WorldWideScience

Sample records for volume velocity waveforms

  1. Glottal volume velocity waveform characteristics in subjects with and without vocal training, related to gender, sound intensity, fundamental frequency, and age

    NARCIS (Netherlands)

    Sulter, AM; Wit, HP

    Glottal volume velocity waveform characteristics of 224 subjects, categorized in four groups according to gender and vocal training, were determined, and their relations to sound-pressure level, fundamental frequency, intra-oral pressure, and age were analyzed. Subjects phonated at three intensity

  2. Glottal volume velocity waveform characteristics in subjects with and without vocal training, related to gender, sound intensity, fundamental frequency, and age

    NARCIS (Netherlands)

    Sulter, AM; Wit, HP

    1996-01-01

    Glottal volume velocity waveform characteristics of 224 subjects, categorized in four groups according to gender and vocal training, were determined, and their relations to sound-pressure level, fundamental frequency, intra-oral pressure, and age were analyzed. Subjects phonated at three intensity

  3. Waveform inversion of lateral velocity variation from wavefield source location perturbation

    KAUST Repository

    Choi, Yun Seok

    2013-09-22

    It is challenge in waveform inversion to precisely define the deep part of the velocity model compared to the shallow part. The lateral velocity variation, or what referred to as the derivative of velocity with respect to the horizontal distance, with well log data can be used to update the deep part of the velocity model more precisely. We develop a waveform inversion algorithm to obtain the lateral velocity variation by inverting the wavefield variation associated with the lateral shot location perturbation. The gradient of the new waveform inversion algorithm is obtained by the adjoint-state method. Our inversion algorithm focuses on resolving the lateral changes of the velocity model with respect to a fixed reference vertical velocity profile given by a well log. We apply the method on a simple-dome model to highlight the methods potential.

  4. Waveform inversion of lateral velocity variation from wavefield source location perturbation

    KAUST Repository

    Choi, Yun Seok; Alkhalifah, Tariq Ali

    2013-01-01

    It is challenge in waveform inversion to precisely define the deep part of the velocity model compared to the shallow part. The lateral velocity variation, or what referred to as the derivative of velocity with respect to the horizontal distance

  5. Feasibility of waveform inversion of Rayleigh waves for shallow shear-wave velocity using a genetic algorithm

    Science.gov (United States)

    Zeng, C.; Xia, J.; Miller, R.D.; Tsoflias, G.P.

    2011-01-01

    Conventional surface wave inversion for shallow shear (S)-wave velocity relies on the generation of dispersion curves of Rayleigh waves. This constrains the method to only laterally homogeneous (or very smooth laterally heterogeneous) earth models. Waveform inversion directly fits waveforms on seismograms, hence, does not have such a limitation. Waveforms of Rayleigh waves are highly related to S-wave velocities. By inverting the waveforms of Rayleigh waves on a near-surface seismogram, shallow S-wave velocities can be estimated for earth models with strong lateral heterogeneity. We employ genetic algorithm (GA) to perform waveform inversion of Rayleigh waves for S-wave velocities. The forward problem is solved by finite-difference modeling in the time domain. The model space is updated by generating offspring models using GA. Final solutions can be found through an iterative waveform-fitting scheme. Inversions based on synthetic records show that the S-wave velocities can be recovered successfully with errors no more than 10% for several typical near-surface earth models. For layered earth models, the proposed method can generate one-dimensional S-wave velocity profiles without the knowledge of initial models. For earth models containing lateral heterogeneity in which case conventional dispersion-curve-based inversion methods are challenging, it is feasible to produce high-resolution S-wave velocity sections by GA waveform inversion with appropriate priori information. The synthetic tests indicate that the GA waveform inversion of Rayleigh waves has the great potential for shallow S-wave velocity imaging with the existence of strong lateral heterogeneity. ?? 2011 Elsevier B.V.

  6. Waveform tomography images of velocity and inelastic attenuation from the Mallik 2002 crosshole seismic surveys

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, R.G.; Hou, F. [Queen' s Univ., Kingston, ON (Canada); Bauer, K.; Weber, M. [GeoForschungsZentrum Potsdam, Potsdam (Germany)

    2005-07-01

    A time-lapse crosshole seismic survey was conducted at the Mallik field in Canada's Northwest Territories as part of the 2002 Mallik Gas Hydrate Production Research Well Program. The acquired data provided information on the distribution of the compressional-velocity and compressional-attenuation properties of the sediments. Waveform tomography extracted that information and provided subwavelength high-resolution quantitative images of the seismic velocity and attenuation from the first repeat survey, using frequencies between 100 Hz and 1000 Hz. A preprocessing flow was applied to the waveform data that includes tube-wave suppression, low-pass filtering, spatial subsampling, time-windowing, and amplitude equalization. Travel times by anisotropic velocity tomography was used to obtain the starting model for the waveform tomography. The gas-hydrate-bearing sediments were seen as laterally, continuous, high-velocity anomalies and were characterized by an increase in attenuation. The velocity images resolved individual layers as thin as a few metres. These layers could be followed across the area of interest. Slight lateral changes in velocity and in the attenuation factor were observed.

  7. Effects of respiratory manoeuvres on hepatic vein Doppler waveform and flow velocities in a healthy population

    International Nuclear Information System (INIS)

    Altinkaya, Naime; Koc, Zafer; Ulusan, Serife; Demir, Senay; Gurel, Kamil

    2011-01-01

    Objective: This study was performed to determine the variations in Doppler waveforms and flow velocity during respiratory manoeuvres in healthy individuals with no liver disease. Materials and methods: In total, 100 individuals (75 women and 25 men) without known cardiac or liver disease were examined prospectively with duplex Doppler ultrasonography (US). We recorded the Doppler waveforms and peak systolic velocities (V max ) of the middle hepatic vein during normal respiration, during breath-holding after quiet expiration and also during deep inspiration. Doppler waveforms are categorised as triphasic, biphasic or monophasic. Results: During normal respiration, hepatic venous waveforms were triphasic in 93% of subjects, monophasic in 6% and biphasic in 1%. During breath-holding after quiet expiration, the percentages were 91%, 6% and 3%, respectively. During deep inspiration, they were 80%, 18% and 2%, respectively. Although significant differences were noted between rates during deep inspiration and normal respiration, they were quite similar during normal respiration and breath-holding after quiet expiration (P max were significantly higher during normal respiration compared to quiet expiration and during quiet expiration compared to deep inspiration (P < 0.05). Conclusion: The velocities and waveforms of hepatic veins varied during respiratory manoeuvres. The status of respiration must be taken into consideration whilst examining the hepatic vein waveforms and velocities with duplex Doppler US.

  8. Crustal velocity structure of central Gansu Province from regional seismic waveform inversion using firework algorithm

    Science.gov (United States)

    Chen, Yanyang; Wang, Yanbin; Zhang, Yuansheng

    2017-04-01

    The firework algorithm (FWA) is a novel swarm intelligence-based method recently proposed for the optimization of multi-parameter, nonlinear functions. Numerical waveform inversion experiments using a synthetic model show that the FWA performs well in both solution quality and efficiency. We apply the FWA in this study to crustal velocity structure inversion using regional seismic waveform data of central Gansu on the northeastern margin of the Qinghai-Tibet plateau. Seismograms recorded from the moment magnitude ( M W) 5.4 Minxian earthquake enable obtaining an average crustal velocity model for this region. We initially carried out a series of FWA robustness tests in regional waveform inversion at the same earthquake and station positions across the study region, inverting two velocity structure models, with and without a low-velocity crustal layer; the accuracy of our average inversion results and their standard deviations reveal the advantages of the FWA for the inversion of regional seismic waveforms. We applied the FWA across our study area using three component waveform data recorded by nine broadband permanent seismic stations with epicentral distances ranging between 146 and 437 km. These inversion results show that the average thickness of the crust in this region is 46.75 km, while thicknesses of the sedimentary layer, and the upper, middle, and lower crust are 3.15, 15.69, 13.08, and 14.83 km, respectively. Results also show that the P-wave velocities of these layers and the upper mantle are 4.47, 6.07, 6.12, 6.87, and 8.18 km/s, respectively.

  9. Workflow for near-surface velocity automatic estimation: Source-domain full-traveltime inversion followed by waveform inversion

    KAUST Repository

    Liu, Lu

    2017-08-17

    This paper presents a workflow for near-surface velocity automatic estimation using the early arrivals of seismic data. This workflow comprises two methods, source-domain full traveltime inversion (FTI) and early-arrival waveform inversion. Source-domain FTI is capable of automatically generating a background velocity that can kinematically match the reconstructed plane-wave sources of early arrivals with true plane-wave sources. This method does not require picking first arrivals for inversion, which is one of the most challenging aspects of ray-based first-arrival tomographic inversion. Moreover, compared with conventional Born-based methods, source-domain FTI can distinguish between slower or faster initial model errors via providing the correct sign of the model gradient. In addition, this method does not need estimation of the source wavelet, which is a requirement for receiver-domain wave-equation velocity inversion. The model derived from source-domain FTI is then used as input to early-arrival waveform inversion to obtain the short-wavelength velocity components. We have tested the workflow on synthetic and field seismic data sets. The results show source-domain FTI can generate reasonable background velocities for early-arrival waveform inversion even when subsurface velocity reversals are present and the workflow can produce a high-resolution near-surface velocity model.

  10. Lithospheric structure of the Arabian Shield and Platform from complete regional waveform modelling and surface wave group velocities

    Science.gov (United States)

    Rodgers, Arthur J.; Walter, William R.; Mellors, Robert J.; Al-Amri, Abdullah M. S.; Zhang, Yu-Shen

    1999-09-01

    Regional seismic waveforms reveal significant differences in the structure of the Arabian Shield and the Arabian Platform. We estimate lithospheric velocity structure by modelling regional waveforms recorded by the 1995-1997 Saudi Arabian Temporary Broadband Deployment using a grid search scheme. We employ a new method whereby we narrow the waveform modelling grid search by first fitting the fundamental mode Love and Rayleigh wave group velocities. The group velocities constrain the average crustal thickness and velocities as well as the crustal velocity gradients. Because the group velocity fitting is computationally much faster than the synthetic seismogram calculation this method allows us to determine good average starting models quickly. Waveform fits of the Pn and Sn body wave arrivals constrain the mantle velocities. The resulting lithospheric structures indicate that the Arabian Platform has an average crustal thickness of 40 km, with relatively low crustal velocities (average crustal P- and S-wave velocities of 6.07 and 3.50 km s^-1 , respectively) without a strong velocity gradient. The Moho is shallower (36 km) and crustal velocities are 6 per cent higher (with a velocity increase with depth) for the Arabian Shield. Fast crustal velocities of the Arabian Shield result from a predominantly mafic composition in the lower crust. Lower velocities in the Arabian Platform crust indicate a bulk felsic composition, consistent with orogenesis of this former active margin. P- and S-wave velocities immediately below the Moho are slower in the Arabian Shield than in the Arabian Platform (7.9 and 4.30 km s^-1 , and 8.10 and 4.55 km s^-1 , respectively). This indicates that the Poisson's ratios for the uppermost mantle of the Arabian Shield and Platform are 0.29 and 0.27, respectively. The lower mantle velocities and higher Poisson's ratio beneath the Arabian Shield probably arise from a partially molten mantle associated with Red Sea spreading and continental

  11. Simultaneous inversion of the background velocity and the perturbation in full-waveform inversion

    KAUST Repository

    Wu, Zedong

    2015-09-02

    The gradient of standard full-waveform inversion (FWI) attempts to map the residuals in the data to perturbations in the model. Such perturbations may include smooth background updates from the transmission components and high wavenumber updates from the reflection components. However, if we fix the reflection components using imaging, the gradient of what is referred to as reflected-waveform inversion (RWI) admits mainly transmission background-type updates. The drawback of existing RWI methods is that they lack an optimal image capable of producing reflections within the convex region of the optimization. Because the influence of velocity on the data was given mainly by its background (propagator) and perturbed (reflectivity) components, we have optimized both components simultaneously using a modified objective function. Specifically, we used an objective function that combined the data generated from a source using the background velocity, and that by the perturbed velocity through Born modeling, to fit the observed data. When the initial velocity was smooth, the data modeled from the source using the background velocity will mainly be reflection free, and most of the reflections were obtained from the image (perturbed velocity). As the background velocity becomes more accurate and can produce reflections, the role of the image will slowly diminish, and the update will be dominated by the standard FWI gradient to obtain high resolution. Because the objective function was quadratic with respect to the image, the inversion for the image was fast. To update the background velocity smoothly, we have combined different components of the gradient linearly through solving a small optimization problem. Application to the Marmousi model found that this method converged starting with a linearly increasing velocity, and with data free of frequencies below 4 Hz. Application to the 2014 Chevron Gulf of Mexico imaging challenge data set demonstrated the potential of the

  12. Classification of morphologic changes in photoplethysmographic waveforms

    Directory of Open Access Journals (Sweden)

    Tigges Timo

    2016-09-01

    Full Text Available An ever increasing number of research is examining the question to what extent physiological information beyond the blood oxygen saturation could be drawn from the photoplethysmogram. One important approach to elicit that information from the photoplethysmogram is the analysis of its waveform. One prominent example for the value of photoplethysmographic waveform analysis in cardiovascular monitoring that has emerged is hemodynamic compensation assessment in the peri-operative setting or trauma situations, as digital pulse waveform dynamically changes with alterations in vascular tone or pulse wave velocity. In this work, we present an algorithm based on modern machine learning techniques that automatically finds individual digital volume pulses in photoplethysmographic signals and sorts them into one of the pulse classes defined by Dawber et al. We evaluate our approach based on two major datasets – a measurement study that we conducted ourselves as well as data from the PhysioNet MIMIC II database. As the results are satisfying we could demonstrate the capabilities of classification algorithms in the automated assessment of the digital volume pulse waveform measured by photoplethysmographic devices.

  13. Velocity Building by Reflection Waveform Inversion without Cycle-skipping

    KAUST Repository

    Guo, Qiang

    2017-05-26

    Reflection waveform inversion (RWI) provides estimation of low wavenumber model components using reflections generated from a migration/demigration process. The resulting model tends to be a good initial model for FWI. In fact, the optimization images to combine the migration velocity analysis (MVA) objectives (given here by RWI) and the FWI ones. However, RWI may still encounter cycle-skipping at far offsets if the velocity model is highly inaccurate. Similar to MVA, RWI is devoted to focusing reflection data to its true image positions, yet because of the cycle skipping potential we tend to initially use only near offsets. To make the inversion procedure more robust, we introduce the extended image into our RWI. Extending the model perturbations (or image) allows us to better fit the data at larger offsets even with an inaccurate velocity. Thus, we implement a nested approach to optimize the velocity and extended image simultaneously using the objective function of RWI. We slowly reduce the extension, as the image becomes focused, to allow wavepath updates from far offsets to near as a natural progression from long wavelength updates to shorter ones. Applications on synthetic data demonstrate the effectiveness of our method without much additional cost to RWI.

  14. Full Waveform Inversion of Diving & Reflected Waves based on Scale Separation for Velocity and Impedance Imaging

    Science.gov (United States)

    Brossier, Romain; Zhou, Wei; Operto, Stéphane; Virieux, Jean

    2015-04-01

    Full Waveform Inversion (FWI) is an appealing method for quantitative high-resolution subsurface imaging (Virieux et al., 2009). For crustal-scales exploration from surface seismic, FWI generally succeeds in recovering a broadband of wavenumbers in the shallow part of the targeted medium taking advantage of the broad scattering-angle provided by both reflected and diving waves. In contrast, deeper targets are often only illuminated by short-spread reflections, which favor the reconstruction of the short wavelengths at the expense of the longer ones, leading to a possible notch in the intermediate part of the wavenumber spectrum. To update the velocity macromodel from reflection data, image-domain strategies (e.g., Symes & Carazzone, 1991) aim to maximize a semblance criterion in the migrated domain. Alternatively, recent data-domain strategies (e.g., Xu et al., 2012, Ma & Hale, 2013, Brossier et al., 2014), called Reflection FWI (RFWI), inspired by Chavent et al. (1994), rely on a scale separation between the velocity macromodel and prior knowledge of the reflectivity to emphasize the transmission regime in the sensitivity kernel of the inversion. However, all these strategies focus on reflected waves only, discarding the low-wavenumber information carried out by diving waves. With the current development of very long-offset and wide-azimuth acquisitions, a significant part of the recorded energy is provided by diving waves and subcritical reflections, and high-resolution tomographic methods should take advantage of all types of waves. In this presentation, we will first review the issues of classical FWI when applied to reflected waves and how RFWI is able to retrieve the long wavelength of the model. We then propose a unified formulation of FWI (Zhou et al., 2014) to update the low wavenumbers of the velocity model by the joint inversion of diving and reflected arrivals, while the impedance model is updated thanks to reflected wave only. An alternate inversion of

  15. Artificial Intelligence Estimation of Carotid-Femoral Pulse Wave Velocity using Carotid Waveform.

    Science.gov (United States)

    Tavallali, Peyman; Razavi, Marianne; Pahlevan, Niema M

    2018-01-17

    In this article, we offer an artificial intelligence method to estimate the carotid-femoral Pulse Wave Velocity (PWV) non-invasively from one uncalibrated carotid waveform measured by tonometry and few routine clinical variables. Since the signal processing inputs to this machine learning algorithm are sensor agnostic, the presented method can accompany any medical instrument that provides a calibrated or uncalibrated carotid pressure waveform. Our results show that, for an unseen hold back test set population in the age range of 20 to 69, our model can estimate PWV with a Root-Mean-Square Error (RMSE) of 1.12 m/sec compared to the reference method. The results convey the fact that this model is a reliable surrogate of PWV. Our study also showed that estimated PWV was significantly associated with an increased risk of CVDs.

  16. Workflow for near-surface velocity automatic estimation: Source-domain full-traveltime inversion followed by waveform inversion

    KAUST Repository

    Liu, Lu; Fei, Tong; Luo, Yi; Guo, Bowen

    2017-01-01

    This paper presents a workflow for near-surface velocity automatic estimation using the early arrivals of seismic data. This workflow comprises two methods, source-domain full traveltime inversion (FTI) and early-arrival waveform inversion. Source

  17. Noninvasive calculation of the aortic blood pressure waveform from the flow velocity waveform: a proof of concept.

    Science.gov (United States)

    Vennin, Samuel; Mayer, Alexia; Li, Ye; Fok, Henry; Clapp, Brian; Alastruey, Jordi; Chowienczyk, Phil

    2015-09-01

    Estimation of aortic and left ventricular (LV) pressure usually requires measurements that are difficult to acquire during the imaging required to obtain concurrent LV dimensions essential for determination of LV mechanical properties. We describe a novel method for deriving aortic pressure from the aortic flow velocity. The target pressure waveform is divided into an early systolic upstroke, determined by the water hammer equation, and a diastolic decay equal to that in the peripheral arterial tree, interposed by a late systolic portion described by a second-order polynomial constrained by conditions of continuity and conservation of mean arterial pressure. Pulse wave velocity (PWV, which can be obtained through imaging), mean arterial pressure, diastolic pressure, and diastolic decay are required inputs for the algorithm. The algorithm was tested using 1) pressure data derived theoretically from prespecified flow waveforms and properties of the arterial tree using a single-tube 1-D model of the arterial tree, and 2) experimental data acquired from a pressure/Doppler flow velocity transducer placed in the ascending aorta in 18 patients (mean ± SD: age 63 ± 11 yr, aortic BP 136 ± 23/73 ± 13 mmHg) at the time of cardiac catheterization. For experimental data, PWV was calculated from measured pressures/flows, and mean and diastolic pressures and diastolic decay were taken from measured pressure (i.e., were assumed to be known). Pressure reconstructed from measured flow agreed well with theoretical pressure: mean ± SD root mean square (RMS) error 0.7 ± 0.1 mmHg. Similarly, for experimental data, pressure reconstructed from measured flow agreed well with measured pressure (mean RMS error 2.4 ± 1.0 mmHg). First systolic shoulder and systolic peak pressures were also accurately rendered (mean ± SD difference 1.4 ± 2.0 mmHg for peak systolic pressure). This is the first noninvasive derivation of aortic pressure based on fluid dynamics (flow and wave speed) in the

  18. Simultaneous inversion of seismic velocity and moment tensor using elastic-waveform inversion of microseismic data: Application to the Aneth CO2-EOR field

    Science.gov (United States)

    Chen, Y.; Huang, L.

    2017-12-01

    Moment tensors are key parameters for characterizing CO2-injection-induced microseismic events. Elastic-waveform inversion has the potential to providing accurate results of moment tensors. Microseismic waveforms contains information of source moment tensors and the wave propagation velocity along the wavepaths. We develop an elastic-waveform inversion method to jointly invert the seismic velocity model and moment tensor. We first use our adaptive moment-tensor joint inversion method to estimate moment tensors of microseismic events. Our adaptive moment-tensor inversion method jointly inverts multiple microseismic events with similar waveforms within a cluster to reduce inversion uncertainty for microseismic data recorded using a single borehole geophone array. We use this inversion result as the initial model for our elastic-waveform inversion to minimize the cross-correlated-based data misfit between observed data and synthetic data. We verify our method using synthetic microseismic data and obtain improved results of both moment tensors and seismic velocity model. We apply our new inversion method to microseismic data acquired at a CO2-enhanced oil recovery field in Aneth, Utah, using a single borehole geophone array. The results demonstrate that our new inversion method significantly reduces the data misfit compared to the conventional ray-theory-based moment-tensor inversion.

  19. Low crustal velocities and mantle lithospheric variations in southern Tibet from regional Pnl waveforms

    Science.gov (United States)

    Rodgers, Arthur J.; Schwartz, Susan Y.

    We report low average crustal P-wave velocities (5.9-6.1 km/s, Poisson's ratio 0.23-0.27, thickness 68-76 km) in southern Tibet from modelling regional Pnl waveforms recorded by the 1991-1992 Tibetan Plateau Experiment. We also find that the mantle lithosphere beneath the Indus-Tsangpo Suture and the Lhasa Terrane is shield-like (Pn velocity 8.20-8.25 km/s, lid thickness 80-140 km, positive velocity gradient 0.0015-0.0025 s-1). Analysis of relative Pn travel time residuals requires a decrease in the mantle velocities beneath the northern Lhasa Terrane, the Banggong-Nujiang Suture and the southern Qiangtang Terrane. Tectonic and petrologic considerations suggest that low bulk crustal velocities could result from a thick (50-60 km) felsic upper crust with vertically limited and laterally pervasive partial melt. These results are consistent with underthrusting of Indian Shield lithosphere beneath the Tibetan Plateau to at least the central Lhasa Terrane.

  20. Microseismic event location by master-event waveform stacking

    Science.gov (United States)

    Grigoli, F.; Cesca, S.; Dahm, T.

    2016-12-01

    Waveform stacking location methods are nowadays extensively used to monitor induced seismicity monitoring assoiciated with several underground industrial activities such as Mining, Oil&Gas production and Geothermal energy exploitation. In the last decade a significant effort has been spent to develop or improve methodologies able to perform automated seismological analysis for weak events at a local scale. This effort was accompanied by the improvement of monitoring systems, resulting in an increasing number of large microseismicity catalogs. The analysis of microseismicity is challenging, because of the large number of recorded events often characterized by a low signal-to-noise ratio. A significant limitation of the traditional location approaches is that automated picking is often done on each seismogram individually, making little or no use of the coherency information between stations. In order to improve the performance of the traditional location methods, in the last year, alternative approaches have been proposed. These methods exploits the coherence of the waveforms recorded at different stations and do not require any automated picking procedure. The main advantage of this methods relies on their robustness even when the recorded waveforms are very noisy. On the other hand, like any other location method, the location performance strongly depends on the accuracy of the available velocity model. When dealing with inaccurate velocity models, in fact, location results can be affected by large errors. Here we will introduce a new automated waveform stacking location method which is less dependent on the knowledge of the velocity model and presents several benefits, which improve the location accuracy: 1) it accounts for phase delays due to local site effects, e.g. surface topography or variable sediment thickness 2) theoretical velocity model are only used to estimate travel times within the source volume, and not along the whole source-sensor path. We

  1. Resolving the fine-scale velocity structure of continental hyperextension at the Deep Galicia Margin using full-waveform inversion

    Science.gov (United States)

    Davy, R. G.; Morgan, J. V.; Minshull, T. A.; Bayrakci, G.; Bull, J. M.; Klaeschen, D.; Reston, T. J.; Sawyer, D. S.; Lymer, G.; Cresswell, D.

    2018-01-01

    Continental hyperextension during magma-poor rifting at the Deep Galicia Margin is characterized by a complex pattern of faulting, thin continental fault blocks and the serpentinization, with local exhumation, of mantle peridotites along the S-reflector, interpreted as a detachment surface. In order to understand fully the evolution of these features, it is important to image seismically the structure and to model the velocity structure to the greatest resolution possible. Traveltime tomography models have revealed the long-wavelength velocity structure of this hyperextended domain, but are often insufficient to match accurately the short-wavelength structure observed in reflection seismic imaging. Here, we demonstrate the application of 2-D time-domain acoustic full-waveform inversion (FWI) to deep-water seismic data collected at the Deep Galicia Margin, in order to attain a high-resolution velocity model of continental hyperextension. We have used several quality assurance procedures to assess the velocity model, including comparison of the observed and modeled waveforms, checkerboard tests, testing of parameter and inversion strategy and comparison with the migrated reflection image. Our final model exhibits an increase in the resolution of subsurface velocities, with particular improvement observed in the westernmost continental fault blocks, with a clear rotation of the velocity field to match steeply dipping reflectors. Across the S-reflector, there is a sharpening in the velocity contrast, with lower velocities beneath S indicative of preferential mantle serpentinization. This study supports the hypothesis that normal faulting acts to hydrate the upper-mantle peridotite, observed as a systematic decrease in seismic velocities, consistent with increased serpentinization. Our results confirm the feasibility of applying the FWI method to sparse, deep-water crustal data sets.

  2. The dependence of Pi2 waveforms on periodic velocity enhancements within bursty bulk flows

    Directory of Open Access Journals (Sweden)

    K. R. Murphy

    2011-03-01

    Full Text Available Pi2s are a category of Ultra Low Frequency (ULF waves associated with the onset of magnetic substorms. Recent work has suggested that the deceleration of bulk plasma flows in the central plasmasheet, known as bursty bulk flows (BBFs, are able to directly-drive Pi2 oscillations. Some of these studies have further shown evidence that there is a one-to-one correlation between Pi2 magnetic waveforms observed on the ground and periodic peaks in flow velocity within the BBF, known as flow bursts. Utilising a favourable conjunction between the Geotail spacecraft and the Canadian Array for Real-time Investigations of Magnetic Activity (CARISMA magnetometer array on 31 May 1998, we examine the causality of the link between BBF flow bursts and Pi2 waveforms. Using a series of analytical tests in both the time and frequency domains, we find that while the Pi2 and BBF waveforms are very similar, the ground response for this event occurs prior to the observed flow enhancements in the magnetotail. We conclude that during this specific case study the temporal variations of the flow bursts within the BBF are not directly-driving the observed ground-based Pi2 waveforms, despite the fact that a visual inspection of both time-series might initially suggest that there is a causal relationship. We postulate that rather than there being a direct causal relation, the similar waveforms observed in both Pi2s and BBFs may result from temporal variations in a common source for both the BBFs and the Pi2s, such as magnetic reconnection in the tail, this source modulating both the Pi2 and BBF at the same frequency.

  3. Patterns of digital volume pulse waveform and pulse transit time in ...

    African Journals Online (AJOL)

    In this study the digital volume pulse wave and the pulse transit time of the thumb and big toe were analyzed in young and older subjects some of whom were hypertensive. We aimed to study the components and patterns of the pulse waveform and the pulse transit time and how they might change. Material and Methods: ...

  4. Velocity structure around the 410 km discontinuity beneath the East China Sea based on the waveform modeling method

    Science.gov (United States)

    Li, W.; Cui, Q.; Gao, Y.; Wei, R.; Zhou, Y.; Yu, J.

    2017-12-01

    The 410 km discontinuity is the upper boundary of the mantle transition zone. Seismic detections on the structure and morphology of the 410 km discontinuity are helpful to understand the compositions of the Earth's interior and the relevant geodynamics. In this paper, we select the broadband P waveforms of an intermediate earthquake that occurred in the Ryukyu subduction zone and retrieved from the China Digital Seismograph Network, and study the fine velocity structure around the 410 km discontinuity by matching the observed triplicated waveforms with the theoretical ones. Our results reveal that (1) the 410 km discontinuity beneath the East China Sea is mostly a sharp boundary with a small-scale uplift of 8-15 km and a gradient boundary up to 20 km in the most southern part, and (2) there exist a low velocity layer atop the 410 km discontinuity with the thickness of 50-62 km and P-wave velocity decrease of 0.5%-1.5%, and (3) a high velocity anomaly with P-wave decrease of 1.0%-3.0% below 440 km. Combining with the previous topographic results in this area, we speculate that the high velocity anomaly is relevant to the stagnancy of the western Pacific slab in the mantle transition zone, the decomposition of phase E in the slab results in the increase of water content, which would cause the uplift of the 410 km discontinuity, and the low velocity layer atop the discontinuity should be related to the partial melting of the mantle peridotite induced by the dehydration of the hydrous minerals.

  5. Evaluation of surface-wave waveform modeling for lithosphere velocity structure

    Science.gov (United States)

    Chang, Tao-Ming

    Surface-waveform modeling methods will become standard tools for studying the lithosphere structures because they can place greater constraints on earth structure and because of interest in the three-dimensional earth. The purpose of this study is to begin to learn the applicabilities and limitations of these methods. A surface-waveform inversion method is implemented using generalized seismological data functional theory. The method has been tested using synthetic and real seismic data and show that this method is well suited for teleseismic and regional seismograms. Like other linear inversion problems, this method also requires a good starting model. To ease reliance on good starting models, a global search technique, the genetic algorithm, has been applied to surface waveform modeling. This method can rapidly find good models for explaining surface-wave waveform at regional distance. However, this implementation also reveals that criteria which are widely used in seismological studies are not good enough to indicate the goodness of waveform fit. These two methods with the linear waveform inversion method, and traditional surface wave dispersion inversion method have been applied to a western Texas earthquake to test their abilities. The focal mechanism of the Texas event has been reestimated using a grid search for surface wave spectral amplitudes. A comparison of these four algorithms shows some interesting seismic evidences for lithosphere structure.

  6. Automated seismic waveform location using Multichannel Coherency Migration (MCM)-I. Theory

    Science.gov (United States)

    Shi, Peidong; Angus, Doug; Rost, Sebastian; Nowacki, Andy; Yuan, Sanyi

    2018-03-01

    With the proliferation of dense seismic networks sampling the full seismic wavefield, recorded seismic data volumes are getting bigger and automated analysis tools to locate seismic events are essential. Here, we propose a novel Multichannel Coherency Migration (MCM) method to locate earthquakes in continuous seismic data and reveal the location and origin time of seismic events directly from recorded waveforms. By continuously calculating the coherency between waveforms from different receiver pairs, MCM greatly expands the available information which can be used for event location. MCM does not require phase picking or phase identification, which allows fully automated waveform analysis. By migrating the coherency between waveforms, MCM leads to improved source energy focusing. We have tested and compared MCM to other migration-based methods in noise-free and noisy synthetic data. The tests and analysis show that MCM is noise resistant and can achieve more accurate results compared with other migration-based methods. MCM is able to suppress strong interference from other seismic sources occurring at a similar time and location. It can be used with arbitrary 3D velocity models and is able to obtain reasonable location results with smooth but inaccurate velocity models. MCM exhibits excellent location performance and can be easily parallelized giving it large potential to be developed as a real-time location method for very large datasets.

  7. Source-independent elastic waveform inversion using a logarithmic wavefield

    KAUST Repository

    Choi, Yun Seok

    2012-01-01

    The logarithmic waveform inversion has been widely developed and applied to some synthetic and real data. In most logarithmic waveform inversion algorithms, the subsurface velocities are updated along with the source estimation. To avoid estimating the source wavelet in the logarithmic waveform inversion, we developed a source-independent logarithmic waveform inversion algorithm. In this inversion algorithm, we first normalize the wavefields with the reference wavefield to remove the source wavelet, and then take the logarithm of the normalized wavefields. Based on the properties of the logarithm, we define three types of misfit functions using the following methods: combination of amplitude and phase, amplitude-only, and phase-only. In the inversion, the gradient is computed using the back-propagation formula without directly calculating the Jacobian matrix. We apply our algorithm to noise-free and noise-added synthetic data generated for the modified version of elastic Marmousi2 model, and compare the results with those of the source-estimation logarithmic waveform inversion. For the noise-free data, the source-independent algorithms yield velocity models close to true velocity models. For random-noise data, the source-estimation logarithmic waveform inversion yields better results than the source-independent method, whereas for coherent-noise data, the results are reversed. Numerical results show that the source-independent and source-estimation logarithmic waveform inversion methods have their own merits for random- and coherent-noise data. © 2011.

  8. Peripheral i.v. analysis (PIVA) of venous waveforms for volume assessment in patients undergoing haemodialysis.

    Science.gov (United States)

    Hocking, K M; Alvis, B D; Baudenbacher, F; Boyer, R; Brophy, C M; Beer, I; Eagle, S

    2017-12-01

    The assessment of intravascular volume status remains a challenge for clinicians. Peripheral i.v. analysis (PIVA) is a method for analysing the peripheral venous waveform that has been used to monitor volume status. We present a proof-of-concept study for evaluating the efficacy of PIVA in detecting changes in fluid volume. We enrolled 37 hospitalized patients undergoing haemodialysis (HD) as a controlled model for intravascular volume loss. Respiratory rate (F0) and pulse rate (F1) frequencies were measured. PIVA signal was obtained by fast Fourier analysis of the venous waveform followed by weighing the magnitude of the amplitude of the pulse rate frequency. PIVA was compared with peripheral venous pressure and standard monitoring of vital signs. Regression analysis showed a linear correlation between volume loss and change in the PIVA signal (R2=0.77). Receiver operator curves demonstrated that the PIVA signal showed an area under the curve of 0.89 for detection of 20 ml kg-1 change in volume. There was no correlation between volume loss and peripheral venous pressure, blood pressure or pulse rate. PIVA-derived pulse rate and respiratory rate were consistent with similar numbers derived from the bio-impedance and electrical signals from the electrocardiogram. PIVA is a minimally invasive, novel modality for detecting changes in fluid volume status, respiratory rate and pulse rate in spontaneously breathing patients with peripheral i.v. cannulas. © The Author 2017. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  9. Improving waveform inversion using modified interferometric imaging condition

    Science.gov (United States)

    Guo, Xuebao; Liu, Hong; Shi, Ying; Wang, Weihong; Zhang, Zhen

    2018-02-01

    Similar to the reverse-time migration, full waveform inversion in the time domain is a memory-intensive processing method. The computational storage size for waveform inversion mainly depends on the model size and time recording length. In general, 3D and 4D data volumes need to be saved for 2D and 3D waveform inversion gradient calculations, respectively. Even the boundary region wavefield-saving strategy creates a huge storage demand. Using the last two slices of the wavefield to reconstruct wavefields at other moments through the random boundary, avoids the need to store a large number of wavefields; however, traditional random boundary method is less effective at low frequencies. In this study, we follow a new random boundary designed to regenerate random velocity anomalies in the boundary region for each shot of each iteration. The results obtained using the random boundary condition in less illuminated areas are more seriously affected by random scattering than other areas due to the lack of coverage. In this paper, we have replaced direct correlation for computing the waveform inversion gradient by modified interferometric imaging, which enhances the continuity of the imaging path and reduces noise interference. The new imaging condition is a weighted average of extended imaging gathers can be directly used in the gradient computation. In this process, we have not changed the objective function, and the role of the imaging condition is similar to regularization. The window size for the modified interferometric imaging condition-based waveform inversion plays an important role in this process. The numerical examples show that the proposed method significantly enhances waveform inversion performance.

  10. Pulsatile pipe flow transition: Flow waveform effects

    Science.gov (United States)

    Brindise, Melissa C.; Vlachos, Pavlos P.

    2018-01-01

    Although transition is known to exist in various hemodynamic environments, the mechanisms that govern this flow regime and their subsequent effects on biological parameters are not well understood. Previous studies have investigated transition in pulsatile pipe flow using non-physiological sinusoidal waveforms at various Womersley numbers but have produced conflicting results, and multiple input waveform shapes have yet to be explored. In this work, we investigate the effect of the input pulsatile waveform shape on the mechanisms that drive the onset and development of transition using particle image velocimetry, three pulsatile waveforms, and six mean Reynolds numbers. The turbulent kinetic energy budget including dissipation rate, production, and pressure diffusion was computed. The results show that the waveform with a longer deceleration phase duration induced the earliest onset of transition, while the waveform with a longer acceleration period delayed the onset of transition. In accord with the findings of prior studies, for all test cases, turbulence was observed to be produced at the wall and either dissipated or redistributed into the core flow by pressure waves, depending on the mean Reynolds number. Turbulent production increased with increasing temporal velocity gradients until an asymptotic limit was reached. The turbulence dissipation rate was shown to be independent of mean Reynolds number, but a relationship between the temporal gradients of the input velocity waveform and the rate of turbulence dissipation was found. In general, these results demonstrated that the shape of the input pulsatile waveform directly affected the onset and development of transition.

  11. Source-independent elastic waveform inversion using a logarithmic wavefield

    KAUST Repository

    Choi, Yun Seok; Min, Dong Joon

    2012-01-01

    The logarithmic waveform inversion has been widely developed and applied to some synthetic and real data. In most logarithmic waveform inversion algorithms, the subsurface velocities are updated along with the source estimation. To avoid estimating

  12. Development of a Duplex Ultrasound Simulator and Preliminary Validation of Velocity Measurements in Carotid Artery Models.

    Science.gov (United States)

    Zierler, R Eugene; Leotta, Daniel F; Sansom, Kurt; Aliseda, Alberto; Anderson, Mark D; Sheehan, Florence H

    2016-07-01

    Duplex ultrasound scanning with B-mode imaging and both color Doppler and Doppler spectral waveforms is relied upon for diagnosis of vascular pathology and selection of patients for further evaluation and treatment. In most duplex ultrasound applications, classification of disease severity is based primarily on alterations in blood flow velocities, particularly the peak systolic velocity (PSV) obtained from Doppler spectral waveforms. We developed a duplex ultrasound simulator for training and assessment of scanning skills. Duplex ultrasound cases were prepared from 2-dimensional (2D) images of normal and stenotic carotid arteries by reconstructing the common carotid, internal carotid, and external carotid arteries in 3 dimensions and computationally simulating blood flow velocity fields within the lumen. The simulator displays a 2D B-mode image corresponding to transducer position on a mannequin, overlaid by color coding of velocity data. A spectral waveform is generated according to examiner-defined settings (depth and size of the Doppler sample volume, beam steering, Doppler beam angle, and pulse repetition frequency or scale). The accuracy of the simulator was assessed by comparing the PSV measured from the spectral waveforms with the true PSV which was derived from the computational flow model based on the size and location of the sample volume within the artery. Three expert examiners made a total of 36 carotid artery PSV measurements based on the simulated cases. The PSV measured by the examiners deviated from true PSV by 8% ± 5% (N = 36). The deviation in PSV did not differ significantly between artery segments, normal and stenotic arteries, or examiners. To our knowledge, this is the first simulation of duplex ultrasound that can create and display real-time color Doppler images and Doppler spectral waveforms. The results demonstrate that an examiner can measure PSV from the spectral waveforms using the settings on the simulator with a mean absolute error

  13. Velocity Building by Reflection Waveform Inversion without Cycle-skipping

    KAUST Repository

    Guo, Qiang; Alkhalifah, Tariq Ali; Wu, Zedong

    2017-01-01

    Reflection waveform inversion (RWI) provides estimation of low wavenumber model components using reflections generated from a migration/demigration process. The resulting model tends to be a good initial model for FWI. In fact, the optimization

  14. Velocity Field Measurements of Human Coughing Using Time Resolved Particle Image Velocimetry

    Science.gov (United States)

    Khan, T.; Marr, D. R.; Higuchi, H.; Glauser, M. N.

    2003-11-01

    Quantitative fluid mechanics analysis of human coughing has been carried out using new Time Resolved Particle Image Velocimetry (TRPIV). The study involves measurement of velocity vector time-histories and velocity profiles. It is focused on the average normal human coughing. Some work in the past on cough mechanics has involved measurement of flow rates, tidal volumes and sub-glottis pressure. However, data of unsteady velocity vector field of the exiting highly time-dependent jets is not available. In this study, human cough waveform data are first acquired in vivo using conventional respiratory instrumentation for various volunteers of different gender/age groups. The representative waveform is then reproduced with a coughing/breathing simulator (with or without a manikin) for TRPIV measurements and analysis. The results of this study would be useful not only for designing of indoor air quality and heating, ventilation and air conditioning systems, but also for devising means of protection against infectious diseases.

  15. Changes in superior mesenteric artery Doppler waveform during reduction of cardiac stroke volume and hypotension

    DEFF Research Database (Denmark)

    Perko, M J; Perko, Grazyna; Just, S

    1996-01-01

    the hypovolemia. Alterations in pV and pulsatility indices were closely related to changes in stroke volume, and a negative correlation was found between diastolic velocities and stroke volume. regression analysis showed no significant relation between variations in velocity parameters and blood pressure. Results...

  16. A study of doppler waveform using pulsatile flow model

    International Nuclear Information System (INIS)

    Chung, Hye Won; Chung, Myung Jin; Park, Jae Hyung; Chung, Jin Wook; Lee, Dong Hyuk; Min, Byoung Goo

    1997-01-01

    Through the construction of a pulsatile flow model using an artificial heart pump and stenosis to demonstrate triphasic Doppler waveform, which simulates in vivo conditions, and to evaluate the relationship between Doppler waveform and vascular compliance. The flow model was constructed using a flowmeter, rubber tube, glass tube with stenosis, and artificial heart pump. Doppler study was carried out at the prestenotic, poststenotic, and distal segments;compliance was changed by changing the length of the rubber tube. With increasing proximal compliance, Doppler waveforms show decreasing peak velocity of the first phase and slightly delayed acceleration time, but the waveform itself did not change significantly. Distal compliance influenced the second phase, and was important for the formation of pulsus tardus and parvus, which without poststenotic vascular compliance, did not develop. The peak velocity of the first phase was inversely proportional to proximal compliance, and those of the second and third phases were directly proportional to distal compliance. After constructing this pulsatile flow model, we were able to explain the relationship between vascular compliance and Doppler waveform, and also better understand the formation of pulsus tardus and parvus

  17. Pilot Study: Estimation of Stroke Volume and Cardiac Output from Pulse Wave Velocity.

    Directory of Open Access Journals (Sweden)

    Yurie Obata

    Full Text Available Transesophageal echocardiography (TEE is increasingly replacing thermodilution pulmonary artery catheters to assess hemodynamics in patients at high risk for cardiovascular morbidity. However, one of the drawbacks of TEE compared to pulmonary artery catheters is the inability to measure real time stroke volume (SV and cardiac output (CO continuously. The aim of the present proof of concept study was to validate a novel method of SV estimation, based on pulse wave velocity (PWV in patients undergoing cardiac surgery.This is a retrospective observational study. We measured pulse transit time by superimposing the radial arterial waveform onto the continuous wave Doppler waveform of the left ventricular outflow tract, and calculated SV (SVPWV using the transformed Bramwell-Hill equation. The SV measured by TEE (SVTEE was used as a reference.A total of 190 paired SV were measured from 28 patients. A strong correlation was observed between SVPWV and SVTEE with the coefficient of determination (R2 of 0.71. A mean difference between the two (bias was 3.70 ml with the limits of agreement ranging from -20.33 to 27.73 ml and a percentage error of 27.4% based on a Bland-Altman analysis. The concordance rate of two methods was 85.0% based on a four-quadrant plot. The angular concordance rate was 85.9% with radial limits of agreement (the radial sector that contained 95% of the data points of ± 41.5 degrees based on a polar plot.PWV based SV estimation yields reasonable agreement with SV measured by TEE. Further studies are required to assess its utility in different clinical situations.

  18. Doppler velocity measurements from large and small arteries of mice

    Science.gov (United States)

    Reddy, Anilkumar K.; Madala, Sridhar; Entman, Mark L.; Michael, Lloyd H.; Taffet, George E.

    2011-01-01

    With the growth of genetic engineering, mice have become increasingly common as models of human diseases, and this has stimulated the development of techniques to assess the murine cardiovascular system. Our group has developed nonimaging and dedicated Doppler techniques for measuring blood velocity in the large and small peripheral arteries of anesthetized mice. We translated technology originally designed for human vessels for use in smaller mouse vessels at higher heart rates by using higher ultrasonic frequencies, smaller transducers, and higher-speed signal processing. With these methods one can measure cardiac filling and ejection velocities, velocity pulse arrival times for determining pulse wave velocity, peripheral blood velocity and vessel wall motion waveforms, jet velocities for the calculation of the pressure drop across stenoses, and left main coronary velocity for the estimation of coronary flow reserve. These noninvasive methods are convenient and easy to apply, but care must be taken in interpreting measurements due to Doppler sample volume size and angle of incidence. Doppler methods have been used to characterize and evaluate numerous cardiovascular phenotypes in mice and have been particularly useful in evaluating the cardiac and vascular remodeling that occur following transverse aortic constriction. Although duplex ultrasonic echo-Doppler instruments are being applied to mice, dedicated Doppler systems are more suitable for some applications. The magnitudes and waveforms of blood velocities from both cardiac and peripheral sites are similar in mice and humans, such that much of what is learned using Doppler technology in mice may be translated back to humans. PMID:21572013

  19. 2D acoustic-elastic coupled waveform inversion in the Laplace domain

    KAUST Repository

    Bae, Hoseuk

    2010-04-01

    Although waveform inversion has been intensively studied in an effort to properly delineate the Earth\\'s structures since the early 1980s, most of the time- and frequency-domain waveform inversion algorithms still have critical limitations in their applications to field data. This may be attributed to the highly non-linear objective function and the unreliable low-frequency components. To overcome the weaknesses of conventional waveform inversion algorithms, the acoustic Laplace-domain waveform inversion has been proposed. The Laplace-domain waveform inversion has been known to provide a long-wavelength velocity model even for field data, which may be because it employs the zero-frequency component of the damped wavefield and a well-behaved logarithmic objective function. However, its applications have been confined to 2D acoustic media.We extend the Laplace-domain waveform inversion algorithm to a 2D acoustic-elastic coupled medium, which is encountered in marine exploration environments. In 2D acoustic-elastic coupled media, the Laplace-domain pressures behave differently from those of 2D acoustic media, although the overall features are similar to each other. The main differences are that the pressure wavefields for acoustic-elastic coupled media show negative values even for simple geological structures unlike in acoustic media, when the Laplace damping constant is small and the water depth is shallow. The negative values may result from more complicated wave propagation in elastic media and at fluid-solid interfaces.Our Laplace-domain waveform inversion algorithm is also based on the finite-element method and logarithmic wavefields. To compute gradient direction, we apply the back-propagation technique. Under the assumption that density is fixed, P- and S-wave velocity models are inverted from the pressure data. We applied our inversion algorithm to the SEG/EAGE salt model and the numerical results showed that the Laplace-domain waveform inversion

  20. A nonlinear approach of elastic reflection waveform inversion

    KAUST Repository

    Guo, Qiang

    2016-09-06

    Elastic full waveform inversion (EFWI) embodies the original intention of waveform inversion at its inception as it is a better representation of the mostly solid Earth. However, compared with the acoustic P-wave assumption, EFWI for P- and S-wave velocities using multi-component data admitted mixed results. Full waveform inversion (FWI) is a highly nonlinear problem and this nonlinearity only increases under the elastic assumption. Reflection waveform inversion (RWI) can mitigate the nonlinearity by relying on transmissions from reflections focused on inverting low wavenumber components of the model. In our elastic endeavor, we split the P- and S-wave velocities into low wavenumber and perturbation components and propose a nonlinear approach to invert for both of them. The new optimization problem is built on an objective function that depends on both background and perturbation models. We utilize an equivalent stress source based on the model perturbation to generate reflection instead of demigrating from an image, which is applied in conventional RWI. Application on a slice of an ocean-bottom data shows that our method can efficiently update the low wavenumber parts of the model, but more so, obtain perturbations that can be added to the low wavenumbers for a high resolution output.

  1. A nonlinear approach of elastic reflection waveform inversion

    KAUST Repository

    Guo, Qiang; Alkhalifah, Tariq Ali

    2016-01-01

    Elastic full waveform inversion (EFWI) embodies the original intention of waveform inversion at its inception as it is a better representation of the mostly solid Earth. However, compared with the acoustic P-wave assumption, EFWI for P- and S-wave velocities using multi-component data admitted mixed results. Full waveform inversion (FWI) is a highly nonlinear problem and this nonlinearity only increases under the elastic assumption. Reflection waveform inversion (RWI) can mitigate the nonlinearity by relying on transmissions from reflections focused on inverting low wavenumber components of the model. In our elastic endeavor, we split the P- and S-wave velocities into low wavenumber and perturbation components and propose a nonlinear approach to invert for both of them. The new optimization problem is built on an objective function that depends on both background and perturbation models. We utilize an equivalent stress source based on the model perturbation to generate reflection instead of demigrating from an image, which is applied in conventional RWI. Application on a slice of an ocean-bottom data shows that our method can efficiently update the low wavenumber parts of the model, but more so, obtain perturbations that can be added to the low wavenumbers for a high resolution output.

  2. The natural combination of full and image-based waveform inversion

    KAUST Repository

    Alkhalifah, Tariq Ali

    2015-06-01

    Integrating migration velocity analysis and full waveform inversion can help reduce the high non-linearity of the classic full waveform inversion objective function. The combination of inverting for the long and short wavelength components of the velocity model using a dual objective function that is sensitive to both components is still very expensive and have produced mixed results. We develop an approach that includes both components integrated to complement each other. We specifically utilize the image to generate reflections in our synthetic data only when the velocity model is not capable of producing such reflections. As a result, we get the migration velocity analysis working when we need it, and we mitigate its influence when the velocity model produces accurate reflections (possibly first for the low frequencies). This is achieved using a novel objective function that includes both objectives. Applications to a layered model and the Marmousi model demonstrate the main features of the approach. © 2015 European Association of Geoscientists & Engineers.

  3. Renal artery pulsatility index and renal volume: Normal fetuses versus growth-retarded fetuses

    International Nuclear Information System (INIS)

    Lee, Kyung Soon; Woo, Bock Hi

    2001-01-01

    To evaluate the blood flow velocity waveform of the renal artery and renal volume of growth-retarded fetuses and to compare them with those of normal fetuses. Pulsatility index of the renal artery and renal volume measured by three-dimensional ultrasonography were obtained from seventy eight normal fetuses at the gestational age from twenty five to thirty nine weeks and eighteen intrauterine growth retarded fetuses whose weight was below ten percentile at birth. We studied changes of the pulsatility index of the renal artery and renal volume according to the gestational age and compared with those of growth-retarded fetuses. Pulsatility index (PI) of the fetal renal artery decreased throughout the gestational period (r=0.703, p<0.0001). In growth-retarded fetuses, despite of abnormal doppler velocity waveform of the middle cerebral artery, which was showing fetal hypoxia, the renal PI was not increased significantly. The fetal renal volume increased throughout the gestational period (r=0.834, p<0.0001) whereas in growth-retarded fetuses, all renal volume was below fifth percentile of normal fetuses. In growth-retarded fetuses, fetal renal volume was decreased significantly without change of the renal vascular flow. Therefore, the fetal renal volume measured by three-dimensional ultrasonography may be a helpful parameter in the diagnosis of growth-retarded fetuses.

  4. Renal artery pulsatility index and renal volume: Normal fetuses versus growth-retarded fetuses

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Soon; Woo, Bock Hi [Ewha Womans University College of Medicine, Seoul (Korea, Republic of)

    2001-06-15

    To evaluate the blood flow velocity waveform of the renal artery and renal volume of growth-retarded fetuses and to compare them with those of normal fetuses. Pulsatility index of the renal artery and renal volume measured by three-dimensional ultrasonography were obtained from seventy eight normal fetuses at the gestational age from twenty five to thirty nine weeks and eighteen intrauterine growth retarded fetuses whose weight was below ten percentile at birth. We studied changes of the pulsatility index of the renal artery and renal volume according to the gestational age and compared with those of growth-retarded fetuses. Pulsatility index (PI) of the fetal renal artery decreased throughout the gestational period (r=0.703, p<0.0001). In growth-retarded fetuses, despite of abnormal doppler velocity waveform of the middle cerebral artery, which was showing fetal hypoxia, the renal PI was not increased significantly. The fetal renal volume increased throughout the gestational period (r=0.834, p<0.0001) whereas in growth-retarded fetuses, all renal volume was below fifth percentile of normal fetuses. In growth-retarded fetuses, fetal renal volume was decreased significantly without change of the renal vascular flow. Therefore, the fetal renal volume measured by three-dimensional ultrasonography may be a helpful parameter in the diagnosis of growth-retarded fetuses.

  5. The Effects of Hemodynamic Changes on Pulse Wave Velocity in Cardiothoracic Surgical Patients

    Directory of Open Access Journals (Sweden)

    Yurie Obata

    2016-01-01

    Full Text Available The effect of blood pressure on pulse wave velocity (PWV is well established. However, PWV variability with acute hemodynamic changes has not been examined in the clinical setting. The aim of the present study is to investigate the effect of hemodynamic changes on PWV in patients who undergo cardiothoracic surgery. Using data from 25 patients, we determined blood pressure (BP, heart rate (HR, and the left ventricular outflow tract (LVOT velocity-time integral. By superimposing the radial arterial waveform on the continuous wave Doppler waveform of the LVOT, obtained by transesophageal echo, we were able to determine pulse transit time and to calculate PWV, stroke volume (SV, cardiac output (CO, and systemic vascular resistance (SVR. Increases in BP, HR, and SVR were associated with higher values for PWV. In contrast increases in SV were associated with decreases in PWV. Changes in CO were not significantly associated with PWV.

  6. Microseismic imaging using a source-independent full-waveform inversion method

    KAUST Repository

    Wang, Hanchen

    2016-09-06

    Using full waveform inversion (FWI) to locate microseismic and image microseismic events allows for an automatic process (free of picking) that utilizes the full wavefield. However, waveform inversion of microseismic events faces incredible nonlinearity due to the unknown source location (space) and function (time). We develop a source independent FWI of microseismic events to invert for the source image, source function and the velocity model. It is based on convolving reference traces with the observed and modeled data to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. The extended image for source wavelet in z axis is extracted to check the accuracy of the inverted source image and velocity model. Also the angle gather is calculated to see if the velocity model is correct. By inverting for all the source image, source wavelet and the velocity model, the proposed method produces good estimates of the source location, ignition time and the background velocity for part of the SEG overthrust model.

  7. Microseismic imaging using a source-independent full-waveform inversion method

    KAUST Repository

    Wang, Hanchen

    2016-01-01

    Using full waveform inversion (FWI) to locate microseismic and image microseismic events allows for an automatic process (free of picking) that utilizes the full wavefield. However, waveform inversion of microseismic events faces incredible nonlinearity due to the unknown source location (space) and function (time). We develop a source independent FWI of microseismic events to invert for the source image, source function and the velocity model. It is based on convolving reference traces with the observed and modeled data to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. The extended image for source wavelet in z axis is extracted to check the accuracy of the inverted source image and velocity model. Also the angle gather is calculated to see if the velocity model is correct. By inverting for all the source image, source wavelet and the velocity model, the proposed method produces good estimates of the source location, ignition time and the background velocity for part of the SEG overthrust model.

  8. Full Waveform Inversion Using Oriented Time Migration Method

    KAUST Repository

    Zhang, Zhendong

    2016-01-01

    Full waveform inversion (FWI) for reflection events is limited by its linearized update requirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate the resulting gradient can have

  9. An anisotropic shear velocity model of the Earth's mantle using normal modes, body waves, surface waves and long-period waveforms

    Science.gov (United States)

    Moulik, P.; Ekström, G.

    2014-12-01

    We use normal-mode splitting functions in addition to surface wave phase anomalies, body wave traveltimes and long-period waveforms to construct a 3-D model of anisotropic shear wave velocity in the Earth's mantle. Our modelling approach inverts for mantle velocity and anisotropy as well as transition-zone discontinuity topographies, and incorporates new crustal corrections for the splitting functions that are consistent with the non-linear corrections we employ for the waveforms. Our preferred anisotropic model, S362ANI+M, is an update to the earlier model S362ANI, which did not include normal-mode splitting functions in its derivation. The new model has stronger isotropic velocity anomalies in the transition zone and slightly smaller anomalies in the lowermost mantle, as compared with S362ANI. The differences in the mid- to lowermost mantle are primarily restricted to features in the Southern Hemisphere. We compare the isotropic part of S362ANI+M with other recent global tomographic models and show that the level of agreement is higher now than in the earlier generation of models, especially in the transition zone and the lower mantle. The anisotropic part of S362ANI+M is restricted to the upper 300 km in the mantle and is similar to S362ANI. When radial anisotropy is allowed throughout the mantle, large-scale anisotropic patterns are observed in the lowermost mantle with vSV > vSH beneath Africa and South Pacific and vSH > vSV beneath several circum-Pacific regions. The transition zone exhibits localized anisotropic anomalies of ˜3 per cent vSH > vSV beneath North America and the Northwest Pacific and ˜2 per cent vSV > vSH beneath South America. However, small improvements in fits to the data on adding anisotropy at depth leave the question open on whether large-scale radial anisotropy is required in the transition zone and in the lower mantle. We demonstrate the potential of mode-splitting data in reducing the trade-offs between isotropic velocity and

  10. Elastic reflection based waveform inversion with a nonlinear approach

    KAUST Repository

    Guo, Qiang

    2017-08-16

    Full waveform inversion (FWI) is a highly nonlinear problem due to the complex reflectivity of the Earth, and this nonlinearity only increases under the more expensive elastic assumption. In elastic media, we need a good initial P-wave velocity and even a better initial S-wave velocity models with accurate representation of the low model wavenumbers for FWI to converge. However, inverting for the low wavenumber components of P- and S-wave velocities using reflection waveform inversion (RWI) with an objective to fit the reflection shape, rather than produce reflections, may mitigate the limitations of FWI. Because FWI, performing as a migration operator, is in preference of the high wavenumber updates along reflectors. We propose a nonlinear elastic RWI that inverts for both the low wavenumber and perturbation components of the P- and S-wave velocities. To generate the full elastic reflection wavefields, we derive an equivalent stress source made up by the inverted model perturbations and incident wavefields. We update both the perturbation and propagation parts of the velocity models in a nested fashion. Applications on synthetic isotropic models and field data show that our method can efficiently update the low and high wavenumber parts of the models.

  11. Elastic reflection based waveform inversion with a nonlinear approach

    KAUST Repository

    Guo, Qiang; Alkhalifah, Tariq Ali

    2017-01-01

    Full waveform inversion (FWI) is a highly nonlinear problem due to the complex reflectivity of the Earth, and this nonlinearity only increases under the more expensive elastic assumption. In elastic media, we need a good initial P-wave velocity and even a better initial S-wave velocity models with accurate representation of the low model wavenumbers for FWI to converge. However, inverting for the low wavenumber components of P- and S-wave velocities using reflection waveform inversion (RWI) with an objective to fit the reflection shape, rather than produce reflections, may mitigate the limitations of FWI. Because FWI, performing as a migration operator, is in preference of the high wavenumber updates along reflectors. We propose a nonlinear elastic RWI that inverts for both the low wavenumber and perturbation components of the P- and S-wave velocities. To generate the full elastic reflection wavefields, we derive an equivalent stress source made up by the inverted model perturbations and incident wavefields. We update both the perturbation and propagation parts of the velocity models in a nested fashion. Applications on synthetic isotropic models and field data show that our method can efficiently update the low and high wavenumber parts of the models.

  12. Retrieving rupture history using waveform inversions in time sequence

    Science.gov (United States)

    Yi, L.; Xu, C.; Zhang, X.

    2017-12-01

    The rupture history of large earthquakes is generally regenerated using the waveform inversion through utilizing seismological waveform records. In the waveform inversion, based on the superposition principle, the rupture process is linearly parameterized. After discretizing the fault plane into sub-faults, the local source time function of each sub-fault is usually parameterized using the multi-time window method, e.g., mutual overlapped triangular functions. Then the forward waveform of each sub-fault is synthesized through convoluting the source time function with its Green function. According to the superposition principle, these forward waveforms generated from the fault plane are summarized in the recorded waveforms after aligning the arrival times. Then the slip history is retrieved using the waveform inversion method after the superposing of all forward waveforms for each correspond seismological waveform records. Apart from the isolation of these forward waveforms generated from each sub-fault, we also realize that these waveforms are gradually and sequentially superimposed in the recorded waveforms. Thus we proposed a idea that the rupture model is possibly detachable in sequent rupture times. According to the constrained waveform length method emphasized in our previous work, the length of inverted waveforms used in the waveform inversion is objectively constrained by the rupture velocity and rise time. And one essential prior condition is the predetermined fault plane that limits the duration of rupture time, which means the waveform inversion is restricted in a pre-set rupture duration time. Therefore, we proposed a strategy to inverse the rupture process sequentially using the progressively shift rupture times as the rupture front expanding in the fault plane. And we have designed a simulation inversion to test the feasibility of the method. Our test result shows the prospect of this idea that requiring furthermore investigation.

  13. Improved Vector Velocity Estimation using Directional Transverse Oscillation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2015-01-01

    A method for estimating vector velocities using transverse oscillation (TO) combined with directional beamforming is presented. Directional Transverse Oscillation (DTO) is selfcalibrating, which increase the estimation accuracy and finds the lateral oscillation period automatically. A normal...... focused field is emitted and the received signals are beamformed in the lateral direction transverse to the ultrasound beam. A lateral oscillation is obtained by having a receive apodization waveform with two separate peaks. The IQ data are obtained by making a Hilbert transform of the directional signal...... transducer with a focal point at 105.6 mm (F#=5) for Vector Flow Imaging (VFI). A 6 mm radius tube in a circulating flow rig was scanned and the parabolic volume flow of 112.7 l/h (peak velocity 0.55 m/s) measured by a Danfoss Magnetic flow meter for reference. Velocity estimates for DTO are found for 32...

  14. Elastic reflection waveform inversion with variable density

    KAUST Repository

    Li, Yuanyuan

    2017-08-17

    Elastic full waveform inversion (FWI) provides a better description of the subsurface than those given by the acoustic assumption. However it suffers from a more serious cycle skipping problem compared with the latter. Reflection waveform inversion (RWI) provides a method to build a good background model, which can serve as an initial model for elastic FWI. Therefore, we introduce the concept of RWI for elastic media, and propose elastic RWI with variable density. We apply Born modeling to generate the synthetic reflection data by using optimized perturbations of P- and S-wave velocities and density. The inversion for the perturbations in P- and S-wave velocities and density is similar to elastic least-squares reverse time migration (LSRTM). An incorrect initial model will lead to some misfits at the far offsets of reflections; thus, can be utilized to update the background velocity. We optimize the perturbation and background models in a nested approach. Numerical tests on the Marmousi model demonstrate that our method is able to build reasonably good background models for elastic FWI with absence of low frequencies, and it can deal with the variable density, which is needed in real cases.

  15. Analysis of vibration waveforms of electromechanical response to determine piezoelectric and electrostrictive coefficients.

    Science.gov (United States)

    Izumi, Tatsuya; Hagiwara, Manabu; Hoshina, Takuya; Takeda, Hiroaki; Tsurumi, Takaaki

    2012-08-01

    We developed a possible method to determine both coefficients of piezoelectricity (d) and electrostriction (M) at the same time by a waveform analysis of current and vibration velocity in the resonance state. The waveforms of the current and vibration velocity were theoretically described using the equations of motion and piezoelectric constitutive equations, considering the dissipation effect. The dissipation factor of the d coefficient and M coefficient is dielectric loss tangent tan δ. The waveforms measured in all of the ceramics, such as Pb(Zr,Ti)O(3) (PZT), Pb(Mg,Nb)O(3) (PMN), and 0.8Pb(Mg(1/3)Nb2/3)O(3)-0.2PbTiO(3) (PMN-PT), were well fitted with the calculated waveform. This fitting produced both the d and M coefficients, which agreed with those determined via the conventional methods. Moreover, the respective contributions of both piezoelectricity and electrostriction to the d value determined in the resonance-antiresonance method were clarified.

  16. A Novel wave-form command shaper for overhead cranes

    Directory of Open Access Journals (Sweden)

    KHALED ALHAZZA

    2013-12-01

    Full Text Available In this work, a novel command shaping control strategy for oscillation reduction of simple harmonic oscillators is proposed, and validated experimentally. A wave-form acceleration command shaper is derived analytically. The performance of the proposed shaper is simulated numerically, and validated experimentally on a scaled model of an overhead crane. Amplitude modulation is used to enhance the shaper performance, which results in a modulated wave-form command shaper. It is determined that the proposed wave-form and modulated wave-form command shaper profiles are capable of eliminating travel and residual oscillations. Furthermore, unlike traditional impulse and step command shapers, the proposed command shaper has piecewise smoother acceleration, velocity, and displacement profiles. Experimental results using continuous and discrete commands are presented. Experiments with discrete commands involved embedding a saturation model-based feedback in the algorithm of the command shaper.

  17. Interferometric full-waveform inversion of time-lapse data

    KAUST Repository

    Sinha, Mrinal

    2017-01-01

    surveys. To overcome this challenge, we propose the use of interferometric full waveform inversion (IFWI) for inverting the velocity model from data recorded by baseline and monitor surveys. A known reflector is used as the reference reflector for IFWI

  18. Centered Differential Waveform Inversion with Minimum Support Regularization

    KAUST Repository

    Kazei, Vladimir

    2017-05-26

    Time-lapse full-waveform inversion has two major challenges. The first one is the reconstruction of a reference model (baseline model for most of approaches). The second is inversion for the time-lapse changes in the parameters. Common model approach is utilizing the information contained in all available data sets to build a better reference model for time lapse inversion. Differential (Double-difference) waveform inversion allows to reduce the artifacts introduced into estimates of time-lapse parameter changes by imperfect inversion for the baseline-reference model. We propose centered differential waveform inversion (CDWI) which combines these two approaches in order to benefit from both of their features. We apply minimum support regularization commonly used with electromagnetic methods of geophysical exploration. We test the CDWI method on synthetic dataset with random noise and show that, with Minimum support regularization, it provides better resolution of velocity changes than with total variation and Tikhonov regularizations in time-lapse full-waveform inversion.

  19. Application of weighted early-arrival waveform inversion to shallow land data

    KAUST Repository

    Yu, Han

    2014-03-01

    Seismic imaging of deep land targets is usually difficult since the near-surface velocities are not accurately estimated. Recent studies have shown that inverting traces weighted by the energy of the early-arrivals can improve the accuracy of estimating shallow velocities. In this work, it is explained by showing that the associated misfit gradient function tends to be sensitive to the kinetics of wave propagation and insensitive to the dynamics. A synthetic example verifies the theoretical predictions and shows that the effects of noise and unpredicted amplitude variations in the inversion are reduced using this weighted early arrival waveform inversion (WEWI). We also apply this method to a 2D land data set for estimating the near-surface velocity distribution. The reverse time migration images suggest that, compared to the tomogram inverted directly from the early arrival waveforms, the WEWI tomogram provides a more convincing velocity model and more focused reflections in the deeper part of the image. © 2014 Elsevier B.V.

  20. Migration velocity analysis using pre-stack wave fields

    KAUST Repository

    Alkhalifah, Tariq Ali; Wu, Zedong

    2016-01-01

    Using both image and data domains to perform velocity inversion can help us resolve the long and short wavelength components of the velocity model, usually in that order. This translates to integrating migration velocity analysis into full waveform

  1. Micro-seismic imaging using a source function independent full waveform inversion method

    Science.gov (United States)

    Wang, Hanchen; Alkhalifah, Tariq

    2018-03-01

    At the heart of micro-seismic event measurements is the task to estimate the location of the source micro-seismic events, as well as their ignition times. The accuracy of locating the sources is highly dependent on the velocity model. On the other hand, the conventional micro-seismic source locating methods require, in many cases manual picking of traveltime arrivals, which do not only lead to manual effort and human interaction, but also prone to errors. Using full waveform inversion (FWI) to locate and image micro-seismic events allows for an automatic process (free of picking) that utilizes the full wavefield. However, full waveform inversion of micro-seismic events faces incredible nonlinearity due to the unknown source locations (space) and functions (time). We developed a source function independent full waveform inversion of micro-seismic events to invert for the source image, source function and the velocity model. It is based on convolving reference traces with these observed and modeled to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. The extended image for the source wavelet in Z axis is extracted to check the accuracy of the inverted source image and velocity model. Also, angle gathers is calculated to assess the quality of the long wavelength component of the velocity model. By inverting for the source image, source wavelet and the velocity model simultaneously, the proposed method produces good estimates of the source location, ignition time and the background velocity for synthetic examples used here, like those corresponding to the Marmousi model and the SEG/EAGE overthrust model.

  2. Micro-seismic imaging using a source function independent full waveform inversion method

    KAUST Repository

    Wang, Hanchen

    2018-03-26

    At the heart of micro-seismic event measurements is the task to estimate the location of the source micro-seismic events, as well as their ignition times. The accuracy of locating the sources is highly dependent on the velocity model. On the other hand, the conventional micro-seismic source locating methods require, in many cases manual picking of traveltime arrivals, which do not only lead to manual effort and human interaction, but also prone to errors. Using full waveform inversion (FWI) to locate and image micro-seismic events allows for an automatic process (free of picking) that utilizes the full wavefield. However, full waveform inversion of micro-seismic events faces incredible nonlinearity due to the unknown source locations (space) and functions (time). We developed a source function independent full waveform inversion of micro-seismic events to invert for the source image, source function and the velocity model. It is based on convolving reference traces with these observed and modeled to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. The extended image for the source wavelet in Z axis is extracted to check the accuracy of the inverted source image and velocity model. Also, angle gathers is calculated to assess the quality of the long wavelength component of the velocity model. By inverting for the source image, source wavelet and the velocity model simultaneously, the proposed method produces good estimates of the source location, ignition time and the background velocity for synthetic examples used here, like those corresponding to the Marmousi model and the SEG/EAGE overthrust model.

  3. Waveform inversion for acoustic VTI media in frequency domain

    KAUST Repository

    Wu, Zedong

    2016-09-06

    Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI) by inverting for the background model using a single scattered wavefield from an inverted perturbation. However, current RWI methods are mostly based on isotropic media assumption. We extend the idea of the combining inversion for the background model and perturbations to address transversely isotropic with a vertical axis of symmetry (VTI) media taking into consideration of the optimal parameter sensitivity information. As a result, we apply Born modeling corresponding to perturbations in only for the variable e to derive the relative reflected waveform inversion formulation. To reduce the number of parameters, we assume the background part of η = ε and work with a single variable to describe the anisotropic part of the wave propagation. Thus, the optimization variables are the horizontal velocity v, η = ε and the e perturbation. Application to the anisotropic version of Marmousi model with a single frequency of 2.5 Hz shows that this method can converge to the accurate result starting from a linearly increasing isotropic initial velocity. Application to a real dataset demonstrates the versatility of the approach.

  4. Wavefront picking for 3D tomography and full-waveform inversion

    KAUST Repository

    AlTheyab, Abdullah; Schuster, Gerard T.

    2016-01-01

    We have developed an efficient approach for picking firstbreak wavefronts on coarsely sampled time slices of 3D shot gathers. Our objective was to compute a smooth initial velocity model for multiscale full-waveform inversion (FWI). Using

  5. Evidence of shallow gas in the Queen Charlotte Basin from waveform tomography of seismic reflection data

    Energy Technology Data Exchange (ETDEWEB)

    Takam Takougang, Eric M.; Calvert, Andrew J. [Simon Fraser University (Canada)], email: eta9@sfu.ca

    2011-07-01

    The Geological Survey of Canada (GSC) collected eight seismic reflection lines in 1988 across the Queen Charlotte sedimentary basin of western Canada, which is the largest tertiary basin on the west coast. This work furthers the study of the upper part of the basin by using quantitative imaging of its structure through application of 2-D waveform tomography to the limited offset seismic reflection data. With the help of waveform tomography, seismic reflection data has allowed the identification of pockmark structures and pipe-like gas chimney in the recovered velocity and attenuation models. Overall, there is an excellent match between field data and predicted data. and a good match between the sonic log and a 1-D velocity function derived from the 2-D velocity model. This shows that specific preconditioning of the data and a good inversion strategy make it possible to use waveform tomography of relatively short offset reflection data for the imaging of shallow geological features.

  6. Full waveform inversion using oriented time-domain imaging method for vertical transverse isotropic media

    KAUST Repository

    Zhang, Zhendong

    2017-07-11

    Full waveform inversion for reection events is limited by its linearized update re-quirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate, the resulting gradient can have an inaccurate update direction leading the inversion to converge what we refer to as local minima of the objective function. In our approach, we consider mild lateral variation in the model, and thus, use a gradient given by the oriented time-domain imaging method. Specifically, we apply the oriented time-domain imaging on the data residual to obtain the geometrical features of the velocity perturbation. After updating the model in the time domain, we convert the perturbation from the time domain to depth using the average velocity. Considering density is constant, we can expand the conventional 1D impedance inversion method to 2D or 3D velocity inversion within the process of full waveform inversion. This method is not only capable of inverting for velocity, but it is also capable of retrieving anisotropic parameters relying on linearized representations of the reection response. To eliminate the cross-talk artifacts between different parameters, we utilize what we consider being an optimal parametrization for this step. To do so, we extend the prestack time-domain migration image in incident angle dimension to incorporate angular dependence needed by the multiparameter inversion. For simple models, this approach provides an efficient and stable way to do full waveform inversion or modified seismic inversion and makes the anisotropic inversion more practicable. The proposed method still needs kinematically accurate initial models since it only recovers the high-wavenumber part as conventional full waveform inversion method does. Results on synthetic data of isotropic and anisotropic cases illustrate the benefits and limitations of this method.

  7. Image-domain full waveform inversion

    KAUST Repository

    Zhang, Sanzong

    2013-08-20

    The main difficulty with the data-domain full waveform inversion (FWI) is that it tends to get stuck in the local minima associated with the waveform misfit function. This is because the waveform misfit function is highly nonlinear with respect to changes in velocity model. To reduce this nonlinearity, we define the image-domain objective function to minimize the difference of the suboffset-domain common image gathers (CIGs) obtained by migrating the observed data and the calculated data. The derivation shows that the gradient of this new objective function is the combination of the gradient of the conventional FWI and the image-domain differential semblance optimization (DSO). Compared to the conventional FWI, the imagedomain FWI is immune to cycle skipping problems by smearing the nonzero suboffset images along wavepath. It also can avoid the edge effects and the gradient artifacts that are inherent in DSO due to the falsely over-penalized focused images. This is achieved by subtracting the focused image associated with the calculated data from the unfocused image associated with the observed data in the image-domain misfit function. The numerical results of the Marmousi model show that image-domain FWI is less sensitive the initial model than the conventional FWI. © 2013 SEG.

  8. Image-domain full waveform inversion

    KAUST Repository

    Zhang, Sanzong; Schuster, Gerard T.

    2013-01-01

    The main difficulty with the data-domain full waveform inversion (FWI) is that it tends to get stuck in the local minima associated with the waveform misfit function. This is because the waveform misfit function is highly nonlinear with respect to changes in velocity model. To reduce this nonlinearity, we define the image-domain objective function to minimize the difference of the suboffset-domain common image gathers (CIGs) obtained by migrating the observed data and the calculated data. The derivation shows that the gradient of this new objective function is the combination of the gradient of the conventional FWI and the image-domain differential semblance optimization (DSO). Compared to the conventional FWI, the imagedomain FWI is immune to cycle skipping problems by smearing the nonzero suboffset images along wavepath. It also can avoid the edge effects and the gradient artifacts that are inherent in DSO due to the falsely over-penalized focused images. This is achieved by subtracting the focused image associated with the calculated data from the unfocused image associated with the observed data in the image-domain misfit function. The numerical results of the Marmousi model show that image-domain FWI is less sensitive the initial model than the conventional FWI. © 2013 SEG.

  9. Advanced Waveform Simulation for Seismic Monitoring

    Science.gov (United States)

    2008-09-01

    velocity model. The method separates the main arrivals of the regional waveform into 5 windows: Pnl (vertical and radial components), Rayleigh (vertical and...ranges out to 10°, including extensive observations of crustal thinning and thickening and various Pnl complexities. Broadband modeling in 1D, 2D...existing models perform in predicting the various regional phases, Rayleigh waves, Love waves, and Pnl waves. Previous events from this Basin-and-Range

  10. The SCEC Unified Community Velocity Model (UCVM) Software Framework for Distributing and Querying Seismic Velocity Models

    Science.gov (United States)

    Maechling, P. J.; Taborda, R.; Callaghan, S.; Shaw, J. H.; Plesch, A.; Olsen, K. B.; Jordan, T. H.; Goulet, C. A.

    2017-12-01

    Crustal seismic velocity models and datasets play a key role in regional three-dimensional numerical earthquake ground-motion simulation, full waveform tomography, modern physics-based probabilistic earthquake hazard analysis, as well as in other related fields including geophysics, seismology, and earthquake engineering. The standard material properties provided by a seismic velocity model are P- and S-wave velocities and density for any arbitrary point within the geographic volume for which the model is defined. Many seismic velocity models and datasets are constructed by synthesizing information from multiple sources and the resulting models are delivered to users in multiple file formats, such as text files, binary files, HDF-5 files, structured and unstructured grids, and through computer applications that allow for interactive querying of material properties. The Southern California Earthquake Center (SCEC) has developed the Unified Community Velocity Model (UCVM) software framework to facilitate the registration and distribution of existing and future seismic velocity models to the SCEC community. The UCVM software framework is designed to provide a standard query interface to multiple, alternative velocity models, even if the underlying velocity models are defined in different formats or use different geographic projections. The UCVM framework provides a comprehensive set of open-source tools for querying seismic velocity model properties, combining regional 3D models and 1D background models, visualizing 3D models, and generating computational models in the form of regular grids or unstructured meshes that can be used as inputs for ground-motion simulations. The UCVM framework helps researchers compare seismic velocity models and build equivalent simulation meshes from alternative velocity models. These capabilities enable researchers to evaluate the impact of alternative velocity models in ground-motion simulations and seismic hazard analysis applications

  11. Micro-seismic Imaging Using a Source Independent Waveform Inversion Method

    KAUST Repository

    Wang, Hanchen

    2016-01-01

    waveform inversion (FWI) is widely used. The FWI method updates the velocity model by minimizing the misfit between the observed data and the predicted data. Using FWI to locate and image microseismic events allows for an automatic process (free of picking

  12. What is the best site for measuring the effect of ventilation on the pulse oximeter waveform?

    Science.gov (United States)

    Shelley, Kirk H; Jablonka, Denis H; Awad, Aymen A; Stout, Robert G; Rezkanna, Hoda; Silverman, David G

    2006-08-01

    The cardiac pulse is the predominant feature of the pulse oximeter (plethysmographic) waveform. Less obvious is the effect of ventilation on the waveform. There have been efforts to measure the effect of ventilation on the waveform to determine respiratory rate, tidal volume, and blood volume. We measured the relative strength of the effect of ventilation on the reflective plethysmographic waveform at three different sites: the finger, ear, and forehead. The plethysmographic waveforms from 18 patients undergoing positive pressure ventilation during surgery and 10 patients spontaneously breathing during renal dialysis were collected. The respiratory signal was isolated from the waveform using spectral analysis. It was found that the respiratory signal in the pulse oximeter waveform was more than 10 times stronger in the region of the head when compared with the finger. This was true with both controlled positive pressure ventilation and spontaneous breathing. A significant correlation was demonstrated between the estimated blood loss from surgical procedures and the impact of ventilation on ear plethysmographic data (r(s) = 0.624, P = 0.006).

  13. Simultaneous inversion of the background velocity and the perturbation in full-waveform inversion

    KAUST Repository

    Wu, Zedong; Alkhalifah, Tariq Ali

    2015-01-01

    The gradient of standard full-waveform inversion (FWI) attempts to map the residuals in the data to perturbations in the model. Such perturbations may include smooth background updates from the transmission components and high wavenumber updates

  14. 2-D traveltime and waveform inversion for improved seismic imaging: Naga Thrust and Fold Belt, India

    Science.gov (United States)

    Jaiswal, Priyank; Zelt, Colin A.; Bally, Albert W.; Dasgupta, Rahul

    2008-05-01

    Exploration along the Naga Thrust and Fold Belt in the Assam province of Northeast India encounters geological as well as logistic challenges. Drilling for hydrocarbons, traditionally guided by surface manifestations of the Naga thrust fault, faces additional challenges in the northeast where the thrust fault gradually deepens leaving subtle surface expressions. In such an area, multichannel 2-D seismic data were collected along a line perpendicular to the trend of the thrust belt. The data have a moderate signal-to-noise ratio and suffer from ground roll and other acquisition-related noise. In addition to data quality, the complex geology of the thrust belt limits the ability of conventional seismic processing to yield a reliable velocity model which in turn leads to poor subsurface image. In this paper, we demonstrate the application of traveltime and waveform inversion as supplements to conventional seismic imaging and interpretation processes. Both traveltime and waveform inversion utilize the first arrivals that are typically discarded during conventional seismic processing. As a first step, a smooth velocity model with long wavelength characteristics of the subsurface is estimated through inversion of the first-arrival traveltimes. This velocity model is then used to obtain a Kirchhoff pre-stack depth-migrated image which in turn is used for the interpretation of the fault. Waveform inversion is applied to the central part of the seismic line to a depth of ~1 km where the quality of the migrated image is poor. Waveform inversion is performed in the frequency domain over a series of iterations, proceeding from low to high frequency (11-19 Hz) using the velocity model from traveltime inversion as the starting model. In the end, the pre-stack depth-migrated image and the waveform inversion model are jointly interpreted. This study demonstrates that a combination of traveltime and waveform inversion with Kirchhoff pre-stack depth migration is a promising approach

  15. The Observation of Fault Finiteness and Rapid Velocity Variation in Pnl Waveforms for the Mw 6.5, San Simeon, California Earthquake

    Science.gov (United States)

    Konca, A. O.; Ji, C.; Helmberger, D. V.

    2004-12-01

    We observed the effect of the fault finiteness in the Pnl waveforms from regional distances (4° to 12° ) for the Mw6.5 San Simeon Earthquake on 22 December 2003. We aimed to include more of the high frequencies (2 seconds and longer periods) than the studies that use regional data for focal solutions (5 to 8 seconds and longer periods). We calculated 1-D synthetic seismograms for the Pn_l portion for both a point source, and a finite fault solution. The comparison of the point source and finite fault waveforms with data show that the first several seconds of the point source synthetics have considerably higher amplitude than the data, while finite fault does not have a similar problem. This can be explained by reversely polarized depth phases overlapping with the P waves from the later portion of the fault, and causing smaller amplitudes for the beginning portion of the seismogram. This is clearly a finite fault phenomenon; therefore, can not be explained by point source calculations. Moreover, the point source synthetics, which are calculated with a focal solution from a long period regional inversion, are overestimating the amplitude by three to four times relative to the data amplitude, while finite fault waveforms have the similar amplitudes to the data. Hence, a moment estimation based only on the point source solution of the regional data could have been wrong by half of magnitude. We have also calculated the shifts of synthetics relative to data to fit the seismograms. Our results reveal that the paths from Central California to the south are faster than to the paths to the east and north. The P wave arrival to the TUC station in Arizona is 4 seconds earlier than the predicted Southern California model, while most stations to the east are delayed around 1 second. The observed higher uppermost mantle velocities to the south are consistent with some recent tomographic models. Synthetics generated with these models significantly improves the fits and the

  16. Advances in constant-velocity Moessbauer instrumentation

    International Nuclear Information System (INIS)

    Veiga, A.; Martinez, N.; Zelis, P. Mendoza; Pasquevich, G. A.; Sanchez, F. H.

    2006-01-01

    A prototype of a programmable constant-velocity scaler is presented. This instrument allows the acquisition of partial Moessbauer spectra in selected energy regions using standard drivers and transducers. It can be fully operated by a remote application, thus data acquisition can be automated. The instrument consists of a programmable counter and a constant-velocity reference. The reference waveform generator is amplitude modulated with 13-bit resolution, and is programmable in a wide range of frequencies and waveforms in order to optimize the performance of the transducer. The counter is compatible with most standard SCA, and is configured as a rate-meter that provides counts per selectable time slice at the programmed velocity. As a demonstration of the instrument applications, a partial Moessbauer spectrum of a natural iron foil was taken. Only positive energies were studied in 512 channels, accumulating 20 s per channel. A line width of 0.20 mm/s was achieved, performing with an efficiency of 80%.

  17. Angle-domain Migration Velocity Analysis using Wave-equation Reflection Traveltime Inversion

    KAUST Repository

    Zhang, Sanzong

    2012-11-04

    The main difficulty with an iterative waveform inversion is that it tends to get stuck in a local minima associated with the waveform misfit function. This is because the waveform misfit function is highly non-linear with respect to changes in the velocity model. To reduce this nonlinearity, we present a reflection traveltime tomography method based on the wave equation which enjoys a more quasi-linear relationship between the model and the data. A local crosscorrelation of the windowed downgoing direct wave and the upgoing reflection wave at the image point yields the lag time that maximizes the correlation. This lag time represents the reflection traveltime residual that is back-projected into the earth model to update the velocity in the same way as wave-equation transmission traveltime inversion. The residual movemout analysis in the angle-domain common image gathers provides a robust estimate of the depth residual which is converted to the reflection traveltime residual for the velocity inversion. We present numerical examples to demonstrate its efficiency in inverting seismic data for complex velocity model.

  18. P-wave velocity models of continental shelf of East Siberian Sea using the Laplace-domain full waveform inversion

    Science.gov (United States)

    Kang, S. G.; Hong, J. K.; Jin, Y. K.; Jang, U.; Niessen, F.; Baranov, B.

    2017-12-01

    2016 IBRV ARAON Arctic Cruise Leg-2, Expedition ARA07C was a multidisciplinary undertaking carried out in the East Siberian Sea (ESS) from August 25 to September 10, 2016. The program was conducted as a collaboration between the Korea Polar Research Institute (KOPRI), P.P. Shirshov Institute of Oceanology (IORAS), and Alfred Wegener Institute (AWI). During this expedition, the multi-channel seismic (MCS) data were acquired on the continental shelf and the upper slope of the ESS, totaling 3 lines with 660 line-kilometers. The continental shelf of ESS is one of the widest shelf seas in the world and it is believed to cover the largest area of sub-sea permafrost in the Arctic. According to the present knowledge of the glacial history of the western Arctic Ocean, it is likely that during the LGM with a sea level approximately 120 m below present, the entire shelf area of the ESS was exposed to very cold air temperatures so that thick permafrost should have formed. Indeed, in water depths shallower than 80 m, sub-bottom profiles in the ESS recorded from the shelf edge to a latitude of 74°30' N in 60 m water depth exhibited acoustic facies, suggesting that at least relicts of submarine permafrost are present. In order to identify the existence and/or non-existence of subsea permafrost in our study area, we analyze the MCS data using the Laplace domain full waveform inversion (FWI). In case of the Canadian continental shelf of the Beaufort Sea, subsea permafrost has high seismic velocity values (over 2.6 km/sec) and strong refraction events were found in the MCS shotgathers. However, in the EES our proposed P-wave velocity models derived from FWI have neither found high velocity structures (over 2.6 km/sec) nor indicate strong refraction events by subsea permafrost. Instead, in 300 m depth below sea floor higher P-wave velocity structures (1.8 2.2 km/s) than normal subsea sediment layers were found, which are interpreted as cemented strata by glaciation activities.

  19. DISECA - A Matlab code for dispersive waveform calculations

    Czech Academy of Sciences Publication Activity Database

    Gaždová, Renata; Vilhelm, J.

    2011-01-01

    Roč. 38, č. 4 (2011), s. 526-531 ISSN 0266-352X R&D Projects: GA AV ČR IAA300460705 Institutional research plan: CEZ:AV0Z30460519 Keywords : velocity dispersion * synthetic waveform * seismic method Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.987, year: 2011 http://www.sciencedirect.com/science/article/pii/S0266352X11000425

  20. 2-dimensional triplicated waveform modeling of the mantle transition zone beneath Northeast Asia

    Science.gov (United States)

    Lai, Y.; Chen, L.; Wang, T.

    2017-12-01

    The Mantle Transition Zone (MTZ) of Northeast Asia has long been investigated by geoscientists for its critical importance where the subducted Pacific slab is stagnant above the 660km discontinuity, accompanied by complicated mantle processes. Taking advantages of the frequent occurrent deep earthquakes in subduction zone and dense seismic arrays in Northeast China, we successfully constructed the fine-scale P and SH velocity structure of a narrow azimuthal fan area based on 2-Dimensional (2D) triplicated waveform modeling for three deep close earthquakes, in which the triplicated waveforms are very sensitive to MTZ velocity structure in general, particularly the morphology of the stagnant slab in Northeast Asia. In our 2D triplication study, for the first time, we show a quite consistent feature of a high velocity layer for both Vp and Vs with the thickness of 140km and the length of 1200km just atop the 660km discontinuity, the western edge of the stagnant slab intersect with the North-South Gravity Lineament in China and has the subducting age of 30 Ma. Compared with a quite normal Vp, the Shear wave velocity reduction of -0.5% in the slab and -2.5% in the upper MTZ is required to reconcile the SH waves featured by the broad BOD. The high Vp/Vs ratio beneath Northeast Asia may imply a water-rich MTZ with the H2O content of 0.1-0.3 wt%. Particularly, a low velocity anomaly of about 150km wide was detected in the overall high-velocity stagnant slab by both P and SH triplicated waveform modeling, with the velocity anomaly value of -1% and -3%, respectively. The gap/window in the stagnant slab may provide a passage for hot deeper mantle materials to penetrate through the thick slab and feed the surface Changbaishan volcano. We also speculate that the existence of such a gap can be the manifestation of the original heterogeneity in the subducted slab and will further exacerbatethe impending gravitational instability and speed up mantle avalanche.

  1. Efficient scattering angle filtering for Full waveform inversion

    KAUST Repository

    Alkhalifah, Tariq Ali

    2015-01-01

    Controlling the scattering angles between the state and the adjoint variables for the energy admitted into an inversion gradient or an image can help improve these functions for objectives in full waveform inversion (FWI) or seismic imaging. However, the access of the scattering angle information usually requires an axis extension that could be costly, especially in 3D. For the purpose of a scattering angle filter, I develop techniques that utilize the mapping nature (no domain extension) of the filter for constant-velocity background models to interpolate between such filtered gradients using the actual velocity. The concept has well known roots in the application of phase-shift-plus-interpolation utilized commonly in the downward continuation process. If the difference between the minimum and maximum velocity of the background medium is large, we obtain filtered gradients corresponding to more constant velocity backgrounds and use linear interpolation between such velocities. The accuracy of this approximation for the Marmousi model gradient demonstrates the e ectiveness of the approach.

  2. Efficient scattering angle filtering for Full waveform inversion

    KAUST Repository

    Alkhalifah, Tariq Ali

    2015-08-19

    Controlling the scattering angles between the state and the adjoint variables for the energy admitted into an inversion gradient or an image can help improve these functions for objectives in full waveform inversion (FWI) or seismic imaging. However, the access of the scattering angle information usually requires an axis extension that could be costly, especially in 3D. For the purpose of a scattering angle filter, I develop techniques that utilize the mapping nature (no domain extension) of the filter for constant-velocity background models to interpolate between such filtered gradients using the actual velocity. The concept has well known roots in the application of phase-shift-plus-interpolation utilized commonly in the downward continuation process. If the difference between the minimum and maximum velocity of the background medium is large, we obtain filtered gradients corresponding to more constant velocity backgrounds and use linear interpolation between such velocities. The accuracy of this approximation for the Marmousi model gradient demonstrates the e ectiveness of the approach.

  3. Unsupervised Learning Through Randomized Algorithms for High-Volume High-Velocity Data (ULTRA-HV).

    Energy Technology Data Exchange (ETDEWEB)

    Pinar, Ali [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kolda, Tamara G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carlberg, Kevin Thomas [Wake Forest Univ., Winston-Salem, MA (United States); Ballard, Grey [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mahoney, Michael [Univ. of California, Berkeley, CA (United States)

    2018-01-01

    Through long-term investments in computing, algorithms, facilities, and instrumentation, DOE is an established leader in massive-scale, high-fidelity simulations, as well as science-leading experimentation. In both cases, DOE is generating more data than it can analyze and the problem is intensifying quickly. The need for advanced algorithms that can automatically convert the abundance of data into a wealth of useful information by discovering hidden structures is well recognized. Such efforts however, are hindered by the massive volume of the data and its high velocity. Here, the challenge is developing unsupervised learning methods to discover hidden structure in high-volume, high-velocity data.

  4. Multi-stage full waveform inversion strategy for 2D elastic VTI media

    KAUST Repository

    Oh, Juwon; Alkhalifah, Tariq Ali; Min, Dong-Joo

    2015-01-01

    One of the most important issues in the multi-parametric full waveform inversion (FWI) is to find an optimal parameterization, which helps us recover the subsurface anisotropic parameters as well as seismic velocities, with minimal tradeoff. As a

  5. Frequency spectrum analysis of finger photoplethysmographic waveform variability during haemodialysis.

    Science.gov (United States)

    Javed, Faizan; Middleton, Paul M; Malouf, Philip; Chan, Gregory S H; Savkin, Andrey V; Lovell, Nigel H; Steel, Elizabeth; Mackie, James

    2010-09-01

    This study investigates the peripheral circulatory and autonomic response to volume withdrawal in haemodialysis based on spectral analysis of photoplethysmographic waveform variability (PPGV). Frequency spectrum analysis was performed on the baseline and pulse amplitude variabilities of the finger infrared photoplethysmographic (PPG) waveform and on heart rate variability extracted from the ECG signal collected from 18 kidney failure patients undergoing haemodialysis. Spectral powers were calculated from the low frequency (LF, 0.04-0.145 Hz) and high frequency (HF, 0.145-0.45 Hz) bands. In eight stable fluid overloaded patients (fluid removal of >2 L) not on alpha blockers, progressive reduction in relative blood volume during haemodialysis resulted in significant increase in LF and HF powers of PPG baseline and amplitude variability (P analysis of finger PPGV may provide valuable information on the autonomic vascular response to blood volume reduction in haemodialysis, and can be potentially utilized as a non-invasive tool for assessing peripheral circulatory control during routine dialysis procedure.

  6. Harmonic arbitrary waveform generator

    Science.gov (United States)

    Roberts, Brock Franklin

    2017-11-28

    High frequency arbitrary waveforms have applications in radar, communications, medical imaging, therapy, electronic warfare, and charged particle acceleration and control. State of the art arbitrary waveform generators are limited in the frequency they can operate by the speed of the Digital to Analog converters that directly create their arbitrary waveforms. The architecture of the Harmonic Arbitrary Waveform Generator allows the phase and amplitude of the high frequency content of waveforms to be controlled without taxing the Digital to Analog converters that control them. The Harmonic Arbitrary Waveform Generator converts a high frequency input, into a precision, adjustable, high frequency arbitrary waveform.

  7. Control volume based hydrocephalus research; analysis of human data

    Science.gov (United States)

    Cohen, Benjamin; Wei, Timothy; Voorhees, Abram; Madsen, Joseph; Anor, Tomer

    2010-11-01

    Hydrocephalus is a neuropathophysiological disorder primarily diagnosed by increased cerebrospinal fluid volume and pressure within the brain. To date, utilization of clinical measurements have been limited to understanding of the relative amplitude and timing of flow, volume and pressure waveforms; qualitative approaches without a clear framework for meaningful quantitative comparison. Pressure volume models and electric circuit analogs enforce volume conservation principles in terms of pressure. Control volume analysis, through the integral mass and momentum conservation equations, ensures that pressure and volume are accounted for using first principles fluid physics. This approach is able to directly incorporate the diverse measurements obtained by clinicians into a simple, direct and robust mechanics based framework. Clinical data obtained for analysis are discussed along with data processing techniques used to extract terms in the conservation equation. Control volume analysis provides a non-invasive, physics-based approach to extracting pressure information from magnetic resonance velocity data that cannot be measured directly by pressure instrumentation.

  8. Micro-seismic Imaging Using a Source Independent Waveform Inversion Method

    KAUST Repository

    Wang, Hanchen

    2016-04-18

    Micro-seismology is attracting more and more attention in the exploration seismology community. The main goal in micro-seismic imaging is to find the source location and the ignition time in order to track the fracture expansion, which will help engineers monitor the reservoirs. Conventional imaging methods work fine in this field but there are many limitations such as manual picking, incorrect migration velocity and low signal to noise ratio (S/N). In traditional surface survey imaging, full waveform inversion (FWI) is widely used. The FWI method updates the velocity model by minimizing the misfit between the observed data and the predicted data. Using FWI to locate and image microseismic events allows for an automatic process (free of picking) that utilizes the full wavefield. Use the FWI technique, and overcomes the difficulties of manual pickings and incorrect velocity model for migration. However, the technique of waveform inversion of micro-seismic events faces its own problems. There is significant nonlinearity due to the unknown source location (space) and function (time). We have developed a source independent FWI of micro-seismic events to simultaneously invert for the source image, source function and velocity model. It is based on convolving reference traces with the observed and modeled data to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. To examine the accuracy of the inverted source image and velocity model the extended image for source wavelet in z-axis is extracted. Also the angle gather is calculated to check the applicability of the migration velocity. By inverting for the source image, source wavelet and the velocity model simultaneously, the proposed method produces good estimates of the source location, ignition time and the background velocity in the synthetic experiments with both parts of the Marmousi and the SEG

  9. A Waveform Archiving System for the GE Solar 8000i Bedside Monitor.

    Science.gov (United States)

    Fanelli, Andrea; Jaishankar, Rohan; Filippidis, Aristotelis; Holsapple, James; Heldt, Thomas

    2018-01-01

    Our objective was to develop, deploy, and test a data-acquisition system for the reliable and robust archiving of high-resolution physiological waveform data from a variety of bedside monitoring devices, including the GE Solar 8000i patient monitor, and for the logging of ancillary clinical and demographic information. The data-acquisition system consists of a computer-based archiving unit and a GE Tram Rac 4A that connects to the GE Solar 8000i monitor. Standard physiological front-end sensors connect directly to the Tram Rac, which serves as a port replicator for the GE monitor and provides access to these waveform signals through an analog data interface. Together with the GE monitoring data streams, we simultaneously collect the cerebral blood flow velocity envelope from a transcranial Doppler ultrasound system and a non-invasive arterial blood pressure waveform along a common time axis. All waveform signals are digitized and archived through a LabView-controlled interface that also allows for the logging of relevant meta-data such as clinical and patient demographic information. The acquisition system was certified for hospital use by the clinical engineering team at Boston Medical Center, Boston, MA, USA. Over a 12-month period, we collected 57 datasets from 11 neuro-ICU patients. The system provided reliable and failure-free waveform archiving. We measured an average temporal drift between waveforms from different monitoring devices of 1 ms every 66 min of recorded data. The waveform acquisition system allows for robust real-time data acquisition, processing, and archiving of waveforms. The temporal drift between waveforms archived from different devices is entirely negligible, even for long-term recording.

  10. CORRELATION BETWEEN UTERINE ARTERY FLOW VELOCITY ...

    African Journals Online (AJOL)

    CORRELATION BETWEEN UTERINE ARTERY FLOW VELOCITY WAVEFORMS AND ENDOMETRIAL HISTOPATHOLOGY IN WOMEN WITH PERIMENOPAUSAL AND POSTMENOPAUSAL BLEEDING. Dr. Ebtesam Saied, Dr. Ismail El Garhy(MD), Dr. Farid I. Hassan(MD), Dr. Adel-Gamil Abd-Allah, Abd El Shafy Ibrahim ...

  11. Multi-parameter full waveform inversion using Poisson

    KAUST Repository

    Oh, Juwon

    2016-07-21

    In multi-parameter full waveform inversion (FWI), the success of recovering each parameter is dependent on characteristics of the partial derivative wavefields (or virtual sources), which differ according to parameterisation. Elastic FWIs based on the two conventional parameterisations (one uses Lame constants and density; the other employs P- and S-wave velocities and density) have low resolution of gradients for P-wave velocities (or ). Limitations occur because the virtual sources for P-wave velocity or (one of the Lame constants) are related only to P-P diffracted waves, and generate isotropic explosions, which reduce the spatial resolution of the FWI for these parameters. To increase the spatial resolution, we propose a new parameterisation using P-wave velocity, Poisson\\'s ratio, and density for frequency-domain multi-parameter FWI for isotropic elastic media. By introducing Poisson\\'s ratio instead of S-wave velocity, the virtual source for the P-wave velocity generates P-S and S-S diffracted waves as well as P-P diffracted waves in the partial derivative wavefields for the P-wave velocity. Numerical examples of the cross-triangle-square (CTS) model indicate that the new parameterisation provides highly resolved descent directions for the P-wave velocity. Numerical examples of noise-free and noisy data synthesised for the elastic Marmousi-II model support the fact that the new parameterisation is more robust for noise than the two conventional parameterisations.

  12. Imaging the lithosphere and underlying mantle of the South Atlantic, South America and Africa using waveform tomography with massive datasets

    Science.gov (United States)

    Celli, N. L.; Lebedev, S.; Schaeffer, A. J.; Ravenna, M.; Gaina, C.

    2017-12-01

    Recent growth in global seismic station coverage has created dense data sampling of the previously poorly constrained lithosphere and underlying mantle beneath the South Atlantic, South America and Africa. The new data enable us to image the vast region at a new level of detail and address important open questions regarding its lithospheric architecture and mantle dynamics. In order to fully exploit the data sampling, we use an efficient, multimode waveform tomography scheme that enables the extraction of structural information from millions of seismograms and use the inherent data redundancy to minimize effects of errors in the data. Our tomographic model is constrained by waveform fits of over 1.2 million vertical-component seismograms, computed using the Automated Multimode Inversion of surface, S- and multiple S-waves. Each successful seismogram fit provides a set of linear equations describing 1D average velocity perturbations within approximate sensitivity volumes, with respect to a 3D reference model. We then combine all equations into a large linear system and invert jointly for a model of S- and P-wave speeds and azimuthal anisotropy within the lithosphere and underlying mantle. We are now able to image the detailed structure of various African shields. For example, in West Africa, two clearly separate high-velocity units underlay the Reguibat and Man-Léo Shields; in the Congo area, a single high-velocity body, formed by three main units correspond to the Gabon-Cameroon, Bomu-Kibali and Kasai Shields. Strong low-velocity anomalies underlay the Afar Hotspot and the East African Rift; pronounced low velocities are also seen beneath parts of the Sahara Desert. We discuss the shape of the deep Afar anomaly and its possible relationships with the Saharan volcanism and the neighboring Tanzania Craton. In the South Atlantic, we retrieve fine-scale velocity structure along the Mid-Atlantic Ridge (MAR), indicative of hotspot-ridge interactions. Major hotspots show

  13. Evaluation of factors influencing arterial Doppler waveforms in an in vitro flow phantom

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Chang Kyu [Dept. of Radiology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul (Korea, Republic of); Lee, Kyoung Ho [Dept. of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam (Korea, Republic of); Kim, Seung Hyup [Dept. of Radiology and the Institute of Radiation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2017-01-15

    The aim of this study was to investigate factors that influence arterial Doppler waveforms in an in vitro phantom to provide a more accurate and comprehensive explanation of the Doppler signal. A flow model was created using a pulsatile artificial heart, rubber or polyethylene tubes, a water tank, and a glass tube. Spectral Doppler tracings were obtained in multiple combinations of compliance, resistance, and pulse rate. Peak systolic velocity, minimum diastolic velocity, resistive index (RI), pulsatility index, early systolic acceleration time, and acceleration index were measured. On the basis of these measurements, the influences of the variables on the Doppler waveforms were analyzed. With increasing distal resistance, the RI increased in a relatively linear relationship. With increasing proximal resistance, the RI decreased. The pulsus tardus and parvus phenomenon was observed with a small acceleration index in the model with a higher grade of stenosis. An increase in the distal resistance masked the pulsus tardus and parvus phenomenon by increasing the acceleration index. Although this phenomenon occurred independently of compliance, changes in the compliance of proximal or distal tubes caused significant changes in the Doppler waveform. There was a reverse relationship between the RI and the pulse rate. Resistance and compliance can alter the Doppler waveforms independently. The pulse rate is an extrinsic factor that also influences the RI. The compliance and distal resistance, as well as proximal resistance, influence the pulsus tardus and parvus phenomenon.

  14. Programmable waveform controller

    International Nuclear Information System (INIS)

    Yeh, H.T.

    1979-01-01

    A programmable waveform controller (PWC) was developed for voltage waveform generation in the laboratory. It is based on the Intel 8080 family of chips. The hardware uses the modular board approach, sharing a common 44-pin bus. The software contains two separate programs: the first generates a single connected linear ramp waveform and is capable of bipolar operation, linear interpolation between input data points, extended time range, and cycling; the second generates four independent square waveforms with variable duration and amplitude

  15. Full waveform inversion based on scattering angle enrichment with application to real dataset

    KAUST Repository

    Wu, Zedong

    2015-08-19

    Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI). However, the drawback of the existing RWI methods is inability to utilize diving waves and the extra sensitivity to the migrated image. We propose a combined FWI and RWI optimization problem through dividing the velocity into the background and perturbed components. We optimize both the background and perturbed components, as independent parameters. The new objective function is quadratic with respect to the perturbed component, which will reduce the nonlinearity of the optimization problem. Solving this optimization provides a true amplitude image and utilizes the diving waves to update the velocity of the shallow parts. To insure a proper wavenumber continuation, we use an efficient scattering angle filter to direct the inversion at the early stages to direct energy corresponding to large (smooth velocity) scattering angles to the background velocity update and the small (high wavenumber) scattering angles to the perturbed velocity update. This efficient implementation of the filter is fast and requires less memory than the conventional approach based on extended images. Thus, the new FWI procedure updates the background velocity mainly along the wavepath for both diving and reflected waves in the initial stages. At the same time, it updates the perturbation with mainly reflections (filtering out the diving waves). To demonstrate the capability of this method, we apply it to a real 2D marine dataset.

  16. Full waveform inversion using oriented time-domain imaging method for vertical transverse isotropic media

    KAUST Repository

    Zhang, Zhendong; Alkhalifah, Tariq Ali

    2017-01-01

    Full waveform inversion for reection events is limited by its linearized update re-quirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate, the resulting gradient can have an inaccurate

  17. A nonlinear inversion for the velocity background and perturbation models

    KAUST Repository

    Wu, Zedong

    2015-08-19

    Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI) by inverting for the single scattered wavefield obtained using an image. However, current RWI methods usually neglect diving waves, which is an important source of information for extracting the long wavelength components of the velocity model. Thus, we propose a new optimization problem through breaking the velocity model into the background and the perturbation in the wave equation directly. In this case, the perturbed model is no longer the single scattering model, but includes all scattering. We optimize both components simultaneously, and thus, the objective function is nonlinear with respect to both the background and perturbation. The new introduced w can absorb the non-smooth update of background naturally. Application to the Marmousi model with frequencies that start at 5 Hz shows that this method can converge to the accurate velocity starting from a linearly increasing initial velocity. Application to the SEG2014 demonstrates the versatility of the approach.

  18. Vector velocity volume flow estimation: Sources of error and corrections applied for arteriovenous fistulas

    DEFF Research Database (Denmark)

    Jensen, Jonas; Olesen, Jacob Bjerring; Stuart, Matthias Bo

    2016-01-01

    radius. The error sources were also studied in vivo under realistic clinical conditions, and the theoretical results were applied for correcting the volume flow errors. Twenty dialysis patients with arteriovenous fistulas were scanned to obtain vector flow maps of fistulas. When fitting an ellipsis......A method for vector velocity volume flow estimation is presented, along with an investigation of its sources of error and correction of actual volume flow measurements. Volume flow errors are quantified theoretically by numerical modeling, through flow phantom measurements, and studied in vivo...

  19. Multi-parameter Full-waveform Inversion for Acoustic VTI Medium with Surface Seismic Data

    Science.gov (United States)

    Cheng, X.; Jiao, K.; Sun, D.; Huang, W.; Vigh, D.

    2013-12-01

    Full-waveform Inversion (FWI) attracts wide attention recently in oil and gas industry as a new promising tool for high resolution subsurface velocity model building. While the traditional common image point gather based tomography method aims to focus post-migrated data in depth domain, FWI aims to directly fit the observed seismic waveform in either time or frequency domain. The inversion is performed iteratively by updating the velocity fields to reduce the difference between the observed and the simulated data. It has been shown the inversion is very sensitive to the starting velocity fields, and data with long offsets and low frequencies is crucial for the success of FWI to overcome this sensitivity. Considering the importance of data with long offsets and low frequencies, in most geologic environment, anisotropy is an unavoidable topic for FWI especially at long offsets, since anisotropy tends to have more pronounced effects on waves traveled for a great distance. In VTI medium, this means more horizontal velocity will be registered in middle-to-long offset data, while more vertical velocity will be registered in near-to-middle offset data. Up to date, most of real world applications of FWI still remain in isotropic medium, and only a few studies have been shown to account for anisotropy. And most of those studies only account for anisotropy in waveform simulation, but not invert for those anisotropy fields. Multi-parameter inversion for anisotropy fields, even in VTI medium, remains as a hot topic in the field. In this study, we develop a strategy for multi-parameter FWI for acoustic VTI medium with surface seismic data. Because surface seismic data is insensitivity to the delta fields, we decide to hold the delta fields unchanged during our inversion, and invert only for vertical velocity and epsilon fields. Through parameterization analysis and synthetic tests, we find that it is more feasible to invert for the parameterization as vertical and horizontal

  20. Wavelet Analysis of Ultrasonic Echo Waveform and Application to Nondestructive Evaluation

    International Nuclear Information System (INIS)

    Park, Ik Keun; Park, Un Su; Ahn, Hyung Keun; Kwun, Sook In; Byeon, Jai Won

    2000-01-01

    Recently, advanced signal analysis which is called 'time-frequency analysis' has been used widely in nondestructive evaluation applications. Wavelet transform(WT) and Wigner Distribution are the most advanced techniques for processing signals with time-varying spectra. Wavelet analysis method is an attractive technique for evaluation of material characterization nondestructively. Wavelet transform is applied to the time-frequency analysis of ultrasonic echo waveform obtained by an ultrasonic pulse-echo technique. In this study, the feasibility of noise suppression of ultrasonic flaw signal and frequency-dependent ultrasonic group velocity and attenuation coefficient using wavelet analysis of ultrasonic echo waveform have been verified experimentally. The Gabor function is adopted the analyzing wavelet. The wavelet analysis shows that the variations of ultrasonic group velocity and attenuation coefficient due to the change of material characterization can be evaluated at each frequency. Furthermore, to assure the enhancement of detectability and new sizing performance, both computer simulated results and experimental measurements using wavelet signal processing are used to demonstrate the effectiveness of the noise suppression of ultrasonic flaw signal obtained from austenitic stainless steel weld including EDM notch

  1. Crosshole Tomography, Waveform Inversion, and Anisotropy: A Combined Approach Using Simulated Annealing

    Science.gov (United States)

    Afanasiev, M.; Pratt, R. G.; Kamei, R.; McDowell, G.

    2012-12-01

    Crosshole seismic tomography has been used by Vale to provide geophysical images of mineralized massive sulfides in the Eastern Deeps deposit at Voisey's Bay, Labrador, Canada. To date, these data have been processed using traveltime tomography, and we seek to improve the resolution of these images by applying acoustic Waveform Tomography. Due to the computational cost of acoustic waveform modelling, local descent algorithms are employed in Waveform Tomography; due to non-linearity an initial model is required which predicts first-arrival traveltimes to within a half-cycle of the lowest frequency used. Because seismic velocity anisotropy can be significant in hardrock settings, the initial model must quantify the anisotropy in order to meet the half-cycle criterion. In our case study, significant velocity contrasts between the target massive sulfides and the surrounding country rock led to difficulties in generating an accurate anisotropy model through traveltime tomography, and our starting model for Waveform Tomography failed the half-cycle criterion at large offsets. We formulate a new, semi-global approach for finding the best-fit 1-D elliptical anisotropy model using simulated annealing. Through random perturbations to Thompson's ɛ parameter, we explore the L2 norm of the frequency-domain phase residuals in the space of potential anisotropy models: If a perturbation decreases the residuals, it is always accepted, but if a perturbation increases the residuals, it is accepted with the probability P = exp(-(Ei-E)/T). This is the Metropolis criterion, where Ei is the value of the residuals at the current iteration, E is the value of the residuals for the previously accepted model, and T is a probability control parameter, which is decreased over the course of the simulation via a preselected cooling schedule. Convergence to the global minimum of the residuals is guaranteed only for infinitely slow cooling, but in practice good results are obtained from a variety

  2. Automatic Wave Equation Migration Velocity Analysis by Focusing Subsurface Virtual Sources

    KAUST Repository

    Sun, Bingbing

    2017-11-03

    Macro velocity model building is important for subsequent pre-stack depth migration and full waveform inversion. Wave equation migration velocity analysis (WEMVA) utilizes the band-limited waveform to invert for the velocity. Normally, inversion would be implemented by focusing the subsurface offset common image gathers (SOCIGs). We re-examine this concept with a different perspective: In subsurface offset domain, using extended Born modeling, the recorded data can be considered as invariant with respect to the perturbation of the position of the virtual sources and velocity at the same time. A linear system connecting the perturbation of the position of those virtual sources and velocity is derived and solved subsequently by Conjugate Gradient method. In theory, the perturbation of the position of the virtual sources is given by the Rytov approximation. Thus, compared to the Born approximation, it relaxes the dependency on amplitude and makes the proposed method more applicable for real data. We demonstrate the effectiveness of the approach by applying the proposed method on both isotropic and anisotropic VTI synthetic data. A real dataset example verifies the robustness of the proposed method.

  3. Automatic Wave Equation Migration Velocity Analysis by Focusing Subsurface Virtual Sources

    KAUST Repository

    Sun, Bingbing; Alkhalifah, Tariq Ali

    2017-01-01

    Macro velocity model building is important for subsequent pre-stack depth migration and full waveform inversion. Wave equation migration velocity analysis (WEMVA) utilizes the band-limited waveform to invert for the velocity. Normally, inversion would be implemented by focusing the subsurface offset common image gathers (SOCIGs). We re-examine this concept with a different perspective: In subsurface offset domain, using extended Born modeling, the recorded data can be considered as invariant with respect to the perturbation of the position of the virtual sources and velocity at the same time. A linear system connecting the perturbation of the position of those virtual sources and velocity is derived and solved subsequently by Conjugate Gradient method. In theory, the perturbation of the position of the virtual sources is given by the Rytov approximation. Thus, compared to the Born approximation, it relaxes the dependency on amplitude and makes the proposed method more applicable for real data. We demonstrate the effectiveness of the approach by applying the proposed method on both isotropic and anisotropic VTI synthetic data. A real dataset example verifies the robustness of the proposed method.

  4. Maximum run-up behavior of tsunamis under non-zero initial velocity condition

    Directory of Open Access Journals (Sweden)

    Baran AYDIN

    2018-03-01

    Full Text Available The tsunami run-up problem is solved non-linearly under the most general initial conditions, that is, for realistic initial waveforms such as N-waves, as well as standard initial waveforms such as solitary waves, in the presence of initial velocity. An initial-boundary value problem governed by the non-linear shallow-water wave equations is solved analytically utilizing the classical separation of variables technique, which proved to be not only fast but also accurate analytical approach for this type of problems. The results provide important information on maximum tsunami run-up qualitatively. We observed that, although the calculated maximum run-ups increase significantly, going as high as double that of the zero-velocity case, initial waves having non-zero fluid velocity exhibit the same run-up behavior as waves without initial velocity, for all wave types considered in this study.

  5. Practical waveform inversion in anisotropic media: The natural combination of the data and image objectives

    KAUST Repository

    Alkhalifah, Tariq Ali

    2016-09-06

    Addressing anisotropy in full wavenumber inversion (FWI) is crucial to obtaining credible models, and it is extremely challenging considering the multi parameter nature of the inversion. A successful FWI in anisotropic media takes into account the sensitivity of the data (or the wave) to the long and short wavelength components of the anisotropic parameters. Considering the low sensitivity of FWI to the anellipticity parameter ? when parametrizing the acoustic transversely isotropic model with the horizontal velocity, η and ε, we develop a combined FWI and reflection waveform inversion (RWI) to invert for the anisotropic parameters that influence surface seismic data. This practical waveform inversion (PWI) separates the parameters to their resolvable scales, with information accessed from the data fitting (FWI) and the image focusing (RWI) objectives. With this parametrization, the RWI role is to obtain a smooth ηmodel, as well as velocity, while FWI focusses on the scattering potential of the horizontal velocity. The parameter η is used to produce the Born scattered wavefield for the RWI part and eventually fit the amplitude for the imperfect physics in the FWI part.

  6. Background velocity inversion by phase along reflection wave paths

    KAUST Repository

    Yu, Han; Guo, Bowen; Schuster, Gerard T.

    2014-01-01

    A background velocity model containing the correct lowwavenumber information is desired for both the quality of the migration image and the success of waveform inversion. We propose to invert for the low-wavenumber part of the velocity model by minimizing the phase difference between predicted and observed reflections. The velocity update is exclusively along the reflection wavepaths and, unlike conventional FWI, not along the reflection ellipses. This allows for reconstructing the smoothly varying parts of the background velocity model. Tests with synthetic data show both the benefits and limitations of this method.

  7. Background velocity inversion by phase along reflection wave paths

    KAUST Repository

    Yu, Han

    2014-08-05

    A background velocity model containing the correct lowwavenumber information is desired for both the quality of the migration image and the success of waveform inversion. We propose to invert for the low-wavenumber part of the velocity model by minimizing the phase difference between predicted and observed reflections. The velocity update is exclusively along the reflection wavepaths and, unlike conventional FWI, not along the reflection ellipses. This allows for reconstructing the smoothly varying parts of the background velocity model. Tests with synthetic data show both the benefits and limitations of this method.

  8. Full-waveform inversion with reflected waves for 2D VTI media

    KAUST Repository

    Pattnaik, Sonali

    2016-09-06

    Full-waveform inversion in anisotropic media using reflected waves suffers from the strong non-linearity of the objective function and trade-offs between model parameters. Estimating long-wavelength model components by fixing parameter perturbations, referred to as reflection-waveform inversion (RWI), can mitigate nonlinearity-related inversion issues. Here, we extend RWI to acoustic VTI (transversely isotropic with a vertical symmetry axis) media. To minimize trade-offs between the model parameters, we employ a new hierarchical two-stage approach that operates with the P-wave normal-moveout velocity and anisotropy coefficents ζ and η. First, is estimated using a fixed perturbation in ζ, and then we invert for η by fixing the updated perturbation in . The proposed 2D algorithm is tested on a horizontally layered VTI model.

  9. Stratigraphic imaging of sub-basalt sediments using waveform tomography of wide-angle seismic data

    Science.gov (United States)

    Sain, K.; Gao, F.; Pratt, G.; Zelt, C. A.

    2003-12-01

    The oil industry is interested in imaging the fine structures of sedimentary formations masked below basalt flows for commercial exploration of hydrocarbons. Seismic exploration of sediments hidden below high-velocity basalt cover is a difficult problem because near-vertical reflection data are contaminated with multiples, converted waves and scattering noise generated by interbeds, breccia and vesicles within the basalt. The noise becomes less prominent as the source-receiver offset increases, and the signals carrying sub-surface information stand out at the wide-angle range. The tomography of first arrival traveltime data can provide little information about the underlying low-velocity sediments. Traveltime inversion of wide-angle seismic data including both first arrivals and identifiable wide-angle reflected phases has been an important tool in the delineation of the large-scale velocity structure of sub-basalt sediments, although it lacks the small-scale velocity details. Here we apply 2-D full-waveform inversion ("waveform tomography") to wide-angle seismic data with a view to extracting the small-scale stratigraphic features of sedimentary formations. Results from both synthetic data, generated for a realistic earth model, and field dataset from the basalt covered Saurashtra peninsula, India, will be presented. This approach has potential to delineate thin sedimentary layers hidden below thick basalt cover also, and may serve as a powerful tool to image sedimentary basins, where they are covered by high-velocity materials like basalts, salts, carbonates, etc. in various parts of the world.

  10. Full Waveform Inversion Using Oriented Time Migration Method

    KAUST Repository

    Zhang, Zhendong

    2016-04-12

    Full waveform inversion (FWI) for reflection events is limited by its linearized update requirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate the resulting gradient can have an inaccurate update direction leading the inversion to converge into what we refer to as local minima of the objective function. In this thesis, I first look into the subject of full model wavenumber to analysis the root of local minima and suggest the possible ways to avoid this problem. And then I analysis the possibility of recovering the corresponding wavenumber components through the existing inversion and migration algorithms. Migration can be taken as a generalized inversion method which mainly retrieves the high wavenumber part of the model. Conventional impedance inversion method gives a mapping relationship between the migration image (high wavenumber) and model parameters (full wavenumber) and thus provides a possible cascade inversion strategy to retrieve the full wavenumber components from seismic data. In the proposed approach, consider a mild lateral variation in the model, I find an analytical Frechet derivation corresponding to the new objective function. In the proposed approach, the gradient is given by the oriented time-domain imaging method. This is independent of the background velocity. Specifically, I apply the oriented time-domain imaging (which depends on the reflection slope instead of a background velocity) on the data residual to obtain the geometrical features of the velocity perturbation. Assuming that density is constant, the conventional 1D impedance inversion method is also applicable for 2D or 3D velocity inversion within the process of FWI. This method is not only capable of inverting for velocity, but it is also capable of retrieving anisotropic parameters relying on linearized representations of the reflection response. To eliminate the cross-talk artifacts between different parameters, I

  11. Efficient scattering-angle enrichment for a nonlinear inversion of the background and perturbations components of a velocity model

    KAUST Repository

    Wu, Zedong; Alkhalifah, Tariq Ali

    2017-01-01

    Reflection-waveform inversion (RWI) can help us reduce the nonlinearity of the standard full-waveform inversion (FWI) by inverting for the background velocity model using the wave-path of a single scattered wavefield to an image. However, current

  12. Extracting More Data from LiDAR in Forested Areas by Analyzing Waveform Shape

    Directory of Open Access Journals (Sweden)

    Peter Beets

    2012-03-01

    Full Text Available Light Detection And Ranging (LiDAR in forested areas is used for constructing Digital Terrain Models (DTMs, estimating biomass carbon and timber volume and estimating foliage distribution as an indicator of tree growth and health. All of these purposes are hindered by the inability to distinguish the source of returns as foliage, stems, understorey and the ground except by their relative positions. The ability to separate these returns would improve all analyses significantly. Furthermore, waveform metrics providing information on foliage density could improve forest health and growth estimates. In this study, the potential to use waveform LiDAR was investigated. Aerial waveform LiDAR data were acquired for a New Zealand radiata pine plantation forest, and Leaf Area Density (LAD was measured in the field. Waveform peaks with a good signal-to-noise ratio were analyzed and each described with a Gaussian peak height, half-height width, and an exponential decay constant. All parameters varied substantially across all surface types, ruling out the potential to determine source characteristics for individual returns, particularly those with a lower signal-to-noise ratio. However, pulses on the ground on average had a greater intensity, decay constant and a narrower peak than returns from coniferous foliage. When spatially averaged, canopy foliage density (measured as LAD varied significantly, and was found to be most highly correlated with the volume-average exponential decay rate. A simple model based on the Beer-Lambert law is proposed to explain this relationship, and proposes waveform decay rates as a new metric that is less affected by shadowing than intensity-based metrics. This correlation began to fail when peaks with poorer curve fits were included.

  13. Doppler sonography of diabetic feet: Quantitative analysis of blood flow volume

    International Nuclear Information System (INIS)

    Seo, Young Lan; Kim, Ho Chul; Choi, Chul Soon; Yoon, Dae Young; Han, Dae Hee; Moon, Jeung Hee; Bae, Sang Hoon

    2002-01-01

    To analyze Doppler sonographic findings of diabetic feet by estimating the quantitative blood flow volume and by analyzing waveform on Doppler. Doppler sonography was performed in thirty four patients (10 diabetic patients with foot ulceration, 14 diabetic patients without ulceration and 10 normal patients as the normal control group) to measure the flow volume of the arteries of the lower extremities (posterior and anterior tibial arteries, and distal femoral artery. Analysis of doppler waveforms was also done to evaluate the nature of the changed blood flow volume of diabetic patients, and the waveforms were classified into triphasic, biphasic-1, biphasic-2 and monophasic patterns. Flow volume of arteries in diabetic patients with foot ulceration was increased witha statistical significance when compared to that of diabetes patients without foot ulceration of that of normal control group (P<0.05). Analysis of Doppler waveform revealed that the frequency of biphasic-2 pattern was significantly higher in diabetic patients than in normal control group(p<0.05). Doppler sonography in diabetic feet showed increased flow volume and biphasic Doppler waveform, and these findings suggest neuropathy rather than ischemic changes in diabetic feet.

  14. Doppler sonography of diabetic feet: Quantitative analysis of blood flow volume

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Young Lan; Kim, Ho Chul; Choi, Chul Soon; Yoon, Dae Young; Han, Dae Hee; Moon, Jeung Hee; Bae, Sang Hoon [Hallym University College of Medicine, Seoul (Korea, Republic of)

    2002-09-15

    To analyze Doppler sonographic findings of diabetic feet by estimating the quantitative blood flow volume and by analyzing waveform on Doppler. Doppler sonography was performed in thirty four patients (10 diabetic patients with foot ulceration, 14 diabetic patients without ulceration and 10 normal patients as the normal control group) to measure the flow volume of the arteries of the lower extremities (posterior and anterior tibial arteries, and distal femoral artery. Analysis of doppler waveforms was also done to evaluate the nature of the changed blood flow volume of diabetic patients, and the waveforms were classified into triphasic, biphasic-1, biphasic-2 and monophasic patterns. Flow volume of arteries in diabetic patients with foot ulceration was increased witha statistical significance when compared to that of diabetes patients without foot ulceration of that of normal control group (P<0.05). Analysis of Doppler waveform revealed that the frequency of biphasic-2 pattern was significantly higher in diabetic patients than in normal control group(p<0.05). Doppler sonography in diabetic feet showed increased flow volume and biphasic Doppler waveform, and these findings suggest neuropathy rather than ischemic changes in diabetic feet.

  15. Waveform inversion of very long period impulsive signals associated with magmatic injection beneath Kilauea Volcano, Hawaii

    Science.gov (United States)

    Ohminato, T.; Chouet, B.A.; Dawson, P.; Kedar, S.

    1998-01-01

    We use data from broadband seismometers deployed around the summit of Kilauea Volcano to quantify the mechanism associated with a transient in the flow of magma feeding the east rift eruption of the volcano. The transient is marked by rapid inflation of the Kilauea summit peaking at 22 ??rad 4.5 hours after the event onset, followed by slow deflation over a period of 3 days. Superimposed on the summit inflation is a series of sawtooth displacement pulses, each characterized by a sudden drop in amplitude lasting 5-10 s followed by an exponential recovery lasting 1-3 min. The sawtooth waveforms display almost identical shapes, suggesting a process involving the repeated activation of a fixed source. The particle motion associated with each sawtooth is almost linear, and its major swing shows compressional motion at all stations. Analyses of semblance and particle motion are consistent with a point source located 1 km beneath the northeast edge of the Halemaumau pit crater. To estimate the source mechanism, we apply a moment tensor inversion to the waveform data, assuming a point source embedded in a homogeneous half-space with compressional and shear wave velocities representative of the average medium properties at shallow depth under Kilauea. Synthetic waveforms are constructed by a superposition of impulse responses for six moment tensor components and three single force components. The origin times of individual impulses are distributed along the time axis at appropriately small, equal intervals, and their amplitudes are determined by least squares. In this inversion, the source time functions of the six tensor and three force components are determined simultaneously. We confirm the accuracy of the inversion method through a series of numerical tests. The results from the inversion show that the waveform data are well explained by a pulsating transport mechanism operating on a subhorizontal crack linking the summit reservoir to the east rift of Kilauea. The crack

  16. Applications of multiscale waveform inversion to marine data using a flooding technique and dynamic early-arrival windows

    KAUST Repository

    Boonyasiriwat, Chaiwoot

    2010-11-01

    A recently developed time-domain multiscale waveform tomography (MWT) method is applied to synthetic and field marine data. Although the MWT method was already applied to synthetic data, the synthetic data application leads to a development of a hybrid method between waveform tomography and the salt flooding technique commonly use in subsalt imaging. This hybrid method can overcome a convergence problem encountered by inversion with a traveltime velocity tomogram and successfully provides an accurate and highly resolved velocity tomogram for the 2D SEG/EAGE salt model. In the application of MWT to the field data, the inversion process is carried out using a multiscale method with a dynamic early-arrival muting window to mitigate the local minima problem of waveform tomography and elastic effects. With the modified MWT method, reasonably accurate results as verified by comparison of migration images and common image gathers were obtained. The hybrid method with the salt flooding technique is not used in this field data example because there is no salt in the subsurface according to our interpretation. However, we believe it is applicable to field data applications. © 2010 Society of Exploration Geophysicists.

  17. A New Wave Equation Based Source Location Method with Full-waveform Inversion

    KAUST Repository

    Wu, Zedong

    2017-05-26

    Locating the source of a passively recorded seismic event is still a challenging problem, especially when the velocity is unknown. Many imaging approaches to focus the image do not address the velocity issue and result in images plagued with illumination artifacts. We develop a waveform inversion approach with an additional penalty term in the objective function to reward the focusing of the source image. This penalty term is relaxed early to allow for data fitting, and avoid cycle skipping, using an extended source. At the later stages the focusing of the image dominates the inversion allowing for high resolution source and velocity inversion. We also compute the source location explicitly and numerical tests show that we obtain good estimates of the source locations with this approach.

  18. Moment tensor inversions using strong motion waveforms of Taiwan TSMIP data, 1993–2009

    Science.gov (United States)

    Chang, Kaiwen; Chi, Wu-Cheng; Gung, Yuancheng; Dreger, Douglas; Lee, William H K.; Chiu, Hung-Chie

    2011-01-01

    Earthquake source parameters are important for earthquake studies and seismic hazard assessment. Moment tensors are among the most important earthquake source parameters, and are now routinely derived using modern broadband seismic networks around the world. Similar waveform inversion techniques can also apply to other available data, including strong-motion seismograms. Strong-motion waveforms are also broadband, and recorded in many regions since the 1980s. Thus, strong-motion data can be used to augment moment tensor catalogs with a much larger dataset than that available from the high-gain, broadband seismic networks. However, a systematic comparison between the moment tensors derived from strong motion waveforms and high-gain broadband waveforms has not been available. In this study, we inverted the source mechanisms of Taiwan earthquakes between 1993 and 2009 by using the regional moment tensor inversion method using digital data from several hundred stations in the Taiwan Strong Motion Instrumentation Program (TSMIP). By testing different velocity models and filter passbands, we were able to successfully derive moment tensor solutions for 107 earthquakes of Mw >= 4.8. The solutions for large events agree well with other available moment tensor catalogs derived from local and global broadband networks. However, for Mw = 5.0 or smaller events, we consistently over estimated the moment magnitudes by 0.5 to 1.0. We have tested accelerograms, and velocity waveforms integrated from accelerograms for the inversions, and found the results are similar. In addition, we used part of the catalogs to study important seismogenic structures in the area near Meishan Taiwan which was the site of a very damaging earthquake a century ago, and found that the structures were dominated by events with complex right-lateral strike-slip faulting during the recent decade. The procedures developed from this study may be applied to other strong-motion datasets to compliment or fill

  19. Design of pulse waveform for waveform division multiple access UWB wireless communication system.

    Science.gov (United States)

    Yin, Zhendong; Wang, Zhirui; Liu, Xiaohui; Wu, Zhilu

    2014-01-01

    A new multiple access scheme, Waveform Division Multiple Access (WDMA) based on the orthogonal wavelet function, is presented. After studying the correlation properties of different categories of single wavelet functions, the one with the best correlation property will be chosen as the foundation for combined waveform. In the communication system, each user is assigned to different combined orthogonal waveform. Demonstrated by simulation, combined waveform is more suitable than single wavelet function to be a communication medium in WDMA system. Due to the excellent orthogonality, the bit error rate (BER) of multiuser with combined waveforms is so close to that of single user in a synchronous system. That is to say, the multiple access interference (MAI) is almost eliminated. Furthermore, even in an asynchronous system without multiuser detection after matched filters, the result is still pretty ideal and satisfactory by using the third combination mode that will be mentioned in the study.

  20. Two-receiver measurements of phase velocity: cross-validation of ambient-noise and earthquake-based observations

    NARCIS (Netherlands)

    Kästle, Emanuel D.; Soomro, Riaz; Weemstra, C.; Boschi, Lapo; Meier, Thomas

    2016-01-01

    Phase velocities derived from ambient-noise cross-correlation are compared with phase velocities calculated from cross-correlations of waveform recordings of teleseismic earthquakes whose epicentres are approximately on the station–station great circle. The comparison is conducted both for Rayleigh

  1. Mössbauer spectra linearity improvement by sine velocity waveform followed by linearization process

    Science.gov (United States)

    Kohout, Pavel; Frank, Tomas; Pechousek, Jiri; Kouril, Lukas

    2018-05-01

    This note reports the development of a new method for linearizing the Mössbauer spectra recorded with a sine drive velocity signal. Mössbauer spectra linearity is a critical parameter to determine Mössbauer spectrometer accuracy. Measuring spectra with a sine velocity axis and consecutive linearization increases the linearity of spectra in a wider frequency range of a drive signal, as generally harmonic movement is natural for velocity transducers. The obtained data demonstrate that linearized sine spectra have lower nonlinearity and line width parameters in comparison with those measured using a traditional triangle velocity signal.

  2. Numerical simulation of seismic wave propagation from land-excited large volume air-gun source

    Science.gov (United States)

    Cao, W.; Zhang, W.

    2017-12-01

    The land-excited large volume air-gun source can be used to study regional underground structures and to detect temporal velocity changes. The air-gun source is characterized by rich low frequency energy (from bubble oscillation, 2-8Hz) and high repeatability. It can be excited in rivers, reservoirs or man-made pool. Numerical simulation of the seismic wave propagation from the air-gun source helps to understand the energy partitioning and characteristics of the waveform records at stations. However, the effective energy recorded at a distance station is from the process of bubble oscillation, which can not be approximated by a single point source. We propose a method to simulate the seismic wave propagation from the land-excited large volume air-gun source by finite difference method. The process can be divided into three parts: bubble oscillation and source coupling, solid-fluid coupling and the propagation in the solid medium. For the first part, the wavelet of the bubble oscillation can be simulated by bubble model. We use wave injection method combining the bubble wavelet with elastic wave equation to achieve the source coupling. Then, the solid-fluid boundary condition is implemented along the water bottom. And the last part is the seismic wave propagation in the solid medium, which can be readily implemented by the finite difference method. Our method can get accuracy waveform of land-excited large volume air-gun source. Based on the above forward modeling technology, we analysis the effect of the excited P wave and the energy of converted S wave due to different water shapes. We study two land-excited large volume air-gun fields, one is Binchuan in Yunnan, and the other is Hutubi in Xinjiang. The station in Binchuan, Yunnan is located in a large irregular reservoir, the waveform records have a clear S wave. Nevertheless, the station in Hutubi, Xinjiang is located in a small man-made pool, the waveform records have very weak S wave. Better understanding of

  3. Salvus: A scalable software suite for full-waveform modelling & inversion

    Science.gov (United States)

    Afanasiev, M.; Boehm, C.; van Driel, M.; Krischer, L.; Fichtner, A.

    2017-12-01

    Full-waveform inversion (FWI), whether at the lab, exploration, or planetary scale, requires the cooperation of five principal components. (1) The geometry of the domain needs to be properly discretized and an initial guess of the model parameters must be projected onto it; (2) Large volumes of recorded waveform data must be collected, organized, and processed; (3) Synthetic waveform data must be efficiently and accurately computed through complex domains; (4) Suitable misfit functions and optimization techniques must be used to relate discrepancies in data space to perturbations in the model; and (5) Some form of workflow management must be employed to schedule and run (1) - (4) in the correct order. Each one of these components can represent a formidable technical challenge which redirects energy from the true task at hand: using FWI to extract new information about some underlying continuum.In this presentation we give an overview of the current status of the Salvus software suite, which was introduced to address the challenges listed above. Specifically, we touch on (1) salvus_mesher, which eases the discretization of complex Earth models into hexahedral meshes; (2) salvus_seismo, which integrates with LASIF and ObsPy to streamline the processing and preparation of seismic data; (3) salvus_wave, a high-performance and scalable spectral-element solver capable of simulating waveforms through general unstructured 2- and 3-D domains, and (4) salvus_opt, an optimization toolbox specifically designed for full-waveform inverse problems. Tying everything together, we also discuss (5) salvus_flow: a workflow package designed to orchestrate and manage the rest of the suite. It is our hope that these developments represent a step towards the automation of large-scale seismic waveform inversion, while also lowering the barrier of entry for new applications. We include several examples of Salvus' use in (extra-) planetary seismology, non-destructive testing, and medical

  4. Surrogate waveform models

    Science.gov (United States)

    Blackman, Jonathan; Field, Scott; Galley, Chad; Scheel, Mark; Szilagyi, Bela; Tiglio, Manuel

    2015-04-01

    With the advanced detector era just around the corner, there is a strong need for fast and accurate models of gravitational waveforms from compact binary coalescence. Fast surrogate models can be built out of an accurate but slow waveform model with minimal to no loss in accuracy, but may require a large number of evaluations of the underlying model. This may be prohibitively expensive if the underlying is extremely slow, for example if we wish to build a surrogate for numerical relativity. We examine alternate choices to building surrogate models which allow for a more sparse set of input waveforms. Research supported in part by NSERC.

  5. Reliability of pressure waveform analysis to determine correct epidural needle placement in labouring women.

    Science.gov (United States)

    Al-Aamri, I; Derzi, S H; Moore, A; Elgueta, M F; Moustafa, M; Schricker, T; Tran, D Q

    2017-07-01

    Pressure waveform analysis provides a reliable confirmatory adjunct to the loss-of-resistance technique to identify the epidural space during thoracic epidural anaesthesia, but its role remains controversial in lumbar epidural analgesia during labour. We performed an observational study in 100 labouring women of the sensitivity and specificity of waveform analysis to determine the correct location of the epidural needle. After obtaining loss-of-resistance, the anaesthetist injected 5 ml saline through the epidural needle (accounting for the volume already used in the loss-of-resistance). Sterile extension tubing, connected to a pressure transducer, was attached to the needle. An investigator determined the presence or absence of a pulsatile waveform, synchronised with the heart rate, on a monitor screen that was not in the view of the anaesthetist or the parturient. A bolus of 4 ml lidocaine 2% with adrenaline 5 μg.ml -1 was administered, and the epidural block was assessed after 15 min. Three women displayed no sensory block at 15 min. The results showed: epidural block present, epidural waveform present 93; epidural block absent, epidural waveform absent 2; epidural block present, epidural waveform absent 4; epidural block absent, epidural waveform present 1. Compared with the use of a local anaesthetic bolus to ascertain the epidural space, the sensitivity, specificity, positive and negative predictive values of waveform analysis were 95.9%, 66.7%, 98.9% and 33.3%, respectively. Epidural waveform analysis provides a simple adjunct to loss-of-resistance for confirming needle placement during performance of obstetric epidurals, however, further studies are required before its routine implementation in clinical practice. © 2017 The Association of Anaesthetists of Great Britain and Ireland.

  6. Accumulated energy norm for full waveform inversion of marine data

    Science.gov (United States)

    Shin, Changsoo; Ha, Wansoo

    2017-12-01

    Macro-velocity models are important for imaging the subsurface structure. However, the conventional objective functions of full waveform inversion in the time and the frequency domain have a limited ability to recover the macro-velocity model because of the absence of low-frequency information. In this study, we propose new objective functions that can recover the macro-velocity model by minimizing the difference between the zero-frequency components of the square of seismic traces. Instead of the seismic trace itself, we use the square of the trace, which contains low-frequency information. We apply several time windows to the trace and obtain zero-frequency information of the squared trace for each time window. The shape of the new objective functions shows that they are suitable for local optimization methods. Since we use the acoustic wave equation in this study, this method can be used for deep-sea marine data, in which elastic effects can be ignored. We show that the zero-frequency components of the square of the seismic traces can be used to recover macro-velocities from synthetic and field data.

  7. Density reconstruction in multiparameter elastic full-waveform inversion

    Science.gov (United States)

    Sun, Min'ao; Yang, Jizhong; Dong, Liangguo; Liu, Yuzhu; Huang, Chao

    2017-12-01

    Elastic full-waveform inversion (EFWI) is a quantitative data fitting procedure that recovers multiple subsurface parameters from multicomponent seismic data. As density is involved in addition to P- and S-wave velocities, the multiparameter EFWI suffers from more serious tradeoffs. In addition, compared with P- and S-wave velocities, the misfit function is less sensitive to density perturbation. Thus, a robust density reconstruction remains a difficult problem in multiparameter EFWI. In this paper, we develop an improved scattering-integral-based truncated Gauss-Newton method to simultaneously recover P- and S-wave velocities and density in EFWI. In this method, the inverse Gauss-Newton Hessian has been estimated by iteratively solving the Gauss-Newton equation with a matrix-free conjugate gradient algorithm. Therefore, it is able to properly handle the parameter tradeoffs. To give a detailed illustration of the tradeoffs between P- and S-wave velocities and density in EFWI, wavefield-separated sensitivity kernels and the Gauss-Newton Hessian are numerically computed, and their distribution characteristics are analyzed. Numerical experiments on a canonical inclusion model and a modified SEG/EAGE Overthrust model have demonstrated that the proposed method can effectively mitigate the tradeoff effects, and improve multiparameter gradients. Thus, a high convergence rate and an accurate density reconstruction can be achieved.

  8. Global seismic attenuation imaging using full-waveform inversion: a comparative assessment of different choices of misfit functionals

    Science.gov (United States)

    Karaoǧlu, Haydar; Romanowicz, Barbara

    2018-02-01

    We present the results of synthetic tests that aim at evaluating the relative performance of three different definitions of misfit functionals in the context of 3-D imaging of shear wave attenuation in the earth's upper mantle at the global scale, using long-period full-waveform data. The synthetic tests are conducted with simple hypothetical upper-mantle models that contain Qμ anomalies centred at different depths and locations, with or without additional seismic velocity anomalies. To build synthetic waveform data sets, we performed simulations of 50 events in the hypothetical (target) models, using the spectral element method, filtered in the period range 60-400 s. The selected events are chosen among 273 events used in the development of radially anisotropic model SEMUCB-WM1 and recorded at 495 stations worldwide. The synthetic Z-component waveforms correspond to paths and time intervals (fundamental mode and overtone Rayleigh waves) that exist in the real waveform data set. The inversions for shear attenuation structure are carried out using a Gauss-Newton optimization scheme in which the gradient and Hessian are computed using normal mode perturbation theory. The three different misfit functionals considered are based on time domain waveform (WF) and waveform envelope (E-WF) differences, as well as spectral amplitude ratios (SA), between observed and predicted waveforms. We evaluate the performance of the three misfit functional definitions in the presence of seismic noise and unresolved S-wave velocity heterogeneity and discuss the relative importance of physical dispersion effects due to 3-D Qμ structure. We observed that the performance of WF is poorer than the other two misfit functionals in recovering attenuation structure, unless anelastic dispersion effects are taken into account in the calculation of partial derivatives. WF also turns out to be more sensitive to seismic noise than E-WF and SA. Overall, SA performs best for attenuation imaging. Our

  9. Lithospheric layering in the North American craton revealed by including Short Period Constraints in Full Waveform Tomography

    Science.gov (United States)

    Roy, C.; Calo, M.; Bodin, T.; Romanowicz, B. A.

    2017-12-01

    Recent receiver function studies of the North American craton suggest the presence of significant layering within the cratonic lithosphere, with significant lateral variations in the depth of the velocity discontinuities. These structural boundaries have been confirmed recently using a transdimensional Markov Chain Monte Carlo approach (TMCMC), inverting surface wave dispersion data and converted phases simultaneously (Calò et al., 2016; Roy and Romanowicz 2017). The lateral resolution of upper mantle structure can be improved with a high density of broadband seismic stations, or with a sparse network using full waveform inversion based on numerical wavefield computation methods such as the Spectral Element Method (SEM). However, inverting for discontinuities with strong topography such as MLDS's or LAB, presents challenges in an inversion framework, both computationally, due to the short periods required, and from the point of view of stability of the inversion. To overcome these limitations, and to improve resolution of layering in the upper mantle, we are developing a methodology that combines full waveform inversion tomography and information provided by short period seismic observables. We have extended the 30 1D radially anisotropic shear velocity profiles of Calò et al. 2016 to several other stations, for which we used a recent shear velocity model (Clouzet et al., 2017) as constraint in the modeling. These 1D profiles, including both isotropic and anisotropic discontinuities in the upper mantle (above 300 km depth) are then used to build a 3D starting model for the full waveform tomographic inversion. This model is built after 1) homogenization of the layered 1D models and 2) interpolation between the 1D smooth profiles and the model of Clouzet et al. 2017, resulting in a smooth 3D starting model. Waveforms used in the inversion are filtered at periods longer than 30s. We use the SEM code "RegSEM" for forward computations and a quasi-Newton inversion

  10. Spectral Doppler Waveforms for Diagnosis of Appendicitis: Potential Utility of Point Peak Systolic Velocity and Resistive Index Values.

    Science.gov (United States)

    Shin, Lewis K; Jeffrey, R Brooke; Berry, Gerald J; Olcott, Eric W

    2017-12-01

    Purpose To test the hypothesis that appendiceal spectral Doppler waveforms can distinguish patients with and patients without appendicitis. Materials and Methods In this retrospective study, Doppler waveforms were obtained from intramural appendiceal arteries identified with color Doppler imaging in 60% (93 of 155) of consecutive patients whose appendices were visualized at graded compression ultrasonography (US) performed for suspected appendicitis (53 male and 40 female; age, 1-56 years; mean, 14.5 years) over the 5-month period from November 2015 through March 2016. Point, non-angle-corrected peak systolic velocity (PSV) and resistive index (RI) values were compared between patients with and patients without appendicitis by utilizing histopathologically proven appendicitis and 6-week clinical follow-up as diagnostic reference standards. Data were assessed by using the Student t test, exact binomial distribution, two-sample test of proportions, and receiver operating characteristic analysis. Results Among the 93 patients, 36 (38.7%) had proven appendicitis (mean PSV, 19.7 cm/sec; mean RI, 0.69) and 57 patients (61.2%) did not (mean PSV, 7.1 cm/sec, P appendicitis was 0.97 (95% confidence interval [CI]: 0.95, 1.00) for PSV and 0.86 (95% CI: 0.78, 0.95; P = .011) for RI. Chosen discriminatory criteria of PSV greater than 10 cm/sec and RI greater than 0.65 yielded specificity for appendicitis of 94.7% and 96.5% with sensitivity of 88.9% and 63.9% (P = .013) and negative predictive value of 93.1% and 80.9% (P = .045), respectively. Original clinical graded compression US interpretations based on established US findings demonstrated specificity of 96.2% and sensitivity of 100.0%. Considering the subset of 20 patients whose maximum outer diameter measured 6-8 mm, the discriminatory criteria of PSV greater than 10 cm/sec and RI greater than 0.65 yielded specificity for appendicitis of 88.9% each, with sensitivity of 100.0% and 63.6% and negative predictive value of 100

  11. Changes in cerebral artery blood flow velocity after intermittent cerebrospinal fluid drainage.

    OpenAIRE

    Kempley, S T; Gamsu, H R

    1993-01-01

    Doppler ultrasound was used to measure blood flow velocity in the anterior cerebral artery of six premature infants with posthaemorrhagic hydrocephalus, before and after intermittent cerebrospinal fluid (CSF) drainage, on 23 occasions. There was a significant increase in mean blood flow velocity after the drainage procedures (+5.6 cm/s, 95% confidence interval +2.9 to +8.3 cm/s), which was accompanied by a decrease in velocity waveform pulsatility. CSF pressure also fell significantly. In pat...

  12. Source Inversion of Seismic Events Associated with the Sinkhole at Napoleonville Salt Dome, Louisiana using a 3D Velocity Model

    Science.gov (United States)

    Nayak, Avinash; Dreger, Douglas S.

    2018-05-01

    The formation of a large sinkhole at the Napoleonville salt dome (NSD), Assumption Parish, Louisiana, caused by the collapse of a brine cavern, was accompanied by an intense and complex sequence of seismic events. We implement a grid-search approach to compute centroid locations and point-source moment tensor (MT) solutions of these seismic events using ˜0.1-0.3 Hz displacement waveforms and synthetic Green's functions computed using a 3D velocity model of the western edge of the NSD. The 3D model incorporates the currently known approximate geometry of the salt dome and the overlying anhydrite-gypsum cap rock, and features a large velocity contrast between the high velocity salt dome and low velocity sediments overlying and surrounding it. For each possible location on the source grid, Green's functions (GFs) to each station were computed using source-receiver reciprocity and the finite-difference seismic wave propagation software SW4. We also establish an empirical method to rigorously assess uncertainties in the centroid location, MW and source type of these events under evolving network geometry, using the results of synthetic tests with hypothetical events and real seismic noise. We apply the methods on the entire duration of data (˜6 months) recorded by the temporary US Geological Survey network. During an energetic phase of the sequence from 24-31 July 2012 when 4 stations were operational, the events with the best waveform fits are primarily located at the western edge of the salt dome at most probable depths of ˜0.3-0.85 km, close to the horizontal positions of the cavern and the future sinkhole. The data are fit nearly equally well by opening crack MTs in the high velocity salt medium or by isotropic volume-increase MTs in the low velocity sediment layers. We find that data recorded by 6 stations during 1-2 August 2012, right before the appearance of the sinkhole, indicate that some events are likely located in the lower velocity media just outside the

  13. WAVEFORM ANALYSIS FOR THE EXTRACTION OF POST-FIRE VEGETATION CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    F. Pirotti

    2012-08-01

    Full Text Available Full-waveform is becoming increasingly available in today's LiDAR systems and the analysis of the full return signal can provide additional information on the reflecting surfaces. In this paper we present the results of an assessment on full-waveform analysis, as opposed to the more classic discrete return analysis, for discerning vegetation cover classes related to post-fire renovation. In the spring of 2011 an OPTECH ALTM sensor was used to survey an Alpine area of almost 20 km2 in the north of Italy. A forest fire event several years ago burned large patches of vegetation for a total of about 1.5 km2 . The renovation process in the area is varied because of the different interventions ranging from no intervention to the application of re-forestation techniques to accelerate the process of re-establishing protection forest. The LiDAR data was used to divide the study site into areas with different conditions in terms of re-establishment of the natural vegetation condition. The LiDAR survey provided both the full-waveform data in Optech's CSD+DGT (corrected sensor data and NDF+IDX (digitizer data with index file formats, and the discrete return in the LAS format. The method applied to the full-waveform uses canopy volume profiles obtained by modelling, whereas the method applied to discrete return uses point geometry and density indexes. The results of these two methods are assessed by ground truth obtained from sampling and comparison shows that the added information from the full-waveform does give a significant better discrimination of the vegetation cover classes.

  14. Elastic full-waveform inversion of transmission data in 2D VTI media

    KAUST Repository

    Kamath, Nishant; Tsvankin, Ilya

    2014-01-01

    Full-waveform inversion (FWI) has been implemented mostly for isotropic media, with extensions to anisotropic models typically limited to acoustic approximations. Here, we develop elastic FWI for transmitted waves in 2D heterogeneous VTI (transversely isotropic with a vertical symmetry axis) media. The model is parameterized in terms of the P- and S-wave vertical velocities and the P-wave normal-moveout and horizontal velocities. To test the FWI algorithm, we introduce Gaussian anomalies in the Thomsen parameters of a homogeneous VTI medium and perform FWI of transmission data for different configurations of the source and receiver arrays. The inversion results strongly depend on the acquisition geometry and the aperture because of the parameter trade-offs. In contrast to acoustic FWI, the elastic inversion helps constrain the S-wave vertical velocity, which for our model is decoupled from the other parameters.

  15. Elastic full-waveform inversion of transmission data in 2D VTI media

    KAUST Repository

    Kamath, Nishant

    2014-08-05

    Full-waveform inversion (FWI) has been implemented mostly for isotropic media, with extensions to anisotropic models typically limited to acoustic approximations. Here, we develop elastic FWI for transmitted waves in 2D heterogeneous VTI (transversely isotropic with a vertical symmetry axis) media. The model is parameterized in terms of the P- and S-wave vertical velocities and the P-wave normal-moveout and horizontal velocities. To test the FWI algorithm, we introduce Gaussian anomalies in the Thomsen parameters of a homogeneous VTI medium and perform FWI of transmission data for different configurations of the source and receiver arrays. The inversion results strongly depend on the acquisition geometry and the aperture because of the parameter trade-offs. In contrast to acoustic FWI, the elastic inversion helps constrain the S-wave vertical velocity, which for our model is decoupled from the other parameters.

  16. Complex Crustal Structure Beneath Western Turkey Revealed by 3D Seismic Full Waveform Inversion (FWI)

    Science.gov (United States)

    Cubuk-Sabuncu, Yesim; Taymaz, Tuncay; Fichtner, Andreas

    2016-04-01

    We present a 3D radially anisotropic velocity model of the crust and uppermost mantle structure beneath the Sea of Marmara and surroundings based on the full waveform inversion method. The intense seismic activity and crustal deformation are observed in the Northwest Turkey due to transition tectonics between the strike-slip North Anatolian Fault (NAF) and the extensional Aegean region. We have selected and simulated complete waveforms of 62 earthquakes (Mw > 4.0) occurred during 2007-2015, and recorded at (Δ Technological Research Council of Turkey (TUBITAK Project No: ÇAYDAG-114Y066), and EU-HORIZON-2020: COST Actions: Earth System Science and Environmental Management: ES1401 - Time Dependent Seismology (TIDES).

  17. Real-time display of flow-pressure-volume loops.

    Science.gov (United States)

    Morozoff, P E; Evans, R W

    1992-01-01

    Graphic display of respiratory waveforms can be valuable for monitoring the progress of ventilated patients. A system has been developed that can display flow-pressure-volume loops as derived from a patient's respiratory circuit in real time. It can also display, store, print, and retrieve ventilatory waveforms. Five loops can be displayed at once: current, previous, reference, "ideal," and previously saved. Two components, the data-display device (DDD) and the data-collection device (DCD), comprise the system. An IBM 286/386 computer with a graphics card (VGA) and bidirectional parallel port is used for the DDD; an eight-bit microprocessor card and an A/D convertor card make up the DCD. A real-time multitasking operating system was written to control the DDD, while the DCD operates from in-line assembly code. The DCD samples the pressure and flow sensors at 100 Hz and looks for a complete flow waveform pattern based on flow slope. These waveforms are then passed to the DDD via the mutual parallel port. Within the DDD a process integrates the flow to create a volume signal and performs a multilinear regression on the pressure, flow, and volume data to calculate the elastance, resistance, pressure offset, and coefficient of determination. Elastance, resistance, and offset are used to calculate Pr and Pc where: Pr[k] = P[k]-offset-(elastance.V[k]) and Pc[k] = P[k]-offset-(resistance.F[k]). Volume vs. Pc and flow vs. Pr can be displayed in real time. Patient data from previous clinical tests were loaded into the device to verify the software calculations. An analog waveform generator was used to simulate flow and pressure waveforms that validated the system.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Interferometric full-waveform inversion of time-lapse data

    KAUST Repository

    Sinha, Mrinal

    2017-08-17

    One of the key challenges associated with time-lapse surveys is ensuring the repeatability between the baseline and monitor surveys. Non-repeatability between the surveys is caused by varying environmental conditions over the course of different surveys. To overcome this challenge, we propose the use of interferometric full waveform inversion (IFWI) for inverting the velocity model from data recorded by baseline and monitor surveys. A known reflector is used as the reference reflector for IFWI, and the data are naturally redatumed to this reference reflector using natural reflections as the redatuming operator. This natural redatuming mitigates the artifacts introduced by the repeatability errors that originate above the reference reflector.

  19. The Influence of the External Signal Modulation Waveform and Frequency on the Performance of a Photonic Forced Oscillator.

    Science.gov (United States)

    Sánchez-Castro, Noemi; Palomino-Ovando, Martha Alicia; Estrada-Wiese, Denise; Valladares, Nydia Xcaret; Del Río, Jesus Antonio; de la Mora, Maria Beatriz; Doti, Rafael; Faubert, Jocelyn; Lugo, Jesus Eduardo

    2018-05-21

    Photonic crystals have been an object of interest because of their properties to inhibit certain wavelengths and allow the transmission of others. Using these properties, we designed a photonic structure known as photodyne formed by two porous silicon one-dimensional photonic crystals with an air defect between them. When the photodyne is illuminated with appropriate light, it allows us to generate electromagnetic forces within the structure that can be maximized if the light becomes localized inside the defect region. These electromagnetic forces allow the microcavity to oscillate mechanically. In the experiment, a chopper was driven by a signal generator to modulate the laser light that was used. The driven frequency and the signal modulation waveform (rectangular, sinusoidal or triangular) were changed with the idea to find optimal conditions for the structure to oscillate. The microcavity displacement amplitude, velocity amplitude and Fourier spectrum of the latter and its frequency were measured by means of a vibrometer. The mechanical oscillations are modeled and compared with the experimental results and show good agreement. For external frequency values of 5 Hz and 10 Hz, the best option was a sinusoidal waveform, which gave higher photodyne displacements and velocity amplitudes. Nonetheless, for an external frequency of 15 Hz, the best option was the rectangular waveform.

  20. The Influence of the External Signal Modulation Waveform and Frequency on the Performance of a Photonic Forced Oscillator

    Directory of Open Access Journals (Sweden)

    Noemi Sánchez-Castro

    2018-05-01

    Full Text Available Photonic crystals have been an object of interest because of their properties to inhibit certain wavelengths and allow the transmission of others. Using these properties, we designed a photonic structure known as photodyne formed by two porous silicon one-dimensional photonic crystals with an air defect between them. When the photodyne is illuminated with appropriate light, it allows us to generate electromagnetic forces within the structure that can be maximized if the light becomes localized inside the defect region. These electromagnetic forces allow the microcavity to oscillate mechanically. In the experiment, a chopper was driven by a signal generator to modulate the laser light that was used. The driven frequency and the signal modulation waveform (rectangular, sinusoidal or triangular were changed with the idea to find optimal conditions for the structure to oscillate. The microcavity displacement amplitude, velocity amplitude and Fourier spectrum of the latter and its frequency were measured by means of a vibrometer. The mechanical oscillations are modeled and compared with the experimental results and show good agreement. For external frequency values of 5 Hz and 10 Hz, the best option was a sinusoidal waveform, which gave higher photodyne displacements and velocity amplitudes. Nonetheless, for an external frequency of 15 Hz, the best option was the rectangular waveform.

  1. Total variation regularization for seismic waveform inversion using an adaptive primal dual hybrid gradient method

    Science.gov (United States)

    Yong, Peng; Liao, Wenyuan; Huang, Jianping; Li, Zhenchuan

    2018-04-01

    Full waveform inversion is an effective tool for recovering the properties of the Earth from seismograms. However, it suffers from local minima caused mainly by the limited accuracy of the starting model and the lack of a low-frequency component in the seismic data. Because of the high velocity contrast between salt and sediment, the relation between the waveform and velocity perturbation is strongly nonlinear. Therefore, salt inversion can easily get trapped in the local minima. Since the velocity of salt is nearly constant, we can make the most of this characteristic with total variation regularization to mitigate the local minima. In this paper, we develop an adaptive primal dual hybrid gradient method to implement total variation regularization by projecting the solution onto a total variation norm constrained convex set, through which the total variation norm constraint is satisfied at every model iteration. The smooth background velocities are first inverted and the perturbations are gradually obtained by successively relaxing the total variation norm constraints. Numerical experiment of the projection of the BP model onto the intersection of the total variation norm and box constraints has demonstrated the accuracy and efficiency of our adaptive primal dual hybrid gradient method. A workflow is designed to recover complex salt structures in the BP 2004 model and the 2D SEG/EAGE salt model, starting from a linear gradient model without using low-frequency data below 3 Hz. The salt inversion processes demonstrate that wavefield reconstruction inversion with a total variation norm and box constraints is able to overcome local minima and inverts the complex salt velocity layer by layer.

  2. A constant velocity Moessbauer spectrometer free of long-term instrumental drifts in the count rate

    International Nuclear Information System (INIS)

    Sarma, P.R.; Sharma, A.K.; Tripathi, K.C.

    1979-01-01

    Two new control circuits to be used with a constant velocity Moessbauer spectrometer with a loud-speaker drive have been described. The wave-forms generated in the circuits are of the stair-case type instead of the usual square wave-form, so that in each oscillation of the source it remains stationary for a fraction of the time-period. The gamma-rays counted during this period are monitored along with the positive and negative velocity counts and are used to correct any fluctuation in the count rate by feeding these pulses into the timer. The associated logic circuits have been described and the statistical errors involved in the circuits have been computed. (auth.)

  3. Preliminary assessment of the waveform inversion method for interpretation of cross-well seismic data from the thermal production test, JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T. [Nagoya Univ., Nagoya (Japan). Research Center for Seismology and Volcanology; Shimizu, S. [Japan National Oil Co., Chiba (Japan); Asakawa, E. [JGI Inc., Tokyo (Japan); Kamei, R.; Matsuoka, T. [Kyoto Univ., Kyoto (Japan). Dept. of Civil and Earth Resources Engineering

    2005-07-01

    The JAPEX/JNOC/GSC et al. Mallik 3L-38 and 4L-38 test wells were subjected to repeated cross-well seismic surveys before and during the gas production test from the gas-hydrate-bearing layer at a depth of about 905 to 920 m. High-resolution velocity images in the gas-hydrate-bearing layer were obtained using the frequency-domain nonlinear waveform inversion method. An acoustic waveform inversion method was used along with the frequency-domain approach in order to detect the change in acoustic properties of the gas-hydrate-bearing layer resulting from gas production. The layered structures with small lateral heterogeneities were reconstructed by tomography analysis of preprocessed waveform data using a smaller number of source-receiver pairs. Preliminary results reveal high velocity and very high attenuation in the gas-hydrate-bearing layers. No obvious velocity decreases were noted. Information for further detailed processing was also gathered.

  4. Lithospheric expression of geological units in central and eastern North America from full waveform tomography

    Science.gov (United States)

    Yuan, Huaiyu; French, Scott; Cupillard, Paul; Romanowicz, Barbara

    2014-09-01

    The EarthScope TA deployment has provided dense array coverage throughout the continental US and with it, the opportunity for high resolution 3D seismic velocity imaging of both lithosphere and asthenosphere in the continent. Building upon our previous long-period waveform tomographic modeling in North America, we present a higher resolution 3D isotropic and radially anisotropic shear wave velocity model of the North American lithospheric mantle, constructed tomographically using the spectral element method for wavefield computations and waveform data down to 40 s period. The new model exhibits pronounced spatial correlation between lateral variations in seismic velocity and anisotropy and major tectonic units as defined from surface geology. In the center of the continent, the North American craton exhibits uniformly thick lithosphere down to 200-250 km, while major tectonic sutures of Proterozoic age visible in the surface geology extend down to 100-150 km as relatively narrow zones of distinct radial anisotropy, with Vsv >Vsh. Notably, the upper mantle low velocity zone is present everywhere under the craton between 200 and 300 km depth. East of the continental rift margin, the lithosphere is broken up into a series of large, somewhat thinner (150 km) high velocity blocks, which extend laterally 200-300 km offshore into the Atlantic Ocean. Between the craton and these deep-rooted blocks, we find a prominent narrow band of low velocities that roughly follows the southern and eastern Laurentia rift margin and extends into New England. We suggest that the lithosphere along this band of low velocities may be thinned due to the combined effects of repeated rifting processes and northward extension of the hotspot related Bermuda low-velocity channel across the New England region. We propose that the deep rooted high velocity blocks east of the Laurentia margin represent the Proterozoic Gondwanian terranes of pan-African affinity, which were captured during the Rodinia

  5. Characterization of a viscoelastic heterogeneous object with an effective model by nonlinear full waveform inversion

    Science.gov (United States)

    Mesgouez, A.

    2018-05-01

    The determination of equivalent viscoelastic properties of heterogeneous objects remains challenging in various scientific fields such as (geo)mechanics, geophysics or biomechanics. The present investigation addresses the issue of the identification of effective constitutive properties of a binary object by using a nonlinear and full waveform inversion scheme. The inversion process, without any regularization technique or a priori information, aims at minimizing directly the discrepancy between the full waveform responses of a bi-material viscoelastic cylindrical object and its corresponding effective homogeneous object. It involves the retrieval of five constitutive equivalent parameters. Numerical simulations are performed in a laboratory-scale two-dimensional configuration: a transient acoustic plane wave impacts the object and the diffracted fluid pressure, solid stress or velocity component fields are determined using a semi-analytical approach. Results show that the retrieval of the density and of the real parts of both the compressional and the shear wave velocities have been carried out successfully regarding the number and location of sensors, the type of sensors, the size of the searching space, the frequency range of the incident plane pressure wave, and the change in the geometric or mechanical constitution of the bi-material object. The retrieval of the imaginary parts of the wave velocities can reveal in some cases the limitations of the proposed approach.

  6. Multiples waveform inversion

    KAUST Repository

    Zhang, Dongliang

    2013-01-01

    To increase the illumination of the subsurface and to eliminate the dependency of FWI on the source wavelet, we propose multiples waveform inversion (MWI) that transforms each hydrophone into a virtual point source with a time history equal to that of the recorded data. These virtual sources are used to numerically generate downgoing wavefields that are correlated with the backprojected surface-related multiples to give the migration image. Since the recorded data are treated as the virtual sources, knowledge of the source wavelet is not required, and the subsurface illumination is greatly enhanced because the entire free surface acts as an extended source compared to the radiation pattern of a traditional point source. Numerical tests on the Marmousi2 model show that the convergence rate and the spatial resolution of MWI is, respectively, faster and more accurate then FWI. The potential pitfall with this method is that the multiples undergo more than one roundtrip to the surface, which increases attenuation and reduces spatial resolution. This can lead to less resolved tomograms compared to conventional FWI. The possible solution is to combine both FWI and MWI in inverting for the subsurface velocity distribution.

  7. Scattering angle-based filtering via extension in velocity

    KAUST Repository

    Kazei, Vladimir; Tessmer, Ekkehart; Alkhalifah, Tariq

    2016-01-01

    The scattering angle between the source and receiver wavefields can be utilized in full-waveform inversion (FWI) and in reverse-time migration (RTM) for regularization and quality control or to remove low frequency artifacts. The access to the scattering angle information is costly as the relation between local image features and scattering angles has non-stationary nature. For the purpose of a more efficient scattering angle information extraction, we develop techniques that utilize the simplicity of the scattering angle based filters for constantvelocity background models. We split the background velocity model into several domains with different velocity ranges, generating an

  8. Scattering angle-based filtering via extension in velocity

    KAUST Repository

    Kazei, Vladimir

    2016-09-06

    The scattering angle between the source and receiver wavefields can be utilized in full-waveform inversion (FWI) and in reverse-time migration (RTM) for regularization and quality control or to remove low frequency artifacts. The access to the scattering angle information is costly as the relation between local image features and scattering angles has non-stationary nature. For the purpose of a more efficient scattering angle information extraction, we develop techniques that utilize the simplicity of the scattering angle based filters for constantvelocity background models. We split the background velocity model into several domains with different velocity ranges, generating an

  9. Physiological interpretation of Doppler shift waveforms: the femorodistal segment in combined disease.

    Science.gov (United States)

    Campbell, W B; Baird, R N; Cole, S E; Evans, J M; Skidmore, R; Woodcock, J P

    1983-01-01

    A new method is presented for assessing the femorodistal segment in multisegmental arterial disease, using the Laplace transform technique of Doppler waveform analysis. Blood velocity/time waveforms were obtained at femoral and ankle levels in three groups of limbs--50 without arterial disease, 12 with isolated aortoiliac stenoses, and 32 with femoropopliteal occlusions, with and without proximal disease. The waveforms were analysed for Laplace transform and pulsatility index values. The omega 0 coefficients of the Laplace transform analysis at femoral and ankle levels were compared in each subject, as the omega 0 gradient (femoral/ankle omega 0): and pulsatility index damping factor (femoral/ankle P1) was also calculated. The omega 0 gradient was shown to detect femoropopliteal occlusion in the presence of multisegmental arterial disease and to give some indication of its haemodynamic significance. The diagnostic accuracy of the omega 0 gradient was superior to that of pulsatility index damping factor. When combined with its existing ability to detect aortoiliac stenosis, this new application of the Laplace transform method offers the possibility both of a system for complete localisation of significant arterial lesions, and potential for follow-up of vascular surgical procedures in the lower limb, from two simple Doppler recordings.

  10. Seismic waveform classification using deep learning

    Science.gov (United States)

    Kong, Q.; Allen, R. M.

    2017-12-01

    MyShake is a global smartphone seismic network that harnesses the power of crowdsourcing. It has an Artificial Neural Network (ANN) algorithm running on the phone to distinguish earthquake motion from human activities recorded by the accelerometer on board. Once the ANN detects earthquake-like motion, it sends a 5-min chunk of acceleration data back to the server for further analysis. The time-series data collected contains both earthquake data and human activity data that the ANN confused. In this presentation, we will show the Convolutional Neural Network (CNN) we built under the umbrella of supervised learning to find out the earthquake waveform. The waveforms of the recorded motion could treat easily as images, and by taking the advantage of the power of CNN processing the images, we achieved very high successful rate to select the earthquake waveforms out. Since there are many non-earthquake waveforms than the earthquake waveforms, we also built an anomaly detection algorithm using the CNN. Both these two methods can be easily extended to other waveform classification problems.

  11. Ascending-ramp biphasic waveform has a lower defibrillation threshold and releases less troponin I than a truncated exponential biphasic waveform.

    Science.gov (United States)

    Huang, Jian; Walcott, Gregory P; Ruse, Richard B; Bohanan, Scott J; Killingsworth, Cheryl R; Ideker, Raymond E

    2012-09-11

    We tested the hypothesis that the shape of the shock waveform affects not only the defibrillation threshold but also the amount of cardiac damage. Defibrillation thresholds were determined for 11 waveforms-3 ascending-ramp waveforms, 3 descending-ramp waveforms, 3 rectilinear first-phase biphasic waveforms, a Gurvich waveform, and a truncated exponential biphasic waveform-in 6 pigs with electrodes in the right ventricular apex and superior vena cava. The ascending, descending, and rectilinear waveforms had 4-, 8-, and 16-millisecond first phases and a 3.5-millisecond rectilinear second phase that was half the voltage of the first phase. The exponential biphasic waveform had a 60% first-phase and a 50% second-phase tilt. In a second study, we attempted to defibrillate after 10 seconds of ventricular fibrillation with a single ≈30-J shock (6 pigs successfully defibrillated with 8-millisecond ascending, 8-millisecond rectilinear, and truncated exponential biphasic waveforms). Troponin I blood levels were determined before and 2 to 10 hours after the shock. The lowest-energy defibrillation threshold was for the 8-milliseconds ascending ramp (14.6±7.3 J [mean±SD]), which was significantly less than for the truncated exponential (19.6±6.3 J). Six hours after shock, troponin I was significantly less for the ascending-ramp waveform (0.80±0.54 ng/mL) than for the truncated exponential (1.92±0.47 ng/mL) or the rectilinear waveform (1.17±0.45 ng/mL). The ascending ramp has a significantly lower defibrillation threshold and at ≈30 J causes 58% less troponin I release than the truncated exponential biphasic shock. Therefore, the shock waveform affects both the defibrillation threshold and the amount of cardiac damage.

  12. Performance bounds on micro-Doppler estimation and adaptive waveform design using OFDM signals

    Science.gov (United States)

    Sen, Satyabrata; Barhen, Jacob; Glover, Charles W.

    2014-05-01

    We analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a target having multiple rotating scatterers (e.g., rotor blades of a helicopter, propellers of a submarine). The presence of rotating scatterers introduces Doppler frequency modulation in the received signal by generating sidebands about the transmitted frequencies. This is called the micro-Doppler effects. The use of a frequency-diverse OFDM signal in this context enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. Therefore, to characterize the accuracy of micro-Doppler frequency estimation, we compute the Craḿer-Rao Bound (CRB) on the angular-velocity estimate of the target while considering the scatterer responses as deterministic but unknown nuisance parameters. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to the transmitting OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations at different values of the signal-to-noise ratio (SNR) and the number of OFDM subcarriers. The CRB values not only decrease with the increase in the SNR values, but also reduce as we increase the number of subcarriers implying the significance of frequency-diverse OFDM waveforms. The improvement in estimation accuracy due to the adaptive waveform design is also numerically analyzed. Interestingly, we find that the relative decrease in the CRBs on the angular-velocity estimate is more pronounced for larger number of OFDM subcarriers.

  13. Performance Bounds on Micro-Doppler Estimation and Adaptive Waveform Design Using OFDM Signals

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [ORNL; Barhen, Jacob [ORNL; Glover, Charles Wayne [ORNL

    2014-01-01

    We analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a target having multiple rotating scatterers (e.g., rotor blades of a helicopter, propellers of a submarine). The presence of rotating scatterers introduces Doppler frequency modulation in the received signal by generating sidebands about the transmitted frequencies. This is called the micro-Doppler effects. The use of a frequency-diverse OFDM signal in this context enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. Therefore, to characterize the accuracy of micro-Doppler frequency estimation, we compute the Cram er-Rao Bound (CRB) on the angular-velocity estimate of the target while considering the scatterer responses as deterministic but unknown nuisance parameters. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to the transmitting OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations at different values of the signal-to-noise ratio (SNR) and the number of OFDM subcarriers. The CRB values not only decrease with the increase in the SNR values, but also reduce as we increase the number of subcarriers implying the significance of frequency-diverse OFDM waveforms. The improvement in estimation accuracy due to the adaptive waveform design is also numerically analyzed. Interestingly, we find that the relative decrease in the CRBs on the angular-velocity estimate is more pronounced for larger number of OFDM subcarriers.

  14. Frequency-domain elastic full waveform inversion using encoded simultaneous sources

    Science.gov (United States)

    Jeong, W.; Son, W.; Pyun, S.; Min, D.

    2011-12-01

    Currently, numerous studies have endeavored to develop robust full waveform inversion and migration algorithms. These processes require enormous computational costs, because of the number of sources in the survey. To avoid this problem, the phase encoding technique for prestack migration was proposed by Romero (2000) and Krebs et al. (2009) proposed the encoded simultaneous-source inversion technique in the time domain. On the other hand, Ben-Hadj-Ali et al. (2011) demonstrated the robustness of the frequency-domain full waveform inversion with simultaneous sources for noisy data changing the source assembling. Although several studies on simultaneous-source inversion tried to estimate P- wave velocity based on the acoustic wave equation, seismic migration and waveform inversion based on the elastic wave equations are required to obtain more reliable subsurface information. In this study, we propose a 2-D frequency-domain elastic full waveform inversion technique using phase encoding methods. In our algorithm, the random phase encoding method is employed to calculate the gradients of the elastic parameters, source signature estimation and the diagonal entries of approximate Hessian matrix. The crosstalk for the estimated source signature and the diagonal entries of approximate Hessian matrix are suppressed with iteration as for the gradients. Our 2-D frequency-domain elastic waveform inversion algorithm is composed using the back-propagation technique and the conjugate-gradient method. Source signature is estimated using the full Newton method. We compare the simultaneous-source inversion with the conventional waveform inversion for synthetic data sets of the Marmousi-2 model. The inverted results obtained by simultaneous sources are comparable to those obtained by individual sources, and source signature is successfully estimated in simultaneous source technique. Comparing the inverted results using the pseudo Hessian matrix with previous inversion results

  15. Homogenization and implementation of a 3D regional velocity model in Mexico for its application in moment tensor inversion of intermediate-magnitude earthquakes

    Science.gov (United States)

    Rodríguez Cardozo, Félix; Hjörleifsdóttir, Vala; Caló, Marco

    2017-04-01

    Moment tensor inversions for intermediate and small earthquakes (M. < 4.5) are challenging as they principally excite relatively short period seismic waves that interact strongly with local heterogeneities. Incorporating detailed regional 3D velocity models permits obtaining realistic synthetic seismograms and recover the seismic source parameters these smaller events. Two 3D regional velocity models have recently been developed for Mexico, using surface waves and seismic noise tomography (Spica et al., 2016; Gaite et al., 2015), which could be used to model the waveforms of intermediate magnitud earthquakes in this region. Such models are parameterized as layered velocity profiles and for some of the profiles, the velocity difference between two layers are considerable. The "jump" in velocities between two layers is inconvenient for some methods and algorithms that calculate synthetic waveforms, in particular for the method that we are using, the spectral element method (SPECFEM3D GLOBE, Komatitsch y Tromp, 2000), when the mesh does not follow the layer boundaries. In order to make the velocity models more easily implementec in SPECFEM3D GLOBE it is neccesary to apply a homogenization algorithm (Capdeville et al., 2015) such that the (now anisotropic) layer velocities are smoothly varying with depth. In this work, we apply a homogenization algorithm to the regional velocity models in México for implementing them in SPECFEM3D GLOBE, calculate synthetic waveforms for intermediate-magnitude earthquakes in México and invert them for the seismic moment tensor.

  16. 3-D waveform tomography sensitivity kernels for anisotropic media

    KAUST Repository

    Djebbi, Ramzi

    2014-01-01

    The complications in anisotropic multi-parameter inversion lie in the trade-off between the different anisotropy parameters. We compute the tomographic waveform sensitivity kernels for a VTI acoustic medium perturbation as a tool to investigate this ambiguity between the different parameters. We use dynamic ray tracing to efficiently handle the expensive computational cost for 3-D anisotropic models. Ray tracing provides also the ray direction information necessary for conditioning the sensitivity kernels to handle anisotropy. The NMO velocity and η parameter kernels showed a maximum sensitivity for diving waves which results in a relevant choice of those parameters in wave equation tomography. The δ parameter kernel showed zero sensitivity; therefore it can serve as a secondary parameter to fit the amplitude in the acoustic anisotropic inversion. Considering the limited penetration depth of diving waves, migration velocity analysis based kernels are introduced to fix the depth ambiguity with reflections and compute sensitivity maps in the deeper parts of the model.

  17. Early arrival waveform inversion of shallow seismic land data

    KAUST Repository

    Hanafy, Sherif M.

    2013-09-22

    We estimate the near-surface velocity distribution over Wadi Qudaid in Saudi Arabia by applying early arrival waveform inversion (EWI) to shallow seismic land data collected with source-receiver offsets no longer than 232 m. The main purpose is to characterize the shallow subsurface for its water storage and reuse potential. To enhance the accuracy of EWI, we extracted a natural source wavelet from the data, and also corrected for the attenuation effects with an estimated factor Q. Results suggest that, compared to traveltime tomography, EWI can generate a highly resolved velocity tomogram from shallow seismic data. The more accurate EWI tomogram can make an economically important difference in assessing the storage potential of this wadi; in this case we find an increase of 18% of storage potential in the EWI tomogram relative to the traveltime tomogram. This approach suggests that FWI might be a more accurate means for economically characterizing the water storage potential for wadis’ throughout the world.

  18. On the accuracy and precision of numerical waveforms: effect of waveform extraction methodology

    Science.gov (United States)

    Chu, Tony; Fong, Heather; Kumar, Prayush; Pfeiffer, Harald P.; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Scheel, Mark A.; Szilagyi, Bela

    2016-08-01

    We present a new set of 95 numerical relativity simulations of non-precessing binary black holes (BBHs). The simulations sample comprehensively both black-hole spins up to spin magnitude of 0.9, and cover mass ratios 1-3. The simulations cover on average 24 inspiral orbits, plus merger and ringdown, with low initial orbital eccentricities e\\lt {10}-4. A subset of the simulations extends the coverage of non-spinning BBHs up to mass ratio q = 10. Gravitational waveforms at asymptotic infinity are computed with two independent techniques: extrapolation and Cauchy characteristic extraction. An error analysis based on noise-weighted inner products is performed. We find that numerical truncation error, error due to gravitational wave extraction, and errors due to the Fourier transformation of signals with finite length of the numerical waveforms are of similar magnitude, with gravitational wave extraction errors dominating at noise-weighted mismatches of ˜ 3× {10}-4. This set of waveforms will serve to validate and improve aligned-spin waveform models for gravitational wave science.

  19. From tomography to full-waveform inversion with a single objective function

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-02-17

    In full-waveform inversion (FWI), a gradient-based update of the velocity model requires an initial velocity that produces synthetic data that are within a half-cycle, everywhere, from the field data. Such initial velocity models are usually extracted from migration velocity analysis or traveltime tomography, among other means, and are not guaranteed to adhere to the FWI requirements for an initial velocity model. As such, we evaluated an objective function based on the misfit in the instantaneous traveltime between the observed and modeled data. This phase-based attribute of the wavefield, along with its phase unwrapping characteristics, provided a frequency-dependent traveltime function that was easy to use and quantify, especially compared to conventional phase representation. With a strong Laplace damping of the modeled, potentially low-frequency, data along the time axis, this attribute admitted a first-arrival traveltime that could be compared with picked ones from the observed data, such as in wave equation tomography (WET). As we relax the damping on the synthetic and observed data, the objective function measures the misfit in the phase, however unwrapped. It, thus, provided a single objective function for a natural transition from WET to FWI. A Marmousi example demonstrated the effectiveness of the approach.

  20. Seasonal and Daily Variations of Subsurface Velocity Revealed by the Air-gun Source in Binchuan, Yunnan, China

    Science.gov (United States)

    Luan, Y.; Yang, H.; Wang, B.

    2017-12-01

    We derive temporal variations of subsurface structure using a large-volume air-gun source excited in Binchuan, Yunnan, southwest China, the first transmitting seismic station that can generate high-quality repeating waveforms. The data were collected between January 2013 and December 2015 that were recorded by 40 stations within 150 km, including permanent and newly deployed air-gun array stations. Firstly, we conduct cluster analysis using the waveforms at the nearest station and find the clustering result is not only governed by the water level of the reservoir, but also has seasonal variations. Furthermore, we use the records of the nearest station to approximate the source time functions and then retrieve empirical Green's functions (EGF) by deconvolution. Then we obtain travel time difference by comparing the EGF. The travel time difference exhibits clear seasonal variation, and the pattern correlates the best with surface air temperature. The increasing temperature coincides with increasing delay time i.e. decreasing seismic velocity. We interpret the observed seasonal variation of subsurface velocity is partly caused by thermo-elastic strain. However, our calculated thermo-elastic strain is only half in amplitude of the observed strain, indicating other factors such as precipitation and ground water level may play a role in the subsurface changes. Moreover, we derive the daily variation of subsurface velocity in December 2015 when air-gun shots were made in every hour. The delay time clearly correlates with the barometric pressure change and the tidal strain. Here we demonstrate that both long-term (seasonal) and short-term (daily) structural variations can be derived using the newly constructed active source, which is a powerful tool to advance our understanding of rheological properties of the crust as well as well processes associated with earthquakes and other natural hazards.

  1. Photonic arbitrary waveform generator based on Taylor synthesis method

    DEFF Research Database (Denmark)

    Liao, Shasha; Ding, Yunhong; Dong, Jianji

    2016-01-01

    Arbitrary waveform generation has been widely used in optical communication, radar system and many other applications. We propose and experimentally demonstrate a silicon-on-insulator (SOI) on chip optical arbitrary waveform generator, which is based on Taylor synthesis method. In our scheme......, a Gaussian pulse is launched to some cascaded microrings to obtain first-, second- and third-order differentiations. By controlling amplitude and phase of the initial pulse and successive differentiations, we can realize an arbitrary waveform generator according to Taylor expansion. We obtain several typical...... waveforms such as square waveform, triangular waveform, flat-top waveform, sawtooth waveform, Gaussian waveform and so on. Unlike other schemes based on Fourier synthesis or frequency-to-time mapping, our scheme is based on Taylor synthesis method. Our scheme does not require any spectral disperser or large...

  2. MO-DE-207A-12: Toward Patient-Specific 4DCT Reconstruction Using Adaptive Velocity Binning

    International Nuclear Information System (INIS)

    Morris, E.D.; Glide-Hurst, C.; Klahr, P.

    2016-01-01

    Purpose: While 4DCT provides organ/tumor motion information, it often samples data over 10–20 breathing cycles. For patients presenting with compromised pulmonary function, breathing patterns can change over the acquisition time, potentially leading to tumor delineation discrepancies. This work introduces a novel adaptive velocity-modulated binning (AVB) 4DCT algorithm that modulates the reconstruction based on the respiratory waveform, yielding a patient-specific 4DCT solution. Methods: AVB was implemented in a research reconstruction configuration. After filtering the respiratory waveform, the algorithm examines neighboring data to a phase reconstruction point and the temporal gate is widened until the difference between the reconstruction point and waveform exceeds a threshold value—defined as percent difference between maximum/minimum waveform amplitude. The algorithm only impacts reconstruction if the gate width exceeds a set minimum temporal width required for accurate reconstruction. A sensitivity experiment of threshold values (0.5, 1, 5, 10, and 12%) was conducted to examine the interplay between threshold, signal to noise ratio (SNR), and image sharpness for phantom and several patient 4DCT cases using ten-phase reconstructions. Individual phase reconstructions were examined. Subtraction images and regions of interest were compared to quantify changes in SNR. Results: AVB increased signal in reconstructed 4DCT slices for respiratory waveforms that met the prescribed criteria. For the end-exhale phases, where the respiratory velocity is low, patient data revealed a threshold of 0.5% demonstrated increased SNR in the AVB reconstructions. For intermediate breathing phases, threshold values were required to be >10% to notice appreciable changes in CT intensity with AVB. AVB reconstructions exhibited appreciably higher SNR and reduced noise in regions of interest that were photon deprived such as the liver. Conclusion: We demonstrated that patient

  3. MO-DE-207A-12: Toward Patient-Specific 4DCT Reconstruction Using Adaptive Velocity Binning

    Energy Technology Data Exchange (ETDEWEB)

    Morris, E.D.; Glide-Hurst, C. [Henry Ford Health System, Detroit, MI (United States); Wayne State University, Detroit, MI (United States); Klahr, P. [Philips Healthcare, Cleveland, Ohio (United States)

    2016-06-15

    Purpose: While 4DCT provides organ/tumor motion information, it often samples data over 10–20 breathing cycles. For patients presenting with compromised pulmonary function, breathing patterns can change over the acquisition time, potentially leading to tumor delineation discrepancies. This work introduces a novel adaptive velocity-modulated binning (AVB) 4DCT algorithm that modulates the reconstruction based on the respiratory waveform, yielding a patient-specific 4DCT solution. Methods: AVB was implemented in a research reconstruction configuration. After filtering the respiratory waveform, the algorithm examines neighboring data to a phase reconstruction point and the temporal gate is widened until the difference between the reconstruction point and waveform exceeds a threshold value—defined as percent difference between maximum/minimum waveform amplitude. The algorithm only impacts reconstruction if the gate width exceeds a set minimum temporal width required for accurate reconstruction. A sensitivity experiment of threshold values (0.5, 1, 5, 10, and 12%) was conducted to examine the interplay between threshold, signal to noise ratio (SNR), and image sharpness for phantom and several patient 4DCT cases using ten-phase reconstructions. Individual phase reconstructions were examined. Subtraction images and regions of interest were compared to quantify changes in SNR. Results: AVB increased signal in reconstructed 4DCT slices for respiratory waveforms that met the prescribed criteria. For the end-exhale phases, where the respiratory velocity is low, patient data revealed a threshold of 0.5% demonstrated increased SNR in the AVB reconstructions. For intermediate breathing phases, threshold values were required to be >10% to notice appreciable changes in CT intensity with AVB. AVB reconstructions exhibited appreciably higher SNR and reduced noise in regions of interest that were photon deprived such as the liver. Conclusion: We demonstrated that patient

  4. Flow velocity and volume measurement of superior and inferior mesenteric artery with cine phase contrast magnetic resonance imaging

    International Nuclear Information System (INIS)

    Naganawa, Shinji; Cooper, T.G.; Jenner, G.; Potchen, E.J.; Ishigaki, Takeo.

    1994-01-01

    The flow velocity and volume of the superior and inferior mesenteric arteries (SMA, IMA) were measured with cine phase contrast magnetic resonance (MR) imaging in five healthy volunteers. Each volunteer was first measured in a fasting state, and then one, two, and three hours after a meal. The average SMA flow volume of the volunteers was 230.3±46.8 ml/min (mean±standard error) during the fasting state, and 714.7±207.7 ml/min, 339.2±85.7 ml/min, and 263.8±21.0 ml/min, respectively, at one, two, and three hours postmeal. The increase at one hour postmeal was statistically significant (p<0.05). The corresponding flow measurements in the IMA were 63.1±11.2 ml/min, 67.6±11.2 ml/min, 57.9±8.6 ml/min, and 53.2±6.8 ml/min. These values do not represent a statistically significant flow volume change in the IMA. In all volunteers, the SMA volumetric flow increased the most one hour after the food challenge (72-400% relative to baseline). Diastolic velocity in the SMA increased significantly one hour postmeal, but systolic velocity did not change significantly. The IMA did not demonstrate a significant change in either systolic or diastolic velocity. The difference between the SMA and IMA in the way of reacting against the food challenge is thought to represent the difference between the requirements of small and large intestine for blood supply after the food challenge. These data demonstrate the possibility of this modality for the assessment of conditions such as chronic mesenteric ischemia. (author)

  5. S-wave velocity below Europe from delay-time and waveform inversions

    NARCIS (Netherlands)

    Zielhuis, A.

    1992-01-01

    The upper mantle of Europe has been the subject of many tomographic studies of variations in P-wave velocity (e.g., Romanowicz 1980; Hovland et al., 1981; Spakman, 1988, 1991; and Spakman et aI., in preparation). In particular the studies of Spakman (1988, 1991) and Spakman et aI. (in

  6. Optimized waveform relaxation domain decomposition method for discrete finite volume non stationary convection diffusion equation

    International Nuclear Information System (INIS)

    Berthe, P.M.

    2013-01-01

    In the context of nuclear waste repositories, we consider the numerical discretization of the non stationary convection diffusion equation. Discontinuous physical parameters and heterogeneous space and time scales lead us to use different space and time discretizations in different parts of the domain. In this work, we choose the discrete duality finite volume (DDFV) scheme and the discontinuous Galerkin scheme in time, coupled by an optimized Schwarz waveform relaxation (OSWR) domain decomposition method, because this allows the use of non-conforming space-time meshes. The main difficulty lies in finding an upwind discretization of the convective flux which remains local to a sub-domain and such that the multi domain scheme is equivalent to the mono domain one. These difficulties are first dealt with in the one-dimensional context, where different discretizations are studied. The chosen scheme introduces a hybrid unknown on the cell interfaces. The idea of up winding with respect to this hybrid unknown is extended to the DDFV scheme in the two-dimensional setting. The well-posedness of the scheme and of an equivalent multi domain scheme is shown. The latter is solved by an OSWR algorithm, the convergence of which is proved. The optimized parameters in the Robin transmission conditions are obtained by studying the continuous or discrete convergence rates. Several test-cases, one of which inspired by nuclear waste repositories, illustrate these results. (author) [fr

  7. Sparse Frequency Waveform Design for Radar-Embedded Communication

    Directory of Open Access Journals (Sweden)

    Chaoyun Mai

    2016-01-01

    Full Text Available According to the Tag application with function of covert communication, a method for sparse frequency waveform design based on radar-embedded communication is proposed. Firstly, sparse frequency waveforms are designed based on power spectral density fitting and quasi-Newton method. Secondly, the eigenvalue decomposition of the sparse frequency waveform sequence is used to get the dominant space. Finally the communication waveforms are designed through the projection of orthogonal pseudorandom vectors in the vertical subspace. Compared with the linear frequency modulation waveform, the sparse frequency waveform can further improve the bandwidth occupation of communication signals, thus achieving higher communication rate. A certain correlation exists between the reciprocally orthogonal communication signals samples and the sparse frequency waveform, which guarantees the low SER (signal error rate and LPI (low probability of intercept. The simulation results verify the effectiveness of this method.

  8. Processing and evaluation of riverine waveforms acquired by an experimental bathymetric LiDAR

    Science.gov (United States)

    Kinzel, P. J.; Legleiter, C. J.; Nelson, J. M.

    2010-12-01

    Accurate mapping of fluvial environments with airborne bathymetric LiDAR is challenged not only by environmental characteristics but also the development and application of software routines to post-process the recorded laser waveforms. During a bathymetric LiDAR survey, the transmission of the green-wavelength laser pulses through the water column is influenced by a number of factors including turbidity, the presence of organic material, and the reflectivity of the streambed. For backscattered laser pulses returned from the river bottom and digitized by the LiDAR detector, post-processing software is needed to interpret and identify distinct inflections in the reflected waveform. Relevant features of this energy signal include the air-water interface, volume reflection from the water column itself, and, ideally, a strong return from the bottom. We discuss our efforts to acquire, analyze, and interpret riverine surveys using the USGS Experimental Advanced Airborne Research LiDAR (EAARL) in a variety of fluvial environments. Initial processing of data collected in the Trinity River, California, using the EAARL Airborne Lidar Processing Software (ALPS) highlighted the difficulty of retrieving a distinct bottom signal in deep pools. Examination of laser waveforms from these pools indicated that weak bottom reflections were often neglected by a trailing edge algorithm used by ALPS to process shallow riverine waveforms. For the Trinity waveforms, this algorithm had a tendency to identify earlier inflections as the bottom, resulting in a shallow bias. Similarly, an EAARL survey along the upper Colorado River, Colorado, also revealed the inadequacy of the trailing edge algorithm for detecting weak bottom reflections. We developed an alternative waveform processing routine by exporting digitized laser waveforms from ALPS, computing the local extrema, and fitting Gaussian curves to the convolved backscatter. Our field data indicate that these techniques improved the

  9. Full-waveform inversion of GPR data for civil engineering applications

    Science.gov (United States)

    van der Kruk, Jan; Kalogeropoulos, Alexis; Hugenschmidt, Johannes; Klotzsche, Anja; Busch, Sebastian; Vereecken, Harry

    2014-05-01

    content increasing frequency-dependent conductivity values were obtained. The off-ground full-waveform inversion was extended to invert for positive and negative gradients in conductivity and the conductivity gradient direction could be correctly identified. Experimental specimen containing gradients were generated by exposing a concrete slab to controlled wetting-drying cycles using a saline solution. Full-waveform inversion of the measured data correctly identified the conductivity gradient direction which was confirmed by destructive analysis. On-ground CMP GPR data measured over a concrete layer overlying a metal plate show interfering multiple reflections, which indicates that the structure acts as a waveguide. Calculation of the phase-velocity spectrum shows the presence of several higher order modes. Whereas the dispersion inversion returns the thickness and layer height, the full-waveform inversion was also able to estimate quantitative conductivity values. This abstract is a contribution to COST Action TU1208

  10. S-wave velocity below Europe from delay-time and waveform inversions

    NARCIS (Netherlands)

    Zielhuis, A.

    1992-01-01

    The upper mantle of Europe has been the subject of many tomographic studies of variations in P-wave velocity (e.g., Romanowicz 1980; Hovland et al., 1981; Spakman, 1988, 1991; and Spakman et aI., in preparation). In particular the studies of Spakman (1988, 1991) and Spakman et aI. (in preparation)

  11. Transdimensional inversion of scattered body waves for 1D S-wave velocity structure - Application to the Tengchong volcanic area, Southwestern China

    Science.gov (United States)

    Li, Mengkui; Zhang, Shuangxi; Bodin, Thomas; Lin, Xu; Wu, Tengfei

    2018-06-01

    Inversion of receiver functions is commonly used to recover the S-wave velocity structure beneath seismic stations. Traditional approaches are based on deconvolved waveforms, where the horizontal component of P-wave seismograms is deconvolved by the vertical component. Deconvolution of noisy seismograms is a numerically unstable process that needs to be stabilized by regularization parameters. This biases noise statistics, making it difficult to estimate uncertainties in observed receiver functions for Bayesian inference. This study proposes a method to directly invert observed radial waveforms and to better account for data noise in a Bayesian formulation. We illustrate its feasibility with two synthetic tests having different types of noises added to seismograms. Then, a real site application is performed to obtain the 1-D S-wave velocity structure beneath a seismic station located in the Tengchong volcanic area, Southwestern China. Surface wave dispersion measurements spanning periods from 8 to 65 s are jointly inverted with P waveforms. The results show a complex S-wave velocity structure, as two low velocity zones are observed in the crust and uppermost mantle, suggesting the existence of magma chambers, or zones of partial melt. The upper magma chambers may be the heart source that cause the thermal activity on the surface.

  12. Propagation compensation by waveform predistortion

    Science.gov (United States)

    Halpin, Thomas F.; Urkowitz, Harry; Maron, David E.

    Certain modifications of the Cobra Dane radar are considered, particularly modernization of the waveform generator. For wideband waveforms, the dispersive effects of the ionosphere become increasingly significant. The technique of predistorting the transmitted waveform so that a linear chirp is received after two-way passage is one way to overcome that dispersion. This approach is maintained for the modified system, but with a specific predistortion waveform well suited to the modification. The appropriate form of predistortion was derived in an implicit form of time as a function of frequency. The exact form was approximated by Taylor series and pseudo-Chebyshev approximation. The latter proved better, as demonstrated by the resulting smaller loss in detection sensitivity, less coarsening of range resolution, and a lower peak sidelobe. The effects of error in determining the plasma delay constant were determined and are given in graphical form. A suggestion for in-place determination of the plasma delay constant is given.

  13. Non-invasive assessment of peripheral arterial disease: Automated ankle brachial index measurement and pulse volume analysis compared to duplex scan.

    Science.gov (United States)

    Lewis, Jane Ea; Williams, Paul; Davies, Jane H

    2016-01-01

    This cross-sectional study aimed to individually and cumulatively compare sensitivity and specificity of the (1) ankle brachial index and (2) pulse volume waveform analysis recorded by the same automated device, with the presence or absence of peripheral arterial disease being verified by ultrasound duplex scan. Patients (n=205) referred for lower limb arterial assessment underwent ankle brachial index measurement and pulse volume waveform recording using volume plethysmography, followed by ultrasound duplex scan. The presence of peripheral arterial disease was recorded if ankle brachial index 50% was evident with ultrasound duplex scan. Outcome measure was agreement between the measured ankle brachial index and interpretation of pulse volume waveform for peripheral arterial disease diagnosis, using ultrasound duplex scan as the reference standard. Sensitivity of ankle brachial index was 79%, specificity 91% and overall accuracy 88%. Pulse volume waveform sensitivity was 97%, specificity 81% and overall accuracy 85%. The combined sensitivity of ankle brachial index and pulse volume waveform was 100%, specificity 76% and overall accuracy 85%. Combining these two diagnostic modalities within one device provided a highly accurate method of ruling out peripheral arterial disease, which could be utilised in primary care to safely reduce unnecessary secondary care referrals.

  14. Advances in waveform-agile sensing for tracking

    CERN Document Server

    Sira, Sandeep Prasad

    2009-01-01

    Recent advances in sensor technology and information processing afford a new flexibility in the design of waveforms for agile sensing. Sensors are now developed with the ability to dynamically choose their transmit or receive waveforms in order to optimize an objective cost function. This has exposed a new paradigm of significant performance improvements in active sensing: dynamic waveform adaptation to environment conditions, target structures, or information features. The manuscript provides a review of recent advances in waveform-agile sensing for target tracking applications. A dynamic wav

  15. Development of a research-oriented system for collecting mechanical ventilator waveform data.

    Science.gov (United States)

    Rehm, Gregory B; Kuhn, Brooks T; Delplanque, Jean-Pierre; Guo, Edward C; Lieng, Monica K; Nguyen, Jimmy; Anderson, Nicholas R; Adams, Jason Y

    2017-10-28

    Lack of access to high-frequency, high-volume patient-derived data, such as mechanical ventilator waveform data, has limited the secondary use of these data for research, quality improvement, and decision support. Existing methods for collecting these data are obtrusive, require high levels of technical expertise, and are often cost-prohibitive, limiting their use and scalability for research applications. We describe here the development of an unobtrusive, open-source, scalable, and user-friendly architecture for collecting, transmitting, and storing mechanical ventilator waveform data that is generalizable to other patient care devices. The system implements a software framework that automates and enforces end-to-end data collection and transmission. A web-based data management application facilitates nontechnical end users' abilities to manage data acquisition devices, mitigates data loss and misattribution, and automates data storage. Using this integrated system, we have been able to collect ventilator waveform data from >450 patients as part of an ongoing clinical study. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Middle cerebral artery flow velocity waveforms in fetal hypoxaemia.

    Science.gov (United States)

    Vyas, S; Nicolaides, K H; Bower, S; Campbell, S

    1990-09-01

    In 81 small-for-gestational age fetuses (SGA) colour flow imaging was used to identify the fetal middle cerebral artery for subsequent pulsed Doppler studies. Impedence to flow (pulsatility index; PI) was significantly lower, and mean blood velocity was significantly higher, than the respective reference ranges with gestation. Fetal blood sampling by cordocentesis was performed in all SGA fetuses and a significant quadratic relation was found between fetal hypoxaemia and the degree of reduction in the PI of FVWs from the fetal middle cerebral artery. Thus, maximum reduction in PI is reached when the fetal PO2 is 2-4 SD below the normal mean for gestation. When the oxygen deficit is greater there is a tendency for the PI to rise, and this presumably reflects the development of brain oedema.

  17. Sensitivity analysis for elastic full-waveform inversion in VTI media

    KAUST Repository

    Kamath, Nishant

    2014-08-05

    Multiparameter full-waveform inversion (FWI) is generally nonunique, and the results are strongly influenced by the geometry of the experiment and the type of recorded data. Studying the sensitivity of different subsets of data to the model parameters may help in choosing an optimal acquisition design, inversion workflow, and parameterization. Here, we derive the Fréchet kernel for FWI of multicomponent data from a 2D VTI (tranversely isotropic with a vertical symmetry axis) medium. The kernel is obtained by linearizing the elastic wave equation using the Born approximation and employing the asymptotic Green\\'s function. The amplitude of the kernel (‘radiation pattern’) yields the angle-dependent energy scattered by a perturbation in a certain model parameter. The perturbations are described in terms of the P- and S-wave vertical velocities and the P-wave normal-moveout and horizontal velocities. The background medium is assumed to be homogeneous and isotropic, which allows us to obtain simple expressions for the radiation patterns corresonding to all four velocities. These patterns help explain the FWI results for multicomponent transmission data generated for Gaussian anomalies in the Thomsen parameters inserted into a homogeneous VTI medium.

  18. Sensitivity analysis for elastic full-waveform inversion in VTI media

    KAUST Repository

    Kamath, Nishant; Tsvankin, Ilya

    2014-01-01

    Multiparameter full-waveform inversion (FWI) is generally nonunique, and the results are strongly influenced by the geometry of the experiment and the type of recorded data. Studying the sensitivity of different subsets of data to the model parameters may help in choosing an optimal acquisition design, inversion workflow, and parameterization. Here, we derive the Fréchet kernel for FWI of multicomponent data from a 2D VTI (tranversely isotropic with a vertical symmetry axis) medium. The kernel is obtained by linearizing the elastic wave equation using the Born approximation and employing the asymptotic Green's function. The amplitude of the kernel (‘radiation pattern’) yields the angle-dependent energy scattered by a perturbation in a certain model parameter. The perturbations are described in terms of the P- and S-wave vertical velocities and the P-wave normal-moveout and horizontal velocities. The background medium is assumed to be homogeneous and isotropic, which allows us to obtain simple expressions for the radiation patterns corresonding to all four velocities. These patterns help explain the FWI results for multicomponent transmission data generated for Gaussian anomalies in the Thomsen parameters inserted into a homogeneous VTI medium.

  19. SCA Waveform Development for Space Telemetry

    Science.gov (United States)

    Mortensen, Dale J.; Kifle, Multi; Hall, C. Steve; Quinn, Todd M.

    2004-01-01

    The NASA Glenn Research Center is investigating and developing suitable reconfigurable radio architectures for future NASA missions. This effort is examining software-based open-architectures for space based transceivers, as well as common hardware platform architectures. The Joint Tactical Radio System's (JTRS) Software Communications Architecture (SCA) is a candidate for the software approach, but may need modifications or adaptations for use in space. An in-house SCA compliant waveform development focuses on increasing understanding of software defined radio architectures and more specifically the JTRS SCA. Space requirements put a premium on size, mass, and power. This waveform development effort is key to evaluating tradeoffs with the SCA for space applications. Existing NASA telemetry links, as well as Space Exploration Initiative scenarios, are the basis for defining the waveform requirements. Modeling and simulations are being developed to determine signal processing requirements associated with a waveform and a mission-specific computational burden. Implementation of the waveform on a laboratory software defined radio platform is proceeding in an iterative fashion. Parallel top-down and bottom-up design approaches are employed.

  20. Layering of Structure in the North American Upper Mantle: Combining Short Period Constraints and Full Waveform Tomography

    Science.gov (United States)

    Roy, C.; Calo, M.; Bodin, T.; Romanowicz, B. A.

    2016-12-01

    Recent receiver function (RF) studies of the north American craton suggest the presence of layering within the cratonic lithosphere with significant lateral variations in the depth. However, the location and character of these discontinuities depends on assumptions made on a background 3D velocity model. On the other hand, the implementation of the Spectral Element Method (SEM) for the computation of the seismic wavefield in 3D structures is allowing improved resolution of volumetric structure in full waveform tomography. The corresponding computations are however very heavy and limit our ability to attain short enough periods to resolve short scale features such as the existence and lateral variations of discontinuities. In order to overcome these limitations, we have developed a methodology that combines full waveform inversion tomography and information provided by short period seismic observables. In a first step we constructed a 3D discontinuous radially anisotropic starting model combining 1D models calculated using RF and L and R wave dispersion data in a Bayesian framework using trans-dimensional MCMC inversion at a collection of 30 stations across the north American continent (Calò et al., 2016). This model was then interpolated and smoothed using a procedure based on residual homogenization (Capdeville et al. 2013) and serves as input model for full waveform tomography using a three-component waveform dataset previously collected (Yuan et al., 2014). The homogenization is necessary to avoid meshing problems and heavy SEM computations. In a second step, several iterations of the full waveform inversion are performed until convergence, using a regional SEM code for forward computations (RegSEM, Cupillard et al., 2012). Results of the inversion are volumetric velocity perturbations around the homogenized starting model, which are then added to the discontinuous 3D starting model. The final result is a multiscale discontinuous model containing both short and

  1. Development of a full waveform digital sonic tool and its field application; Full wave onpa kenso sochi no kaihatsu to genchi tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Inazaki, T [Geological Survey of Japan, Tsukuba (Japan); Kurahashi, T [Public Works Research Institute, Tsukuba (Japan); Goebuchi, T [OYO Corp., Tokyo (Japan)

    1997-10-22

    Full waveform digital sonic tool (OYO) has been developed for the purpose of accurately measuring geophysical anomalies in the rockbed containing cracks, and its performance is evaluated by comparing its measurements with those obtained by the conventional sonic logging device (DBM). Modification involves the following. While gain is fixed in the DBM, it is variable in a times10-times200 range in the OYO. Analog transfer:ground surface A/D in the DBM is replaced by digital transfer:intra-probe A/D in the OYO. In the DBM, only a special program running on the MS-DOS can analyze waveform data but, in the OYO, waveforms are recorded in the SEG-Y format enabling the import of the data into generally available waveform processing software. In the OYO, a high-speed communication board is incorporated into the probe, which realizes high-speed communication. There is a very excellent agreement between the two in P-wave velocity distribution as reckoned from the initial run. Regarding the OYO, however, it is pointed out that gain control be performed with the greatest care to prevent waveforms from distortion. 5 figs.

  2. The velocity of sound

    International Nuclear Information System (INIS)

    Beyer, R.T.

    1985-01-01

    The paper reviews the work carried out on the velocity of sound in liquid alkali metals. The experimental methods to determine the velocity measurements are described. Tables are presented of reported data on the velocity of sound in lithium, sodium, potassium, rubidium and caesium. A formula is given for alkali metals, in which the sound velocity is a function of shear viscosity, atomic mass and atomic volume. (U.K.)

  3. Velocity and stress distributions of deep seismic zone under Izu-Bonin, Japan

    Science.gov (United States)

    Jiang, Guoming; Zhang, Guibin; Jia, Zhengyuan

    2017-04-01

    Deep earthquakes can provide the deep information of the Earth directly. We have collected the waveform data from 77 deep earthquakes with depth greater than 300 km under Izu-Bonin in Japan. To obtain the velocity structures of P- and S-wave, we have inversed the double-differences of travel times from deep event-pairs. These velocity anomalies can further yield the Poisson's ratio and the porosity. Our results show that the average P-wave velocity anomaly is lower 6%, however the S-wave anomaly is higher 2% than the iasp91 model. The corresponding Poisson's ratio and porosity anomaly are -24% and -4%, respectively, which suggest that the possibility of water in the deep seismic zone is very few and the porosity might be richer. To obtain the stress distribution, we have used the ISOLA method to analyse the non-double-couple components of moment tensors of 77 deep earthquakes. The focal mechanism results show that almost half of all earthquakes have larger double-couple (DC) components, but others have clear isotropic (ISO) or compensated linear vector dipole (CLVD) components. The non-double-couple components (ISO and CLVD) seem to represent the volume around a deep earthquake changes as it occurs, which could be explained the metastable olivine phase transition. All results indicate that the metastable olivine wedge (MOW) might exist in the Pacific slab under the Izu-Bonin region and the deep earthquakes might be induced by the phase change of metastable olivine.

  4. Migration velocity analysis using pre-stack wave fields

    KAUST Repository

    Alkhalifah, Tariq Ali

    2016-08-25

    Using both image and data domains to perform velocity inversion can help us resolve the long and short wavelength components of the velocity model, usually in that order. This translates to integrating migration velocity analysis into full waveform inversion. The migration velocity analysis part of the inversion often requires computing extended images, which is expensive when using conventional methods. As a result, we use pre-stack wavefield (the double-square-root formulation) extrapolation, which includes the extended information (subsurface offsets) naturally, to make the process far more efficient and stable. The combination of the forward and adjoint pre-stack wavefields provides us with update options that can be easily conditioned to improve convergence. We specifically use a modified differential semblance operator to split the extended image into a residual part for classic differential semblance operator updates and the image (Born) modelling part, which provides reflections for higher resolution information. In our implementation, we invert for the velocity and the image simultaneously through a dual objective function. Applications to synthetic examples demonstrate the features of the approach.

  5. Time-dependent phase error correction using digital waveform synthesis

    Science.gov (United States)

    Doerry, Armin W.; Buskirk, Stephen

    2017-10-10

    The various technologies presented herein relate to correcting a time-dependent phase error generated as part of the formation of a radar waveform. A waveform can be pre-distorted to facilitate correction of an error induced into the waveform by a downstream operation/component in a radar system. For example, amplifier power droop effect can engender a time-dependent phase error in a waveform as part of a radar signal generating operation. The error can be quantified and an according complimentary distortion can be applied to the waveform to facilitate negation of the error during the subsequent processing of the waveform. A time domain correction can be applied by a phase error correction look up table incorporated into a waveform phase generator.

  6. Extension of frequency-based dissimilarity for retrieving similar plasma waveforms

    International Nuclear Information System (INIS)

    Hochin, Teruhisa; Koyama, Katsumasa; Nakanishi, Hideya; Kojima, Mamoru

    2008-01-01

    Some computer-aided assistance in finding the waveforms similar to a waveform has become indispensable for accelerating data analysis in the plasma experiments. For the slowly-varying waveforms and those having time-sectional oscillation patterns, the methods using the Fourier series coefficients of waveforms in calculating the dissimilarity have successfully improved the performance in retrieving similar waveforms. This paper treats severely-varying waveforms, and proposes two extensions to the dissimilarity of waveforms. The first extension is to capture the difference of the importance of the Fourier series coefficients of waveforms against frequency. The second extension is to consider the outlines of waveforms. The correctness of the extended dissimilarity is experimentally evaluated by using the metrics used in evaluating that of the information retrieval, i.e. precision and recall. The experimental results show that the extended dissimilarity could improve the correctness of the similarity retrieval of plasma waveforms

  7. Multifunction waveform generator for EM receiver testing

    Science.gov (United States)

    Chen, Kai; Jin, Sheng; Deng, Ming

    2018-01-01

    In many electromagnetic (EM) methods - such as magnetotelluric, spectral-induced polarization (SIP), time-domain-induced polarization (TDIP), and controlled-source audio magnetotelluric (CSAMT) methods - it is important to evaluate and test the EM receivers during their development stage. To assess the performance of the developed EM receivers, controlled synthetic data that simulate the observed signals in different modes are required. In CSAMT and SIP mode testing, the waveform generator should use the GPS time as the reference for repeating schedule. Based on our testing, the frequency range, frequency precision, and time synchronization of the currently available function waveform generators on the market are deficient. This paper presents a multifunction waveform generator with three waveforms: (1) a wideband, low-noise electromagnetic field signal to be used for magnetotelluric, audio-magnetotelluric, and long-period magnetotelluric studies; (2) a repeating frequency sweep square waveform for CSAMT and SIP studies; and (3) a positive-zero-negative-zero signal that contains primary and secondary fields for TDIP studies. In this paper, we provide the principles of the above three waveforms along with a hardware design for the generator. Furthermore, testing of the EM receiver was conducted with the waveform generator, and the results of the experiment were compared with those calculated from the simulation and theory in the frequency band of interest.

  8. Waveform LiDAR across forest biomass gradients

    Science.gov (United States)

    Montesano, P. M.; Nelson, R. F.; Dubayah, R.; Sun, G.; Ranson, J.

    2011-12-01

    Detailed information on the quantity and distribution of aboveground biomass (AGB) is needed to understand how it varies across space and changes over time. Waveform LiDAR data is routinely used to derive the heights of scattering elements in each illuminated footprint, and the vertical structure of vegetation is related to AGB. Changes in LiDAR waveforms across vegetation structure gradients can demonstrate instrument sensitivity to land cover transitions. A close examination of LiDAR waveforms in footprints across a forest gradient can provide new insight into the relationship of vegetation structure and forest AGB. In this study we use field measurements of individual trees within Laser Vegetation Imaging Sensor (LVIS) footprints along transects crossing forest to non-forest gradients to examine changes in LVIS waveform characteristics at sites with low (field AGB measurements to original and adjusted LVIS waveforms to detect the forest AGB interval along a forest - non-forest transition in which the LVIS waveform lose the ability to discern differences in AGB. Our results help identify the lower end the forest biomass range that a ~20m footprint waveform LiDAR can detect, which can help infer accumulation of biomass after disturbances and during forest expansion, and which can guide the use of LiDAR within a multi-sensor fusion biomass mapping approach.

  9. Analysis of LFM-waveform Libraries for Cognitive Tracking Maneuvering Targets

    Directory of Open Access Journals (Sweden)

    Wang Hongyan

    2016-01-01

    Full Text Available Based on the idea of the waveform agility in cognitive radars,the waveform libraries for maneuvering target tracking are discussed. LFM-waveform libraries are designed according to different combinations of chirp parameters and FrFT rotation angles. By applying the interact multiple model (IMM algorithm in tracking maneuvering targets, transmitted waveform is called real time from the LFM-waveform libraries. The waveforms are selected from the library according to the criterion of maximum mutual information between the current state of knowledge of the model and the measurement. Simulation results show that waveform library containing certain amount LFM-waveforms can improve the performance of cognitive tracking radar.

  10. Ultrasonic transverse velocity calibration of standard blocks for use in non-destructive testing

    International Nuclear Information System (INIS)

    Silva, C E R; Braz, D S; Maggi, L E; Felix, R P B Costa

    2015-01-01

    Standard blocks are employed in the verification of the equipment used in Ultrasound Non-Destructive Testing. To assure the metrology reliability of all the measurement process, it is necessary to calibrate or certify these Standard blocks. In this work, the transverse wave velocity and main dimensions were assessed according to the specifications ISO Standards. For transverse wave velocity measurement, a 5 MHz transverse wave transducer, a waveform generator, an oscilloscope and a computer with a program developed in LabVIEW TM were used. Concerning the transverse wave velocity calibration, only two Standard blocks of the 4 tested is in accordance with the standard

  11. The OSCAR experiment: using full-waveform inversion in the analysis of young oceanic crust

    Science.gov (United States)

    Silverton, Akela; Morgan, Joanna; Wilson, Dean; Hobbs, Richard

    2017-04-01

    The OSCAR experiment aims to derive an integrated model to better explain the effects of heat loss and alteration by hydrothermal fluids, associated with the cooling of young oceanic crust at an axial ridge. High-resolution seismic imaging of the sediments and basaltic basement can be used to map fluid flow pathways between the oceanic crust and the surrounding ocean. To obtain these high-resolution images, we undertake full-waveform inversion (FWI), an advanced seismic imaging technique capable of resolving velocity heterogeneities at a wide range of length scales, from background trends to fine-scale geological/crustal detail, in a fully data-driven automated manner. This technology is widely used within the petroleum sector due to its potential to obtain high-resolution P-wave velocity models that lead to improvements in migrated seismic images of the subsurface. Here, we use the P-wave velocity model obtained from travel-time tomography as the starting model in the application of acoustic, time-domain FWI to a multichannel streamer field dataset acquired in the east Pacific along a profile between the Costa Rica spreading centre and the Ocean Drilling Program (ODP) borehole 504B, where the crust is approximately six million years old. FWI iteratively improves the velocity model by minimizing the misfit between the predicted data and the field data. It seeks to find a high-fidelity velocity model that is capable of matching individual seismic waveforms of the original raw field dataset, with an initial focus on matching the low-frequency components of the early arriving energy. Quality assurance methods adopted during the inversion ensure convergence in the direction of the global minimum. We demonstrate that FWI is able to recover fine-scale, high-resolution velocity heterogeneities within the young oceanic crust along the profile. The highly resolved FWI velocity model is useful in the identification of the layer 2A/2B interface and low-velocity layers that

  12. Flow pumping system for physiological waveforms.

    Science.gov (United States)

    Tsai, William; Savaş, Omer

    2010-02-01

    A pulsatile flow pumping system is developed to replicate flow waveforms with reasonable accuracy for experiments simulating physiological blood flows at numerous points in the body. The system divides the task of flow waveform generation between two pumps: a gear pump generates the mean component and a piston pump generates the oscillatory component. The system is driven by two programmable servo controllers. The frequency response of the system is used to characterize its operation. The system has been successfully tested in vascular flow experiments where sinusoidal, carotid, and coronary flow waveforms are replicated.

  13. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    International Nuclear Information System (INIS)

    Meng, Yiqing; Lucas, Gary P

    2017-01-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas–water and oil–gas–water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the

  14. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    Science.gov (United States)

    Meng, Yiqing; Lucas, Gary P.

    2017-05-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water

  15. Statistical gravitational waveform models: What to simulate next?

    Science.gov (United States)

    Doctor, Zoheyr; Farr, Ben; Holz, Daniel E.; Pürrer, Michael

    2017-12-01

    Models of gravitational waveforms play a critical role in detecting and characterizing the gravitational waves (GWs) from compact binary coalescences. Waveforms from numerical relativity (NR), while highly accurate, are too computationally expensive to produce to be directly used with Bayesian parameter estimation tools like Markov-chain-Monte-Carlo and nested sampling. We propose a Gaussian process regression (GPR) method to generate reduced-order-model waveforms based only on existing accurate (e.g. NR) simulations. Using a training set of simulated waveforms, our GPR approach produces interpolated waveforms along with uncertainties across the parameter space. As a proof of concept, we use a training set of IMRPhenomD waveforms to build a GPR model in the 2-d parameter space of mass ratio q and equal-and-aligned spin χ1=χ2. Using a regular, equally-spaced grid of 120 IMRPhenomD training waveforms in q ∈[1 ,3 ] and χ1∈[-0.5 ,0.5 ], the GPR mean approximates IMRPhenomD in this space to mismatches below 4.3 ×10-5. Our approach could in principle use training waveforms directly from numerical relativity. Beyond interpolation of waveforms, we also present a greedy algorithm that utilizes the errors provided by our GPR model to optimize the placement of future simulations. In a fiducial test case we find that using the greedy algorithm to iteratively add simulations achieves GPR errors that are ˜1 order of magnitude lower than the errors from using Latin-hypercube or square training grids.

  16. Adaptive phase k-means algorithm for waveform classification

    Science.gov (United States)

    Song, Chengyun; Liu, Zhining; Wang, Yaojun; Xu, Feng; Li, Xingming; Hu, Guangmin

    2018-01-01

    Waveform classification is a powerful technique for seismic facies analysis that describes the heterogeneity and compartments within a reservoir. Horizon interpretation is a critical step in waveform classification. However, the horizon often produces inconsistent waveform phase, and thus results in an unsatisfied classification. To alleviate this problem, an adaptive phase waveform classification method called the adaptive phase k-means is introduced in this paper. Our method improves the traditional k-means algorithm using an adaptive phase distance for waveform similarity measure. The proposed distance is a measure with variable phases as it moves from sample to sample along the traces. Model traces are also updated with the best phase interference in the iterative process. Therefore, our method is robust to phase variations caused by the interpretation horizon. We tested the effectiveness of our algorithm by applying it to synthetic and real data. The satisfactory results reveal that the proposed method tolerates certain waveform phase variation and is a good tool for seismic facies analysis.

  17. Waveform Catalog, Extreme Mass Ratio Binary (Capture)

    Data.gov (United States)

    National Aeronautics and Space Administration — Numerically-generated gravitational waveforms for circular inspiral into Kerr black holes. These waveforms were developed using Scott Hughes' black hole perturbation...

  18. Factors influencing the renal arterial Doppler waveform: a simulation study using an electrical circuit model (secondary publication)

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Chang Kyu [Dept. of Radiology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul (Korea, Republic of); Han, Bong Soo [Dept. of Radiological Science, College of Health Science, Yonsei University, Wonju (Korea, Republic of); Kim, Seung Hyup [Dept. of Radiology, Institute of Radiation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2016-01-15

    The goal of this study was to evaluate the effect of vascular compliance, resistance, and pulse rate on the resistive index (RI) by using an electrical circuit model to simulate renal blood flow. In order to analyze the renal arterial Doppler waveform, we modeled the renal blood-flow circuit with an equivalent simple electrical circuit containing resistance, inductance, and capacitance. The relationships among the impedance, resistance, and compliance of the circuit were derived from well-known equations, including Kirchhoff’s current law for alternating current circuits. Simulated velocity-time profiles for pulsatile flow were generated using Mathematica (Wolfram Research) and the influence of resistance, compliance, and pulse rate on waveforms and the RI was evaluated. Resistance and compliance were found to alter the waveforms independently. The impedance of the circuit increased with increasing proximal compliance, proximal resistance, and distal resistance. The impedance decreased with increasing distal compliance. The RI of the circuit decreased with increasing proximal compliance and resistance. The RI increased with increasing distal compliance and resistance. No positive correlation between impedance and the RI was found. Pulse rate was found to be an extrinsic factor that also influenced the RI. This simulation study using an electrical circuit model led to a better understanding of the renal arterial Doppler waveform and the RI, which may be useful for interpreting Doppler findings in various clinical settings.

  19. Factors influencing the renal arterial Doppler waveform: a simulation study using an electrical circuit model (secondary publication)

    International Nuclear Information System (INIS)

    Sung, Chang Kyu; Han, Bong Soo; Kim, Seung Hyup

    2016-01-01

    The goal of this study was to evaluate the effect of vascular compliance, resistance, and pulse rate on the resistive index (RI) by using an electrical circuit model to simulate renal blood flow. In order to analyze the renal arterial Doppler waveform, we modeled the renal blood-flow circuit with an equivalent simple electrical circuit containing resistance, inductance, and capacitance. The relationships among the impedance, resistance, and compliance of the circuit were derived from well-known equations, including Kirchhoff’s current law for alternating current circuits. Simulated velocity-time profiles for pulsatile flow were generated using Mathematica (Wolfram Research) and the influence of resistance, compliance, and pulse rate on waveforms and the RI was evaluated. Resistance and compliance were found to alter the waveforms independently. The impedance of the circuit increased with increasing proximal compliance, proximal resistance, and distal resistance. The impedance decreased with increasing distal compliance. The RI of the circuit decreased with increasing proximal compliance and resistance. The RI increased with increasing distal compliance and resistance. No positive correlation between impedance and the RI was found. Pulse rate was found to be an extrinsic factor that also influenced the RI. This simulation study using an electrical circuit model led to a better understanding of the renal arterial Doppler waveform and the RI, which may be useful for interpreting Doppler findings in various clinical settings

  20. Compressive full waveform lidar

    Science.gov (United States)

    Yang, Weiyi; Ke, Jun

    2017-05-01

    To avoid high bandwidth detector, fast speed A/D converter, and large size memory disk, a compressive full waveform LIDAR system, which uses a temporally modulated laser instead of a pulsed laser, is studied in this paper. Full waveform data from NEON (National Ecological Observatory Network) are used. Random binary patterns are used to modulate the source. To achieve 0.15 m ranging resolution, a 100 MSPS A/D converter is assumed to make measurements. SPIRAL algorithm with canonical basis is employed when Poisson noise is considered in the low illuminated condition.

  1. Determination of velocity correction factors for real-time air velocity monitoring in underground mines

    OpenAIRE

    Zhou, Lihong; Yuan, Liming; Thomas, Rick; Iannacchione, Anthony

    2017-01-01

    When there are installations of air velocity sensors in the mining industry for real-time airflow monitoring, a problem exists with how the monitored air velocity at a fixed location corresponds to the average air velocity, which is used to determine the volume flow rate of air in an entry with the cross-sectional area. Correction factors have been practically employed to convert a measured centerline air velocity to the average air velocity. However, studies on the recommended correction fac...

  2. A Denoising Method for LiDAR Full-Waveform Data

    Directory of Open Access Journals (Sweden)

    Xudong Lai

    2015-01-01

    Full Text Available Decomposition of LiDAR full-waveform data can not only enhance the density and positioning accuracy of a point cloud, but also provide other useful parameters, such as pulse width, peak amplitude, and peak position which are important information for subsequent processing. Full-waveform data usually contain some random noises. Traditional filtering algorithms always cause distortion in the waveform. λ/μ filtering algorithm is based on Mean Shift method. It can smooth the signal iteratively and will not cause any distortion in the waveform. In this paper, an improved λ/μ filtering algorithm is proposed, and several experiments on both simulated waveform data and real waveform data are implemented to prove the effectiveness of the proposed algorithm.

  3. Assessing the blood pressure waveform of the carotid artery using an ultrasound image processing method

    Energy Technology Data Exchange (ETDEWEB)

    Soleimani, Effat; Mokhtari-Dizaji, Manijhe [Dept. of Medical Physics, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Fatouraee, Nasser [Dept. of Medical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Saben, Hazhir [Dept. Radiology, Imaging Center of Imam Khomaini Hospital, Tehran Medical Sciences University, Tehran (Iran, Islamic Republic of)

    2017-04-15

    The aim of this study was to introduce and implement a noninvasive method to derive the carotid artery pressure waveform directly by processing diagnostic sonograms of the carotid artery. Ultrasound image sequences of 20 healthy male subjects (age, 36±9 years) were recorded during three cardiac cycles. The internal diameter and blood velocity waveforms were extracted from consecutive sonograms over the cardiac cycles by using custom analysis programs written in MATLAB. Finally, the application of a mathematical equation resulted in time changes of the arterial pressure. The resulting pressures were calibrated using the mean and the diastolic pressure of the radial artery. A good correlation was found between the mean carotid blood pressure obtained from the ultrasound image processing and the mean radial blood pressure obtained using a standard digital sphygmomanometer (R=0.91). The mean absolute difference between the carotid calibrated pulse pressures and those measured clinically was -1.333±6.548 mm Hg. The results of this study suggest that consecutive sonograms of the carotid artery can be used for estimating a blood pressure waveform. We believe that our results promote a noninvasive technique for clinical applications that overcomes the reproducibility problems of common carotid artery tonometry with technical and anatomical causes.

  4. Assessing the blood pressure waveform of the carotid artery using an ultrasound image processing method

    International Nuclear Information System (INIS)

    Soleimani, Effat; Mokhtari-Dizaji, Manijhe; Fatouraee, Nasser; Saben, Hazhir

    2017-01-01

    The aim of this study was to introduce and implement a noninvasive method to derive the carotid artery pressure waveform directly by processing diagnostic sonograms of the carotid artery. Ultrasound image sequences of 20 healthy male subjects (age, 36±9 years) were recorded during three cardiac cycles. The internal diameter and blood velocity waveforms were extracted from consecutive sonograms over the cardiac cycles by using custom analysis programs written in MATLAB. Finally, the application of a mathematical equation resulted in time changes of the arterial pressure. The resulting pressures were calibrated using the mean and the diastolic pressure of the radial artery. A good correlation was found between the mean carotid blood pressure obtained from the ultrasound image processing and the mean radial blood pressure obtained using a standard digital sphygmomanometer (R=0.91). The mean absolute difference between the carotid calibrated pulse pressures and those measured clinically was -1.333±6.548 mm Hg. The results of this study suggest that consecutive sonograms of the carotid artery can be used for estimating a blood pressure waveform. We believe that our results promote a noninvasive technique for clinical applications that overcomes the reproducibility problems of common carotid artery tonometry with technical and anatomical causes

  5. Experimental 3-D Vector Velocity Estimation with Row-Column Addressed Arrays

    DEFF Research Database (Denmark)

    Holbek, Simon; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2016-01-01

    Experimental 3-D vector flow estimates obtained with a 62+62 2-D row-column (RC) array with integrated apodization are presented. A transverse oscillation (TO) velocity estimator is implemented on a 3.0 MHz RC array, to yield realtime 3-D vector flow in a cross-sectional scan plane at 750 frames...... per second. The method is validated in a straight-vessel phantom (Ø = 8 mm) connected to a flow pump capable of generating timevarying carotid waveforms. The out-of-plane velocity component perpendicular to the cross section of the vessel and the crosssectional area is used to estimate volumetric flow...

  6. A Time Domain Waveform for Testing General Relativity

    International Nuclear Information System (INIS)

    Huwyler, Cédric; Jetzer, Philippe; Porter, Edward K

    2015-01-01

    Gravitational-wave parameter estimation is only as good as the theory the waveform generation models are based upon. It is therefore crucial to test General Relativity (GR) once data becomes available. Many previous works, such as studies connected with the ppE framework by Yunes and Pretorius, rely on the stationary phase approximation (SPA) to model deviations from GR in the frequency domain. As Fast Fourier Transform algorithms have become considerably faster and in order to circumvent possible problems with the SPA, we test GR with corrected time domain waveforms instead of SPA waveforms. Since a considerable amount of work has been done already in the field using SPA waveforms, we establish a connection between leading-order-corrected waveforms in time and frequency domain, concentrating on phase-only corrected terms. In a Markov Chain Monte Carlo study, whose results are preliminary and will only be available later, we will assess the ability of the eLISA detector to measure deviations from GR for signals coming from supermassive black hole inspirals using these corrected waveforms. (paper)

  7. Frequency-domain waveform inversion using the unwrapped phase

    KAUST Repository

    Choi, Yun Seok

    2011-01-01

    Phase wrapping in the frequency-domain (or cycle skipping in the time-domain) is the major cause of the local minima problem in the waveform inversion. The unwrapped phase has the potential to provide us with a robust and reliable waveform inversion, with reduced local minima. We propose a waveform inversion algorithm using the unwrapped phase objective function in the frequency-domain. The unwrapped phase, or what we call the instantaneous traveltime, is given by the imaginary part of dividing the derivative of the wavefield with respect to the angular frequency by the wavefield itself. As a result, the objective function is given a traveltime-like function, which allows us to smooth it and reduce its nonlinearity. The gradient of the objective function is computed using the back-propagation algorithm based on the adjoint-state technique. We apply both our waveform inversion algorithm using the unwrapped phase and the conventional waveform inversion and show that our inversion algorithm gives better convergence to the true model than the conventional waveform inversion. © 2011 Society of Exploration Geophysicists.

  8. 3D elastic-orthorhombic anisotropic full-waveform inversion: Application to field OBC data

    KAUST Repository

    Oh, Juwon; Alkhalifah, Tariq Ali

    2016-01-01

    For the purpose of extracting higher resolution information from a 3D field data set, we apply a 3D elastic orthorhombic (ORT) anisotropic full waveform inversion (FWI) to hopefully better represent the physics of the Earth. We utilize what we consider as the optimal parameterization for surface acquired seismic data over a potentially orthorhombic media. This parameterization admits the possibility of incorporating a hierarchical implementation moving from higher anisotropy symmetry to lower ones. From the analysis of the radiation pattern of this new parameterization, we focus the inversion of the 3D data on the parameters that may have imprint on the data with minimal tradeoff, and as a result we invert for the horizontal P-wave velocity model, an ε1 model, its orthorhombic deviation, and the shear wave velocity. The inverted higher resolution models provide reasonable insights of the medium.

  9. 3D elastic-orthorhombic anisotropic full-waveform inversion: Application to field OBC data

    KAUST Repository

    Oh, Juwon

    2016-09-06

    For the purpose of extracting higher resolution information from a 3D field data set, we apply a 3D elastic orthorhombic (ORT) anisotropic full waveform inversion (FWI) to hopefully better represent the physics of the Earth. We utilize what we consider as the optimal parameterization for surface acquired seismic data over a potentially orthorhombic media. This parameterization admits the possibility of incorporating a hierarchical implementation moving from higher anisotropy symmetry to lower ones. From the analysis of the radiation pattern of this new parameterization, we focus the inversion of the 3D data on the parameters that may have imprint on the data with minimal tradeoff, and as a result we invert for the horizontal P-wave velocity model, an ε1 model, its orthorhombic deviation, and the shear wave velocity. The inverted higher resolution models provide reasonable insights of the medium.

  10. Ion velocities in a micro-cathode arc thruster

    International Nuclear Information System (INIS)

    Zhuang Taisen; Shashurin, Alexey; Keidar, Michael; Beilis, Isak

    2012-01-01

    Ion velocities in the plasma jet generated by the micro-cathode arc thruster are studied by means of time-of-flight method using enhanced ion detection system (EIDS). The EIDS triggers perturbations (spikes) on arc current waveform, and the larger current in the spike generates denser plasma bunches propagating along with the mainstream plasma. The EIDS utilizes double electrostatic probes rather than single probes. The average Ti ion velocity is measured to be around 2×10 4 m/s without a magnetic field. It was found that the application of a magnetic field does not change ion velocities in the interelectrode region while leads to ion acceleration in the free expanding plasma plume by a factor of about 2. Ion velocities of about 3.5×10 4 m/s were detected for the magnetic field of about 300 mT at distance of about 100–200 mm from the cathode. It is proposed that plasma is accelerated due to Lorentz force. The average thrust is calculated using the ion velocity measurements and the cathode mass consumption rate, and its increase with the magnetic field is demonstrated.

  11. Inverting reflections using full-waveform inversion with inaccurate starting models

    KAUST Repository

    AlTheyab, Abdullah

    2015-08-19

    We present a method for inverting seismic reflections using full-waveform inversion (FWI) with inaccurate starting models. For a layered medium, near-offset reflections (with zero angle of incidence) are unlikely to be cycle-skipped regardless of the low-wavenumber velocity error in the initial models. Therefore, we use them as a starting point for FWI, and the subsurface velocity model is then updated during the FWI iterations using reflection wavepaths from varying offsets that are not cycle-skipped. To enhance low-wavenumber updates and accelerate the convergence, we take several passes through the non-linear Gauss-Seidel iterations, where we invert traces from a narrow range of near offsets and finally end at the far offsets. Every pass is followed by applying smoothing to the cumulative slowness update. The smoothing is strong at the early stages and relaxed at later iterations to allow for a gradual reconstruction of the subsurface model in a multiscale manner. Applications to synthetic and field data, starting from inaccurate models, show significant low-wavenumber updates and flattening of common-image gathers after many iterations.

  12. Adaptive OFDM Radar Waveform Design for Improved Micro-Doppler Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Engineering Science Advanced Research, Computer Science and Mathematics Division

    2014-07-01

    Here we analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a rotating target having multiple scattering centers. The use of a frequency-diverse OFDM signal enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. We characterize the accuracy of micro-Doppler frequency estimation by computing the Cramer-Rao bound (CRB) on the angular-velocity estimate of the target. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to the OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations with respect to the signal-to-noise ratios, number of temporal samples, and number of OFDM subcarriers. We also analysed numerically the improvement in estimation accuracy due to the adaptive waveform design. A grid-based maximum likelihood estimation technique is applied to evaluate the corresponding mean-squared error performance.

  13. Changes in seismic velocity during the first 14 months of the 2004–2008 eruption of Mount St. Helens, Washington

    Science.gov (United States)

    Hotovec-Ellis, A.J.; Vidale, J.E.; Gomberg, Joan S.; Thelen, Weston A.; Moran, Seth C.

    2015-01-01

    Mount St. Helens began erupting in late 2004 following an 18 year quiescence. Swarms of repeating earthquakes accompanied the extrusion of a mostly solid dacite dome over the next 4 years. In some cases the waveforms from these earthquakes evolved slowly, likely reflecting changes in the properties of the volcano that affect seismic wave propagation. We use coda-wave interferometry to quantify small changes in seismic velocity structure (usually <1%) between two similar earthquakes and employed waveforms from several hundred families of repeating earthquakes together to create a continuous function of velocity change observed at permanent stations operated within 20 km of the volcano. The high rate of earthquakes allowed tracking of velocity changes on an hourly time scale. Changes in velocity were largest near the newly extruding dome and likely related to shallow deformation as magma first worked its way to the surface. We found strong correlation between velocity changes and the inverse of real-time seismic amplitude measurements during the first 3 weeks of activity, suggesting that fluctuations of pressure in the shallow subsurface may have driven both seismicity and velocity changes. Velocity changes during the remainder of the eruption likely result from a complex interplay of multiple effects and are not well explained by any single factor alone, highlighting the need for complementary geophysical data when interpreting velocity changes.

  14. Determine Earthquake Rupture Directivity Using Taiwan TSMIP Strong Motion Waveforms

    Science.gov (United States)

    Chang, Kaiwen; Chi, Wu-Cheng; Lai, Ying-Ju; Gung, YuanCheng

    2013-04-01

    Inverting seismic waveforms for the finite fault source parameters is important for studying the physics of earthquake rupture processes. It is also significant to image seismogenic structures in urban areas. Here we analyze the finite-source process and test for the causative fault plane using the accelerograms recorded by the Taiwan Strong-Motion Instrumentation Program (TSMIP) stations. The point source parameters for the mainshock and aftershocks were first obtained by complete waveform moment tensor inversions. We then use the seismograms generated by the aftershocks as empirical Green's functions (EGFs) to retrieve the apparent source time functions (ASTFs) of near-field stations using projected Landweber deconvolution approach. The method for identifying the fault plane relies on the spatial patterns of the apparent source time function durations which depend on the angle between rupture direction and the take-off angle and azimuth of the ray. These derived duration patterns then are compared with the theoretical patterns, which are functions of the following parameters, including focal depth, epicentral distance, average crustal 1D velocity, fault plane attitude, and rupture direction on the fault plane. As a result, the ASTFs derived from EGFs can be used to infer the ruptured fault plane and the rupture direction. Finally we used part of the catalogs to study important seismogenic structures in the area near Chiayi, Taiwan, where a damaging earthquake has occurred about a century ago. The preliminary results show a strike-slip earthquake on 22 October 1999 (Mw 5.6) has ruptured unilaterally toward SSW on a sub-vertical fault. The procedure developed from this study can be applied to other strong motion waveforms recorded from other earthquakes to better understand their kinematic source parameters.

  15. Full Waveform Adjoint Seismic Tomography of the Antarctic Plate

    Science.gov (United States)

    Lloyd, A. J.; Wiens, D.; Zhu, H.; Tromp, J.; Nyblade, A.; Anandakrishnan, S.; Aster, R. C.; Huerta, A. D.; Winberry, J. P.; Wilson, T. J.; Dalziel, I. W. D.; Hansen, S. E.; Shore, P.

    2017-12-01

    Recent studies investigating the response and influence of the solid Earth on the evolution of the cryosphere demonstrate the need to account for 3D rheological structure to better predict ice sheet dynamics, stability, and future sea level impact, as well as to improve glacial isostatic adjustment models and more accurately measure ice mass loss. Critical rheological properties like mantle viscosity and lithospheric thickness may be estimated from shear wave velocity models that, for Antarctica, would ideally possess regional-scale resolution extending down to at least the base of the transition zone (i.e. 670 km depth). However, current global- and continental-scale seismic velocity models are unable to obtain both the resolution and spatial coverage necessary, do not take advantage of the full set of available Antarctic data, and, in most instance, employ traditional seismic imaging techniques that utilize limited seismogram information. We utilize 3-component earthquake waveforms from almost 300 Antarctic broadband seismic stations and 26 southern mid-latitude stations from 270 earthquakes (5.5 ≤ Mw ≤ 7.0) between 2001-2003 and 2007-2016 to conduct a full-waveform adjoint inversion for Antarctica and surrounding regions of the Antarctic plate. Necessary forward and adjoint wavefield simulations are performed utilizing SPECFEM3D_GLOBE with the aid of the Texas Advanced Computing Center. We utilize phase observations from seismogram segments containing P, S, Rayleigh, and Love waves, including reflections and overtones, which are autonomously identified using FLEXWIN. The FLEXWIN analysis is carried out over a short (15-50 s) and long (initially 50-150 s) period band that target body waves, or body and surface waves, respectively. As our model is iteratively refined, the short-period corner of the long period band is gradually reduced to 25 s as the model converges over 20 linearized inversion iterations. We will briefly present this new high

  16. Elastic reflection waveform inversion with variable density

    KAUST Repository

    Li, Yuanyuan; Li, Zhenchun; Alkhalifah, Tariq Ali; Guo, Qiang

    2017-01-01

    Elastic full waveform inversion (FWI) provides a better description of the subsurface than those given by the acoustic assumption. However it suffers from a more serious cycle skipping problem compared with the latter. Reflection waveform inversion

  17. Waveform Design for Wireless Power Transfer

    Science.gov (United States)

    Clerckx, Bruno; Bayguzina, Ekaterina

    2016-12-01

    Far-field Wireless Power Transfer (WPT) has attracted significant attention in recent years. Despite the rapid progress, the emphasis of the research community in the last decade has remained largely concentrated on improving the design of energy harvester (so-called rectenna) and has left aside the effect of transmitter design. In this paper, we study the design of transmit waveform so as to enhance the DC power at the output of the rectenna. We derive a tractable model of the non-linearity of the rectenna and compare with a linear model conventionally used in the literature. We then use those models to design novel multisine waveforms that are adaptive to the channel state information (CSI). Interestingly, while the linear model favours narrowband transmission with all the power allocated to a single frequency, the non-linear model favours a power allocation over multiple frequencies. Through realistic simulations, waveforms designed based on the non-linear model are shown to provide significant gains (in terms of harvested DC power) over those designed based on the linear model and over non-adaptive waveforms. We also compute analytically the theoretical scaling laws of the harvested energy for various waveforms as a function of the number of sinewaves and transmit antennas. Those scaling laws highlight the benefits of CSI knowledge at the transmitter in WPT and of a WPT design based on a non-linear rectenna model over a linear model. Results also motivate the study of a promising architecture relying on large-scale multisine multi-antenna waveforms for WPT. As a final note, results stress the importance of modeling and accounting for the non-linearity of the rectenna in any system design involving wireless power.

  18. System and Method for Generating a Frequency Modulated Linear Laser Waveform

    Science.gov (United States)

    Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)

    2017-01-01

    A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.

  19. Full waveform inversion in the frequency domain using classified time-domain residual wavefields

    Science.gov (United States)

    Son, Woohyun; Koo, Nam-Hyung; Kim, Byoung-Yeop; Lee, Ho-Young; Joo, Yonghwan

    2017-04-01

    We perform the acoustic full waveform inversion in the frequency domain using residual wavefields that have been separated in the time domain. We sort the residual wavefields in the time domain according to the order of absolute amplitudes. Then, the residual wavefields are separated into several groups in the time domain. To analyze the characteristics of the residual wavefields, we compare the residual wavefields of conventional method with those of our residual separation method. From the residual analysis, the amplitude spectrum obtained from the trace before separation appears to have little energy at the lower frequency bands. However, the amplitude spectrum obtained from our strategy is regularized by the separation process, which means that the low-frequency components are emphasized. Therefore, our method helps to emphasize low-frequency components of residual wavefields. Then, we generate the frequency-domain residual wavefields by taking the Fourier transform of the separated time-domain residual wavefields. With these wavefields, we perform the gradient-based full waveform inversion in the frequency domain using back-propagation technique. Through a comparison of gradient directions, we confirm that our separation method can better describe the sub-salt image than the conventional approach. The proposed method is tested on the SEG/EAGE salt-dome model. The inversion results show that our algorithm is better than the conventional gradient based waveform inversion in the frequency domain, especially for deeper parts of the velocity model.

  20. Pseudo LRM waveforms from CryoSat SARin acquisition

    Science.gov (United States)

    Scagliola, Michele; Fornari, Marco; Bouffard, Jerome; Parrinello, Tommaso; Féménias, Pierre

    2016-04-01

    CryoSat was launched on the 8th April 2010 and is the first European ice mission dedicated to the monitoring of precise changes in the thickness of polar ice sheets and floating sea ice. The main payload of CryoSat is a Ku-band pulsewidth limited radar altimeter, called SIRAL (Synthetic interferometric radar altimeter). When commanded in SARIn (synthetic aperture radar interferometry) mode, through coherent along-track processing of the returns received from two antennas, the interferometric phase related to the first arrival of the echo is used to retrieve the angle of arrival of the scattering in the across-track direction. When SIRAL operates in SAR or SARin mode, the obtained waveforms have an along-track resolution and a speckle reduction which is increased with respect to the pulse-limited waveforms. Anyway, in order to analyze the continuity of the geophysical retrieved parameters among different acquisition modes, techniques to transform SARin mode data to pseudo-LRM mode data are welcome. The transformation process is known as SAR reduction and it is worth recalling here that only approximate pseudo-LRM waveforms can be obtained in case of closed burst acquisitions, as SIRAL operates. A SAR reduction processing scheme has been developed to obtain pseudo-LRM waveforms from CryoSat SARin acquisition. As a trade-off between the along-track length on Earth surface contributing to one SARin pseudo-LRM waveform and the noisiness of the waveform itself, it has been chosen a SAR reduction approach based on the averaging of all the SARin echoes received each 20Hz, resulting in one pseudo-LRM waveform for each SARin burst given the SARin burst repetition period. SARin pseudo-LRM waveforms have been produced for CryoSat acquisition both on ice and sea surfaces, aiming at verifying the continuity of the retracked surface height over the ellipsoid between genuine LRM products and pseudo-LRM products. Moreover, the retracked height from the SARin pseudo-LRM has been

  1. The source parameters of 2013 Mw6.6 Lushan earthquake constrained with the restored local clipped seismic waveforms

    Science.gov (United States)

    Hao, J.; Zhang, J. H.; Yao, Z. X.

    2017-12-01

    We developed a method to restore the clipped seismic waveforms near epicenter using projection onto convex sets method (Zhang et al, 2016). This method was applied to rescue the local clipped waveforms of 2013 Mw 6.6 Lushan earthquake. We restored 88 out of 93 clipped waveforms of 38 broadband seismic stations of China Earthquake Networks (CEN). The epicenter distance of the nearest station to the epicenter that we can faithfully restore is only about 32 km. In order to investigate if the source parameters of earthquake could be determined exactly with the restored data, restored waveforms are utilized to get the mechanism of Lushan earthquake. We apply the generalized reflection-transmission coefficient matrix method to calculate the synthetic seismic records and simulated annealing method in inversion (Yao and Harkrider, 1983; Hao et al., 2012). We select 5 stations of CEN with the epicenter distance about 200km whose records aren't clipped and three-component velocity records are used. The result shows the strike, dip and rake angles of Lushan earthquake are 200o, 51o and 87o respectively, hereinafter "standard result". Then the clipped and restored seismic waveforms are applied respectively. The strike, dip and rake angles of clipped seismic waveforms are 184o, 53o and 72o respectively. The largest misfit of angle is 16o. In contrast, the strike, dip and rake angles of restored seismic waveforms are 198o, 51o and 87o respectively. It is very close to the "standard result". We also study the rupture history of Lushan earthquake constrained with the restored local broadband and teleseismic waves based on finite fault method (Hao et al., 2013). The result consists with that constrained with the strong motion and teleseismic waves (Hao et al., 2013), especially the location of the patch with larger slip. In real-time seismology, determining the source parameters as soon as possible is important. This method will help us to determine the mechanism of earthquake

  2. 3-D seismic velocity and attenuation structures in the geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Syahputra, Ahmad [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Fatkhan,; Sule, Rachmat [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)

    2013-09-09

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  3. Pulse-wave morphology and pulse-wave velocity in healthy human volunteers

    DEFF Research Database (Denmark)

    Frimodt-Møller, M; Nielsen, A H; Kamper, A-L

    2006-01-01

    as smoking caused significant changes in both PWA and PWV parameters and an inter-arm difference was observed. Intra- and interobserver reproducibility was good. CONCLUSIONS: Pulse-wave measurements by applanation tonometry should be undertaken in the same arm during fasting and smoking abstinence.......OBJECTIVE: Applanation tonometry for pulse-wave analysis (PWA) and determination of pulse-wave velocity (PWV) is a non-invasive method for assessment of the central aortic pressure waveform and indices of arterial stiffness. The objective of this study was to examine the influence of eating...... and smoking on PWA and PWV measurements in order to establish standard examination conditions. Furthermore, intra- and interobserver reproducibility and the effects of varying the site of measurements were observed. MATERIAL AND METHODS: Duplicate measurements of the radial pressure waveform...

  4. Regularity of particle velocity decrease with scale d distance for rockbursts and shot holes

    Czech Academy of Sciences Publication Activity Database

    Holub, Karel; Rušajová, Jana

    2015-01-01

    Roč. 20, č. 2 (2015), s. 80-85 ISSN 1335-1788 Institutional support: RVO:68145535 Keywords : rockburst * hole shot * particle velocity * scaled distance * cylindrical and spherical waveforms Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.390, year: 2015 http://actamont.tuke.sk/pdf/2015/n2/2holub.pdf

  5. 3D Multisource Full‐Waveform Inversion using Dynamic Random Phase Encoding

    KAUST Repository

    Boonyasiriwat, Chaiwoot

    2010-10-17

    We have developed a multisource full‐waveform inversion algorithm using a dynamic phase encoding strategy with dual‐randomization—both the position and polarity of simultaneous sources are randomized and changed every iteration. The dynamic dual‐randomization is used to promote the destructive interference of crosstalk noise resulting from blending a large number of common shot gathers into a supergather. We compare our multisource algorithm with various algorithms in a numerical experiment using the 3D SEG/EAGE overthrust model and show that our algorithm provides a higher‐quality velocity tomogram than the other methods that use only monorandomization. This suggests that increasing the degree of randomness in phase encoding should improve the quality of the inversion result.

  6. Seismic Full Waveform Modeling & Imaging in Attenuating Media

    Science.gov (United States)

    Guo, Peng

    Seismic attenuation strongly affects seismic waveforms by amplitude loss and velocity dispersion. Without proper inclusion of Q parameters, errors can be introduced for seismic full waveform modeling and imaging. Three different (Carcione's, Robertsson's, and the generalized Robertsson's) isotropic viscoelastic wave equations based on the generalized standard linear solid (GSLS) are evaluated. The second-order displacement equations are derived, and used to demonstrate that, with the same stress relaxation times, these viscoelastic formulations are equivalent. By introducing separate memory variables for P and S relaxation functions, Robertsson's formulation is generalized to allow different P and S wave stress relaxation times, which improves the physical consistency of the Qp and Qs modelled in the seismograms.The three formulations have comparable computational cost. 3D seismic finite-difference forward modeling is applied to anisotropic viscoelastic media. The viscoelastic T-matrix (a dynamic effective medium theory) relates frequency-dependent anisotropic attenuation and velocity to reservoir properties in fractured HTI media, based on the meso-scale fluid flow attenuation mechanism. The seismic signatures resulting from changing viscoelastic reservoir properties are easily visible. Analysis of 3D viscoelastic seismograms suggests that anisotropic attenuation is a potential tool for reservoir characterization. To compensate the Q effects during reverse-time migration (RTM) in viscoacoustic and viscoelastic media, amplitudes need to be compensated during wave propagation; the propagation velocity of the Q-compensated wavefield needs to be the same as in the attenuating wavefield, to restore the phase information. Both amplitude and phase can be compensated when the velocity dispersion and the amplitude loss are decoupled. For wave equations based on the GSLS, because Q effects are coupled in the memory variables, Q-compensated wavefield propagates faster than

  7. Optimal current waveforms for brushless permanent magnet motors

    Science.gov (United States)

    Moehle, Nicholas; Boyd, Stephen

    2015-07-01

    In this paper, we give energy-optimal current waveforms for a permanent magnet synchronous motor that result in a desired average torque. Our formulation generalises previous work by including a general back-electromotive force (EMF) wave shape, voltage and current limits, an arbitrary phase winding connection, a simple eddy current loss model, and a trade-off between power loss and torque ripple. Determining the optimal current waveforms requires solving a small convex optimisation problem. We show how to use the alternating direction method of multipliers to find the optimal current in milliseconds or hundreds of microseconds, depending on the processor used, which allows the possibility of generating optimal waveforms in real time. This allows us to adapt in real time to changes in the operating requirements or in the model, such as a change in resistance with winding temperature, or even gross changes like the failure of one winding. Suboptimal waveforms are available in tens or hundreds of microseconds, allowing for quick response after abrupt changes in the desired torque. We demonstrate our approach on a simple numerical example, in which we give the optimal waveforms for a motor with a sinusoidal back-EMF, and for a motor with a more complicated, nonsinusoidal waveform, in both the constant-torque region and constant-power region.

  8. Depths of Intraplate Indian Ocean Earthquakes from Waveform Modeling

    Science.gov (United States)

    Baca, A. J.; Polet, J.

    2014-12-01

    The Indian Ocean is a region of complex tectonics and anomalous seismicity. The ocean floor in this region exhibits many bathymetric features, most notably the multiple inactive fracture zones within the Wharton Basin and the Ninetyeast Ridge. The 11 April 2012 MW 8.7 and 8.2 strike-slip events that took place in this area are unique because their rupture appears to have extended to a depth where brittle failure, and thus seismic activity, was considered to be impossible. We analyze multiple intraplate earthquakes that have occurred throughout the Indian Ocean to better constrain their focal depths in order to enhance our understanding of how deep intraplate events are occurring and more importantly determine if the ruptures are originating within a ductile regime. Selected events are located within the Indian Ocean away from major plate boundaries. A majority are within the deforming Indo-Australian tectonic plate. Events primarily display thrust mechanisms with some strike-slip or a combination of the two. All events are between MW5.5-6.5. Event selections were handled this way in order to facilitate the analysis of teleseismic waveforms using a point source approximation. From these criteria we gathered a suite of 15 intraplate events. Synthetic seismograms of direct P-waves and depth phases are computed using a 1-D propagator matrix approach and compared with global teleseismic waveform data to determine a best depth for each event. To generate our synthetic seismograms we utilized the CRUST1.0 software, a global crustal model that generates velocity values at the hypocenter of our events. Our waveform analysis results reveal that our depths diverge from the Global Centroid Moment Tensor (GCMT) depths, which underestimate our deep lithosphere events and overestimate our shallow depths by as much as 17 km. We determined a depth of 45km for our deepest event. We will show a comparison of our final earthquake depths with the lithospheric thickness based on

  9. Velocity and Q Structure of the Quaternary Sediment in Bohai Basin, China

    Science.gov (United States)

    Chong, J.; Luo, Y.; Ni, S.; Chen, Y.

    2008-12-01

    Heavily populated by Beijing and Tianjin cities, Bohai Basin is a seismically active Cenozoic basin suffering from huge lost by devastating earthquakes, such as Tangshan earthquake. There have been some studies about three dimensional structure of the lithosphere in this region; however the attenuation (Qp and Qs) of the surfacial quaternary sediment has not been studied at natural seismic frequency (1-10HZ), which is crucial to earthquake hazards study. Borehole seismic records of micro earthquake provide us a good way to study the velocity and Q attenuation of the surfacial structure (0-500m). We found that there are two pulses well separated with simple waveforms while analyzing borehole seismic records from the 2006 Mw4.9 WenAn earthquake sequence. Then we performed waveform modeling with Generalized Ray Theory (GRT) to confirm that the two pulses are direct wave and surface reflected wave, and found that the average Vp and Vs of the top 300m in this region are about 1.83km/s and 0.42km/s while Vp/Vs falls in a high value of 4.4. We also modeled surface reflected wave with Propagating Matrix method to study the value of Qs and the surfacial velocity structure. Our modeling indicates that Qs should be larger than 30, even up to 100, this is quite larger than the typically assumed extremely low Q (~=10) found by Hauksson et al (Hauksson et al, 1987; Blakeslee and Malin, 1991) but much similar to that of Langston (2002). Also, the velocity gradient just beneath the free surface (0-50m) is very large and velocity increases slowly at larger depth. Our modeling demonstrates the value of borehole seismic records in resolving shallow velocity and attenuation structure, and hence their significance in earthquake hazard simulation.

  10. Visco-elastic controlled-source full waveform inversion without surface waves

    Science.gov (United States)

    Paschke, Marco; Krause, Martin; Bleibinhaus, Florian

    2016-04-01

    We developed a frequency-domain visco-elastic full waveform inversion for onshore seismic experiments with topography. The forward modeling is based on a finite-difference time-domain algorithm by Robertsson that uses the image-method to ensure a stress-free condition at the surface. The time-domain data is Fourier-transformed at every point in the model space during the forward modeling for a given set of frequencies. The motivation for this approach is the reduced amount of memory when computing kernels, and the straightforward implementation of the multiscale approach. For the inversion, we calculate the Frechet derivative matrix explicitly, and we implement a Levenberg-Marquardt scheme that allows for computing the resolution matrix. To reduce the size of the Frechet derivative matrix, and to stabilize the inversion, an adapted inverse mesh is used. The node spacing is controlled by the velocity distribution and the chosen frequencies. To focus the inversion on body waves (P, P-coda, and S) we mute the surface waves from the data. Consistent spatiotemporal weighting factors are applied to the wavefields during the Fourier transform to obtain the corresponding kernels. We test our code with a synthetic study using the Marmousi model with arbitrary topography. This study also demonstrates the importance of topography and muting surface waves in controlled-source full waveform inversion.

  11. Full waveform inversion using envelope-based global correlation norm

    Science.gov (United States)

    Oh, Ju-Won; Alkhalifah, Tariq

    2018-05-01

    To increase the feasibility of full waveform inversion on real data, we suggest a new objective function, which is defined as the global correlation of the envelopes of modelled and observed data. The envelope-based global correlation norm has the advantage of the envelope inversion that generates artificial low-frequency information, which provides the possibility to recover long-wavelength structure in an early stage. In addition, the envelope-based global correlation norm maintains the advantage of the global correlation norm, which reduces the sensitivity of the misfit to amplitude errors so that the performance of inversion on real data can be enhanced when the exact source wavelet is not available and more complex physics are ignored. Through the synthetic example for 2-D SEG/EAGE overthrust model with inaccurate source wavelet, we compare the performance of four different approaches, which are the least-squares waveform inversion, least-squares envelope inversion, global correlation norm and envelope-based global correlation norm. Finally, we apply the envelope-based global correlation norm on the 3-D Ocean Bottom Cable (OBC) data from the North Sea. The envelope-based global correlation norm captures the strong reflections from the high-velocity caprock and generates artificial low-frequency reflection energy that helps us recover long-wavelength structure of the model domain in the early stages. From this long-wavelength model, the conventional global correlation norm is sequentially applied to invert for higher-resolution features of the model.

  12. WFCatalog: A catalogue for seismological waveform data

    Science.gov (United States)

    Trani, Luca; Koymans, Mathijs; Atkinson, Malcolm; Sleeman, Reinoud; Filgueira, Rosa

    2017-09-01

    This paper reports advances in seismic waveform description and discovery leading to a new seismological service and presents the key steps in its design, implementation and adoption. This service, named WFCatalog, which stands for waveform catalogue, accommodates features of seismological waveform data. Therefore, it meets the need for seismologists to be able to select waveform data based on seismic waveform features as well as sensor geolocations and temporal specifications. We describe the collaborative design methods and the technical solution showing the central role of seismic feature catalogues in framing the technical and operational delivery of the new service. Also, we provide an overview of the complex environment wherein this endeavour is scoped and the related challenges discussed. As multi-disciplinary, multi-organisational and global collaboration is necessary to address today's challenges, canonical representations can provide a focus for collaboration and conceptual tools for agreeing directions. Such collaborations can be fostered and formalised by rallying intellectual effort into the design of novel scientific catalogues and the services that support them. This work offers an example of the benefits generated by involving cross-disciplinary skills (e.g. data and domain expertise) from the early stages of design, and by sustaining the engagement with the target community throughout the delivery and deployment process.

  13. Estimation of Dynamic Friction Process of the Akatani Landslide Based on the Waveform Inversion and Numerical Simulation

    Science.gov (United States)

    Yamada, M.; Mangeney, A.; Moretti, L.; Matsushi, Y.

    2014-12-01

    Understanding physical parameters, such as frictional coefficients, velocity change, and dynamic history, is important issue for assessing and managing the risks posed by deep-seated catastrophic landslides. Previously, landslide motion has been inferred qualitatively from topographic changes caused by the event, and occasionally from eyewitness reports. However, these conventional approaches are unable to evaluate source processes and dynamic parameters. In this study, we use broadband seismic recordings to trace the dynamic process of the deep-seated Akatani landslide that occurred on the Kii Peninsula, Japan, which is one of the best recorded large slope failures. Based on the previous results of waveform inversions and precise topographic surveys done before and after the event, we applied numerical simulations using the SHALTOP numerical model (Mangeney et al., 2007). This model describes homogeneous continuous granular flows on a 3D topography based on a depth averaged thin layer approximation. We assume a Coulomb's friction law with a constant friction coefficient, i. e. the friction is independent of the sliding velocity. We varied the friction coefficients in the simulation so that the resulting force acting on the surface agrees with the single force estimated from the seismic waveform inversion. Figure shows the force history of the east-west components after the band-pass filtering between 10-100 seconds. The force history of the simulation with frictional coefficient 0.27 (thin red line) the best agrees with the result of seismic waveform inversion (thick gray line). Although the amplitude is slightly different, phases are coherent for the main three pulses. This is an evidence that the point-source approximation works reasonably well for this particular event. The friction coefficient during the sliding was estimated to be 0.38 based on the seismic waveform inversion performed by the previous study and on the sliding block model (Yamada et al., 2013

  14. A method for measuring the electron drift velocity in working gas using a Frisch-grid ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Huaiyong; Wang, Zhimin; Zhang, Luyu; Chen, Jinxiang; Zhang, Guohui, E-mail: guohuizhang@pku.edu.cn

    2016-12-21

    A method for measuring the electron drift velocity in working gas is proposed. Based on the cathode and the anode signal waveforms of the Frisch-grid ionization chamber, the electron drift velocity is extracted. With this method, the electron drift velocities in Ar + 10% CH{sub 4}, Ar + 3.5% CO{sub 2} and Kr + 2.7% CO{sub 2} gases have been measured and the results are compared with the existing measurements and the simulating results. Using this method, the electron drift velocity can be monitored throughout the experiment of charged particle without bothering the measurement of other parameters, such as the energy and orientation.

  15. Fast Prediction and Evaluation of Gravitational Waveforms Using Surrogate Models

    Science.gov (United States)

    Field, Scott E.; Galley, Chad R.; Hesthaven, Jan S.; Kaye, Jason; Tiglio, Manuel

    2014-07-01

    We propose a solution to the problem of quickly and accurately predicting gravitational waveforms within any given physical model. The method is relevant for both real-time applications and more traditional scenarios where the generation of waveforms using standard methods can be prohibitively expensive. Our approach is based on three offline steps resulting in an accurate reduced order model in both parameter and physical dimensions that can be used as a surrogate for the true or fiducial waveform family. First, a set of m parameter values is determined using a greedy algorithm from which a reduced basis representation is constructed. Second, these m parameters induce the selection of m time values for interpolating a waveform time series using an empirical interpolant that is built for the fiducial waveform family. Third, a fit in the parameter dimension is performed for the waveform's value at each of these m times. The cost of predicting L waveform time samples for a generic parameter choice is of order O(mL+mcfit) online operations, where cfit denotes the fitting function operation count and, typically, m ≪L. The result is a compact, computationally efficient, and accurate surrogate model that retains the original physics of the fiducial waveform family while also being fast to evaluate. We generate accurate surrogate models for effective-one-body waveforms of nonspinning binary black hole coalescences with durations as long as 105M, mass ratios from 1 to 10, and for multiple spherical harmonic modes. We find that these surrogates are more than 3 orders of magnitude faster to evaluate as compared to the cost of generating effective-one-body waveforms in standard ways. Surrogate model building for other waveform families and models follows the same steps and has the same low computational online scaling cost. For expensive numerical simulations of binary black hole coalescences, we thus anticipate extremely large speedups in generating new waveforms with a

  16. Efficient scattering-angle enrichment for a nonlinear inversion of the background and perturbations components of a velocity model

    KAUST Repository

    Wu, Zedong

    2017-07-04

    Reflection-waveform inversion (RWI) can help us reduce the nonlinearity of the standard full-waveform inversion (FWI) by inverting for the background velocity model using the wave-path of a single scattered wavefield to an image. However, current RWI implementations usually neglect the multi-scattered energy, which will cause some artifacts in the image and the update of the background. To improve existing RWI implementations in taking multi-scattered energy into consideration, we split the velocity model into background and perturbation components, integrate them directly in the wave equation, and formulate a new optimization problem for both components. In this case, the perturbed model is no longer a single-scattering model, but includes all scattering. Through introducing a new cheap implementation of scattering angle enrichment, the separation of the background and perturbation components can be implemented efficiently. We optimize both components simultaneously to produce updates to the velocity model that is nonlinear with respect to both the background and the perturbation. The newly introduced perturbation model can absorb the non-smooth update of the background in a more consistent way. We apply the proposed approach on the Marmousi model with data that contain frequencies starting from 5 Hz to show that this method can converge to an accurate velocity starting from a linearly increasing initial velocity. Also, our proposed method works well when applied to a field data set.

  17. Auto-correlation based intelligent technique for complex waveform presentation and measurement

    International Nuclear Information System (INIS)

    Rana, K P S; Singh, R; Sayann, K S

    2009-01-01

    Waveform acquisition and presentation forms the heart of many measurement systems. Particularly, data acquisition and presentation of repeating complex signals like sine sweep and frequency-modulated signals introduces the challenge of waveform time period estimation and live waveform presentation. This paper presents an intelligent technique, for waveform period estimation of both the complex and simple waveforms, based on the normalized auto-correlation method. The proposed technique is demonstrated using LabVIEW based intensive simulations on several simple and complex waveforms. Implementation of the technique is successfully demonstrated using LabVIEW based virtual instrumentation. Sine sweep vibration waveforms are successfully presented and measured for electrodynamic shaker system generated vibrations. The proposed method is also suitable for digital storage oscilloscope (DSO) triggering, for complex signals acquisition and presentation. This intelligence can be embodied into the DSO, making it an intelligent measurement system, catering wide varieties of the waveforms. The proposed technique, simulation results, robustness study and implementation results are presented in this paper.

  18. Interferometric phase velocity measurements in the auroral electrojet

    International Nuclear Information System (INIS)

    Labelle, J.; Kinter, P.M.; Kelley, M.C.

    1986-01-01

    A double-probe electric field detector and two spatially separated fixed-bias Langmuir probes were flown on a Taurus-Tomahawk sounding rocket launched from Poker Flat Research Range in March 1982. Interesting wave data have been obtained from about 10 s of the downleg portion of the flight during which the rocket passed through the auroral electrojet. Here the electric field receiver and both density fluctuation (deltan/n) receivers responded to a broad band of turbulence centered at 105 km altitude and at frequencies generally below 4 kHz. Closer examination of the two deltan/n turbulent waveforms reveals that they are correlated, and from the phase difference between the two signals, the phase velocity of the waves in the rocket reference frame is inferred. The magnitude and direction of the observed phase velocity are consistent either with waves which travel at the ion sound speed (Csub(s)) or with waves which travel at the electron drift velocity. The observed phase velocity varies by about 50% over a 5 km altitude range - an effect which probably results from shear in the zonal neutral wind, although unfortunately no simultaneous neutral wind measurements exist to confirm this. (author)

  19. A recipe for practical full-waveform inversion in orthorhombic anisotropy

    KAUST Repository

    Alkhalifah, Tariq Ali; Masmoudi, Nabil; Oh, Juwon

    2016-01-01

    Multi parameter full waveform inversion (FWI) usually suffers from the inherent tradeoffin the multi parameter nature of the model space. In orthorhombic anisotropy, such tradeoffis magnified by the large number of parameters involved in representing the elastic or even the acoustic approximation of such a medium. However, using a new parameterization with distinctive scattering features, we can condition FWI to invert for the parameters the data are sensitive to at different stages, scales, and locations in the model. Specifically, with a combination made up of a velocity and particular dimensionless ratios of the elastic coefficients, the scattering potential of the anisotropic parameters have stationary scattering radiation patterns as a function of the type of anisotropy. With our new parametrization, the data is mainly sensitive to the scattering potential of 4 parameters: the horizontal velocity in the x direction, x, which provides scattering mainly near zero offset in the x vertical plane, εd, which is the ratio of the horizontal velocity squared in the x and x direction, and δ3 describing the anellipticity in the horizontal plane. Since, with this parametrization, the radiation pattern for the horizontal velocity and ε is azimuth independent, we can perform an initial VTI inversion for these two parameters, and then use the other two parameters to fit the azimuth variation in the data. This can be done at the reservoir level or any region of the model. Including the transmission from reflections, the migration velocity analysis (MVA) component, into the picture, the multi azimuth surface seismic data are mainly sensitive to the long wavelength components of uh, δ3, and εd through the diving waves, and η1, ηd, and δ3, in the transmission to or from reflectors (especially, in the presence of large offsets). They are also sensitive to the short wavelength component of uh and ε.

  20. A recipe for practical full-waveform inversion in orthorhombic anisotropy

    KAUST Repository

    Alkhalifah, Tariq Ali

    2016-09-06

    Multi parameter full waveform inversion (FWI) usually suffers from the inherent tradeoffin the multi parameter nature of the model space. In orthorhombic anisotropy, such tradeoffis magnified by the large number of parameters involved in representing the elastic or even the acoustic approximation of such a medium. However, using a new parameterization with distinctive scattering features, we can condition FWI to invert for the parameters the data are sensitive to at different stages, scales, and locations in the model. Specifically, with a combination made up of a velocity and particular dimensionless ratios of the elastic coefficients, the scattering potential of the anisotropic parameters have stationary scattering radiation patterns as a function of the type of anisotropy. With our new parametrization, the data is mainly sensitive to the scattering potential of 4 parameters: the horizontal velocity in the x direction, x, which provides scattering mainly near zero offset in the x vertical plane, εd, which is the ratio of the horizontal velocity squared in the x and x direction, and δ3 describing the anellipticity in the horizontal plane. Since, with this parametrization, the radiation pattern for the horizontal velocity and ε is azimuth independent, we can perform an initial VTI inversion for these two parameters, and then use the other two parameters to fit the azimuth variation in the data. This can be done at the reservoir level or any region of the model. Including the transmission from reflections, the migration velocity analysis (MVA) component, into the picture, the multi azimuth surface seismic data are mainly sensitive to the long wavelength components of uh, δ3, and εd through the diving waves, and η1, ηd, and δ3, in the transmission to or from reflectors (especially, in the presence of large offsets). They are also sensitive to the short wavelength component of uh and ε.

  1. Interparameter trade-off quantification and reduction in isotropic-elastic full-waveform inversion: synthetic experiments and Hussar land data set application

    Science.gov (United States)

    Pan, Wenyong; Geng, Yu; Innanen, Kristopher A.

    2018-05-01

    The problem of inverting for multiple physical parameters in the subsurface using seismic full-waveform inversion (FWI) is complicated by interparameter trade-off arising from inherent ambiguities between different physical parameters. Parameter resolution is often characterized using scattering radiation patterns, but these neglect some important aspects of interparameter trade-off. More general analysis and mitigation of interparameter trade-off in isotropic-elastic FWI is possible through judiciously chosen multiparameter Hessian matrix-vector products. We show that products of multiparameter Hessian off-diagonal blocks with model perturbation vectors, referred to as interparameter contamination kernels, are central to the approach. We apply the multiparameter Hessian to various vectors designed to provide information regarding the strengths and characteristics of interparameter contamination, both locally and within the whole volume. With numerical experiments, we observe that S-wave velocity perturbations introduce strong contaminations into density and phase-reversed contaminations into P-wave velocity, but themselves experience only limited contaminations from other parameters. Based on these findings, we introduce a novel strategy to mitigate the influence of interparameter trade-off with approximate contamination kernels. Furthermore, we recommend that the local spatial and interparameter trade-off of the inverted models be quantified using extended multiparameter point spread functions (EMPSFs) obtained with pre-conditioned conjugate-gradient algorithm. Compared to traditional point spread functions, the EMPSFs appear to provide more accurate measurements for resolution analysis, by de-blurring the estimations, scaling magnitudes and mitigating interparameter contamination. Approximate eigenvalue volumes constructed with stochastic probing approach are proposed to evaluate the resolution of the inverted models within the whole model. With a synthetic

  2. Design of a 9-loop quasi-exponential waveform generator.

    Science.gov (United States)

    Banerjee, Partha; Shukla, Rohit; Shyam, Anurag

    2015-12-01

    We know in an under-damped L-C-R series circuit, current follows a damped sinusoidal waveform. But if a number of sinusoidal waveforms of decreasing time period, generated in an L-C-R circuit, be combined in first quarter cycle of time period, then a quasi-exponential nature of output current waveform can be achieved. In an L-C-R series circuit, quasi-exponential current waveform shows a rising current derivative and thereby finds many applications in pulsed power. Here, we have described design and experiment details of a 9-loop quasi-exponential waveform generator. In that, design details of magnetic switches have also been described. In the experiment, output current of 26 kA has been achieved. It has been shown that how well the experimentally obtained output current profile matches with the numerically computed output.

  3. Developed vibration waveform monitoring unit for CBM

    International Nuclear Information System (INIS)

    Hamada, T.; Hotsuta, K.; Hirose, I.; Morita, E.

    2007-01-01

    In nuclear power plants, many rotating machines such as pumps and fans are in use. Shikoku Research Institute Inc. has recently developed easy-to-use tools to facilitate the maintenance of such equipment. They include a battery-operated vibration waveform monitoring unit which allows unmanned vibration monitoring on a regular basis and data collection even from intermittently operating equipment, a waveform data collector which can be used for easy collection, storage, control, and analysis of raw vibration waveform data during normal operation, and vibration analysis and evaluation tools. A combination of these tools has a high potential for optimization of rotating equipment maintenance. (author)

  4. Impedance cardiography: a comparison of cardiac output vs waveform analysis for assessing left ventricular systolic dysfunction.

    Science.gov (United States)

    DeMarzo, Arthur P; Kelly, Russell F; Calvin, James E

    2007-01-01

    Early detection of asymptomatic left ventricular systolic dysfunction (LVSD) is beneficial in managing heart failure. Recent studies have cast doubt on the usefulness of cardiac output as an indicator of LVSD. In impedance cardiography (ICG), the dZ/dt waveform has a systolic wave called the E wave. This study looked at measurements of the amplitude and area of the E wave compared with ICG-derived cardiac output, stroke volume, cardiac index, and stroke index as methods of assessing LVSD. ICG data were obtained from patients (n=26) admitted to a coronary care unit. Clinical LVSD severity was stratified into 4 groups (none, mild, moderate, and severe) based on echocardiography data and standard clinical assessment by a cardiologist blinded to ICG data. Statistical analysis showed that the E wave amplitude and area were better indicators of the level of LVSD than cardiac output, stroke volume, cardiac index, or stroke index. ICG waveform analysis has potential as a simple point-of-care test for detecting LVSD in asymptomatic patients at high risk for developing heart failure and for monitoring LVSD in patients being treated for heart failure.

  5. A new optimization approach for source-encoding full-waveform inversion

    NARCIS (Netherlands)

    Moghaddam, P.P.; Keers, H.; Herrmann, F.J.; Mulder, W.A.

    2013-01-01

    Waveform inversion is the method of choice for determining a highly heterogeneous subsurface structure. However, conventional waveform inversion requires that the wavefield for each source is computed separately. This makes it very expensive for realistic 3D seismic surveys. Source-encoding waveform

  6. Rupture process of the 2016 Mw 7.8 Ecuador earthquake from joint inversion of InSAR data and teleseismic P waveforms

    Science.gov (United States)

    Yi, Lei; Xu, Caijun; Wen, Yangmao; Zhang, Xu; Jiang, Guoyan

    2018-01-01

    The 2016 Ecuador earthquake ruptured the Ecuador-Colombia subduction interface where several historic megathrust earthquakes had occurred. In order to determine a detailed rupture model, Interferometric Synthetic Aperture Radar (InSAR) images and teleseismic data sets were objectively weighted by using a modified Akaika's Bayesian Information Criterion (ABIC) method to jointly invert for the rupture process of the earthquake. In modeling the rupture process, a constrained waveform length method, unlike the traditional subjective selected waveform length method, was used since the lengths of inverted waveforms were strictly constrained by the rupture velocity and rise time (the slip duration time). The optimal rupture velocity and rise time of the earthquake were estimated from grid search, which were determined to be 2.0 km/s and 20 s, respectively. The inverted model shows that the event is dominated by thrust movement and the released moment is 5.75 × 1020 Nm (Mw 7.77). The slip distribution extends southward along the Ecuador coast line in an elongated stripe at a depth between 10 and 25 km. The slip model is composed of two asperities and slipped over 4 m. The source time function is approximate 80 s that separated into two segments corresponding to the two asperities. The small magnitude of the slip occurred in the updip section of the fault plane resulted in small tsunami waves that were verified by observations near the coast. We suggest a possible situation that the rupture zone of the 2016 earthquake is likely not overlapped with that of the 1942 earthquake.

  7. Multiparameter Elastic Full Waveform Inversion With Facies Constraints

    KAUST Repository

    Zhang, Zhendong; Alkhalifah, Tariq Ali; Naeini, Ehsan Zabihi

    2017-01-01

    Full waveform inversion (FWI) aims fully benefit from all the data characteristics to estimate the parameters describing the assumed physics of the subsurface. However, current efforts to utilize full waveform inversion as a tool beyond acoustic

  8. An application of multiscale early arrival waveform inversion to shallow seismic data

    KAUST Repository

    Yu, Han; Hanafy, Sherif M.

    2014-01-01

    We estimate the near surface velocity distribution by applying multiscale early arrival waveform inversion (MEWI) to shallow seismic land data. This data set is collected at Wadi Qudaid in western Saudi Arabia with the purpose of characterizing the shallow subsurface for its water storage and reuse potential. To enhance the accuracy of MEWI, we correct for the attenuation effects with an estimated factor Q, and also extract a natural source wavelet from the data. We then applied MEWI to invert the processed data for tomograms on different scales starting from a traveltime tomogram as our initial velocity model. Results suggest that, compared to traveltime tomography, MEWI can generate a more highly resolved velocity tomogram from shallow seismic data by inverting its low-frequency components on coarse grids and its high-frequency components on fine grids. The estimated water table in the MEWI tomogram is generally consistent with, but 9% deeper than, the traveltime tomogram, showing that the water storage in this wadi might be less than expected from the traveltime tomogram. We believe that the more accurate MEWI tomogram will make an economically important difference in assessing the storage potential of this wadi and wadis throughout the world. © 2014 European Association of Geoscientists & Engineers.

  9. Workflows for Full Waveform Inversions

    Science.gov (United States)

    Boehm, Christian; Krischer, Lion; Afanasiev, Michael; van Driel, Martin; May, Dave A.; Rietmann, Max; Fichtner, Andreas

    2017-04-01

    Despite many theoretical advances and the increasing availability of high-performance computing clusters, full seismic waveform inversions still face considerable challenges regarding data and workflow management. While the community has access to solvers which can harness modern heterogeneous computing architectures, the computational bottleneck has fallen to these often manpower-bounded issues that need to be overcome to facilitate further progress. Modern inversions involve huge amounts of data and require a tight integration between numerical PDE solvers, data acquisition and processing systems, nonlinear optimization libraries, and job orchestration frameworks. To this end we created a set of libraries and applications revolving around Salvus (http://salvus.io), a novel software package designed to solve large-scale full waveform inverse problems. This presentation focuses on solving passive source seismic full waveform inversions from local to global scales with Salvus. We discuss (i) design choices for the aforementioned components required for full waveform modeling and inversion, (ii) their implementation in the Salvus framework, and (iii) how it is all tied together by a usable workflow system. We combine state-of-the-art algorithms ranging from high-order finite-element solutions of the wave equation to quasi-Newton optimization algorithms using trust-region methods that can handle inexact derivatives. All is steered by an automated interactive graph-based workflow framework capable of orchestrating all necessary pieces. This naturally facilitates the creation of new Earth models and hopefully sparks new scientific insights. Additionally, and even more importantly, it enhances reproducibility and reliability of the final results.

  10. Investigating the Local Three-dimensional Velocity Structure of the 2008 Taoyuan Earthquake Sequence of Kaohsiung, Taiwan

    Science.gov (United States)

    Shih, M. H.; Huang, B. S.

    2016-12-01

    March 4, 2008, a moderate earthquake (ML 5.2) occurred in Taoyuan district of Kaohsiung County in the southern Taiwan. It was followed by numerous aftershocks in the following 48 hours, including three events with magnitude larger than 4. The Taoyuan earthquake sequence occurred during the TAIGER (Taiwan Integrated Geodynamic Research) project which is to image lithospheric structure of Taiwan orogeny. The high-resolution waveform data of this sequence were well-recorded by a large number of recording stations belong to several different permanent and TAIGER networks all around Taiwan. We had collected the waveform data and archived to a mega database. Then, we had identified 2,340 events from database in the preliminary locating process by using 1-D velocity model. In this study, we applied the double-difference tomography to investigate not only the fault geometry of the main shock but also the detailed 3-D velocity structure in this area. A total of 3,034 events were selected from preliminary locating result and CWBSN catalog in the vicinity. The resulting aftershocks are extended along the NE-SW direction and located on a 45° SE-dipping plane which agrees to one of the nodal planes of Global CMT solution (strike = 45°, dip = 40° and rake = 119°). We can identify a clear low-velocity area which is enclosed by events next to the main shock in the final 3D velocity model. We also recognized a 45°-dipping zone which is extended to the ground surface with low-velocity; meanwhile, velocity structure variation in study area correspond with major geologic units in Taiwan.

  11. SURFACE FITTING FILTERING OF LIDAR POINT CLOUD WITH WAVEFORM INFORMATION

    Directory of Open Access Journals (Sweden)

    S. Xing

    2017-09-01

    Full Text Available Full-waveform LiDAR is an active technology of photogrammetry and remote sensing. It provides more detailed information about objects along the path of a laser pulse than discrete-return topographic LiDAR. The point cloud and waveform information with high quality can be obtained by waveform decomposition, which could make contributions to accurate filtering. The surface fitting filtering method with waveform information is proposed to present such advantage. Firstly, discrete point cloud and waveform parameters are resolved by global convergent Levenberg Marquardt decomposition. Secondly, the ground seed points are selected, of which the abnormal ones are detected by waveform parameters and robust estimation. Thirdly, the terrain surface is fitted and the height difference threshold is determined in consideration of window size and mean square error. Finally, the points are classified gradually with the rising of window size. The filtering process is finished until window size is larger than threshold. The waveform data in urban, farmland and mountain areas from “WATER (Watershed Allied Telemetry Experimental Research” are selected for experiments. Results prove that compared with traditional method, the accuracy of point cloud filtering is further improved and the proposed method has highly practical value.

  12. Measurement of fast-changing low velocities by photonic Doppler velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Song Hongwei; Wu Xianqian; Huang Chenguang; Wei Yangpeng; Wang Xi [Key Laboratory for Hydrodynamics and Ocean Engineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2012-07-15

    Despite the increasing popularity of photonic Doppler velocimetry (PDV) in shock wave experiments, its capability of capturing low particle velocities while changing rapidly is still questionable. The paper discusses the performance of short time Fourier transform (STFT) and continuous wavelet transform (CWT) in processing fringe signals of fast-changing low velocities measured by PDV. Two typical experiments are carried out to evaluate the performance. In the laser shock peening test, the CWT gives a better interpretation to the free surface velocity history, where the elastic precursor, main plastic wave, and elastic release wave can be clearly identified. The velocities of stress waves, Hugoniot elastic limit, and the amplitude of shock pressure induced by laser can be obtained from the measurement. In the Kolsky-bar based tests, both methods show validity of processing the longitudinal velocity signal of incident bar, whereas CWT improperly interprets the radial velocity of the shocked sample at the beginning period, indicating the sensitiveness of the CWT to the background noise. STFT is relatively robust in extracting waveforms of low signal-to-noise ratio. Data processing method greatly affects the temporal resolution and velocity resolution of a given fringe signal, usually CWT demonstrates a better local temporal resolution and velocity resolution, due to its adaptability to the local frequency, also due to the finer time-frequency product according to the uncertainty principle.

  13. Phase-space topography characterization of nonlinear ultrasound waveforms.

    Science.gov (United States)

    Dehghan-Niri, Ehsan; Al-Beer, Helem

    2018-03-01

    Fundamental understanding of ultrasound interaction with material discontinuities having closed interfaces has many engineering applications such as nondestructive evaluation of defects like kissing bonds and cracks in critical structural and mechanical components. In this paper, to analyze the acoustic field nonlinearities due to defects with closed interfaces, the use of a common technique in nonlinear physics, based on a phase-space topography construction of ultrasound waveform, is proposed. The central idea is to complement the "time" and "frequency" domain analyses with the "phase-space" domain analysis of nonlinear ultrasound waveforms. A nonlinear time series method known as pseudo phase-space topography construction is used to construct equivalent phase-space portrait of measured ultrasound waveforms. Several nonlinear models are considered to numerically simulate nonlinear ultrasound waveforms. The phase-space response of the simulated waveforms is shown to provide different topographic information, while the frequency domain shows similar spectral behavior. Thus, model classification can be substantially enhanced in the phase-space domain. Experimental results on high strength aluminum samples show that the phase-space transformation provides a unique detection and classification capabilities. The Poincaré map of the phase-space domain is also used to better understand the nonlinear behavior of ultrasound waveforms. It is shown that the analysis of ultrasound nonlinearities is more convenient and informative in the phase-space domain than in the frequency domain. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. 3D Electric Waveforms of Solar Wind Turbulence

    Science.gov (United States)

    Kellogg, P. J.; Goetz, K.; Monson, S. J.

    2018-01-01

    Electric fields provide the major coupling between the turbulence of the solar wind and particles. A large part of the turbulent spectrum of fluctuations in the solar wind is thought to be kinetic Alfvén waves; however, whistlers have recently been found to be important. In this article, we attempt to determine the mode identification of individual waveforms using the three-dimensional antenna system of the SWaves experiments on the STEREO spacecraft. Samples are chosen using waveforms with an apparent periodic structure, selected visually. The short antennas of STEREO respond to density fluctuations and to electric fields. Measurement of four quantities using only three antennas presents a problem. Methods to overcome or to ignore this difficulty are presented. We attempt to decide whether the waveforms correspond to the whistler mode or the Alfvén mode by using the direction of rotation of the signal. Most of the waveforms are so oblique—nearly linearly polarized—that the direction cannot be determined. However, about one third of the waveforms can be identified, and whistlers and Alfvén waves are present in roughly equal numbers. The selected waveforms are very intense but intermittent and are orders of magnitude stronger than the average, yet their accumulated signal accounts for a large fraction of the average. The average, however, is supposed to be the result of a turbulent mixture of many waves, not short coherent events. This presents a puzzle for future work.

  15. Circuiti ad impulsi e digitali volume di aggiornamento

    CERN Document Server

    Millman, Jacob

    1967-01-01

    Questo terzo volume "Circuiti ad impulsi e digitali" contiene la traduzione di parte degli argomenti trattati nel volume "Pulse, digital and switching waveforms" degli autori J. Millman e H. Taub edito dalla Mc Graw-Hill Book Company nel 1965. Gli autori nella presentazione del volume inglese dichiarano di averlo originariamente previsto come una seconda edizione di "Pulse and digital circuits" di cui i primi due volumi delle Edizioni Bizzarri sono la traduzione.

  16. Ocular pressure waveform reflects ventricular bigeminy and aortic insufficiency

    Directory of Open Access Journals (Sweden)

    Jean B Kassem

    2015-01-01

    Full Text Available Ocular pulse amplitude (OPA is defined as the difference between maximum and minimum intraocular pressure (IOP during a cardiac cycle. Average values of OPA range from 1 to 4 mmHg. The purpose of this investigation is to determine the source of an irregular IOP waveform with elevated OPA in a 48-year-old male. Ocular pressure waveforms had an unusual shape consistent with early ventricular contraction. With a normal IOP, OPA was 9 mmHg, which is extraordinarily high. The subject was examined by a cardiologist and was determined to be in ventricular bigeminy. In addition, he had bounding carotid pulses and echocardiogram confirmed aortic insufficiency. After replacement of the aortic valve, the bigeminy resolved and the ocular pulse waveform became regular in appearance with an OPA of 1.6-2.0 mmHg. The ocular pressure waveform is a direct reflection of hemodynamics. Evaluating this waveform may provide an additional opportunity for screening subjects for cardiovascular anomalies and arrhythmias.

  17. Gravitational Waveforms in the Early Inspiral of Binary Black Hole Systems

    Science.gov (United States)

    Barkett, Kevin; Kumar, Prayush; Bhagwat, Swetha; Brown, Duncan; Scheel, Mark; Szilagyi, Bela; Simulating eXtreme Spacetimes Collaboration

    2015-04-01

    The inspiral, merger and ringdown of compact object binaries are important targets for gravitational wave detection by aLIGO. Detection and parameter estimation will require long, accurate waveforms for comparison. There are a number of analytical models for generating gravitational waveforms for these systems, but the only way to ensure their consistency and correctness is by comparing with numerical relativity simulations that cover many inspiral orbits. We've simulated a number of binary black hole systems with mass ratio 7 and a moderate, aligned spin on the larger black hole. We have attached these numerical waveforms to analytical waveform models to generate long hybrid gravitational waveforms that span the entire aLIGO frequency band. We analyze the robustness of these hybrid waveforms and measure the faithfulness of different hybrids with each other to obtain an estimate on how long future numerical simulations need to be in order to ensure that waveforms are accurate enough for use by aLIGO.

  18. Performance Prediction of Constrained Waveform Design for Adaptive Radar

    Science.gov (United States)

    2016-11-01

    the famous Woodward quote, having a ubiquitous feeling for all radar waveform design (and performance prediction) researchers , that is found at the end...discuss research that develops performance prediction models to quantify the impact on SINR when an amplitude constraint is placed on a radar waveform...optimize the radar perfor- mance for the particular scenario and tasks. There have also been several survey papers on various topics in waveform design for

  19. Use of the Kalman Filter for Aortic Pressure Waveform Noise Reduction.

    Science.gov (United States)

    Lam, Frank; Lu, Hsiang-Wei; Wu, Chung-Che; Aliyazicioglu, Zekeriya; Kang, James S

    2017-01-01

    Clinical applications that require extraction and interpretation of physiological signals or waveforms are susceptible to corruption by noise or artifacts. Real-time hemodynamic monitoring systems are important for clinicians to assess the hemodynamic stability of surgical or intensive care patients by interpreting hemodynamic parameters generated by an analysis of aortic blood pressure (ABP) waveform measurements. Since hemodynamic parameter estimation algorithms often detect events and features from measured ABP waveforms to generate hemodynamic parameters, noise and artifacts integrated into ABP waveforms can severely distort the interpretation of hemodynamic parameters by hemodynamic algorithms. In this article, we propose the use of the Kalman filter and the 4-element Windkessel model with static parameters, arterial compliance C , peripheral resistance R , aortic impedance r , and the inertia of blood L , to represent aortic circulation for generating accurate estimations of ABP waveforms through noise and artifact reduction. Results show the Kalman filter could very effectively eliminate noise and generate a good estimation from the noisy ABP waveform based on the past state history. The power spectrum of the measured ABP waveform and the synthesized ABP waveform shows two similar harmonic frequencies.

  20. Krylov subspace acceleration of waveform relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Lumsdaine, A.; Wu, Deyun [Univ. of Notre Dame, IN (United States)

    1996-12-31

    Standard solution methods for numerically solving time-dependent problems typically begin by discretizing the problem on a uniform time grid and then sequentially solving for successive time points. The initial time discretization imposes a serialization to the solution process and limits parallel speedup to the speedup available from parallelizing the problem at any given time point. This bottleneck can be circumvented by the use of waveform methods in which multiple time-points of the different components of the solution are computed independently. With the waveform approach, a problem is first spatially decomposed and distributed among the processors of a parallel machine. Each processor then solves its own time-dependent subsystem over the entire interval of interest using previous iterates from other processors as inputs. Synchronization and communication between processors take place infrequently, and communication consists of large packets of information - discretized functions of time (i.e., waveforms).

  1. Determination of velocity correction factors for real-time air velocity monitoring in underground mines.

    Science.gov (United States)

    Zhou, Lihong; Yuan, Liming; Thomas, Rick; Iannacchione, Anthony

    2017-12-01

    When there are installations of air velocity sensors in the mining industry for real-time airflow monitoring, a problem exists with how the monitored air velocity at a fixed location corresponds to the average air velocity, which is used to determine the volume flow rate of air in an entry with the cross-sectional area. Correction factors have been practically employed to convert a measured centerline air velocity to the average air velocity. However, studies on the recommended correction factors of the sensor-measured air velocity to the average air velocity at cross sections are still lacking. A comprehensive airflow measurement was made at the Safety Research Coal Mine, Bruceton, PA, using three measuring methods including single-point reading, moving traverse, and fixed-point traverse. The air velocity distribution at each measuring station was analyzed using an air velocity contour map generated with Surfer ® . The correction factors at each measuring station for both the centerline and the sensor location were calculated and are discussed.

  2. Towards full waveform ambient noise inversion

    Science.gov (United States)

    Sager, Korbinian; Ermert, Laura; Boehm, Christian; Fichtner, Andreas

    2018-01-01

    In this work we investigate fundamentals of a method—referred to as full waveform ambient noise inversion—that improves the resolution of tomographic images by extracting waveform information from interstation correlation functions that cannot be used without knowing the distribution of noise sources. The fundamental idea is to drop the principle of Green function retrieval and to establish correlation functions as self-consistent observables in seismology. This involves the following steps: (1) We introduce an operator-based formulation of the forward problem of computing correlation functions. It is valid for arbitrary distributions of noise sources in both space and frequency, and for any type of medium, including 3-D elastic, heterogeneous and attenuating media. In addition, the formulation allows us to keep the derivations independent of time and frequency domain and it facilitates the application of adjoint techniques, which we use to derive efficient expressions to compute first and also second derivatives. The latter are essential for a resolution analysis that accounts for intra- and interparameter trade-offs. (2) In a forward modelling study we investigate the effect of noise sources and structure on different observables. Traveltimes are hardly affected by heterogeneous noise source distributions. On the other hand, the amplitude asymmetry of correlations is at least to first order insensitive to unmodelled Earth structure. Energy and waveform differences are sensitive to both structure and the distribution of noise sources. (3) We design and implement an appropriate inversion scheme, where the extraction of waveform information is successively increased. We demonstrate that full waveform ambient noise inversion has the potential to go beyond ambient noise tomography based on Green function retrieval and to refine noise source location, which is essential for a better understanding of noise generation. Inherent trade-offs between source and structure

  3. Fast Prediction and Evaluation of Gravitational Waveforms Using Surrogate Models

    Directory of Open Access Journals (Sweden)

    Scott E. Field

    2014-07-01

    Full Text Available We propose a solution to the problem of quickly and accurately predicting gravitational waveforms within any given physical model. The method is relevant for both real-time applications and more traditional scenarios where the generation of waveforms using standard methods can be prohibitively expensive. Our approach is based on three offline steps resulting in an accurate reduced order model in both parameter and physical dimensions that can be used as a surrogate for the true or fiducial waveform family. First, a set of m parameter values is determined using a greedy algorithm from which a reduced basis representation is constructed. Second, these m parameters induce the selection of m time values for interpolating a waveform time series using an empirical interpolant that is built for the fiducial waveform family. Third, a fit in the parameter dimension is performed for the waveform’s value at each of these m times. The cost of predicting L waveform time samples for a generic parameter choice is of order O(mL+mc_{fit} online operations, where c_{fit} denotes the fitting function operation count and, typically, m≪L. The result is a compact, computationally efficient, and accurate surrogate model that retains the original physics of the fiducial waveform family while also being fast to evaluate. We generate accurate surrogate models for effective-one-body waveforms of nonspinning binary black hole coalescences with durations as long as 10^{5}M, mass ratios from 1 to 10, and for multiple spherical harmonic modes. We find that these surrogates are more than 3 orders of magnitude faster to evaluate as compared to the cost of generating effective-one-body waveforms in standard ways. Surrogate model building for other waveform families and models follows the same steps and has the same low computational online scaling cost. For expensive numerical simulations of binary black hole coalescences, we thus anticipate extremely large speedups in

  4. Extracting Low-Frequency Information from Time Attenuation in Elastic Waveform Inversion

    Science.gov (United States)

    Guo, Xuebao; Liu, Hong; Shi, Ying; Wang, Weihong

    2017-03-01

    Low-frequency information is crucial for recovering background velocity, but the lack of low-frequency information in field data makes inversion impractical without accurate initial models. Laplace-Fourier domain waveform inversion can recover a smooth model from real data without low-frequency information, which can be used for subsequent inversion as an ideal starting model. In general, it also starts with low frequencies and includes higher frequencies at later inversion stages, while the difference is that its ultralow frequency information comes from the Laplace-Fourier domain. Meanwhile, a direct implementation of the Laplace-transformed wavefield using frequency domain inversion is also very convenient. However, because broad frequency bands are often used in the pure time domain waveform inversion, it is difficult to extract the wavefields dominated by low frequencies in this case. In this paper, low-frequency components are constructed by introducing time attenuation into the recorded residuals, and the rest of the method is identical to the traditional time domain inversion. Time windowing and frequency filtering are also applied to mitigate the ambiguity of the inverse problem. Therefore, we can start at low frequencies and to move to higher frequencies. The experiment shows that the proposed method can achieve a good inversion result in the presence of a linear initial model and records without low-frequency information.

  5. Full-waveform seismic tomography of the Vrancea, Romania, subduction region

    Science.gov (United States)

    Baron, Julie; Morelli, Andrea

    2017-12-01

    The Vrancea region is one of the few locations of deep seismicity in Europe. Seismic tomography has been able to map lithospheric downwelling, but has not been able yet to clearly discriminate between competing geodynamic interpretations of the geological and geophysical evidence available. We study the seismic structure of the Vrancea subduction zone, using adjoint-based, full-waveform tomography to map the 3D vP and vS structure in detail. We use the database that was built during the CALIXTO (Carpathian Arc Lithosphere X-Tomography) temporary experiment, restricted to the broadband sensors and local intermediate-depth events. We fit waveforms with a cross-correlation misfit criterion in separate time windows around the expected P and S arrivals, and perform 17 iterations of vP and vS model updates (altogether, requiring about 16 million CPU hours) before reaching stable convergence. Among other features, our resulting model shows a nearly vertical, high-velocity body, that overlaps with the distribution of seismicity in its northeastern part. In its southwestern part, a slab appears to dip less steeply to the NW, and is suggestive of ongoing - or recently concluded - subduction geodynamic processes. Joint inversion for vP and vS allow us to address the vP/vS ratio distribution, that marks high vP/vS in the crust beneath the Focsani sedimentary basin - possibly due to high fluid pressure - and a low vP/vS edge along the lower plane of the subducting lithosphere, that in other similar environment has been attributed to dehydration of serpentine in the slab. In spite of the restricted amount of data available, and limitations on the usable frequency pass-band, full-waveform inversion reveals its potential to improve the general quality of imaging with respect to other tomographic techniques - although at a sensible cost in terms of computing resources. Our study also shows that re-analysis of legacy data sets with up-to-date techniques may bring new, useful

  6. Method and apparatus for resonant frequency waveform modulation

    Science.gov (United States)

    Taubman, Matthew S [Richland, WA

    2011-06-07

    A resonant modulator device and process are described that provide enhanced resonant frequency waveforms to electrical devices including, e.g., laser devices. Faster, larger, and more complex modulation waveforms are obtained than can be obtained by use of conventional current controllers alone.

  7. Frequency-domain waveform inversion using the unwrapped phase

    KAUST Repository

    Choi, Yun Seok; Alkhalifah, Tariq Ali

    2011-01-01

    Phase wrapping in the frequency-domain (or cycle skipping in the time-domain) is the major cause of the local minima problem in the waveform inversion. The unwrapped phase has the potential to provide us with a robust and reliable waveform inversion

  8. Near surface velocity and Q S structure of the Quaternary sediment in Bohai basin, China

    Science.gov (United States)

    Chong, Jiajun; Ni, Sidao

    2009-10-01

    Heavily populated by Beijing and Tianjin cities, Bohai basin is a seismically active Cenozoic basin suffering from huge lost by devastating earthquakes, such as Tangshan earthquake. The attenuation ( Q P and Q S) of the surficial Quaternary sediment has not been studied at natural seismic frequency (1-10 Hz), which is crucial to earthquake hazards study. Borehole seismic records of micro earthquake provide us a good way to study the velocity and attenuation of the surficial structure (0-500 m). We found that there are two pulses well separated with simple waveforms on borehole seismic records from the 2006 M W4.9 Wen’an earthquake sequence. Then we performed waveform modeling with generalized ray theory (GRT) to confirm that the two pulses are direct wave and surface reflected wave, and found that the average ν P and ν S of the top 300 m in this region are about 1.8 km/s and 0.42 km/s, leading to high ν P/ ν S ratio of 4.3. We also modeled surface reflected wave with propagating matrix method to constrain Q S and the near surface velocity structure. Our modeling indicates that Q S is at least 30, or probably up to 100, much larger than the typically assumed extremely low Q (˜10), but consistent with Q S modeling in Mississippi embayment. Also, the velocity gradient just beneath the free surface (0-50 m) is very large and velocity increases gradually at larger depth. Our modeling demonstrates the importance of borehole seismic records in resolving shallow velocity and attenuation structure, and hence may help in earthquake hazard simulation.

  9. Development of optoelectronic monitoring system for ear arterial pressure waveforms

    Science.gov (United States)

    Sasayama, Satoshi; Imachi, Yu; Yagi, Tamotsu; Imachi, Kou; Ono, Toshirou; Man-i, Masando

    1994-02-01

    Invasive intra-arterial blood pressure measurement is the most accurate method but not practical if the subject is in motion. The apparatus developed by Wesseling et al., based on a volume-clamp method of Penaz (Finapres), is able to monitor continuous finger arterial pressure waveforms noninvasively. The limitation of Finapres is the difficulty in measuring the pressure of a subject during work that involves finger or arm action. Because the Finapres detector is attached to subject's finger, the measurements are affected by inertia of blood and hydrostatic effect cause by arm or finger motion. To overcome this problem, the authors made a detector that is attached to subject's ear and developed and optoelectronic monitoring systems for ear arterial pressure waveform (Earpres). An IR LEDs, photodiode, and air cuff comprised the detector. The detector was attached to a subject's ear, and the space adjusted between the air cuff and the rubber plate on which the LED and photodiode were positioned. To evaluate the accuracy of Earpres, the following tests were conducted with participation of 10 healthy male volunteers. The subjects rested for about five minutes, then performed standing and squatting exercises to provide wide ranges of systolic and diastolic arterial pressure. Intra- and inter-individual standard errors were calculated according to the method of van Egmond et al. As a result, average, the averages of intra-individual standard errors for earpres appeared small (3.7 and 2.7 mmHg for systolic and diastolic pressure respectively). The inter-individual standard errors for Earpres were about the same was Finapres for both systolic and diastolic pressure. The results showed the ear monitor was reliable in measuring arterial blood pressure waveforms and might be applicable to various fields such as sports medicine and ergonomics.

  10. Lane marking detection based on waveform analysis and CNN

    Science.gov (United States)

    Ye, Yang Yang; Chen, Hou Jin; Hao, Xiao Li

    2017-06-01

    Lane markings detection is a very important part of the ADAS to avoid traffic accidents. In order to obtain accurate lane markings, in this work, a novel and efficient algorithm is proposed, which analyses the waveform generated from the road image after inverse perspective mapping (IPM). The algorithm includes two main stages: the first stage uses an image preprocessing including a CNN to reduce the background and enhance the lane markings. The second stage obtains the waveform of the road image and analyzes the waveform to get lanes. The contribution of this work is that we introduce local and global features of the waveform to detect the lane markings. The results indicate the proposed method is robust in detecting and fitting the lane markings.

  11. Waveform efficiency analysis of auditory nerve fiber stimulation for cochlear implants

    International Nuclear Information System (INIS)

    Navaii, Mehdi Lotfi; Sadhedi, Hamed; Jalali, Mohsen

    2013-01-01

    Evaluation of the electrical stimulation efficiency of various stimulating waveforms is an important issue for efficient neural stimulator design. Concerning the implantable micro devices design, it is also necessary to consider the feasibility of hardware implementation of the desired waveforms. In this paper, the charge, power and energy efficiency of four waveforms (i.e. square, rising ramp, triangular and rising ramp-decaying exponential) in various durations have been simulated and evaluated based on the computational model of the auditory nerve fibers. Moreover, for a fair comparison of their feasibility, a fully integrated current generator circuit has been developed so that the desired stimulating waveforms can be generated. The simulation results show that stimulation with the square waveforms is a proper choice in short and intermediate durations while the rising ramp-decaying exponential or triangular waveforms can be employed for long durations.

  12. Inferring global upper-mantle shear attenuation structure by waveform tomography using the spectral element method

    Science.gov (United States)

    Karaoǧlu, Haydar; Romanowicz, Barbara

    2018-06-01

    We present a global upper-mantle shear wave attenuation model that is built through a hybrid full-waveform inversion algorithm applied to long-period waveforms, using the spectral element method for wavefield computations. Our inversion strategy is based on an iterative approach that involves the inversion for successive updates in the attenuation parameter (δ Q^{-1}_μ) and elastic parameters (isotropic velocity VS, and radial anisotropy parameter ξ) through a Gauss-Newton-type optimization scheme that employs envelope- and waveform-type misfit functionals for the two steps, respectively. We also include source and receiver terms in the inversion steps for attenuation structure. We conducted a total of eight iterations (six for attenuation and two for elastic structure), and one inversion for updates to source parameters. The starting model included the elastic part of the relatively high-resolution 3-D whole mantle seismic velocity model, SEMUCB-WM1, which served to account for elastic focusing effects. The data set is a subset of the three-component surface waveform data set, filtered between 400 and 60 s, that contributed to the construction of the whole-mantle tomographic model SEMUCB-WM1. We applied strict selection criteria to this data set for the attenuation iteration steps, and investigated the effect of attenuation crustal structure on the retrieved mantle attenuation structure. While a constant 1-D Qμ model with a constant value of 165 throughout the upper mantle was used as starting model for attenuation inversion, we were able to recover, in depth extent and strength, the high-attenuation zone present in the depth range 80-200 km. The final 3-D model, SEMUCB-UMQ, shows strong correlation with tectonic features down to 200-250 km depth, with low attenuation beneath the cratons, stable parts of continents and regions of old oceanic crust, and high attenuation along mid-ocean ridges and backarcs. Below 250 km, we observe strong attenuation in the

  13. Time-domain full waveform inversion using the gradient preconditioning based on transmitted waves energy

    KAUST Repository

    Zhang, Xiao-bo

    2017-06-01

    The gradient preconditioning approach based on seismic wave energy can effectively avoid the huge storage consumption in the gradient preconditioning algorithms based on Hessian matrices in time-domain full waveform inversion (FWI), but the accuracy is affected by the energy of reflected waves when strong reflectors are present in velocity model. To address this problem, we propose a gradient preconditioning method, which scales the gradient based on the energy of the “approximated transmitted wavefield” simulated by the nonreflecting acoustic wave equation. The method does not require computing or storing the Hessian matrix or its inverse. Furthermore, it can effectively eliminate the effects caused by geometric diffusion and non-uniformity illumination on gradient. The results of model experiments confirm that the time-domain FWI using the gradient preconditioning based on transmitted waves energy can achieve higher inversion precision for high-velocity body and the deep strata below when compared with using the gradient preconditioning based on seismic waves energy.

  14. Effects of waveform model systematics on the interpretation of GW150914

    OpenAIRE

    Abbott, B. P.; Abbott, R.; Adhikari, R. X.; Ananyeva, A.; Anderson, S. B.; Appert, S.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Biscans, S; Blackburn, J. K.; Bork, R.

    2017-01-01

    Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions, notably to neglect sub-dominant waveform harmonic modes and orbital eccentricity. Furthermore, while the models are calibrated to agree with waveforms obtained by full numerical solutions of Einstein's e...

  15. Josephson Arbitrary Waveform Synthesis With Multilevel Pulse Biasing

    Science.gov (United States)

    Brevik, Justus A.; Flowers-Jacobs, Nathan E.; Fox, Anna E.; Golden, Evan B.; Dresselhaus, Paul D.; Benz, Samuel P.

    2017-01-01

    We describe the implementation of new commercial pulse-bias electronics that have enabled an improvement in the generation of quantum-accurate waveforms both with and without low-frequency compensation biases. We have used these electronics to apply a multilevel pulse bias to the Josephson arbitrary waveform synthesizer and have generated, for the first time, a quantum-accurate bipolar sinusoidal waveform without the use of a low-frequency compensation bias current. This uncompensated 1 kHz waveform was synthesized with an rms amplitude of 325 mV and maintained its quantum accuracy over a1.5 mA operating current range. The same technique and equipment was also used to synthesize a quantum-accurate 1 MHz sinusoid with a 1.2 mA operating margin. In addition, we have synthesized a compensated 1 kHz sinusoid with an rms amplitude of 1 V and a 2.7 mA operating margin. PMID:28736494

  16. Traveltime and waveform tomography analysis of synthetic borehole seismic data based on the CO2SINK project site, Germany

    Science.gov (United States)

    Yang, Can; Fan, Wenfang; Juhlin, Christopher

    2010-05-01

    Time lapse analysis of seismic data is very important for CO2 storage projects. Therefore, we have tested traveltime and waveform tomography methods to detect velocity changes in a CO2 injection reservoir using synthetic time lapse data. The structural model tested is based on the CO2SINK injection site at Ketzin, Germany where CO2 is being injected at about 630-650 m into a saline aquifer. First, we created synthetic time lapse moving source profiling (MSP) data, also known as walkaway profiling. The velocity model used for modeling was based on well logging and lithological information in the injection borehole. Gassmann fluid substitution was used to calculate the reservoir velocity after injection. In this substitution, we assumed a saturation of CO2 of 30%. The model velocity of the reservoir changed from 2750 m/s (before injection) to 2150 m/s (after injection). A 2D finite difference code available in Seismic Unix (www.cwp.mines.edu) was used. 60 source points were distributed along a surface line. The distance from the injection well was between 150m and 858m, with an interval of 12m. We recorded 21 channels at receiver depths from 470m to 670m, with an interval of 10m. The injection layer was assumed to be between 629m and 650m depth. The wavelet used for the synthetic data was a Gaussian derivative with an average frequency of 60Hz. Then first arrivals were picked on both data sets and used as input data for traveltime tomography. For traveltime tomography, the PS_tomo program was used. Since no data were recorded above 470m, the initial velocity model used above this depth was the true velocity model. Below 470m, the initial velocity model increases linearly from 3000m/s to 3250m/s. After inversion, the reservoir velocity and an anhydrite layer (high velocity layer) can be seen clearly in the final inverted velocity models. Using these velocity models as starting models, we performed waveform tomography in the frequency domain using a program supplied by

  17. EPG waveform library for Graphocephala atropunctata (Hemiptera: Cicadellidae): Effect of adhesive, input resistor, and voltage levels on waveform appearance and stylet probing behaviors.

    Science.gov (United States)

    Cervantes, Felix A; Backus, Elaine A

    2018-05-31

    Blue-green sharpshooter, Graphocephala atropunctata, is a native California vector of Xylella fastidiosa (Xf), a foregut-borne bacterium that is the causal agent of Pierce's disease in grapevines. A 3rd-generation, AC-DC electropenetrograph (EPG monitor) was used to record stylet probing and ingestion behaviors of adult G. atropunctata on healthy grapevines. This study presents for the first time a complete, updated waveform library for this species, as well as effects of different electropenetrograph settings and adhesives on waveform appearances. Both AC and DC applied signals were used with input resistor (Ri) levels (amplifier sensitivities) of 10 6 , 10 7 , 10 8 and 10 9  Ohms, as well as two type of adhesives, conducting silver paint and handmade silver glue. Waveform description, characterization of electrical origins (R versus emf components), and proposed biological meanings of waveforms are reported, as well as qualitative differences in waveform appearances observed with different electropenetrograph settings and adhesives. In addition, a quantitative study with AC signal, using two applied voltage levels (50 and 200 mV) and two Ri levels (10 7 and 10 9  Ohms) was performed. Intermediate Ri levels 10 7 and 10 8  Ohms provided EPG waveforms with the greatest amount of information, because both levels captured similar proportions of R and emf components, as supported by appearance, clarity, and definition of waveforms. Similarly, use of a gold wire loop plus handmade silver glue provided more definition of waveforms than a gold wire loop plus commercial conducting silver paint. Qualitative/observational evidence suggested that AC applied signal caused fewer aberrant behaviors/waveforms than DC applied signal. In the quantitative study, behavioral components of the sharpshooter X wave were the most affected by changes in Ri and voltage level. Because the X wave probably represents X. fastidiosa inoculation behavior, future studies of X. fastidiosa

  18. Generation of correlated finite alphabet waveforms using gaussian random variables

    KAUST Repository

    Jardak, Seifallah

    2014-09-01

    Correlated waveforms have a number of applications in different fields, such as radar and communication. It is very easy to generate correlated waveforms using infinite alphabets, but for some of the applications, it is very challenging to use them in practice. Moreover, to generate infinite alphabet constant envelope correlated waveforms, the available research uses iterative algorithms, which are computationally very expensive. In this work, we propose simple novel methods to generate correlated waveforms using finite alphabet constant and non-constant-envelope symbols. To generate finite alphabet waveforms, the proposed method map the Gaussian random variables onto the phase-shift-keying, pulse-amplitude, and quadrature-amplitude modulation schemes. For such mapping, the probability-density-function of Gaussian random variables is divided into M regions, where M is the number of alphabets in the corresponding modulation scheme. By exploiting the mapping function, the relationship between the cross-correlation of Gaussian and finite alphabet symbols is derived. To generate equiprobable symbols, the area of each region is kept same. If the requirement is to have each symbol with its own unique probability, the proposed scheme allows us that as well. Although, the proposed scheme is general, the main focus of this paper is to generate finite alphabet waveforms for multiple-input multiple-output radar, where correlated waveforms are used to achieve desired beampatterns. © 2014 IEEE.

  19. Influence of crystal orientation on magnetostriction waveform in grain orientated electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Kijima, Gou, E-mail: g-kijima@jfe-steel.co.jp [Steel Research Laboratory, JFE Steel Corporation, Kawasaki, 210-0855 (Japan); Yamaguchi, Hiroi; Senda, Kunihiro; Hayakawa, Yasuyuki [Steel Research Laboratory, JFE Steel Corporation, Kurashiki, 712-8511 (Japan)

    2014-08-01

    Aiming to gain insight into the mechanisms of grain-oriented electrical steel sheet magnetostriction waveforms, we investigated the influence of crystal orientations. An increase in the β angle results in an increase in the amplitude of magnetostriction waveform, but does not affect the waveform itself. By slanting the excitation direction to simulate the change of the α angle, change in the magnetostriction waveform and a constriction–extension transition point in the steel plate was observed. The amplitude, however, was not significantly affected. We explained the nature of constriction–extension transition point in the magnetostriction waveform by considering the magnetization rotation. We speculated that the change of waveform resulting from the increase in the coating tensile stress can be attributed to the phenomenon of the magnetization rotation becoming hard to be generated due to the increase of magnetic anisotropy toward [001] axis. - Highlights: • β angle is related with the amplitude of magnetostriction waveform. • α angle is related with the magnetostriction waveform itself. • The effect of α angle can be controlled by the effect of coating tensile stress.

  20. Building a good initial model for full-waveform inversion using frequency shift filter

    Science.gov (United States)

    Wang, Guanchao; Wang, Shangxu; Yuan, Sanyi; Lian, Shijie

    2018-05-01

    Accurate initial model or available low-frequency data is an important factor in the success of full waveform inversion (FWI). The low-frequency helps determine the kinematical relevant components, low-wavenumber of the velocity model, which are in turn needed to avoid FWI trap in local minima or cycle-skipping. However, in the field, acquiring data that common point of low- and high-frequency signal, then utilize the high-frequency data to obtain the low-wavenumber velocity model. It is well known that the instantaneous amplitude envelope of a wavelet is invariant under frequency shift. This means that resolution is constant for a given frequency bandwidth, and independent of the actual values of the frequencies. Based on this property, we develop a frequency shift filter (FSF) to build the relationship between low- and high-frequency information with a constant frequency bandwidth. After that, we can use the high-frequency information to get a plausible recovery of the low-wavenumber velocity model. Numerical results using synthetic data from the Marmousi and layer model demonstrate that our proposed envelope misfit function based on the frequency shift filter can build an initial model with more accurate long-wavelength components, when low-frequency signals are absent in recorded data.

  1. Sinusoidal oscillators and waveform generators using modern electronic circuit building blocks

    CERN Document Server

    Senani, Raj; Singh, V K; Sharma, R K

    2016-01-01

    This book serves as a single-source reference to sinusoidal oscillators and waveform generators, using classical as well as a variety of modern electronic circuit building blocks. It provides a state-of-the-art review of a large variety of sinusoidal oscillators and waveform generators and includes a catalogue of over 600 configurations of oscillators and waveform generators, describing their relevant design details and salient performance features/limitations. The authors discuss a number of interesting, open research problems and include a comprehensive collection of over 1500 references on oscillators and non-sinusoidal waveform generators/relaxation oscillators. Offers readers a single-source reference to everything connected to sinusoidal oscillators and waveform generators, using classical as well as modern electronic circuit building blocks; Provides a state-of-the-art review of a large variety of sinusoidal oscillators and waveform generators; Includes a catalog of over 600 configurations of oscillato...

  2. A baseline for upper crustal velocity variations along the East Pacific Rise at 13 deg N

    Science.gov (United States)

    Kappus, Mary E.; Harding, Alistair J.; Orcutt, John A.

    1995-04-01

    A wide aperture profile of the East Pacific Rise at 13 deg N provides data necessary to make a high-resolution seismic velocity profile of the uppermost crust along a 52-km segment of ridge crest. Automated and objective processing steps, including r-p analysis and waveform inversion, allow the construction of models in a consistent way so that comparisons are meaningful. A continuous profile is synthesized from 70 independent one-dimensional models spaced at 750-km intervals along the ridge. The resulting seismic velocity structure of the top 500 m of crust is remarkable in its lack of variability. The main features are a thin low-velocity layer 2A at the top with a steep gradient to layer 2B. The seafloor velocity is nearly constant at 2.45 km/s +/- 3% along the entire ridge. The velocity at the top of layer 2B is 5.0 km/s +/- 10%. The depth to the 4 km/s isovelocity contour within layer 2A is 130 +/- 20 m from 13 deg to 13 deg 20 min N, north of which it increases to 180 m. The increase in thickness is coincident with a deviation from axial linearity (DEVAL) noted by both a slight change in axis depth and orientation and in geochemistry. The waveform inversion, providing more details plus velocity gradient information, shows a layer 2A with about 80 m of constant-velocity material underlain by 150 m of high velocity gradient material, putting the base of layer 2A at approximately 230 m depth south of 13 deg 20 min N and about 50 m thicker north of the DEVAL. The overall lack of variability, combined with other recent measurements of layer 2A thickness along and near the axis, indicates that the thickness of volcanic extrusives is controlled not by levels of volcanic productivity, but the dynamics of emplacement. The homogeneity along axis also provides a baseline of inherent variability in crustal structure of about 10% against which other observed variations in similar regimes can be compared.

  3. Multiparameter Elastic Full Waveform Inversion with Facies-based Constraints

    KAUST Repository

    Zhang, Zhendong; Alkhalifah, Tariq Ali; Naeini, Ehsan Zabihi; Sun, Bingbing

    2018-01-01

    Full waveform inversion (FWI) incorporates all the data characteristics to estimate the parameters described by the assumed physics of the subsurface. However, current efforts to utilize full waveform inversion beyond improved acoustic imaging, like

  4. Application of velocity imaging and gradient-recalled echo in neuroimaging

    International Nuclear Information System (INIS)

    Boyko, O.B.; Pelc, N.J.; Shimakawa, A.

    1990-01-01

    This paper describes the initial clinical experience with imaging blood flow at 1.5 T by means of a phase-sensitive gradient refocused pulse sequence. A spin-echo flow-encoding technique was modified to a gradient recalled acquisition in a steady state sequence, producing a velocity imaging and gradient recalled echo (VIGRE) sequence (TR = 24 msec, TE = 13 msec, flip angle = 45 degrees, 24-cm field of view, 7 mm contiguous sections). Two views per phase-encoding step are acquired; one using the first-moment flow-compensation gradient waveform and the second having a (selectable) nonzero first moment. A phase subtraction image is obtained where the signal is dependent on the direction and velocity of flow. The sequence was done following routine spin-echo imaging in 35 patients

  5. Waveform inversion for acoustic VTI media in frequency domain

    KAUST Repository

    Wu, Zedong; Alkhalifah, Tariq Ali

    2016-01-01

    Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI) by inverting for the background model using a single scattered wavefield from an inverted perturbation. However, current

  6. Multi-stage full waveform inversion strategy for 2D elastic VTI media

    KAUST Repository

    Oh, Juwon

    2015-08-19

    One of the most important issues in the multi-parametric full waveform inversion (FWI) is to find an optimal parameterization, which helps us recover the subsurface anisotropic parameters as well as seismic velocities, with minimal tradeoff. As a result, we analyze three different parameterizations for elastic VTI media in terms of the influence of the S-waves on the gradient direction for c13, the spatial coverage of gradient direction and the degree of trade-offs between the parameters. Based on the dependency results, we design a multi-stage elastic VTI FWI strategy to enhance both the spatial coverage of the FWI and the robustness to the trade-offs among the parameters as well as FWI for the c13 structure.

  7. Principles of waveform diversity and design

    CERN Document Server

    Wicks, Michael

    2011-01-01

    This is the first book to discuss current and future applications of waveform diversity and design in subjects such as radar and sonar, communications systems, passive sensing, and many other technologies. Waveform diversity allows researchers and system designers to optimize electromagnetic and acoustic systems for sensing, communications, electronic warfare or combinations thereof. This book enables solutions to problems, explaining how each system performs its own particular function, as well as how it is affected by other systems and how those other systems may likewise be affected. It is

  8. Signal processing in noise waveform radar

    CERN Document Server

    Kulpa, Krzysztof

    2013-01-01

    This book is devoted to the emerging technology of noise waveform radar and its signal processing aspects. It is a new kind of radar, which use noise-like waveform to illuminate the target. The book includes an introduction to basic radar theory, starting from classical pulse radar, signal compression, and wave radar. The book then discusses the properties, difficulties and potential of noise radar systems, primarily for low-power and short-range civil applications. The contribution of modern signal processing techniques to making noise radar practical are emphasized, and application examples

  9. Accurate calibration of waveform data measured by the Plasma Wave Experiment on board the ARASE satellite

    Science.gov (United States)

    Kitahara, M.; Katoh, Y.; Hikishima, M.; Kasahara, Y.; Matsuda, S.; Kojima, H.; Ozaki, M.; Yagitani, S.

    2017-12-01

    The Plasma Wave Experiment (PWE) is installed on board the ARASE satellite to measure the electric field in the frequency range from DC to 10 MHz, and the magnetic field in the frequency range from a few Hz to 100 kHz using two dipole wire-probe antennas (WPT) and three magnetic search coils (MSC), respectively. In particular, the Waveform Capture (WFC), one of the receivers of the PWE, can detect electromagnetic field waveform in the frequency range from a few Hz to 20 kHz. The Software-type Wave Particle Interaction Analyzer (S-WPIA) is installed on the ARASE satellite to measure the energy exchange between plasma waves and particles. Since S-WPIA uses the waveform data measured by WFC to calculate the relative phase angle between the wave magnetic field and velocity of energetic electrons, the high-accuracy is required to calibration of both amplitude and phase of the waveform data. Generally, the calibration procedure of the signal passed through a receiver consists of three steps; the transformation into spectra, the calibration by the transfer function of a receiver, and the inverse transformation of the calibrated spectra into the time domain. Practically, in order to reduce the side robe effect, a raw data is filtered by a window function in the time domain before applying Fourier transform. However, for the case that a first order differential coefficient of the phase transfer function of the system is not negligible, the phase of the window function convoluted into the calibrated spectra is shifted differently at each frequency, resulting in a discontinuity in the time domain of the calibrated waveform data. To eliminate the effect of the phase shift of a window function, we suggest several methods to calibrate a waveform data accurately and carry out simulations assuming simple sinusoidal waves as an input signal and using transfer functions of WPT, MSC, and WFC obtained in pre-flight tests. In consequence, we conclude that the following two methods can

  10. Faithful effective-one-body waveforms of small-mass-ratio coalescing black hole binaries

    International Nuclear Information System (INIS)

    Damour, Thibault; Nagar, Alessandro

    2007-01-01

    We address the problem of constructing high-accuracy, faithful analytic waveforms describing the gravitational wave signal emitted by inspiralling and coalescing binary black holes. We work within the effective-one-body (EOB) framework and propose a methodology for improving the current (waveform) implementations of this framework based on understanding, element by element, the physics behind each feature of the waveform and on systematically comparing various EOB-based waveforms with exact waveforms obtained by numerical relativity approaches. The present paper focuses on small-mass-ratio nonspinning binary systems, which can be conveniently studied by Regge-Wheeler-Zerilli-type methods. Our results include (i) a resummed, 3 PN-accurate description of the inspiral waveform, (ii) a better description of radiation reaction during the plunge, (iii) a refined analytic expression for the plunge waveform, (iv) an improved treatment of the matching between the plunge and ring-down waveforms. This improved implementation of the EOB approach allows us to construct complete analytic waveforms which exhibit a remarkable agreement with the exact ones in modulus, frequency, and phase. In particular, the analytic and numerical waveforms stay in phase, during the whole process, within ±1.1% of a cycle. We expect that the extension of our methodology to the comparable-mass case will be able to generate comparably accurate analytic waveforms of direct use for the ground-based network of interferometric detectors of gravitational waves

  11. Volumetric vs Mass Velocity in Analyzing Convective-Diffusive Transport Processes in Liquids

    Science.gov (United States)

    Brenner, Howard

    2000-11-01

    Because mass rather than volume is preserved in fluid-mechanical problems involving density changes, a natural predilection exists for quantifying convective-diffusive transport phenomena in terms of a velocity field based upon mass, rather than volume. Indeed, in the classic BSL "Transport Phenomena" textbook, but a single reference exists even to the very concept of a volume velocity, and even then it is relegated to a homework assignment. However, especially when dealing with transport in fluids in which the mass density of the conserved property being transported (e.g., chemical species, internal energy, etc.) is independent of the prevailing pressure, as is largely true in the case of liquids, overwhelming advantages exist is preferring the volume velocity over the more ubiquitous and classical mass velocity. In a generalization of ideas pioneered by D. D. Joseph and co-workers, we outline the reasons for this volumetric velocity preference in a broad general context by identifying a large class of physical problems whose solutions are rendered more accessible by exploiting this unconventional velocity choice.

  12. A New Waveform Mosaic Algorithm in the Vectorization of Paper Seismograms

    Directory of Open Access Journals (Sweden)

    Maofa Wang

    2014-11-01

    Full Text Available History paper seismograms are very important information for earthquake monitoring and prediction, and the vectorization of paper seismograms is a very import problem to be resolved. In this paper, a new waveform mosaic algorithm in the vectorization of paper seismograms is presented. We also give out the technological process to waveform mosaic, and a waveform mosaic system used to vectorize analog seismic record has been accomplished independently. Using it, we can precisely and speedy accomplish waveform mosaic for vectorizing analog seismic records.

  13. A spatio-temporal index for aerial full waveform laser scanning data

    Science.gov (United States)

    Laefer, Debra F.; Vo, Anh-Vu; Bertolotto, Michela

    2018-04-01

    Aerial laser scanning is increasingly available in the full waveform version of the raw signal, which can provide greater insight into and control over the data and, thus, richer information about the scanned scenes. However, when compared to conventional discrete point storage, preserving raw waveforms leads to vastly larger and more complex data volumes. To begin addressing these challenges, this paper introduces a novel bi-level approach for storing and indexing full waveform (FWF) laser scanning data in a relational database environment, while considering both the spatial and the temporal dimensions of that data. In the storage scheme's upper level, the full waveform datasets are partitioned into spatial and temporal coherent groups that are indexed by a two-dimensional R∗-tree. To further accelerate intra-block data retrieval, at the lower level a three-dimensional local octree is created for each pulse block. The local octrees are implemented in-memory and can be efficiently written to a database for reuse. The indexing solution enables scalable and efficient three-dimensional (3D) spatial and spatio-temporal queries on the actual pulse data - functionalities not available in other systems. The proposed FWF laser scanning data solution is capable of managing multiple FWF datasets derived from large flight missions. The flight structure is embedded into the data storage model and can be used for querying predicates. Such functionality is important to FWF data exploration since aircraft locations and orientations are frequently required for FWF data analyses. Empirical tests on real datasets of up to 1 billion pulses from Dublin, Ireland prove the almost perfect scalability of the system. The use of the local 3D octree in the indexing structure accelerated pulse clipping by 1.2-3.5 times for non-axis-aligned (NAA) polyhedron shaped clipping windows, while axis-aligned (AA) polyhedron clipping was better served using only the top indexing layer. The distinct

  14. Multichannel waveform display system

    International Nuclear Information System (INIS)

    Kolvankar, V.G.

    1989-01-01

    For any multichannel data acquisition system, a multichannel paper chart recorder undoubtedly forms an essential part of the system. When deployed on-line, it instantaneously provides, for visual inspection, hard copies of the signal waveforms on common time base at any desired sensitivity and time resolution. Within the country, only a small range of these strip chart recorder s is available, and under stringent specifications imported recorders are often procured. The cost of such recorders may range from 1 to 5 lakhs of rupees in foreign exchange. A system to provide on the oscilloscope a steady display of multichannel waveforms, refreshed from the digital data stored in the memory is developed. The merits and demerits of the display system are compared with that built around a conventional paper chart recorder. Various illustrations of multichannel seismic event data acquired at Gauribidanur seismic array station are also presented. (author). 2 figs

  15. Within-footprint roughness measurements using ICESat/GLAS waveform and LVIS elevation

    International Nuclear Information System (INIS)

    Li, Xiaolu; Xu, Kai; Xu, Lijun

    2016-01-01

    The surface roughness is an important characteristic over an ice sheet or glacier, since it is an identification of boundary-layer meteorology and is an important limiter on the accuracy of surface-height measurements. In this paper, we propose a simulation method to derive the within-footprint roughness (called simulation-derived roughness) using ICESat/GLAS echo waveform, laser vegetation imaging sensor (LVIS) elevations, and laser profile array (LPA) images of ICESat/GLAS. By dividing the within-footprint surface into several elements, a simulation echo waveform can be obtained as the sum of the elementary pulses reflected from each surface element. The elevation of the surface elements, which is utilized to get the return time of the elementary pulses, is implemented based on an LVIS interpolated elevation using a radial basis function (RBF) neural network. The intensity of the elementary pulses can be obtained from the thresholded LPA images. Based on the return time and the intensity of the elementary pulses, we used the particle swarm optimization (PSO) method to approximate the simulation waveform to the ICESat/GLAS echo waveform. The full width at half maximum) (FWHM) of the elementary pulse was extracted from the simulation waveform for estimating the simulation-derived roughness. By comparing with the elevation-derived roughness (derived from the elevation) and the waveform-derived roughness (derived from the ICESat/GLAS waveform), the proposed algorithm can exclude the slope effect from waveform width broadening for describing the roughness of the surface elements. (paper)

  16. Changes in Doppler flow velocity waveforms and fetal size at 20 weeks gestation among cigarette smokers.

    Science.gov (United States)

    Kho, E M; North, R A; Chan, E; Stone, P R; Dekker, G A; McCowan, L M E

    2009-09-01

    To compare umbilical and uterine artery Doppler waveforms and fetal size at 20 weeks between smokers and nonsmokers. Prospective cohort study. Auckland, New Zealand and Adelaide, Australia. Nulliparous participants in the Screening for Pregnancy Endpoints (SCOPE) study. Self-reported smoking status was determined at 15 +/- 1 weeks' gestation. At the 20 +/- 1 week anatomy scan, uterine and umbilical Doppler resistance indices (RI) and fetal measurements were compared between smokers and nonsmokers. Umbilical and mean uterine artery Doppler RI values, abnormal umbilical and uterine Doppler (RI > 90th centile) and fetal biometry. Among the 2459 women, 248 (10%) were smokers. Smokers had higher umbilical RI [0.75 (SD 0.06) versus 0.73 (0.06), P gestation, women who smoke have higher umbilical artery RI, a surrogate measure for an abnormal placental villous vascular tree. This may contribute to later fetal growth restriction among smokers. Further research is needed to explore the clinical significance of these findings.

  17. Adaptive Waveform Design for Cognitive Radar in Multiple Targets Situations

    Directory of Open Access Journals (Sweden)

    Xiaowen Zhang

    2018-02-01

    Full Text Available In this paper, the problem of cognitive radar (CR waveform optimization design for target detection and estimation in multiple extended targets situations is investigated. This problem is analyzed in signal-dependent interference, as well as additive channel noise for extended targets with unknown target impulse response (TIR. To address this problem, an improved algorithm is employed for target detection by maximizing the detection probability of the received echo on the promise of ensuring the TIR estimation precision. In this algorithm, an additional weight vector is introduced to achieve a trade-off among different targets. Both the estimate of TIR and transmit waveform can be updated at each step based on the previous step. Under the same constraint on waveform energy and bandwidth, the information theoretical approach is also considered. In addition, the relationship between the waveforms that are designed based on the two criteria is discussed. Unlike most existing works that only consider single target with temporally correlated characteristics, waveform design for multiple extended targets is considered in this method. Simulation results demonstrate that compared with linear frequency modulated (LFM signal, waveforms designed based on maximum detection probability and maximum mutual information (MI criteria can make radar echoes contain more multiple-target information and improve radar performance as a result.

  18. Analytic family of post-merger template waveforms

    Science.gov (United States)

    Del Pozzo, Walter; Nagar, Alessandro

    2017-06-01

    Building on the analytical description of the post-merger (ringdown) waveform of coalescing, nonprecessing, spinning binary black holes introduced by Damour and Nagar [Phys. Rev. D 90, 024054 (2014), 10.1103/PhysRevD.90.024054], we propose an analytic, closed form, time-domain, representation of the ℓ=m =2 gravitational radiation mode emitted after merger. This expression is given as a function of the component masses and dimensionless spins (m1 ,2,χ1 ,2) of the two inspiraling objects, as well as of the mass MBH and (complex) frequency σ1 of the fundamental quasinormal mode of the remnant black hole. Our proposed template is obtained by fitting the post-merger waveform part of several publicly available numerical relativity simulations from the Simulating eXtreme Spacetimes (SXS) catalog and then suitably interpolating over (symmetric) mass ratio and spins. We show that this analytic expression accurately reproduces (˜0.01 rad ) the phasing of the post-merger data of other data sets not used in its construction. This is notably the case of the spin-aligned run SXS:BBH:0305, whose intrinsic parameters are consistent with the 90% credible intervals reported in the parameter-estimation followup of GW150914 by B.P. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016), 10.1103/PhysRevLett.116.241102]. Using SXS waveforms as "experimental" data, we further show that our template could be used on the actual GW150914 data to perform a new measure of the complex frequency of the fundamental quasinormal mode so as to exploit the complete (high signal-to-noise-ratio) post-merger waveform. We assess the usefulness of our proposed template by analyzing, in a realistic setting, SXS full inspiral-merger-ringdown waveforms and constructing posterior probability distribution functions for the central frequency damping time of the first overtone of the fundamental quasinormal mode as well as for the physical parameters of the systems. We also briefly explore the possibility

  19. Anisotropic wave-equation traveltime and waveform inversion

    KAUST Repository

    Feng, Shihang

    2016-09-06

    The wave-equation traveltime and waveform inversion (WTW) methodology is developed to invert for anisotropic parameters in a vertical transverse isotropic (VTI) meidum. The simultaneous inversion of anisotropic parameters v0, ε and δ is initially performed using the wave-equation traveltime inversion (WT) method. The WT tomograms are then used as starting background models for VTI full waveform inversion. Preliminary numerical tests on synthetic data demonstrate the feasibility of this method for multi-parameter inversion.

  20. Depth-dependence of time-lapse seismic velocity change detected by a joint interferometric analysis of vertical array data

    Science.gov (United States)

    Sawazaki, K.; Saito, T.; Ueno, T.; Shiomi, K.

    2015-12-01

    In this study, utilizing depth-sensitivity of interferometric waveforms recorded by co-located Hi-net and KiK-net sensors, we separate the responsible depth of seismic velocity change associated with the M6.3 earthquake occurred on November 22, 2014, in central Japan. The Hi-net station N.MKGH is located about 20 km northeast from the epicenter, where the seismometer is installed at the 150 m depth. At the same site, the KiK-net has two strong motion seismometers installed at the depths of 0 and 150 m. To estimate average velocity change around the N.MKGH station, we apply the stretching technique to auto-correlation function (ACF) of ambient noise recorded by the Hi-net sensor. To evaluate sensitivity of the Hi-net ACF to velocity change above and below the 150 m depth, we perform a numerical wave propagation simulation using 2-D FDM. To obtain velocity change above the 150 m depth, we measure response waveform from the depths of 150 m to 0 m by computing deconvolution function (DCF) of earthquake records obtained by the two KiK-net vertical array sensors. The background annual velocity variation is subtracted from the detected velocity change. From the KiK-net DCF records, the velocity reduction ratio above the 150 m depth is estimated to be 4.2 % and 3.1 % in the periods of 1-7 days and 7 days - 4 months after the mainshock, respectively. From the Hi-net ACF records, the velocity reduction ratio is estimated to be 2.2 % and 1.8 % in the same time periods, respectively. This difference in the estimated velocity reduction ratio is attributed to depth-dependence of the velocity change. By using the depth sensitivity obtained from the numerical simulation, we estimate the velocity reduction ratio below the 150 m depth to be lower than 1.0 % for both time periods. Thus the significant velocity reduction and recovery are observed above the 150 m depth only, which may be caused by strong ground motion of the mainshock and following healing in the shallow ground.

  1. Closed-loop waveform control of boost inverter

    DEFF Research Database (Denmark)

    Zhu, Guo Rong; Xiao, Cheng Yuan; Wang, Haoran

    2016-01-01

    The input current of single-phase inverter typically has an AC ripple component at twice the output frequency, which causes a reduction in both the operating lifetime of its DC source and the efficiency of the system. In this paper, the closed-loop performance of a proposed waveform control method...... to eliminate such a ripple current in boost inverter is investigated. The small-signal stability and the dynamic characteristic of the inverter system for input voltage or wide range load variations under the closed-loop waveform control method are studied. It is validated that with the closedloop waveform...... control, not only was stability achieved, the reference voltage of the boost inverter capacitors can be instantaneously adjusted to match the new load, thereby achieving improved ripple mitigation for a wide load range. Furthermore, with the control and feedback mechanism, there is minimal level of ripple...

  2. Wavelet analysis of the impedance cardiogram waveforms

    Science.gov (United States)

    Podtaev, S.; Stepanov, R.; Dumler, A.; Chugainov, S.; Tziberkin, K.

    2012-12-01

    Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt)max) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.

  3. Wavelet analysis of the impedance cardiogram waveforms

    International Nuclear Information System (INIS)

    Podtaev, S; Stepanov, R; Dumler, A; Chugainov, S; Tziberkin, K

    2012-01-01

    Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt) max ) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.

  4. Full Waveform Inversion Using Nonlinearly Smoothed Wavefields

    KAUST Repository

    Li, Y.; Choi, Yun Seok; Alkhalifah, Tariq Ali; Li, Z.

    2017-01-01

    The lack of low frequency information in the acquired data makes full waveform inversion (FWI) conditionally converge to the accurate solution. An initial velocity model that results in data with events within a half cycle of their location in the observed data was required to converge. The multiplication of wavefields with slightly different frequencies generates artificial low frequency components. This can be effectively utilized by multiplying the wavefield with itself, which is nonlinear operation, followed by a smoothing operator to extract the artificially produced low frequency information. We construct the objective function using the nonlinearly smoothed wavefields with a global-correlation norm to properly handle the energy imbalance in the nonlinearly smoothed wavefield. Similar to the multi-scale strategy, we progressively reduce the smoothing width applied to the multiplied wavefield to welcome higher resolution. We calculate the gradient of the objective function using the adjoint-state technique, which is similar to the conventional FWI except for the adjoint source. Examples on the Marmousi 2 model demonstrate the feasibility of the proposed FWI method to mitigate the cycle-skipping problem in the case of a lack of low frequency information.

  5. Full Waveform Inversion Using Nonlinearly Smoothed Wavefields

    KAUST Repository

    Li, Y.

    2017-05-26

    The lack of low frequency information in the acquired data makes full waveform inversion (FWI) conditionally converge to the accurate solution. An initial velocity model that results in data with events within a half cycle of their location in the observed data was required to converge. The multiplication of wavefields with slightly different frequencies generates artificial low frequency components. This can be effectively utilized by multiplying the wavefield with itself, which is nonlinear operation, followed by a smoothing operator to extract the artificially produced low frequency information. We construct the objective function using the nonlinearly smoothed wavefields with a global-correlation norm to properly handle the energy imbalance in the nonlinearly smoothed wavefield. Similar to the multi-scale strategy, we progressively reduce the smoothing width applied to the multiplied wavefield to welcome higher resolution. We calculate the gradient of the objective function using the adjoint-state technique, which is similar to the conventional FWI except for the adjoint source. Examples on the Marmousi 2 model demonstrate the feasibility of the proposed FWI method to mitigate the cycle-skipping problem in the case of a lack of low frequency information.

  6. The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms.

    Science.gov (United States)

    Xiang, J; Siddiqui, A H; Meng, H

    2014-12-18

    Due to the lack of patient-specific inlet flow waveform measurements, most computational fluid dynamics (CFD) simulations of intracranial aneurysms usually employ waveforms that are not patient-specific as inlet boundary conditions for the computational model. The current study examined how this assumption affects the predicted hemodynamics in patient-specific aneurysm geometries. We examined wall shear stress (WSS) and oscillatory shear index (OSI), the two most widely studied hemodynamic quantities that have been shown to predict aneurysm rupture, as well as maximal WSS (MWSS), energy loss (EL) and pressure loss coefficient (PLc). Sixteen pulsatile CFD simulations were carried out on four typical saccular aneurysms using 4 different waveforms and an identical inflow rate as inlet boundary conditions. Our results demonstrated that under the same mean inflow rate, different waveforms produced almost identical WSS distributions and WSS magnitudes, similar OSI distributions but drastically different OSI magnitudes. The OSI magnitude is correlated with the pulsatility index of the waveform. Furthermore, there is a linear relationship between aneurysm-averaged OSI values calculated from one waveform and those calculated from another waveform. In addition, different waveforms produced similar MWSS, EL and PLc in each aneurysm. In conclusion, inlet waveform has minimal effects on WSS, OSI distribution, MWSS, EL and PLc and a strong effect on OSI magnitude, but aneurysm-averaged OSI from different waveforms has a strong linear correlation with each other across different aneurysms, indicating that for the same aneurysm cohort, different waveforms can consistently stratify (rank) OSI of aneurysms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. 3D elastic full-waveform inversion for OBC data using the P-wave excitation amplitude

    KAUST Repository

    Oh, Juwon

    2017-08-17

    We suggest a fast and efficient 3D elastic full waveform inversion (FWI) algorithm based on the excitation amplitude (maximum energy arrival) of the P-wave in the source wavefield. It evaluates the gradient direction significantly faster than its conventional counterpart. In addition, it removes the long-wavelength artifacts from the gradient, which are often originated from SS correlation process. From these advantages, the excitation approach offers faster convergence not only for the S wave velocity, but also for the entire process of multi-parameter inversion, compared to the conventional FWI. The feasibility of the proposed method is demonstrated through the synthetic Marmousi and a real OBC data from North Sea.

  8. 3D elastic full-waveform inversion for OBC data using the P-wave excitation amplitude

    KAUST Repository

    Oh, Juwon; Kalita, Mahesh; Alkhalifah, Tariq Ali

    2017-01-01

    We suggest a fast and efficient 3D elastic full waveform inversion (FWI) algorithm based on the excitation amplitude (maximum energy arrival) of the P-wave in the source wavefield. It evaluates the gradient direction significantly faster than its conventional counterpart. In addition, it removes the long-wavelength artifacts from the gradient, which are often originated from SS correlation process. From these advantages, the excitation approach offers faster convergence not only for the S wave velocity, but also for the entire process of multi-parameter inversion, compared to the conventional FWI. The feasibility of the proposed method is demonstrated through the synthetic Marmousi and a real OBC data from North Sea.

  9. Computational Stimulation of the Basal Ganglia Neurons with Cost Effective Delayed Gaussian Waveforms.

    Science.gov (United States)

    Daneshzand, Mohammad; Faezipour, Miad; Barkana, Buket D

    2017-01-01

    Deep brain stimulation (DBS) has compelling results in the desynchronization of the basal ganglia neuronal activities and thus, is used in treating the motor symptoms of Parkinson's disease (PD). Accurate definition of DBS waveform parameters could avert tissue or electrode damage, increase the neuronal activity and reduce energy cost which will prolong the battery life, hence avoiding device replacement surgeries. This study considers the use of a charge balanced Gaussian waveform pattern as a method to disrupt the firing patterns of neuronal cell activity. A computational model was created to simulate ganglia cells and their interactions with thalamic neurons. From the model, we investigated the effects of modified DBS pulse shapes and proposed a delay period between the cathodic and anodic parts of the charge balanced Gaussian waveform to desynchronize the firing patterns of the GPe and GPi cells. The results of the proposed Gaussian waveform with delay outperformed that of rectangular DBS waveforms used in in-vivo experiments. The Gaussian Delay Gaussian (GDG) waveforms achieved lower number of misses in eliciting action potential while having a lower amplitude and shorter length of delay compared to numerous different pulse shapes. The amount of energy consumed in the basal ganglia network due to GDG waveforms was dropped by 22% in comparison with charge balanced Gaussian waveforms without any delay between the cathodic and anodic parts and was also 60% lower than a rectangular charged balanced pulse with a delay between the cathodic and anodic parts of the waveform. Furthermore, by defining a Synchronization Level metric, we observed that the GDG waveform was able to reduce the synchronization of GPi neurons more effectively than any other waveform. The promising results of GDG waveforms in terms of eliciting action potential, desynchronization of the basal ganglia neurons and reduction of energy consumption can potentially enhance the performance of DBS

  10. Computational Stimulation of the Basal Ganglia Neurons with Cost Effective Delayed Gaussian Waveforms

    Directory of Open Access Journals (Sweden)

    Mohammad Daneshzand

    2017-08-01

    Full Text Available Deep brain stimulation (DBS has compelling results in the desynchronization of the basal ganglia neuronal activities and thus, is used in treating the motor symptoms of Parkinson's disease (PD. Accurate definition of DBS waveform parameters could avert tissue or electrode damage, increase the neuronal activity and reduce energy cost which will prolong the battery life, hence avoiding device replacement surgeries. This study considers the use of a charge balanced Gaussian waveform pattern as a method to disrupt the firing patterns of neuronal cell activity. A computational model was created to simulate ganglia cells and their interactions with thalamic neurons. From the model, we investigated the effects of modified DBS pulse shapes and proposed a delay period between the cathodic and anodic parts of the charge balanced Gaussian waveform to desynchronize the firing patterns of the GPe and GPi cells. The results of the proposed Gaussian waveform with delay outperformed that of rectangular DBS waveforms used in in-vivo experiments. The Gaussian Delay Gaussian (GDG waveforms achieved lower number of misses in eliciting action potential while having a lower amplitude and shorter length of delay compared to numerous different pulse shapes. The amount of energy consumed in the basal ganglia network due to GDG waveforms was dropped by 22% in comparison with charge balanced Gaussian waveforms without any delay between the cathodic and anodic parts and was also 60% lower than a rectangular charged balanced pulse with a delay between the cathodic and anodic parts of the waveform. Furthermore, by defining a Synchronization Level metric, we observed that the GDG waveform was able to reduce the synchronization of GPi neurons more effectively than any other waveform. The promising results of GDG waveforms in terms of eliciting action potential, desynchronization of the basal ganglia neurons and reduction of energy consumption can potentially enhance the

  11. Selection and generation of waveforms for differential mobility spectrometry.

    Science.gov (United States)

    Krylov, Evgeny V; Coy, Stephen L; Vandermey, John; Schneider, Bradley B; Covey, Thomas R; Nazarov, Erkinjon G

    2010-02-01

    Devices based on differential mobility spectrometry (DMS) are used in a number of ways, including applications as ion prefilters for API-MS systems, as detectors or selectors in hybrid instruments (GC-DMS, DMS-IMS), and in standalone systems for chemical detection and identification. DMS ion separation is based on the relative difference between high field and low field ion mobility known as the alpha dependence, and requires the application of an intense asymmetric electric field known as the DMS separation field, typically in the megahertz frequency range. DMS performance depends on the waveform and on the magnitude of this separation field. In this paper, we analyze the relationship between separation waveform and DMS resolution and consider feasible separation field generators. We examine ideal and practical DMS separation field waveforms and discuss separation field generator circuit types and their implementations. To facilitate optimization of the generator designs, we present a set of relations that connect ion alpha dependence to DMS separation fields. Using these relationships we evaluate the DMS separation power of common generator types as a function of their waveform parameters. Optimal waveforms for the major types of DMS separation generators are determined for ions with various alpha dependences. These calculations are validated by comparison with experimental data.

  12. Direct current contamination of kilohertz frequency alternating current waveforms.

    Science.gov (United States)

    Franke, Manfred; Bhadra, Niloy; Bhadra, Narendra; Kilgore, Kevin

    2014-07-30

    Kilohertz frequency alternating current (KHFAC) waveforms are being evaluated in a variety of physiological settings because of their potential to modulate neural activity uniquely when compared to frequencies in the sub-kilohertz range. However, the use of waveforms in this frequency range presents some unique challenges regarding the generator output. In this study we explored the possibility of undesirable contamination of the KHFAC waveforms by direct current (DC). We evaluated current- and voltage-controlled KHFAC waveform generators in configurations that included a capacitive coupling between generator and electrode, a resistive coupling and combinations of capacitive with inductive coupling. Our results demonstrate that both voltage- and current-controlled signal generators can unintentionally add DC-contamination to a KHFAC signal, and that capacitive coupling is not always sufficient to eliminate this contamination. We furthermore demonstrated that high value inductors, placed in parallel with the electrode, can be effective in eliminating DC-contamination irrespective of the type of stimulator, reducing the DC contamination to less than 1 μA. This study highlights the importance of carefully designing the electronic setup used in KHFAC studies and suggests specific testing that should be performed and reported in all studies that assess the neural response to KHFAC waveforms. Published by Elsevier B.V.

  13. Selection and generation of waveforms for differential mobility spectrometry

    International Nuclear Information System (INIS)

    Krylov, Evgeny V.; Coy, Stephen L.; Nazarov, Erkinjon G.; Vandermey, John; Schneider, Bradley B.; Covey, Thomas R.

    2010-01-01

    Devices based on differential mobility spectrometry (DMS) are used in a number of ways, including applications as ion prefilters for API-MS systems, as detectors or selectors in hybrid instruments (GC-DMS, DMS-IMS), and in standalone systems for chemical detection and identification. DMS ion separation is based on the relative difference between high field and low field ion mobility known as the alpha dependence, and requires the application of an intense asymmetric electric field known as the DMS separation field, typically in the megahertz frequency range. DMS performance depends on the waveform and on the magnitude of this separation field. In this paper, we analyze the relationship between separation waveform and DMS resolution and consider feasible separation field generators. We examine ideal and practical DMS separation field waveforms and discuss separation field generator circuit types and their implementations. To facilitate optimization of the generator designs, we present a set of relations that connect ion alpha dependence to DMS separation fields. Using these relationships we evaluate the DMS separation power of common generator types as a function of their waveform parameters. Optimal waveforms for the major types of DMS separation generators are determined for ions with various alpha dependences. These calculations are validated by comparison with experimental data.

  14. Analysis of Gradient Waveform in Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    OU-YANG Shan-mei

    2017-12-01

    Full Text Available The accuracy of gradient pulse waveform affects image quality significantly in magnetic resonance imaging (MRI. Recording and analyzing the waveform of gradient pulse helps to make rapid and accurate diagnosis of spectrometer gradient hardware and/or pulse sequence. Using the virtual instrument software LabVIEW to control the high speed data acquisition card DAQ-2005, a multi-channel acquisition scheme was designed to collect the gradient outputs from a custom-made spectrometer. The collected waveforms were post-processed (i.e., histogram statistical analysis, data filtering and difference calculation to obtain feature points containing time and amplitude information. Experiments were carried out to validate the method, which is an auxiliary test method for the development of spectrometer and pulses sequence.

  15. Developing regionalized models of lithospheric thickness and velocity structure across Eurasia and the Middle East from jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities

    Energy Technology Data Exchange (ETDEWEB)

    Julia, J; Nyblade, A; Hansen, S; Rodgers, A; Matzel, E

    2009-07-06

    In this project, we are developing models of lithospheric structure for a wide variety of tectonic regions throughout Eurasia and the Middle East by regionalizing 1D velocity models obtained by jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities. We expect the regionalized velocity models will improve our ability to predict travel-times for local and regional phases, such as Pg, Pn, Sn and Lg, as well as travel-times for body-waves at upper mantle triplication distances in both seismic and aseismic regions of Eurasia and the Middle East. We anticipate the models will help inform and strengthen ongoing and future efforts within the NNSA labs to develop 3D velocity models for Eurasia and the Middle East, and will assist in obtaining model-based predictions where no empirical data are available and for improving locations from sparse networks using kriging. The codes needed to conduct the joint inversion of P-wave receiver functions (PRFs), S-wave receiver functions (SRFs), and dispersion velocities have already been assembled as part of ongoing research on lithospheric structure in Africa. The methodology has been tested with synthetic 'data' and case studies have been investigated with data collected at an open broadband stations in South Africa. PRFs constrain the size and S-P travel-time of seismic discontinuities in the crust and uppermost mantle, SRFs constrain the size and P-S travel-time of the lithosphere-asthenosphere boundary, and dispersion velocities constrain average S-wave velocity within frequency-dependent depth-ranges. Preliminary results show that the combination yields integrated 1D velocity models local to the recording station, where the discontinuities constrained by the receiver functions are superimposed to a background velocity model constrained by the dispersion velocities. In our first year of this project we will (i) generate 1D velocity models for open broadband seismic stations

  16. The Modularized Software Package ASKI - Full Waveform Inversion Based on Waveform Sensitivity Kernels Utilizing External Seismic Wave Propagation Codes

    Science.gov (United States)

    Schumacher, F.; Friederich, W.

    2015-12-01

    We present the modularized software package ASKI which is a flexible and extendable toolbox for seismic full waveform inversion (FWI) as well as sensitivity or resolution analysis operating on the sensitivity matrix. It utilizes established wave propagation codes for solving the forward problem and offers an alternative to the monolithic, unflexible and hard-to-modify codes that have typically been written for solving inverse problems. It is available under the GPL at www.rub.de/aski. The Gauss-Newton FWI method for 3D-heterogeneous elastic earth models is based on waveform sensitivity kernels and can be applied to inverse problems at various spatial scales in both Cartesian and spherical geometries. The kernels are derived in the frequency domain from Born scattering theory as the Fréchet derivatives of linearized full waveform data functionals, quantifying the influence of elastic earth model parameters on the particular waveform data values. As an important innovation, we keep two independent spatial descriptions of the earth model - one for solving the forward problem and one representing the inverted model updates. Thereby we account for the independent needs of spatial model resolution of forward and inverse problem, respectively. Due to pre-integration of the kernels over the (in general much coarser) inversion grid, storage requirements for the sensitivity kernels are dramatically reduced.ASKI can be flexibly extended to other forward codes by providing it with specific interface routines that contain knowledge about forward code-specific file formats and auxiliary information provided by the new forward code. In order to sustain flexibility, the ASKI tools must communicate via file output/input, thus large storage capacities need to be accessible in a convenient way. Storing the complete sensitivity matrix to file, however, permits the scientist full manual control over each step in a customized procedure of sensitivity/resolution analysis and full

  17. 'Kludge' gravitational waveforms for a test-body orbiting a Kerr black hole

    International Nuclear Information System (INIS)

    Babak, Stanislav; Fang Hua; Gair, Jonathan R.; Glampedakis, Kostas; Hughes, Scott A.

    2007-01-01

    One of the most exciting potential sources of gravitational waves for low-frequency, space-based gravitational wave (GW) detectors such as the proposed Laser Interferometer Space Antenna (LISA) is the inspiral of compact objects into massive black holes in the centers of galaxies. The detection of waves from such 'extreme mass ratio inspiral' systems (EMRIs) and extraction of information from those waves require template waveforms. The systems' extreme mass ratio means that their waveforms can be determined accurately using black hole perturbation theory. Such calculations are computationally very expensive. There is a pressing need for families of approximate waveforms that may be generated cheaply and quickly but which still capture the main features of true waveforms. In this paper, we introduce a family of such kludge waveforms and describe ways to generate them. Different kinds of kludges have already been used to scope out data analysis issues for LISA. The models we study here are based on computing a particle's inspiral trajectory in Boyer-Lindquist coordinates, and subsequent identification of these coordinates with flat-space spherical polar coordinates. A gravitational waveform may then be computed from the multipole moments of the trajectory in these coordinates, using well-known solutions of the linearised gravitational perturbation equations in flat space time. We compute waveforms using a standard slow-motion quadrupole formula, a quadrupole/octupole formula, and a fast-motion, weak-field formula originally developed by Press. We assess these approximations by comparing to accurate waveforms obtained by solving the Teukolsky equation in the adiabatic limit (neglecting GW backreaction). We find that the kludge waveforms do extremely well at approximating the true gravitational waveform, having overlaps with the Teukolsky waveforms of 95% or higher over most of the parameter space for which comparisons can currently be made. Indeed, we find these

  18. Electrochemical sensing using comparison of voltage-current time differential values during waveform generation and detection

    Science.gov (United States)

    Woo, Leta Yar-Li; Glass, Robert Scott; Fitzpatrick, Joseph Jay; Wang, Gangqiang; Henderson, Brett Tamatea; Lourdhusamy, Anthoniraj; Steppan, James John; Allmendinger, Klaus Karl

    2018-01-02

    A device for signal processing. The device includes a signal generator, a signal detector, and a processor. The signal generator generates an original waveform. The signal detector detects an affected waveform. The processor is coupled to the signal detector. The processor receives the affected waveform from the signal detector. The processor also compares at least one portion of the affected waveform with the original waveform. The processor also determines a difference between the affected waveform and the original waveform. The processor also determines a value corresponding to a unique portion of the determined difference between the original and affected waveforms. The processor also outputs the determined value.

  19. Solving seismological problems using sgraph program: II-waveform modeling

    International Nuclear Information System (INIS)

    Abdelwahed, Mohamed F.

    2012-01-01

    One of the seismological programs to manipulate seismic data is SGRAPH program. It consists of integrated tools to perform advanced seismological techniques. SGRAPH is considered a new system for maintaining and analyze seismic waveform data in a stand-alone Windows-based application that manipulate a wide range of data formats. SGRAPH was described in detail in the first part of this paper. In this part, I discuss the advanced techniques including in the program and its applications in seismology. Because of the numerous tools included in the program, only SGRAPH is sufficient to perform the basic waveform analysis and to solve advanced seismological problems. In the first part of this paper, the application of the source parameters estimation and hypocentral location was given. Here, I discuss SGRAPH waveform modeling tools. This paper exhibits examples of how to apply the SGRAPH tools to perform waveform modeling for estimating the focal mechanism and crustal structure of local earthquakes.

  20. Mergers of black-hole binaries with aligned spins: Waveform characteristics

    International Nuclear Information System (INIS)

    Kelly, Bernard J.; Baker, John G.; Centrella, Joan; Boggs, William D.; McWilliams, Sean T.

    2011-01-01

    We conduct a descriptive analysis of the multipolar structure of gravitational-radiation waveforms from equal-mass aligned-spin mergers, following an approach first presented in the complementary context of nonspinning black holes of varying mass ratio [J. G. Baker et al., Phys. Rev. D 78, 044046 (2008).]. We find that, as with the nonspinning mergers, the dominant waveform mode phases evolve together in lock-step through inspiral and merger, supporting the previous waveform description in terms of an adiabatically rigid rotator driving gravitational-wave emission--an implicit rotating source. We further apply the late-time merger-ringdown model for the rotational frequency introduced in [J. G. Baker et al., Phys. Rev. D 78, 044046 (2008).], along with an improved amplitude model appropriate for the dominant (2, ±2) modes. This provides a quantitative description of the merger-ringdown waveforms, and suggests that the major features of these waveforms can be described with reference only to the intrinsic parameters associated with the state of the final black hole formed in the merger. We provide an explicit model for the merger-ringdown radiation, and demonstrate that this model agrees to fitting factors better than 95% with the original numerical waveforms for system masses above ∼150M · . This model may be directly applicable to gravitational-wave detection of intermediate-mass black-hole mergers.

  1. Finite-Source Inversion for the 2004 Parkfield Earthquake using 3D Velocity Model Green's Functions

    Science.gov (United States)

    Kim, A.; Dreger, D.; Larsen, S.

    2008-12-01

    We determine finite fault models of the 2004 Parkfield earthquake using 3D Green's functions. Because of the dense station coverage and detailed 3D velocity structure model in this region, this earthquake provides an excellent opportunity to examine how the 3D velocity structure affects the finite fault inverse solutions. Various studies (e.g. Michaels and Eberhart-Phillips, 1991; Thurber et al., 2006) indicate that there is a pronounced velocity contrast across the San Andreas Fault along the Parkfield segment. Also the fault zone at Parkfield is wide as evidenced by mapped surface faults and where surface slip and creep occurred in the 1966 and the 2004 Parkfield earthquakes. For high resolution images of the rupture process"Ait is necessary to include the accurate 3D velocity structure for the finite source inversion. Liu and Aurchuleta (2004) performed finite fault inversions using both 1D and 3D Green's functions for 1989 Loma Prieta earthquake using the same source paramerization and data but different Green's functions and found that the models were quite different. This indicates that the choice of the velocity model significantly affects the waveform modeling at near-fault stations. In this study, we used the P-wave velocity model developed by Thurber et al (2006) to construct the 3D Green's functions. P-wave speeds are converted to S-wave speeds and density using by the empirical relationships of Brocher (2005). Using a finite difference method, E3D (Larsen and Schultz, 1995), we computed the 3D Green's functions numerically by inserting body forces at each station. Using reciprocity, these Green's functions are recombined to represent the ground motion at each station due to the slip on the fault plane. First we modeled the waveforms of small earthquakes to validate the 3D velocity model and the reciprocity of the Green"fs function. In the numerical tests we found that the 3D velocity model predicted the individual phases well at frequencies lower than 0

  2. Hepatic vein Doppler waveform in patients with diffuse fatty infiltration of the liver

    International Nuclear Information System (INIS)

    Oguzkurt, Levent; Yildirim, Tulin; Torun, Dilek; Tercan, Fahri; Kizilkilic, Osman; Niron, E. Alp

    2005-01-01

    Objective: To determine the incidence of abnormal hepatic vein Doppler waveform in patients with diffuse fatty infiltration of the liver (FIL). Materials and methods: In this prospective study, 40 patients with diffuse FIL and 50 normal healthy adults who served as control group underwent hepatic vein (HV) Doppler ultrasonography. The patients with the diagnosis of FIL were 23 men (57.5%) and 17 women aged 30-62 years (mean age ± S.D., 42 ± 12 years). Subjects in the control group were 27 men (54%) and 23 women aged 34-65 years (mean age ± S.D., 45 ± 14 years). The diagnosis of FIL was confirmed with computed tomography density measurements. The waveforms of HV were classified into three groups: regular triphasic waveform, biphasic waveform without a reverse flow, and monophasic or flat waveform. Etiological factors for FIL were diabetes mellitus (DM), hyperlipidemia and obesity (body mass index > 25). Serum lipid profile was obtained from all the patients with FIL. Results: Seventeen of the 40 patients (43%) with FIL had an abnormal HV Doppler waveform, whereas only one of the 50 (2%) healthy subjects had an abnormal waveform. The difference in the distribution of normal Doppler waveform pattern between the patients and the control group was significant (P 0.05). There was not any correlation between the degree of fat infiltration and the hepatic vein waveform pattern (P = 0.60). Conclusion: Patients with fatty liver has a high rate of an abnormal hepatic vein Doppler waveform pattern which can be biphasic or monophasic. We could not find a relation between the etiological factors for FIL and the occurrence of an abnormal HV Doppler waveform

  3. Rapidly reconfigurable high-fidelity optical arbitrary waveform generation in heterogeneous photonic integrated circuits.

    Science.gov (United States)

    Feng, Shaoqi; Qin, Chuan; Shang, Kuanping; Pathak, Shibnath; Lai, Weicheng; Guan, Binbin; Clements, Matthew; Su, Tiehui; Liu, Guangyao; Lu, Hongbo; Scott, Ryan P; Ben Yoo, S J

    2017-04-17

    This paper demonstrates rapidly reconfigurable, high-fidelity optical arbitrary waveform generation (OAWG) in a heterogeneous photonic integrated circuit (PIC). The heterogeneous PIC combines advantages of high-speed indium phosphide (InP) modulators and low-loss, high-contrast silicon nitride (Si3N4) arrayed waveguide gratings (AWGs) so that high-fidelity optical waveform syntheses with rapid waveform updates are possible. The generated optical waveforms spanned a 160 GHz spectral bandwidth starting from an optical frequency comb consisting of eight comb lines separated by 20 GHz channel spacing. The Error Vector Magnitude (EVM) values of the generated waveforms were approximately 16.4%. The OAWG module can rapidly and arbitrarily reconfigure waveforms upon every pulse arriving at 2 ns repetition time. The result of this work indicates the feasibility of truly dynamic optical arbitrary waveform generation where the reconfiguration rate or the modulator bandwidth must exceed the channel spacing of the AWG and the optical frequency comb.

  4. Generation of correlated finite alphabet waveforms using gaussian random variables

    KAUST Repository

    Jardak, Seifallah; Ahmed, Sajid; Alouini, Mohamed-Slim

    2014-01-01

    , the proposed scheme is general, the main focus of this paper is to generate finite alphabet waveforms for multiple-input multiple-output radar, where correlated waveforms are used to achieve desired beampatterns. © 2014 IEEE.

  5. Research Note: Full-waveform inversion of the unwrapped phase of a model

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-12-06

    Reflections in seismic data induce serious non-linearity in the objective function of full- waveform inversion. Thus, without a good initial velocity model that can produce reflections within a half cycle of the frequency used in the inversion, convergence to a solution becomes difficult. As a result, we tend to invert for refracted events and damp reflections in data. Reflection induced non-linearity stems from cycle skipping between the imprint of the true model in observed data and the predicted model in synthesized data. Inverting for the phase of the model allows us to address this problem by avoiding the source of non-linearity, the phase wrapping phenomena. Most of the information related to the location (or depths) of interfaces is embedded in the phase component of a model, mainly influenced by the background model, while the velocity-contrast information (responsible for the reflection energy) is mainly embedded in the amplitude component. In combination with unwrapping the phase of data, which mitigates the non-linearity introduced by the source function, I develop a framework to invert for the unwrapped phase of a model, represented by the instantaneous depth, using the unwrapped phase of the data. The resulting gradient function provides a mechanism to non-linearly update the velocity model by applying mainly phase shifts to the model. In using the instantaneous depth as a model parameter, we keep track of the model properties unfazed by the wrapping phenomena. © 2013 European Association of Geoscientists & Engineers.

  6. Design and construction of an electromechanical velocity modulator for Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez, A. A., E-mail: avelas26@eafit.edu.co; Carmona, A. [Universidad EAFIT, Grupo de Electromagnetismo Aplicado (Colombia); Velasquez, D.; Angel, L. [Universidad EAFIT, Grupo de Optica Aplicada (Colombia)

    2011-11-15

    In this paper we report the design, construction and characterization of an electromechanical velocity modulator for application in Moessbauer spectroscopy. The modulator was constructed with copper coils, Neodymium magnets, steel cores and polymeric membranes. The magnetic field in the driving and velocity sensing stages was analyzed by the finite element method, which showed a linear relation between the magnetic field in the region of motion of both coils and the position of the coils within the steel cores. The results obtained by computational simulation allowed us to optimize geometries and dimensions of the elements of the system. The modulator presented its first resonance frequency at 16.7 Hz, this value was in good agreement with that predicted by a second order model, which showed a resonant frequency of 16.8 Hz. The linearity of the velocity signal of the modulator was analyzed through an optical method, based on a Michelson-Morley interferometer, in which the modulator moved one of the mirrors. Results showed a satisfactory linearity of the velocity signal obtained in the sensing coil, whose correlation with a straight line was around 0.99987 for a triangular reference waveform.

  7. the Preliminary Research Based on Seismic Signals Generated by Hutubi Transmitting Seismic Station with One Large-volume Airgun Array

    Science.gov (United States)

    Wang, Q.; Su, J.; Wei, Y.; Zhang, W.; Wang, H.; Wang, B.; Ji, Z.

    2017-12-01

    For studying the subsurface structure and its subtle changes, we built the Hutubi transmitting seismic station with one large-volume airgun array at one artificial water pool in the northern segment of Tianshan mountain, where earthquakes occurred frequently. The airgun array consists of six airguns with every airgun capacity of 2000in3, and the artificial water pool with the top diameter of 100m, bottom diameter of 20m and the depth of 18m.We started the regular excitation experiment with the large-volume airgun source every week since June, 2013. Using seismic signals geneated by the Hutubi airgun source, we made the preliminary research on the airgun source, waveform characteristics and the subsurface velocity changes in the northern Tiansh mountain. The results are as follows: The seismic signal exited by the airgun source is characteristic of low-frequency ,and the dominant frequency is in the range of 2 6Hz. The Hutubi transmitting seismic station can continuously generate long-distance detectable and highly repeatable signals, and the correlation coefficient of sigals is greater than 0.95; and the longest propagation distance arrives to 380km, in addition, the 5000-shot stacked sigal using the phase weighted stack technique can be identified in the station, which is about 1300km from the Hutubi transmitting seismic station. Hutubi large-volume airgun source is fitted to detect and monitor the regional-scale subsurface stress state. Applying correlation test method, we measured weak subsurface velocity changes in the northern Tianshan mountain, and found that the several stations, which are within 150km from the the Hutubi transmitting seismic station, appeared 0.1 0.2% relative velocity changes before the Hutubi MS6.2 earthquake on Dec.8, 2016.

  8. Influence of the interaction volume on the kinetic energy resolution of a velocity map imaging spectrometer

    International Nuclear Information System (INIS)

    Zhang Peng; Feng Zheng-Peng; Luo Si-Qiang; Wang Zhe

    2016-01-01

    We investigate the influence of the interaction volume on the energy resolution of a velocity map imaging spectrometer. The simulation results show that the axial interaction size has a significant influence on the resolution. This influence is increased for a higher kinetic energy. We further show that the radial interaction size has a minor influence on the energy resolution for the electron or ion with medium energy, but it is crucial for the resolution of the electron or ion with low kinetic energy. By tracing the flight trajectories we show how the electron or ion energy resolution is influenced by the interaction size. (paper)

  9. SU-E-J-123: Assessing Segmentation Accuracy of Internal Volumes and Sub-Volumes in 4D PET/CT of Lung Tumors Using a Novel 3D Printed Phantom

    International Nuclear Information System (INIS)

    Soultan, D; Murphy, J; James, C; Hoh, C; Moiseenko, V; Cervino, L; Gill, B

    2015-01-01

    Purpose: To assess the accuracy of internal target volume (ITV) segmentation of lung tumors for treatment planning of simultaneous integrated boost (SIB) radiotherapy as seen in 4D PET/CT images, using a novel 3D-printed phantom. Methods: The insert mimics high PET tracer uptake in the core and 50% uptake in the periphery, by using a porous design at the periphery. A lung phantom with the insert was placed on a programmable moving platform. Seven breathing waveforms of ideal and patient-specific respiratory motion patterns were fed to the platform, and 4D PET/CT scans were acquired of each of them. CT images were binned into 10 phases, and PET images were binned into 5 phases following the clinical protocol. Two scenarios were investigated for segmentation: a gate 30–70 window, and no gating. The radiation oncologist contoured the outer ITV of the porous insert with on CT images, while the internal void volume with 100% uptake was contoured on PET images for being indistinguishable from the outer volume in CT images. Segmented ITVs were compared to the expected volumes based on known target size and motion. Results: 3 ideal breathing patterns, 2 regular-breathing patient waveforms, and 2 irregular-breathing patient waveforms were used for this study. 18F-FDG was used as the PET tracer. The segmented ITVs from CT closely matched the expected motion for both no gating and gate 30–70 window, with disagreement of contoured ITV with respect to the expected volume not exceeding 13%. PET contours were seen to overestimate volumes in all the cases, up to more than 40%. Conclusion: 4DPET images of a novel 3D printed phantom designed to mimic different uptake values were obtained. 4DPET contours overestimated ITV volumes in all cases, while 4DCT contours matched expected ITV volume values. Investigation of the cause and effects of the discrepancies is undergoing

  10. A simulation tool to study high-frequency chest compression energy transfer mechanisms and waveforms for pulmonary disease applications.

    Science.gov (United States)

    O'Clock, George D; Lee, Yong Wan; Lee, Jongwon; Warwick, Warren J

    2010-07-01

    High-frequency chest compression (HFCC) can be used as a therapeutic intervention to assist in the transport and clearance of mucus and enhance water secretion for cystic fibrosis patients. An HFCC pump-vest and half chest-lung simulation, with 23 lung generations, has been developed using inertance, compliance, viscous friction relationships, and Newton's second law. The simulation has proven to be useful in studying the effects of parameter variations and nonlinear effects on HFCC system performance and pulmonary system response. The simulation also reveals HFCC waveform structure and intensity changes in various segments of the pulmonary system. The HFCC system simulation results agree with measurements, indicating that the HFCC energy transport mechanism involves a mechanically induced pulsation or vibration waveform with average velocities in the lung that are dependent upon small air displacements over large areas associated with the vest-chest interface. In combination with information from lung physiology, autopsies and a variety of other lung modeling efforts, the results of the simulation can reveal a number of therapeutic implications.

  11. The association of brain structure with gait velocity in older adults: a quantitative volumetric analysis of brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Ezzati, Ali [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Montefiore Medical Center, Department of Neurology, Bronx, NY (United States); Katz, Mindy J. [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Lipton, Michael L. [Albert Einstein College of Medicine of Yeshiva University, The Gruss Magnetic Resonance Research Center and Departments of Radiology, Psychiatry and Behavioral Sciences and the Dominick P. Purpura Department of Neuroscience, Bronx, NY (United States); Montefiore Medical Center, The Department of Radiology, Bronx, NY (United States); Lipton, Richard B. [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Albert Einstein College of Medicine of Yeshiva University, Department of Epidemiology and Population Health, Bronx, NY (United States); Verghese, Joe [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Albert Einstein College of Medicine, Division of Cognitive and Motor Aging, Bronx, NY (United States)

    2015-08-15

    While cortical processes play an important role in controlling locomotion, the underlying structural brain changes associated with slowing of gait in aging are not yet fully established. Our study aimed to examine the relationship between cortical gray matter volume (GM), white matter volume (WM), ventricular volume (VV), hippocampal and hippocampal subfield volumes, and gait velocity in older adults free of dementia. Gait and cognitive performance was tested in 112 community-residing adults, age 70 years and over, participating in the Einstein Aging Study. Gait velocity (cm/s) was obtained using an instrumented walkway. Volumetric MRI measures were estimated using a FreeSurfer software. We examined the cross-sectional relationship of GM, WM, VV, and hippocampal total and subfield volumes and gait velocity using linear regression models. In complementary models, the effect of memory performance on the relationship between gait velocity and regional volumes was evaluated. Slower gait velocity was associated with smaller cortical GM and total hippocampal volumes. There was no association between gait velocity and WM or VV. Among hippocampal subfields, only smaller presubiculum volume was significantly associated with decrease in gait velocity. Addition of the memory performance to the models attenuated the association between gait velocity and all volumetric measures. Our findings indicate that total GM and hippocampal volumes as well as specific hippocampal subfield volumes are inversely associated with locomotor function. These associations are probably affected by cognitive status of study population. (orig.)

  12. The association of brain structure with gait velocity in older adults: a quantitative volumetric analysis of brain MRI

    International Nuclear Information System (INIS)

    Ezzati, Ali; Katz, Mindy J.; Lipton, Michael L.; Lipton, Richard B.; Verghese, Joe

    2015-01-01

    While cortical processes play an important role in controlling locomotion, the underlying structural brain changes associated with slowing of gait in aging are not yet fully established. Our study aimed to examine the relationship between cortical gray matter volume (GM), white matter volume (WM), ventricular volume (VV), hippocampal and hippocampal subfield volumes, and gait velocity in older adults free of dementia. Gait and cognitive performance was tested in 112 community-residing adults, age 70 years and over, participating in the Einstein Aging Study. Gait velocity (cm/s) was obtained using an instrumented walkway. Volumetric MRI measures were estimated using a FreeSurfer software. We examined the cross-sectional relationship of GM, WM, VV, and hippocampal total and subfield volumes and gait velocity using linear regression models. In complementary models, the effect of memory performance on the relationship between gait velocity and regional volumes was evaluated. Slower gait velocity was associated with smaller cortical GM and total hippocampal volumes. There was no association between gait velocity and WM or VV. Among hippocampal subfields, only smaller presubiculum volume was significantly associated with decrease in gait velocity. Addition of the memory performance to the models attenuated the association between gait velocity and all volumetric measures. Our findings indicate that total GM and hippocampal volumes as well as specific hippocampal subfield volumes are inversely associated with locomotor function. These associations are probably affected by cognitive status of study population. (orig.)

  13. Variable Rate Characteristic Waveform Interpolation Speech Coder Based on Phonetic Classification

    Institute of Scientific and Technical Information of China (English)

    WANG Jing; KUANG Jing-ming; ZHAO Sheng-hui

    2007-01-01

    A variable-bit-rate characteristic waveform interpolation (VBR-CWI) speech codec with about 1.8kbit/s average bit rate which integrates phonetic classification into characteristic waveform (CW) decomposition is proposed.Each input frame is classified into one of 4 phonetic classes.Non-speech frames are represented with Bark-band noise model.The extracted CWs become rapidly evolving waveforms (REWs) or slowly evolving waveforms (SEWs) in the cases of unvoiced or stationary voiced frames respectively, while mixed voiced frames use the same CW decomposition as that in the conventional CWI.Experimental results show that the proposed codec can eliminate most buzzy and noisy artifacts existing in the fixed-bit-rate characteristic waveform interpolation (FBR-CWI) speech codec, the average bit rate can be much lower, and its reconstructed speech quality is much better than FS 1016 CELP at 4.8kbit/s and similar to G.723.1 ACELP at 5.3kbit/s.

  14. Accuracy of Binary Black Hole waveforms for Advanced LIGO searches

    Science.gov (United States)

    Kumar, Prayush; Barkett, Kevin; Bhagwat, Swetha; Chu, Tony; Fong, Heather; Brown, Duncan; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela

    2015-04-01

    Coalescing binaries of compact objects are flagship sources for the first direct detection of gravitational waves with LIGO-Virgo observatories. Matched-filtering based detection searches aimed at binaries of black holes will use aligned spin waveforms as filters, and their efficiency hinges on the accuracy of the underlying waveform models. A number of gravitational waveform models are available in literature, e.g. the Effective-One-Body, Phenomenological, and traditional post-Newtonian ones. While Numerical Relativity (NR) simulations provide for the most accurate modeling of gravitational radiation from compact binaries, their computational cost limits their application in large scale searches. In this talk we assess the accuracy of waveform models in two regions of parameter space, which have only been explored cursorily in the past: the high mass-ratio regime as well as the comparable mass-ratio + high spin regime.s Using the SpEC code, six q = 7 simulations with aligned-spins and lasting 60 orbits, and tens of q ∈ [1,3] simulations with high black hole spins were performed. We use them to study the accuracy and intrinsic parameter biases of different waveform families, and assess their viability for Advanced LIGO searches.

  15. Stimulation Efficiency With Decaying Exponential Waveforms in a Wirelessly Powered Switched-Capacitor Discharge Stimulation System.

    Science.gov (United States)

    Lee, Hyung-Min; Howell, Bryan; Grill, Warren M; Ghovanloo, Maysam

    2018-05-01

    The purpose of this study was to test the feasibility of using a switched-capacitor discharge stimulation (SCDS) system for electrical stimulation, and, subsequently, determine the overall energy saved compared to a conventional stimulator. We have constructed a computational model by pairing an image-based volume conductor model of the cat head with cable models of corticospinal tract (CST) axons and quantified the theoretical stimulation efficiency of rectangular and decaying exponential waveforms, produced by conventional and SCDS systems, respectively. Subsequently, the model predictions were tested in vivo by activating axons in the posterior internal capsule and recording evoked electromyography (EMG) in the contralateral upper arm muscles. Compared to rectangular waveforms, decaying exponential waveforms with time constants >500 μs were predicted to require 2%-4% less stimulus energy to activate directly models of CST axons and 0.4%-2% less stimulus energy to evoke EMG activity in vivo. Using the calculated wireless input energy of the stimulation system and the measured stimulus energies required to evoke EMG activity, we predict that an SCDS implantable pulse generator (IPG) will require 40% less input energy than a conventional IPG to activate target neural elements. A wireless SCDS IPG that is more energy efficient than a conventional IPG will reduce the size of an implant, require that less wireless energy be transmitted through the skin, and extend the lifetime of the battery in the external power transmitter.

  16. Closed form of optimal current waveform for class-F PA up to fourth ...

    Indian Academy of Sciences (India)

    PA and its dual, usually referred as inverse class-F PA, current and voltage ... voltage waveforms provides a number of advantages in the process of PA design ... RF PA design approaches with waveform theory and experimental waveform.

  17. An Overview of Radar Waveform Optimization for Target Detection

    Directory of Open Access Journals (Sweden)

    Wang Lulu

    2016-10-01

    Full Text Available An optimal waveform design method that fully employs the knowledge of the target and the environment can further improve target detection performance, thus is of vital importance to research. In this paper, methods of radar waveform optimization for target detection are reviewed and summarized and provide the basis for the research.

  18. Shaping the spectrum of random-phase radar waveforms

    Science.gov (United States)

    Doerry, Armin W.; Marquette, Brandeis

    2017-05-09

    The various technologies presented herein relate to generation of a desired waveform profile in the form of a spectrum of apparently random noise (e.g., white noise or colored noise), but with precise spectral characteristics. Hence, a waveform profile that could be readily determined (e.g., by a spoofing system) is effectively obscured. Obscuration is achieved by dividing the waveform into a series of chips, each with an assigned frequency, wherein the sequence of chips are subsequently randomized. Randomization can be a function of the application of a key to the chip sequence. During processing of the echo pulse, a copy of the randomized transmitted pulse is recovered or regenerated against which the received echo is correlated. Hence, with the echo energy range-compressed in this manner, it is possible to generate a radar image with precise impulse response.

  19. Forest Canopy LAI and Vertical FAVD Profile Inversion from Airborne Full-Waveform LiDAR Data Based on a Radiative Transfer Model

    Directory of Open Access Journals (Sweden)

    Han Ma

    2015-02-01

    Full Text Available Forest canopy leaf area index (LAI is a critical variable for the modeling of climates and ecosystems over both regional and global scales. This paper proposes a physically based method to retrieve LAI and foliage area volume density (FAVD profile directly from full-waveform Light Detection And Ranging (LiDAR data using a radiative transfer (RT model. First, a physical interaction model between LiDAR and a forest scene was built on the basis of radiative transfer theories. Next, FAVD profile of each laser shot of full-waveform LiDAR was inverted using the physical model. In addition, the missing LiDAR data, caused by high-density forest and LiDAR system limitations, were filled in based on the inverted FAVD and the ancillary CHM data. Finally, LAI of the study area was retrieved from the inverted FAVD at a 10-m resolution. CHM derived LAI based on the Beer-Lambert law was compared with the LAI derived from full-waveform data. Also, we compared the results with the field measured LAI. The values of correlation coefficient r and RMSE of the estimated LAI were 0.73 and 0.67, respectively. The results indicate that full-waveform LiDAR data is a reliable data source and represent a useful tool for retrieving forest LAI.

  20. Electronics via waveform analysis

    CERN Document Server

    Craig, Edwin C

    1993-01-01

    The author believes that a good basic understanding of electronics can be achieved by detailed visual analyses of the actual voltage waveforms present in selected circuits. The voltage waveforms included in this text were photographed using a 35-rrun camera in an attempt to make the book more attractive. This book is intended for the use of students with a variety of backgrounds. For this reason considerable material has been placed in the Appendix for those students who find it useful. The Appendix includes many basic electricity and electronic concepts as well as mathematical derivations that are not vital to the understanding of the circuit being discussed in the text at that time. Also some derivations might be so long that, if included in the text, it could affect the concentration of the student on the circuit being studied. The author has tried to make the book comprehensive enough so that a student could use it as a self-study course, providing one has access to adequate laboratory equipment.

  1. PBX-M waveform generator

    International Nuclear Information System (INIS)

    Feng, H.; Frank, K.T.; Kaye, S.

    1987-01-01

    The PBX-M (Princeton Beta Experiment) is an unique Tokamak experiment designed to run with a highly indented plasma. The shaping control will be accomplished through a closed-loop power supply control system. The system will make use of sixteen pre-programmed reference signals and twenty signals taken from direct measurements as input to an analog computer. Through a matrix conversion in the analog computer, these input signals will be used to generate eight control signals to control the eight power supplies. The pre-programmed reference signals will be created using a Macintosh personal computer interfaced to CAMAC (Comptuer Automated Measurement And Control) hardware for down-loading waveforms. The reference signals will be created on the Macintosh by the physics operators, utilizing the full graphics capability of the system. These waveforms are transferred to CAMAC memory, which are then strobed in real time through digital-to-analog converters and fed into the analog computer. The overall system (both hardware and software) is designed to be fail-safe. Specific features of the system, such as load inhibit and discharge inhibit, are discussed

  2. Full Waveform Inversion with Multisource Frequency Selection of Marine Streamer Data

    KAUST Repository

    Huang, Yunsong

    2017-10-27

    The theory and practice of multisource full waveform inversion of marine supergathers are described with a frequency-selection strategy. The key enabling property of frequency selection is that it eliminates the crosstalk among sources, thus overcoming the aperture mismatch of marine multisource inversion. Tests on multisource full waveform inversion of synthetic marine data and Gulf of Mexico data show speedups of 4× and 8×, respectively, compared to conventional full waveform inversion.

  3. Full Waveform Inversion with Multisource Frequency Selection of Marine Streamer Data

    KAUST Repository

    Huang, Yunsong; Schuster, Gerard T.

    2017-01-01

    The theory and practice of multisource full waveform inversion of marine supergathers are described with a frequency-selection strategy. The key enabling property of frequency selection is that it eliminates the crosstalk among sources, thus overcoming the aperture mismatch of marine multisource inversion. Tests on multisource full waveform inversion of synthetic marine data and Gulf of Mexico data show speedups of 4× and 8×, respectively, compared to conventional full waveform inversion.

  4. A microcomputer-based waveform generator for Moessbauer spectrometers

    International Nuclear Information System (INIS)

    Huang Jianping; Chen Xiaomei

    1995-01-01

    A waveform generator for Moessbauer spectrometers based on 8751 single chip microcomputer is described. The reference wave form with high linearity is generated with a 12 bit DAC, and its amplitude is controlled with a 8 bit DAC. Because the channel advance and synchronous signals can be delayed arbitrarily, excellent folded spectra can be acquired. This waveform generator can be controlled with DIP switches on faceplate or series interface of the IBM-PC microcomputer

  5. An investigation of time-frequency domain phase-weighted stacking and its application to phase-velocity extraction from ambient noise's empirical Green's functions

    Science.gov (United States)

    Li, Guoliang; Niu, Fenglin; Yang, Yingjie; Xie, Jun

    2018-02-01

    The time-frequency domain phase-weighted stacking (tf-PWS) technique based on the S transform has been employed in stacking empirical Green's functions (EGFs) derived from ambient noise data, mainly due to its superior power in enhancing weak signals. Questions such as the induced waveform distortion and the feasibility of phase-velocity extraction are yet to be thoroughly explored. In this study, we investigate these issues by conducting extensive numerical tests with both synthetic data and USArray transportable array (TA) ambient noise data. We find that the errors in the measured phase velocities associated with waveform distortion caused by the tf-PWS depend largely on the way of how the inverse S transform (IST) is implemented. If frequency IST is employed in tf-PWS, the corresponding errors are generally less than 0.1 per cent, sufficiently small that the measured phase velocities can be safely used in regular surface wave tomography. On the other hand, if a time IST is used in tf-PWS, then the extracted phase velocities are systematically larger than those measured from linearly stacked ones, and the discrepancy can reach as much as ˜0.4 per cent at some periods. Therefore, if tf-PWS is used in stacking EGFs, then frequency IST is preferred to transform the stacked S spectra back to the time domain for the stacked EGFs.

  6. Preliminary study of crust-upper mantle structure of the Tibetan Plateau by using broadband teleseismic body waveforms

    Science.gov (United States)

    Zhu, Lu-Pei; Zeng, Rong-Sheng; Wu, Francis T.; Owens, Thomas J.; Randall, George E.

    1993-05-01

    As part of a joint Sino-U.S. research project to study the deep structure of the Tibetan Plateau, 11 broadband digital seismic recorders were deployed on the Plateau for one year of passive seismic recording. In this report we use teleseimic P waveforms to study the seismic velocity structure of crust and upper mantle under three stations by receiver function inversion. The receiver function is obtained by first rotating two horizontal components of seismic records into radial and tangential components and then deconvolving the vertical component from them. The receiver function depends only on the structure near the station because the source and path effects have been removed by the deconvolution. To suppress noise, receiver functions calculated from events clustered in a small range of back-azimuths and epicentral distances are stacked. Using a matrix formalism describing the propagation of elastic waves in laterally homogeneous stratified medium, a synthetic receiver function and differential receiver functions for the parameters in each layer can be calculated to establish a linearized inversion for one-dimensional velocity structure. Preliminary results of three stations, Wen-quan, Golmud and Xigatze (Coded as WNDO, TUNL and XIGA), located in central, northern and southern Plateau are given in this paper. The receiver functions of all three stations show clear P-S converted phases. The time delays of these converted phases relative to direct P arrivals are: WNDO 7.9s (for NE direction) and 8.3s (for SE direction), TUNL 8.2s, XIGA 9.0s. Such long time delays indicate the great thickness of crust under the Plateau. The differences between receiver function of these three station shows the tectonic difference between southern and north-central Plateau. The waveforms of the receiver functions for WNDO and TUNL are very simple, while the receiver function of XIGA has an additional midcrustal converted phase. The S wave velocity structures at these three stations

  7. Seismic Wave Velocity in Earth's Shallow Core

    Science.gov (United States)

    Alexandrakis, C.; Eaton, D. W.

    2008-12-01

    Studies of the outer core indicate that it is composed of liquid Fe and Ni alloyed with a ~10% fraction of light elements such as O, S or Si. Recently, unusual features, such as sediment accumulation, immiscible fluid layers or stagnant convection, have been predicted in the shallow core region. Secular cooling and compositional buoyancy drive vigorous convection that sustains the geodynamo, although critical details of light-element composition and thermal regime remain uncertain. Seismic velocity models can provide important constraints on the light element composition, however global reference models, such as Preliminary Reference Earth Model (PREM), IASP91 and AK135 vary significantly in the 200 km below the core-mantle boundary. Past studies of the outermost core velocity structure have been hampered by traveltime uncertainties due to lowermost mantle heterogeneities. The recently published Empirical Transfer Function (ETF) method has been shown to reduce the uncertainty using a waveform stacking approach to improve global observations of SmKS teleseismic waves. Here, we apply the ETF method to achieve a precise top-of-core velocity measurement of 8.05 ± 0.03 km/s. This new model accords well with PREM. Since PREM is based on the adiabatic form of the Adams-Williamson equation, it assumes a well mixed (i.e. homogeneous) composition. This result suggests a lack of heterogeneity in the outermost core due to layering or stagnant convection.

  8. Seismic velocity and attenuation structures at the top 400 km of the inner core

    Science.gov (United States)

    Yu, W.; Wen, L.; Niu, F.

    2002-12-01

    Recent seismic studies reveal an ``east-west" hemispherical difference in seismic velocity and attenuation in the top of the inner core [Niu and Wen, 2001, Wen and Niu, 2002]. The PKiKP-PKIKP observations they used only allowed them to constrain the seismic structure in the top 80 km of the inner core. The question now arises as such to what depth this hemispherical difference persists. To answer this question, we combine the PKiKP-PKIKP dataset and the PKPbc-PKIKP observations at the distance range of 147o-160o to study seismic velocity and attenuation structures in the top 400 km of the inner core along the ``equatorial paths" (the paths whose ray angles > 35o from the polar direction). We select PKPbc-PKIKP waveforms from recordings in the Global Seismic Network (GSN) and several dense regional seismic arrays. We choose recordings for events from 1990 to 2000 with simple source time functions, so only those of intermediate and deep earthquakes are used. The observed PKPbc-PKIKP differential travel times and PKIKP/PKPbc amplitude ratios exhibit an ``east-west" hemispherical difference. The PKPbc-PKIKP travel time residuals are about 0.7 second larger for those sampling the ``eastern" hemisphere than those sampling the ``western" hemisphere. The PKIKP/PKPbc amplitude ratios are generally smaller for those sampling the ``eastern" hemisphere. We construct two seismic velocity and attenuation models, with one for each ``hemisphere", by iteratively modeling the observed PKiKP-PKIKP waveforms, the PKPbc-PKIKP differential travel times and the PKIKP/PKPbc amplitude ratios. For the ``eastern" hemisphere, the observations indicate that the E1 velocity gradient and Q structure, inferred from the PKiKP-PKIKP observations sampling the top 80 km of the inner core, extend at least to 230 km inside the inner core. A change of velocity gradient and Q value is required in the deeper portion of the inner core. For the ``western" hemisphere, on the other hand, W2 velocity gradient

  9. Source mechanism of small long-period events at Mount St. Helens in July 2005 using template matching, phase-weighted stacking, and full-waveform inversion

    Science.gov (United States)

    Matoza, Robin S.; Chouet, Bernard A.; Dawson, Phillip B.; Shearer, Peter M.; Haney, Matthew M.; Waite, Gregory P.; Moran, Seth C.; Mikesell, T. Dylan

    2015-01-01

    Long-period (LP, 0.5-5 Hz) seismicity, observed at volcanoes worldwide, is a recognized signature of unrest and eruption. Cyclic LP “drumbeating” was the characteristic seismicity accompanying the sustained dome-building phase of the 2004–2008 eruption of Mount St. Helens (MSH), WA. However, together with the LP drumbeating was a near-continuous, randomly occurring series of tiny LP seismic events (LP “subevents”), which may hold important additional information on the mechanism of seismogenesis at restless volcanoes. We employ template matching, phase-weighted stacking, and full-waveform inversion to image the source mechanism of one multiplet of these LP subevents at MSH in July 2005. The signal-to-noise ratios of the individual events are too low to produce reliable waveform-inversion results, but the events are repetitive and can be stacked. We apply network-based template matching to 8 days of continuous velocity waveform data from 29 June to 7 July 2005 using a master event to detect 822 network triggers. We stack waveforms for 359 high-quality triggers at each station and component, using a combination of linear and phase-weighted stacking to produce clean stacks for use in waveform inversion. The derived source mechanism pointsto the volumetric oscillation (~10 m3) of a subhorizontal crack located at shallow depth (~30 m) in an area to the south of Crater Glacier in the southern portion of the breached MSH crater. A possible excitation mechanism is the sudden condensation of metastable steam from a shallow pressurized hydrothermal system as it encounters cool meteoric water in the outer parts of the edifice, perhaps supplied from snow melt.

  10. Placental Underperfusion in a Rat Model of Intrauterine Growth Restriction Induced by a Reduced Plasma Volume Expansion.

    Directory of Open Access Journals (Sweden)

    Karine Bibeau

    Full Text Available Lower maternal plasma volume expansion was found in idiopathic intrauterine growth restriction (IUGR but the link remains to be elucidated. An animal model of IUGR was developed by giving a low-sodium diet to rats over the last week of gestation. This treatment prevents full expansion of maternal circulating volume and the increase in uterine artery diameter, leading to reduced placental weight compared to normal gestation. We aimed to verify whether this is associated with reduced remodeling of uteroplacental circulation and placental hypoxia. Dams were divided into two groups: IUGR group and normal-fed controls. Blood velocity waveforms in the main uterine artery were obtained by Doppler sonography on days 14, 18 and 21 of pregnancy. On day 22 (term = 23 days, rats were sacrificed and placentas and uterine radial arteries were collected. Diameter and myogenic response of uterine arteries supplying placentas were determined while expression of hypoxia-modulated genes (HIF-1α, VEGFA and VEGFR2, apoptotic enzyme (Caspase -3 and -9 and glycogen cells clusters were measured in control and IUGR term-placentas. In the IUGR group, impaired blood velocity in the main uterine artery along with increased resistance index was observed without alteration in umbilical artery blood velocity. Radial uterine artery diameter was reduced while myogenic response was increased. IUGR placentas displayed increased expression of hypoxia markers without change in the caspases and increased glycogen cells in the junctional zone. The present data suggest that reduced placental and fetal growth in our IUGR model may be mediated, in part, through reduced maternal uteroplacental blood flow and increased placental hypoxia.

  11. 100 GHz pulse waveform measurement based on electro-optic sampling

    Science.gov (United States)

    Feng, Zhigang; Zhao, Kejia; Yang, Zhijun; Miao, Jingyuan; Chen, He

    2018-05-01

    We present an ultrafast pulse waveform measurement system based on an electro-optic sampling technique at 1560 nm and prepare LiTaO3-based electro-optic modulators with a coplanar waveguide structure. The transmission and reflection characteristics of electrical pulses on a coplanar waveguide terminated with an open circuit and a resistor are investigated by analyzing the corresponding time-domain pulse waveforms. We measure the output electrical pulse waveform of a 100 GHz photodiode and the obtained rise times of the impulse and step responses are 2.5 and 3.4 ps, respectively.

  12. Codesign of Beam Pattern and Sparse Frequency Waveforms for MIMO Radar

    Directory of Open Access Journals (Sweden)

    Chaoyun Mai

    2015-01-01

    Full Text Available Multiple-input multiple-output (MIMO radar takes the advantages of high degrees of freedom for beam pattern design and waveform optimization, because each antenna in centralized MIMO radar system can transmit different signal waveforms. When continuous band is divided into several pieces, sparse frequency radar waveforms play an important role due to the special pattern of the sparse spectrum. In this paper, we start from the covariance matrix of the transmitted waveform and extend the concept of sparse frequency design to the study of MIMO radar beam pattern. With this idea in mind, we first solve the problem of semidefinite constraint by optimization tools and get the desired covariance matrix of the ideal beam pattern. Then, we use the acquired covariance matrix and generalize the objective function by adding the constraint of both constant modulus of the signals and corresponding spectrum. Finally, we solve the objective function by the cyclic algorithm and obtain the sparse frequency MIMO radar waveforms with desired beam pattern. The simulation results verify the effectiveness of this method.

  13. Stimulator with arbitrary waveform for auditory evoked potentials

    International Nuclear Information System (INIS)

    Martins, H R; Romao, M; Placido, D; Provenzano, F; Tierra-Criollo, C J

    2007-01-01

    The technological improvement helps many medical areas. The audiometric exams involving the auditory evoked potentials can make better diagnoses of auditory disorders. This paper proposes the development of a stimulator based on Digital Signal Processor. This stimulator is the first step of an auditory evoked potential system based on the ADSP-BF533 EZ KIT LITE (Analog Devices Company - USA). The stimulator can generate arbitrary waveform like Sine Waves, Modulated Amplitude, Pulses, Bursts and Pips. The waveforms are generated through a graphical interface programmed in C++ in which the user can define the parameters of the waveform. Furthermore, the user can set the exam parameters as number of stimuli, time with stimulation (Time ON) and time without stimulus (Time OFF). In future works will be implemented another parts of the system that includes the acquirement of electroencephalogram and signal processing to estimate and analyze the evoked potential

  14. Stimulator with arbitrary waveform for auditory evoked potentials

    Energy Technology Data Exchange (ETDEWEB)

    Martins, H R; Romao, M; Placido, D; Provenzano, F; Tierra-Criollo, C J [Universidade Federal de Minas Gerais (UFMG), Departamento de Engenharia Eletrica (DEE), Nucleo de Estudos e Pesquisa em Engenharia Biomedica NEPEB, Av. Ant. Carlos, 6627, sala 2206, Pampulha, Belo Horizonte, MG, 31.270-901 (Brazil)

    2007-11-15

    The technological improvement helps many medical areas. The audiometric exams involving the auditory evoked potentials can make better diagnoses of auditory disorders. This paper proposes the development of a stimulator based on Digital Signal Processor. This stimulator is the first step of an auditory evoked potential system based on the ADSP-BF533 EZ KIT LITE (Analog Devices Company - USA). The stimulator can generate arbitrary waveform like Sine Waves, Modulated Amplitude, Pulses, Bursts and Pips. The waveforms are generated through a graphical interface programmed in C++ in which the user can define the parameters of the waveform. Furthermore, the user can set the exam parameters as number of stimuli, time with stimulation (Time ON) and time without stimulus (Time OFF). In future works will be implemented another parts of the system that includes the acquirement of electroencephalogram and signal processing to estimate and analyze the evoked potential.

  15. Variations and healing of the seismic velocity (Beno Gutenberg Medal Lecture)

    Science.gov (United States)

    Snieder, Roel

    2016-04-01

    Scattering of waves leads to a complexity of waveforms that is often seen by seismologists as a nuisance. And indeed, the complicated wave paths of multiple scattered waves makes it difficult to use these waves for imaging. Yet, the long wave paths of multiple scattered waves makes these waves an ideal tool for measuring minute velocity changes. This has led to the development of coda wave interferometry as a tool for measuring small velocity changes in the laboratory and with field data. Combined with the use of noise cross correlations - seismic interferometry - this method is even more useful because it follows for a quasi-continuous measurement of velocity changes. I will show examples of detecting velocity changes in the laboratory, the earth's near surface, and in engineered structures. Perhaps surprisingly, the seismic velocity is not constant at all, and varies with the seasons, temperature, precipitation, as the weather does. In addition, the seismic velocity usually drops as a result of deformation. Most of these changes likely occur in the near surface or the region of deformation, and a drawback of using strongly scattered waves is that it is difficult to localize the spatial area of the velocity change. I will present laboratory measurements that show that a certain spatial localization of the velocity change can be achieved. One of the intriguing observations is that after deformation the seismic velocity recovers logarithmically with time. The reason for this particular time-dependence is the presence of healing mechanisms that operate at different time scales. Since this is feature of many physical systems, the logarithmic healing is a widespread behavior and is akin in its generality to the Gutenberg-Richter law.

  16. Source-independent time-domain waveform inversion using convolved wavefields: Application to the encoded multisource waveform inversion

    KAUST Repository

    Choi, Yun Seok; Alkhalifah, Tariq Ali

    2011-01-01

    Full waveform inversion requires a good estimation of the source wavelet to improve our chances of a successful inversion. This is especially true for an encoded multisource time-domain implementation, which, conventionally, requires separate

  17. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: I. Model and velocity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, J [Cardiovascular Research Group Physics, University of New England, Armidale, NSW 2351 (Australia); Buick, J M [Department of Mechanical and Design Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth PO1 3DJ (United Kingdom)

    2008-10-21

    Numerical modelling is a powerful tool in the investigation of human blood flow and arterial diseases such as atherosclerosis. It is known that near wall velocity and shear are important in the pathogenesis and progression of atherosclerosis. In this paper results for a simulation of blood flow in a three-dimensional carotid artery geometry using the lattice Boltzmann method are presented. The velocity fields in the body of the fluid are analysed at six times of interest during a physiologically accurate velocity waveform. It is found that the three-dimensional model agrees well with previous literature results for carotid artery flow. Regions of low near wall velocity and circulatory flow are observed near the outer wall of the bifurcation and in the lower regions of the external carotid artery, which are regions that are typically prone to atherosclerosis.

  18. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: I. Model and velocity analysis

    International Nuclear Information System (INIS)

    Boyd, J; Buick, J M

    2008-01-01

    Numerical modelling is a powerful tool in the investigation of human blood flow and arterial diseases such as atherosclerosis. It is known that near wall velocity and shear are important in the pathogenesis and progression of atherosclerosis. In this paper results for a simulation of blood flow in a three-dimensional carotid artery geometry using the lattice Boltzmann method are presented. The velocity fields in the body of the fluid are analysed at six times of interest during a physiologically accurate velocity waveform. It is found that the three-dimensional model agrees well with previous literature results for carotid artery flow. Regions of low near wall velocity and circulatory flow are observed near the outer wall of the bifurcation and in the lower regions of the external carotid artery, which are regions that are typically prone to atherosclerosis.

  19. Design and construction of an electromechanical velocity modulator for Mössbauer spectroscopy

    International Nuclear Information System (INIS)

    Velásquez, A. A.; Carmona, A.; Velásquez, D.; Ángel, L.

    2011-01-01

    In this paper we report the design, construction and characterization of an electromechanical velocity modulator for application in Mössbauer spectroscopy. The modulator was constructed with copper coils, Neodymium magnets, steel cores and polymeric membranes. The magnetic field in the driving and velocity sensing stages was analyzed by the finite element method, which showed a linear relation between the magnetic field in the region of motion of both coils and the position of the coils within the steel cores. The results obtained by computational simulation allowed us to optimize geometries and dimensions of the elements of the system. The modulator presented its first resonance frequency at 16.7 Hz, this value was in good agreement with that predicted by a second order model, which showed a resonant frequency of 16.8 Hz. The linearity of the velocity signal of the modulator was analyzed through an optical method, based on a Michelson–Morley interferometer, in which the modulator moved one of the mirrors. Results showed a satisfactory linearity of the velocity signal obtained in the sensing coil, whose correlation with a straight line was around 0.99987 for a triangular reference waveform.

  20. Multisource waveform inversion of marine streamer data using normalized wavefield

    KAUST Repository

    Choi, Yun Seok

    2013-09-01

    Multisource full-waveform inversion based on the L1- and L2-norm objective functions cannot be applied to marine streamer data because it does not take into account the unmatched acquisition geometries between the observed and modeled data. To apply multisource full-waveform inversion to marine streamer data, we construct the L1- and L2-norm objective functions using the normalized wavefield. The new residual seismograms obtained from the L1- and L2-norms using the normalized wavefield mitigate the problem of unmatched acquisition geometries, which enables multisource full-waveform inversion to work with marine streamer data. In the new approaches using the normalized wavefield, we used the back-propagation algorithm based on the adjoint-state technique to efficiently calculate the gradients of the objective functions. Numerical examples showed that multisource full-waveform inversion using the normalized wavefield yields much better convergence for marine streamer data than conventional approaches. © 2013 Society of Exploration Geophysicists.

  1. Efficient data retrieval method for similar plasma waveforms in EAST

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying, E-mail: liuying-ipp@szu.edu.cn [SZU-CASIPP Joint Laboratory for Applied Plasma, Shenzhen University, Shenzhen 518060 (China); Huang, Jianjun; Zhou, Huasheng; Wang, Fan [SZU-CASIPP Joint Laboratory for Applied Plasma, Shenzhen University, Shenzhen 518060 (China); Wang, Feng [Institute of Plasma Physics Chinese Academy of Sciences, Hefei 230031 (China)

    2016-11-15

    Highlights: • The proposed method is carried out by means of bounding envelope and angle distance. • It allows retrieving for whole similar waveforms of any time length. • In addition, the proposed method is also possible to retrieve subsequences. - Abstract: Fusion research relies highly on data analysis due to its massive-sized database. In the present work, we propose an efficient method for searching and retrieving similar plasma waveforms in Experimental Advanced Superconducting Tokamak (EAST). Based on Piecewise Linear Aggregate Approximation (PLAA) for extracting feature values, the searching process is accomplished in two steps. The first one is coarse searching to narrow down the search space, which is carried out by means of bounding envelope. The second step is fine searching to retrieval similar waveforms, which is implemented by the angle distance. The proposed method is tested in EAST databases and turns out to have good performance in retrieving similar waveforms.

  2. Generation of correlated finite alphabet waveforms using gaussian random variables

    KAUST Repository

    Ahmed, Sajid

    2016-01-13

    Various examples of methods and systems are provided for generation of correlated finite alphabet waveforms using Gaussian random variables in, e.g., radar and communication applications. In one example, a method includes mapping an input signal comprising Gaussian random variables (RVs) onto finite-alphabet non-constant-envelope (FANCE) symbols using a predetermined mapping function, and transmitting FANCE waveforms through a uniform linear array of antenna elements to obtain a corresponding beampattern. The FANCE waveforms can be based upon the mapping of the Gaussian RVs onto the FANCE symbols. In another example, a system includes a memory unit that can store a plurality of digital bit streams corresponding to FANCE symbols and a front end unit that can transmit FANCE waveforms through a uniform linear array of antenna elements to obtain a corresponding beampattern. The system can include a processing unit that can encode the input signal and/or determine the mapping function.

  3. Application of digital waveform processing to position-sensitive proportional counter

    International Nuclear Information System (INIS)

    Takenaka, Yasuto; Uritani, Akira; Mori, Chizuo

    1995-01-01

    In a charge-division type position-sensitive proportional counter (PSPC) with an anode wire of small resistance, a reflected component from an opposite end and thermal noise involved in signals deteriorate the position resolution of the PSPC. A digital waveform processing method was applied to the reduction of these undesirable effects by skillfully utilizing their signal characteristics that can be observed as inversely correlative signals between two-output signals from both sides of the PSPC. The digital waveform processing could improve the position resolution compared to a conventional pulse height processing method with analog filters. When the digital waveform processing was applied to signals of an equivalent circuit simulating the PSPC, the position resolutions defined by the full width at half maximum were improved to about 30% of those of conventional analog pulse processing. In the case of an actual PSPC, the position resolutions by the digital waveform processing were improved by 4-10% as compared with those of conventional pulse height processing. (author)

  4. Generation of correlated finite alphabet waveforms using gaussian random variables

    KAUST Repository

    Ahmed, Sajid; Alouini, Mohamed-Slim; Jardak, Seifallah

    2016-01-01

    Various examples of methods and systems are provided for generation of correlated finite alphabet waveforms using Gaussian random variables in, e.g., radar and communication applications. In one example, a method includes mapping an input signal comprising Gaussian random variables (RVs) onto finite-alphabet non-constant-envelope (FANCE) symbols using a predetermined mapping function, and transmitting FANCE waveforms through a uniform linear array of antenna elements to obtain a corresponding beampattern. The FANCE waveforms can be based upon the mapping of the Gaussian RVs onto the FANCE symbols. In another example, a system includes a memory unit that can store a plurality of digital bit streams corresponding to FANCE symbols and a front end unit that can transmit FANCE waveforms through a uniform linear array of antenna elements to obtain a corresponding beampattern. The system can include a processing unit that can encode the input signal and/or determine the mapping function.

  5. Augmented kludge waveforms for detecting extreme-mass-ratio inspirals

    Science.gov (United States)

    Chua, Alvin J. K.; Moore, Christopher J.; Gair, Jonathan R.

    2017-08-01

    The extreme-mass-ratio inspirals (EMRIs) of stellar-mass compact objects into massive black holes are an important class of source for the future space-based gravitational-wave detector LISA. Detecting signals from EMRIs will require waveform models that are both accurate and computationally efficient. In this paper, we present the latest implementation of an augmented analytic kludge (AAK) model, publicly available at https://github.com/alvincjk/EMRI_Kludge_Suite as part of an EMRI waveform software suite. This version of the AAK model has improved accuracy compared to its predecessors, with two-month waveform overlaps against a more accurate fiducial model exceeding 0.97 for a generic range of sources; it also generates waveforms 5-15 times faster than the fiducial model. The AAK model is well suited for scoping out data analysis issues in the upcoming round of mock LISA data challenges. A simple analytic argument shows that it might even be viable for detecting EMRIs with LISA through a semicoherent template bank method, while the use of the original analytic kludge in the same approach will result in around 90% fewer detections.

  6. A compact, multichannel, and low noise arbitrary waveform generator.

    Science.gov (United States)

    Govorkov, S; Ivanov, B I; Il'ichev, E; Meyer, H-G

    2014-05-01

    A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analog compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation.

  7. A compact, multichannel, and low noise arbitrary waveform generator

    International Nuclear Information System (INIS)

    Govorkov, S.; Ivanov, B. I.; Il'ichev, E.; Meyer, H.-G.

    2014-01-01

    A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analog compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation

  8. Improvements in seismic event locations in a deep western U.S. coal mine using tomographic velocity models and an evolutionary search algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Adam Lurka; Peter Swanson [Central Mining Institute, Katowice (Poland)

    2009-09-15

    Methods of improving seismic event locations were investigated as part of a research study aimed at reducing ground control safety hazards. Seismic event waveforms collected with a 23-station three-dimensional sensor array during longwall coal mining provide the data set used in the analyses. A spatially variable seismic velocity model is constructed using seismic event sources in a passive tomographic method. The resulting three-dimensional velocity model is used to relocate seismic event positions. An evolutionary optimization algorithm is implemented and used in both the velocity model development and in seeking improved event location solutions. Results obtained using the different velocity models are compared. The combination of the tomographic velocity model development and evolutionary search algorithm provides improvement to the event locations. 13 refs., 5 figs., 4 tabs.

  9. Development of plasma current waveform adjusting system ZLJ for tokamak device HL-1

    International Nuclear Information System (INIS)

    Wang Shangbing; Hu Haotian; Tang Fangqun; Zhou Yongzheng; Chu Xiuzhong; Cheng Jiashun; Gao Yunxia

    1989-12-01

    The control of some typical Tokamak discharge waveforms has been achieved by using plasma current waveform adjusting system ZLJ in the ohmic heating of HL-1. The discharge waveforms include a series of regular plasma current waveforms with various slow rising rate, such as 80 kA, 450 ms long flat-topping; 100 kA, 200 ms rising; 200 ms falt-topping and 180 kA, 400 ms slow rising etc. The design principle of the system and the initial experimental results are described

  10. 2D acoustic-elastic coupled waveform inversion in the Laplace domain

    KAUST Repository

    Bae, Hoseuk; Shin, Changsoo; Cha, Youngho; Choi, Yun Seok; Min, Dongjoo

    2010-01-01

    Although waveform inversion has been intensively studied in an effort to properly delineate the Earth's structures since the early 1980s, most of the time- and frequency-domain waveform inversion algorithms still have critical limitations

  11. Imaging paleoslabs in the D″ layer beneath Central America and the Caribbean using seismic waveform inversion.

    Science.gov (United States)

    Borgeaud, Anselme F E; Kawai, Kenji; Konishi, Kensuke; Geller, Robert J

    2017-11-01

    D″ (Dee double prime), the lowermost layer of the Earth's mantle, is the thermal boundary layer (TBL) of mantle convection immediately above the Earth's liquid outer core. As the origin of upwelling of hot material and the destination of paleoslabs (downwelling cold slab remnants), D″ plays a major role in the Earth's evolution. D″ beneath Central America and the Caribbean is of particular geodynamical interest, because the paleo- and present Pacific plates have been subducting beneath the western margin of Pangaea since ~250 million years ago, which implies that paleoslabs could have reached the lowermost mantle. We conduct waveform inversion using a data set of ~7700 transverse component records to infer the detailed three-dimensional S-velocity structure in the lowermost 400 km of the mantle in the study region so that we can investigate how cold paleoslabs interact with the hot TBL above the core-mantle boundary (CMB). We can obtain high-resolution images because the lowermost mantle here is densely sampled by seismic waves due to the full deployment of the USArray broadband seismic stations during 2004-2015. We find two distinct strong high-velocity anomalies, which we interpret as paleoslabs, just above the CMB beneath Central America and Venezuela, respectively, surrounded by low-velocity regions. Strong low-velocity anomalies concentrated in the lowermost 100 km of the mantle suggest the existence of chemically distinct denser material connected to low-velocity anomalies in the lower mantle inferred by previous studies, suggesting that plate tectonics on the Earth's surface might control the modality of convection in the lower mantle.

  12. Sound Velocity in Soap Foams

    International Nuclear Information System (INIS)

    Wu Gong-Tao; Lü Yong-Jun; Liu Peng-Fei; Li Yi-Ning; Shi Qing-Fan

    2012-01-01

    The velocity of sound in soap foams at high gas volume fractions is experimentally studied by using the time difference method. It is found that the sound velocities increase with increasing bubble diameter, and asymptotically approach to the value in air when the diameter is larger than 12.5 mm. We propose a simple theoretical model for the sound propagation in a disordered foam. In this model, the attenuation of a sound wave due to the scattering of the bubble wall is equivalently described as the effect of an additional length. This simplicity reasonably reproduces the sound velocity in foams and the predicted results are in good agreement with the experiments. Further measurements indicate that the increase of frequency markedly slows down the sound velocity, whereas the latter does not display a strong dependence on the solution concentration

  13. Computer model analysis of the radial artery pressure waveform.

    Science.gov (United States)

    Schwid, H A; Taylor, L A; Smith, N T

    1987-10-01

    Simultaneous measurements of aortic and radial artery pressures are reviewed, and a model of the cardiovascular system is presented. The model is based on resonant networks for the aorta and axillo-brachial-radial arterial system. The model chosen is a simple one, in order to make interpretation of the observed relationships clear. Despite its simplicity, the model produces realistic aortic and radial artery pressure waveforms. It demonstrates that the resonant properties of the arterial wall significantly alter the pressure waveform as it is propagated from the aorta to the radial artery. Although the mean and end-diastolic radial pressures are usually accurate estimates of the corresponding aortic pressures, the systolic pressure at the radial artery is often much higher than that of the aorta due to overshoot caused by the resonant behavior of the radial artery. The radial artery dicrotic notch is predominantly dependent on the axillo-brachial-radial arterial wall properties, rather than on the aortic valve or peripheral resistance. Hence the use of the radial artery dicrotic notch as an estimate of end systole is unreliable. The rate of systolic upstroke, dP/dt, of the radial artery waveform is a function of many factors, making it difficult to interpret. The radial artery waveform usually provides accurate estimates for mean and diastolic aortic pressures; for all other measurements it is an inadequate substitute for the aortic pressure waveform. In the presence of low forearm peripheral resistance the mean radial artery pressure may significantly underestimate the mean aortic pressure, as explained by a voltage divider model.

  14. Extracting structural land cover components using small-footprint waveform LDAR data

    CSIR Research Space (South Africa)

    McGlinchy, J

    2010-07-01

    Full Text Available .e., without vertical interactions. Three measurements were taken from the waveform once this component was removed. They are defined as ?Road Ratio?, ?Leftover?, and ?Ratio Removed?. ?Road Ratio? is measured as the ratio of an amplitude scaled dirt road... sample to an original dirt road waveform sample extracted from LU8. ?Leftover? is measured as the ratio of the sum of what remains in the ground pulse to the sum of these same points in the original waveform. ?Ratio Removed? is measured simply...

  15. S-Wave Velocity Structure beneath Southwest North America from Seismogram Comparisons of the Mexico Earthquake on 22 June 1997

    Directory of Open Access Journals (Sweden)

    Bagus Jaya Santosa

    2008-09-01

    Full Text Available This research investigates earth structure beneath the Southwest North America landmass, especially between Mexico and California. Models based on S wave velocities for this area were obtained by carrying out seismogram fitting in time domain and three Cartesian components simultaneously. The data used is from an event, coded as C052297B that occurred in the state of Guerrero, Mexico and it was fitted to synthetic data computed with the GEMINI program at TS network stations. Earth model IASPEI91 and SPREM were used as input to create the synthetic data. Real and synthetic seismograms were subjected to a low-pass filter with a frequency corner of 20 mHz.Waveform analysis results show very unsystematic and strong deviations in the waveform, arrival times, amount of oscillation and the height of the wave amplitude. Discrepancies are met on S, Love, Rayleigh and ScS waves, where the stations epicentral distances are below 300. Deviation in analysis waveform because of the usage of model 1-D of SPREM and IASPEI91, because the 1-D was a kind of average value an elastic property at one particular depth of global earth. With the method of waveform analysis we can see how sensitive waveform is to structures within the layers of the Earth.To explain the discrepancies, a correction to the earth structure is essential. The corrections account for the thickness of the crust, speed gradient of bh, the coefficient for the bh and bv in the upper mantle for surface wave fitting, a small variation of the S speed structure at a layer under the upper mantle above 771 km for S wave fitting, and a small variation at the base the mantle layers for ScS wave fitting. At some stations, a correction for S speed structure have yielded P wave fitting. Results of this research indicate that the 1-D earth model obtained through seismogram fitting at every hypocenter-observation station pair is unique. The S-wave velocity on the upper mantle has strong negative anomalies. This

  16. Generating Correlated QPSK Waveforms By Exploiting Real Gaussian Random Variables

    KAUST Repository

    Jardak, Seifallah

    2012-11-01

    The design of waveforms with specified auto- and cross-correlation properties has a number of applications in multiple-input multiple-output (MIMO) radar, one of them is the desired transmit beampattern design. In this work, an algorithm is proposed to generate quadrature phase shift- keying (QPSK) waveforms with required cross-correlation properties using real Gaussian random-variables (RV’s). This work can be considered as the extension of what was presented in [1] to generate BPSK waveforms. This work will be extended for the generation of correlated higher-order phase shift-keying (PSK) and quadrature amplitude modulation (QAM) schemes that can better approximate the desired beampattern.

  17. Generating Correlated QPSK Waveforms By Exploiting Real Gaussian Random Variables

    KAUST Repository

    Jardak, Seifallah; Ahmed, Sajid; Alouini, Mohamed-Slim

    2012-01-01

    The design of waveforms with specified auto- and cross-correlation properties has a number of applications in multiple-input multiple-output (MIMO) radar, one of them is the desired transmit beampattern design. In this work, an algorithm is proposed to generate quadrature phase shift- keying (QPSK) waveforms with required cross-correlation properties using real Gaussian random-variables (RV’s). This work can be considered as the extension of what was presented in [1] to generate BPSK waveforms. This work will be extended for the generation of correlated higher-order phase shift-keying (PSK) and quadrature amplitude modulation (QAM) schemes that can better approximate the desired beampattern.

  18. Nonspinning numerical relativity waveform surrogates: assessing the model

    Science.gov (United States)

    Field, Scott; Blackman, Jonathan; Galley, Chad; Scheel, Mark; Szilagyi, Bela; Tiglio, Manuel

    2015-04-01

    Recently, multi-modal gravitational waveform surrogate models have been built directly from data numerically generated by the Spectral Einstein Code (SpEC). I will describe ways in which the surrogate model error can be quantified. This task, in turn, requires (i) characterizing differences between waveforms computed by SpEC with those predicted by the surrogate model and (ii) estimating errors associated with the SpEC waveforms from which the surrogate is built. Both pieces can have numerous sources of numerical and systematic errors. We make an attempt to study the most dominant error sources and, ultimately, the surrogate model's fidelity. These investigations yield information about the surrogate model's uncertainty as a function of time (or frequency) and parameter, and could be useful in parameter estimation studies which seek to incorporate model error. Finally, I will conclude by comparing the numerical relativity surrogate model to other inspiral-merger-ringdown models. A companion talk will cover the building of multi-modal surrogate models.

  19. A parameterization study for elastic VTI Full Waveform Inversion of hydrophone components: synthetic and North Sea field data examples

    KAUST Repository

    Guitton, Antoine; Alkhalifah, Tariq Ali

    2017-01-01

    Choosing the right parameterization to describe a transversely isotropic medium with a vertical symmetry axis (VTI) allows us to match the scattering potential of these parameters to the available data in a way that avoids potential tradeoff and focus on the parameters to which the data are sensitive. For 2-D elastic full waveform inversion in VTI media of pressure components and for data with a reasonable range of offsets (as with those found in conventional streamer data acquisition systems), assuming that we have a kinematically accurate NMO velocity (vnmo) and anellipticity parameter η (or horizontal velocity, vh) obtained from tomographic methods, a parameterization in terms of horizontal velocity vh, η and ε is preferred to the more conventional parameterization in terms of vh, δ and ε. In the vh, η, ε parameterization and for reasonable scattering angles (<60o), ε acts as a “garbage collector” and absorbs most of the amplitude discrepancies; between modeled and observed data, more so when density ρ and shear-wave velocity vs are not inverted for (a standard practice with streamer data). On the contrary, in the vv, δ, ε parameterization, ε is mostly sensitive to large scattering angles, leaving vv exposed to strong leakages from ρ mainly. There assertions will be demonstrated on the synthetic Marmousi II as well as a North Sea OBC dataset, where inverting for the horizontal velocity rather than the vertical velocity yields more accurate models and migrated images.

  20. A parameterization study for elastic VTI Full Waveform Inversion of hydrophone components: synthetic and North Sea field data examples

    KAUST Repository

    Guitton, Antoine

    2017-08-15

    Choosing the right parameterization to describe a transversely isotropic medium with a vertical symmetry axis (VTI) allows us to match the scattering potential of these parameters to the available data in a way that avoids potential tradeoff and focus on the parameters to which the data are sensitive. For 2-D elastic full waveform inversion in VTI media of pressure components and for data with a reasonable range of offsets (as with those found in conventional streamer data acquisition systems), assuming that we have a kinematically accurate NMO velocity (vnmo) and anellipticity parameter η (or horizontal velocity, vh) obtained from tomographic methods, a parameterization in terms of horizontal velocity vh, η and ε is preferred to the more conventional parameterization in terms of vh, δ and ε. In the vh, η, ε parameterization and for reasonable scattering angles (<60o), ε acts as a “garbage collector” and absorbs most of the amplitude discrepancies; between modeled and observed data, more so when density ρ and shear-wave velocity vs are not inverted for (a standard practice with streamer data). On the contrary, in the vv, δ, ε parameterization, ε is mostly sensitive to large scattering angles, leaving vv exposed to strong leakages from ρ mainly. There assertions will be demonstrated on the synthetic Marmousi II as well as a North Sea OBC dataset, where inverting for the horizontal velocity rather than the vertical velocity yields more accurate models and migrated images.

  1. Transcranial motor evoked potential waveform changes in corrective fusion for adolescent idiopathic scoliosis.

    Science.gov (United States)

    Kobayashi, Kazuyoshi; Imagama, Shiro; Ito, Zenya; Ando, Kei; Hida, Tetsuro; Ito, Kenyu; Tsushima, Mikito; Ishikawa, Yoshimoto; Matsumoto, Akiyuki; Nishida, Yoshihiro; Ishiguro, Naoki

    2017-01-01

    OBJECTIVE Corrective surgery for spinal deformities can lead to neurological complications. Several reports have described spinal cord monitoring in surgery for spinal deformity, but only a few have included patients younger than 20 years with adolescent idiopathic scoliosis (AIS). The goal of this study was to evaluate the characteristics of cases with intraoperative transcranial motor evoked potential (Tc-MEP) waveform deterioration during posterior corrective fusion for AIS. METHODS A prospective database was reviewed, comprising 68 patients with AIS who were treated with posterior corrective fusion in a prospective database. A total of 864 muscles in the lower extremities were chosen for monitoring, and acceptable baseline responses were obtained from 819 muscles (95%). Intraoperative Tc-MEP waveform deterioration was defined as a decrease in intraoperative amplitude of ≥ 70% of the control waveform. Age, Cobb angle, flexibility, operative time, estimated blood loss (EBL), intraoperative body temperature, blood pressure, number of levels fused, and correction rate were examined in patients with and without waveform deterioration. RESULTS The patients (3 males and 65 females) had an average age of 14.4 years (range 11-19 years). The mean Cobb angles before and after surgery were 52.9° and 11.9°, respectively, giving a correction rate of 77.4%. Fourteen patients (20%) exhibited an intraoperative waveform change, and these occurred during incision (14%), after screw fixation (7%), during the rotation maneuver (64%), during placement of the second rod after the rotation maneuver (7%), and after intervertebral compression (7%). Most waveform changes recovered after decreased correction or rest. No patient had a motor deficit postoperatively. In multivariate analysis, EBL (OR 1.001, p = 0.085) and number of levels fused (OR 1.535, p = 0.045) were associated with waveform deterioration. CONCLUSIONS Waveform deterioration commonly occurred during rotation maneuvers

  2. Evaluating a small footprint, waveform-resolving lidar over coastal vegetation communities

    Science.gov (United States)

    Nayegandhl, A.; Brock, J.C.; Wright, C.W.; O'Connell, M. J.

    2006-01-01

    NASA's Experimental Advanced Airborne Research Lidar (EAARL) is a raster-scanning, waveform-resolving, green-wavelength (532 nm) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor records the time history of the return waveform within a small footprint (20 cm diameter) for each laser pulse, enabling characterization of vegetation canopy structure and "bare earth" topography under a variety of vegetation types. A collection of individual waveforms combined within a synthesized large footprint was used to define three metrics: canopy height (CH), canopy reflection ratio (CRR), and height of median energy (HOME). Bare Earth Elevation (BEE) metric was derived using the individual small-footprint waveforms. All four metrics were tested for reproducibility, which resulted in an average of 95 percent correspondence within two standard deviations of the mean. CH and BEE values were also tested for accuracy using ground-truth data. The results presented in this paper show that combining several individual small-footprint laser pulses to define a composite "large-footprint" waveform is a possible method to depict the vertical structure of a vegetation canopy. ?? 2006 American Society for Photogrammetry and Remote Sensing.

  3. A lithospheric velocity model for the flat slab region of Argentina from joint inversion of Rayleigh-wave dispersion and teleseismic receiver functions

    Science.gov (United States)

    Ammirati, J. B.; Alvarado, P. M.; Beck, S. L.

    2014-12-01

    Receiver Function (RF) analyses using teleseismic P waveforms is a technique to isolate P to S conversions from seismic discontinuities in the lithosphere. Using earthquakes with a good azimuthal distribution, RFs recorded at a three-component seismic station can be inverted to obtain detailed lithospheric velocity structures. The technique, however presents a velocity-depth trade-off, which results in a non-unique model because RFs do not depend on the absolute seismic velocities but rather on relative velocity contrasts. Unlike RF, surface wave dispersion is sensitive to the average shear-wave velocity which makes it well suited for studying long period variations of the lithospheric seismic velocities. We performed a joint inversion of RF and Rayleigh-wave phase velocity dispersion to investigate the structure beneath the SIEMBRA network, a 43-broadband-seismic-station array deployed in the Pampean flat slab region of Argentina. Our results indicate: 1) The presence of several mid-crustal discontinuities probably related with terrane accretion; 2) A high seismic velocity in the lower crust suggesting partial eclogitization; 3) A thicker crust (> 50 km) beneath the western Sierras Pampeanas with an abrupt change in the relative timing of the Moho signal indicating a thinner crust to the east; 4) The presence of the subducting oceanic crust lying at ~100 km depth. We then built a 1D regional velocity model for the flat slab region of Argentina and used it for regional moment tensor inversions for local earthquakes. This technique is notably dependent on small-scale variations of Earth structure when modeling higher frequency seismic waveforms. Eighteen regional focal mechanisms have been determined. Our solutions are in good agreement with GCMT source estimations although our solutions for deep earthquakes systematically resulted in shallower focal depths suggesting that the slab seismicity could be concentrated at the top of the subducting Nazca plate. Solutions

  4. Variation of Pressure Waveforms in Measurements of Extracorporeal Shock Wave Lithotripter

    Science.gov (United States)

    Inose, Naoto; Ide, Masao

    1993-05-01

    In this paper, we describe measurement of variation in pressure waveforms of the acoustic field of an extra-corporeal shock-wave lithotripter (ESWL). Variations in the measured acoustic fields and pressure waveform of an underwater spark-gap-type ESWL with an exhausted spark plug electrode have been reported by researchers using crystal sensors. If the ESWL spark plugs become exhausted, patients feel pain during kidney, biliary stone disintegration. We studied the relationship between exhaustion of electrodes and the variation of pressure waveforms and shock-wave fields of the ESWL using a newly developed hydrophone.

  5. Data mining technique for fast retrieval of similar waveforms in Fusion massive databases

    International Nuclear Information System (INIS)

    Vega, J.; Pereira, A.; Portas, A.; Dormido-Canto, S.; Farias, G.; Dormido, R.; Sanchez, J.; Duro, N.; Santos, M.; Sanchez, E.; Pajares, G.

    2008-01-01

    Fusion measurement systems generate similar waveforms for reproducible behavior. A major difficulty related to data analysis is the identification, in a rapid and automated way, of a set of discharges with comparable behaviour, i.e. discharges with 'similar' waveforms. Here we introduce a new technique for rapid searching and retrieval of 'similar' signals. The approach consists of building a classification system that avoids traversing the whole database looking for similarities. The classification system diminishes the problem dimensionality (by means of waveform feature extraction) and reduces the searching space to just the most probable 'similar' waveforms (clustering techniques). In the searching procedure, the input waveform is classified in any of the existing clusters. Then, a similarity measure is computed between the input signal and all cluster elements in order to identify the most similar waveforms. The inner product of normalized vectors is used as the similarity measure as it allows the searching process to be independent of signal gain and polarity. This development has been applied recently to TJ-II stellarator databases and has been integrated into its remote participation system

  6. Ultrasonic velocities, densities, and excess molar volumes of binary mixtures of N,N-dimethyl formamide with methyl acrylate, or ethyl acrylate, or butyl acrylate, or 2-ethyl hexyl acrylate at T = 308.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Kondaiah, M. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Andhra Pradesh (India); Sravana Kumar, D. [Dr. V.S. Krishna Govt. Degree College, Visakhapatnam, Andhra Pradesh (India); Sreekanth, K. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Andhra Pradesh (India); Krishna Rao, D., E-mail: krdhanekula@yahoo.co.in [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Andhra Pradesh (India)

    2011-12-15

    Highlights: > Positive values of V{sub m}{sup E}, indicate dispersion forces between acrylic esters and DMF. > V{sub m}{sup E} values compared with Redlich-Kister polynomial. > Partial molar volumes data conclude that weak interactions exist in the systems. > Measured velocity values compared with theoretical values obtained by polynomials. - Abstract: Ultrasonic velocities, u, densities, {rho}, of binary mixtures of N,N-dimethyl formamide (DMF) with methyl acrylate (MA), ethyl acrylate (EA), butyl acrylate (BA), and 2-ethyl hexyl acrylate (EHA), including pure liquids, over the entire composition range have been measured at T = 308.15 K. Using the experimental results, the excess molar volume, V{sub m}{sup E}, partial molar volumes, V-bar {sub m,1}, V-bar{sub m,2}, and excess partial molar volumes, V-bar{sub m,1}{sup E}, V-bar{sub m,2}{sup E} have been calculated. Molecular interactions in the systems have been studied in the light of variation of excess values of calculated properties. The excess properties have been fitted to Redlich-Kister type polynomial and the corresponding standard deviations have been calculated. The positive values of V{sub m}{sup E} indicate the presence of dispersion forces between the DMF and acrylic ester molecules. Further theoretical values of sound velocity in the mixtures have been evaluated using various theories and have been compared with experimental sound velocities to verify the applicability of such theories to the systems studied. Theoretical ultrasonic velocity data have been used to study molecular interactions in the binary systems investigated.

  7. Predicting Electrocardiogram and Arterial Blood Pressure Waveforms with Different Echo State Network Architectures

    Science.gov (United States)

    2014-11-01

    Predicting Electrocardiogram and Arterial Blood Pressure Waveforms with Different Echo State Network Architectures Allan Fong, MS1,3, Ranjeev...the medical staff in Intensive Care Units. The ability to predict electrocardiogram and arterial blood pressure waveforms can potentially help the...type of neural network for mining, understanding, and predicting electrocardiogram and arterial blood pressure waveforms. Several network

  8. Characterization of volumetric flow rate waveforms at the carotid bifurcations of older adults

    International Nuclear Information System (INIS)

    Hoi, Yiemeng; Xie, Yuanyuan J; Steinman, David A; Wasserman, Bruce A; Najjar, Samer S; Lakatta, Edward G; Ferruci, Luigi; Gerstenblith, Gary

    2010-01-01

    While it is widely appreciated that volumetric blood flow rate (VFR) dynamics change with age, there has been no detailed characterization of the typical shape of carotid bifurcation VFR waveforms of older adults. Toward this end, retrospectively gated phase contrast magnetic resonance imaging was used to measure time-resolved VFR waveforms proximal and distal to the carotid bifurcations of 94 older adults (age 68 ± 8 years) with little or no carotid artery disease, recruited from the BLSA cohort of the VALIDATE study of factors in vascular aging. Timings and amplitudes of well-defined feature points from these waveforms were extracted automatically and averaged to produce representative common, internal and external carotid artery (CCA, ICA and ECA) waveform shapes. Relative to young adults, waveforms from older adults were found to exhibit a significantly augmented secondary peak during late systole, resulting in significantly higher resistance index (RI) and flow augmentation index (FAI). Cycle-averaged VFR at the CCA, ICA and ECA were 389 ± 74, 245 ± 61 and 125 ± 49 mL min −1 , respectively, reflecting a significant cycle-averaged outflow deficit of 5%, which peaked at around 10% during systole. A small but significant mean delay of 13 ms between arrivals of ICA versus CCA/ECA peak VFR suggested differential compliance of these vessels. Sex and age differences in waveform shape were also noted. The characteristic waveforms presented here may serve as a convenient baseline for studies of VFR waveform dynamics or as suitable boundary conditions for models of blood flow in the carotid arteries of older adults

  9. MIMO-Radar Waveform Design for Beampattern Using Particle-Swarm-Optimisation

    KAUST Repository

    Ahmed, Sajid

    2012-07-31

    Multiple input multiple output (MIMO) radars have many advantages over their phased-array counterparts: improved spatial resolution; better parametric identifiably and greater flexibility to acheive the desired transmit beampattern. The desired transmit beampatterns using MIMO-radar requires the waveforms to have arbitrary auto- and cross-correlations. To design such waveforms, generally a waveform covariance matrix, R, is synthesised first then the actual waveforms are designed. Synthesis of the covariance matrix, R, is a constrained optimisation problem, which requires R to be positive semidefinite and all of its diagonal elements to be equal. To simplify the first constraint the covariance matrix is synthesised indirectly from its square-root matrix U, while for the second constraint the elements of the m-th column of U are parameterised using the coordinates of the m-hypersphere. This implicitly fulfils both of the constraints and enables us to write the cost-function in closed form. Then the cost-function is optimised using a simple particle-swarm-optimisation (PSO) technique, which requires only the cost-function and can optimise any choice of norm cost-function. © 2012 IEEE.

  10. Categorisation of full waveform data provided by laser scanning devices

    Science.gov (United States)

    Ullrich, Andreas; Pfennigbauer, Martin

    2011-11-01

    In 2004, a laser scanner device for commercial airborne laser scanning applications, the RIEGL LMS-Q560, was introduced to the market, making use of a radical alternative approach to the traditional analogue signal detection and processing schemes found in LIDAR instruments so far: digitizing the echo signals received by the instrument for every laser pulse and analysing these echo signals off-line in a so-called full waveform analysis in order to retrieve almost all information contained in the echo signal using transparent algorithms adaptable to specific applications. In the field of laser scanning the somewhat unspecific term "full waveform data" has since been established. We attempt a categorisation of the different types of the full waveform data found in the market. We discuss the challenges in echo digitization and waveform analysis from an instrument designer's point of view and we will address the benefits to be gained by using this technique, especially with respect to the so-called multi-target capability of pulsed time-of-flight LIDAR instruments.

  11. Optimal Inversion Parameters for Full Waveform Inversion using OBS Data Set

    Science.gov (United States)

    Kim, S.; Chung, W.; Shin, S.; Kim, D.; Lee, D.

    2017-12-01

    In recent years, full Waveform Inversion (FWI) has been the most researched technique in seismic data processing. It uses the residuals between observed and modeled data as an objective function; thereafter, the final subsurface velocity model is generated through a series of iterations meant to minimize the residuals.Research on FWI has expanded from acoustic media to elastic media. In acoustic media, the subsurface property is defined by P-velocity; however, in elastic media, properties are defined by multiple parameters, such as P-velocity, S-velocity, and density. Further, the elastic media can also be defined by Lamé constants, density or impedance PI, SI; consequently, research is being carried out to ascertain the optimal parameters.From results of advanced exploration equipment and Ocean Bottom Seismic (OBS) survey, it is now possible to obtain multi-component seismic data. However, to perform FWI on these data and generate an accurate subsurface model, it is important to determine optimal inversion parameters among (Vp, Vs, ρ), (λ, μ, ρ), and (PI, SI) in elastic media. In this study, staggered grid finite difference method was applied to simulate OBS survey. As in inversion, l2-norm was set as objective function. Further, the accurate computation of gradient direction was performed using the back-propagation technique and its scaling was done using the Pseudo-hessian matrix.In acoustic media, only Vp is used as the inversion parameter. In contrast, various sets of parameters, such as (Vp, Vs, ρ) and (λ, μ, ρ) can be used to define inversion in elastic media. Therefore, it is important to ascertain the parameter that gives the most accurate result for inversion with OBS data set.In this study, we generated Vp and Vs subsurface models by using (λ, μ, ρ) and (Vp, Vs, ρ) as inversion parameters in every iteration, and compared the final two FWI results.This research was supported by the Basic Research Project(17-3312) of the Korea Institute of

  12. Settling velocities in batch sedimentation

    International Nuclear Information System (INIS)

    Fricke, A.M.; Thompson, B.E.

    1982-10-01

    The sedimentation of mixtures containing one and two sizes of spherical particles (44 and 62 μm in diameter) was studied. Radioactive tracing with 57 Co was used to measure the settling velocities. The ratio of the settling velocity U of uniformly sized particles to the velocity predicted to Stokes' law U 0 was correlated to an expression of the form U/U 0 = epsilon/sup α/, where epsilon is the liquid volume fraction and α is an empirical constant, determined experimentally to be 4.85. No effect of viscosity on the ratio U/U 0 was observed as the viscosity of the liquid medium was varied from 1x10 -3 to 5x10 -3 Pa.s. The settling velocities of particles in a bimodal mixture were fit by the same correlation; the ratio U/U 0 was independent of the concentrations of different-sized particles

  13. An evaluation of state-of-the-art two-velocity two-phase flow models and their applicability to nuclear reactor transient analysis. Volume 3. Data comparisons. Final report

    International Nuclear Information System (INIS)

    McFadden, J.H.; Lyczkowski, R.W.; Niederauer, G.F.

    1976-02-01

    A state-of-the-art review is conducted in order to provide the nuclear industry with a publicly available assessment of two-velocity thermal-hydraulic models and their applicability to nuclear reactor technology. The two major objectives of this state-of-the-art evaluation were: (1) document the basic theory in a consistent self-contained report; and (2) apply a prototype 'two-velocity' code (UVUT) to a limited number of separate effect tests. Volume 3 presents the data comparisons

  14. Doppler waveform study as indicator of change of portal pressure after administration of octreotide

    Science.gov (United States)

    Haider, Shahbaz; Hussain, Qurban; Tabassum, Sumera; Hussain, Bilal; Durrani, Muhammad Rasheed; Ahmed, Fayyaz

    2016-01-01

    Objective: To estimate the effect of portal pressure lowering drug ‘octreotide’, by observing the Doppler waveform before and after the administration of intravenous bolus of octreotide and thus to assess indirectly its efficacy to lower the portal pressure. Methods: This quassi experimental study was carried out in Medical Department in collaboration with Radiology Department of Jinnah Postgraduate Medical Center Karachi Pakistan from September 10, 2015 to February 5, 2016. Cases were selected from patients admitted in Medical Wards and those attending Medical OPD. Diagnosis of cirrhosis was confirmed by Clinical Examination and Lab & Imaging investigation in Medical Department. Doppler waveform study was done by experienced radiologist in Radiology Department before and after administration of octreotide. Doppler signals were obtained from the right hepatic vein. Waveform tracings were recorded for five seconds and categorized as ‘monophasic’, ‘biphasic’ and ‘triphasic’. Waveform changes from one waveform to other were noted and analyzed. Results: Significant change i.e. from ‘monophasic’ to ‘biphasic’ or ‘biphasic’ to ‘triphasic’ was seen in 56% cases while ‘monophasic’ to ‘triphasic’ was seen in 20% cases. No change was seen in 24% cases. Improvement in waveform reflects lowering of portal vein pressure. Conclusion: Non invasive Hepatic vein Doppler waveform study showed improvement in Doppler waveform after administration of octreotide in 76% cases. Doppler waveform study has the potential of becoming non invasive ‘follow up tool’ of choice for assessing portal pressure in patients having variceal bleed due to portal hypertension. PMID:27648043

  15. Implications of changing scattering properties on Greenland ice sheet volume change from Cryosat-2 altimetry

    DEFF Research Database (Denmark)

    Simonsen, Sebastian Bjerregaard; Sørensen, Louise Sandberg

    2017-01-01

    ) in the elevation change algorithm, to correct for temporal changes in the ratio between surface- and volume-scatter in Cryosat-2 observations. We present elevation and volume changes for the Greenland ice sheet in the period from 2010 until 2014. The waveform parameters considered here are the backscatter...... waveform parameters to be applicable for correcting for changes in volume scattering. The best results in the Synthetic Aperture Radar Interferometric mode area of the GrIS are found when applying only the backscatter correction, whereas the best result in the Low Resolution Mode area is obtained by only......Long-term observations of surface elevation change of the Greenland ice sheet (GrIS) is of utmost importance when assessing the state of the ice sheet. Satellite radar altimetry offers a long time series of data over the GrIS, starting with ERS-1 in 1991. ESA's Cryosat-2 mission, launched in 2010...

  16. Wavefront picking for 3D tomography and full-waveform inversion

    KAUST Repository

    AlTheyab, Abdullah

    2016-09-08

    We have developed an efficient approach for picking firstbreak wavefronts on coarsely sampled time slices of 3D shot gathers. Our objective was to compute a smooth initial velocity model for multiscale full-waveform inversion (FWI). Using interactive software, first-break wavefronts were geometrically modeled on time slices with a minimal number of picks. We picked sparse time slices, performed traveltime tomography, and then compared the predicted traveltimes with the data in-between the picked slices. The picking interval was refined with iterations until the errors in traveltime predictions fell within the limits necessary to avoid cycle skipping in early arrivals FWI. This approach was applied to a 3D ocean-bottom-station data set. Our results indicate that wavefront picking has 28% fewer data slices to pick compared with picking traveltimes in shot gathers. In addition, by using sparse time samples for picking, data storage is reduced by 88%, and therefore allows for a faster visualization and quality control of the picks. Our final traveltime tomogram is sufficient as a starting model for early arrival FWI. © 2016 Society of Exploration Geophysicists.

  17. Comparison of seismic waveform inversion results for the rupture history of a finite fault: application to the 1986 North Palm Springs, California, earthquake

    Science.gov (United States)

    Hartzell, S.

    1989-01-01

    The July 8, 1986, North Palm Strings earthquake is used as a basis for comparison of several different approaches to the solution for the rupture history of a finite fault. The inversion of different waveform data is considered; both teleseismic P waveforms and local strong ground motion records. Linear parametrizations for slip amplitude are compared with nonlinear parametrizations for both slip amplitude and rupture time. Inversions using both synthetic and empirical Green's functions are considered. In general, accurate Green's functions are more readily calculable for the teleseismic problem where simple ray theory and flat-layered velocity structures are usually sufficient. However, uncertainties in the variation in t* with frequency most limit the resolution of teleseismic inversions. A set of empirical Green's functions that are well recorded at teleseismic distances could avoid the uncertainties in attenuation. In the inversion of strong motion data, the accurate calculation of propagation path effects other than attenuation effects is the limiting factor in the resolution of source parameters. -from Author

  18. Effects of waveform model systematics on the interpretation of GW150914

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K.M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, M.J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, A.L.S.; Bock, O.; Boer, M.; Bogaert, J.G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, A. J. K.; Chua, S. S. Y.; Chung, E.S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, Laura; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.A.; Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Giovanni, M. Di; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.M.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fong, H.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.A.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W.; Jones, I.D.; Jones, R.; Jonker, R. J.G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.E.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y.M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G.F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath Hoareau, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A. L.; Miller, B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, Brian C J; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P.G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Gutierrez-Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Oliver, M. B.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Castro-Perez, J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, D.M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.A.; Sachdev, Perminder S; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, M.S.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, António Dias da; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, R. J. E.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson-Moore, P.; Stone, J.R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifir, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Van Bakel, N.; Van Beuzekom, Martin; Van Den Brand, J. F.J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.M.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J.L.; Wu, D.S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S.J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; Boyle, M.; Chu, I.W.T.; Hemberger, D.; Hinder, I.; Kidder, L. E.; Ossokine, S.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; Vano-Vinuales, A.

    2017-01-01

    Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions,

  19. Time-domain simulation and waveform reconstruction for shielding effectiveness of materials against electromagnetic pulse

    International Nuclear Information System (INIS)

    Hu, Xiao-feng; Chen, Xiang; Wei, Ming

    2013-01-01

    Shielding effectiveness (SE) of materials of current testing standards is often carried out by using continuous-wave measurement and amplitude-frequency characteristics curve is used to characterize the results. However, with in-depth study of high-power electromagnetic pulse (EMP) interference, it was discovered that only by frequency-domain SE of materials cannot be completely characterized by shielding performance of time-domain pulsed-field. And there is no uniform testing methods and standards of SE of materials against EMP. In this paper, the method of minimum phase transfer function is used to reconstruct shielded time-domain waveform based on the analysis of the waveform reconstruction method. Pulse of plane waves through an infinite planar material is simulated by using CST simulation software. The reconstructed waveform and simulation waveform is compared. The results show that the waveform reconstruction method based on the minimum phase can be well estimated EMP waveform through the infinite planar materials.

  20. Detailed structure of the top of the melt body beneath the East Pacific Rise at 9°40'N from waveform inversion of seismic reflection data

    Science.gov (United States)

    Collier, J. S.; Singh, S. C.

    1997-01-01

    We have applied waveform inversion to multichannel seismic reflection data collected at the East Pacific Rise at 9°40'N in order to determine the precise velocity structure of the magma body causing the axial magma chamber reflection. Our analysis supports the idea of a molten sill as previously suggested from forward modeling of seismic data from this location. Our inverted solution has a 30-m-thick sill with a P wave seismic velocity of 2.6 km s-1. Although not well constrained by the data we believe that the S wave velocity in the sill is not significantly different from 0.0 km s-1. The low P- and S wave velocities in the sill imply that it contains less than 30% crystals. The molten sill is underlain by a velocity gradient in which the P wave velocity increases from 2.6 to 3.5 km s-1 over a vertical distance of 50-m. The shape of our velocity-depth profile implies that accretion of material to the roof of the sill is minor compared to accretion to the floor. The underlying velocity gradient zone may represent crystal settling under gravity. We suggest that only material from the 30-m-thick layer can erupt.

  1. Programmable Clock Waveform Generation for CCD Readout

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, J. de; Castilla, J.; Martinez, G.; Marin, J.

    2006-07-01

    Charge transfer efficiency in CCDs is closely related to the clock waveform. In this paper, an experimental framework to explore different FPGA based clock waveform generator designs is described. Two alternative design approaches for controlling the rise/fall edge times and pulse width of the CCD clock signal have been implemented: level-control and time-control. Both approaches provide similar characteristics regarding the edge linearity and noise. Nevertheless, dissimilarities have been found with respect to the area and frequency range of application. Thus, while the time-control approach consumes less area, the level control approach provides a wider range of clock frequencies since it does not suffer capacitor discharge effect. (Author) 8 refs.

  2. Data mining technique for fast retrieval of similar waveforms in Fusion massive databases

    Energy Technology Data Exchange (ETDEWEB)

    Vega, J. [Asociacion EURATOM/CIEMAT Para Fusion, Madrid (Spain)], E-mail: jesus.vega@ciemat.es; Pereira, A.; Portas, A. [Asociacion EURATOM/CIEMAT Para Fusion, Madrid (Spain); Dormido-Canto, S.; Farias, G.; Dormido, R.; Sanchez, J.; Duro, N. [Departamento de Informatica y Automatica, UNED, Madrid (Spain); Santos, M. [Departamento de Arquitectura de Computadores y Automatica, UCM, Madrid (Spain); Sanchez, E. [Asociacion EURATOM/CIEMAT Para Fusion, Madrid (Spain); Pajares, G. [Departamento de Arquitectura de Computadores y Automatica, UCM, Madrid (Spain)

    2008-01-15

    Fusion measurement systems generate similar waveforms for reproducible behavior. A major difficulty related to data analysis is the identification, in a rapid and automated way, of a set of discharges with comparable behaviour, i.e. discharges with 'similar' waveforms. Here we introduce a new technique for rapid searching and retrieval of 'similar' signals. The approach consists of building a classification system that avoids traversing the whole database looking for similarities. The classification system diminishes the problem dimensionality (by means of waveform feature extraction) and reduces the searching space to just the most probable 'similar' waveforms (clustering techniques). In the searching procedure, the input waveform is classified in any of the existing clusters. Then, a similarity measure is computed between the input signal and all cluster elements in order to identify the most similar waveforms. The inner product of normalized vectors is used as the similarity measure as it allows the searching process to be independent of signal gain and polarity. This development has been applied recently to TJ-II stellarator databases and has been integrated into its remote participation system.

  3. Frequency-domain waveform inversion using the phase derivative

    KAUST Repository

    Choi, Yun Seok

    2013-09-26

    Phase wrapping in the frequency domain or cycle skipping in the time domain is the major cause of the local minima problem in the waveform inversion when the starting model is far from the true model. Since the phase derivative does not suffer from the wrapping effect, its inversion has the potential of providing a robust and reliable inversion result. We propose a new waveform inversion algorithm using the phase derivative in the frequency domain along with the exponential damping term to attenuate reflections. We estimate the phase derivative, or what we refer to as the instantaneous traveltime, by taking the derivative of the Fourier-transformed wavefield with respect to the angular frequency, dividing it by the wavefield itself and taking the imaginary part. The objective function is constructed using the phase derivative and the gradient of the objective function is computed using the back-propagation algorithm. Numerical examples show that our inversion algorithm with a strong damping generates a tomographic result even for a high ‘single’ frequency, which can be a good initial model for full waveform inversion and migration.

  4. Arbitrary waveform modulated pulse EPR at 200 GHz

    Science.gov (United States)

    Kaminker, Ilia; Barnes, Ryan; Han, Songi

    2017-06-01

    We report here on the implementation of arbitrary waveform generation (AWG) capabilities at ∼200 GHz into an Electron Paramagnetic Resonance (EPR) and Dynamic Nuclear Polarization (DNP) instrument platform operating at 7 T. This is achieved with the integration of a 1 GHz, 2 channel, digital to analog converter (DAC) board that enables the generation of coherent arbitrary waveforms at Ku-band frequencies with 1 ns resolution into an existing architecture of a solid state amplifier multiplier chain (AMC). This allows for the generation of arbitrary phase- and amplitude-modulated waveforms at 200 GHz with >150 mW power. We find that the non-linearity of the AMC poses significant difficulties in generating amplitude-modulated pulses at 200 GHz. We demonstrate that in the power-limited regime of ω1 10 MHz) spin manipulation in incoherent (inversion), as well as coherent (echo formation) experiments. Highlights include the improvement by one order of magnitude in inversion bandwidth compared to that of conventional rectangular pulses, as well as a factor of two in improvement in the refocused echo intensity at 200 GHz.

  5. Variation of Quench Propagation Velocities in YBCO Cables

    CERN Document Server

    Härö, E.; Stenvall, A.; 10.1007/s10948-015-2976-y

    2015-01-01

    changes during the quench. Due to the large temperature margin between the operation and the current sharing temperatures, the normal zone does not propagate with the temperature front. This means that the temperature will rise in a considerably larger volume when compared to the quenched volume. Thus, the evolution of the temperature distribution below current sharing temperature Tcs after the quench onset affects the normal zone propagation velocity in HTS more than in LTS coils. This can be seen as an acceleration of the quench propagation velocities while the quench evolves when margin to Tcs is high. In this paper we scrutinize quench propagation in a stack of YBCO cables with an in-house finite element method software which solves the heat diffusion equation. We compute the longitudinal and transverse normal zone propagation velocities at various distances from the hot spot to demonstrate the distance-variation...

  6. Spectral implementation of full waveform inversion based on reflections

    KAUST Repository

    Wu, Zedong

    2014-01-01

    Using the reflection imaging process as a source to model reflections for full waveform inversion (FWI), referred to as reflection FWI (RFWI), allows us to update the background component of the model, and avoid using the relatively costly migration velocity analysis (MVA), which usually relies on extended images. However, RFWI requires a good image to represent the current reflectivity, as well as, some effort to obtain good smooth gradients. We develop a spectral implementation of RFWI where the wavefield extrapolations and gradient evaluation are performed in the wavenumber domain, obtaining clean dispersion free and fast extrapolations. The gradient, in this case, yields three terms, two of which provide us with each side of the rabbit ear kernel, and the third, often ignored, provides a normalization of the reflectivity within the kernel, which can be used to obtain a reflectivity free background update. Since the image is imperfect (it is an adjoint, not an inverse), an optimization process for the third term scaling is implemented to achieve the smoothest gradient update. A rare application of RFWI on the reflectivity infested Marmousi model shows some of the potential of the approach.

  7. Waveform measurement in mocrowave device characterization: impact on power amplifiers design

    Directory of Open Access Journals (Sweden)

    Roberto Quaglia

    2016-07-01

    Full Text Available This paper describes an example of a measurement setup enabling waveform measurements during the load-pull characterization of a microwave power device. The significance of this measurement feature is highlighted showing how waveform engineering can be exploited to design high efficiency microwave power amplifiers.

  8. Ultimate waveform reproducibility of extreme-ultraviolet pulses by high-harmonic generation in quartz

    Science.gov (United States)

    Garg, M.; Kim, H. Y.; Goulielmakis, E.

    2018-05-01

    Optical waveforms of light reproducible with subcycle precision underlie applications of lasers in ultrafast spectroscopies, quantum control of matter and light-based signal processing. Nonlinear upconversion of optical pulses via high-harmonic generation in gas media extends these capabilities to the extreme ultraviolet (EUV). However, the waveform reproducibility of the generated EUV pulses in gases is inherently sensitive to intensity and phase fluctuations of the driving field. We used photoelectron interferometry to study the effects of intensity and carrier-envelope phase of an intense single-cycle optical pulse on the field waveform of EUV pulses generated in quartz nanofilms, and contrasted the results with those obtained in gas argon. The EUV waveforms generated in quartz were found to be virtually immune to the intensity and phase of the driving field, implying a non-recollisional character of the underlying emission mechanism. Waveform-sensitive photonic applications and precision measurements of fundamental processes in optics will benefit from these findings.

  9. Variance stabilization for computing and comparing grand mean waveforms in MEG and EEG.

    Science.gov (United States)

    Matysiak, Artur; Kordecki, Wojciech; Sielużycki, Cezary; Zacharias, Norman; Heil, Peter; König, Reinhard

    2013-07-01

    Grand means of time-varying signals (waveforms) across subjects in magnetoencephalography (MEG) and electroencephalography (EEG) are commonly computed as arithmetic averages and compared between conditions, for example, by subtraction. However, the prerequisite for these operations, homogeneity of the variance of the waveforms in time, and for most common parametric statistical tests also between conditions, is rarely met. We suggest that the heteroscedasticity observed instead results because waveforms may differ by factors and additive terms and follow a mixed model. We propose to apply the asinh-transformation to stabilize the variance in such cases. We demonstrate the homogeneous variance and the normal distributions of data achieved by this transformation using simulated waveforms, and we apply it to real MEG data and show its benefits. The asinh-transformation is thus an essential and useful processing step prior to computing and comparing grand mean waveforms in MEG and EEG. Copyright © 2013 Society for Psychophysiological Research.

  10. Resolution analysis in full waveform inversion

    NARCIS (Netherlands)

    Fichtner, A.; Trampert, J.

    2011-01-01

    We propose a new method for the quantitative resolution analysis in full seismic waveform inversion that overcomes the limitations of classical synthetic inversions while being computationally more efficient and applicable to any misfit measure. The method rests on (1) the local quadratic

  11. Full-waveform inversion: Filling the gaps

    KAUST Repository

    Beydoun, Wafik B.; Alkhalifah, Tariq Ali

    2015-01-01

    After receiving an outstanding response to its inaugural workshop in 2013, SEG once again achieved great success with its 2015 SEG Middle East Workshop, “Full-waveform inversion: Filling the gaps,” which took place 30 March–1 April 2015 in Abu Dhabi

  12. Unusual lightning electric field waveforms observed in Kathmandu, Nepal, and Uppsala, Sweden

    Science.gov (United States)

    Adhikari, Pitri Bhakta; Sharma, Shriram; Baral, Kedarnath; Rakov, Vladimir A.

    2017-11-01

    Unusual lightning events have been observed in Uppsala, Sweden, and Kathmandu, Nepal, using essentially the same electric field measuring system developed at Uppsala University. They occurred in the storms that also generated ;normal; lightning events. The unusual events recorded in Uppsala occurred on one thunderstorm day. Similar events were observed in Kathmandu on multiple thunderstorm days. The unusual events were analyzed in this study assuming them to be positive ground flashes (+CGs), although we cannot rule out the possibility that some or most of them were actually cloud discharges (ICs). The unusual events were each characterized by a relatively slow, negative (atmospheric electricity sign convention) electric field waveform preceded by a pronounced opposite-polarity pulse whose duration was some tens of microseconds. To the best of our knowledge, such unusual events have not been reported in the literature. The average amplitudes of the opposite-polarity pulses with respect to those of the following main waveform were found to be about 33% in Uppsala (N = 31) and about 38% in Kathmandu (N = 327). The average durations of the main waveform and the preceding opposite-polarity pulse in Uppsala were 8.24 ms and 57.1 μs, respectively, and their counterparts in Kathmandu were 421 μs and 39.7 μs. Electric field waveforms characteristic of negative ground flashes (-CGs) were also observed, and none of them exhibited an opposite-polarity pulse prior to the main waveform. Possible origins of the unusual field waveforms are discussed.

  13. Compression and decompression of digital seismic waveform data for storage and communication

    International Nuclear Information System (INIS)

    Bhadauria, Y.S.; Kumar, Vijai

    1991-01-01

    Two different classes of data compression schemes, namely physical data compression schemes and logical data compression schemes are examined for their use in storage and communication of digital seismic waveform data. In physical data compression schemes, the physical size of the waveform is reduced. One, therefore, gets only a broad picture of the original waveform, when the data are retrieved and the waveform is reconstituted. Coerrelation between original and decompressed waveform varies inversely with the data compresion ratio. In the logical data compression schemes, the data are stored in a logically encoded form. Storage of unnecessary characters like blank space is avoided. On decompression original data are retrieved and compression error is nil. Three algorithms of logical data compression schemes have been developed and studied. These are : 1) optimum formatting schemes, 2) differential bit reduction scheme, and 3) six bit compression scheme. Results of the above three algorithms of logical compression class are compared with those of physical compression schemes reported in literature. It is found that for all types of data, six bit compression scheme gives the highest value of data compression ratio. (author). 6 refs., 8 figs., 1 appendix, 2 tabs

  14. Dependence of the clustering properties of galaxies on stellar velocity dispersion in the Main galaxy sample of SDSS DR10

    Science.gov (United States)

    Deng, Xin-Fa; Song, Jun; Chen, Yi-Qing; Jiang, Peng; Ding, Ying-Ping

    2014-08-01

    Using two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 10 (SDSS DR10), we investigate the dependence of the clustering properties of galaxies on stellar velocity dispersion by cluster analysis. It is found that in the luminous volume-limited Main galaxy sample, except at r=1.2, richer and larger systems can be more easily formed in the large stellar velocity dispersion subsample, while in the faint volume-limited Main galaxy sample, at r≥0.9, an opposite trend is observed. According to statistical analyses of the multiplicity functions, we conclude in two volume-limited Main galaxy samples: small stellar velocity dispersion galaxies preferentially form isolated galaxies, close pairs and small group, while large stellar velocity dispersion galaxies preferentially inhabit the dense groups and clusters. However, we note the difference between two volume-limited Main galaxy samples: in the faint volume-limited Main galaxy sample, at r≥0.9, the small stellar velocity dispersion subsample has a higher proportion of galaxies in superclusters ( n≥200) than the large stellar velocity dispersion subsample.

  15. Capnography in the Emergency Department: A Review of Uses, Waveforms, and Limitations.

    Science.gov (United States)

    Long, Brit; Koyfman, Alex; Vivirito, Michael A

    2017-12-01

    Capnography has many uses in the emergency department (ED) and critical care setting, most commonly cardiac arrest and procedural sedation. This review evaluates several indications concerning capnography beyond cardiac arrest and procedural sedation in the ED, as well as limitations and specific waveforms. Capnography includes the noninvasive measurement of CO 2 , providing information on ventilation, perfusion, and metabolism in intubated and spontaneously breathing patients. Since the 1990s, capnography has been utilized extensively for cardiac arrest and procedural sedation. Qualitative capnography includes a colorimetric device, changing color on the amount of CO 2 present. Quantitative capnography provides a numeric value (end-tidal CO 2 ), and capnography most commonly includes a waveform as a function of time. Conditions in which capnography is informative include cardiac arrest, procedural sedation, mechanically ventilated patients, and patients with metabolic acidemia. Patients with seizure, trauma, and respiratory conditions, such as pulmonary embolism and obstructive airway disease, can benefit from capnography, but further study is needed. Limitations include use of capnography in conditions with mixed pathophysiology, patients with low tidal volumes, and equipment malfunction. Capnography should be used in conjunction with clinical assessment. Capnography demonstrates benefit in cardiac arrest, procedural sedation, mechanically ventilated patients, and patients with metabolic acidemia. Further study is required in patients with seizure, trauma, and respiratory conditions. It should only be used in conjunction with other patient factors and clinical assessment. Published by Elsevier Inc.

  16. Classification of Pulse Waveforms Using Edit Distance with Real Penalty

    Directory of Open Access Journals (Sweden)

    Zhang Dongyu

    2010-01-01

    Full Text Available Abstract Advances in sensor and signal processing techniques have provided effective tools for quantitative research in traditional Chinese pulse diagnosis (TCPD. Because of the inevitable intraclass variation of pulse patterns, the automatic classification of pulse waveforms has remained a difficult problem. In this paper, by referring to the edit distance with real penalty (ERP and the recent progress in -nearest neighbors (KNN classifiers, we propose two novel ERP-based KNN classifiers. Taking advantage of the metric property of ERP, we first develop an ERP-induced inner product and a Gaussian ERP kernel, then embed them into difference-weighted KNN classifiers, and finally develop two novel classifiers for pulse waveform classification. The experimental results show that the proposed classifiers are effective for accurate classification of pulse waveform.

  17. WaveformECG: A Platform for Visualizing, Annotating, and Analyzing ECG Data.

    Science.gov (United States)

    Winslow, Raimond L; Granite, Stephen; Jurado, Christian

    2016-01-01

    The electrocardiogram (ECG) is the most commonly collected data in cardiovascular research because of the ease with which it can be measured and because changes in ECG waveforms reflect underlying aspects of heart disease. Accessed through a browser, WaveformECG is an open source platform supporting interactive analysis, visualization, and annotation of ECGs.

  18. Best waveform score for diagnosing keratoconus

    Directory of Open Access Journals (Sweden)

    Allan Luz

    2013-12-01

    Full Text Available PURPOSE: To test whether corneal hysteresis (CH and corneal resistance factor (CRF can discriminate between keratoconus and normal eyes and to evaluate whether the averages of two consecutive measurements perform differently from the one with the best waveform score (WS for diagnosing keratoconus. METHODS: ORA measurements for one eye per individual were selected randomly from 53 normal patients and from 27 patients with keratoconus. Two groups were considered the average (CH-Avg, CRF-Avg and best waveform score (CH-WS, CRF-WS groups. The Mann-Whitney U-test was used to evaluate whether the variables had similar distributions in the Normal and Keratoconus groups. Receiver operating characteristics (ROC curves were calculated for each parameter to assess the efficacy for diagnosing keratoconus and the same obtained for each variable were compared pairwise using the Hanley-McNeil test. RESULTS: The CH-Avg, CRF-Avg, CH-WS and CRF-WS differed significantly between the normal and keratoconus groups (p<0.001. The areas under the ROC curve (AUROC for CH-Avg, CRF-Avg, CH-WS, and CRF-WS were 0.824, 0.873, 0.891, and 0.931, respectively. CH-WS and CRF-WS had significantly better AUROCs than CH-Avg and CRF-Avg, respectively (p=0.001 and 0.002. CONCLUSION: The analysis of the biomechanical properties of the cornea through the ORA method has proved to be an important aid in the diagnosis of keratoconus, regardless of the method used. The best waveform score (WS measurements were superior to the average of consecutive ORA measurements for diagnosing keratoconus.

  19. Velocity-space tomography of the fast-ion distribution function

    DEFF Research Database (Denmark)

    Jacobsen, Asger Schou; Salewski, Mirko; Geiger, Benedikt

    2013-01-01

    probes certain regions in velocity-space, determined by the geometry of the set-up. Exploiting this, the fast-ion distribution function can be inferred using a velocity-space tomography method. This poster contains a tomography calculated from measured spectra from three different FIDA views at ASDEX......Fast ions play an important role in heating the plasma in a magnetic confinement fusion device. Fast-ion Dα(FIDA) spectroscopy diagnoses fast ions in small measurement volumes. Spectra measured by a FIDA diagnostic can be related to the 2D fast-ion velocity distribution function. A single FIDA view...... Upgrade. The quality of the tomography improves with the number of FIDA views simultaneously measuring the same volume. To investigate the potential benefits of including additional views (up to 18), tomographies are inferred from synthetic spectra calculated from a simulated distribution function...

  20. Source-independent time-domain waveform inversion using convolved wavefields: Application to the encoded multisource waveform inversion

    KAUST Repository

    Choi, Yun Seok

    2011-09-01

    Full waveform inversion requires a good estimation of the source wavelet to improve our chances of a successful inversion. This is especially true for an encoded multisource time-domain implementation, which, conventionally, requires separate-source modeling, as well as the Fourier transform of wavefields. As an alternative, we have developed the source-independent time-domain waveform inversion using convolved wavefields. Specifically, the misfit function consists of the convolution of the observed wavefields with a reference trace from the modeled wavefield, plus the convolution of the modeled wavefields with a reference trace from the observed wavefield. In this case, the source wavelet of the observed and the modeled wavefields are equally convolved with both terms in the misfit function, and thus, the effects of the source wavelets are eliminated. Furthermore, because the modeled wavefields play a role of low-pass filtering, the observed wavefields in the misfit function, the frequency-selection strategy from low to high can be easily adopted just by setting the maximum frequency of the source wavelet of the modeled wavefields; and thus, no filtering is required. The gradient of the misfit function is computed by back-propagating the new residual seismograms and applying the imaging condition, similar to reverse-time migration. In the synthetic data evaluations, our waveform inversion yields inverted models that are close to the true model, but demonstrates, as predicted, some limitations when random noise is added to the synthetic data. We also realized that an average of traces is a better choice for the reference trace than using a single trace. © 2011 Society of Exploration Geophysicists.

  1. Radial artery pulse waveform analysis based on curve fitting using discrete Fourier series.

    Science.gov (United States)

    Jiang, Zhixing; Zhang, David; Lu, Guangming

    2018-04-19

    Radial artery pulse diagnosis has been playing an important role in traditional Chinese medicine (TCM). For its non-invasion and convenience, the pulse diagnosis has great significance in diseases analysis of modern medicine. The practitioners sense the pulse waveforms in patients' wrist to make diagnoses based on their non-objective personal experience. With the researches of pulse acquisition platforms and computerized analysis methods, the objective study on pulse diagnosis can help the TCM to keep up with the development of modern medicine. In this paper, we propose a new method to extract feature from pulse waveform based on discrete Fourier series (DFS). It regards the waveform as one kind of signal that consists of a series of sub-components represented by sine and cosine (SC) signals with different frequencies and amplitudes. After the pulse signals are collected and preprocessed, we fit the average waveform for each sample using discrete Fourier series by least squares. The feature vector is comprised by the coefficients of discrete Fourier series function. Compared with the fitting method using Gaussian mixture function, the fitting errors of proposed method are smaller, which indicate that our method can represent the original signal better. The classification performance of proposed feature is superior to the other features extracted from waveform, liking auto-regression model and Gaussian mixture model. The coefficients of optimized DFS function, who is used to fit the arterial pressure waveforms, can obtain better performance in modeling the waveforms and holds more potential information for distinguishing different psychological states. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. 3-D Velocity Model of the Coachella Valley, Southern California Based on Explosive Shots from the Salton Seismic Imaging Project

    Science.gov (United States)

    Persaud, P.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.; Scheirer, D. S.

    2014-12-01

    We have analyzed explosive shot data from the 2011 Salton Seismic Imaging Project (SSIP) across a 2-D seismic array and 5 profiles in the Coachella Valley to produce a 3-D P-wave velocity model that will be used in calculations of strong ground shaking. Accurate maps of seismicity and active faults rely both on detailed geological field mapping and a suitable velocity model to accurately locate earthquakes. Adjoint tomography of an older version of the SCEC 3-D velocity model shows that crustal heterogeneities strongly influence seismic wave propagation from moderate earthquakes (Tape et al., 2010). These authors improve the crustal model and subsequently simulate the details of ground motion at periods of 2 s and longer for hundreds of ray paths. Even with improvements such as the above, the current SCEC velocity model for the Salton Trough does not provide a match of the timing or waveforms of the horizontal S-wave motions, which Wei et al. (2013) interpret as caused by inaccuracies in the shallow velocity structure. They effectively demonstrate that the inclusion of shallow basin structure improves the fit in both travel times and waveforms. Our velocity model benefits from the inclusion of known location and times of a subset of 126 shots detonated over a 3-week period during the SSIP. This results in an improved velocity model particularly in the shallow crust. In addition, one of the main challenges in developing 3-D velocity models is an uneven stations-source distribution. To better overcome this challenge, we also include the first arrival times of the SSIP shots at the more widely spaced Southern California Seismic Network (SCSN) in our inversion, since the layout of the SSIP is complementary to the SCSN. References: Tape, C., et al., 2010, Seismic tomography of the Southern California crust based on spectral-element and adjoint methods: Geophysical Journal International, v. 180, no. 1, p. 433-462. Wei, S., et al., 2013, Complementary slip distributions

  3. A seamless acquisition digital storage oscilloscope with three-dimensional waveform display

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kuojun, E-mail: kuojunyang@gmail.com; Guo, Lianping [School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu (China); School of Electrical and Electronic Engineering, Nanyang Technological University (Singapore); Tian, Shulin; Zeng, Hao [School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu (China); Qiu, Lei [School of Electrical and Electronic Engineering, Nanyang Technological University (Singapore)

    2014-04-15

    In traditional digital storage oscilloscope (DSO), sampled data need to be processed after each acquisition. During data processing, the acquisition is stopped and oscilloscope is blind to the input signal. Thus, this duration is called dead time. With the rapid development of modern electronic systems, the effect of infrequent events becomes significant. To capture these occasional events in shorter time, dead time in traditional DSO that causes the loss of measured signal needs to be reduced or even eliminated. In this paper, a seamless acquisition oscilloscope without dead time is proposed. In this oscilloscope, three-dimensional waveform mapping (TWM) technique, which converts sampled data to displayed waveform, is proposed. With this technique, not only the process speed is improved, but also the probability information of waveform is displayed with different brightness. Thus, a three-dimensional waveform is shown to the user. To reduce processing time further, parallel TWM which processes several sampled points simultaneously, and dual-port random access memory based pipelining technique which can process one sampling point in one clock period are proposed. Furthermore, two DDR3 (Double-Data-Rate Three Synchronous Dynamic Random Access Memory) are used for storing sampled data alternately, thus the acquisition can continue during data processing. Therefore, the dead time of DSO is eliminated. In addition, a double-pulse test method is adopted to test the waveform capturing rate (WCR) of the oscilloscope and a combined pulse test method is employed to evaluate the oscilloscope's capture ability comprehensively. The experiment results show that the WCR of the designed oscilloscope is 6 250 000 wfms/s (waveforms per second), the highest value in all existing oscilloscopes. The testing results also prove that there is no dead time in our oscilloscope, thus realizing the seamless acquisition.

  4. A seamless acquisition digital storage oscilloscope with three-dimensional waveform display

    Science.gov (United States)

    Yang, Kuojun; Tian, Shulin; Zeng, Hao; Qiu, Lei; Guo, Lianping

    2014-04-01

    In traditional digital storage oscilloscope (DSO), sampled data need to be processed after each acquisition. During data processing, the acquisition is stopped and oscilloscope is blind to the input signal. Thus, this duration is called dead time. With the rapid development of modern electronic systems, the effect of infrequent events becomes significant. To capture these occasional events in shorter time, dead time in traditional DSO that causes the loss of measured signal needs to be reduced or even eliminated. In this paper, a seamless acquisition oscilloscope without dead time is proposed. In this oscilloscope, three-dimensional waveform mapping (TWM) technique, which converts sampled data to displayed waveform, is proposed. With this technique, not only the process speed is improved, but also the probability information of waveform is displayed with different brightness. Thus, a three-dimensional waveform is shown to the user. To reduce processing time further, parallel TWM which processes several sampled points simultaneously, and dual-port random access memory based pipelining technique which can process one sampling point in one clock period are proposed. Furthermore, two DDR3 (Double-Data-Rate Three Synchronous Dynamic Random Access Memory) are used for storing sampled data alternately, thus the acquisition can continue during data processing. Therefore, the dead time of DSO is eliminated. In addition, a double-pulse test method is adopted to test the waveform capturing rate (WCR) of the oscilloscope and a combined pulse test method is employed to evaluate the oscilloscope's capture ability comprehensively. The experiment results show that the WCR of the designed oscilloscope is 6 250 000 wfms/s (waveforms per second), the highest value in all existing oscilloscopes. The testing results also prove that there is no dead time in our oscilloscope, thus realizing the seamless acquisition.

  5. A seamless acquisition digital storage oscilloscope with three-dimensional waveform display

    International Nuclear Information System (INIS)

    Yang, Kuojun; Guo, Lianping; Tian, Shulin; Zeng, Hao; Qiu, Lei

    2014-01-01

    In traditional digital storage oscilloscope (DSO), sampled data need to be processed after each acquisition. During data processing, the acquisition is stopped and oscilloscope is blind to the input signal. Thus, this duration is called dead time. With the rapid development of modern electronic systems, the effect of infrequent events becomes significant. To capture these occasional events in shorter time, dead time in traditional DSO that causes the loss of measured signal needs to be reduced or even eliminated. In this paper, a seamless acquisition oscilloscope without dead time is proposed. In this oscilloscope, three-dimensional waveform mapping (TWM) technique, which converts sampled data to displayed waveform, is proposed. With this technique, not only the process speed is improved, but also the probability information of waveform is displayed with different brightness. Thus, a three-dimensional waveform is shown to the user. To reduce processing time further, parallel TWM which processes several sampled points simultaneously, and dual-port random access memory based pipelining technique which can process one sampling point in one clock period are proposed. Furthermore, two DDR3 (Double-Data-Rate Three Synchronous Dynamic Random Access Memory) are used for storing sampled data alternately, thus the acquisition can continue during data processing. Therefore, the dead time of DSO is eliminated. In addition, a double-pulse test method is adopted to test the waveform capturing rate (WCR) of the oscilloscope and a combined pulse test method is employed to evaluate the oscilloscope's capture ability comprehensively. The experiment results show that the WCR of the designed oscilloscope is 6 250 000 wfms/s (waveforms per second), the highest value in all existing oscilloscopes. The testing results also prove that there is no dead time in our oscilloscope, thus realizing the seamless acquisition

  6. Effects of waveform model systematics on the interpretation of GW150914

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; E Barclay, S.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; E Brau, J.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; E Broida, J.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; E Cowan, E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; E Creighton, J. D.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; E Dwyer, S.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; E Gossan, S.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; E Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; E Holz, D.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; E Lord, J.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; E McClelland, D.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; E Mikhailov, E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; E Pace, A.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; E Smith, R. J.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; E Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; E Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; E Zucker, M.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Boyle, M.; Chu, T.; Hemberger, D.; Hinder, I.; E Kidder, L.; Ossokine, S.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; Vano Vinuales, A.

    2017-05-01

    Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions, notably to neglect sub-dominant waveform harmonic modes and orbital eccentricity. Furthermore, while the models are calibrated to agree with waveforms obtained by full numerical solutions of Einstein’s equations, any such calibration is accurate only to some non-zero tolerance and is limited by the accuracy of the underlying phenomenology, availability, quality, and parameter-space coverage of numerical simulations. This paper complements the original analyses of GW150914 with an investigation of the effects of possible systematic errors in the waveform models on estimates of its source parameters. To test for systematic errors we repeat the original Bayesian analysis on mock signals from numerical simulations of a series of binary configurations with parameters similar to those found for GW150914. Overall, we find no evidence for a systematic bias relative to the statistical error of the original parameter recovery of GW150914 due to modeling approximations or modeling inaccuracies. However, parameter biases are found to occur for some configurations disfavored by the data of GW150914: for binaries inclined edge-on to the detector over a small range of choices of polarization angles, and also for eccentricities greater than  ˜0.05. For signals with higher signal-to-noise ratio than GW150914, or in other regions of the binary parameter space (lower masses, larger mass ratios, or higher spins), we expect that systematic errors in current waveform models may impact gravitational-wave measurements, making more accurate models desirable for future observations.

  7. Single-spin precessing gravitational waveform in closed form

    Science.gov (United States)

    Lundgren, Andrew; O'Shaughnessy, R.

    2014-02-01

    In coming years, gravitational-wave detectors should find black hole-neutron star (BH-NS) binaries, potentially coincident with astronomical phenomena like short gamma ray bursts. These binaries are expected to precess. Gravitational-wave science requires a tractable model for precessing binaries, to disentangle precession physics from other phenomena like modified strong field gravity, tidal deformability, or Hubble flow; and to measure compact object masses, spins, and alignments. Moreover, current searches for gravitational waves from compact binaries use templates where the binary does not precess and are ill-suited for detection of generic precessing sources. In this paper we provide a closed-form representation of the single-spin precessing waveform in the frequency domain by reorganizing the signal as a sum over harmonics, each of which resembles a nonprecessing waveform. This form enables simple analytic calculations of the Fisher matrix for use in template bank generation and coincidence metrics, and jump proposals to improve the efficiency of Markov chain Monte Carlo sampling. We have verified that for generic BH-NS binaries, our model agrees with the time-domain waveform to 2%. Straightforward extensions of the derivations outlined here (and provided in full online) allow higher accuracy and error estimates.

  8. Gravitational waveforms for neutron star binaries from binary black hole simulations

    Science.gov (United States)

    Barkett, Kevin; Scheel, Mark; Haas, Roland; Ott, Christian; Bernuzzi, Sebastiano; Brown, Duncan; Szilagyi, Bela; Kaplan, Jeffrey; Lippuner, Jonas; Muhlberger, Curran; Foucart, Francois; Duez, Matthew

    2016-03-01

    Gravitational waves from binary neutron star (BNS) and black-hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challenging full 3D hydrodynamical simulations or approximate analytic solutions. We introduce a new method for computing inspiral waveforms for BNS/BHNS systems by adding the post-Newtonian (PN) tidal effects to full numerical simulations of binary black holes (BBHs), effectively replacing the non-tidal terms in the PN expansion with BBH results. Comparing a waveform generated with this method against a full hydrodynamical simulation of a BNS inspiral yields a phase difference of < 1 radian over ~ 15 orbits. The numerical phase accuracy required of BNS simulations to measure the accuracy of the method we present here is estimated as a function of the tidal deformability parameter λ.

  9. Changes of brachial arterial doppler waveform during immersion of the hand of young men in ice-cold water

    International Nuclear Information System (INIS)

    Kim, Young Goo

    1994-01-01

    To evaluate the changes of brachial arterial Doppler waveform during immersion of the hand of young men in ice-cold water. Doppler waveforms of brachial arteries in 11 young male patients were recorded before and during immersion of ipsilateral hand in ice-cold water(4-5 .deg. C). The procedure was repeated on separate days. Patterns of waveform during immersion were compared with the changes of pulsatility index. Four men showed high impedance waveforms, and 5 men showed low impedance waveforms during immersion both at the first and at the second study. Two men, however, showed high impedance waveforms at the first study and tow impedance waveforms at the second study. The pulsatility index rose and fell in high and low impedance waveforms, respectively. The changes of brachial arterial Doppler waveforms could be classified into high and low impedance patterns, probably reflecting the acute changes in downstream impedance during immersion of hand in ice-cold water

  10. Seismic and Thermal Structure of the Arctic Lithosphere, From Waveform Tomography and Thermodynamic Modelling

    Science.gov (United States)

    Lebedev, S.; Schaeffer, A. J.; Fullea, J.; Pease, V.

    2015-12-01

    Thermal structure of the lithosphere is reflected in the values of seismic velocities within it. Our new tomographic models of the crust and upper mantle of the Arctic are constrained by an unprecedentedly large global waveform dataset and provide substantially improved resolution, compared to previous models. The new tomography reveals lateral variations in the temperature and thickness of the lithosphere and defines deep boundaries between tectonic blocks with different lithospheric properties and age. The shape and evolution of the geotherm beneath a tectonic unit depends on both crustal and mantle-lithosphere structure beneath it: the lithospheric thickness and its changes with time (these determine the supply of heat from the deep Earth), the crustal thickness and heat production (the supply of heat from within the crust), and the thickness and thermal conductivity of the sedimentary cover (the insulation). Detailed thermal structure of the basins can be modelled by combining seismic velocities from tomography with data on the crustal structure and heat production, in the framework of computational petrological modelling. The most prominent lateral contrasts across the Arctic are between the cold, thick lithospheres of the cratons (in North America, Greenland and Eurasia) and the warmer, non-cratonic blocks. The lithosphere of the Canada Basin is cold and thick, similar to old oceanic lithosphere elsewhere around the world; its thermal structure offers evidence on its lithospheric age and formation mechanism. At 150-250 km depth, the central Arctic region shows a moderate low-velocity anomaly, cooler than that beneath Iceland and N Atlantic. An extension of N Atlantic low-velocity anomaly into the Arctic through the Fram Strait may indicate an influx of N Atlantic asthenosphere under the currently opening Eurasia Basin.

  11. Spatially-Variant Tikhonov Regularization for Double-Difference Waveform Inversion

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Youzuo [Los Alamos National Laboratory; Huang, Lianjie [Los Alamos National Laboratory; Zhang, Zhigang [Los Alamos National Laboratory

    2011-01-01

    Double-difference waveform inversion is a potential tool for quantitative monitoring for geologic carbon storage. It jointly inverts time-lapse seismic data for changes in reservoir geophysical properties. Due to the ill-posedness of waveform inversion, it is a great challenge to obtain reservoir changes accurately and efficiently, particularly when using time-lapse seismic reflection data. Regularization techniques can be utilized to address the issue of ill-posedness. The regularization parameter controls the smoothness of inversion results. A constant regularization parameter is normally used in waveform inversion, and an optimal regularization parameter has to be selected. The resulting inversion results are a trade off among regions with different smoothness or noise levels; therefore the images are either over regularized in some regions while under regularized in the others. In this paper, we employ a spatially-variant parameter in the Tikhonov regularization scheme used in double-difference waveform tomography to improve the inversion accuracy and robustness. We compare the results obtained using a spatially-variant parameter with those obtained using a constant regularization parameter and those produced without any regularization. We observe that, utilizing a spatially-variant regularization scheme, the target regions are well reconstructed while the noise is reduced in the other regions. We show that the spatially-variant regularization scheme provides the flexibility to regularize local regions based on the a priori information without increasing computational costs and the computer memory requirement.

  12. Improving the output voltage waveform of an intense electron-beam accelerator based on helical type Blumlein pulse forming line

    Directory of Open Access Journals (Sweden)

    Xin-Bing Cheng

    2010-07-01

    Full Text Available The Blumlein pulse forming line (BPFL consisting of an inner coaxial pulse forming line (PFL and an outer coaxial PFL is widely used in the field of pulsed power, especially for intense electron-beam accelerators (IEBA. The output voltage waveform determines the quality and characteristics of the output beam current of the IEBA. Comparing with the conventional BPFL, an IEBA based on a helical type BPFL can increase the duration of the output voltage in the same geometrical volume. However, for the helical type BPFL, the voltage waveform on a matched load may be distorted which influences the electron-beam quality. In this paper, an IEBA based on helical type BPFL is studied theoretically. Based on telegrapher equations of the BPFL, a formula for the output voltage of IEBA is obtained when the transition section is taken into account, where the transition section is between the middle cylinder of BPFL and the load. From the theoretical analysis, it is found that the wave impedance and transit time of the transition section influence considerably the main pulse voltage waveform at the load, a step is formed in front of the main pulse, and a sharp spike is also formed at the end of the main pulse. In order to get a well-shaped square waveform at the load and to improve the electron-beam quality of such an accelerator, the wave impedance of the transition section should be equal to that of the inner PFL of helical type BPFL and the transit time of the transition section should be designed as short as possible. Experiments performed on an IEBA with the helical type BPFL show reasonable agreement with theoretical analysis.

  13. Capacitively coupled radio-frequency plasmas excited by tailored voltage waveforms

    International Nuclear Information System (INIS)

    Lafleur, T; Delattre, P A; Booth, J P; Johnson, E V

    2013-01-01

    By applying certain types of ‘tailored’ voltage waveforms (TVWs) to capacitively coupled plasmas, a dc self-bias and an asymmetric plasma response can be produced, even in geometrically symmetric reactors. Furthermore, these arbitrary applied waveforms can produce a number of interesting phenomena that are not present in typical single-frequency sinusoidal discharges. This electrical asymmetry effect presents emerging possibilities for the improved control of the ion energy and ion flux in these systems; parameters of vital importance to both etching and deposition applications for materials processing. With a combined research approach utilizing both experimental measurements, and particle-in-cell simulations, we review and extend recent investigations that study a particular class of TVW. The waveforms used have a pulse-type shape and are composed of a varying number of harmonic frequencies. This allows a strong self-bias to be produced, and causes most of the applied voltage to be dropped across a single sheath. Additionally, decreasing the pulse width (by increasing the number of harmonics), allows the plasma density and ion flux to be increased. Simulation and experimental results both demonstrate that this type of waveform can be used to separately control the ion flux and ion energy, while still producing a uniform plasma over large area (50 cm diameter) rf electrodes. (paper)

  14. Full-waveform detection of non-impulsive seismic events based on time-reversal methods

    Science.gov (United States)

    Solano, Ericka Alinne; Hjörleifsdóttir, Vala; Liu, Qinya

    2017-12-01

    We present a full-waveform detection method for non-impulsive seismic events, based on time-reversal principles. We use the strain Green's tensor as a matched filter, correlating it with continuous observed seismograms, to detect non-impulsive seismic events. We show that this is mathematically equivalent to an adjoint method for detecting earthquakes. We define the detection function, a scalar valued function, which depends on the stacked correlations for a group of stations. Event detections are given by the times at which the amplitude of the detection function exceeds a given value relative to the noise level. The method can make use of the whole seismic waveform or any combination of time-windows with different filters. It is expected to have an advantage compared to traditional detection methods for events that do not produce energetic and impulsive P waves, for example glacial events, landslides, volcanic events and transform-fault earthquakes for events which velocity structure along the path is relatively well known. Furthermore, the method has advantages over empirical Greens functions template matching methods, as it does not depend on records from previously detected events, and therefore is not limited to events occurring in similar regions and with similar focal mechanisms as these events. The method is not specific to any particular way of calculating the synthetic seismograms, and therefore complicated structural models can be used. This is particularly beneficial for intermediate size events that are registered on regional networks, for which the effect of lateral structure on the waveforms can be significant. To demonstrate the feasibility of the method, we apply it to two different areas located along the mid-oceanic ridge system west of Mexico where non-impulsive events have been reported. The first study area is between Clipperton and Siqueiros transform faults (9°N), during the time of two earthquake swarms, occurring in March 2012 and May

  15. Arterial waveform-analysis is of limited value in daily clinical practice in the intensive care unit

    DEFF Research Database (Denmark)

    Henningsen, Louise; Haase, Nicolai; Pedersen, Ulf Gøttrup

    2015-01-01

    the proportion of intensive care unit (ICU) patients with shock who at the time of resuscitation fulfilled the prerequisites for using the arterial waveform-derived variables. METHODS: This was a prospective cohort study performed at six ICUs. The study included consecutive adult patients with shock (20 patients...... per ICU) who received fluid resuscitation on the first day of shock. The fulfilment or not of the prerequisites (sedation, sinus rhythm and controlled ventilation with tidal volumes > 7 ml/kg) was registered at the time of the first fluid resuscitation episode and at fluid resuscitation episodes......% CI: 46-65) were on controlled ventilation and 50% (95% CI: 39-61) received tidal volumes of more than 7 ml/kg. Only 23% (95% CI: 14-33) of the patients fulfilled all four prerequisites. CONCLUSIONS: Less than a quarter of the ICU patients with shock fulfilled all the prerequisites for the use...

  16. Induced waveform transitions of dissipative solitons

    Science.gov (United States)

    Kochetov, Bogdan A.; Tuz, Vladimir R.

    2018-01-01

    The effect of an externally applied force upon the dynamics of dissipative solitons is analyzed in the framework of the one-dimensional cubic-quintic complex Ginzburg-Landau equation supplemented by a potential term with an explicit coordinate dependence. The potential accounts for the external force manipulations and consists of three symmetrically arranged potential wells whose depth varies along the longitudinal coordinate. It is found out that under an influence of such potential a transition between different soliton waveforms coexisting under the same physical conditions can be achieved. A low-dimensional phase-space analysis is applied in order to demonstrate that by only changing the potential profile, transitions between different soliton waveforms can be performed in a controllable way. In particular, it is shown that by means of a selected potential, stationary dissipative soliton can be transformed into another stationary soliton as well as into periodic, quasi-periodic, and chaotic spatiotemporal dissipative structures.

  17. Designing waveforms for temporal encoding using a frequency sampling method

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jensen, Jørgen Arendt

    2007-01-01

    was compared to a linear frequency modulated signal with amplitude tapering, previously used in clinical studies for synthetic transmit aperture imaging. The latter had a relatively flat spectrum which implied that the waveform tried to excite all frequencies including ones with low amplification. The proposed......In this paper a method for designing waveforms for temporal encoding in medical ultrasound imaging is described. The method is based on least squares optimization and is used to design nonlinear frequency modulated signals for synthetic transmit aperture imaging. By using the proposed design method...... waveform, on the other hand, was designed so that only frequencies where the transducer had a large amplification were excited. Hereby, unnecessary heating of the transducer could be avoided and the signal-tonoise ratio could be increased. The experimental ultrasound scanner RASMUS was used to evaluate...

  18. A complete waveform model for compact binaries on eccentric orbits

    Science.gov (United States)

    George, Daniel; Huerta, Eliu; Kumar, Prayush; Agarwal, Bhanu; Schive, Hsi-Yu; Pfeiffer, Harald; Chu, Tony; Boyle, Michael; Hemberger, Daniel; Kidder, Lawrence; Scheel, Mark; Szilagyi, Bela

    2017-01-01

    We present a time domain waveform model that describes the inspiral, merger and ringdown of compact binary systems whose components are non-spinning, and which evolve on orbits with low to moderate eccentricity. We show that this inspiral-merger-ringdown waveform model reproduces the effective-one-body model for black hole binaries with mass-ratios between 1 to 15 in the zero eccentricity limit over a wide range of the parameter space under consideration. We use this model to show that the gravitational wave transients GW150914 and GW151226 can be effectively recovered with template banks of quasicircular, spin-aligned waveforms if the eccentricity e0 of these systems when they enter the aLIGO band at a gravitational wave frequency of 14 Hz satisfies e0GW 150914 <= 0 . 15 and e0GW 151226 <= 0 . 1 .

  19. An evaluation of state-of-the-art two-velocity two-phase flow models and their applicability to nuclear reactor transient analysis. Volume 2. Theoretical bases. Final report

    International Nuclear Information System (INIS)

    Hughes, E.D.; Lyczkowski, R.W.; McFadden, J.H.

    1976-02-01

    A state-of-the-art review was conducted in order to provide the nuclear industry with a publicly available assessment of two velocity thermal-hydraulic models and their applicability to nuclear reactor technology. The two major objectives of this state-of-the-art evaluation were: (1) document the basic theory in a consistent self-contained report; and (2) apply a prototype 'two-velocity' code (UVUT) to a limited number of separate effect tests. The theoretical basis of the two-velocity models given in Volume 2 is divided into three parts; Part I is the derivation of the basic differential equations; Part II describes in detail, the constitutive models required for closure of the system of equations; and Part III presents the numerical solution schemes

  20. Frequency Domain Multi-parameter Full Waveform Inversion for Acoustic VTI Media

    KAUST Repository

    Djebbi, Ramzi

    2017-05-26

    Multi-parameter full waveform inversion (FWI) for transversely isotropic (TI) media with vertical axis of symmetry (VTI) suffers from the trade-off between the parameters. The trade-off results in the leakage of one parameter\\'s update into the other during the inversion. It affects the accuracy and convergence of the inversion. The sensitivity analyses suggested a parameterisation using the horizontal velocity vh, epsilon and eta to reduce the trade-off for surface recorded seismic data.We test the (vh, epsilon, eta) parameterisation for acoustic VTI media using a scattering integral (SI) based inversion. The data is modeled in frequency domain and the model is updated using a preconditioned conjugate gradient method. We applied the method to the VTI Marmousi II model and in the inversion, we keep eta parameter fixed as the background initial model and we invert simultaneously for both vh and epsilon. The results show the suitability of the parameterisation for multi-parameter VTI acoustic inversion as well as the accuracy of the inversion approach.

  1. Heart rate and flow velocity variability as determined from umbilical Doppler velocimetry at 10-20 weeks of gestation.

    Science.gov (United States)

    Ursem, N T; Struijk, P C; Hop, W C; Clark, E B; Keller, B B; Wladimiroff, J W

    1998-11-01

    1. The aim of this study was to define from umbilical artery flow velocity waveforms absolute peak systolic and time-averaged velocity, fetal heart rate, fetal heart rate variability and flow velocity variability, and the relation between fetal heart rate and velocity variables in early pregnancy.2.A total of 108 women presenting with a normal pregnancy from 10 to 20 weeks of gestation consented to participate in a cross-sectional study design. Doppler ultrasound recordings were made from the free-floating loop of the umbilical cord.3. Umbilical artery peak systolic and time-averaged velocity increased at 10-20 weeks, whereas fetal heart rate decreased at 10-15 weeks of gestation and plateaued thereafter. Umbilical artery peak systolic velocity variability and fetal heart rate variability increased at 10-20 and 15-20 weeks respectively.4. The inverse relationship between umbilical artery flow velocity and fetal heart rate at 10-15 weeks of gestation suggests that the Frank-Starling mechanism regulates cardiovascular control as early as the late first and early second trimesters of pregnancy. A different underlying mechanism is suggested for the observed variability profiles in heart rate and umbilical artery peak systolic velocity. It is speculated that heart rate variability is mediated by maturation of the parasympathetic nervous system, whereas peak systolic velocity variability reflects the activation of a haemodynamic feedback mechanism.

  2. The Effect of Bolus Volume on Hyoid Kinematics in Healthy Swallowing

    Directory of Open Access Journals (Sweden)

    Ahmed Nagy

    2014-01-01

    Full Text Available Hyoid movement in swallowing is biomechanically linked to closure of the laryngeal vestibule for airway protection and to opening of the upper esophageal sphincter. Studies suggest that the range of hyoid movement is highly variable in the healthy population. However, other aspects of hyoid movement such as velocity remain relatively unexplored. In this study, we analyze data from a sample of 20 healthy young participants (10 male to determine whether hyoid movement distance, duration, velocity, and peak velocity vary systematically with increases in thin liquid bolus volume from 5 to 20 mL. The temporal correspondence between peak hyoid velocity and laryngeal vestibule closure was also examined. The results show that maximum hyoid position and peak velocity increase significantly for 20 mL bolus volumes compared to smaller volumes, and that the timing of peak velocity is closely linked to achieving laryngeal vestibule closure. This suggests that generating hyoid movements with increased power is a strategy for handling larger volumes.

  3. Anisotropic wave-equation traveltime and waveform inversion

    KAUST Repository

    Feng, Shihang; Schuster, Gerard T.

    2016-01-01

    The wave-equation traveltime and waveform inversion (WTW) methodology is developed to invert for anisotropic parameters in a vertical transverse isotropic (VTI) meidum. The simultaneous inversion of anisotropic parameters v0, ε and δ is initially

  4. BUILDING EDGE DETECTION USING SMALL-FOOTPRINT AIRBORNE FULL-WAVEFORM LIDAR DATA

    Directory of Open Access Journals (Sweden)

    J.-C. Michelin

    2012-07-01

    Full Text Available The full-waveform lidar technology allows a complete access to the information related to the emitted and backscattered laser signals. Although most of the common applications of full-waveform lidar are currently dedicated to the study of forested areas, some recent studies have shown that airborne full-waveform data is relevant for urban area analysis. We extend the field to pattern recognition with a focus on retrieval. Our proposed approach combines two steps. In a first time, building edges are coarsely extracted. Then, a physical model based on the lidar equation is used to retrieve a more accurate position of the estimated edge than the size of the lidar footprint. Another consequence is the estimation of more accurate planimetric positions of the extracted echoes.

  5. Fast evolution and waveform generator for extreme-mass-ratio inspirals in equatorial-circular orbits

    International Nuclear Information System (INIS)

    Han, Wen-Biao

    2016-01-01

    In this paper we discuss the development of a fast and accurate waveform model for the quasi-circular orbital evolution of extreme-mass-ratio inspirals (EMRIs). This model simply employs the data of a few numerical Teukoulsky-based energy fluxes and waveforms to fit out a set of polynomials for the entire fluxes and waveforms. These obtained polynomials are accurate enough in the entire evolution domain, and much more accurate than the resummation post-Newtonian (PN) energy fluxes and waveforms, especially when the spin of a black hole becomes large. The dynamical equation we adopted for orbital revolution is the effective-one-body (EOB) formalism. Because of the simplified expressions, the efficiency of calculating the orbital evolution with our polynomials is also better than the traditional method which uses the resummed PN analytical fluxes. Our model should be useful in calculations of waveform templates of EMRIs for gravitational wave (GW) detectors such as the evolved Laser Interferometer Space Antenna (eLISA). (paper)

  6. Full waveform inversion based on scattering angle enrichment with application to real dataset

    KAUST Repository

    Wu, Zedong; Alkhalifah, Tariq Ali

    2015-01-01

    Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI). However, the drawback of the existing RWI methods is inability to utilize diving waves and the extra sensitivity

  7. Mergers of Black-Hole Binaries with Aligned Spins: Waveform Characteristics

    Science.gov (United States)

    Kelly, Bernard J.; Baker, John G.; vanMeter, James R.; Boggs, William D.; McWilliams, Sean T.; Centrella, Joan

    2011-01-01

    "We apply our gravitational-waveform analysis techniques, first presented in the context of nonspinning black holes of varying mass ratio [1], to the complementary case of equal-mass spinning black-hole binary systems. We find that, as with the nonspinning mergers, the dominant waveform modes phases evolve together in lock-step through inspiral and merger, supporting the previous model of the binary system as an adiabatically rigid rotator driving gravitational-wave emission - an implicit rotating source (IRS). We further apply the late-merger model for the rotational frequency introduced in [1], along with a new mode amplitude model appropriate for the dominant (2, plus or minus 2) modes. We demonstrate that this seven-parameter model performs well in matches with the original numerical waveform for system masses above - 150 solar mass, both when the parameters are freely fit, and when they are almost completely constrained by physical considerations."

  8. A semi-automatic method for peak and valley detection in free-breathing respiratory waveforms

    International Nuclear Information System (INIS)

    Lu Wei; Nystrom, Michelle M.; Parikh, Parag J.; Fooshee, David R.; Hubenschmidt, James P.; Bradley, Jeffrey D.; Low, Daniel A.

    2006-01-01

    The existing commercial software often inadequately determines respiratory peaks for patients in respiration correlated computed tomography. A semi-automatic method was developed for peak and valley detection in free-breathing respiratory waveforms. First the waveform is separated into breath cycles by identifying intercepts of a moving average curve with the inspiration and expiration branches of the waveform. Peaks and valleys were then defined, respectively, as the maximum and minimum between pairs of alternating inspiration and expiration intercepts. Finally, automatic corrections and manual user interventions were employed. On average for each of the 20 patients, 99% of 307 peaks and valleys were automatically detected in 2.8 s. This method was robust for bellows waveforms with large variations

  9. A Robust Gold Deconvolution Approach for LiDAR Waveform Data Processing to Characterize Vegetation Structure

    Science.gov (United States)

    Zhou, T.; Popescu, S. C.; Krause, K.; Sheridan, R.; Ku, N. W.

    2014-12-01

    Increasing attention has been paid in the remote sensing community to the next generation Light Detection and Ranging (lidar) waveform data systems for extracting information on topography and the vertical structure of vegetation. However, processing waveform lidar data raises some challenges compared to analyzing discrete return data. The overall goal of this study was to present a robust de-convolution algorithm- Gold algorithm used to de-convolve waveforms in a lidar dataset acquired within a 60 x 60m study area located in the Harvard Forest in Massachusetts. The waveform lidar data was collected by the National Ecological Observatory Network (NEON). Specific objectives were to: (1) explore advantages and limitations of various waveform processing techniques to derive topography and canopy height information; (2) develop and implement a novel de-convolution algorithm, the Gold algorithm, to extract elevation and canopy metrics; and (3) compare results and assess accuracy. We modeled lidar waveforms with a mixture of Gaussian functions using the Non-least squares (NLS) algorithm implemented in R and derived a Digital Terrain Model (DTM) and canopy height. We compared our waveform-derived topography and canopy height measurements using the Gold de-convolution algorithm to results using the Richardson-Lucy algorithm. Our findings show that the Gold algorithm performed better than the Richardson-Lucy algorithm in terms of recovering the hidden echoes and detecting false echoes for generating a DTM, which indicates that the Gold algorithm could potentially be applied to processing of waveform lidar data to derive information on terrain elevation and canopy characteristics.

  10. Influence of the Metal Volume Fraction on the maximum deflection and impact load of GLARE plates subjected to low velocity impact

    Science.gov (United States)

    Bikakis, GSE; Savaidis, A.; Zalimidis, P.; Tsitos, S.

    2016-11-01

    Fiber-metal laminates are hybrid composite materials, consisting of alternating metal layers bonded to fiber-reinforced prepreg layers. GLARE (GLAss REinforced) belongs to this new family of materials. GLARE is the most successful fiber-metal laminate up to now and is currently being used for the construction of primary aerospace structures, such as the fuselage of the Airbus A380 air plane. Impact properties are very important in aerospace structures, since impact damage is caused by various sources, such as maintenance damage from dropped tools, collision between service cars or cargo and the structure, bird strikes and hail. The principal objective of this article is to evaluate the influence of the Metal Volume Fraction (MVF) on the low velocity impact response of GLARE fiber-metal laminates. Previously published differential equations of motion are employed for this purpose. The low velocity impact behavior of various circular GLARE plates is predicted and characteristic values of impact variables, which represent the impact phenomenon, are evaluated versus the corresponding MVF of the examined GLARE material grades. The considered GLARE plates are subjected to low velocity impact under identical impact conditions. A strong effect of the MVF on the maximum impact load and a significant effect on the maximum plate deflection of GLARE plates has been found.

  11. Extraction of microseismic waveforms characteristics prior to rock burst using Hilbert-Huang transform

    Science.gov (United States)

    Li, Xuelong; Li, Zhonghui; Wang, Enyuan; Feng, Junjun; Chen, Liang; Li, Nan; Kong, Xiangguo

    2016-09-01

    This study provides a new research idea concerning rock burst prediction. The characteristics of microseismic (MS) waveforms prior to and during the rock burst were studied through the Hilbert-Huang transform (HHT). In order to demonstrate the advantage of the MS features extraction based on HHT, the conventional analysis method (Fourier transform) was also used to make a comparison. The results show that HHT is simple and reliable, and could extract in-depth information about the characteristics of MS waveforms. About 10 days prior to the rock burst, the main frequency of MS waveforms transforms from the high-frequency to low-frequency. What's more, the waveforms energy also presents accumulation characteristic. Based on our study results, it can be concluded that the MS signals analysis through HHT could provide valuable information about the coal or rock deformation and fracture.

  12. Prototype of a transient waveform recording ASIC

    Science.gov (United States)

    Qin, J.; Zhao, L.; Cheng, B.; Chen, H.; Guo, Y.; Liu, S.; An, Q.

    2018-01-01

    The paper presents the design and measurement results of a transient waveform recording ASIC based on the Switched Capacitor Array (SCA) architecture. This 0.18 μm CMOS prototype device contains two channels and each channel employs a SCA of 128 samples deep, a 12-bit Wilkinson ADC and a serial data readout. A series of tests have been conducted and the results indicate that: a full 1 V signal voltage range is available, the input analog bandwidth is approximately 450 MHz and the sampling speed is adjustable from 0.076 to 3.2 Gsps (Gigabit Samples Per Second). For precision waveform timing extraction, careful calibration of timing intervals between samples is conducted to improve the timing resolution of such chips, and the timing precision of this ASIC is proved to be better than 15 ps RMS.

  13. Digitizing and analysis of neutron generator waveforms

    International Nuclear Information System (INIS)

    Bryant, T.C.

    1977-11-01

    All neutron generator waveforms from units tested at the SLA neutron generator test site are digitized and the digitized data stored in the CDC 6600 tape library for display and analysis using the CDC 6600 computer. The digitizing equipment consists mainly of seven Biomation Model 8100 transient recorders, Digital Equipment Corporation PDP 11/20 computer, RK05 disk, seven-track magnetic tape transport, and appropriate DEC and SLA controllers and interfaces. The PDP 11/20 computer is programmed in BASIC with assembly language drivers. In addition to digitizing waveforms, this equipment is used for other functions such as the automated testing of multiple-operation electronic neutron generators. Although other types of analysis have been done, the largest use of the digitized data has been for various types of graphical displays using the CDC 6600 and either the SD4020 or DX4460 plotters

  14. Interstation phase speed and amplitude measurements of surface waves with nonlinear waveform fitting: application to USArray

    Science.gov (United States)

    Hamada, K.; Yoshizawa, K.

    2015-09-01

    A new method of fully nonlinear waveform fitting to measure interstation phase speeds and amplitude ratios is developed and applied to USArray. The Neighbourhood Algorithm is used as a global optimizer, which efficiently searches for model parameters that fit two observed waveforms on a common great-circle path by modulating the phase and amplitude terms of the fundamental-mode surface waves. We introduce the reliability parameter that represents how well the waveforms at two stations can be fitted in a time-frequency domain, which is used as a data selection criterion. The method is applied to observed waveforms of USArray for seismic events in the period from 2007 to 2010 with moment magnitude greater than 6.0. We collect a large number of phase speed data (about 75 000 for Rayleigh and 20 000 for Love) and amplitude ratio data (about 15 000 for Rayleigh waves) in a period range from 30 to 130 s. The majority of the interstation distances of measured dispersion data is less than 1000 km, which is much shorter than the typical average path-length of the conventional single-station measurements for source-receiver pairs. The phase speed models for Rayleigh and Love waves show good correlations on large scales with the recent tomographic maps derived from different approaches for phase speed mapping; for example, significant slow anomalies in volcanic regions in the western Unites States and fast anomalies in the cratonic region. Local-scale phase speed anomalies corresponding to the major tectonic features in the western United States, such as Snake River Plains, Basin and Range, Colorado Plateau and Rio Grande Rift have also been identified clearly in the phase speed models. The short-path information derived from our interstation measurements helps to increase the achievable horizontal resolution. We have also performed joint inversions for phase speed maps using the measured phase and amplitude ratio data of vertical component Rayleigh waves. These maps exhibit

  15. A plasma aerodynamic actuator supplied by a multilevel generator operating with different voltage waveforms

    International Nuclear Information System (INIS)

    Borghi, Carlo A; Cristofolini, Andrea; Grandi, Gabriele; Neretti, Gabriele; Seri, Paolo

    2015-01-01

    In this work a high voltage—high frequency generator for the power supply of a dielectric barrier discharge (DBD) plasma actuator for the aerodynamic control obtained by the electro-hydro-dynamic (EHD) interaction is described and tested. The generator can produce different voltage waveforms. The operating frequency is independent of the load characteristics and does not require impedance matching. The peak-to-peak voltage is 30 kV at a frequency up to 20 kHz and time variation rates up to 60 kV μs −1 . The performance of the actuator when supplied by several voltage waveforms is investigated. The tests have been performed in still air at atmospheric pressure. Voltage and current time behaviors have been measured. The evaluation of the energy delivered to the actuator allowed the estimation of the periods in which the plasma was ignited. Vibrational and rotational temperatures of the plasma have been estimated through spectroscopic acquisitions. The flow field induced in the region above the surface of the DBD actuator has been studied and the EHD conversion efficiency has been evaluated for the voltage waveforms investigated. The nearly sinusoidal multilevel voltage of the proposed generator and the sinusoidal voltage waveform of a conventional ac generator obtain comparable plasma features, EHD effects, and efficiencies. Inverse saw tooth waveform presents the highest effects and efficiency. The rectangular waveform generates suitable EHD effects but with the lowest efficiency. The voltage waveforms that induce plasmas with higher rotational temperatures are less efficient for the conversion of the electric into kinetic energy. (paper)

  16. Monofrequency waveform acquisition and inversion: A new paradigm

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-01-01

    In seismic inversion, we tend to use the geometrical behavior of the wavefield (the kinematics), extracted from the data, to constrain the long wavelength model components and use the recorded reections to invert for the short wavelength features in a process referred to as full waveform inversion (FWI). For such a recipe, single frequency (the right frequency) data are capable of providing the ingredients for both model components. A frequency that provides model wavelengths (through the transmission components) low enough to update the background and high enough (reections) to map the scattering may render the other frequencies almost obsolete, especially large offset data are available to provide the transition from background to scattering components. Thus, I outline a scenario in which we acquire dedicated mono frequency data, allowing for more time to inject more of that single frequency energy at a reduced cost. The cost savings can be utilized to acquire larger offsets, which is an important for constraining the background model. Combing this single frequency data with a hierarchical scattering angle filter strategy in FWI, and potentially reection FWI, provides an opportunity to invert for complex models starting even with poor initial velocity models. The objective of this new paradigm is a high resolution model of the Earth to replace our focus on the image, which requires a band of frequencies.

  17. Monofrequency waveform acquisition and inversion: A new paradigm

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-08-05

    In seismic inversion, we tend to use the geometrical behavior of the wavefield (the kinematics), extracted from the data, to constrain the long wavelength model components and use the recorded reections to invert for the short wavelength features in a process referred to as full waveform inversion (FWI). For such a recipe, single frequency (the right frequency) data are capable of providing the ingredients for both model components. A frequency that provides model wavelengths (through the transmission components) low enough to update the background and high enough (reections) to map the scattering may render the other frequencies almost obsolete, especially large offset data are available to provide the transition from background to scattering components. Thus, I outline a scenario in which we acquire dedicated mono frequency data, allowing for more time to inject more of that single frequency energy at a reduced cost. The cost savings can be utilized to acquire larger offsets, which is an important for constraining the background model. Combing this single frequency data with a hierarchical scattering angle filter strategy in FWI, and potentially reection FWI, provides an opportunity to invert for complex models starting even with poor initial velocity models. The objective of this new paradigm is a high resolution model of the Earth to replace our focus on the image, which requires a band of frequencies.

  18. Doppler waveform of hepatic vein in patients with chronic hepatitis B; Correlation with histologic grade and stage

    International Nuclear Information System (INIS)

    Eom, Kyeong Tae; Namkung, Sook; Bae, Sang Hoon; Choi, Young Hee

    1999-01-01

    To evaluate the relationship between the waveform of the right hepatic vein and the histological grade and stage in patients with chronic hepatitis B. Eighty-seven patients with chronic hepatitis B were examined prospectively by one sonographer. In each patient, Doppler waveform of the right hepatic vein was obtained. Doppler waveform was classified into 3 type, type 0; normal triphasic pattern, type 1; reduced amplitude of phasic oscillation and no reverse flow phase, and type 2; completely flat flow pattern. In the same session, an ultrasound guided liver biopsy was performed and submitted to one pathologist for grading and staging. Duplex doppler ultrasonography of the right hepatic vein was also performed in 12 control subjects with no evidence of liver or heart disease. The doppler waveform was compared with the histologic severity and a statistical analysis was performed. In the control group, all cases had type 0 waveform. In the hepatitis group, there were type 0 waveform in 61 cases (70.1%), type 1 waveform in 22 cases (25.3%) and type 2 waveform in 4 cases (4.6%). The frequency of abnormal waveform is significantly higher in patients with grade 3-4 and stage 3-4 than grade and stage 1-2 (p>0.005). In the hepatitis group, the venous pulsatility index (VPI) was 0.17-0.69 (mean 0.41), and decreased in the highest and mean values when increasing the histologic scores. However, it was nor significant statistically (p>0.05). The frequency of abnormal waveform was correlated with the histologic severity in patients with chronic hepatitis B. The highest and mean values of the VPI were also correlated. However 70.1% of the patients with chronic hepatitis B showed normal waveform. So doppler ultrasonogram of the hepatic vein may be useful for the diagnosis and the differential diagnosis from cirrhosis in patients with chronic hepatitis B by combination of doppler waveform and venous pulsatility index.

  19. Post-seismic velocity changes following the 2010 Mw 7.1 Darfield earthquake, New Zealand, revealed by ambient seismic field analysis

    Science.gov (United States)

    Heckels, R. EG; Savage, M. K.; Townend, J.

    2018-05-01

    Quantifying seismic velocity changes following large earthquakes can provide insights into fault healing and reloading processes. This study presents temporal velocity changes detected following the 2010 September Mw 7.1 Darfield event in Canterbury, New Zealand. We use continuous waveform data from several temporary seismic networks lying on and surrounding the Greendale Fault, with a maximum interstation distance of 156 km. Nine-component, day-long Green's functions were computed for frequencies between 0.1 and 1.0 Hz for continuous seismic records from immediately after the 2010 September 04 earthquake until 2011 January 10. Using the moving-window cross-spectral method, seismic velocity changes were calculated. Over the study period, an increase in seismic velocity of 0.14 ± 0.04 per cent was determined near the Greendale Fault, providing a new constraint on post-seismic relaxation rates in the region. A depth analysis further showed that velocity changes were confined to the uppermost 5 km of the subsurface. We attribute the observed changes to post-seismic relaxation via crack healing of the Greendale Fault and throughout the surrounding region.

  20. On the square arc voltage waveform model in magnetic discharge lamp studies

    OpenAIRE

    Molina, Julio; Sainz Sapera, Luis; Mesas García, Juan José

    2011-01-01

    The current number of magnetic and electronic ballast discharge lamps in power distribution systems is increasing because they perform better than incandescent lamps. This paper studies the magnetic discharge lamp modeling. In particular, the arc voltage waveform is analyzed and the limitations of the square waveform model are revealed from experimental measurements.

  1. Closed-form solution to directly design frequency modulated waveforms for beampatterns

    KAUST Repository

    Ahmed, Sajid

    2018-03-12

    The targets image performance depends on the transmit beampattern and power-spectral-density of the probing signal. To design such probing signals for multiple-input multiple output (MIMO) radar, conventional algorithms are iterative in nature, therefore high computational complexity restricts their use in real time applications. In this paper, to achieve the desired beampattern, a novel closed-form algorithm to design frequency-modulated (FM) waveforms for MIMO radar is proposed. The proposed algorithm has negligible computational complexity and yields unity peak-to-average power ratio constant envelope waveforms. Moreover, in contrast to the narrow band algorithms, it has almost flat main and side lobes. In the proposed algorithm, a relationship between the width of symmetric beampattern and the product of initial frequency and duration of the baseband FM waveforms is developed.

  2. Waveform shape analysis: extraction of physiologically relevant information from Doppler recordings.

    Science.gov (United States)

    Ramsay, M M; Broughton Pipkin, F; Rubin, P C; Skidmore, R

    1994-05-01

    1. Doppler recordings were made from the brachial artery of healthy female subjects during a series of manoeuvres which altered the pressure-flow characteristics of the vessel. 2. Changes were induced in the peripheral circulation of the forearm by the application of heat or ice-packs. A sphygmomanometer cuff was used to create graded occlusion of the vessel above and below the point of measurement. Recordings were also made whilst the subjects performed a standardized Valsalva manoeuvre. 3. The Doppler recordings were analysed both with the standard waveform indices (systolic/diastolic ratio, pulsatility index and resistance index) and by the method of Laplace transform analysis. 4. The waveform parameters obtained by Laplace transform analysis distinguished the different changes in flow conditions; they thus had direct physiological relevance, unlike the standard waveform indices.

  3. Video Measurement of the Muzzle Velocity of a Potato Gun

    Science.gov (United States)

    Jasperson, Christopher; Pollman, Anthony

    2011-01-01

    Using first principles, a theoretical equation for the maximum and actual muzzle velocities for a pneumatic cannon was recently derived. For a fixed barrel length, this equation suggests that the muzzle velocity can be enhanced by maximizing the product of the initial pressure and the volume of the propellant gas and decreasing the projectile…

  4. System and method for investigating sub-surface features and 3D imaging of non-linear property, compressional velocity VP, shear velocity VS and velocity ratio VP/VS of a rock formation

    Science.gov (United States)

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre-Yves; Larmat, Carene S.

    2015-06-02

    A system and a method for generating a three-dimensional image of a rock formation, compressional velocity VP, shear velocity VS and velocity ratio VP/VS of a rock formation are provided. A first acoustic signal includes a first plurality of pulses. A second acoustic signal from a second source includes a second plurality of pulses. A detected signal returning to the borehole includes a signal generated by a non-linear mixing process from the first and second acoustic signals in a non-linear mixing zone within an intersection volume. The received signal is processed to extract the signal over noise and/or signals resulting from linear interaction and the three dimensional image of is generated.

  5. The ING Seismic Network Databank (ISND : a friendly parameters and waveform database

    Directory of Open Access Journals (Sweden)

    G. Smriglio

    1995-06-01

    Full Text Available he Istituto Nazionale di Geofisica (ING Seismic Network Database (ISND includes over 300000 arrivaI times of Italian, Mediterranean and teleseismic earthquakes from 1983 to date. This database is a useful tool for Italian and foreign seismologists ( over 1000 data requests in the first 6 months of this year. Recently (1994 the ING began storing in the ISND, the digital waveforms associated with arri,Tal times and experimen- tally allowed users to retrieve waveforms recorded by the ING acquisition system. In this paper we describe the types of data stored and the interactive and batch procedures available to obtain arrivaI times and/or asso- ciated waveforms. The ISND is reachable via telephone line, P.S.I., Internet and DecNet. Users can read and send to their E-mail address alI selected earthquakes locations, parameters, arrivaI times and associated digital waveforms (in SAC, SUDS or ASCII format. For r;aedium or large amounts of data users can ask to receive data by means of magnetic media (DAT, Video 8, floppy disk.

  6. BER Performance Simulation of Generalized MC DS-CDMA System with Time-Limited Blackman Chip Waveform

    Directory of Open Access Journals (Sweden)

    I. Develi

    2010-09-01

    Full Text Available Multiple access interference encountered in multicarrier direct sequence-code division multiple access (MC DS-CDMA is the most important difficulty that depends mainly on the correlation properties of the spreading sequences as well as the shape of the chip waveforms employed. In this paper, bit error rate (BER performance of the generalized MC DS-CDMA system that employs time-limited Blackman chip waveform is presented for Nakagami-m fading channels. Simulation results show that the use of Blackman chip waveform can improve the BER performance of the generalized MC DS-CDMA system, as compared to the performances achieved by using timelimited chip waveforms in the literature.

  7. Full-waveform inversion of surface waves in exploration geophysics

    Science.gov (United States)

    Borisov, D.; Gao, F.; Williamson, P.; Tromp, J.

    2017-12-01

    Full-waveform inversion (FWI) is a data fitting approach to estimate high-resolution properties of the Earth from seismic data by minimizing the misfit between observed and calculated seismograms. In land seismics, the source on the ground generates high-amplitude surface waves, which generally represent most of the energy recorded by ground sensors. Although surface waves are widely used in global seismology and engineering studies, they are typically treated as noise within the seismic exploration community since they mask deeper reflections from the intervals of exploration interest. This is mainly due to the fact that surface waves decay exponentially with depth and for a typical frequency range (≈[5-50] Hz) sample only the very shallow part of the subsurface, but also because they are much more sensitive to S-wave than P-wave velocities. In this study, we invert surface waves in the hope of using them as additional information for updating the near surface. In a heterogeneous medium, the main challenge of surface wave inversion is associated with their dispersive character, which makes it difficult to define a starting model for conventional FWI which can avoid cycle-skipping. The standard approach to dealing with this is by inverting the dispersion curves in the Fourier (f-k) domain to generate locally 1-D models, typically for the shear wavespeeds only. However this requires that the near-surface zone be more or less horizontally invariant over a sufficient distance for the spatial Fourier transform to be applicable. In regions with significant topography, such as foothills, this is not the case, so we revert to the time-space domain, but aim to minimize the differences of envelopes in the early stages of the inversion to resolve the cycle-skipping issue. Once the model is good enough, we revert to the classic waveform-difference inversion. We first present a few synthetic examples. We show that classical FWI might be trapped in a local minimum even for

  8. Full waveform seismic AVAZ signatures of anisotropic shales by integrated rock physics and the reflectivity method

    Science.gov (United States)

    Liu, Xiwu; Guo, Zhiqi; Han, Xu

    2018-06-01

    A set of parallel vertical fractures embedded in a vertically transverse isotropy (VTI) background leads to orthorhombic anisotropy and corresponding azimuthal seismic responses. We conducted seismic modeling of full waveform amplitude variations versus azimuth (AVAZ) responses of anisotropic shale by integrating a rock physics model and a reflectivity method. The results indicate that the azimuthal variation of P-wave velocity tends to be more complicated for orthorhombic medium compared to the horizontally transverse isotropy (HTI) case, especially at high polar angles. Correspondingly, for the HTI layer in the theoretical model, the short axis of the azimuthal PP amplitudes at the top interface is parallel to the fracture strike, while the long axis at the bottom reflection directs the fracture strike. In contrast, the orthorhombic layer in the theoretical model shows distinct AVAZ responses in terms of PP reflections. Nevertheless, the azimuthal signatures of the R- and T-components of the mode-converted PS reflections show similar AVAZ features for the HTI and orthorhombic layers, which may imply that the PS responses are dominated by fractures. For the application to real data, a seismic-well tie based on upscaled data and a reflectivity method illustrate good agreement between the reference layers and the corresponding reflected events. Finally, the full waveform seismic AVAZ responses of the Longmaxi shale formation are computed for the cases of HTI and orthorhombic anisotropy for comparison. For the two cases, the azimuthal features represent differences mainly in amplitudes, while slightly in the phases of the reflected waveforms. Azimuth variations in the PP reflections from the reference layers show distinct behaviors for the HTI and orthorhombic cases, while the mode-converted PS reflections in terms of the R- and T-components show little differences in azimuthal features. It may suggest that the behaviors of the PS waves are dominated by vertically

  9. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Glottal inverse filtering (GIF) refers to methods of estimating the source of voiced speech, the glottal volume velocity waveform. GIF is based on the idea of inversion, in which the effects of the vocal tract and lip radiation are cancelled from the output of the voice production mechanism, the speech signal. This article provides ...

  10. Maintenance of Velocity and Power With Cluster Sets During High-Volume Back Squats.

    Science.gov (United States)

    Tufano, James J; Conlon, Jenny A; Nimphius, Sophia; Brown, Lee E; Seitz, Laurent B; Williamson, Bryce D; Haff, G Gregory

    2016-10-01

    To compare the effects of a traditional set structure and 2 cluster set structures on force, velocity, and power during back squats in strength-trained men. Twelve men (25.8 ± 5.1 y, 1.74 ± 0.07 m, 79.3 ± 8.2 kg) performed 3 sets of 12 repetitions at 60% of 1-repetition maximum using 3 different set structures: traditional sets (TS), cluster sets of 4 (CS4), and cluster sets of 2 (CS2). When averaged across all repetitions, peak velocity (PV), mean velocity (MV), peak power (PP), and mean power (MP) were greater in CS2 and CS4 than in TS (P < .01), with CS2 also resulting in greater values than CS4 (P < .02). When examining individual sets within each set structure, PV, MV, PP, and MP decreased during the course of TS (effect sizes 0.28-0.99), whereas no decreases were noted during CS2 (effect sizes 0.00-0.13) or CS4 (effect sizes 0.00-0.29). These results demonstrate that CS structures maintain velocity and power, whereas TS structures do not. Furthermore, increasing the frequency of intraset rest intervals in CS structures maximizes this effect and should be used if maximal velocity is to be maintained during training.

  11. Temporal changes of the inner core from waveform doublets

    Science.gov (United States)

    Yang, Y.; Song, X.

    2017-12-01

    Temporal changes of the Earth's inner core have been detected from earthquake waveform doublets (repeating sources with similar waveforms at the same station). Using doublets from events up to the present in the South Sandwich Island (SSI) region recorded by the station COLA (Alaska), we confirmed systematic temporal variations in the travel time of the inner-core-refracted phase (PKIKP, the DF branch). The DF phase arrives increasingly earlier than outer core phases (BC and AB) by rate of approximately 0.07 s per decade since 1970s. If we assume that the temporal change is caused by a shift of the lateral gradient from the inner core rotation as in previous studies, we estimate the rotation rate of 0.2-0.4 degree per year. We also analyzed the topography of the inner core boundary (ICB) using SSI waveform doublets recorded by seismic stations in Eurasia and North America with reflected phase (PKiKP) and refracted phases. There are clear temporal changes in the waveforms of doublets for PKiKP under Africa and Central America. In addition, for doublets recorded by three nearby stations (AAK, AML, and UCH), we observed systematic change in the relative travel time of PKiKP and PKIKP. The temporal change of the (PKiKP - PKIKP) differential time is always negative for the event pairs if both events are before 2007, while it fluctuates to positive if the later event occurs after 2007. The rapid temporal changes in space and time may indicate localized processes (e.g., freezing and melting) of the ICB in the recent decades under Africa. We are exploring 4D models consistent with the temporal changes.

  12. Full waveform inversion based on the optimized gradient and its spectral implementation

    KAUST Repository

    Wu, Zedong

    2014-01-01

    Full waveform inversion (FWI) despite it\\'s potential suffers from the ability to converge to the desired solution due to the high nonlinearity of the objective function at conventional seismic frequencies. Even if frequencies necessary for the convergence are available, the high number of iterations required to approach a solution renders FWI as very expensive (especially in 3D). A spectral implementation in which the wavefields are extrapolated and gradients are calculated in the wavenumber domain allows for a cleaner more efficient implementation (no finite difference dispersion errors). In addition, we use not only an up and down going wavefield decomposition of the gradient to access the smooth background update, but also a right and left propagation decomposition to allow us to do that for large dips. To insure that the extracted smooth component of the gradient has the right decent direction, we solve an optimization problem to search for the smoothest component that provides a negative (decent) gradient. Application to the Marmousi model shows that this approach works well with linear increasing initial velocity model and data with frequencies above 2Hz.

  13. Synchronous Generator Model Parameter Estimation Based on Noisy Dynamic Waveforms

    Science.gov (United States)

    Berhausen, Sebastian; Paszek, Stefan

    2016-01-01

    In recent years, there have occurred system failures in many power systems all over the world. They have resulted in a lack of power supply to a large number of recipients. To minimize the risk of occurrence of power failures, it is necessary to perform multivariate investigations, including simulations, of power system operating conditions. To conduct reliable simulations, the current base of parameters of the models of generating units, containing the models of synchronous generators, is necessary. In the paper, there is presented a method for parameter estimation of a synchronous generator nonlinear model based on the analysis of selected transient waveforms caused by introducing a disturbance (in the form of a pseudorandom signal) in the generator voltage regulation channel. The parameter estimation was performed by minimizing the objective function defined as a mean square error for deviations between the measurement waveforms and the waveforms calculated based on the generator mathematical model. A hybrid algorithm was used for the minimization of the objective function. In the paper, there is described a filter system used for filtering the noisy measurement waveforms. The calculation results of the model of a 44 kW synchronous generator installed on a laboratory stand of the Institute of Electrical Engineering and Computer Science of the Silesian University of Technology are also given. The presented estimation method can be successfully applied to parameter estimation of different models of high-power synchronous generators operating in a power system.

  14. Bayesian and Classical Machine Learning Methods: A Comparison for Tree Species Classification with LiDAR Waveform Signatures

    Directory of Open Access Journals (Sweden)

    Tan Zhou

    2017-12-01

    Full Text Available A plethora of information contained in full-waveform (FW Light Detection and Ranging (LiDAR data offers prospects for characterizing vegetation structures. This study aims to investigate the capacity of FW LiDAR data alone for tree species identification through the integration of waveform metrics with machine learning methods and Bayesian inference. Specifically, we first conducted automatic tree segmentation based on the waveform-based canopy height model (CHM using three approaches including TreeVaW, watershed algorithms and the combination of TreeVaW and watershed (TW algorithms. Subsequently, the Random forests (RF and Conditional inference forests (CF models were employed to identify important tree-level waveform metrics derived from three distinct sources, such as raw waveforms, composite waveforms, the waveform-based point cloud and the combined variables from these three sources. Further, we discriminated tree (gray pine, blue oak, interior live oak and shrub species through the RF, CF and Bayesian multinomial logistic regression (BMLR using important waveform metrics identified in this study. Results of the tree segmentation demonstrated that the TW algorithms outperformed other algorithms for delineating individual tree crowns. The CF model overcomes waveform metrics selection bias caused by the RF model which favors correlated metrics and enhances the accuracy of subsequent classification. We also found that composite waveforms are more informative than raw waveforms and waveform-based point cloud for characterizing tree species in our study area. Both classical machine learning methods (the RF and CF and the BMLR generated satisfactory average overall accuracy (74% for the RF, 77% for the CF and 81% for the BMLR and the BMLR slightly outperformed the other two methods. However, these three methods suffered from low individual classification accuracy for the blue oak which is prone to being misclassified as the interior live oak due

  15. MIMO-OFDM Chirp Waveform Diversity Design and Implementation Based on Sparse Matrix and Correlation Optimization

    Directory of Open Access Journals (Sweden)

    Wang Wen-qin

    2015-02-01

    Full Text Available The waveforms used in Multiple-Input Multiple-Output (MIMO Synthetic Aperture Radar (SAR should have a large time-bandwidth product and good ambiguity function performance. A scheme to design multiple orthogonal MIMO SAR Orthogonal Frequency Division Multiplexing (OFDM chirp waveforms by combinational sparse matrix and correlation optimization is proposed. First, the problem of MIMO SAR waveform design amounts to the associated design of hopping frequency and amplitudes. Then a iterative exhaustive search algorithm is adopted to optimally design the code matrix with the constraints minimizing the block correlation coefficient of sparse matrix and the sum of cross-correlation peaks. And the amplitudes matrix are adaptively designed by minimizing the cross-correlation peaks with the genetic algorithm. Additionally, the impacts of waveform number, hopping frequency interval and selectable frequency index are also analyzed. The simulation results verify the proposed scheme can design multiple orthogonal large time-bandwidth product OFDM chirp waveforms with low cross-correlation peak and sidelobes and it improves ambiguity performance.

  16. Closed-form Solution to Directly Design FACE Waveforms for Beampatterns Using Planar Array

    KAUST Repository

    Bouchoucha, Taha

    2015-04-19

    In multiple-input multiple-output radar systems, it is usually desirable to steer transmitted power in the region-of-interest. To do this, conventional methods optimize the waveform covariance matrix, R, for the desired beampattern, which is then used to generate actual transmitted waveforms. Both steps require constrained optimization, therefore, use iterative algorithms. The main challenges encountered in the existing approaches are the computational complexity and the design of waveforms to use in practice. In this paper, we provide a closed-form solution to design covariance matrix for the given beampattern using the planar array, which is then used to derive a novel closed-form algorithm to directly design the finite-alphabet constant-envelope (FACE) waveforms. The proposed algorithm exploits the two-dimensional fast-Fourier-transform. The performance of our proposed algorithm is compared with existing methods that are based on semi-definite quadratic programming with the advantage of a considerably reduced complexity.

  17. Closed-form Solution to Directly Design FACE Waveforms for Beampatterns Using Planar Array

    KAUST Repository

    Bouchoucha, Taha; Ahmed, Sajid; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2015-01-01

    In multiple-input multiple-output radar systems, it is usually desirable to steer transmitted power in the region-of-interest. To do this, conventional methods optimize the waveform covariance matrix, R, for the desired beampattern, which is then used to generate actual transmitted waveforms. Both steps require constrained optimization, therefore, use iterative algorithms. The main challenges encountered in the existing approaches are the computational complexity and the design of waveforms to use in practice. In this paper, we provide a closed-form solution to design covariance matrix for the given beampattern using the planar array, which is then used to derive a novel closed-form algorithm to directly design the finite-alphabet constant-envelope (FACE) waveforms. The proposed algorithm exploits the two-dimensional fast-Fourier-transform. The performance of our proposed algorithm is compared with existing methods that are based on semi-definite quadratic programming with the advantage of a considerably reduced complexity.

  18. On the potential of OFDM enhancements as 5G waveforms

    DEFF Research Database (Denmark)

    Berardinelli, Gilberto; Pajukoski, Kari; Lähetkangas, Eeva

    2014-01-01

    The ideal radio waveform for an upcoming 5th Generation (5G) radio access technology should cope with a set of requirements such as limited complexity, good time/frequency localization and simple extension to multi-antenna technologies. This paper discusses the suitability of Orthogonal Frequency...... Division Multiplexing (OFDM) and its recently proposed enhancements as 5G waveforms, mainly focusing on their capability to cope with our requirements. Significant focus is given to the novel zero-tail paradigm, which allows boosting the OFDM flexibility while circumventing demerits such as poor spectral...

  19. Electron drift velocity measurements in liquid krypton-methane mixtures

    CERN Document Server

    Folegani, M; Magri, M; Piemontese, L

    1999-01-01

    Electron drift velocities have been measured in liquid krypton, pure and mixed with methane at different concentrations (1-10% in volume) versus electric field strength, and a possible effect of methane on electron lifetime has been investigated. While no effect on lifetime could be detected, since lifetimes were in all cases longer than what measurable, a very large increase in drift velocity (up to a factor 6) has been measured.

  20. Efficient blind search for similar-waveform earthquakes in years of continuous seismic data

    Science.gov (United States)

    Yoon, C. E.; Bergen, K.; Rong, K.; Elezabi, H.; Bailis, P.; Levis, P.; Beroza, G. C.

    2017-12-01

    Cross-correlating an earthquake waveform template with continuous seismic data has proven to be a sensitive, discriminating detector of small events missing from earthquake catalogs, but a key limitation of this approach is that it requires advance knowledge of the earthquake signals we wish to detect. To overcome this limitation, we can perform a blind search for events with similar waveforms, comparing waveforms from all possible times within the continuous data (Brown et al., 2008). However, the runtime for naive blind search scales quadratically with the duration of continuous data, making it impractical to process years of continuous data. The Fingerprint And Similarity Thresholding (FAST) detection method (Yoon et al., 2015) enables a comprehensive blind search for similar-waveform earthquakes in a fast, scalable manner by adapting data-mining techniques originally developed for audio and image search within massive databases. FAST converts seismic waveforms into compact "fingerprints", which are efficiently organized and searched within a database. In this way, FAST avoids the unnecessary comparison of dissimilar waveforms. To date, the longest duration of continuous data used for event detection with FAST was 3 months at a single station near Guy-Greenbrier, Arkansas, which revealed microearthquakes closely correlated with stages of hydraulic fracturing (Yoon et al., 2017). In this presentation we introduce an optimized, parallel version of the FAST software with improvements to the fingerprinting algorithm and the ability to detect events using continuous data from a network of stations (Bergen et al., 2016). We demonstrate its ability to detect low-magnitude earthquakes within several years of continuous data at locations of interest in California.

  1. Influence of the Metal Volume Fraction on the permanent dent depth and energy absorption of GLARE plates subjected to low velocity impact

    Science.gov (United States)

    Bikakis, GSE; Savaidis, A.; Zalimidis, P.; Tsitos, S.

    2016-11-01

    Fiber-metal laminates are hybrid composite materials, consisting of alternating metal layers bonded to fiber-reinforced prepreg layers. GLARE (GLAss REinforced) belongs to this new family of materials. GLARE is the most successful fiber-metal laminate up to now and is currently being used for the construction of primary aerospace structures, such as the fuselage of the Airbus A380 air plane. Impact properties are very important in aerospace structures, since impact damage is caused by various sources, such as maintenance damage from dropped tools, collision between service cars or cargo and the structure, bird strikes and hail. The principal objective of this article is to evaluate the influence of the Metal Volume Fraction (MVF) on the low velocity impact response of GLARE fiber-metal laminates. Previously published differential equations of motion are employed for this purpose. The low velocity impact behavior of various circular GLARE plates is predicted and characteristic values of impact variables, which represent the impact phenomenon, are evaluated versus the corresponding MVF of the examined GLARE material grades. The considered GLARE plates are subjected to low velocity impact under identical impact conditions. A strong effect of the MVF on the maximum impact load and a significant effect on the maximum plate deflection of GLARE plates has been found.

  2. Waveform relaxation methods for implicit differential equations

    NARCIS (Netherlands)

    P.J. van der Houwen; W.A. van der Veen

    1996-01-01

    textabstractWe apply a Runge-Kutta-based waveform relaxation method to initial-value problems for implicit differential equations. In the implementation of such methods, a sequence of nonlinear systems has to be solved iteratively in each step of the integration process. The size of these systems

  3. Uncertainty assessment of 3D instantaneous velocity model from stack velocities

    Science.gov (United States)

    Emanuele Maesano, Francesco; D'Ambrogi, Chiara

    2015-04-01

    stack velocities available inside the area, interpolated using the kriging geo-statistical method. The stack velocities are intersected with the position of the horizons in time domain and from this information we build a pseudo-well to calculate the initial velocity and the gradient of increase (or decrease) of velocity with depth inside the considered rock volume. The experiment is aimed to obtain estimation and a representation of the uncertainty related to the geo-statistical interpolation of velocity data in a 3D model and to have an independent control of the final results using the well markers available inside the test area as constraints. The project GeoMol is co-funded by the Alpine Space Program as part of the European Territorial Cooperation 2007-2013. The project integrates partners from Austria, France, Germany, Italy, Slovenia and Switzerland and runs from September 2012 to June 2015. Further information on www.geomol.eu

  4. The Influence of Measurement Methodology on the Accuracy of Electrical Waveform Distortion Analysis

    Science.gov (United States)

    Bartman, Jacek; Kwiatkowski, Bogdan

    2018-04-01

    The present paper covers a review of documents that specify measurement methods of voltage waveform distortion. It also presents measurement stages of waveform components that are uncommon in the classic fundamentals of electrotechnics and signal theory, including the creation process of groups and subgroups of harmonics and interharmonics. Moreover, the paper discusses selected distortion factors of periodic waveforms and presents analyses that compare the values of these distortion indices. The measurements were carried out in the cycle per cycle mode and the measurement methodology that was used complies with the IEC 61000-4-7 norm. The studies showed significant discrepancies between the values of analyzed parameters.

  5. Screening for aortoiliac lesions by visual interpretation of the common femoral Doppler waveform

    DEFF Research Database (Denmark)

    Eiberg, J P; Jensen, F; Grønvall Rasmussen, J B

    2001-01-01

    to study the accuracy of simple visual interpretation of the common femoral artery Doppler waveform for screening the aorto-iliac segment for significant occlusive disease.......to study the accuracy of simple visual interpretation of the common femoral artery Doppler waveform for screening the aorto-iliac segment for significant occlusive disease....

  6. Waveform inversion with exponential damping using a deconvolution-based objective function

    KAUST Repository

    Choi, Yun Seok

    2016-09-06

    The lack of low frequency components in seismic data usually leads full waveform inversion into the local minima of its objective function. An exponential damping of the data, on the other hand, generates artificial low frequencies, which can be used to admit long wavelength updates for waveform inversion. Another feature of exponential damping is that the energy of each trace also exponentially decreases with source-receiver offset, where the leastsquare misfit function does not work well. Thus, we propose a deconvolution-based objective function for waveform inversion with an exponential damping. Since the deconvolution filter includes a division process, it can properly address the unbalanced energy levels of the individual traces of the damped wavefield. Numerical examples demonstrate that our proposed FWI based on the deconvolution filter can generate a convergent long wavelength structure from the artificial low frequency components coming from an exponential damping.

  7. Chalk porosity and sonic velocity versus burial depth

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke; Gommesen, Lars; Krogsbøll, Anette Susanne

    2008-01-01

    Seventy chalk samples from four formations in the overpressured Danish central North Sea have been analyzed to investigate how correlations of porosity and sonic velocity with burial depth are affected by varying mineralogy, fluid pressure, and early introduction of petroleum. The results show th...... for fluid pressure because the cementing ions originate from stylolites, which are mechanically similar to fractures. We find that cementation occurs over a relatively short depth interval.......Seventy chalk samples from four formations in the overpressured Danish central North Sea have been analyzed to investigate how correlations of porosity and sonic velocity with burial depth are affected by varying mineralogy, fluid pressure, and early introduction of petroleum. The results show...... that porosity and sonic velocity follow the most consistent depth trends when fluid pressure and pore-volume compressibility are considered. Quartz content up to 10% has no marked effect, but more than 5% clay causes lower porosity and velocity. The mineralogical effect differs between P-wave and shear velocity...

  8. A novel PMT test system based on waveform sampling

    Science.gov (United States)

    Yin, S.; Ma, L.; Ning, Z.; Qian, S.; Wang, Y.; Jiang, X.; Wang, Z.; Yu, B.; Gao, F.; Zhu, Y.; Wang, Z.

    2018-01-01

    Comparing with the traditional test system based on a QDC and TDC and scaler, a test system based on waveform sampling is constructed for signal sampling of the 8"R5912 and the 20"R12860 Hamamatsu PMT in different energy states from single to multiple photoelectrons. In order to achieve high throughput and to reduce the dead time in data processing, the data acquisition software based on LabVIEW is developed and runs with a parallel mechanism. The analysis algorithm is realized in LabVIEW and the spectra of charge, amplitude, signal width and rising time are analyzed offline. The results from Charge-to-Digital Converter, Time-to-Digital Converter and waveform sampling are discussed in detailed comparison.

  9. Seismic waveform modeling over cloud

    Science.gov (United States)

    Luo, Cong; Friederich, Wolfgang

    2016-04-01

    With the fast growing computational technologies, numerical simulation of seismic wave propagation achieved huge successes. Obtaining the synthetic waveforms through numerical simulation receives an increasing amount of attention from seismologists. However, computational seismology is a data-intensive research field, and the numerical packages usually come with a steep learning curve. Users are expected to master considerable amount of computer knowledge and data processing skills. Training users to use the numerical packages, correctly access and utilize the computational resources is a troubled task. In addition to that, accessing to HPC is also a common difficulty for many users. To solve these problems, a cloud based solution dedicated on shallow seismic waveform modeling has been developed with the state-of-the-art web technologies. It is a web platform integrating both software and hardware with multilayer architecture: a well designed SQL database serves as the data layer, HPC and dedicated pipeline for it is the business layer. Through this platform, users will no longer need to compile and manipulate various packages on the local machine within local network to perform a simulation. By providing users professional access to the computational code through its interfaces and delivering our computational resources to the users over cloud, users can customize the simulation at expert-level, submit and run the job through it.

  10. Lamb Wave Assessment of Fiber Volume Fraction in Composites

    Science.gov (United States)

    Seale, Michael D.; Smith, Barry T.; Prosser, W. H.; Zalameda, Joseph N.

    1998-01-01

    Among the various techniques available, ultrasonic Lamb waves offer a convenient method of examining composite materials. Since the Lamb wave velocity depends on the elastic properties of a material, an effective tool exists to evaluate composites by measuring the velocity of these waves. Lamb waves can propagate over long distances and are sensitive to the desired in-plane elastic properties of the material. This paper discusses a study in which Lamb waves were used to examine fiber volume fraction variations of approximately 0.40-0.70 in composites. The Lamb wave measurements were compared to fiber volume fractions obtained from acid digestion tests. Additionally, a model to predict the fiber volume fraction from Lamb wave velocity values was evaluated.

  11. Multi-channel Waveform Sampling ASIC for radiation detection and measurement

    International Nuclear Information System (INIS)

    Shimazoe, K.; Takahashi, H.; Yeom, J.Y.; Furumiya, T.; Ohi, J.

    2013-01-01

    We have designed and fabricated a 16-channel Waveform Sampling ASIC for radiation detection and measurement. Waveform sampling is very important for the pulse shape analysis and discrimination, which is often used in radiation detection to discriminate different radiations such as alpha, beta and gamma rays. One channel of the fabricated ASIC consists of a charge-sensitive preamplifier, a VGA (Variable Gain Amplifier), an ADC (Analog to Digital Converter) and digital circuits. The preamplifier converts the current signal to the voltage signal, and the VGA amplifies the signal to appropriate level for the ADC. The ADC was designed to digitize the waveform with a frequency of 100 MHz and a resolution of 6bits. Digital circuits consist of a free-running ADC and a multiplexer which were designed to convert a digitized 100 MHz/6bit signal to a 200 MHz/3bit one, which is effective for the reduction of the number and for the achievement of the high integration in one chip. This chip was designed and fabricated with 0.35 μm CMOS technology by ROHM and the size of the ASIC is 4.9 mm by 4.9 mm. The design concept and some experimental results are shown in this paper. -- Highlights: ► Waveform sampling (WS) ASIC is newly developed for pulse shape discrimination. ► WS ASIC can be used for radiation measurement and discrimination. ► WS ASIC is fabricated by submicron CMOS technology for 5 mm × 5 mm area. ► WS ASIC achieves high integration and can be used in very limited space

  12. Lithospheric architecture of the South-Western Alps revealed by multiparameter teleseismic full-waveform inversion

    Science.gov (United States)

    Beller, S.; Monteiller, V.; Operto, S.; Nolet, G.; Paul, A.; Zhao, L.

    2018-02-01

    The Western Alps, although being intensively investigated, remains elusive when it comes to determining its lithospheric structure. New inferences on the latter are important for the understanding of processes and mechanisms of orogeny needed to unravel the dynamic evolution of the Alps. This situation led to the deployment of the CIFALPS temporary experiment, conducted to address the lack of seismological data amenable to high-resolution seismic imaging of the crust and the upper mantle. We perform a 3-D isotropic full-waveform inversion (FWI) of nine teleseismic events recorded by the CIFALPS experiment to infer 3-D models of both density and P- and S-wave velocities of the Alpine lithosphere. Here, by FWI is meant the inversion of the full seismograms including phase and amplitude effects within a time window following the first arrival up to a frequency of 0.2 Hz. We show that the application of the FWI at the lithospheric scale is able to generate images of the lithosphere with unprecedented resolution and can furnish a reliable density model of the upper lithosphere. In the shallowest part of the crust, we retrieve the shape of the fast/dense Ivrea body anomaly and detect the low velocities of the Po and SE France sedimentary basins. The geometry of the Ivrea body as revealed by our density model is consistent with the Bouguer anomaly. A sharp Moho transition is followed from the external part (30 km depth) to the internal part of the Alps (70-80 km depth), giving clear evidence of a continental subduction event during the formation of the Alpine Belt. A low-velocity zone in the lower lithosphere of the S-wave velocity model supports the hypothesis of a slab detachment in the western part of the Alps that is followed by asthenospheric upwelling. The application of FWI to teleseismic data helps to fill the gap of resolution between traditional imaging techniques, and enables integrated interpretations of both upper and lower lithospheric structures.

  13. Regularized Laplace-Fourier-Domain Full Waveform Inversion Using a Weighted l 2 Objective Function

    Science.gov (United States)

    Jun, Hyunggu; Kwon, Jungmin; Shin, Changsoo; Zhou, Hongbo; Cogan, Mike

    2017-03-01

    Full waveform inversion (FWI) can be applied to obtain an accurate velocity model that contains important geophysical and geological information. FWI suffers from the local minimum problem when the starting model is not sufficiently close to the true model. Therefore, an accurate macroscale velocity model is essential for successful FWI, and Laplace-Fourier-domain FWI is appropriate for obtaining such a velocity model. However, conventional Laplace-Fourier-domain FWI remains an ill-posed and ill-conditioned problem, meaning that small errors in the data can result in large differences in the inverted model. This approach also suffers from certain limitations related to the logarithmic objective function. To overcome the limitations of conventional Laplace-Fourier-domain FWI, we introduce a weighted l 2 objective function, instead of the logarithmic objective function, as the data-domain objective function, and we also introduce two different model-domain regularizations: first-order Tikhonov regularization and prior model regularization. The weighting matrix for the data-domain objective function is constructed to suitably enhance the far-offset information. Tikhonov regularization smoothes the gradient, and prior model regularization allows reliable prior information to be taken into account. Two hyperparameters are obtained through trial and error and used to control the trade-off and achieve an appropriate balance between the data-domain and model-domain gradients. The application of the proposed regularizations facilitates finding a unique solution via FWI, and the weighted l 2 objective function ensures a more reasonable residual, thereby improving the stability of the gradient calculation. Numerical tests performed using the Marmousi synthetic dataset show that the use of the weighted l 2 objective function and the model-domain regularizations significantly improves the Laplace-Fourier-domain FWI. Because the Laplace-Fourier-domain FWI is improved, the

  14. Pitfalls in velocity analysis for strongly contrasting, layered media - Example from the Chalk Group, North Sea

    Science.gov (United States)

    Montazeri, Mahboubeh; Uldall, Anette; Moreau, Julien; Nielsen, Lars

    2018-02-01

    Knowledge about the velocity structure of the subsurface is critical in key seismic processing sequences, for instance, migration, depth conversion, and construction of initial P- and S-wave velocity models for full-waveform inversion. Therefore, the quality of subsurface imaging is highly dependent upon the quality of the seismic velocity analysis. Based on a case study from the Danish part of the North Sea, we show how interference caused by multiples, converted waves, and thin-layer effects may lead to incorrect velocity estimation, if such effects are not accounted for. Seismic wave propagation inside finely layered reservoir rocks dominated by chalk is described by two-dimensional finite-difference wave field simulation. The rock physical properties used for the modeling are based on an exploration well from the Halfdan field in the Danish sector of the North Sea. The modeling results are compared to seismic data from the study area. The modeling shows that interference of primaries with multiples, converted waves and thin-bed effects can give rise to strong anomalies in standard velocity analysis plots. Consequently, root-mean-square (RMS) velocity profiles may be erroneously picked. In our study area, such mis-picking can introduce errors in, for example, the thickness estimation of the layers near the base of the studied sedimentary strata by 11% to 26%. Tests show that front muting and bandpass filtering cannot significantly improve the quality of velocity analysis in our study. However, we notice that spiking deconvolution applied before velocity analysis may to some extent reduce the impact of interference and, therefore, reduce the risk of erroneous picking of the velocity function.

  15. Transformations Based on Continuous Piecewise-Affine Velocity Fields

    DEFF Research Database (Denmark)

    Freifeld, Oren; Hauberg, Søren; Batmanghelich, Kayhan

    2017-01-01

    We propose novel finite-dimensional spaces of well-behaved transformations. The latter are obtained by (fast and highly-accurate) integration of continuous piecewise-affine velocity fields. The proposed method is simple yet highly expressive, effortlessly handles optional constraints (e.g., volum...

  16. Wavelet-Based Signal Processing of Electromagnetic Pulse Generated Waveforms

    National Research Council Canada - National Science Library

    Ardolino, Richard S

    2007-01-01

    This thesis investigated and compared alternative signal processing techniques that used wavelet-based methods instead of traditional frequency domain methods for processing measured electromagnetic pulse (EMP) waveforms...

  17. Respiratory physiology and the impact of different modes of ventilation on the photoplethysmographic waveform.

    Science.gov (United States)

    Alian, Aymen A; Shelley, Kirk H

    2012-01-01

    The photoplethysmographic waveform sits at the core of the most used, and arguably the most important, clinical monitor, the pulse oximeter. Interestingly, the pulse oximeter was discovered while examining an artifact during the development of a noninvasive cardiac output monitor. This article will explore the response of the pulse oximeter waveform to various modes of ventilation. Modern digital signal processing is allowing for a re-examination of this ubiquitous signal. The effect of ventilation on the photoplethysmographic waveform has long been thought of as a source of artifact. The primary goal of this article is to improve the understanding of the underlying physiology responsible for the observed phenomena, thereby encouraging the utilization of this understanding to develop new methods of patient monitoring. The reader will be presented with a review of respiratory physiology followed by numerous examples of the impact of ventilation on the photoplethysmographic waveform.

  18. Arctic lead detection using a waveform mixture algorithm from CryoSat-2 data

    Science.gov (United States)

    Lee, Sanggyun; Kim, Hyun-cheol; Im, Jungho

    2018-05-01

    We propose a waveform mixture algorithm to detect leads from CryoSat-2 data, which is novel and different from the existing threshold-based lead detection methods. The waveform mixture algorithm adopts the concept of spectral mixture analysis, which is widely used in the field of hyperspectral image analysis. This lead detection method was evaluated with high-resolution (250 m) MODIS images and showed comparable and promising performance in detecting leads when compared to the previous methods. The robustness of the proposed approach also lies in the fact that it does not require the rescaling of parameters (i.e., stack standard deviation, stack skewness, stack kurtosis, pulse peakiness, and backscatter σ0), as it directly uses L1B waveform data, unlike the existing threshold-based methods. Monthly lead fraction maps were produced by the waveform mixture algorithm, which shows interannual variability of recent sea ice cover during 2011-2016, excluding the summer season (i.e., June to September). We also compared the lead fraction maps to other lead fraction maps generated from previously published data sets, resulting in similar spatiotemporal patterns.

  19. Scattering-angle based filtering of the waveform inversion gradients

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-01-01

    Full waveform inversion (FWI) requires a hierarchical approach to maneuver the complex non-linearity associated with the problem of velocity update. In anisotropic media, the non-linearity becomes far more complex with the potential trade-off between the multiparameter description of the model. A gradient filter helps us in accessing the parts of the gradient that are suitable to combat the potential non-linearity and parameter trade-off. The filter is based on representing the gradient in the time-lag normalized domain, in which the low scattering angle of the gradient update is initially muted out in the FWI implementation, in what we may refer to as a scattering angle continuation process. The result is a low wavelength update dominated by the transmission part of the update gradient. In this case, even 10 Hz data can produce vertically near-zero wavenumber updates suitable for a background correction of the model. Relaxing the filtering at a later stage in the FWI implementation allows for smaller scattering angles to contribute higher-resolution information to the model. The benefits of the extended domain based filtering of the gradient is not only it's ability in providing low wavenumber gradients guided by the scattering angle, but also in its potential to provide gradients free of unphysical energy that may correspond to unrealistic scattering angles.

  20. Scattering-angle based filtering of the waveform inversion gradients

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-11-22

    Full waveform inversion (FWI) requires a hierarchical approach to maneuver the complex non-linearity associated with the problem of velocity update. In anisotropic media, the non-linearity becomes far more complex with the potential trade-off between the multiparameter description of the model. A gradient filter helps us in accessing the parts of the gradient that are suitable to combat the potential non-linearity and parameter trade-off. The filter is based on representing the gradient in the time-lag normalized domain, in which the low scattering angle of the gradient update is initially muted out in the FWI implementation, in what we may refer to as a scattering angle continuation process. The result is a low wavelength update dominated by the transmission part of the update gradient. In this case, even 10 Hz data can produce vertically near-zero wavenumber updates suitable for a background correction of the model. Relaxing the filtering at a later stage in the FWI implementation allows for smaller scattering angles to contribute higher-resolution information to the model. The benefits of the extended domain based filtering of the gradient is not only it\\'s ability in providing low wavenumber gradients guided by the scattering angle, but also in its potential to provide gradients free of unphysical energy that may correspond to unrealistic scattering angles.