Sulter, AM; Wit, HP
1996-01-01
Glottal volume velocity waveform characteristics of 224 subjects, categorized in four groups according to gender and vocal training, were determined, and their relations to sound-pressure level, fundamental frequency, intra-oral pressure, and age were analyzed. Subjects phonated at three intensity
I.A.L. Groenenberg (Irene); W.C.J. Hop (Wim); J.W. Wladimiroff (Juriy)
1991-01-01
markdownabstract__Abstract__ Reproducibility of flow velocity waveform recording and analysis was studied at fetal cardiac level (ductus arteriosus, pulmonary artery and ascending aorta) in 42 normal pregnancies. The flow velocity parameters studied were the peak systolic velocity (PSV),
Xu, Da; Ryan, Kathy L; Rickards, Caroline A; Zhang, Guanqun; Convertino, Victor A; Mukkamala, Ramakrishna
2010-01-01
Pulse wave velocity (PWV) is a marker of arterial stiffness and may permit continuous, non-invasive, and cuff-less monitoring of blood pressure. Here, robust PWV estimation was sought by application of system identification to proximal and distal arterial waveforms. In this approach, the system that optimally couples the proximal waveform to the distal waveform is identified, and the time delay of this system is then used to calculate PWV. To demonstrate proof-of-concept, a standard identification technique was applied to non-invasive impedance cardiography and peripheral arterial blood pressure waveforms from six humans subjected to progressive reductions in central blood volume induced by lower body negative pressure. This technique estimated diastolic pressure with an overall root-mean-squared-error of 5.2 mmHg. For comparison, the conventional detection method for estimating PWV yielded a corresponding error of 8.3 mmHg.
Ultralow-velocity zone geometries resolved by multidimensional waveform modelling
Vanacore, E. A.; Rost, S.; Thorne, M. S.
2016-07-01
Ultralow-velocity zones (ULVZs) are thin patches of material with strongly reduced seismic wave speeds situated on top of the core-mantle boundary (CMB). A common phase used to detect ULVZs is SPdKS (SKPdS), an SKS wave with a short diffracted P leg along the CMB. Most previous efforts have examined ULVZ properties using 1-D waveform modelling approaches. We present waveform modelling results using the 2.5-D finite-difference algorithm PSVaxi allowing us better insight into ULVZ structure and location. We characterize ULVZ waveforms based on ULVZ elastic properties, shape and position along the SPdKS ray path. In particular, we vary the ULVZ location (e.g. source or receiver side), ULVZ topographical profiles (e.g. boxcar, trapezoidal or Gaussian) and ULVZ lateral scale along great circle path (2.5°, 5°, 10°). We observe several waveform effects absent in 1-D ULVZ models and show evidence for waveform effects allowing the differentiation between source and receiver side ULVZs. Early inception of the SPdKS/SKPdS phase is difficult to detect for receiver-side ULVZs with maximum shifts in SKPdS initiation of ˜3° in epicentral distance, whereas source-side ULVZs produce maximum shifts of SPdKS initiation of ˜5°, allowing clear separation of source- versus receiver-side structure. We present a case study using data from up to 300 broad-band stations in Turkey recorded between 2005 and 2010. We observe a previously undetected ULVZ in the southern Atlantic Ocean region centred near 45°S, 12.5°W, with a lateral scale of ˜3°, VP reduction of 10 per cent, VS reduction of 30 per cent and density increase of 10 per cent relative to PREM.
Velocity Structure Determination Through Seismic Waveform Modeling and Time Deviations
Savage, B.; Zhu, L.; Tan, Y.; Helmberger, D. V.
2001-12-01
Through the use of seismic waveforms recorded by TriNet, a dataset of earthquake focal mechanisms and deviations (time shifts) relative to a standard model facilitates the investigation of the crust and uppermost mantle of southern California. The CAP method of focal mechanism determination, in use by TriNet on a routine basis, provides time shifts for surface waves and Pnl arrivals independently relative to the reference model. These shifts serve as initial data for calibration of local and regional seismic paths. Time shifts from the CAP method are derived by splitting the Pnl section of the waveform, the first arriving Pn to just before the arrival of the S wave, from the much slower surface waves then cross-correlating the data with synthetic waveforms computed from a standard model. Surface waves interact with the entire crust, but the upper crust causes the greatest effect. Whereas, Pnl arrivals sample the deeper crust, upper mantle, and source region. This natural division separates the upper from lower crust for regional calibration and structural modeling and allows 3-D velocity maps to be created using the resulting time shifts. Further examination of Pnl and other arrivals which interact with the Moho illuminate the complex nature of this boundary. Initial attempts at using the first 10 seconds of the Pnl section to determine upper most mantle structure have proven insightful. Two large earthquakes north of southern California in Nevada and Mammoth Lakes, CA allow the creation of record sections from 200 to 600 km. As the paths swing from east to west across southern California, simple 1-D models turn into complex structure, dramatically changing the waveform character. Using finite difference models to explain the structure, we determine that a low velocity zone is present at the base of the crust and extends to 100 km in depth. Velocity variations of 5 percent of the mantle in combination with steeply sloping edges produces complex waveform variations
DEFF Research Database (Denmark)
Perko, M J; Perko, Grazyna; Just, S
1996-01-01
Influence of stroke volume reduction and hypotension on the superior mesenteric artery (SMA) Doppler waveform was evaluated during head-up tilt-induced central hypovolemia in 11 healthy volunteers. During normotensive reduction in stroke volume, peak systolic velocity (pV), mean velocity, pulsati......Influence of stroke volume reduction and hypotension on the superior mesenteric artery (SMA) Doppler waveform was evaluated during head-up tilt-induced central hypovolemia in 11 healthy volunteers. During normotensive reduction in stroke volume, peak systolic velocity (pV), mean velocity...... of the study indicate that alterations in stroke volume induce consequential changes in the SMA Doppler waveform. These changes originate from both direct influence of stroke volume and/or pressure on blood flow velocity, and alterations in SMA peripheral resistance that follow variations in stroke volume....... Presented interdependencies should be taken into consideration while studying mesenteric physiology with the use of Doppler technique and while interpreting the duplex results in patients suffering from diseases that may influence flow velocity and mimic or obscure Doppler effects of the SMA stenosis....
Velocity Building by Reflection Waveform Inversion without Cycle-skipping
Guo, Q.
2017-05-26
Reflection waveform inversion (RWI) provides estimation of low wavenumber model components using reflections generated from a migration/demigration process. The resulting model tends to be a good initial model for FWI. In fact, the optimization images to combine the migration velocity analysis (MVA) objectives (given here by RWI) and the FWI ones. However, RWI may still encounter cycle-skipping at far offsets if the velocity model is highly inaccurate. Similar to MVA, RWI is devoted to focusing reflection data to its true image positions, yet because of the cycle skipping potential we tend to initially use only near offsets. To make the inversion procedure more robust, we introduce the extended image into our RWI. Extending the model perturbations (or image) allows us to better fit the data at larger offsets even with an inaccurate velocity. Thus, we implement a nested approach to optimize the velocity and extended image simultaneously using the objective function of RWI. We slowly reduce the extension, as the image becomes focused, to allow wavepath updates from far offsets to near as a natural progression from long wavelength updates to shorter ones. Applications on synthetic data demonstrate the effectiveness of our method without much additional cost to RWI.
Butlin, Mark; Qasem, Ahmad; Avolio, Alberto P
2012-01-01
There is increasing interest in non-invasive estimation of central aortic waveform parameters in the clinical setting. However, controversy has arisen around radial tonometric based systems due to the requirement of a trained operator or lack of ease of use, especially in the clinical environment. A recently developed device utilizes a novel algorithm for brachial cuff based assessment of aortic pressure values and waveform (SphygmoCor XCEL, AtCor Medical). The cuff was inflated to 10 mmHg below an individual's diastolic blood pressure and the brachial volume displacement waveform recorded. The aortic waveform was derived using proprietary digital signal processing and transfer function applied to the recorded waveform. The aortic waveform was also estimated using a validated technique (radial tonometry based assessment, SphygmoCor, AtCor Medical). Measurements were taken in triplicate with each device in 30 people (17 female) aged 22 to 79 years of age. An average for each device for each individual was calculated, and the results from the two devices were compared using regression and Bland-Altman analysis. A high correlation was found between the devices for measures of aortic systolic (R(2)=0.99) and diastolic (R(2)=0.98) pressure. Augmentation index and subendocardial viability ratio both had a between device R(2) value of 0.82. The difference between devices for measured aortic systolic pressure was 0.5±1.8 mmHg, and for augmentation index, 1.8±7.0%. The brachial cuff based approach, with an individualized sub-diastolic cuff pressure, provides an operator independent method of assessing not only systolic pressure, but also aortic waveform features, comparable to existing validated tonometric-based methods.
Waveform inversion of lateral velocity variation from wavefield source location perturbation
Choi, Yun Seok
2013-09-22
It is challenge in waveform inversion to precisely define the deep part of the velocity model compared to the shallow part. The lateral velocity variation, or what referred to as the derivative of velocity with respect to the horizontal distance, with well log data can be used to update the deep part of the velocity model more precisely. We develop a waveform inversion algorithm to obtain the lateral velocity variation by inverting the wavefield variation associated with the lateral shot location perturbation. The gradient of the new waveform inversion algorithm is obtained by the adjoint-state method. Our inversion algorithm focuses on resolving the lateral changes of the velocity model with respect to a fixed reference vertical velocity profile given by a well log. We apply the method on a simple-dome model to highlight the methods potential.
Energy Technology Data Exchange (ETDEWEB)
Altinkaya, Naime, E-mail: naimeto@yahoo.com [Department of Radiology, Baskent University Medical School, Adana (Turkey); Baskent University, Faculty of Medicine, Department of Radiology, Adana (Turkey); Koc, Zafer, E-mail: koczafer@gmail.com [Department of Radiology, Baskent University Medical School, Adana (Turkey); Baskent University, Faculty of Medicine, Department of Radiology, Adana (Turkey); Ulusan, Serife, E-mail: sulusan@hotmail.com [Department of Radiology, Baskent University Medical School, Adana (Turkey); Baskent University, Faculty of Medicine, Department of Radiology, Adana (Turkey); Demir, Senay, E-mail: drsenaydemir@hotmail.com [Department of Radiology, Baskent University Medical School, Adana (Turkey); Baskent University, Faculty of Medicine, Department of Radiology, Adana (Turkey); Gurel, Kamil, E-mail: kamilgurel@hotmail.com [Department of Radiology, Baskent University Medical School, Adana (Turkey); Baskent University, Faculty of Medicine, Department of Radiology, Adana (Turkey)
2011-07-15
Objective: This study was performed to determine the variations in Doppler waveforms and flow velocity during respiratory manoeuvres in healthy individuals with no liver disease. Materials and methods: In total, 100 individuals (75 women and 25 men) without known cardiac or liver disease were examined prospectively with duplex Doppler ultrasonography (US). We recorded the Doppler waveforms and peak systolic velocities (V{sub max}) of the middle hepatic vein during normal respiration, during breath-holding after quiet expiration and also during deep inspiration. Doppler waveforms are categorised as triphasic, biphasic or monophasic. Results: During normal respiration, hepatic venous waveforms were triphasic in 93% of subjects, monophasic in 6% and biphasic in 1%. During breath-holding after quiet expiration, the percentages were 91%, 6% and 3%, respectively. During deep inspiration, they were 80%, 18% and 2%, respectively. Although significant differences were noted between rates during deep inspiration and normal respiration, they were quite similar during normal respiration and breath-holding after quiet expiration (P < 0.05). The values of V{sub max} were significantly higher during normal respiration compared to quiet expiration and during quiet expiration compared to deep inspiration (P < 0.05). Conclusion: The velocities and waveforms of hepatic veins varied during respiratory manoeuvres. The status of respiration must be taken into consideration whilst examining the hepatic vein waveforms and velocities with duplex Doppler US.
K. van der Mooren (K.); J.W. Wladimiroff (Juriy); Th. Stijnen (Theo)
1992-01-01
textabstractMaximum flow velocity waveforms at atrioventricular and outflow tract level were studied cross‐sectionally in 19 human fetuses with conducted and/or blocked supraventricular extrasystoles ranging from 25 to 38 weeks of gestation. At outflow tract level, peak systolic velocity and acceler
Chen, Shun-Ping; Hu, Yuan-Ping
2015-05-01
This study investigated the value of analyzing spectral Doppler waveform patterns and measuring the peak reversed velocity (PRV) of the vertebral artery (VA) in predicting proximal severe subclavian artery (SA) stenosis and occlusion. Fifty-one patients with proximal SA stenosis were studied retrospectively. Based on the depth of the mid-systolic notch, the Doppler waveforms of the ipsilateral VA were divided into five subtypes (type I, n = 8; type II, n = 8; type III, n = 6; type IV, n = 13; and type V, n = 16). PRV was also measured. PRV receiver operating characteristic curves were constructed to obtain the best cutoff value for predicting severe SA stenosis or complete SA occlusion. The results indicated that both VA Doppler waveform and PRV were associated with the degree of SA stenosis (p waveform in the VA had similar accuracy in predicting SA occlusion (84.3%, 43/51). PRV was more accurate than VA waveforms in predicting severe SA stenosis (98%, 50/51 vs. 94.1%, 48/51). However, no significant differences between the two methods in predicting severe SA stenosis were observed (p = 0.84). Thus, with severe obstruction of the SA, typical Doppler waveform patterns of the VA could be observed. PRV is a helpful criterion in predicting severe stenosis and occlusion of the SA.
Very long-period GPS waveforms. What can GPS bring to Earth seismic velocity models?
Kelevitz, K.; Houlie, N.; Nissen-Meyer, T.; Boschi, L.; Giardini, D.; Rothacher, M.
2014-12-01
It is now admitted that high rate GPS observations can provide reliable surface displacement waveforms. For long-period (T > 5s) transients, it was shown that GPS and seismometer (STS-1) displacements are in agreement at least for vertical component [Houlié et al., 2011]. We propose here to supplement existing long-period seismic networks with high rate (>= 1Hz) GPS data in order to improve the resolution of global seismic velocity models. We aim at extending the use of GPS measurements beyond the range of STS-1 in the low frequency end (T>1000s). We present the results of the processing of 1Hz GPS records of the Hokkaido, Sumatra and Tohoku earthquakes (25th of September, 2003, Mw = 8.3; 26th of December, 2004, Mw = 8.9; 11th of March, 2011, Mw = 9.1, respectively). 3D waveforms phase time-series have been used to recover the ground motion histories at the GPS sites. Through the better resolution of inversion of the GPS phase observations, we determine displacement waveforms of periods ranging from 30 seconds to 1300 seconds for a selection of sites. We compare inverted GPS waveforms with STS-1 waveforms, superconducting gravity waveforms and synthetic waveforms computed using 3D global wave propagation with SPECFEM. We find that the GPS waveforms are in agreement with the SPECFEM synthetic data and are able to fill the period-gap between the broadband seismometer STS-1 data and the normal mode period range detected by the superconducting gravimeters. References: Houlié, N., G. Occhipinti, T. Blanchard, N. Shapiro, P. Lognonne, and M. Murakami (2011), New approach to detect seismic surface waves in 1Hz-sampled GPS time series, Scientific reports, 1, 44.
Full waveform inversion of repeating seismic events to estimate time-lapse velocity changes
Kamei, R.; Lumley, D.
2017-02-01
Seismic monitoring provides valuable information regarding the time-varying changes in subsurface physical properties caused by natural or man-made processes. However, the resulting changes in the earth's subsurface properties are often small both in terms of magnitude and spatial extent, leading to minimal time-lapse differences in seismic amplitude or traveltime. In order to better extract information from the time-lapse data, we show that exploiting the full seismic waveform information can be critical. In this study, we develop and test methods of full waveform inversion that estimate an optimal subsurface model of time-varying elastic properties in order to fit the observed time-lapse seismic data with predicted waveforms based on numerical solutions of the wave equation. Time-lapse full waveform inversion is non-linear and non-unique, and depends on the knowledge of the baseline velocity model before a change, and (non-)repeatability of earthquake source and sensor parameters, and of ambient and cultural noise. We propose to use repeating earthquake data sets acquired with permanent arrays of seismic sensors to enhance the repeatability of source and sensor parameters. We further develop and test time-lapse parallel, double-difference and bootstrapping inversion strategies to mitigate the dependence on the baseline velocity model. The parallel approach uses a time-invariant full waveform inversion method to estimate velocity models independently of the different source event times. The double-difference approach directly estimates velocity changes from time-lapse waveform differences, requiring excellent repeatability. The bootstrapping approach inverts for velocity models sequentially in time, implicitly constraining the time-lapse inversions, while relaxing an explicit requirement for high data repeatability. We assume that prior to the time-lapse inversion, we can estimate the true source locations and the origin time of the events, and also we can also
Full waveform inversion of repeating seismic events to estimate time-lapse velocity changes
Kamei, R.; Lumley, D.
2017-05-01
Seismic monitoring provides valuable information regarding the time-varying changes in subsurface physical properties caused by natural or man-made processes. However, the resulting changes in the earth's subsurface properties are often small both in terms of magnitude and spatial extent, leading to minimal time-lapse differences in seismic amplitude or traveltime. In order to better extract information from the time-lapse data, we show that exploiting the full seismic waveform information can be critical. In this study, we develop and test methods of full waveform inversion that estimate an optimal subsurface model of time-varying elastic properties in order to fit the observed time-lapse seismic data with predicted waveforms based on numerical solutions of the wave equation. Time-lapse full waveform inversion is nonlinear and non-unique, and depends on the knowledge of the baseline velocity model before a change, and (non-)repeatability of earthquake source and sensor parameters, and of ambient and cultural noise. We propose to use repeating earthquake data sets acquired with permanent arrays of seismic sensors to enhance the repeatability of source and sensor parameters. We further develop and test time-lapse parallel, double-difference and bootstrapping inversion strategies to mitigate the dependence on the baseline velocity model. The parallel approach uses a time-invariant full waveform inversion method to estimate velocity models independently of the different source event times. The double-difference approach directly estimates velocity changes from time-lapse waveform differences, requiring excellent repeatability. The bootstrapping approach inverts for velocity models sequentially in time, implicitly constraining the time-lapse inversions, while relaxing an explicit requirement for high data repeatability. We assume that prior to the time-lapse inversion, we can estimate the true source locations and the origin time of the events, and also we can also
Quasi-3D Waveform Inversion for Velocity Structures and Source Process Analyses Using its Results
Hikima, K.; Koketsu, K.
2007-12-01
In this study, we propose an efficient waveform inversion method for 2-D velocity structures and 3-D velocity structures are constructed by interpolating the results of the 2-D inversions. We apply these methods to a source process study of the 2003 Miyagi-ken Hokubu earthquake. We will first construct a velocity model, then determine the source processes of this earthquake sequence using the Green's function calculated with the resultant 3-D velocity model. We formulate the inversion procedure in a 2-D cross section. In a 2-D problem, an earthquake is forced to be a line source. Therefore, we introduce approximate transformation from a line source to a point source (Vidale and Helmberger, 1987). We use the 2-D velocity-stress staggered-grid finite difference scheme, so that the source representation is somewhat different from the original 'source box method' and we apply additional corrections to calculated waveforms. The boundary shapes of layers are expressed by connected nodes and we invert observed waveforms for layer thicknesses at the nodes. We perform 2-D velocity inversions along cross sections which involve a medium-size earthquake and observation points. We assemble the results for many stations and interpolated them to construct the 3-D velocity model. Finally, we calculate waveforms from the target earthquake by the 3-D finite difference method with this velocity model to confirm the validity of the model. We next perform waveform inversions for source processes of the 2003 Miyagi-ken Hokubu earthquake sequence using the resultant 3-D velocity model. We divide the fault plane into northern and southern subplanes, so that the southern subplane includes the hypocenter of the mainshock and the largest foreshock. The strike directions of the northern and southern subplanes were N-S and NE-SW, respectively. The Green's functions for these source inversions are calculated using the reciprocal theorem. We determine the slip models using the 3- D structure and
Assessing waveform predictions of recent three-dimensional velocity models of the Tibetan Plateau
Bao, Xueyang; Shen, Yang
2016-04-01
Accurate velocity models are essential for both the determination of earthquake locations and source moments and the interpretation of Earth structures. With the increasing number of three-dimensional velocity models, it has become necessary to assess the models for accuracy in predicting seismic observations. Six models of the crustal and uppermost mantle structures in Tibet and surrounding regions are investigated in this study. Regional Rayleigh and Pn (or Pnl) waveforms from two ground truth events, including one nuclear explosion and one natural earthquake located in the study area, are simulated by using a three-dimensional finite-difference method. Synthetics are compared to observed waveforms in multiple period bands of 20-75 s for Rayleigh waves and 1-20 s for Pn/Pnl waves. The models are evaluated based on the phase delays and cross-correlation coefficients between synthetic and observed waveforms. A model generated from full-wave ambient noise tomography best predicts Rayleigh waves throughout the data set, as well as Pn/Pnl waves traveling from the Tarim Basin to the stations located in central Tibet. In general, the models constructed from P wave tomography are not well suited to predict Rayleigh waves, and vice versa. Possible causes of the differences between observed and synthetic waveforms, and frequency-dependent variations of the "best matching" models with the smallest prediction errors are discussed. This study suggests that simultaneous prediction for body and surface waves requires an integrated velocity model constructed with multiple seismic waveforms and consideration of other important properties, such as anisotropy.
Vennin, Samuel; Mayer, Alexia; Li, Ye; Fok, Henry; Clapp, Brian; Alastruey, Jordi; Chowienczyk, Phil
2015-09-01
Estimation of aortic and left ventricular (LV) pressure usually requires measurements that are difficult to acquire during the imaging required to obtain concurrent LV dimensions essential for determination of LV mechanical properties. We describe a novel method for deriving aortic pressure from the aortic flow velocity. The target pressure waveform is divided into an early systolic upstroke, determined by the water hammer equation, and a diastolic decay equal to that in the peripheral arterial tree, interposed by a late systolic portion described by a second-order polynomial constrained by conditions of continuity and conservation of mean arterial pressure. Pulse wave velocity (PWV, which can be obtained through imaging), mean arterial pressure, diastolic pressure, and diastolic decay are required inputs for the algorithm. The algorithm was tested using 1) pressure data derived theoretically from prespecified flow waveforms and properties of the arterial tree using a single-tube 1-D model of the arterial tree, and 2) experimental data acquired from a pressure/Doppler flow velocity transducer placed in the ascending aorta in 18 patients (mean ± SD: age 63 ± 11 yr, aortic BP 136 ± 23/73 ± 13 mmHg) at the time of cardiac catheterization. For experimental data, PWV was calculated from measured pressures/flows, and mean and diastolic pressures and diastolic decay were taken from measured pressure (i.e., were assumed to be known). Pressure reconstructed from measured flow agreed well with theoretical pressure: mean ± SD root mean square (RMS) error 0.7 ± 0.1 mmHg. Similarly, for experimental data, pressure reconstructed from measured flow agreed well with measured pressure (mean RMS error 2.4 ± 1.0 mmHg). First systolic shoulder and systolic peak pressures were also accurately rendered (mean ± SD difference 1.4 ± 2.0 mmHg for peak systolic pressure). This is the first noninvasive derivation of aortic pressure based on fluid dynamics (flow and wave speed) in the
Simultaneous inversion of the background velocity and the perturbation in full-waveform inversion
Wu, Zedong
2015-09-02
The gradient of standard full-waveform inversion (FWI) attempts to map the residuals in the data to perturbations in the model. Such perturbations may include smooth background updates from the transmission components and high wavenumber updates from the reflection components. However, if we fix the reflection components using imaging, the gradient of what is referred to as reflected-waveform inversion (RWI) admits mainly transmission background-type updates. The drawback of existing RWI methods is that they lack an optimal image capable of producing reflections within the convex region of the optimization. Because the influence of velocity on the data was given mainly by its background (propagator) and perturbed (reflectivity) components, we have optimized both components simultaneously using a modified objective function. Specifically, we used an objective function that combined the data generated from a source using the background velocity, and that by the perturbed velocity through Born modeling, to fit the observed data. When the initial velocity was smooth, the data modeled from the source using the background velocity will mainly be reflection free, and most of the reflections were obtained from the image (perturbed velocity). As the background velocity becomes more accurate and can produce reflections, the role of the image will slowly diminish, and the update will be dominated by the standard FWI gradient to obtain high resolution. Because the objective function was quadratic with respect to the image, the inversion for the image was fast. To update the background velocity smoothly, we have combined different components of the gradient linearly through solving a small optimization problem. Application to the Marmousi model found that this method converged starting with a linearly increasing velocity, and with data free of frequencies below 4 Hz. Application to the 2014 Chevron Gulf of Mexico imaging challenge data set demonstrated the potential of the
The dependence of Pi2 waveforms on periodic velocity enhancements within bursty bulk flows
Directory of Open Access Journals (Sweden)
K. R. Murphy
2011-03-01
Full Text Available Pi2s are a category of Ultra Low Frequency (ULF waves associated with the onset of magnetic substorms. Recent work has suggested that the deceleration of bulk plasma flows in the central plasmasheet, known as bursty bulk flows (BBFs, are able to directly-drive Pi2 oscillations. Some of these studies have further shown evidence that there is a one-to-one correlation between Pi2 magnetic waveforms observed on the ground and periodic peaks in flow velocity within the BBF, known as flow bursts. Utilising a favourable conjunction between the Geotail spacecraft and the Canadian Array for Real-time Investigations of Magnetic Activity (CARISMA magnetometer array on 31 May 1998, we examine the causality of the link between BBF flow bursts and Pi2 waveforms. Using a series of analytical tests in both the time and frequency domains, we find that while the Pi2 and BBF waveforms are very similar, the ground response for this event occurs prior to the observed flow enhancements in the magnetotail. We conclude that during this specific case study the temporal variations of the flow bursts within the BBF are not directly-driving the observed ground-based Pi2 waveforms, despite the fact that a visual inspection of both time-series might initially suggest that there is a causal relationship. We postulate that rather than there being a direct causal relation, the similar waveforms observed in both Pi2s and BBFs may result from temporal variations in a common source for both the BBFs and the Pi2s, such as magnetic reconnection in the tail, this source modulating both the Pi2 and BBF at the same frequency.
Zeng, C.; Xia, J.; Miller, R.D.; Tsoflias, G.P.
2011-01-01
Conventional surface wave inversion for shallow shear (S)-wave velocity relies on the generation of dispersion curves of Rayleigh waves. This constrains the method to only laterally homogeneous (or very smooth laterally heterogeneous) earth models. Waveform inversion directly fits waveforms on seismograms, hence, does not have such a limitation. Waveforms of Rayleigh waves are highly related to S-wave velocities. By inverting the waveforms of Rayleigh waves on a near-surface seismogram, shallow S-wave velocities can be estimated for earth models with strong lateral heterogeneity. We employ genetic algorithm (GA) to perform waveform inversion of Rayleigh waves for S-wave velocities. The forward problem is solved by finite-difference modeling in the time domain. The model space is updated by generating offspring models using GA. Final solutions can be found through an iterative waveform-fitting scheme. Inversions based on synthetic records show that the S-wave velocities can be recovered successfully with errors no more than 10% for several typical near-surface earth models. For layered earth models, the proposed method can generate one-dimensional S-wave velocity profiles without the knowledge of initial models. For earth models containing lateral heterogeneity in which case conventional dispersion-curve-based inversion methods are challenging, it is feasible to produce high-resolution S-wave velocity sections by GA waveform inversion with appropriate priori information. The synthetic tests indicate that the GA waveform inversion of Rayleigh waves has the great potential for shallow S-wave velocity imaging with the existence of strong lateral heterogeneity. ?? 2011 Elsevier B.V.
3-D crustal velocity structure of western Turkey: Constraints from full-waveform tomography
Çubuk-Sabuncu, Yeşim; Taymaz, Tuncay; Fichtner, Andreas
2017-09-01
The Sea of Marmara and western Turkey are characterized by intense seismicity and crustal deformation due to transition tectonics between the North Anatolian Fault Zone (NAFZ) and the extensional Aegean. Seismic imaging of the crust and uppermost mantle in W-NW Turkey is crucial to obtain a better understanding of its seismotectonics and geodynamics. So far, the Sea of Marmara and surroundings were considered in various active and passive seismic experiments providing significant information on crustal properties. Here, we further investigate the 3-D seismic velocity structure in this rapidly deforming region using non-linear full-waveform tomography based on the adjoint method. Our model is constrained by complete waveforms of 62 regional earthquakes (epicentral distance data uncertainties. Furthermore, quantitative resolution analyses yield 15 to 35 km horizontal resolution lengths in the shallow and deep crust beneath well-covered areas of W-NW Turkey. Our full-waveform tomography results indicate the presence of strong lateral and vertical velocity variations (2.55 ≤ VS ≤ 4.0 km/s) down to depths of ∼35 km. The seismic velocity distribution is characteristic of highly deformed and distributed crustal features along major fault zones (e.g. NAFZ and its branches), historic and recent regional volcanism (e.g. Kula volcanic province), and metamorphic core complex developments (e.g. Menderes and Kazdağ massifs). Radial anisotropy is very strong (around 20%) throughout the crust, further attesting to strong deformation and heterogeneity. Generally, our 3-D model is overall consistent with the active tectonics of western Turkey.
Assessing waveform predictions of recent three-dimensional velocity models of Tibet
Bao, X.; Shen, Y.
2015-12-01
High-resolution tomographic models are essential for understanding the physical and compositional properties in the lithosphere and obtaining accurate earthquake source locations and moment tensors. Yet, there are significant disagreements in recent three-dimensional velocity models of the crust and uppermost mantle in Tibet. Question also remains as to whether models constructed from one type of seismic waves (body or surface waves) can be used to predict travel times and waveforms of another. In this study, six global or regional models are selected for Tibet, most of which became publically available in the past five years. A three-dimensional finite-difference method in the spherical coordinates is applied to simulate full-wave propagation of regional Pn (with periods longer than 1 second) and Rayleigh waves (20-75 s period) for ground-truth events located at regional distances. The models are evaluated based on the phase delays and cross-correlation coefficients between synthetic and observed waveforms. A model generated from full-wave ambient noise tomography by Shen and Zhang (2012) consistently produces the best predictions for Rayleigh waves throughout the dataset and the Pn waves for the paths from the Tarim Basin to central Tibet. LITHO1.0, inverted from surface wave dispersions, shows a relatively stable but intermediate performance in predicting Pn and Rayleigh waves. None of the models provide the best matches to both waves throughout the region. Furthermore, the models constructed from surface waves are not well suited to predict Pn, and vice versa. We attribute this mainly to lack of accurate constraints on radial anisotropy and Vp/Vs ratios in the upper mantle, and Moho topography. We conclude that simultaneous prediction for P, S, and surface waves requires an integrated velocity model constructed with multiple seismic waveforms and consideration of other important properties, such as anisotropy and attenuation.
Rodgers, Arthur J.; Schwartz, Susan Y.
We report low average crustal P-wave velocities (5.9-6.1 km/s, Poisson's ratio 0.23-0.27, thickness 68-76 km) in southern Tibet from modelling regional Pnl waveforms recorded by the 1991-1992 Tibetan Plateau Experiment. We also find that the mantle lithosphere beneath the Indus-Tsangpo Suture and the Lhasa Terrane is shield-like (Pn velocity 8.20-8.25 km/s, lid thickness 80-140 km, positive velocity gradient 0.0015-0.0025 s-1). Analysis of relative Pn travel time residuals requires a decrease in the mantle velocities beneath the northern Lhasa Terrane, the Banggong-Nujiang Suture and the southern Qiangtang Terrane. Tectonic and petrologic considerations suggest that low bulk crustal velocities could result from a thick (50-60 km) felsic upper crust with vertically limited and laterally pervasive partial melt. These results are consistent with underthrusting of Indian Shield lithosphere beneath the Tibetan Plateau to at least the central Lhasa Terrane.
Shear wave velocity structure in North America from large-scale waveform inversions of surface waves
Alsina, D.; Woodward, R. L.; Snieder, R. K.
1996-07-01
correcting for the crustal thickness the phase velocity perturbations obtained from the subsequent linear waveform inversion for the different period bands are converted to a three-layer model of S velocity perturbations (layer 1, 25-100 km; layer 2, 100-200 km; layer 3, 200-300 km). We have applied this method on 275 high-quality Rayleigh waves recorded by a variety of instruments in North America (IRIS/USGS, IRIS/IDA, TERRAscope, RSTN). Sensitivity tests indicate that the lateral resolution is especially good in the densely sampled western continental United States, Mexico, and the Gulf of Mexico.
Shear wave velocity structure in North America from large-scale waveform inversions of surface waves
Alsina, D.; Woodward, R.L.; Snieder, R.K.
1996-01-01
correcting for the crustal thickness the phase velocity perturbations obtained from the subsequent linear waveform inversion for the different period bands are converted to a three-layer model of S velocity perturbations (layer 1, 25-100 km; layer 2, 100-200 km) layer 3, 200-300 km). We have applied this method on 275 high-quality Rayleigh waves recorded by a variety of instruments in North America (IRIS/USGS, IRIS/IDA, TERRAscope, RSTN). Sensitivity tests indicate that the lateral resolution is especially good in the densely sampled western continental United States, Mexico, and the Gulf of Mexico.
Graf, S.; Craiem, D.; Barra, J. G.; Armentano, R. L.
2011-12-01
Increased arterial stiffness is associated with an increased risk of cardiovascular events. Estimation of arterial stiffness using local pulse wave velocity (PWV) promises to be very useful for noninvasive diagnosis of arteriosclerosis. In this work we estimated in an instrumented sheep, the local aortic pulse wave velocity using two sonomicrometry diameter sensors (separated 7.5 cm) according to the transit time method (PWVTT) with a sampling rate of 4 KHz. We simultaneously measured aortic pressure in order to determine from pressure-diameter loops (PWVPDLoop), the "true" local aortic pulse wave velocity. A pneumatic cuff occluder was implanted in the aorta in order to compare both methods under a wide range of pressure levels. Mean pressure values ranged from 47 to 101 mmHg and mean proximal diameter values from 12.5. to 15.2 mm. There were no significant differences between PWVTT and PWVPDLoop values (451±43 vs. 447±48 cm/s, p = ns, paired t-test). Both methods correlated significantly (R = 0.81, p<0.05). The mean difference between both methods was only -4±29 cm/s, whereas the range of the limits of agreement (mean ± 2 standard deviation) was -61 to +53 cm/s, showing no trend. In conclusion, the diameter waveforms transit time method was found to allow an accurate and precise estimation of the local aortic PWV.
An Improved Velocity Volume Processing Method
Institute of Scientific and Technical Information of China (English)
LI Nan; WEI Ming; TANG Xiaowen; PAN Yujie
2007-01-01
Velocity volume processing (VVP) retrieval of single Doppler radar is an effective method which can be used to obtain many wind parameters. However, due to the problem of an ill-conditioned matrix arising from the coefficients of equations not being easily resolved, the VVP method has not been applied adequately and effectively in operation. In this paper, an improved scheme, SVVP (step velocity volume processing), based on the original method, is proposed. The improved algorithm retrieves each group of components of the wind field through a stepwise procedure, which overcomes the problem of an ill-conditioned matrix, which currently limits the application of the VVP method. Variables in a six-parameter model can be retrieved even if the analysis volume is very small. In addition, the source and order of errors which exist in the traditional method are analyzed. The improved method is applied to real cases, which show that it is robust and has the capability to obtain the wind field structure of the local convective system. It is very helpful for studying severe storms.
Liu, Lu
2017-08-17
This paper presents a workflow for near-surface velocity automatic estimation using the early arrivals of seismic data. This workflow comprises two methods, source-domain full traveltime inversion (FTI) and early-arrival waveform inversion. Source-domain FTI is capable of automatically generating a background velocity that can kinematically match the reconstructed plane-wave sources of early arrivals with true plane-wave sources. This method does not require picking first arrivals for inversion, which is one of the most challenging aspects of ray-based first-arrival tomographic inversion. Moreover, compared with conventional Born-based methods, source-domain FTI can distinguish between slower or faster initial model errors via providing the correct sign of the model gradient. In addition, this method does not need estimation of the source wavelet, which is a requirement for receiver-domain wave-equation velocity inversion. The model derived from source-domain FTI is then used as input to early-arrival waveform inversion to obtain the short-wavelength velocity components. We have tested the workflow on synthetic and field seismic data sets. The results show source-domain FTI can generate reasonable background velocities for early-arrival waveform inversion even when subsurface velocity reversals are present and the workflow can produce a high-resolution near-surface velocity model.
C.A. Brezinka (Christoph); A.M. Hagenaars (A.); J.W. Wladimiroff (Juriy); F.J. Los
1995-01-01
textabstractDoppler flow velocity waveform recording in the fetal ductus venosus and umbilical artery as well as maternal blood sampling for serum alpha-fetoprotein (MSAFP) was performed before and after transabdominal chorion villus sampling (TACVS) in 36 women of advanced maternal age (≥ 36 years)
Rodgers, A.; Petersson, A.; Nilsson, S.; Sjogreen, B.; McCandless, K.
2006-12-01
As part of the 1906 San Francisco earthquake centenary, the USGS developed a three-dimensional seismic velocity and attenuation model for Northern California based on detailed geologic and geophysical constraints. The model was used to predict ground motions for the 1906 rupture. In this study we evaluate the model to assess its ability to accurately predict ground motions from moderate earthquakes recorded on broadband stations. Satisfactory prediction of ground motions from these events will provide hope for accurate modeling of future scenario earthquakes. Simulations were performed on large parallel computer(s) with a new elastic finite difference code developed at LLNL. We simulated broadband ground motions (0-0.25 Hz) for several moderate (magnitude 3.5-5.0) earthquakes in the region observed at Berkeley Digital Seismic Network (BDSN) broadband stations. These events are well located and can be modeled with simple point moment tensor sources (taken from the Berkeley Seismological Laboratory catalog), helping to isolate the effects of structure on the waveforms. These data sample the region's diverse tectonic structures, such as the bay muds, sedimentary basins and hard rock complexes. Preliminary results indicate that the simulations reproduce many important features in the data. For example, observed long duration surface waves are often predicted for complex paths (traveling across contrasting structures) and through sedimentary basins. Excellent waveform fits were frequently obtained for long-period comparisons (0.02-0.1) and good fits were often obtained for shorter periods. We will attempt higher frequency simulations to test the ability of the model to match the high frequency response. Finally, we performed large scenario earthquake simulations for the Hayward Fault. These simulations predict large amplifications across the Santa Clara and San Ramon/Livermore Valley sedimentary basins and with the Sacramento/San Joaquin River Delta.
Intracranial pressure pulse waveform correlates with aqueductal cerebrospinal fluid stroke volume.
Hamilton, Robert; Baldwin, Kevin; Fuller, Jennifer; Vespa, Paul; Hu, Xiao; Bergsneider, Marvin
2012-11-01
This study identifies a novel relationship between cerebrospinal fluid (CSF) stroke volume through the cerebral aqueduct and the characteristic peaks of the intracranial pulse (ICP) waveform. ICP waveform analysis has become much more advanced in recent years; however, clinical practice remains restricted to mean ICP, mainly due to the lack of physiological understanding of the ICP waveform. Therefore, the present study set out to shed some light on the physiological meaning of ICP morphological metrics derived by the morphological clustering and analysis of continuous intracranial pulse (MOCAIP) algorithm by investigating their relationships with a well defined physiological variable, i.e., the stroke volume of CSF through the cerebral aqueduct. Seven patients received both overnight ICP monitoring along with a phase-contrast MRI (PC-MRI) of the cerebral aqueduct to quantify aqueductal stroke volume (ASV). Waveform morphological analysis of the ICP signal was performed by the MOCAIP algorithm. Following extraction of morphological metrics from the ICP signal, nine temporal ICP metrics and two amplitude-based metrics were compared with the ASV via Spearman's rank correlation. Of the nine temporal metrics correlated with the ASV, only the width of the P2 region (ICP-Wi2) reached significance. Furthermore, both ICP pulse pressure amplitude and mean ICP did not reach significance. In this study, we showed the width of the second peak (ICP-Wi2) of an ICP pulse wave is positively related to the volume of CSF movement through the cerebral aqueduct. This finding is an initial step in bridging the gap between ICP waveform morphology research and clinical practice.
Changes in uterine artery Doppler flow velocity waveforms during the third stage of labor.
Maymon, R; Herman, A; Halperin, R; Bukovsky, I; Weinraub, Z; Ariely, S
1995-01-01
Transabdominal Doppler velocity waveform measurements of the uterine arteries during the third stage of labor were performed upon 25 patients with uncomplicated vaginal deliveries and 5 with prolonged third stage in order to further assess third-stage mechanisms. Based on Doppler flow measurements, three phases of the third stage of labor were observed: (1) a latent phase with a systolic/diastolic ratio (S/D) and a pulsatility index (PI) of 2.14 +/- 0.49 and 0.89 +/- 0.17, respectively; (2) a contraction and detachment phase with an S/D and PI of 2.53 +/- 0.53 and 1.28 +/- 0.37, respectively, and (3) an expulsion phase with an S/D and PI of 2.20 +/- 0.34 and 0.91 +/- 0.20, respectively (p contractions squeezed the uterine vessels as they traversed the myometrium, leading to an increase in the extrinsic resistance, which was reflected by high resistance flow. Following placental separation and changes in the placental-site wall, there was slight uterine relaxation resulting in decreased uterine vessel resistance. This observation encourages the authors to continue investigating the contribution of ultrasound and Doppler flow for studies of the postpartum period.
Newnham, J P; Kelly, R W; Patterson, L; James, I
1991-11-01
The effects on placental blood flow velocity of maternal undernutrition during mid pregnancy were investigated in 38 twin bearing pregnant sheep by Doppler analysis of umbilical and uteroplacental arterial waveforms. Mid pregnancy undernutrition resulted in fetal growth restriction manifest at term gestation by reduced mean birth weight. Arterial waveform systolic/diastolic ratios from the umbilical and uteroplacental arterial circulations were not influenced by maternal nutrition either during the dietary deprivation or during a subsequent period of dietary supplementation. An effect of heart rate on systolic/diastolic ratios could not be demonstrated. The results indicate that the fetus responds to mid pregnancy maternal undernutrition with restricted growth but without alterations in systolic/diastolic ratios in umbilical or uteroplacental arterial waveforms.
Energy Technology Data Exchange (ETDEWEB)
Chen, Yu [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gao, Kai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Huang, Lianjie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sabin, Andrew [Geothermal Program Office, China Lake, CA (United States)
2016-03-31
Accurate imaging and characterization of fracture zones is crucial for geothermal energy exploration. Aligned fractures within fracture zones behave as anisotropic media for seismic-wave propagation. The anisotropic properties in fracture zones introduce extra difficulties for seismic imaging and waveform inversion. We have recently developed a new anisotropic elastic-waveform inversion method using a modified total-variation regularization scheme and a wave-energy-base preconditioning technique. Our new inversion method uses the parameterization of elasticity constants to describe anisotropic media, and hence it can properly handle arbitrary anisotropy. We apply our new inversion method to a seismic velocity model along a 2D-line seismic data acquired at Eleven-Mile Canyon located at the Southern Dixie Valley in Nevada for geothermal energy exploration. Our inversion results show that anisotropic elastic-waveform inversion has potential to reconstruct subsurface anisotropic elastic parameters for imaging and characterization of fracture zones.
Oxygenation and Blood Volume Periodic Waveforms in the Brain
Gersten, Alexander; Raz, Amir
2011-01-01
Results of an experiment are presented whose aim is to explore the relationship between respiration and cerebral oxygenation. Measurements of end tidal CO2 (EtCO2) were taken simultaneously with cerebral oxygen saturation (rSO2) using the INVOS Cerebral Oximeter of Somanetics. Due to the device limitations we could explore only subjects who could perform with a breathing rate of around 2/min or less. Six subjects were used who were experienced in yoga breathing techniques. They performed an identical periodic breathing exercise including periodicity of about 2/min. The results of all six subjects clearly show a periodic change of cerebral oxygenation with the same period as the breathing exercises. Similar periodic changes in blood volume index were observed as well.
Tahara, Mie; Nakai, Yuichiro; Yasui, Tomoyo; Nishimoto, Sachiyo; Nakano, Akemi; Matsumoto, Makiko; Nobeyama, Hiroyuki; Nishihara, Rika; Iwanaga, Naoko; Ishiko, Osamu
2009-10-01
To clarify the effects on uterine arterial flow velocity waveforms of uterine contractions following oxytocin infusion and during spontaneous labor. Uterine arterial flow velocity waveforms were obtained by pulsed Doppler methods from 22 women during an oxytocin challenge test (OCT), 26 women during oxytocin-induced labor, and 40 women during spontaneous labor. Mean resistance index (RI) for bilateral arteries was used for analyses. After the onset of labor, flow velocity waveforms were assessed according to cervical dilatation. During OCT, Doppler flow velocimetry was performed when three uterine contractions occurred per 10-min period. RI values did not differ significantly between induced and spontaneous labor during relaxations at any level of cervical dilatation. However, during contractions, RI was significantly higher for induced labor than for spontaneous labor. Absence or reversal of flow was more frequent in the OCT group than in the induced labor group (P labor groups. Interactions between the contracting uterine body and the relaxing lower segment in oxytocin-induced labor might be associated with differences in uterine arterial flow during contraction between oxytocin-induced and spontaneous labor. However, changes in the intensity of uterine contractions during labor progression might differ between oxytocin-induced and spontaneous labor.
2011-09-01
the study area and locations of two stations DESE and GVD. We show results from full waveform inversion at these two stations in Figures 2 and 3. In...each figure we show data fit, best model, marginal PPD and correlation plots. Note that at station DESE , we obtain good fit to the data and well...on the best fit to surface wave dispersion. The judgment and experience of seismologists who keep a clear eye on their goal is critical, and this
Neonatal outcome after pregnancy complicated by abnormal velocity waveforms in the umbilical artery.
MCDONNELL, M; Serra-Serra, V; Gaffney, G; Redman, C W; Hope, P L
1994-01-01
The neonatal outcome of 61 infants born after pregnancies complicated by absent or reversed end diastolic flow velocities (AREDFV) in the fetal umbilical artery was compared with that of 61 controls matched for gestational age born after high risk pregnancies with documented forward end diastolic flow velocities (EDFV). The AREDFV group was significantly more growth retarded, had lower platelet counts at birth, and were more likely to become significantly thrombocytopenic in the first week af...
Magnetic resonance velocity imaging derived pressure differential using control volume analysis
Directory of Open Access Journals (Sweden)
Cohen Benjamin
2011-03-01
Full Text Available Abstract Background Diagnosis and treatment of hydrocephalus is hindered by a lack of systemic understanding of the interrelationships between pressures and flow of cerebrospinal fluid in the brain. Control volume analysis provides a fluid physics approach to quantify and relate pressure and flow information. The objective of this study was to use control volume analysis and magnetic resonance velocity imaging to non-invasively estimate pressure differentials in vitro. Method A flow phantom was constructed and water was the experimental fluid. The phantom was connected to a high-resolution differential pressure sensor and a computer controlled pump producing sinusoidal flow. Magnetic resonance velocity measurements were taken and subsequently analyzed to derive pressure differential waveforms using momentum conservation principles. Independent sensor measurements were obtained for comparison. Results Using magnetic resonance data the momentum balance in the phantom was computed. The measured differential pressure force had amplitude of 14.4 dynes (pressure gradient amplitude 0.30 Pa/cm. A 12.5% normalized root mean square deviation between derived and directly measured pressure differential was obtained. These experiments demonstrate one example of the potential utility of control volume analysis and the concepts involved in its application. Conclusions This study validates a non-invasive measurement technique for relating velocity measurements to pressure differential. These methods may be applied to clinical measurements to estimate pressure differentials in vivo which could not be obtained with current clinical sensors.
Kim, Ju-Hyun; Kim, Mee-Young; Lee, Jeong-Uk; Lee, Lim-Kyu; Yang, Seung-Min; Jeon, Hye-Joo; Lee, Won-Deok; Noh, Ji-Woong; Kwak, Taek-Yong; Lee, Tae-Hyun; Kim, Jin-Hwan; Huh, Yong; Kim, Junghwan
2014-04-01
[Purpose] Brachial-ankle pulse wave velocity (BaPWV), which has been reported as an index of arterial stiffness, is very closely related to cardiovascular risk factors. A high BaPWV indicates high cardiovascular risk. However, BaPWV and pressure waveforms after stroke are not fully understood. [Methods] BaPWV was measured in thirty-two subjects (twenty-two healthy volunteers and ten stroke patients) while they were in the supine position. It was measured in their bilateral upper and lower extremities. [Results] BaPWV was significantly increased in the stroke group compared with the healthy volunteers. It was also significantly increased on both the affected and non-affected sides of stroke patients in the stroke group. Furthermore, analysis of the pressure waveforms showed that the peak pressure was significantly increased in the stroke group compared with the control group. The peak pressure on both the affected and non-affected sides was also significantly greater than in the control group. However, the rise and decay times were significantly decreased in the stroke group compared with the control group. The rise and decay time on both the affected and non-affected sides were also significantly more decreased than in the control group. [Conclusion] The results demonstrated that increased BaPWV and changed pulse waves are closely associated with the pathologic states of hemiplegic stroke patients.
Parker, L.; Mellors, R. J.; Thurber, C. H.; Wang, H. F.; Zeng, X.
2015-12-01
A 762-meter Distributed Acoustic Sensing (DAS) array with a channel spacing of one meter was deployed at the Garner Valley Downhole Array in Southern California. The array was approximately rectangular with dimensions of 180 meters by 80 meters. The array also included two subdiagonals within the rectangle along which three-component geophones were co-located. Several active sources were deployed, including a 45-kN, swept-frequency, shear-mass shaker, which produced strong Rayleigh waves across the array. Both DAS and geophone traces were filtered in 2-Hz steps between 4 and 20 Hz to obtain phase velocities as a function of frequency from fitting the moveout of travel times over distances of 35 meters or longer. As an alternative to this traditional means of finding phase velocity, it is theoretically possible to find the Rayleigh-wave phase velocity at each point of co-location as the ratio of DAS and geophone responses, because DAS is sensitive to ground strain and geophones are sensitive to ground velocity, after suitable corrections for instrument response (Mikumo & Aki, 1964). The concept was tested in WPP, a seismic wave propagation program, by first validating and then using a 3D synthetic, full-waveform seismic model to simulate the effect of increased levels of noise and uncertainty as data go from ideal to more realistic. The results obtained from this study provide a better understanding of the DAS response and its potential for being combined with traditional seismometers for obtaining phase velocity at a single location. This analysis is part of the PoroTomo project (Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology, http://geoscience.wisc.edu/feigl/porotomo).
Lekic, V.; French, S. W.; Romanowicz, B. A.
2013-12-01
The exchange of heat, mass and momentum between tectonic plates and mantle convection controls lithospheric evolution and hotspot volcanism, and must occur at a range of spatial scales. Yet, the detailed morphology of the associated convection patterns continues to elude geophysicists. Because seismic velocities are affected by temperature, seismic tomography can be used to map the patterns of flow in the Earth's mantle. Here, we present a global-scale long-period full-waveform seismic tomographic model SEMum2 constructed using the Spectral Element Method, which can very accurately model wave propagation through highly complex structures, and account for phenomena such as scattering, (de)focusing, and wavefront healing. Notably, SEMum2 achieves more realistic amplitudes of lateral heterogeneity - particularly low velocities in the upper 250km - than previous generations of global models, while still retrieving the long-wavelength structure present in earlier tomographic models. Cluster analysis of profiles of shear velocity in the SEMum2 oceanic upper mantle, confirms the presence of a well marked shear wave low velocity zone (LVZ) beneath the lithosphere, with a velocity minimum which deepens progressively as a function of age of the plate. The LVZ minimum in SEMum2 reaches values that are lower than in previous tomographic global models and in agreement with local estimates where available. Interestingly, reaching below this "classical" low velocity zone, the model reveals a pattern of alternating lower and higher velocities organized into elongated bands in the direction of absolute plate motion (APM), with a quasi-regular spacing of ~2000 km perpendicular to the APM. This fingerlike structure, most prominent around 200-250 km and extending down to 350-400 km, is most prominent beneath the Pacific plate, but also present under the eastern Antarctic plate, in the south Atlantic and in parts of the Indian Ocean Below this depth, the low velocities appear organized
Renormalized scattering series for frequency-domain waveform modelling of strong velocity contrasts
Jakobsen, M.; Wu, R. S.
2016-08-01
An improved description of scattering and inverse scattering processes in reflection seismology may be obtained on the basis of a scattering series solution to the Helmoltz equation, which allows one to separately model primary and multiple reflections. However, the popular scattering series of Born is of limited seismic modelling value, since it is only guaranteed to converge if the global contrast is relatively small. For frequency-domain waveform modelling of realistic contrasts, some kind of renormalization may be required. The concept of renormalization is normally associated with quantum field theory, where it is absolutely essential for the treatment of infinities in connection with observable quantities. However, the renormalization program is also highly relevant for classical systems, especially when there are interaction effects that act across different length scales. In the scattering series of De Wolf, a renormalization of the Green's functions is achieved by a split of the scattering potential operator into fore- and backscattering parts; which leads to an effective reorganization and partially re-summation of the different terms in the Born series, so that their order better reflects the physics of reflection seismology. It has been demonstrated that the leading (single return) term in the De Wolf series (DWS) gives much more accurate results than the corresponding Born approximation, especially for models with high contrasts that lead to a large accumulation of phase changes in the forward direction. However, the higher order terms in the DWS that are associated with internal multiples have not been studied numerically before. In this paper, we report from a systematic numerical investigation of the convergence properties of the DWS which is based on two new operator representations of the DWS. The first operator representation is relatively similar to the original scattering potential formulation, but more global and explicit in nature. The second
Refined Local and Regional Seismic Velocity and Attenuation Models from Finite-Frequency Waveforms
2008-09-30
the velocities and quality factors of P and S waves specified on a l°xl ° horizontal grid and at 24 depths from 0 to 660 km. Figure 3 shows a few map...Technologies VPHf*"d VPh 0,a Xbr. dgo,u am 42SO 404 30 30 MW 3500 go am a’-s 42 5000 2 40 44o55 s50 0 45 s 6 o 4 35 4500 40 400 24 39 42 rNO 34400 am St
Visco-acoustic transmission waveform inversion of velocity structure in space-frequency domain
Institute of Scientific and Technical Information of China (English)
Guihua Long; Xiaofan Li; Meigen Zhang; Tong Zhu
2009-01-01
According to the least square criterion of minimizing the misfit between modeled and observed data, this paper provides a preconditioned gradient method to invert the visco-acoustic velocity structure on the basis of using sparse matrix LU factorization technique to directly solve the visco-acoustic wave forward problem in space-frequency domain. Numerical results obtained in an inclusion model inversion and a layered homogeneous model inversion demonstrate that different scale media have their own frequency responses, and the strategy of using low-frequency inverted result as the starting model in the high-frequency inversion can greatly reduce the non-uniqueness of their solutions. It can also be observed in the experi-ments that the fast convergence of the algorithm can be achieved by using diagonal elements of Hessian matrix as the pre-conditioned operator, which fully incorporates the advantage of quadratic convergence of Gauss-Newton method.
Volume Flow in Arteriovenous Fistulas Using Vector Velocity Ultrasound
DEFF Research Database (Denmark)
Hansen, Peter Møller; Olesen, Jacob Bjerring; Pihl, Michael Johannes
2014-01-01
Volume flow in arteriovenous fistulas for hemodialysis was measured using the angle-independent ultrasound technique Vector Flow Imaging and compared with flow measurements using the ultrasound dilution technique during dialysis. Using an UltraView 800 ultrasound scanner (BK Medical, Herlev......, Denmark) with a linear transducer, 20 arteriovenous fistulas were scanned directly on the most superficial part of the fistula just before dialysis. Vector Flow Imaging volume flow was estimated with two different approaches, using the maximum and the average flow velocities detected in the fistula. Flow...
Volume Flow in Arteriovenous Fistulas Using Vector Velocity Ultrasound
DEFF Research Database (Denmark)
Hansen, Peter Møller; Olesen, Jacob Bjerring; Pihl, Michael Johannes;
2014-01-01
Volume flow in arteriovenous fistulas for hemodialysis was measured using the angle-independent ultrasound technique Vector Flow Imaging and compared with flow measurements using the ultrasound dilution technique during dialysis. Using an UltraView 800 ultrasound scanner (BK Medical, Herlev......, Denmark) with a linear transducer, 20 arteriovenous fistulas were scanned directly on the most superficial part of the fistula just before dialysis. Vector Flow Imaging volume flow was estimated with two different approaches, using the maximum and the average flow velocities detected in the fistula. Flow...
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
We assembled approximately 328 seismic records. The data set wasfrom 4 digitally recording long-period and broadband stations of CDSN. We carried out the inversion based on the partitioned waveform inversion (PWI). It partitions the large-scale optimization problem into a number of independent small-scale problems. We adopted surface waveform inversion with an equal block (2°′2°) discretization in order to acquire the images of shear velocity structure at different depths (from surface to 430 km) in the crust and upper-mantle. The resolution of all these anomalies has been established with 2check-board2 resolution tests. These results show significant difference in velocity, lithosphere and asthenosphere structure between South China Sea and its adjacent regions.
Interstitial volume modulates the conduction velocity-gap junction relationship.
Veeraraghavan, Rengasayee; Salama, Mohamed E; Poelzing, Steven
2012-01-01
Cardiac conduction through gap junctions is an important determinant of arrhythmia susceptibility. Yet, the relationship between degrees of G(j) uncoupling and conduction velocity (θ) remains controversial. Conflicting results in similar experiments are normally attributed to experimental differences. We hypothesized that interstitial volume modulates conduction velocity and its dependence on G(j). Interstitial volume (V(IS)) was quantified histologically from guinea pig right ventricle. Optical mapping was used to quantify conduction velocity and anisotropy (AR(θ)). Albumin (4 g/l) decreased histologically assessed V(IS), increased transverse θ by 71 ± 10%, and lowered AR(θ). Furthermore, albumin did not change isolated cell size. Conversely, mannitol increased V(IS), decreased transverse θ by 24 ± 4%, and increased AR(θ). Mannitol also decreased cell width by 12%. Furthermore, mannitol was associated with spontaneous ventricular tachycardias in three of eight animals relative to zero of 15 during control. The θ-G(j) relationship was assessed using the G(j) uncoupler carbenoxolone (CBX). Whereas 13 μM CBX did not significantly affect θ during control, it slowed transverse θ by 38 ± 9% during mannitol (edema). These data suggest changes in V(IS) modulate θ, AR(θ), and the θ-G(j) relationship and thereby alter arrhythmia susceptibility. Therefore, V(IS) may underlie arrhythmia susceptibility, particularly in diseases associated with gap junction remodeling.
Pilot Study: Estimation of Stroke Volume and Cardiac Output from Pulse Wave Velocity.
Obata, Yurie; Mizogami, Maki; Nyhan, Daniel; Berkowitz, Dan E; Steppan, Jochen; Barodka, Viachaslau
2017-01-01
Transesophageal echocardiography (TEE) is increasingly replacing thermodilution pulmonary artery catheters to assess hemodynamics in patients at high risk for cardiovascular morbidity. However, one of the drawbacks of TEE compared to pulmonary artery catheters is the inability to measure real time stroke volume (SV) and cardiac output (CO) continuously. The aim of the present proof of concept study was to validate a novel method of SV estimation, based on pulse wave velocity (PWV) in patients undergoing cardiac surgery. This is a retrospective observational study. We measured pulse transit time by superimposing the radial arterial waveform onto the continuous wave Doppler waveform of the left ventricular outflow tract, and calculated SV (SVPWV) using the transformed Bramwell-Hill equation. The SV measured by TEE (SVTEE) was used as a reference. A total of 190 paired SV were measured from 28 patients. A strong correlation was observed between SVPWV and SVTEE with the coefficient of determination (R2) of 0.71. A mean difference between the two (bias) was 3.70 ml with the limits of agreement ranging from -20.33 to 27.73 ml and a percentage error of 27.4% based on a Bland-Altman analysis. The concordance rate of two methods was 85.0% based on a four-quadrant plot. The angular concordance rate was 85.9% with radial limits of agreement (the radial sector that contained 95% of the data points) of ± 41.5 degrees based on a polar plot. PWV based SV estimation yields reasonable agreement with SV measured by TEE. Further studies are required to assess its utility in different clinical situations.
Ecological connectivity in the three-dimensional urban green volume using waveform airborne lidar
Casalegno, Stefano; Anderson, Karen; Cox, Daniel T. C.; Hancock, Steven; Gaston, Kevin J.
2017-04-01
The movements of organisms and the resultant flows of ecosystem services are strongly shaped by landscape connectivity. Studies of urban ecosystems have relied on two-dimensional (2D) measures of greenspace structure to calculate connectivity. It is now possible to explore three-dimensional (3D) connectivity in urban vegetation using waveform lidar technology that measures the full 3D structure of the canopy. Making use of this technology, here we evaluate urban greenspace 3D connectivity, taking into account the full vertical stratification of the vegetation. Using three towns in southern England, UK, all with varying greenspace structures, we describe and compare the structural and functional connectivity using both traditional 2D greenspace models and waveform lidar-generated vegetation strata (namely, grass, shrubs and trees). Measures of connectivity derived from 3D greenspace are lower than those derived from 2D models, as the latter assumes that all vertical vegetation strata are connected, which is rarely true. Fragmented landscapes that have more complex 3D vegetation showed greater functional connectivity and we found highest 2D to 3D functional connectivity biases for short dispersal capacities of organisms (6 m to 16 m). These findings are particularly pertinent in urban systems where the distribution of greenspace is critical for delivery of ecosystem services.
Qin, Yanfang; Singh, Satish C.
2017-04-01
The nature of incoming sediments defines the locking mechanism on the megathrust, and the development and evolution of the accretionary wedge. Here we present results from seismic full waveform inversion of 12 km long offset seismic reflection data within the trench in the 2004 Sumatra earthquake rupture zone area that provide detailed quantitative information on the incoming oceanic sediments and the trench-fill sediments. The thickness of sediments in this area is 3-4 km, and P wave velocity is as much as 4.5 km/s just above the oceanic crust, suggesting the presence of silica-rich highly compacted and lithified sediments leading to a strong coupling up to the subduction front. We also find an 70-80 m thick low-velocity layer, capped by a high-velocity layer, at 0.8 km above the subducting plate. This low-velocity layer, previously identified as high-amplitude negative polarity reflection, could have porosity of up to 30% containing overpressured fluids, which could act as a protodécollement seaward from the accretionary prism and décollement beneath the forearc. This weak protodécollement combined with the high-velocity indurated sediments above the basement possibly facilitated the rupture propagating up to the front during the 2004 earthquake and enhancing the tsunami. We also find another low-velocity layer within the sediments that may act as a secondary décollement observed offshore central Sumatra, forming bivergent pop-up structures and acting as a conveyer belt in preserving these pop-up structures in the forearc region.
Wear, Keith A
2009-02-01
Frequency-dependent phase velocity was measured in eight cancellous-bone-mimicking phantoms consisting of suspensions of randomly oriented nylon filaments (simulating trabeculae) in a soft-tissue-mimicking medium (simulating marrow). Trabecular thicknesses ranged from 152 to 356 mum. Volume fractions of nylon filament material ranged from 0% to 10%. Phase velocity varied approximately linearly with frequency over the range from 300 to 700 kHz. The increase in phase velocity (compared with phase velocity in a phantom containing no filaments) at 500 kHz was approximately proportional to volume fraction occupied by nylon filaments. The derivative of phase velocity with respect to frequency was negative and exhibited nonlinear, monotonically decreasing dependence on volume fraction. The dependencies of phase velocity and its derivative on volume fraction in these phantoms were similar to those reported in previous studies on (1) human cancellous bone and (2) phantoms consisting of parallel nylon wires immersed in water.
Konca, A. O.; Ji, C.; Helmberger, D. V.
2004-12-01
We observed the effect of the fault finiteness in the Pnl waveforms from regional distances (4° to 12° ) for the Mw6.5 San Simeon Earthquake on 22 December 2003. We aimed to include more of the high frequencies (2 seconds and longer periods) than the studies that use regional data for focal solutions (5 to 8 seconds and longer periods). We calculated 1-D synthetic seismograms for the Pn_l portion for both a point source, and a finite fault solution. The comparison of the point source and finite fault waveforms with data show that the first several seconds of the point source synthetics have considerably higher amplitude than the data, while finite fault does not have a similar problem. This can be explained by reversely polarized depth phases overlapping with the P waves from the later portion of the fault, and causing smaller amplitudes for the beginning portion of the seismogram. This is clearly a finite fault phenomenon; therefore, can not be explained by point source calculations. Moreover, the point source synthetics, which are calculated with a focal solution from a long period regional inversion, are overestimating the amplitude by three to four times relative to the data amplitude, while finite fault waveforms have the similar amplitudes to the data. Hence, a moment estimation based only on the point source solution of the regional data could have been wrong by half of magnitude. We have also calculated the shifts of synthetics relative to data to fit the seismograms. Our results reveal that the paths from Central California to the south are faster than to the paths to the east and north. The P wave arrival to the TUC station in Arizona is 4 seconds earlier than the predicted Southern California model, while most stations to the east are delayed around 1 second. The observed higher uppermost mantle velocities to the south are consistent with some recent tomographic models. Synthetics generated with these models significantly improves the fits and the
Institute of Scientific and Technical Information of China (English)
Yao Lanyu; Nie Yongan; Zhao Jinghua; Bian Zhenfu
2004-01-01
The authors proposed a method for obtaining high-quality acceleration seismograms from velocity type seismograms of digital Seismographic network, and took as an example the analysis and processing of the seismograms of a same earthquake that was simultaneously recorded by velocity seismograph CTS1-EDAS24 and strong motion seismograph EST-Q4128installed in Jixian Station, Tianjin. The calculation steps and the processing method have been discussed in detail. From the analysis and the comparison of the obtained results, it is concluded that the proposed method is simple and effective, and it broadens the application of digital seismographic network.
Jang, Dae-Geun; Farooq, Umar; Park, Seung-Hun; Hahn, Minsoo
2014-10-01
This paper presents a robust method for pulse peak determination in a digital volume pulse (DVP) waveform with a wandering baseline. A proposed new method uses a modified morphological filter (MMF) to eliminate a wandering baseline signal of the DVP signal with minimum distortion and a slope sum function (SSF) with an adaptive thresholding scheme to detect pulse peaks from the baseline-removed DVP signal. Further in order to cope with over-detected and missed pulse peaks, knowledge based rules are applied as a postprocessor. The algorithm automatically adjusts detection parameters periodically to adapt to varying beat morphologies and fluctuations. Compared with conventional methods (highpass filtering, linear interpolation, cubic spline interpolation, and wavelet adaptive filtering), our method performs better in terms of the signal-to-error ratio, the computational burden (0.125 seconds for one minute of DVP signal analysis with the Intel Core 2 Quad processor @ 2.40 GHz PC), the true detection rate (97.32% with an acceptance level of 4 ms ) as well as the normalized error rate (0.18%). In addition, the proposed method can detect true positions of pulse peaks more accurately and becomes very useful for pulse transit time (PTT) and pulse rate variability (PRV) analyses.
Vascular waveform analysis of flap-feeding vessels using color Doppler ultrasonography.
Ogino, Akihiro; Onishi, Kiyoshi
2014-01-01
We performed vascular waveform analysis of flap-feeding vessels using color Doppler ultrasonography and evaluated the blood flow in the flaps prior to surgery. Vascular waveform analysis was performed in 19 patients. The analyzed parameters included the vascular diameter, flow volume, flow velocity, resistance index, pulsatility index, and acceleration time. The arterial waveform was classified into 5 types based on the partially modified blood flow waveform classification reported by Hirai et al.; in particular, D-1a, D-1b, and D-2 were considered as normal waveforms. They were 4 patients which observed abnormal vascular waveform among 19 patients (D-4 : 1, D-3 : 1, and Poor detect : 2). The case which presented D-4 waveform changed the surgical procedure, and a favorable outcome was achieved. Muscle flap of the case which presented D-3 waveform was partially necrosed. The case which detected blood flow poorly was judged to be the vascular obstruction of the internal thoracic artery. In the evaluation of blood flow in flaps using color Doppler ultrasonography, determination of not only basic blood flow information, such as the vascular distribution and diameter and flow velocity, but also the flow volume, vascular resistance, and arterial waveform is essential to elucidate the hemodynamics of the flap.
Negi, Sanjay S.; Paul, Ajay; Cesca, Simone; Kamal; Kriegerowski, Marius; Mahesh, P.; Gupta, Sandeep
2017-08-01
In order to understand present day earthquake kinematics at the Indian plate boundary, we analyse seismic broadband data recorded between 2007 and 2015 by the regional network in the Garhwal-Kumaun region, northwest Himalaya. We first estimate a local 1-D velocity model for the computation of reliable Green's functions, based on 2837 P-wave and 2680 S-wave arrivals from 251 well located earthquakes. The resulting 1-D crustal structure yields a 4-layer velocity model down to the depths of 20 km. A fifth homogeneous layer extends down to 46 km, constraining the Moho using travel-time distance curve method. We then employ a multistep moment tensor (MT) inversion algorithm to infer seismic moment tensors of 11 moderate earthquakes with Mw magnitude in the range 4.0-5.0. The method provides a fast MT inversion for future monitoring of local seismicity, since Green's functions database has been prepared. To further support the moment tensor solutions, we additionally model P phase beams at seismic arrays at teleseismic distances. The MT inversion result reveals the presence of dominant thrust fault kinematics persisting along the Himalayan belt. Shallow low and high angle thrust faulting is the dominating mechanism in the Garhwal-Kumaun Himalaya. The centroid depths for these moderate earthquakes are shallow between 1 and 12 km. The beam modeling result confirm hypocentral depth estimates between 1 and 7 km. The updated seismicity, constrained source mechanism and depth results indicate typical setting of duplexes above the mid crustal ramp where slip is confirmed along out-of-sequence thrusting. The involvement of Tons thrust sheet in out-of-sequence thrusting indicate Tons thrust to be the principal active thrust at shallow depth in the Himalayan region. Our results thus support the critical taper wedge theory, where we infer the microseismicity cluster as a result of intense activity within the Lesser Himalayan Duplex (LHD) system.
Esper, Stephen A; Pinsky, Michael R
2014-12-01
The bedside measurement of continuous arterial pressure values from waveform analysis has been routinely available via indwelling arterial catheterization for >50 years. Invasive blood pressure monitoring has been utilized in critically ill patients, in both the operating room and critical care units, to facilitate rapid diagnoses of cardiovascular insufficiency and monitor response to treatments aimed at correcting abnormalities before the consequences of either hypo- or hypertension are seen. Minimally invasive techniques to estimate cardiac output (CO) have gained increased appeal. This has led to the increased interest in arterial waveform analysis to provide this important information, as it is measured continuously in many operating rooms and intensive care units. Arterial waveform analysis also allows for the calculation of many so-called derived parameters intrinsically created by this pulse pressure profile. These include estimates of left ventricular stroke volume (SV), CO, vascular resistance, and during positive-pressure breathing, SV variation, and pulse pressure variation. This article focuses on the principles of arterial waveform analysis and their determinants, components of the arterial system, and arterial pulse contour. It will also address the advantage of measuring real-time CO by the arterial waveform and the benefits to measuring SV variation. Arterial waveform analysis has gained a large interest in the overall assessment and management of the critically ill and those at a risk of hemodynamic deterioration.
DEFF Research Database (Denmark)
Jensen, Jonas; Olesen, Jacob Bjerring; Stuart, Matthias Bo
2016-01-01
A method for vector velocity volume flow estimation is presented, along with an investigation of its sources of error and correction of actual volume flow measurements. Volume flow errors are quantified theoretically by numerical modeling, through flow phantom measurements, and studied in vivo...... than circular, vessel area and correcting the ultrasound beam for being off-axis, gave a significant (p = 0.008) reduction in error from 31.2% to 24.3%. The error is relative to the Ultrasound Dilution Technique, which is considered the gold standard for volume flow estimation for dialysis patients....... This paper investigates errors from estimating volumetric flow using a commercial ultrasound scanner and the common assumptions made in the literature. The theoretical model shows, e.g. that volume flow is underestimated by 15%, when the scan plane is off-axis with the vessel center by 28% of the vessel...
Profiling river surface velocities and volume flow estimation with bistatic UHF RiverSonde radar
Barrick, D.; Teague, C.; Lilleboe, P.; Cheng, R.; Gartner, J.; ,
2003-01-01
From the velocity profiles across the river, estimates of total volume flow for the four methods were calculated based on a knowledge of the bottom depth vs position across the river. It was found that the flow comparisons for the American River were much closer, within 2% of each other among all of the methods. Sources of positional biases and anomalies in the RiverSonde measurement patterns along the river were identified and discussed.
Automated microseismic event location using Master-Event Waveform Stacking
Grigoli, Francesco; Cesca, Simone; Krieger, Lars; Kriegerowski, Marius; Gammaldi, Sergio; Horalek, Josef; Priolo, Enrico; Dahm, Torsten
2016-05-01
Accurate and automated locations of microseismic events are desirable for many seismological and industrial applications. The analysis of microseismicity is particularly challenging because of weak seismic signals with low signal-to-noise ratio. Traditional location approaches rely on automated picking, based on individual seismograms, and make no use of the coherency information between signals at different stations. This strong limitation has been overcome by full-waveform location methods, which exploit the coherency of waveforms at different stations and improve the location robustness even in presence of noise. However, the performance of these methods strongly depend on the accuracy of the adopted velocity model, which is often quite rough; inaccurate models result in large location errors. We present an improved waveform stacking location method based on source-specific station corrections. Our method inherits the advantages of full-waveform location methods while strongly mitigating the dependency on the accuracy of the velocity model. With this approach the influence of an inaccurate velocity model on the results is restricted to the estimation of travel times solely within the seismogenic volume, but not for the entire source-receiver path. We finally successfully applied our new method to a realistic synthetic dataset as well as real data.
Energy Technology Data Exchange (ETDEWEB)
Acar, Murat [Department of Radiology, Faculty of Medicine, Afyon Kocatepe University, Kirmizi Hastane, 03200 Afyon (Turkey)]. E-mail: drmacar@hotmail.com; Degirmenci, Bumin [Department of Radiology, Faculty of Medicine, Afyon Kocatepe University, Kirmizi Hastane, 03200 Afyon (Turkey); Yucel, Aylin [Department of Radiology, Faculty of Medicine, Afyon Kocatepe University, Kirmizi Hastane, 03200 Afyon (Turkey); Albayrak, Ramazan [Department of Radiology, Faculty of Medicine, Afyon Kocatepe University, Kirmizi Hastane, 03200 Afyon (Turkey); Haktanir, Alpay [Department of Radiology, Faculty of Medicine, Afyon Kocatepe University, Kirmizi Hastane, 03200 Afyon (Turkey); Yaman, Mehmet [Department of Neurology, Faculty of Medicine, Afyon Kocatepe University, 03200 Afyon (Turkey)
2005-05-01
Introduction: The aim of this study was to compare the measurements of vertebral artery (VA) systolic flow velocity and flow volume for diagnosis of vertebrobasilar insufficiency (VBI). Material and methods: We examined 96 patients who were referred for evaluation of VBI. Net vertebral artery flow volume and mean systolic flow velocity were determined by using color duplex sonography. We had grouped the patients into three according to VA flow volume: group 1 was consisted of patients with severely damped VA flow volume (lower than 120 mL/min), group 2 was consisted of patients with moderately damped VA flow volume (120-200 mL/min), group 3 was consisted of patients with normal VA flow volume (>200 mL/min). The mean systolic flow velocities in each group were compared by one-way ANOVA. Results: Mean VA systolic flow velocities of groups 1, 2 and 3 were 32 {+-} 12, 42 {+-} 10 and 46 {+-} 8 cm/s, respectively. Mean VA systolic flow velocity in group 1 was significantly lower than that of group 2 (P = 0.001). However, there were no significant differences between VA systolic flow velocities in groups 2 and 3 (P = 0.2). Conclusions: According to our findings, measurement of volume in addition to velocity is more valuable in detection of moderately damped VA flow volumes in diagnosis of VBI.
Institute of Scientific and Technical Information of China (English)
廖建平; 刘和秀; 王华忠; 彭叶辉; 杨天春; 王齐仁
2011-01-01
使用最速下降法进行二维频率空间域声波波动方程全波形速度反演,讨论了如何快速实现高精度的二维频率空间域声波波动方程全波形速度反演.多尺度的思想耦合在反演框架中.把非线性问题化为逐步线性问题是我们关注的焦点,目的是把整个非线性反演的黑匣子转化成为每一步可控的过程,尽可能得到想要的反演解.仅仅使用3个离散的频率,每个频率迭代10次,对广角Marmousi模型进行地面地震声波全波形速度反演,反演得到高分辨率、高精度的速度,为全波形反演实际资料奠定了很好的基础.%We use the steepest descent method based on two-dimensional frequency space domain acoustic wave equation for full waveform velocity inversion, discuss how to quickly realize high precision two-dimensional frequency domain full waveform velocity inversion. Multi-scale criterial is coupling in the inversion framework. The nonlinear problem changes into gradually linear problem is our focus. The purpose is the whole nonlinear inverse black box into every step of controllable process as far as possible, getting an inversion solution we want. Use only three discrete frequencies, each frequency iterative ten times, we make surface seismic acoustic wave full waveform inversion on extended Marmousi and get a high resolution and high precision imaging of velocity. This gives a good foundation for full waveform inversion on real field data.
Jensen, Jonas; Olesen, Jacob Bjerring; Stuart, Matthias Bo; Hansen, Peter Møller; Nielsen, Michael Bachmann; Jensen, Jørgen Arendt
2016-08-01
A method for vector velocity volume flow estimation is presented, along with an investigation of its sources of error and correction of actual volume flow measurements. Volume flow errors are quantified theoretically by numerical modeling, through flow phantom measurements, and studied in vivo. This paper investigates errors from estimating volumetric flow using a commercial ultrasound scanner and the common assumptions made in the literature. The theoretical model shows, e.g. that volume flow is underestimated by 15%, when the scan plane is off-axis with the vessel center by 28% of the vessel radius. The error sources were also studied in vivo under realistic clinical conditions, and the theoretical results were applied for correcting the volume flow errors. Twenty dialysis patients with arteriovenous fistulas were scanned to obtain vector flow maps of fistulas. When fitting an ellipsis to cross-sectional scans of the fistulas, the major axis was on average 10.2mm, which is 8.6% larger than the minor axis. The ultrasound beam was on average 1.5mm from the vessel center, corresponding to 28% of the semi-major axis in an average fistula. Estimating volume flow with an elliptical, rather than circular, vessel area and correcting the ultrasound beam for being off-axis, gave a significant (p=0.008) reduction in error from 31.2% to 24.3%. The error is relative to the Ultrasound Dilution Technique, which is considered the gold standard for volume flow estimation for dialysis patients. The study shows the importance of correcting for volume flow errors, which are often made in clinical practice.
Full Waveform Inversion Using Waveform Sensitivity Kernels
Schumacher, Florian; Friederich, Wolfgang
2013-04-01
We present a full waveform inversion concept for applications ranging from seismological to enineering contexts, in which the steps of forward simulation, computation of sensitivity kernels, and the actual inversion are kept separate of each other. We derive waveform sensitivity kernels from Born scattering theory, which for unit material perturbations are identical to the Born integrand for the considered path between source and receiver. The evaluation of such a kernel requires the calculation of Green functions and their strains for single forces at the receiver position, as well as displacement fields and strains originating at the seismic source. We compute these quantities in the frequency domain using the 3D spectral element code SPECFEM3D (Tromp, Komatitsch and Liu, 2008) and the 1D semi-analytical code GEMINI (Friederich and Dalkolmo, 1995) in both, Cartesian and spherical framework. We developed and implemented the modularized software package ASKI (Analysis of Sensitivity and Kernel Inversion) to compute waveform sensitivity kernels from wavefields generated by any of the above methods (support for more methods is planned), where some examples will be shown. As the kernels can be computed independently from any data values, this approach allows to do a sensitivity and resolution analysis first without inverting any data. In the context of active seismic experiments, this property may be used to investigate optimal acquisition geometry and expectable resolution before actually collecting any data, assuming the background model is known sufficiently well. The actual inversion step then, can be repeated at relatively low costs with different (sub)sets of data, adding different smoothing conditions. Using the sensitivity kernels, we expect the waveform inversion to have better convergence properties compared with strategies that use gradients of a misfit function. Also the propagation of the forward wavefield and the backward propagation from the receiver
Institute of Scientific and Technical Information of China (English)
Gang Guo; Yonggui Yang; Weiqun Yang
2011-01-01
This study investigated the effect of velocity encoding on measurement of brain blood flow and blood volume of inflow and outflow using phase-contrast magnetic resonance angiography. A single two-dimensional phase-contrast magnetic resonance angiography slice was applied perpendicular to the internal carotid artery and the vertebral artery at C2 level. For each subject, the velocity encoding was set from 30 to 90 cm/s with an interval of 10 cm/s for a total of seven settings. Various velocity encodings greatly affected blood flow volume, maximal blood flow velocity and mean blood flow velocity in the internal carotid artery, but did not significantly affect vertebral arteries and jugular veins. When velocity encoding was 60-80 cm/s, the inflow blood volume was 655 ± 118 mL/min, and the outflow volume was 506 ± 186 mL/min. The ratio of outflow/inflow was steady at 0.78-0.83, and there was no aliasing in any of the images. These findings suggest that velocity encodings of 60-80 cm/s should be selected during measurement of cerebral blood flow volume using phase-contrast magnetic resonance angiography.
Energy Technology Data Exchange (ETDEWEB)
Shin, Chang Soo; Park, Keun Pil [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of); Suh, Jung Hee; Hyun, Byung Koo; Shin, Sung Ryul [Seoul National University, Seoul (Korea, Republic of)
1995-12-01
The seismic reflection exploration technique which is one of the geophysical methods for oil exploration became effectively to image the subsurface structure with rapid development of computer. However, the imagining of subsurface based on the conventional data processing is almost impossible to obtain the information on physical properties of the subsurface such as velocity and density. Since seismic data are implicitly function of velocities of subsurface, it is necessary to develop the inversion method that can delineate the velocity structure using seismic topography and waveform inversion. As a tool to perform seismic inversion, seismic forward modeling program using ray tracing should be developed. In this study, we have developed the algorithm that calculate the travel time of the complex geologic structure using shooting ray tracing by subdividing the geologic model into blocky structure having the constant velocity. With the travel time calculation, the partial derivatives of travel time can be calculated efficiently without difficulties. Since the current ray tracing technique has a limitation to calculate the travel times for extremely complex geologic model, our aim in the future is to develop the powerful ray tracer using the finite element technique. After applying the pseudo waveform inversion to the seismic data of Korea offshore, we can obtain the subsurface velocity model and use the result in bring up the quality of the seismic data processing. If conventional seismic data processing and seismic interpretation are linked with this inversion technique, the high quality of seismic data processing can be expected to image the structure of the subsurface. Future research area is to develop the powerful ray tracer of ray tracing which can calculate the travel times for the extremely complex geologic model. (author). 39 refs., 32 figs., 2 tabs.
Del Bello, E.; Taddeucci, J.; De'Michieli Vitturi, M.; Scarlato, P.; Andronico, D.; Scollo, S.; Kueppers, U.
2015-12-01
We present the first report of experimental measurements of the enhanced settling velocity of volcanic particles as function of particle volume fraction. In order to investigate the differences in the aerodynamic behavior of ash particles when settling individually or in mass, we performed systematic large-scale ash settling experiments using natural basaltic and phonolitic ash. By releasing ash particles at different, controlled volumetric flow rates, in an unconstrained open space and at minimal air movement, we measured their terminal velocity, size, and particle volume fraction with a high-speed camera at 2000 fps. Enhanced settling velocities of individual particles increase with increasing particle volume fraction. This suggests that particle clustering during fallout may be one reason explaining larger than theoretical depletion rates of fine particles from volcanic ash clouds. We provide a quantitative empirical model that allows to calculate, from a given particle size and density, the enhanced velocity resulting from a given particle volume fraction. The proposed model has the potential to serve as a simple tool for the prediction of the terminal velocity of ash of an hypothetical distribution of ash of known particle size and volume fraction. This is of particular importance for advection-diffusion transport model of ash where generally a one-way coupling is adopted, considering only the flow effects on particles. To better quantify the importance of the enhanced settling velocity in ash dispersal, we finally introduced the new formulation in a Lagrangian model calculating for realistic eruptive conditions the resulting ash concentration in the atmosphere and on the ground.
Verkaik, A. C.; Beulen, B. W. A. M. M.; Bogaerds, A. C. B.; Rutten, M. C. M.; van de Vosse, F. N.
2009-02-01
To monitor biomechanical parameters related to cardiovascular disease, it is necessary to perform correct volume flow estimations of blood flow in arteries based on local blood velocity measurements. In clinical practice, estimates of flow are currently made using a straight-tube assumption, which may lead to inaccuracies since most arteries are curved. Therefore, this study will focus on the effect of curvature on the axial velocity profile for flow in a curved tube in order to find a new volume flow estimation method. The study is restricted to steady flow, enabling the use of analytical methods. First, analytical approximation methods for steady flow in curved tubes at low Dean numbers (Dn) and low curvature ratios (δ) are investigated. From the results a novel volume flow estimation method, the cos θ-method, is derived. Simulations for curved tube flow in the physiological range (1≤Dn≤1000 and 0.01≤δ≤0.16) are performed with a computational fluid dynamics (CFD) model. The asymmetric axial velocity profiles of the analytical approximation methods are compared with the velocity profiles of the CFD model. Next, the cos θ-method is validated and compared with the currently used Poiseuille method by using the CFD results as input. Comparison of the axial velocity profiles of the CFD model with the approximations derived by Topakoglu [J. Math. Mech. 16, 1321 (1967)] and Siggers and Waters [Phys. Fluids 17, 077102 (2005)] shows that the derived velocity profiles agree very well for Dn≤50 and are fair for 50100), no analytical approximation method exists. In the position of the maximum axial velocity, a shift toward the inside of the curve is observed for low Dean numbers, while for high Dean numbers, the position of the maximum velocity is located at the outer curve. When the position of the maximum velocity of the axial velocity profile is given as a function of the Reynolds number, a "zero-shift point" is found at Re=21.3. At this point the shift in
Meng, Yiqing; Lucas, Gary P.
2017-05-01
This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water
Parallel Algorithm in Surface Wave Waveform Inversion
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In Surface wave waveform inversion, we want to reconstruct 3Dshear wav e velocity structure, which calculation beyond the capability of the powerful pr esent day personal computer or even workstation. So we designed a high parallele d algorithm and carried out the inversion on Parallel computer based on the part itioned waveform inversion (PWI). It partitions the large scale optimization pro blem into a number of independent small scale problems and reduces the computati onal effort by several orders of magnitude. We adopted surface waveform inversio n with a equal block(2°×2°) discretization.
The Evolution of P-wave Velocity in Fault Gouge: Initial Results for Samples from the SAFOD Volume.
Knuth, M. W.; Tobin, H. J.; Marone, C.
2008-12-01
We present initial results from a new technique for observing the evolution of elastic properties in sheared fault zone materials via acoustic wave velocity. The relationship between the mechanical strength of fault gouge and acoustic velocity during active deformation has important implications not only for a physical understanding of elasticity in deforming granular media, but also for the interpretation of the seismic velocity at the field scale. Experiments are conducted at atmospheric temperature and saturation state in a double-direct-shear testing apparatus, with normal stress stepped from 1 to 19 MPa to interrogate behavior during compaction, and sheared at a rate of 10 microns/second to observe changes in velocity with increasing strain. Tests are divided between those involving continuous shear to a displacement of 22.5 mm, and those with intervals of 3.75 mm shear separated by unloading and reloading sequences in normal stress. Velocity is measured by time-of-flight between two piezoelectric P-wave transducers set into the sample configuration on either side of the shearing layers. Samples tested include common laboratory standards for simulated fault gouge and field samples taken from representative localities in the 3D rock volume containing the San Andreas Fault Observatory at Depth experiment in Parkfield, California. The velocities of sand and clay end-member gouges are observed to behave differently under shear, and mixtures of quartz sand and montmorillonite behave differently from both end-member materials. Initial results suggest that particle sorting exerts a strong influence on both the absolute velocity and the evolution of velocity in response to increasing shear strain where the elastic properties of the grains are similar. We also observe a first-order relationship between the coefficient of friction and P-wave velocity that appears to be related to grain reorganization at the onset of shear following initial compaction.
Sand, D J; Bennet, P; Willman, B; Hargis, J; Strader, J; Olszewski, E; Tollerud, E J; Simon, J D; Caldwell, N; Guhathakurta, P; James, B L; Koposov, S; McLeod, B; Morrell, N; Peacock, M; Salinas, R; Seth, A C; Stark, D P; Toloba, E
2015-01-01
We report the discovery of five Local Volume dwarf galaxies uncovered during a comprehensive archival search for optical counterparts to ultra-compact high velocity clouds (UCHVCs). The UCHVC population of HI clouds are thought to be candidate gas-rich, low mass halos at the edge of the Local Group and beyond, but no comprehensive search for stellar counterparts to these systems has been presented. Careful visual inspection of all publicly available optical and ultraviolet imaging at the position of the UCHVCs revealed six blue, diffuse counterparts with a morphology consistent with a faint dwarf galaxy beyond the Local Group. Optical spectroscopy of all six candidate dwarf counterparts show that five have an H$\\alpha$-derived velocity consistent with the coincident HI cloud, confirming their association; the sixth diffuse counterpart is likely a background object. The size and luminosity of the UCHVC dwarfs is consistent with other known Local Volume dwarf irregular galaxies. The gas fraction ($M_{HI}/M_{sta...
Simple Waveforms, Simply Described
Baker, John G.
2008-01-01
Since the first Lazarus Project calculations, it has been frequently noted that binary black hole merger waveforms are 'simple.' In this talk we examine some of the simple features of coalescence and merger waveforms from a variety of binary configurations. We suggest an interpretation of the waveforms in terms of an implicit rotating source. This allows a coherent description, of both the inspiral waveforms, derivable from post-Newtonian(PN) calculations, and the numerically determined merger-ringdown. We focus particularly on similarities in the features of various Multipolar waveform components Generated by various systems. The late-time phase evolution of most L these waveform components are accurately described with a sinple analytic fit. We also discuss apparent relationships among phase and amplitude evolution. Taken together with PN information, the features we describe can provide an approximate analytic description full coalescence wavefoRms. complementary to other analytic waveforns approaches.
Analog circuit design designing waveform processing circuits
Feucht, Dennis
2010-01-01
The fourth volume in the set Designing Waveform-Processing Circuits builds on the previous 3 volumes and presents a variety of analog non-amplifier circuits, including voltage references, current sources, filters, hysteresis switches and oscilloscope trigger and sweep circuitry, function generation, absolute-value circuits, and peak detectors.
Drop volumes and terminal velocities in aqueous two-phase systems
Energy Technology Data Exchange (ETDEWEB)
Bhavasar, P. M.; Jafarabad, K. R.; Pandit, A. B.; Sawant, S. B.; Joshi, J. B. [Bombay Univ. (India). Dept. of Chemical Technology
1996-12-01
Two phase aqueous extraction techniques employed in liquid-liquid extraction equipment such as spray columns and plate columns were studied, with particular attention to predicting drop sizes prior to jetting, and their terminal velocity. In the particular system studied, the values obtained by conventional models as found in the literature were considered inapplicable. A generalised model was constructed using video photographic measurements, and a correlation was developed for the terminal velocities of the drops in aqueous two-phase systems. This simplified model was found to be successful in expressing the terminal rise/fall velocities of droplets covering a specific range of Morton numbers (representing physical properties) from 0.00211 to 11050 and Eotvos numbers (representative of drop size) from 0.091 to 288. 22 refs., 6 figs.
Directory of Open Access Journals (Sweden)
P. V. Ponomarenko
2009-11-01
Full Text Available Ionospheric E×B plasma drift velocities derived from the Super Dual Auroral Radar Network (SuperDARN Doppler data exhibit systematically smaller (by 20–30% magnitudes than those measured by the Defence Meteorological Satellites Program (DMSP satellites. A part of the disagreement was previously attributed to the change in the E/B ratio due to the altitude difference between the satellite orbit and the location of the effective scatter volume for the radar signals. Another important factor arises from the free-space propagation assumption used in converting the measured Doppler frequency shift into the line-of-sight velocity. In this work, we have applied numerical ray-tracing to identify the location of the effective scattering volume of the ionosphere and to estimate the ionospheric refractive index. The simulations show that the major contribution to the radar echoes should be provided by the Pedersen and/or escaping rays that are scattered in the vicinity of the F-layer maximum. This conclusion is supported by a statistical analysis of the experimental elevation angle data, which have a signature consistent with scattering from the F-region peak. A detailed analysis of the simulations has allowed us to propose a simple velocity correction procedure, which we have successfully tested against the SuperDARN/DMSP comparison data set.
Zhang, D. L.
2013-01-01
To increase the illumination of the subsurface and to eliminate the dependency of FWI on the source wavelet, we propose multiples waveform inversion (MWI) that transforms each hydrophone into a virtual point source with a time history equal to that of the recorded data. These virtual sources are used to numerically generate downgoing wavefields that are correlated with the backprojected surface-related multiples to give the migration image. Since the recorded data are treated as the virtual sources, knowledge of the source wavelet is not required, and the subsurface illumination is greatly enhanced because the entire free surface acts as an extended source compared to the radiation pattern of a traditional point source. Numerical tests on the Marmousi2 model show that the convergence rate and the spatial resolution of MWI is, respectively, faster and more accurate then FWI. The potential pitfall with this method is that the multiples undergo more than one roundtrip to the surface, which increases attenuation and reduces spatial resolution. This can lead to less resolved tomograms compared to conventional FWI. The possible solution is to combine both FWI and MWI in inverting for the subsurface velocity distribution.
Del Bello, Elisabetta; Taddeucci, Jacopo; de’ Michieli Vitturi, Mattia; Scarlato, Piergiorgio; Andronico, Daniele; Scollo, Simona; Kueppers, Ulrich; Ricci, Tullio
2017-01-01
Most of the current ash transport and dispersion models neglect particle-fluid (two-way) and particle-fluid plus particle-particle (four-way) reciprocal interactions during particle fallout from volcanic plumes. These interactions, a function of particle concentration in the plume, could play an important role, explaining, for example, discrepancies between observed and modelled ash deposits. Aiming at a more accurate prediction of volcanic ash dispersal and sedimentation, the settling of ash particles at particle volume fractions (ϕp) ranging 10‑7-10‑3 was performed in laboratory experiments and reproduced by numerical simulations that take into account first the two-way and then the four-way coupling. Results show that the velocity of particles settling together can exceed the velocity of particles settling individually by up to 4 times for ϕp ~ 10‑3. Comparisons between experimental and simulation results reveal that, during the sedimentation process, the settling velocity is largely enhanced by particle-fluid interactions but partly hindered by particle-particle interactions with increasing ϕp. Combining the experimental and numerical results, we provide an empirical model allowing correction of the settling velocity of particles of any size, density, and shape, as a function of ϕp. These corrections will impact volcanic plume modelling results as well as remote sensing retrieval techniques for plume parameters.
Del Bello, Elisabetta; Taddeucci, Jacopo; de’ Michieli Vitturi, Mattia; Scarlato, Piergiorgio; Andronico, Daniele; Scollo, Simona; Kueppers, Ulrich; Ricci, Tullio
2017-01-01
Most of the current ash transport and dispersion models neglect particle-fluid (two-way) and particle-fluid plus particle-particle (four-way) reciprocal interactions during particle fallout from volcanic plumes. These interactions, a function of particle concentration in the plume, could play an important role, explaining, for example, discrepancies between observed and modelled ash deposits. Aiming at a more accurate prediction of volcanic ash dispersal and sedimentation, the settling of ash particles at particle volume fractions (ϕp) ranging 10−7-10−3 was performed in laboratory experiments and reproduced by numerical simulations that take into account first the two-way and then the four-way coupling. Results show that the velocity of particles settling together can exceed the velocity of particles settling individually by up to 4 times for ϕp ~ 10−3. Comparisons between experimental and simulation results reveal that, during the sedimentation process, the settling velocity is largely enhanced by particle-fluid interactions but partly hindered by particle-particle interactions with increasing ϕp. Combining the experimental and numerical results, we provide an empirical model allowing correction of the settling velocity of particles of any size, density, and shape, as a function of ϕp. These corrections will impact volcanic plume modelling results as well as remote sensing retrieval techniques for plume parameters. PMID:28045056
Mohamad, Nur Ikhwan; Cronin, John B; Nosaka, Ken K
2012-01-01
Although it is generally accepted that a high load is necessary for muscle hypertrophy, it is possible that a low load with a high velocity results in greater kinematics and kinetics than does a high load with a slow velocity. The purpose of this study was to determine if 2 training loads (35 and 70% 1 repetition maximum [1RM]) equated by volume, differed in terms of their session kinematic and kinetic characteristics. Twelve subjects were recruited in this acute randomized within-subject crossover design study. Two bouts of a half-squat exercise were performed 1 week apart, one with high load-low velocity (HLLV = 3 sets of 12 reps at 70% 1RM) and the other with low-load high-velocity (LLHV = 6 sets of 12 reps at 35% 1RM). Time under tension (TUT), average force, peak force (PF), average power (AP), peak power (PP), work (TW), and total impulse (TI) were calculated and compared between loads for the eccentric and concentric phases. For average eccentric and concentric single repetition values, significantly (p eccentric and concentric TUT, PF, AP, PP, and TW. The only variable that was significantly greater for the HLLV protocol than for the LLHV protocol was TI (∼20-24%). From these results, it seems that the LLHV protocol may offer an equal if not better training stimulus for muscular adaptation than the HLLV protocol, because of the greater time under tension, power, force, and work output when the total volume of the exercise is equated.
Miyake, Y.; Hozumi, T; Mori, I.; Sugioka, K; Yamamuro, A; Akasaka, T; Homma, S; Yoshida, K.; Yoshikawa, J
2002-01-01
Background: The recently introduced automated cardiac flow measurement (ACM) technique provides a quick and an accurate automated calculation of stroke volume and cardiac output. This is obtained by spatio-temporal integration of digital Doppler velocity profile data.
Quirk, Kevin J.; Srinivasan, Meera
2012-01-01
The minimum-shift-keying (MSK) radar waveform is formed by periodically extending a waveform that separately modulates the in-phase and quadrature- phase components of the carrier with offset pulse-shaped pseudo noise (PN) sequences. To generate this waveform, a pair of periodic PN sequences is each passed through a pulse-shaping filter with a half sinusoid impulse response. These shaped PN waveforms are then offset by half a chip time and are separately modulated on the in-phase and quadrature phase components of an RF carrier. This new radar waveform allows an increase in radar resolution without the need for additional spectrum. In addition, it provides self-interference suppression and configurable peak sidelobes. Compared strictly on the basis of the expressions for delay resolution, main-lobe bandwidth, effective Doppler bandwidth, and peak ambiguity sidelobe, it appears that bi-phase coded (BPC) outperforms the new MSK waveform. However, a radar waveform must meet certain constraints imposed by the transmission and reception of the modulation, as well as criteria dictated by the observation. In particular, the phase discontinuity of the BPC waveform presents a significant impediment to the achievement of finer resolutions in radar measurements a limitation that is overcome by using the continuous phase MSK waveform. The phase continuity, and the lower fractional out-of-band power of MSK, increases the allowable bandwidth compared with BPC, resulting in a factor of two increase in the range resolution of the radar. The MSK waveform also has been demonstrated to have an ambiguity sidelobe structure very similar to BPC, where the sidelobe levels can be decreased by increasing the length of the m-sequence used in its generation. This ability to set the peak sidelobe level is advantageous as it allows the system to be configured to a variety of targets, including those with a larger dynamic range. Other conventionally used waveforms that possess an even greater
Multiscale Stategies in Automatic Image-Domain Waveform Tomography
Institute of Scientific and Technical Information of China (English)
Yujin Liu; Zhenchun Li
2015-01-01
Multiscale strategies are very important in the successful application of waveform-based velocity inversion. The strategy that sequentially preceeds from long to short scale of velocity model, has been well developed in full waveform inversion (FWI) to solve the local mininum problem. In contrast, it’s not well understood in the image-domain waveform tomography (IWT), which back-projects incoherent waveform components of the common image gather into velocity updates. IWT is less prone to local minimum problem but tends to build long-scale model with low resolution. In order to build both long- and short-scale model by IWT, we discuss several multiscale strategies restricted in the image domain. The strategies include model reparameterization, objective function switching and gradient rescaling. Numerical tests on Marmsousi model and real data demonstrate that our proposed multiscale IWT is effective in buidling velocity model with wide wavenumber spectrum.
Directory of Open Access Journals (Sweden)
Chun-Jen Lin
2014-04-01
Conclusion: The results of our study indicated that low RBC volume may play an important role in the pathophysiology of OI in this group of patients. Moreover, its role seems even more relevant in patients with POTS than in those without. Further studies for mechanistic evaluation are needed in the future.
Automated multimode inversion of surface and S waveforms
Lebedev, Sergei; Nolet, Guust; Meier, Thomas; Hilst, R.D. van der
2005-01-01
Inversion of the surface, S, and multiple-S waveforms is an effective means of constraining the structure of the upper mantle, including the transition zone. Exploiting the resolving power of the enormous volume of presently available data requires efficiency of data processing and waveform modellin
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The DSP Based Waveform Generator is used for CSR Control system to control special controlled objects, such as the pulsed power supply for magnets, RF system, injection and extraction synchronization, global CSR synchronization etc. This intelligent controller based on 4800 MIPS DSP and 256M SDRAM technology will supply highly stable and highly accurate reference waveform used by the power supply of magnets. The specifications are as follows:
Griffin, Maurice; Sugawara, Glen
1995-02-01
A system for storing an arbitrary waveform on nonvolatile random access memory (NVRAM) device and generating an analog signal using the NVRAM device is described. A central processing unit is used to synthesize an arbitrary waveform and create a digital representation of the waveform and transfer the digital representation to a microprocessor which, in turn, writes the digital data into an NVRAM device which has been mapped into a portion of the microprocessor address space. The NVRAM device is removed from address space and placed into an independent waveform generation unit. In the waveform generation unit, an address clock provides an address timing signal and a cycle clock provides a transmit signal. Both signals are applied to an address generator. When both signals are present, the address generator generates and transmits to the NVRAM device a new address for each cycle of the address timing signal. In response to each new address generated, the NVRAM devices provides a digital output which is applied to a digital to analog converter. The converter produces a continuous analog output which is smoothed by a filter to produce the arbitrary waveform.
Institute of Scientific and Technical Information of China (English)
Yang Haijun; Liu Yongfu; Xie Huiwen; Xu Yongzhong; Sun Qi; Wang Shuangshuang
2013-01-01
This paper introduces horizon control,seismic control,logging control and facies control methods through the application of the least squares fitting of logging curves,seismic inversion and facies-controlled techniques.Based on the microgeology and thin section analyses,the lithology,lithofacies and periods of the Permian igneous rocks are described in detail.The seismic inversion and facies-controlled techniques were used to find the distribution characteristics of the igneous rocks and the 3D velocity volume.The least squares fitting of the logging curves overcome the problem that the work area is short of density logging data.Through analysis of thin sections,the lithofacies can be classified into eruption airfall subfacies,eruption pyroclastic flow subfacies and eruption facies.
Platform for Postprocessing Waveform-Based NDE
Roth, Don
2008-01-01
Taking advantage of the similarities that exist among all waveform-based non-destructive evaluation (NDE) methods, a common software platform has been developed containing multiple- signal and image-processing techniques for waveforms and images. The NASA NDE Signal and Image Processing software has been developed using the latest versions of LabVIEW, and its associated Advanced Signal Processing and Vision Toolkits. The software is useable on a PC with Windows XP and Windows Vista. The software has been designed with a commercial grade interface in which two main windows, Waveform Window and Image Window, are displayed if the user chooses a waveform file to display. Within these two main windows, most actions are chosen through logically conceived run-time menus. The Waveform Window has plots for both the raw time-domain waves and their frequency- domain transformations (fast Fourier transform and power spectral density). The Image Window shows the C-scan image formed from information of the time-domain waveform (such as peak amplitude) or its frequency-domain transformation at each scan location. The user also has the ability to open an image, or series of images, or a simple set of X-Y paired data set in text format. Each of the Waveform and Image Windows contains menus from which to perform many user actions. An option exists to use raw waves obtained directly from scan, or waves after deconvolution if system wave response is provided. Two types of deconvolution, time-based subtraction or inverse-filter, can be performed to arrive at a deconvolved wave set. Additionally, the menu on the Waveform Window allows preprocessing of waveforms prior to image formation, scaling and display of waveforms, formation of different types of images (including non-standard types such as velocity), gating of portions of waves prior to image formation, and several other miscellaneous and specialized operations. The menu available on the Image Window allows many further image
Source-independent elastic waveform inversion using a logarithmic wavefield
Choi, Yun Seok
2012-01-01
The logarithmic waveform inversion has been widely developed and applied to some synthetic and real data. In most logarithmic waveform inversion algorithms, the subsurface velocities are updated along with the source estimation. To avoid estimating the source wavelet in the logarithmic waveform inversion, we developed a source-independent logarithmic waveform inversion algorithm. In this inversion algorithm, we first normalize the wavefields with the reference wavefield to remove the source wavelet, and then take the logarithm of the normalized wavefields. Based on the properties of the logarithm, we define three types of misfit functions using the following methods: combination of amplitude and phase, amplitude-only, and phase-only. In the inversion, the gradient is computed using the back-propagation formula without directly calculating the Jacobian matrix. We apply our algorithm to noise-free and noise-added synthetic data generated for the modified version of elastic Marmousi2 model, and compare the results with those of the source-estimation logarithmic waveform inversion. For the noise-free data, the source-independent algorithms yield velocity models close to true velocity models. For random-noise data, the source-estimation logarithmic waveform inversion yields better results than the source-independent method, whereas for coherent-noise data, the results are reversed. Numerical results show that the source-independent and source-estimation logarithmic waveform inversion methods have their own merits for random- and coherent-noise data. © 2011.
Granström, Sara; Pipper, Christian Bressen; Møgelvang, Rasmus; Sogaard, Peter; Willesen, Jakob Lundgren; Koch, Jørgen
2012-12-01
The aims of this study were to compare the effect of sample volume (SV) size settings and sampling method on measurement variability and peak systolic (s'), and early (e') and late (a') diastolic longitudinal myocardial velocities using color tissue Doppler imaging (cTDI) in cats. Twenty cats with normal echocardiograms and 20 cats with hypertrophic cardiomyopathy. We quantified and compared empirical variance and average absolute values of s', e' and a' for three cardiac cycles using eight different SV settings (length 1,2,3 and 5 mm; width 1 and 2 mm) and three methods of sampling (end-diastolic sampling with manual tracking of the SV, end-systolic sampling without tracking, and random-frame sampling without tracking). No significant difference in empirical variance could be demonstrated between most of the tested SVs. However, the two settings with a length of 1 mm resulted in a significantly higher variance compared with all settings where the SV length exceeded 2 mm (p sampling method on the variability of measurements (p = 0.003) and manual tracking obtained the lowest variance. No difference in average values of s', e' or a' could be found between any of the SV settings or sampling methods. Within the tested range of SV settings, an SV length of 1 mm resulted in higher measurement variability compared with an SV length of 3 and 5 mm, and should therefore be avoided. Manual tracking of the sample volume is recommended. Copyright © 2012 Elsevier B.V. All rights reserved.
Compressive full waveform lidar
Yang, Weiyi; Ke, Jun
2017-05-01
To avoid high bandwidth detector, fast speed A/D converter, and large size memory disk, a compressive full waveform LIDAR system, which uses a temporally modulated laser instead of a pulsed laser, is studied in this paper. Full waveform data from NEON (National Ecological Observatory Network) are used. Random binary patterns are used to modulate the source. To achieve 0.15 m ranging resolution, a 100 MSPS A/D converter is assumed to make measurements. SPIRAL algorithm with canonical basis is employed when Poisson noise is considered in the low illuminated condition.
Advanced Waveform Simulation for Seismic Monitoring
2008-09-01
velocity model. The method separates the main arrivals of the regional waveform into 5 windows: Pnl (vertical and radial components), Rayleigh (vertical and...ranges out to 10°, including extensive observations of crustal thinning and thickening and various Pnl complexities. Broadband modeling in 1D, 2D...existing models perform in predicting the various regional phases, Rayleigh waves, Love waves, and Pnl waves. Previous events from this Basin-and-Range
Adaptive multi-step Full Waveform Inversion based on Waveform Mode Decomposition
Hu, Yong; Han, Liguo; Xu, Zhuo; Zhang, Fengjiao; Zeng, Jingwen
2017-04-01
Full Waveform Inversion (FWI) can be used to build high resolution velocity models, but there are still many challenges in seismic field data processing. The most difficult problem is about how to recover long-wavelength components of subsurface velocity models when seismic data is lacking of low frequency information and without long-offsets. To solve this problem, we propose to use Waveform Mode Decomposition (WMD) method to reconstruct low frequency information for FWI to obtain a smooth model, so that the initial model dependence of FWI can be reduced. In this paper, we use adjoint-state method to calculate the gradient for Waveform Mode Decomposition Full Waveform Inversion (WMDFWI). Through the illustrative numerical examples, we proved that the low frequency which is reconstructed by WMD method is very reliable. WMDFWI in combination with the adaptive multi-step inversion strategy can obtain more faithful and accurate final inversion results. Numerical examples show that even if the initial velocity model is far from the true model and lacking of low frequency information, we still can obtain good inversion results with WMD method. From numerical examples of anti-noise test, we see that the adaptive multi-step inversion strategy for WMDFWI has strong ability to resist Gaussian noise. WMD method is promising to be able to implement for the land seismic FWI, because it can reconstruct the low frequency information, lower the dominant frequency in the adjoint source, and has a strong ability to resist noise.
Energy Technology Data Exchange (ETDEWEB)
Hiroshige, Kikura; Gentaro, Yamanaka; Tsuyoshi, Taishi; Masanori, Aritomi [Tokyo Institute of Technology, Tokyo (Japan); Yasushi, Takeda [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Michitsugu, Mori [Tokyo Electric Power Co., Inc. (Japan)
2001-07-01
Ultrasonic Velocity Profile method has many advantages for flow rate measurement of power plant over the conventional flow measurement methods, such as measurement of the instantaneous velocity profile along the measuring line and its applicability to opaque liquids. Furthermore, the method has an advantage of being non-intrusive. Hence, it is applicable to various flow conditions, although it requires a relatively large measurement volume. In this paper, the effects of the measurement volume on the mean velocity profile for flow rate measurements of power plant and the Reynolds stress measurement have been investigated for fully developed turbulent pipe flows in a vertical pipe. The results are then compared with data obtained by Direct Numerical Simulation (DNS). (authors)
Waveforms Measured in Confined Thermobaric Explosion
Energy Technology Data Exchange (ETDEWEB)
Reichenbach, H; Neuwald, P; Kuhl, A L
2007-05-04
Experiments with 1.5-g Shock-Dispersed-Fuel (SDF) charges have been conducted in six different chambers. Both flake Aluminum and TNT were used as the fuel. Static pressure gauges on the chamber wall were the main diagnostic. Waveforms for explosions in air were significantly larger than those in nitrogen - thereby demonstrating a strong thermobaric (combustion) effect. This effect increases as the confinement volume decreases and the mixture richness approaches 1.
Quantum optical waveform conversion
Kielpinski, D; Wiseman, HM
2010-01-01
Currently proposed architectures for long-distance quantum communication rely on networks of quantum processors connected by optical communications channels [1,2]. The key resource for such networks is the entanglement of matter-based quantum systems with quantum optical fields for information transmission. The optical interaction bandwidth of these material systems is a tiny fraction of that available for optical communication, and the temporal shape of the quantum optical output pulse is often poorly suited for long-distance transmission. Here we demonstrate that nonlinear mixing of a quantum light pulse with a spectrally tailored classical field can compress the quantum pulse by more than a factor of 100 and flexibly reshape its temporal waveform, while preserving all quantum properties, including entanglement. Waveform conversion can be used with heralded arrays of quantum light emitters to enable quantum communication at the full data rate of optical telecommunications.
Institute of Scientific and Technical Information of China (English)
Ren Tingzhi; Liu Cai
2004-01-01
A new non-sinusoidal oscillation waveform is constructed for controlling the mold oscillation during continuous casting. Casting velocity and oscillation parameters are then established for a computer model of the continuous casting process. The waveform distortion coefficient ε of waveform function is close to the waveform distortion rate α, so ε is taken for ε when the basic parameters are selected initially. The waveform function can be created for the servo hydraulic system or the mechanical driving system. Industrial scale experiments show the waveform function is effective.
Padilla, Juan M; Berjano, Enrique J; Sáiz, Javier; Rodriguez, Rafael; Fácila, Lorenzo
2009-09-01
The purpose of the study was to asses the potential use of pulse wave velocity (PWV) and digital volume pulse (DVP) as estimators of systolic (SBP) and diastolic (DPB) blood pressure. Single and multiple correlation studies were conducted, including biometric parameters and risk factors. Brachial-ankle PWV (baPWV) and DVP signals were obtained from a Pulse Trace PWV and Pulse Trace PCA (pulse contour analysis), respectively. The DVP (obtained by photoplethysmography), allowed stiffness (SI) and reflection indexes (RI) to be derived. The first study on 47 healthy volunteers showed that both SBP and DPB correlated significantly both with baPWV and SI. Multiple regression models of the baPWV and the waist-to-hip ratio (WHR) allowed SBP and DBP to be modeled with r = 0.838 and r = 0.673, respectively. SI results also employed WHR and modeled SBP and DBP with r = 0.852 and r = 0.663, respectively. RI did not correlate either with SBP or DBP. In order to avoid the use of ultrasound techniques to measure PWV, we then developed a custom-built system to measure PWV by photoplethysmography and validated it against the Pulse Trace. With the same equipment we conducted a second pilot study with ten healthy volunteers. The best SBP multiple regression model for SBP achieved r = 0.997 by considering the heart-finger PWV (hfPWV measured between R-wave and index finger), WHR and heart rate. Only WHR was significant in the DBP model. Our findings suggest that the hfPWV photoplethysmography signal could be a reliable estimator of approximate SBP and could be used, for example, to monitor cardiac patients during physical exercise sessions in cardiac rehabilitation.
Full Elastic Waveform Search Engine for Near Surface Imaging
Zhang, J.; Zhang, X.
2014-12-01
For processing land seismic data, the near-surface problem is often very complex and may severely affect our capability to image the subsurface. The current state-of-the-art technology for near surface imaging is the early arrival waveform inversion that solves an acoustic wave-equation problem. However, fitting land seismic data with acoustic wavefield is sometimes invalid. On the other hand, performing elastic waveform inversion is very time-consuming. Similar to a web search engine, we develop a full elastic waveform search engine that includes a large database with synthetic elastic waveforms accounting for a wide range of interval velocity models in the CMP domain. With each CMP gather of real data as an entry, the search engine applies Multiple-Randomized K-Dimensional (MRKD) tree method to find approximate best matches to the entry in about a second. Interpolation of the velocity models at CMP positions creates 2D or 3D Vp, Vs, and density models for the near surface area. The method does not just return one solution; it gives a series of best matches in a solution space. Therefore, the results can help us to examine the resolution and nonuniqueness of the final solution. Further, this full waveform search method can avoid the issues of initial model and cycle skipping that the method of full waveform inversion is difficult to deal with.
Institute of Scientific and Technical Information of China (English)
黄子健; 潘素慈; 戴常平; 李秋明
2001-01-01
目的 应用彩色多普勒超声监测生长迟缓（IUGR）胎儿的脐动脉血液循环。方法 测定130例妊娠20～42周妇女(其中正常49例、IUGR 81例)脐动脉时间平均血流速度（TAMX）、收缩期最大血流速度与舒张末期血流速度的比值（S／D）、搏动指数（PI）、阻力指数（RI）、收缩期最大血流速度(Vmax)与舒张末期血流速度（Vmin）。结果 正常孕妇随孕龄增长，胎盘功能增强，胎儿血液循环日渐丰富。IUGR者则明显障碍，在20周时脐动脉TAMX显著下降，在30周后S／D、 PI及RI显著升高，Vmin显著下降，在35周时Vmax显著下降。出现舒张期血流停止或倒流。结论 彩色多普勒超声可直接测定脐动脉血液循环，能在早期诊断IUGR、判断病情及估计预后。%Objective To study the changes of the fetal circulation in intrauterine growth retardation (IUGR) cases.Methods Color Doppler ultrasound was used to detect blood flow velocity waveforms of the umbilical artery (UmA)in 130 pregnant women at 20～42 weeks′ gestation,of which 49 cases were normal pregnancy and 81 cases were IUGR.The indices included time average maximum (TAMX) ,pulsatility index (PI) , resistance index (RI) ,systolic maximum velocity (Vmax) /diastolic minimum velocity (Vmin) ratio (S/D).Results The results showed that the fetal circulation became abundant gradually with increasing gestational age in normal pregnancy group,but that TAMX was markedly decreased at 20 weeks′ gestation,S/D ratio,PI and RI were markedly elevated,Vmin was markedly decreased at 30 weeks′ gestation,and Vmax was markedly decreased at 35 weeks′ gestation in IUGR group.Conclusions Examining blood flow velocity waveforms of UmA by Color Doppler ultrasound was one of the best method to early diagnose and predict the prognosis of IUGR.
Global and local waveform simulations using the VERCE platform
Garth, Thomas; Saleh, Rafiq; Spinuso, Alessandro; Gemund, Andre; Casarotti, Emanuele; Magnoni, Federica; Krischner, Lion; Igel, Heiner; Schlichtweg, Horst; Frank, Anton; Michelini, Alberto; Vilotte, Jean-Pierre; Rietbrock, Andreas
2017-04-01
In recent years the potential to increase resolution of seismic imaging by full waveform inversion has been demonstrated on a range of scales from basin to continental scales. These techniques rely on harnessing the computational power of large supercomputers, and running large parallel codes to simulate the seismic wave field in a three-dimensional geological setting. The VERCE platform is designed to make these full waveform techniques accessible to a far wider spectrum of the seismological community. The platform supports the two widely used spectral element simulation programs SPECFEM3D Cartesian, and SPECFEM3D globe, allowing users to run a wide range of simulations. In the SPECFEM3D Cartesian implementation the user can run waveform simulations on a range of pre-loaded meshes and velocity models for specific areas, or upload their own velocity model and mesh. In the new SPECFEM3D globe implementation, the user will be able to select from a number of continent scale model regions, or perform waveform simulations for the whole earth. Earthquake focal mechanisms can be downloaded within the platform, for example from the GCMT catalogue, or users can upload their own focal mechanism catalogue through the platform. The simulations can be run on a range of European supercomputers in the PRACE network. Once a job has been submitted and run through the platform, the simulated waveforms can be manipulated or downloaded for further analysis. The misfit between the simulated and recorded waveforms can then be calculated through the platform through three interoperable workflows, for raw-data access (FDSN) and caching, pre-processing and finally misfit. The last workflow makes use of the Pyflex analysis software. In addition, the VERCE platform can be used to produce animations of waveform propagation through the velocity model, and synthetic shakemaps. All these data-products are made discoverable and re-usable thanks to the VERCE data and metadata management layer. We
Institute of Scientific and Technical Information of China (English)
LI Hua; WANG Mi; WU Ying-xiang; MA Yi-xin; WILLIAMS Richard
2005-01-01
This paper presents the use of a high performance dual-plane electrical resistance tomography (ERT) system and a local dual-sensor conductance probe to measure the vertical upward oil-in-water pipe flows in which the mean oil volume fraction is up to 23.1%.A sensitivity coefficient back-projection (SBP) algorithm was adopted to reconstruct the flow distributions and a cross correlation method was applied to obtain the oil velocity distributions. The oil volume fraction and velocity distributions obtained from both measurement techniques were compared and good agreement was found, which indicates that the ERT technique can be used to measure the low fraction oil-water flows. Finally, the factors affecting measurement precision were discussed.
Bekeraité, S.; Walcher, C. J.; Falcón-Barroso, J.; Garcia Lorenzo, B.; Lyubenova, M.; Sánchez, S. F.; Spekkens, K.; van de Ven, G.; Wisotzki, L.; Ziegler, B.; Aguerri, J. A. L.; Barrera-Ballesteros, J.; Bland-Hawthorn, J.; Catalán-Torrecilla, C.; García-Benito, R.
2016-10-01
We measured the distribution in absolute magnitude - circular velocity space for a well-defined sample of 199 rotating galaxies of the Calar Alto Legacy Integral Field Area Survey (CALIFA) using their stellar kinematics. Our aim in this analysis is to avoid subjective selection criteria and to take volume and large-scale structure factors into account. Using stellar velocity fields instead of gas emission line kinematics allows including rapidly rotating early-type galaxies. Our initial sample contains 277 galaxies with available stellar velocity fields and growth curve r-band photometry. After rejecting 51 velocity fields that could not be modelled because of the low number of bins, foreground contamination, or significant interaction, we performed Markov chain Monte Carlo modelling of the velocity fields, from which we obtained the rotation curve and kinematic parameters and their realistic uncertainties. We performed an extinction correction and calculated the circular velocity vcirc accounting for the pressure support of a given galaxy. The resulting galaxy distribution on the Mr-vcirc plane was then modelled as a mixture of two distinct populations, allowing robust and reproducible rejection of outliers, a significant fraction of which are slow rotators. The selection effects are understood well enough that we were able to correct for the incompleteness of the sample. The 199 galaxies were weighted by volume and large-scale structure factors, which enabled us to fit a volume-corrected Tully-Fisher relation (TFR). More importantly, we also provide the volume-corrected distribution of galaxies in the Mr-vcirc plane, which can be compared with cosmological simulations. The joint distribution of the luminosity and circular velocity space densities, representative over the range of -20 > Mr > -22 mag, can place more stringent constraints on the galaxy formation and evolution scenarios than linear TFR fit parameters or the luminosity function alone. Galaxies main
Müller, T; Rehn, M; Girschick, G; Kristen, P; Dietl, J
2001-01-01
Doppler recordings of fetal venous blood flow seem to be superior to arterial velocimetry and CTG concerning the prediction of fetal outcome and optimal time of delivery in pregnancies with fetal growth retardation and AREDV. An improvement of arterial Doppler flow velocities has been described. We report the reappearance of a normal end-diastolic flow velocity in a ductus venosus temporarily showing reversed end-diastolic flow in a growth-retarded fetus with congenital anomalies. This normalization was accompanied by an improvement of the CTG, a loss of umbilical vein pulsations, a reappearance of umbilical diastolic flow and a progressive return of cerebral and venous blood flow into the 'normal' range. Improvement of fetal condition may be the explanation for our observation.
Electronics via waveform analysis
Craig, Edwin C
1993-01-01
The author believes that a good basic understanding of electronics can be achieved by detailed visual analyses of the actual voltage waveforms present in selected circuits. The voltage waveforms included in this text were photographed using a 35-rrun camera in an attempt to make the book more attractive. This book is intended for the use of students with a variety of backgrounds. For this reason considerable material has been placed in the Appendix for those students who find it useful. The Appendix includes many basic electricity and electronic concepts as well as mathematical derivations that are not vital to the understanding of the circuit being discussed in the text at that time. Also some derivations might be so long that, if included in the text, it could affect the concentration of the student on the circuit being studied. The author has tried to make the book comprehensive enough so that a student could use it as a self-study course, providing one has access to adequate laboratory equipment.
Elastic reflection waveform inversion with variable density
Li, Yuanyuan
2017-08-17
Elastic full waveform inversion (FWI) provides a better description of the subsurface than those given by the acoustic assumption. However it suffers from a more serious cycle skipping problem compared with the latter. Reflection waveform inversion (RWI) provides a method to build a good background model, which can serve as an initial model for elastic FWI. Therefore, we introduce the concept of RWI for elastic media, and propose elastic RWI with variable density. We apply Born modeling to generate the synthetic reflection data by using optimized perturbations of P- and S-wave velocities and density. The inversion for the perturbations in P- and S-wave velocities and density is similar to elastic least-squares reverse time migration (LSRTM). An incorrect initial model will lead to some misfits at the far offsets of reflections; thus, can be utilized to update the background velocity. We optimize the perturbation and background models in a nested approach. Numerical tests on the Marmousi model demonstrate that our method is able to build reasonably good background models for elastic FWI with absence of low frequencies, and it can deal with the variable density, which is needed in real cases.
Assessing Accuracy of Waveform Models against Numerical Relativity Waveforms
Pürrer, Michael; LVC Collaboration
2016-03-01
We compare currently available phenomenological and effective-one-body inspiral-merger-ringdown models for gravitational waves (GW) emitted from coalescing black hole binaries against a set of numerical relativity waveforms from the SXS collaboration. Simplifications are used in the construction of some waveform models, such as restriction to spins aligned with the orbital angular momentum, no inclusion of higher harmonics in the GW radiation, no modeling of eccentricity and the use of effective parameters to describe spin precession. In contrast, NR waveforms provide us with a high fidelity representation of the ``true'' waveform modulo small numerical errors. To focus on systematics we inject NR waveforms into zero noise for early advanced LIGO detector sensitivity at a moderately optimistic signal-to-noise ratio. We discuss where in the parameter space the above modeling assumptions lead to noticeable biases in recovered parameters.
Optimizing defibrillation waveforms for ICDs.
Kroll, Mark W; Swerdlow, Charles D
2007-04-01
While no simple electrical descriptor provides a good measure of defibrillation efficacy, the waveform parameters that most directly influence defibrillation are voltage and duration. Voltage is a critical parameter for defibrillation because its spatial derivative defines the electrical field that interacts with the heart. Similarly, waveform duration is a critical parameter because the shock interacts with the heart for the duration of the waveform. Shock energy is the most often cited metric of shock strength and an ICD's capacity to defibrillate, but it is not a direct measure of shock effectiveness. Despite the physiological complexities of defibrillation, a simple approach in which the heart is modeled as passive resistor-capacitor (RC) network has proved useful for predicting efficient defibrillation waveforms. The model makes two assumptions: (1) The goal of both a monophasic shock and the first phase of a biphasic shock is to maximize the voltage change in the membrane at the end of the shock for a given stored energy. (2) The goal of the second phase of a biphasic shock is to discharge the membrane back to the zero potential, removing the charge deposited by the first phase. This model predicts that the optimal waveform rises in an exponential upward curve, but such an ascending waveform is difficult to generate efficiently. ICDs use electronically efficient capacitive-discharge waveforms, which require truncation for effective defibrillation. Even with optimal truncation, capacitive-discharge waveforms require more voltage and energy to achieve the same membrane voltage than do square waves and ascending waveforms. In ICDs, the value of the shock output capacitance is a key intermediary in establishing the relationship between stored energy-the key determinant of ICD size-and waveform voltage as a function of time, the key determinant of defibrillation efficacy. The RC model predicts that, for capacitive-discharge waveforms, stored energy is minimized
On the Contribution of Head Waves to Full Waveform Inversion
Kazei, V.V.; Ponomarenko, A.V.; Troyan, V.N.; Kashtan, B.M.; Mulder, W.A.
2012-01-01
Full waveform inversion suffers from local minima, due to a lack of low frequencies in the data. A reflector below the zone of interest may, however, help in recovering the long-wavelength components of a velocity perturbation, as demonstrated in a paper by Mora. With the Born approximation for the
Tohyama, Mikio
2015-01-01
What is this sound? What does that sound indicate? These are two questions frequently heard in daily conversation. Sound results from the vibrations of elastic media and in daily life provides informative signals of events happening in the surrounding environment. In interpreting auditory sensations, the human ear seems particularly good at extracting the signal signatures from sound waves. Although exploring auditory processing schemes may be beyond our capabilities, source signature analysis is a very attractive area in which signal-processing schemes can be developed using mathematical expressions. This book is inspired by such processing schemes and is oriented to signature analysis of waveforms. Most of the examples in the book are taken from data of sound and vibrations; however, the methods and theories are mostly formulated using mathematical expressions rather than by acoustical interpretation. This book might therefore be attractive and informative for scientists, engineers, researchers, and graduat...
1978-12-01
DISTRIBUTION STATEMENr AC(CE-ION FOR __-- D DTIf DTIC mic TUB8 UNAflNOUNMI) QT JUSTWICA )ON ELECTE _______JAN 29 19810 A Vl AD WIIXYilf ""W AVAIL...mass average velocity, Vma, and total temperature, Tma , are calculated using vowO + viwi Ti We+ T wi Vma = + w Tma wo + wi 4. A modified density
Waveform Catalog, Extreme Mass Ratio Binary (Capture)
National Aeronautics and Space Administration — Numerically-generated gravitational waveforms for circular inspiral into Kerr black holes. These waveforms were developed using Scott Hughes' black hole perturbation...
Channel Influence Mitigation in Pseudo-noise Waveform Design for Radar Applications
Directory of Open Access Journals (Sweden)
J. S. Kulpa
2014-04-01
Full Text Available Noise Radar is a rapidly developing technology which uses noise or pseudo-noise waveforms as sounding signals to de- tect targets of interest. The advantages of such waveforms are no range nor velocity ambiguities, the possibility of using continuous waveform and low probability of intercept. However, the noise waveform correlation sidelobes are spread across the entire range–Doppler plane and their level is de- termined by the time-bandwidth product. Such sidelobes limit the detection capability in the multitarget environment. Several algorithms exist that decrease the sidelobe level and thus enhance dynamic range of the radar, but they are very susceptible to distortions in an analogue channel. In this paper the author presents a method to create low-sidelobe waveforms using a filtering algorithm designed for given channel, decreasing the analogue front-end impact on the final properties of the waveforms.
Partitioned Waveform Inversion Applied to Eurasia and Northern Africa
Energy Technology Data Exchange (ETDEWEB)
bedle, H; Matzel, E; Flanagan, M
2006-07-27
This report summarizes the data analysis achieved during Heather Bedle's eleven-week Technical Scholar internship at Lawrence Livermore National Labs during the early summer 2006. The work completed during this internship resulted in constraints on the crustal and upper mantle S-velocity structure in Northern Africa, the Mediterranean, the Middle East, and Europe, through the fitting of regional waveform data. This data extends current raypath coverage and will be included in a joint inversion along with data from surface wave group velocity measurements, S and P teleseismic arrival time data, and receiver function data to create an improved velocity model of the upper mantle in this region. The tectonic structure of the North African/Mediterranean/Europe/Middle Eastern study region is extremely heterogeneous. This region consists of, among others, stable cratons and platforms such as the West Africa Craton, and Baltica in Northern Europe; oceanic subduction zones throughout the Mediterranean Sea where the African and Eurasian plate collide; regions of continental collision as the Arabian Plate moves northward into the Turkish Plate; and rifting in the Red Sea, separating the Arabian and Nubian shields. With such diverse tectonic structures, many of the waveforms were difficult to fit. This is not unexpected as the waveforms are fit using an averaged structure. In many cases the raypaths encounter several tectonic features, complicating the waveform, and making it hard for the software to converge on a 1D average structure. Overall, the quality of the waveform data was average, with roughly 30% of the waveforms being discarded due to excessive noise that interfered with the frequency ranges of interest. An inversion for the 3D S-velocity structure of this region was also performed following the methodology of Partitioned Waveform Inversion (Nolet, 1990; Van der Lee and Nolet, 1997). The addition of the newly fit waveforms drastically extends the range of the
Full waveform modelling and misfit calculation using the VERCE platform
Garth, Thomas; Spinuso, Alessandro; Casarotti, Emanuele; Magnoni, Federica; Krischner, Lion; Igel, Heiner; Schwichtenberg, Horst; Frank, Anton; Vilotte, Jean-Pierre; Rietbrock, Andreas
2016-04-01
In recent years the increasing resolution of seismic imagining by full waveform inversion has opened new research perspectives and practices. These methods rely on harnessing the computational power of large supercomputers and new storage capabilities, to run large parallel codes to simulate the seismic wave field in three-dimensional geological settings. The VERCE platform is designed to make these full waveform techniques accessible to a far wider spectrum of the seismological community. VERCE empowers a broad base of seismology researchers to harvest the new opportunities provided by well-established high-performance wave simulation codes such as SPECFEM3D. It meets a range of seismic research needs by eliminating the technical difficulties associated with using these codes, allowing users to focus on their research questions. VERCE delivers this power to seismologists through its science gateway, supporting wave simulation codes on each of the provided computing resources. Users can design their waveform simulation scenarios making use of a library of pre-loaded meshes and velocity models, and services for selecting earthquake focal mechanisms, seismic stations and recorded waveforms from existing catalogues, such as the GCMT catalogue, and FDSN data sources. They can also supply their own mesh, velocity model, earthquake catalogue and seismic observations. They can submit the simulations onto different computing resources, where VERCE provides codes that are tuned and supported for those resources. The simulations can currently be run on a range of European supercomputers in the PRACE network, including superMUC at LRZ, GALILEO at CINECA and on selected resources like Drachenfels at SCAI and within the EGI network. The gateway automates and looks after all these stages, but supplies seismologists with a provenance system that allows them to manage a large series of runs, review progress, and explore the results. The platform automates misfit analysis between
Energy Technology Data Exchange (ETDEWEB)
Inoue, Toshihisa; Watanabe, Shigeru; Sakurada, Hideki; Ono, Katsuhiro; Urano, Miharu; Hijikata, Yasuyoshi; Saito, Isao; Masuda, Yoshiaki [Chiba Univ. (Japan). School of Medicine
2000-10-01
In 21 patients with chronic aortic dissections and proven patent false lumens, the flow volume and flow patterns in the patent false lumens was evaluated using velocity-encoded cine magnetic resonance imaging (VENC-MRI) and the relationship between the flow characteristics and aortic enlargement was retrospectively examined. Flow patterns in the false lumen were divided into 3 groups: pattern A with primarily antegrade flow (n=6), pattern R with primarily retrograde flow (n=3), and pattern B with bidirectional flow (n=12). In group A, the rate of flow volume in the false lumen compared to the total flow volume in true and false lumens (%TFV) and the average rate of enlargement of the maximum diameter of the dissected aorta per year ({delta}D) were significantly greater than in groups R and B (%TFV: 74.1{+-}0.07 vs 15.2{+-}0.03 vs 11.8{+-}0.04, p<0.01; {delta}D: 3.62{+-}0.82 vs 0 vs 0.58{+-}0.15 mm/year, p<0.05, respectively). There was a significant correlation between %TFV and {delta}D (r=0.79, p<0.0001). Evaluation of flow volume and flow patterns in the patent false lumen using VENC-MRI may be useful for predicting enlargement of the dissected aorta. (author)
STRS Compliant FPGA Waveform Development
Nappier, Jennifer; Downey, Joseph
2008-01-01
The Space Telecommunications Radio System (STRS) Architecture Standard describes a standard for NASA space software defined radios (SDRs). It provides a common framework that can be used to develop and operate a space SDR in a reconfigurable and reprogrammable manner. One goal of the STRS Architecture is to promote waveform reuse among multiple software defined radios. Many space domain waveforms are designed to run in the special signal processing (SSP) hardware. However, the STRS Architecture is currently incomplete in defining a standard for designing waveforms in the SSP hardware. Therefore, the STRS Architecture needs to be extended to encompass waveform development in the SSP hardware. A transmit waveform for space applications was developed to determine ways to extend the STRS Architecture to a field programmable gate array (FPGA). These extensions include a standard hardware abstraction layer for FPGAs and a standard interface between waveform functions running inside a FPGA. Current standards were researched and new standard interfaces were proposed. The implementation of the proposed standard interfaces on a laboratory breadboard SDR will be presented.
Control volume based hydrocephalus research; analysis of human data
Cohen, Benjamin; Wei, Timothy; Voorhees, Abram; Madsen, Joseph; Anor, Tomer
2010-11-01
Hydrocephalus is a neuropathophysiological disorder primarily diagnosed by increased cerebrospinal fluid volume and pressure within the brain. To date, utilization of clinical measurements have been limited to understanding of the relative amplitude and timing of flow, volume and pressure waveforms; qualitative approaches without a clear framework for meaningful quantitative comparison. Pressure volume models and electric circuit analogs enforce volume conservation principles in terms of pressure. Control volume analysis, through the integral mass and momentum conservation equations, ensures that pressure and volume are accounted for using first principles fluid physics. This approach is able to directly incorporate the diverse measurements obtained by clinicians into a simple, direct and robust mechanics based framework. Clinical data obtained for analysis are discussed along with data processing techniques used to extract terms in the conservation equation. Control volume analysis provides a non-invasive, physics-based approach to extracting pressure information from magnetic resonance velocity data that cannot be measured directly by pressure instrumentation.
Bikakis, GSE; Savaidis, A.; Zalimidis, P.; Tsitos, S.
2016-11-01
Fiber-metal laminates are hybrid composite materials, consisting of alternating metal layers bonded to fiber-reinforced prepreg layers. GLARE (GLAss REinforced) belongs to this new family of materials. GLARE is the most successful fiber-metal laminate up to now and is currently being used for the construction of primary aerospace structures, such as the fuselage of the Airbus A380 air plane. Impact properties are very important in aerospace structures, since impact damage is caused by various sources, such as maintenance damage from dropped tools, collision between service cars or cargo and the structure, bird strikes and hail. The principal objective of this article is to evaluate the influence of the Metal Volume Fraction (MVF) on the low velocity impact response of GLARE fiber-metal laminates. Previously published differential equations of motion are employed for this purpose. The low velocity impact behavior of various circular GLARE plates is predicted and characteristic values of impact variables, which represent the impact phenomenon, are evaluated versus the corresponding MVF of the examined GLARE material grades. The considered GLARE plates are subjected to low velocity impact under identical impact conditions. A strong effect of the MVF on the maximum impact load and a significant effect on the maximum plate deflection of GLARE plates has been found.
Bikakis, GSE; Savaidis, A.; Zalimidis, P.; Tsitos, S.
2016-11-01
Fiber-metal laminates are hybrid composite materials, consisting of alternating metal layers bonded to fiber-reinforced prepreg layers. GLARE (GLAss REinforced) belongs to this new family of materials. GLARE is the most successful fiber-metal laminate up to now and is currently being used for the construction of primary aerospace structures, such as the fuselage of the Airbus A380 air plane. Impact properties are very important in aerospace structures, since impact damage is caused by various sources, such as maintenance damage from dropped tools, collision between service cars or cargo and the structure, bird strikes and hail. The principal objective of this article is to evaluate the influence of the Metal Volume Fraction (MVF) on the low velocity impact response of GLARE fiber-metal laminates. Previously published differential equations of motion are employed for this purpose. The low velocity impact behavior of various circular GLARE plates is predicted and characteristic values of impact variables, which represent the impact phenomenon, are evaluated versus the corresponding MVF of the examined GLARE material grades. The considered GLARE plates are subjected to low velocity impact under identical impact conditions. A strong effect of the MVF on the maximum impact load and a significant effect on the maximum plate deflection of GLARE plates has been found.
Sharma, Prabhakar; Poulsen, Tjalfe G
2010-07-01
Gas-phase dispersion in granular biofilter materials with a wide range of particle sizes was investigated using atmospheric air and nitrogen as tracer gases. Two types of materials were used: (1) light extended clay aggregates (LECA), consisting of highly porous particles, and (2) gravel, consisting of solid particles. LECA is a commercial material that is used for insulation, as a soil conditioner, and as a carrier material in biofilters for air cleaning. These two materials were selected to have approximately the same particle shape. Column gas transport experiments were conducted for both materials using different mean particle diameters, different particle size ranges, and different gas flow velocities. Measured breakthrough curves were modeled using the advection-dispersion equation modified for mass transfer between mobile and immobile gas phases. The results showed that gas dispersivity increased with increasing mean particle diameter for LECA but was independent of mean particle diameter for gravel. Gas dispersivity also increased with increasing particle size range for both media. Dispersivities in LECA were generally higher than for gravel. The mobile gas content in both materials increased with increasing gas flow velocity but it did not show any strong dependency on mean particle diameter or particle size range. The relative fraction of mobile gas compared with total porosity was highest for gravel and lowest for LECA likely because of its high internal porosity.
Preconditioning Strategies in Elastic Full Waveform Inversion.
Matharu, G.; Sacchi, M. D.
2016-12-01
Elastic full waveform inversion (FWI) is inherently more non-linear than its acoustic counterpart, a property that stems from the increased model space of the problem. Whereas acoustic media can be parametrized by density and P-wave velocity, visco-elastic media are parametrized by density, attenuation and 21 independent coefficients of the elastic tensor. Imposing assumptions of isotropy and perfect elasticity to simplify the physics, reduces the number of independent parameters required to characterize a medium. Isotropic, elastic media can be parametrized in terms of density and the Lamé parameters. The different parameters can exhibit trade-off that manifest as attributes in the data. In the context of FWI, this means that certain parameters cannot be uniquely resolved. An ideal model update in full waveform inversion is equivalent to a Newton step. Explicit computation of the Hessian and its inverse is not computationally feasible in elastic FWI. The inverse Hessian scales the gradients to account for trade-off between parameters as well as compensating for inadequate illumination related to source-receiver coverage. Gradient preconditioners can be applied to mimic the action of the inverse Hessian and partially correct for inaccuracies in the gradient. In this study, we investigate the effects of model reparametrization by recasting a regularized form of the least-squares waveform misfit into a preconditioned formulation. New model parameters are obtained by applying invertible weighting matrices to the model vector. The weighting matrices are related to estimates of the prior model covariance matrix and incorporate information about spatially variant correlations of model parameters as well as correlations between independent parameters. We compare the convergence of conventional FWI to FWI after model reparametrization.
A nonlinear approach of elastic reflection waveform inversion
Guo, Qiang
2016-09-06
Elastic full waveform inversion (EFWI) embodies the original intention of waveform inversion at its inception as it is a better representation of the mostly solid Earth. However, compared with the acoustic P-wave assumption, EFWI for P- and S-wave velocities using multi-component data admitted mixed results. Full waveform inversion (FWI) is a highly nonlinear problem and this nonlinearity only increases under the elastic assumption. Reflection waveform inversion (RWI) can mitigate the nonlinearity by relying on transmissions from reflections focused on inverting low wavenumber components of the model. In our elastic endeavor, we split the P- and S-wave velocities into low wavenumber and perturbation components and propose a nonlinear approach to invert for both of them. The new optimization problem is built on an objective function that depends on both background and perturbation models. We utilize an equivalent stress source based on the model perturbation to generate reflection instead of demigrating from an image, which is applied in conventional RWI. Application on a slice of an ocean-bottom data shows that our method can efficiently update the low wavenumber parts of the model, but more so, obtain perturbations that can be added to the low wavenumbers for a high resolution output.
Garth, Thomas; Rietbrock, Andreas; Hicks, Steve; Fuenzalida Velasco, Amaya; Casarotti, Emanuele; Spinuso, Alessandro
2015-04-01
The VERCE platform is an online portal that allows full waveform simulations to be run for any region where a suitable velocity model exists. We use this facility to simulate the waveforms from aftershock earthquakes from the 2014 Pisagua earthquake, and 2010 Maule earthquake that occurred at the subduction zone mega thrust in Northern and Central Chile respectively. Simulations are performed using focal mechanisms from both global earthquake catalogues, and regional earthquake catalogues. The VERCE platform supports specFEM Cartesian, and simulations are run using meshes produced by CUBIT. The full waveform modelling techniques supported on the VERCE platform are used to test the validity of a number of subduction zone velocity models from the Chilean subduction zone. For the Maule earthquake we use a 2D and 3D travel time tomography model of the rupture area (Hicks et al. 2011; 2014). For the Pisagua earthquake we test a 2D/3D composite velocity model based on tomographic studies of the region (e.g. Husen et al. 2000, Contreyes-Reyes et al. 2012) and slab1.0 (Hayes et al. 2012). Focal mechanisms from the cGMT catalogue and local focal mechanisms calculated using ISOLA (e.g. Agurto et al. 2012) are used in the simulations. The waveforms produced are directly compared to waveforms recorded on the temporary deployment for the Maule earthquake aftershocks, and waveforms recorded on the IPOC network for the Pisagua earthquake aftershocks. This work demonstrates how the VERCE platform allows waveforms from the full 3D simulations to be easily produced, allowing us to quantify the validity of both the velocity model and the source mechanisms. These simulations therefore provide an independent test of the velocity models produced synthetically and by travel time tomography studies. Initial results show that the waveform is reasonably well reproduced in the 0.05 - 0.25 frequency band using a refined 3D travel time tomography, and locally calculated focal mechanisms.
Waveform effects of a metastable olivine tongue in subducting slabs
Vidale, John E.; Williams, Quentin; Houston, Heidi
1991-01-01
Velocity models of subducting slabs with a kinetically-depressed olivine to beta- and gamma-spinel transition are constructed, and the effect that such structures would have on teleseismic P waveforms are examined using a full-wave finite-difference method. These 2D calculations yielded waveforms at a range of distances in the downdip direction. The slab models included a wedge-shaped, low-velocity metastable olivine tongue (MOTO) to a depth of 670 km, as well as a plausible thermal anomaly; one model further included a 10-km-thick fast layer on the surface of the slab. The principal effect of MOTO is to produce grazing reflections at wide angles off the phase boundary, generating a secondary arrival 0 to 4 seconds after the initial arrival depending on the take-off angle. The amplitude and timing of this feature vary with the lateral location of the seismic source within the slab cross-section.
Waveform effects of a metastable olivine tongue in subducting slabs
Vidale, John E.; Williams, Quentin; Houston, Heidi
1991-01-01
Velocity models of subducting slabs with a kinetically-depressed olivine to beta- and gamma-spinel transition are constructed, and the effect that such structures would have on teleseismic P waveforms are examined using a full-wave finite-difference method. These 2D calculations yielded waveforms at a range of distances in the downdip direction. The slab models included a wedge-shaped, low-velocity metastable olivine tongue (MOTO) to a depth of 670 km, as well as a plausible thermal anomaly; one model further included a 10-km-thick fast layer on the surface of the slab. The principal effect of MOTO is to produce grazing reflections at wide angles off the phase boundary, generating a secondary arrival 0 to 4 seconds after the initial arrival depending on the take-off angle. The amplitude and timing of this feature vary with the lateral location of the seismic source within the slab cross-section.
Waveform-dependent absorbing metasurfaces
Wakatsuchi, Hiroki; Rushton, Jeremiah J; Sievenpiper, Daniel F
2014-01-01
We present the first use of a waveform-dependent absorbing metasurface for high-power pulsed surface currents. The new type of nonlinear metasurface, composed of circuit elements including diodes, is capable of storing high power pulse energy to dissipate it between pulses, while allowing propagation of small signals. Interestingly, the absorbing performance varies for high power pulses but not for high power continuous waves (CWs), since the capacitors used are fully charged up. Thus, the waveform dependence enables us to distinguish various signal types (i.e. CW or pulse) even at the same frequency, which potentially creates new kinds of microwave technologies and applications.
Energy-efficient waveform shapes for neural stimulation revealed with a genetic algorithm
Wongsarnpigoon, Amorn; Grill, Warren M.
2010-08-01
The energy efficiency of stimulation is an important consideration for battery-powered implantable stimulators. We used a genetic algorithm (GA) to determine the energy-optimal waveform shape for neural stimulation. The GA was coupled to a computational model of extracellular stimulation of a mammalian myelinated axon. As the GA progressed, waveforms became increasingly energy efficient and converged upon an energy-optimal shape. The results of the GA were consistent across several trials, and resulting waveforms resembled truncated Gaussian curves. When constrained to monophasic cathodic waveforms, the GA produced waveforms that were symmetric about the peak, which occurred approximately during the middle of the pulse. However, when the cathodic waveforms were coupled to rectangular charge-balancing anodic pulses, the location and sharpness of the peak varied with the duration and timing (i.e., before or after the cathodic phase) of the anodic phase. In a model of a population of mammalian axons and in vivo experiments on a cat sciatic nerve, the GA-optimized waveforms were more energy efficient and charge efficient than several conventional waveform shapes used in neural stimulation. If used in implantable neural stimulators, GA-optimized waveforms could prolong battery life, thereby reducing the frequency of recharge intervals, the volume of implanted pulse generators, and the costs and risks of battery-replacement surgeries.
2169 steel waveform experiments.
Energy Technology Data Exchange (ETDEWEB)
Furnish, Michael David; Alexander, C. Scott; Reinhart, William Dodd; Brown, Justin L.
2012-11-01
In support of LLNL efforts to develop multiscale models of a variety of materials, we have performed a set of eight gas gun impact experiments on 2169 steel (21% Cr, 6% Ni, 9% Mn, balance predominantly Fe). These experiments provided carefully controlled shock, reshock and release velocimetry data, with initial shock stresses ranging from 10 to 50 GPa (particle velocities from 0.25 to 1.05 km/s). Both windowed and free-surface measurements were included in this experiment set to increase the utility of the data set, as were samples ranging in thickness from 1 to 5 mm. Target physical phenomena included the elastic/plastic transition (Hugoniot elastic limit), the Hugoniot, any phase transition phenomena, and the release path (windowed and free-surface). The Hugoniot was found to be nearly linear, with no indications of the Fe phase transition. Releases were non-hysteretic, and relatively consistent between 3- and 5-mmthick samples (the 3 mm samples giving slightly lower wavespeeds on release). Reshock tests with explosively welded impactors produced clean results; those with glue bonds showed transient releases prior to the arrival of the reshock, reducing their usefulness for deriving strength information. The free-surface samples, which were steps on a single piece of steel, showed lower wavespeeds for thin (1 mm) samples than for thicker (2 or 4 mm) samples. A configuration used for the last three shots allows release information to be determined from these free surface samples. The sample strength appears to increase with stress from ~1 GPa to ~ 3 GPa over this range, consistent with other recent work but about 40% above the Steinberg model.
Sano, Michael B.; Fan, Richard E.; Xing, Lei
2017-01-01
Irreversible electroporation (IRE) is a promising non-thermal treatment for inoperable tumors which uses short (50–100 μs) high voltage monopolar pulses to disrupt the membranes of cells within a well-defined volume. Challenges with IRE include complex treatment planning and the induction of intense muscle contractions. High frequency IRE (H-FIRE) uses bursts of ultrashort (0.25–5 μs) alternating polarity pulses to produce more predictable ablations and alleviate muscle contractions associated with IRE. However, H-FIRE generally ablates smaller volumes of tissue than IRE. This study shows that asymmetric H-FIRE waveforms can be used to create ablation volumes equivalent to standard IRE treatments. Lethal thresholds (LT) of 505 V/cm and 1316 V/cm were found for brain cancer cells when 100 μs IRE and 2 μs symmetric H-FIRE waveforms were used. In contrast, LT as low as 536 V/cm were found for 2 μs asymmetric H-FIRE waveforms. Reversible electroporation thresholds were 54% lower than LTs for symmetric waveforms and 33% lower for asymmetric waveforms indicating that waveform symmetry can be used to tune the relative sizes of reversible and irreversible ablation zones. Numerical simulations predicted that asymmetric H-FIRE waveforms are capable of producing ablation volumes which were 5.8–6.3x larger than symmetric H-FIRE waveforms indicating that in vivo investigation of asymmetric waveforms is warranted.
Noninvasive arterial blood pressure waveform monitoring using two- element ultrasound system.
Seo, Joohyun; Pietrangelo, Sabino J; Lee, Hae-Seung; Sodini, Charles G
2015-04-01
This work details noninvasive arterial blood pressure (ABP) waveform estimation based on an arterial vessel cross-sectional area measurement combined with an elasticity measurement of the vessel, represented by pulse wave velocity (PWV), using a two-element ultrasound system. The overall ABP waveform estimation is validated in a custom-designed experimental setup mimicking the heart and an arterial vessel segment with two single element transducers, assuming a constant hemodynamic system. The estimation of local PWV using the flow-area method produces unbiased elasticity estimation of the tube in a pressure waveform comparison. The measured PWV using 16 cardiac cycles of data is 8.47 + 0.63 m/s with an associated scaling error of -1.56 + 14.0% in a direct pressure waveform comparison, showing negligible bias error on average. The distension waveform obtained from a complex cross-correlation model estimator (C3M) reliably traces small pressure changes reflected by the diameter change. The excellent agreement of an estimated pressure waveform to the reference pressure waveform suggests the promising potential of a readily available, inexpensive, and portable ABP waveform monitoring device.
An MSK Waveform for Radar Applications
Quirk, Kevin J.; Srinivasan, Meera
2009-01-01
We introduce a minimum shift keying (MSK) waveform developed for use in radar applications. This waveform is characterized in terms of its spectrum, autocorrelation, and ambiguity function, and is compared with the conventionally used bi-phase coded (BPC) radar signal. It is shown that the MSK waveform has several advantages when compared with the BPC waveform, and is a better candidate for deep-space radar imaging systems such as NASA's Goldstone Solar System Radar.
Radar Waveform Design in Active Communications Channel
Ric A. Romero; Shepherd, Kevin D.
2013-01-01
In this paper, we investigate spectrally adaptive radar transmit waveform design and its effects on an active communication system. We specifically look at waveform design for point targets. The transmit waveform is optimized by accounting for the modulation spectrum of the communication system while trying to efficiently use the remaining spectrum. With the use of spectrally-matched radar waveform, we show that the SER detection performance of the communication system ...
Elastic reflection based waveform inversion with a nonlinear approach
Guo, Qiang
2017-08-16
Full waveform inversion (FWI) is a highly nonlinear problem due to the complex reflectivity of the Earth, and this nonlinearity only increases under the more expensive elastic assumption. In elastic media, we need a good initial P-wave velocity and even a better initial S-wave velocity models with accurate representation of the low model wavenumbers for FWI to converge. However, inverting for the low wavenumber components of P- and S-wave velocities using reflection waveform inversion (RWI) with an objective to fit the reflection shape, rather than produce reflections, may mitigate the limitations of FWI. Because FWI, performing as a migration operator, is in preference of the high wavenumber updates along reflectors. We propose a nonlinear elastic RWI that inverts for both the low wavenumber and perturbation components of the P- and S-wave velocities. To generate the full elastic reflection wavefields, we derive an equivalent stress source made up by the inverted model perturbations and incident wavefields. We update both the perturbation and propagation parts of the velocity models in a nested fashion. Applications on synthetic isotropic models and field data show that our method can efficiently update the low and high wavenumber parts of the models.
Generating nonlinear FM chirp waveforms for radar.
Energy Technology Data Exchange (ETDEWEB)
Doerry, Armin Walter
2006-09-01
Nonlinear FM waveforms offer a radar matched filter output with inherently low range sidelobes. This yields a 1-2 dB advantage in Signal-to-Noise Ratio over the output of a Linear FM waveform with equivalent sidelobe filtering. This report presents design and implementation techniques for Nonlinear FM waveforms.
Institute of Scientific and Technical Information of China (English)
WANG Fu-yun; ZHANG Xian-kang
2006-01-01
A genetic algorithm of body waveform inversion is presented for better understanding of crustal and upper mantle structures with deep seismic sounding (DSS) waveform data. General reflection and transmission synthetic seismogram algorithm, which is capable of calculating the response of thin alternating high and low velocity layers, is applied as a solution for forward modeling, and the genetic algorithm is used to find the optimal solution of the inverse problem. Numerical tests suggest that the method has the capability of resolving low-velocity layers, thin alternating high and low velocity layers, and noise suppression. Waveform inversion using P-wave records from Zeku, Xiahe and Lintao shots in the seismic wide-angle reflection/refraction survey along northeastern Qinghai-Xizang (Tibeteau) Plateau has revealed fine structures of the bottom of the upper crust and alternating layers in the middle/lower crust and topmost upper mantle.
Workflows for Full Waveform Inversions
Boehm, Christian; Krischer, Lion; Afanasiev, Michael; van Driel, Martin; May, Dave A.; Rietmann, Max; Fichtner, Andreas
2017-04-01
Despite many theoretical advances and the increasing availability of high-performance computing clusters, full seismic waveform inversions still face considerable challenges regarding data and workflow management. While the community has access to solvers which can harness modern heterogeneous computing architectures, the computational bottleneck has fallen to these often manpower-bounded issues that need to be overcome to facilitate further progress. Modern inversions involve huge amounts of data and require a tight integration between numerical PDE solvers, data acquisition and processing systems, nonlinear optimization libraries, and job orchestration frameworks. To this end we created a set of libraries and applications revolving around Salvus (http://salvus.io), a novel software package designed to solve large-scale full waveform inverse problems. This presentation focuses on solving passive source seismic full waveform inversions from local to global scales with Salvus. We discuss (i) design choices for the aforementioned components required for full waveform modeling and inversion, (ii) their implementation in the Salvus framework, and (iii) how it is all tied together by a usable workflow system. We combine state-of-the-art algorithms ranging from high-order finite-element solutions of the wave equation to quasi-Newton optimization algorithms using trust-region methods that can handle inexact derivatives. All is steered by an automated interactive graph-based workflow framework capable of orchestrating all necessary pieces. This naturally facilitates the creation of new Earth models and hopefully sparks new scientific insights. Additionally, and even more importantly, it enhances reproducibility and reliability of the final results.
Why Waveform Correlation Sometimes Fails
Carmichael, J.
2015-12-01
Waveform correlation detectors used in explosion monitoring scan noisy geophysical data to test two competing hypotheses: either (1) an amplitude-scaled version of a template waveform is present, or, (2) no signal is present at all. In reality, geophysical wavefields that are monitored for explosion signatures include waveforms produced by non-target sources that are partially correlated with the waveform template. Such signals can falsely trigger correlation detectors, particularly at low thresholds required to monitor for smaller target explosions. This challenge is particularly formidable when monitoring known test sites for seismic disturbances, since uncatalogued natural seismicity is (generally) more prevalent at lower magnitudes, and could be mistaken for small explosions. To address these challenges, we identify real examples in which correlation detectors targeting explosions falsely trigger on both site-proximal earthquakes (Figure 1, below) and microseismic "noise". Motivated by these examples, we quantify performance loss when applying these detectors, and re-evaluate the correlation-detector's hypothesis test. We thereby derive new detectors from more general hypotheses that admit unknown background seismicity, and apply these to real data. From our treatment, we derive "rules of thumb'' for proper template and threshold selection in heavily cluttered signal environments. Last, we answer the question "what is the probability of falsely detecting an earthquake collocated at a test site?", using correlation detectors that include explosion-triggered templates. Figure Top: An eight-channel data stream (black) recorded from an earthquake near a mine. Red markers indicate a detection. Middle: The correlation statistic computed by scanning the template against the data stream at top. The red line indicates the threshold for event declaration, determined by a false-alarm on noise probability constraint, as computed from the signal-absent distribution using
Phenomenological gravitational waveforms from spinning coalescing binaries
Sturani, R; Cadonati, L; Guidi, G M; Healy, J; Shoemaker, D; Vicere', A
2010-01-01
An accurate knowledge of the coalescing binary gravitational waveform is crucial for match filtering techniques, which are currently used in the observational searches performed by the LIGO-Virgo collaboration. Following an earlier paper by the same authors we expose the construction of analytical phenomenological waveforms describing the signal sourced by generically spinning binary systems. The gap between the initial inspiral part of the waveform, described by spin-Taylor approximants, and its final ring-down part, described by damped exponentials, is bridged by a phenomenological phase calibrated by comparison with the dominant spherical harmonic mode of a set of waveforms including both numerical and phenomenological waveforms of a different type. All waveforms considered describe equal mass systems with dimension-less spin magnitudes equal to 0.6. The noise-weighted overlap integral between numerical and phenomenological waveforms ranges between 0.93 and 0.98 for a wide span of mass values.
Waveform simulation of predominant periods in Osaka basin
Petukhin, A.; Tsurugi, M.
2016-12-01
Predominant period of strong ground motions is an important parameter in earthquake engineering practice. Resonance at predominant period may result in collapse of building. Usually, predominant periods are associated with the soil resonances. However, considering that strong ground motions are composed from source, path and site effects, predominant periods are affected by source and propagation path too. From another side, 3D basin interferences may amplify quite different periods, depending on site location relatively to the basin edges and independently on the soil depth. Moreover, constructive or destructive interference of waves from different asperities of a large source may enhance or diminish amplitudes at a particular predominant period respectively. In this study, to demonstrate variations of predominant periods due to complicated effects above, we simulated wavefield snapshots and waveforms at a few representative sites of Osaka basin, Japan. Seismic source is located in Nankai trough, hosting anticipated M9 earthquake. 3D velocity structure is combined from JIVSM velocity structure (Koketsu et al., 2012) and Osaka basin structure of Iwaki and Iwata, 2011. 3D-FDM method is used to simulate waveforms. Simulation results confirm some previous results that due to elongated elliptical shape of Osaka basin, interference effects are strong and peak amplitudes has characteristic stripped pattern elongated in parallel to the long axis of basin. We demonstrate that predominant periods have similar pattern and value of predominant period may strongly depend on the location of site and azimuthal orientation of waveform component.
Waveform inversion for acoustic VTI media in frequency domain
Wu, Zedong
2016-09-06
Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI) by inverting for the background model using a single scattered wavefield from an inverted perturbation. However, current RWI methods are mostly based on isotropic media assumption. We extend the idea of the combining inversion for the background model and perturbations to address transversely isotropic with a vertical axis of symmetry (VTI) media taking into consideration of the optimal parameter sensitivity information. As a result, we apply Born modeling corresponding to perturbations in only for the variable e to derive the relative reflected waveform inversion formulation. To reduce the number of parameters, we assume the background part of η = ε and work with a single variable to describe the anisotropic part of the wave propagation. Thus, the optimization variables are the horizontal velocity v, η = ε and the e perturbation. Application to the anisotropic version of Marmousi model with a single frequency of 2.5 Hz shows that this method can converge to the accurate result starting from a linearly increasing isotropic initial velocity. Application to a real dataset demonstrates the versatility of the approach.
The natural combination of full and image-based waveform inversion
Alkhalifah, Tariq Ali
2015-06-01
Integrating migration velocity analysis and full waveform inversion can help reduce the high non-linearity of the classic full waveform inversion objective function. The combination of inverting for the long and short wavelength components of the velocity model using a dual objective function that is sensitive to both components is still very expensive and have produced mixed results. We develop an approach that includes both components integrated to complement each other. We specifically utilize the image to generate reflections in our synthetic data only when the velocity model is not capable of producing such reflections. As a result, we get the migration velocity analysis working when we need it, and we mitigate its influence when the velocity model produces accurate reflections (possibly first for the low frequencies). This is achieved using a novel objective function that includes both objectives. Applications to a layered model and the Marmousi model demonstrate the main features of the approach. © 2015 European Association of Geoscientists & Engineers.
Application of Carbonate Reservoir using waveform inversion and reverse-time migration methods
Kim, W.; Kim, H.; Min, D.; Keehm, Y.
2011-12-01
Recent exploration targets of oil and gas resources are deeper and more complicated subsurface structures, and carbonate reservoirs have become one of the attractive and challenging targets in seismic exploration. To increase the rate of success in oil and gas exploration, it is required to delineate detailed subsurface structures. Accordingly, migration method is more important factor in seismic data processing for the delineation. Seismic migration method has a long history, and there have been developed lots of migration techniques. Among them, reverse-time migration is promising, because it can provide reliable images for the complicated model even in the case of significant velocity contrasts in the model. The reliability of seismic migration images is dependent on the subsurface velocity models, which can be extracted in several ways. These days, geophysicists try to obtain velocity models through seismic full waveform inversion. Since Lailly (1983) and Tarantola (1984) proposed that the adjoint state of wave equations can be used in waveform inversion, the back-propagation techniques used in reverse-time migration have been used in waveform inversion, which accelerated the development of waveform inversion. In this study, we applied acoustic waveform inversion and reverse-time migration methods to carbonate reservoir models with various reservoir thicknesses to examine the feasibility of the methods in delineating carbonate reservoir models. We first extracted subsurface material properties from acoustic waveform inversion, and then applied reverse-time migration using the inverted velocities as a background model. The waveform inversion in this study used back-propagation technique, and conjugate gradient method was used in optimization. The inversion was performed using the frequency-selection strategy. Finally waveform inversion results showed that carbonate reservoir models are clearly inverted by waveform inversion and migration images based on the
Fractal characteristics for binary noise radar waveform
Li, Bing C.
2016-05-01
Noise radars have many advantages over conventional radars and receive great attentions recently. The performance of a noise radar is determined by its waveforms. Investigating characteristics of noise radar waveforms has significant value for evaluating noise radar performance. In this paper, we use binomial distribution theory to analyze general characteristics of binary phase coded (BPC) noise waveforms. Focusing on aperiodic autocorrelation function, we demonstrate that the probability distributions of sidelobes for a BPC noise waveform depend on the distances of these sidelobes to the mainlobe. The closer a sidelobe to the mainlobe, the higher the probability for this sidelobe to be a maximum sidelobe. We also develop Monte Carlo framework to explore the characteristics that are difficult to investigate analytically. Through Monte Carlo experiments, we reveal the Fractal relationship between the code length and the maximum sidelobe value for BPC waveforms, and propose using fractal dimension to measure noise waveform performance.
Visualization and analysis of lidar waveform data
Olsen, Richard C.; Metcalf, Jeremy P.
2017-05-01
LiDAR waveform analysis is a relatively new activity in the area of laser scanning. The work described here is an exploration of a different approach to visualization and analysis, following the structure that has evolved for the analysis of imaging spectroscopy data (hyperspectral imaging). The waveform data are transformed into 3-dimensional data structures that provide xy position information, and a z-coordinate, which is the digitized waveform. This allows for representation of the data in spatial and waveform space, the extraction of characteristic spectra, and the development of regions of interest. This representation allows for the application of standard spectral classification tools such as the maximum likelihood classifier.
Energy Technology Data Exchange (ETDEWEB)
Kondaiah, M. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Andhra Pradesh (India); Sravana Kumar, D. [Dr. V.S. Krishna Govt. Degree College, Visakhapatnam, Andhra Pradesh (India); Sreekanth, K. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Andhra Pradesh (India); Krishna Rao, D., E-mail: krdhanekula@yahoo.co.in [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Andhra Pradesh (India)
2011-12-15
Highlights: > Positive values of V{sub m}{sup E}, indicate dispersion forces between acrylic esters and DMF. > V{sub m}{sup E} values compared with Redlich-Kister polynomial. > Partial molar volumes data conclude that weak interactions exist in the systems. > Measured velocity values compared with theoretical values obtained by polynomials. - Abstract: Ultrasonic velocities, u, densities, {rho}, of binary mixtures of N,N-dimethyl formamide (DMF) with methyl acrylate (MA), ethyl acrylate (EA), butyl acrylate (BA), and 2-ethyl hexyl acrylate (EHA), including pure liquids, over the entire composition range have been measured at T = 308.15 K. Using the experimental results, the excess molar volume, V{sub m}{sup E}, partial molar volumes, V-bar {sub m,1}, V-bar{sub m,2}, and excess partial molar volumes, V-bar{sub m,1}{sup E}, V-bar{sub m,2}{sup E} have been calculated. Molecular interactions in the systems have been studied in the light of variation of excess values of calculated properties. The excess properties have been fitted to Redlich-Kister type polynomial and the corresponding standard deviations have been calculated. The positive values of V{sub m}{sup E} indicate the presence of dispersion forces between the DMF and acrylic ester molecules. Further theoretical values of sound velocity in the mixtures have been evaluated using various theories and have been compared with experimental sound velocities to verify the applicability of such theories to the systems studied. Theoretical ultrasonic velocity data have been used to study molecular interactions in the binary systems investigated.
Full Waveform Inversion Using Nonlinearly Smoothed Wavefields
Li, Y.
2017-05-26
The lack of low frequency information in the acquired data makes full waveform inversion (FWI) conditionally converge to the accurate solution. An initial velocity model that results in data with events within a half cycle of their location in the observed data was required to converge. The multiplication of wavefields with slightly different frequencies generates artificial low frequency components. This can be effectively utilized by multiplying the wavefield with itself, which is nonlinear operation, followed by a smoothing operator to extract the artificially produced low frequency information. We construct the objective function using the nonlinearly smoothed wavefields with a global-correlation norm to properly handle the energy imbalance in the nonlinearly smoothed wavefield. Similar to the multi-scale strategy, we progressively reduce the smoothing width applied to the multiplied wavefield to welcome higher resolution. We calculate the gradient of the objective function using the adjoint-state technique, which is similar to the conventional FWI except for the adjoint source. Examples on the Marmousi 2 model demonstrate the feasibility of the proposed FWI method to mitigate the cycle-skipping problem in the case of a lack of low frequency information.
Seismic waveform modeling over cloud
Luo, Cong; Friederich, Wolfgang
2016-04-01
With the fast growing computational technologies, numerical simulation of seismic wave propagation achieved huge successes. Obtaining the synthetic waveforms through numerical simulation receives an increasing amount of attention from seismologists. However, computational seismology is a data-intensive research field, and the numerical packages usually come with a steep learning curve. Users are expected to master considerable amount of computer knowledge and data processing skills. Training users to use the numerical packages, correctly access and utilize the computational resources is a troubled task. In addition to that, accessing to HPC is also a common difficulty for many users. To solve these problems, a cloud based solution dedicated on shallow seismic waveform modeling has been developed with the state-of-the-art web technologies. It is a web platform integrating both software and hardware with multilayer architecture: a well designed SQL database serves as the data layer, HPC and dedicated pipeline for it is the business layer. Through this platform, users will no longer need to compile and manipulate various packages on the local machine within local network to perform a simulation. By providing users professional access to the computational code through its interfaces and delivering our computational resources to the users over cloud, users can customize the simulation at expert-level, submit and run the job through it.
Energy velocity and group velocity
Institute of Scientific and Technical Information of China (English)
陈宇
1995-01-01
A new Lagrangian method for studying the relationship between the energy velocity and the group velocity is described. It is proved that under the usual quasistatic electric field, the energy velocity is identical to the group velocity for acoustic waves in anisotropic piezoelectric (or non-piezoelectric) media.
Interferometric full-waveform inversion of time-lapse data
Sinha, Mrinal
2017-08-17
One of the key challenges associated with time-lapse surveys is ensuring the repeatability between the baseline and monitor surveys. Non-repeatability between the surveys is caused by varying environmental conditions over the course of different surveys. To overcome this challenge, we propose the use of interferometric full waveform inversion (IFWI) for inverting the velocity model from data recorded by baseline and monitor surveys. A known reflector is used as the reference reflector for IFWI, and the data are naturally redatumed to this reference reflector using natural reflections as the redatuming operator. This natural redatuming mitigates the artifacts introduced by the repeatability errors that originate above the reference reflector.
Goldstone Solar System Radar Waveform Generator
Quirk, Kevin J.; Patawaran, Ferze D.; Nguyen, Danh H.; Nguyen, Huy
2012-01-01
Due to distances and relative motions among the transmitter, target object, and receiver, the time-base between any transmitted and received signal will undergo distortion. Pre-distortion of the transmitted signal to compensate for this time-base distortion allows reception of an undistorted signal. In most radar applications, an arbitrary waveform generator (AWG) would be used to store the pre-calculated waveform and then play back this waveform during transmission. The Goldstone Solar System Radar (GSSR), however, has transmission durations that exceed the available memory storage of such a device. A waveform generator capable of real-time pre-distortion of a radar waveform to a given time-base distortion function is needed. To pre-distort the transmitted signal, both the baseband radar waveform and the RF carrier must be modified. In the GSSR, this occurs at the up-conversion mixing stage to an intermediate frequency (IF). A programmable oscillator (PO) is used to generate the IF along with a time-varying phase component that matches the time-base distortion of the RF carrier. This serves as the IF input to the waveform generator where it is mixed with a baseband radar waveform whose time-base has been distorted to match the given time-base distortion function producing the modulated IF output. An error control feedback loop is used to precisely control the time-base distortion of the baseband waveform, allowing its real-time generation. The waveform generator produces IF modulated radar waveforms whose time-base has been pre-distorted to match a given arbitrary function. The following waveforms are supported: continuous wave (CW), frequency hopped (FH), binary phase code (BPC), and linear frequency modulation (LFM). The waveform generator takes as input an IF with a time varying phase component that matches the time-base distortion of the carrier. The waveform generator supports interconnection with deep-space network (DSN) timing and frequency standards, and
Anisotropic Structure of the Upper Mantle, Imaged with Surface and S Waveform Tomography
Schaeffer, A. J.; Lebedev, S.
2011-12-01
The rapid recent expansion of global and regional seismic networks has paved the way for a new generation of tomographic models, with significantly improved resolution at global and regional scales. We present a new global model of shear velocity and azimuthal anisotropy in the upper mantle, down to the base of the transition zone. The model is constrained by an unprecedentedly large waveform dataset collected from over 2000 stations of GSN and affiliates, USArray, VEBSN, CNSN, PASSCAL experiments, and other networks with data available from IRIS, ORFEUS, and GFZ data centers. Applying the accurate and efficient automated multimode inversion of surface- and S-wave forms to this massive dataset, we generated linear constraints on elastic structure within approximate sensitivity volumes between individual source-receiver pairs, with respect to a 3D reference model. The full waveform inversions resulted in more than one million successful fits (one million seismograms), with structural information extracted from both the fundamental and higher modes. The linear equations were then simultaneously solved for a high-resolution, 3D model of shear velocity and azimuthal anisotropy in the upper mantle. In continental domains, clearly identifiable boundaries between different tectonic features such as basins and relic mountain ranges are readily observable, as well as the signature of deep cratonic roots versus juvenile accretionary margins. Both active and fossil subduction zones are marked by slab signatures deep in the upper mantle and extending through the transition zone. In oceanic regions, largest mid-ocean-ridge anomalies indicative of melting terminate at depths of 100-120 km, with evidence for vertical flow in the upper mantle observed through a combination of VSV, VSH, and azimuthal anisotropy. Spatio-temporal evolution (cooling and thickening) of lithosphere away from the spreading ridges matches the signature expected from geodynamic and thermal modeling. The
2D acoustic-elastic coupled waveform inversion in the Laplace domain
Bae, Hoseuk
2010-04-01
Although waveform inversion has been intensively studied in an effort to properly delineate the Earth\\'s structures since the early 1980s, most of the time- and frequency-domain waveform inversion algorithms still have critical limitations in their applications to field data. This may be attributed to the highly non-linear objective function and the unreliable low-frequency components. To overcome the weaknesses of conventional waveform inversion algorithms, the acoustic Laplace-domain waveform inversion has been proposed. The Laplace-domain waveform inversion has been known to provide a long-wavelength velocity model even for field data, which may be because it employs the zero-frequency component of the damped wavefield and a well-behaved logarithmic objective function. However, its applications have been confined to 2D acoustic media.We extend the Laplace-domain waveform inversion algorithm to a 2D acoustic-elastic coupled medium, which is encountered in marine exploration environments. In 2D acoustic-elastic coupled media, the Laplace-domain pressures behave differently from those of 2D acoustic media, although the overall features are similar to each other. The main differences are that the pressure wavefields for acoustic-elastic coupled media show negative values even for simple geological structures unlike in acoustic media, when the Laplace damping constant is small and the water depth is shallow. The negative values may result from more complicated wave propagation in elastic media and at fluid-solid interfaces.Our Laplace-domain waveform inversion algorithm is also based on the finite-element method and logarithmic wavefields. To compute gradient direction, we apply the back-propagation technique. Under the assumption that density is fixed, P- and S-wave velocity models are inverted from the pressure data. We applied our inversion algorithm to the SEG/EAGE salt model and the numerical results showed that the Laplace-domain waveform inversion
Ohminato, T.; Chouet, B.A.; Dawson, P.; Kedar, S.
1998-01-01
We use data from broadband seismometers deployed around the summit of Kilauea Volcano to quantify the mechanism associated with a transient in the flow of magma feeding the east rift eruption of the volcano. The transient is marked by rapid inflation of the Kilauea summit peaking at 22 ??rad 4.5 hours after the event onset, followed by slow deflation over a period of 3 days. Superimposed on the summit inflation is a series of sawtooth displacement pulses, each characterized by a sudden drop in amplitude lasting 5-10 s followed by an exponential recovery lasting 1-3 min. The sawtooth waveforms display almost identical shapes, suggesting a process involving the repeated activation of a fixed source. The particle motion associated with each sawtooth is almost linear, and its major swing shows compressional motion at all stations. Analyses of semblance and particle motion are consistent with a point source located 1 km beneath the northeast edge of the Halemaumau pit crater. To estimate the source mechanism, we apply a moment tensor inversion to the waveform data, assuming a point source embedded in a homogeneous half-space with compressional and shear wave velocities representative of the average medium properties at shallow depth under Kilauea. Synthetic waveforms are constructed by a superposition of impulse responses for six moment tensor components and three single force components. The origin times of individual impulses are distributed along the time axis at appropriately small, equal intervals, and their amplitudes are determined by least squares. In this inversion, the source time functions of the six tensor and three force components are determined simultaneously. We confirm the accuracy of the inversion method through a series of numerical tests. The results from the inversion show that the waveform data are well explained by a pulsating transport mechanism operating on a subhorizontal crack linking the summit reservoir to the east rift of Kilauea. The crack
Optical arbitrary waveform characterization using linear spectrograms.
Jiang, Zhi; Leaird, Daniel E; Long, Christopher M; Boppart, Stephen A; Weiner, Andrew M
2010-08-01
We demonstrate the first application of linear spectrogram methods based on electro-optic phase modulation to characterize optical arbitrary waveforms generated under spectral line-by-line control. This approach offers both superior sensitivity and self-referencing capability for retrieval of periodic high repetition rate optical arbitrary waveforms.
Acoustic measurement of potato cannon velocity
Courtney, M; Courtney, Amy; Courtney, Michael
2006-01-01
This article describes measurement of potato cannon velocity with a digitized microphone signal. A microphone is attached to the potato cannon muzzle and a potato is fired at an aluminum target about 10 m away. The potato's flight time can be determined from the acoustic waveform by subtracting the time in the barrel and time for sound to return from the target. The potato velocity is simply the flight distance divided by the flight time.
Digital Waveform Generator Basedon FPGA
Directory of Open Access Journals (Sweden)
Shoucheng Ding
2012-07-01
Full Text Available Field Programmable Gate Array (FPGA of the Cyclone II series was as the core processor of frequency meter and the Quartus II was as the development plat form. This article had designed the fully digital signal generator. It use dall-digital frequency synthesizer technology and FPGA programming implemented the three waveforms: sin wave and square wave and triangle wave. The frequency was adjustable through10- bit phase accumulator and the analog multiplier achieved amplitude modulation. Using 51soft nuclear FPGA wrote a C program and realized the in put control word. The 4 × 4 matrix keyboard inputted frequency or amplitude value and the LCD1602displayedthem. The test results show that the system has high precision, distortion and low.
Cannon, Kipp; Hanna, Chad; Keppel, Drew; Pfeiffer, Harald
2012-01-01
Matched-filtering for the identification of compact object mergers in gravitational-wave antenna data involves the comparison of the data stream to a bank of template gravitational waveforms. Typically the template bank is constructed from phenomenological waveform models since these can be evaluated for an arbitrary choice of physical parameters. Recently it has been proposed that singular value decomposition (SVD) can be used to reduce the number of templates required for detection. As we show here, another benefit of SVD is its removal of biases from the phenomenological templates along with a corresponding improvement in their ability to represent waveform signals obtained from numerical relativity (NR) simulations. Using these ideas, we present a method that calibrates a reduced SVD basis of phenomenological waveforms against NR waveforms in order to construct a new waveform approximant with improved accuracy and faithfulness compared to the original phenomenological model. The new waveform family is giv...
Schumacher, Florian; Friederich, Wolfgang; Lamara, Samir; Gutt, Phillip; Paffrath, Marcel
2015-04-01
We present a seismic full waveform inversion concept for applications ranging from seismological to enineering contexts, based on sensitivity kernels for full waveforms. The kernels are derived from Born scattering theory as the Fréchet derivatives of linearized frequency-domain full waveform data functionals, quantifying the influence of elastic earth model parameters and density on the data values. For a specific source-receiver combination, the kernel is computed from the displacement and strain field spectrum originating from the source evaluated throughout the inversion domain, as well as the Green function spectrum and its strains originating from the receiver. By storing the wavefield spectra of specific sources/receivers, they can be re-used for kernel computation for different specific source-receiver combinations, optimizing the total number of required forward simulations. In the iterative inversion procedure, the solution of the forward problem, the computation of sensitivity kernels and the derivation of a model update is held completely separate. In particular, the model description for the forward problem and the description of the inverted model update are kept independent. Hence, the resolution of the inverted model as well as the complexity of solving the forward problem can be iteratively increased (with increasing frequency content of the inverted data subset). This may regularize the overall inverse problem and optimizes the computational effort of both, solving the forward problem and computing the model update. The required interconnection of arbitrary unstructured volume and point grids is realized by generalized high-order integration rules and 3D-unstructured interpolation methods. The model update is inferred solving a minimization problem in a least-squares sense, resulting in Gauss-Newton convergence of the overall inversion process. The inversion method was implemented in the modularized software package ASKI (Analysis of Sensitivity
Waveform inversion for localized seismic structure and its application to D
Kawai, K.; Geller, R. J.; Fuji, N.; Konishi, K.
2008-12-01
In order to fully extract information on localized seismic structure from observed seismic data, we have developed a methodology for seismic waveform inversion. The calculation of synthetic seismograms and their partial derivatives are the key steps in such an inversion. We have developed accurate and efficient methods for calculating broadband synthetic seismograms for spherically symmetric transversely isotropic media for both shallow and deep events, which allows us to compute synthetics up to 2 Hz or higher frequencies (Kawai et al. 2006, GJI). Then, wWe formulate the inverse problem of waveform inversion for localized structure using the efficient algorithm of Geller and Hara (1993), computing partial derivatives for the 3-D anisotropic elastic parameters, including anelasticity, at particular points in space. Our method allows us to conduct both local and multi-scale global waveform inversion using pixel (or local shell) parameterization. We previouslyhave conducted waveform inversion for the vertical profile of the shear velocity in the lowermost mantle beneath Central America and the Arctic, beneath which the shear velocity is faster than the global average (Kawai et al., 2007ab, GRL). The obtained models suggest that the S-velocity increase in D'' may be localized in the zone from 100-200 km above the core-mantle boundary (CMB), while the S-velocity does not significantly deviate from PREM in the zone from 0-100 km above the CMB. In this studywork, we studied D'' beneath the Pacific, where the S-velocity is supposed thought to be slower than the global average on the basis of by many tomographic studies. models (e.g. Takeuchi 2007). We use the transverse component of broadband waveforms (for the period range, 8- 200 s). observed waveforms. We found 1-1.5% velocity decreases and increases in the zones from 400-500 km and from 300-400 km above the CMB, respectively. In addition, we found 0.5-1% velocity increases and decreases in the zones from 100-200 km
Connolly, Mark; He, Xing; Gonzalez, Nestor; Vespa, Paul; DiStefano, Joe; Hu, Xiao
2014-03-01
Due to the inaccessibility of the cranial vault, it is difficult to study cerebral blood flow dynamics directly. A mathematical model can be useful to study these dynamics. The model presented here is a novel combination of a one-dimensional fluid flow model representing the major vessels of the circle of Willis (CoW), with six individually parameterized auto-regulatory models of the distal vascular beds. This model has the unique ability to simulate high temporal resolution flow and velocity waveforms, amenable to pulse-waveform analysis, as well as sophisticated phenomena such as auto-regulation. Previous work with human patients has shown that vasodilation induced by CO2 inhalation causes 12 consistent pulse-waveform changes as measured by the morphological clustering and analysis of intracranial pressure algorithm. To validate this model, we simulated vasodilation and successfully reproduced 9 out of the 12 pulse-waveform changes. A subsequent sensitivity analysis found that these 12 pulse-waveform changes were most affected by the parameters associated with the shape of the smooth muscle tension response and vessel elasticity, providing insight into the physiological mechanisms responsible for observed changes in the pulse-waveform shape.
Implementation of Pulse Radar Waveform Based on Software Radio Platform
Wang Dong; Dong Jian; Xiao Shunping
2015-01-01
Based on the frequency and phase modulated signal, the authors design some commonly-used pulse radar baseband waveform, such as linear frequency modulated waveform, nonlinear frequency modulated waveform, Costas waveform, Barker coding waveform and multi-phase coded waveform, and the authors compare their performance, such as the peak side lobe ratio, the Rayleigh resolution in time and distance resolution. Then, based on the software radio platform NI PXIe-5644R, the authors design the timin...
Early arrival waveform inversion of shallow seismic land data
Hanafy, Sherif M.
2013-09-22
We estimate the near-surface velocity distribution over Wadi Qudaid in Saudi Arabia by applying early arrival waveform inversion (EWI) to shallow seismic land data collected with source-receiver offsets no longer than 232 m. The main purpose is to characterize the shallow subsurface for its water storage and reuse potential. To enhance the accuracy of EWI, we extracted a natural source wavelet from the data, and also corrected for the attenuation effects with an estimated factor Q. Results suggest that, compared to traveltime tomography, EWI can generate a highly resolved velocity tomogram from shallow seismic data. The more accurate EWI tomogram can make an economically important difference in assessing the storage potential of this wadi; in this case we find an increase of 18% of storage potential in the EWI tomogram relative to the traveltime tomogram. This approach suggests that FWI might be a more accurate means for economically characterizing the water storage potential for wadis’ throughout the world.
3-D waveform tomography sensitivity kernels for anisotropic media
Djebbi, R.
2014-01-01
The complications in anisotropic multi-parameter inversion lie in the trade-off between the different anisotropy parameters. We compute the tomographic waveform sensitivity kernels for a VTI acoustic medium perturbation as a tool to investigate this ambiguity between the different parameters. We use dynamic ray tracing to efficiently handle the expensive computational cost for 3-D anisotropic models. Ray tracing provides also the ray direction information necessary for conditioning the sensitivity kernels to handle anisotropy. The NMO velocity and η parameter kernels showed a maximum sensitivity for diving waves which results in a relevant choice of those parameters in wave equation tomography. The δ parameter kernel showed zero sensitivity; therefore it can serve as a secondary parameter to fit the amplitude in the acoustic anisotropic inversion. Considering the limited penetration depth of diving waves, migration velocity analysis based kernels are introduced to fix the depth ambiguity with reflections and compute sensitivity maps in the deeper parts of the model.
Improved retracking algorithm for oceanic altimeter waveforms
Institute of Scientific and Technical Information of China (English)
Lifeng Bao; Yang Lu; Yong Wang
2009-01-01
Over the deep oceans without land/ice interference, the waveforms created by the return altimeter pulse generally follow the ocean model of Brown, and the corresponding range can be properly determined using the result from an onboard tracker. In the case of com-plex altimeter waveforms corrupted due to a variety of reasons, the processor on the satellite cannot properly determine the center of the leading edge, and range observations can be in error. As an efficacious method to improve the precision of those altimeter observations with complex waveforms, waveform retracking is required to reprocess the original returning pulse. Based on basic altimeter theory and the geometric feature of altimeter waveforms, we developed a new altimeter waveform retracker, which is valid for all altimeter wave-forms once there exists a reasonable returning signal. The performances of the existing Beta-5 retracker, threshold retracker, improved threshold retracker, and the new retracker are assessed in the experimental regions (China Seas and its adjacent regions), and the improvements in the accuracy of sea surface height are investigated by the difference between retracked altimeter observations and ref-erenced geoid. The comparisons denote that the new algorithm gives the best performance in both the open ocean and coastal regions. Also, the new retracker presents a uniform performance in the whole test region. Besides, there is a significant improvement in the short-wavelength precision and the spatial resolution of sea surface height after retracking process.
Finite-fault analysis of the 2004 Parkfield, California, earthquake using Pnl waveforms
Mendoza, C.; Hartzell, S.
2008-01-01
We apply a kinematic finite-fault inversion scheme to Pnl displacement waveforms recorded at 14 regional stations (Δsingle Mw 5.0 aftershock. Slip is modeled on a rectangular fault subdivided into 2×2 km subfaults assuming a constant rupture velocity and a 0.5 sec rise time. A passband filter of 0.1–0.5 Hz is applied to both data and subfault responses prior to waveform inversion. The SGF inversions are performed such that the final seismic moment is consistent with the known magnitude (Mw 6.0) of the earthquake. For these runs, it is difficult to reproduce the entire Pnl waveform due to inaccuracies in the assumed crustal structure. Also, the misfit between observed and predicted vertical waveforms is similar in character for different rupture velocities, indicating that neither the rupture velocity nor the exact position of slip sources along the fault can be uniquely identified. The pattern of coseismic slip, however, compares well with independent source models derived using other data types, indicating that the SGF inversion procedure provides a general first-order estimate of the 2004 Parkfield rupture using the vertical Pnl records. The best-constrained slip model is obtained using the single-aftershock EGF approach. In this case, the waveforms are very well reproduced for both vertical and horizontal components, suggesting that the method provides a powerful tool for estimating the distribution of coseismic slip using the regional Pnl waveforms. The inferred slip model shows a localized patch of high slip (55 cm peak) near the hypocenter and a larger slip area (~50 cm peak) extending between 6 and 20 km to the northwest.
Strategies for efficient resolution analysis in full-waveform inversion
Fichtner, A.; van Leeuwen, T.; Trampert, J.
2016-12-01
Full-waveform inversion is developing into a standard method in the seismological toolbox. It combines numerical wave propagation for heterogeneous media with adjoint techniques in order to improve tomographic resolution. However, resolution becomes increasingly difficult to quantify because of the enormous computational requirements. Here we present two families of methods that can be used for efficient resolution analysis in full-waveform inversion. They are based on the targeted extraction of resolution proxies from the Hessian matrix, which is too large to store and to compute explicitly. Fourier methods rest on the application of the Hessian to Earth models with harmonic oscillations. This yields the Fourier spectrum of the Hessian for few selected wave numbers, from which we can extract properties of the tomographic point-spread function for any point in space. Random probing methods use uncorrelated, random test models instead of harmonic oscillations. Auto-correlating the Hessian-model applications for sufficiently many test models also characterises the point-spread function. Both Fourier and random probing methods provide a rich collection of resolution proxies. These include position- and direction-dependent resolution lengths, and the volume of point-spread functions as indicator of amplitude recovery and inter-parameter trade-offs. The computational requirements of these methods are equivalent to approximately 7 conjugate-gradient iterations in full-waveform inversion. This is significantly less than the optimisation itself, which may require tens to hundreds of iterations to reach convergence. In addition to the theoretical foundations of the Fourier and random probing methods, we show various illustrative examples from real-data full-waveform inversion for crustal and mantle structure.
Efficient scattering angle filtering for Full waveform inversion
Alkhalifah, Tariq Ali
2015-08-19
Controlling the scattering angles between the state and the adjoint variables for the energy admitted into an inversion gradient or an image can help improve these functions for objectives in full waveform inversion (FWI) or seismic imaging. However, the access of the scattering angle information usually requires an axis extension that could be costly, especially in 3D. For the purpose of a scattering angle filter, I develop techniques that utilize the mapping nature (no domain extension) of the filter for constant-velocity background models to interpolate between such filtered gradients using the actual velocity. The concept has well known roots in the application of phase-shift-plus-interpolation utilized commonly in the downward continuation process. If the difference between the minimum and maximum velocity of the background medium is large, we obtain filtered gradients corresponding to more constant velocity backgrounds and use linear interpolation between such velocities. The accuracy of this approximation for the Marmousi model gradient demonstrates the e ectiveness of the approach.
D'' beneath the Arctic from inversion of shear waveforms
Kawai, Kenji; Geller, Robert J.; Fuji, Nobuaki
2007-11-01
The structure of the D'' region beneath the Arctic has not previously been studied in detail. Using waveform inversion, we find that the average S-wave velocity in D'' beneath the Arctic is about 0.04 km/s higher than PREM, which is consistent with the existence of post-perovskite (ppv) in D''. It is difficult to strongly constrain the fine structure of S-velocity within D'' due to the small number of stations at epicentral distances Δ weighting those stations heavily in the inversion, we show that the data suggest the existence of high S-velocity in the upper half of D'' and low S-velocity in the lower half, consistent with the possibility of a double crossing (ppv -> pv reverse phase transition) within D''. We conduct a computational experiment to show that resolution of the velocity structure within D'' could be significantly improved by temporary installation of a portable array of seismographs in northern Canada, which would greatly increase the number of stations in the range 70° < Δ < 90°.
Waveform Fingerprinting for Efficient Seismic Signal Detection
Yoon, C. E.; OReilly, O. J.; Beroza, G. C.
2013-12-01
Cross-correlating an earthquake waveform template with continuous waveform data has proven a powerful approach for detecting events missing from earthquake catalogs. If templates do not exist, it is possible to divide the waveform data into short overlapping time windows, then identify window pairs with similar waveforms. Applying these approaches to earthquake monitoring in seismic networks has tremendous potential to improve the completeness of earthquake catalogs, but because effort scales quadratically with time, it rapidly becomes computationally infeasible. We develop a fingerprinting technique to identify similar waveforms, using only a few compact features of the original data. The concept is similar to human fingerprints, which utilize key diagnostic features to identify people uniquely. Analogous audio-fingerprinting approaches have accurately and efficiently found similar audio clips within large databases; example applications include identifying songs and finding copyrighted content within YouTube videos. In order to fingerprint waveforms, we compute a spectrogram of the time series, and segment it into multiple overlapping windows (spectral images). For each spectral image, we apply a wavelet transform, and retain only the sign of the maximum magnitude wavelet coefficients. This procedure retains just the large-scale structure of the data, providing both robustness to noise and significant dimensionality reduction. Each fingerprint is a high-dimensional, sparse, binary data object that can be stored in a database without significant storage costs. Similar fingerprints within the database are efficiently searched using locality-sensitive hashing. We test this technique on waveform data from the Northern California Seismic Network that contains events not detected in the catalog. We show that this algorithm successfully identifies similar waveforms and detects uncataloged low magnitude events in addition to cataloged events, while running to completion
Periodic, pseudonoise waveforms for multifunction coherent ladar.
Dierking, Matthew P; Duncan, Bradley D
2010-04-01
We report the use of periodic, pseudonoise waveforms in a multifunction coherent ladar system. We exploit the Doppler sensitivity of these waveforms, as well as agile processing, to enable diverse ladar functions, including high range resolution imaging, macro-Doppler imaging, synthetic aperture ladar, and range-resolved micro-Doppler imaging. We present analytic expressions and simulations demonstrating the utility of pseudonoise waveforms for each of the ladar modes. We also discuss a laboratory pseudonoise ladar system that was developed to demonstrate range compression and range-resolved micro-Doppler imaging, as well as the phase recovery common to each of the coherent modes.
Optimal pseudorandom pulse position modulation ladar waveforms.
Fluckiger, David U; Boland, Brian F; Marcus, Eran
2015-03-20
An algorithm for generating optimal pseudorandom pulse position modulation (PRPPM) waveforms for ladar ranging is presented. Bistatic ladar systems using Geiger-mode avalanche photodiodes require detection of several pulses in order to generate sufficient target statistics to satisfy some detection decision rule. For targets with large initial range uncertainty, it becomes convenient to transmit a pulse train with large ambiguity range. One solution is to employ a PRPPM waveform. An optimal PRPPM waveform will have minimal sidelobes: equivalent to 1 or 0 counts after the pulse correlation filter (compression). This can be accomplished by generating PRPPM pulse trains with optimal or minimal sidelobe autocorrelation.
RADAR HRR PROFILING FOR GROUND MOVING TARGET USING PHASE-CODED AND HOPPED-FREQUENCY WAVEFORMS
Institute of Scientific and Technical Information of China (English)
Li Yan; Wang Changming
2007-01-01
To obtain the radar High Range Resolution (HRR) profile of the slowly moving ground target in strong clutter background, the Phase-Coded Hopped-Frequency (PCHF) waveform is proposed. By multiple-bursts coherent processing, the HRR profile synthesis, target velocity compensation and clutter compression can be accomplished simultaneously. The new waveform is shown to have good ability to suppress ground clutter and good Electronic Counter-CounterMeasures (ECCM) ability as well. The clutter compression performance of the proposed method is verified by the numerical results.
Vos, J. J.; Kalmar, A. F.; Struys, M. M. R. F.; Wietasch, J. K. G.; Hendriks, H. G. D.; Scheeren, T. W. L.
2013-01-01
Dynamic preload variables to predict fluid responsiveness are based either on the arterial pressure waveform (APW) or on the plethysmographic waveform (PW). We compared the ability of APW-based variations in stroke volume (SVV) and pulse pressure (PPV) and of PW-based plethysmographic variability in
Vos, J. J.; Kalmar, A. F.; Struys, M. M. R. F.; Wietasch, J. K. G.; Hendriks, H. G. D.; Scheeren, T. W. L.
Dynamic preload variables to predict fluid responsiveness are based either on the arterial pressure waveform (APW) or on the plethysmographic waveform (PW). We compared the ability of APW-based variations in stroke volume (SVV) and pulse pressure (PPV) and of PW-based plethysmographic variability
Vos, J. J.; Kalmar, A. F.; Struys, M. M. R. F.; Wietasch, J. K. G.; Hendriks, H. G. D.; Scheeren, T. W. L.
2013-01-01
Dynamic preload variables to predict fluid responsiveness are based either on the arterial pressure waveform (APW) or on the plethysmographic waveform (PW). We compared the ability of APW-based variations in stroke volume (SVV) and pulse pressure (PPV) and of PW-based plethysmographic variability in
Selection of Carrier Waveforms for PWM Inverter
Institute of Scientific and Technical Information of China (English)
陈国呈; 屈克庆; 许春雨; 孙承波
2003-01-01
In this paper the influence of different carrier waveforms upon the output characteristics of PWM inverter is described in detail. When a triangular carrier waveform is used in hard-switching PWM inverters, harmonics exist in the neighborhood of the output frequency of the inverter output voltage and current due to the dead time. The triangular carrier waveform used in soft-switching PWM inverter will cause difficulties in controlling resonance-trigger time, higher loss in the resonant circuit, and less utilization of the DC bus voltage. If a sawtooth carrier is used in hard-switching PWM inverter, there will be severe distortion in the current waveform. When sawtooth carriers with alternate positive and negative slopes are used in soft-switching PWM inverters, the resonancetrigger time is easy to control, and distortion in the output voltage and current caused by the dead time will not appear.
High-Voltage, Asymmetric-Waveform Generator
Beegle, Luther W.; Duong, Tuan A.; Duong, Vu A.; Kanik, Isik
2008-01-01
The shapes of waveforms generated by commercially available analytical separation devices, such as some types of mass spectrometers and differential mobility spectrometers are, in general, inadequate and result in resolution degradation in output spectra. A waveform generator was designed that would be able to circumvent these shortcomings. It is capable of generating an asymmetric waveform, having a peak amplitude as large as 2 kV and frequency of several megahertz, which can be applied to a capacitive load. In the original intended application, the capacitive load would consist of the drift plates in a differential-mobility spectrometer. The main advantage to be gained by developing the proposed generator is that the shape of the waveform is made nearly optimum for various analytical devices requiring asymmetric-waveform such as differential-mobility spectrometers. In addition, this waveform generator could easily be adjusted to modify the waveform in accordance with changed operational requirements for differential-mobility spectrometers. The capacitive nature of the load is an important consideration in the design of the proposed waveform generator. For example, the design provision for shaping the output waveform is based partly on the principle that (1) the potential (V) on a capacitor is given by V=q/C, where C is the capacitance and q is the charge stored in the capacitor; and, hence (2) the rate of increase or decrease of the potential is similarly proportional to the charging or discharging current. The proposed waveform generator would comprise four functional blocks: a sine-wave generator, a buffer, a voltage shifter, and a high-voltage switch (see Figure 1). The sine-wave generator would include a pair of operational amplifiers in a feedback configuration, the parameters of which would be chosen to obtain a sinusoidal timing signal of the desired frequency. The buffer would introduce a slight delay (approximately equal to 20 ns) but would otherwise
GRC GSFC TDRSS Waveform Metrics Report
Mortensen, Dale J.
2013-01-01
The report presents software metrics and porting metrics for the GGT Waveform. The porting was from a ground-based COTS SDR, the SDR-3000, to the CoNNeCT JPL SDR. The report does not address any of the Operating Environment (OE) software development, nor the original TDRSS waveform development at GSFC for the COTS SDR. With regard to STRS, the report presents compliance data and lessons learned.
Directory of Open Access Journals (Sweden)
Arheden Håkan
2011-04-01
Full Text Available Abstract Background Functional and morphological changes of the heart influence blood flow patterns. Therefore, flow patterns may carry diagnostic and prognostic information. Three-dimensional, time-resolved, three-directional phase contrast cardiovascular magnetic resonance (4D PC-CMR can image flow patterns with unique detail, and using new flow visualization methods may lead to new insights. The aim of this study is to present and validate a novel visualization method with a quantitative potential for blood flow from 4D PC-CMR, called Volume Tracking, and investigate if Volume Tracking complements particle tracing, the most common visualization method used today. Methods Eight healthy volunteers and one patient with a large apical left ventricular aneurysm underwent 4D PC-CMR flow imaging of the whole heart. Volume Tracking and particle tracing visualizations were compared visually side-by-side in a visualization software package. To validate Volume Tracking, the number of particle traces that agreed with the Volume Tracking visualizations was counted and expressed as a percentage of total released particles in mid-diastole and end-diastole respectively. Two independent observers described blood flow patterns in the left ventricle using Volume Tracking visualizations. Results Volume Tracking was feasible in all eight healthy volunteers and in the patient. Visually, Volume Tracking and particle tracing are complementary methods, showing different aspects of the flow. When validated against particle tracing, on average 90.5% and 87.8% of the particles agreed with the Volume Tracking surface in mid-diastole and end-diastole respectively. Inflow patterns in the left ventricle varied between the subjects, with excellent agreement between observers. The left ventricular inflow pattern in the patient differed from the healthy subjects. Conclusion Volume Tracking is a new visualization method for blood flow measured by 4D PC-CMR. Volume Tracking
Georgia Tech Catalog of Gravitational Waveforms
Jani, Karan; Clark, James A; London, Lionel; Laguna, Pablo; Shoemaker, Deirdre
2016-01-01
This paper introduces a catalog of gravitational waveforms from the bank of simulations by the numerical relativity effort at Georgia Tech. Currently, the catalog consists of 452 distinct waveforms from more than 600 binary black hole simulations: 128 of the waveforms are from binaries with black hole spins aligned with the orbital angular momentum, and 324 are from precessing binary black hole systems. The waveforms from binaries with non-spinning black holes have mass-ratios $q = m_1/m_2 \\le 15$, and those with precessing, spinning black holes have $q \\le 8$. The waveforms expand a moderate number of orbits in the late inspiral, the burst during coalescence, and the ring-down of the final black hole. Examples of waveforms in the catalog matched against the widely used approximate models are presented. In addition, predictions of the mass and spin of the final black hole by phenomenological fits are tested against the results from the simulation bank. The role of the catalog in interpreting the GW150914 even...
Georgia tech catalog of gravitational waveforms
Jani, Karan; Healy, James; Clark, James A.; London, Lionel; Laguna, Pablo; Shoemaker, Deirdre
2016-10-01
This paper introduces a catalog of gravitational waveforms from the bank of simulations by the numerical relativity effort at Georgia Tech. Currently, the catalog consists of 452 distinct waveforms from more than 600 binary black hole simulations: 128 of the waveforms are from binaries with black hole spins aligned with the orbital angular momentum, and 324 are from precessing binary black hole systems. The waveforms from binaries with non-spinning black holes have mass-ratios q = m 1/m 2 ≤ 15, and those with precessing, spinning black holes have q ≤ 8. The waveforms expand a moderate number of orbits in the late inspiral, the burst during coalescence, and the ring-down of the final black hole. Examples of waveforms in the catalog matched against the widely used approximate models are presented. In addition, predictions of the mass and spin of the final black hole by phenomenological fits are tested against the results from the simulation bank. The role of the catalog in interpreting the GW150914 event and future massive binary black-hole search in LIGO is discussed. The Georgia Tech catalog is publicly available at einstein.gatech.edu/catalog.
Rompas, P. T. D.; Taunaumang, H.; Sangari, F. J.
2017-03-01
One of equipment as prime movers in the marine current power plant is turbine. Marine current turbines require a data of marine currents velocity in its design. The objective of this study was to get the velocities distribution of marine currents in the Bangka strait. The method used survey, observation, and measurement in the Bangka strait. The data of seawater density conducted measurement in the Bangka strait. The data of width and depth of the strait collected from the map of Bangka strait and its depth of the sea. Problem solving of the study used a numerical model. The velocities distribution of marine current obtained from a numerical model in the form of numerical program. The results showed that the velocities distribution at seawater column when low and high tide currents which the maximum happened at 0.1 Sv were 0-0.9 and 0-1.0 m/s respectively, while at 0.3 Sv were 0-2.7 and 0-3.0 m/s respectively. The results will be a product in analyzing the potential kinetic energy that used to design profile of the turbines as prime mover for marine currents power plant in the Bangka strait, North Sulawesi, Indonesia.
Roth, Donald J (Inventor)
2011-01-01
A computer implemented process for simultaneously measuring the velocity of terahertz electromagnetic radiation in a dielectric material sample without prior knowledge of the thickness of the sample and for measuring the thickness of a material sample using terahertz electromagnetic radiation in a material sample without prior knowledge of the velocity of the terahertz electromagnetic radiation in the sample is disclosed and claimed. Utilizing interactive software the process evaluates, in a plurality of locations, the sample for microstructural variations and for thickness variations and maps the microstructural and thickness variations by location. A thin sheet of dielectric material may be used on top of the sample to create a dielectric mismatch. The approximate focal point of the radiation source (transceiver) is initially determined for good measurements.
Localized temporal variation of Earth's inner-core boundary from high-quality waveform doublets
Xin, Danhua
2016-04-01
The accurate determination of the topography of an Earth's internal boundary is difficult because of the possible trade-off with the velocity of the media above it. Here we use waveform-doublet method to map the ICB topography. A waveform doublet is a pair of earthquakes occurring at essentially the same spatial position and received by the same station with high similarity in their waveforms (Poupinet et al. 1984), which make the exact detection of the ICB topography possible. In this study, we used this method to detect temporal change of the ICB using doublets from the Western Pacific (WP) area to increase global coverage of the ICB. Compared with previous study using doublets from South Sandwich Islands (SSI) (Song and Dai, 2008), the new samples showed negligible temporal change of the ICB.
Full Waveform Inversion Using Oriented Time Migration Method
Zhang, Zhendong
2016-04-12
Full waveform inversion (FWI) for reflection events is limited by its linearized update requirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate the resulting gradient can have an inaccurate update direction leading the inversion to converge into what we refer to as local minima of the objective function. In this thesis, I first look into the subject of full model wavenumber to analysis the root of local minima and suggest the possible ways to avoid this problem. And then I analysis the possibility of recovering the corresponding wavenumber components through the existing inversion and migration algorithms. Migration can be taken as a generalized inversion method which mainly retrieves the high wavenumber part of the model. Conventional impedance inversion method gives a mapping relationship between the migration image (high wavenumber) and model parameters (full wavenumber) and thus provides a possible cascade inversion strategy to retrieve the full wavenumber components from seismic data. In the proposed approach, consider a mild lateral variation in the model, I find an analytical Frechet derivation corresponding to the new objective function. In the proposed approach, the gradient is given by the oriented time-domain imaging method. This is independent of the background velocity. Specifically, I apply the oriented time-domain imaging (which depends on the reflection slope instead of a background velocity) on the data residual to obtain the geometrical features of the velocity perturbation. Assuming that density is constant, the conventional 1D impedance inversion method is also applicable for 2D or 3D velocity inversion within the process of FWI. This method is not only capable of inverting for velocity, but it is also capable of retrieving anisotropic parameters relying on linearized representations of the reflection response. To eliminate the cross-talk artifacts between different parameters, I
Determine Earthquake Rupture Directivity Using Taiwan TSMIP Strong Motion Waveforms
Chang, Kaiwen; Chi, Wu-Cheng; Lai, Ying-Ju; Gung, YuanCheng
2013-04-01
Inverting seismic waveforms for the finite fault source parameters is important for studying the physics of earthquake rupture processes. It is also significant to image seismogenic structures in urban areas. Here we analyze the finite-source process and test for the causative fault plane using the accelerograms recorded by the Taiwan Strong-Motion Instrumentation Program (TSMIP) stations. The point source parameters for the mainshock and aftershocks were first obtained by complete waveform moment tensor inversions. We then use the seismograms generated by the aftershocks as empirical Green's functions (EGFs) to retrieve the apparent source time functions (ASTFs) of near-field stations using projected Landweber deconvolution approach. The method for identifying the fault plane relies on the spatial patterns of the apparent source time function durations which depend on the angle between rupture direction and the take-off angle and azimuth of the ray. These derived duration patterns then are compared with the theoretical patterns, which are functions of the following parameters, including focal depth, epicentral distance, average crustal 1D velocity, fault plane attitude, and rupture direction on the fault plane. As a result, the ASTFs derived from EGFs can be used to infer the ruptured fault plane and the rupture direction. Finally we used part of the catalogs to study important seismogenic structures in the area near Chiayi, Taiwan, where a damaging earthquake has occurred about a century ago. The preliminary results show a strike-slip earthquake on 22 October 1999 (Mw 5.6) has ruptured unilaterally toward SSW on a sub-vertical fault. The procedure developed from this study can be applied to other strong motion waveforms recorded from other earthquakes to better understand their kinematic source parameters.
"To-and-fro" waveform in the diagnosis of arterial pseudoaneurysms
Institute of Scientific and Technical Information of China (English)
Mustafa; Z; Mahmoud; Mohammed; Al-Saadi; Abdulwahab; Abuderman; Khalid; S; Alzimami; Mohammed; Alkhorayef; Babikir; Almagli; Abdelmoneim; Sulieman
2015-01-01
Medical ultrasound imaging with Doppler plays an essential role in the diagnosis of vascular disease. This study intended to review the clinical use of "to-and-fro" waveform at duplex Doppler ultrasonography(DDU) in the diagnosis of pseudoaneurysms in the arterial vessels of upper and lower extremities, abdominal aorta, carotid and vertebral arteries as well as to review our personal experiences of "to-and-fro" waveform at DDU also. After receiving institutional review board approval, an inclusive literature review was carried out in order to review the scientific foundation of "toand-fro" waveform at DDU and its clinical use in the diagnosis of pseudoaneurysms in various arterial vessels. Articles published in the English language between 2000 and 2013 were evaluated in this review study. Pseudoaneurysms in arterial vessels of the upper and lower extremities, abdominal aorta, carotid and vertebral arteries characterized by an extraluminal pattern of blood flow, which shows variable echogenicity, interval complexity, and "to-and-fro" flow pattern on color Doppler ultrasonography. In these arterial vessels, Duplex ultrasonography can demonstrate the degree of clotting, pseudoaneurysm communication, the blood flow patterns and velocities. Spectral Doppler applied to pseudoaneurysms lumen revealed systolic and diastolic turbulent blood flow with traditional "toand-fro" waveform in the communicating channel. Accurate diagnosis of pseudoaneurysm by spectral Doppler is based on the documentation of the "to-andfro" waveform. The size of pseudoaneurysm determines the appropriate treatment approach as surgical or conservative.
"To-and-fro" waveform in the diagnosis of arterial pseudoaneurysms.
Mahmoud, Mustafa Z; Al-Saadi, Mohammed; Abuderman, Abdulwahab; Alzimami, Khalid S; Alkhorayef, Mohammed; Almagli, Babikir; Sulieman, Abdelmoneim
2015-05-28
Medical ultrasound imaging with Doppler plays an essential role in the diagnosis of vascular disease. This study intended to review the clinical use of "to-and-fro" waveform at duplex Doppler ultrasonography (DDU) in the diagnosis of pseudoaneurysms in the arterial vessels of upper and lower extremities, abdominal aorta, carotid and vertebral arteries as well as to review our personal experiences of "to-and-fro" waveform at DDU also. After receiving institutional review board approval, an inclusive literature review was carried out in order to review the scientific foundation of "to-and-fro" waveform at DDU and its clinical use in the diagnosis of pseudoaneurysms in various arterial vessels. Articles published in the English language between 2000 and 2013 were evaluated in this review study. Pseudoaneurysms in arterial vessels of the upper and lower extremities, abdominal aorta, carotid and vertebral arteries characterized by an extraluminal pattern of blood flow, which shows variable echogenicity, interval complexity, and "to-and-fro" flow pattern on color Doppler ultrasonography. In these arterial vessels, Duplex ultrasonography can demonstrate the degree of clotting, pseudoaneurysm communication, the blood flow patterns and velocities. Spectral Doppler applied to pseudoaneurysms lumen revealed systolic and diastolic turbulent blood flow with traditional "to-and-fro" waveform in the communicating channel. Accurate diagnosis of pseudoaneurysm by spectral Doppler is based on the documentation of the "to-and-fro" waveform. The size of pseudoaneurysm determines the appropriate treatment approach as surgical or conservative.
Zhang, Zhendong
2017-07-11
Full waveform inversion for reection events is limited by its linearized update re-quirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate, the resulting gradient can have an inaccurate update direction leading the inversion to converge what we refer to as local minima of the objective function. In our approach, we consider mild lateral variation in the model, and thus, use a gradient given by the oriented time-domain imaging method. Specifically, we apply the oriented time-domain imaging on the data residual to obtain the geometrical features of the velocity perturbation. After updating the model in the time domain, we convert the perturbation from the time domain to depth using the average velocity. Considering density is constant, we can expand the conventional 1D impedance inversion method to 2D or 3D velocity inversion within the process of full waveform inversion. This method is not only capable of inverting for velocity, but it is also capable of retrieving anisotropic parameters relying on linearized representations of the reection response. To eliminate the cross-talk artifacts between different parameters, we utilize what we consider being an optimal parametrization for this step. To do so, we extend the prestack time-domain migration image in incident angle dimension to incorporate angular dependence needed by the multiparameter inversion. For simple models, this approach provides an efficient and stable way to do full waveform inversion or modified seismic inversion and makes the anisotropic inversion more practicable. The proposed method still needs kinematically accurate initial models since it only recovers the high-wavenumber part as conventional full waveform inversion method does. Results on synthetic data of isotropic and anisotropic cases illustrate the benefits and limitations of this method.
Evaluation of factors influencing arterial Doppler waveforms in an in vitro flow phantom
Energy Technology Data Exchange (ETDEWEB)
Sung, Chang Kyu [Dept. of Radiology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul (Korea, Republic of); Lee, Kyoung Ho [Dept. of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam (Korea, Republic of); Kim, Seung Hyup [Dept. of Radiology and the Institute of Radiation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of)
2017-01-15
The aim of this study was to investigate factors that influence arterial Doppler waveforms in an in vitro phantom to provide a more accurate and comprehensive explanation of the Doppler signal. A flow model was created using a pulsatile artificial heart, rubber or polyethylene tubes, a water tank, and a glass tube. Spectral Doppler tracings were obtained in multiple combinations of compliance, resistance, and pulse rate. Peak systolic velocity, minimum diastolic velocity, resistive index (RI), pulsatility index, early systolic acceleration time, and acceleration index were measured. On the basis of these measurements, the influences of the variables on the Doppler waveforms were analyzed. With increasing distal resistance, the RI increased in a relatively linear relationship. With increasing proximal resistance, the RI decreased. The pulsus tardus and parvus phenomenon was observed with a small acceleration index in the model with a higher grade of stenosis. An increase in the distal resistance masked the pulsus tardus and parvus phenomenon by increasing the acceleration index. Although this phenomenon occurred independently of compliance, changes in the compliance of proximal or distal tubes caused significant changes in the Doppler waveform. There was a reverse relationship between the RI and the pulse rate. Resistance and compliance can alter the Doppler waveforms independently. The pulse rate is an extrinsic factor that also influences the RI. The compliance and distal resistance, as well as proximal resistance, influence the pulsus tardus and parvus phenomenon.
Design of pulse waveform for waveform division multiple access UWB wireless communication system.
Yin, Zhendong; Wang, Zhirui; Liu, Xiaohui; Wu, Zhilu
2014-01-01
A new multiple access scheme, Waveform Division Multiple Access (WDMA) based on the orthogonal wavelet function, is presented. After studying the correlation properties of different categories of single wavelet functions, the one with the best correlation property will be chosen as the foundation for combined waveform. In the communication system, each user is assigned to different combined orthogonal waveform. Demonstrated by simulation, combined waveform is more suitable than single wavelet function to be a communication medium in WDMA system. Due to the excellent orthogonality, the bit error rate (BER) of multiuser with combined waveforms is so close to that of single user in a synchronous system. That is to say, the multiple access interference (MAI) is almost eliminated. Furthermore, even in an asynchronous system without multiuser detection after matched filters, the result is still pretty ideal and satisfactory by using the third combination mode that will be mentioned in the study.
Guided Wave Tomography Based on Full-Waveform Inversion.
Rao, Jing; Ratassepp, Madis; Fan, Zheng
2016-02-29
In this paper, a guided wave tomography method based on Full Waveform Inversion (FWI) is developed for accurate and high resolu- tion reconstruction of the remaining wall thickness in isotropic plates. The forward model is computed in the frequency domain by solving a full-wave equation in a two-dimensional acoustic model, accounting for higher order eects such as diractions and multiple scattering. Both numerical simulations and experiments were carried out to obtain the signals of a dispersive guided mode propagating through defects. The inversion was based on local optimization of a waveform mist func- tion between modeled and measured data, and was applied iteratively to discrete frequency components from low to high frequencies. The resulting wave velocity maps were then converted to thickness maps by the dispersion characteristics of selected guided modes. The results suggest that the FWI method is capable to reconstruct the thickness map of a irregularly shaped defect accurately on a 10 mm thick plate with the thickness error within 0.5 mm.
WFCatalog: A catalogue for seismological waveform data
Trani, Luca; Koymans, Mathijs; Atkinson, Malcolm; Sleeman, Reinoud; Filgueira, Rosa
2017-09-01
This paper reports advances in seismic waveform description and discovery leading to a new seismological service and presents the key steps in its design, implementation and adoption. This service, named WFCatalog, which stands for waveform catalogue, accommodates features of seismological waveform data. Therefore, it meets the need for seismologists to be able to select waveform data based on seismic waveform features as well as sensor geolocations and temporal specifications. We describe the collaborative design methods and the technical solution showing the central role of seismic feature catalogues in framing the technical and operational delivery of the new service. Also, we provide an overview of the complex environment wherein this endeavour is scoped and the related challenges discussed. As multi-disciplinary, multi-organisational and global collaboration is necessary to address today's challenges, canonical representations can provide a focus for collaboration and conceptual tools for agreeing directions. Such collaborations can be fostered and formalised by rallying intellectual effort into the design of novel scientific catalogues and the services that support them. This work offers an example of the benefits generated by involving cross-disciplinary skills (e.g. data and domain expertise) from the early stages of design, and by sustaining the engagement with the target community throughout the delivery and deployment process.
SCA Waveform Development for Space Telemetry
Mortensen, Dale J.; Kifle, Multi; Hall, C. Steve; Quinn, Todd M.
2004-01-01
The NASA Glenn Research Center is investigating and developing suitable reconfigurable radio architectures for future NASA missions. This effort is examining software-based open-architectures for space based transceivers, as well as common hardware platform architectures. The Joint Tactical Radio System's (JTRS) Software Communications Architecture (SCA) is a candidate for the software approach, but may need modifications or adaptations for use in space. An in-house SCA compliant waveform development focuses on increasing understanding of software defined radio architectures and more specifically the JTRS SCA. Space requirements put a premium on size, mass, and power. This waveform development effort is key to evaluating tradeoffs with the SCA for space applications. Existing NASA telemetry links, as well as Space Exploration Initiative scenarios, are the basis for defining the waveform requirements. Modeling and simulations are being developed to determine signal processing requirements associated with a waveform and a mission-specific computational burden. Implementation of the waveform on a laboratory software defined radio platform is proceeding in an iterative fashion. Parallel top-down and bottom-up design approaches are employed.
Influence of Asymmetrical Waveform on Low-Cycle Fatigue Life of Micro Solder Joint
Kanda, Yoshihiko; Kariya, Yoshiharu
2010-02-01
The effects of waveform symmetry on the low-cycle fatigue life of the Sn-3.0Ag-0.5Cu alloy have been investigated, using micro solder joint specimens with approximately the same volume of solder as is used in actual products. Focusing on crack initiation life, fatigue tests on Sn-Ag-Cu micro solder joints using asymmetrical triangular waveforms revealed no significant reduction in fatigue life. A slight reduction in fatigue life at low strain ranges caused by an increase in the fatigue ductility exponent, which is the result of a weakening microstructure due to loads applied at high temperature for long testing time, was observed. This was due to the fact that grain boundary damage, which has been reported in large-size specimens subjected to asymmetrical triangular waveforms, does not occur in Sn-Ag-Cu micro size solder joints with only a small number of crystal grain boundaries.
Photonic arbitrary waveform generator based on Taylor synthesis method
DEFF Research Database (Denmark)
Liao, Shasha; Ding, Yunhong; Dong, Jianji
2016-01-01
Arbitrary waveform generation has been widely used in optical communication, radar system and many other applications. We propose and experimentally demonstrate a silicon-on-insulator (SOI) on chip optical arbitrary waveform generator, which is based on Taylor synthesis method. In our scheme......, a Gaussian pulse is launched to some cascaded microrings to obtain first-, second- and third-order differentiations. By controlling amplitude and phase of the initial pulse and successive differentiations, we can realize an arbitrary waveform generator according to Taylor expansion. We obtain several typical...... waveforms such as square waveform, triangular waveform, flat-top waveform, sawtooth waveform, Gaussian waveform and so on. Unlike other schemes based on Fourier synthesis or frequency-to-time mapping, our scheme is based on Taylor synthesis method. Our scheme does not require any spectral disperser or large...
Photonic arbitrary waveform generator based on Taylor synthesis method.
Liao, Shasha; Ding, Yunhong; Dong, Jianji; Yan, Siqi; Wang, Xu; Zhang, Xinliang
2016-10-17
Arbitrary waveform generation has been widely used in optical communication, radar system and many other applications. We propose and experimentally demonstrate a silicon-on-insulator (SOI) on chip optical arbitrary waveform generator, which is based on Taylor synthesis method. In our scheme, a Gaussian pulse is launched to some cascaded microrings to obtain first-, second- and third-order differentiations. By controlling amplitude and phase of the initial pulse and successive differentiations, we can realize an arbitrary waveform generator according to Taylor expansion. We obtain several typical waveforms such as square waveform, triangular waveform, flat-top waveform, sawtooth waveform, Gaussian waveform and so on. Unlike other schemes based on Fourier synthesis or frequency-to-time mapping, our scheme is based on Taylor synthesis method. Our scheme does not require any spectral disperser or large dispersion, which are difficult to fabricate on chip. Our scheme is compact and capable for integration with electronics.
Krylov subspace acceleration of waveform relaxation
Energy Technology Data Exchange (ETDEWEB)
Lumsdaine, A.; Wu, Deyun [Univ. of Notre Dame, IN (United States)
1996-12-31
Standard solution methods for numerically solving time-dependent problems typically begin by discretizing the problem on a uniform time grid and then sequentially solving for successive time points. The initial time discretization imposes a serialization to the solution process and limits parallel speedup to the speedup available from parallelizing the problem at any given time point. This bottleneck can be circumvented by the use of waveform methods in which multiple time-points of the different components of the solution are computed independently. With the waveform approach, a problem is first spatially decomposed and distributed among the processors of a parallel machine. Each processor then solves its own time-dependent subsystem over the entire interval of interest using previous iterates from other processors as inputs. Synchronization and communication between processors take place infrequently, and communication consists of large packets of information - discretized functions of time (i.e., waveforms).
Wavelet analysis of the impedance cardiogram waveforms
Podtaev, S.; Stepanov, R.; Dumler, A.; Chugainov, S.; Tziberkin, K.
2012-12-01
Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt)max) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.
Waveform information from quantum mechanical entropy
Funkhouser, Scott; Suski, William; Winn, Andrew
2016-06-01
Although the entropy of a given signal-type waveform is technically zero, it is nonetheless desirable to use entropic measures to quantify the associated information. Several such prescriptions have been advanced in the literature but none are generally successful. Here, we report that the Fourier-conjugated `total entropy' associated with quantum-mechanical probabilistic amplitude functions (PAFs) is a meaningful measure of information in non-probabilistic real waveforms, with either the waveform itself or its (normalized) analytic representation acting in the role of the PAF. Detailed numerical calculations are presented for both adaptations, showing the expected informatic behaviours in a variety of rudimentary scenarios. Particularly noteworthy are the sensitivity to the degree of randomness in a sequence of pulses and potential for detection of weak signals.
Detection of underground pipeline based on Golay waveform design
Dai, Jingjing; Xu, Dazhuan
2017-08-01
The detection of underground pipeline is an important problem in the development of the city, but the research about it is not mature at present. In this paper, based on the principle of waveform design in wireless communication, we design an acoustic signal detection system to detect the location of underground pipelines. According to the principle of acoustic localization, we chose DSP-F28335 as the development board, and use DA and AD module as the master control chip. The DA module uses complementary Golay sequence as emission signal. The AD module acquisiting data synchronously, so that the echo signals which containing position information of the target is recovered through the signal processing. The test result shows that the method in this paper can not only calculate the sound velocity of the soil, but also can locate the location of underground pipelines accurately.
Schaeffer, A. J.; Lebedev, S.
2010-12-01
The evolution, stability, and dynamics of continental lithosphere remain a central focus of Earth Science research. The continued deployment of the US Array is producing a massive new dataset that samples North America at scales from tectonic units to continent-wide domains and enables resolution of structure and deformation of the lithosphere previously possible only at regional scales. With this resolving power come new challenges relating to efficient management and processing of such large data volumes. In this study, we have assembled a dataset comprising over 3.5 million three-component broadband seismic waveforms from more than 3000 stations. We augment available US Array stations with ~600 additional North American stations of the GSN and affiliates, Canadian National Seismograph Network, regional arrays, past PASSCAL experiments, and other stations from Iceland, Greenland, Central and South America, the Caribbean, and several Mid-Atlantic Islands. We exploit the resolving power of this unprecedentedly large dataset using the Automated Multimode Inversion of surface- and S-wave forms. The waveforms are inverted for path-averaged linear constraints on elastic structure along the source-receiver paths. The linear equations are then simultaneously solved for a high-resolution 3D upper mantle shear velocity model of the continent. We present a model of the North American continent's and the surrounding Ocean's (Pacific, Atlantic, Gulf of Mexico) upper mantle structure down to the 660 km discontinuity. Clearly identifiable boundaries between different tectonic features such as basins and relic mountain ranges are readily observable. For example, a strong correlation between the Hudson Bay geoid anomaly can be identified with an underlying domain of particularily cold cratonic lithosphere. Our model also includes the 3D distribution of azimuthal anisotropy within these structures, which provides new insight into past and present dynamics of the lithosphere and
Waveform Design for Wireless Power Transfer
Clerckx, Bruno; Bayguzina, Ekaterina
2016-12-01
Far-field Wireless Power Transfer (WPT) has attracted significant attention in recent years. Despite the rapid progress, the emphasis of the research community in the last decade has remained largely concentrated on improving the design of energy harvester (so-called rectenna) and has left aside the effect of transmitter design. In this paper, we study the design of transmit waveform so as to enhance the DC power at the output of the rectenna. We derive a tractable model of the non-linearity of the rectenna and compare with a linear model conventionally used in the literature. We then use those models to design novel multisine waveforms that are adaptive to the channel state information (CSI). Interestingly, while the linear model favours narrowband transmission with all the power allocated to a single frequency, the non-linear model favours a power allocation over multiple frequencies. Through realistic simulations, waveforms designed based on the non-linear model are shown to provide significant gains (in terms of harvested DC power) over those designed based on the linear model and over non-adaptive waveforms. We also compute analytically the theoretical scaling laws of the harvested energy for various waveforms as a function of the number of sinewaves and transmit antennas. Those scaling laws highlight the benefits of CSI knowledge at the transmitter in WPT and of a WPT design based on a non-linear rectenna model over a linear model. Results also motivate the study of a promising architecture relying on large-scale multisine multi-antenna waveforms for WPT. As a final note, results stress the importance of modeling and accounting for the non-linearity of the rectenna in any system design involving wireless power.
Kriging Interpolating Cosmic Velocity Field
Yu, Yu; Jing, Yipeng; Zhang, Pengjie
2015-01-01
[abridge] Volume-weighted statistics of large scale peculiar velocity is preferred by peculiar velocity cosmology, since it is free of uncertainties of galaxy density bias entangled in mass-weighted statistics. However, measuring the volume-weighted velocity statistics from galaxy (halo/simulation particle) velocity data is challenging. For the first time, we apply the Kriging interpolation to obtain the volume-weighted velocity field. Kriging is a minimum variance estimator. It predicts the most likely velocity for each place based on the velocity at other places. We test the performance of Kriging quantified by the E-mode velocity power spectrum from simulations. Dependences on the variogram prior used in Kriging, the number $n_k$ of the nearby particles to interpolate and the density $n_P$ of the observed sample are investigated. (1) We find that Kriging induces $1\\%$ and $3\\%$ systematics at $k\\sim 0.1h{\\rm Mpc}^{-1}$ when $n_P\\sim 6\\times 10^{-2} ({\\rm Mpc}/h)^{-3}$ and $n_P\\sim 6\\times 10^{-3} ({\\rm Mpc...
Filter transient response to EEG waveforms.
Shirakawa, S; Smith, J R; Azumi, K
1987-01-01
The response of two types of linear filters to sinusoidal bursts was calculated to demonstrate how filters can distort EEG waveforms. Results show that the wider the filter bandwidth the less is the distortion, and for a given bandwidth, the higher the filter order the greater the distortion. The response of a linear phase filter was also calculated to demonstrate that this type of filter can also cause waveform distortion, although it is normally less than that caused by Butterworth, Tchebychev and elliptic filters.
High-Energy Optical Parametric Waveform Synthesizer
Muecke, Oliver D.; Cirmi, G.; Fang, S.; Rossi, G. M.; Chia, Shih-Hsuan; Kärtner, F. X.; Manzoni, C.; Farinello, P.; Cerullo, and G.
2014-01-01
We discuss the ongoing development of a phase-stable, multi-mJ 3-channel parametric waveform synthesizer generating a 2-octave-wide spectrum (0.52-2.4μm). After two amplification stages, the combined >125-μJ output supports 1.9-fs waveforms. First preliminary FROG-characterization results of the second-stage outputs demonstrate the feasibility to recompress all three channels simultaneously close to the Fourier limit. Energy scaling to ~2 mJ is achieved after three amplification stages. The f...
Principles of waveform diversity and design
Wicks, Michael
2011-01-01
This is the first book to discuss current and future applications of waveform diversity and design in subjects such as radar and sonar, communications systems, passive sensing, and many other technologies. Waveform diversity allows researchers and system designers to optimize electromagnetic and acoustic systems for sensing, communications, electronic warfare or combinations thereof. This book enables solutions to problems, explaining how each system performs its own particular function, as well as how it is affected by other systems and how those other systems may likewise be affected. It is
Signal processing in noise waveform radar
Kulpa, Krzysztof
2013-01-01
This book is devoted to the emerging technology of noise waveform radar and its signal processing aspects. It is a new kind of radar, which use noise-like waveform to illuminate the target. The book includes an introduction to basic radar theory, starting from classical pulse radar, signal compression, and wave radar. The book then discusses the properties, difficulties and potential of noise radar systems, primarily for low-power and short-range civil applications. The contribution of modern signal processing techniques to making noise radar practical are emphasized, and application examples
Fractal Dimension of Voice-Signal Waveforms
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The fractal dimension is one important parameter that characterizes waveforms. In this paper, we derive a new method to calculate fractal dimension of digital voice-signal waveforms. We show that fractal dimension is an efficient tool for speaker recognition or speech recognition. It can be used to identify different speakers or distinguish speech. We apply our results to Chinese speaker recognition and numerical experiment shows that fractal dimension is an efficient parameter to characterize individual Chinese speakers. We have developed a semiautomatic voiceprint analysis system based on the theory of this paper and former researches.
Full waveform inversion based on scattering angle enrichment with application to real dataset
Wu, Zedong
2015-08-19
Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI). However, the drawback of the existing RWI methods is inability to utilize diving waves and the extra sensitivity to the migrated image. We propose a combined FWI and RWI optimization problem through dividing the velocity into the background and perturbed components. We optimize both the background and perturbed components, as independent parameters. The new objective function is quadratic with respect to the perturbed component, which will reduce the nonlinearity of the optimization problem. Solving this optimization provides a true amplitude image and utilizes the diving waves to update the velocity of the shallow parts. To insure a proper wavenumber continuation, we use an efficient scattering angle filter to direct the inversion at the early stages to direct energy corresponding to large (smooth velocity) scattering angles to the background velocity update and the small (high wavenumber) scattering angles to the perturbed velocity update. This efficient implementation of the filter is fast and requires less memory than the conventional approach based on extended images. Thus, the new FWI procedure updates the background velocity mainly along the wavepath for both diving and reflected waves in the initial stages. At the same time, it updates the perturbation with mainly reflections (filtering out the diving waves). To demonstrate the capability of this method, we apply it to a real 2D marine dataset.
Microseismic imaging using a source-independent full-waveform inversion method
Wang, Hanchen
2016-09-06
Using full waveform inversion (FWI) to locate microseismic and image microseismic events allows for an automatic process (free of picking) that utilizes the full wavefield. However, waveform inversion of microseismic events faces incredible nonlinearity due to the unknown source location (space) and function (time). We develop a source independent FWI of microseismic events to invert for the source image, source function and the velocity model. It is based on convolving reference traces with the observed and modeled data to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. The extended image for source wavelet in z axis is extracted to check the accuracy of the inverted source image and velocity model. Also the angle gather is calculated to see if the velocity model is correct. By inverting for all the source image, source wavelet and the velocity model, the proposed method produces good estimates of the source location, ignition time and the background velocity for part of the SEG overthrust model.
Bernuzzi, Sebastiano; Dietrich, Tim
2016-09-01
The theoretical modeling of gravitational waveforms from binary neutron star mergers requires precise numerical relativity simulations. Assessing convergence of the numerical data and building the error budget is currently challenging due to the low accuracy of general-relativistic hydrodynamics schemes and to the grid resolutions that can be employed in (3 +1 )-dimensional simulations. In this work, we explore the use of high-order weighted-essentially-nonoscillatory (WENO) schemes in neutron star merger simulations and investigate the accuracy of the waveforms obtained with such methods. We find that high-order WENO schemes can be robustly employed for simulating the inspiral-merger phase and they significantly improve the assessment of the waveform's error budget with respect to finite-volume methods. High-order WENO schemes can be thus efficiently used for high-quality waveform production, and in future large-scale investigations of the binary parameter space.
Hallo, M.; Gallovič, F.
2016-11-01
Green functions (GFs) are an essential ingredient in waveform-based earthquake source inversions. Hence, the error due to imprecise knowledge of a crustal velocity model is one of the major sources of uncertainty of the inferred earthquake source parameters. Recent strategies in Bayesian waveform inversions rely on statistical description of the GF uncertainty by means of a Gaussian distribution characterized by a covariance matrix. Here we use Monte-Carlo approach to estimate the GF covariance considering randomly perturbed velocity models. We analyse the dependence of the covariance on various parameters (strength of velocity model perturbations, GF frequency content, source-station distance, etc.). Recognizing that the major source of the GF uncertainty is related to the random time shifts of the signal, we propose a simplified approach to obtain approximate covariances, bypassing the numerically expensive Monte-Carlo simulations. The resulting closed-form formulae for the approximate auto-covariances and cross-covariances between stations and components can be easily implemented in existing inversion techniques. We demonstrate that the approximate covariances exhibit very good agreement with the Monte-Carlo estimates, providing realistic variations of the GF waveforms. Furthermore, we show examples of implementation of the covariance matrix in a Bayesian moment tensor inversion using both synthetic and real data sets. We demonstrate that taking the GF uncertainty into account leads to improved estimates of the moment tensor parameters and their uncertainty.
A New Method of Designing Waveform Codebook
Institute of Scientific and Technical Information of China (English)
1998-01-01
The codebook search takes much operation quantity in CELP coder. The paper puts forward a new method redesigning the waveform codebook known, and lists the experimental data. It has been proved that the operation complexity and transmission bit rate were decreased by using the new codebook, and the synthesis speech quality was high.
Waveform Selectivity at the Same Frequency
Wakatsuchi, Hiroki; Anzai, Daisuke; Rushton, Jeremiah J.; Gao, Fei; Kim, Sanghoon; Sievenpiper, Daniel F.
2015-01-01
Electromagnetic properties depend on the composition of materials, i.e. either angstrom scales of molecules or, for metamaterials, subwavelength periodic structures. Each material behaves differently in accordance with the frequency of an incoming electromagnetic wave due to the frequency dispersion or the resonance of the periodic structures. This indicates that if the frequency is fixed, the material always responds in the same manner unless it has nonlinearity. However, such nonlinearity is controlled by the magnitude of the incoming wave or other bias. Therefore, it is difficult to distinguish different incoming waves at the same frequency. Here we present a new concept of circuit-based metasurfaces to selectively absorb or transmit specific types of waveforms even at the same frequency. The metasurfaces, integrated with schottky diodes as well as either capacitors or inductors, selectively absorb short or long pulses, respectively. The two types of circuit elements are then combined to absorb or transmit specific waveforms in between. This waveform selectivity gives us another degree of freedom to control electromagnetic waves in various fields including wireless communications, as our simulation reveals that the metasurfaces are capable of varying bit error rates in response to different waveforms. PMID:25866071
Windowing Waveform Relaxation of Initial Value Problems
Institute of Scientific and Technical Information of China (English)
Yao-lin Jiang
2006-01-01
We present a windowing technique of waveform relaxation for dynamic systems. An effective estimation on window length is derived by an iterative error expression provided here. Relaxation processes can be speeded up if one takes the windowing technique in advance. Numerical experiments are given to further illustrate the theoretical analysis.
Resolution analysis in full waveform inversion
Fichtner, A.; Trampert, J.
2011-01-01
We propose a new method for the quantitative resolution analysis in full seismic waveform inversion that overcomes the limitations of classical synthetic inversions while being computationally more efficient and applicable to any misfit measure. The method rests on (1) the local quadratic approximat
Seismic Waveform Inversion by Stochastic Optimization
Directory of Open Access Journals (Sweden)
Tristan van Leeuwen
2011-01-01
Full Text Available We explore the use of stochastic optimization methods for seismic waveform inversion. The basic principle of such methods is to randomly draw a batch of realizations of a given misfit function and goes back to the 1950s. The ultimate goal of such an approach is to dramatically reduce the computational cost involved in evaluating the misfit. Following earlier work, we introduce the stochasticity in waveform inversion problem in a rigorous way via a technique called randomized trace estimation. We then review theoretical results that underlie recent developments in the use of stochastic methods for waveform inversion. We present numerical experiments to illustrate the behavior of different types of stochastic optimization methods and investigate the sensitivity to the batch size and the noise level in the data. We find that it is possible to reproduce results that are qualitatively similar to the solution of the full problem with modest batch sizes, even on noisy data. Each iteration of the corresponding stochastic methods requires an order of magnitude fewer PDE solves than a comparable deterministic method applied to the full problem, which may lead to an order of magnitude speedup for waveform inversion in practice.
Processing Waveforms as Trees for Pattern Recognition.
1986-05-01
patterns (after Ganong (15]) 5.7 ECG Classification As in the previous example, waveforms were simulated with additive colored gaussian noise. In order to...Principles and Techniques- (AAPG Course Note Series 13), Amer. Assoc. Pet. Geol., Tulsa, OK,p. 86, (1984). [15] W. F. Ganong , Review of Medical Physiology. Lange, Los Altos, CA. pp. 393-408, (1973). /
Directory of Open Access Journals (Sweden)
Manish Kiran ShresthMBBS, MD, a
2014-03-01
Full Text Available Background: Spectral Doppler waveform interpretation of hepatic vein is of considerable importance as it mirrors cardiac and hepatic physiology. The aim of this study was to evaluate the flow velocity waveform pattern in patients with different grades of fatty infiltration of liver and compare them with normal individuals. Methods: This was a prospective study carried out in 213 patients, taking 100 patients as “control” groups; and 113 “cases” with varying degree of fatty liver graded by ultrasonography. The patients included asymptomatic individuals with no history of cardiac, hepatic disease or alcohol intake. The study also excluded cases with any medical disease such as ascitis that could influence the outcome of hepatic Doppler measurement. The Doppler hepatic waveform of the right hepatic vein was taken and classified as triphasic, biphasic and monophasic. Results: All except one of the control group had normal triphasic pattern. Patients with severe grade of hepatic steatosis (Grade III showed monophasic flow in 72.2% of the cases with sensitivity and specificity amounting to 83.3 and 87.7 respectively. A significant difference was observed in distribution of Doppler waveform pattern (p= 0.00001. Conclusion: Triphasic waveform pattern was seen in majority of normal individuals with no cardiac or hepatic disease, while, in patients with increasing grade of hepatic steatosis, the waveform changed to biphasic and monophasic pattern due to decreased compliance of the hepatic veins.
Geological structure guided well log interpolation for high-fidelity full waveform inversion
Chen, Yangkang; Chen, Hanming; Xiang, Kui; Chen, Xiaohong
2016-11-01
Full waveform inversion (FWI) is a promising technique for inverting a high-resolution subsurface velocity model. The success of FWI highly depends on a fairly well initial velocity model. We propose a method for building a good initial velocity model that can be put into the FWI framework for inverting a nearly perfect velocity structure. We use a well log interpolated velocity model as a high-fidelity initial model for the subsequent FWI. The interpolation problem is solved via a least-squares method with a geological structural regularization. In order to obtain the geological structure of subsurface reflectors, an initial reverse time migration (RTM) with a fairly realistic initial velocity model is conducted, and the local slope of subsurface structure is roughly calculated from the RTM image. The well log interpolated initial velocity model can be very close to the true velocity while containing a small velocity anomaly or oversmoothing caused by the imperfect velocity interpolation. The anomaly and oversmoothing effect can be compensated during the subsequent FWI iterations. We use a relatively simple-layered model and the more complicated Marmousi velocity model to demonstrate the applicability of the proposed approach. We start from a very smooth velocity model and obtain a nearly perfect FWI result which is much better than the traditional FWI result without the velocity interpolation. The migrated images from the RTM method using different velocity models are also compared to further confirm the effectiveness of the proposed framework. Regarding the field deployment, we suggest that future drilling of exploration wells can be seismic-oriented, which can help fully utilize the information of well logs for building initial subsurface velocity model and will facilitate a wide application of the proposed methodology.
Observations of changes in waveform character induced by the 1999 M w7.6 Chi-Chi earthquake
Chen, K.H.; Furumura, T.; Rubinstein, J.; Rau, R.-J.
2011-01-01
We observe changes in the waveforms of repeating earthquakes in eastern Taiwan following the 1999 Mw7.6 Chi-Chi earthquake, while their recurrence intervals appear to be unaffected. There is a clear reduction in waveform similarity and velocity changes indicated by delayed phases at the time of the Chi-Chi event. These changes are limited to stations in and paths that cross the 70 ?? 100 km region surrounding the Chi-Chi source area, the area where seismic intensity and co-seismic surface displacements were largest. This suggests that damage at the near-surface is responsible for the observed waveform changes. Delays are largest in the late S-wave coda, reaching approximately 120 ms. This corresponds to a path averaged S wave velocity reduction of approximately 1%. There is also evidence that damage in the fault-zone caused changes in waveform character at sites in the footwall, where source-receiver paths propagate either along or across the rupture. The reduction in waveform similarity persists through the most recent repeating event in our study (November 15, 2007), indicating that the subsurface damage induced by the Chi-Chi earthquake did not fully heal within the first 8 years following the Chi-Chi earthquake. ?? 2011 by the American Geophysical Union.
SAR processing with non-linear FM chirp waveforms.
Energy Technology Data Exchange (ETDEWEB)
Doerry, Armin Walter
2006-12-01
Nonlinear FM (NLFM) waveforms offer a radar matched filter output with inherently low range sidelobes. This yields a 1-2 dB advantage in Signal-to-Noise Ratio over the output of a Linear FM (LFM) waveform with equivalent sidelobe filtering. This report presents details of processing NLFM waveforms in both range and Doppler dimensions, with special emphasis on compensating intra-pulse Doppler, often cited as a weakness of NLFM waveforms.
Geng, T.
2015-12-01
Nowadays more and more high-rate Global Navigation Satellite Systems (GNSS) data become available in real time, which provide more opportunities to monitor the seismic waveforms. China's GNSS, BeiDou Navigation Satellite System (BDS), has already satisfied the requirement of stand-alone precise positioning in Asia-Pacific region with 14 in-orbit satellites, which promisingly suggests that BDS could be applied to the high-precision earthquake monitoring as GPS. In the present paper, real-time monitoring of seismic waveforms using BDS measurements is assessed. We investigate a so-called "variometric" approach to measure real-time seismic waveforms with high-rate BDS observations. This approach is based on time difference technique and standard broadcast products which are routinely available in real time. The 1HZ BDS data recorded by Beidou Experimental Tracking Stations (BETS) during the 2015 Mw 7.8 Nepal earthquake is analyzed. The results indicate that the accuracies of velocity estimation from BDS are 2-3 mm/s in horizontal components and 8-9 mm/s in vertical component, respectively, which are consistent with GPS. The seismic velocity waveforms during earthquake show good agreement between BDS and GPS. Moreover, the displacement waveforms is reconstructed by an integration of velocity time series with trend removal. The displacement waveforms with the accuracy of 1-2 cm are derived by comparing with post-processing GPS precise point positioning (PPP).
Song, T. A.; Helmberger, D. V.
2005-12-01
Travel time tomography has been the main tool for seismologists in developing mantle structure and studying regional tectonics. Standard practice for geodynamists is to convert the velocity anomalies into temperature and density and fit geophysical observables such as topography and gravity. However, tomographic models produced by smooth, damped inversions usually underestimate the amplitude and sharpness of the velocity structure. To validate these tomographic models, it is important to propagate seismic waves through them and compare synthetic waveforms with obvervations directly, which enable us to enhance and sharpen these models. Here we illustrate an example using the Rio Grande Rift PASSCAL observations in the southwestern US. The La Ristra passive experiment was designed to cross the Rio Grande Rift system and study the tranition in mantle structure from Great Plain to Colorado Plateau (e.g. Gao et al. 2004; West et al. 2004, Wilson et al. 2005). Ray-based body wave travel time tomography (Gao et al. 2004) indicated a linear, south-east dipping slab-like fast velocity anomaly under the western edge of the Great Plain. They interpreted it as a downwelling lithosphere produced by a small scale convection. We take advantages of the dense linear array and examine data from two deep events in south America. After deconvolving the source wavelet from the raw data, deconvolved waveforms of both events consistently show that P and S waveforms are severely distorted at stations across the slab boundary by a factor of 2-3. The waveform amplitude also diminishs in proportional to the wavefrom broadening. The waveform shape becomes simple again for stations near the center of the rift. We implement the tomography model into the 2-D finite difference scheme (Vidale, 1985; Helmberger and Vidale, 1988). Preliminary result shows that amplifying the tomography model by a factor of 3 starts to produce the waveform distortions observed.
Ingnet On-line: The 1988-2002 Ingv Seismic Waveforms Database
di Stefano, R.; Amato, A.; Mele, F.; Kissling, E.
The increasing need for global information exchange is strongly influencing data us- age and sharing in public research. Seismological sciences also greatly benefit from this change in data exchange policy. In Eurasia several national seismic networks have been continuously active since the first part of the last century and numerous seismo- logical services exist for the past few decades. Hence, a large number of analog and digital waveforms have been recorded, though the data from different services, with a few exceptions, remain unmerged. In the Italian peninsula (western Mediterranean region) the INGV National Seismic Network recorded more than 80.000 earthquakes during the last 20 years, 68.000 of which have waveforms in digital format (with more than 250.000 recordings). We present first results of a joint project between INGV and ETH, to obtain a high-resolution seismic velocity model for the Italian peninsula and surrounding regions. In a first step all available waveforms have been extracted and re-organized in a new database that will be soon open to the international scien- tific community through an easy-to-access internet front-end. Waveforms have been converted from an internal INGV format to the widely known and used SAC format completing the headers with all information necessary for a wide range of seismologi- cal investigations. We present here the structure of this database and its characteristics, and the conditions for accessibility through the INGV web site.
Brenders, A. J.; Pratt, R. G.
2007-01-01
A comprehensive validation of 2-D, frequency-domain, acoustic wave-equation tomography was undertaken in a `blind test', using third-party, realistic, elastic wave-equation data. The synthetic 2-D, wide-angle seismic data were provided prior to a recent workshop on the methods of controlled source seismology; the true model was not revealed to the authors until after the presentation of our waveform tomography results. The original model was specified on a detailed grid with variable P-wave velocity, S-wave velocity, density and viscoelastic Q-factor structure, designed to simulate a section of continental crust 250 km long and 40 km deep. Synthetic vertical and horizontal component data were available for 51 shot locations (spaced every 5 km), recorded at 2779 receivers (spaced every 90 m), evenly spread along the surface of the model. The data contained energy from 0.2 to 15 Hz. Waveform tomography, a combination of traveltime tomography and 2-D waveform inversion of the early arrivals of the seismic waveforms, was used to recover crustal P-velocity structure from the vertical component data, using data from 51 sources, 1390 receivers and frequencies between 0.8 and 7.0 Hz. The waveform tomography result contained apparent structure at wavelength-scale resolution that was not evident on the traveltime tomography result. The predicted (acoustic) waveforms in the final result matched the original elastic data to a high degree of accuracy. During the workshop, the exact model was revealed; over much of the model the waveform tomography results provided a good correspondence with the true model, from large- to intermediate-(wavelength) scales, with a resolution limit on the order of 1 km. A significant, near-surface low-velocity zone, invisible to traveltime methods, was correctly recovered; the results also provided a high-resolution image of the complex structure of the entire crust, and the depth and nature of the crust-mantle transition. Some inaccuracies were
Waveform inversion of mantle Love waves: The born seismogram approach
Tanimoto, T.
1983-01-01
Normal mode theory, extended to the slightly laterally heterogeneous Earth by the first-order Born approximation, is applied to the waveform inversion of mantle Love waves (200-500 sec) for the Earth's lateral heterogeneity at l=2 and a spherically symmetric anelasticity (Q sub mu) structure. The data are from the Global Digital Seismograph Network (GDSN). The l=2 pattern is very similar to the results of other studies that used either different methods, such as phase velocity measurements and multiplet location measurements, or a different data set, such as mantle Rayleigh waves from different instruments. The results are carefully analyzed for variance reduction and are most naturally explained by heterogeneity in the upper 420 km. Because of the poor resolution of the data set for the deep interior, however, a fairly large heterogeneity in the transition zones, of the order of up to 3.5% in shear wave velocity, is allowed. It is noteworthy that Love waves of this period range can not constrain the structure below 420 km and thus any model presented by similar studies below this depth are likely to be constrained by Rayleigh waves (spheroidal modes) only.
Waveform inversion of mantle Love waves - The Born seismogram approach
Tanimoto, T.
1984-01-01
Normal mode theory, extended to the slightly laterally heterogeneous earth by the first-order Born approximation, is applied to the waveform inversion of mantle Love waves (200-500 sec) for the earth's lateral heterogeneity at l = 2 and a spherically symmetric anelasticity (Q sub mu) structure. The data are from the Global Digital Seismograph Network (GDSN). The l = 2 pattern is very similar to the results of other studies that used either different methods, such as phase velocity measurements and multiplet location measurements, or a different data set, such as mantle Rayleigh waves from different instruments. The results are carefully analyzed for variance reduction and are most naturally explained by heterogeneity in the upper 420 km. Because of the poor resolution of the data set for the deep interior, however, a fairly large heterogeneity in the transition zones, of the order of up to 3.5 percent in shear wave velocity, is allowed. It is noteworthy that Love waves of this period range can not constrain the structure below 420 km and thus any model presented by similar studies below this depth are likely to be constrained by Rayleigh waves (spheroidal modes) only.
Directory of Open Access Journals (Sweden)
Marcos Roberto Taveira
2004-09-01
Full Text Available OBJETIVO: avaliar se existe associação entre a medida do pico de velocidade sistólica (PVS na dopplervelocimetria da artéria cerebral média (ACM e a concentração de hemoglobina fetal e determinar a sua capacidade diagnóstica. MÉTODOS: entre janeiro de 2000 e maio de 2003, 44 gestantes isoimunizadas foram submetidas a transfusão intra-uterina. Realizou-se estudo dopplervelocimétrico da ACM antes de cada transfusão fetal, sempre com intervalo inferior a 3 horas, antecedendo o procedimento. O PVS da ACM foi considerado alterado quando seu valor era superior a 1,5 múltiplo da mediana para a respectiva idade gestacional. A concentração de hemoglobina do cordão foi aferida antes de se iniciar a infusão de sangue, realizada no Hemocue® (B-Hemoglobin Photometer Hemocue AB; Angelholm, Sweden. O estudo estatístico foi feito pelo teste do chi2 e também foram calculados os valores de sensibilidade, especificidade, valores preditivos positivo e negativo. RESULTADOS: foram realizados 83 procedimentos, sendo que em 33 a hemoglobina fetal era inferior a 10,0 g/dL. Houve associação significativa entre as variáveis estudadas, pPURPOSE: to assess the correlation between middle cerebral artery peak systolic velocity and umbilical cord blood hemoglobin concentration and to determine its diagnostic value. PATIENTS AND METHODS: a cross-sectional prospective study was performed from January 2000 to May 2003. Forty-four isoimmunized pregnant women underwent a protocol for the identification of fetal hemolysis. When intrauterine transfusions were indicated, the umbilical cord blood hemoglobin concentration was measured at the beginning of the procedure. Each intrauterine transfusion preceded by Doppler velocimetry of the middle cerebral artery was regarded as one case, summing up eighty-three procedures. In all cases, the middle cerebral artery Doppler examinations were performed within the three hours preceding fetal blood sample collection. The
Direct detection of sharp upper-mantle features with waveform complexity
Sun, D.; Helmberger, D. V.
2009-12-01
A recent technique for processing array data searching for multipathing has been applied to USArray data [Sun and Helmberger, 2009]. A record can be decomposed by S(t) + A×S(t+ΔLR), where S(t) is the synthetics for a reference model. Time separation ΔLR and amplitude ratio A are needed to obtain best cross-correlation between a simulated waveform and data. The travel time of the composite waveform relative to the reference model synthetics is defined as ΔT. A simulated annealing algorithm is used to inverse the parameters of ΔLR, ΔT, and A. Whereas the conventional tomography yields a travel time correction (ΔT), our analysis yields an extra parameter of ΔLR which describe the waveform complexity. With the array, we can construct a mapping of the gradient of ΔLR with complexity patterns. A horizontal structure will introduce the waveform complexity along the distance profile (in-plane multipathing). A azimuthally orientation ΔLR pattern indicates a vertical structure with out-of-plane multipathing. Using such maps generated from artificial data we can easily recognize features produced by downwelling (DW) vs. upwelling (UW) and address their scale lengths. In particular, we find a line of DW's along the Rock Mountain Front which have anomalies similar to those found along the La Ristra line. These ΔLR anomalies are up to 8s, which corresponds to features extending down to the 410 discontinuity with a 6% shear velocity increase. Such features appear to be produced by delamination caused by the sharp lateral temperature gradient [Song and Helmberger, 2007]. The ΔLR patters for the Western US indicates a number of UW's, in which the Yellowstone is particular obvious. The records for events from southwestern and southeastern directions show generally simple waveform across the Yellowstone -Snake River Plain (SRP). For the event from the northeast, the stations along the western edge of SRP show strong waveform distortions, which indicate azimuthally
Multi-parameter Full-waveform Inversion for Acoustic VTI Medium with Surface Seismic Data
Cheng, X.; Jiao, K.; Sun, D.; Huang, W.; Vigh, D.
2013-12-01
Full-waveform Inversion (FWI) attracts wide attention recently in oil and gas industry as a new promising tool for high resolution subsurface velocity model building. While the traditional common image point gather based tomography method aims to focus post-migrated data in depth domain, FWI aims to directly fit the observed seismic waveform in either time or frequency domain. The inversion is performed iteratively by updating the velocity fields to reduce the difference between the observed and the simulated data. It has been shown the inversion is very sensitive to the starting velocity fields, and data with long offsets and low frequencies is crucial for the success of FWI to overcome this sensitivity. Considering the importance of data with long offsets and low frequencies, in most geologic environment, anisotropy is an unavoidable topic for FWI especially at long offsets, since anisotropy tends to have more pronounced effects on waves traveled for a great distance. In VTI medium, this means more horizontal velocity will be registered in middle-to-long offset data, while more vertical velocity will be registered in near-to-middle offset data. Up to date, most of real world applications of FWI still remain in isotropic medium, and only a few studies have been shown to account for anisotropy. And most of those studies only account for anisotropy in waveform simulation, but not invert for those anisotropy fields. Multi-parameter inversion for anisotropy fields, even in VTI medium, remains as a hot topic in the field. In this study, we develop a strategy for multi-parameter FWI for acoustic VTI medium with surface seismic data. Because surface seismic data is insensitivity to the delta fields, we decide to hold the delta fields unchanged during our inversion, and invert only for vertical velocity and epsilon fields. Through parameterization analysis and synthetic tests, we find that it is more feasible to invert for the parameterization as vertical and horizontal
Background velocity inversion by phase along reflection wave paths
Yu, Han
2014-08-05
A background velocity model containing the correct lowwavenumber information is desired for both the quality of the migration image and the success of waveform inversion. We propose to invert for the low-wavenumber part of the velocity model by minimizing the phase difference between predicted and observed reflections. The velocity update is exclusively along the reflection wavepaths and, unlike conventional FWI, not along the reflection ellipses. This allows for reconstructing the smoothly varying parts of the background velocity model. Tests with synthetic data show both the benefits and limitations of this method.
Application of arbitrary waveform generator for noise radar
Lukin, Konstantin A.; Zemlyaniy, Oleg V.; Vyplavin, Pavlo L.; Palamarchuk, Volodymyr P.
2011-10-01
The approach, when the waveforms of different types are exploited in the same radar (waveform diversity) requires new-generation sources of initial signals. For generating of different types of waveforms in the same radar we suggest using Arbitrary Waveform Generator, that allows output any type of pre-programmed signal in real time. We have carried out preliminary experimental tests of the stepped-delay mode of UHF-band radar evaluation kit. The series of experimental testing shows efficiency AWG application in radar with variety of sounding waveforms.
Extracting More Data from LiDAR in Forested Areas by Analyzing Waveform Shape
Directory of Open Access Journals (Sweden)
Peter Beets
2012-03-01
Full Text Available Light Detection And Ranging (LiDAR in forested areas is used for constructing Digital Terrain Models (DTMs, estimating biomass carbon and timber volume and estimating foliage distribution as an indicator of tree growth and health. All of these purposes are hindered by the inability to distinguish the source of returns as foliage, stems, understorey and the ground except by their relative positions. The ability to separate these returns would improve all analyses significantly. Furthermore, waveform metrics providing information on foliage density could improve forest health and growth estimates. In this study, the potential to use waveform LiDAR was investigated. Aerial waveform LiDAR data were acquired for a New Zealand radiata pine plantation forest, and Leaf Area Density (LAD was measured in the field. Waveform peaks with a good signal-to-noise ratio were analyzed and each described with a Gaussian peak height, half-height width, and an exponential decay constant. All parameters varied substantially across all surface types, ruling out the potential to determine source characteristics for individual returns, particularly those with a lower signal-to-noise ratio. However, pulses on the ground on average had a greater intensity, decay constant and a narrower peak than returns from coniferous foliage. When spatially averaged, canopy foliage density (measured as LAD varied significantly, and was found to be most highly correlated with the volume-average exponential decay rate. A simple model based on the Beer-Lambert law is proposed to explain this relationship, and proposes waveform decay rates as a new metric that is less affected by shadowing than intensity-based metrics. This correlation began to fail when peaks with poorer curve fits were included.
Full Seismic Waveform Inversion for the Japanese Islands
Žukauskaitė, Saulė; Steptoe, Hamish; Fichtner, Andreas
2015-04-01
We present a seismic tomography model for the Japanese archipelago obtained using full waveform inversion and adjoint methods. A credible seismic velocity model is essential for the Japan region as a means to further our understanding of earthquake source mechanics by allowing for more accurate seismic source inversion, to benefit seismic hazard assessment as well as early warning systems, and to comprehend the complexity of the tectonic setting. The study area covers the Japanese islands, Taiwan, Korean peninsula, easternmost parts of China and Russia, Sakhalin and the majority of the Kuril Islands chain. The domain extends down into the mantle transition zone. We choose 58 earthquakes of magnitudes Mw5.0 - 6.9 distributed across the model domain as uniformly as possible. The data are obtained from several seismic networks in the area, namely F-net in Japan, BATS in Taiwan, South Korean National Earthquake Network and several stations from each China National Seismic Network, New China Digital Seismograph Network, Global Seismograph Network and Korean Seismic Network made available by IRIS Data Management Center. To facilitate full waveform inversion the forward problem is solved numerically using the spectral element method (SEM), which comes with the geometric flexibility of the finite-elements method and the accuracy of the spectral methods. Owing to the SEM and the advance in High Performance Computing we are able to perform numerical simulations of seismic waves in realistic 3D heterogeneous visco-elastic structures. Differences between the calculated and the real waveforms are quantified using the time-frequency misfits (Fichtner et al., 2008), which allow us to explore the temporal evolution of the frequency content of the data with no need to identify specific seismic phases. We use adjoint methods as an effective means to obtain sensitivity kernels and ultimately gradients, required for iterative gradient-based minimisation techniques. The obtained model
Full Waveform Seismic Inversion for the Japan Region
Žukauskaitė, Saulė; Steptoe, Hamish; Fichtner, Andreas
2014-05-01
We present a seismic tomography model for the Japan archipelago obtained using full waveform inversion and adjoint methods. A high-resolution seismic velocity model is essential for Japan as means to comprehend and characterize the complexity of the tectonic setting, and to further our understanding of earthquake sources and rupture propagation. The study area covers the Japanese islands - an area between 20°-50°N and 130°-160°E - and extends to a maximum depth of 500 km. In virtue of complicated tectonics and resulting high seismicity, dense seismic networks are present in Japan and surrounding countries. We make use of broadband data from three networks - F-net in Japan, BATS in Taiwan, and notably, the National Earthquake Network in South Korea. Due to access difficulties, data from this network had not been used in the preceding tomographic study of the same area. We use >50 carefully selected earthquakes, located within the model area and occurring between 1999 and the present. Magnitudes of the events are restricted to 5≤Mw≤6.9 for a point source approximation to be valid. A spectral-element method is used for forward waveform calculation, which comes with the geometric flexibility of finite-elements method and the accuracy of spectral methods. To quantify differences between the observed and synthetic waveforms, we use time-frequency misfits, which exploit the evolution of the frequency content of the data in time. The sensitivities (Fréchet kernels) are then calculated using adjoint methods. The employed methodology allows us to explain the data of dominant period as low as 10 s. To prevent possible over-fitting of the data, we ensure that final misfits are not lower than those obtained if additional (not yet used) data are incorporated. The final results of this study will contribute to the 'Comprehensive Earth Model' being developed by the Computational Seismology group at ETH, with the aim to represent the snapshot of the current knowledge of
Programmable Clock Waveform Generation for CCD Readout
Energy Technology Data Exchange (ETDEWEB)
Vicente, J. de; Castilla, J.; Martinez, G.; Marin, J.
2006-07-01
Charge transfer efficiency in CCDs is closely related to the clock waveform. In this paper, an experimental framework to explore different FPGA based clock waveform generator designs is described. Two alternative design approaches for controlling the rise/fall edge times and pulse width of the CCD clock signal have been implemented: level-control and time-control. Both approaches provide similar characteristics regarding the edge linearity and noise. Nevertheless, dissimilarities have been found with respect to the area and frequency range of application. Thus, while the time-control approach consumes less area, the level control approach provides a wider range of clock frequencies since it does not suffer capacitor discharge effect. (Author) 8 refs.
LISA parameter estimation using numerical merger waveforms
Energy Technology Data Exchange (ETDEWEB)
Thorpe, J I; McWilliams, S T; Kelly, B J; Fahey, R P; Arnaud, K; Baker, J G, E-mail: James.I.Thorpe@nasa.go [NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771 (United States)
2009-05-07
Recent advances in numerical relativity provide a detailed description of the waveforms of coalescing massive black hole binaries (MBHBs), expected to be the strongest detectable LISA sources. We present a preliminary study of LISA's sensitivity to MBHB parameters using a hybrid numerical/analytic waveform for equal-mass, non-spinning holes. The Synthetic LISA software package is used to simulate the instrument response, and the Fisher information matrix method is used to estimate errors in the parameters. Initial results indicate that inclusion of the merger signal can significantly improve the precision of some parameter estimates. For example, the median parameter errors for an ensemble of systems with total redshifted mass of 10{sup 6} M{sub o-dot} at a redshift of z approx 1 were found to decrease by a factor of slightly more than two for signals with merger as compared to signals truncated at the Schwarzchild ISCO.
LISA parameter estimation using numerical merger waveforms
Thorpe, J I; Kelly, B J; Fahey, R P; Arnaud, K; Baker, J G
2008-01-01
Recent advances in numerical relativity provide a detailed description of the waveforms of coalescing massive black hole binaries (MBHBs), expected to be the strongest detectable LISA sources. We present a preliminary study of LISA's sensitivity to MBHB parameters using a hybrid numerical/analytic waveform for equal-mass, non-spinning holes. The Synthetic LISA software package is used to simulate the instrument response and the Fisher information matrix method is used to estimate errors in the parameters. Initial results indicate that inclusion of the merger signal can significantly improve the precision of some parameter estimates. For example, the median parameter errors for an ensemble of systems with total redshifted mass of one million Solar masses at a redshift of one were found to decrease by a factor of slightly more than two for signals with merger as compared to signals truncated at the Schwarzchild ISCO.
Comparing numerical and analytic approximate gravitational waveforms
Afshari, Nousha; Lovelace, Geoffrey; SXS Collaboration
2016-03-01
A direct observation of gravitational waves will test Einstein's theory of general relativity under the most extreme conditions. The Laser Interferometer Gravitational-Wave Observatory, or LIGO, began searching for gravitational waves in September 2015 with three times the sensitivity of initial LIGO. To help Advanced LIGO detect as many gravitational waves as possible, a major research effort is underway to accurately predict the expected waves. In this poster, I will explore how the gravitational waveform produced by a long binary-black-hole inspiral, merger, and ringdown is affected by how fast the larger black hole spins. In particular, I will present results from simulations of merging black holes, completed using the Spectral Einstein Code (black-holes.org/SpEC.html), including some new, long simulations designed to mimic black hole-neutron star mergers. I will present comparisons of the numerical waveforms with analytic approximations.
The European seismological waveform framework EIDA
Trani, Luca; Koymans, Mathijs; Quinteros, Javier; Heinloo, Andres; Euchner, Fabian; Strollo, Angelo; Sleeman, Reinoud; Clinton, John; Stammler, Klaus; Danecek, Peter; Pedersen, Helle; Ionescu, Constantin; Pinar, Ali; Evangelidis, Christos
2017-04-01
The ORFEUS1 European Integrated Data Archive (EIDA2) federates (currently) 11 major European seismological data centres into a common organisational and operational framework which offers: (a) transparent and uniform access tools, advanced services and products for seismological waveform data; (b) a platform for establishing common policies for the curation of seismological waveform data and the description of waveform data by standardised quality metrics; (c) proper attribution and citation (e.g. data ownership). After its establishment in 2013, EIDA has been collecting and distributing seamlessly large amounts of seismological data and products to the research community and beyond. A major task of EIDA is the on-going improvement of the services, tools and products portfolio in order to meet the increasingly demanding users' requirements. At present EIDA is entering a new operational phase and will become the reference infrastructure for seismological waveform data in the pan-European infrastructure for solid-Earth science: EPOS (European Plate Observing System)3. The EIDA Next Generation developments, initiated within the H2020 project EPOS-IP, will provide a new infrastructure that will support the seismological and multidisciplinary EPOS community facilitating interoperability in a broader context. EIDA NG comprises a number of new services and products e.g.: Routing Service, Authentication Service, WFCatalog, Mediator, Station Book and more in the near future. In this contribution we present the current status of the EIDA NG developments and provide an overview of the usage of the new services and their impact on the user community. 1 www.orfeus-eu.org/ 2 www.orfeus-eu.org/eida/eida.html 3 www.epos-ip.org
Full-waveform inversion: Filling the gaps
Beydoun, Wafik B.
2015-09-01
After receiving an outstanding response to its inaugural workshop in 2013, SEG once again achieved great success with its 2015 SEG Middle East Workshop, “Full-waveform inversion: Filling the gaps,” which took place 30 March–1 April 2015 in Abu Dhabi, UAE. The workshop was organized by SEG, and its partner sponsors were Saudi Aramco (gold sponsor), ExxonMobil, and CGG. Read More: http://library.seg.org/doi/10.1190/tle34091106.1
Sparse Frequency Waveform Design for Radar-Embedded Communication
Directory of Open Access Journals (Sweden)
Chaoyun Mai
2016-01-01
Full Text Available According to the Tag application with function of covert communication, a method for sparse frequency waveform design based on radar-embedded communication is proposed. Firstly, sparse frequency waveforms are designed based on power spectral density fitting and quasi-Newton method. Secondly, the eigenvalue decomposition of the sparse frequency waveform sequence is used to get the dominant space. Finally the communication waveforms are designed through the projection of orthogonal pseudorandom vectors in the vertical subspace. Compared with the linear frequency modulation waveform, the sparse frequency waveform can further improve the bandwidth occupation of communication signals, thus achieving higher communication rate. A certain correlation exists between the reciprocally orthogonal communication signals samples and the sparse frequency waveform, which guarantees the low SER (signal error rate and LPI (low probability of intercept. The simulation results verify the effectiveness of this method.
Time-dependent phase error correction using digital waveform synthesis
Energy Technology Data Exchange (ETDEWEB)
Doerry, Armin W.; Buskirk, Stephen
2017-10-10
The various technologies presented herein relate to correcting a time-dependent phase error generated as part of the formation of a radar waveform. A waveform can be pre-distorted to facilitate correction of an error induced into the waveform by a downstream operation/component in a radar system. For example, amplifier power droop effect can engender a time-dependent phase error in a waveform as part of a radar signal generating operation. The error can be quantified and an according complimentary distortion can be applied to the waveform to facilitate negation of the error during the subsequent processing of the waveform. A time domain correction can be applied by a phase error correction look up table incorporated into a waveform phase generator.
Alian, Aymen A; Galante, Nicholas J; Stachenfeld, Nina S; Silverman, David G; Shelley, Kirk H
2014-07-01
Lower body negative pressure (LBNP) creates a reversible hypovolemia by sequestrating blood volume in the lower extremities. This study sought to examine the impact of central hypovolemia on peripheral venous pressure (PVP) waveforms in spontaneously breathing subjects. With IRB approval, 11 healthy subjects underwent progressive LBNP (baseline, -30, -75, and -90 mmHg or until the subject became symptomatic). Each was monitored for heart rate (HR), finger arterial blood pressure (BP), a chest respiratory band and PVP waveforms which are generated from a transduced upper extremity intravenous site. The first subject was excluded from PVP analysis because of technical errors in collecting the venous pressure waveform. PVP waveforms were analyzed to determine venous pulse pressure, mean venous pressure, pulse width, maximum and minimum slope (time domain analysis) together with cardiac and respiratory modulations (frequency domain analysis). No changes of significance were found in the arterial BP values at -30 mmHg LBNP, while there were significant reductions in the PVP waveforms time domain parameters (except for 50% width of the respiration induced modulations) together with modulation of the PVP waveform at the cardiac frequency but not at the respiratory frequency. As the LBNP progressed, arterial systolic BP, mean BP and pulse pressure, PVP parameters and PVP cardiac modulation decreased significantly, while diastolic BP and HR increased significantly. Changes in hemodynamic and PVP waveform parameters reached a maximum during the symptomatic phase. During the recovery phase, there was a significant reduction in HR together with a significant increase in HR variability, mean PVP and PVP cardiac modulation. Thus, in response to mild hypovolemia induced by LBNP, changes in cardiac modulation and other PVP waveform parameters identified hypovolemia before detectable hemodynamic changes.
Continuous high PRF waveforms for challenging environments
Jaroszewski, Steven; Corbeil, Allan; Ryland, Robert; Sobota, David
2017-05-01
Current airborne radar systems segment the available time-on-target during each beam dwell into multiple Coherent Processing Intervals (CPIs) in order to eliminate range eclipsing, solve for unambiguous range, and increase the detection performance against larger Radar Cross Section (RCS) targets. As a consequence, these radars do not realize the full Signal-to-Noise Ratio (SNR) increase and detection performance improvement that is possible. Continuous High Pulse Repetition Frequency (HPRF) waveforms and processing enables the coherent integration of all available radar data over the full time-on-target. This can greatly increase the SNR for air targets at long range and/or with weak radar returns and significantly improve the detection performance against such targets. TSC worked with its partner KeyW to implement a Continuous HPRF waveform in their Sahara radar testbed and obtained measured radar data on both a ground vehicle target and an airborne target of opportunity. This experimental data was processed by TSC to validate the expected benefits of Continuous HPRF waveforms.
Binary Black Holes: Mergers, Dynamics, and Waveforms
Centrella, Joan
2007-04-01
The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based interferometer LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, data analysis, and astrophysics.
Full waveform inversion for ultrasonic flaw identification
Seidl, Robert; Rank, Ernst
2017-02-01
Ultrasonic Nondestructive Testing is concerned with detecting flaws inside components without causing physical damage. It is possible to detect flaws using ultrasound measurements but usually no additional details about the flaw like position, dimension or orientation are available. The information about these details is hidden in the recorded experimental signals. The idea of full waveform inversion is to adapt the parameters of an initial simulation model of the undamaged specimen by minimizing the discrepancy between these simulated signals and experimentally measured signals of the flawed specimen. Flaws in the structure are characterized by a change or deterioration in the material properties. Commonly, full waveform inversion is mostly applied in seismology on a larger scale to infer mechanical properties of the earth. We propose to use acoustic full waveform inversion for structural parameters to visualize the interior of the component. The method is adapted to US NDT by combining multiple similar experiments on the test component as the typical small amount of sensors is not sufficient for a successful imaging. It is shown that the combination of simulations and multiple experiments can be used to detect flaws and their position, dimension and orientation in emulated simulation cases.
Elastic-Waveform Inversion with Compressive Sensing for Sparse Seismic Data
Energy Technology Data Exchange (ETDEWEB)
Lin, Youzuo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Huang, Lianjie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-01-26
Accurate velocity models of compressional- and shear-waves are essential for geothermal reservoir characterization and microseismic imaging. Elastic-waveform inversion of multi-component seismic data can provide high-resolution inversion results of subsurface geophysical properties. However, the method requires seismic data acquired using dense source and receiver arrays. In practice, seismic sources and/or geophones are often sparsely distributed on the surface and/or in a borehole, such as 3D vertical seismic profiling (VSP) surveys. We develop a novel elastic-waveform inversion method with compressive sensing for inversion of sparse seismic data. We employ an alternating-minimization algorithm to solve the optimization problem of our new waveform inversion method. We validate our new method using synthetic VSP data for a geophysical model built using geologic features found at the Raft River enhanced-geothermal-system (EGS) field. We apply our method to synthetic VSP data with a sparse source array and compare the results with those obtained with a dense source array. Our numerical results demonstrate that the velocity mode ls produced with our new method using a sparse source array are almost as accurate as those obtained using a dense source array.
The Waveform Server: A Web-based Interactive Seismic Waveform Interface
Newman, R. L.; Clemesha, A.; Lindquist, K. G.; Reyes, J.; Steidl, J. H.; Vernon, F. L.
2009-12-01
Seismic waveform data has traditionally been displayed on machines that are either local area networked to, or directly host, a seismic networks waveform database(s). Typical seismic data warehouses allow online users to query and download data collected from regional networks passively, without the scientist directly visually assessing data coverage and/or quality. Using a suite of web-based protocols, we have developed an online seismic waveform interface that directly queries and displays data from a relational database through a web-browser. Using the Python interface to Datascope and the Python-based Twisted network package on the server side, and the jQuery Javascript framework on the client side to send and receive asynchronous waveform queries, we display broadband seismic data using the HTML Canvas element that is globally accessible by anyone using a modern web-browser. The system is used to display data from the USArray experiment, a US continent-wide migratory transportable seismic array. We are currently creating additional interface tools to create a rich-client interface for accessing and displaying seismic data that can be deployed to any system running Boulder Real Time Technology's (BRTT) Antelope Real Time System (ARTS). The software is freely available from the Antelope contributed code Git repository. Screenshot of the web-based waveform server interface
Cubuk-Sabuncu, Yesim; Taymaz, Tuncay; Fichtner, Andreas
2016-04-01
We present a 3D radially anisotropic velocity model of the crust and uppermost mantle structure beneath the Sea of Marmara and surroundings based on the full waveform inversion method. The intense seismic activity and crustal deformation are observed in the Northwest Turkey due to transition tectonics between the strike-slip North Anatolian Fault (NAF) and the extensional Aegean region. We have selected and simulated complete waveforms of 62 earthquakes (Mw > 4.0) occurred during 2007-2015, and recorded at (Δ DAD). The spectral-element solver of the wave equation, SES3D algorithm, is used to simulate seismic wave propagation in 3D spherical coordinates (Fichtner, 2009). The Large Scale Seismic Inversion Framework (LASIF) workflow tool is also used to perform full seismic waveform inversion (Krischer et al., 2015). The initial 3D Earth model is implemented from the multi-scale seismic tomography study of Fichtner et al. (2013). Discrepancies between the observed and simulated synthetic waveforms are determined using the time-frequency misfits which allows a separation between phase and amplitude information (Fichtner et al., 2008). The conjugate gradient optimization method is used to iteratively update the initial Earth model when minimizing the misfit. The inversion is terminated after 19 iterations since no further advances are observed in updated models. Our analysis revealed shear wave velocity variations of the shallow and deeper crustal structure beneath western Turkey down to depths of ~35-40 km. Low shear wave velocity anomalies are observed in the upper and mid crustal depths beneath major fault zones located in the study region. Low velocity zones also tend to mark the outline of young volcanic areas. Our final 3D Earth model is tested using forward wave simulations of earthquakes (M ≥ 3.7) that were not used during the inversion process. The comparison of observed and synthetic seismograms, calculated by initial and final models, showed significant
Processing Aftershock Sequences Using Waveform Correlation
Resor, M. E.; Procopio, M. J.; Young, C. J.; Carr, D. B.
2008-12-01
For most event monitoring systems, the objective is to keep up with the flow of incoming data, producing a bulletin with some modest, relatively constant, time delay after present time, often a period of a few hours or less. Because the association problem scales exponentially and not linearly with the number of detections, a dramatic increase in seismicity due to an aftershock sequence can easily cause the bulletin delay time to increase dramatically. In some cases, the production of a bulletin may cease altogether, until the automatic system can catch up. For a nuclear monitoring system, the implications of such a delay could be dire. Given the expected similarity between a mainshock and aftershocks, it has been proposed that waveform correlation may provide a powerful means to simultaneously increase the efficiency of processing aftershock sequences, while also lowering the detection threshold and improving the quality of the event solutions. However, many questions remain unanswered. What are the key parameters for achieving the best correlations between waveforms (window length, filtering, etc.), and are they sequence-dependent? What is the overall percentage of similar events in an aftershock sequence, i.e. what is the maximum level of efficiency that a waveform correlation could be expected to achieve? Finally, how does this percentage of events vary among sequences? Using data from the aftershock sequence for the December 26, 2004 Mw 9.1 Sumatra event, we investigate these issues by building and testing a prototype waveform correlation event detection system that automatically expands its library of known events as new signatures are indentified in the aftershock sequence (by traditional signal detection and event processing). Our system tests all incoming data against this dynamic library, thereby identify any similar events before traditional processing takes place. In the region surrounding the Sumatra event, the NEIC EDR contains 4997 events in the 9
Joint Traveltime and Waveform Envelope Inversion for Near-surface Imaging
Liu, Zhiyang; Zhang, Jie
2017-03-01
In the linearized seismic full waveform inversion (FWI), it is well known that a good initial model is needed to avoid cycle-skipping issue, especially when the low-frequency components of data are lacking. To solve the problem, we develop a joint first-arrival traveltime and early arrival envelope inversion method (JTE) to build a good near-surface velocity model with low-wavenumber components. The JTE method combines the robustness of nonlinear traveltime inversion and the low-frequency information embedded in the waveform envelope. In two synthetic experiments, we confirm that traveltime inversion constrains the top near-surface velocity structures tightly, while the envelope inversion recovers the low-wavenumber structures with low-velocity objects or layers. Using the results of JTE as starting models, we find that FWI can produce accurate solutions for complex numerical models. In a real-data example, JTE followed by FWI resolves a near-surface velocity model to improve statics corrections for the subsurface stacking image.
Xiang, Shiming; Zhang, Haijiang
2016-11-01
It is known full-waveform inversion (FWI) is generally ill-conditioned and various strategies including pre-conditioning and regularizing the inversion system have been proposed to obtain a reliable estimation of the velocity model. Here, we propose a new edge-guided strategy for FWI in frequency domain to efficiently and reliably estimate velocity models with structures of the size similar to the seismic wavelength. The edges of the velocity model at the current iteration are first detected by the Canny edge detection algorithm that is widely used in image processing. Then, the detected edges are used for guiding the calculation of FWI gradient as well as enforcing edge-preserving total variation (TV) regularization for next iteration of FWI. Bilateral filtering is further applied to remove noise but keep edges of the FWI gradient. The proposed edge-guided FWI in the frequency domain with edge-guided TV regularization and bilateral filtering is designed to preserve model edges that are recovered from previous iterations as well as from lower frequency waveforms when FWI is conducted from lower to higher frequencies. The new FWI method is validated using the complex Marmousi model that contains several steeply dipping fault zones and hundreds of horizons. Compared to FWI without edge guidance, our proposed edge-guided FWI recovers velocity model anomalies and edges much better. Unlike previous image-guided FWI or edge-guided TV regularization strategies, our method does not require migrating seismic data, thus is more efficient for real applications.
Energy Technology Data Exchange (ETDEWEB)
Rodgers, A
2000-12-28
This is an informal report on preliminary efforts to investigate earthquake focal mechanisms and earth structure in the Anatolian (Turkish) Plateau. Seismic velocity structure of the crust and upper mantle and earthquake focal parameters for event in the Anatolian Plateau are estimated from complete regional waveforms. Focal mechanisms, depths and seismic moments of moderately large crustal events are inferred from long-period (40-100 seconds) waveforms and compared with focal parameters derived from global teleseismic data. Using shorter periods (10-100 seconds) we estimate the shear and compressional velocity structure of the crust and uppermost mantle. Results are broadly consistent with previous studies and imply relatively little crustal thickening beneath the central Anatolian Plateau. Crustal thickness is about 35 km in western Anatolia and greater than 40 km in eastern Anatolia, however the long regional paths require considerable averaging and limit resolution. Crustal velocities are lower than typical continental averages, and even lower than typical active orogens. The mantle P-wave velocity was fixed to 7.9 km/s, in accord with tomographic models. A high sub-Moho Poisson's Ratio of 0.29 was required to fit the Sn-Pn differential times. This is suggestive of high sub-Moho temperatures, high shear wave attenuation and possibly partial melt. The combination of relatively thin crust in a region of high topography and high mantle temperatures suggests that the mantle plays a substantial role in maintaining the elevation.
Application of weighted early-arrival waveform inversion to shallow land data
Yu, Han
2014-03-01
Seismic imaging of deep land targets is usually difficult since the near-surface velocities are not accurately estimated. Recent studies have shown that inverting traces weighted by the energy of the early-arrivals can improve the accuracy of estimating shallow velocities. In this work, it is explained by showing that the associated misfit gradient function tends to be sensitive to the kinetics of wave propagation and insensitive to the dynamics. A synthetic example verifies the theoretical predictions and shows that the effects of noise and unpredicted amplitude variations in the inversion are reduced using this weighted early arrival waveform inversion (WEWI). We also apply this method to a 2D land data set for estimating the near-surface velocity distribution. The reverse time migration images suggest that, compared to the tomogram inverted directly from the early arrival waveforms, the WEWI tomogram provides a more convincing velocity model and more focused reflections in the deeper part of the image. © 2014 Elsevier B.V.
Pseudo waveform inversion and model driven AVO(Amplitude Versus with Offset) analysis
Energy Technology Data Exchange (ETDEWEB)
Shin, Chang Soo; Park, Keun Pil [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of); Suh, Jung Hee; Hyun, Byung Koo; Shin, Sung Ryul [Seoul National University, Seoul (Korea, Republic of)
1995-12-01
The seismic reflection exploration technique which is one of the geophysical methods for oil exploration became effectively to image the subsurface structure with rapid development of computer. However, the imagining of subsurface based on the conventional data processing is almost impossible to obtain the information on physical properties of the subsurface such as velocity and density. Since seismic data are implicitly function of velocities of subsurface, it is necessary to develop the inversion method that can delineate the velocity structure using seismic topography and waveform inversion. As a tool to perform seismic inversion, seismic forward modeling program using ray tracing should be developed. This report consists of two articles. (1) Pseudo waveform inversion: In this study, we have developed the algorithm that calculate the travel time of the complex geologic structure using shooting ray tracing by subdividing the geologic model into blocky structure having the constant velocity. With the travel time calculation, the partial derivatives of travel time can be calculated efficiently without difficulties. (2) Hessian matrices and multiples: In this article we review the three possible approaches (gradient, Gauss-Newton and full Newton methods). By specifying from the outset implicit, frequency domain, modeling using finite difference or finite element methods, we are able to introduce a new discrete, matrix formalism that considerably simplifies the analysis. (author). 57 refs., 44 figs., 2 tabs.
Brunker, J.; Beard, P.
2013-03-01
Blood flow measurements have been demonstrated using the acoustic resolution mode of photoacoustic sensing. This is unlike previous flowmetry methods using the optical resolution mode, which limits the maximum penetration depth to approximately 1mm. Here we describe a pulsed time correlation photoacoustic Doppler technique that is inherently flexible, lending itself to both resolution modes. Doppler time shifts are quantified via cross-correlation of pairs of photoacoustic waveforms generated in moving absorbers using pairs of laser light pulses, and the photoacoustic waves detected using an ultrasound transducer. The acoustic resolution mode is employed by using the transducer focal width, rather than the large illuminated volume, to define the lateral spatial resolution. The use of short laser pulses allows depth-resolved measurements to be obtained with high spatial resolution, offering the prospect of mapping flow within microcirculation. Whilst our previous work has been limited to a non-fluid phantom, we now demonstrate measurements in more realistic blood-mimicking phantoms incorporating fluid suspensions of microspheres flowing along an optically transparent tube. Velocities up to 110 mm/s were measured with accuracies approaching 1% of the known velocities, and resolutions of a few mm/s. The velocity range and resolution are scalable with excitation pulse separation, but the maximum measurable velocity was considerably smaller than the value expected from the detector focal beam width. Measurements were also made for blood flowing at velocities up to 13.5 mm/s. This was for a sample reduced to 5% of the normal haematocrit; increasing the red blood cell concentration limited the maximum measurable velocity so that no results were obtained for concentrations greater than 20% of a physiologically realistic haematocrit. There are several possible causes for this limitation; these include the detector bandwidth and irregularities in the flow pattern. Better
Theory of Waveform-Diverse Moving-Target Spotlight Synthetic-Aperture Radar
Cheney, Margaret
2011-01-01
We develop a theory for waveform-diverse moving-target synthetic-aperture radar, in the case in which a single moving antenna is used for both transmitting and receiving. We assume that the targets (scattering objects) are moving linearly, but we allow an arbitrary, known flight path for the antenna and allow it to transmit a sequence of arbitrary, known waveforms. A formula for phase space (position and velocity) imaging is developed, and we provide a formula for the point-spread function of the corresponding imaging system. This point-spread function is expressed in terms of the ordinary radar ambiguity function. As an example, we show how the theory can be applied to the problem of estimating the errors that arise when target and antenna motion is neglected during the transit time of each pulse.
Full-waveform inversion with reflected waves for 2D VTI media
Pattnaik, Sonali
2016-09-06
Full-waveform inversion in anisotropic media using reflected waves suffers from the strong non-linearity of the objective function and trade-offs between model parameters. Estimating long-wavelength model components by fixing parameter perturbations, referred to as reflection-waveform inversion (RWI), can mitigate nonlinearity-related inversion issues. Here, we extend RWI to acoustic VTI (transversely isotropic with a vertical symmetry axis) media. To minimize trade-offs between the model parameters, we employ a new hierarchical two-stage approach that operates with the P-wave normal-moveout velocity and anisotropy coefficents ζ and η. First, is estimated using a fixed perturbation in ζ, and then we invert for η by fixing the updated perturbation in . The proposed 2D algorithm is tested on a horizontally layered VTI model.
The Multiple Waveform Persistent Peak (MWaPP) Retracker for SAR waveforms
DEFF Research Database (Denmark)
Villadsen, Heidi; Andersen, Ole Baltazar; Stenseng, Lars
using CryoSat-2 20Hz SAR data, but due to the similarities between the Sentinel-3 SRAL altimeter and the SIRAL altimeter on-board CryoSat-2 an adaption of the method will be straightforward. The MWaPP retracker is based on a sub-waveform retracker, but takes the shape of adjacent waveforms into account...... before selecting the sub-waveform belonging to nadir. This is new compared to primary peak retrackers, and alleviates a lot of snagging due to off-nadir bright targets, but also topography challenges. The results from the MWaPP retracker show a significant decrease in the standard deviation of the mean...
Directory of Open Access Journals (Sweden)
Hess Clemens F
2008-09-01
Full Text Available Abstract Background Intensity modulated radiotherapy (IMRT using sliding window technique utilises a leaf sequencing algorithm, which takes some control system limitations like dose rates (DR and velocity of the leafs (LV into account. The effect of altering these limitations on the number of monitor units and radiation dose to the organs at risk (OAR were analysed. Methods IMRT plans for different LVs from 1.0 cm/sec to 10.0 cm/sec and different DRs from 100 MU/min to 600 MU/min for two patients with prostate cancer and two patients with squamous cell cancer of the scalp (SCCscalp were calculated using the same "optimal fluence map". For each field the number of monitor units, the dose volume histograms and the differences in the "actual fluence maps" of the fields were analysed. Results With increase of the DR and decrease of the LV the number of monitor units increased and consequentially the radiation dose given to the OAR. In particular the serial OARs of patients with SCCscalp, which are located outside the end position of the leafs and inside the open field, received an additional dose of a higher DR and lower LV is used. Conclusion For best protection of organs at risk, a low DR and high LV should be applied. But the consequence of a low DR is both a long treatment time and also that a LV of higher than 3.0 cm/sec is mechanically not applicable. Our recommendation for an optimisation of the discussed parameters is a leaf velocity of 2.5 cm/sec and a dose rate of 300–400 MU/min (prostate cancer and 100–200 MU/min (SCCscalp for best protection of organs at risk, short treatment time and number of monitor units.
Best waveform score for diagnosing keratoconus
Directory of Open Access Journals (Sweden)
Allan Luz
2013-12-01
Full Text Available PURPOSE: To test whether corneal hysteresis (CH and corneal resistance factor (CRF can discriminate between keratoconus and normal eyes and to evaluate whether the averages of two consecutive measurements perform differently from the one with the best waveform score (WS for diagnosing keratoconus. METHODS: ORA measurements for one eye per individual were selected randomly from 53 normal patients and from 27 patients with keratoconus. Two groups were considered the average (CH-Avg, CRF-Avg and best waveform score (CH-WS, CRF-WS groups. The Mann-Whitney U-test was used to evaluate whether the variables had similar distributions in the Normal and Keratoconus groups. Receiver operating characteristics (ROC curves were calculated for each parameter to assess the efficacy for diagnosing keratoconus and the same obtained for each variable were compared pairwise using the Hanley-McNeil test. RESULTS: The CH-Avg, CRF-Avg, CH-WS and CRF-WS differed significantly between the normal and keratoconus groups (p<0.001. The areas under the ROC curve (AUROC for CH-Avg, CRF-Avg, CH-WS, and CRF-WS were 0.824, 0.873, 0.891, and 0.931, respectively. CH-WS and CRF-WS had significantly better AUROCs than CH-Avg and CRF-Avg, respectively (p=0.001 and 0.002. CONCLUSION: The analysis of the biomechanical properties of the cornea through the ORA method has proved to be an important aid in the diagnosis of keratoconus, regardless of the method used. The best waveform score (WS measurements were superior to the average of consecutive ORA measurements for diagnosing keratoconus.
Optimal Transport for Seismic Full Waveform Inversion
Engquist, Bjorn; Yang, Yunan
2016-01-01
Full waveform inversion is a successful procedure for determining properties of the earth from surface measurements in seismology. This inverse problem is solved by a PDE constrained optimization where unknown coefficients in a computed wavefield are adjusted to minimize the mismatch with the measured data. We propose using the Wasserstein metric, which is related to optimal transport, for measuring this mismatch. Several advantageous properties are proved with regards to convexity of the objective function and robustness with respect to noise. The Wasserstein metric is computed by solving a Monge-Ampere equation. We describe an algorithm for computing its Frechet gradient for use in the optimization. Numerical examples are given.
A New Wave Equation Based Source Location Method with Full-waveform Inversion
Wu, Zedong
2017-05-26
Locating the source of a passively recorded seismic event is still a challenging problem, especially when the velocity is unknown. Many imaging approaches to focus the image do not address the velocity issue and result in images plagued with illumination artifacts. We develop a waveform inversion approach with an additional penalty term in the objective function to reward the focusing of the source image. This penalty term is relaxed early to allow for data fitting, and avoid cycle skipping, using an extended source. At the later stages the focusing of the image dominates the inversion allowing for high resolution source and velocity inversion. We also compute the source location explicitly and numerical tests show that we obtain good estimates of the source locations with this approach.
Elastic full-waveform inversion of transmission data in 2D VTI media
Kamath, Nishant
2014-08-05
Full-waveform inversion (FWI) has been implemented mostly for isotropic media, with extensions to anisotropic models typically limited to acoustic approximations. Here, we develop elastic FWI for transmitted waves in 2D heterogeneous VTI (transversely isotropic with a vertical symmetry axis) media. The model is parameterized in terms of the P- and S-wave vertical velocities and the P-wave normal-moveout and horizontal velocities. To test the FWI algorithm, we introduce Gaussian anomalies in the Thomsen parameters of a homogeneous VTI medium and perform FWI of transmission data for different configurations of the source and receiver arrays. The inversion results strongly depend on the acquisition geometry and the aperture because of the parameter trade-offs. In contrast to acoustic FWI, the elastic inversion helps constrain the S-wave vertical velocity, which for our model is decoupled from the other parameters.
A new earthquake location method based on the waveform inversion
Wu, Hao; Huang, Xueyuan; Yang, Dinghui
2016-01-01
In this paper, a new earthquake location method based on the waveform inversion is proposed. As is known to all, the waveform misfit function is very sensitive to the phase shift between the synthetic waveform signal and the real waveform signal. Thus, the convergence domain of the conventional waveform based earthquake location methods is very small. In present study, by introducing and solving a simple sub-optimization problem, we greatly expand the convergence domain of the waveform based earthquake location method. According to a large number of numerical experiments, the new method expands the range of convergence by several tens of times. This allows us to locate the earthquake accurately even from some relatively bad initial values.
Multi-waveform classification for seismic facies analysis
Song, Chengyun; Liu, Zhining; Wang, Yaojun; Li, Xingming; Hu, Guangmin
2017-04-01
Seismic facies analysis provides an effective way to delineate the heterogeneity and compartments within a reservoir. Traditional method is using the single waveform to classify the seismic facies, which does not consider the stratigraphy continuity, and the final facies map may affect by noise. Therefore, by defining waveforms in a 3D window as multi-waveform, we developed a new seismic facies analysis algorithm represented as multi-waveform classification (MWFC) that combines the multilinear subspace learning with self-organizing map (SOM) clustering techniques. In addition, we utilize multi-window dip search algorithm to extract multi-waveform, which reduce the uncertainty of facies maps in the boundaries. Testing the proposed method on synthetic data with different S/N, we confirm that our MWFC approach is more robust to noise than the conventional waveform classification (WFC) method. The real seismic data application on F3 block in Netherlands proves our approach is an effective tool for seismic facies analysis.
Waveform Optimization for SWIPT with Nonlinear Energy Harvester Modeling
Clerckx, Bruno
2016-01-01
Simultaneous Wireless Information and Power Transfer (SWIPT) has attracted significant attention in the communication community. The problem of waveform design for SWIPT has however never been addressed so far. In this paper, a novel SWIPT transceiver architecture is introduced relying on the superposition of multisine and OFDM waveforms at the transmitter and a power-splitter receiver equipped with an energy harvester and an information decoder capable of cancelling the multisine waveforms. ...
RF arbitrary waveform generation using tunable planar lightwave circuits
Samadi, P.; Chen, L. R.; Callender, C.; Dumais, P.; Jacob, S.; Celo, D.
2011-07-01
We demonstrate photonically-assisted generation of RF arbitrary waveforms using planar lightwave circuits (PLCs) fabricated on silica-on-silicon. We exploit thermo-optic effects in silica in order to tune the response of the PLC and hence reconfigure the generated waveform. We demonstrate the generation of pulse trains at 40 GHz and 80 GHz with flat-top, Gaussian, and apodized profiles. These results demonstrate the potential for RF arbitrary waveform generation using chip-scale photonic solutions.
Information Encoding on a Pseudo Random Noise Radar Waveform
2013-03-01
PSEUDO RANDOM NOISE RADAR WAVEFORM THESIS Joshua A. Hardin, Captain, USAF AFIT-ENG-13-M-22 DEPARTMENT OF THE AIR FORCE AIR...protection in the United States. AFIT-ENG-13-M-22 INFORMATION ENCODING ON A PSEUDO RANDOM NOISE RADAR WAVEFORM THESIS Presented to the Faculty...INFORMATION ENCODING ON A PSEUDO RANDOM NOISE RADAR WAVEFORM I. Introduction 1.1 Problem Description Navigation requires knowledge of current
On the accuracy and precision of numerical waveforms: effect of waveform extraction methodology
Chu, Tony; Fong, Heather; Kumar, Prayush; Pfeiffer, Harald P.; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Scheel, Mark A.; Szilagyi, Bela
2016-08-01
We present a new set of 95 numerical relativity simulations of non-precessing binary black holes (BBHs). The simulations sample comprehensively both black-hole spins up to spin magnitude of 0.9, and cover mass ratios 1-3. The simulations cover on average 24 inspiral orbits, plus merger and ringdown, with low initial orbital eccentricities e\\lt {10}-4. A subset of the simulations extends the coverage of non-spinning BBHs up to mass ratio q = 10. Gravitational waveforms at asymptotic infinity are computed with two independent techniques: extrapolation and Cauchy characteristic extraction. An error analysis based on noise-weighted inner products is performed. We find that numerical truncation error, error due to gravitational wave extraction, and errors due to the Fourier transformation of signals with finite length of the numerical waveforms are of similar magnitude, with gravitational wave extraction errors dominating at noise-weighted mismatches of ˜ 3× {10}-4. This set of waveforms will serve to validate and improve aligned-spin waveform models for gravitational wave science.
Altunc, Serhat; Baum, Carl E.; Christodoulou, Christos G.; Schamiloglu, Edl; Buchenauer, C. Jerald
2008-08-01
Impulse radiating antennas (IRAs) are designed to radiate very fast pulses in a narrow beam with low dispersion and high field amplitude. For this reason they have been used in a variety of applications. IRAs have been developed for use in the transient far-field region using parabolic reflectors. However, in this paper we focus in the near field region and develop the field waveform at the second focus of a prolate-spheroidal IRA. Certain skin cancers can be killed by the application of a high-amplitude electric field pulse. This can be accomplished by either inserting electrodes near the skin cancer or by applying fast, high-electric field pulses without direct contact. We investigate a new manifestation of an IRA, in which we use a prolate spheroid as a reflector instead of a parabolic reflector and focus in the near-field region instead of the far-field region. This technique minimizes skin damage associated with inserting electrodes near the tumor. Analytical and experimental behaviors for the focal waveforms of two and four-feed arm prolate-spheroidal IRAs are explored. With appropriate choice of the driving waveform we maximize the impulse field at the second focus. The focal waveform of a prolate-spheroidal IRA has been explained theoretically and verified experimentally.
Kriging interpolating cosmic velocity field
Yu, Yu; Zhang, Jun; Jing, Yipeng; Zhang, Pengjie
2015-10-01
Volume-weighted statistics of large-scale peculiar velocity is preferred by peculiar velocity cosmology, since it is free of the uncertainties of galaxy density bias entangled in observed number density-weighted statistics. However, measuring the volume-weighted velocity statistics from galaxy (halo/simulation particle) velocity data is challenging. Therefore, the exploration of velocity assignment methods with well-controlled sampling artifacts is of great importance. For the first time, we apply the Kriging interpolation to obtain the volume-weighted velocity field. Kriging is a minimum variance estimator. It predicts the most likely velocity for each place based on the velocity at other places. We test the performance of Kriging quantified by the E-mode velocity power spectrum from simulations. Dependences on the variogram prior used in Kriging, the number nk of the nearby particles to interpolate, and the density nP of the observed sample are investigated. First, we find that Kriging induces 1% and 3% systematics at k ˜0.1 h Mpc-1 when nP˜6 ×1 0-2(h-1 Mpc )-3 and nP˜6 ×1 0-3(h-1 Mpc )-3 , respectively. The deviation increases for decreasing nP and increasing k . When nP≲6 ×1 0-4(h-1 Mpc )-3 , a smoothing effect dominates small scales, causing significant underestimation of the velocity power spectrum. Second, increasing nk helps to recover small-scale power. However, for nP≲6 ×1 0-4(h-1 Mpc )-3 cases, the recovery is limited. Finally, Kriging is more sensitive to the variogram prior for a lower sample density. The most straightforward application of Kriging on the cosmic velocity field does not show obvious advantages over the nearest-particle method [Y. Zheng, P. Zhang, Y. Jing, W. Lin, and J. Pan, Phys. Rev. D 88, 103510 (2013)] and could not be directly applied to cosmology so far. However, whether potential improvements may be achieved by more delicate versions of Kriging is worth further investigation.
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th S.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corpuz, A.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Donath, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dossa, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hooper, S.; Hopkins, P.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jaranowski, P.; Ji, Y.
2014-06-01
The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave (GW) astrophysics communities. The purpose of NINJA is to study the ability to detect GWs emitted from merging binary black holes (BBH) and recover their parameters with next-generation GW observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete BBH hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. In a ‘blind injection challenge’ similar to that conducted in recent Laser Interferometer Gravitational Wave Observatory (LIGO) and Virgo science runs, we added seven hybrid waveforms to two months of data recoloured to predictions of Advanced LIGO (aLIGO) and Advanced Virgo (AdV) sensitivity curves during their first observing runs. The resulting data was analysed by GW detection algorithms and 6 of the waveforms were recovered with false alarm rates smaller than 1 in a thousand years. Parameter-estimation algorithms were run on each of these waveforms to explore the ability to constrain the masses, component angular momenta and sky position of these waveforms. We find that the strong degeneracy between the mass ratio and the BHs’ angular momenta will make it difficult to precisely estimate these parameters with aLIGO and AdV. We also perform a large-scale Monte Carlo study to assess the ability to recover each of the 60 hybrid waveforms with early aLIGO and AdV sensitivity curves. Our results predict that early aLIGO and AdV will have a volume-weighted average sensitive distance of 300 Mpc (1 Gpc) for 10M⊙ + 10M⊙ (50M⊙ + 50M⊙) BBH coalescences. We demonstrate that neglecting the component angular momenta in the waveform models used in matched-filtering will result in a reduction in sensitivity for systems with large component angular momenta. This
Waveform interative techniques for device transient simulation on parallel machines
Energy Technology Data Exchange (ETDEWEB)
Lumsdaine, A. [Univ. of Notre Dame, IN (United States); Reichelt, M.W. [Massachusetts Institute of Technology, Cambridge, MA (United States)
1993-12-31
In this paper we describe our experiences with parallel implementations of several different waveform algorithms for performing transient simulation of semiconductor devices. Because of their inherent computation and communication structure, waveform methods are well suited to MIMD-type parallel machines having a high communication latency - such as a cluster of workstations. Experimental results using pWORDS, a parallel waveform-based device transient simulation program, in conjunction with PVM running on a cluster of eight workstations demonstrate that parallel waveform techniques are an efficient and faster alternative to standard simulation algorithms.
Adaptive Robust Waveform Selection for Unknown Target Detection in Clutter
Institute of Scientific and Technical Information of China (English)
Lu-Lu Wang; Hong-Qiang Wang; Yu-Liang Qin; Yong-Qiang Cheng
2014-01-01
@@@A basic assumption of most recently proposed waveform design algorithms is that the target impulse response is a known deterministic function or a stochastic process with a known power spectral density (PSD). However, it is well-known that a target impulse response is neither easily nor accurately obtained; besides it changes sharply with attitude angles. Both of the aforementioned cases complicate the waveform design process. In this paper, an adaptive robust waveform selection method for unknown target detection in clutter is proposed. The target impulse response is considered to be unknown but belongs to a known uncertainty set. An adaptive waveform library is devised by using a signal-to-clutter-plus-noise ratio (SCNR)- based optimal waveform design method. By applying the minimax robust waveform selection method, the optimal robust waveform is selected to ensure the lowest performance bound of the unknown target detection in clutter. Results show that the adaptive waveform library outperforms the predefined linear frequency modulation (LFM) waveform library on the SCNR bound.
Designing waveforms for temporal encoding using a frequency sampling method
DEFF Research Database (Denmark)
Gran, Fredrik; Jensen, Jørgen Arendt
2007-01-01
, the amplitude spectrum of the transmitted waveform can be optimized, such that most of the energy is transmitted where the transducer has large amplification. To test the design method, a waveform was designed for a BK8804 linear array transducer. The resulting nonlinear frequency modulated waveform...... for the linear frequency modulated signal) were tested for both waveforms in simulation with respect to the Doppler frequency shift occurring when probing moving objects. It was concluded that the Doppler effect of moving targets does not significantly degrade the filtered output. Finally, in vivo measurements...
Advances in waveform-agile sensing for tracking
Sira, Sandeep Prasad
2009-01-01
Recent advances in sensor technology and information processing afford a new flexibility in the design of waveforms for agile sensing. Sensors are now developed with the ability to dynamically choose their transmit or receive waveforms in order to optimize an objective cost function. This has exposed a new paradigm of significant performance improvements in active sensing: dynamic waveform adaptation to environment conditions, target structures, or information features. The manuscript provides a review of recent advances in waveform-agile sensing for target tracking applications. A dynamic wav
Spectral implementation of full waveform inversion based on reflections
Wu, Zedong
2014-01-01
Using the reflection imaging process as a source to model reflections for full waveform inversion (FWI), referred to as reflection FWI (RFWI), allows us to update the background component of the model, and avoid using the relatively costly migration velocity analysis (MVA), which usually relies on extended images. However, RFWI requires a good image to represent the current reflectivity, as well as, some effort to obtain good smooth gradients. We develop a spectral implementation of RFWI where the wavefield extrapolations and gradient evaluation are performed in the wavenumber domain, obtaining clean dispersion free and fast extrapolations. The gradient, in this case, yields three terms, two of which provide us with each side of the rabbit ear kernel, and the third, often ignored, provides a normalization of the reflectivity within the kernel, which can be used to obtain a reflectivity free background update. Since the image is imperfect (it is an adjoint, not an inverse), an optimization process for the third term scaling is implemented to achieve the smoothest gradient update. A rare application of RFWI on the reflectivity infested Marmousi model shows some of the potential of the approach.
Monofrequency waveform acquisition and inversion: A new paradigm
Alkhalifah, Tariq Ali
2014-08-05
In seismic inversion, we tend to use the geometrical behavior of the wavefield (the kinematics), extracted from the data, to constrain the long wavelength model components and use the recorded reections to invert for the short wavelength features in a process referred to as full waveform inversion (FWI). For such a recipe, single frequency (the right frequency) data are capable of providing the ingredients for both model components. A frequency that provides model wavelengths (through the transmission components) low enough to update the background and high enough (reections) to map the scattering may render the other frequencies almost obsolete, especially large offset data are available to provide the transition from background to scattering components. Thus, I outline a scenario in which we acquire dedicated mono frequency data, allowing for more time to inject more of that single frequency energy at a reduced cost. The cost savings can be utilized to acquire larger offsets, which is an important for constraining the background model. Combing this single frequency data with a hierarchical scattering angle filter strategy in FWI, and potentially reection FWI, provides an opportunity to invert for complex models starting even with poor initial velocity models. The objective of this new paradigm is a high resolution model of the Earth to replace our focus on the image, which requires a band of frequencies.
Full waveform inversion with extrapolated low frequency data
Li, Yunyue Elita
2016-01-01
The availability of low frequency data is an important factor in the success of full waveform inversion (FWI) in the acoustic regime. The low frequencies help determine the kinematically relevant, low-wavenumber components of the velocity model, which are in turn needed to avoid convergence of FWI to spurious local minima. However, acquiring data below 2 or 3 Hz from the field is a challenging and expensive task. In this paper we explore the possibility of synthesizing the low frequencies computationally from high-frequency data, and use the resulting prediction of the missing data to seed the frequency sweep of FWI. As a signal processing problem, bandwidth extension is a very nonlinear and delicate operation. It requires a high-level interpretation of bandlimited seismic records into individual events, each of which is extrapolable to a lower (or higher) frequency band from the non-dispersive nature of the wave propagation model. We propose to use the phase tracking method for the event separation task. The...
Scattering-angle based filtering of the waveform inversion gradients
Alkhalifah, Tariq Ali
2014-11-22
Full waveform inversion (FWI) requires a hierarchical approach to maneuver the complex non-linearity associated with the problem of velocity update. In anisotropic media, the non-linearity becomes far more complex with the potential trade-off between the multiparameter description of the model. A gradient filter helps us in accessing the parts of the gradient that are suitable to combat the potential non-linearity and parameter trade-off. The filter is based on representing the gradient in the time-lag normalized domain, in which the low scattering angle of the gradient update is initially muted out in the FWI implementation, in what we may refer to as a scattering angle continuation process. The result is a low wavelength update dominated by the transmission part of the update gradient. In this case, even 10 Hz data can produce vertically near-zero wavenumber updates suitable for a background correction of the model. Relaxing the filtering at a later stage in the FWI implementation allows for smaller scattering angles to contribute higher-resolution information to the model. The benefits of the extended domain based filtering of the gradient is not only it\\'s ability in providing low wavenumber gradients guided by the scattering angle, but also in its potential to provide gradients free of unphysical energy that may correspond to unrealistic scattering angles.
Waveform Freezing of Sonic Booms Revisited
Cleveland, Robin O.; Blackstock, David T.
1996-01-01
Nonlinear distortion of sonic booms propagating in the atmosphere is strongly affected by stratification and geometrical spreading. For a downward propagating sonic boom in a standard atmosphere, stratification and spreading cause a slowing down of nonlinear distortion. In certain cases a stage is reached where no further distortion takes place. When this happens, the waveform is said to be frozen. In previous work the authors argued that for most HSCT designs and flight conditions being considered, the sonic boom is not frozen when it reaches the ground. The criterion used was the value of the distortion distance x bar is a measure of the nonlinear distortion suffered by the wave (and is closely related to Hayes's E variable). The aircraft must be at an altitude greater than 27 km (80,000 ft) for x bar at the groun be within 95% of its asymptotic value. However, work reported here demonstrates that the ground waveform is much closer to the frozen state than indicated by the previous analysis. In the new analysis, duration of the sonic boom is used as the criterion for judging closeness of approach tz frozen state. In order for the duration of the sonic boom at the ground to be within 95% of its frozen value, the flight altitude of the aircraft needs to be only 15 km (45,000 ft).
Sparse-promoting Full Waveform Inversion based on Online Orthonormal Dictionary Learning
Zhu, Lingchen; McClellan, James H
2015-01-01
Full waveform inversion (FWI) delivers high-resolution images of a subsurface medium model by minimizing iteratively the least-squares misfit between the observed and simulated seismic data. Due to the limited accuracy of the starting model and the inconsistency of the seismic waveform data, the FWI problem is inherently ill-posed, so that regularization techniques are typically applied to obtain better models. FWI is also a computationally expensive problem because modern seismic surveys cover very large areas of interest and collect massive volumes of data. The dimensionality of the problem and the heterogeneity of the medium both stress the need for faster algorithms and sparse regularization techniques to accelerate and improve imaging results. This paper reaches these goals by developing a compressive sensing approach for the FWI problem, where the sparsity of model perturbations is exploited within learned dictionaries. Based on stochastic approximations, the dictionaries are updated iteratively to adap...
Alkhalifah, Tariq Ali
2016-09-06
Addressing anisotropy in full wavenumber inversion (FWI) is crucial to obtaining credible models, and it is extremely challenging considering the multi parameter nature of the inversion. A successful FWI in anisotropic media takes into account the sensitivity of the data (or the wave) to the long and short wavelength components of the anisotropic parameters. Considering the low sensitivity of FWI to the anellipticity parameter ? when parametrizing the acoustic transversely isotropic model with the horizontal velocity, η and ε, we develop a combined FWI and reflection waveform inversion (RWI) to invert for the anisotropic parameters that influence surface seismic data. This practical waveform inversion (PWI) separates the parameters to their resolvable scales, with information accessed from the data fitting (FWI) and the image focusing (RWI) objectives. With this parametrization, the RWI role is to obtain a smooth ηmodel, as well as velocity, while FWI focusses on the scattering potential of the horizontal velocity. The parameter η is used to produce the Born scattered wavefield for the RWI part and eventually fit the amplitude for the imperfect physics in the FWI part.
Mello, Michael; Bhat, Harsha S.; Rosakis, Ares J.
2016-08-01
Fundamental spatiotemporal field properties and particle velocity waveform signatures of sub-Rayleigh and supershear ruptures were experimentally investigated through a series of laboratory earthquake experiments. We appeal to dynamic rupture theory to extract and highlight previously unnoticed aspects and results, which are of direct relevance to our new experiments. Kinematic relationships derived from both singular and non-singular solutions are applied to analyze and interpret various features observed in these experiments. A strong correspondence is demonstrated between particle velocity records obtained in lab experiments and synthetic particle velocity waveform profiles derived from theory. Predicted temporal profiles, sense of particle motion, and amplitude decay properties of sub-Rayleigh and supershear particle velocity waveforms are experimentally verified. In a particular set of supershear rupture experiments, the fault-normal (FN) and fault-parallel (FP) velocity waveforms were simultaneously recorded at fixed, off-fault field points as a shear Mach front swept these locations. Particle velocity records collected over a broad range of stable supershear rupture speeds validate the predicted scaling relationship δu˙1s / δu˙2s =√{Vr2 / Cs2-1 } =βs, between the FP (δu1ṡ) and the FN (δu2ṡ) velocity jumps propagated by a shear Mach front. Additional experimental findings include detailed rupture speed measurements of sub-Rayleigh and supershear ruptures and the observation of a supershear daughter crack with vanishing shear Mach front.
An optimal transport approach for seismic tomography: application to 3D full waveform inversion
Métivier, L.; Brossier, R.; Mérigot, Q.; Oudet, E.; Virieux, J.
2016-11-01
The use of optimal transport distance has recently yielded significant progress in image processing for pattern recognition, shape identification, and histograms matching. In this study, the use of this distance is investigated for a seismic tomography problem exploiting the complete waveform; the full waveform inversion. In its conventional formulation, this high resolution seismic imaging method is based on the minimization of the L 2 distance between predicted and observed data. Application of this method is generally hampered by the local minima of the associated L 2 misfit function, which correspond to velocity models matching the data up to one or several phase shifts. Conversely, the optimal transport distance appears as a more suitable tool to compare the misfit between oscillatory signals, for its ability to detect shifted patterns. However, its application to the full waveform inversion is not straightforward, as the mass conservation between the compared data cannot be guaranteed, a crucial assumption for optimal transport. In this study, the use of a distance based on the Kantorovich-Rubinstein norm is introduced to overcome this difficulty. Its mathematical link with the optimal transport distance is made clear. An efficient numerical strategy for its computation, based on a proximal splitting technique, is introduced. We demonstrate that each iteration of the corresponding algorithm requires solving the Poisson equation, for which fast solvers can be used, relying either on the fast Fourier transform or on multigrid techniques. The development of this numerical method make possible applications to industrial scale data, involving tenths of millions of discrete unknowns. The results we obtain on such large scale synthetic data illustrate the potentialities of the optimal transport for seismic imaging. Starting from crude initial velocity models, optimal transport based inversion yields significantly better velocity reconstructions than those based on
Maggi, A.; Langet, N.; Brenguier, F.; Michelini, A.
2012-12-01
We present the continued development of WaveLoc, and automated seismic event detection and location algorithm based on waveform migration, that therefore bypasses the phase-picking and association phases common to most automated location algorithms. WaveLoc is a 3-step process : 1) we filter and calculate the kurtosis of the raw waveforms in order to highlight the non-stationary characteristics of seismic events; 2) we migrate and stack the first derivatives of the kurtosis waveforms, which highlight the P-wave arrivals, according to an a-priori P-wave velocity model (1D or 3D); 3) we detect and simultaneously locate seismic events by analyzing the local maxima of the resulting 3-D time-dependent stacks. We have applied the WaveLoc algorithm to the seismic swarms recorded on the Piton de la Fournaise volcano (Reunion Island) between 2009 and 2011, using data from the UnderVolc experiment (Brenguier et al., 2012) and the Prono et al. (2009) 3D velocity model. We compare the locations obtained using WaveLoc to those obtained from manual picking in order to evaluate the robustness of the automated algorithm. Automated location of single events is in general limited by "picking" errors (in our case intrinsic variations in stationarity properties of the seismic signals) and inadequacies in the a-priori velocity models. In order to improve both accuracy and precision of our locations, we have systematically searched for multiplets by cross-correlation, and relocated these multiplets using a simple double-difference algorithm.
Energy Technology Data Exchange (ETDEWEB)
Soleimani, Effat; Mokhtari-Dizaji, Manijhe [Dept. of Medical Physics, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Fatouraee, Nasser [Dept. of Medical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Saben, Hazhir [Dept. Radiology, Imaging Center of Imam Khomaini Hospital, Tehran Medical Sciences University, Tehran (Iran, Islamic Republic of)
2017-04-15
The aim of this study was to introduce and implement a noninvasive method to derive the carotid artery pressure waveform directly by processing diagnostic sonograms of the carotid artery. Ultrasound image sequences of 20 healthy male subjects (age, 36±9 years) were recorded during three cardiac cycles. The internal diameter and blood velocity waveforms were extracted from consecutive sonograms over the cardiac cycles by using custom analysis programs written in MATLAB. Finally, the application of a mathematical equation resulted in time changes of the arterial pressure. The resulting pressures were calibrated using the mean and the diastolic pressure of the radial artery. A good correlation was found between the mean carotid blood pressure obtained from the ultrasound image processing and the mean radial blood pressure obtained using a standard digital sphygmomanometer (R=0.91). The mean absolute difference between the carotid calibrated pulse pressures and those measured clinically was -1.333±6.548 mm Hg. The results of this study suggest that consecutive sonograms of the carotid artery can be used for estimating a blood pressure waveform. We believe that our results promote a noninvasive technique for clinical applications that overcomes the reproducibility problems of common carotid artery tonometry with technical and anatomical causes.
Inversion of ocean-bottom seismometer (OBS) waveforms for oceanic crust structure: a synthetic study
Li, Xueyan; Wang, Yanbin; Chen, Yongshun John
2016-08-01
The waveform inversion method is applied—using synthetic ocean-bottom seismometer (OBS) data—to study oceanic crust structure. A niching genetic algorithm (NGA) is used to implement the inversion for the thickness and P-wave velocity of each layer, and to update the model by minimizing the objective function, which consists of the misfit and cross-correlation of observed and synthetic waveforms. The influence of specific NGA method parameters is discussed, and suitable values are presented. The NGA method works well for various observation systems, such as those with irregular and sparse distribution of receivers as well as single receiver systems. A strategy is proposed to accelerate the convergence rate by a factor of five with no increase in computational complexity; this is achieved using a first inversion with several generations to impose a restriction on the preset range of each parameter and then conducting a second inversion with the new range. Despite the successes of this method, its usage is limited. A shallow water layer is not favored because the direct wave in water will suppress the useful reflection signals from the crust. A more precise calculation of the air-gun source signal should be considered in order to better simulate waveforms generated in realistic situations; further studies are required to investigate this issue.
Waveform measurement of charge- and spin-density wavepackets in a chiral Tomonaga-Luttinger liquid
Hashisaka, M.; Hiyama, N.; Akiho, T.; Muraki, K.; Fujisawa, T.
2017-06-01
In contrast to a free-electron system, a Tomonaga-Luttinger (TL) liquid in a one-dimensional (1D) electron system hosts charge and spin excitations as independent entities. When an electron is injected into a TL liquid, it transforms into charge- and spin-density wavepackets that propagate at different group velocities and move away from each other. This process, known as spin-charge separation, is the hallmark of TL physics. While spin-charge separation has been probed in momentum- or frequency-domain measurements in various 1D systems, waveforms of separated excitations, which are a direct manifestation of the TL behaviour, have been long awaited to be measured. Here, we present a waveform measurement for the pseudospin-charge separation process in a chiral TL liquid comprising quantum Hall edge channels. The charge- and pseudospin-density waveforms are captured by utilizing a spin-resolved sampling scope that records the spin-up or -down component of the excitations. This experimental technique provides full information for time evolution of the 1D electron system, including not only propagation of TL eigenmodes but also their decay in a practical device.
Randomly distributed unit sources to enhance optimization in tsunami waveform inversion
Directory of Open Access Journals (Sweden)
I. E. Mulia
2014-05-01
Full Text Available Determination of sea surface deformation generated by earthquakes is crucial to the success of tsunami modeling. Using waveforms recorded at measurement stations and assuming that the rupture velocity is much faster than the tsunami wave celerity, sea surface deformation caused by a tsunamigenic earthquake can be inferred through an inversion operation using the Green's function technique. However, this inversion method for tsunami waveforms possesses a limitation, in that the inverse matrix does not always exist because of the non-uniqueness of the solution. In addition to the large number of unknown parameters, which might produce many local optima on the misfit function measure, the search towards optimality is confined by the uniform distance of unit sources used in the regular Green's function. This study proposes a new method to both optimize the determination of the unknown parameters and introduce a global optimization method for tsunami waveform inversion. The method has been tested using an artificial tsunami source with real bathymetry data. A significant improvement is achieved by stochastically searching for an optimal distribution of unit source locations prior to the inversion.
Digital Repository Service at National Institute of Oceanography (India)
Jaiswal, P.; Dewangan, P.; Ramprasad, T.; Zelt, C.A.
; full waveform inversion; P-wave velocity; P-wave attenuation 1. INTRODUCTION Hydrates can play a potentially significant role in climate change (Gu et al., 2011), seafloor stability (Brown et al., 2006), and energy security (Boswell and Collett, 2011... distribution within fine-grained, clay-dominated, and faulted sediments of the Krishna-Godavari (KG) Basin located offshore of eastern continental margin of India (Figure 1). We apply FWI in the frequency domain. The domain choice is driven by a) efficiency...
ADVANCED WAVEFORM SIMULATION FOR SEISMIC MONITORING EVENTS
Energy Technology Data Exchange (ETDEWEB)
Helmberger, D; Tromp, J; Rodgers, A
2007-07-16
Comprehensive test ban monitoring in terms of location and discrimination has progressed significantly in recent years. However, the characterization of sources and the estimation of low yields remains a particular challenge. As the recent Korean shot demonstrated, we can probably expect to have a small set of teleseismic, far-regional and high-frequency regional data to analyze in estimating the yield of an event. Since stacking helps to bring signals out of the noise, it becomes useful to conduct comparable analyses on neighboring events, earthquakes in this case. If these auxiliary events have accurate moments and source descriptions, we have a means of directly comparing effective source strengths. Although we will rely on modeling codes, 1D, 2D, and 3D, we will also apply a broadband calibration procedure to use longer periods (P>5s) waveform data to calibrate short-period (P between .5 to 2 Hz) and high-frequency (P between 2 to 10 Hz) as path specify station corrections from well-known regional sources. We have expanded our basic Cut-and-Paste (CAP) methodology to include not only timing shifts but also amplitude (f) corrections at recording sites. The name of this method was derived from source inversions that allow timing shifts between 'waveform segments' (or cutting the seismogram up and re-assembling) to correct for crustal variation. For convenience, we will refer to these f-dependent refinements as CAP+ for (SP) and CAP++ for still higher frequency. These methods allow the retrieval of source parameters using only P-waveforms where radiation patterns are obvious as demonstrated in this report and are well suited for explosion P-wave data. The method is easily extended to all distances because it uses Green's function although there may be some changes required in t* to adjust for offsets between local vs. teleseismic distances. In short, we use a mixture of model-dependent and empirical corrections to tackle the path effects. Although
Towards Full-Waveform Ambient Noise Inversion
Sager, Korbinian; Ermert, Laura; Afanasiev, Michael; Boehm, Christian; Fichtner, Andreas
2017-04-01
Noise tomography usually works under the assumption that the inter-station ambient noise correlation is equal to a scaled version of the Green function between the two receivers. This assumption, however, is only met under specific conditions, e.g. wavefield diffusivity and equipartitioning, or the isotropic distribution of both mono- and dipolar uncorrelated noise sources. These assumptions are typically not satisfied in the Earth. This inconsistency inhibits the exploitation of the full waveform information contained in noise correlations in order to constrain Earth structure and noise generation. To overcome this limitation, we attempt to develop a method that consistently accounts for the distribution of noise sources, 3D heterogeneous Earth structure and the full seismic wave propagation physics. This is intended to improve the resolution of tomographic images, to refine noise source distribution, and thereby to contribute to a better understanding of both Earth structure and noise generation. First, we develop an inversion strategy based on a 2D finite-difference code using adjoint techniques. To enable a joint inversion for noise sources and Earth structure, we investigate the following aspects: i) the capability of different misfit functionals to image wave speed anomalies and source distribution and ii) possible source-structure trade-offs, especially to what extent unresolvable structure can be mapped into the inverted noise source distribution and vice versa. In anticipation of real-data applications, we present an extension of the open-source waveform modelling and inversion package Salvus (http://salvus.io). It allows us to compute correlation functions in 3D media with heterogeneous noise sources at the surface and the corresponding sensitivity kernels for the distribution of noise sources and Earth structure. By studying the effect of noise sources on correlation functions in 3D, we validate the aforementioned inversion strategy and prepare the
Hemodynamic Correlates of Late Systolic Flow Velocity Augmentation in the Carotid Artery
Heffernan, Kevin S.; Lefferts, Wesley K; Augustine, Jacqueline A.
2013-01-01
Background. The contour of the common carotid artery (CCA) blood flow velocity waveform changes with age; CCA flow velocity increases during late systole, and this may contribute to cerebrovascular disease. Late systolic flow velocity augmentation can be quantified using the flow augmentation index (FAIx). We examined hemodynamic correlates of FAIx to gain insight into determinants of CCA flow patterns. Methods. CCA Doppler ultrasound and wave intensity analysis (WIA) were used to assess regi...
Frequency-domain elastic full waveform inversion using encoded simultaneous sources
Jeong, W.; Son, W.; Pyun, S.; Min, D.
2011-12-01
Currently, numerous studies have endeavored to develop robust full waveform inversion and migration algorithms. These processes require enormous computational costs, because of the number of sources in the survey. To avoid this problem, the phase encoding technique for prestack migration was proposed by Romero (2000) and Krebs et al. (2009) proposed the encoded simultaneous-source inversion technique in the time domain. On the other hand, Ben-Hadj-Ali et al. (2011) demonstrated the robustness of the frequency-domain full waveform inversion with simultaneous sources for noisy data changing the source assembling. Although several studies on simultaneous-source inversion tried to estimate P- wave velocity based on the acoustic wave equation, seismic migration and waveform inversion based on the elastic wave equations are required to obtain more reliable subsurface information. In this study, we propose a 2-D frequency-domain elastic full waveform inversion technique using phase encoding methods. In our algorithm, the random phase encoding method is employed to calculate the gradients of the elastic parameters, source signature estimation and the diagonal entries of approximate Hessian matrix. The crosstalk for the estimated source signature and the diagonal entries of approximate Hessian matrix are suppressed with iteration as for the gradients. Our 2-D frequency-domain elastic waveform inversion algorithm is composed using the back-propagation technique and the conjugate-gradient method. Source signature is estimated using the full Newton method. We compare the simultaneous-source inversion with the conventional waveform inversion for synthetic data sets of the Marmousi-2 model. The inverted results obtained by simultaneous sources are comparable to those obtained by individual sources, and source signature is successfully estimated in simultaneous source technique. Comparing the inverted results using the pseudo Hessian matrix with previous inversion results
Tera-sample-per-second Real-time Waveform Digitizer
Han, Y; Jalali, B; Han, Yan; Boyraz, Ozdal; Jalali, Bahram
2005-01-01
We demonstrate a real-time transient waveform digitizer with a record 1 TSa/s (Tera-Sample/sec) sampling rate. This is accomplished by using a photonic time stretch preprocessor which slows down the electrical waveform before it is captured by an electronic digitizer.
An Overview of Radar Waveform Optimization for Target Detection
Directory of Open Access Journals (Sweden)
Wang Lulu
2016-10-01
Full Text Available An optimal waveform design method that fully employs the knowledge of the target and the environment can further improve target detection performance, thus is of vital importance to research. In this paper, methods of radar waveform optimization for target detection are reviewed and summarized and provide the basis for the research.
Analysis of a Proposed Two-Frequency Radar Waveform
1974-11-01
Rice and Dugundji . The waveform at the Input of the detector is u(t) -§ cn cos (UM: + f^) (1) A frequency q called the "midband frequency"is selected...Analysis of Random Noise," Bell Systi Technical Journal. Vol 23, p 81, 1944. 11. J. Dugundji , "Bivelopes and Pre-Envelopes of Real Waveforms," IRE
Method and apparatus for resonant frequency waveform modulation
Taubman, Matthew S [Richland, WA
2011-06-07
A resonant modulator device and process are described that provide enhanced resonant frequency waveforms to electrical devices including, e.g., laser devices. Faster, larger, and more complex modulation waveforms are obtained than can be obtained by use of conventional current controllers alone.
Waveform Selectivity at the Same Frequency
Wakatsuchi, Hiroki; Rushton, Jeremiah J; Gao, Fei; Kim, Sanghoon; Sievenpiper, Daniel F
2014-01-01
Electromagnetic properties depend on the composition of materials, i.e. either angstrom scales of molecules or, for metamaterials, subwavelength periodic structures. Each material behaves differently in accordance with the frequency of an incoming electromagnetic wave due to the frequency dispersion or the resonance of the periodic structures. This indicates that if the frequency is fixed, the material always responds in the same manner unless it has nonlinearity. However, such nonlinearity is controlled by the magnitude of the incoming wave or other bias. Therefore, it is difficult to distinguish different incoming waves at the same frequency. Here we present a new concept of circuit-based metasurfaces to selectively absorb or transmit specific types of waveforms even at the same frequency. The metasurfaces, integrated with schottky diodes as well as either capacitors or inductors, selectively absorb short or long pulses, respectively. The two types of the circuit elements are then combined to absorb or tran...
Heartrate variation of umbilical artery Doppler waveforms.
Hoskins, P R; Johnstone, F D; Chambers, S E; Haddad, N G; White, G; McDicken, W N
1989-01-01
Umbilical artery Doppler waveforms from 20 patients were used to investigate the dependence of resistance index and pulsatility index on beat to beat pulse length over short time periods for individual patients, and on the usefulness of a common normalisation formula. For individual patients the resistance index and pulsatility index were only partially correlated with pulse length. Changes in both indices occurred independently of pulse length. Use of a common normalisation formula resulted in no significant reduction of the coefficient of variation of the resistance index (p greater than 0.1), and a reduction in the coefficient of variation of the pulsatility index of 10% (p greater than 0.001). It is concluded that short term changes in resistance index and pulsatility index cannot be corrected by a common normalisation formula.
Direct Waveform Inversion by Iterative Inverse Propagation
Schlottmann, R B
2009-01-01
Seismic waves are the most sensitive probe of the Earth's interior we have. With the dense data sets available in exploration, images of subsurface structures can be obtained through processes such as migration. Unfortunately, relating these surface recordings to actual Earth properties is non-trivial. Tomographic techniques use only a small amount of the information contained in the full seismogram and result in relatively low resolution images. Other methods use a larger amount of the seismogram but are based on either linearization of the problem, an expensive statistical search over a limited range of models, or both. We present the development of a new approach to full waveform inversion, i.e., inversion which uses the complete seismogram. This new method, which falls under the general category of inverse scattering, is based on a highly non-linear Fredholm integral equation relating the Earth structure to itself and to the recorded seismograms. An iterative solution to this equation is proposed. The res...
Facies Constrained Elastic Full Waveform Inversion
Zhang, Z.
2017-05-26
Current efforts to utilize full waveform inversion (FWI) as a tool beyond acoustic imaging applications, for example for reservoir analysis, face inherent limitations on resolution and also on the potential trade-off between elastic model parameters. Adding rock physics constraints does help to mitigate these issues. However, current approaches to add such constraints are based on averaged type rock physics regularization terms. Since the true earth model consists of different facies, averaging over those facies naturally leads to smoothed models. To overcome this, we propose a novel way to utilize facies based constraints in elastic FWI. A so-called confidence map is calculated and updated at each iteration of the inversion using both the inverted models and the prior information. The numerical example shows that the proposed method can reduce the cross-talks and also can improve the resolution of inverted elastic properties.
Waveform Synthesizer For Imaging And Ranging Applications
DUDLEY, PETER A.; [et al
2004-11-30
Frequency dependent corrections are provided for quadrature imbalance. An operational procedure filters imbalance effects without prior calibration or equalization. Waveform generation can be adjusted/corrected in a synthetic aperture radar system (SAR), where a rolling phase shift is applied to the SAR's QDWS signal where it is demodulated in a receiver; unwanted energies, such as imbalance energy, are separated from a desired signal in Doppler; the separated energy is filtered from the receiver leaving the desired signal; and the separated energy in the receiver is measured to determine the degree of imbalance that is represented by it. Calibration methods can also be implemented into synthesis. The degree of quadrature imbalance can be used to determine calibration values that can then be provided as compensation for frequency dependent errors in components, such as the QDWS and SSB mixer, affecting quadrature signal quality.
Integrating Biosystem Models Using Waveform Relaxation
Directory of Open Access Journals (Sweden)
Stephen Baigent
2008-12-01
Full Text Available Modelling in systems biology often involves the integration of component models into larger composite models. How to do this systematically and efficiently is a significant challenge: coupling of components can be unidirectional or bidirectional, and of variable strengths. We adapt the waveform relaxation (WR method for parallel computation of ODEs as a general methodology for computing systems of linked submodels. Four test cases are presented: (i a cascade of unidirectionally and bidirectionally coupled harmonic oscillators, (ii deterministic and stochastic simulations of calcium oscillations, (iii single cell calcium oscillations showing complex behaviour such as periodic and chaotic bursting, and (iv a multicellular calcium model for a cell plate of hepatocytes. We conclude that WR provides a flexible means to deal with multitime-scale computation and model heterogeneity. Global solutions over time can be captured independently of the solution techniques for the individual components, which may be distributed in different computing environments.
Synthetic tsunami waveform catalogs with kinematic constraints
Baptista, Maria Ana; Miranda, Jorge Miguel; Matias, Luis; Omira, Rachid
2017-07-01
In this study we present a comprehensive methodology to produce a synthetic tsunami waveform catalogue in the northeast Atlantic, east of the Azores islands. The method uses a synthetic earthquake catalogue compatible with plate kinematic constraints of the area. We use it to assess the tsunami hazard from the transcurrent boundary located between Iberia and the Azores, whose western part is known as the Gloria Fault. This study focuses only on earthquake-generated tsunamis. Moreover, we assume that the time and space distribution of the seismic events is known. To do this, we compute a synthetic earthquake catalogue including all fault parameters needed to characterize the seafloor deformation covering the time span of 20 000 years, which we consider long enough to ensure the representability of earthquake generation on this segment of the plate boundary. The computed time and space rupture distributions are made compatible with global kinematic plate models. We use the tsunami empirical Green's functions to efficiently compute the synthetic tsunami waveforms for the dataset of coastal locations, thus providing the basis for tsunami impact characterization. We present the results in the form of offshore wave heights for all coastal points in the dataset. Our results focus on the northeast Atlantic basin, showing that earthquake-induced tsunamis in the transcurrent segment of the Azores-Gibraltar plate boundary pose a minor threat to coastal areas north of Portugal and beyond the Strait of Gibraltar. However, in Morocco, the Azores, and the Madeira islands, we can expect wave heights between 0.6 and 0.8 m, leading to precautionary evacuation of coastal areas. The advantages of the method are its easy application to other regions and the low computation effort needed.
Zhang, Dong; Zhang, Xiaolei; Yuan, Jianzheng; Ke, Rui; Yang, Yan; Hu, Ying
2016-01-01
The Laplace-Fourier domain full waveform inversion can simultaneously restore both the long and intermediate short-wavelength information of velocity models because of its unique characteristics of complex frequencies. This approach solves the problem of conventional frequency-domain waveform inversion in which the inversion result is excessively dependent on the initial model due to the lack of low frequency information in seismic data. Nevertheless, the Laplace-Fourier domain waveform inversion requires substantial computational resources and long computation time because the inversion must be implemented on different combinations of multiple damping constants and multiple frequencies, namely, the complex frequencies, which are much more numerous than the Fourier frequencies. However, if the entire target model is computed on every complex frequency for the Laplace-Fourier domain inversion (as in the conventional frequency domain inversion), excessively redundant computation will occur. In the Laplace-Fourier domain waveform inversion, the maximum depth penetrated by the seismic wave decreases greatly due to the application of exponential damping to the seismic record, especially with use of a larger damping constant. Thus, the depth of the area effectively inverted on a complex frequency tends to be much less than the model depth. In this paper, we propose a method for quantitative estimation of the effective inversion depth in the Laplace-Fourier domain inversion based on the principle of seismic wave propagation and mathematical analysis. According to the estimated effective inversion depth, we can invert and update only the model area above the effective depth for every complex frequency without loss of accuracy in the final inversion result. Thus, redundant computation is eliminated, and the efficiency of the Laplace-Fourier domain waveform inversion can be improved. The proposed method was tested in numerical experiments. The experimental results show that
Design of a 9-loop quasi-exponential waveform generator.
Banerjee, Partha; Shukla, Rohit; Shyam, Anurag
2015-12-01
We know in an under-damped L-C-R series circuit, current follows a damped sinusoidal waveform. But if a number of sinusoidal waveforms of decreasing time period, generated in an L-C-R circuit, be combined in first quarter cycle of time period, then a quasi-exponential nature of output current waveform can be achieved. In an L-C-R series circuit, quasi-exponential current waveform shows a rising current derivative and thereby finds many applications in pulsed power. Here, we have described design and experiment details of a 9-loop quasi-exponential waveform generator. In that, design details of magnetic switches have also been described. In the experiment, output current of 26 kA has been achieved. It has been shown that how well the experimentally obtained output current profile matches with the numerically computed output.
Métivier, L.; Brossier, R.; Mérigot, Q.; Oudet, E.; Virieux, J.
2016-04-01
Full waveform inversion using the conventional L2 distance to measure the misfit between seismograms is known to suffer from cycle skipping. An alternative strategy is proposed in this study, based on a measure of the misfit computed with an optimal transport distance. This measure allows to account for the lateral coherency of events within the seismograms, instead of considering each seismic trace independently, as is done generally in full waveform inversion. The computation of this optimal transport distance relies on a particular mathematical formulation allowing for the non-conservation of the total energy between seismograms. The numerical solution of the optimal transport problem is performed using proximal splitting techniques. Three synthetic case studies are investigated using this strategy: the Marmousi 2 model, the BP 2004 salt model, and the Chevron 2014 benchmark data. The results emphasize interesting properties of the optimal transport distance. The associated misfit function is less prone to cycle skipping. A workflow is designed to reconstruct accurately the salt structures in the BP 2004 model, starting from an initial model containing no information about these structures. A high-resolution P-wave velocity estimation is built from the Chevron 2014 benchmark data, following a frequency continuation strategy. This estimation explains accurately the data. Using the same workflow, full waveform inversion based on the L2 distance converges towards a local minimum. These results yield encouraging perspectives regarding the use of the optimal transport distance for full waveform inversion: the sensitivity to the accuracy of the initial model is reduced, the reconstruction of complex salt structure is made possible, the method is robust to noise, and the interpretation of seismic data dominated by reflections is enhanced.
Monitoring of applied stress in concrete using ultrasonic full-waveform comparison techniques
Hafiz, Ali; Schumacher, Thomas
2017-04-01
Ultrasonic testing is a non-destructive approach commonly used to evaluate concrete structures. A challenge with concrete is that it is heterogeneous, which causes multiple wave scattering resulting in longer and more complex wave paths. The recorded ultrasonic waveform can be divided into two portions: the coherent (or early) and the diffuse (or Coda) portion. While conventional methods only use the coherent portion, e.g. the first wave arrival to determine the wave velocity, we are interested in the entire waveform, i.e. until the wave amplitude is completely dampened out. The objective of this study was to determine what portion of the signal is most sensitive to applied stress and the associated formation and propagation of cracks. For this purpose, the squared Pearson correlation coefficient, R2 was used, which provides a measure for the strength of the linear relationship (or similarity) between a reference waveform under no stress and a waveform recorded at a certain level of applied stress. Additionally, a signal energy-based filter was developed and used to detect signals that captured acoustic emissions generated during the loading process. The experimental work for this study consisted of an active monitoring approach by employing a pitch-catch setup with two ultrasonic transducers, one transmitter and one receiver, that were attached to (nullset) 152 x 305 mm concrete cylinder specimens, which were loaded monotonically to failure. Our results show that applied stress correlates well with the R2 with remarkable sensitivity to small applied stresses. Also, the relationship between R2 and applied stress is linear for an applied stress that is less than 50% of the ultimate stress.
On the accuracy and precision of numerical waveforms: Effect of waveform extraction methodology
Chu, Tony; Kumar, Prayush; Pfeiffer, Harald P; Boyle, Michael; Hemberger, Daniel A; Kidder, Lawrence E; Scheel, Mark A; Szilagyi, Bela
2015-01-01
We present a new set of 95 numerical relativity simulations of non-precessing binary black holes (BBHs). The simulations sample comprehensively both black-hole spins up to spin magnitude of 0.9, and cover mass ratios 1 to 3. The simulations cover on average 24 inspiral orbits, plus merger and ringdown, with low initial orbital eccentricities $e<10^{-4}$. A subset of the simulations extends the coverage of non-spinning BBHs up to mass ratio $q=10$. Gravitational waveforms at asymptotic infinity are computed with two independent techniques, extrapolation, and Cauchy characteristic extraction. An error analysis based on noise-weighted inner products is performed. We find that numerical truncation error, error due to gravitational wave extraction, and errors due to the finite length of the numerical waveforms are of similar magnitude, with gravitational wave extraction errors somewhat dominating at noise-weighted mismatches of $\\sim 3\\times 10^{-4}$. This set of waveforms will serve to validate and improve ali...
Quantification of aortic regurgitation by magnetic resonance velocity mapping
DEFF Research Database (Denmark)
Søndergaard, Lise; Lindvig, K; Hildebrandt, P
1993-01-01
The use of magnetic resonance (MR) velocity mapping in the quantification of aortic valvular blood flow was examined in 10 patients with angiographically verified aortic regurgitation. MR velocity mapping succeeded in identifying and quantifying the regurgitation in all patients, and the regurgit......The use of magnetic resonance (MR) velocity mapping in the quantification of aortic valvular blood flow was examined in 10 patients with angiographically verified aortic regurgitation. MR velocity mapping succeeded in identifying and quantifying the regurgitation in all patients......, and the regurgitant volume determined with MR velocity mapping agreed well with the grade obtained by aortic root angiography (p stroke volume (ml) measured by MR velocity mapping...
Diomede, P.; Bruneau, B.; Longo, S.; Johnson, E.; Booth, J.-P.
2017-07-01
A comprehensive hybrid model of a hydrogen capacitively coupled plasma, including a detailed description of the molecular vibrational kinetics, has been applied to the study of the effect of tailored voltage waveforms (TVWs) on the production kinetics and transport of negative ions in these discharges. Two kinds of TVWs are considered, valleys-to-peaks and saw-tooth, with amplitude and slope asymmetry respectively. By tailoring the voltage waveform only, it is possible to exert substantial control over the peak density and position of negative ions inside the discharge volume. This control is particularly effective for saw-tooth waveforms. Insight into the mechanisms allowing this control is provided by an analysis of the model results. This reveals the roles of the vibrational distribution function and of the electron energy distribution and their correlations, as well as changes in the negative ion transport in the electric field when using different TVWs. Considering the chemical reactivity of H- ions, the possibility of a purely electrical control of the negative ion cloud in a reactor operating with a feedstock gas diluted by hydrogen may find interesting applications. This is the first study of vibrational kinetics in the context of TVWs in molecular gases.
Verifying Slab-Induced Waveform Effects beneath Central Taiwan by Three-dimensional Simulations
Huang, Yu-Ting; Zaho, Li; Chen, Po-fei; Chiao, Ling-Yun
2013-04-01
The Taiwan Island is a result of the convergence between the Eurasia and Philippine Sea plates. To what extent the east-dipping Eurasian slab extends northward beneath central Taiwan and the geometry of the slab east of Taiwan are important issues for understanding the geodynamics of the regional tectonics. However, structures in the upper mantle beneath Taiwan are poorly constrained in regional as well as global tomography models. The TAiwan Integrated GEodynamic Research (TAIGER) project deployed several well designed temporary arrays, and the broadband teleseismic data from stations along a north-south transect across Taiwan has been utilized to examine patterns of the first P waveform variations. The P waveforms observed in central Taiwan are generally characterized by earlier arrival times, reduced amplitudes, and broadened pulse widths relative to those observed in northern Taiwan, indicating the existence of a deep slab beneath central Taiwan. In this study, to verify those observations, we invoke the spectral-element method (SEM) to calculate the synthetic seismogram for the same dataset. Results for the 1D velocity model show that in central Taiwan the observed P waveforms have earlier arrival times, reduced amplitudes, and broadened pulse widths relative to the P waves in 1D model. We then invoke a hybrid model in which we use a regional 3D model as the background and introduce two slabs - an east-dipping slab south of Taiwan and a north-northwest-dipping slab offshore northeast Taiwan - with a suite of different slab configurations to determine the best velocity model that fits the previous observations.
Bobrov, Dmitry; Rozhkov, Mikhail
2013-01-01
Waveform cross correlation is an efficient tool for detection and characterization of seismic signals. The efficiency critically depends on the availability of master events. For the purposes of the Comprehensive Nuclear-Test-Ban Treaty, cross correlation can globally reduce the threshold monitoring by 0.3 to 0.4 magnitude units. In seismically active regions, the optimal choice of master events is straightforward. There are two approaches to populate the global grid in aseismic areas: the replication of real masters and synthetic seismograms calculated for seismic arrays of the International Monitoring System. Synthetic templates depend on the accuracy of shape and amplitude predictions controlled by focal depth and mechanism, source function, velocity structure and attenuation along the master/station path. As in Part I, we test three focal mechanisms (explosion, thrust fault, and actual Harvard CMT solution for one of the April 11, 2012 Sumatera aftershocks) and two velocity structures (ak135 and CRUST 2.0...
3D elastic-orthorhombic anisotropic full-waveform inversion: Application to field OBC data
Oh, Ju-Won
2016-09-06
For the purpose of extracting higher resolution information from a 3D field data set, we apply a 3D elastic orthorhombic (ORT) anisotropic full waveform inversion (FWI) to hopefully better represent the physics of the Earth. We utilize what we consider as the optimal parameterization for surface acquired seismic data over a potentially orthorhombic media. This parameterization admits the possibility of incorporating a hierarchical implementation moving from higher anisotropy symmetry to lower ones. From the analysis of the radiation pattern of this new parameterization, we focus the inversion of the 3D data on the parameters that may have imprint on the data with minimal tradeoff, and as a result we invert for the horizontal P-wave velocity model, an ε1 model, its orthorhombic deviation, and the shear wave velocity. The inverted higher resolution models provide reasonable insights of the medium.
Study on S wave velocity structure beneath part stations in Shanxi Province
Institute of Scientific and Technical Information of China (English)
张学民; 束沛镒; 刁桂苓
2003-01-01
Based on S wave records of deep teleseisms on Digital Seismic Network of Shanxi Province, shear wave velocity structures beneath 6 stations were obtained by means of S wave waveform fitting. The result shows that the crust is thick in the studied region, reaching 40 km in thickness under 4 stations. The crust all alternatives high velocity layer with low velocity one. There appear varied velocity structures for different stations, and the stations around the same tectonic region exhibit similar structure characteristics. Combined with dominant depth distribution of many small-moderate earthquakes, the correlation between seismogenic layers and crustal structures of high and low velocity layers has been discussed.
Simulation of Full-Waveform Laser Altimeter Echowaveform
Lv, Y.; Tong, X. H.; Liu, S. J.; Xie, H.; Luan, K. F.; Liu, J.
2016-06-01
Change of globe surface height is an important factor to study human living environment. The Geoscience Laser Altimeter System (GLAS) on ICESat is the first laser-ranging instrument for continuous global observations of the Earth. In order to have a comprehensive understanding of full-waveform laser altimeter, this study simulated the operating mode of ICESat and modeled different terrains' (platform terrain, slope terrain, and artificial terrain) echo waveforms based on the radar equation. By changing the characteristics of the system and the targets, numerical echo waveforms can be achieved. Hereafter, we mainly discussed the factors affecting the amplitude and size (width) of the echoes. The experimental results implied that the slope of the terrain, backscattering coefficient and reflectivity, target height, target position in the footprint and area reacted with the pulse all can affect the energy distribution of the echo waveform and the receiving time. Finally, Gaussian decomposition is utilized to decompose the echo waveform. From the experiment, it can be noted that the factors which can affect the echo waveform and by this way we can know more about large footprint full-waveform satellite laser altimeter.
Design and implementation of a hospital wide waveform capture system.
Blum, James M; Joo, Heyon; Lee, Henry; Saeed, Mohammed
2015-06-01
The use of telemetry and invasive monitoring is exceptionally common in modern healthcare. To date the vast majority of this information is not stored for more than a brief duration on the local monitor. This prohibits extensive investigation into waveform data. We describe a system to collect such data in a quaternary care facility. Using standardized "packet sniffing" technology along with routine manual documentation, we reverse engineered the Unity network protocol used to transmit waveform data across the University of Michigan mission critical monitor network. Data was subsequently captured using a proprietary piece of software writing waveform data to local disks. Nightly, this data is post-processed using data from the admit-discharge-transfer system into individual patient waveforms for the day regardless of location. Over a 10 month period, over 2,785 individual patients had a total of 65,112 waveforms captured 15,978 from the operating rooms and 49,134 from the ICUs. The average OR case collected over 11 MB of data. The average single day data collection consisted of 8.6 GB of data. Entire hospital waveform data collection is possible using internally developed software enabling research on waveform data with minimal technical burden. Further research is required to determine the long-term storage and processing of such data.
Generation of correlated finite alphabet waveforms using gaussian random variables
Jardak, Seifallah
2014-09-01
Correlated waveforms have a number of applications in different fields, such as radar and communication. It is very easy to generate correlated waveforms using infinite alphabets, but for some of the applications, it is very challenging to use them in practice. Moreover, to generate infinite alphabet constant envelope correlated waveforms, the available research uses iterative algorithms, which are computationally very expensive. In this work, we propose simple novel methods to generate correlated waveforms using finite alphabet constant and non-constant-envelope symbols. To generate finite alphabet waveforms, the proposed method map the Gaussian random variables onto the phase-shift-keying, pulse-amplitude, and quadrature-amplitude modulation schemes. For such mapping, the probability-density-function of Gaussian random variables is divided into M regions, where M is the number of alphabets in the corresponding modulation scheme. By exploiting the mapping function, the relationship between the cross-correlation of Gaussian and finite alphabet symbols is derived. To generate equiprobable symbols, the area of each region is kept same. If the requirement is to have each symbol with its own unique probability, the proposed scheme allows us that as well. Although, the proposed scheme is general, the main focus of this paper is to generate finite alphabet waveforms for multiple-input multiple-output radar, where correlated waveforms are used to achieve desired beampatterns. © 2014 IEEE.
Micro-seismic Imaging Using a Source Independent Waveform Inversion Method
Wang, Hanchen
2016-04-18
Micro-seismology is attracting more and more attention in the exploration seismology community. The main goal in micro-seismic imaging is to find the source location and the ignition time in order to track the fracture expansion, which will help engineers monitor the reservoirs. Conventional imaging methods work fine in this field but there are many limitations such as manual picking, incorrect migration velocity and low signal to noise ratio (S/N). In traditional surface survey imaging, full waveform inversion (FWI) is widely used. The FWI method updates the velocity model by minimizing the misfit between the observed data and the predicted data. Using FWI to locate and image microseismic events allows for an automatic process (free of picking) that utilizes the full wavefield. Use the FWI technique, and overcomes the difficulties of manual pickings and incorrect velocity model for migration. However, the technique of waveform inversion of micro-seismic events faces its own problems. There is significant nonlinearity due to the unknown source location (space) and function (time). We have developed a source independent FWI of micro-seismic events to simultaneously invert for the source image, source function and velocity model. It is based on convolving reference traces with the observed and modeled data to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. To examine the accuracy of the inverted source image and velocity model the extended image for source wavelet in z-axis is extracted. Also the angle gather is calculated to check the applicability of the migration velocity. By inverting for the source image, source wavelet and the velocity model simultaneously, the proposed method produces good estimates of the source location, ignition time and the background velocity in the synthetic experiments with both parts of the Marmousi and the SEG
Sgattoni, G.; Gudmundsson, Ó.; Einarsson, P.; Lucchi, F.
2016-09-01
Relative location methods are commonly used to precisely locate earthquake clusters consisting of similar waveforms. Repeating waveforms are often recorded at volcanoes, where, however, the crust structure is expected to contain strong heterogeneities and therefore the 1D velocity model assumption that is made in most location strategies is not likely to describe reality. A peculiar cluster of repeating low-frequency seismic events was recorded on the south flank of Katla volcano (Iceland) from 2011. As the hypocentres are located at the rim of the glacier, the seismicity may be due to volcanic or glacial processes. Information on the size and shape of the cluster may help constraining the source process. The extreme similarity of waveforms points to a very small spatial distribution of hypocentres. In order to extract meaningful information about size and shape of the cluster, we minimize uncertainty by optimizing the cross-correlation measurements and relative-location process. With a synthetic test we determine the best parameters for differential-time measurements and estimate their uncertainties, specifically for each waveform. We design a location strategy to work without a predefined velocity model, by formulating and inverting the problem to seek changes in both location and slowness, thus accounting for azimuth, take-off angles and velocity deviations from a 1D model. We solve the inversion explicitly in order to propagate data errors through the calculation. With this approach we are able to resolve a source volume few tens of meters wide in horizontal directions and around 100 meters in depth. There is no suggestion that the hypocentres lie on a single fault plane and the depth distribution indicates that their source is unlikely to be related to glacial processes as the ice thickness is not expected to exceed few tens of meters in the source area. Our method is designed for a very small source region, allowing us to assume a constant slowness for the
Sgattoni, G.; Gudmundsson, Ó.; Einarsson, P.; Lucchi, F.
2016-11-01
Relative location methods are commonly used to precisely locate earthquake clusters consisting of similar waveforms. Repeating waveforms are often recorded at volcanoes, where, however, the crust structure is expected to contain strong heterogeneities and therefore the 1-D velocity model assumption that is made in most location strategies is not likely to describe reality. A peculiar cluster of repeating low-frequency seismic events was recorded on the south flank of Katla volcano (Iceland) from 2011. As the hypocentres are located at the rim of the glacier, the seismicity may be due to volcanic or glacial processes. Information on the size and shape of the cluster may help constraining the source process. The extreme similarity of waveforms points to a very small spatial distribution of hypocentres. In order to extract meaningful information about size and shape of the cluster, we minimize uncertainty by optimizing the cross-correlation measurements and relative-location process. With a synthetic test we determine the best parameters for differential-time measurements and estimate their uncertainties, specifically for each waveform. We design a location strategy to work without a pre-defined velocity model, by formulating and inverting the problem to seek changes in both location and slowness, thus accounting for azimuth, take-off angles and velocity deviations from a 1-D model. We solve the inversion explicitly in order to propagate data errors through the calculation. With this approach we are able to resolve a source volume few tens of metres wide in horizontal directions and around 100 metres in depth. There is no suggestion that the hypocentres lie on a single fault plane and the depth distribution indicates that their source is unlikely to be related to glacial processes as the ice thickness is not expected to exceed few tens of metres in the source area. Our method is designed for a very small source region, allowing us to assume a constant slowness for the
From tomography to full-waveform inversion with a single objective function
Alkhalifah, Tariq Ali
2014-02-17
In full-waveform inversion (FWI), a gradient-based update of the velocity model requires an initial velocity that produces synthetic data that are within a half-cycle, everywhere, from the field data. Such initial velocity models are usually extracted from migration velocity analysis or traveltime tomography, among other means, and are not guaranteed to adhere to the FWI requirements for an initial velocity model. As such, we evaluated an objective function based on the misfit in the instantaneous traveltime between the observed and modeled data. This phase-based attribute of the wavefield, along with its phase unwrapping characteristics, provided a frequency-dependent traveltime function that was easy to use and quantify, especially compared to conventional phase representation. With a strong Laplace damping of the modeled, potentially low-frequency, data along the time axis, this attribute admitted a first-arrival traveltime that could be compared with picked ones from the observed data, such as in wave equation tomography (WET). As we relax the damping on the synthetic and observed data, the objective function measures the misfit in the phase, however unwrapped. It, thus, provided a single objective function for a natural transition from WET to FWI. A Marmousi example demonstrated the effectiveness of the approach.
Directory of Open Access Journals (Sweden)
Chang Kyu Sung
2016-01-01
Full Text Available Purpose: The goal of this study was to evaluate the effect of vascular compliance, resistance, and pulse rate on the resistive index (RI by using an electrical circuit model to simulate renal blood flow. Methods: In order to analyze the renal arterial Doppler waveform, we modeled the renal blood-flow circuit with an equivalent simple electrical circuit containing resistance, inductance, and capacitance. The relationships among the impedance, resistance, and compliance of the circuit were derived from well-known equations, including Kirchhoff’s current law for alternating current circuits. Simulated velocity-time profiles for pulsatile flow were generated using Mathematica (Wolfram Research and the influence of resistance, compliance, and pulse rate on waveforms and the RI was evaluated. Results: Resistance and compliance were found to alter the waveforms independently. The impedance of the circuit increased with increasing proximal compliance, proximal resistance, and distal resistance. The impedance decreased with increasing distal compliance. The RI of the circuit decreased with increasing proximal compliance and resistance. The RI increased with increasing distal compliance and resistance. No positive correlation between impedance and the RI was found. Pulse rate was found to be an extrinsic factor that also influenced the RI. Conclusion: This simulation study using an electrical circuit model led to a better understanding of the renal arterial Doppler waveform and the RI, which may be useful for interpreting Doppler findings in various clinical settings.
Energy Technology Data Exchange (ETDEWEB)
Sung, Chang Kyu [Dept. of Radiology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul (Korea, Republic of); Han, Bong Soo [Dept. of Radiological Science, College of Health Science, Yonsei University, Wonju (Korea, Republic of); Kim, Seung Hyup [Dept. of Radiology, Institute of Radiation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of)
2016-01-15
The goal of this study was to evaluate the effect of vascular compliance, resistance, and pulse rate on the resistive index (RI) by using an electrical circuit model to simulate renal blood flow. In order to analyze the renal arterial Doppler waveform, we modeled the renal blood-flow circuit with an equivalent simple electrical circuit containing resistance, inductance, and capacitance. The relationships among the impedance, resistance, and compliance of the circuit were derived from well-known equations, including Kirchhoff’s current law for alternating current circuits. Simulated velocity-time profiles for pulsatile flow were generated using Mathematica (Wolfram Research) and the influence of resistance, compliance, and pulse rate on waveforms and the RI was evaluated. Resistance and compliance were found to alter the waveforms independently. The impedance of the circuit increased with increasing proximal compliance, proximal resistance, and distal resistance. The impedance decreased with increasing distal compliance. The RI of the circuit decreased with increasing proximal compliance and resistance. The RI increased with increasing distal compliance and resistance. No positive correlation between impedance and the RI was found. Pulse rate was found to be an extrinsic factor that also influenced the RI. This simulation study using an electrical circuit model led to a better understanding of the renal arterial Doppler waveform and the RI, which may be useful for interpreting Doppler findings in various clinical settings.
Investigation of hopped frequency waveforms for range and velocity measurements of radar targets
CSIR Research Space (South Africa)
Kathree, U
2015-10-01
Full Text Available In the field of radar, High Range Resolution (HRR) profiles are often used to improve target tracking accuracy in range and to allow the radar system to produce an image of an object using techniques such as inverse synthetic aperture radar (ISAR...
Sirico, Angelo; Rizzo, Giuseppe; Maruotti, Giuseppe Maria; Aiello, Elisa; Morlando, Maddalena; Arduini, Domenico; Martinelli, Pasquale
2016-10-01
We aimed to establish whether macrosomic fetuses in pregnancies complicated by gestational diabetes (GDM) show different Pulsatility Index (PI) values in umbilical artery (UA) than in non-macrosomic fetuses. We considered 106 pregnant women with GDM. Doppler recordings of UA-PI were performed at 34-41 weeks and related to neonatal birthweight. Pregnancies were divided in two groups according to birthweight, macrosomic group (>4000 g) and controls (90th centile and 4000 g than in controls (PI = 0.69; 95% CI 0.64-0.74 versus PI = 0.87; 95% CI 0.84-0.90, p 90th centile than in controls (PI = 0.79; 95% CI 0.74-0.84 versus PI = 0.87; 95% CI 0.83-0.90; t = 2.653; p = 0.01). Linear regression analysis revealed a significant correlation between UA-PI and neonatal birthweight and between UA-PI and neonatal birthweight centile. Macrosomic fetuses of pregnancies complicated by GDM show lower values of UA-PI compared with controls. Despite UA-PI results, a variable related to macrosomia its role in the management of these pregnancies remains to be established.
Institute of Scientific and Technical Information of China (English)
JIANG Nan; LIU Wei; LIU JianHua; TIAN Yan
2008-01-01
The time sequence signals of instantaneous longitudinal and normal velocity components at different vertical locations in the turbulent boundary layer over a smooth flat plate have been finely measured by constant temperature anemometry of model IFA-300 and X-shaped hot-wire sensor probe in a wind tunnel. The longitudinal and normal velocity components have been decomposed into multi-scales by wavelet transform. The upward eject and downward sweep motions in a burst process of coherent structure have been detected by the maximum energy criterion of identifying burst event in wall turbulence through wavelet analysis. The relationships of phase-averaged waveforms among longitudinal velocity component, normal velocity component and Reynolds stress component have been studied through a correlation function method. The dynamics course of coherent structures and their effects on statistical characteristics of turbulent flows are analyzed.
Zhang, Fengjiao; Juhlin, Christopher
2014-02-01
The Swedish Nuclear Fuel and Waste Management Company (SKB) has been carrying out extensive studies at the planned repository for spent nuclear fuel at the Forsmark site in the eastern part of central Sweden since 2002. Identification of subhorizontal to gently dipping seismic reflections is especially important since these may represent transport routes for radionuclides. Studies have shown that such reflections can be generated by water filled fracture zones that have a lower velocity than the surrounding bedrock. Lithological changes, that is, mafic sills, may also be responsible for reflections in some cases. At the Forsmark site, it is difficult to distinguish fracture zones from mafic sills in the standard reflection seismic processed sections. However, since mafic sills usually have a positive velocity contrast with the background velocity field compared to fractures zones that have a negative one, the two possibilities could be differentiated if we could reconstruct the underground velocity field. Seismic full waveform inversion has the potential to perform this reconstruction, allowing us to discriminate between fractures zones and mafic sills. In this study, we apply a 2-D waveform inversion code on crooked line data sets acquired at the Forsmark site. This implies we are dealing with a 3-D geometry. We handle this problem by applying 3-D to 2-D coordinate projections. First, we perform a synthetic benchmark test with a similar geometry to that of the projected real data. We test both amplitude and phase inversion and phase only inversion on the synthetic data. The results show that the phase only inversion has fewer artefacts and is more stable. After successful application on the synthetic data, we apply the phase only waveform inversion on the real data. The resulting velocity fields show more details compared with the starting model based on first arrival traveltime tomography. Time domain synthetic data sets generated from the final velocity fields
Adaptive Prony method for waveform distortion detection in power systems
Energy Technology Data Exchange (ETDEWEB)
Bracale, A.; Carpinelli, G. [Electrical Engineering Department, University of Napoli, Via Claudio 21, 80125 Napoli (Italy); Caramia, P. [Industrial Engineering Department, University of Cassino (Italy)
2007-06-15
IEC Standards characterize the waveform distortions in power systems with the amplitudes of harmonic and interharmonic groupings (subgroups and groups) calculated by using the waveform spectral components obtained with a 5 Hz frequency resolution DFT. In some cases the power system waveforms are characterized by means of spectral signal components that the DFT with 5 Hz frequency resolution is unable to capture with sufficient accuracy. In this paper a new Prony method is proposed to calculate the harmonic and interharmonic subgroups. This method is based on an adaptive technique that acts with the aim of minimizing the mean square relative error of signal estimation. (author)
Compressive full-waveform LIDAR with low-cost sensor
Yang, Weiyi; Ke, Jun
2016-10-01
Full-waveform LiDAR is a method that digitizes the complete waveform of backscattered pulses to obtain range information of multi-targets. To avoid expensive sensors in conventional full-waveform LiDAR system, a new system based on compressive sensing method is presented in this paper. The non-coherent continuous-wave laser is modulated by electro-optical modulator with pseudo-random sequences. A low-bandwidth detector and a low-bandwidth analog-digital converter are used to acquire the returned signal. OMP algorithm is employed to reconstruct the high resolution range information.
Fast Prediction and Evaluation of Gravitational Waveforms Using Surrogate Models
Directory of Open Access Journals (Sweden)
Scott E. Field
2014-07-01
Full Text Available We propose a solution to the problem of quickly and accurately predicting gravitational waveforms within any given physical model. The method is relevant for both real-time applications and more traditional scenarios where the generation of waveforms using standard methods can be prohibitively expensive. Our approach is based on three offline steps resulting in an accurate reduced order model in both parameter and physical dimensions that can be used as a surrogate for the true or fiducial waveform family. First, a set of m parameter values is determined using a greedy algorithm from which a reduced basis representation is constructed. Second, these m parameters induce the selection of m time values for interpolating a waveform time series using an empirical interpolant that is built for the fiducial waveform family. Third, a fit in the parameter dimension is performed for the waveform’s value at each of these m times. The cost of predicting L waveform time samples for a generic parameter choice is of order O(mL+mc_{fit} online operations, where c_{fit} denotes the fitting function operation count and, typically, m≪L. The result is a compact, computationally efficient, and accurate surrogate model that retains the original physics of the fiducial waveform family while also being fast to evaluate. We generate accurate surrogate models for effective-one-body waveforms of nonspinning binary black hole coalescences with durations as long as 10^{5}M, mass ratios from 1 to 10, and for multiple spherical harmonic modes. We find that these surrogates are more than 3 orders of magnitude faster to evaluate as compared to the cost of generating effective-one-body waveforms in standard ways. Surrogate model building for other waveform families and models follows the same steps and has the same low computational online scaling cost. For expensive numerical simulations of binary black hole coalescences, we thus anticipate extremely large speedups in
General Dynamic (GD) Launch Waveform On-Orbit Performance Report
Briones, Janette C.; Shalkhauser, Mary Jo
2014-01-01
The purpose of this report is to present the results from the GD SDR on-orbit performance testing using the launch waveform over TDRSS. The tests include the evaluation of well-tested waveform modes, the operation of RF links that are expected to have high margins, the verification of forward return link operation (including full duplex), the verification of non-coherent operational models, and the verification of radio at-launch operational frequencies. This report also outlines the launch waveform tests conducted and comparisons to the results obtained from ground testing.
Velocity anticipation in the optimal velocity model
Institute of Scientific and Technical Information of China (English)
DONG Li-yun; WENG Xu-dan; LI Qing-ding
2009-01-01
In this paper,the velocity anticipation in the optimal velocity model (OVM) is investigated.The driver adjusts the velocity of his vehicle by the desired headway,which depends on both instantaneous headway and relative velocity.The effect of relative velocity is measured by a sensitivity function.A specific form of the sensitivity function is supposed and the involved parameters are determined by the both numerical simulation and empirical data.It is shown that inclusion of velocity anticipation enhances the stability of traffic flow.Numerical simulations show a good agreement with empirical data.This model provides a better description of real traffic,including the acceleration process from standing states and the deceleration process approaching a stopped car.
Full Waveform Inversion of Solar Interior Flows
Hanasoge, Shravan M
2014-01-01
The inference of flows of material in the interior of the Sun is a subject of major interest in helioseismology. Here we apply techniques of Full Waveform Inversion (FWI) to synthetic data to test flow inversions. In this idealized setup, we do not model seismic realization noise, training the focus entirely on the problem of whether a chosen supergranulation flow model can be seismically recovered. We define the misfit functional as a sum of L_2 norm deviations in travel times between prediction and observation, as measured using short-distance f and p_1 filtered and large-distance unfiltered $p$ modes. FWI allows for the introduction of measurements of choice and iteratively improving the background model, while monitoring the evolution of the misfit in all desired categories. Although the misfit is seen to uniformly reduce in all categories, convergence to the true model is very slow, possibly because it is trapped in a local minimum. The primary source of error is inaccurate depth localization, which, owi...
Tsunami waveform inversion by adjoint methods
Pires, Carlos; Miranda, Pedro M. A.
2001-09-01
An adjoint method for tsunami waveform inversion is proposed, as an alternative to the technique based on Green's functions of the linear long wave model. The method has the advantage of being able to use the nonlinear shallow water equations, or other appropriate equation sets, and to optimize an initial state given as a linear or nonlinear function of any set of free parameters. This last facility is used to perform explicit optimization of the focal fault parameters, characterizing the initial sea surface displacement of tsunamigenic earthquakes. The proposed methodology is validated with experiments using synthetic data, showing the possibility of recovering all relevant details of a tsunami source from tide gauge observations, providing that the adjoint method is constrained in an appropriate manner. It is found, as in other methods, that the inversion skill of tsunami sources increases with the azimuthal and temporal coverage of assimilated tide gauge stations; furthermore, it is shown that the eigenvalue analysis of the Hessian matrix of the cost function provides a consistent and useful methodology to choose the subset of independent parameters that can be inverted with a given dataset of observations and to evaluate the error of the inversion process. The method is also applied to real tide gauge series, from the tsunami of the February 28, 1969, Gorringe Bank earthquake, suggesting some reasonable changes to the assumed focal parameters of that event. It is suggested that the method proposed may be able to deal with transient tsunami sources such as those generated by submarine landslides.
Waveform Analysis of AE in Composites
Prosser, William H.
1998-01-01
Advanced, waveform based acoustic emission (AE) techniques have been developed to evaluate damage mechanisms in the testing of composite materials. This approach, more recently referred to as Modal AE, provides an enhanced capability to discriminate and eliminate noise signals from those generated by damage mechanisms. Much more precise source location can also be obtained in comparison to conventional, threshold crossing arrival time determination techniques. Two successful examples of the application of Modal AE are presented in this work. In the first, the initiation of transverse matrix cracking in cross-ply, tensile coupons was monitored. In these tests, it was documented that the same source mechanism, matrix cracking, can produce widely different AE signal amplitudes dependent on laminate stacking sequence and thickness. These results, taken together with well known propagation effects of attenuation and dispersion of AE signals in composite laminates, cast further doubt on the validity of simple amplitude or amplitude distribution analysis for AE source determination. For the second example, delamination propagation in composite ring specimens was monitored. Pressurization of these composite rings is used to simulate the stresses in a composite rocket motor case. AE signals from delamination propagation were characterized by large amplitude flexural plate mode components which have long signal durations because of the large dispersion of this mode.
Waveform synthesis for imaging and ranging applications
Doerry, Armin W.; Dudley, Peter A.; Dubert, Dale F.; Tise, Bertice L.
2004-12-07
Frequency dependent corrections are provided for quadrature imbalance and Local Oscillator (LO) feed-through. An operational procedure filters imbalance and LO feed-through effects without prior calibration or equalization. Waveform generation can be adjusted/corrected in a synthetic aperture radar system (SAR), where a rolling phase shift is applied to the SAR's QDWS signal where it is demodulated in a receiver; unwanted energies, such as LO feed-through and/or imbalance energy, are separated from a desired signal in Doppler; the separated energy is filtered from the receiver leaving the desired signal; and the separated energy in the receiver is measured to determine the degree of imbalance that is represented by it. Calibration methods can also be implemented into synthesis. The degree of LO feed-through and imbalance can be used to determine calibration values that can then be provided as compensation for frequency dependent errors in components, such as the QDWS and SSB mixer, affecting quadrature signal quality.
Inversion method for initial tsunami waveform reconstruction
Directory of Open Access Journals (Sweden)
V. V. Voronin
2014-12-01
Full Text Available This paper deals with the application of r-solution method to recover the initial tsunami waveform in a tsunami source area by remote water-level measurements. Wave propagation is considered within the scope of a linear shallow-water theory. An ill-posed inverse problem is regularized by means of least square inversion using a truncated SVD approach. The properties of obtained solution are determined to a large extent by the properties of an inverse operator, which were numerically investigated. The method presented allows one to control instability of the numerical solution and to obtain an acceptable result in spite of ill-posedness of the problem. It is shown that the accuracy of tsunami source reconstruction strongly depends on the signal-to-noise ratio, the azimuthal coverage of recording stations with respect to the source area and bathymetric features along the wave path. The numerical experiments were carried out with synthetic data and various computational domains including a real bathymetry. The method proposed allows us to make a preliminary prediction of the efficiency of the inversion with a given set of the recording stations and to find out the most informative part of the existing observation system. This essential property of the method can prove to be useful in designing a monitoring system for tsunamis.
Local full-waveform inversion using distant data
Masson, Yder; Romanowicz, Barbara; Zhao Zheng, Allen
2014-05-01
Imaging remote objects in the deep Earth, such as, subducting slabs, mantle plumes, or large low shear velocity provinces and ultra low velocity zones is key for understanding Earth's structure and the geodynamical processes involved as it cools. In order to image these structures, we developed a strategy for performing regional-scale full-waveform inversions at arbitrary location inside the Earth [1]. Our approach is to confine wave propagation computations inside the region to be imaged. This local wavefield modeling is used in combination with wavefield extrapolation techniques in order to obtain synthetic seismograms at the surface of the Earth [2]. This allows us to evaluate a misfit functional and sensitivity kernels can then be computed locally using the adjoint state method [3]. The Green's functions needed for extrapolating the wavefield are computed once for all in a 3D reference Earth model using the spectral element software Specfem/3DGLOBE. We will present benchmark tests demonstrating that the proposed method allows us to image 3D localized structures - this without having to model wave propagation in the entire Earth at each iteration, which is prohibitively costly, thus improving the feasibility of accurate imaging of regional structures anywhere in the Earth using numerical methods. We will show that our method permits to account for additional data in regional inversions, that is to account for distant earthquakes that are located outside the region of the study - preliminary results for the tomography of the north American continent will be presented. [1] Masson, Yder, Paul Cupillard, Yann Capdeville, and Barbara Romanowicz. On the numerical im- plementation of time-reversal mirrors for tomographic imaging. Geophysical Journal International, 2013. [2] J. O. A. Robertsson, S. Ryan-Grigor, C. M. Sayers, and C. H. Chapman. A finite-difference injection approach to modeling seismic fluid flow monitoring. Geophysics, 65(3):896-906, 2000. [3] R
Full waveform ambient noise tomography of Mount Rainer
Flinders, A. F.; Shen, Y.
2014-12-01
Mount Rainier towers over the landscape of western Washington, ranking with Fuji-yama in Japan, Mt. Pinatubo in the Philippines, and Mt. Vesuvius in Italy, as one of the great stratovolcanoes of the world. Notwithstanding it's picturesque stature, Mt. Rainier is potentially the most devastating stratovolcano in North America, with more than 3.5 million people living beneath its shadow in the Seattle-Tacoma area. The primary hazard posed by the volcano is in the form of highly destructive volcanic debris flows (lahars). These lahars form when water and/or melted ice erode away and entrain preexisting volcanic sediment. At Mt. Rainier these flows are often initiated by sector collapse of the volcano's hydrothermally rotten flanks and compounded from Mt. Rainier's extensive snow and glacial ice coverage. It is therefore imperative to ascertain the extent of summit hydrothermal alteration within the volcano, and determine areas prone to collapse. Despite being one of the sixteen volcanoes globally designated by the International Association of Volcanology and Chemistry of the Earth's Interior as warranting detailed and focused study, Mt. Rainier remains enigmatic both in terms of shallow internal structure and the degree of summit hydrothermal alteration. We image this shallow internal structure and areas of possible summit alteration using ambient noise tomography. Our full waveform forward modeling includes high-resolution topography, allowing us to accurately account for the effects of topography on the propagation of short-period Rayleigh waves. Empirical Green's functions were extracted from 80 stations within 200 km of Mount Rainier and compared with synthetic greens functions over multiple frequency bands from 2-28 seconds. The preliminary model shows a broad (60 km wide) low shear-wave velocity anomaly in the mid-crust beneath the volcano. The mid-crust low-velocity body extends to the surface beneath the volcano summit in a narrow near-vertical conduit, the
Boonyasiriwat, Chaiwoot
2010-11-01
A recently developed time-domain multiscale waveform tomography (MWT) method is applied to synthetic and field marine data. Although the MWT method was already applied to synthetic data, the synthetic data application leads to a development of a hybrid method between waveform tomography and the salt flooding technique commonly use in subsalt imaging. This hybrid method can overcome a convergence problem encountered by inversion with a traveltime velocity tomogram and successfully provides an accurate and highly resolved velocity tomogram for the 2D SEG/EAGE salt model. In the application of MWT to the field data, the inversion process is carried out using a multiscale method with a dynamic early-arrival muting window to mitigate the local minima problem of waveform tomography and elastic effects. With the modified MWT method, reasonably accurate results as verified by comparison of migration images and common image gathers were obtained. The hybrid method with the salt flooding technique is not used in this field data example because there is no salt in the subsurface according to our interpretation. However, we believe it is applicable to field data applications. © 2010 Society of Exploration Geophysicists.
A scalable, fast and multichannel arbitrary waveform generator
Baig, Muhammad Tanveer; Wiese, Andreas; Heidbrink, Stefan; Ziolkowski, Michael; Wunderlich, Christof
2013-01-01
This article reports on development of a multichannel arbitrary waveform generator (MAWG), which simultaneously generates arbitrary voltage waveforms on 24 independent channels with a dynamic update rate of up to 25 Msps. A real-time execution of a single waveform and/or sequence of multiple waveforms in succession, with a user programmable arbitrary sequence order is provided under the control of a stand-alone sequencer circuit implemented using an FPGA. The device is operated using an internal clock and can be synced to other devices by means of the TTL pulses. The device can be used for output voltages in the range of up to +-9 V with a drift rate below +-10 uV/min and a maximum deviation less than +- 300 uVpp over a period of two hours.
Generation of correlated finite alphabet waveforms using gaussian random variables
Ahmed, Sajid
2016-01-13
Various examples of methods and systems are provided for generation of correlated finite alphabet waveforms using Gaussian random variables in, e.g., radar and communication applications. In one example, a method includes mapping an input signal comprising Gaussian random variables (RVs) onto finite-alphabet non-constant-envelope (FANCE) symbols using a predetermined mapping function, and transmitting FANCE waveforms through a uniform linear array of antenna elements to obtain a corresponding beampattern. The FANCE waveforms can be based upon the mapping of the Gaussian RVs onto the FANCE symbols. In another example, a system includes a memory unit that can store a plurality of digital bit streams corresponding to FANCE symbols and a front end unit that can transmit FANCE waveforms through a uniform linear array of antenna elements to obtain a corresponding beampattern. The system can include a processing unit that can encode the input signal and/or determine the mapping function.
Hybridizing Gravitationl Waveforms of Inspiralling Binary Neutron Star Systems
Cullen, Torrey; LIGO Collaboration
2016-03-01
Gravitational waves are ripples in space and time and were predicted to be produced by astrophysical systems such as binary neutron stars by Albert Einstein. These are key targets for Laser Interferometer and Gravitational Wave Observatory (LIGO), which uses template waveforms to find weak signals. The simplified template models are known to break down at high frequency, so I wrote code that constructs hybrid waveforms from numerical simulations to accurately cover a large range of frequencies. These hybrid waveforms use Post Newtonian template models at low frequencies and numerical data from simulations at high frequencies. They are constructed by reading in existing Post Newtonian models with the same masses as simulated stars, reading in the numerical data from simulations, and finding the ideal frequency and alignment to ``stitch'' these waveforms together.
Scattering angle-based filtering via extension in velocity
Kazei, Vladimir
2016-09-06
The scattering angle between the source and receiver wavefields can be utilized in full-waveform inversion (FWI) and in reverse-time migration (RTM) for regularization and quality control or to remove low frequency artifacts. The access to the scattering angle information is costly as the relation between local image features and scattering angles has non-stationary nature. For the purpose of a more efficient scattering angle information extraction, we develop techniques that utilize the simplicity of the scattering angle based filters for constantvelocity background models. We split the background velocity model into several domains with different velocity ranges, generating an
Decreased group velocity in compositionally graded films.
Gao, Lei
2006-03-01
A theoretical formalism is presented that describes the group velocity of electromagnetic signals in compositionally graded films. The theory is first based on effective medium approximation or the Maxwell-Garnett approximation to obtain the equivalent dielectric function in a z slice. Then the effective dielectric tensor of the graded film is directly determined, and the group velocities for ordinary and extraordinary waves in the film are derived. It is found that the group velocity is sensitively dependent on the graded profile. For a power-law graded profile f(x)=ax(m), increasing m results in the decreased extraordinary group velocity. Such a decreased tendency becomes significant when the incident angle increases. Therefore the group velocity in compositionally graded films can be effectively decreased by our suitable adjustment of the total volume fraction, the graded profile, and the incident angle. As a result, the compositionally graded films may serve as candidate material for realizing small group velocity.
Multifocal pattern VEP perimetry: analysis of sectoral waveforms.
Klistorner, A I; Graham, S L
1999-01-01
The objective detection of local visual field defects using multi-focal pattern visual evoked potentials (VEP) has recently been described. The individual waveforms show variable polarity in different parts of the visual field due to underlying cortical convolutions. Normal trace arrays were examined to determine if certain areas of similar waveform could be grouped for analysis, while minimising cancellation of data. The VEP was assessed using multi-focal pseudo-randomly alternated pattern stimuli which were cortically scaled in size. Bipolar occipital electrodes were used for recording. Waveforms were compared for different locations within the field up to 25 degrees of eccentricity. Analysis of sectors showing similarly shaped waveforms was performed. Twelve normal subjects were studied. Grouping waveforms by sectors of similar waveform increased the total calculated upper hemifield amplitude by 60%, compared with simple summations of responses for the whole hemifield. The inferior hemifield showed more consistent waveforms throughout, with the amplitude only increasing by 11% with sectoral summation. Intra-subject variability (10.6%) is less for sectors than for individual points (17.3%). Inter-subject amplitude differences are high, calculated at 56% for individual points and 45% for sectors. Due to differences in waveform as a result of underlying cortical anatomy, individual VEP responses from multifocal recordings should be grouped as sectors along the vertical meridian and above and below the horizontal, rather than by hemifields or quadrants. This finding is significant if one is considering within-field grouping strategies similar to the glaucoma hemifield test used in conventional perimetry, or reporting derived overall VEP amplitudes and latencies from a multifocal recording. Large amplitude variations between individuals and small signals from horizontal and upper field seen in single channel recording, still limit the application of this technique as
Binary black hole waveform extraction at null infinity
Energy Technology Data Exchange (ETDEWEB)
Babiuc, M C [Department of Physics, Marshall University, Huntington, WV 25755 (United States); Winicour, J [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Zlochower, Y, E-mail: babiuc@marshall.edu [Center for Computational Relativity and Gravitation and School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY 14623 (United States)
2011-07-07
In this paper, we present a work in progress toward an efficient and economical computational module which interfaces between Cauchy and characteristic evolution codes. Our goal is to provide a standardized waveform extraction tool for the numerical relativity community which will allow CCE to be readily applied to a generic Cauchy code. The tool provides a means of unambiguous comparison between the waveforms generated by evolution codes based upon different formulations of the Einstein equations and different numerical approximation.
Seismic Waveform Characterization at LLNL: Analyst Guidelines and Issues
Energy Technology Data Exchange (ETDEWEB)
Ryall, F; Schultz, C A
2001-11-01
In the first section of this paper we present an overview of general set of procedures that we have followed in seismic waveform analysis. In the second section we discuss a number of issues and complexities that we have encountered in analysis of events in the Middle East, North Africa, Europe, and parts of the European Arctic. To illustrate these complexities we can include examples of waveforms recorded over a variety of paths in these regions.
Use and Abuse of the Model Waveform Accuracy Standards
Lindblom, Lee
2010-02-01
Accuracy standards have been developed to ensure that the waveforms used for gravitational-wave data analysis are good enough to serve their intended purposes. These standards place constraints on certain norms of the frequency-domain representations of the waveform errors. Examples will be presented of possible misinterpretations and misapplications of these standards, whose effect could be to vitiate the quality control they were intended to enforce. Suggestions will be given for ways to avoid these problems. )
Anisotropic wave-equation traveltime and waveform inversion
Feng, Shihang
2016-09-06
The wave-equation traveltime and waveform inversion (WTW) methodology is developed to invert for anisotropic parameters in a vertical transverse isotropic (VTI) meidum. The simultaneous inversion of anisotropic parameters v0, ε and δ is initially performed using the wave-equation traveltime inversion (WT) method. The WT tomograms are then used as starting background models for VTI full waveform inversion. Preliminary numerical tests on synthetic data demonstrate the feasibility of this method for multi-parameter inversion.
Beyond Waveform Forward Modeling: The Lowermost Mantle Beneath the East of Australia
Pachhai, S.; Tkalcic, H.
2012-12-01
Seismic imaging of the lowermost mantle provides key information about its structure and dynamics, shaping constraints on mantle convection and heat transfer between the core and mantle. Ultra low velocity zones (ULVZs) sitting on top of the core-mantle boundary (CMB) are identified as small-scale structures with a sharp decrease in P- and S-wave velocity and an increase in density. Apart from small-scale features, it is also crucial to accurately image the large-scale features in the mantle because the dynamics of a boundary layer is closely coupled to the upwelling and downwelling motions of a convective system. Due to a high computational cost that more sophisticated inversion technique would impose, waveform forward modeling of the core-reflected and core-refracted waves is a widely used method for the investigation of ULVZs and other features of the lowermost mantle. In forward modeling, the density, velocity and thickness of layers are varied in a trial and error or simple grid-search fashion until they produce synthetic seismograms that match the main features observed in the seismic waveforms. It is often possible to convincingly model the observed waveforms by an ULVZ with different properties and geometry making forward solutions highly non-unique. It is also possible to generate a structural model that fits the waveform data, but is not necessarily required by the data. In order to address this problem we utilize transdimensional inversion, which is a Bayesian method that utilizes an ensemble of models representing the posterior probability distribution. The method treats the number of free parameters (e.g. the number of layers at the base of the mantle, their thicknesses, densities and velocities) as unknowns in the problem. Furthermore, the noise in the data is used to constrain the complexity of the model. This method thus carries the potential to advance our understanding about lowermost mantle structure and dynamics. Southwest Pacific subduction
Afanasiev, M.; Pratt, R. G.; Kamei, R.; McDowell, G.
2012-12-01
Crosshole seismic tomography has been used by Vale to provide geophysical images of mineralized massive sulfides in the Eastern Deeps deposit at Voisey's Bay, Labrador, Canada. To date, these data have been processed using traveltime tomography, and we seek to improve the resolution of these images by applying acoustic Waveform Tomography. Due to the computational cost of acoustic waveform modelling, local descent algorithms are employed in Waveform Tomography; due to non-linearity an initial model is required which predicts first-arrival traveltimes to within a half-cycle of the lowest frequency used. Because seismic velocity anisotropy can be significant in hardrock settings, the initial model must quantify the anisotropy in order to meet the half-cycle criterion. In our case study, significant velocity contrasts between the target massive sulfides and the surrounding country rock led to difficulties in generating an accurate anisotropy model through traveltime tomography, and our starting model for Waveform Tomography failed the half-cycle criterion at large offsets. We formulate a new, semi-global approach for finding the best-fit 1-D elliptical anisotropy model using simulated annealing. Through random perturbations to Thompson's ɛ parameter, we explore the L2 norm of the frequency-domain phase residuals in the space of potential anisotropy models: If a perturbation decreases the residuals, it is always accepted, but if a perturbation increases the residuals, it is accepted with the probability P = exp(-(Ei-E)/T). This is the Metropolis criterion, where Ei is the value of the residuals at the current iteration, E is the value of the residuals for the previously accepted model, and T is a probability control parameter, which is decreased over the course of the simulation via a preselected cooling schedule. Convergence to the global minimum of the residuals is guaranteed only for infinitely slow cooling, but in practice good results are obtained from a variety
Optimal current waveforms for brushless permanent magnet motors
Moehle, Nicholas; Boyd, Stephen
2015-07-01
In this paper, we give energy-optimal current waveforms for a permanent magnet synchronous motor that result in a desired average torque. Our formulation generalises previous work by including a general back-electromotive force (EMF) wave shape, voltage and current limits, an arbitrary phase winding connection, a simple eddy current loss model, and a trade-off between power loss and torque ripple. Determining the optimal current waveforms requires solving a small convex optimisation problem. We show how to use the alternating direction method of multipliers to find the optimal current in milliseconds or hundreds of microseconds, depending on the processor used, which allows the possibility of generating optimal waveforms in real time. This allows us to adapt in real time to changes in the operating requirements or in the model, such as a change in resistance with winding temperature, or even gross changes like the failure of one winding. Suboptimal waveforms are available in tens or hundreds of microseconds, allowing for quick response after abrupt changes in the desired torque. We demonstrate our approach on a simple numerical example, in which we give the optimal waveforms for a motor with a sinusoidal back-EMF, and for a motor with a more complicated, nonsinusoidal waveform, in both the constant-torque region and constant-power region.
Estimation of airway obstruction using oximeter plethysmograph waveform data
Directory of Open Access Journals (Sweden)
Desmond Renee' A
2005-06-01
Full Text Available Abstract Background Validated measures to assess the severity of airway obstruction in patients with obstructive airway disease are limited. Changes in the pulse oximeter plethysmograph waveform represent fluctuations in arterial flow. Analysis of these fluctuations might be useful clinically if they represent physiologic perturbations resulting from airway obstruction. We tested the hypothesis that the severity of airway obstruction could be estimated using plethysmograph waveform data. Methods Using a closed airway circuit with adjustable inspiratory and expiratory pressure relief valves, airway obstruction was induced in a prospective convenience sample of 31 healthy adult subjects. Maximal change in airway pressure at the mouthpiece was used as a surrogate measure of the degree of obstruction applied. Plethysmograph waveform data and mouthpiece airway pressure were acquired for 60 seconds at increasing levels of inspiratory and expiratory obstruction. At each level of applied obstruction, mean values for maximal change in waveform area under the curve and height as well as maximal change in mouth pressure were calculated for sequential 7.5 second intervals. Correlations of these waveform variables with mouth pressure values were then performed to determine if the magnitude of changes in these variables indicates the severity of airway obstruction. Results There were significant relationships between maximal change in area under the curve (P Conclusion The findings suggest that mathematic interpretation of plethysmograph waveform data may estimate the severity of airway obstruction and be of clinical utility in objective assessment of patients with obstructive airway diseases.
Quantification of wave reflection using peripheral blood pressure waveforms.
Kim, Chang-Sei; Fazeli, Nima; McMurtry, M Sean; Finegan, Barry A; Hahn, Jin-Oh
2015-01-01
This paper presents a novel minimally invasive method for quantifying blood pressure (BP) wave reflection in the arterial tree. In this method, two peripheral BP waveforms are analyzed to obtain an estimate of central aortic BP waveform, which is used together with a peripheral BP waveform to compute forward and backward pressure waves. These forward and backward waves are then used to quantify the strength of wave reflection in the arterial tree. Two unique strengths of the proposed method are that 1) it replaces highly invasive central aortic BP and flow waveforms required in many existing methods by less invasive peripheral BP waveforms, and 2) it does not require estimation of characteristic impedance. The feasibility of the proposed method was examined in an experimental swine subject under a wide range of physiologic states and in 13 cardiac surgery patients. In the swine subject, the method was comparable to the reference method based on central aortic BP and flow. In cardiac surgery patients, the method was able to estimate forward and backward pressure waves in the absence of any central aortic waveforms: on the average, the root-mean-squared error between actual versus computed forward and backward pressure waves was less than 5 mmHg, and the error between actual versus computed reflection index was less than 0.03.
Biomass Estimation for Individual Trees using Waveform LiDAR
Wang, K.; Kumar, P.; Dutta, D.
2015-12-01
Vegetation biomass information is important for many ecological models that include terrestrial vegetation in their simulations. Biomass has strong influences on carbon, water, and nutrient cycles. Traditionally biomass estimation requires intensive, and often destructive, field measurements. However, with advances in technology, airborne LiDAR has become a convenient tool for acquiring such information on a large scale. In this study, we use infrared full waveform LiDAR to estimate biomass information for individual trees in the Sangamon River basin in Illinois, USA. During this process, we also develop automated geolocation calibration algorithms for raw waveform LiDAR data. In the summer of 2014, discrete and waveform LiDAR data were collected over the Sangamon River basin. Field measurements commonly used in biomass equations such as diameter at breast height and total tree height were also taken for four sites across the basin. Using discrete LiDAR data, individual trees are delineated. For each tree, a voxelization methods is applied to all waveforms associated with the tree to result in a pseudo-waveform. By relating biomass extrapolated using field measurements from a training set of trees to waveform metrics for each corresponding tree, we are able to estimate biomass on an individual tree basis. The results can be especially useful as current models increase in resolution.
Influential factors for pressure pulse waveform in healthy young adults.
Du, Yi; Wang, Ling; Li, Shuyu; Zhi, Guang; Li, Deyu; Zhang, Chi
2015-01-01
The effects of gender and other contributory factors on pulse waveform are still under arguments. In view of different results caused by few considerations of possible influential factors and general agreement of gender relating to pulse waveform, this study aims to address the confounding factors interfering with the association between gender and pulse waveform characteristics. A novel method was proposed to noninvasively detect pressure pulse wave and assess the morphology of pulse wave. Forty healthy young subjects were included in the present research. Height, weight, systolic blood pressure (SBP), and diastolic blood pressure (DBP) were measured manually and body mass index (BMI), pulse blood pressure (PP) and heart rate (HR) were calculated automatically. Student's t test was used to analyze the gender difference and analysis of variance (ANOVA) to examine the effects of intrinsic factors. Univariate regression analysis was performed to assess the main factors on the waveform characteristics. Waveform features were found significantly different between genders. However this study indicates that the main factors for time-related and amplitude-related parameters are HR and SBP respectively. In conclusion, the impact of HR and SBP on pulse waveform features should not be underestimated, especially when analyzing the gender difference.
Design and Testing of Space Telemetry SCA Waveform
Mortensen, Dale J.; Handler, Louis M.; Quinn, Todd M.
2006-01-01
A Software Communications Architecture (SCA) Waveform for space telemetry is being developed at the NASA Glenn Research Center (GRC). The space telemetry waveform is implemented in a laboratory testbed consisting of general purpose processors, field programmable gate arrays (FPGAs), analog-to-digital converters (ADCs), and digital-to-analog converters (DACs). The radio hardware is integrated with an SCA Core Framework and other software development tools. The waveform design is described from both the bottom-up signal processing and top-down software component perspectives. Simulations and model-based design techniques used for signal processing subsystems are presented. Testing with legacy hardware-based modems verifies proper design implementation and dynamic waveform operations. The waveform development is part of an effort by NASA to define an open architecture for space based reconfigurable transceivers. Use of the SCA as a reference has increased understanding of software defined radio architectures. However, since space requirements put a premium on size, mass, and power, the SCA may be impractical for today s space ready technology. Specific requirements for an SCA waveform and other lessons learned from this development are discussed.
Waveform descriptor for pulse onset detection of intracranial pressure signal.
Yang, Li; Zhao, Mingxi; Peng, Chenglin; Hu, Xiao; Feng, Hua; Ji, Zhong
2012-03-01
We present an algorithm to identify the onset of intracranial pressure (ICP) pulses. The algorithm creates a waveform descriptor to extract the feature of each local minimum of the waveform and then identifies the onset by comparing the feature with a customized template. The waveform descriptor is derived by transforming the vectors connecting a given point and the local waveform samples around it into log-polar coordinates and ranking them into uniform bins. Using an ICP dataset consisting of 40933 normal beats and 306 segments of artifacts and noise, we investigated the performance of our algorithm (waveform descriptor, WD), global minimum within a sliding window (GM) and two other algorithms originally proposed for arterial blood pressure (ABP) signal (slope sum function, SSF and pulse waveform delineator, PUD). As a result, all the four algorithms showed good performance and WD showed overall better one. At a tolerance level of 30 ms (i.e., the predicted onset and ground truth were considered as correctly matched if the distance between the two was equal or less than 30 ms), WD achieved a sensitivity of 0.9723 and PPV of 0.9475, GM achieved a sensitivity of 0.9226 and PPV of 0.8968, PUD achieved a sensitivity of 0.9599 and PPV of 0.9327 and SSF, a sensitivity of 0.9720 and PPV of 0.9136. The evaluation indicates that the algorithms are effective for identifying the onset of ICP pulses.
An improved driving waveform reference grayscale of electrophoretic displays
Wang, Li; Yi, Zichuan; Peng, Bao; Zhou, Guofu
2015-10-01
Driving waveform is an important component for gray scale display on the electrophoretic display (EPD). In the traditional driving waveform, a white reference gray scale is formed before writing a new image. However, the reflectance value can not reach agreement in each gray scale transformation. In this paper, a new driving waveform, which has a short waiting time after the formation of reference gray scale, is proposed to improve the consistency of reference gray scale. Firstly, the property of the particles in the microcapsule is analyzed and the change of the EPD reflectance after the white reference gray scale formation is studied. Secondly, the reflectance change curve is fitted by using polynomial and the duration of the waiting time is determined. Thirdly, a set of the new driving waveform is designed by using the rule of DC balance and some real E-ink commercial EPDs are used to test the performance. Experimental results show that the effect of the new driving waveform has a better performance than traditional waveforms.
Frequency-domain waveform inversion using the unwrapped phase
Choi, Yun Seok
2011-01-01
Phase wrapping in the frequency-domain (or cycle skipping in the time-domain) is the major cause of the local minima problem in the waveform inversion. The unwrapped phase has the potential to provide us with a robust and reliable waveform inversion, with reduced local minima. We propose a waveform inversion algorithm using the unwrapped phase objective function in the frequency-domain. The unwrapped phase, or what we call the instantaneous traveltime, is given by the imaginary part of dividing the derivative of the wavefield with respect to the angular frequency by the wavefield itself. As a result, the objective function is given a traveltime-like function, which allows us to smooth it and reduce its nonlinearity. The gradient of the objective function is computed using the back-propagation algorithm based on the adjoint-state technique. We apply both our waveform inversion algorithm using the unwrapped phase and the conventional waveform inversion and show that our inversion algorithm gives better convergence to the true model than the conventional waveform inversion. © 2011 Society of Exploration Geophysicists.
Talker identification from analysis of raw complex waveforms
Stokes, Michael A.
2002-05-01
Stokes (1996) demonstrated that visual inspection of raw complex waveforms can be used to identify a vowel produced by a talker. This research resulted in the MAS Model of Vowel Perception and Production (Stokes, 1998; http://home.indy.net/~masmodel/). More recently, another experiment extended this work to female talkers as well as male talkers (Stokes, 2001). Together, this research represents the only ongoing comprehensive research involving visual inspection of raw complex waveforms for identifying vowels produced by any talker. As an extension of the work, the present study involves identifying a talker from a waveform display. Unique voice signatures identified from waveform displays are used to identify a talker from a set of 10 talkers in the same way as one would identify a person from fingerprints. In two trials (the word who'd in trial 1 and heed in trial 2), a talker was correctly identified from a set of 10 unique talkers per trial using small visual samples of waveforms and matching it to a waveform sample of the talkers to be identified.
Determination of wave intensity in flexible tubes using measured diameter and velocity.
Feng, J; Khir, A W
2007-01-01
Wave intensity (WI) is a hemodynamics index, which is the product of changes in pressure and velocity across the wave-front. Wave Intensity Analysis, which is a time domain technique allows for the separation of running waves into their forward and backward directions and traditionally uses the measured pressure and velocity waveforms. However, due to the possible difficulty in obtaining reliable pressure waveforms non-invasively, investigating the use of wall displacement instead of pressure signals in calculating WI may have clinical merits. In this paper, we developed an algorithm in which we use the measured diameter of flexible tube's wall and flow velocity to separate the velocity waveform into its forward and backward directions. The new algorithm is also used to separate wave intensity into its forward and backward directions. In vitro experiments were carried out in two sized flexible tubes, 12mm and 16mm in diameters, each is of 2 m in length. Pressure, velocity and diameter were taken at three measuring sites. A semi-sinusoidal wave was generated using a piston pump, which ejected 40cc water into each tube. The results show that separated wave intensity into the forward and backward directions of the new algorithm using the measured diameter and velocity are almost identical in shape to those traditionally using the measured pressure and velocity. We conclude that the new algorithm presented in this work, could have clinical advantages since the required information can be obtained non-invasively.
Guilhem, A.; Dreger, D. S.; Hutchings, L. J.; Johnson, L.
2012-12-01
We investigate moment tensor solutions and their uncertainties for magnitude (M) ~3 earthquakes located in the northwest Geysers geothermal field, California. We are exploiting an unusual opportunity where data for M~3 events have been recorded by three different networks and have moment tensor solutions calculated by three different methods. We solve for both deviatoric and full moment tensor solutions. The data sets include local short-period instruments (4.5 Hz) of the 30 stations of the Lawrence Berkeley National Laboratory (LBNL), with which we obtain waveform inversion solutions at relatively high frequencies (i.e., up to 2.5 Hz), and regionally distributed broadband stations operated by the Berkeley Seismological Laboratory (BSL), with which are used to provide waveform inversion solutions with data filtered at longer periods (i.e., > 10 sec). We also utilize the LBNL data to obtain moment tensor solutions by fitting the P-wave first motions. The USGS, LBNL, and BSL obtain different event locations, utilize different velocity models, and analyze different frequency bands and wave types (i.e., body waves for LBNL method and primarily surface waves for the BSL analysis). Preliminary results indicate that the BSL and LBNL waveform modeling analyses give similar results in terms of nodal plane characteristics, moment magnitude, and moment tensor decomposition. Analysis of the P-wave first motions recorded by LBNL stations can illuminate complexities in the source processes when compared to waveform moment tensor solutions. We discuss uncertainties in the source inversions that use broadband and/or short-period waveform modeling, and in the source inversions from first motions only. We also combine the different datasets and compare their individual importance as they can help illustrate the complex source processes happening in the Geysers. This study introduces the possibility to interpret the seismic sources as complex processes in which both shear and tensile
Performance bounds on micro-Doppler estimation and adaptive waveform design using OFDM signals
Sen, Satyabrata; Barhen, Jacob; Glover, Charles W.
2014-05-01
We analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a target having multiple rotating scatterers (e.g., rotor blades of a helicopter, propellers of a submarine). The presence of rotating scatterers introduces Doppler frequency modulation in the received signal by generating sidebands about the transmitted frequencies. This is called the micro-Doppler effects. The use of a frequency-diverse OFDM signal in this context enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. Therefore, to characterize the accuracy of micro-Doppler frequency estimation, we compute the Craḿer-Rao Bound (CRB) on the angular-velocity estimate of the target while considering the scatterer responses as deterministic but unknown nuisance parameters. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to the transmitting OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations at different values of the signal-to-noise ratio (SNR) and the number of OFDM subcarriers. The CRB values not only decrease with the increase in the SNR values, but also reduce as we increase the number of subcarriers implying the significance of frequency-diverse OFDM waveforms. The improvement in estimation accuracy due to the adaptive waveform design is also numerically analyzed. Interestingly, we find that the relative decrease in the CRBs on the angular-velocity estimate is more pronounced for larger number of OFDM subcarriers.
Performance Bounds on Micro-Doppler Estimation and Adaptive Waveform Design Using OFDM Signals
Energy Technology Data Exchange (ETDEWEB)
Sen, Satyabrata [ORNL; Barhen, Jacob [ORNL; Glover, Charles Wayne [ORNL
2014-01-01
We analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a target having multiple rotating scatterers (e.g., rotor blades of a helicopter, propellers of a submarine). The presence of rotating scatterers introduces Doppler frequency modulation in the received signal by generating sidebands about the transmitted frequencies. This is called the micro-Doppler effects. The use of a frequency-diverse OFDM signal in this context enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. Therefore, to characterize the accuracy of micro-Doppler frequency estimation, we compute the Cram er-Rao Bound (CRB) on the angular-velocity estimate of the target while considering the scatterer responses as deterministic but unknown nuisance parameters. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to the transmitting OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations at different values of the signal-to-noise ratio (SNR) and the number of OFDM subcarriers. The CRB values not only decrease with the increase in the SNR values, but also reduce as we increase the number of subcarriers implying the significance of frequency-diverse OFDM waveforms. The improvement in estimation accuracy due to the adaptive waveform design is also numerically analyzed. Interestingly, we find that the relative decrease in the CRBs on the angular-velocity estimate is more pronounced for larger number of OFDM subcarriers.
System and Method for Generating a Frequency Modulated Linear Laser Waveform
Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)
2017-01-01
A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.
System and Method for Generating a Frequency Modulated Linear Laser Waveform
Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)
2014-01-01
A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.
Gao, Mingwu; Rose, William C; Fetics, Barry; Kass, David A; Chen, Chen-Huan; Mukkamala, Ramakrishna
2016-09-14
Generalized transfer functions (GTFs) are available to compute the more relevant central blood pressure (BP) waveform from a more easily measured radial BP waveform. However, GTFs are population averages and therefore may not adapt to variations in pulse pressure (PP) amplification (ratio of radial to central PP). A simple adaptive transfer function (ATF) was developed. First, the transfer function is defined in terms of the wave travel time and reflection coefficient parameters of an arterial model. Then, the parameters are estimated from the radial BP waveform by exploiting the observation that central BP waveforms exhibit exponential diastolic decays. The ATF was assessed using the original data that helped popularize the GTF. These data included radial BP waveforms and invasive reference central BP waveforms from cardiac catheterization patients. The data were divided into low, middle, and high PP amplification groups. The ATF estimated central BP with greater accuracy than GTFs in the low PP amplification group (e.g., central systolic BP and PP root-mean-square-errors of 3.3 and 4.2 mm Hg versus 6.2 and 7.1 mm Hg; p ≤ 0.05) while showing similar accuracy in the higher PP amplification groups. The ATF may permit more accurate, non-invasive central BP monitoring in elderly and hypertensive patients.
基于LAS码与混沌的水下LPI波形设计%Underwater LPI Waveforms Design Based on LAS Code and Chaos
Institute of Scientific and Technical Information of China (English)
洪嘉翔; 易红; 张娟; 张林让
2011-01-01
In view of the requirement for low probability of intercept (LPI) waveform characteristics in underwater detection, we serialize the chaotic sequences and use it to modulate the signal phase such that the basic waveform is obtained. Then the large area synchronized (LAS) codes are introduced for both interpulse and intrapulse modulations to design two new waveforms. Relying on the zero-delayed section and zero-Doppler section of an ambiguity function, we compare the discrimination property of the two new waveforms intuitively with four kinds of typical underwater detection waveforms, I.e. Continuous waveform (CW), linear frequency modulation (LFM) waveform, binary phase shift keying (BPSK) waveform and Costas waveform. Quantification analysis is made by their time resolution constants and frequency resolution constants. In addition, nonzero-Doppler section of an ambiguity function is used to compare their Doppler sensitivity characteristics under the ideal background, followed by a further comparison of reverberation suppression capability via the Q function. The results show that two new waveforms have outstanding distance resolution, Doppler tolerance and reverberation suppression capability over whole velocity ranges required by practical use.%鉴于水下探测对低截获概率(LPI)波形特性的需求,将混沌序列连续化后用以相位调制得到基本波形,然后用大区域同步(LAS)码对其分别作脉内、脉间调制设计出2种新波形,借助其模糊图的零延时切面和零频移切面直观比较了新波形与连续波(CW)、线性调频(LFM)、二进制相移键控(BPSK)、Costas等4种典型水下探测波形的分辨特性,并通过时间分辨常数和频率分辨常数作出量化分析.模糊图的非零频移切面被用以理想背景下各波形的多普勒敏感性比较,并通过Q函数进一步比较了它们的抗混响能力.对比分析表明,新设计的2种波形具有出色的距离分辨率和多普勒容忍性,且
Spectral sensitivity analysis of FWI in a constant-gradient background velocity model
Kazei, V.; Kashtan, B.M.; Troyan, V.N.; Mulder, W.A.
2013-01-01
Full waveform inversion suffers from local minima, due to a lack of low frequencies in the data. A reflector below the zone of interest may help in recovering the long-wavelength components of a velocity perturbation, as demonstrated in a paper by Mora. Because smooth models are more popular as init
Qi, Haicheng; Gao, Wei; Fan, Zhihui; Liu, Yidi; Ren, Chunsheng
2016-05-01
Volume diffuse dielectric barrier discharge (DBD) plasma is produced in subsonic airflow by nanosecond high-voltage pulse power supply with a plate-to-plate discharge cell at 6 mm air gap length. The discharge images, optical emission spectra (OES), the applied voltage and current waveforms of the discharge at the changed airflow rates are obtained. When airflow rate is increased, the transition of the discharge mode and the variations of discharge intensity, breakdown characteristics and the temperature of the discharge plasma are investigated. The results show that the discharge becomes more diffuse, discharge intensity is decreased accompanied by the increased breakdown voltage and time lag, and the temperature of the discharge plasma reduces when airflow of small velocity is introduced into the discharge gap. These phenomena are because that the airflow changes the spatial distribution of the heat and the space charge in the discharge gap. supported by National Natural Science Foundation of China (No. 51437002)
On the influence of model parametrization in elastic full waveform tomography
Köhn, D.; De Nil, D.; Kurzmann, A.; Przebindowska, A.; Bohlen, T.
2012-10-01
Elastic Full Waveform Tomography (FWT) aims to reduce the misfit between recorded and modelled data, to deduce a very detailed model of elastic material parameters in the underground. The choice of the elastic model parameters to be inverted affects the convergence and quality of the reconstructed subsurface model. Using the Cross-Triangle-Squares (CTS) model three elastic parametrizations, Lamé parameters m1 = [λ, μ, ρ], seismic velocities m2 = [Vp, Vs, ρ] and seismic impedances m3 = [Ip, Is, ρ] for far-offset reflection seismic acquisition geometries with explosive point sources and free-surface condition are studied. In each CTS model the three elastic parameters are assigned to three different geometrical objects that are spatially separated. The results of the CTS model study reveal a strong requirement of a sequential frequency inversion from low to high frequencies to reconstruct the density model. Using only high-frequency data, cross-talk artefacts have an influence on the quantitative reconstruction of the material parameters, while for a sequential frequency inversion only structural artefacts, representing the boundaries of different model parameters, are present. During the inversion, the Lamé parameters, seismic velocities and impedances could be reconstructed well. However, using the Lamé parametrization ?-artefacts are present in the λ model, while similar artefacts are suppressed when using seismic velocities or impedances. The density inversion shows the largest ambiguity for all parametrizations. However, the artefacts are again more dominant, when using the Lamé parameters and suppressed for seismic velocity and impedance parametrization. The afore mentioned results are confirmed for a geologically more realistic modified Marmousi-II model. Using a conventional streamer acquisition geometry the P-velocity, S-velocity and density models of the subsurface were reconstructed successfully and are compared with the results of the Lam
Estimation of earthquake source parameters by the inversion of waveform data: synthetic waveforms
Sipkin, S.A.
1982-01-01
Two methods are presented for the recovery of a time-dependent moment-tensor source from waveform data. One procedure utilizes multichannel signal-enhancement theory; in the other a multichannel vector-deconvolution approach, developed by Oldenburg (1982) and based on Backus-Gilbert inverse theory, is used. These methods have the advantage of being extremely flexible; both may be used either routinely or as research tools for studying particular earthquakes in detail. Both methods are also robust with respect to small errors in the Green's functions and may be used to refine estimates of source depth by minimizing the misfits to the data. The multichannel vector-deconvolution approach, although it requires more interaction, also allows a trade-off between resolution and accuracy, and complete statistics for the solution are obtained. The procedures have been tested using a number of synthetic body-wave data sets, including point and complex sources, with satisfactory results. ?? 1982.
Wakker, BP; vanWoerden, H
1997-01-01
High-velocity clouds (HVCs) consist of neutral hydrogen (HI) at velocities incompatible with a simple model of differential galactic rotation; in practice one uses \\v(LSR)\\ greater than or equal to 90 km/s to define HVCs. This review describes the main features of the sky and velocity distributions,
Transverse Spectral Velocity Estimation
DEFF Research Database (Denmark)
Jensen, Jørgen Arendt
2014-01-01
A transverse oscillation (TO)-based method for calculating the velocity spectrum for fully transverse flow is described. Current methods yield the mean velocity at one position, whereas the new method reveals the transverse velocity spectrum as a function of time at one spatial location. A convex...
Quantitative analysis of sensor for pressure waveform measurement
Directory of Open Access Journals (Sweden)
Tyan Chu-Chang
2010-01-01
Full Text Available Abstract Background Arterial pressure waveforms contain important diagnostic and physiological information since their contour depends on a healthy cardiovascular system 1. A sensor was placed at the measured artery and some contact pressure was used to measure the pressure waveform. However, where is the location of the sensor just about enough to detect a complete pressure waveform for the diagnosis? How much contact pressure is needed over the pulse point? These two problems still remain unresolved. Method In this study, we propose a quantitative analysis to evaluate the pressure waveform for locating the position and applying the appropriate force between the sensor and the radial artery. The two-axis mechanism and the modified sensor have been designed to estimate the radial arterial width and detect the contact pressure. The template matching method was used to analyze the pressure waveform. In the X-axis scan, we found that the arterial diameter changed waveform (ADCW and the pressure waveform would change from small to large and then back to small again when the sensor was moved across the radial artery. In the Z-axis scan, we also found that the ADCW and the pressure waveform would change from small to large and then back to small again when the applied contact pressure continuously increased. Results In the X-axis scan, the template correlation coefficients of the left and right boundaries of the radial arterial width were 0.987 ± 0.016 and 0.978 ± 0.028, respectively. In the Z-axis scan, when the excessive contact pressure was more than 100 mm Hg, the template correlation was below 0.983. In applying force, when using the maximum amplitude as the criteria level, the lower contact pressure (r = 0.988 ± 0.004 was better than the higher contact pressure (r = 0.976 ± 0.012. Conclusions Although, the optimal detective position has to be close to the middle of the radial arterial, the pressure waveform also has a good completeness with
Visco-elastic controlled-source full waveform inversion without surface waves
Paschke, Marco; Krause, Martin; Bleibinhaus, Florian
2016-04-01
We developed a frequency-domain visco-elastic full waveform inversion for onshore seismic experiments with topography. The forward modeling is based on a finite-difference time-domain algorithm by Robertsson that uses the image-method to ensure a stress-free condition at the surface. The time-domain data is Fourier-transformed at every point in the model space during the forward modeling for a given set of frequencies. The motivation for this approach is the reduced amount of memory when computing kernels, and the straightforward implementation of the multiscale approach. For the inversion, we calculate the Frechet derivative matrix explicitly, and we implement a Levenberg-Marquardt scheme that allows for computing the resolution matrix. To reduce the size of the Frechet derivative matrix, and to stabilize the inversion, an adapted inverse mesh is used. The node spacing is controlled by the velocity distribution and the chosen frequencies. To focus the inversion on body waves (P, P-coda, and S) we mute the surface waves from the data. Consistent spatiotemporal weighting factors are applied to the wavefields during the Fourier transform to obtain the corresponding kernels. We test our code with a synthetic study using the Marmousi model with arbitrary topography. This study also demonstrates the importance of topography and muting surface waves in controlled-source full waveform inversion.
Wang, Ling
2013-01-01
We consider a synthetic aperture radar (SAR) system that uses ultra-narrowband continuous waveforms (CW) as an illumination source. Such a system has many practical advantages, such as the use of relatively simple, low-cost and low-power transmitters, and in some cases, using the transmitters of opportunity, such as TV, radio stations. Additionally, ultra-narrowband CW signals are suitable for motion estimation due to their ability to acquire high resolution Doppler information. In this paper, we present a novel synthetic aperture imaging method for moving targets using a bi-static SAR system transmitting ultra-narrowband continuous waveforms. Our method exploits the high Doppler resolution provided by ultra-narrowband CW signals to image both the scene reflectivity and to determine the velocity of multiple moving targets. Starting from the first principle, we develop a novel forward model based on the temporal Doppler induced by the movement of antennas and moving targets. We form the reflectivity image of t...
A Time Domain Waveform for Testing General Relativity
Huwyler, Cédric; Jetzer, Philippe
2014-01-01
Gravitational-wave parameter estimation is only as good as the theory the waveform generation models are based upon. It is therefore crucial to test General Relativity (GR) once data becomes available. Many previous works, such as studies connected with the ppE framework by Yunes and Pretorius, rely on the stationary phase approximation (SPA) to model deviations from GR in the frequency domain. As Fast Fourier Transform algorithms have become considerably faster and in order to circumvent possible problems with the SPA, we test GR with corrected time domain waveforms instead of SPA waveforms. Since a considerable amount of work has been done already in the field using SPA waveforms, we establish a connection between leading-order-corrected waveforms in time and frequency domain, concentrating on phase-only corrected terms. In a Markov Chain Monte Carlo study, whose results are preliminary and will only be available later, we will assess the ability of the eLISA detector to measure deviations from GR for signa...
Ocular pressure waveform reflects ventricular bigeminy and aortic insufficiency
Directory of Open Access Journals (Sweden)
Jean B Kassem
2015-01-01
Full Text Available Ocular pulse amplitude (OPA is defined as the difference between maximum and minimum intraocular pressure (IOP during a cardiac cycle. Average values of OPA range from 1 to 4 mmHg. The purpose of this investigation is to determine the source of an irregular IOP waveform with elevated OPA in a 48-year-old male. Ocular pressure waveforms had an unusual shape consistent with early ventricular contraction. With a normal IOP, OPA was 9 mmHg, which is extraordinarily high. The subject was examined by a cardiologist and was determined to be in ventricular bigeminy. In addition, he had bounding carotid pulses and echocardiogram confirmed aortic insufficiency. After replacement of the aortic valve, the bigeminy resolved and the ocular pulse waveform became regular in appearance with an OPA of 1.6-2.0 mmHg. The ocular pressure waveform is a direct reflection of hemodynamics. Evaluating this waveform may provide an additional opportunity for screening subjects for cardiovascular anomalies and arrhythmias.
Breast ultrasound computed tomography using waveform inversion with source encoding
Wang, Kun; Matthews, Thomas; Anis, Fatima; Li, Cuiping; Duric, Neb; Anastasio, Mark A.
2015-03-01
Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruction methods can produce images that possess improved spatial resolution properties over those produced by ray-based methods. However, waveform inversion methods are computationally demanding and have not been applied widely in USCT breast imaging. In this work, source encoding concepts are employed to develop an accelerated USCT reconstruction method that circumvents the large computational burden of conventional waveform inversion methods. This method, referred to as the waveform inversion with source encoding (WISE) method, encodes the measurement data using a random encoding vector and determines an estimate of the speed-of-sound distribution by solving a stochastic optimization problem by use of a stochastic gradient descent algorithm. Computer-simulation studies are conducted to demonstrate the use of the WISE method. Using a single graphics processing unit card, each iteration can be completed within 25 seconds for a 128 × 128 mm2 reconstruction region. The results suggest that the WISE method maintains the high spatial resolution of waveform inversion methods while significantly reducing the computational burden.
A nonlinear inversion for the velocity background and perturbation models
Wu, Zedong
2015-08-19
Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI) by inverting for the single scattered wavefield obtained using an image. However, current RWI methods usually neglect diving waves, which is an important source of information for extracting the long wavelength components of the velocity model. Thus, we propose a new optimization problem through breaking the velocity model into the background and the perturbation in the wave equation directly. In this case, the perturbed model is no longer the single scattering model, but includes all scattering. We optimize both components simultaneously, and thus, the objective function is nonlinear with respect to both the background and perturbation. The new introduced w can absorb the non-smooth update of background naturally. Application to the Marmousi model with frequencies that start at 5 Hz shows that this method can converge to the accurate velocity starting from a linearly increasing initial velocity. Application to the SEG2014 demonstrates the versatility of the approach.
Research on the photoelectric measuring method of warhead fragment velocity
Liu, Ji; Yu, Lixia; Zhang, Bin; Liu, Xiaoyan
2016-09-01
The velocity of warhead fragment is the key criteria to determine its mutilation efficiency. But owing to the small size, larger quantity, irregular shape, high speed, arbitrary direction, large dispersion of warhead fragment and adverse environment, the test of fragment velocity parameter is very difficult. The paper designed an optoelectronic system to measure the average velocity of warhead fragments accurately. The apparatus included two parallel laser screens spaced apart at a known fixed distance for providing time measurement between start and stop signals. The large effective screen area was composed of laser source, retro-reflector and large area photo-diode. Whenever a moving fragment interrupted two optical screens, the system would generate a target signal. Due to partial obscuration of the incident energy and the poor test condition of the explosion, fragment target signal is easily disturbed. Therefore, fragments signal processing technology has become a key technology of the system. The noise of signal was reduced by employing wavelet decomposition and reconstruction. The time of fragment passing though the target was obtained by adopting peak detection algorithm. Based on the method of search peak in different width scale and waveform trend by using optima wavelet, the problem of rolling waveform was solved. Lots of fragments experiments of the different types of the warheads were conducted. Experimental results show that: warhead fragments capture rate of system is better than 98%, which can give velocity of each fragment in the density of less than 20 pieces per m2.
Shaping the spectrum of random-phase radar waveforms
Energy Technology Data Exchange (ETDEWEB)
Doerry, Armin W.; Marquette, Brandeis
2017-05-09
The various technologies presented herein relate to generation of a desired waveform profile in the form of a spectrum of apparently random noise (e.g., white noise or colored noise), but with precise spectral characteristics. Hence, a waveform profile that could be readily determined (e.g., by a spoofing system) is effectively obscured. Obscuration is achieved by dividing the waveform into a series of chips, each with an assigned frequency, wherein the sequence of chips are subsequently randomized. Randomization can be a function of the application of a key to the chip sequence. During processing of the echo pulse, a copy of the randomized transmitted pulse is recovered or regenerated against which the received echo is correlated. Hence, with the echo energy range-compressed in this manner, it is possible to generate a radar image with precise impulse response.
Stimulator with arbitrary waveform for auditory evoked potentials
Energy Technology Data Exchange (ETDEWEB)
Martins, H R; Romao, M; Placido, D; Provenzano, F; Tierra-Criollo, C J [Universidade Federal de Minas Gerais (UFMG), Departamento de Engenharia Eletrica (DEE), Nucleo de Estudos e Pesquisa em Engenharia Biomedica NEPEB, Av. Ant. Carlos, 6627, sala 2206, Pampulha, Belo Horizonte, MG, 31.270-901 (Brazil)
2007-11-15
The technological improvement helps many medical areas. The audiometric exams involving the auditory evoked potentials can make better diagnoses of auditory disorders. This paper proposes the development of a stimulator based on Digital Signal Processor. This stimulator is the first step of an auditory evoked potential system based on the ADSP-BF533 EZ KIT LITE (Analog Devices Company - USA). The stimulator can generate arbitrary waveform like Sine Waves, Modulated Amplitude, Pulses, Bursts and Pips. The waveforms are generated through a graphical interface programmed in C++ in which the user can define the parameters of the waveform. Furthermore, the user can set the exam parameters as number of stimuli, time with stimulation (Time ON) and time without stimulus (Time OFF). In future works will be implemented another parts of the system that includes the acquirement of electroencephalogram and signal processing to estimate and analyze the evoked potential.
Fast evaluation of asymptotic waveforms from gravitational perturbations
Benedict, Alex G; Lau, Stephen R
2012-01-01
In the context of blackhole perturbation theory, we describe both exact evaluation of an asymptotic waveform from a time series recorded at a finite radial location and its numerical approximation. From the user's standpoint our technique is easy to implement, affords high accuracy, and works for both axial (Regge-Wheeler) and polar (Zerilli) sectors. Our focus is on the ease of implementation with publicly available numerical tables, either as part of an existing evolution code or a post-processing step. Nevertheless, we also present a thorough theoretical discussion of asymptotic waveform evaluation and radiation boundary conditions, which need not be understood by a user of our methods. In particular, we identify (both in the time and frequency domains) analytical asymptotic waveform evaluation kernels, and describe their approximation by techniques developed by Alpert, Greengard, and Hagstrom. This paper also presents new results on the evaluation of far-field signals for the ordinary (acoustic) wave equa...
Schwarz waveform relaxation algorithm for heat equations with distributed delay
Directory of Open Access Journals (Sweden)
Wu Shu-Lin
2016-01-01
Full Text Available Heat equations with distributed delay are a class of mathematic models that has wide applications in many fields. Numerical computation plays an important role in the investigation of these equations, because the analytic solutions of partial differential equations with time delay are usually unavailable. On the other hand, duo to the delay property, numerical computation of these equations is time-consuming. To reduce the computation time, we analyze in this paper the Schwarz waveform relaxation algorithm with Robin transmission conditions. The Robin transmission conditions contain a free parameter, which has a significant effect on the convergence rate of the Schwarz waveform relaxation algorithm. Determining the Robin parameter is therefore one of the top-priority matters for the study of the Schwarz waveform relaxation algorithm. We provide new formula to fix the Robin parameter and we show numerically that the new Robin parameter is more efficient than the one proposed previously in the literature.
Classification of Pulse Waveforms Using Edit Distance with Real Penalty
Directory of Open Access Journals (Sweden)
Zhang Dongyu
2010-01-01
Full Text Available Abstract Advances in sensor and signal processing techniques have provided effective tools for quantitative research in traditional Chinese pulse diagnosis (TCPD. Because of the inevitable intraclass variation of pulse patterns, the automatic classification of pulse waveforms has remained a difficult problem. In this paper, by referring to the edit distance with real penalty (ERP and the recent progress in -nearest neighbors (KNN classifiers, we propose two novel ERP-based KNN classifiers. Taking advantage of the metric property of ERP, we first develop an ERP-induced inner product and a Gaussian ERP kernel, then embed them into difference-weighted KNN classifiers, and finally develop two novel classifiers for pulse waveform classification. The experimental results show that the proposed classifiers are effective for accurate classification of pulse waveform.
Model Waveform Accuracy Requirements for the $\\chi^2$ Discriminator
Lindblom, Lee
2016-01-01
This paper derives accuracy standards for model gravitational waveforms required to ensure proper use of the $\\chi^2$ discriminator test in gravitational wave (GW) data analysis. These standards are different from previously established requirements for detection and waveform parameter measurement based on signal-to-noise optimization. We present convenient formulae both for evaluating and interpreting the contribution of model errors to measured $\\chi^2$ values. Motivated by these formula, we also present an enhanced, complexified variant of the standard $\\chi^2$ statistic used in GW searches. While our results are not directly relevant to current searches (which use the $\\chi^2$ test only to veto signal candidates with extremely high $\\chi^2$ values), they could be useful in future GW searches and as figures of merit for model gravitational waveforms.
A 10 tesla table-top controlled waveform magnet.
Roy Choudhury, Aditya N; Venkataraman, V
2012-04-01
Controlled waveform magnets (CWMs) are a class of pulsed magnets whose pulse shape with time can be programmed by the user. With a CWM, the user gains control not only over the magnitude of the field but also over its rate of change. In this work we present a table-top CWM, driven by a capacitor bank, capable of producing virtually any user-shaped magnetic field waveform up to 10 tesla. Insulated gate bipolar transistor chips have been paralleled to form the high current switch and paralleled chips of SiC Schottky diodes form the crowbar diode module. Sample controlled waveforms including flat-tops up to 10 tesla and some triangular magnetic field pulses have been successfully generated for 10-20 ms with a ripple <1%.
Autocorrelation Properties of OFDM Timing Synchronization Waveforms Employing Pilot Subcarriers
Directory of Open Access Journals (Sweden)
Oktay Üreten
2009-01-01
Full Text Available We investigate the autocorrelation properties of timing synchronization waveforms that are generated by embedded frequency domain pilot tones in orthogonal frequency division multiplex (OFDM systems. The waveforms are composed by summing a selected number of OFDM subcarriers such that the autocorrelation function (ACF of the resulting time waveform has desirable sidelobe behavior. Analytical expressions for the periodic and aperiodic ACF sidelobe energy are derived. Sufficient conditions for minimum and maximum aperiodic ACF sidelobe energy for a given number of pilot tones are presented. Several useful properties of the pilot design problem, such as invariance under transformations and equivalence of complementary sets are demonstrated analytically. Pilot tone design discussion is expanded to the ACF sidelobe peak minimization problem by including various examples and simulation results obtained from a genetic search algorithm.
Autocorrelation Properties of OFDM Timing Synchronization Waveforms Employing Pilot Subcarriers
Directory of Open Access Journals (Sweden)
Taşcıoğlu Selçuk
2009-01-01
Full Text Available Abstract We investigate the autocorrelation properties of timing synchronization waveforms that are generated by embedded frequency domain pilot tones in orthogonal frequency division multiplex (OFDM systems. The waveforms are composed by summing a selected number of OFDM subcarriers such that the autocorrelation function (ACF of the resulting time waveform has desirable sidelobe behavior. Analytical expressions for the periodic and aperiodic ACF sidelobe energy are derived. Sufficient conditions for minimum and maximum aperiodic ACF sidelobe energy for a given number of pilot tones are presented. Several useful properties of the pilot design problem, such as invariance under transformations and equivalence of complementary sets are demonstrated analytically. Pilot tone design discussion is expanded to the ACF sidelobe peak minimization problem by including various examples and simulation results obtained from a genetic search algorithm.
Agile high resolution arbitrary waveform generator with jitterless frequency stepping
Reilly, Peter T. A.; Koizumi, Hideya
2010-05-11
Jitterless transition of the programmable clock waveform is generated employing a set of two coupled direct digital synthesis (DDS) circuits. The first phase accumulator in the first DDS circuit runs at least one cycle of a common reference clock for the DDS circuits ahead of the second phase accumulator in the second DDS circuit. As a phase transition through the beginning of a phase cycle is detected from the first phase accumulator, a first phase offset word and a second phase offset word for the first and second phase accumulators are calculated and loaded into the first and second DDS circuits. The programmable clock waveform is employed as a clock input for the RAM address controller. A well defined jitterless transition in frequency of the arbitrary waveform is provided which coincides with the beginning of the phase cycle of the DDS output signal from the second DDS circuit.
Generating Correlated QPSK Waveforms By Exploiting Real Gaussian Random Variables
Jardak, Seifallah
2012-11-01
The design of waveforms with specified auto- and cross-correlation properties has a number of applications in multiple-input multiple-output (MIMO) radar, one of them is the desired transmit beampattern design. In this work, an algorithm is proposed to generate quadrature phase shift- keying (QPSK) waveforms with required cross-correlation properties using real Gaussian random-variables (RV’s). This work can be considered as the extension of what was presented in [1] to generate BPSK waveforms. This work will be extended for the generation of correlated higher-order phase shift-keying (PSK) and quadrature amplitude modulation (QAM) schemes that can better approximate the desired beampattern.
Ultra-wideband noise radar based on optical waveform generation
Grodensky, Daniel; Kravitz, Daniel; Zadok, Avi
2012-06-01
A microwave-photonic, ultra-wideband (UWB) noise radar system is proposed and demonstrated. The system brings together photonic generation of UWB waveforms and fiber-optic distribution. The use of UWB noise provides high ranging resolution and better immunity to interception and jamming. Distribution over fibers allows for the separation the radar-operating personnel and equipment from the location of the front-end. The noise waveforms are generated using the amplified spontaneous emission that is associated with stimulated Brillouin scattering in a standard optical fiber, or with an erbium-doped fiber amplifier. Our experiments demonstrate a proof of concept for an integrated radar system, driven by optically generated UWB noise waveforms of more than 1 GHz bandwidth that are distributed over 10 km distance. The detection of concealed metallic object and the resolving of two targets with the anticipated ranging resolution are reported.
Multi-stage full waveform inversion strategy for 2D elastic VTI media
Oh, Ju-Won
2015-08-19
One of the most important issues in the multi-parametric full waveform inversion (FWI) is to find an optimal parameterization, which helps us recover the subsurface anisotropic parameters as well as seismic velocities, with minimal tradeoff. As a result, we analyze three different parameterizations for elastic VTI media in terms of the influence of the S-waves on the gradient direction for c13, the spatial coverage of gradient direction and the degree of trade-offs between the parameters. Based on the dependency results, we design a multi-stage elastic VTI FWI strategy to enhance both the spatial coverage of the FWI and the robustness to the trade-offs among the parameters as well as FWI for the c13 structure.
3D Multisource Full‐Waveform Inversion using Dynamic Random Phase Encoding
Boonyasiriwat, Chaiwoot
2010-10-17
We have developed a multisource full‐waveform inversion algorithm using a dynamic phase encoding strategy with dual‐randomization—both the position and polarity of simultaneous sources are randomized and changed every iteration. The dynamic dual‐randomization is used to promote the destructive interference of crosstalk noise resulting from blending a large number of common shot gathers into a supergather. We compare our multisource algorithm with various algorithms in a numerical experiment using the 3D SEG/EAGE overthrust model and show that our algorithm provides a higher‐quality velocity tomogram than the other methods that use only monorandomization. This suggests that increasing the degree of randomness in phase encoding should improve the quality of the inversion result.
An application of multiscale early arrival waveform inversion to shallow seismic data
Yu, Han
2014-01-01
We estimate the near surface velocity distribution by applying multiscale early arrival waveform inversion (MEWI) to shallow seismic land data. This data set is collected at Wadi Qudaid in western Saudi Arabia with the purpose of characterizing the shallow subsurface for its water storage and reuse potential. To enhance the accuracy of MEWI, we correct for the attenuation effects with an estimated factor Q, and also extract a natural source wavelet from the data. We then applied MEWI to invert the processed data for tomograms on different scales starting from a traveltime tomogram as our initial velocity model. Results suggest that, compared to traveltime tomography, MEWI can generate a more highly resolved velocity tomogram from shallow seismic data by inverting its low-frequency components on coarse grids and its high-frequency components on fine grids. The estimated water table in the MEWI tomogram is generally consistent with, but 9% deeper than, the traveltime tomogram, showing that the water storage in this wadi might be less than expected from the traveltime tomogram. We believe that the more accurate MEWI tomogram will make an economically important difference in assessing the storage potential of this wadi and wadis throughout the world. © 2014 European Association of Geoscientists & Engineers.
Sensitivity analysis for elastic full-waveform inversion in VTI media
Kamath, Nishant
2014-08-05
Multiparameter full-waveform inversion (FWI) is generally nonunique, and the results are strongly influenced by the geometry of the experiment and the type of recorded data. Studying the sensitivity of different subsets of data to the model parameters may help in choosing an optimal acquisition design, inversion workflow, and parameterization. Here, we derive the Fréchet kernel for FWI of multicomponent data from a 2D VTI (tranversely isotropic with a vertical symmetry axis) medium. The kernel is obtained by linearizing the elastic wave equation using the Born approximation and employing the asymptotic Green\\'s function. The amplitude of the kernel (‘radiation pattern’) yields the angle-dependent energy scattered by a perturbation in a certain model parameter. The perturbations are described in terms of the P- and S-wave vertical velocities and the P-wave normal-moveout and horizontal velocities. The background medium is assumed to be homogeneous and isotropic, which allows us to obtain simple expressions for the radiation patterns corresonding to all four velocities. These patterns help explain the FWI results for multicomponent transmission data generated for Gaussian anomalies in the Thomsen parameters inserted into a homogeneous VTI medium.
Research Note: Full-waveform inversion of the unwrapped phase of a model
Alkhalifah, Tariq Ali
2013-12-06
Reflections in seismic data induce serious non-linearity in the objective function of full- waveform inversion. Thus, without a good initial velocity model that can produce reflections within a half cycle of the frequency used in the inversion, convergence to a solution becomes difficult. As a result, we tend to invert for refracted events and damp reflections in data. Reflection induced non-linearity stems from cycle skipping between the imprint of the true model in observed data and the predicted model in synthesized data. Inverting for the phase of the model allows us to address this problem by avoiding the source of non-linearity, the phase wrapping phenomena. Most of the information related to the location (or depths) of interfaces is embedded in the phase component of a model, mainly influenced by the background model, while the velocity-contrast information (responsible for the reflection energy) is mainly embedded in the amplitude component. In combination with unwrapping the phase of data, which mitigates the non-linearity introduced by the source function, I develop a framework to invert for the unwrapped phase of a model, represented by the instantaneous depth, using the unwrapped phase of the data. The resulting gradient function provides a mechanism to non-linearly update the velocity model by applying mainly phase shifts to the model. In using the instantaneous depth as a model parameter, we keep track of the model properties unfazed by the wrapping phenomena. © 2013 European Association of Geoscientists & Engineers.
Maharramov, Musa
2014-01-01
We present a technique for reconstructing subsurface velocity model changes from time-lapse seismic survey data using full-waveform inversion (FWI). The technique is based on simultaneously inverting multiple survey vintages, with model difference regularization using the total variation (TV) seminorm. We compare the new TV-regularized time-lapse FWI with the $L_2$-regularized joint inversion proposed in our earlier work, using synthetic data sets that exhibit survey repeatability issues. The results demonstrate clear advantages of the proposed TV-regularized joint inversion over alternatives methods for recovering production-induced model changes that are due to both fluid substitution and geomechanical effects.
Design of output voltage waveform on magnetic encoder
Energy Technology Data Exchange (ETDEWEB)
Shi Yu E-mail: shiyu_aaa@163.com; Zhang Huaiwu; Jiang Xiangdong; Wen Qiye; Han Baoshan
2004-11-01
A novel design model based on slant multi-phase filter (SMPF) theory is presented. By the theory nth harmonic voltage (n=2nd, 3rd and 4th...(V)) can be reduced easily. Magnetic encoder with sinusoidal output voltage waveform has been developed and sinusoidal output waveform can be easily improved. The minimum of distortion factor was observed when the difference of slant phase is 2{pi}3. This result agrees with SMPF theory value {phi}=4.904 deg. (p=0.8 mm, l=3 mm, {delta}{theta}=2{pi}3]. This result can be widely used in magnetoresistive sensor fields.
Efficient 2d full waveform inversion using Fortran coarray
Ryu, Donghyun; Kim, ahreum; Ha, Wansoo
2016-04-01
We developed a time-domain seismic inversion program using the coarray feature of the Fortran 2008 standard to parallelize the algorithm. We converted a 2d acoustic parallel full waveform inversion program with Message Passing Interface (MPI) to a coarray program and examined performance of the two inversion programs. The results show that the speed of the waveform inversion program using the coarray is slightly faster than that of the MPI version. The standard coarray lacks features for collective communication; however, it can be improved in following standards since it is introduced recently. The parallel algorithm can be applied for 3D seismic data processing.
Krylov-subspace acceleration of time periodic waveform relaxation
Energy Technology Data Exchange (ETDEWEB)
Lumsdaine, A. [Univ. of Notre Dame, IN (United States)
1994-12-31
In this paper the author uses Krylov-subspace techniques to accelerate the convergence of waveform relaxation applied to solving systems of first order time periodic ordinary differential equations. He considers the problem in the frequency domain and presents frequency dependent waveform GMRES (FDWGMRES), a member of a new class of frequency dependent Krylov-subspace techniques. FDWGMRES exhibits many desirable properties, including finite termination independent of the number of timesteps and, for certain problems, a convergence rate which is bounded from above by the convergence rate of GMRES applied to the static matrix problem corresponding to the linear time-invariant ODE.
A Novel Memory Compress Algorithm for Arbitrary Waveform Generator
Institute of Scientific and Technical Information of China (English)
吕铁良; 仇玉林
2000-01-01
A memory compress algorithm for 12-bit Arbitrary Waveform Generator (AWG) is presented and optimized. It can compress waveform memory for a sinusoid to 16× 13hits with a Spurious-Free Dynamic Range (SFDR) 90.7dBc (1/1890 of uncompressed memory at the same SFDR) and to 8× 12bits with a SFDR 79dBc. Its hardware cost is six adders and two multipliers. Exploiting this memory compress technique makes it possible to build a high performance AWG on a chip.
A recipe for practical full-waveform inversion in orthorhombic anisotropy
Alkhalifah, Tariq Ali
2016-09-06
Multi parameter full waveform inversion (FWI) usually suffers from the inherent tradeoffin the multi parameter nature of the model space. In orthorhombic anisotropy, such tradeoffis magnified by the large number of parameters involved in representing the elastic or even the acoustic approximation of such a medium. However, using a new parameterization with distinctive scattering features, we can condition FWI to invert for the parameters the data are sensitive to at different stages, scales, and locations in the model. Specifically, with a combination made up of a velocity and particular dimensionless ratios of the elastic coefficients, the scattering potential of the anisotropic parameters have stationary scattering radiation patterns as a function of the type of anisotropy. With our new parametrization, the data is mainly sensitive to the scattering potential of 4 parameters: the horizontal velocity in the x direction, x, which provides scattering mainly near zero offset in the x vertical plane, εd, which is the ratio of the horizontal velocity squared in the x and x direction, and δ3 describing the anellipticity in the horizontal plane. Since, with this parametrization, the radiation pattern for the horizontal velocity and ε is azimuth independent, we can perform an initial VTI inversion for these two parameters, and then use the other two parameters to fit the azimuth variation in the data. This can be done at the reservoir level or any region of the model. Including the transmission from reflections, the migration velocity analysis (MVA) component, into the picture, the multi azimuth surface seismic data are mainly sensitive to the long wavelength components of uh, δ3, and εd through the diving waves, and η1, ηd, and δ3, in the transmission to or from reflectors (especially, in the presence of large offsets). They are also sensitive to the short wavelength component of uh and ε.
Waveform tomography of crustal structure in the south San Francisco Bay region
Pollitz, F.F.; Fletcher, J.P.
2005-01-01
We utilize a scattering-based seismic tomography technique to constrain crustal tructure around the southern San Francisco Bay region (SFBR). This technique is based on coupled traveling wave scattering theory, which has usually been applied to the interpretation of surface waves in large regional-scale studies. Using fully three-dimensional kernels, this technique is here applied to observed P, S, and surface waves of intermediate period (3-4 s dominant period) observed following eight selected regional events. We use a total of 73 seismograms recorded by a U.S. Geological Survey short-period seismic array in the western Santa Clara Valley, the Berkeley Digital Seismic Network, and the Northern California Seismic Network. Modifications of observed waveforms due to scattering from crustal structure include (positive or negative) amplification, delay, and generation of coda waves. The derived crustal structure explains many of the observed signals which cannot be explained with a simple layered structure. There is sufficient sensitivity to both deep and shallow crustal structure that even with the few sources employed in the present study, we obtain shallow velocity structure which is reasonably consistent with previous P wave tomography results. We find a depth-dependent lateral velocity contrast across the San Andreas fault (SAF), with higher velocities southwest of the SAF in the shallow crust and higher velocities northeast of the SAF in the midcrust. The method does not have the resolution to identify very slow sediment velocities in the upper approximately 3 km since the tomographic models are smooth at a vertical scale of about 5 km. Copyright 2005 by the American Geophysical Union.
Vos, Jaap Jan; Poterman, Marieke; Struys, Michel; Scheeren, Thomas; Kalmar, A.F.
2013-01-01
Background and Goal of Study: Dynamic preload variables derived from the arterial pressure waveform have been shown to accurately predict fluid responsiveness in mechanically ventilated patients. One of these variables, stroke volume variation (SVV), can also be obtained noninvasively by the finger
Quantitative flow and velocity measurements of pulsatile blood flow with 4D-DSA
Shaughnessy, Gabe; Hoffman, Carson; Schafer, Sebastian; Mistretta, Charles A.; Strother, Charles M.
2017-03-01
Time resolved 3D angiographic data from 4D DSA provides a unique environment to explore physical properties of blood flow. Utilizing the pulsatility of the contrast waveform, the Fourier components can be used to track the waveform motion through vessels. Areas of strong pulsatility are determined through the FFT power spectrum. Using this method, we find an accuracy from 4D-DSA flow measurements within 7.6% and 6.8% RMSE of ICA PCVIPR and phantom flow probe validation measurements, respectively. The availability of velocity and flow information with fast acquisition could provide a more quantitative approach to treatment planning and evaluation in interventional radiology.
Guitton, Antoine
2017-08-15
Choosing the right parameterization to describe a transversely isotropic medium with a vertical symmetry axis (VTI) allows us to match the scattering potential of these parameters to the available data in a way that avoids potential tradeoff and focus on the parameters to which the data are sensitive. For 2-D elastic full waveform inversion in VTI media of pressure components and for data with a reasonable range of offsets (as with those found in conventional streamer data acquisition systems), assuming that we have a kinematically accurate NMO velocity (vnmo) and anellipticity parameter η (or horizontal velocity, vh) obtained from tomographic methods, a parameterization in terms of horizontal velocity vh, η and ε is preferred to the more conventional parameterization in terms of vh, δ and ε. In the vh, η, ε parameterization and for reasonable scattering angles (<60o), ε acts as a “garbage collector” and absorbs most of the amplitude discrepancies; between modeled and observed data, more so when density ρ and shear-wave velocity vs are not inverted for (a standard practice with streamer data). On the contrary, in the vv, δ, ε parameterization, ε is mostly sensitive to large scattering angles, leaving vv exposed to strong leakages from ρ mainly. There assertions will be demonstrated on the synthetic Marmousi II as well as a North Sea OBC dataset, where inverting for the horizontal velocity rather than the vertical velocity yields more accurate models and migrated images.
Velocity selective optical pumping
Aminoff, C. G.; Pinard, M.
1982-01-01
We consider optical pumping with a quasi monochromatic tunable light beam, in the low intensity limit where a rate equation regime is obtained The velocity selective optical pumping (V.S.O.P.) introduces a correlation between atomic velocity and internal variables in the ground (or metastable) state. The aim of this article is to evaluate these atomic observables (orientation, alignment, population) as a function of velocity, using a phenomenological description of the relaxation effect of co...
High velocity collisions of nanoparticles
Johnson, Donald F.; Mattson, William D.
2017-01-01
Nanoparticles (NPs) are a unique class of material with highly functionalizable surfaces and exciting applications. With a large surface-to-volume ratio and potentially high surface tension, shocked nanoparticles might display unique materials behavior. Using density functional theory, we have simulated high-velocity NP collisions under a variety of conditions. NPs composed of diamond-C, cubic-BN, and diamond-Si were considered with particle sizes up to 3.5 nm diameter. Additional simulations involved NPs that were destabilized by incorporating internal strain. The initial spherical NP structures were carved out of bulk crystals while the NPs with internal strain were constructed as a dense core (compressive strain) encompassed by a thin shell (tensile strain). Both on-axis and off-axis collisions were simulated at 10 km/s relative velocity. The amount of internal strain was artificially increased by creating a dense inner core with bond lengths compressed up to 8%. Collision dynamics, shock propagation, and fragmentation will be analyzed, but the simulation are ongoing and results are not finalized. The effect of material properties, internal strain, and collision velocity will be discussed.
Thaler, Catherine D; Miyata, Haruhiko; Haimo, Leah T; Cardullo, Richard A
2013-12-01
Most animal sperm are quiescent in the male reproductive tract and become activated after mixing with accessory secretions from the male and/or female reproductive tract. Sperm from the mosquito Culex quinquefasciatus initiate flagellar motility after mixing with male accessory gland components, and the sperm flagellum displays three distinct motility patterns over time: a low amplitude, a long wavelength form (Wave A), a double waveform consisting of two superimposed waveforms over the length of the flagellum (Wave B), and finally, a single helical waveform that propels the sperm at high velocity (Wave C). This flagellar behavior is replicated by treating quiescent sperm with trypsin. When exposed to either broad spectrum or tyrosine kinase inhibitors, sperm activated by accessory gland secretions exhibited motility through Wave B but were unable to progress to Wave C. The MEK1/2 inhibitor UO126 and the ERK1/2 inhibitor FR180204 each blocked the transition from Wave B to Wave C, indicating a role for MAPK activity in the control of waveform and, accordingly, progressive movement. Furthermore, a MAPK substrate antibody stained the flagellum of activated sperm. In the absence of extracellular Ca(2+), a small fraction of sperm swam backwards, whereas most could not be activated by either accessory glands or trypsin and were immotile. However, the phosphatase inhibitor okadaic acid in the absence of extracellular Ca(2+) induced all sperm to swim backwards with a flagellar waveform similar to Wave A. These results indicate that flagellar waveform generation and direction of motility are controlled by protein phosphorylation and Ca(2+) levels, respectively.
Wang, Yi; Chevrot, Sébastien; Komatitsch, Dimitri; Monteiller, Vadim; Durochat, Clément
2016-04-01
Thanks to the deployment of permanent and temporary broadband arrays, coverage and data quality have dramatically improved in the last decade, especially for regional-scale studies. In addition, owing to the progress of high-performance resources and numerical simulation techniques, waveform inversion approaches nowadays become a viable alternative to classical asymptotic ray based tomographic approaches. Exploiting full waveforms in seismic tomography requires an efficient and precise method to solve the elastic wave equation in 3D inhomogeneous media. Since resolution of waveform inversion is limited by the seismic wavelength as well as the wavefield sampling density, it is crucial to exploit short-period teleseismic waves recorded by dense regional arrays. However, modeling the propagation of short-period body waves in heterogeneous media is still very challenging, even on the largest modern supercomputers. For this reason, we have developed a hybrid method that couples a global wave propagation method in a 1D Earth to a 3D spectral-element method in a regional domain. This hybrid method restricts the costly 3D computations to inside the regional domain, which dramatically decreases the computational cost, allows us to compute teleseismic wavefields down to 1s period, thus accounting for the complexities that affect the propagation of seismic waves in the regional domain. We present the first application of this new waveform inversion approach to broadband data coming from two dense transects deployed during the PYROPE experiment across the Pyrenees mountains. We obtain the first high-resolution lithospheric section of compressional and shear velocities across an orogenic belt. The tomographic model provides clear evidence for the under-thrusting of the thinned Iberian crust beneath the European plate and for the important role of rift-inherited mantle structures during the formation of the Pyrenees.
Sluyter, John D; Hughes, Alun D; Lowe, Andrew; Parker, Kim H; Camargo, Carlos A; Hametner, Bernhard; Wassertheurer, Siegfried; Scragg, Robert K R
2016-09-15
Comparing the relationships of antihypertensive medications with brachial blood pressure (BP) and aortic waveform parameters may help clinicians to predict the effect on the latter in brachial BP-based antihypertensive therapy. We aimed to make such comparisons with new waveform measures and a wider range of antihypertensive regimens than examined previously. Cross-sectional analysis of 2933 adults (61% male; aged 50-84years): 1637 on antihypertensive treatment and 1296 untreated hypertensives. Sixteen medicine regimens of up to 4 combinations of drugs from 6 antihypertensive classes were analysed. Aortic systolic BP, augmentation index (AIx), excess pressure integral (EPI), backward pressure amplitude (Pb), reflection index (RI) and pulse wave velocity (PWV) were calculated from aortic pressure waveforms derived from suprasystolic brachial measurement. Forest plots of single-drug class comparisons across regimens with the same number of drugs (for between 1- and 3-drug regimens) revealed that AIx, Pb, RI and/or loge(EPI) were higher (maximum difference=5.6%, 2.2mmHg, 0.0192 and 0.13 loge(mmHg⋅s), respectively) with the use of a beta-blocker compared with vasodilators and diuretics, despite no brachial systolic and diastolic BP differences. These differences were reduced (by 34-57%) or eliminated after adjustment for heart rate, and similar effects occurred when controlling for systolic ejection period or diastolic duration. Beta-blocker effects on brachial BP may overestimate effects on aortic waveform parameters. Compared to other antihypertensives, beta-blockers have weaker associations with wave reflection measures and EPI; this is predominantly due to influences on heart rate. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Sonar waveforms for reverberation rejection, part I: theory
Doist, Y.; Deruz, L.; Been, R.
2000-01-01
The influence of the waveform of the transmitted signal on the signal to reverberation ratio induced at the processing output of a moving sonar array is analysed on an theoretical basis. Three main classes of signals are analysed: wide band signals with a flat spectrum (for instance FM signals), con
Waveform Diversity and Design for Interoperating Radar Systems
2013-01-01
University Di Pisa Department Di Ingegneria Dell Informazione Elettronica, Informatica , Telecomunicazioni Via Girolamo Caruso 16 Pisa, Italy 56122...NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University Di Pisa Department Di Ingegneria Dell Informazione Elettronica, Informatica ...DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE ELETTRONICA, INFORMATICA , TELECOMUNICAZIONI WAVEFORM DIVERSITY AND DESIGN FOR INTEROPERATING
Categorisation of full waveform data provided by laser scanning devices
Ullrich, Andreas; Pfennigbauer, Martin
2011-11-01
In 2004, a laser scanner device for commercial airborne laser scanning applications, the RIEGL LMS-Q560, was introduced to the market, making use of a radical alternative approach to the traditional analogue signal detection and processing schemes found in LIDAR instruments so far: digitizing the echo signals received by the instrument for every laser pulse and analysing these echo signals off-line in a so-called full waveform analysis in order to retrieve almost all information contained in the echo signal using transparent algorithms adaptable to specific applications. In the field of laser scanning the somewhat unspecific term "full waveform data" has since been established. We attempt a categorisation of the different types of the full waveform data found in the market. We discuss the challenges in echo digitization and waveform analysis from an instrument designer's point of view and we will address the benefits to be gained by using this technique, especially with respect to the so-called multi-target capability of pulsed time-of-flight LIDAR instruments.
Augmented kludge waveforms for detecting extreme-mass-ratio inspirals
Chua, Alvin J. K.; Moore, Christopher J.; Gair, Jonathan R.
2017-08-01
The extreme-mass-ratio inspirals (EMRIs) of stellar-mass compact objects into massive black holes are an important class of source for the future space-based gravitational-wave detector LISA. Detecting signals from EMRIs will require waveform models that are both accurate and computationally efficient. In this paper, we present the latest implementation of an augmented analytic kludge (AAK) model, publicly available at https://github.com/alvincjk/EMRI_Kludge_Suite as part of an EMRI waveform software suite. This version of the AAK model has improved accuracy compared to its predecessors, with two-month waveform overlaps against a more accurate fiducial model exceeding 0.97 for a generic range of sources; it also generates waveforms 5-15 times faster than the fiducial model. The AAK model is well suited for scoping out data analysis issues in the upcoming round of mock LISA data challenges. A simple analytic argument shows that it might even be viable for detecting EMRIs with LISA through a semicoherent template bank method, while the use of the original analytic kludge in the same approach will result in around 90% fewer detections.
Synchronous Generator Model Parameter Estimation Based on Noisy Dynamic Waveforms
Berhausen, Sebastian; Paszek, Stefan
2016-01-01
In recent years, there have occurred system failures in many power systems all over the world. They have resulted in a lack of power supply to a large number of recipients. To minimize the risk of occurrence of power failures, it is necessary to perform multivariate investigations, including simulations, of power system operating conditions. To conduct reliable simulations, the current base of parameters of the models of generating units, containing the models of synchronous generators, is necessary. In the paper, there is presented a method for parameter estimation of a synchronous generator nonlinear model based on the analysis of selected transient waveforms caused by introducing a disturbance (in the form of a pseudorandom signal) in the generator voltage regulation channel. The parameter estimation was performed by minimizing the objective function defined as a mean square error for deviations between the measurement waveforms and the waveforms calculated based on the generator mathematical model. A hybrid algorithm was used for the minimization of the objective function. In the paper, there is described a filter system used for filtering the noisy measurement waveforms. The calculation results of the model of a 44 kW synchronous generator installed on a laboratory stand of the Institute of Electrical Engineering and Computer Science of the Silesian University of Technology are also given. The presented estimation method can be successfully applied to parameter estimation of different models of high-power synchronous generators operating in a power system.
Notched spectrum: from probing waveforms to receive filters
Jiang, Yi; Gianelli, Christopher D.
2013-05-01
The increasing demand for wireless data services and communications is expanding the frequency footprint of both civilian and military wireless networks, and hence encroaches upon spectrum traditionally reserved for radar systems. To maximize spectral efficiency, it is desirable for a modern radar system to use waveforms with the ability to fit into tightly controlled spectral regions, which requires the formation of nulls with required notching levels on prescribed frequency stop-bands. Additionally, the waveform should posses a low peak-to-average ratio (PAR), and have good auto-correlation performance. In this work, we propose a novel method for the design of such a waveform using alternating convex optimization. The core module of the proposed algorithm is a fast Fourier transform, which makes the algorithm quite efficient and can handle waveform designs with up to 105 samples. Moreover, our algorithm can achieve a flexible tradeoff between PAR and reduced pass band ripple. A simple application in synthetic aperture radar is considered to highlight the performance of the design algorithm.
A marked point process for modeling lidar waveforms.
Mallet, Clément; Lafarge, Florent; Roux, Michel; Soergel, Uwe; Bretar, Frédéric; Heipke, Christian
2010-12-01
Lidar waveforms are 1-D signals representing a train of echoes caused by reflections at different targets. Modeling these echoes with the appropriate parametric function is useful to retrieve information about the physical characteristics of the targets. This paper presents a new probabilistic model based upon a marked point process which reconstructs the echoes from recorded discrete waveforms as a sequence of parametric curves. Such an approach allows to fit each mode of a waveform with the most suitable function and to deal with both, symmetric and asymmetric, echoes. The model takes into account a data term, which measures the coherence between the models and the waveforms, and a regularization term, which introduces prior knowledge on the reconstructed signal. The exploration of the associated configuration space is performed by a reversible jump Markov chain Monte Carlo (RJMCMC) sampler coupled with simulated annealing. Experiments with different kinds of lidar signals, especially from urban scenes, show the high potential of the proposed approach. To further demonstrate the advantages of the suggested method, actual laser scans are classified and the results are reported.
Multisource waveform inversion of marine streamer data using normalized wavefield
Choi, Yun Seok
2013-09-01
Multisource full-waveform inversion based on the L1- and L2-norm objective functions cannot be applied to marine streamer data because it does not take into account the unmatched acquisition geometries between the observed and modeled data. To apply multisource full-waveform inversion to marine streamer data, we construct the L1- and L2-norm objective functions using the normalized wavefield. The new residual seismograms obtained from the L1- and L2-norms using the normalized wavefield mitigate the problem of unmatched acquisition geometries, which enables multisource full-waveform inversion to work with marine streamer data. In the new approaches using the normalized wavefield, we used the back-propagation algorithm based on the adjoint-state technique to efficiently calculate the gradients of the objective functions. Numerical examples showed that multisource full-waveform inversion using the normalized wavefield yields much better convergence for marine streamer data than conventional approaches. © 2013 Society of Exploration Geophysicists.
Applying the Moment Distance Framework to LiDAR Waveforms
Salas, E. L.; Aguilar-Amuchastegui, N.; Henebry, G. M.
2010-12-01
In the past decade or so, there have only been limited approaches formulated for the analysis of waveform LiDAR data. We illustrate how the Moment Distance (MD) framework can characterize the shape of the LiDAR waveforms using simple, computationally fast, geometric operations. We assess the relationship of the MD metrics to some key waveform landmarks - such as locations of peaks, power of returns, and pseudo-heights - using LVIS datasets acquired over a tropical forest in La Selva, Costa Rica in 1998 and 2005. We also apply the MD framework to 2003 LVIS data from Howland Forest, Maine. We also explore the effects of noise on the MD Index (MDI). Our results reveal that the MDI can capture important dynamics in canopy structure. Movement in the location of the peaks is detected by shifts in the MDI. Because this new approach responds to waveform shape, it is more sensitive to changes of location of peak returns than to the power of the return. Results also suggest a positive relationship between the MDI and the canopy pseudo-height.
Structural similarity regularization scheme for multiparameter seismic full waveform inversion
Li, M.; Liang, L.; Abubakar, A.; Van den Berg, P.M.
2013-01-01
We introduce a new regularization scheme for multiparameter seismic full-waveform inversion (FWI). Using this scheme, we can constrain spatial variations of parameters which are having a weak sensitivity with the one that having a good sensitivity to the measurement, assuming that these parameters h
On the potential of OFDM enhancements as 5G waveforms
DEFF Research Database (Denmark)
Berardinelli, Gilberto; Pajukoski, Kari; Lähetkangas, Eeva
2014-01-01
Division Multiplexing (OFDM) and its recently proposed enhancements as 5G waveforms, mainly focusing on their capability to cope with our requirements. Significant focus is given to the novel zero-tail paradigm, which allows boosting the OFDM flexibility while circumventing demerits such as poor spectral...
Coseismic and postseismic velocity changes measured by repeating earthquakes
Schaff, David P.; Beroza, Gregory C.
2004-10-01
Repeating earthquakes that rupture approximately the same fault patch and have nearly identical waveforms are a useful tool for measuring temporal changes in wave propagation in the Earth's crust. Since source and path effects are common to all earthquakes in a repeating earthquake sequence (multiplet), differences in their waveforms can be attributed to changes in the characteristics of the medium. We have identified over 20 multiplets containing between 5 and 40 repeating events in the aftershock zones of the 1989 Loma Prieta and 1984 Morgan Hill, California, earthquakes. Postmain shock events reveal delays of phases in the early S wave coda of as much as 0.2 s relative to premain shock events. The delay amounts to a path-averaged coseismic velocity decrease of about 1.5% for P waves and 3.5% for S waves. Since most of the multiplets are aftershocks and follow Omori's law, we have excellent temporal sampling in the immediate postmain shock period. We find that the amplitude of the velocity decrease decays logarithmically in time following the main shock. In some cases it returns to the premain shock values, while in others it does not. Similar results are obtained for the Morgan Hill main shock. Because the fractional change in S wave velocity is greater than the fractional change in P wave velocity, it suggests that the opening or connection of fluid-filled fractures is the underlying cause. The magnitude of the velocity change implies that low effective pressures are present in the source region of the velocity change. Our results suggest that the changes are predominantly near the stations and shallow, but we cannot exclude the possibility that changes occur at greater depth as well. If the variations are shallow, we may be detecting the lingering effects of nonlinearity during main shock strong ground motion. If the variations are deep, it suggests that pore pressures at seismogenic depths are high, which would likely play a key role in the earthquake process.
Analysis of LFM-waveform Libraries for Cognitive Tracking Maneuvering Targets
Directory of Open Access Journals (Sweden)
Wang Hongyan
2016-01-01
Full Text Available Based on the idea of the waveform agility in cognitive radars，the waveform libraries for maneuvering target tracking are discussed. LFM-waveform libraries are designed according to different combinations of chirp parameters and FrFT rotation angles. By applying the interact multiple model (IMM algorithm in tracking maneuvering targets, transmitted waveform is called real time from the LFM-waveform libraries. The waveforms are selected from the library according to the criterion of maximum mutual information between the current state of knowledge of the model and the measurement. Simulation results show that waveform library containing certain amount LFM-waveforms can improve the performance of cognitive tracking radar.
GLAS/ICESat L1B Global Waveform-based Range Corrections Data V033
National Aeronautics and Space Administration — The level 1B waveform parameterization data will contain waveform-based range corrections and surface characteristics at the full 40 per second resolution. Data...
Non-sinusoidal waveform effects on heat transfer performance in pulsating pipe flow
Directory of Open Access Journals (Sweden)
R. Roslan
2016-12-01
Full Text Available In the present paper, an unsteady motion of fluid flow in a pulsating pipe is studied to determine the effect of non-sinusoidal waveforms on the heat transfer performance. Three non-sinusoidal waveforms, namely sawtooth, square and triangular waveforms have been considered. Explicit analytical expressions for a periodic laminar flow describing the flow and heat transfer at small and large times with sawtooth and square pressure waveforms have been derived using Bessel transform technique. The heat transfer performance of periodic flow at sawtooth and square pressure waveforms has been compared with the published result for triangular waveform [1]. The temperature performance for a triangular waveform pressure is very different from the sawtooth and square pressure waveforms.
Test Waveform Applications for JPL STRS Operating Environment
Lux, James P.; Peters, Kenneth J.; Taylor, Gregory H.; Lang, Minh; Stern, Ryan A.; Duncan, Courtney B.
2013-01-01
This software demonstrates use of the JPL Space Telecommunications Radio System (STRS) Operating Environment (OE), tests APIs (application programming interfaces) presented by JPL STRS OE, and allows for basic testing of the underlying hardware platform. This software uses the JPL STRS Operating Environment ["JPL Space Tele com - munications Rad io System Operating Environment,"(NPO-4776) NASA Tech Briefs, commercial edition, Vol. 37, No. 1 (January 2013), p. 47] to interact with the JPL-SDR Software Defined Radio developed for the CoNNeCT (COmmunications, Navigation, and Networking rEconfigurable Testbed) Project as part of the SCaN Testbed installed on the International Space Station (ISS). These are the first applications that are compliant with the new NASA STRS Architecture Standard. Several example waveform applications are provided to demonstrate use of the JPL STRS OE for the JPL-SDR platform used for the CoNNeCT Project. The waveforms provide a simple digitizer and playback capability for the SBand RF slice, and a simple digitizer for the GPS slice [CoNNeCT Global Positioning System RF Module, (NPO-47764) NASA Tech Briefs, commercial edition, Vol. 36, No. 3 (March 2012), p. 36]. These waveforms may be used for hardware test, as well as for on-orbit or laboratory checkout. Additional example waveforms implement SpaceWire and timer modules, which can be used for time transfer and demonstration of communication between the two Xilinx FPGAs in the JPLSDR. The waveforms are also compatible with ground-based use of the JPL STRS OE on radio breadboards and Linux.
DEFF Research Database (Denmark)
2000-01-01
Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...
DEFF Research Database (Denmark)
2000-01-01
Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...
Butterfly velocity bound and reverse isoperimetric inequality
Feng, Xing-Hui; Lü, H.
2017-03-01
We study the butterfly effect of the AdS planar black holes in the framework of Einstein's general relativity. We find that the butterfly velocities can be expressed by a universal formula vB2=T S /(2 VthP ). In doing so, we come upon a near-horizon geometrical formula for the thermodynamical volume Vth . We verify the volume formula by examining a variety of AdS black holes. We also show that the volume formula implies that the conjectured reverse isoperimetric inequality follows straightforwardly from the null-energy condition, for static AdS black holes. The inequality is thus related to an upper bound of the butterfly velocities.
Effects of waveform model systematics on the interpretation of GW150914
2016-01-01
Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions, notably to neglect sub-dominant waveform harmonic modes and orbital eccentricity. Furthermore, while the models are calibrated to agree with waveforms obtained by full numerical solutions of Einstein's e...
Assessment of waveform control method for mitigation of low-frequency current ripple
Zhu, GR; Wang, HR; Xiao, CY; Kang, Y.; Tan, SC
2013-01-01
Waveform control method can mitigate such a low-frequency ripple current being drawn from the DC distribution while the DC distribution system delivers AC power to the load through a differential inverter. Assessment on the waveform control method and comparative study between with and without waveform control method are proposed in this paper1. Experimental results are provided to explain the operation and showcase the performance between with and without the waveform control method. Results...
Joint Filter and Waveform Design for Radar STAP in Signal Dependent Interference
Setlur, Pawan; Rangaswamy, Muralidhar
2015-01-01
Waveform design is a pivotal component of the fully adaptive radar construct. In this paper we consider waveform design for radar space time adaptive processing (STAP), accounting for the waveform dependence of the clutter correlation matrix. Due to this dependence, in general, the joint problem of receiver filter optimization and radar waveform design becomes an intractable, non-convex optimization problem, Nevertheless, it is however shown to be individually convex either in the filter or i...
Electrical penetration graph (EPG) monitoring has been used extensively to elucidate mechanisms of resistance in plants to insect herbivores with piercing-sucking mouthparts, or stylets. Characterization of waveforms produced by insects during stylet probing is essential to the application of this ...
Ocasio, W. C.; Rigney, D. R.; Clark, K. P.; Mark, R. G.; Goldberger, A. L. (Principal Investigator)
1993-01-01
We describe the theory and computer implementation of a newly-derived mathematical model for analyzing the shape of blood pressure waveforms. Input to the program consists of an ECG signal, plus a single continuous channel of peripheral blood pressure, which is often obtained invasively from an indwelling catheter during intensive-care monitoring or non-invasively from a tonometer. Output from the program includes a set of parameter estimates, made for every heart beat. Parameters of the model can be interpreted in terms of the capacitance of large arteries, the capacitance of peripheral arteries, the inertance of blood flow, the peripheral resistance, and arterial pressure due to basal vascular tone. Aortic flow due to contraction of the left ventricle is represented by a forcing function in the form of a descending ramp, the area under which represents the stroke volume. Differential equations describing the model are solved by the method of Laplace transforms, permitting rapid parameter estimation by the Levenberg-Marquardt algorithm. Parameter estimates and their confidence intervals are given in six examples, which are chosen to represent a variety of pressure waveforms that are observed during intensive-care monitoring. The examples demonstrate that some of the parameters may fluctuate markedly from beat to beat. Our program will find application in projects that are intended to correlate the details of the blood pressure waveform with other physiological variables, pathological conditions, and the effects of interventions.
Circuiti ad impulsi e digitali volume di aggiornamento
Millman, Jacob
1967-01-01
Questo terzo volume "Circuiti ad impulsi e digitali" contiene la traduzione di parte degli argomenti trattati nel volume "Pulse, digital and switching waveforms" degli autori J. Millman e H. Taub edito dalla Mc Graw-Hill Book Company nel 1965. Gli autori nella presentazione del volume inglese dichiarano di averlo originariamente previsto come una seconda edizione di "Pulse and digital circuits" di cui i primi due volumi delle Edizioni Bizzarri sono la traduzione.
Regularized Laplace-Fourier-Domain Full Waveform Inversion Using a Weighted l 2 Objective Function
Jun, Hyunggu; Kwon, Jungmin; Shin, Changsoo; Zhou, Hongbo; Cogan, Mike
2016-09-01
Full waveform inversion (FWI) can be applied to obtain an accurate velocity model that contains important geophysical and geological information. FWI suffers from the local minimum problem when the starting model is not sufficiently close to the true model. Therefore, an accurate macroscale velocity model is essential for successful FWI, and Laplace-Fourier-domain FWI is appropriate for obtaining such a velocity model. However, conventional Laplace-Fourier-domain FWI remains an ill-posed and ill-conditioned problem, meaning that small errors in the data can result in large differences in the inverted model. This approach also suffers from certain limitations related to the logarithmic objective function. To overcome the limitations of conventional Laplace-Fourier-domain FWI, we introduce a weighted l 2 objective function, instead of the logarithmic objective function, as the data-domain objective function, and we also introduce two different model-domain regularizations: first-order Tikhonov regularization and prior model regularization. The weighting matrix for the data-domain objective function is constructed to suitably enhance the far-offset information. Tikhonov regularization smoothes the gradient, and prior model regularization allows reliable prior information to be taken into account. Two hyperparameters are obtained through trial and error and used to control the trade-off and achieve an appropriate balance between the data-domain and model-domain gradients. The application of the proposed regularizations facilitates finding a unique solution via FWI, and the weighted l 2 objective function ensures a more reasonable residual, thereby improving the stability of the gradient calculation. Numerical tests performed using the Marmousi synthetic dataset show that the use of the weighted l 2 objective function and the model-domain regularizations significantly improves the Laplace-Fourier-domain FWI. Because the Laplace-Fourier-domain FWI is improved, the
Regularized Laplace-Fourier-Domain Full Waveform Inversion Using a Weighted l 2 Objective Function
Jun, Hyunggu; Kwon, Jungmin; Shin, Changsoo; Zhou, Hongbo; Cogan, Mike
2017-03-01
Full waveform inversion (FWI) can be applied to obtain an accurate velocity model that contains important geophysical and geological information. FWI suffers from the local minimum problem when the starting model is not sufficiently close to the true model. Therefore, an accurate macroscale velocity model is essential for successful FWI, and Laplace-Fourier-domain FWI is appropriate for obtaining such a velocity model. However, conventional Laplace-Fourier-domain FWI remains an ill-posed and ill-conditioned problem, meaning that small errors in the data can result in large differences in the inverted model. This approach also suffers from certain limitations related to the logarithmic objective function. To overcome the limitations of conventional Laplace-Fourier-domain FWI, we introduce a weighted l 2 objective function, instead of the logarithmic objective function, as the data-domain objective function, and we also introduce two different model-domain regularizations: first-order Tikhonov regularization and prior model regularization. The weighting matrix for the data-domain objective function is constructed to suitably enhance the far-offset information. Tikhonov regularization smoothes the gradient, and prior model regularization allows reliable prior information to be taken into account. Two hyperparameters are obtained through trial and error and used to control the trade-off and achieve an appropriate balance between the data-domain and model-domain gradients. The application of the proposed regularizations facilitates finding a unique solution via FWI, and the weighted l 2 objective function ensures a more reasonable residual, thereby improving the stability of the gradient calculation. Numerical tests performed using the Marmousi synthetic dataset show that the use of the weighted l 2 objective function and the model-domain regularizations significantly improves the Laplace-Fourier-domain FWI. Because the Laplace-Fourier-domain FWI is improved, the
A new optimization approach for source-encoding full-waveform inversion
Moghaddam, P.P.; Keers, H.; Herrmann, F.J.; Mulder, W.A.
2013-01-01
Waveform inversion is the method of choice for determining a highly heterogeneous subsurface structure. However, conventional waveform inversion requires that the wavefield for each source is computed separately. This makes it very expensive for realistic 3D seismic surveys. Source-encoding waveform
A new optimization approach for source-encoding full-waveform inversion
Moghaddam, P.P.; Keers, H.; Herrmann, F.J.; Mulder, W.A.
2013-01-01
Waveform inversion is the method of choice for determining a highly heterogeneous subsurface structure. However, conventional waveform inversion requires that the wavefield for each source is computed separately. This makes it very expensive for realistic 3D seismic surveys. Source-encoding waveform
Schumacher, F.; Friederich, W.
2015-12-01
We present the modularized software package ASKI which is a flexible and extendable toolbox for seismic full waveform inversion (FWI) as well as sensitivity or resolution analysis operating on the sensitivity matrix. It utilizes established wave propagation codes for solving the forward problem and offers an alternative to the monolithic, unflexible and hard-to-modify codes that have typically been written for solving inverse problems. It is available under the GPL at www.rub.de/aski. The Gauss-Newton FWI method for 3D-heterogeneous elastic earth models is based on waveform sensitivity kernels and can be applied to inverse problems at various spatial scales in both Cartesian and spherical geometries. The kernels are derived in the frequency domain from Born scattering theory as the Fréchet derivatives of linearized full waveform data functionals, quantifying the influence of elastic earth model parameters on the particular waveform data values. As an important innovation, we keep two independent spatial descriptions of the earth model - one for solving the forward problem and one representing the inverted model updates. Thereby we account for the independent needs of spatial model resolution of forward and inverse problem, respectively. Due to pre-integration of the kernels over the (in general much coarser) inversion grid, storage requirements for the sensitivity kernels are dramatically reduced.ASKI can be flexibly extended to other forward codes by providing it with specific interface routines that contain knowledge about forward code-specific file formats and auxiliary information provided by the new forward code. In order to sustain flexibility, the ASKI tools must communicate via file output/input, thus large storage capacities need to be accessible in a convenient way. Storing the complete sensitivity matrix to file, however, permits the scientist full manual control over each step in a customized procedure of sensitivity/resolution analysis and full
Super-resolution techniques for velocity estimation using UWB random noise radar signals
Dawood, Muhammad; Quraishi, Nafish; Alejos, Ana V.
2011-06-01
The Doppler spread pertaining to the ultrawideband (UWB) radar signals from moving target is directly proportional to the bandwidth of the transmitted signal and the target velocity. Using typical FFT-based methods, the estimation of true velocities pertaining to two targets moving with relatively close velocities within a radar range bin is problematic. In this paper, we extend the Multiple Signal Classification (MUSIC) algorithm to resolve targets moving velocities closer to each other within a given range bin for UWB random noise radar waveforms. Simulated and experimental results are compared for various target velocities using both narrowband (200MHz) and wideband (1GHz) noise radar signals, clearly establishing the unbiased and unambiguous velocity estimations using the MUSIC algorithm.
Velocities of Thwaites and Land glaciers
Lucchitta, B. K.; Mullins, Kevin F.; Ferrigno, J. G.
1993-01-01
Changes in the area of volume of polar ice sheets are intricately linked to changes in global climate and may severely impact the densely populated coastal regions on Earth. An ice sheet's velocity is a critical parameter, which, together with ice thickness, allows the determination of discharge rates. Using moderate-resolution satellite images such as Landsat, the velocity of floating ice can be measured quickly and relatively inexpensively by tracing crevasse patterns on shelves and ice tongues. Errors in measured velocities are as little as 0.02 km per year, if the following criteria are met: (1) the time interval is longer than 10 years; (2) the velocity is higher than 0.5 km per year; (3) the coregistration points are well dispersed and enclose the area to be measured; and (4) the image pair includes a Landsat 4 or 5 image. The fewer of these conditions that are met, the less accurate the results become; but even for poor conditions, the velocities are generally reliable to near 0.1 km per year. We are in the process of obtaining velocities of all ice shelves and ice tongues along the Bakutis and Ruppert coasts, wherever suitable crevasse patterns exist. So far, we have obtained velocities for the Thwaites and Land glacier tongues.
D'Alessandro, Antonino; Mangano, Giorgio; D'Anna, Giuseppe; Luzio, Dario
2013-09-01
In 2009 December, the OBSLab-INGV (Istituto Nazionale di Geofisica e Vulcanologia) deployed an Ocean Bottom Seismometer with Hydrophone (OBS/H) near the epicentral area of the main shock of the Palermo seismic sequence of 2002. The monitoring activity had a total duration of about 8 months. During this experiment, the OBS/H recorded 247 very local microearthquakes, whose local magnitude is between -0.5 and 2.5 and TS - TP delay time between 0.2 and 5 s, almost all of which were undetected by the Italian National Seismic Network. This local microseismicity has been analysed using an innovative clustering technique that exploits the similarity between the waveforms generated by different events. The clustering technique implemented, based on hierarchical agglomerative algorithms, nearest neighbour technique and dendrogram representation, allowed us to identify nine distinct multiplets characterized by a high degree of similarity between the waveforms. The microevents were located through an improved single-station location (SSL) technique based on the polarization analysis of the 3C signals and on the estimation of the TS - TP time. In the new SSL technique, an unbiased covariance matrix was defined and a ray tracer-based determination of the epicentral distance and hypocentral depth was proposed. All the multiplets were generated by events with hypocentres that were very close to each other. However, not all the identified clusters are also clustered in the time-magnitude domain. It was also observed that some multiplets have clouds of hypocentres overlapping each other. These clusters, indistinguishable without the application of a waveforms clustering technique, show differences in the waveforms that must be attributed to differences in the focal mechanisms which generated the waveforms. The local seismic events recorded are typical of a seismicity generated by a volume characterized by a highly complex fracturing pattern and by an important role in the dynamics
Chang, K.; Chi, W.; Gung, Y.; Chiu, H.
2010-12-01
We inverted Taiwan strong motion waveforms for the source mechanisms of the 22 October 1999 earthquake sequence to investigate seismogenic structure of Meishan fault system in Taiwan. In 1906, an earthquake of magnitude 7.1 shocked the Meishan area, and inflicted severe damages. Similar event might cause even greater damages due to the modern dense population in this region. However, detailed seismogenic structures in this region are still under debate, particularly whether the fault system contains right-lateral or left-lateral strike-slip fault is still not clear. The 22 October 1999 earthquake sequence in this region was recorded by a very dense strong-motion network, thus provided an unprecedented opportunity to study regional seismogenic structures. Here we modeled the waveforms using a moment tensor inverse procedure developed by Douglas Dreger of the Berkeley Seismological Laboratory. We have tested different 1D velocity models and found Rau and Wu’s model performs well in deriving reliable moment tensor solutions. We have compared our results with available, but limited, moment tensor solutions derived from broadband seismic waveforms for this sequence and found that it is possible to derive reliable moment tensor solutions using strong motion waveforms, at least in this case. We found an NE-SW trending fault system, which are consistent with shallow structures imaged by published seismic profiles. The derived moment tensor catalog sheds lights on the seismogenic structures at depth in this region, which can be useful for seismic hazard studies.
Modelling Sensor and Target effects on LiDAR Waveforms
Rosette, J.; North, P. R.; Rubio, J.; Cook, B. D.; Suárez, J.
2010-12-01
The aim of this research is to explore the influence of sensor characteristics and interactions with vegetation and terrain properties on the estimation of vegetation parameters from LiDAR waveforms. This is carried out using waveform simulations produced by the FLIGHT radiative transfer model which is based on Monte Carlo simulation of photon transport (North, 1996; North et al., 2010). The opportunities for vegetation analysis that are offered by LiDAR modelling are also demonstrated by other authors e.g. Sun and Ranson, 2000; Ni-Meister et al., 2001. Simulations from the FLIGHT model were driven using reflectance and transmittance properties collected from the Howland Research Forest, Maine, USA in 2003 together with a tree list for a 200m x 150m area. This was generated using field measurements of location, species and diameter at breast height. Tree height and crown dimensions of individual trees were calculated using relationships established with a competition index determined for this site. Waveforms obtained by the Laser Vegetation Imaging Sensor (LVIS) were used as validation of simulations. This provided a base from which factors such as slope, laser incidence angle and pulse width could be varied. This has enabled the effect of instrument design and laser interactions with different surface characteristics to be tested. As such, waveform simulation is relevant for the development of future satellite LiDAR sensors, such as NASA’s forthcoming DESDynI mission (NASA, 2010), which aim to improve capabilities of vegetation parameter estimation. ACKNOWLEDGMENTS We would like to thank scientists at the Biospheric Sciences Branch of NASA Goddard Space Flight Center, in particular to Jon Ranson and Bryan Blair. This work forms part of research funded by the NASA DESDynI project and the UK Natural Environment Research Council (NE/F021437/1). REFERENCES NASA, 2010, DESDynI: Deformation, Ecosystem Structure and Dynamics of Ice. http
The shaping of a national ignition campaign pulsed waveform
Energy Technology Data Exchange (ETDEWEB)
Brunton, Gordon, E-mail: brunton2@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Erbert, Gaylen; Browning, Don; Tse, Eddy [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)
2012-12-15
Highlights: Black-Right-Pointing-Pointer NIF pulse is generated using an electro-optic modulator to vary the intensity of light. Black-Right-Pointing-Pointer Electrical impulse generators, each with a 300 ps pulse Gaussian signal are utilized. Black-Right-Pointing-Pointer Adjusting the impulse amplitude for 140 impulses, produces a pulsed waveform. Black-Right-Pointing-Pointer System auto shapes 48 waveforms with to 275:1 contrast ratio with 3% absolute error. - Abstract: The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is a stadium-sized facility containing a 192 beam, 1.8 MJ, 500 TW ultraviolet laser system used for inertial confinement fusion research. For each experimental shot, NIF must deliver a precise amount of laser power on the target for successful and efficient target ignition, and these characteristics vary depending on the physics of the particular campaign. The precise temporal shape, energy and timing characteristics of a pulsed waveform target interaction are key components in meeting the experimental goals. Each NIF pulse is generated in the Master Oscillator Room (MOR) using an electro-optic modulator to vary the intensity of light in response to an electrical input. The electrical drive signal to the modulator is produced using a unique, high-performance arbitrary waveform generator (AWG). This AWG sums the output of 140 electrical impulse generators, each producing a 300 ps pulse width Gaussian signal separated in time by 250 ps. By adjusting the amplitudes and summing the 140 impulses, a pulsed waveform can be sculpted from a seed 45 ns square pulse. Using software algorithms written for NIF's Integrated Computer Control System (ICCS), the system is capable of autonomously shaping 48 unique experimental pulsed waveforms for each shot that have demonstrated up to 275:1 contrast ratio with {+-}3% absolute error averaged over any 2 ns interval, meeting the stringent pulse requirements needed to achieve ignition
Swenson, Jennifer Lyn
We use broadband regional waveform modeling of earthquakes in the central Andes to determine seismic properties of the Altiplano crust. Properties of the shear-coupled P-wavetrain (SPL ) from intermediate-depth events provide particularly important information about the structure of the crust. We utilize broadband seismic data recorded at the BANJO and SEDA stations, and synthetic seismograms computed with a reflectivity technique to study the sensitivity of SPL to crustal and upper mantle parameters at regional distances. We find that the long-period SPL-wavetrain is most sensitive to crustal and mantle Poisson's ratios, average crustal velocity, and crustal thickness. A comprehensive grid search method developed to investigate these four parameters suggests that although trade-offs exist between model parameters, models of the Altiplano which provide the best fit between the data and synthetic seismograms are characterized by low Poisson's ratios, low average crustal velocity and thick crust. We apply our grid search technique and sensitivity analysis results to model the full waveforms from 6 intermediate-depth and 2 shallow-focus earthquakes recorded at regional distances by BANJO and SEDA stations. Results suggest that the Altiplano crust is much thicker (55--65 km) and slower (5.75--6.25 km/s) than global average values. Low crustal and mantle Poisson's ratios together with the lack of evidence for a high-velocity lower crust suggests a bulk felsic crustal composition, resulting in an overall weak crust. Our results favor a model of crustal thickening involving large-scale tectonic shortening of a predominantly felsic crust. To better understand the mechanics of earthquake rupture along the South American subduction zone, we have analyzed broadband teleseismic P-waves and utilize single- and multi-station inversion techniques to constrain source characteristics for the 12 November 1996 Peru subduction zone earthquake. Aftershock locations, intensity reports
Inverting reflections using full-waveform inversion with inaccurate starting models
AlTheyab, Abdullah
2015-08-19
We present a method for inverting seismic reflections using full-waveform inversion (FWI) with inaccurate starting models. For a layered medium, near-offset reflections (with zero angle of incidence) are unlikely to be cycle-skipped regardless of the low-wavenumber velocity error in the initial models. Therefore, we use them as a starting point for FWI, and the subsurface velocity model is then updated during the FWI iterations using reflection wavepaths from varying offsets that are not cycle-skipped. To enhance low-wavenumber updates and accelerate the convergence, we take several passes through the non-linear Gauss-Seidel iterations, where we invert traces from a narrow range of near offsets and finally end at the far offsets. Every pass is followed by applying smoothing to the cumulative slowness update. The smoothing is strong at the early stages and relaxed at later iterations to allow for a gradual reconstruction of the subsurface model in a multiscale manner. Applications to synthetic and field data, starting from inaccurate models, show significant low-wavenumber updates and flattening of common-image gathers after many iterations.
Evaluation of Multi-Scale Full Waveform Inversion with Marine Vertical Cable Data
Institute of Scientific and Technical Information of China (English)
Aifei Bian; Zhihui Zou; Hua-Wei Zhou; Jin Zhang
2015-01-01
Seismic illumination plays an important role in subsurface imaging. A better image can be expected either through optimizing acquisition geometry or introducing more advanced seismic mi-gration and/or tomographic inversion methods involving illumination compensation. Vertical cable survey is a potential replacement of traditional marine seismic survey for its flexibility and data quality. Conventional vertical cable data processing requires separation of primaries and multiples before mi-gration. We proposed to use multi-scale full waveform inversion (FWI) to improve illumination cover-age of vertical cable survey. A deep water velocity model is built to test the capability of multi-scale FWI in detecting low velocity anomalies below seabed. Synthetic results show that multi-scale FWI is an effective model building tool in deep-water exploration. Geometry optimization through target ori-ented illumination analysis and multi-scale FWI may help to mitigate the risks of vertical cable survey. The combination of multi-scale FWI, low-frequency data and multi-vertical-cable acquisition system may provide both high resolution and high fidelity subsurface models.
Adaptive OFDM Radar Waveform Design for Improved Micro-Doppler Estimation
Energy Technology Data Exchange (ETDEWEB)
Sen, Satyabrata [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Engineering Science Advanced Research, Computer Science and Mathematics Division
2014-07-01
Here we analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a rotating target having multiple scattering centers. The use of a frequency-diverse OFDM signal enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. We characterize the accuracy of micro-Doppler frequency estimation by computing the Cramer-Rao bound (CRB) on the angular-velocity estimate of the target. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to the OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations with respect to the signal-to-noise ratios, number of temporal samples, and number of OFDM subcarriers. We also analysed numerically the improvement in estimation accuracy due to the adaptive waveform design. A grid-based maximum likelihood estimation technique is applied to evaluate the corresponding mean-squared error performance.
Zhang, Xiao-bo
2017-06-01
The gradient preconditioning approach based on seismic wave energy can effectively avoid the huge storage consumption in the gradient preconditioning algorithms based on Hessian matrices in time-domain full waveform inversion (FWI), but the accuracy is affected by the energy of reflected waves when strong reflectors are present in velocity model. To address this problem, we propose a gradient preconditioning method, which scales the gradient based on the energy of the “approximated transmitted wavefield” simulated by the nonreflecting acoustic wave equation. The method does not require computing or storing the Hessian matrix or its inverse. Furthermore, it can effectively eliminate the effects caused by geometric diffusion and non-uniformity illumination on gradient. The results of model experiments confirm that the time-domain FWI using the gradient preconditioning based on transmitted waves energy can achieve higher inversion precision for high-velocity body and the deep strata below when compared with using the gradient preconditioning based on seismic waves energy.
Post-Newtonian factorized multipolar waveforms for spinning, non-precessing black-hole binaries
Pan, Yi; Fujita, Ryuichi; Racine, Etienne; Tagoshi, Hideyuki
2010-01-01
We generalize the factorized resummation of multipolar waveforms introduced by Damour, Iyer and Nagar to spinning black holes. For a nonspinning test-particle spiraling a Kerr black hole in the equatorial plane, we find that factorized multipolar amplitudes which replace the residual relativistic amplitude f_{l m} with its l-th root, \\rho_{l m} = f_{l m}^{1/l}, agree quite well with the numerical amplitudes up to the Kerr-spin value q \\leq 0.95 for orbital velocities v \\leq 0.4. The numerical amplitudes are computed solving the Teukolsky equation with a spectral code. The agreement for prograde orbits and large spin values of the Kerr black hole can be further improved at high velocities by properly factoring out the lower-order post-Newtonian contributions in \\rho_{l m}. The resummation procedure results in a better and systematic agreement between numerical and analytical amplitudes (and energy fluxes) than standard Taylor-expanded post-Newtonian approximants. This is particularly true for higher-order mode...
High-frequency chest compression: effect of the third generation compression waveform.
Milla, Carlos E; Hansen, Leland G; Weber, Adam; Warwick, Warren J
2004-01-01
High-frequency chest compression (HFCC) therapy has become the prevailing form of airway clearance for patients with cystic fibrosis (CF) in the United States. The original square waveform was replaced in 1995 with a sine waveform without published evidence of an equality of effectiveness. The recent development of a triangle waveform for HFCC provided the opportunity to compare the functional and therapeutic effects of different waveforms. Clinical testing was done in patients at home with therapy times recorded with all sputum collected in preweighed sealable vials. The eight study patients with CF were regular users of a sine waveform device. They produced sputum consistently and were clinically stable. They used their optimum frequencies for therapy for each waveform and, for one week for each waveform, collected all sputum during their twice-daily timed HFCC therapies. After collection, these vials were reweighed, desiccated, and reweighed to calculate wet and dry weights of sputum per minute of therapy time. Frequency associated vest pressures transmitted to the mouth, and induced airflows at the mouth were measured in healthy volunteers. The pressure waveforms produced in the vest were, in shape, faithfully demonstrable at the mouth. In the healthy subject the transmission occurred in 2 ms and was attenuated to about 75% of the vest pressure for the triangle waveform and 60% for the sine waveform. All patients produced more sputum with the triangle waveform than with the sine waveform. The mean increase was 20%+ range of 4% to 41%. P value was HFCC should investigate the other effects of the sine and triangle waveforms, as well as the neglected square waveform, on mucus clearance and determine the best frequencies for each waveform, disease, and patient.
Khaniani, Hassan
boundary condition of the wave equation is set up along reflection surfaces. Hence, the surface integral Kirchhoff approximation is used as a mathematical framework instead of the volume integral of the Born approximation. In addition, I study the feasibility of iterative coupling of ray theory with the Kirchhoff approximation for inversion. For the amplitude considerations, the direct relationship between the scattering potential of the Born approximation with the reflectivity function of the asymptotic Kirchhoff approximation for elastic waves is used. Therefore, I use the linearized Zoeppritz approximation of Aki and Richards (1980) for computation of the forward modeling and migration operators as well as gradient function from Amplitude vs Offset (AVO) inversion. The multiparameter elastic inversion approach is applicable to all types of reflected wavefields such as P-to-P, P-to-S, S-to-S and S-to-P. Traveltime estimation of forward modeling and migration/inversion operators are based on the DSR equation. All operators involved in inversion, including the background model for DSR and AVO are updated at each iteration. The migration/inversion procedure maps the mode converted waves to the traveltime of incident waves which fixes the registration problem of events that travel from source to scatter point. The inversion of the reflected P-to-P and P-to-S synthetic and field data are provided for the numerical examples. This approach is applicable for complex structures however, to estimate the traveltime of scatterpoints, ray tracing can be added to the algorithm. For such a medium, the scatterpoint traveltime approximations from the PSTM, is compared to the PSDM approach using numerical analysis of ray- and FDTD-based modeling. In part of this thesis, I further improve the conventional velocity analysis of Common Scatter Point (CSP) gathers by including the tilt effects. I show that travel time response of scatter points beneath a dipping interface experiences an
Video Measurement of the Muzzle Velocity of a Potato Gun
Jasperson, Christopher; Pollman, Anthony
2011-01-01
Using first principles, a theoretical equation for the maximum and actual muzzle velocities for a pneumatic cannon was recently derived. For a fixed barrel length, this equation suggests that the muzzle velocity can be enhanced by maximizing the product of the initial pressure and the volume of the propellant gas and decreasing the projectile…
Video Measurement of the Muzzle Velocity of a Potato Gun
Jasperson, Christopher; Pollman, Anthony
2011-01-01
Using first principles, a theoretical equation for the maximum and actual muzzle velocities for a pneumatic cannon was recently derived. For a fixed barrel length, this equation suggests that the muzzle velocity can be enhanced by maximizing the product of the initial pressure and the volume of the propellant gas and decreasing the projectile…
Angle-domain Migration Velocity Analysis using Wave-equation Reflection Traveltime Inversion
Zhang, Sanzong
2012-11-04
The main difficulty with an iterative waveform inversion is that it tends to get stuck in a local minima associated with the waveform misfit function. This is because the waveform misfit function is highly non-linear with respect to changes in the velocity model. To reduce this nonlinearity, we present a reflection traveltime tomography method based on the wave equation which enjoys a more quasi-linear relationship between the model and the data. A local crosscorrelation of the windowed downgoing direct wave and the upgoing reflection wave at the image point yields the lag time that maximizes the correlation. This lag time represents the reflection traveltime residual that is back-projected into the earth model to update the velocity in the same way as wave-equation transmission traveltime inversion. The residual movemout analysis in the angle-domain common image gathers provides a robust estimate of the depth residual which is converted to the reflection traveltime residual for the velocity inversion. We present numerical examples to demonstrate its efficiency in inverting seismic data for complex velocity model.
Bai, Huaiyong; Wang, Zhimin; Zhang, Luyu; Chen, Jinxiang; Zhang, Guohui
2016-12-01
A method for measuring the electron drift velocity in working gas is proposed. Based on the cathode and the anode signal waveforms of the Frisch-grid ionization chamber, the electron drift velocity is extracted. With this method, the electron drift velocities in Ar + 10% CH4, Ar + 3.5% CO2 and Kr + 2.7% CO2 gases have been measured and the results are compared with the existing measurements and the simulating results. Using this method, the electron drift velocity can be monitored throughout the experiment of charged particle without bothering the measurement of other parameters, such as the energy and orientation.
Superluminal Recession Velocities
Davis, T M; Davis, Tamara M.; Lineweaver, Charles H.
2000-01-01
Hubble's Law, v=HD (recession velocity is proportional to distance), is a theoretical result derived from the Friedmann-Robertson-Walker metric. v=HD applies at least as far as the particle horizon and in principle for all distances. Thus, galaxies with distances greater than D=c/H are receding from us with velocities greater than the speed of light and superluminal recession is a fundamental part of the general relativistic description of the expanding universe. This apparent contradiction of special relativity (SR) is often mistakenly remedied by converting redshift to velocity using SR. Here we show that galaxies with recession velocities faster than the speed of light are observable and that in all viable cosmological models, galaxies above a redshift of three are receding superluminally.
Effects of output waveforms on penetration for Nd: YAG laser welding
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
By using a Nd: YAG laser welding system devised for transmitting continuous, rectangular and pulsed waveforms, comprehensive and deep investigation is focused on the effects of several parameters of rectangular waveform and pulsed output wave superimposed on a rectangular waveform on the penetration depth of weld. Research results indicate that the average power, duty cycle, frequency and peak power of rectangular wave affect the weld penetration depth to different extent. Results of experiments and analysis also indicate that the pulse delay time, pulse width and the power ratio of pulse to rectangular waveform seriously influence the penetration when the pulsed wave is superimposed on a rectangular waveform.
Signal waveform detection with statistical automaton for internet and web service streaming.
Tseng, Kuo-Kun; Ji, Yuzhu; Liu, Yiming; Huang, Nai-Lun; Zeng, Fufu; Lin, Fang-Ying
2014-01-01
In recent years, many approaches have been suggested for Internet and web streaming detection. In this paper, we propose an approach to signal waveform detection for Internet and web streaming, with novel statistical automatons. The system records network connections over a period of time to form a signal waveform and compute suspicious characteristics of the waveform. Network streaming according to these selected waveform features by our newly designed Aho-Corasick (AC) automatons can be classified. We developed two versions, that is, basic AC and advanced AC-histogram waveform automata, and conducted comprehensive experimentation. The results confirm that our approach is feasible and suitable for deployment.
Signal Waveform Detection with Statistical Automaton for Internet and Web Service Streaming
Directory of Open Access Journals (Sweden)
Kuo-Kun Tseng
2014-01-01
Full Text Available In recent years, many approaches have been suggested for Internet and web streaming detection. In this paper, we propose an approach to signal waveform detection for Internet and web streaming, with novel statistical automatons. The system records network connections over a period of time to form a signal waveform and compute suspicious characteristics of the waveform. Network streaming according to these selected waveform features by our newly designed Aho-Corasick (AC automatons can be classified. We developed two versions, that is, basic AC and advanced AC-histogram waveform automata, and conducted comprehensive experimentation. The results confirm that our approach is feasible and suitable for deployment.
Perotti, Jose; Voska, Ned (Technical Monitor)
2002-01-01
This presentation provides an overview of the development of new hurricane wind sensor (Extreme Velocity Wind Sensor) for the Kennedy Space Center (KSC) which is designed to withstand winds of up to three hundred miles an hour. The proposed Extreme Velocity Wind Sensor contains no moveable components that would be exposed to extreme wind conditions. Topics covered include: need for new hurricane wind sensor, conceptual design, software applications, computational fluid dynamic simulations of design concept, preliminary performance tests, and project status.
Peng, Z.; Ben-Zion, Y.; Michael, A. J.
2001-12-01
Waveform modeling of seismic fault zone (FZ) trapped waves has the potential for providing a high-resolution imaging of seismic velocities, seismic attenuation, FZ width, and structural continuity at depth. From a digital waveform data set generated by 238 aftershocks of the 1992 Landers earthquake [William Lee, per. com., '99], we identified 60 events with good candidate trapped waves. Each event was recorded by 33 three-component, short-period (2 Hz), L-22 seismometers, 22 of which on a line crossing the surface rupture zone of the mainshock. Locations of 102 events out of the 238 aftershocks are given in the catalog of Richards-Dinger and Shearer [JGR, '00]. These include 16 events generating candidate trapped waves. A plane-wave fitting technique is applied to estimate the back-azimuth angle of the unlocated events that produce candidate trapped waves. The source-receiver distance for these events is estimated from the S - P travel time. Of the 60 candidate trapped waves, about 75% are generated by events with locations close to the FZ, while the reminder are likely produced by events at considerable distance from the fault. The latter observation is compatible with 3D numerical calculations of Igel et al. [Pageoph, '01]. The FZ waveforms with candidate trapped waves are modeled with a genetic inversion algorithm (GIA) that maximizes the correlation between observed and synthetic waveforms [Michael and Ben-Zion, ms. in preparation, '01]. The synthetic seismograms are generated with a two-dimensional analytical solution for a scalar wavefield in a layered vertical FZ between two quarter-spaces [Ben-Zion and Aki, BSSA,'90; Ben-Zion, JGR, '98]. Our previous results showed that the GIA is able to provide very good fits for Landers FZ waveforms with a model consisting of a single uniform FZ layer in a half space. However, it is possible to get equally good fits for a wide range of parameters. This is due to significant trade-offs among FZ width, propagation distance
Yang, Pengliang; Brossier, Romain; Métivier, Ludovic; Virieux, Jean
2016-07-01
In this paper we study 3D multiparameter full waveform inversion (FWI) in viscoelastic media based on the generalized Maxwell/Zener body (GMB/GZB) including arbitrary number of attenuation mechanisms. We present a frequency-domain energy analysis to establish the stability condition of a full anisotropic viscoelastic system, according to zero-valued boundary condition and the elastic-viscoelastic correspondence principle: the real-valued stiffness matrix becomes a complex-valued one in Fourier domain when seismic attenuation is taken into account. We develop a least-squares optimization approach to linearly relate the quality factor with the anelastic coefficients by estimating a set of constants which are independent of the spatial coordinates, which supplies an explicit incorporation of the parameter Q in the general viscoelastic wave equation. By introducing the Lagrangian multipliers into the matrix expression of the wave equation with implicit time integration, we build a systematic formulation of multiparameter full waveform inversion for full anisotropic viscoelastic wave equation, while the equivalent form of the state and adjoint equation with explicit time integration is available to be resolved efficiently. In particular, this formulation lays the foundation for the inversion of the parameter Q in the time domain with full anisotropic viscoelastic properties. In the 3D isotropic viscoelastic settings, the anelastic coefficients and the quality factors using bulk and shear moduli parameterization can be related to the counterparts using P- and S- velocity. Gradients with respect to any other parameter of interest can be found by chain rule. Pioneering numerical validations as well as the real applications of this most generic framework will be carried out to disclose the potential of viscoelastic FWI when adequate high performance computing resources and the field data are available.
Enhancement of the Signal-to-Noise Ratio in Sonic Logging Waveforms by Seismic Interferometry
Aldawood, Ali
2012-04-01
Sonic logs are essential tools for reliably identifying interval velocities which, in turn, are used in many seismic processes. One problem that arises, while logging, is irregularities due to washout zones along the borehole surfaces that scatters the transmitted energy and hence weakens the signal recorded at the receivers. To alleviate this problem, I have extended the theory of super-virtual refraction interferometry to enhance the signal-to-noise ratio (SNR) sonic waveforms. Tests on synthetic and real data show noticeable signal-to-noise ratio (SNR) enhancements of refracted P-wave arrivals in the sonic waveforms. The theory of super-virtual interferometric stacking is composed of two redatuming steps followed by a stacking procedure. The first redatuming procedure is of correlation type, where traces are correlated together to get virtual traces with the sources datumed to the refractor. The second datuming step is of convolution type, where traces are convolved together to dedatum the sources back to their original positions. The stacking procedure following each step enhances the signal to noise ratio of the refracted P-wave first arrivals. Datuming with correlation and convolution of traces introduces severe artifacts denoted as correlation artifacts in super-virtual data. To overcome this problem, I replace the datuming with correlation step by datuming with deconvolution. Although the former datuming method is more robust, the latter one reduces the artifacts significantly. Moreover, deconvolution can be a noise amplifier which is why a regularization term is utilized, rendering the datuming with deconvolution more stable. Tests of datuming with deconvolution instead of correlation with synthetic and real data examples show significant reduction of these artifacts. This is especially true when compared with the conventional way of applying the super-virtual refraction interferometry method.
A method of waveform design based on mutual information
Institute of Scientific and Technical Information of China (English)
Bo JIU; Hongwei LIU; Liya LI; Shunjun WU
2009-01-01
A novel method called the general waterfilling, which is suitable when clutter is not negligible, is proposed to solve the waveform design problem of broadband radar for the recognition of multiple extended targets. The uncertainty of the target's radar signatures is decreased via maximizing the mutual information between a random extended target and the received signal. Then, the general water-filling method is employed to the waveform design problem for multiple extended targets identification to increase the separability of multiple targets. Experimental results evaluated the efficiency of the proposed method. Compared to chirp signal and water-filling signal,our method improves the classification rates and even performs better at low signal-to-interference-plus-noise ratio (SINR).
An electro-optic waveform interconnect based on quantum interference
Qin, Li-Guo; Gong, Shang-Qing
2016-01-01
The ability to modulate an optical field via an electric field is regarded as a key function of electro-optic interconnects, which are used in optical communications and information processing systems. One of the main required devices for such interconnects is the electro-optic modulator (EOM). Current EOM based on the electro-optic effect and the electro-absorption effect often is bulky and power inefficient due to the weak electro-optic properties of its constituent materials. Here we propose a new mechanism to produce an arbitrary-waveform EOM based on the quantum interference, in which both the real and imaginary parts of the susceptibility are engineered coherently with the superhigh efficiency. Based on this EOM, a waveform interconnect from the voltage to the modulated optical absorption is realised. We expect that such a new type of electro-optic interconnect will have a broad range of applications including the optical communications and network.
Software Communication Architecture Implementation and Its Waveform Application
Institute of Scientific and Technical Information of China (English)
SUN Pei-gang; ZHAO Hai; WANG Ting-chang; FAN Jian-hua
2006-01-01
This paper attempts to do a research on the development of software defined radio(SDR) based on software communication architecture(SCA). Firstly, SCA is studied and a whole reference model of SCA3.0 core framework (CF)is realized; Secondly, an application-specific FM3TR waveform is implemented on the platform of common software based on the reference model; Thirdly, from the point of view of real-time performance and software reuse, tests and validations are made on the above realized CF reference model and FM3TR waveform. As a result, the SCA-compliant SDR has favorable interoperability and software portability and can satisfy the real-time performance requirements which are not too rigorous.
TOF Spectroscopy measurement with waveform Digitizer at TMSR Photoneutron Source
Liu, Longxiang; Ma, Yugang; Cao, Xiguang; Cai, Xiangzhou; Chen, Jingen; Zhang, Guilin; Han, Jianlong; Zhang, Guogiang; Hu, Jifeng; Wang, Xiaohe
2015-01-01
The Photo-Neutron Source(PNS,phase 1), is an electron linear accelerator (linac) based pulsed neutron facility, combined with TOF technique, was constructed for nuclear data measurement of Thorium Molten Salt Reactor(TMSR) in Shanghai Institute of Applied Physics(SINAP) at JiaDing campus. The TOF detector signal, with the arrive time, pulse shape and pulse hight information, was recorded by a waveform digitizer. Through the pulse-shape discrimination(PSD) between neutrons and gamma-rays and time of Gamma Flash and Neutron signal analyse, the neutron TOF spectrum was deduced with this simple electronics design, and a new DAQ system based on waveform digitizer was used in this test experiment.
Image-domain full waveform inversion: Field data example
Zhang, Sanzong
2014-08-05
The main difficulty with the data-domain full waveform inversion (FWI) is that it tends to get stuck in the local minima associated with the waveform misfit function. This is the result of cycle skipping which degrades the low-wavenumber update in the absence of low-frequencies and long-offset data. An image-domain objective function is defined as the normed difference between the predicted and observed common image gathers (CIGs) in the subsurface offset domain. This new objective function is not constrained by cycle skipping at the far subsurface offsets. To test the effectiveness of this method, we apply it to marine data recorded in the Gulf of Mexico. Results show that image-domain FWI is less sensitive to the initial model and the absence of low-frequency data compared with conventional FWI. The liability, however, is that it is almost an order of magnitude more expensive than standard FWI.
Transient sodium current at subthreshold voltages: activation by EPSP waveforms.
Carter, Brett C; Giessel, Andrew J; Sabatini, Bernardo L; Bean, Bruce P
2012-09-20
Tetrodotoxin (TTX)-sensitive sodium channels carry large transient currents during action potentials and also "persistent" sodium current, a noninactivating TTX-sensitive current present at subthreshold voltages. We examined gating of subthreshold sodium current in dissociated cerebellar Purkinje neurons and hippocampal CA1 neurons, studied at 37°C with near-physiological ionic conditions. Unexpectedly, in both cell types small voltage steps at subthreshold voltages activated a substantial component of transient sodium current as well as persistent current. Subthreshold EPSP-like waveforms also activated a large component of transient sodium current, but IPSP-like waveforms engaged primarily persistent sodium current with only a small additional transient component. Activation of transient as well as persistent sodium current at subthreshold voltages produces amplification of EPSPs that is sensitive to the rate of depolarization and can help account for the dependence of spike threshold on depolarization rate, as previously observed in vivo.
A versatile waveform generator for testing neuroelectric signal processors.
Kohn, A F
1989-08-01
A multi-channel waveform generator was designed for testing neuroelectric signal processors. Smooth transient signals that resemble action potentials or evoked potentials are generated by a second order switched capacitor filter excited by brief rectangular pulses. The choice of an integrated circuit switched capacitor filter simplified the design by circumventing some of the disadvantages of conventional active filters. The waveform generator is versatile, with several signal parameters being independently adjustable from front panel controls: duration, waveshape, latency, amplitude and signal-to-noise ratio. The generator has been used for testing evoked potential acquisition and processing systems, for evaluating the effects of analog filters on evoked potentials and for testing systems designed to detect and classify trains of multi-unit action potentials.
Leveraging waveform complexity for confident detection of gravitational waves
Kanner, Jonah B; Cornish, Neil; Millhouse, Meg; Xhakaj, Enia; Salemi, Francesco; Drago, Marco; Vedovato, Gabriele; Klimenko, Sergey
2016-01-01
The recent completion of Advanced LIGO suggests that gravitational waves (GWs) may soon be directly observed. Past searches for gravitational-wave transients have been impacted by transient noise artifacts, known as glitches, introduced into LIGO data due to instrumental and environmental effects. In this work, we explore how waveform complexity, instead of signal-to-noise ratio, can be used to rank event candidates and distinguish short duration astrophysical signals from glitches. We test this framework using a new hierarchical pipeline that directly compares the Bayesian evidence of explicit signal and glitch models. The hierarchical pipeline is shown to have strong performance, and in particular, allows high-confidence detections of a range of waveforms at realistic signal-to-noise ratio with a two detector network.
Metering error quantification under voltage and current waveform distortion
Wang, Tao; Wang, Jia; Xie, Zhi; Zhang, Ran
2017-09-01
With integration of more and more renewable energies and distortion loads into power grid, the voltage and current waveform distortion results in metering error in the smart meters. Because of the negative effects on the metering accuracy and fairness, it is an important subject to study energy metering combined error. In this paper, after the comparing between metering theoretical value and real recorded value under different meter modes for linear and nonlinear loads, a quantification method of metering mode error is proposed under waveform distortion. Based on the metering and time-division multiplier principles, a quantification method of metering accuracy error is proposed also. Analyzing the mode error and accuracy error, a comprehensive error analysis method is presented which is suitable for new energy and nonlinear loads. The proposed method has been proved by simulation.
Waveform relaxation for the computational homogenization of multiscale magnetoquasistatic problems
Niyonzima, I.; Geuzaine, C.; Schöps, S.
2016-12-01
This paper proposes the application of the waveform relaxation method to the homogenization of multiscale magnetoquasistatic problems. In the monolithic heterogeneous multiscale method, the nonlinear macroscale problem is solved using the Newton-Raphson scheme. The resolution of many mesoscale problems per Gauß point allows to compute the homogenized constitutive law and its derivative by finite differences. In the proposed approach, the macroscale problem and the mesoscale problems are weakly coupled and solved separately using the finite element method on time intervals for several waveform relaxation iterations. The exchange of information between both problems is still carried out using the heterogeneous multiscale method. However, the partial derivatives can now be evaluated exactly by solving only one mesoscale problem per Gauß point.
Analytic gravitational waveforms for generic precessing compact binaries
Chatziioannou, Katerina; Cornish, Neil; Yunes, Nicolas
2016-01-01
Binary systems of two compact objects circularize and spiral toward each other via the emission of gravitational waves. The coupling of the spins of each object with the orbital angular momentum causes the orbital plane to precess, which leads to modulation of the gravitational wave signal. Until now, generating frequency-domain waveforms for fully precessing systems for use in gravitational wave data analysis meant numerically integrating the equations of motion, then Fourier transforming the result, which is very computationally intensive for systems that complete hundreds or thousands of cycles in the sensitive band of a detector. Previously, analytic solutions were only available for certain special cases or for simplified models. Here we describe the construction of closed-form, frequency-domain waveforms for fully-precessing, quasi-circular binary inspirals.
Optimal control of photoelectron emission by realistic waveforms
Solanpää, Janne; Räsänen, Esa
2016-01-01
Recent experimental techniques in multicolor waveform synthesis allow the temporal shaping of strong femtosecond laser pulses with applications in the control of quantum mechanical processes in atoms, molecules, and nanostructures. Prediction of the shapes of the optimal waveforms can be done computationally using quantum optimal control theory (QOCT). In this work we bring QOCT to experimental feasibility by providing an optimal control scheme with realistic pulse representation. We apply the technique to optimal control of above-threshold photoelectron emission from a one-dimensional hydrogen atom. By mixing different spectral channels and thus lowering the intensity requirements for individual channels, the resulting optimal pulses can extend the cutoff energies by at least up to 50% and bring up the electron yield by several orders of magnitude. Insights into the electron dynamics for optimized photoelectron emission are obtained with a semiclassical two-step model.
Leveraging waveform complexity for confident detection of gravitational waves
Kanner, Jonah B.; Littenberg, Tyson B.; Cornish, Neil; Millhouse, Meg; Xhakaj, Enia; Salemi, Francesco; Drago, Marco; Vedovato, Gabriele; Klimenko, Sergey
2016-01-01
The recent completion of Advanced LIGO suggests that gravitational waves may soon be directly observed. Past searches for gravitational-wave transients have been impacted by transient noise artifacts, known as glitches, introduced into LIGO data due to instrumental and environmental effects. In this work, we explore how waveform complexity, instead of signal-to-noise ratio, can be used to rank event candidates and distinguish short duration astrophysical signals from glitches. We test this framework using a new hierarchical pipeline that directly compares the Bayesian evidence of explicit signal and glitch models. The hierarchical pipeline is shown to perform well and, in particular, to allow high-confidence detections of a range of waveforms at a realistic signal-to-noise ratio with a two-detector network.
Analysis of Chaotic Waveforms for Application to Active Sonar Systems
1993-06-01
Noise-Reduced Signal. Figure 4-2. Noise Reduction Power Spectra : (a) Power Spectrum of Lorenz Waveform; (b) Gaussian Noise; (c) Signal Plus Noise; and (d...dimension, theoretic entropy and Lyapunov exponent, are also described for completeness even though they are not used in this study. 2.5.1 Correlation...For each lical center, a data covariance matrix is formed using the nearest neighbors. Singular value decomposition ( SVD ) is then applied to the matrix
MURI: Adaptive Waveform Design for Full Spectral Dominance
2011-03-11
response of a uniform linear array 3 ( ULA ) with BIC. We derived the maximum likelihood estimates (MLEs) of the DOAs and computed the Cramér-Rao bound (CRB...Elnour, 2006-2007 IEEE Antennas and Propagation Society Graduate Fellowship award. (Advisor: Danilo Erricolo) • Murat Akcakaya, Best Student Paper...Award (first place) at the 2010 Waveform Diversity & Design Conference. (Co-author: Arye Nehorai) • Murat Akcakaya, co-author, Best Student Paper
Optimal storage and retrieval of single-photon waveforms.
Zhou, Shuyu; Zhang, Shanchao; Liu, Chang; Chen, J F; Wen, Jianming; Loy, M M T; Wong, G K L; Du, Shengwang
2012-10-22
We report an experimental demonstration of optimal storage and retrieval of heralded single-photon wave packets using electromagnetically induced transparency (EIT) in cold atoms at a high optical depth. We obtain an optimal storage efficiency of (49 ± 3)% for single-photon waveforms with a temporal likeness of 96%. Our result brings the EIT quantum light-matter interface closer to practical quantum information applications.