya, A.; Sperinde, S. J.; Brock, P. J.; Sciaraffa, D.; Haines, R. F.; Greenleaf, J. E.

    1977-01-01

    Simulated subgravity conditions, such as bed rest and water immersion, cause a decrease in a acceleration tolerance (3, 4), tilt tolerance (3, 9, 10), work capacity (5, 7), and plasma volume (1, 8-10). Moderate exercise training performed during bed rest (4) and prior to water immersion (5) provides some protection against the adverse effects of deconditioning, but the relationship between exercise and changes due to deconditioning remains unclear. Heat acclimation increases plasma and interstitial volumes, total body water, stroke volume (11), and tilt tolerance (6) and may, therefore, be a more efficient method of ameliorating deconditioning than physical training alone. The present study was undertaken to determine the effects of heat acclimation and moderate physical training, performed in cool conditions, on water-immersion deconditioning.

  18. Low temperature heat capacity measurements of the spin-liquid states of hydrogenated and deuterated κ-(BEDT-TTF)2Cu2(CN)3

    International Nuclear Information System (INIS)

    Yamashita, S.; Yamamoto, T.; Nakazawa, Y.

    2010-01-01

    Heat capacity measurements of organic triangular lattice compound κ-(BEDT-TTF) 2 Cu 2 (CN) 3 were performed to discuss the low energy excitations from the spin-liquid ground states. Existence of the T-linear electronic coefficient with finite electronic heat capacity coefficient γ was confirmed in three different samples from different batches, although small sample dependence was observed in the absolute values of the heat capacities. Concerning the sample in which hydrogen atoms in ethylene group in BEDT-TTF molecule have been substituted by deuterons, we have observed almost similar thermodynamic behavior as the hydrogenated sample. The absence of drastic change of electronic properties of this compound is consistent with the electronic phase diagram given by Kurosaki et al. [11] (Phys. Rev. Lett. 95 (2005) 17001). The obtained data are well consistent with the previous heat capacity experiments. The existence of the γ term demonstrates that the excitations from the quantum spin-liquid states show a gapless behavior at least down to 0.7 K.

  19. Antioxidant capacity and fatty acids characterization of heat treated cow and buffalo milk.

    Science.gov (United States)

    Khan, Imran Taj; Nadeem, Muhammad; Imran, Muhammad; Ayaz, Muhammad; Ajmal, Muhammad; Ellahi, Muhammad Yaqoob; Khalique, Anjum

    2017-08-24

    Antioxidant capacity of milk is largely due to vitamins A, E, carotenoids, zinc, selenium, superoxide dismutase, catalase, glutathione peroxidase and enzyme systems. Cow milk has antioxidant capacity while the antioxidant capacity of buffalo milk has been studied in a limited way. The information regarding the effect of pasteurization and boiling on antioxidant capacity of cow and buffalo milk is also scared. Cow and buffalo milk was exposed to two different heat treatments i.e. 65 °C for 30 min and boiling for 1 min. After heat treatments, milk samples were cooled down to 4 °C packaged in transparent 250 ml polyethylene PET bottles and stored at 4 °C for 6 days. Milk composition, total flavonoid content, total antioxidant capacity, reducing power, DPPH free radical scavenging activity, antioxidant activity in linoleic acid, vitamin C, A, E, selenium, Zinc, fatty acid profile, peroxide value and sensory characteristics were studied in raw, pasteurized and boiled cow and buffalo milk at 0, 3 and 6 days of storage period. Total antioxidant capacity (TAC) of raw, pasteurized and boiled milk for cow (42.1, 41.3 and 40.7%) and buffalo (58.4, 57.6 and 56.5%) samples was found, respectively. Reducing power (RP) of raw cow and buffalo milk was 6.74 and 13.7 while pasteurization and boiling did not showed significant effect on RP of both cow and buffalo milk. DPPH activity of raw, pasteurized and boiled milk for cow (24.3, 23.8 and 23.6%) and buffalo (31.8, 31.5 and 30.4%) samples was noted, respectively. Storage period up to 3 days was non-significant while DPPH assay after 6 days of storage period indicated significant decline in antioxidant activity of milk samples. Antioxidant activity in linoleic acid (AALA) of buffalo and cow milk were recorded 11.7 and 17.4%, respectively. Pasteurization and boiling did not showed any impact on antioxidant capacity of cow and buffalo milk. The Loss of vitamin C in pasteurization (40 and 42%) and boiling (82 and 61%) of

  20. Heat capacity and thermodynamic properties of N-(2-cyanoethyl) aniline (C9H10N2)

    International Nuclear Information System (INIS)

    Tian Qifeng; Tan Zhicheng; Shi Quan; Xu Fen; Sun Lixian; Zhang Tao

    2005-01-01

    The low temperature heat capacities of N-(2-cyanoethyl)aniline were measured with an automated adiabatic calorimeter over the temperature range from 83 to 353 K. The temperature corresponding to the maximum value of the apparent heat capacity in the fusion interval, molar enthalpy and entropy of fusion of this compound were determined to be 323.33 ± 0.13 K, 19.4 ± 0.1 kJ mol -1 and 60.1 ± 0.1 J K -1 mol -1 , respectively. Using the fractional melting technique, the purity of the sample was determined to be 99.0 mol% and the melting temperature for the tested sample and the absolutely pure compound were determined to be 323.50 and 323.99 K, respectively. A solid-to-solid phase transition occurred at 310.63 ± 0.15 K. The molar enthalpy and molar entropy of the transition were determined to be 980 ± 5 J mol -1 and 3.16 ± 0.02 J K -1 mol -1 , respectively. The thermodynamic functions of the compound [H T - H 298.15 ] and [S T - S 298.15 ] were calculated based on the heat capacity measurements in the temperature range of 83-353 K with an interval of 5 K

  1. Evaluation on the heat removal capacity of the first wall for water cooled breeder blanket of CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Kecheng, E-mail: jiangkecheng@ipp.ac.cn; Cheng, Xiaoman; Chen, Lei; Huang, Kai; Ma, Xuebin; Liu, Songlin

    2016-02-15

    Highlights: • Heat removal capacity of the FW is evaluated under BWR, PWR and He coolant inlet conditions. • Heat transfer property of the gas–liquid two phase and the two boiling crises are analyzed. • Heat removal capacity of water is larger than helium coolant. - Abstract: The water cooled ceramic breeder blanket (WCCB) is being researched for Chinese Fusion Engineering Test Reactor (CFETR). As an important component of the blanket, the FW should satisfy with the thermal requirements in any case. In this paper, three parameters including the heat removal capacity, coolant pressure drop as well as the temperature rise of the FW were investigated under different coolant velocity and heat flux from the plasma. Using the same first wall structure, two main water cooled schemes including Boiling Water Reactor (BWR, 7 MPa pressure and 265 °C temperature inlet) and Pressurized Water Reactor (PWR, 15 MPa pressure and 285 °C temperature inlet) conditions are discussed in the thermal hydraulic calculation. For further research, the thermal hydraulic characteristics of using helium as coolant (8 MPa pressure, 300 °C temperature inlet) are also explored to provide CFETR blanket design with more useful data supports. Without regard to the outlet coolant condition requirements of the blanket, the results indicate that the ultimate heat flux that the FW can resist is 2.2 MW/m{sup 2} at velocity of 5 m/s for BWR, 2.0 MW/m{sup 2} at velocity of 5 m/s for PWR and 0.87 MW/m{sup 2} for helium at velocity 100 m/s under the chosen operation condition. The detrimental departure from nucleate boiling (DNB) crisis would occur at the velocity of 1 m/s under the heat flux of 3 MW/m{sup 2} and dry out crisis appears at the velocity of less than 0.2 m/s with the heat flux of more than 1 MW/m{sup 2} for BWR. The further blanket/FW optimization design is provided with more useful data references according to the abundant calculation results.

  2. Heat capacity and phonon mean free path in the biocarbon matrix of beech

    Science.gov (United States)

    Parfen'eva, L. S.; Orlova, T. S.; Smirnov, B. I.; Smirnov, I. A.; Misiorek, H.; Wlosewicz, D.; Jezowski, A.

    2011-08-01

    The heat capacity at constant pressure C p of the biocarbon matrix prepared at a beech wood carbonization temperature of 1000°C has been measured in the temperature range 80-300 K. It has been shown that, in the temperature range 90-180 K, the heat capacity is C ˜ T 0.8 and, at T = 190-300 K, it is C p ˜ T 1.2. The phonon mean free path l( T) in the biocarbon matrix has been calculated using the obtained dependences C p ( T), our previous results on the phonon thermal conductivity of the carbon framework of this biocarbon matrix, and data available in the literature on the sound velocity in the matrix. It has been demonstrated that, in the temperature range 200-300 K, the mean value of l is ˜ 15 Å, which is close to the sizes of nanocrystallites ("carbon fragments") of ˜ 12Å, obtained earlier from X-ray diffraction data for the carbon matrix under consideration. These nanocrystallites participate in the formation of the carbon framework of the beech wood biocarbon matrix.

  3. Phonon Density of States and Heat Capacity of La3-xTe4

    International Nuclear Information System (INIS)

    Delaire, Olivier A.; May, Andrew F.; McGuire, Michael A.; Porter, Wallace D.; Lucas, Matthew S.; Stone, Matthew B.; Abernathy, Douglas L.; Snyder, G.J.

    2009-01-01

    The phonon density of states (DOS) of La 3-x Te 4 compounds (x=0.0, 0.18, 0.32) was measured at 300, 520, and 780 K, using inelastic neutron scattering. A significant stiffening of the phonon DOS, and a large broadening of features were observed upon introduction of vacancies on La sites (increasing x). Heat capacity measurements were performed at temperatures ∼1.85 ≤ T ≤ 1200 K and were analyzed to quantify the contributions of phonons and electrons. The Debye temperature and the electronic coefficient of heat capacity determined from these measurements are consistent with the neutron scattering results, and with previously reported first-principles calculations. Our results indicate that La vacancies in La 3-x Te 4 strongly scatter phonons, and this source of scattering appears to be independent of temperature. The stiffening of the phonon DOS induced by the introduction of vacancies is explained in terms of the electronic structure and the change in bonding. The temperature dependence of the phonon DOS is captured satisfactorily by the quasiharmonic approximation.

  4. [The repercussions of pulmonary congestion on ventilatory volumes, capacities and flows].

    Science.gov (United States)

    Carmo, M M; Ferreira, T; Lousada, N; Bárbara, C; Neves, P R; Correia, J M; Rendas, A B

    1994-10-01

    To evaluate the effects of pulmonary congestion on pulmonary function. Prospective study performed in patients with left ventricular failure or mitral stenosis. Forty-eight hospitalized patients were included suffering from pulmonary congestion either from left ventricular failure or mitral stenosis. While in hospital all patients were submitted to right heart catheterization by the Swan-Ganz method and also to an echocardiographic examination. Within 48 hours after the patients were submitted to the following lung function studies: lung volumes and capacities by the multi-breath helium dilution method and airway flows by pneumotachography. Respiratory symptoms were evaluated by the Medical Research Council Questionnaire and the functional class classified according to the NYHA. Correlations were made between the functional and clinical data. Regarding the cardiac evaluation patients presented with a mean pulmonary wedge pressure of 19.9 +/- 8.6 mmHg, a cardiac index of 2.5 +/- 0.8 l/min/m2, an end diastolic dimension of the left ventricle of 65.9 +/- 10.1 mm, and end systolic dimension of 51.2 +/- 12.2 mm, with a shortening fraction of 21.8 +/- 9.5%. The pulmonary evaluation showed a restrictive syndrome with a reduction in the mean values of the following parameters: total pulmonary capacity 71 +/- 14.4% of the predicted value (pv), forced vital capacity (FVC) 69.8 +/- 20.5% pv, and forced expiratory volume (FEV1) of 64 +/- 21.8% vp. The index FEV1/FVC was within the normal value of 72.7 +/- 9.7%. These lung function results did not correlate significantly with either the clinical, the hemodynamic or echocardiographic findings. In these group of patients pulmonary congestion led to the development of a restrictive syndrome which failed to correlate in severity with the duration of the disease, the pulmonary wedge pressure and the left ventricular function.

  5. Apparent molar volumes and apparent molar heat capacities of aqueous tetrahydrofuran, dimethyl sulfoxide, 1,4-dioxane, and 1,2-dimethoxyethane at temperatures from 278.15 K to 393.15 K and at the pressure 0.35 MPa

    International Nuclear Information System (INIS)

    Swenson, D.M.; Blodgett, M.B.; Ziemer, S.P.; Woolley, E.M.

    2008-01-01

    We determined apparent molar volumes V φ at 278.15 ≤ (T/K) ≤ 368.15 and apparent molar heat capacities C p,φ at 278.15 ≤ (T/K) ≤ 393.15 at p = 0.35 MPa for aqueous solutions of tetrahydrofuran at m from (0.016 to 2.5) mol . kg -1 , dimethyl sulfoxide at m from (0.02 to 3.0) mol . kg -1 , 1,4-dioxane at m from (0.015 to 2.0) mol . kg -1 , and 1,2-dimethoxyethane at m from (0.01 to 2.0) mol . kg -1 . Values of V φ were determined from densities measured with a vibrating-tube densimeter, and values of C p,φ were determined with a twin fixed-cell, differential, temperature-scanning calorimeter. Empirical functions of m and T for each compound were fitted to our V φ and C p,φ results

  6. Immediate effect of suryanadi pranayama on pulmonary function (ventilatory volumes and capacities) in healthy volunteers

    OpenAIRE

    Shravya Keerthi G, Hari Krishna Bandi, Suresh M, Mallikarjuna Reddy N

    2013-01-01

    Objectives: we found only effects of at least a short term practice extended over a period of a few days to weeks of pranayama (alternate nostril breathing) rather than acute effects of unilateral right nostril breathing (suryanadi pranayama). Keeping this in mind the present study was designed to test the hypothesis that 10 min. of right nostril breathing have any immediate effect on ventilatory volumes and capacities in healthy volunteers. Methodology: Forced vital capacity (FVC), Forced ex...

  7. Thermodynamics of proton dissociations from aqueous glycine at temperatures from 278.15 to 393.15 K, molalities from 0 to 1.0 mol . kg-1, and at the pressure 0.35 MPa: Apparent molar heat capacities and apparent molar volumes of glycine, glycinium chloride, and sodium glycinate

    International Nuclear Information System (INIS)

    Ziemer, S.P.; Niederhauser, T.L.; Merkley, E.D.; Price, J.L.; Sorenson, E.C.; McRae, B.R.; Patterson, B.A.; Origlia-Luster, M.L.; Woolley, E.M.

    2006-01-01

    We have measured the densities of aqueous solutions of glycine, glycine plus equimolal HCl, and glycine plus equimolal NaOH at temperatures 278.15 ≤ T/K ≤ 368.15, molalities 0.01 ≤ m/mol . kg -1 ≤ 1.0, and at p = 0.35 MPa, using a vibrating tube densimeter. We have also measured the heat capacities of these solutions at 278.15 ≤ T/K ≤ 393.15 and at the same m and p using a fixed-cell differential scanning calorimeter. We used the densities to calculate apparent molar volumes V φ and the heat capacities to calculate apparent molar heat capacities C p,φ for these solutions. We used our results and values of V φ (T, m) and C p,φ (T, m) for HCl(aq), NaOH(aq), NaCl(aq) from the literature to calculate parameters for Δ r C p,m (T, m) for the first and second proton dissociations from protonated aqueous cationic glycine. We then integrated this value of Δ r C p,m (T, m) in an iterative algorithm, using Young's Rule to account for the effects of speciation and chemical relaxation on the observed V φ and C p,φ of the solutions. This procedure yielded parameters for V φ (T, m) and C p,φ (T, m) for glycinium chloride {H 2 Gly + Cl - (aq)} and sodium glycinate {Na + Gly - (aq)} which successfully modeled our observed results. We have then calculated values of Δ r C p,m , Δ r H m , Δ r V m , and pQ a for the first and second proton dissociations from protonated aqueous glycine as functions of T and m

  8. Evaluating Moisture Control of Variable-Capacity Heat Pumps in Mechanically Ventilated, Low-Load Homes in Climate Zone 2A

    Energy Technology Data Exchange (ETDEWEB)

    Eric Martin, Chuck Withers, Janet McIlvaine, Dave Chasar, and David Beal

    2018-03-29

    Low-load homes can present a challenge when selecting appropriate space-conditioning equipment. Conventional, fixed-capacity heating and cooling equipment is often oversized for small homes, causing increased first costs and operating costs. This report evaluates the performance of variable-capacity comfort systems, with a focus on inverter-driven, variable-capacity systems, as well as proposed system enhancements.

  9. Interplay between the energy gap and heat capacity in S-wave superconductor

    International Nuclear Information System (INIS)

    Gonczarek, R.; Mulak, M.

    1998-01-01

    Starting from the postulated, generalized form of the BCS gap equation, suitable for a wide class of microscopic models, the thermodynamic properties of S-wave superconductors are studied. The precise analytical formulas for the main thermodynamic quantities are given and discussed in the characteristic temperature limits. In particular the inversion of the equations defining the specific heat as a function of Δ(T), i.e. the temperature dependence of the energy gap in S-wave superconductor is presented. It makes possible a reconstruction of the energy gap as a function of temperature from the heat capacity data. As predicted, in the frame of the model, the other thermodynamic quantities from the Δ(T) function seem also to be interesting. (orig.)

  10. Oligonol supplementation modulates plasma volume and osmolality and sweating after heat load in humans.

    Science.gov (United States)

    Lee, JeongBeom; Shin, YoungOh; Murota, Hiroyuki

    2015-05-01

    Oligonol is a low-molecular-weight polyphenol that possesses antioxidant and anti-inflammatory properties. This study investigated the effects of Oligonol supplementation on sweating response, plasma volume (PV), and osmolality (Osm) after heat load in human volunteers. We conducted a placebo-controlled crossover trial. Participants took a daily dose of 200 mg Oligonol or placebo for 1 week. After a 2-week washout period, the subjects were switched to the other study arm. As a heat load, half-body immersion into hot water (42°C±0.5°C for 30 min) was performed in an automated climate chamber. Tympanic and mean body temperature (Tty, mTb) and whole-body sweat loss volume (WBSLV) were measured. Changes in PV, Osm, and serum levels of aldosterone and sodium were analyzed. Oligonol intake attenuated increases in Tty, mTb, and WBSLV after heat load compared with the placebo (Pbody temperature and excessive sweating under heat load in healthy humans, but interpretation of the results requires caution due to the potent diuretic effect of Oligonol.

  11. Experimental determination of nanofluid specific heat with SiO2 nanoparticles in different base fluids

    Science.gov (United States)

    Akilu, S.; Baheta, A. T.; Sharma, K. V.; Said, M. A.

    2017-09-01

    Nanostructured ceramic materials have recently attracted attention as promising heat transfer fluid additives owing to their outstanding heat storage capacities. In this paper, experimental measurements of the specific heats of SiO2-Glycerol, SiO2-Ethylene Glycol, and SiO2-Glycerol/Ethylene Glycol mixture 60:40 ratio (by mass) nanofluids with different volume concentrations of 1.0-4.0% have been carried out using differential scanning calorimeter at temperatures of 25 °C and 50 °C. Experimental results indicate lower specific heat capacities are found with SiO2 nanofluids compared to their respective base fluids. The specific heat was decreasing with the increase of concentration, and this decrement depends on upon the type of the base fluid. It is observed that temperature has a positive impact on the specific heat capacity. Furthermore, the experimental values were compared with the theoretical model predictions, and a satisfactory agreement was established.

  12. Demonstration, testing, ampersand evaluation of in situ heating of soil. Draft final report, Volume I

    International Nuclear Information System (INIS)

    Dev, H.; Enk, J.; Jones, D.; Saboto, W.

    1996-01-01

    This document is a draft final report (Volume 1) for US DOE contract entitled, open-quotes Demonstration Testing and Evaluation of In Situ Soil Heating,close quotes Contract No. DE-AC05-93OR22160, IITRI Project No. C06787. This report is presented in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cu. yd. of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOCs and other organic chemicals boiling up to 120 degrees to 130 degrees C in the vadose zone. Although it may applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by low air flow

  13. Effect of immersion on lung capacities and volumes: implications for the densitometric estimation of relative body fat.

    Science.gov (United States)

    Withers, R T; Hamdorf, P A

    1989-01-01

    Immersion of 18 male subjects in water caused a 20.4% (787 ml) increase (P less than 0.05) in the mean inspiratory capacity (IC) whereas there were no changes (P greater than 0.05) in tidal volume (VT) and the frequency of respiration. All the means for the other pulmonary variables decreased (P less than 0.05) by varying amounts: total lung capacity (TLC) = 8.4% (599 ml), vital capacity (VC) = 5.5% (308 ml), functional residual capacity (FRC) = 42.6% (1386 ml), expiratory reserve volume (ERV) = 61.9% (1095 ml) and residual volume (RV) = 19.7% (292 ml). Variation of only the RV in the body density (BD) formula from which the percentage body fat (%BF) is estimated resulted in a significantly (P less than 0.05) lower mean of 15.2% BF for the RV in air (means = 1482 ml) compared with that of 17.1% BF for the RV in water (means = 1190 ml). All but one of the subjects exhibited a smaller RV in water than in air; the six largest differences were equivalent to 2.4-5.1% BF. These results indicate that the net effect of the hydrostatic pressure (decreases RV), pulmonary vascular engorgement (decreases RV) and diminished compliance (increases RV) is to reduce the ventilated RV. It is therefore advisable to measure the RV when the subject is immersed in order to minimize error in the determination of BD and hence the estimation of % BF.

  14. Effect of water content on specific heat capacity of porcine septum cartilage

    Science.gov (United States)

    Chae, Yongseok; Lavernia, Enrique J.; Wong, Brian J.

    2002-06-01

    The effect of water content on specific heat capacity was examined using temperature modulated Differential Scanning Calorimetry (TMDSC). This research was motivated in part by the development laser cartilage reshaping operations, which use photothermal heating to accelerate stress relaxation and shape change. Deposition of thermal energy leads to mechanical stress relaxation and redistribution of cartilage internal stresses, which may lead to a permanent shape change. The specific heat of cartilage specimens (dia: 3 mm and thickness 1-2 mm) was measured using a heating rate of 2 degree(s)C/min for conventional DSC and 2 degree(s)C/min with an amplitude 0.38-0.45 degree(s)C and a period 60-100 sec for TMDSC. The amount of water in cartilaginous tissue was determined using thermogravimetry analysis (TGA) under ambient conditions. In order to correlate changes in heat flow with alterations in cartilage mechanical behavior, dynamic mechanical temperature analysis (DMTA) was used to estimate the specific transition temperatures where stress relaxation occurs. With decreasing water content, we identified a phase transition that shifted to a higher temperature after 35-45% water content was measured. The phase transition energy increased from 0.12 J/g to 1.68 J/g after a 45% weight loss. This study is a preliminary investigation focused on understanding the mechanism of the stress relaxation of cartilage during heating. The energy requirement of such a transition estimated using TMDSC and temperature range, where cartilage shape changes likely occur, was estimated.

  15. A role for haemolymph oxygen capacity in heat tolerance of eurythermal crabs.

    Directory of Open Access Journals (Sweden)

    Folco eGiomi

    2013-05-01

    Full Text Available Heat tolerance in aquatic ectotherms is constrained by a mismatch, occurring at high temperatures, between oxygen delivery and demand which compromises the maintenance of aerobic scope. The present study analyses how the wide thermal tolerance range of an eurythermal model species, the green crab Carcinus maenas is supported and limited by its ability to sustain efficient oxygen transport to tissues. Similar to other eurytherms, C. maenas sustains naturally occurring acute warming events through the integrated response of circulatory and respiratory systems. The response of C. maenas to warming is characterized by two phases. During initial warming, oxygen consumption and heart rate increase while stroke volume and haemolymph oxygen partial pressures decrease. During further warming, dissolved oxygen levels in the venous compartment decrease below the threshold of full haemocyanin oxygen saturation. The progressive release of haemocyanin bound oxygen with further warming follows an exponential pattern, thereby saving energy in oxygen transport and causing an associated leveling off of metabolic rate. According to the concept of oxygen and capacity limited thermal tolerance, this indicates that the thermal tolerance window is widened by the increasing contribution of haemocyanin oxygen transport and associated energy savings in cardiocirculation. Haemocyanin bound oxygen sustains cardiac performance to cover the temperature range experienced by C. maenas in the field. To our knowledge this is the first study providing evidence of a relationship between thermal tolerance and blood (haemolymph oxygen transport in eurythermal invertebrates.

  16. A role for haemolymph oxygen capacity in heat tolerance of eurythermal crabs.

    Science.gov (United States)

    Giomi, Folco; Pörtner, Hans-Otto

    2013-01-01

    Heat tolerance in aquatic ectotherms is constrained by a mismatch, occurring at high temperatures, between oxygen delivery and demand which compromises the maintenance of aerobic scope. The present study analyses how the wide thermal tolerance range of an eurythermal model species, the green crab Carcinus maenas is supported and limited by its ability to sustain efficient oxygen transport to tissues. Similar to other eurytherms, C. maenas sustains naturally occurring acute warming events through the integrated response of circulatory and respiratory systems. The response of C. maenas to warming can be characterized by two phases. During initial warming, oxygen consumption and heart rate increase, while stroke volume and haemolymph oxygen partial pressure decrease. During further warming, dissolved oxygen levels in the venous compartment decrease below the threshold of full haemocyanin oxygen saturation. The progressive release of haemocyanin bound oxygen with further warming follows an exponential pattern, thereby saving energy in oxygen transport and causing an associated leveling off of metabolic rate. According to the concept of oxygen and capacity limited thermal tolerance (OCLTT), this indicates that the thermal tolerance window is widened by the increasing contribution of haemocyanin oxygen transport and associated energy savings in cardiocirculation. Haemocyanin bound oxygen sustains cardiac performance to cover the temperature range experienced by C. maenas in the field. To our knowledge this is the first study providing evidence of a relationship between thermal tolerance and blood (haemolymph) oxygen transport in a eurythermal invertebrate.

  17. Low temperature anomaly of light stimulated magnetization and heat capacity of the 1D diluted magnetic semiconductors

    Science.gov (United States)

    Geffe, Chernet Amente

    2018-03-01

    This article reports magnetization and specific heat capacity anomalies in one dimensional diluted magnetic semiconductors observed at very low temperatures. Based on quantum field theory double time temperature dependent Green function technique is employed to evaluate magnon dispersion and the time correlation function. It is understood that magnon-photon coupling and magnetic impurity concentration controls both, such that near absolute temperature magnetization is nearly zero and abruptly increase to saturation level with decreasing magnon-photon coupling strength. We also found out dropping of magnetic specific heat capacity as a result of increase in magnetic impurity concentration x, perhaps because of inter-band disorder that would suppress the enhancement of density of spin waves.

  18. Low temperature anomaly of light stimulated magnetization and heat capacity of the 1D diluted magnetic semiconductors

    Directory of Open Access Journals (Sweden)

    Chernet Amente Geffe

    2018-03-01

    Full Text Available This article reports magnetization and specific heat capacity anomalies in one dimensional diluted magnetic semiconductors observed at very low temperatures. Based on quantum field theory double time temperature dependent Green function technique is employed to evaluate magnon dispersion and the time correlation function. It is understood that magnon-photon coupling and magnetic impurity concentration controls both, such that near absolute temperature magnetization is nearly zero and abruptly increase to saturation level with decreasing magnon-photon coupling strength. We also found out dropping of magnetic specific heat capacity as a result of increase in magnetic impurity concentration x, perhaps because of inter-band disorder that would suppress the enhancement of density of spin waves.

  19. Modelling of Evaporator in Waste Heat Recovery System using Finite Volume Method and Fuzzy Technique

    Directory of Open Access Journals (Sweden)

    Jahedul Islam Chowdhury

    2015-12-01

    Full Text Available The evaporator is an important component in the Organic Rankine Cycle (ORC-based Waste Heat Recovery (WHR system since the effective heat transfer of this device reflects on the efficiency of the system. When the WHR system operates under supercritical conditions, the heat transfer mechanism in the evaporator is unpredictable due to the change of thermo-physical properties of the fluid with temperature. Although the conventional finite volume model can successfully capture those changes in the evaporator of the WHR process, the computation time for this method is high. To reduce the computation time, this paper develops a new fuzzy based evaporator model and compares its performance with the finite volume method. The results show that the fuzzy technique can be applied to predict the output of the supercritical evaporator in the waste heat recovery system and can significantly reduce the required computation time. The proposed model, therefore, has the potential to be used in real time control applications.

  20. Heat capacity and thermal diffusivity of ScD/sub x/ and ErD/sub x/

    International Nuclear Information System (INIS)

    Moss, M.

    1979-04-01

    The heat capacity, C/sub p/ (T = 298-1000 K), and the thermal diffusivity, α(T = 623-773 K), of ScD/sub x/ and ErD/sub x/ (x = 0-1.83) have been measured. C/sub p/ of ScD/sub x/ increases with x for x = 0-1.59 over the entire temperature range, but then declines for x = 1.83. ErD/sub x/ shows a monotonic increase of C/sub p/ with x, and exhibits a sharp positive anomaly at 910 K for x = 1.82. Both materials display an excess heat capacity which is attributed to disorder in the deuterium sublattice. A minimum in α is observed for ScD/sub x/ and ErD/sub x/ at mid-range values of x where disorder is greatest; α for all samples is fairly constant with T in this limited temperature range

  1. Heat Fluxes and Evaporation Measurements by Multi-Function Heat Pulse Probe: a Laboratory Experiment

    Science.gov (United States)

    Sharma, V.; Ciocca, F.; Hopmans, J. W.; Kamai, T.; Lunati, I.; Parlange, M. B.

    2012-04-01

    Multi Functional Heat Pulse Probes (MFHPP) are multi-needles probes developed in the last years able to measure temperature, thermal properties such as thermal diffusivity and volumetric heat capacity, from which soil moisture is directly retrieved, and electric conductivity (through a Wenner array). They allow the simultaneous measurement of coupled heat, water and solute transport in porous media, then. The use of only one instrument to estimate different quantities in the same volume and almost at the same time significantly reduces the need to interpolate different measurement types in space and time, increasing the ability to study the interdependencies characterizing the coupled transports, especially of water and heat, and water and solute. A three steps laboratory experiment is realized at EPFL to investigate the effectiveness and reliability of the MFHPP responses in a loamy soil from Conthey, Switzerland. In the first step specific calibration curves of volumetric heat capacity and thermal conductivity as function of known volumetric water content are obtained placing the MFHPP in small samplers filled with the soil homogeneously packed at different saturation degrees. The results are compared with literature values. In the second stage the ability of the MFHPP to measure heat fluxes is tested within a homemade thermally insulated calibration box and results are matched with those by two self-calibrating Heatflux plates (from Huxseflux), placed in the same box. In the last step the MFHPP are used to estimate the cumulative subsurface evaporation inside a small column (30 centimeters height per 8 centimeters inner diameter), placed on a scale, filled with the same loamy soil (homogeneously packed and then saturated) and equipped with a vertical array of four MFHPP inserted close to the surface. The subsurface evaporation is calculated from the difference between the net sensible heat and the net heat storage in the volume scanned by the probes, and the

  2. Magnetic-susceptibility and heat-capacity measurements on PrRhSb

    International Nuclear Information System (INIS)

    Malik, S.K.; Takeya, H.; Gschneidner, K.A. Jr.

    1994-01-01

    Magnetic-susceptibility (ac and dc) and heat-capacity measurements have been carried out on the compound PrRhSb. These measurements reveal two magnetic transitions in this compound---one at about 18 K and the other around 6 K. In the dc susceptibility the 18-K transition is evident as the temperature below which a magnetic correlation sets in and the susceptibility is found to be field dependent. The lower transition manifests as a peak in the susceptibility of zero-field-cooled samples which were measured in low applied fields. The electronic-specific-heat coefficient, γ, is found to be 33 mJ/mol K 2 between 40 and 70 K after correcting for the lattice contribution taken to be the same as in its La analog. The γ value is fairly large for a Pr compound and may be indicative of moderately heavy quasiparticles. A Kondo-type interaction of the Pr 4f electrons with the conduction electrons may be responsible for high-magnetic-ordering temperatures and the moderately large γ value in this compound

  3. Dynamic Heat Storage and Cooling Capacity of a Concrete Deck with PCM and Thermally Activated Building System

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2012-01-01

    This paper presents a heat storage and cooling concept that utilizes a phase change material (PCM) and a thermally activated building system (TABS) implemented in a hollow core concrete deck. Numerical calculations of the dynamic heat storage capacity of the hollow core concrete deck element...... in the article highlight the potential of using TABS and PCM in a prefabricated concrete deck element....

  4. Low-temperature heat capacity of small Nb3Sn polycrystals by ac calorimetry

    International Nuclear Information System (INIS)

    Viswanathan, R.; Johnston, D.C.

    1976-01-01

    It is shown by an ac calorimetry technique that the multiple heat capacity anomalies which occur below the superconducting transition temperature for small polycrystalline Nb 3 Sn samples are intrinsic to these samples. The recent suggestions that shear stresses can account for these results are analyzed for their validity. The dependence of the occurrence of these multiple anomalies upon the thermal history of the samples was investigated

  5. The Effect of Moisture Content and Temperature on the Specific Heat Capacity of Nut and Kernel of Two Iranian Pistachio Varieties

    Directory of Open Access Journals (Sweden)

    A.R Salari Kia

    2014-04-01

    Full Text Available Pistachio has a special ranking among Iranian agricultural products. Iran is known as the largest producer and exporter of pistachio in the world. Agricultural products are imposed under different thermal treatments during storage and processing. Designing all these processes requires thermal parameters of the products such as specific heat capacity. Regarding the importance of pistachio processing as an exportable product, in this study the specific heat capacity of nut and kernel of two varieties of Iranian pistachio (Kalle-Ghochi and Badami were investigated at four levels of moisture content (initial moisture content (5%, 15%, 25% and 40% w.b. and three levels of temperature (40, 50 and 60°C. In both varieties, the differences between the data were significant at the 1% of probability; however, the effect of moisture content was greater than that of temperature. The results indicated that the specific heat capacity of both nuts and kernels increase logarithmically with increase of moisture content and also increase linearly with increase of temperature. This parameter has altered for nut and kernel of Kalle-Ghochi and Badami varieties within the range of 1.039-2.936 kJ kg-1 K-1, 1.236-3.320 kJ kg-1 K-1, 0.887-2.773 kJ kg-1 K-1 and 0.811-2.914 kJ kg-1 K-1, respectively. Moreover, for any given level of temperature, the specific heat capacity of kernels was higher than that of nuts. Finally, regression models with high R2 values were developed to predict the specific heat capacity of pistachio varieties as a function of moisture content and temperature

  6. Relationship between low-temperature boson heat capacity peak and high-temperature shear modulus relaxation in a metallic glass

    International Nuclear Information System (INIS)

    Vasiliev, A. N.; Voloshok, T. N.; Granato, A. V.; Joncich, D. M.; Mitrofanov, Yu. P.; Khonik, V. A.

    2009-01-01

    Low-temperature (2 K≤T≤350 K) heat capacity and room-temperature shear modulus measurements (ν=1.4 MHz) have been performed on bulk Pd 41.25 Cu 41.25 P 17.5 in the initial glassy, relaxed glassy, and crystallized states. It has been found that the height of the low-temperature Boson heat capacity peak strongly correlates with the changes in the shear modulus upon high-temperature annealing. It is this behavior that was earlier predicted by the interstitialcy theory, according to which dumbbell interstitialcy defects are responsible for a number of thermodynamic and kinetic properties of crystalline, (supercooled) liquid, and solid glassy states.

  7. High-performance heat pipes for heat recovery applications

    Science.gov (United States)

    Saaski, E. W.; Hartl, J. H.

    1980-01-01

    Methods to improve the performance of reflux heat pipes for heat recovery applications were examined both analytically and experimentally. Various models for the estimation of reflux heat pipe transport capacity were surveyed in the literature and compared with experimental data. A high transport capacity reflux heat pipe was developed that provides up to a factor of 10 capacity improvement over conventional open tube designs; analytical models were developed for this device and incorporated into a computer program HPIPE. Good agreement of the model predictions with data for R-11 and benzene reflux heat pipes was obtained.

  8. Heat capacity of Sr10(PO4)6Cl2 and Ca10(PO4)6Cl2 by DSC

    International Nuclear Information System (INIS)

    Venkata Krishnan, R.; Jena, Hrudananda; Govindan Kutty, K.V.; Nagarajan, K.

    2008-01-01

    Strontium and calcium chloroapatites were synthesized by wet chemical method, characterized by X-ray diffraction and are found to be phase pure materials. The measured room temperature lattice parameter of Ca 10 (PO 4 ) 6 Cl 2 is a = 9.523 A, c = 6.855 A and for Sr 10 (PO 4 ) 6 Cl 2 is a = 9.876 A, c = 7.188 A. Heat capacity measurements were carried out on Ca 10 (PO 4 ) 6 Cl 2 and Sr 10 (PO 4 ) 6 Cl 2 by DSC in the temperature range 298-800 K. The heat capacity values of Sr 10 (PO 4 ) 6 Cl 2 is higher at all temperatures than Ca 10 (PO 4 ) 6 Cl 2 . Enthalpy and entropy increments were computed. Heat capacity values of Ca 10 (PO 4 ) 6 Cl 2 and Sr 10 (PO 4 ) 6 Cl 2 at 298 K are 758 and 868 J K -1 mol -1 , respectively

  9. Estimates of emergency operating capacity in US manufacturing and nonmanufacturing industries - Volume 1: Concepts and Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Belzer, D.B. (Pacific Northwest Lab., Richland, WA (USA)); Serot, D.E. (D/E/S Research, Richland, WA (USA)); Kellogg, M.A. (ERCE, Inc., Portland, OR (USA))

    1991-03-01

    Development of integrated mobilization preparedness policies requires planning estimates of available productive capacity during national emergency conditions. Such estimates must be developed in a manner to allow evaluation of current trends in capacity and the consideration of uncertainties in various data inputs and in engineering assumptions. This study developed estimates of emergency operating capacity (EOC) for 446 manufacturing industries at the 4-digit Standard Industrial Classification (SIC) level of aggregation and for 24 key nonmanufacturing sectors. This volume lays out the general concepts and methods used to develop the emergency operating estimates. The historical analysis of capacity extends from 1974 through 1986. Some nonmanufacturing industries are included. In addition to mining and utilities, key industries in transportation, communication, and services were analyzed. Physical capacity and efficiency of production were measured. 3 refs., 2 figs., 12 tabs. (JF)

  10. Heat strain, volume depletion and kidney function in California agricultural workers.

    Science.gov (United States)

    Moyce, Sally; Mitchell, Diane; Armitage, Tracey; Tancredi, Daniel; Joseph, Jill; Schenker, Marc

    2017-06-01

    Agricultural work can expose workers to increased risk of heat strain and volume depletion due to repeated exposures to high ambient temperatures, arduous physical exertion and limited rehydration. These risk factors may result in acute kidney injury (AKI). We estimated AKI cumulative incidence in a convenience sample of 283 agricultural workers based on elevations of serum creatinine between preshift and postshift blood samples. Heat strain was assessed based on changes in core body temperature and heart rate. Volume depletion was assessed using changes in body mass over the work shift. Logistic regression models were used to estimate the associations of AKI with traditional risk factors (age, diabetes, hypertension and history of kidney disease) as well as with occupational risk factors (years in farm work, method of payment and farm task). 35 participants were characterised with incident AKI over the course of a work shift (12.3%). Workers who experienced heat strain had increased adjusted odds of AKI (1.34, 95% CI 1.04 to 1.74). Piece rate work was associated with 4.24 odds of AKI (95% CI 1.56 to 11.52). Females paid by the piece had 102.81 adjusted odds of AKI (95% CI 7.32 to 1443.20). Heat strain and piece rate work are associated with incident AKI after a single shift of agricultural work, though gender differences exist. Modifications to payment structures may help prevent AKI. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  11. Low-temperature heat-capacity study of the U6X (XequivalentMn, Fe, Co, Ni) compounds

    International Nuclear Information System (INIS)

    Yang, K.N.; Maple, M.B.; DeLong, L.E.; Huber, J.G.; Junod, A.

    1989-01-01

    Measurements of the superconducting- and normal-state heat capacity of U 6 X (XequivalentMn, Fe, Co, Ni) compounds have been performed over a temperature range 1 Kapprox. 6 X compounds have strong renormalizations of the free-carrier effective mass m/sup */ in the range 10m/sub e/approx. 6 X heat capacities suggest the presence of high densities of low-energy excitations of undetermined nature. The results are analyzed in terms of models appropriate to heavy-fermion liquids, and anisotropic or strong-coupled superconductors. The U 6 X compounds form a link between relatively low-m/sup */, high-transition-temperature A15 compounds and the more extreme examples of heavy-fermion superconductors such as UBe/sub 13/, UPt 3 , and CeCuSi 2 for which m/sup */∼10 2 m/sub e/. .AE

  12. Debye–Einstein approximation approach to calculate the lattice specific heat and related parameters for a Si nanowire

    Directory of Open Access Journals (Sweden)

    A. KH. Alassafee

    2017-11-01

    Full Text Available The modified Debye–Einstein approximation model is used to calculate nanoscale size-dependent values of Gruneisen parameters and lattice specific heat capacity for Si nanowires. All parameters forming the model, including Debye temperatures, bulk moduli, the lattice thermal expansion and the lattice volume, are calculated according to their nanoscale size dependence. Values for lattice volume Gruneisen parameters increase with the decrease of the nanowires’ diameter, while all other parameters decrease. The nanosize dependence of lattice thermal parameters agree with other reported theoretical results. Keywords: Lattice specific heat capacity, Gruneisen parameter, Debye–Einstein model, Si nanowires

  13. Heat pumps in district heating networks

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    constraints limit the power plants. Efficient heat pumps can be used to decouple the constraints of electricity and heat production, while maintaining the high energy efficiency needed to match the politically agreed carbon emission goals. The requirements in terms of COP, location, capacity and economy...... and strategic planning in the energy sector. The paper presents a case study of optimal implementation of heat pumps in the present energy system of the Copenhagen area. By introduction of the correct capacity of heat pumps, a 1,6 % reduction in fuel consumption for electricity and heat production can...

  14. Influence of inhomogeneous surface heat capacity on the estimation of radiative response coefficients in a two-zone energy balance model

    Science.gov (United States)

    Park, Jungmin; Choi, Yong-Sang

    2018-04-01

    Observationally constrained values of the global radiative response coefficient are pivotal to assess the reliability of modeled climate feedbacks. A widely used approach is to measure transient global radiative imbalance related to surface temperature changes. However, in this approach, a potential error in the estimate of radiative response coefficients may arise from surface inhomogeneity in the climate system. We examined this issue theoretically using a simple two-zone energy balance model. Here, we dealt with the potential error by subtracting the prescribed radiative response coefficient from those calculated within the two-zone framework. Each zone was characterized by the different magnitude of the radiative response coefficient and the surface heat capacity, and the dynamical heat transport in the atmosphere between the zones was parameterized as a linear function of the temperature difference between the zones. Then, the model system was forced by randomly generated monthly varying forcing mimicking time-varying forcing like an observation. The repeated simulations showed that inhomogeneous surface heat capacity causes considerable miscalculation (down to -1.4 W m-2 K-1 equivalent to 31.3% of the prescribed value) in the global radiative response coefficient. Also, the dynamical heat transport reduced this miscalculation driven by inhomogeneity of surface heat capacity. Therefore, the estimation of radiative response coefficients using the surface temperature-radiation relation is appropriate for homogeneous surface areas least affected by the exterior.

  15. Heat capacity measurement of Ba3SrNb2O9

    International Nuclear Information System (INIS)

    Singh, B.M.; Samui, Pradeep; Agarwal, Renu; Mukerjee, S.K.

    2016-01-01

    Barium, Strontium and Niobium are important fission products in nuclear reactor with reasonable fission yields. During irradiation of oxide fuels, they can combine to form compounds of Ba-Sr-Nb-O system. Therefore, thermodynamic properties of Ba 3 SrNb 2 O 9 are required for modelling fuel behaviour however thermodynamic data of this compound is not available in literature. Ba 3 SrNb 2 O 9 was prepared by solid state route, by mixing stoichiometric amounts of finely grounded SrCO 3 , BaCO 3 and Nb 2 O 5 . Finally mixed powder was pressed into a pellet at 5 ton pressure for 2 minutes in a hydraulic press and the pellet was heated at 1123 K for 60 h in air. The pellet was cooled, finely grounded, re-pelletised and heated at 1473 K for 120 h. The formation of compound was confirmed by X-ray diffraction pattern, collected at room temperature using Cu-K α radiation (λ = 1.54 nm), scanned over the angular range 20-80° (2θ) with steps of 0.02°. Heat capacity of the compound was measured by the classical three-step method, in continuous mode, using LABSYS EVO, in temperature range of 370 and 950 K. No transition was observed in the investigated temperature range

  16. Finite Volume Based Computer Program for Ground Source Heat Pump System

    Energy Technology Data Exchange (ETDEWEB)

    Menart, James A. [Wright State University

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ?Finite Volume Based Computer Program for Ground Source Heat Pump Systems.? The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump

  17. Analysis of nocturia with 24-h urine volume, nocturnal urine volume, nocturnal bladder capacity and length of sleep duration: concept for effective treatment modality.

    Science.gov (United States)

    Udo, Yukihiro; Nakao, Masahiro; Honjo, Hisashi; Ukimura, Osamu; Kawauchi, Akihiro; Kitakoji, Hiroshi; Miki, Tsuneharu

    2011-03-01

    • To determine the relationship between the number of nocturia and 24-h urine volume, nocturnal urine volume, nocturnal bladder capacity and length of sleep duration as well as to assess the significance of these factors with respect to eliminating nocturnal voidings in individual patients with nocturia. • Among 532 participants who completed a 3-day bladder diary between April 2005 and December 2006, the diaries of 450 participants without 24-h polyuria were analyzed. • Clinical variables such as the number of daytime and night-time voids, 24-h urine volume, nocturnal polyuria index, daytime and night-time maximum voided volumes (MVV), night/day MVV ratio, sleep duration and proportion of night/day urine production rates were obtained from each diary. • Participants were classified into eight groups according to values of three factors: nocturnal MVV, proportion of night/day urine production rates and length of sleep duration. • Each group was divided into three subgroups: non-nocturics (number of nocturnal voidings is zero), mild nocturics (number of nocturnal voidings is one) and severe nocturics (number of nocturnal voidings is two or more). • The data from non-nocturics with three normal factors were regarded as the normal control and compared with the variables of the other subgroups using Dunnett's method. • Variables that form the basis of classifying participants into eight groups and corresponding to abnormal factors of each group were statistically significant in all the subgroups of each group. • Furthermore, a significantly increased 24-h urine volume was found in severe nocturics of the group with three normal factors. • A significantly decreased 24-h urine volume was found in non-nocturics of groups with nocturnal polyuria, decreased bladder capacity and both long sleep duration and nocturnal polyuria. • A significantly increased nocturnal MVV and night/day MVV ratio were shown in non-nocturics and mild nocturics of the groups

  18. Mössbauer and heat capacity studies of ErZnSn2

    Directory of Open Access Journals (Sweden)

    Łątka Kazimierz

    2017-06-01

    Full Text Available Heat capacity results obtained for the intermetallic compound ErZnSn2 were re-analysed to also consider, apart from the classical Debye model, the anharmonicity of the crystal lattice and the proper set of Einstein modes. The 119mSn Mössbauer technique was applied to derive the hyperfine interaction parameters characteristic of the two inequivalent crystallographic Sn sites in the compound studied. Quadrupole interaction constants, as measured by 119mSn Mössbauer spectroscopy, allowed for estimations of Vzz components of the electric field gradient tensor that exist at both Sn sites in the discussed compound.

  19. Power Output Stability Research for Harvesting Automobile Exhaust Energy with Heat Capacity Material as Intermediate Medium

    Science.gov (United States)

    Xiao, Longjie; He, Tianming; Mei, Binyu; Wang, Yiping; Wang, Zongsong; Tan, Gangfeng

    2018-06-01

    Automobile exhaust energy thermoelectric utilization can promote energy-saving and emission-reduction. Unexpected urban traffic conditions lead to the hot-end temperature instability of the exhaust pipe-mounted thermoelectric generator (TEG), and influence the TEG power generation efficiency. The heat conduction oil circulation located at the hot-end could smooth the temperature fluctuation, at the expense of larger system size and additional energy supply. This research improves the TEG hot-end temperature stability by installing solid heat capacity material (SHCM) to the area between the outer wall of the exhaust pipe and the TEG, which has the merits of simple structure, light weight and no additional energy consumption. The exhaust temperature and flow rate characteristics with various driving conditions are firstly studied for the target engine. Then the convective heat transfer models of SHCM's hot-end and thermoelectric material's cold-end are established. Meanwhile, SHCM thermal properties' effects on the amplitude and response speed of the TEG hot-end temperature are studied. The candidate SHCM with the characteristics of low thermal resistance and high heat capacity is determined. And the heat transfer model going through from TEG's hot-end to the cold-end is established. The results show that the SHCM significantly improves the TEG hot-end temperature stability but slightly reduces the average power output. When the engine working conditions change a lot, the SHCM's improvement on the TEG hot-end temperature stability is more significant, but the reduction of the average power output becomes more remarkable.

  20. Bias induced modulation of electrical and thermal conductivity and heat capacity of BN and BN/graphene bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Chegel, Raad, E-mail: Raad.chegel@gmail.com

    2017-04-15

    By using the tight binding approximation and Green function method, the electronic structure, density of state, electrical conductivity, heat capacity of BN and BN/graphene bilayers are investigated. The AA-, AB{sub 1}- and AB{sub 2}- BN/graphene bilayers have small gap unlike to BN bilayers which are wide band gap semiconductors. Unlike to BN bilayer, the energy gap of graphene/BN bilayers increases with external field. The magnitude of the change in the band gap of BN bilayers is much higher than the graphene/BN bilayers. Near absolute zero, the σ(T) is zero for BN bilayers and it increases with temperature until reaches maximum value then decreases. The BN/graphene bilayers have larger electrical conductivity larger than BN bilayers. For both bilayers, the specific heat capacity has a Schottky anomaly.

  1. Development of seasonal heat storage based on stable supercooling of a sodium acetate water mixture

    DEFF Research Database (Denmark)

    Furbo, Simon; Fan, Jianhua; Andersen, Elsa

    2012-01-01

    A number of heat storage modules for seasonal heat storages based on stable supercooling of a sodium acetate water mixture have been tested by means of experiments in a heat storage test facility. The modules had different volumes and designs. Further, different methods were used to transfer heat...... to and from the sodium acetate water mixture in the modules. By means of the experiments: • The heat exchange capacity rates to and from the sodium acetate water mixture in the heat storage modules were determined for different volume flow rates. • The heat content of the heat storage modules were determined....... • The reliability of the supercooling was elucidated for the heat storage modules for different operation conditions. • The reliability of a cooling method used to start solidification of the supercooled sodium acetate water mixture was elucidated. The method is making use of boiling CO2 in a small tank in good...

  2. New experimental heat capacity and enthalpy of formation of lithium cobalt oxide

    International Nuclear Information System (INIS)

    Gotcu-Freis, Petronela; Cupid, Damian M.; Rohde, Magnus; Seifert, Hans J.

    2015-01-01

    Highlights: • LiCoO 2 heat capacity was measured in the temperature range (160 to 953) K using DSC. • Continuous/discontinuous methods were applied on different types of calorimeters. • Enthalpy increment of LiCoO 2 was determined using drop calorimetry at T = 974 K. • Enthalpies of formation were evaluated from oxide melt drop solution calorimetry. - Abstract: The heat capacity of LiCoO 2 (O3-phase), constituent material in cathodes for lithium-ion batteries, was measured using two differential scanning calorimeters over the temperature range from (160 to 953) K (continuous method). As an alternative, the discontinuous method was employed over the temperature range from (493 to 693) K using a third calorimeter. Based on the results obtained, the enthalpy increment of LiCoO 2 was derived from T = 298.15 K up to 974.15 K. Very good agreement was obtained between the derived enthalpy increment and our independent measurements of enthalpy increment using transposed temperature drop calorimetry at 974.15 K. In addition, values of the enthalpy of formation of LiCoO 2 from the constituent oxides and elements were assessed based on measurements of enthalpy of dissolution using high temperature oxide melt drop solution calorimetry. The high temperature values obtained by these measurements are key input data in safety analysis and optimisation of the battery management systems which accounts for possible thermal runaway events

  3. Regional frontal gray matter volume associated with executive function capacity as a risk factor for vehicle crashes in normal aging adults.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Sakai

    Full Text Available Although low executive functioning is a risk factor for vehicle crashes among elderly drivers, the neural basis of individual differences in this cognitive ability remains largely unknown. Here we aimed to examine regional frontal gray matter volume associated with executive functioning in normal aging individuals, using voxel-based morphometry (VBM. To this end, 39 community-dwelling elderly volunteers who drove a car on a daily basis participated in structural magnetic resonance imaging, and completed two questionnaires concerning executive functioning and risky driving tendencies in daily living. Consequently, we found that participants with low executive function capacity were prone to risky driving. Furthermore, VBM analysis revealed that lower executive function capacity was associated with smaller gray matter volume in the supplementary motor area (SMA. Thus, the current data suggest that SMA volume is a reliable predictor of individual differences in executive function capacity as a risk factor for vehicle crashes among elderly persons. The implication of our results is that regional frontal gray matter volume might underlie the variation in driving tendencies among elderly drivers. Therefore, detailed driving behavior assessments might be able to detect early neurodegenerative changes in the frontal lobe in normal aging adults.

  4. Research and development of a heat-pump water heater. Volume 2. R and D task reports

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, R.L.; Amthor, F.R.; Doyle, E.J.

    1978-08-01

    The heat pump water heater is a device that works much like a window air conditioner except that heat from the home is pumped into a water tank rather than to the outdoors. The objective established for the device is to operate with a Coefficient of Performance (COP) of 3 or, an input of one unit of electric energy would create three units of heat energy in the form of hot water. With such a COP, the device would use only one-third the energy and at one-third the cost of a standard resistance water heater. This Volume 2 contains the final reports of the three major tasks performed in Phase I. In Task 2, a market study identifies the future market and selects an initial target market and channel of distribution, all based on an analysis of the parameters affecting feasibility of the device and the factors that will affect its market acceptance. In the Task 3 report, the results of a design and test program to arrive at final designs of heat pumps for both new water heaters and for retrofitting existing water heaters are presented. In the Task 4 report, a plan for an extensive field demonstration involving use in actual homes is presented. Volume 1 contains a final summary report of the information in Volume 2.

  5. The Heat Is on: An Inquiry-Based Investigation for Specific Heat

    Science.gov (United States)

    Herrington, Deborah G.

    2011-01-01

    A substantial number of upper-level science students and practicing physical science teachers demonstrate confusion about thermal equilibrium, heat transfer, heat capacity, and specific heat capacity. The traditional method of instruction, which involves learning the related definitions and equations, using equations to solve heat transfer…

  6. A finite volume procedure for fluid flow, heat transfer and solid-body stress analysis

    KAUST Repository

    Jagad, P. I.; Puranik, B. P.; Date, A. W.

    2018-01-01

    A unified cell-centered unstructured mesh finite volume procedure is presented for fluid flow, heat transfer and solid-body stress analysis. An in-house procedure (A. W. Date, Solution of Transport Equations on Unstructured Meshes with Cell

  7. High capacity carbon dioxide sorbent

    Science.gov (United States)

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  8. Replacement of ultrasonic energy as the heat source for a greener bio diesel production: A response surface methodology

    International Nuclear Information System (INIS)

    Babak Salamatinia; Hamed Mootabadi; Subhash Bhatia; Ahmad Zuhairi Abdullah

    2010-01-01

    The use of ultrasonic energy for mixing and the subsequent conversion to heat energy in the transesterification reaction of vegetable oil is reported. Effects of 5 important variables i.e. pulse on (s), pulse off (s), reaction time (min), power (%) and oil volume (ml) at constant alcohol to palm oil molar ratio (9:1) and initial reaction temperature of 35 degree Celsius were studied. A central composite design (CCD) using response surface technology (RSM) was employed. The results indicated that the reaction time did not play much role as the system reached steady state within the first few minutes. Longer the pulse on and the lower the pulse off at 70 % of the maximum power of could bring the reaction to desired temperature for volume of up to 60 ml. A model was proposed based on heat capacity of reactants for conversion of ultrasonic into heat and the final temperature of the system could be predicted. This model was tested with 5 types of vegetable oil including used palm oil, canola oil, sunflower oil and corn oil to study the effect of specific heat capacity of the oil. Three different types of catalysts with varying heat capacities were also tested for verification of the model. The model developed showed good predictions with less than 5 % error in different conditions. (author)

  9. Mössbauer spectroscopy, magnetization, magnetic susceptibility, and low temperature heat capacity of α-Na2NpO4

    International Nuclear Information System (INIS)

    Smith, Anna L; Hen, Amir; Magnani, Nicola; Colineau, Eric; Griveau, Jean-Christophe; Raison, Philippe E; Caciuffo, Roberto; Konings, Rudy J M; Sanchez, Jean-Pierre; Cheetham, Anthony K

    2016-01-01

    The physical and chemical properties at low temperatures of hexavalent disodium neptunate α-Na 2 NpO 4 are investigated for the first time in this work using Mössbauer spectroscopy, magnetization, magnetic susceptibility, and heat capacity measurements. The Np(VI) valence state is confirmed by the isomer shift value of the Mössbauer spectra, and the local structural environment around the neptunium cation is related to the fitted quadrupole coupling constant and asymmetry parameters. Moreover, magnetic hyperfine splitting is reported below 12.5 K, which could indicate magnetic ordering at this temperature. This interpretation is further substantiated by the existence of a λ-peak at 12.5 K in the heat capacity curve, which is shifted to lower temperatures with the application of a magnetic field, suggesting antiferromagnetic ordering. However, the absence of any anomaly in the magnetization and magnetic susceptibility data shows that the observed transition is more intricate. In addition, the heat capacity measurements suggest the existence of a Schottky-type anomaly above 15 K associated with a low-lying electronic doublet found about 60 cm −1 above the ground state doublet. The possibility of a quadrupolar transition associated with a ground state pseudoquartet is thereafter discussed. The present results finally bring new insights into the complex magnetic and electronic peculiarities of α-Na 2 NpO 4 . (paper)

  10. Heat pipes for temperature control

    International Nuclear Information System (INIS)

    Groll, M.

    1978-01-01

    Heat pipes have known for years as effective constructional elements for temperature control. With the aid of special techniques (gas, liquid, steam, and voltage control), special operating characteristics can be obtained, e.g. variable heat conduction or diode behaviour. Their main field of application is in spacecraft technology and in nuclear technology in the isothermalisation of irradiation capsules. The different control techniques are presented and critically evaluated on the basis of characteristic properties like heat transfer capacity, volume and mass requirements, complexity of structure and production, reliability, and temperature control characteristics. Advantages and shortcomings of the different concepts are derived and compared. The state of the art of these control techniques is established on the basis of four development levels. Finally, the necessity and direction of further R + D activities are discussed, and suggestions are made for further work. (orig./HP) [de

  11. Experimental estimation of the heat energy dissipated in a volume surrounding the tip of a fatigue crack

    Directory of Open Access Journals (Sweden)

    G. Meneghetti

    2016-01-01

    Full Text Available Fatigue crack initiation and propagation involve plastic strains that require some work to be done on the material. Most of this irreversible energy is dissipated as heat and consequently the material temperature increases. The heat being an indicator of the intense plastic strains occurring at the tip of a propagating fatigue crack, when combined with the Neuber’s structural volume concept, it might be used as an experimentally measurable parameter to assess the fatigue damage accumulation rate of cracked components. On the basis of a theoretical model published previously, in this work the heat energy dissipated in a volume surrounding the crack tip is estimated experimentally on the basis of the radial temperature profiles measured by means of an infrared camera. The definition of the structural volume in a fatigue sense is beyond the scope of the present paper. The experimental crack propagation tests were carried out on hot-rolled, 6-mm-thick AISI 304L stainless steel specimens subject to completely reversed axial fatigue loading.

  12. Quantum thermodynamics from the nonequilibrium dynamics of open systems: Energy, heat capacity, and the third law.

    Science.gov (United States)

    Hsiang, J-T; Chou, C H; Subaşı, Y; Hu, B L

    2018-01-01

    In a series of papers, we intend to take the perspective of open quantum systems and examine from their nonequilibrium dynamics the conditions when the physical quantities, their relations, and the laws of thermodynamics become well defined and viable for quantum many-body systems. We first describe how an open-system nonequilibrium dynamics (ONEq) approach is different from the closed combined system +  environment in a global thermal state (CGTs) setup. Only after the open system equilibrates will it be amenable to conventional thermodynamics descriptions, thus quantum thermodynamics (QTD) comes at the end rather than assumed in the beginning. The linkage between the two comes from the reduced density matrix of ONEq in that stage having the same form as that of the system in the CGTs. We see the open-system approach having the advantage of dealing with nonequilibrium processes as many experiments in the near future will call for. Because it spells out the conditions of QTD's existence, it can also aid us in addressing the basic issues in quantum thermodynamics from first principles in a systematic way. We then study one broad class of open quantum systems where the full nonequilibrium dynamics can be solved exactly, that of the quantum Brownian motion of N strongly coupled harmonic oscillators, interacting strongly with a scalar-field environment. In this paper, we focus on the internal energy, heat capacity, and the third law. We show for this class of physical models, amongst other findings, the extensive property of the internal energy, the positivity of the heat capacity, and the validity of the third law from the perspective of the behavior of the heat capacity toward zero temperature. These conclusions obtained from exact solutions and quantitative analysis clearly disprove claims of negative specific heat in such systems and dispel allegations that in such systems the validity of the third law of thermodynamics relies on quantum entanglement. They are

  13. Effects of caffeine on endurance capacity and psychological state in young females and males exercising in the heat.

    Science.gov (United States)

    Suvi, Silva; Timpmann, Saima; Tamm, Maria; Aedma, Martin; Kreegipuu, Kairi; Ööpik, Vahur

    2017-01-01

    Acute caffeine ingestion is considered effective in improving endurance capacity and psychological state. However, current knowledge is based on the findings of studies that have been conducted on male subjects mainly in temperate environmental conditions, but some physiological and psychological effects of caffeine differ between the sexes. The purpose of this study was to compare the physical performance and psychological effects of caffeine in young women and men exercising in the heat. Thirteen male and 10 female students completed 2 constant-load walks (60% of thermoneutral peak oxygen consumption on a treadmill until volitional exhaustion) in a hot-dry environment (air temperature, 42 °C; relative humidity, 20%) after caffeine (6 mg·kg -1 ) and placebo (wheat flour) ingestion in a double-blind, randomly assigned, crossover manner. Caffeine, compared with placebo, induced greater increases (p exercise in the heat, but it has no impact on thermoregulation or endurance capacity in either gender. Under exercise-heat stress, caffeine reduces ratings of perceived exertion and fatigue in males but not in females.

  14. Combined quantum-mechanical and Calphad approach to description of heat capacity of pure elements below room temperature

    Czech Academy of Sciences Publication Activity Database

    Pavlů, J.; Řehák, Petr; Vřešťál, Jan; Šob, Mojmír

    2015-01-01

    Roč. 51, č. 1 (2015), s. 161-171 ISSN 0364-5916 Institutional support: RVO:68081723 Keywords : Einstein temperature * Heat capacity * Low temperature * Pure elements * SGTE data * Zero Kelvin Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.129, year: 2015

  15. Sporulation environment of emetic toxin-producing Bacillus cereus strains determines spore size, heat resistance and germination capacity

    NARCIS (Netherlands)

    Voort, van der M.; Abee, T.

    2013-01-01

    Aim Heat resistance, germination and outgrowth capacity of Bacillus cereus spores in processed foods are major factors in causing the emetic type of gastrointestinal disease. In this study, we aim to identify the impact of different sporulation conditions on spore properties of emetic

  16. Heat-capacity measurement on (Zr1-ySny)Ox from 325 to 905 K

    International Nuclear Information System (INIS)

    Tsuji, Toshihide; Amaya, Masaki; Naito, Keiji

    1993-01-01

    Heat capacities of (Zr 1-y Sn y )O 0.17 and (Zr 1-y Sn y )O 0.28 (y=0-0.07) having α''-ZrO ∼1/6 and α''-ZrO x type crystal structures, respectively, were measured from 325 to 905 K by using an adiabatic scanning calorimeter. Two kinds of heat capacity anomalies were observed for all samples. The anomaly at lower temperatures is attributed to a nonequilibrium phenomenon. Another anomaly at higher temperatures is assigned to an order-disorder rearrangement of oxygen atoms. The transition temperature, transition enthalpy and entropy changes due to the order-disorder transition decreased with increasing tin content, indicating that arrangement of oxygen atoms in the lower temperature phase may be partially disordered by substituting tin for zirconium. The entropy change due to the order-disorder transition for (Zr 1-y Sn y )O 0.17 and (Zr 1-y Sn y )O 0.28 solid solutions is compared with the theoretical value. The solubility limits of (Zr 1-y Sn y )O 0.17 and (Zr 1-y Sn y )O 0.28 were determined from the variation of lattice constants, transition temperature, transition enthalpy and entropy changes against tin content. (orig.)

  17. Heat capacity measurements of Sr{sub 2}RuO{sub 4} under uni-axial strain

    Energy Technology Data Exchange (ETDEWEB)

    Li, You-sheng; Mackenzie, Andrew [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); University of St. Andrews, School of Physics and Astronomy (United Kingdom); Gibbs, Alexandra [Max Planck Institute for Solid State Research, Stuttgart (Germany); Hicks, Clifford [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Nicklas, Michael [University of St. Andrews, School of Physics and Astronomy (United Kingdom)

    2016-07-01

    One of the most-discussed possible pairing symmetries of Sr{sub 2}RuO{sub 4} is p{sub x} ± ip{sub y}. By applying strain along left angle 100 right angle -direction, the degeneracy of the p{sub x} and p{sub y} components is lifted, and thus there should be two critical temperatures (T{sub c}). Hicks et al. have observed an increase of T{sub c} of Sr{sub 2}RuO{sub 4} under both compressive and tensile strains, by measuring the susceptibility, which is sensitive only to the first transition. Their results also indicate, indirectly, that any splitting of T{sub c}s might be small. For a direct test of possible splitting, we measure the heat capacity of Sr{sub 2}RuO{sub 4} under strain. To do so, we are developing an approach to measure heat capacity under non-adiabatic conditions. We have observed an increase of T{sub c} under compressive strain. This is the first thermodynamic evidence of the strain-induced increase in T{sub c} of Sr{sub 2}RuO{sub 4}.

  18. The Effects of Heat Adaptation on Physiology, Perception and Exercise Performance in the Heat: A Meta-Analysis.

    Science.gov (United States)

    Tyler, Christopher J; Reeve, Tom; Hodges, Gary J; Cheung, Stephen S

    2016-11-01

    Exercise performance and capacity are impaired in hot, compared to temperate, conditions. Heat adaptation (HA) is one intervention commonly adopted to reduce this impairment because it may induce beneficial exercise performance and physiological and perceptual adaptations. A number of investigations have been conducted on HA but, due to large methodological differences, the effectiveness of different HA regimens remain unclear. (1) To quantify the effect of different HA regimens on exercise performance and the physiological and perceptual responses to subsequent heat exposure. (2) To offer practical HA recommendations and suggestions for future HA research based upon a systematic and quantitative synthesis of the literature. PubMed was searched for original research articles published up to, and including, 16 February 2016 using appropriate first- and second-order search terms. English-language, peer-reviewed, full-text original articles using human participants were reviewed using the four-stage process identified in the PRISMA statement. Data for the following variables were obtained from the manuscripts by at least two of the authors: participant sex, maximal oxygen consumption and age; HA duration, frequency, modality, temperature and humidity; exercise performance and capacity; core and skin temperature; heart rate, stroke volume, cardiac output, skin blood flow, sweat onset temperature, body mass loss, sweat rate, perception of thirst, volitional fluid consumption, plasma volume changes; sweat concentrations of sodium, chloride and potassium; aldosterone, arginine vasopressin, heat shock proteins (Hsp), ratings of perceived exertion (RPE) and thermal sensation. Data were divided into three groups based upon the frequency of the HA regimen. Performance and capacity data were also divided into groups based upon the type of HA used. Hedges' g effect sizes and 95 % confidence intervals were calculated. Correlations were run where appropriate. Ninety-six articles

  19. Volumes, capacidades pulmonares e força muscular respiratória no pós-operatório de gastroplastia Lung volumes, lung capacities and respiratory muscle strength following gastroplasty

    Directory of Open Access Journals (Sweden)

    Denise de Moraes Paisani

    2005-04-01

    Full Text Available INTRODUÇÃO: A gastroplastia tem sido cada vez mais indicada no tratamento de obesos mórbidos, pacientes nos quais podemos identificar alteração pronunciada de volumes e capacidades pulmonares. OBJETIVO: Avaliar o comportamento dos volumes e capacidades pulmonares, força muscular respiratória, padrão respiratório e as possíveis complicações pulmonares pós-operatórias. MÉTODO: Vinte e um pacientes (três homens com média de idade de 39 ± 9,7 anos, média de índice de massa corpórea de 50,4 Kg/m², candidatos à gastroplastia, foram avaliados no pré-operatório, primeiro, terceiro e quinto dias de pós-operatório e submetidos a mensuração de volume corrente, capacidade vital, volume minuto, pressões máximas expiratória e inspiratória, e circunferências abdominal e torácica. Observou-se a ocorrência de complicações pulmonares pós-operatórias e mortalidade. RESULTADOS: No primeiro e terceiro dias de pós-operatório houve queda de 47% e 30,5% na capacidade vital, 18% e 12,5% no volume minuto, 28% e 21% no volume corrente, 47% e 32% no índice diafragmático, 51% e 26% na pressão inspiratória máxima, e 39,5% e 26% na pressão expiratória máxima, respectivamente (p BACKGROUND: Gastroplasty has been increasingly used in the treatment of morbidly obese patients, who typically present pronounced alterations in lung volume and capacity. OBJECTIVE: To evaluate post-gastroplasty lung volume, lung capacity, respiratory muscle strength and respiratory pattern, as well as any postoperative pulmonary complications. METHOD: 21 patients (3 of them men, with an average age of 39 ± 9.7 years and an average body mass index of 50.4 kg/m², all candidates for gastroplasty, were evaluated during the preoperative period and again on the first, third and fifth postoperative days. Tidal volume, vital capacity, minute volume, maximal expiratory pressure and maximal inspiratory pressure, as well as chest and waist circumferences, were

  20. Optimal usage of low temperature heat sources to supply district heating by heat pumps

    DEFF Research Database (Denmark)

    Pieper, Henrik; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2017-01-01

    This paper presents a theoretical study on the optimal usage of different low temperature heat sources to supply district heating by heat pumps. The study is based on data for the Copenhagen region. The heat sources were prioritized based on the coefficient of performance calculated for each hour...... and the covered demand of each heat source as well as required peak unit capacity. The results showed that heat pumps using different heat sources yield better performance than a heat pump based on a single one. The performance was influenced by the composition of the different heat sources. It was found that 78......% groundwater, 22% seawater and 0% air resulted in highest COP of 3.33 for the given heat demand. Furthermore, the implementation of rule based short term storage made peak units redundant. The variation in base load capacity showed that heat pumps utilizing the analyzed heat sources could perform very...

  1. Evaluation of lung volumes, vital capacity and respiratory muscle strength after cervical, thoracic and lumbar spinal surgery.

    Science.gov (United States)

    Oliveira, Marcio Aparecido; Vidotto, Milena Carlos; Nascimento, Oliver Augusto; Almeida, Renato; Santoro, Ilka Lopes; Sperandio, Evandro Fornias; Jardim, José Roberto; Gazzotti, Mariana Rodrigues

    2015-01-01

    Studies have shown that physiopathological changes to the respiratory system can occur following thoracic and abdominal surgery. Laminectomy is considered to be a peripheral surgical procedure, but it is possible that thoracic spinal surgery exerts a greater influence on lung function. The aim of this study was to evaluate the pulmonary volumes and maximum respiratory pressures of patients undergoing cervical, thoracic or lumbar spinal surgery. Prospective study in a tertiary-level university hospital. Sixty-three patients undergoing laminectomy due to diagnoses of tumors or herniated discs were evaluated. Vital capacity, tidal volume, minute ventilation and maximum respiratory pressures were evaluated preoperatively and on the first and second postoperative days. Possible associations between the respiratory variables and the duration of the operation, surgical diagnosis and smoking status were investigated. Vital capacity and maximum inspiratory pressure presented reductions on the first postoperative day (20.9% and 91.6%, respectively) for thoracic surgery (P = 0.01), and maximum expiratory pressure showed reductions on the first postoperative day in cervical surgery patients (15.3%; P = 0.004). The incidence of pulmonary complications was 3.6%. There were reductions in vital capacity and maximum respiratory pressures during the postoperative period in patients undergoing laminectomy. Surgery in the thoracic region was associated with greater reductions in vital capacity and maximum inspiratory pressure, compared with cervical and lumbar surgery. Thus, surgical manipulation of the thoracic region appears to have more influence on pulmonary function and respiratory muscle action.

  2. Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant.

    Science.gov (United States)

    Caleman, Carl; van Maaren, Paul J; Hong, Minyan; Hub, Jochen S; Costa, Luciano T; van der Spoel, David

    2012-01-10

    The chemical composition of small organic molecules is often very similar to amino acid side chains or the bases in nucleic acids, and hence there is no a priori reason why a molecular mechanics force field could not describe both organic liquids and biomolecules with a single parameter set. Here, we devise a benchmark for force fields in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant. Well over 1200 experimental measurements were used for comparison to the simulations of 146 organic liquids. Novel polynomial interpolations of the dielectric constant (32 molecules), heat capacity at constant pressure (three molecules), and the isothermal compressibility (53 molecules) as a function of the temperature have been made, based on experimental data, in order to be able to compare simulation results to them. To compute the heat capacities, we applied the two phase thermodynamics method (Lin et al. J. Chem. Phys.2003, 119, 11792), which allows one to compute thermodynamic properties on the basis of the density of states as derived from the velocity autocorrelation function. The method is implemented in a new utility within the GROMACS molecular simulation package, named g_dos, and a detailed exposé of the underlying equations is presented. The purpose of this work is to establish the state of the art of two popular force fields, OPLS/AA (all-atom optimized potential for liquid simulation) and GAFF (generalized Amber force field), to find common bottlenecks, i.e., particularly difficult molecules, and to serve as a reference point for future force field development. To make for a fair playing field, all molecules were evaluated with the same parameter settings, such as thermostats and barostats

  3. Influence of the volume ratio of solid phase on carrying capacity of regular porous structure

    Directory of Open Access Journals (Sweden)

    Monkova Katarina

    2017-01-01

    Full Text Available Direct metal laser sintering is spread technology today. The main advantage of this method is the ability to produce parts which have a very complex geometry and which can be produced only in very complicated way by classical conventional methods. Special category of such components are parts with porous structure, which can give to the product extraordinary combination of properties. The article deals with some aspects that influence the manufacturing of regular porous structures in spite of the fact that input technological parameters at various samples were the same. The main goal of presented research has been to investigate the influence of the volume ratio of solid phase on carrying capacity of regular porous structure. Realized tests have indicated that the unit of regular porous structure with lower volume ratio is able to carry a greater load to failure than the unit with higher volume ratio.

  4. Use of additives to improve the capacity of bituminous mixtures to be heated by means of microwaves

    International Nuclear Information System (INIS)

    Gallego, J.; Val, M.A. del; Contreras, V.; Páez, A.

    2017-01-01

    This study examines the potential of adding electric arc furnace slag to bituminous mixtures to be heated by microwaves. The susceptibility of bituminous mixtures to microwave energy is limited and so, in order to improve the energy performance of the heating process, it is necessary to incorporate additives or components to the mixture so as to improve the capacity for microwave heating. The article presents the results of adding various components, (steel wool, scrap tire wire, silicon carbide, iron filings) and an alternative aggregate: electric arc furnace slag. According to the results obtained in the laboratory, slag addition of at least 5% by weight of the bituminous mixture represents the best option for both technical and economic reasons. The results may promote the valorization of this steel industry residue in bituminous mixtures by improving microwave heating response. [es

  5. Heat capacities and phase analysis of the superconductive compounds Mosub(6+y0) Se8 and Gdsub(x0) Mosub(6+y0) Se8

    International Nuclear Information System (INIS)

    Nerz, K.P.

    1979-02-01

    High precision heat capacity measurements were performed on a high quality sample of Mo 6 Se 8 . The values obtained for the Sommerfeld-constant γ, density of states N(Esub(F)) and entropy S 2 (Tsub(c)) of the electronic system are a factor 1.5 to 2 larger than have been published earlier by other groups. The differences are attributed to the lower concentration of impurity phases in our sample. Our sample of Mo 6 Se 8 shows a discontinuity in the electronic heat capacity at Tsub(c) with a relative height (Csub(es)-Csub(en))/Csub(en) which is a factor 1.6 larger compared to an ideal BCS-superconductor. The energy gap in the excitation spectrum of the superconductor Mo 6 Se 8 is a factor 1.4 wider than for an ideal BCS-superconductor in the observed temperature regime. Our data for the electronic heat capacity of the superconducting phase Mo 6 Se 8 are in good agreement with the calculated values corresponding to the 'strong coupling'-model of Padamsee et al. For the characteristic quantity of the electron-phonon interaction, lambda, a value of 0.8 was calculated. All these results support the conclusions that Mo 6 Se 8 behaves like a superconductor with a strong electron-phonon interaction. In addition heat capacity measurements have been made for samples of the ternary Chevrel-phase compounds 'Gdsub(x 0 )Mosub(6+y 0 )Se 8 ' which were prepared by a variety of methods. A quantitative analysis of impurity phases has been made from the heat capacity data. (orig.) [de

  6. A finite volume method for cylindrical heat conduction problems based on local analytical solution

    KAUST Repository

    Li, Wang

    2012-10-01

    A new finite volume method for cylindrical heat conduction problems based on local analytical solution is proposed in this paper with detailed derivation. The calculation results of this new method are compared with the traditional second-order finite volume method. The newly proposed method is more accurate than conventional ones, even though the discretized expression of this proposed method is slightly more complex than the second-order central finite volume method, making it cost more calculation time on the same grids. Numerical result shows that the total CPU time of the new method is significantly less than conventional methods for achieving the same level of accuracy. © 2012 Elsevier Ltd. All rights reserved.

  7. A finite volume method for cylindrical heat conduction problems based on local analytical solution

    KAUST Repository

    Li, Wang; Yu, Bo; Wang, Xinran; Wang, Peng; Sun, Shuyu

    2012-01-01

    A new finite volume method for cylindrical heat conduction problems based on local analytical solution is proposed in this paper with detailed derivation. The calculation results of this new method are compared with the traditional second-order finite volume method. The newly proposed method is more accurate than conventional ones, even though the discretized expression of this proposed method is slightly more complex than the second-order central finite volume method, making it cost more calculation time on the same grids. Numerical result shows that the total CPU time of the new method is significantly less than conventional methods for achieving the same level of accuracy. © 2012 Elsevier Ltd. All rights reserved.

  8. Numerical simulation of magnetic heat pumps

    International Nuclear Information System (INIS)

    Smaili, A.; Masson, C.

    2002-01-01

    This article presents a numerical method for performance predictions of magnetic heat pump (MHP) devices. Such devices consist primarily of a magnetic regenerator (solid refrigerant media) and circulating fluid. Unlike conventional gas-cycles, MHP devices function according to thermomagnetic cycles which do not require neither compressor nor expander. In this paper, the flow field throughout the regenerator is described by continuity and unsteady incompressible Navier-Stokes equations. The heat transfer between fluid and solid is introduced by considering the corresponding energy equations. The proposed mathematical model has been solved using a control volume finite element method. The fully implicit scheme is used for time discretization. Simulation results including heating capacity and coefficient of performance are presented for a given MHP cycle. Mainly, the effects of cycle frequency, mass flow rate and the magnetic regenerator mass are investigated. (author)

  9. Heat transfer coefficients during quenching of steels

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, H.S.; Jalil, J.M. [University of Technology, Department of Electromechanical Engineering, Baghdad (Iraq); Peet, M.J.; Bhadeshia, H.K.D.H. [University of Cambridge, Department of Materials Science and Metallurgy, Cambridge (United Kingdom)

    2011-03-15

    Heat transfer coefficients for quenching in water have been measured as a function of temperature using steel probes for a variety of iron alloys. The coefficients were derived from measured cooling curves combined with calculated heat-capacities. The resulting data were then used to calculate cooling curves using the finite volume method for a large steel sample and these curves have been demonstrated to be consistent with measured values for the large sample. Furthermore, by combining the estimated cooling curves with time-temperature-transformation (TTT) diagrams it has been possible to predict the variation of hardness as a function of distance via the quench factor analysis. The work should prove useful in the heat treatment of the steels studied, some of which are in the development stage. (orig.)

  10. EXPERIENCE OF UTILIZATION OF CAPACITY BANKS AND SCHEMES OF FREQUENCY REGULATION IN MUNICIPAL CENTRALIZED HEATING SYSTEM OF CHISINAU

    Directory of Open Access Journals (Sweden)

    CHERNEI M

    2013-04-01

    Full Text Available The current paper provides a brief summary of the district heating system of the municipality Chisinau, including heat power sources, heat distribution network, production and consumption development over the past two decades and other data. Also, the priority investment projects realized by JSC "Termocom" are being presented. The company had implemented an automated monitoring system for the heat power production, transportation and distribution. For many years, the company used bellows pipes with polyurethane insulation, ball valves and plate heat exchangers. 14 out of 21 district heating boiler stations were upgraded 10 were completely automated having as a result no further need in full-time duty personnel there. The experience gained in the implementation of capacity banks and frequency inverters, summarizing the benefits and achieved results, is also presented in the current paper. It is to be underlined that in 2011 the company achieved decrease in electricity consumption by about 30% in comparison with 2005.

  11. Evaluating Moisture Control of Variable-Capacity Heat Pumps in Mechanically Ventilated, Low-Load Homes in Climate Zone 2A

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Eric [Univ. of Central Florida, Orlando, FL (United States). Florida Solar Energy Center; Withers, Chuck [Univ. of Central Florida, Orlando, FL (United States). Florida Solar Energy Center; McIlvaine, Janet [Univ. of Central Florida, Orlando, FL (United States). Florida Solar Energy Center; Chasar, Dave [Univ. of Central Florida, Orlando, FL (United States). Florida Solar Energy Center; Beal, David [Univ. of Central Florida, Orlando, FL (United States). Florida Solar Energy Center

    2018-02-07

    The well-sealed, highly insulated building enclosures constructed by today's home building industry coupled with efficient lighting and appliances are achieving significantly reduced heating and cooling loads. These low-load homes can present a challenge when selecting appropriate space-conditioning equipment. Conventional, fixed-capacity heating and cooling equipment is often oversized for small homes, causing increased first costs and operating costs. Even if fixed-capacity equipment can be properly specified for peak loads, it remains oversized for use during much of the year. During these part-load cooling hours, oversized equipment meets the target dry-bulb temperatures very quickly, often without sufficient opportunity for moisture control. The problem becomes more acute for high-performance houses in humid climates when meeting ASHRAE Standard 62.2 recommendations for wholehouse mechanical ventilation.

  12. Isobaric specific heat capacity of water and aqueous cesium chloride solutions for temperatures between 298 K and 370 K at p = 0.1 MPa

    International Nuclear Information System (INIS)

    Lourenco, M.J.V.; Santos, F.J.V.; Ramires, M.L.V.; Nieto de Castro, C.A.

    2006-01-01

    There has been some controversy regarding the uncertainty of measurements of thermal properties using differential scanning calorimeters, namely heat capacity of liquids. A differential scanning calorimeter calibrated in enthalpy and temperature was used to measure the isobaric specific heat capacity of water and aqueous solutions of cesium chloride, in the temperature range 298 K to 370 K, for molalities up 3.2 mol . kg -1 , at p = 0.1 MPa, with an estimated uncertainty (ISO definition) better than 1.1%, at a 95% confidence level. The measurements are completely traceable to SI units of energy and temperature. The results obtained were correlated as a function of temperature and molality and compared with other authors, obtained by different methods and permit to conclude that a DSC calibrated by Joule effect is capable of very accurate measurements of the isobaric heat capacity of liquids, traceable to SI units of measurement

  13. District heating grid of the Daqing Nuclear Heating Plant

    Energy Technology Data Exchange (ETDEWEB)

    Changwen, Ma [Institute of Nuclear Energy and Technology, Tsingua Univ., Beijing (China)

    1997-09-01

    The Daqing Nuclear Heating Plant is the first commercial heating plant to be built in China. The plant is planned to be used as the main heat resource of one residential quarter of Daqing city. The main parameters of the heating plant are summarized in the paper. The load curve shows that the capacity of the NHP is about 69% of total capacity of the grid. The 12 existing boilers can be used as reserve and peak load heat resources. Two patterns of load following have have been considered and tested on the 5MW Test Heating Reactor. Experiment shows load of heat grid is changed slowly, so automatic load following is not necessary. (author). 9 figs, 1 tab.

  14. Seismic capacity evaluation of a group of vertical U-tube heat exchanger with support frames for seismic PSA

    International Nuclear Information System (INIS)

    Watanabe, Yuichi; Muramatsu, Ken; Oikawa, Tetsukuni

    2005-01-01

    This paper presents an evaluation of seismic capacity of a group of vertical U-tube type heat exchangers (HXs) with support frames to contribute to refinement of seismic capacity data for seismic Probabilistic Safety Assessment (PSA) in Japan. According to usual practice of seismic PSAs, capacity of component is represented as a log-normally distributed random variable defined by a median and logarithmic standard deviations (LSDs), which represent inherent randomness about the median, β r , and uncertainty in the median due to lack of knowledge, β u . Using design specifications of four HXs for residual heat removal systems of 1100 MWe BWRs, the authors evaluated a generic capacity of HXs with a LSD for uncertainty due to lack of knowledge to take into account design variability. The median capacity was evaluated by the use of a time history response analysis with a detailed model for a selected representative HX, which was extended from a model used in seismic design. The LSD for uncertainty due to lack of knowledge was evaluated with consideration of the variabilities in three influential design parameters, i.e., diameter of anchor bolt, weight of HX and position of center of gravity of HX with the detailed model and a simplified static model. The LSD for uncertainty due to randomness was determined from the variability in material property. The dominant failure mode of HXs was identified as the failure of anchor bolts of lugs mainly due to shearing stress. The capacity expressed in terms of zero period acceleration on the foundation of HX was evaluated to be 4180 Gal (4.3 g) for median, LSD for uncertainty due to randomness was 0.11 and LSD due to lack of knowledge was 0.21-0.53 depending on combination of the variabilities in design parameters to be considered

  15. Flue gas moisture capacity calculation at the outlet of the condensation heat recovery unit

    Directory of Open Access Journals (Sweden)

    Galashov Nikolay

    2017-01-01

    Full Text Available As a result, study equation has been obtained which determine the flue gas moisture capacity at the outlet of the condensation heat recovery unit with an error of less than 1%. It possible to at the temperature of the flue gas below the dew point and the known air-fuel ratio efficient. The equation can be used to calculate plants operating on products of gas combustion without Use of tables and programs for calculating the water-vapor saturation pressure.

  16. Age-related oxidative stress and antioxidant capacity in heat-stressed broilers.

    Science.gov (United States)

    Del Vesco, A P; Khatlab, A S; Goes, E S R; Utsunomiya, K S; Vieira, J S; Oliveira Neto, A R; Gasparino, E

    2017-10-01

    We aimed to evaluate the effects of acute heat stress (HS) and age on the redox state in broilers aged 21 and 42 days. We evaluated the expression of genes related to antioxidant capacity, the production of hydrogen peroxide (H2O2), and the activity of antioxidant enzymes in the liver, as well as oxidative stress markers in the liver and plasma. The experiment had a completely randomized factorial design with two thermal environments (thermoneutral and HS, 38°C for 24 h) and two ages (21 and 42 days). Twenty-one-day-old animals exposed to HS showed the highest thioredoxin reductase 1 (TrxR1) (PAge influenced the expression of the thioredoxin (Trx) (P=0.0090), superoxide dismutase (SOD) (P=0.0194), glutathione reductase (GSR) (Page and environment on the liver content of Glutathione (GSH) (Page had higher plasma creatinine content (0.05 v. 0.01 mg/dl) and higher aspartate aminotransferase activity (546.50 v. 230.67 U/l) than chickens at 21 days of age. Our results suggest that under HS conditions, in which there is higher H2O2 production, 21-day-old broilers have greater antioxidant capacity than 42-day-old animals.

  17. Graded Reflectivity Mirror for the Solid State Heat Capacity Laser Final Report CRADA No. TC-2085-04

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Davis, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-27

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and the Boeing Company, to develop a Graded Reflectivity Mirror (GRM) to achieve improved near field fill and higher brightness in the far field output of LLNL’s Solid State Heat Capacity Laser (SSHCL).

  18. Recovery Act: Finite Volume Based Computer Program for Ground Source Heat Pump Systems

    Energy Technology Data Exchange (ETDEWEB)

    James A Menart, Professor

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled Finite Volume Based Computer Program for Ground Source Heat Pump Systems. The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The

  19. A study of heat capacity temperature limit of BWR

    International Nuclear Information System (INIS)

    Wang, Shih-Jen; Chen, Jyh-Jun; Chien, Chun-Sheng; Teng, Jyh-Tong

    2012-01-01

    Highlights: ► The purpose of this study is to verify the HCTL. ► MAAP4 was used as code to generate a realistic and convenient HCTL. ► The current HCTL curve causes confusing in reading data. ► The revised HCTL curves developed in this study. ► Users can obtain important parameters from the revised HCTL without confusion and interpolation. - Abstract: Heat capacity temperature limit (HCTL) is an important parameter for operation of BWR. Current version of the HCTL was derived, based on simple model of computation aids (CA) of BWR owners’ group (BWROG). However, some parts of the current HCTL are confusing to the users in reading data. The purpose of this study is to verify the HCTL by applying the MAAP4 code to the field of emergency operating procedure (EOP). The trends of HCTL generated by MAAP4 code are consistent with those obtained from CA. A series of revised HCTL evaluated at various times after scram are provided and the confusing part is eliminated.

  20. Heat capacity and solid solubility of iron in scandium

    International Nuclear Information System (INIS)

    Tsang, T.-W.E.

    1981-01-01

    The maximum solid solubility of iron in scandium was determined to be between 50 and 85 at.ppm in the as-cast condition. As the concentration of iron increases, it segregates along the grain boundary, as is evident from optical metallography and electron microprobe examinations. Annealing also causes the iron dissolved in scandium to separate out and cluster along the grain boundary. Heat capacity measurements show an anomaly in the C/T versus T 2 plots for iron concentrations of 19 at.ppm or greater. For iron dissolved in solid scandium the excess entropy due to the iron impurity is in agreement with the theoretical prediction of ck ln(2S + 1) for an impurity-conduction electron (Kondo) interaction, but is 4 - 8 times larger than the theoretical prediction when iron segregates along the grain boundary. Furthermore, our results suggest that most of the previously reported low temperature physical properties of scandium are probably in error because of either iron impurity-conduction electron interactions or Fe-Fe interactions in the precipitated second-phase Sc-Fe compound. (Auth.)

  1. A study of heat capacity temperature limit of BWR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shih-Jen, E-mail: sjenwang@iner.gov.tw [Institute of Nuclear Energy Research (INER), 1000, Wunhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China); Chen, Jyh-Jun [Department of Mechanical Engineering, Chung Yuan Christian University, 200, Chung Pei Rd., Chung Li City, Taoyuan County 32023, Taiwan (China); Chien, Chun-Sheng [Institute of Nuclear Energy Research (INER), 1000, Wunhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China); Teng, Jyh-Tong [Department of Mechanical Engineering, Chung Yuan Christian University, 200, Chung Pei Rd., Chung Li City, Taoyuan County 32023, Taiwan (China)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer The purpose of this study is to verify the HCTL. Black-Right-Pointing-Pointer MAAP4 was used as code to generate a realistic and convenient HCTL. Black-Right-Pointing-Pointer The current HCTL curve causes confusing in reading data. Black-Right-Pointing-Pointer The revised HCTL curves developed in this study. Black-Right-Pointing-Pointer Users can obtain important parameters from the revised HCTL without confusion and interpolation. - Abstract: Heat capacity temperature limit (HCTL) is an important parameter for operation of BWR. Current version of the HCTL was derived, based on simple model of computation aids (CA) of BWR owners' group (BWROG). However, some parts of the current HCTL are confusing to the users in reading data. The purpose of this study is to verify the HCTL by applying the MAAP4 code to the field of emergency operating procedure (EOP). The trends of HCTL generated by MAAP4 code are consistent with those obtained from CA. A series of revised HCTL evaluated at various times after scram are provided and the confusing part is eliminated.

  2. Thermoeconomic Evaluation of Modular Organic Rankine Cycles for Waste Heat Recovery over a Broad Range of Heat Source Temperatures and Capacities

    Directory of Open Access Journals (Sweden)

    Markus Preißinger

    2017-02-01

    Full Text Available Industrial waste heat recovery by means of an Organic Rankine Cycle (ORC can contribute to the reduction of CO2 emissions from industries. Before market penetration, high efficiency modular concepts have to be developed to achieve appropriate economic value for industrial decision makers. This paper aims to investigate modularly designed ORC systems from a thermoeconomic point of view. The main goal is a recommendation for a suitable chemical class of working fluids, preferable ORC design and a range of heat source temperatures and thermal capacities in which modular ORCs can be economically feasible. For this purpose, a thermoeconomic model has been developed which is based on size and complexity parameters of the ORC components. Special emphasis has been laid on the turbine model. The paper reveals that alkylbenzenes lead to higher exergetic efficiencies compared to alkanes and siloxanes. However, based on the thermoeconomic model, the payback periods of the chemical classes are almost identical. With the ORC design, the developed model and the boundary conditions of this study, hexamethyldisiloxane is a suitable working fluid and leads to a payback period of less than 5 years for a heat source temperature of 400 to 600 °C and a mass flow rate of the gaseous waste heat stream of more than 4 kg/s.

  3. Demonstration, testing, and evaluation of in situ heating of soil. Final report, Volume 2, Appendices A to E

    International Nuclear Information System (INIS)

    Dev, H.; Enk, J.; Jones, D.; Sabato, W.

    1996-01-01

    This is a final report presented in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cubic yards of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. It was demonstrated that the mass flow rate of the volatile organic chemicals was enhanced in the recovered soil gas as a result of heating. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOC's and other organic chemicals. Although it may be applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by air flow

  4. Demonstration, testing, and evaluation of in situ heating of soil. Final report, Volume 2, Appendices A to E

    Energy Technology Data Exchange (ETDEWEB)

    Dev, H.; Enk, J.; Jones, D.; Sabato, W.

    1996-04-05

    This is a final report presented in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cubic yards of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. It was demonstrated that the mass flow rate of the volatile organic chemicals was enhanced in the recovered soil gas as a result of heating. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOC`s and other organic chemicals. Although it may be applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by air flow.

  5. Effect of pH Changes on Antioxidant Capacity and the Content of Betalain Pigments During the Heating of a Solution of Red Beet Betalains

    Directory of Open Access Journals (Sweden)

    Mikołajczyk-Bator Katarzyna

    2017-06-01

    Full Text Available Red beets and their products are mainly consumed after processing. In this study, the effect of pH on changes in antioxidant capacity (AC and the content of betalain pigments were analysed during the heating of a betalain preparation solution. With pH ranging from 4 to 9 during the heat-treatment, the content of red pigments decreased depending on the pH level of the sample. The losses of red pigments in the investigated betalain preparation solution increased along with rising pH levels of the heated solution. The greatest losses were recorded at pH of 9.0. An opposite correlation was observed for yellow pigments. The content of yellow pigments in the heated betalain preparation solution was increasing along with increasing pH. The most pronounced increase in the content of yellow pigments was found at pH of 6.5 and 7.0. At the same time, the heated betalain preparation solution was shown to exhibit a higher antioxidant capacity at pH of 6.0 (14.9 μmol Trolox/mL than at pH of 4.0 (12.6 μmol Trolox/mL. It was observed that the increase in the antioxidant capacity in heated betalain preparation solutions with pH in the 6.0–6.5 range occurred as a result of increased concentrations of neobetanin, assessed by HPLC, within the pH range from 5.0 to 6.5.

  6. Pressure-modulated differential scanning calorimetry. An approach to the continuous, simultaneous determination of heat capacities and expansion coefficients.

    Science.gov (United States)

    Boehm, K; Rösgen, J; Hinz, H-J

    2006-02-15

    A new method is described that permits the continuous and synchronous determination of heat capacity and expansibility data. We refer to it as pressure-modulated differential scanning calorimetry (PMDSC), as it involves a standard DSC temperature scan and superimposes on it a pressure modulation of preselected format. The power of the method is demonstrated using salt solutions for which the most accurate heat capacity and expansibility data exist in the literature. As the PMDSC measurements could reproduce the parameters with high accuracy and precision, we applied the method also to an aqueous suspension of multilamellar DSPC vesicles for which no expansibility data had been reported previously for the transition region. Excellent agreement was obtained between data from PMDSC and values from independent direct differential scanning densimetry measurements. The basic theoretical background of the method when using sawtooth-like pressure ramps is given under Supporting Information, and a complete statistical thermodynamic derivation of the general equations is presented in the accompanying paper.

  7. Microscale Regenerative Heat Exchanger

    Science.gov (United States)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2006-01-01

    The device described herein is designed primarily for use as a regenerative heat exchanger in a miniature Stirling engine or Stirling-cycle heat pump. A regenerative heat exchanger (sometimes called, simply, a "regenerator" in the Stirling-engine art) is basically a thermal capacitor: Its role in the Stirling cycle is to alternately accept heat from, then deliver heat to, an oscillating flow of a working fluid between compression and expansion volumes, without introducing an excessive pressure drop. These volumes are at different temperatures, and conduction of heat between these volumes is undesirable because it reduces the energy-conversion efficiency of the Stirling cycle.

  8. HEAT PUMP USING SUBSOIL WATERS AS LOW TEMPERATURE HEAT SOURCE

    Directory of Open Access Journals (Sweden)

    Denysova Alla

    2015-08-01

    Full Text Available One of the basic directions of perfection of heat supply systems is the tendency of transition to the low-temperature heating systems based on application of heat pump installations. We consider heat supply system with heat pump installations using subsoil waters. Numerical simulation of thermal processes in the elements of a single-stage and double-stage heat pump systems has been worked out. Values of depths of wells and their quantity, necessary for effective operation of the offered installations, and values of capacity of electric water pumps for subsoil waters unit are calculated. Capacity of compressor electric drive and coefficient of performance of heat pump for the conditions of the city of Odessa are presented.

  9. Numerical Investigation on the Heat Extraction Capacity of Dual Horizontal Wells in Enhanced Geothermal Systems Based on the 3-D THM Model

    Directory of Open Access Journals (Sweden)

    Zhixue Sun

    2018-01-01

    Full Text Available The Enhanced Geothermal System (EGS constructs an artificial thermal reservoir by hydraulic fracturing to extract heat economically from hot dry rock. As the core element of the EGS heat recovery process, mass and heat transfer of working fluid mainly occurs in fractures. Since the direction of the natural and induced fractures are generally perpendicular to the minimum principal stress in the formation, as an effective stimulation approach, horizontal well production could increase the contact area with the thermal reservoir significantly. In this paper, the thermal reservoir is developed by a dual horizontal well system and treated as a fractured porous medium composed of matrix rock and discrete fracture network. Using the local thermal non-equilibrium theory, a coupled THM mathematical model and an ideal 3D numerical model are established for the EGS heat extraction process. EGS heat extraction capacity is evaluated in the light of thermal recovery lifespan, average outlet temperature, heat production, electricity generation, energy efficiency and thermal recovery rate. The results show that with certain reservoir and production parameters, the heat production, electricity generation and thermal recovery lifespan can achieve the commercial goal of the dual horizontal well system, but the energy efficiency and overall thermal recovery rate are still at low levels. At last, this paper puts forward a series of optimizations to improve the heat extraction capacity, including production conditions and thermal reservoir construction design.

  10. Numerical study on heat transfer characteristics of thermosyphon heat pipes using nanofluids

    International Nuclear Information System (INIS)

    Huminic, Gabriela; Huminic, Angel

    2013-01-01

    Highlights: • Numerical study of nanofluid heat transfer in thermosyphon heat pipes is performed. • Effect of nanoparticle concentration and operating temperature are studied. • Fe 2 O 3 –water nanofluid with 5.3% volume concentration shows the best performance. • Results show the improvement the thermal performances of thermosyphon heat pipe with nanofluids. - Abstract: In this work, a three-dimensional analysis is used to investigate the heat transfer of thermosyphon heat pipe using water and nanofluids as the working fluid. The study focused mainly on the effects of volume concentrations of nanoparticles and the operating temperature on the heat transfer performance of the thermosyphon heat pipe using the nanofluids. The analysis was performed for water and γ-Fe 2 O 3 nanoparticles, three volume concentrations of nanoparticles (0 vol.%, 2 vol.% and 5.3 vol.%) and four operating temperatures (60, 70, 80 and 90 °C). The numerical results show that the volume concentration of nanoparticles had a significant effect in reducing the temperature difference between the evaporator and condenser. Experimental and numerical results show qualitatively that the thermosyphon heat pipe using the nanofluid has better heat transfer characteristics than the thermosyphon heat pipe using water

  11. MODELLING OF PROCESS OF COMPRESSION OF STEAMS OF A RECTIFIED ALCOHOL IN THE SCHEMA OF AN ALCOHOLIC COLUMN WITH A HEAT PUMP

    Directory of Open Access Journals (Sweden)

    T. G. Korotkova

    2012-01-01

    Full Text Available The use of thermodynamic relations and equation of state of Redlich-Kwong, obtaining the approximation of the molar volume dependence on temperature and pressure, ideal gas heat capacity on temperature for the modeling of vapor compression rectified alcohol. Energy analysis scheme alcohol column with a heat pump and its comparison with the standard rectification plant.

  12. CDMA systems capacity engineering

    CERN Document Server

    Kim, Kiseon

    2004-01-01

    This new hands-on resource tackles capacity planning and engineering issues that are crucial to optimizing wireless communication systems performance. Going beyond the system physical level and investigating CDMA system capacity at the service level, this volume is the single-source for engineering and analyzing systems capacity and resources.

  13. An assessment of the effect on Olkiluoto repository capacity achievable with advanced fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Juutilainen, P.; Viitanen, T. [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT (Finland)

    2013-07-01

    Previously a few scenarios have been simulated for transition from thermal to fast reactor fleet in Finland in order to determine how much the transuranic inventory could be reduced with the partitioning and transmutation (P-T) technologies. Those calculations, performed with COSI6 code developed by CEA, are extended in the present study, in which the effect of P-T on the capacity of the planned final disposal repository at Olkiluoto (Finland) is evaluated by taking into account the created fission products and transuranic residuals from the reprocessing operations. The decay heat is assumed to be the most restrictive factor in defining the waste disposal packing density. The repository capacity evaluation of this study is based on the comparison of the decay heats produced by the deposited waste in various scenarios. The reference scenario of this article involves only Light Water Reactors (LWR) in an open fuel cycle. The capacity requirement of the geological repository is estimated in a few closed fuel cycle scenarios, all including actinide transmutation with Fast Reactors (FR). The comparison between the P-T scenarios and reference is based on the decay heat production of the deposited waste. The COSI6 code is used for simulations to provide the repository decay heat curves. Applying the closed fuel cycle would change the disposal concept and schedule, because of which it is not quite straightforward to assess the impact of P-T on the capacity. However, it can be concluded that recycling the transuranic nuclides probably decreases the required volume for the disposal, but thermal dimensioning analysis is needed for more specific conclusions.

  14. Blood Volume: Importance and Adaptations to Exercise Training, Environmental Stresses and Trauma/Sickness

    Science.gov (United States)

    Sawka, Michael N.; Convertino, Victor A.; Eichner, E. Randy; Schnieder, Suzanne M.; Young, Andrew J.

    2000-01-01

    This paper reviews the influence of several perturbations (physical exercise, heat stress, terrestrial altitude, microgravity, and trauma/sickness) on adaptations of blood volume (BV), erythrocyte volume (EV), and plasma volume (PV). Exercise training can induced BV expansion; PV expansion usually occurs immediately, but EV expansion takes weeks. EV and PV expansion contribute to aerobic power improvements associated with exercise training. Repeated heat exposure induces PV expansion but does not alter EV. PV expansion does not improve thermoregulation, but EV expansion improves thermoregulation during exercise in the heat. Dehydration decreases PV (and increases plasma tonicity) which elevates heat strain and reduces exercise performance. High altitude exposure causes rapid (hours) plasma loss. During initial weeks at altitude, EV is unaffected, but a gradual expansion occurs with extended acclimatization. BV adjustments contribute, but are not key, to altitude acclimatization. Microgravity decreases PV and EV which contribute to orthostatic intolerance and decreased exercise capacity in astronauts. PV decreases may result from lower set points for total body water and central venous pressure, which EV decrease bay result form increased erythrocyte destruction. Trauma, renal disease, and chronic diseases cause anemia from hemorrhage and immune activation, which suppressions erythropoiesis. The re-establishment of EV is associated with healing, improved life quality, and exercise capabilities for these injured/sick persons.

  15. Free volume and elastic properties changes in Cu-Zr-Ti-Pd bulk glassy alloy on heating

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Yavari, Alain Reza; Fukuhara, Mikio; Ota, Katsumi; Xie, Guoqiang; Vaughan, Gavin; Inoue, Akihisa

    2007-01-01

    The variation of free volume and elastic properties of the Cu 55 Zr 30 Ti 10 Pd 5 glassy alloy on heating was studied. The structure changes on heating were studied by synchrotron X-ray diffraction, differential scanning and isothermal calorimetries. The studied glassy alloy shows a rather high Poisson's ratio exceeding 0.42 which is maintained after the structure relaxation and primary devitrification. Young's and Shear modules decrease upon primary devitrification while Bulk modulus exhibits a maximum after structural relaxation

  16. A high performance cocurrent-flow heat pipe for heat recovery applications

    Science.gov (United States)

    Saaski, E. W.; Hartl, J. C.

    1980-01-01

    By the introduction of a plate-and-tube separator assembly into a heat pipe vapor core, it has been demonstrated that axial transport capacity in reflux mode can be improved by up to a factor of 10. This improvement is largely the result of eliminating the countercurrent shear that commonly limits reflux heat pipe axial capacity. With benzene, axial heat fluxes up to 1800 W/sq cm were obtained in the temperature range 40 to 80 C, while heat flux densities up to 3000 W/sq cm were obtained with R-11 over the temperature range 40 to 80 C. These very high axial capacities compare favorably with liquid metal limits; the sonic limit for liquid sodium, for example, is 3000 W/sq cm at 657 C. Computational models developed for these cocurrent flow heat pipes agreed with experimental data within + or - 25%.

  17. Emulsion stabilizing capacity of intact starch granules modified by heat treatment or octenyl succinic anhydride.

    Science.gov (United States)

    Timgren, Anna; Rayner, Marilyn; Dejmek, Petr; Marku, Diana; Sjöö, Malin

    2013-03-01

    Starch granules are an interesting stabilizer candidate for food-grade Pickering emulsions. The stabilizing capacity of seven different intact starch granules for making oil-in-water emulsions has been the topic of this screening study. The starches were from quinoa; rice; maize; waxy varieties of rice, maize, and barley; and high-amylose maize. The starches were studied in their native state, heat treated, and modified by octenyl succinic anhydride (OSA). The effect of varying the continuous phase, both with and without salt in a phosphate buffer, was also studied. Quinoa, which had the smallest granule size, had the best capacity to stabilize oil drops, especially when the granules had been hydrophobically modified by heat treatment or by OSA. The average drop diameter (d 32) in these emulsions varied from 270 to 50 μm, where decreasing drop size and less aggregation was promoted by high starch concentration and absence of salt in the system. Of all the starch varieties studied, quinoa had the best overall emulsifying capacity, and OSA modified quinoa starch in particular. Although the size of the drops was relatively large, the drops themselves were in many instances extremely stable. In the cases where the system could stabilize droplets, even when they were so large that they were visible to the naked eye, they remained stable and the measured droplet sizes after 2 years of storage were essentially unchanged from the initial droplet size. This somewhat surprising result has been attributed to the thickness of the adsorbed starch layer providing steric stabilization. The starch particle-stabilized Pickering emulsion systems studied in this work has potential practical application such as being suitable for encapsulation of ingredients in food and pharmaceutical products.

  18. Demonstration, testing, & evaluation of in situ heating of soil. Draft final report, Volume II: Appendices A to E

    Energy Technology Data Exchange (ETDEWEB)

    Dev, H.; Enk, J.; Jones, D.; Saboto, W.

    1996-02-12

    This document is a draft final report for US DOE contract entitled, {open_quotes}Demonstration Testing and Evaluation of In Situ Soil Heating,{close_quotes} Contract No. DE-AC05-93OR22160, IITRI Project No. C06787. This report is presented in two volumes. Volume I contains the technical report This document is Volume II, containing appendices with background information and data. In this project approximately 300 cu. yd. of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOCs and other organic chemicals boiling up to 120{degrees}to 130{degrees}C in the vadose zone. Although it may applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by low air flow.

  19. Finite volume method for radiative heat transfer in an unstructured flow solver for emitting, absorbing and scattering media

    International Nuclear Information System (INIS)

    Gazdallah, Moncef; Feldheim, Véronique; Claramunt, Kilian; Hirsch, Charles

    2012-01-01

    This paper presents the implementation of the finite volume method to solve the radiative transfer equation in a commercial code. The particularity of this work is that the method applied on unstructured hexahedral meshes does not need a pre-processing step establishing a particular marching order to visit all the control volumes. The solver simply visits the faces of the control volumes as numbered in the hexahedral unstructured mesh. A cell centred mesh and a spatial differencing step scheme to relate facial radiative intensities to nodal intensities is used. The developed computer code based on FVM has been integrated in the CFD solver FINE/Open from NUMECA Int. Radiative heat transfer can be evaluated within systems containing uniform, grey, emitting, absorbing and/or isotropically or linear anisotropically scattering medium bounded by diffuse grey walls. This code has been validated for three test cases. The first one is a three dimensional rectangular enclosure filled with emitting, absorbing and anisotropically scattering media. The second is the differentially heated cubic cavity. The third one is the L-shaped enclosure. For these three test cases a good agreement has been observed when temperature and heat fluxes predictions are compared with references taken, from literature.

  20. A new turbine model for enhancing convective heat transfer in the presence of low volume concentration of Ag-Oil Nanofluids

    Science.gov (United States)

    Jafarimoghaddam, Amin; Aberoumand, Sadegh; Jafarimoghaddam, Reza

    2018-05-01

    This study aims to experimentally investigate and introduce a new model for enhancing convective heat transfer in the presence of Ag/ oil nanofluid. An annular tube was designed with a turbine element attached to the inner tube. The inner tube was a bearing shaft which could rotate with the rotation of turbine element. As the previous works by authors, the setup was conducted with a fully developed laminar flow regime with the Reynolds numbers less than 160. The outer surface of the annular tube was heated by an element with constant heat flux of 204 W. Ag/ oil nanofluid was used in different volume concentrations of 0.011%, 0.044% and 0.171%. The new model could enhance the convective heat transfer coefficient up to 54% (compared to the simple annular tube in the case of base fluid) for the best studied case (nanofluid with the volume concentration of 0.171%) while the friction factor remained low. The new model can be applied for related applications regarding Ag/ oil nanofluid as a new step in enhancing the convective heat transfer coefficient.

  1. Superfluid density and heat capacity measurements of 4He in porous gold

    International Nuclear Information System (INIS)

    Yoon, J.; Chan, M.

    1995-01-01

    Superfluid density of full pore 4 He as well as thin film 4 He confined in porous gold were measured as a function of temperature. The superfluid transition temperature of full pore was found to be 2.156 K. In both cases power law dependence on reduced temperature was found and the exponent was found to be the same as that of bulk 4 He. Porous gold is made by electrochemically leaching out silver from silver-gold alloy. The porous gold sample the authors fabricated has porosity of 55 with a diameter of 250 angstrom. Electron microscope picture shows that the structure of porous gold is exceedingly similar to that of Vycor. Heat capacity measurement of full pore 4 He in porous gold is in progress

  2. 2.5 MWT Heat Exchanger Designs for Passive DHRS in PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dehee; Eoh, Jaehyuk; Lee, Tae-Ho [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Decay Heat Removal System (DHRS) of PGSFR consists of two passive DHRS (PDHRS) trains and two active DHRS (ADHRS) trains. Recently, total heat removal capacity of the DHRS in the PGSFR has increased to 10 MWT from 4 MWT reflecting safety analysis results. Consequently, DHRS components including heat exchangers, dampers, electro-magnetic pump, fan, piping, expansion tank and stack have been newly designed. In this work, physical models and correlations to design two main components of the PDHRS, decay heat exchanger (DHX) and natural-draft sodium-to-air heat exchanger (AHX), are introduced and designed data are presented. Physical models and correlations applied for heat exchangers in the PDHRS design were introduced and design works using the SHXSA and AHXSA codes has been completed for 2.5 MWT decay heat removal capability. DHX and AHX are designed utilizing SHXSA and AHXSA codes, respectively. Those design codes have capability of thermal sizing and performance analysis for the shell-and-tube type and counter-current flow heat exchanger unit. Since both SHXSA and AHXSA codes are similar, following description is focused on the SHXSA code. A single flow channel associated with an individual heat transfer tube is basically considered for thermal sizing and then the calculation results and design variables regarding heat transfer and pressure drop, etc. are extended to whole tubes. Various correlations of heat transfer and pressure loss for the shell- and tubeside flows were implemented in the computer codes. The analysis domain is discretized into several control volumes and heat transfer and pressure losses are calculated in each control volume.

  3. Thermodynamic properties of xanthone: Heat capacities, phase-transition properties, and thermodynamic-consistency analyses using computational results

    International Nuclear Information System (INIS)

    Chirico, Robert D.; Kazakov, Andrei F.

    2015-01-01

    Highlights: • Heat capacities were measured for the temperature range (5 to 520) K. • The enthalpy of combustion was measured and the enthalpy of formation was derived. • Thermodynamic-consistency analysis resolved inconsistencies in literature enthalpies of sublimation. • An inconsistency in literature enthalpies of combustion was resolved. • Application of computational chemistry in consistency analysis was demonstrated successfully. - Abstract: Heat capacities and phase-transition properties for xanthone (IUPAC name 9H-xanthen-9-one and Chemical Abstracts registry number [90-47-1]) are reported for the temperature range 5 < T/K < 524. Statistical calculations were performed and thermodynamic properties for the ideal gas were derived based on molecular geometry optimization and vibrational frequencies calculated at the B3LYP/6-31+G(d,p) level of theory. These results are combined with sublimation pressures from the literature to allow critical evaluation of inconsistent enthalpies of sublimation for xanthone, also reported in the literature. Literature values for the enthalpy of combustion of xanthone are re-assessed, a revision is recommended for one result, and a new value for the enthalpy of formation of the ideal gas is derived. Comparisons with thermophysical properties reported in the literature are made for all other reported and derived properties, where possible

  4. HEAT AND MOISTURE EXCHANGE CAPACITY OF THE UPPER RESPIRATORY TRACT AND THE EFFECT OF TRACHEOTOMY BREATHING ON ENDOTRACHEAL CLIMATE

    NARCIS (Netherlands)

    Scheenstra, Renske J.; Muller, Sara H.; Vincent, Andrew; Hilgers, Frans J. M.

    2011-01-01

    Background. The aim of this study was to assess the heat and moisture exchange (HME) capacity of the upper respiratory tract and the effect of tracheotomy breathing on endotracheal climate in patients with head and neck cancer. Methods. We plotted the subglottic temperature and humidity measurements

  5. Heat and moisture exchange capacity of the upper respiratory tract and the effect of tracheotomy breathing on endotracheal climate

    NARCIS (Netherlands)

    Scheenstra, R.J.; Muller, S.H.; Vincent, A.; Hilgers, F.J.M.

    2011-01-01

    Background. The aim of this study was to assess the heat and moisture exchange (HME) capacity of the upper respiratory tract and the effect of tracheotomy breathing on endotracheal climate in patients with head and neck cancer. Methods. We plotted the subglottic temperature and humidity measurements

  6. A heat pipe solar collector system for winter heating in Zhengzhou city, China

    Directory of Open Access Journals (Sweden)

    Zheng Hui-Fan

    2017-01-01

    Full Text Available A heat pipe solar collector system for winter heating is investigated both experimentally and theoretically. The hourly heat collecting capacity, water temperature and contribution rate of solar collector system based on Zhengzhou city typical sunshine are calculated. The study reveals that the heat collecting capacity and water temperature increases initially and then decreases, and the solar collector system can provide from 40% to 78% heating load for a 200 m2 villa with in Zhengzhou city from November to March.

  7. Analysis of chiller units capacity for different heat loads considering variation of ambient air and cooling water temperature

    International Nuclear Information System (INIS)

    Coman, Aurelia Camelia; Tenescu, Mircea

    2010-01-01

    The paper purpose is to analyze the chiller units capacity to determine whether they can cope with high air and cooling water temperatures during summer time to remove heat loads imposed from Heating, Ventilation and Air Conditioning (HVAC) units in a CANDU 6 Nuclear Power Plant. The starting point is calculation of the overall heat transfer coefficient at the evaporator and condenser. They are used in heat balance equations of heat exchangers. A mathematical model was developed that simulates the refrigeration cycle to assess the response of chilled water system and its performance at different heat loads. In this analysis there were calculated values for inlet/outlet chilled water temperature and the refrigerant cycle thermodynamic parameters (condenser and evaporator pressure/temperature, refrigerant mass flowrate, refrigerant quality at the evaporator, refrigerant vapour superheated temperature at the compressor outlet, refrigerant subcooled temperature at the condenser outlet). To find the adequate functioning parameters of the installation, the MathCAD 13 software was used in all cases analyzed. The behaviour of the chiller units was investigated by examining the variation of three basic parameters, namely: - cooling water (river water) temperature; - air temperature; - heat load. The simultaneous variation of these three independent parameters allows to identify the actual chillers unit operating point (including chiller trip). (authors)

  8. Glass heat capacity and its abrupt change in glass transition region

    DEFF Research Database (Denmark)

    Yue, Yuanzheng; Smedskjær, Morten Mattrup; Mauro, John C.

    cover a large range of glass formers from metallic to non-metallic glasses. To conduct this study we convert the units of all the Cp data from J/mol K and J/g K to J/g-atom K. This study will provide insight into the correlations among chemical bonding, microstructure structure, liquid fragility, glass......Glass transition (GT) has been a fascinating, but challenging subject in the condensed matter science over decades. Despite progress in understanding GT, many crucial problems still need to be clarified. One of the problems deals with the microscopic origin of abrupt change of heat capacity (Cp......) around glass transition. Here we study this problem through two approaches. First, we analyze the Cp change with temperature on homologous series of glass formers (i.e., with regular compositional substitution). Second, we do the same on non-homologous systems (e.g. without regular compositional...

  9. A finite volume procedure for fluid flow, heat transfer and solid-body stress analysis

    KAUST Repository

    Jagad, P. I.

    2018-04-12

    A unified cell-centered unstructured mesh finite volume procedure is presented for fluid flow, heat transfer and solid-body stress analysis. An in-house procedure (A. W. Date, Solution of Transport Equations on Unstructured Meshes with Cell-Centered Colocated Variables. Part I: Discretization, International Journal of Heat and Mass Transfer, vol. 48 (6), 1117-1127, 2005) is extended to include the solid-body stress analysis. The transport terms for a cell-face are evaluated in a structured grid-like manner. The Cartesian gradients at the center of each cell-face are evaluated using the coordinate transformation relations. The accuracy of the procedure is demonstrated by solving several benchmark problems involving different boundary conditions, source terms, and types of loading.

  10. Research on a novel DDC-based capacity controller for the direct-expansion variable-air-volume A/C system

    Energy Technology Data Exchange (ETDEWEB)

    Chen Wu, E-mail: chenwu73@263.ne [School of Marine Engineering, Jimei University, Xiamen, Fujian Province 361021 (China); Deng Shiming [Department of Building Services Engineering, The Hong Kong Polytechnic University, Kowloon (Hong Kong)

    2010-01-15

    A direct-expansion (DX) variable-air-volume (VAV) air-conditioning (A/C) system consists of a VAV air-distribution sub-system and a DX refrigeration plant. This paper reports in detail on a novel capacity controller developed for the DX VAV A/C system to regulate its compressor speed and hence its cooling capacity. The capacity controller consisted of both a numerical calculation algorithm (NCA), which was fundamentally based on the principle of energy balance using a number of real-time measured system's operating parameters, and a dead-band for decoupling the control actions from both the capacity controller and a conventional PI feedback controller for regulating the opening of an electronic expansion valve (EEV) in the refrigeration plant. To study the feasibility of the capacity controller, an experimental rig for the DX VAV A/C system having two conditioned spaces was built and experimental tests were carried out. The test results showed that using the capacity controller, the cooling capacity of the system's refrigeration plant can be accurately and continuously regulated and the supply air temperature well maintained at its desired value. The desirable independent zoning-control for space air temperatures can be successfully achieved by the DX VAV A/C system and the control performance for air temperatures in the conditioned space was highly satisfactory.

  11. Research on a novel DDC-based capacity controller for the direct-expansion variable-air-volume A/C system

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wu [School of Marine Engineering, Jimei University, Xiamen, Fujian Province 361021 (China); Deng, Shiming [Department of Building Services Engineering, The Hong Kong Polytechnic University, Kowloon (China)

    2010-01-15

    A direct-expansion (DX) variable-air-volume (VAV) air-conditioning (A/C) system consists of a VAV air-distribution sub-system and a DX refrigeration plant. This paper reports in detail on a novel capacity controller developed for the DX VAV A/C system to regulate its compressor speed and hence its cooling capacity. The capacity controller consisted of both a numerical calculation algorithm (NCA), which was fundamentally based on the principle of energy balance using a number of real-time measured system's operating parameters, and a dead-band for decoupling the control actions from both the capacity controller and a conventional PI feedback controller for regulating the opening of an electronic expansion valve (EEV) in the refrigeration plant. To study the feasibility of the capacity controller, an experimental rig for the DX VAV A/C system having two conditioned spaces was built and experimental tests were carried out. The test results showed that using the capacity controller, the cooling capacity of the system's refrigeration plant can be accurately and continuously regulated and the supply air temperature well maintained at its desired value. The desirable independent zoning-control for space air temperatures can be successfully achieved by the DX VAV A/C system and the control performance for air temperatures in the conditioned space was highly satisfactory. (author)

  12. Research on a novel DDC-based capacity controller for the direct-expansion variable-air-volume A/C system

    International Nuclear Information System (INIS)

    Chen Wu; Deng Shiming

    2010-01-01

    A direct-expansion (DX) variable-air-volume (VAV) air-conditioning (A/C) system consists of a VAV air-distribution sub-system and a DX refrigeration plant. This paper reports in detail on a novel capacity controller developed for the DX VAV A/C system to regulate its compressor speed and hence its cooling capacity. The capacity controller consisted of both a numerical calculation algorithm (NCA), which was fundamentally based on the principle of energy balance using a number of real-time measured system's operating parameters, and a dead-band for decoupling the control actions from both the capacity controller and a conventional PI feedback controller for regulating the opening of an electronic expansion valve (EEV) in the refrigeration plant. To study the feasibility of the capacity controller, an experimental rig for the DX VAV A/C system having two conditioned spaces was built and experimental tests were carried out. The test results showed that using the capacity controller, the cooling capacity of the system's refrigeration plant can be accurately and continuously regulated and the supply air temperature well maintained at its desired value. The desirable independent zoning-control for space air temperatures can be successfully achieved by the DX VAV A/C system and the control performance for air temperatures in the conditioned space was highly satisfactory.

  13. A prototype of volume-controlled tidal liquid ventilator using independent piston pumps.

    Science.gov (United States)

    Robert, Raymond; Micheau, Philippe; Cyr, Stéphane; Lesur, Olivier; Praud, Jean-Paul; Walti, Hervé

    2006-01-01

    Liquid ventilation using perfluorochemicals (PFC) offers clear theoretical advantages over gas ventilation, such as decreased lung damage, recruitment of collapsed lung regions, and lavage of inflammatory debris. We present a total liquid ventilator designed to ventilate patients with completely filled lungs with a tidal volume of PFC liquid. The two independent piston pumps are volume controlled and pressure limited. Measurable pumping errors are corrected by a programmed supervisor module, which modifies the inserted or withdrawn volume. Pump independence also allows easy functional residual capacity modifications during ventilation. The bubble gas exchanger is divided into two sections such that the PFC exiting the lungs is not in contact with the PFC entering the lungs. The heating system is incorporated into the metallic base of the gas exchanger, and a heat-sink-type condenser is placed on top of the exchanger to retrieve PFC vapors. The prototype was tested on 5 healthy term newborn lambs (<5 days old). The results demonstrate the efficiency and safety of the prototype in maintaining adequate gas exchange, normal acido-basis equilibrium, and cardiovascular stability during a short, 2-hour total liquid ventilator. Airway pressure, lung volume, and ventilation scheme were maintained in the targeted range.

  14. Overall conductance and heat transfer area minimization of refrigerators and heat pumps with finite heat reservoirs

    International Nuclear Information System (INIS)

    Sarkar, J.; Bhattacharyya, Souvik

    2007-01-01

    In the present study, the overall conductance and the overall heat transfer area per unit capacity of refrigeration and heat pump systems have been minimized analytically considering both internal and external irreversibilities with variable temperature (finite capacity) heat reservoirs. Hot and cold side refrigerant temperatures, conductance and heat transfer area ratios have been optimized to attain this goal. The results have been verified with the more elaborate numerical optimization results obtained for ammonia based vapour compression refrigeration and heat pump systems working with variable temperature reservoirs. It is observed that the analytical results for optimum refrigerant temperatures, minimum overall conductance and heat transfer area deviate marginally from the numerically optimized results (within 1%), if one assumes a constant heat rejection temperature. The deviation of minimum overall conductance and heat transfer area is more (about 20%), if one considers both the desuperheating and condensation regions separately. However, in the absence of complex and elaborate numerical models, the simple analytical results obtained here can be used as reasonably accurate preliminary guidelines for optimization of refrigeration and heat pump systems

  15. Study of ion exchange equilibrium and determination of heat of ion exchange by ion chromatography

    International Nuclear Information System (INIS)

    Liu Kailu; Yang Wenying

    1996-01-01

    Ion chromatography using pellicularia ion exchange resins and dilute solution can be devoted to the study of ion exchange thermodynamics and kinetics. Ion exchange equilibrium equation was obtained, and examined by the experiments. Based on ion exchange equilibrium, the influence of eluent concentration and resin capacity on adjusted retention volumes was examined. The effect of temperature on adjusted retention volumes was investigated and heats of ion exchange of seven anions were determined by ion chromatography. The interaction between anions and skeleton structure of resins were observed

  16. Heat transfer capacity of heat pipes: An application in coalfield wildfire in China

    Science.gov (United States)

    Li, Bei; Deng, Jun; Xiao, Yang; Zhai, Xiaowei; Shu, Chi-Min; Gao, Wei

    2018-06-01

    Coalfield wildfires are serious catastrophes associated with mining activities. Generally, the coal wildfire areas have tremendous heat accumulation regions. Eliminating the internal heat is an effective method for coal wildfire control. In this study, high thermal conductivity component of a heat pipe (HP) was used for enhancing the heat dissipation efficiency and impeding heat accumulation. An experimental system was set up to analyze the thermal resistance network of the coal-HP system. A coal-HP heat removal model was also established for studying the heat transfer performance of HP on the coal pile. The HP exhibited outstanding cooling performance in the initial period, resulting in the highest temperature difference between the coal pile and ambient temperature. However, the effect of the HP on the distribution temperature of coal piles decreased with increasing distance. The largest decline in the coal temperature occurred in a 20-mm radius of the HP; the temperature decreased from 84.3 to 50.9 °C, a decline of 39.6%. The amount of energy transfer by the HP after 80 h was 1.0865, 2.1680, and 3.3649 MJ under the initial heat source temperatures of 100, 150, and 200 °C, respectively. The coal was governed below 80 °C with the HP under the experimental conditions. It revealed that the HP had a substantial effect on thermal removal and inhibited spontaneous coal combustion. In addition, this paper puts forward the technological path of HP to control typical coalfield wildfire. [Figure not available: see fulltext.

  17. Hybrid mesh finite volume CFD code for studying heat transfer in a forward-facing step

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, J S; Kumar, Inder [Bhabha Atomic Research Center, Mumbai (India); Eswaran, V, E-mail: jsjayan@gmail.com, E-mail: inderk@barc.gov.in, E-mail: eswar@iitk.ac.in [Indian Institute of Technology, Kanpur (India)

    2010-12-15

    Computational fluid dynamics (CFD) methods employ two types of grid: structured and unstructured. Developing the solver and data structures for a finite-volume solver is easier than for unstructured grids. But real-life problems are too complicated to be fitted flexibly by structured grids. Therefore, unstructured grids are widely used for solving real-life problems. However, using only one type of unstructured element consumes a lot of computational time because the number of elements cannot be controlled. Hence, a hybrid grid that contains mixed elements, such as the use of hexahedral elements along with tetrahedral and pyramidal elements, gives the user control over the number of elements in the domain, and thus only the domain that requires a finer grid is meshed finer and not the entire domain. This work aims to develop such a finite-volume hybrid grid solver capable of handling turbulence flows and conjugate heat transfer. It has been extended to solving flow involving separation and subsequent reattachment occurring due to sudden expansion or contraction. A significant effect of mixing high- and low-enthalpy fluid occurs in the reattached regions of these devices. This makes the study of the backward-facing and forward-facing step with heat transfer an important field of research. The problem of the forward-facing step with conjugate heat transfer was taken up and solved for turbulence flow using a two-equation model of k-{omega}. The variation in the flow profile and heat transfer behavior has been studied with the variation in Re and solid to fluid thermal conductivity ratios. The results for the variation in local Nusselt number, interface temperature and skin friction factor are presented.

  18. Hybrid mesh finite volume CFD code for studying heat transfer in a forward-facing step

    Science.gov (United States)

    Jayakumar, J. S.; Kumar, Inder; Eswaran, V.

    2010-12-01

    Computational fluid dynamics (CFD) methods employ two types of grid: structured and unstructured. Developing the solver and data structures for a finite-volume solver is easier than for unstructured grids. But real-life problems are too complicated to be fitted flexibly by structured grids. Therefore, unstructured grids are widely used for solving real-life problems. However, using only one type of unstructured element consumes a lot of computational time because the number of elements cannot be controlled. Hence, a hybrid grid that contains mixed elements, such as the use of hexahedral elements along with tetrahedral and pyramidal elements, gives the user control over the number of elements in the domain, and thus only the domain that requires a finer grid is meshed finer and not the entire domain. This work aims to develop such a finite-volume hybrid grid solver capable of handling turbulence flows and conjugate heat transfer. It has been extended to solving flow involving separation and subsequent reattachment occurring due to sudden expansion or contraction. A significant effect of mixing high- and low-enthalpy fluid occurs in the reattached regions of these devices. This makes the study of the backward-facing and forward-facing step with heat transfer an important field of research. The problem of the forward-facing step with conjugate heat transfer was taken up and solved for turbulence flow using a two-equation model of k-ω. The variation in the flow profile and heat transfer behavior has been studied with the variation in Re and solid to fluid thermal conductivity ratios. The results for the variation in local Nusselt number, interface temperature and skin friction factor are presented.

  19. Hybrid mesh finite volume CFD code for studying heat transfer in a forward-facing step

    International Nuclear Information System (INIS)

    Jayakumar, J S; Kumar, Inder; Eswaran, V

    2010-01-01

    Computational fluid dynamics (CFD) methods employ two types of grid: structured and unstructured. Developing the solver and data structures for a finite-volume solver is easier than for unstructured grids. But real-life problems are too complicated to be fitted flexibly by structured grids. Therefore, unstructured grids are widely used for solving real-life problems. However, using only one type of unstructured element consumes a lot of computational time because the number of elements cannot be controlled. Hence, a hybrid grid that contains mixed elements, such as the use of hexahedral elements along with tetrahedral and pyramidal elements, gives the user control over the number of elements in the domain, and thus only the domain that requires a finer grid is meshed finer and not the entire domain. This work aims to develop such a finite-volume hybrid grid solver capable of handling turbulence flows and conjugate heat transfer. It has been extended to solving flow involving separation and subsequent reattachment occurring due to sudden expansion or contraction. A significant effect of mixing high- and low-enthalpy fluid occurs in the reattached regions of these devices. This makes the study of the backward-facing and forward-facing step with heat transfer an important field of research. The problem of the forward-facing step with conjugate heat transfer was taken up and solved for turbulence flow using a two-equation model of k-ω. The variation in the flow profile and heat transfer behavior has been studied with the variation in Re and solid to fluid thermal conductivity ratios. The results for the variation in local Nusselt number, interface temperature and skin friction factor are presented.

  20. Demonstration, testing, ampersand evaluation of in situ heating of soil. Draft final report, Volume II: Appendices A to E

    International Nuclear Information System (INIS)

    Dev, H.; Enk, J.; Jones, D.; Saboto, W.

    1996-01-01

    This document is a draft final report for US DOE contract entitled, open-quotes Demonstration Testing and Evaluation of In Situ Soil Heating,close quotes Contract No. DE-AC05-93OR22160, IITRI Project No. C06787. This report is presented in two volumes. Volume I contains the technical report This document is Volume II, containing appendices with background information and data. In this project approximately 300 cu. yd. of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOCs and other organic chemicals boiling up to 120 degrees to 130 degrees C in the vadose zone. Although it may applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by low air flow

  1. Volume Flexibility and Capacity Investment : A Real Options Approach

    NARCIS (Netherlands)

    Wen, X.; Kort, P.M.; Talman, A.J.J.

    2015-01-01

    This paper considers the investment decision of a firm where it has to decide about the timing and capacity. We obtain that in a fast growing market, right after investment the firm produces below capacity, where the utilization rate (the proportion of capacity that is used for production right

  2. Volume flexibility and capacity investment: a real options approach

    NARCIS (Netherlands)

    Wen, Xingang; Kort, Peter; Talman, Dolf

    2017-01-01

    This paper considers the investment decision of a firm where it has to decide about the timing and capacity. We obtain that in a fast-growing market, right after investment the firm produces below capacity, where the utilization rate (the proportion of capacity that is used for production right

  3. Low-temperature heat capacities and thermodynamic properties of ethylenediammonium tetrachlorozincate chloride (C2H10N2)2(ZnCl4)Cl2

    International Nuclear Information System (INIS)

    He, Dong-Hua; Di, You-Ying; Wang, Bin; Dan, Wen-Yan; Tan, Zhi-Cheng

    2010-01-01

    The ethylenediammonium tetrachlorozincate chloride (C 2 H 10 N 2 ) 2 (ZnCl 4 )Cl 2 was synthesized. Chemical analysis, elemental analysis, and X-ray crystallography were applied to characterize the composition and crystal structure of the complex. Low-temperature heat capacities of the compound were measured by a precision automatic adiabatic calorimeter over the temperature range from T = 77-377 K. A polynomial equation of heat capacities as a function of the reduced temperature was fitted by a least square method. Based on the polynomial equation, the smoothed heat capacities and thermodynamic functions of the title compound relative to the standard reference temperature 298.15 K were calculated at intervals of 5 K. A thermochemical cycle was designed and the enthalpy change of the solid phase reaction of ethylenediamine dihydrochloride with zinc chloride was determined to be Δ r H m o =-(17.9±0.6)kJmol -1 by an isoperibol solution-reaction calorimeter. Finally, the standard molar enthalpy of formation of the title compound was derived to be Δ f H m o [(C 2 H 10 N 2 ) 2 (ZnCl 4 )Cl 2 ,s]=-(1514.4±2.7)kJmol -1 in accordance with Hess law.

  4. Heat capacity and point-contact spectra of the melt-spun cubic RECu.sub.5./sub. compounds (RE - heavy rare earths)

    Czech Academy of Sciences Publication Activity Database

    Reiffers, M.; Ilkovič, S.; Idzikowski, B.; Šebek, Josef; Šantavá, Eva

    2010-01-01

    Roč. 200, č. 3 (2010), 032061/1-032061/4 ISSN 1742-6588. [International Conference on Magnetism - ICM 2009. Karlsruhe, 26.07.2009-31.07.2009] Institutional research plan: CEZ:AV0Z10100520 Keywords : heat capacity * RE intermetallic Subject RIV: BM - Solid Matter Physics ; Magnetism

  5. Techniques for determining thermal conductivity and heat capacity under hydrostatic pressure

    Science.gov (United States)

    Andersson, S.; Bäckström, G.

    1986-08-01

    The paper describes a method for measuring the pressure dependence of the thermal conductivity and the heat capacity of hard materials and single crystals. Two parallel metal strips are evaporated onto a flat surface of the specimen, one being used as a heater, the other as a resistance thermometer. The appropriate theoretical expression for a specimen in a liquid medium is fitted to the temperature, sampled at constant time intervals. The thermophysical properties of the liquid high-pressure medium are taken from hot-wire experiments. The procedure has been thoroughly tested at atmospheric pressure using an MgO crystal and glass as specimens and liquids of different characteristics in lieu of high-pressure medium. The accuracy attainable was found to be 3% or better, the standard deviation of the measurements being about 0.3%. The potential of the system was demonstrated by measurements on single-crystal MgO under pressures up to 1 GPa.

  6. Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol

    2014-01-01

    The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete

  7. Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete

  8. Analysis of heat capacity and Mössbauer data for LuZnSn2 compound

    Directory of Open Access Journals (Sweden)

    Łątka Kazimierz

    2015-03-01

    Full Text Available New analysis of heat capacity data is presented for LuZnSn2 compound that takes into account anharmonic effects together with the existence of Einstein modes. 119mSn Mössbauer spectroscopy was used to monitor the hyperfine parameters at the two crystallographically inequivalent Sn sites in the studied compound. The problem of non-unique mathematical resonance spectrum description and the problem how to choose physically meaningful set of hyperfine parameters will be thoroughly discussed. Measured quadrupole interaction constants by 119mSn Mössbauer spectroscopy give estimations for Vzz component of electric field gradient tensor at both Sn sites in LuZnSn2.

  9. A Simple Measure to Assess Hyperinflation and Air Trapping: 1-Forced Expiratory Volume in Three Second / Forced Vital Capacity

    Directory of Open Access Journals (Sweden)

    Sermin Börekçi

    2017-04-01

    Full Text Available Background: Several recent studies have suggested that 1 minus-forced expiratory volume expired in 3 seconds / forced vital capacity (1-FEV3/FVC may be an indicator of distal airway obstruction and a promising measure to evaluate small airways dysfunction. Aims: To investigate the associations of 1-FEV3/FVC with the spirometric measures and lung volumes that assess small airways dysfunction and reflects hyperinflation and air trapping. Study Design: Retrospective cross-sectional study. Methods: Retrospective assessment of a total of 1110 cases who underwent body plethysmographic lung volume estimations between a time span from 2005 to 2012. Patients were assigned into two groups: firstly by FEV1/FVC (FEV1/FVC <70% vs. FEV1/FVC ≥70%; secondly by FEV3/FVC < lower limits of normal (LLN (FEV3/FVC < LLN vs. FEV3/FVC ≥ LLN. Spirometric indices and lung volumes measured by whole-body plethysmography were compared in groups. Also the correlation of spirometric indices with measured lung volumes were assessed in the whole-study population and in subgroups stratified according to FEV1/FVC and FEV3/FVC. Results: Six hundred seven (54.7% were male and 503 (45.3% were female, with a mean age of 52.5±15.6 years. Mean FEV3/FVC and 1-FEV3/FVC were 87.05%, 12.95%, respectively. The mean 1-FEV3/FVC was 4.9% in the FEV1/FVC ≥70% group (n=644 vs. 24.1% in the FEV1/FVC <70% group (n=466. A positive correlation was found between 1-FEV3/FVC and residual volume (r=0.70; p<0.0001, functional residual capacity-pleth (r=0.61; p<0.0001, and total lung capacity (r=0.47; p<0.0001. 1-FEV3/FVC was negatively correlated with forced expiratory flow25-75 (r=−0.84; p<0.0001. The upper limit of 95% confidence interval for 1-FEV3/FVC was 13.7%. 1-FEV3/FVC showed significant correlations with parameters of air trapping and hyperinflation measured by whole-body plethysmography. Importantly, these correlations were higher in study participants with FEV1/FVC <70% or FEV3/FVC

  10. Heat training increases exercise capacity in hot but not in temperate conditions: a mechanistic counter-balanced cross-over study.

    Science.gov (United States)

    Keiser, Stefanie; Flück, Daniela; Hüppin, Fabienne; Stravs, Alexander; Hilty, Matthias P; Lundby, Carsten

    2015-09-01

    The aim was to determine the mechanisms facilitating exercise performance in hot conditions following heat training. In a counter-balanced order, seven males (V̇o2max 61.2 ± 4.4 ml·min(-1)·kg(-1)) were assigned to either 10 days of 90-min exercise training in 18 or 38°C ambient temperature (30% relative humidity) applying a cross-over design. Participants were tested for V̇o2max and 30-min time trial performance in 18 (T18) and 38°C (T38) before and after training. Blood volume parameters, sweat output, cardiac output (Q̇), cerebral perfusion (i.e., middle cerebral artery velocity [MCAvmean]), and other variables were determined. Before one set of exercise tests in T38, blood volume was acutely expanded by 538 ± 16 ml with an albumin solution (T38A) to determine the role of acclimatization induced hypervolemia on exercise performance. We furthermore hypothesized that heat training would restore MCAvmean and thereby limit centrally mediated fatigue. V̇o2max and time trial performance were equally reduced in T38 and T38A (7.2 ± 1.6 and 9.3 ± 2.5% for V̇o2max; 12.8 ± 2.8 and 12.9 ± 2.8% for time trial). Following heat training both were increased in T38 (9.6 ± 2.1 and 10.4 ± 3.1%, respectively), whereas both V̇o2max and time trial performance remained unchanged in T18. As expected, heat training augmented plasma volume (6 ± 2%) and mean sweat output (26 ± 6%), whereas sweat [Na(+)] became reduced by 19 ± 7%. In T38 Q̇max remained unchanged before (21.3 ± 0.6 l/min) to after (21.7 ± 0.5 l/min) training, whereas MCAvmean was increased by 13 ± 10%. However, none of the observed adaptations correlated with the concomitant observed changes in exercise performance. Copyright © 2015 the American Physiological Society.

  11. On calculation of difference in specific heats at constant pressure and constant volume using an empiric Nernst-Lindeman equation

    International Nuclear Information System (INIS)

    Leont'ev, K.L.

    1981-01-01

    Known theoretical and empirical formulae are considered for the difference in specific heats at constant pressure and volume. On the basis of the Grunaiser law on the ratio of specific heat to thermal expansion and on the basis of the correlation proposed by the author, between this ratio and average velocity of elastic waves obtained in a new expression for the difference in specific heats and determined are conditions at which empiric Nernst-Lindeman equation can be considered to be strict. Results of calculations for metals with fcc lattice are presented

  12. An experimental investigation of the isochoric heat capacity of superheated steam and mixtures of superheated steam and hydrogen gas

    International Nuclear Information System (INIS)

    Nowak, E.S.; Chan, J.S.

    1975-01-01

    Measurements on the specific heat at constant volume of superheated steam and hydrogen gas mixtures at concentrations varying from 1.6 to 0.8 moles of water vapor per mole of hydrogen gas were made for temperatures ranging from 240 to 400 deg C. It was found that the experimental specific heat values of the mixtures are in good agreement with the ideal mixture values only near the saturation temperature of steam. The difference between the measured and the calculated ideal mixture values is a function of temperature, pressure and composition varying from about 11 to 24% at conditions far removed from the saturation temperature of steam. This indicates the heat of mixing is of significance in the steam-hydrogen system

  13. Effect of Al_2O_3 nanoparticle dispersion on the specific heat capacity of a eutectic binary nitrate salt for solar power applications

    International Nuclear Information System (INIS)

    Hu, Yanwei; He, Yurong; Zhang, Zhenduo; Wen, Dongsheng

    2017-01-01

    Highlights: • Stable binary nitrate eutectic salt based Al_2O_3 nanofluids were prepared. • A maximum enhancement of 8.3% on c_p was obtained at 2.0 wt.% nanoparticles. • MD simulation results show good agreement with experimental data. • The change in Coulombic energy contributed to most of the large change in c_p. - Abstract: Molten salts can be used as heat transfer fluids or thermal storage materials in a concentrated solar power plant. Improving the thermal properties can influence the utilization efficiency of solar energy. In this study, the effect of doping eutectic binary salt solvent with Al_2O_3 nanoparticles on its specific heat capacity (c_p) was investigated. The effects of the mass fraction of nanoparticles on the c_p of the composite nanofluid were analyzed, using both differential scanning calorimetry measurements and molecular dynamics simulations. The specific heat capacity of the nanocomposites was enhanced by increasing the nanoparticle concentration. The maximum enhancement was found to be 8.3%, at a nanoparticle concentration of 2.0%. A scanning electron microscope was used to analyze the material morphology. It was observed that special nanostructures were formed and the specific heat capacity of the nanocomposites was enhanced by increasing the quantity of nanostructures. Simulation results of c_p agreed well with the experimental data, and the potential energy and interaction energy in the system were analyzed. The change in Coulombic energy contributed to most of the large change in c_p, which explains the discrepancy in values between conventional nanofluids and molten salt-based nanofluids.

  14. Heat capacity of a white-eucalyptus biocarbon template for SiC/Si ecoceramics

    Science.gov (United States)

    Parfen'eva, L. S.; Smirnov, B. I.; Smirnova, I. A.; Wlosewicz, D.; Misiorek, H.; Jezowski, A.; Mucha, J.; de Arellano-Lopez, A. R.; Martinez-Fernandez, J.; Varela-Feria, F. M.; Krivchikov, A. I.

    2006-11-01

    The heat capacity C p of a biocarbon template based on white eucalyptus wood is measured at a constant pressure in the temperature range T = 3.5 300 K. The phonon mean free path l for a white-eucalyptus biocarbon template is calculated from the measured dependence C p (T) and data available in the literature on the phonon thermal conductivity and velocity of sound. It is established that, in the range 100 300 K, the phonon mean free path l is nearly constant and equal to ˜13 Å. This value is close to the smallest size of graphite-like crystallites (˜12 Å), which was derived earlier from x-ray diffraction data for a quasi-amorphous biocarbon template.

  15. Geothermal properties of Swiss Molasse Basin (depth range 0-500 m) - 2006 upgrade of the thermal conductivity, heat capacity, rock density and porosity data base

    International Nuclear Information System (INIS)

    Leu, W.; Megel, T.; Schaerli, U.

    2006-01-01

    The main aim of this project is the preparation of a specific data base of geothermal properties for typical rocks of the Swiss Molasse Basin (depth interval 0-500 m). The project includes the development of a new laboratory tool for efficient heat capacity measurements on rock samples, numerous new measurements of geothermal rock properties in the laboratory and calculation of such data from geophysical borehole logs. In the geographical area under review, 282 rock samples, mainly from deep boreholes, were analyzed with the successfully calibrated new heat capacity device and conventional thermal conductivity measuring techniques (cuttings and cores). Based on sonic and density log data from exploration wells, 374 additional data points were generated. This new data base characterizes in detail the six main lithological rock types in the three Molasse groups OSM, OMM and USM within the Swiss Plateau Molasse. The statistical evaluation of all data illustrates the regional variation of the petrophysical and geothermal parameters. For most data groups bulk rock density and thermal conductivity increase, whereas heat capacity decreases in the direction towards the Alpine front. Thermal conductivity shows a distinct increase with depth. Based on this new information and with the aid of the evaluation software tool SwEWS, the costs of planned geothermal installations can be optimized thanks to more precise heat extraction simulations with existing software packages like COSOND, TRNSYS, EWS or WPcalc. (author)

  16. The heat capacity and entropy of the lithium silicides Li17Si4 and Li16.42Si4 in the temperature range from (2 to 873) K

    International Nuclear Information System (INIS)

    Thomas, Daniel; Zeilinger, Michael; Gruner, Daniel; Hüttl, Regina; Seidel, Jürgen; Wolter, Anja U.B.; Fässler, Thomas F.; Mertens, Florian

    2015-01-01

    Highlights: • High quality experimental heat capacities of the new lithium rich silicides Li 17 Si 4 and Li 16.42 Si 4 are reported. • Two different calorimeters have been used to cover the broad temperature range from (2 to 873) K. • Samples were prepared and characterized (XRD) by the original authors who firstly described these new silicide phases in 2013. • Supply of polynomial heat capacity functions for four temperature intervals. • Calculation of standard entropies and entropies of formation of the lithium silicides. - Abstract: This work presents the heat capacities and standard entropies of the recently described lithium rich silicide phases Li 17 Si 4 and Li 16.42 Si 4 as a function of temperature in the range from (2 to 873) K. The measurements were carried out using two different calorimeters. The heat capacities were determined in the range from T = (2 to 300) K by a relaxation technique using a Physical Properties Measurement System (PPMS) from Quantum Design, and in the range from T = (283 to 873) K by means of a Sensys DSC from Setaram applying the C p -by-step method. The experimental data are given with an accuracy of (1 to 2)% above T = 20 K and the error increases up to 7% below T = 20 K. The results of the measurements at low temperatures permit the calculation of additional thermodynamic parameters such as the standard entropy as well as the temperature coefficients of electronic and lattice contributions to the heat capacity. Additionally, differential scanning calorimetric (DSC) measurements were carried out to verify the phase transition temperatures of the studied lithium silicide phases. The results represent a significant contribution to the data basis for thermodynamic calculations (e.g. CALPHAD) and to the understanding of the phase equilibria in the (Li + Si) system, especially in the lithium rich region

  17. Avian thermoregulation in the heat: evaporative cooling capacity of arid-zone Caprimulgiformes from two continents.

    Science.gov (United States)

    Talbot, William A; McWhorter, Todd J; Gerson, Alexander R; McKechnie, Andrew E; Wolf, Blair O

    2017-10-01

    Birds in the order Caprimulgiformes (nightjars and allies) have a remarkable capacity for thermoregulation over a wide range of environmental temperatures, exhibiting pronounced heterothermy in cool conditions and extreme heat tolerance at high environmental temperatures. We measured thermoregulatory responses to acute heat stress in three species of Caprimulgiformes that nest in areas of extreme heat and aridity, the common poorwill ( Phalaenoptilus nuttallii : Caprimulgidae) and lesser nighthawk ( Chordeiles acutipennis : Caprimulgidae) in the Sonoran Desert of Arizona, and the Australian owlet-nightjar ( Aegotheles cristatus : Aegothelidae) in the mallee woodlands of South Australia. We exposed wild-caught birds to progressively increasing air temperatures ( T a ) and measured resting metabolic rate (RMR), evaporative water loss (EWL), body temperature ( T b ) and heat tolerance limit (HTL; the maximum T a reached). Comparatively low RMR values were observed in all species (0.35, 0.36 and 0.40 W for the poorwill, nighthawk and owlet-nightjar, respectively), with T b approximating T a at 40°C and mild hyperthermia occurring as T a reached the HTL. Nighthawks and poorwills reached HTLs of 60 and 62°C, respectively, whereas the owlet-nightjar had a HTL of 52°C. RMR increased gradually above minima at T a of 42, 42 and 35°C, and reached 1.7, 1.9 and 2.0 times minimum resting values at HTLs in the poorwill, nighthawk and owlet-nightjar, respectively. EWL increased rapidly and linearly as T a exceeded T b and resulted in maximum rates of evaporative heat dissipation equivalent to 237-424% of metabolic heat production. Bouts of gular flutter resulted in large transient increases in evaporative heat loss (50-123%) accompanied by only small increments in RMR (<5%). The cavity-nesting/roosting owlet-nightjar had a lower HTL and less efficient evaporative cooling compared with the species that nest and/or roost on open desert surfaces. The high efficiency of gular

  18. Lung volumes: measurement, clinical use, and coding.

    Science.gov (United States)

    Flesch, Judd D; Dine, C Jessica

    2012-08-01

    Measurement of lung volumes is an integral part of complete pulmonary function testing. Some lung volumes can be measured during spirometry; however, measurement of the residual volume (RV), functional residual capacity (FRC), and total lung capacity (TLC) requires special techniques. FRC is typically measured by one of three methods. Body plethysmography uses Boyle's Law to determine lung volumes, whereas inert gas dilution and nitrogen washout use dilution properties of gases. After determination of FRC, expiratory reserve volume and inspiratory vital capacity are measured, which allows the calculation of the RV and TLC. Lung volumes are commonly used for the diagnosis of restriction. In obstructive lung disease, they are used to assess for hyperinflation. Changes in lung volumes can also be seen in a number of other clinical conditions. Reimbursement for measurement of lung volumes requires knowledge of current procedural terminology (CPT) codes, relevant indications, and an appropriate level of physician supervision. Because of recent efforts to eliminate payment inefficiencies, the 10 previous CPT codes for lung volumes, airway resistance, and diffusing capacity have been bundled into four new CPT codes.

  19. Debye’s temperature and heat capacity for Sr0.15Ba0.85Bi2Nb2O9 relaxor ferroelectric ceramic

    Directory of Open Access Journals (Sweden)

    A. Peláiz-Barranco

    2016-03-01

    Full Text Available A lead-free relaxor ferroelectric, Sr0.15Ba0.85Bi2Nb2O9, was synthesized via solid-state reaction and the temperature-dependence of the heat capacity was measured in a wide temperature range. The dielectric permittivity was also measured between 500Hz and 5MHz in the same temperature range. No anomaly has been detected in the heat capacity curve for the whole temperature range covered in the present experiments, while broad peaks have been observed in the dielectric permittivity with high frequency dispersion. A typical relaxor behavior has been observed from the dielectric analysis. The Debye’s temperature has showed a minimum value near the freezing temperature. The results are discussed considering the spin-glass model and the high frequency dispersion, which has been observed for the studied relaxor system.

  20. Economic feasibility of district heating delivery from industrial excess heat: A case study of a Swedish petrochemical cluster

    International Nuclear Information System (INIS)

    Morandin, Matteo; Hackl, Roman; Harvey, Simon

    2014-01-01

    The present work discusses the potential and the economic feasibility of DH (district heating) delivery using industrial excess heat from a petrochemical cluster at the Swedish West Coast. Pinch Analysis was used for estimating the DH capacity targets and for estimating the cost of heat exchanger installation. A discounted cash flow rate of return of 10% was used as a criterion for identifying the minimum yearly DH delivery that should be guaranteed for a given DH capacity at different DH sales prices. The study was conducted for the current scenario in which no heat recovery is achieved between the cluster plants and for a possible future scenario in which 50% of the fuel currently used for heating purposes is saved by increasing the heat recovery at the site. The competition between excess heat export and local energy efficiency measures is also discussed in terms of CO 2 emission consequences. The maximum capacity of DH delivery amounts today to around 235 MW, which reduces to 110 MW in the future scenario of increased site heat recovery. The results of our analysis show that feasible conditions exist that make DH delivery profitable in the entire capacity range. - Highlights: • Pinch Analysis targeting approach and short-cut cost accounting procedure. • Economic analysis for different DH delivery capacities up to maximum targets. • Sensitivity analysis of heat sales prices. • Parallel plants and cluster wide heat collection systems considered. • Competition between cluster internal heat recovery and excess heat export is discussed

  1. Suppression of the sonic heat transfer limit in high-temperature heat pipes

    Science.gov (United States)

    Dobran, Flavio

    1989-08-01

    The design of high-performance heat pipes requires optimization of heat transfer surfaces and liquid and vapor flow channels to suppress the heat transfer operating limits. In the paper an analytical model of the vapor flow in high-temperature heat pipes is presented, showing that the axial heat transport capacity limited by the sonic heat transfer limit depends on the working fluid, vapor flow area, manner of liquid evaporation into the vapor core of the evaporator, and lengths of the evaporator and adiabatic regions. Limited comparisons of the model predictions with data of the sonic heat transfer limits are shown to be very reasonable, giving credibility to the proposed analytical approach to determine the effect of various parameters on the axial heat transport capacity. Large axial heat transfer rates can be achieved with large vapor flow cross-sectional areas, small lengths of evaporator and adiabatic regions or a vapor flow area increase in these regions, and liquid evaporation in the evaporator normal to the main flow.

  2. Consistency in thermophysical properties: enthalpy, heat capacity, thermal conductivity and thermal diffusivity of solid UO2

    International Nuclear Information System (INIS)

    Fink, J.K.; Chasanov, M.G.; Leibowitz, L.

    Equations have been derived for the enthalpy, heat capacity, thermal conductivity, and thermal diffusivity of UO 2 . In selection of these equations, we considered the traditional criterion of lowest relative standard deviation between experimental data and the function chosen to fit these data as well as consistency between the thermophysical properties. In the latter case, we considered consistency in (1) thermodynamic relations among properties, (2) the choice of physical phenomena on which to base the theoretical formulation of the equations, and (3) the existence and temperature of phase transitions

  3. Volume Flexibility and Capacity Investment : A Real Options Approach

    OpenAIRE

    Wen, X.; Kort, P.M.; Talman, A.J.J.

    2015-01-01

    Abstract: This paper considers the investment decision of a firm where it has to decide about the timing and capacity. We obtain that in a fast-growing market, right after investment the firm produces below capacity, where the utilization rate (the proportion of capacity that is used for production right after the investment) increases with market uncertainty for a very big market trend, and shows no monotonicity for a moderately large market trend. On the other hand, we get that, for a slowl...

  4. Peak capacity, peak-capacity production rate, and boiling point resolution for temperature-programmed GC with very high programming rates

    Science.gov (United States)

    Grall; Leonard; Sacks

    2000-02-01

    Recent advances in column heating technology have made possible very fast linear temperature programming for high-speed gas chromatography. A fused-silica capillary column is contained in a tubular metal jacket, which is resistively heated by a precision power supply. With very rapid column heating, the rate of peak-capacity production is significantly enhanced, but the total peak capacity and the boiling-point resolution (minimum boiling-point difference required for the separation of two nonpolar compounds on a nonpolar column) are reduced relative to more conventional heating rates used with convection-oven instruments. As temperature-programming rates increase, elution temperatures also increase with the result that retention may become insignificant prior to elution. This results in inefficient utilization of the down-stream end of the column and causes a loss in the rate of peak-capacity production. The rate of peak-capacity production is increased by the use of shorter columns and higher carrier gas velocities. With high programming rates (100-600 degrees C/min), column lengths of 6-12 m and average linear carrier gas velocities in the 100-150 cm/s range are satisfactory. In this study, the rate of peak-capacity production, the total peak capacity, and the boiling point resolution are determined for C10-C28 n-alkanes using 6-18 m long columns, 50-200 cm/s average carrier gas velocities, and 60-600 degrees C/min programming rates. It was found that with a 6-meter-long, 0.25-mm i.d. column programmed at a rate of 600 degrees C/min, a maximum peak-capacity production rate of 6.1 peaks/s was obtained. A total peak capacity of about 75 peaks was produced in a 37-s long separation spanning a boiling-point range from n-C10 (174 degrees C) to n-C28 (432 degrees C).

  5. One component, volume heated, boiling pool thermohydraulics

    International Nuclear Information System (INIS)

    Bede, M.; Perret, C.; Pretrel, H.; Seiler, J.M.

    1993-01-01

    Prior work on boiling pools provided heat exchange correlations valid for bubbly flow with laminar or turbulent boundary layers. New experiments performed with water (SEBULON) and UO 2 (SCARABEE BF2) in a churn-turbulent flow configuration show unexpected heat flux distributions for which the maximum heat flux may be situated well below the pool surface. The origin of this behaviour is attributed to condensation effects, very unstable boundary layer flow and surface oscillation. A calculation model is discussed which permits to approach the experimental heat flux distribution with reasonable accuracy. (authors). 7 figs., 2 appendix., 14 refs

  6. Heat transfer characteristics of UF6 in a container heated from outer surface. Pt. 1. Thermal hydraulic analysis method taking account of phase change and volume expansion

    International Nuclear Information System (INIS)

    Wataru, Masumi; Gomi, Yoshio; Yamakawa, Hidetsugu; Tsumune, Daisuke

    1995-01-01

    Natural UF6 is transported in a steel container from foreign countries to the enrichment plant in Japan. If the container meets fire accident, it is heated by fire (800degC) and rupture of the container may occur. For the safety point of view, it is necessary to know whether rupture occurs or not. Because UF6 has a radiological and chemical hazards, it is difficult to perform a demonstration test with UF6. So thermal calculation method has to be developed. The rupture is caused by UF6 gaseous pressure or volume expansion of liquid UF6. To know time history of internal pressure and temperature distribution in the container, it is important to evaluate thermal phenomena of UF6. When UF6 is heated, it changes from solid to liquid or gas at low temperature (64degC) and then its volume expands little by little. In this study, thermal calculation method has been developed taking phase change and thermal expansion of UF6 into account. In the calculation, a two-dimensional model is adopted and natural convection of liquid UF6 is analyzed. As a result of this study, numerical solutions have been obtained taking phase change and volume expansion into account. (author)

  7. Performance variations of river water source heat pump system according to heat exchanger capacity variations

    International Nuclear Information System (INIS)

    Park, Seong Ryong; Baik, Young Jin; Lee, Young Soo; Kim, Hee Hwan

    2003-01-01

    The utilization of unused energy is important because it can afford to offer a chance to increase energy efficiency of a heat pump system. One of the promising unused energy sources is river water. It can be used as a heat source in both heating and cooling effectively with its superior features as a secondary working fluids. In this study, the performance of a 5HP heat pump system using river water as a heat source is investigated by both experiment and simulation. According to system simulation results, performance improvement of condenser seems more effective than that of evaporator for better COPH. The serial connection is also preferred among several methods to improve plate type heat exchanger performance. The experimental results show that the hot water of 50∼60 .deg. C can be acquired from water heat source of 5∼9 .deg. C with COPH of 2.7∼3.5

  8. A solar-thermal energy harvesting scheme: enhanced heat capacity of molten HITEC salt mixed with Sn/SiO(x) core-shell nanoparticles.

    Science.gov (United States)

    Lai, Chih-Chung; Chang, Wen-Chih; Hu, Wen-Liang; Wang, Zhiming M; Lu, Ming-Chang; Chueh, Yu-Lun

    2014-05-07

    We demonstrated enhanced solar-thermal storage by releasing the latent heat of Sn/SiO(x) core-shell nanoparticles (NPs) embedded in a eutectic salt. The microstructures and chemical compositions of Sn/SiO(x) core-shell NPs were characterized. In situ heating XRD provides dynamic crystalline information about the Sn/SiO(x) core-shell NPs during cyclic heating processes. The latent heat of ∼29 J g(-1) for Sn/SiO(x) core-shell NPs was measured, and 30% enhanced heat capacity was achieved from 1.57 to 2.03 J g(-1) K(-1) for the HITEC solar salt without and with, respectively, a mixture of 5% Sn/SiO(x) core-shell NPs. In addition, an endurance cycle test was performed to prove a stable operation in practical applications. The approach provides a method to enhance energy storage in solar-thermal power plants.

  9. Flue gas recovery system for natural gas combined heat and power plant with distributed peak-shaving heat pumps

    International Nuclear Information System (INIS)

    Zhao, Xiling; Fu, Lin; Wang, Xiaoyin; Sun, Tao; Wang, Jingyi; Zhang, Shigang

    2017-01-01

    Highlights: • A flue gas recovery system with distributed peak-shaving heat pumps is proposed. • The system can improve network transmission and distribution capacity. • The system is advantageous in energy saving, emission reduction and economic benefits. - Abstract: District heating systems use distributed heat pump peak-shaving technology to adjust heat in secondary networks of substations. This technology simultaneously adjusts the heat of the secondary network and reduces the return-water temperature of the primary network by using the heat pump principle. When optimized, low temperature return-water is able to recycle more waste heat, thereby further improving the heating efficiency of the system. This paper introduces a flue gas recovery system for a natural gas combined heat and power plant with distributed peak-shaving heat pumps. A pilot system comprising a set of two 9F gas-steam combined cycle-back pressure heating units was used to analyse the system configuration and key parameters. The proposed system improved the network transmission and distribution capacity, increased heating capacity, and reduced heating energy consumption without compromising heating safety issues. As such, the proposed system is advantageous in terms of energy saving, emission reduction, and economic benefits.

  10. Excess heat capacity of the (Li1?xCax)F1+x liquid solution determined by differential scanning calorimetry and drop calorimetry

    NARCIS (Netherlands)

    Capelli, E.; Benes, O.; Konings, R.J.M.

    2014-01-01

    The work presents the measured heat capacity of the (Li1?xCax)F1+x liquid solution. Four samples with different compositions have been prepared and measured using a Differential Scanning Calorimeter. Since this technique was newly adopted for measuring encapsulated fluoride samples, some

  11. Small heat-shock proteins and leaf cooling capacity account for the unusual heat tolerance of the central spike leaves in Agave tequilana var. Weber.

    Science.gov (United States)

    Luján, Rosario; Lledías, Fernando; Martínez, Luz María; Barreto, Rita; Cassab, Gladys I; Nieto-Sotelo, Jorge

    2009-12-01

    Agaves are perennial crassulacean acid metabolism (CAM) plants distributed in tropical and subtropical arid environments, features that are attractive for studying the heat-shock response. In agaves, the stress response can be analysed easily during leaf development, as they form a spirally shaped rosette, having the meristem surrounded by folded leaves in the centre (spike) and the unfolded and more mature leaves in the periphery. Here, we report that the spike of Agave tequilana is the most thermotolerant part of the rosette withstanding shocks of up to 55 degrees C. This finding was inconsistent with the patterns of heat-shock protein (Hsp) gene expression, as maximal accumulation of Hsp transcripts was at 44 degrees C in all sectors (spike, inner, middle and outer). However, levels of small HSP (sHSP)-CI and sHSP-CII proteins were conspicuously higher in spike leaves at all temperatures correlating with their thermotolerance. In addition, spike leaves showed a higher stomatal density and abated more efficiently their temperature several degrees below that of air. We propose that the greater capacity for leaf cooling during the day in response to heat stress, and the elevated levels of sHSPs, constitute part of a set of strategies that protect the SAM and folded leaves of A. tequilana from high temperatures.

  12. Combined heat and power generation with exhaust-heated two-stage absorption refrigerator. Performance of a pilot installation with a refrigeration capacity of 350 kW; Kraft-Waerme-Kaelte-Kopplung mit Abgas-Beheizter zweistufiger Absorptionskaeltemaschine. Betriebserfahrungen einer Pilotinstallation mit 350 kW Kaelteleistung

    Energy Technology Data Exchange (ETDEWEB)

    Plura, S.; Baumeister, D.; Koeberle, T.; Radspieler, M.; Schweigler, C. [Bayerisches Zentrum fuer Angewandte Energieforschung e.V. (ZAE Bayern), Garching (Germany)

    2007-07-01

    A new system concept for higher efficiency of cogeneration systems is developed in which a cogeneration unit is combined with a two-stage absorption refrigerator, and the waste heat of the cogeneration unit is directly passed on into the regenerator of the absorption refrigerator. The higher temperature level of the waste heat makes it possible to use a two-stage absorption cycle for higher energy efficiency. For simultaneous utilisation of low-temperature heat, the two-stage cycle is combined with a one-stage cycle for additional heat supply at a lower temperature level so that the exhaust of a typical cogeneration unit will be cooled to about 120 degC. At the same time, further waste heat of the cogeneration unit will be transferred to the heat pump via a hot water circuit. This concept with a combined single-stage and two-stage absorption circuit is referred to as a double-effect/single-effect circuit. The new system is used for energy supply in a spa, where the two-stage absorption refrigerator cools the water used for swimming pool cleaning with a refrigerating capacity of 350 kW and provides low-temperature heat for swimming pool heating with a capacity of 700 kW. (orig.)

  13. Empirical equations for viscosity and specific heat capacity determination of paraffin PCM and fatty acid PCM

    Science.gov (United States)

    Barreneche, C.; Ferrer, G.; Palacios, A.; Solé, A.; Inés Fernández, A.; Cabeza, L. F.

    2017-10-01

    Phase change materials (PCM) used in thermal energy storage (TES) systems have been presented, over recent years, as one of the most effective options in energy storage. Paraffin and fatty acids are some of the most used PCM in TES systems, as they have high phase change enthalpy and in addition they do not present subcooling nor hysteresis and have proper cycling stability. The simulations and design of TES systems require the knowledge of the thermophysical properties of PCM. Thermal conductivity, viscosity, specific heat capacity (Cp) can be experimentally determined, but these are material and time consuming tasks. To avoid or to reduce them, and to have reliable data without the need of experimentation, thermal properties can be calculated by empirical equations. In this study, five different equations are given to calculate the viscosity and specific heat capacity of fatty acid PCM and paraffin PCM. Two of these equations concern, respectively, the empirical calculation of the viscosity and liquid Cp of the whole paraffin PCM family, while the other three equations presented are for the corresponding calculation of viscosity, solid Cp, liquid Cp of the whole fatty acid family of PCM. Therefore, this study summarize the work performed to obtain the main empirical equations to measure the above mentioned properties for whole fatty acid PCM family and whole paraffin PCM family. Moreover, empirical equations have been obtained to calculate these properties for other materials of these PCM groups and these empirical equations can be extrapolated for PCM with higher or lower phase change temperatures within a lower relative error 4%.

  14. Tetrafluoroethane (R134a) hydrate formation within variable volume reactor accompanied by evaporation and condensation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, K.; Choo, Y. S.; Hong, H. J.; Yoon, Y. S.; Song, M. H., E-mail: songm@dgu.edu [Department of Mechanical, Robotics, and Energy Engineering, Dongguk University, Seoul 100-715 (Korea, Republic of)

    2015-03-15

    Vast size hydrate formation reactors with fast conversion rate are required for the economic implementation of seawater desalination utilizing gas hydrate technology. The commercial target production rate is order of thousand tons of potable water per day per train. Various heat and mass transfer enhancement schemes including agitation, spraying, and bubbling have been examined to maximize the production capacities in scaled up design of hydrate formation reactors. The present experimental study focused on acquiring basic knowledge needed to design variable volume reactors to produce tetrafluoroethane hydrate slurry. Test vessel was composed of main cavity with fixed volume of 140 ml and auxiliary cavity with variable volume of 0 ∼ 64 ml. Temperatures at multiple locations within vessel and pressure were monitored while visual access was made through front window. Alternating evaporation and condensation induced by cyclic volume change provided agitation due to density differences among water and vapor, liquid and hydrate R134a as well as extended interface area, which improved hydrate formation kinetics coupled with latent heat release and absorption. Influences of coolant temperature, piston stroke/speed, and volume change period on hydrate formation kinetics were investigated. Suggestions of reactor design improvement for future experimental study are also made.

  15. Tetrafluoroethane (R134a) hydrate formation within variable volume reactor accompanied by evaporation and condensation

    International Nuclear Information System (INIS)

    Jeong, K.; Choo, Y. S.; Hong, H. J.; Yoon, Y. S.; Song, M. H.

    2015-01-01

    Vast size hydrate formation reactors with fast conversion rate are required for the economic implementation of seawater desalination utilizing gas hydrate technology. The commercial target production rate is order of thousand tons of potable water per day per train. Various heat and mass transfer enhancement schemes including agitation, spraying, and bubbling have been examined to maximize the production capacities in scaled up design of hydrate formation reactors. The present experimental study focused on acquiring basic knowledge needed to design variable volume reactors to produce tetrafluoroethane hydrate slurry. Test vessel was composed of main cavity with fixed volume of 140 ml and auxiliary cavity with variable volume of 0 ∼ 64 ml. Temperatures at multiple locations within vessel and pressure were monitored while visual access was made through front window. Alternating evaporation and condensation induced by cyclic volume change provided agitation due to density differences among water and vapor, liquid and hydrate R134a as well as extended interface area, which improved hydrate formation kinetics coupled with latent heat release and absorption. Influences of coolant temperature, piston stroke/speed, and volume change period on hydrate formation kinetics were investigated. Suggestions of reactor design improvement for future experimental study are also made

  16. Sound speed of isobaric heat capacity in the saturated and superheated vapour of cesium, rubidium and potassium

    International Nuclear Information System (INIS)

    Novikov, I.I.; Roschupkin, V.V.

    1985-01-01

    The paper reviews the work carried out on the thermodynamic properties of alkali metal vapours. The most systematic investigations concern the sound velocity measurements for saturated and superheated vapours of caesium, for saturated vapour of rubidium, and for superheated vapour of potassium. The Joule-Thompson coefficient has been studied in caesium vapour, and the isobaric heat capacity of potassium vapour has also been examined. The experimental methods for all these experiments are described, and the data obtained are presented in tabular form. (U.K.)

  17. Heat Roadmap Europe: Identifying strategic heat synergy regions

    International Nuclear Information System (INIS)

    Persson, U.; Möller, B.; Werner, S.

    2014-01-01

    This study presents a methodology to assess annual excess heat volumes from fuel combustion activities in energy and industry sector facilities based on carbon dioxide emission data. The aim is to determine regional balances of excess heat relative heat demands for all third level administrative regions in the European Union (EU) and to identify strategic regions suitable for large-scale implementation of district heating. The approach is motivated since the efficiency of current supply structures to meet building heat demands, mainly characterised by direct use of primary energy sources, is low and improvable. District heating is conceived as an urban supply side energy efficiency measure employable to enhance energy system efficiency by increased excess heat recoveries; hereby reducing primary energy demands by fuel substitution. However, the importance of heat has long been underestimated in EU decarbonisation strategies and local heat synergies have often been overlooked in energy models used for such scenarios. Study results indicate that 46% of all excess heat in EU27, corresponding to 31% of total building heat demands, is located within identified strategic regions. Still, a realisation of these rich opportunities will require higher recognition of the heat sector in future EU energy policy. - Highlights: • EU27 energy and industry sector heat recycling resources are mapped and quantified. • Target regions for large-scale implementation of district heating are identified. • 46% of total EU27 excess heat volume is seized in 63 strategic heat synergy regions. • Large urban zones have lead roles to play in transition to sustainability in Europe. • Higher recognition of heat sector is needed in future EU energy policy for realisation

  18. Effects of igneous intrusion on microporosity and gas adsorption capacity of coals in the Haizi Mine, China.

    Science.gov (United States)

    Jiang, Jingyu; Cheng, Yuanping

    2014-01-01

    This paper describes the effects of igneous intrusions on pore structure and adsorption capacity of the Permian coals in the Huaibei Coalfield, China. Twelve coal samples were obtained at different distances from a ~120 m extremely thick sill. Comparisons were made between unaltered and heat-affected coals using geochemical data, pore-fracture characteristics, and adsorption properties. Thermal alteration occurs down to ~1.3 × sill thickness. Approaching the sill, the vitrinite reflectance (R(o)) increased from 2.30% to 2.78%, forming devolatilization vacuoles and a fine mosaic texture. Volatile matter (VM) decreased from 17.6% to 10.0% and the moisture decreased from 3.0% to 1.6%. With decreasing distance to the sill, the micropore volumes initially increased from 0.0054 cm(3)/g to a maximum of 0.0146 cm(3)/g and then decreased to 0.0079 cm(3)/g. The results show that the thermal evolution of the sill obviously changed the coal geochemistry and increased the micropore volume and adsorption capacity of heat-affected coal (60-160 m from the sill) compared with the unaltered coals. The trap effect of the sill prevented the high-pressure gas from being released, forming gas pocket. Mining activities near the sill created a low pressure zone leading to the rapid accumulation of methane and gas outbursts in the Haizi Mine.

  19. Effects of Igneous Intrusion on Microporosity and Gas Adsorption Capacity of Coals in the Haizi Mine, China

    Science.gov (United States)

    2014-01-01

    This paper describes the effects of igneous intrusions on pore structure and adsorption capacity of the Permian coals in the Huaibei Coalfield, China. Twelve coal samples were obtained at different distances from a ~120 m extremely thick sill. Comparisons were made between unaltered and heat-affected coals using geochemical data, pore-fracture characteristics, and adsorption properties. Thermal alteration occurs down to ~1.3 × sill thickness. Approaching the sill, the vitrinite reflectance (R o) increased from 2.30% to 2.78%, forming devolatilization vacuoles and a fine mosaic texture. Volatile matter (VM) decreased from 17.6% to 10.0% and the moisture decreased from 3.0% to 1.6%. With decreasing distance to the sill, the micropore volumes initially increased from 0.0054 cm3/g to a maximum of 0.0146 cm3/g and then decreased to 0.0079 cm3/g. The results show that the thermal evolution of the sill obviously changed the coal geochemistry and increased the micropore volume and adsorption capacity of heat-affected coal (60–160 m from the sill) compared with the unaltered coals. The trap effect of the sill prevented the high-pressure gas from being released, forming gas pocket. Mining activities near the sill created a low pressure zone leading to the rapid accumulation of methane and gas outbursts in the Haizi Mine. PMID:24723841

  20. Interlaboratory study of the heat capacity of LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2} (NMC111) with layered structure

    Energy Technology Data Exchange (ETDEWEB)

    Cupid, Damian M.; Gotcu, Petronela [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. for Applied Materials - Applied Materials Physics (IAM-AWP); Beutl, Alexander [Vienna Univ. (Austria). Inst. of Inorganic Chemistry - Functional Materials; and others

    2017-11-15

    An interlaboratory study was performed to determine the heat capacity of an active material for lithium-ion batteries with layered structure and nominal composition LiNi{sub 1/3} . Mn{sub 1/3}Co{sub 1/3}O{sub 2} (NMC111). The commercial sample, which was characterized using powder X-ray diffraction and inductively coupled plasma-optical emission spectroscopy, is single phase (α-NaFeO{sub 2} crystal structure) with a composition of Li{sub 1.02}Ni{sub 0.32}Mn{sub 0.31}Co{sub 0.30}O{sub 2}. Heat capacity measurements of the homogeneous sample were performed at five laboratories using different operators, methods, devices, temperature ranges, gas atmospheres and crucible materials. The experimental procedures from each laboratory are presented and the results of the individual laboratories are analyzed. Based on a comprehensive evaluation of the data from each laboratory, the heat capacity of the NMC111 sample from 315 K to 1 020 K is obtained with an expanded reproducibility uncertainty of less than 1.22 %.

  1. Risk Analysis of Volume Cheat Strategy in a Competitive Capacity Market

    DEFF Research Database (Denmark)

    Feng, Donghan; Xu, Zhao

    2009-01-01

    Capacity market provides additional revenue stream for the power suppliers. In a capacity-energy combined market environment, suppliers have incentives to deliberately over-offer their capacities in the capacity market while bid very high price in the energy and ancillary markets to avoid operation....... This paper analyzes the risks and profits of this capacity-over-offer behavior, and develops a method for computing non-operable penalty level which can prevent the capacity-over-offer behavior. It is found that the effective penalty level is highly correlated with the stochastic characteristics......-energy market environment....

  2. The effects of heat treatment on the phenolic composition and antioxidant capacity of red wine pomace seasonings.

    Science.gov (United States)

    Del Pino-García, Raquel; González-SanJosé, María L; Rivero-Pérez, María D; García-Lomillo, Javier; Muñiz, Pilar

    2017-04-15

    The impact of thermal processing on the phenolic profile and antioxidant capacity (TAC) of powdered red wine pomace seasonings (RWPSs) obtained from different sources (seedless: Sk-S; whole: W-S; seeds: Sd-S) was assessed. High contents in anthocyanins, flavonol-3-O-glycosides, phenolic acids and flavan-3-ols were found in Sk-S, whereas flavan-3-ols and phenolic acids were the main compounds identified in Sd-S. Reductions in the anthocyanidin and flavonol-3-ol contents mainly determined the effect of heat on the total phenolic contents (Sk-S: -29.4%; W-S: -28.0%; Sd-S: -5.78%), although heating affected positively the phenolic acid and flavonol aglycon contents. Slight TAC decreases were observed in the RWPS-derived extracts (classical Folin-Ciocalteu and ABTS assays). However, higher TAC reductions were detected when the powdered RWPSs were used directly as samples (QUENCHER approach). In conclusion, there is little evidence against submitting RWPSs to thermal processing, as heating affects differently each type of phenolic compound and does not induce very severe TAC decreases in these seasonings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Volume changes upon heating of aerosol particles from biomass burning using transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Kouji [Meteorological Research Inst., Tsukuba (Japan). Atmospheric Environment and Applied Meteorology Research Dept.; Sedlacek, Arthur J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Environmental and Climate Sciences; Kleinman, Lawrence [Brookhaven National Lab. (BNL), Upton, NY (United States). Environmental and Climate Sciences; Chand, Duli [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Sciences and Global Change Division; Hubbe, John M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Sciences and Global Change Division; Buseck, Peter R. [Arizona State Univ., Tempe, AZ (United States). School of Earth and Space Exploration and School of Molecular Sciences

    2017-09-26

    The responses of aerosol particles to heating are important for measurements of their chemical, physical, and optical properties, classification, and determination of origin. However, the thermal behavior of organic aerosol particles is largely unknown. We provide a method to analyze such thermal behavior through heating from room temperature to >600°C by using a heating holder within a transmission electron microscope (TEM). Here we describe in-situ shape and size changes and variations in the compositions of individual particles before and after heating. We use ambient samples from wildland and agricultural biomass fires in North America collected during the 2013 Biomass Burn Observation Project (BBOP). The results indicate that individual tar balls (TB; spherical organic material) from biomass burning retained, on average, up to 30% of their volume when heated to 600°C. Chemical analysis reveals that K and Na remain in the residues, whereas S and O were lost. In contrast to bulk sample measurements of carbonaceous particles using thermal/optical carbon analyzers, our single-particle results imply that many individual organic particles consist of multiple types of organic matter having different thermal stabilities. Beyond TBs, our results suggest that because of their thermal stability some organic particles may not be detectable by using aerosol mass spectrometry or thermal/optical carbon analyzers. This result can lead to an underestimate of the abundance of TBs and other organic particles, and therefore biomass burning may have more influence than currently recognized in regional and global climate models.

  4. Use of waste heat from a dairy for heating of a community house

    Energy Technology Data Exchange (ETDEWEB)

    Rehn, C

    1976-01-01

    In a dairy, a lot of cooling capacity is needed. This article describes how this waste heat can be used for heating a community house including a sport establishment and producing hot water for that house. Four different technical solutions are discussed; (1) floor heat, (2) heat transfer connected to the ventilation, (3) regenerative heat exchanger, and (4) use of heat pumps.

  5. Lattice dynamical investigation of the Raman and infrared wave numbers and heat capacity properties of the pyrochlores R2Zr2O7 (R = La, Nd, Sm, Eu)

    Science.gov (United States)

    Nandi, S.; Jana, Y. M.; Gupta, H. C.

    2018-04-01

    A short-range electrostatic forcefield model has been applied for the first time to investigate the Raman and infrared wave numbers in pyrochlore zirconates R2Zr2O7 (R3+ = La, Nd, Sm, Eu). The calculations of phonons involve five stretching and four bending force constants in the Wilson GF matrix method. The calculated phonon wave numbers are in reasonable agreement with the observed spectra in infrared and Raman excitation zones for all of these isomorphous compounds. The contributions of force constants to each mode show a similar trend of variation for all of these compounds. Furthermore, to validate the established forcefield model, we calculated the standard thermodynamic functions, e.g., molar heat capacity, entropy and enthalpy, and compared the results with the previous experimental data for each compound. Using the derived wave numbers for the acoustic and optical modes, the total phonon contribution to the heat capacity was calculated for all these zirconate compounds. The Schottky heat capacity contributions were also calculated for the magnetic compounds, Nd2Zr2O7, Sm2Zr2O7 and Eu2Zr2O7, taking account of crystal-field level schemes of the lanthanide ions. The derived total heat capacity and the integrated values of molar entropy and molar enthalpy showed satisfactory correlations at low temperatures with the experimental results available in the literature for these compounds. At higher temperatures, the discrepancies may be caused by the anharmonic effects of vibrations, phonon dispersion, distribution of phonon density of states, etc.

  6. Effects of temperature-humidity index and chromium supplementation on antioxidant capacity, heat shock protein 72, and cytokine responses of lactating cows.

    Science.gov (United States)

    Zhang, F J; Weng, X G; Wang, J F; Zhou, D; Zhang, W; Zhai, C C; Hou, Y X; Zhu, Y H

    2014-07-01

    Heat stress adversely affects the productivity and immune status of dairy cows. The temperature-humidity index (THI) is commonly used to indicate the degree of heat stress on dairy cattle. We investigated the effects of different THI and Cr supplementation on the antioxidant capacity, the levels of heat shock protein 72 (Hsp72), and cytokine responses of lactating cows. The study used a total of 24 clinically healthy uniparous midlactation Holstein cows, which were randomly divided into 2 groups (n = 12 per group), and was conducted in 3 designated THI periods: low THI period (LTHI; THI = 56.4 ± 2.5), moderate THI period (MTHI; THI = 73.9 ± 1.7), and high THI period (HTHI; THI = 80.3 ± 1.0). The 2 groups of cows were fed corn and corn silage based basal diet supplemented chromium picolinate to provide 3.5 mg of Cr/cow daily (Cr+) or basal diet with no Cr (Cr-). The experiment was a 3 × 2 factorial design. The numbers of leukocytes (P Cows supplemented with Cr had lower (P = 0.009) serum concentrations of cholesterol but greater (P cows supplemented with Cr had greater (P = 0.038) expression of the inhibitor of nuclear factor kappa B α (IκBα) in peripheral blood mononuclear cells (PBMC) compared with those without Cr supplementation in the HTHI, whereas the expression of Hsp72 in PBMC was unaltered. Data indicate that there is a decrease in glucose and increases in BUN and creatinine in the serum of midlactation cows under hot conditions during the summer and that these cows have a lowered oxidative capacity but an elevated antioxidant capacity. In addition, Cr may play an anti-inflammatory role in lactating cows by promoting the release of Hsp72, increasing the production of IL-10, and inhibiting the degradation of IκBα under hot conditions during the summer.

  7. Miniaturized Air-to-Refrigerant Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Radermacher, Reinhard [Univ. of Maryland, College Park, MD (United States); Bacellar, Daniel [Univ. of Maryland, College Park, MD (United States); Aute, Vikrant [Univ. of Maryland, College Park, MD (United States); Huang, Zhiwei [Univ. of Maryland, College Park, MD (United States); Hwang, Yunho [Univ. of Maryland, College Park, MD (United States); Ling, Jiazhen [Univ. of Maryland, College Park, MD (United States); Muehlbauer, Jan [Univ. of Maryland, College Park, MD (United States); Tancabel, James [Univ. of Maryland, College Park, MD (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Mingkan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-23

    which met project requirements. Attempts to prototype a 10kW have presented unique manufacturing challenges, especially regarding tube blockages and structural stability. DP III comprised optimizing two-phase HX’s for a 3.0Ton capacity in a heat pump / air-conditioning unit for cooling mode application using R410A as the working fluid. The HX’s theoretically address the project requirements. System-level analysis showed the HX’s achieved up to 15% improvement in COP while also reducing overall unit charge by 30-40%. The project methodology was capable of developing HX’s which can outperform current state-of-the-art MCHX by at least 20% reduction in volume, material volume, and approach temperature. Additionally, the capability for optimization using refrigerant charge as an objective function was developed. The five-year manufacturing feasibility of the proposed HX’s was shown to have a good outlook. Successful prototyping through both conventional manufacturing methods and next generation methods such as additive manufacturing was achieved.

  8. Thermal radiation heat transfer in participating media by finite volume discretization using collimated beam incidence

    Science.gov (United States)

    Harijishnu, R.; Jayakumar, J. S.

    2017-09-01

    The main objective of this paper is to study the heat transfer rate of thermal radiation in participating media. For that, a generated collimated beam has been passed through a two dimensional slab model of flint glass with a refractive index 2. Both Polar and azimuthal angle have been varied to generate such a beam. The Temperature of the slab and Snells law has been validated by Radiation Transfer Equation (RTE) in OpenFOAM (Open Field Operation and Manipulation), a CFD software which is the major computational tool used in Industry and research applications where the source code is modified in which radiation heat transfer equation is added to the case and different radiation heat transfer models are utilized. This work concentrates on the numerical strategies involving both transparent and participating media. Since Radiation Transfer Equation (RTE) is difficult to solve, the purpose of this paper is to use existing solver buoyantSimlpeFoam to solve radiation model in the participating media by compiling the source code to obtain the heat transfer rate inside the slab by varying the Intensity of radiation. The Finite Volume Method (FVM) is applied to solve the Radiation Transfer Equation (RTE) governing the above said physical phenomena.

  9. Heating Performance Analysis of a Geothermal Heat Pump Working with Different Zeotropic and Azeotropic Mixtures

    Directory of Open Access Journals (Sweden)

    Robert Bedoić

    2018-06-01

    Full Text Available The aim of the paper is to examine the possibility of application of the spreadsheet calculator and Reference Fluid Thermodynamic and Transport Properties database to a thermodynamic process. The heating process of a real soil-to-water heat pump, including heat transfer in the borehole heat exchanger has been analysed. How the changes of condensing temperature, at constant evaporating temperature, influence the following: heating capacity, compressor effective power, heat supplied to evaporator, compression discharge temperature and coefficient of performance, are investigated. Also, the energy characteristics of a heat pump using different refrigerants for the same heating capacity and the same temperature regime are compared. The following refrigerants are considered: two zeotropic mixtures, R407C and R409A, a mixture with some zeotropic characteristics, R410A, and an azeotropic mixture, R507A.

  10. P, ρ, T and heat capacity measurements of (α-pinene + β-pinene) mixtures over the temperature range 283.15 K to 358.15 K and pressures up to 40 MPa: Experiments and modelling

    International Nuclear Information System (INIS)

    Langa, Elisa; Palavra, Antonio M.F.; Lourenço, Maria J.V.; Nieto de Castro, Carlos A.; Mainar, Ana M.

    2013-01-01

    Highlights: ► Density as a function of P, T and composition was measured for pinene mixtures. ► Isothermal compressibility and coefficients of cubic expansion were also calculated. ► Isobaric heat capacity was also determined as function of temperature and composition. ► Usual behaviour of these properties was found. ► SAFT and PC-SAFT were used as predictive models, showing PC-SAFT the best predictions. - Abstract: The density and isobaric heat capacity of the binary system {α-pinene (4,7,7-trimethylbicyclo[3.1.1]hept-3-ene (1), CAS Number 7785-26-4) + β-pinene (6,6-dimethyl-2-methylene-bicyclo[3.1.1]heptane (2), CAS Number 127-91-3)} has been measured for eleven different compositions. The density was determined at five pressures from (20 MPa to 40 MPa) and temperatures from (283.15 K to 358.15 K) and the isobaric heat capacity at atmospheric pressure and temperatures from (313.15 K to 418.15 K). Density was measured with an experimental uncertainty estimated to be ± 0.5 kg·m −3 . The isothermal compressibility and isobaric thermal expansion were derived from the experimental density data. The isobaric heat capacity was determined with a DSC calorimeter being the experimental uncertainty lower than 1.5%. Isobaric heat capacity behaviour was as expected for both pure compounds and for mixtures. Two different equations of state, conventional SAFT and PC-SAFT, were applied to calculate the densities of the mixture, being the best predictions achieved with PC-SAFT equation.

  11. Army Solid State Laser Program: Design, Operation, and Mission Analysis for a Heat-Capacity Laser

    International Nuclear Information System (INIS)

    Dane, C B; Flath, L; Rotter, M; Fochs, S; Brase, J; Bretney, K

    2001-01-01

    Solid-state lasers have held great promise for the generation of high-average-power, high-quality output beams for a number of decades. However, the inherent difficulty of scaling the active solid-state gain media while continuing to provide efficient cooling has limited demonstrated powers to 10X the diffraction limit. Challenges posed by optical distortions and depolarization arising from internal temperature gradients in the gain medium of a continuously cooled system are only increased for laser designs that would attempt to deliver the high average power in the form of high energy pulses (>25J) from a single coherent optical aperture. Although demonstrated phase-locking of multiple laser apertures may hold significant promise for the future scaling of solid-state laser systems,1 the continuing need for additional technical development and innovation coupled with the anticipated complexity of these systems effectively limits this approach for near-term multi-kW laser operation outside of a laboratory setting. We have developed and demonstrated a new operational mode for solid-state laser systems in which the cooling of the gain medium is separated in time from the lasing cycle. In ''heat-capacity'' operation, no cooling takes place during lasing. The gain medium is pumped very uniformly and the waste heat from the excitation process is stored in the solid-state gain medium. By depositing the heat on time scales that are short compared to thermal diffusion across the optical aperture, very high average power operation is possible while maintaining low optical distortions. After a lasing cycle, aggressive cooling can then take place in the absence of lasing, limited only by the fracture limit of the solid-state medium. This mode of operation is ideally suited for applications that require 1-30s engagements at very high average power. If necessary, multiple laser apertures can provide continuous operation. Land Combat mission analysis of a stressing air defense

  12. Low temperature measurements of the heat capacity and thermodynamic functions of pseudo-malachite Cu5(PO4)2(OH)4

    International Nuclear Information System (INIS)

    Bissengaliyeva, M.R.; Gogol, D.B.; Bekturganov, N.S.

    2012-01-01

    The investigation of the heat capacity of a natural specimen of copper phosphate—pseudo-malachite Cu 5 (PO 4 ) 2 (OH) 4 in the temperature range between 4.2 K and 320 K has been carried out by the method of low-temperature adiabatic calorimetry. Tabulated values of the heat capacity and thermodynamic functions of the mineral including the changes of entropy and enthalpy and the Gibbs function of free energy have been calculated. The standard values of thermodynamic functions of pseudo-malachite at T = 298.15 K are C p,m ° =(385.43±0.41)J mole −1  K −1 , Δ 0 T S m ° =(412.16±0.61)J mole −1  K −1 , Δ 0 T H m ° =(63681.5±57.0)J mole −1 , F m ° =(198.57±0.47)J mole −1  K −1 . In the low-temperature area 0 tr = (5.772 ± 0.081) J mole −1 K −1 , ΔH tr = (29.94 ± 0.42) J mole −1 .

  13. Intermediate size LWR plant study for process heat plus power: main report. Volume 2 of 3 volumes

    International Nuclear Information System (INIS)

    Head, M.A.

    1977-01-01

    The study of process heat-plus-power generation from 900 to 1200 MWt BWRs was initiated by analysis of the smaller BWR plants, which have substantial operating experience. The Muhleberg 306 MWe BWR (four years of operation and 74% capacity factor) and the Humboldt Bay, natural circulation system (ten years of operation and 69% capacity factor) were identified as leading plants. The Muhleberg design, cost, and operating data therefore were analyzed in further detail. Analysis was also conducted on the Humboldt Bay unit, even though its 63 MHe size is not directly applicable. In this case, attention was focused on the potential for updating the natural circulation concept to the 1000 MWt level. Cost analyses were conducted on actual costs incurred, including correction indices for escalation to 1976. The changes in licensing requirements were evaluated and their cost impact estimated. Some indication of the economies possible through standardization and use of modular construction were estimated by reference to earlier work under the nuclear park (or energy center) study program. Consideration was directed to the organizational needs for design, construction, and project management, if an effective program were to be undertaken. The importance of a demonstration project as a means of establishing a design standard for duplication or replication (and the program requirements to bring about such a demonstration project) were then addressed. Finally, capital costs developed from the actual plant costs were used to determine power generation costs

  14. Low-temperature heat capacity and thermodynamic properties of [Re2(Ile)4(H2O)8](ClO4)6 (Re=Nd, Er, Ile=isoleucine)

    International Nuclear Information System (INIS)

    Lan Xiaozheng; Tan Zhicheng; Liu Beiping; Nan Zhaodong; Sun Lixian; Xu Fen

    2003-01-01

    The heat capacities of two kinds of rare-earth element solid complexes with isoleucine [Re 2 (Ile) 4 (H 2 O) 8 ](ClO 4 ) 6 (where Re=Nd, Er, and Ile=isoleucine) have been measured by an automatic adiabatic calorimeter in the temperature range from 80 to 370 K. Two solid-solid phase transitions were found from the C p curve of Nd formed complex in the range of 165-175 K with a peak temperature of 167.88 K and in the range of 195-210 K with a peak temperature of 202.13 K. The corresponding molar enthalpies of these phase transitions were determined to be 404.61 J mol -1 and 2.955 kJ mol -1 , respectively. One solid-solid phase transition was found for the Er formed complex in the range of 190-205 K with a peak temperature of 193.42 K. The corresponding molar enthalpy of this transition was 14.11 kJ mol -1 . Smooth heat capacities and thermodynamic functions relative to the standard state (298.15 K), H T -H 298.15 , S T -S 298.15 and -[G T -G 298.15 ], of the two compounds, were calculated on basis of experimental heat capacity data. Possible mechanisms of thermal decompositions for the pair of compounds were suggested according to the thermogravimetric (TG) analysis

  15. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 2; Specific Heat Capacity

    Science.gov (United States)

    Raj, S. V.

    2017-01-01

    Part I of the paper discussed the temperature dependencies of the electrical resistivities, thermal conductivities, thermal diffusivities and total hemispherical emissivities of several vacuum plasma sprayed (VPS) and cold sprayed copper alloy monolithic coatings, VPS NiAl, VPS NiCrAlY, extruded GRCop-84 and as-cast Cu-17(wt.%)Cr-5%Al. Part II discusses the temperature dependencies of the constant pressure specific heat capacities, CP, of these coatings. The data were empirically were regression-fitted with the equation: CP = AT4 + BT3 + CT2 + DT +E where T is the absolute temperature and A, B, C, D and E are regression constants. The temperature dependencies of the molar enthalpy, molar entropy and Gibbs molar free energy determined from experimental values of molar specific heat capacity are reported. Calculated values of CP using the Neumann-Kopp (NK) rule were in poor agreement with experimental data. Instead, a modification of the Neumann-Kopp rule was found to predict values closer to the experimental data with an absolute deviation less than 6.5%. The specific molar heat capacities for all the alloys did not agree with the Dulong-Petit law, and CP is greater than 3R, where R is the universal gas constant, were measured for all the alloys except NiAl for which CP is less than 3R at all temperatures.

  16. Indoor temperatures for calculating room heat loss and heating capacity of radiant heating systems combined with mechanical ventilation systems

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Olesen, Bjarne W.; Fang, Lei

    2016-01-01

    change rates on the indoor temperatures were performed using the proposed model. When heated surface temperatures and air change rates were from 21.0 to 29.0 degrees C and from 0.5 to 4.0 h-1, the indoor temperatures for calculating the transmission heat loss and ventilation heat loss were between 20...

  17. Draft environmental impact statement siting, construction, and operation of New Production Reactor capacity. Volume 4, Appendices D-R

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-04-01

    This Environmental Impact Statement (EIS) assesses the potential environmental impacts, both on a broad programmatic level and on a project-specific level, concerning a proposed action to provide new tritium production capacity to meet the nation`s nuclear defense requirements well into the 21st century. A capacity equivalent to that of about a 3,000-megawatt (thermal) heavy-water reactor was assumed as a reference basis for analysis in this EIS; this is the approximate capacity of the existing production reactors at DOE`s Savannah River Site near Aiken, South Carolina. The EIS programmatic alternatives address Departmental decisions to be made on whether to build new production facilities, whether to build one or more complexes, what size production capacity to provide, and when to provide this capacity. Project-specific impacts for siting, constructing, and operating new production reactor capacity are assessed for three alternative sites: the Hanford Site near Richland, Washington; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; and the Savannah River Site. For each site, the impacts of three reactor technologies (and supporting facilities) are assessed: a heavy-water reactor, a light-water reactor, and a modular high-temperature gas-cooled reactor. Impacts of the no-action alternative also are assessed. The EIS evaluates impacts related to air quality; noise levels; surface water, groundwater, and wetlands; land use; recreation; visual environment; biotic resources; historical, archaeological, and cultural resources; socioeconomics; transportation; waste management; and human health and safety. The EIS describes in detail the potential radioactive releases from new production reactors and support facilities and assesses the potential doses to workers and the general public. This volume contains 15 appendices.

  18. Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating, and due to storage. Heat demand is reduced due to direct solar heating, due to storage and due to lower heat losses through the ground. In theory, by running the system flow backwards through the sand storage, active heating...... can be achieved.The objective of the report is to present results from measured system evaluation andcalculations and to give guidelines for the design of such solar heating systems with building integrated sand storage. The report is aimed to non-technicians. In another report R-006 the main results...

  19. Numerical Heat Transfer Studies of a Latent Heat Storage System Containing Nano-Enhanced Phase Change Material

    Directory of Open Access Journals (Sweden)

    S F Hosseinizadeh

    2011-01-01

    Full Text Available The heat transfer enhancement in the latent heat thermal energy storage system through dispersion of nanoparticle is reported. The resulting nanoparticle-enhanced phase change materials (NEPCM exhibit enhanced thermal conductivity in comparison to the base material. The effects of nanoparticle volume fraction and some other parameters such as natural convection are studied in terms of solid fraction and the shape of the solid-liquid phase front. It has been found that higher nanoparticle volume fraction result in a larger solid fraction. The present results illustrate that the suspended nanoparticles substantially increase the heat transfer rate and also the nanofluid heat transfer rate increases with an increase in the nanoparticles volume fraction. The increase of the heat release rate of the NEPCM shows its great potential for diverse thermal energy storage application.

  20. Moving heat source in a confined channel: Heat transfer and boiling in endovenous laser ablation of varicose veins : Heat transfer and boiling in endovenous laser ablation of varicose veins

    NARCIS (Netherlands)

    de Boer, A.; Oliveira, J.L.G.; van der Geld, C.W.M.; Malskat, Wendy S.J.; van den Bos, Renate; Nijsten, Tamar; van Gemert, M.J.C.

    2017-01-01

    Motion of a moving laser light heat source in a confined volume has important applications such as in endovenous laser ablation (EVLA) of varicose veins. This light heats up the fluid and the wall volume by absorption and heat conduction. The present study compares the flow and temperature fields in

  1. Finite Volume Element (FVE) discretization and multilevel solution of the axisymmetric heat equation

    Science.gov (United States)

    Litaker, Eric T.

    1994-12-01

    The axisymmetric heat equation, resulting from a point-source of heat applied to a metal block, is solved numerically; both iterative and multilevel solutions are computed in order to compare the two processes. The continuum problem is discretized in two stages: finite differences are used to discretize the time derivatives, resulting is a fully implicit backward time-stepping scheme, and the Finite Volume Element (FVE) method is used to discretize the spatial derivatives. The application of the FVE method to a problem in cylindrical coordinates is new, and results in stencils which are analyzed extensively. Several iteration schemes are considered, including both Jacobi and Gauss-Seidel; a thorough analysis of these schemes is done, using both the spectral radii of the iteration matrices and local mode analysis. Using this discretization, a Gauss-Seidel relaxation scheme is used to solve the heat equation iteratively. A multilevel solution process is then constructed, including the development of intergrid transfer and coarse grid operators. Local mode analysis is performed on the components of the amplification matrix, resulting in the two-level convergence factors for various combinations of the operators. A multilevel solution process is implemented by using multigrid V-cycles; the iterative and multilevel results are compared and discussed in detail. The computational savings resulting from the multilevel process are then discussed.

  2. Heat buffers improve capacity and exploitation degree of geothermal energy sources

    NARCIS (Netherlands)

    Ooster, A.van t; Wit, J. de; Janssen, E.G.O.N.; Ruigrok, J.

    2008-01-01

    This research focuses on the role of heat buffers to support optimal use of combinations of traditional and renewable heat sources like geothermal heat for greenhouse heating. The objective was to determine the contribution of heat buffers to effective new combinations of resources that satisfy

  3. Topology of genetic associations between regional gray matter volume and intellectual ability: Evidence for a high capacity network.

    Science.gov (United States)

    Bohlken, Marc M; Brouwer, Rachel M; Mandl, René C W; Hedman, Anna M; van den Heuvel, Martijn P; van Haren, Neeltje E M; Kahn, René S; Hulshoff Pol, Hilleke E

    2016-01-01

    Intelligence is associated with a network of distributed gray matter areas including the frontal and parietal higher association cortices and primary processing areas of the temporal and occipital lobes. Efficient information transfer between gray matter regions implicated in intelligence is thought to be critical for this trait to emerge. Genetic factors implicated in intelligence and gray matter may promote a high capacity for information transfer. Whether these genetic factors act globally or on local gray matter areas separately is not known. Brain maps of phenotypic and genetic associations between gray matter volume and intelligence were made using structural equation modeling of 3T MRI T1-weighted scans acquired in 167 adult twins of the newly acquired U-TWIN cohort. Subsequently, structural connectivity analyses (DTI) were performed to test the hypothesis that gray matter regions associated with intellectual ability form a densely connected core. Gray matter regions associated with intellectual ability were situated in the right prefrontal, bilateral temporal, bilateral parietal, right occipital and subcortical regions. Regions implicated in intelligence had high structural connectivity density compared to 10,000 reference networks (p=0.031). The genetic association with intelligence was for 39% explained by a genetic source unique to these regions (independent of total brain volume), this source specifically implicated the right supramarginal gyrus. Using a twin design, we show that intelligence is genetically represented in a spatially distributed and densely connected network of gray matter regions providing a high capacity infrastructure. Although genes for intelligence have overlap with those for total brain volume, we present evidence that there are genes for intelligence that act specifically on the subset of brain areas that form an efficient brain network. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Mathematical modelling for magnetite (crude removal from primary heat transfer loop by ion-exchange resins

    Directory of Open Access Journals (Sweden)

    Zeeshan Nawaz

    2009-04-01

    Full Text Available The present research focuses to develop mathematical model for the removal of iron (magnetite by ion-exchange resin from primary heat transfer loop of process industries. This mathematical model is based on operating capacities (that’s provide more effective design as compared to loading capacity from static laboratory tests. Results showed non-steady state distribution of external Fe2+ and limitations imposed on operating conditions, these conditions includes; loading and elution cycle time, flow rate, concentration of both loading and removal, volume of resin required. Number of generalized assumptions was made under shortcut modeling techniques to overcome the gap of theoretical and actual process design.

  5. Humidification and secretion volume in mechanically ventilated patients.

    Science.gov (United States)

    Solomita, Mario; Palmer, Lucy B; Daroowalla, Feroza; Liu, Jeffrey; Miller, Dori; LeBlanc, Deniese S; Smaldone, Gerald C

    2009-10-01

    To determine potential effects of humidification on the volume of airway secretions in mechanically ventilated patients. Water vapor delivery from devices providing non-heated-wire humidification, heated-wire humidification, and heat and moisture exchanger (HME) were quantified on the bench. Then, patients requiring 24-hour mechanical ventilation were exposed sequentially to each of these humidification devices, and secretions were removed and measured by suctioning every hour during the last 4 hours of the 24-hour study period. In vitro water vapor delivery was greater using non-heated-wire humidification, compared to heated-wire humidification and HME. In vivo, a total of 9 patients were studied. Secretion volume following humidification by non-heated-wire humidification was significantly greater than for heated-wire humidification and HME (P=.004). The volume of secretions appeared to be linked to humidification, as greater water vapor delivery measured in vitro was associated with greater secretion volume in vivo.

  6. Moving heat source in a confined channel: Heat transfer and boiling in endovenous laser ablation of varicose veins

    NARCIS (Netherlands)

    de Boer, Amit; Oliveira, Jorge L. G.; van der Geld, Cees W. M.; Malskat, Wendy S. J.; van den Bos, Renate; Nijsten, Tamar; van Gemert, Martin J. C.

    2017-01-01

    Motion of a moving laser light heat source in a confined volume has important applications such as in endovenous laser ablation (EVLA) of varicose veins. This light heats up the fluid and the wall volume by absorption and heat conduction. The present study compares the flow and temperature fields in

  7. Effects of Time, Heat, and Oxygen on K Basin Sludge Agglomeration, Strength, and Solids Volume

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Sinkov, Sergey I.; Schmidt, Andrew J.; Daniel, Richard C.; Burns, Carolyn A.

    2011-01-04

    Sludge disposition will be managed in two phases under the K Basin Sludge Treatment Project. The first phase is to retrieve the sludge that currently resides in engineered containers in the K West (KW) Basin pool at ~10 to 18°C. The second phase is to retrieve the sludge from interim storage in the sludge transport and storage containers (STSCs) and treat and package it in preparation for eventual shipment to the Waste Isolation Pilot Plant. The work described in this report was conducted to gain insight into how sludge may change during long-term containerized storage in the STSCs. To accelerate potential physical and chemical changes, the tests were performed at temperatures and oxygen partial pressures significantly greater than those expected in the T Plant canyon cells where the STSCs will be stored. Tests were conducted to determine the effects of 50°C oxygenated water exposure on settled quiescent uraninite (UO2) slurry and a full simulant of KW containerized sludge to determine the effects of oxygen and heat on the composition and mechanical properties of sludge. Shear-strength measurements by vane rheometry also were conducted for UO2 slurry, mixtures of UO2 and metaschoepite (UO3•2H2O), and for simulated KW containerized sludge. The results from these tests and related previous tests are compared to determine whether the settled solids in the K Basin sludge materials change in volume because of oxidation of UO2 by dissolved atmospheric oxygen to form metaschoepite. The test results also are compared to determine if heating or other factors alter sludge volumes and to determine the effects of sludge composition and settling times on sludge shear strength. It has been estimated that the sludge volume will increase with time because of a uranium metal → uraninite → metaschoepite oxidation sequence. This increase could increase the number of containers required for storage and increase overall costs of sludge management activities. However, the volume

  8. Effects of Time, Heat, and Oxygen on K Basin Sludge Agglomeration, Strength, and Solids Volume

    International Nuclear Information System (INIS)

    Delegard, Calvin H.; Sinkov, Sergey I.; Schmidt, Andrew J.; Daniel, Richard C.; Burns, Carolyn A.

    2011-01-01

    Sludge disposition will be managed in two phases under the K Basin Sludge Treatment Project. The first phase is to retrieve the sludge that currently resides in engineered containers in the K West (KW) Basin pool at ∼10 to 18 C. The second phase is to retrieve the sludge from interim storage in the sludge transport and storage containers (STSCs) and treat and package it in preparation for eventual shipment to the Waste Isolation Pilot Plant. The work described in this report was conducted to gain insight into how sludge may change during long-term containerized storage in the STSCs. To accelerate potential physical and chemical changes, the tests were performed at temperatures and oxygen partial pressures significantly greater than those expected in the T Plant canyon cells where the STSCs will be stored. Tests were conducted to determine the effects of 50 C oxygenated water exposure on settled quiescent uraninite (UO 2 ) slurry and a full simulant of KW containerized sludge to determine the effects of oxygen and heat on the composition and mechanical properties of sludge. Shear-strength measurements by vane rheometry also were conducted for UO 2 slurry, mixtures of UO2 and metaschoepite (UO 3 · 2H 2 O), and for simulated KW containerized sludge. The results from these tests and related previous tests are compared to determine whether the settled solids in the K Basin sludge materials change in volume because of oxidation of UO2 by dissolved atmospheric oxygen to form metaschoepite. The test results also are compared to determine if heating or other factors alter sludge volumes and to determine the effects of sludge composition and settling times on sludge shear strength. It has been estimated that the sludge volume will increase with time because of a uranium metal → uraninite → metaschoepite oxidation sequence. This increase could increase the number of containers required for storage and increase overall costs of sludge management activities. However, the

  9. Heat capacities, third-law entropies and thermodynamic functions of the negative thermal expansion materials, cubic α-ZrW2O8 and cubic ZrMo2O8, from T=(0 to 400) K

    International Nuclear Information System (INIS)

    Stevens, Rebecca; Linford, Jessica; Woodfield, Brian F.; Boerio-Goates, Juliana.; Lind, Cora; Wilkinson, Angus P.; Kowach, Glen

    2003-01-01

    The molar heat capacities of crystalline cubic α-ZrW 2 O 8 and cubic ZrMo 2 O 8 have been measured at temperatures from (0.6 to 400) K. At T=298.15 K, the standard molar heat capacities are (207.01±0.21) J·K -1 ·mol -1 for the tungstate and (210.06±0.42) J·K -1 ·mol -1 for the molybdate. Thermodynamic functions have been generated from smoothed fits of the experimental results. The standard molar entropies for the tungstate and molybdate are (257.96±0.50) J·K -1 ·mol -1 and (254.3±1) J·K -1 ·mol -1 , respectively. The uncertainty of the entropy of the cubic ZrMo 2 O 8 is larger due to the presence of small chemical and phase impurities whose effects cannot be corrected for at this time. The heat capacities of the negative thermal expansion materials have been compared to the weighted sums of their constituent binary oxides. Both negative thermal expansion materials have heat capacities which are significantly greater than the sum of the binary oxides over the entire temperature region

  10. Influence of short heat pulses on the helium boiling heat transfer rate

    International Nuclear Information System (INIS)

    Andreev, V.K.; Deev, V.I.; Savin, A.N.; Kutsenko, K.V.

    1987-01-01

    Investigation results on heat transfer in the process of helium boiling on a heated wall under conditions of pulsed heat effect are described. Results of the given study point to one of possible ways of heat exchange intensification in boiling helium by supplying short heat pulse to the heater. Even short-time noncontrolled or incidental increase in the heater capacity during experiment with boiling helium can result in a considerable disagreement of experimental data on heat transfer

  11. Myocardial functional responses do not contribute to maximal exercise performance in the heat.

    Science.gov (United States)

    Smith, Denise L; DeBlois, Jacob P; Wharton, Margaret; Rowland, Thomas

    2015-01-01

    Both the extent and means by which maximal oxygen uptake ([Formula: see text]) is depressed by elevated ambient temperature are uncertain. Particularly, information is currently unavailable regarding the possible influence of alterations in myocardial function on [Formula: see text] and performance during exercise in the heat. This study investigated the effects of environmental heat on [Formula: see text], peak work capacity, and myocardial function during a standard, progressive cycle test to exhaustion. Twelve euhydrated men (aged 20.7 ± 1.7 years) performed a maximal cycle test in an environmental chamber in both heat stress [35°C, 30% relative humidity (RH)] and temperate (20°C, 30% RH) conditions with measurement of standard gas exchange variables, core temperature, and echocardiographic measures of cardiac function. A small but statistically significant reduction of peak work capacity was observed in the heat stress versus temperate conditions (253 ± 30 and 259 ± 30 W, respectively, p = 0.02). Mean [Formula: see text] was not statistically different in the two conditions (p = 0.16) but values were 3.4% lower in the heat, and 9 of 12 participants demonstrated lower values in the heat stress trial. No differences in responses of heart rate, cardiac output, stroke volume, core temperature, hydration status, or myocardial systolic or diastolic function were observed between the two conditions, but perceived body temperature was higher in the heat. The small, negative impact of heat on exercise performance and [Formula: see text] could not be explained by disturbances in myocardial functional responses to exercise in young adult males.

  12. Present situation of heating enterpreneurship in Finland

    International Nuclear Information System (INIS)

    Solmio, H.

    1997-01-01

    Heating entrepreneurs are farmers, who usually have a wood-lot of their own, or entrepreneurs, who have undertaken to look after the supply of fuel to real estates and their heating. The TTS- Institute conducted an analysis of the scope of heating enterpreneurship in connection with the project belonging to the national Bioenergy Research Programme. According to the responses obtained in a mail questionnaire study conducted in autumns 1996, and other data obtained on the subject, there were 36 active heating entrepreneur sites in Finland in December 1996. Heating enterpreneurship, usually involving the supply of chipped wood, has become more common during the past few years. In 1994, it was started at ten places, in 1995 at eight places, and in 1996 at twelve places. The majority, nearly three quarters, of the heating enterpreneurship sites at the end of 1996 were school buildings and one fifth were district heating plants. The solid fuel boiler capacity of all the plants in the study was 11.5 MW. The district heating plants were 0.3-2.5 MW in capacity, the school buildings were in the 60-500 kW range, old peoples'' homes had capacities of 300-370 kW. Except for one school building using sod peat as primary fuel, wood chips was the primary fuel used by institutional buildings. The enterprise form was that of an entrepreneur or a pool formed by entrepreneurs in the case of 27 entrepreneurs, a company in the case of 6, and a co-operative society in the case of three. There were 56 heating-enterpreneurship sites at the implementation or planning stage. Four fifths of them involved heat generation capacity of less than 500 kW and one fifth a capacity of 0.5-2.0 Mw Tyoetehoseuran Metsaetiedote. 13 refs., 3 figs

  13. Volume-heated boiling pool behavior and application to transition phase accident conditions

    International Nuclear Information System (INIS)

    Ginsberg, T.; Jones, O.C. Jr.; Chen, J.C.

    1978-01-01

    Observations of two-phase flow fields in volume-heated boiling pools are reported. Photographic observations, together with pool-average void fraction measurements are presented. Flow regime transition criterial derived from the measurements are discussed. The churn-turbulent flow regime was the dominant regime for superficial vapor velocity. Within this range of conditions, a churn-turbulent drift flux model provides a reasonable prediction of the pool-average void fraction data. The results of the experiment and analysis are extrapolated to transition phase conditions. It is shown that intense pool boil-up could occur where the pool-average void fraction would be greater than 0.6 for steel vaporization rates equivalent to power levels greater than one percent of nominal LMFBR power density. (author)

  14. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  15. Heat Source Models in Simulation of Heat Flow in Friction Stir Welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blich; Hattel, Jesper

    2004-01-01

    The objective of the present paper is to investigate the effect of including the tool probe and the material flow in the numerical modelling of heat flow in Friction Stir Welding (FSW). The contact condition at the interface between the tool and workpiece controls the heat transfer mechanisms....... The convective heat transfer due to the material flow affects the temperature fields. Models presented previously in literature allow the heat to flow through the probe volume, and the majority of them neglect the influence of the contact condition as the sliding condition is assumed. In the present work......, a number of cases are established. Each case represents a combination of a contact condition, i.e. sliding and sticking, and a stage of refinement regarding the heat source distribution. In the most detailed models the heat flow is forced around the probe volume by prescribing a velocity field in shear...

  16. Heat source models in simulation of heat flow in friction stir welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blich; Hattel, Jesper

    2004-01-01

    The objective of the present paper is to investigate the effect of including the tool probe and the material flow in the numerical modelling of heat flow in friction stir welding (FSW). The contact condition at the interface between the tool and workpiece controls the heat transfer mechanisms....... The convective heat transfer due to the material flow affects the temperature fields. Models presented previously in the literature allow the heat to flow through the probe volume, and the majority neglects the influence of the contact condition as the sliding condition is assumed. In this work, a number...... of cases is established. Each case represents a combination of a contact condition, i.e. sliding and sticking, and a stage of refinement regarding the heat source distribution. In the most detailed models, the heat flow is forced around the probe volume by prescribing a velocity field in shear layers...

  17. Malone-brayton cycle engine/heat pump

    Science.gov (United States)

    Gilmour, Thomas A.

    1994-07-01

    A machine, such as a heat pump, and having an all liquid heat exchange fluid, operates over a more nearly ideal thermodynamic cycle by adjustment of the proportionality of the volumetric capacities of a compressor and an expander to approximate the proportionality of the densities of the liquid heat exchange fluid at the chosen working pressures. Preferred forms of a unit including both the compressor and the expander on a common shaft employs difference in axial lengths of rotary pumps of the gear or vane type to achieve the adjustment of volumetric capacity. Adjustment of the heat pump system for differing heat sink conditions preferably employs variable compression ratio pumps.

  18. Inverse Problem and Variation Method to Optimize Cascade Heat Exchange Network in Central Heating System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yin; WEI Zhiyuan; ZHANG Yinping; WANG Xin

    2017-01-01

    Urban heating in northern China accounts for 40% of total building energy usage.In central heating systems,heat is often transfened from heat source to users by the heat network where several heat exchangers arc installed at heat source,substations and terminals respectively.For given overall heating capacity and heat source temperarure,increasing the terminal fluid temperature is an effective way to improve the thermal performance of such cascade heat exchange network for energy saving.In this paper,the mathematical optimization model of the cascade heat exchange network with three-stage heat exchangers in series is established.Aim at maximizing the cold fluid temperature for given hot fluid temperature and overall heating capacity,the optimal heat exchange area distribution and the medium fluids' flow rates are determined through inverse problem and variation method.The preliminary results show that the heat exchange areas should be distributed equally for each heat exchanger.It also indicates that in order to improve the thernmal performance of the whole system,more heat exchange areas should be allocated to the heat exchanger where flow rate difference between two fluids is relatively small.This work is important for guiding the optimization design of practical cascade heating systems.

  19. Coupling heat and chemical tracer experiments for estimating heat transfer parameters in shallow alluvial aquifers.

    Science.gov (United States)

    Wildemeersch, S; Jamin, P; Orban, P; Hermans, T; Klepikova, M; Nguyen, F; Brouyère, S; Dassargues, A

    2014-11-15

    Geothermal energy systems, closed or open, are increasingly considered for heating and/or cooling buildings. The efficiency of such systems depends on the thermal properties of the subsurface. Therefore, feasibility and impact studies performed prior to their installation should include a field characterization of thermal properties and a heat transfer model using parameter values measured in situ. However, there is a lack of in situ experiments and methodology for performing such a field characterization, especially for open systems. This study presents an in situ experiment designed for estimating heat transfer parameters in shallow alluvial aquifers with focus on the specific heat capacity. This experiment consists in simultaneously injecting hot water and a chemical tracer into the aquifer and monitoring the evolution of groundwater temperature and concentration in the recovery well (and possibly in other piezometers located down gradient). Temperature and concentrations are then used for estimating the specific heat capacity. The first method for estimating this parameter is based on a modeling in series of the chemical tracer and temperature breakthrough curves at the recovery well. The second method is based on an energy balance. The values of specific heat capacity estimated for both methods (2.30 and 2.54MJ/m(3)/K) for the experimental site in the alluvial aquifer of the Meuse River (Belgium) are almost identical and consistent with values found in the literature. Temperature breakthrough curves in other piezometers are not required for estimating the specific heat capacity. However, they highlight that heat transfer in the alluvial aquifer of the Meuse River is complex and contrasted with different dominant process depending on the depth leading to significant vertical heat exchange between upper and lower part of the aquifer. Furthermore, these temperature breakthrough curves could be included in the calibration of a complex heat transfer model for

  20. Compact heat exchanger for power plants

    International Nuclear Information System (INIS)

    Kinnunen, L.

    2001-01-01

    Vahterus Oy, located at Kalanti, has manufactured heat exchangers since the beginning of 1990s. About 90% of the equipment produced are exported. In the PSHE (Plate and Shell) solution of the Vahterus heat exchanger the heat is transferred by round plated welded to form a compact package, which is assembled into a cylindrical steel casing. The heat exchanger contains no gaskets or soldered joints, which eliminates the leak risks. Traditional heat exchanges are usually operated at higher temperatures and pressures, but the heat transfer capacities of them are lower. Plate heat exchangers, on the other hand, are efficient, but the application range of them is narrow. Additionally, the rubber gasket of the heat exchange plates, sealing the joints of the heat exchanging plates, does not stand high pressures or temperatures, or corroding fluids. The new welded plate heat exchanger combine the pressure and temperature resistance of tube heat exchangers and the high heat exchange capacity of plate heat exchangers. The new corrosion resisting heat exchanger can be applied for especially hard conditions. The operating temperature range of the PSHE heat exchanger is - 200 - 900 deg C. The pressure resistance is as high as 100 bar. The space requirement of PSHE is only one tenth of the space requirement of traditional tube heat exchangers. Adjusting the number of heat exchanging plates can change the capacity of the heat exchanger. Power range of the heat exchanger can be as high as 80 MW. Due to the corrosion preventive construction and the small dimension the PSHE heat exchanger can be applied for refrigerators using ammonia as refrigerant. These kinds of new Vahterus heat exchangers are in use in 60 countries in more than 2000 refrigerators

  1. Reconstruction actions carried out in order to achieve nominal design heat capacity of hot water boilers type VKSM 40; A product of TPK-Zagreb

    International Nuclear Information System (INIS)

    Ninevski, Gjorgji; Sekovanikj, Ivica

    2000-01-01

    Hot water boilers with a steep turbines membranous produced by TPK-Zagreb in 1979 are projected for nominal capacity of 46.52 MW. But it was demonstrated in practice, according the performed measurements, that during the exploitation they do not give declared thermal power. In this article the chronological review of all successful performed reconstructive operations by engineering staff from Toplifikacija Joint-Stock Co. for district heating -Skopje (Macedonia) on the hot water boilers type VKSM40 with nominal capacity of 46.52 MW is given. (Authors)

  2. Theoretical energy and exergy analyses of solar assisted heat pump space heating system

    Directory of Open Access Journals (Sweden)

    Atmaca Ibrahim

    2014-01-01

    Full Text Available Due to use of alternative energy sources and energy efficient operation, heat pumps come into prominence in recent years. Especially in solar-assisted heat pumps, sizing the required system is difficult and arduous task in order to provide optimum working conditions. Therefore, in this study solar assisted indirect expanded heat pump space heating system is simulated and the results of the simulation are compared with available experimental data in the literature in order to present reliability of the model. Solar radiation values in the selected region are estimated with the simulation. The case study is applied and simulation results are given for Antalya, Turkey. Collector type and storage tank capacity effects on the consumed power of the compressor, COP of the heat pump and the overall system are estimated with the simulation, depending on the radiation data, collector surface area and the heating capacity of the space. Exergy analysis is also performed with the simulation and irreversibility, improvement potentials and exergy efficiencies of the heat pump and system components are estimated.

  3. Prediction of heat capacity of amine solutions using artificial neural network and thermodynamic models for CO2 capture processes

    Science.gov (United States)

    Afkhamipour, Morteza; Mofarahi, Masoud; Borhani, Tohid Nejad Ghaffar; Zanganeh, Masoud

    2018-03-01

    In this study, artificial neural network (ANN) and thermodynamic models were developed for prediction of the heat capacity ( C P ) of amine-based solvents. For ANN model, independent variables such as concentration, temperature, molecular weight and CO2 loading of amine were selected as the inputs of the model. The significance of the input variables of the ANN model on the C P values was investigated statistically by analyzing of correlation matrix. A thermodynamic model based on the Redlich-Kister equation was used to correlate the excess molar heat capacity ({C}_P^E) data as function of temperature. In addition, the effects of temperature and CO2 loading at different concentrations of conventional amines on the C P values were investigated. Both models were validated against experimental data and very good results were obtained between two mentioned models and experimental data of C P collected from various literatures. The AARD between ANN model results and experimental data of C P for 47 systems of amine-based solvents studied was 4.3%. For conventional amines, the AARD for ANN model and thermodynamic model in comparison with experimental data were 0.59% and 0.57%, respectively. The results showed that both ANN and Redlich-Kister models can be used as a practical tool for simulation and designing of CO2 removal processes by using amine solutions.

  4. Thermal behavior of a heat exchanger module for seasonal heat storage

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon; Andersen, Elsa

    2012-01-01

    Experimental and theoretic investigations are carried out to study the heat transfer capacity rate of a heat exchanger module for seasonal heat storage with sodium acetate trihydrate (SAT) supercooling in a stable way. A sandwich heat storage test module has been built with the phase change...... material (PCM) storage box in between two plate heat exchangers. Charge of the PCM storage is investigated experimentally with solid phase SAT as initial condition. Discharge of the PCM storage with the presence of crystallization is studied experimentally. Fluid flow and heat transfer in the PCM module......, recommendations on how best to transfer heat to and from the seasonal heat storage module are given....

  5. Petroleum supply annual 1992: Volume 1

    International Nuclear Information System (INIS)

    1993-01-01

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1992 through annual and monthly surveys. The PSA is divided into two volumes. This first volume contains four sections: Summary Statistics, Detailed Statistics, Refinery Capacity and Oxygenate Capacity each with final annual data. The second volume contains final statistics for each month of 1992, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them

  6. Evaluation of an Absorption Heat Pump to Mitigate Plant Capacity Reduction Due to Ambient Temperature Rise for an Air-Cooled Ammonia and Water Cycle: Preprint

    International Nuclear Information System (INIS)

    Bharathan, D.; Nix, G.

    2001-01-01

    Air-cooled geothermal plants suffer substantial decreases in generating capacity at increased ambient temperatures. As the ambient temperature rises by 50 F above a design value of 50 F, at low brine-resource temperatures, the decrease in generating capacity can be more than 50%. This decrease is caused primarily by increased condenser pressure. Using mixed-working fluids has recently drawn considerable attention for use in power cycles. Such cycles are more readily amenable to use of absorption ''heat pumps.'' For a system that uses ammonia and water as the mixed-working fluid, this paper evaluates using an absorption heat pump to reduce condenser backpressure. At high ambient temperatures, part of the turbine exhaust vapor is absorbed into a circulating mixed stream in an absorber in series with the main condenser. This steam is pumped up to a higher pressure and heated to strip the excess vapor, which is recondensed using an additional air-cooled condenser. The operating conditions are chosen to reconstitute this condensate back to the same concentration as drawn from the original system. We analyzed two power plants of nominal 1-megawatt capacity. The design resource temperatures were 250 F and 300 F. Ambient temperature was allowed to rise from a design value of 50 F to 100 F. The analyses indicate that using an absorption heat pump is feasible. For the 300 F resource, an increased brine flow of 30% resulted in a net power increase of 21%. For the 250 F resource, the increase was smaller. However, these results are highly plant- and equipment-specific because evaluations must be carried out at off-design conditions for the condenser. Such studies should be carried out for specific power plants that suffer most from increased ambient temperatures

  7. Study on the Optimal Equivalent Radius in Calculating the Heat Dissipation of Surrounding Rock

    Directory of Open Access Journals (Sweden)

    H. T. Song

    2015-11-01

    Full Text Available The heat dissipation of surrounding rock of a non-circular roadway is computed using an equivalent circular roadway approach under three circumstances when the area, perimeter, or hydraulic diameter of the circular roadway is equal to the non-circular roadway to obtain the optimal equivalent radius. The differential equations of heat conduction for unstable surrounding rock are established in cylindrical and rectangular coordinate systems using dimensionless analysis method. The calculation formulas of heat dissipation capacity and heat transfer resistance are derived from differential equations. Based on the method of equivalent radius, the similarities and differences between non-circular and circular roadways in calculating the heat dissipation of surrounding rock are discussed. Using the finite volume method, the calculation models for non-circular and circular roadways in the heat dissipation of surrounding rock are also established, among the non-circular roadways including three circumstances, namely, trapezoid, rectangle, and arch. The relation errors of heat dissipation of the surrounding rock of the three equivalent circular roadway methods are investigated for the three non-circular roadways. Results show that the calculation approach with equal perimeters is the best for the heat dissipation of surrounding rock of non-circular roadways.

  8. Solar-powered Rankine heat pump for heating and cooling

    Science.gov (United States)

    Rousseau, J.

    1978-01-01

    The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.

  9. The maximum power condition of the brayton cycle with heat exchange processes

    International Nuclear Information System (INIS)

    Jung, Pyung Suk; Cha, Jin Girl; Ro, Sung Tack

    1985-01-01

    The ideal brayton cycle has been analyzed with the heat exchange processes between the working fluid and the heat source and the sink while their heat capacity rates are constant. The power of the cycle can be expressed in terms of a temperature of the cycle and the heat capacity rate of the working fluid. There exists an optimum power condition where the heat capacity rate of the working fluid has a value between those of the heat source and the heat sink, and the cycle efficiency is determined by the inlet temperatures of the heat source and the sink. (Author)

  10. Solar heating pipe

    Energy Technology Data Exchange (ETDEWEB)

    Hinson-Rider, G.

    1977-10-04

    A fluid carrying pipe is described having an integral transparent portion formed into a longitudinally extending cylindrical lens that focuses solar heat rays to a focal axis within the volume of the pipe. The pipe on the side opposite the lens has a heat ray absorbent coating for absorbing heat from light rays that pass through the focal axis.

  11. Petroleum supply annual 1994. Volume 1

    International Nuclear Information System (INIS)

    1995-01-01

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1994 through annual and monthly surveys. The PSA is divided into two volumes. This first volume contains four sections: Summary Statistics, Detailed Statistics, Refinery Capacity, and Oxygenate Capacity each with final annual data. The second volume contains final statistics for each month of 1994, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. Below is a description of each section in Volume 1 of the PSA

  12. Study of CO2 automobile heating system. Paper no. IGEC-1-129

    International Nuclear Information System (INIS)

    Zha, S.; Hafner, A.

    2005-01-01

    Carbon dioxide has become a popular working medium in heat pump water heaters and mobile heat pumping systems due to its environment friendliness and its excellent thermal and transport properties in transcritical cycle. It also looks bright as a complete solution to environmental problem associated with automobile air conditionings. As high efficient mobile engines with less waste heat have been developed, extra heating of the passenger compartment is needed in the cold season. In this investigation, three heating solutions for automobile CO 2 air conditioning systems are provided. They are a bypass CO 2 heating cycle, a conventional CO 2 transcritical heat pump cycle and a high capacity heat pump cycle with economizer. These three solutions are compared with the viewpoints of the efficiency and heating capacity. The test results show that the heating capacity of the bypass heating method is only enough for a small automobile although it has the advantage of simple construction and low investment. The heat pump cycle with economizer applying a special construction reciprocating compressor can obtain a highest capacity even in cold climate. But the investment increase for economizer heat pump cycle includes both the modification of the compressor and the flash tank. And the COPh of economizer heat pump cycle is higher than bypass heating cycle, but lower than conventional heat pump cycle due to the highest capacity operation condition. (author)

  13. Ladder Ising spin configurations. Pt. 1. Heat capacity

    International Nuclear Information System (INIS)

    Mejdani, R.; Lambros, A.

    1996-01-01

    We consider a ladder Ising spin model (with two coupled Ising spin chains), characterized by two couplings (interchain and intrachain couplings), to study in detail, in an analytical way, its thermal behaviour and particularly the variation of the specific heat versus temperature, the ratio of interaction constants, and the magnetic field. It is interesting that when the competition between interchain and intrachain interactions is strong the specific heat exhibits a double peak and when the competition is not so strong the specific heat has a single peak. Further, without entering into details, we give, in a numerical way, some similar results for more complicated ladder configurations (with more than two linear Ising chains). The spin-1/2 ladders or systems of spin chains may be realized in nature by vanadyl pyrophosphate ((VO) 2 P 2 O 7 ) or similar materials. All these intermediate systems are today important to gain further insight into the physics of one-dimensional spin chains and two-dimensional high-T c spin systems, both of which have shown interesting and unusual magnetic and superconducting properties. It is plausible that experimental and theoretical studies of ladders may lead to other interesting physical phenomena. (orig.)

  14. A method of determining the thermal power demand of buildings connected to the district heating system with usage of heat accumulation

    Directory of Open Access Journals (Sweden)

    Turski Michał

    2017-01-01

    Full Text Available The paper presents a new method of determining the thermal power demand of buildings connected to the district heating system, which included the actual heat demand and the possibility of balancing the thermal power using the thermal storage capacity of district heating network and internal heat capacity of buildings. Moreover, the analysis of the effect of incidence of external air temperature and duration of episodes with the lowest outdoor temperatures on the thermal power demand of district heating system was conducted.

  15. Ends, fundamental tones and capacity of minimal submanifolds via extrinsic comparison theory

    DEFF Research Database (Denmark)

    Gimeno, Vicent; Markvorsen, Steen

    2015-01-01

    We study the volume of extrinsic balls and the capacity of extrinsic annuli in minimal submanifolds which are properly immersed with controlled radial sectional curvatures into an ambient manifold with a pole. The key results are concerned with the comparison of those volumes and capacities with ...... with the corresponding entities in a rotationally symmetric model manifold. Using the asymptotic behavior of the volumes and capacities we then obtain upper bounds for the number of ends as well as estimates for the fundamental tone of the submanifolds in question....

  16. Investigation on Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating and due to storage. The storage affects the heat demand passively due to higher temperatures. Hence heat loss is reduced and passive heating is optioned. In theory, by running the system flow backwards, active heating can...... solar collector area of the system, was achieved. Active heating from the sand storage was not observed. The pay-back time for the system can be estimated to be similar to solar heated domestic hot water systems in general. A number of minor improvements on the system could be pointed out....

  17. Cold Climate Heat Pumps Using Tandem Compressors

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [ORNL; Abdelaziz, Omar [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL

    2016-01-01

    In cold climate zones, e.g. ASHRAE climate regions IV and V, conventional electric air-source heat pumps (ASHP) do not work well, due to high compressor discharge temperatures, large pressure ratios and inadequate heating capacities at low ambient temperatures. Consequently, significant use of auxiliary strip heating is required to meet the building heating load. We introduce innovative ASHP technologies as part of continuing efforts to eliminate auxiliary strip heat use and maximize heating COP with acceptable cost-effectiveness and reliability. These innovative ASHP were developed using tandem compressors, which are capable of augmenting heating capacity at low temperatures and maintain superior part-load operation efficiency at moderate temperatures. Two options of tandem compressors were studied; the first employs two identical, single-speed compressors, and the second employs two identical, vapor-injection compressors. The investigations were based on system modeling and laboratory evaluation. Both designs have successfully met the performance criteria. Laboratory evaluation showed that the tandem, single-speed compressor ASHP system is able to achieve heating COP = 4.2 at 47 F (8.3 C), COP = 2.9 at 17 F (-8.3 C), and 76% rated capacity and COP = 1.9 at -13 F (-25 C). This yields a HSPF = 11.0 (per AHRI 210/240). The tandem, vapor-injection ASHP is able to reach heating COP = 4.4 at 47 F, COP = 3.1 at 17 F, and 88% rated capacity and COP = 2.0 at -13 F. This yields a HSPF = 12.0. The system modeling and further laboratory evaluation are presented in the paper.

  18. The evaluation of a small capacity shell and tube ammonia evaporator

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Valladares, O.; Hernandez, J.I.; Best y Brown, R. [Centro de Investigacion en Energia de la UNAM, Morelos (Mexico); Gonzalez, J.C. [Universidad Autonoma de Campeche (Mexico). Programa CADETRAA

    2003-12-01

    The use of ammonia as refrigerant is widespread in vapour compression and ammonia/water absorption systems. Ammonia is not actually used in low capacity applications mainly because of the lack of economical available equipment. For this reason, the objective of this study is the numerical and experimental evaluation of a small capacity ammonia shell and tube evaporator with enhanced heat transfer surfaces. An experimental system to evaluate small capacity heat exchangers was developed. A shell and tube evaporator with external low fin tubes was successfully tested. The experimental uncertainty for the evaporator capacity has been estimated within {+-}5.5%. The experimental results were used to validate a heat exchanger numerical tool that predicts reasonably well the cooling capacity and load outlet temperatures. The methodology presented in this work can be applied to evaluate other refrigerants in similar shell and tube evaporators and to optimize the design of an evaporator for a specific application. (author)

  19. Hybrid finite volume/ finite element method for radiative heat transfer in graded index media

    Science.gov (United States)

    Zhang, L.; Zhao, J. M.; Liu, L. H.; Wang, S. Y.

    2012-09-01

    The rays propagate along curved path determined by the Fermat principle in the graded index medium. The radiative transfer equation in graded index medium (GRTE) contains two specific redistribution terms (with partial derivatives to the angular coordinates) accounting for the effect of the curved ray path. In this paper, the hybrid finite volume with finite element method (hybrid FVM/FEM) (P.J. Coelho, J. Quant. Spectrosc. Radiat. Transf., vol. 93, pp. 89-101, 2005) is extended to solve the radiative heat transfer in two-dimensional absorbing-emitting-scattering graded index media, in which the spatial discretization is carried out using a FVM, while the angular discretization is by a FEM. The FEM angular discretization is demonstrated to be preferable in dealing with the redistribution terms in the GRTE. Two stiff matrix assembly schemes of the angular FEM discretization, namely, the traditional assembly approach and a new spherical assembly approach (assembly on the unit sphere of the solid angular space), are discussed. The spherical assembly scheme is demonstrated to give better results than the traditional assembly approach. The predicted heat flux distributions and temperature distributions in radiative equilibrium are determined by the proposed method and compared with the results available in other references. The proposed hybrid FVM/FEM method can predict the radiative heat transfer in absorbing-emitting-scattering graded index medium with good accuracy.

  20. Hybrid finite volume/ finite element method for radiative heat transfer in graded index media

    International Nuclear Information System (INIS)

    Zhang, L.; Zhao, J.M.; Liu, L.H.; Wang, S.Y.

    2012-01-01

    The rays propagate along curved path determined by the Fermat principle in the graded index medium. The radiative transfer equation in graded index medium (GRTE) contains two specific redistribution terms (with partial derivatives to the angular coordinates) accounting for the effect of the curved ray path. In this paper, the hybrid finite volume with finite element method (hybrid FVM/FEM) (P.J. Coelho, J. Quant. Spectrosc. Radiat. Transf., vol. 93, pp. 89-101, 2005) is extended to solve the radiative heat transfer in two-dimensional absorbing-emitting-scattering graded index media, in which the spatial discretization is carried out using a FVM, while the angular discretization is by a FEM. The FEM angular discretization is demonstrated to be preferable in dealing with the redistribution terms in the GRTE. Two stiff matrix assembly schemes of the angular FEM discretization, namely, the traditional assembly approach and a new spherical assembly approach (assembly on the unit sphere of the solid angular space), are discussed. The spherical assembly scheme is demonstrated to give better results than the traditional assembly approach. The predicted heat flux distributions and temperature distributions in radiative equilibrium are determined by the proposed method and compared with the results available in other references. The proposed hybrid FVM/FEM method can predict the radiative heat transfer in absorbing-emitting-scattering graded index medium with good accuracy.

  1. Evaluation of the effect of Islamic fasting on lung volumes and capacities in the healthy persons.

    Science.gov (United States)

    Moosavi, Seyyed-Ali J; Kabir, Ali; Moghimi, Ali; Chehrei, Ali; Rad, Mohammad B

    2007-11-01

    To evaluate the changes in pulmonary volumes during and after Islamic fasting. It is a cohort study conducted on 117 healthy subjects selected on a random basis from employees, professors and students of Iran University of Medical Sciences, Tehran, Iran, between December 1999 and January 2000. All of them underwent spirometry 10 days prior to Ramadan, 2 times during Ramadan, and one time 10 days post-Ramadan. In first visit, in addition to spirometry they underwent medical examination to make sure they are healthy. All of their spirometries and background information were collected. Repeated measurements analysis of variance method was used to compare the measurements. Approximately 69% of subjects were male and the mean age was 23.9 years. Mean fasting time was 27.8 days. The mean difference in forced expiratory volume in 1 second (FEV1%) was significant between the 4 visits (p=0.01). The mean FEV1% increased both during fasting and after Ramadan (p=0.017). The mean vital capacity and peak expiratory flow rate values increased during Ramadan significantly (p=0.043, pvolumes and might improve pulmonary function. This finding seems to be relevant to the changes in weight during Ramadan.

  2. Solvation molar enthalpies and heat capacities of n-alkanes and n-alkylbenzenes on stationary phases of wide-ranging polarity.

    Science.gov (United States)

    Lebrón-Aguilar, Rosa; Quintanilla-López, Jesús Eduardo; Santiuste, José María

    2010-12-03

    A comparison of the most usual gas chromatographic methods for the calculation of partial molar enthalpies of solvation (Δ(sol)H(o)) has been carried out. Those methods based on the fitting of lnV(g) or ln(k/T) vs. 1/T and ln(k/T) vs. (1/T and the temperature arrangement, T(a)) are the most adequate ones for obtaining Δ(sol)H(o) values. However, the latter is the only reliable option for Δ(sol)H(o) estimation when commercial WCOT capillary columns are used, since in this case the estimation of some variables involved in the V(g) determination is less accurate or even impossible. Consequently, in this paper, Δ(sol)H(o) obtained from ln(k/T) vs. (1/T+T(a)) fitting at 373.15 and 298.15K for n-alkanes and n-alkylbenzenes on 12 commercial capillary columns coated with stationary phases covering the 203-3608 McReynolds polarity range are reported. Moreover, molar heat capacities of solvation at constant pressure (Δ(sol)C(p)(o)) have also been calculated using this method. A clear influence on Δ(sol)H(o) of the type and content of the substitution group in the stationary phase was observed. In addition, a linear relationship of Δ(sol)C(p)(o) with the van der Waals volume of the n-alkanes and the temperature gradient of density of the stationary phase was found. The effect of the size of the hydrocarbon on both thermodynamic variables was also investigated. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Shear transfer capacity of reinforced concrete exposed to fire

    Science.gov (United States)

    Ahmad, Subhan; Bhargava, Pradeep; Chourasia, Ajay

    2018-04-01

    Shear transfer capacity of reinforced concrete elements is a function of concrete compressive strength and reinforcement yield strength. Exposure of concrete and steel to elevated temperature reduces their mechanical properties resulting in reduced shear transfer capacity of RC elements. The objective of present study is to find the effect of elevated temperature on shear transfer capacity of reinforced concrete. For this purpose pushoff specimens were casted using normal strength concrete. After curing, specimens were heated to 250°C and 500°C in an electric furnace. Cooled specimens were tested for shear transfer capacity in a universal testing machine. It was found that shear transfer capacity and stiffness (slope of load-slip curve) were reduced when the specimens were heated to 250°C and 500°C. Load level for the initiation of crack slip was found to be decreased as the temperature was increased. A simple analytical approach is also proposed to predict the shear transfer capacity of reinforced concrete after elevated temperature.

  4. Low-temperature molar heat capacities and entropies of MnO2 (pyrolusite), Mn3O4 (hausmanite), and Mn2O3 (bixbyite)

    Science.gov (United States)

    Robie, R.A.; Hemingway, B.S.

    1985-01-01

    Pyrolusite (MnO2), hausmanite (Mn3O4), and bixbyite (Mn2O3), are important ore minerals of manganese and accurate values for their thermodynamic properties are desirable to understand better the {p(O2), T} conditions of their formation. To provide accurate values for the entropies of these important manganese minerals, we have measured their heat capacities between approximately 5 and 380 K using a fully automatic adiabatically-shielded calorimeter. All three minerals are paramagnetic above 100 K and become antiferromagnetic or ferrimagnetic at lower temperatures. This transition is expressed by a sharp ??-type anomaly in Cpmo for each compound with Ne??el temperatures TN of (92.2??0.2), (43.1??0.2), and (79.45??0.05) K for MnO2, Mn3O4, and Mn2O3, respectively. In addition, at T ??? 308 K, Mn2O3 undergoes a crystallographic transition, from orthorhombic (at low temperatures) to cubic. A significant thermal effect is associated with this change. Hausmanite is ferrimagnetic below TN and in addition to the normal ??-shape of the heat-capacity maxima in MnO2 and Mn2O3, it has a second rounded maximum at 40.5 K. The origin of this subsidiary bump in the heat capacity is unknown but may be related to a similar "anomalous bump" in the curve of magnetization against temperature at about 39 K observed by Dwight and Menyuk.(1) At 298.15 K the standard molar entropies of MnO2, Mn3O4, and Mn2O3, are (52.75??0.07), (164.1??0.2), and (113.7??0.2) J??K-1??mol-1, respectively. Our value for Mn3O4 is greater than that adopted in the National Bureau of Standards tables(2) by 14 per cent. ?? 1985.

  5. New and future heat pump technologies

    Science.gov (United States)

    Creswick, F. A.

    It is not possible to say for sure what future heat pumps will look like, but there are some interesting possibilities. In the next five years, we are likely to see US heat pumps with two kinds of innovations: capacity modulation and charge control. Capacity modulation will be accomplished by variable-speed compressor motors. The objective of charge control is to keep the refrigerant charge in the system where it belongs for best performance; there are probably many ways to accomplish this. Charge control will improve efficiency and durability; capacity modulation will further improve efficiency and comfort. The Stirling cycle heat pump has several interesting advantages, but it is farther out in time. At present, we don't know how to make it as efficient as the conventional vapor-compression heat pump. Electric utility people should be aware that major advances are being made in gas-fired heat pumps which could provide strong competition in the future. However, even a gas-fired heat pump has a substantial auxiliary electric power requirement. The resources needed to develop advanced heat pumps are substantial and foreign competition will be intense. It will be important for utilities, manufacturers, and the federal government to work in close cooperation.

  6. Prediction of the theoretical capacity of non-aqueous lithium-air batteries

    International Nuclear Information System (INIS)

    Tan, Peng; Wei, Zhaohuan; Shyy, W.; Zhao, T.S.

    2013-01-01

    Highlights: • The theoretical capacity of non-aqueous lithium-air batteries is predicted. • Key battery design parameters are defined and considered. • The theoretical battery capacity is about 10% of the lithium capacity. • The battery mass and volume changes after discharge are also studied. - Abstract: In attempt to realistically assess the high-capacity feature of emerging lithium-air batteries, a model is developed for predicting the theoretical capacity of non-aqueous lithium-air batteries. Unlike previous models that were formulated by assuming that the active materials and electrolyte are perfectly balanced according to the electrochemical reaction, the present model takes account of the fraction of the reaction products (Li 2 O 2 and Li 2 O), the utilization of the onboard lithium metal, the utilization of the void volume of the porous cathode, and the onboard excess electrolyte. Results show that the gravimetric capacity increases from 1033 to 1334 mA h/g when the reaction product varies from pure Li 2 O 2 to pure Li 2 O. It is further demonstrated that the capacity declines drastically from 1080 to 307 mA h/g when the case of full utilization of the onboard lithium is altered to that only 10% of the metal is utilized. Similarly, the capacity declines from 1080 to 144 mA h/g when the case of full occupation of the cathode void volume by the reaction products is varied to that only 10% of the void volume is occupied. In general, the theoretical gravimetric capacity of typical non-aqueous lithium-air batteries falls in the range of 380–450 mA h/g, which is about 10–12% of the gravimetric capacity calculated based on the energy density of the lithium metal. The present model also facilitates the study of the effects of different parameters on the mass and volume change of non-aqueous lithium-air batteries

  7. Effect of variable thermal conductivity and specific heat capacity on the calculation of the critical metal hydride thickness for Ti1.1CrMn

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rokni, Masoud

    2014-01-01

    model is applied to the metal hydride system, with Ti 1.1 CrMn as the absorbing alloy, to predict the weight fraction of absorbed hydrogen and solid bed temperat ure . Dependencies of thermal conductivity and specific heat capacity upon pressure and hydrogen content respectively , are accounted for...

  8. Estimation of gas and tissue lung volumes by MRI: functional approach of lung imaging.

    Science.gov (United States)

    Qanadli, S D; Orvoen-Frija, E; Lacombe, P; Di Paola, R; Bittoun, J; Frija, G

    1999-01-01

    The purpose of this work was to assess the accuracy of MRI for the determination of lung gas and tissue volumes. Fifteen healthy subjects underwent MRI of the thorax and pulmonary function tests [vital capacity (VC) and total lung capacity (TLC)] in the supine position. MR examinations were performed at inspiration and expiration. Lung volumes were measured by a previously validated technique on phantoms. Both individual and total lung volumes and capacities were calculated. MRI total vital capacity (VC(MRI)) was compared with spirometric vital capacity (VC(SP)). Capacities were correlated to lung volumes. Tissue volume (V(T)) was estimated as the difference between the total lung volume at full inspiration and the TLC. No significant difference was seen between VC(MRI) and VC(SP). Individual capacities were well correlated (r = 0.9) to static volume at full inspiration. The V(T) was estimated to be 836+/-393 ml. This preliminary study demonstrates that MRI can accurately estimate lung gas and tissue volumes. The proposed approach appears well suited for functional imaging of the lung.

  9. Residential CO{sub 2} heat pump system for combined space heating and hot water heating

    Energy Technology Data Exchange (ETDEWEB)

    Stene, Joern

    2004-02-01

    may result in a considerable increase in the inlet water temperature for the DHW preheating gas cooler. This will in turn reduce the COP of the integrated CO{sub 2} heat pump. The thermodynamic losses are highest at large initial temperature differences for the DHW and the city water, small charging volumes and low gas cooler heating capacities. Inevitable mixing of hot and cold water in the tank will lead to further increase in the thermodynamic losses for the CO{sub 2} heat pump system. (10) One possible way to reduce internal conductive heat transfer and avoid the mixing in cylindrical single-shell DHW storage tanks, is to separate the DHW and the city water by means of a movable plate with low thermal conductivity. The concept proved to give satisfactory thermal performance and functionality at atmospheric operating conditions. However, definite conclusions regarding the functionality, thermal performance and optimum design can only be drawn after full-scale testing has been carried out in a pressurised tank. First-costs as well as the long-term reliability of the insulating plate are also important issues that need to be further addressed.

  10. Damping behavior of polymer composites with high volume fraction of NiMnGa powders

    Science.gov (United States)

    Sun, Xiaogang; Song, Jie; Jiang, Hong; Zhang, Xiaoning; Xie, Chaoying

    2011-03-01

    Polymer composites inserted with high volume fraction (up to 70 Vol%) of NiMnGa powders were fabricated and their damping behavior was investigated by dynamic mechanical analysis. It is found that the polymer matrix has little influence on the transformation temperatures of NiMnGa powders. A damping peak appears for NiMnGa/epoxy resin (EP) composites accompanying with the martensitic transformation or reverse martensitic transformation of NiMnGa powders during cooling or heating. The damping capacity for NiMnGa/EP composites increases linearly with the increase of volume fraction of NiMnGa powders and, decreases dramatically as the test frequency increases. The fracture strain of NiMnGa/EP composites decrease with the increase of NiMnGa powders.

  11. Mode change design for capacity modulation in reciprocating compressor

    International Nuclear Information System (INIS)

    Bae, Young Ju; Kim, Jin Kook; Kim, Jong Bong; Chang, Young June

    2008-01-01

    Due to environmental issues, the development of low energy consumption products has become one of the main topics in the home appliance industry. The energy consumption of a refrigerator depends on the efficiency of its compressor as well as on the refrigerator cycle design, such as the capacity modulation. This study features the design of a novel capacity modulation reciprocating compressor, i.e., two-step capacity modulation (TCM). In a TCM compressor, capacity modulation is achieved by changing the dead volume in the cylinder. Instead of a concentric sleeve, an eccentric sleeve is used to change the dead volume for the clockwise and counterclockwise rotation of a motor. For stable capacity modulation, a new latching system with a key, a spring, and an eccentric sleeve is introduced, and the mode change reliability is verified by dynamic analysis

  12. Solar Heating And Cooling Of Buildings (SHACOB): Requirements definition and impact analysis-2. Volume 3: Customer load management systems

    Science.gov (United States)

    Cretcher, C. K.; Rountredd, R. C.

    1980-11-01

    Customer Load Management Systems, using off-peak storage and control at the residences, are analyzed to determine their potential for capacity and energy savings by the electric utility. Areas broadly representative of utilities in the regions around Washington, DC and Albuquerque, NM were of interest. Near optimum tank volumes were determined for both service areas, and charging duration/off-time were identified as having the greatest influence on tank performance. The impacts on utility operations and corresponding utility/customer economics were determined in terms of delta demands used to estimate the utilities' generating capacity differences between the conventional load management, (CLM) direct solar with load management (DSLM), and electric resistive systems. Energy differences are also determined. These capacity and energy deltas are translated into changes in utility costs due to penetration of the CLM or DSLM systems into electric resistive markets in the snapshot years of 1990 and 2000.

  13. Heating Performance Analysis of a Geothermal Heat Pump Working with Different Zeotropic and Azeotropic Mixtures

    OpenAIRE

    Robert Bedoić; Veljko Filipan

    2018-01-01

    The aim of the paper is to examine the possibility of application of the spreadsheet calculator and Reference Fluid Thermodynamic and Transport Properties database to a thermodynamic process. The heating process of a real soil-to-water heat pump, including heat transfer in the borehole heat exchanger has been analysed. How the changes of condensing temperature, at constant evaporating temperature, influence the following: heating capacity, compressor effective power, heat supplied to evaporat...

  14. Heat pumps in combined heat and power systems

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    2014-01-01

    Heat pumps have previously been proposed as a way to integrate higher amounts of renewable energy in DH (district heating) networks by integrating, e.g., wind power. The paper identifies and compares five generic configurations of heat pumps in DH systems. The operational performance...... of the considered cases. When considering a case where the heat pump is located at a CHP (combined heat and power) plant, a configuration that increases the DH return temperature proposes the lowest operation cost, as low as 12 EUR MWh-1 for a 90 °C e 40 °C DH network. Considering the volumetric heating capacity......, a third configuration is superior in all cases. Finally, the three most promising heat pump configurations are integrated in a modified PQ-diagram of the CHP plant. Each show individual advantages, and for two, also disadvantages in order to achieve flexible operation....

  15. Ideal gas contribution to the isobaric heat capacity of refrigerants: Poling et al.’s polynomial correlation vs DIPPR data

    International Nuclear Information System (INIS)

    Mulero, Angel; Cachadiña, Isidro; Tian, Jianxiang

    2013-01-01

    Highlights: ► The ideal gas contribution to the isobaric heat capacity of 58 refrigerants is calculated. ► Poling et al.’s polynomial correlation on temperature is used. ► Results are compared with DIPPR data and the correlation extended to higher temperatures. ► New coefficients for the correlation are given. ► Mean average percentage deviations with these new coefficients are lower than 1% for 49 refrigerants. -- Abstract: The ideal gas contribution to the isobaric heat capacity of fluids is a temperature dependent property which is commonly modelled as a polynomial expression. In this work, the performance and accuracy of the polynomial correlation proposed by Poling et al. in their well-known book is checked. To this end, the data accepted in the DIPPR database for 58 refrigerants were used. The mean average percentage deviations (MAPDs) obtained in the temperature range considered by Poling et al., usually up to 1000 K, are greater than 1.5% only for six refrigerants. We extended our study to the temperature range in which accepted DIPPR data are available (usually up to 1500 K), finding that only for four refrigerants can the Poling et al. correlation be used in this extended range. New coefficients for the correlation are given for the 58 refrigerants studied which reproduce the accepted DIPPR data. The new MAPD values are then below 1% for 49 refrigerants

  16. Evaluation relaxed volume of .sub.a-./sub.PMMA and .sub.a-./sub.PMMA/CB from heating

    Czech Academy of Sciences Publication Activity Database

    Hadač, J.; Slobodian, P.; Sáha, P.; Říha, Pavel

    2014-01-01

    Roč. 108, special issue 1 (2014), s. 50-58 ISSN 0009-2770 Grant - others:GA MŠk(CZ) EE.2.3.20.0104; GA MŠk(CZ) ED2.1.00/03.0111 Institutional research plan: CEZ:AV0Z20600510 Institutional support: RVO:67985874 Keywords : isobaric heating * physical aging * PMMA * volume relaxation * polymer/carbon black composite Subject RIV: BK - Fluid Dynamics Impact factor: 0.272, year: 2014 http://www.chemicke-listy.cz/docs/full/2014_s1_s50-s58.pdf

  17. A Study on Electric Vehicle Heat Pump Systems in Cold Climates

    Directory of Open Access Journals (Sweden)

    Ziqi Zhang

    2016-10-01

    Full Text Available Electric vehicle heat pumps are drawing more and more attention due to their energy-saving and high efficiency designs. Some problems remain, however, in the usage of the heat pumps in electric vehicles, such as a drainage problem regarding the external heat exchangers while in heat pump mode, and the decrease in heating performance when operated in a cold climate. In this article, an R134a economized vapor injection (EVI heat pump system was built and tested. The drainage problem common amongst external heat exchangers was solved by an optimized 5 mm diameter tube-and-fin heat exchanger, which can meet both the needs of a condenser and evaporator based on simulation and test results. The EVI system was also tested under several ambient temperatures. It was found that the EVI was a benefit to the system heating capacity. Under a −20 °C ambient temperature, an average improvement of 57.7% in heating capacity was achieved with EVI and the maximum capacity was 2097 W, with a coefficient of performance (COP of 1.25. The influences of injection pressure and economizer capacity are also discussed in this article.

  18. An experimental study on single phase convection heat transfer and pressure drop in two brazed plate heat exchangers with different chevron shapes and hydraulic diameters

    International Nuclear Information System (INIS)

    Kim, Man Bae; Park, Chang Yong

    2017-01-01

    An experimental study on heat transfer and pressure drop characteristics was performed at single phase flow in two Brazed plate heat exchangers (BPHEs) with different geometries. The corrugation density of one of the BPHE (Type II) was two times as high as that of the other BPHE (Type I). The hydraulic diameter of the type II BPHE was 2.13 mm, which was 38 % smaller than that of the type I BPHE. Also, the cross section shape of the flow channels for the type II BPHE was different from that for conventional BPHEs due to the unusual corrugation patterns and brazing points. The experimental conditions for temperatures were varied from 4.6 °C to 49.1 °C, and for mass flow rates were changed from 0.07 kg/s to 1.24 kg/s. The measured results showed that pressure drop in the type II BPHE was about 110 % higher than that in the type I BPHE. Nu of the type II was higher than that of the type I BPHE and the enhancement became larger with the increase of Re at the ranges above 800. New correlations for fF and Nu were proposed by this study and their prediction accuracy could be improved by considering the surface enlargement factor in the correlations. The performance evaluation of the two BPHEs was performed by (j/f F 1 /3 ) which represented the ratio of heat transfer and pressure drop performance. Also, a new parameter, the capacity compactness of PHE, was proposed and it presented the PHE capacity per unit volume and unit log mean temperature difference. The comparison showed that the two BPHEs had similar values of the (j/f F 1 /3 ), whereas they had significantly different values of the capacity compactness. The capacity compactness of the type II BPHE was 1.5 times higher than that for the type I BPHE.

  19. An experimental study on single phase convection heat transfer and pressure drop in two brazed plate heat exchangers with different chevron shapes and hydraulic diameters

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Man Bae; Park, Chang Yong [Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2017-05-15

    An experimental study on heat transfer and pressure drop characteristics was performed at single phase flow in two Brazed plate heat exchangers (BPHEs) with different geometries. The corrugation density of one of the BPHE (Type II) was two times as high as that of the other BPHE (Type I). The hydraulic diameter of the type II BPHE was 2.13 mm, which was 38 % smaller than that of the type I BPHE. Also, the cross section shape of the flow channels for the type II BPHE was different from that for conventional BPHEs due to the unusual corrugation patterns and brazing points. The experimental conditions for temperatures were varied from 4.6 °C to 49.1 °C, and for mass flow rates were changed from 0.07 kg/s to 1.24 kg/s. The measured results showed that pressure drop in the type II BPHE was about 110 % higher than that in the type I BPHE. Nu of the type II was higher than that of the type I BPHE and the enhancement became larger with the increase of Re at the ranges above 800. New correlations for fF and Nu were proposed by this study and their prediction accuracy could be improved by considering the surface enlargement factor in the correlations. The performance evaluation of the two BPHEs was performed by (j/f{sub F}1{sup /3}) which represented the ratio of heat transfer and pressure drop performance. Also, a new parameter, the capacity compactness of PHE, was proposed and it presented the PHE capacity per unit volume and unit log mean temperature difference. The comparison showed that the two BPHEs had similar values of the (j/f{sub F}1{sup /3}), whereas they had significantly different values of the capacity compactness. The capacity compactness of the type II BPHE was 1.5 times higher than that for the type I BPHE.

  20. Experiments on novel solar heating and cooling system

    International Nuclear Information System (INIS)

    Wang Yiping; Cui Yong; Zhu Li; Han Lijun

    2008-01-01

    Solar heating and nocturnal radiant cooling techniques are united to produce a novel solar heating and cooling system. The radiant panel with both heating and cooling functions can be used as structural materials for the building envelope, which realizes true building integrated utilization of solar energy. Based on the natural circulation principle, the operation status can be changed automatically between the heating cycle and the cooling cycle. System performances under different climate conditions using different covers on the radiant panel are studied. The results show that the novel solar heating and cooling system has good performance of heating and cooling. For the no cover system, the daily average heat collecting efficiency is 52% with the maximum efficiency of 73%, while at night, the cooling capacity is about 47 W/m 2 on a sunny day. On a cloudy day, the daily average heat collecting efficiency is 47% with the maximum of 84%, while the cooling capacity is about 33 W/m 2 . As a polycarbonate (PC) panel or polyethylene film are used as covers, the maximum heat collecting efficiencies are 75% and 72% and the daily average heat collecting efficiencies are 61% and 58%, while the cooling capacities are 50 W/m 2 and 36 W/m 2 , respectively