WorldWideScience

Sample records for volume supernova search

  1. Revisiting the Lick Observatory Supernova Search Volume-Limited Sample: Updated Classifications and Revised Stripped-envelope Supernova Fractions

    CERN Document Server

    Shivvers, Isaac; Zheng, Weikang; Filippenko, Alexei V; Silverman, Jeffrey M; Liu, Yuqian; Matheson, Thomas; Pastorello, Andrea; Graur, Or; Foley, Ryan J; Chornock, Ryan; Smith, Nathan; Leaman, Jesse; Benetti, Stefano

    2016-01-01

    We re-examine the classifications of supernovae (SNe) presented in the Lick Observatory Supernova Search (LOSS) volume-limited sample with a focus on the stripped-envelope SNe. The LOSS volumetric sample, presented by Leaman et al. (2011) and Li et al. (2011b), was calibrated to provide meaningful measurements of SN rates in the local universe; the results presented therein continue to be used for comparisons to theoretical and modeling efforts. Many of the objects from the LOSS sample were originally classified based upon only a small subset of the data now available, and recent studies have both updated some subtype distinctions and improved our ability to perform robust classifications, especially for stripped-envelope SNe. We re-examine the spectroscopic classifications of all events in the LOSS volumetric sample (180 SNe and SN impostors) and update them if necessary. We discuss the populations of rare objects in our sample including broad-lined Type Ic SNe, Ca-rich SNe, SN 1987A-like events (we identify...

  2. Automated search for supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Kare, J.T.

    1984-11-15

    This thesis describes the design, development, and testing of a search system for supernovae, based on the use of current computer and detector technology. This search uses a computer-controlled telescope and charge coupled device (CCD) detector to collect images of hundreds of galaxies per night of observation, and a dedicated minicomputer to process these images in real time. The system is now collecting test images of up to several hundred fields per night, with a sensitivity corresponding to a limiting magnitude (visual) of 17. At full speed and sensitivity, the search will examine some 6000 galaxies every three nights, with a limiting magnitude of 18 or fainter, yielding roughly two supernovae per week (assuming one supernova per galaxy per 50 years) at 5 to 50 percent of maximum light. An additional 500 nearby galaxies will be searched every night, to locate about 10 supernovae per year at one or two percent of maximum light, within hours of the initial explosion.

  3. Prospects of the search for neutrino bursts from Supernovae with Baksan Large Volume Scintillation Detector

    CERN Document Server

    Petkov, V B

    2015-01-01

    Observing a high-statistics neutrino signal from the supernova explosions in the Galaxy is a major goal of low-energy neutrino astronomy. The prospects for detecting all flavors of neutrinos and antineutrinos from the core-collapse supernova (ccSN) in operating and forthcoming large liquid scintillation detectors (LLSD) are widely discussed now. One of proposed LLSD is Baksan Large Volume Scintillation Detector (BLVSD). This detector will be installed at the Baksan Neutrino Observatory (BNO) of the Institute for Nuclear Research, Russian Academy of Sciences, at a depth of 4800 m.w.e. Low-energy neutrino astronomy is one of the main lines of research of the BLVSD.

  4. The Search for Lensed Supernovae

    Science.gov (United States)

    Kohler, Susanna

    2017-01-01

    Type Ia supernovae that have multiple images due to gravitational lensing can provide us with a wealth of information both about the supernovae themselves and about our surrounding universe. But how can we find these rare explosions?Clues from Multiple ImagesWhen light from a distant object passes by a massive foreground galaxy, the galaxys strong gravitational pull can bend the light, distorting our view of the backgroundobject. In severe cases, this process can cause multiple images of the distant object to appear in the foreground lensing galaxy.An illustration of gravitational lensing. Light from the distant supernova is bent as it passes through a giant elliptical galaxy in the foreground, causing multiple images of the supernova to appear to be hosted by the elliptical galaxy. [Adapted from image by NASA/ESA/A. Feild (STScI)]Observations of multiply-imaged Type Ia supernovae (explosions that occur when white dwarfs in binary systems exceed their maximum allowed mass) could answer a number of astronomical questions. Because Type Ia supernovae are standard candles, distant, lensed Type Ia supernovae can be used to extend the Hubble diagram to high redshifts. Furthermore, the lensing time delays from the multiply-imaged explosion can provide high-precision constraints on cosmological parameters.The catch? So far, weve only found one multiply-imaged Type Ia supernova: iPTF16geu, discovered late last year. Were going to need a lot more of them to develop a useful sample! So how do we identify themutiply-imaged Type Ias among the many billions of fleeting events discovered in current and future surveys of transients?Searching for AnomaliesAbsolute magnitudes for Type Ia supernovae in elliptical galaxies. None are expected to be above -20 in the B band, so if we calculate a magnitude for a Type Ia supernova thats larger than this, its probably not hosted by the galaxy we think it is! [Goldstein Nugent 2017]Two scientists from University of California, Berkeley and

  5. The CHilean Automatic Supernova sEarch

    DEFF Research Database (Denmark)

    Hamuy, M.; Pignata, G.; Maza, J.

    2012-01-01

    The CHilean Automatic Supernova sEarch (CHASE) project began in 2007 with the goal to discover young, nearby southern supernovae in order to (1) better understand the physics of exploding stars and their progenitors, and (2) refine the methods to derive extragalactic distances. During the first...

  6. The CHilean Automatic Supernova sEarch

    DEFF Research Database (Denmark)

    Hamuy, M.; Pignata, G.; Maza, J.

    2012-01-01

    The CHilean Automatic Supernova sEarch (CHASE) project began in 2007 with the goal to discover young, nearby southern supernovae in order to (1) better understand the physics of exploding stars and their progenitors, and (2) refine the methods to derive extragalactic distances. During the first...... four years of operation, CHASE has produced more than 130 supernovae, being the most successful project of its type in the southern hemisphere. Here we describe the project and present illustrative examples of CHASE discoveries of particular relevance....

  7. Gravitational wave triggered searches for failed supernovae

    Science.gov (United States)

    Annis, James; Dark Energy Survey Collaboration

    2016-03-01

    Stellar core collapses occur to all stars of sufficiently high mass and often result in supernovae. A small fraction of supergiant stars, however, are thought to collapse directly into black holes without producing supernovae. A survey of such ``failed'' supernovae would require monitoring millions of supergiants for several years. That is very challenging even for current surveys. With the start of the Advanced LIGO science run, we investigate the possibility of detecting failed supernovae by looking for missing supergiants associated with gravitational wave triggers. We use the Dark Energy Camera (DECam). Our project is a joint effort between the community and the Dark Energy Survey (DES) collaboration. In this talk we report on our ongoing efforts and discuss prospects for future searches.

  8. Texas Supernova Search: A Wide Field Search for Nearby SNe

    Science.gov (United States)

    Quimby, R. M.; Castro, F.; Gerardy, C. L.; Hoeflich, P.; Kannappan, S. J.; Mondol, P.; Sellers, M.; Wheeler, J. C.

    2005-12-01

    ROTSE-IIIb is one four robotic telescopes built by the University of Michigan to observe the prompt optical afterglows associated with gamma-ray bursts. At just 0.45m in diameter, it is the smallest research telescope at McDonald, but its 1.85 x 1.85 deg field of view and autonomous operation make it an excellent survey instrument for rare transient phenomena. We have been using ROTSE-IIIb for the past year to search for supernovae in nearby galaxy clusters such as the Virgo, Coma, and Ursa Major clusters. ROTSE-IIIb's wide field of view allows us to search the thousands of galaxies in these clusters, which cover hundreds of square degrees on the sky, in just a few tens of exposures. We can therefore observe all of these fields in a single night, and repeat the search every night. When we identify a new supernova candidate, we invoke our target of opportunity time on the neighboring 9.2m Hobby-Eberly Telescope (HET) the following night to obtain a spectrum. Because of the rolling search and the quick spectral turn-around possible with the HET, we are able to capture spectra of the earliest phases of the explosion. By combining this information with spectra taken at later epochs, we can construct a complete description of the explosion. Through this work we aim to better understand the physical conditions of supernova explosions, identify any systematic effects that may affect how Type Ia supernovae are calibrated as standard candles and used to probe cosmology, and also to better calibrate Type II supernovae as standard candles.

  9. Excluded-Volume Approximation for Supernova Matter

    CERN Document Server

    Yudin, A V

    2014-01-01

    A general scheme of the excluded-volume approximation as applied to multicomponent systems with an arbitrary degree of degeneracy has been developed. This scheme also admits an allowance for additional interactions between the components of a system. A specific form of the excluded-volume approximation for investigating supernova matter at subnuclear densities has been found from comparison with the hard-sphere model. The possibility of describing the phase transition to uniform nuclear matter in terms of the formalism under consideration is discussed.

  10. Nearby supernova factory announces 34 supernovae in one year'; best Rookie year ever for supernova search

    CERN Multimedia

    2003-01-01

    The Nearby Supernova Factory (SNfactory), an international collaboration based at Lawrence Berkeley National Laboratory, announced that it had discovered 34 supernovae during the first year of the prototype system's operation (2 pages).

  11. Nearby Supernova Rates from the Lick Observatory Supernova Search. I. The Methods and Database

    CERN Document Server

    Leaman, Jesse; Chornock, Ryan; Filippenko, Alexei V

    2010-01-01

    This is the first paper of a series in which we present new measurements of the observed rates of supernovae (SNe) in the local Universe, determined from the Lick Observatory Supernova Search (LOSS). We have obtained 2.3 million observations of 14,882 sample galaxies over an interval of 11 years (March 1998 through Dec. 2008). We considered 1036 SNe detected in our sample and used an optimal subsample of 726 SNe (274 SNe~Ia, 116 SNe~Ibc, 324 SNe~II) to determine our SN rates. This is the largest and most homogeneous set of nearby SNe ever assembled for this purpose, and ours is the first local SN rate analysis based on CCD imaging and modern image-subtraction techniques. In this paper, we lay the foundation of the study. We derive the recipe for the control-time calculation for SNe with a known luminosity function, and provide details on the construction of the galaxy and SN samples used in the calculations. Compared with a complete volume-limited galaxy sample, our sample has a deficit of low-luminosity gala...

  12. Supernova rates from the SUDARE VST-Omegacam search. I

    CERN Document Server

    Cappellaro, E; Pignata, G; Grado, L; Greggio, L; Limatola, L; Vaccari, M; Baruffolo, A; Benetti, S; Bufano, F; Capaccioli, M; Cascone, E; Covone, G; De Cicco, D; Falocco, S; Della Valle, M; Jarvis, M; Marchetti, L; Napolitano, N R; Paolillo, M; Pastorello, A; Radovich, M; Schipani, P; Spiro, S; Tomasella, L; Turatto, M

    2015-01-01

    We describe the observing strategy, data reduction tools and early results of a supernova (SN) search project, named SUDARE, conducted with the ESO VST telescope aimed at measuring the rate of the different types of SNe in the redshift range 0.2search was performed in two of the best-studied extragalactic fields, CDFS and COSMOS, for which a wealth of ancillary data are available in the literature or public archives. (abridged) We obtained a final sample of 117 SNe, most of which are SNIa (57%) and the remaining core collapse events of which 44% type II, 22% type IIn and 34% type Ib/c. In order to link the transients, we built a catalog of ~1.3x10^5 galaxies in the redshift range 0volume for SN Ia and core collapse SNe in different bin of redshifts. The values are consistent with other measurements from the literature. The dispersion of the rate measurements for SNe Ia is comparable with the scatter of the t...

  13. HAWK-I infrared supernova search in starburst galaxies

    CERN Document Server

    Miluzio, M; Botticella, M T; Cresci, G; Greggio, L; Mannucci, F; Benetti, S; Bufano, F; Elias-Rosa, N; Pastorello, A; Turatto, M; Zampieri, L

    2013-01-01

    The use of SN rates to probe explosion scenarios and to trace the cosmic star formation history received a boost from a number of synoptic surveys. There has been a recent claim of a mismatch by a factor of two between star formation and core collapse SN rates, and different explanations have been proposed for this discrepancy.} We attempted an independent test of the relation between star formation and supernova rates in the extreme environment of starburst galaxies, where both star formation and extinction are extremely high. To this aim we conducted an infrared supernova search in a sample of local starburts galaxies. The rational to search in the infrared is to reduce the bias due to extinction, which is one of the putative reasons for the observed discrepancy between star formation and supernova rates. To evaluate the outcome of the search we developed a MonteCarlo simulation tool that is used to predict the number and properties of the expected supernovae based on the search characteristics and the curr...

  14. Search for Type Ia supernova NUV-optical subclasses

    Science.gov (United States)

    Cinabro, David; Scolnic, Daniel; Kessler, Richard; Li, Ashley; Miller, Jake

    2017-04-01

    In response to a recently reported observation of evidence for two classes of Type Ia supernovae (SNe Ia) distinguished by their brightness in the rest-frame near-ultraviolet (NUV), we search for the phenomenon in publicly available light-curve data. We use the SNANA supernova analysis package to simulate SN Ia light curves in the Sloan Digital Sky Survey (SDSS) Supernova Search and the Supernova Legacy Survey (SNLS) with a model of two distinct ultraviolet classes of SNe Ia and a conventional model with a single broad distribution of SN-Ia ultraviolet brightnesses. We compare simulated distributions of rest-frame colours with these two models to those observed in 158 SNe Ia in the SDSS and SNLS data. The SNLS sample of 99 SNe Ia is in clearly better agreement with a model with one class of SN Ia light curves and shows no evidence for distinct NUV sub-classes. The SDSS sample of 59 SNe Ia with poorer colour resolution does not distinguish between the two models.

  15. Search For Type Ia Supernova NUV-Optical Subclasses

    CERN Document Server

    Cinabro, David; Kessler, Richard; Li, Ashley; Miller, Jake

    2016-01-01

    In response to a recently reported observation of evidence for two classes of Type Ia Supernovae (SNe Ia) distinguished by their brightness in the rest-frame near ultraviolet (NUV), we search for the phenomenon in publicly available light-curve data. We use the SNANA supernova analysis package to simulate SN Ia-light curves in the Sloan Digital Sky Survey Supernova Search (SDSS) and the Supernova Legacy Survey (SNLS) with a model of two distinct ultraviolet classes of SNe Ia and a conventional model with a single broad distribution of SN-Ia ultraviolet brightnesses. We compare simulated distributions of rest-frame colors with these two models to those observed in 158 SNe Ia in the SDSS and SNLS data. The SNLS sample of 99 SNe Ia is in clearly better agreement with a model with one class of SN Ia light curves and shows no evidence for distinct NUV sub-classes. The SDSS sample of 59 SNe Ia with poorer color resolution does not distinguish between the two models.

  16. Background Study on Supernova Relic Neutrinos Search in SuperK-Gd

    CERN Document Server

    Zhang, Yang

    2016-01-01

    The detection of supernova relic neutrinos could provide precious information on the evolution of the universe, the formation of stars, the mechanism of supernova bursts and the related neutrino physics. Many experiments, such as Kamland, Borexino, Sudbury Neutrino Observatory and Super-Kamiokande have conducted searches for the supernova relic neutrinos. However, no supernova relic neutrino signal has been observed until now. This paper reports the background study on the supernova relic neutrinos search for the future neutrino experiment in SuperK-Gd project. The expected event rate for various background sources and supernova relic neutrino models are calculated, respectively.

  17. Searching for Hydrogen in Type Ib Supernovae

    CERN Document Server

    James, Spencer

    2010-01-01

    We present synthetic spectral fits of the typical Type Ib SN 1999dn and the Hydrogen Rich Ib SN 2000H using the generalized non-local thermodynamic equilibrium stellar atmospheres code \\phx. We fit model spectra to five epochs of SN 1999dn ranging from ten days pre-maximum light to 17 days post-maximum light and the two earliest epochs of SN 2000H available, maximum light and six days post-maximum. Our goal is to investigate the possibility of hydrogen in Type Ib Supernovae (SNe Ib), specifically a feature around 6200\\AA\\ which has previously been attributed to high velocity H-alpha. In earlier work on SN 1999dn we found the most plausible alternative to H-alpha to be a blend of Si II and Fe II lines which can be adjusted to fit by increasing the metallicity. Our models are simple; they assume a powerlaw density profile with radius, homologous expansion, and solar compositions. The helium core is produced by burning 4H --> He in order to conserve nucleon number. For models with hydrogen the outer skin of the ...

  18. Simulation tool of a Supernova search with VST

    OpenAIRE

    Calvi, R.; Cappellaro, E; Botticella, M. T.; Riello, M.

    2007-01-01

    To improve the estimate of SN rates for all types as a function of redshift has been proposed and accepted a three years SN search with the VST telescope. To help planning an optimal strategy for the search, we have developed a simulation tool used to predict the numbers of Supernovae of different types which are expected to be discovered in a magnitude-limited survey. In our simulation a most important ingredient has been the determination of the K-correction as function of redshift for ever...

  19. Search for Kilonovae in Dark Energy Survey Supernova Fields

    Science.gov (United States)

    Doctor, Zoheyr; DES-GW Team; DES-SN Team

    2016-03-01

    The Dark Energy Camera on the Blanco 4-m Telescope is an ideal instrument for identifying rapid optical transients with its large field of view and four optical filters. We utilize two seasons of data from the Dark Energy Survey to search for kilonovae, an optical counterpart to gravitational waves from binary neutron star mergers. Kilonova lightcurves from Barnes and Kasen inform our analysis for removing background signals such as supernovae. We simulate DES observations of kilonovae with the SNANA software package to estimate our search efficiency and optimize cuts. Finally, we report rate limits for binary neutron star mergers and compare to existing rate estimates.

  20. Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample

    CERN Document Server

    Li, Weidong; Chornock, Ryan; Filippenko, Alexei V; Poznanski, Dovi; Ganeshalingam, Mohan; Wang, Xiaofeng; Modjaz, Maryam; Jha, Saurabh; Foley, Ryan J; Smith, Nathan

    2010-01-01

    This is the second paper of a series in which we present new measurements of the observed rates of supernovae (SNe) in the local Universe, determined from the Lick Observatory Supernova Search (LOSS). In this paper, a complete SN sample is constructed, and the observed (uncorrected for host-galaxy extinction) luminosity functions (LFs) of SNe are derived. These LFs solve two issues that have plagued previous rate calculations for nearby SNe: the luminosity distribution of SNe and the host-galaxy extinction. We select a volume-limited sample of 175 SNe, collect photometry for every object, and fit a family of light curves to constrain the peak magnitudes and light-curve shapes. The volume-limited LFs show that they are not well represented by a Gaussian distribution. There are notable differences in the LFs for galaxies of different Hubble types (especially for SNe Ia). We derive the observed fractions for the different subclasses in a complete SN sample, and find significant fractions of SNe II-L (10%), IIb (...

  1. Supernova Relic Neutrino Search at Super-Kamiokande

    CERN Document Server

    Bays, K; Abe, K; Hayato, Y; Iyogi, K; Kameda, J; Koshio, Y; Marti, L; Miura, M; Moriyama, S; Nakahata, M; Nakayama, S; Obayashi, Y; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Takenaga, Y; Ueno, K; Kajita, K Ueshima S Yamada T Yokozawa H Kaji T; Kaneyuki, K; McLachlan, T; Okumura, K; Pik, L K; Martens, K; Vagins, M; Labarga, L; Kearns, E; Litos, M; Raaf, J L; Stone, J L; Sulak, L R; Kropp, W R; Mine, S; Regis, C; Renshaw, A; Smy, M B; Sobel, H W; Ganezer, K S; Hill, J; Keig, W E; Cho, S; Jang, J S; Kim, J Y; Lim, I T; Albert, J; Scholberg, K; Walter, C W; Wendell, R; Wongjirad, T; Ishizuka, T; Tasaka, S; Learned, J G; Matsuno, S; Smith, S; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Nishikawa, K; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Takeuchi, Y; Ikeda, M; Matsuoka, K; Minamino, A; Murakami, A; Nakaya, T; Fukuda, Y; Itow, Y; Mitsuka, G; Miyake, M; Tanaka, T; Hignight, J; Imber, J; Jung, C K; Taylor, I; Yanagisawa, C; Kibayashi, A; Ishino, H; Mino, S; Sakuda, M; Mori, T; Toyota, H; Kuno, Y; Kim, S B; Yang, B S; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Totsuka, Y; Yokoyama, M; Heng, Y; Chen, S; Zhang, H; Yang, Z; Mijakowski, P; Connolly, K; Dziomba, M; Wilkes, R J

    2011-01-01

    A new Super-Kamiokande (SK) search for Supernova Relic Neutrinos (SRNs) was conducted using 2853 live days of data. Sensitivity is now greatly improved compared to the 2003 SK result, which placed a flux limit near many theoretical predictions. This more detailed analysis includes a variety of improvements such as increased efficiency, a lower energy threshold, and an expanded data set. New combined upper limits on SRN flux are between 2.8 and 3.0 nu_e cm^-2 s^-1 > 16 MeV total positron energy (17.3 MeV E_nu).

  2. Constraints on Type IIn Supernova Progenitor Outbursts from the Lick Observatory Supernova Search

    CERN Document Server

    Bilinski, Christopher; Li, Weidong; Williams, G Grant; Zheng, WeiKang; Filippenko, Alexei V

    2015-01-01

    We searched through roughly 12 years of archival survey data acquired by the Katzman Automatic Imaging Telescope (KAIT) as part of the Lick Observatory Supernova Search (LOSS) in order to detect or place limits on possible progenitor outbursts of Type IIn supernovae (SNe~IIn). The KAIT database contains multiple pre-SN images for 5 SNe~IIn (plus one ambiguous case of a SN IIn/imposter) within 50 Mpc. No progenitor outbursts are found using the false discovery rate (FDR) statistical method in any of our targets. Instead, we derive limiting magnitudes (LMs) at the locations of the SNe. These limiting magnitudes (typically reaching $m_R \\approx 19.5\\,\\mathrm{mag}$) are compared to outbursts of SN 2009ip and $\\eta$ Car, plus additional simulated outbursts. We find that the data for SN 1999el and SN 2003dv are of sufficient quality to rule out events $\\sim40$ days before the main peak caused by initially faint SNe from blue supergiant (BSG) precursor stars, as in the cases of SN 2009ip and SN 2010mc. These SNe~IIn...

  3. Supernovae

    Science.gov (United States)

    March, Marisa

    2014-03-01

    We live in a Universe that is getting bigger faster. This astonishing discovery of Universal acceleration was made in the late 1990s by two teams who made observations of a special type of exploded star known as a `Supernova Type Ia'. (SNeIa) Since the discovery of the accelerating Universe, one of the biggest questions in modern cosmology has been to determine the cause of that acceleration - the answer to this question will have far reaching implications for our theories of cosmology and fundamental physics more broadly. The two main competing explanations for this apparent late time acceleration of the Universe are modified gravity and dark energy. The Dark Energy Survey (DES) has been designed and commissioned to find to find answers to these questions about the nature of dark energy and modified gravity. The new 570 megapixel Dark Energy Camera is currently operating with the Cerro-Tololo Inter American Observatory's 4m Blanco teleccope, carrying out a systematic search for SNeIa, and mapping out the large scale structure of the Universe by making observations of galaxies. The DES science program program which saw first light in September 2013 will run for five years in total. DES SNeIa data in combination with the other DES observations of large scale structure will enable us to put increasingly accurate constraints on the expansion history of the Universe and will help us distinguish between competing theories of dark energy and modified gravity. As we draw to the close of the first observing season of DES in March 2014, we will report on the current status of the DES supernova survey, presenting first year supernovae data, preliminary results, survey strategy, discovery pipeline, spectroscopic target selection and data quality. This talk will give the first glimpse of the DES SN first year data and initial results as we begin our five year survey in search of dark energy. On behalf of the Dark Energy Survey collaboration.

  4. Searches for continuous gravitational waves from nine young supernova remnants

    CERN Document Server

    Aasi, J; Abbott, R; Abbott, T; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J S; Ast, S; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Aylott, B E; Babak, S; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barclay, S; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Bartlett, J; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauer, Th S; Baune, C; Bavigadda, V; Behnke, B; Bejger, M; Belczynski, C; Bell, A S; Bell, C; Benacquista, M; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackburn, L; Blair, C D; Blair, D; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bojtos, P; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchman, S; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Bustillo, J Calderón; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Carbognani, F; Caride, S; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio,, M; Conte, A; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Costa, C A; Coughlin, M W; Coulon, J -P; Countryman, S; Couvares, P; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Cutler, C; Dahl, K; Canton, T Dal; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dartez, L; Dattilo, V; Dave, I; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Dominguez, E; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H -B; Ehrens, P; Eichholz, J; Eikenberry, S S; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J -D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fuentes-Tapia, S; Fulda, P; Fyffe, M; Gair, J R; Gammaitoni, L; Gaonkar, S; Garufi, F; Gatto, A; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; Gergely, L Á; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Gräf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guido, C J; Guo, X; Gushwa, K; Gustafson, E K; Gustafson, R; Hacker, J; Hall, E D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M; Hartman, M T; Haster, C -J; Haughian, K; Hee, S; Heidmann, A; Heintze, M; Heinzel, G; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Hopkins, P; Hosken, D J; Hough, J; Houston, E; Howell, E J; Hu, Y M; Huerta, E; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Islas, G; Isler, J C; Isogai, T; Iyer, B R; Izumi, K; Jacobson, M; Jang, H; Jaranowski, P; Jawahar, S; Ji, Y; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Keppel, D G; Key, J S; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N G; Kim, N; Kim, Y -M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, A; Kumar, P; Kuo, L; Kutynia, A; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lazzarini, A; Lazzaro, C; Le, J; Leaci, P; Leavey, S; Lebigot, E; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B; Lewis, J; Li, T G F; Libbrecht, K; Libson, A; Lin, A C; Littenberg, T B; Lockerbie, N A; Lockett, V; Logue, J; Lombardi, A L; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Lubinski, M J; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Macarthur, J; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R; Mageswaran, M; Maglione, C; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McLin, K; McWilliams, S; Meacher, D; Meadors, G D; Meidam, J; Meinders, M; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Moggi, A; Mohan, M; Mohanty, S D; Mohapatra, S R P; Moore, B; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Nardecchia, I; Nash, T; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nielsen, A B; Nissanke, S; Nitz, A H; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oppermann, P; Oram, R; O'Reilly, B; Ortega, W; O'Shaughnessy, R; Osthelder, C; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Padilla, C; Pai, A; Pai, S; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Patrick, Z; Pedraza, M; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Phelps, M; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Post, A; Poteomkin, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qin, J; Quetschke, V; Quintero, E; Quiroga, G; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramirez, K; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Reula, O; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Saleem, M; Salemi, F; Sammut, L; Sandberg, V; Sanders, J R; Sannibale, V; Santiago-Prieto, I; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Sawadsky, A; Scheuer, J; Schilling, R; Schmidt, P; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L; Singh, R; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, M R; Smith, R J E; Smith-Lefebvre, N D; Son, E J; Sorazu, B; Souradeep, T; Staley, A; Stebbins, J; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Steplewski, S; Stevenson, S; Stone, R; Strain, K A; Straniero, N; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sutton, P J; Swinkels, B; Szczepanczyk, M; Szeifert, G; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Tellez, G; Theeg, T; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Tshilumba, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; Brand, J F J van den; Broeck, C van den; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, H; Wang, M; Wang, X; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Wilkinson, C; Williams, L; Williams, R; Williamson, A R; Willis, J L; Willke, B; Wimmer, M; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Xie, S; Yablon, J; Yakushin, I; Yam, W; Yamamoto, H; Yancey, C C; Yang, Q; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J -P; Zhang, Fan; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhu, X J; Zucker, M E; Zuraw, S; Zweizig, J

    2014-01-01

    We describe directed searches for continuous gravitational waves in data from the sixth LIGO science data run. The targets were nine young supernova remnants not associated with pulsars; eight of the remnants are associated with non-pulsing suspected neutron stars. One target's parameters are uncertain enough to warrant two searches, for a total of ten. Each search covered a broad band of frequencies and first and second frequency derivatives for a fixed sky direction. The searches coherently integrated data from the two LIGO interferometers over time spans from 5.3-25.3 days using the matched-filtering F-statistic. We found no credible gravitational-wave signals. We set 95% confidence upper limits as strong (low) as $4\\times10^{-25}$ on intrinsic strain, $2\\times10^{-7}$ on fiducial ellipticity, and $4\\times10^{-5}$ on r-mode amplitude. These beat the indirect limits from energy conservation and are within the range of theoretical predictions for neutron-star ellipticities and r-mode amplitudes.

  5. Searches for Continuous Gravitational Waves from Nine Young Supernova Remnants

    Science.gov (United States)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barclay, S.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauer, Th. S.; Baune, C.; Bavigadda, V.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bojtos, P.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchman, S.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, C.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dartez, L.; Dattilo, V.; Dave, I.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fuentes-Tapia, S.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gatto, A.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Gossler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C. J.; Guo, X.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J.; Hall, E. D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heinzel, G.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E.; Howell, E. J.; Hu, Y. M.

    2015-11-01

    We describe directed searches for continuous gravitational waves (GWs) in data from the sixth Laser Interferometer Gravitational-wave Observatory (LIGO) science data run. The targets were nine young supernova remnants not associated with pulsars; eight of the remnants are associated with non-pulsing suspected neutron stars. One target's parameters are uncertain enough to warrant two searches, for a total of 10. Each search covered a broad band of frequencies and first and second frequency derivatives for a fixed sky direction. The searches coherently integrated data from the two LIGO interferometers over time spans from 5.3-25.3 days using the matched-filtering {F}-statistic. We found no evidence of GW signals. We set 95% confidence upper limits as strong (low) as 4 × 10-25 on intrinsic strain, 2 × 10-7 on fiducial ellipticity, and 4 × 10-5 on r-mode amplitude. These beat the indirect limits from energy conservation and are within the range of theoretical predictions for neutron-star ellipticities and r-mode amplitudes.

  6. A Search for supernova relic neutrinos at Super-Kamiokande

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Takashi; Bays, Kirk, E-mail: iida@suketto.icrr.u-tokyo.ac.j [ICRR, University of Tokyo, Mozumi, Hida, Gifu (Japan)

    2010-01-01

    Supernova relic neutrinos (SRN) are the diffuse supernova neutrino background from all past supernovae. No experiment has succeeded in detecting SRN yet. Currently, the Super-Kamiokande experiment has the world's best flux upper limit of 1.2 {nu}-bar {sub e}/cm{sup 2}/sec for E{sub v} < 19.3 MeV. We have worked to improve this value by improving the data analysis. We have achieved better reduction efficiency and lowered the analysis energy threshold by developing a new spallation cut as well as optimizing other cuts.

  7. In search of Mahutonga: a possible supernova recorded in Maori astronomical traditions?

    Science.gov (United States)

    Green, David A.; Orchiston, Wayne

    Maori astronomical traditions refer to Mahutonga, which can be interpreted as a possible record of a southern supernova (SN) in or near Crux. A search for any known "young" supernova remnants in this region does not reveal any obvious candidate to associate with this possible supernova. Relaxing the positional constraint somewhat, the SN of A.D. 185 near a Centauri is nearby. If this is associated with Mahutonga, then the Maori term must be a relic of an earlier Proto-Polynesian record.

  8. Methodological studies on the search for Gravitational Waves and Neutrinos from Type II Supernovae

    Science.gov (United States)

    Casentini, Claudio

    2016-02-01

    Type II SNe, also called Core-collapse SuperNovae have a neutrino (v) emission, as confirmed by SN 1987A, and are also potential sources of gravitational waves. Neutrinos and gravitational waves from these sources reach Earth almost contemporaneously and without relevant interaction with stellar matter and interstellar medium. The upcoming advanced gravitational interferometers would be sensitive enough to detect gravitational waves signals from close galactic Core-collapse SuperNovae events. Nevertheless, significant uncertainties on theoretical models of emission remain. A joint search of coincident low energy neutrinos and gravitational waves events from these sources would bring valuable information from the inner core of the collapsing star and would enhance the detection of the so-called Silent SuperNovae. Recently a project for a joint search involving gravitational wave interferometers and neutrino detectors has started. We discuss the benefits of a joint search and the status of the search project.

  9. A method of searching for supernova candidates from massive galaxy spectra

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper presents a novel spectroscopic method for searching for supernova candidates from massive galaxy spectra,which is expected to be applied to the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST).This method includes mainly five steps.The first step is spectral preprocessing,including removing spectral noise using wavelet transform,spectral de-redshift,etc.The second step is decomposition of galactic spectra;we can get the galaxy component and supernova component and calculate the Supernova Statistical Characterization Vector (SNSCV) of each galaxy spectrum.The third step is to decrease samples in all the galaxy spectral datasets according to SNSCV of each spectrum,and to use the LOF (Local Outlier Factor)-based outlier detection algorithm to obtain the preliminary selected spectral data.The fourth step is template matching by cross-correlation,according to the matched results we get the secondary selected spectral data.Finally,we choose the final supernova candidates manually through checking the spectral features characteristic of a supernova.By the spectroscopic method proposed in this paper,thirty-six supernova candidates have been detected in a dataset including 294843 galaxy spectra from the Sloan Digital Sky Survey Data Release 7.Nine of these objects are detected first and the other twenty-seven have been reported in other publications (fifteen of which are detected and reported first by us).The twenty-four new super-nova candidates include twenty Ia type supernova candidates,three Ic type supernova candidates and one II type supernova candidate.

  10. A Radio Survey of Type Ib and Ic Supernovae: Searching for Engine Driven Supernovae

    CERN Document Server

    Berger, E; Frail, D A; Soderberg, A M

    2003-01-01

    The association of gamma-ray bursts (GRBs) and core-collapse supernovae (SNe) of Type Ib and Ic was motivated by the detection of SN 1998bw in the error box of GRB 980425 and the now-secure identification of a SN 1998bw-like event in the cosmological GRB 030329. The bright radio emission from SN 1998bw indicated that it possessed some of the unique attributes expected of GRBs, namely a large reservoir of energy in (mildly) relativistic ejecta and variable energy input. The two popular scenarios for the origin of SN 1998bw are a typical cosmological burst observed off-axis or a member of a new distinct class of supernova explosions (gSNe). In the former, about 0.5% of local Type Ib/c SNe are expected to be similar to SN1998bw; for the latter no such constraint exists. Motivated thus, we began a systematic program of radio observations of most reported Type Ib/c SNe accessible to the Very Large Array. Of the 33 SNe observed from late 1999 to the end of 2002 at most one is as bright as SN 1998bw. From this we co...

  11. Search for supernova produced {sup 60}Fe in Earth's microfossil record

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Peter; Bishop, Shawn; Chernenko, Valentyna; Faestermann, Thomas; Fimiani, Leticia; Gomez, Jose; Hain, Karin; Korschinek, Gunther [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Egli, Ramon [Central Institute for Meteorology and Geodynamics, Vienna (Austria)

    2013-07-01

    The detection of supernova debris on Earth can be achieved by use of accelerator mass spectrometry (AMS) to search for radionuclides like {sup 60}Fe. This long-lived isotope (T{sub 1/2}=2.6 Myr) is produced in massive stars and is expected to be present in the debris of type II supernovae. The discovery of {sup 60}Fe in a ferromanganese crust from the Pacific ocean (Knie et al., 2004) was interpreted as the input of a supernova explosion about 2.2 Myr ago. Currently, several projects are aiming for the confirmation of the signature of {sup 60}Fe in terrestrial and lunar samples. In this talk, the search for this {sup 60}Fe signature in Earth's microfossil record is presented. The sample material for this study is marine sediment from the eastern equatorial Pacific. A specific kind of secondary (formed in situ) magnetite mineral contained in the sample material are magnetofossils, which are the remains of magnetotactic bacteria, which are the target for extraction. The chemical extraction technique used to produce AMS samples has been characterized using newly developed magnetic analysis methods and has been shown to be extremely selective towards secondary magnetite. The AMS samples produced in this way are uniquely suited for the search for supernova {sup 60}Fe. Preliminary AMS results are presented.

  12. The Search for the Companion Star of Tycho Brahe's 1572 Supernova

    Science.gov (United States)

    Mendez, J.

    2005-03-01

    In recent years, type Ia supernovae (SNe Ia) have been used successfully as cosmological probes of the Universe. However, the nature of their progenitors has remained somewhat of a mystery. It is widely accepted that they represent the disruption of a degenerate object, but there are also numerous progenitor models, but most of these have serious theoretical/observational problems or do not appear to produce sufficient numbers to explain the observed frequency of SNe Ia in our Galaxy. Tycho Brahe's supernova (SN 1572) is one of the only two supernovae observed in our Galaxy that are thought to have been of type Ia as revealed by the light curve, radio emission and X-ray spectra. We have conducted a search for the surviving companion star of SN 1572.

  13. Supernova detection

    Energy Technology Data Exchange (ETDEWEB)

    Nakahata, Masayuki [Kamioka Observatory, Institute for Cosmic Ray research, University of Tokyo, Higashi-Mozumi, Kamioka-cho, Hida-shi, Gifu, Japan, 506-1205 (Japan)], E-mail: nakahata@suketto.icrr.u-tokyo.ac.jp

    2008-11-01

    The detection of supernova neutrinos is reviewed, focusing on the current status of experiments to detect supernova burst neutrinos and supernova relic neutrinos. The capabilities of each detector currently operating and in development are assessed and the likely neutrino yield for a future supernova is estimated. It is expected that much more information will be obtained if a supernova burst were to occur in our Galaxy than was obtained for supernova SN1987A. The detection of supernova relic neutrinos is considered and it is concluded that a large volume detector with a neutron tagging technique is necessary.

  14. Using volume holograms to search digital databases

    Science.gov (United States)

    Burr, Geoffrey W.; Maltezos, George; Grawert, Felix; Kobras, Sebastian; Hanssen, Holger; Coufal, Hans J.

    2002-01-01

    Holographic data storage offers the potential for simultaneous search of an entire database by performing multiple optical correlations between stored data pages and a search argument. This content-addressable retrieval produces one analog correlation score for each stored volume hologram. We have previously developed fuzzy encoding techniques for this fast parallel search, and holographically searched a small database with high fidelity. We recently showed that such systems can be configured to produce true inner-products, and proposed an architecture in which massively-parallel searches could be implemented. However, the speed advantage over conventional electronic search provided by parallelism brings with it the possibility of erroneous search results, since these analog correlation scores are subject to various noise sources. We show that the fidelity of such an optical search depends not only on the usual holographic storage signal-to-noise factors (such as readout power, diffraction efficiency, and readout speed), but also on the particular database query being made. In effect, the presence of non-matching database records with nearly the same correlation score as the targeted matching records reduces the speed advantage of the parallel search. Thus for any given fidelity target, the performance improvement offered by a content-addressable holographic storage can vary from query to query even within the same database.

  15. Near-IR Search for Lensed Supernovae Behind Galaxy Clusters: I. Observations and transient detection efficiency

    CERN Document Server

    Stanishev, V; Paech, K; Amanullah, R; Dahlén, T; Jönsson, J; Kneib, J P; Lidman, C; Limousin, M; Mörtsell, E; Nobili, S; Richard, J; Riehm, T; von Strauss, M

    2009-01-01

    Massive galaxy clusters at intermediate redshift can magnify the flux of distant background sources by several magnitudes and we exploit this effect to search for lensed distant supernovae that may otherwise be too faint to be detected. A supernova search was conducted at near infrared wavelengths using the ISAAC instrument at VLT. The galaxy clusters Abell 1689, Abell 1835 and AC114 were observed at multiple epochs of 2 hours of exposure time, separated by a month. Image subtraction techniques were used to search for transient objects with light curve properties consistent with supernovae, both in our new and archival ISAAC/VLT data. The limiting magnitude of the individual epochs was estimated by adding artificial stars to the subtracted images. Most of the epochs reach 90% detection efficiency at SZ(J) ~= 23.8-24.0 mag (Vega). Two transient objects, both in archival images of Abell 1689 and AC114, were detected. The transient in AC114 coincides - within the position uncertainty - with a X-ray source and is...

  16. Search for Nonthermal X-Rays from Supernova Remnant Shells

    Science.gov (United States)

    Petre, R.; Keohane, J.; Hwang, U.; Allen, G.; Gotthelf, E.

    The demonstration by ASCA that the nonthermal X-ray emission from the rim of SN1006 is synchrotron emission from TeV electrons, produced in the same environment responsible for cosmic ray protons and nuclei (Koyama et al. 1995, Nature 378, 255), has stimulated a search for nonthermal X-rays from other remnants. Nonthermal emission has subsequently been found to arise in the shells of at least two other remnants, Cas A and IC 443. In Cas A, a hard tail is detected using ASCA, XTE, and OSSE to energies exceeding 100 keV; the shape of the spectrum rules out all mechanisms except synchrotron radiation. In IC 443, the previously known hard emission has been shown using ASCA to be isolated to a small region along the rim of the remnant, where the shock is interacting most strongly with a molecular cloud. Nonthermal X-ray emission is thought to arise here by enhanced cosmic ray production associated with the shock/cloud interaction (Keohane et al. 1997, ApJ in press). We describe the properties of the nonthermal emission in SN1006, Cas A, and IC 443, and discuss the status of our search for nonthermal emission associated with the shocks of other Galactic and LMC SNR's.

  17. Search for supernova-produced {sup 60}Fe in the Earth's fossil record

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, Shawn; Ludwig, Peter; Chernenko, Valentyna; Faestermann, Thomas; Famulok, Nicolai; Fimiani, Leticia; Gomez, Jose; Hain, Karin; Korschinek, Gunther [TU Muenchen, Physik Department (Germany); Egli, Ramon [ZAMG, Wien (Austria); Frederichs, Thomas [Universitaet Bremen, Geowissenschaften (Germany); Hazlik, Marianne [TU Muenchen, Fakultaet fuer Chemie (Germany); Merchel, Silke; Rugel, Georg [HZDR, Dresden (Germany)

    2014-07-01

    Approximately 1.8 to 2.8 Myr before the present our planet was subjected to the debris of a supernova explosion. The terrestrial proxy for this event was the discovery of live atoms of {sup 60}Fe in a deep-sea ferromanganese crust [Knie et al., Phys. Rev. Lett. (2004)]. The signature for this supernova event should also reside in magnetite (Fe{sub 3}O{sub 4}) magnetofossils produced by magnetotactic bacteria extant at the time of the Earth-supernova interaction; these bacteria were and are ubiquitous in all ocean sediments. We have conducted accelerator mass spectrometry (AMS) measurements, searching for live {sup 60}Fe in the magnetofossil component of a Pacific Ocean sediment core (ODP Core 848); additional AMS measurements are now ongoing with a second sediment core (ODP Core 851) in which we expect to find a higher {sup 60}Fe signal. This talk presents the current preliminary status of our {sup 60}Fe search results for both sediment cores.

  18. The Search for Failed Supernovae with the Large Binocular Telescope: Constraints from 7 Years of Data

    CERN Document Server

    Adams, S M; Gerke, J R; Stanek, K Z

    2016-01-01

    We report updated results for the first 7 years of our program to monitor 27 galaxies within 10 Mpc using the Large Binocular Telescope to search for failed supernovae -- core-collapses of massive stars that form black holes without luminous supernovae. In the new data, we identify no new compelling candidates and confirm the existing candidate. Given the 6 successful core-collapse SNe in the sample and one likely failed SN, the implied fraction of core-collapses that result in failed SNe is $f = 0.14^{+0.33}_{-0.10}$ at 90% confidence. If the current candidate is a failed SN, the fraction of failed SN naturally explains the missing high-mass RSG SN progenitors and the black hole mass function. If the current candidate is ultimately rejected, the data implies a 90% confidence upper limit on the failed SN fraction of $f < 0.35$.

  19. Directed searches for broadband extended gravitational-wave emission in nearby energetic core-collapse supernovae

    CERN Document Server

    Van Putten, Maurice H P M

    2016-01-01

    Core-collapse supernovae are factories of neutron stars and stellar mass black holes. Type Ib/c supernovae stand out as potentially originating in relatively compact stellar binaries and their branching ratio of about 1\\% into long gamma-ray bursts. The most energetic events probably derive from central engines harboring rapidly rotating black holes, wherein accretion of fall-back matter down to the Inner Most Stable Circular Orbit (ISCO) offers a window to {\\em broadband extended gravitational-wave emission} (BEGE). To search for BEGE, we introduce a butterfly filter in time-frequency space by Time Sliced Matched Filtering. To analyze long epochs of data, we propose using coarse grained searches followed by high resolution searches on events of interest. We illustrate our proposed coarse grained search on two weeks of LIGO S6 data prior to SN 2010br $(z=0.002339)$ using a bank of up to 64 thousand templates of one second duration covering a broad range in chirp frequencies and bandwidth. Correlating events w...

  20. The sloan digital sky Survey-II supernova survey: search algorithm and follow-up observations

    Energy Technology Data Exchange (ETDEWEB)

    Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Bassett, Bruce [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701 (South Africa); Becker, Andrew; Hogan, Craig J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Cinabro, David [Department of Physics, Wayne State University, Detroit, MI 48202 (United States); DeJongh, Fritz; Frieman, Joshua A.; Marriner, John; Miknaitis, Gajus [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Depoy, D. L.; Prieto, Jose Luis [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210-1173 (United States); Dilday, Ben; Kessler, Richard [Kavli Institute for Cosmological Physics, The University of Chicago, 5640 South Ellis Avenue Chicago, IL 60637 (United States); Doi, Mamoru [Institute of Astronomy, Graduate School of Science, University of Tokyo 2-21-1, Osawa, Mitaka, Tokyo 181-0015 (Japan); Garnavich, Peter M. [University of Notre Dame, 225 Nieuwland Science, Notre Dame, IN 46556-5670 (United States); Holtzman, Jon [Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003 (United States); Jha, Saurabh [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, P.O. Box 20450, MS29, Stanford, CA 94309 (United States); Konishi, Kohki [Institute for Cosmic Ray Research, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8582 (Japan); Lampeitl, Hubert [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Nichol, Robert C. [Institute of Cosmology and Gravitation, Mercantile House, Hampshire Terrace, University of Portsmouth, Portsmouth PO1 2EG (United Kingdom); and others

    2008-01-01

    The Sloan Digital Sky Survey-II Supernova Survey has identified a large number of new transient sources in a 300 deg{sup 2} region along the celestial equator during its first two seasons of a three-season campaign. Multi-band (ugriz) light curves were measured for most of the sources, which include solar system objects, galactic variable stars, active galactic nuclei, supernovae (SNe), and other astronomical transients. The imaging survey is augmented by an extensive spectroscopic follow-up program to identify SNe, measure their redshifts, and study the physical conditions of the explosions and their environment through spectroscopic diagnostics. During the survey, light curves are rapidly evaluated to provide an initial photometric type of the SNe, and a selected sample of sources are targeted for spectroscopic observations. In the first two seasons, 476 sources were selected for spectroscopic observations, of which 403 were identified as SNe. For the type Ia SNe, the main driver for the survey, our photometric typing and targeting efficiency is 90%. Only 6% of the photometric SN Ia candidates were spectroscopically classified as non-SN Ia instead, and the remaining 4% resulted in low signal-to-noise, unclassified spectra. This paper describes the search algorithm and the software, and the real-time processing of the SDSS imaging data. We also present the details of the supernova candidate selection procedures and strategies for follow-up spectroscopic and imaging observations of the discovered sources.

  1. Constraining the supersaturation density equation of state from core-collapse supernova simulations - Excluded volume extension of the baryons

    CERN Document Server

    Fischer, Tobias

    2016-01-01

    In this article the role of the supersaturation density equation of state (EOS) is explored in simulations of failed core-collapse supernova explosions. Therefore the nuclear EOS is extended via a one-parameter excluded volume description for baryons, taking into account their finite and increasing volume with increasing density in excess of saturation density. Parameters are selected such that the resulting supernova EOS represent extreme cases, with high pressure variations at supersaturation density which feature extreme stiff and soft EOS variants of the reference case, i.e. without excluded volume corrections. Unlike in the interior of neutron stars with central densities in excess of several times saturation density, central densities of core-collapse supernovae reach only slightly above saturation density. Hence, the impact of the supersaturation density EOS on the supernova dynamics as well as the neutrino signal is found to be negligible. It is mainly determined from the low- and intermediate-density...

  2. Directed Searches for Broadband Extended Gravitational Wave Emission in Nearby Energetic Core-collapse Supernovae

    Science.gov (United States)

    van Putten, Maurice H. P. M.

    2016-03-01

    Core-collapse supernovae (CC-SNe) are factories of neutron stars and stellar-mass black holes. SNe Ib/c stand out as potentially originating in relatively compact stellar binaries and they have a branching ratio of about 1% into long gamma-ray bursts. The most energetic events probably derive from central engines harboring rapidly rotating black holes, wherein the accretion of fall-back matter down to the innermost stable circular orbit (ISCO) offers a window into broadband extended gravitational wave emission (BEGE). To search for BEGE, we introduce a butterfly filter in time-frequency space by time-sliced matched filtering. To analyze long epochs of data, we propose using coarse-grained searches followed by high-resolution searches on events of interest. We illustrate our proposed coarse-grained search on two weeks of LIGO S6 data prior to SN 2010br (z = 0.002339) using a bank of up to 64,000 templates of one-second duration covering a broad range in chirp frequencies and bandwidth. Correlating events with signal-to-noise ratios > 6 from the LIGO L1 and H1 detectors reduces the total to a few events of interest. Lacking any further properties reflecting a common excitation by broadband gravitational radiation, we disregarded these as spurious. This new pipeline may be used to systematically search for long-duration chirps in nearby CC-SNe from robotic optical transient surveys using embarrassingly parallel computing.

  3. DIRECTED SEARCHES FOR BROADBAND EXTENDED GRAVITATIONAL WAVE EMISSION IN NEARBY ENERGETIC CORE-COLLAPSE SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Van Putten, Maurice H. P. M., E-mail: mvp@sejong.ac.kr [Room 614, Astronomy and Space Science, Sejong University, 98 Gunja-Dong Gwangin-gu, Seoul 143-747 (Korea, Republic of)

    2016-03-10

    Core-collapse supernovae (CC-SNe) are factories of neutron stars and stellar-mass black holes. SNe Ib/c stand out as potentially originating in relatively compact stellar binaries and they have a branching ratio of about 1% into long gamma-ray bursts. The most energetic events probably derive from central engines harboring rapidly rotating black holes, wherein the accretion of fall-back matter down to the innermost stable circular orbit (ISCO) offers a window into broadband extended gravitational wave emission (BEGE). To search for BEGE, we introduce a butterfly filter in time–frequency space by time-sliced matched filtering. To analyze long epochs of data, we propose using coarse-grained searches followed by high-resolution searches on events of interest. We illustrate our proposed coarse-grained search on two weeks of LIGO S6 data prior to SN 2010br (z = 0.002339) using a bank of up to 64,000 templates of one-second duration covering a broad range in chirp frequencies and bandwidth. Correlating events with signal-to-noise ratios > 6 from the LIGO L1 and H1 detectors reduces the total to a few events of interest. Lacking any further properties reflecting a common excitation by broadband gravitational radiation, we disregarded these as spurious. This new pipeline may be used to systematically search for long-duration chirps in nearby CC-SNe from robotic optical transient surveys using embarrassingly parallel computing.

  4. Matching Supernovae to Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    One of the major challenges for modern supernova surveys is identifying the galaxy that hosted each explosion. Is there an accurate and efficient way to do this that avoids investing significant human resources?Why Identify Hosts?One problem in host galaxy identification. Here, the supernova lies between two galaxies but though the centroid of the galaxy on the right is closer in angular separation, this may be a distant background galaxy that is not actually near the supernova. [Gupta et al. 2016]Supernovae are a critical tool for making cosmological predictions that help us to understand our universe. But supernova cosmology relies on accurately identifying the properties of the supernovae including their redshifts. Since spectroscopic followup of supernova detections often isnt possible, we rely on observations of the supernova host galaxies to obtain redshifts.But how do we identify which galaxy hosted a supernova? This seems like a simple problem, but there are many complicating factors a seemingly nearby galaxy could be a distant background galaxy, for instance, or a supernovas host could be too faint to spot.The authors algorithm takes into account confusion, a measure of how likely the supernova is to be mismatched. In these illustrations of low (left) and high (right) confusion, the supernova is represented by a blue star, and the green circles represent possible host galaxies. [Gupta et al. 2016]Turning to AutomationBefore the era of large supernovae surveys, searching for host galaxies was done primarily by visual inspection. But current projects like the Dark Energy Surveys Supernova Program is finding supernovae by the thousands, and the upcoming Large Synoptic Survey Telescope will likely discover hundreds of thousands. Visual inspection will not be possible in the face of this volume of data so an accurate and efficient automated method is clearly needed!To this end, a team of scientists led by Ravi Gupta (Argonne National Laboratory) has recently

  5. Proposed searches for candidate sources of gravitational waves in a nearby core-collapse supernova survey

    CERN Document Server

    Heo, Jeon-Eun; Lee, Dae-Sub; Kong, In-Taek; Lee, Sang-Hoon; van Putten, Maurice H P M; Della Valle, Massimo

    2015-01-01

    Gravitational wave bursts in the formation of neutron stars and black holes in energetic core-collapse supernovae (CC-SNe) are of potential interest to LIGO-Virgo and KAGRA. Events nearby are readily discovered using moderately sized telescopes. CC-SNe are competitive with mergers of neutron stars and black holes, if the fraction producing an energetic output in gravitational waves exceeds about 1\\%. This opportunity motivates the design of a novel Sejong University Core-CollapsE Supernova Survey (SUCCESS), to provide triggers for follow-up searches for gravitational waves. It is based on the 76 cm Sejong University Telescope (SUT) for weekly monitoring of nearby star-forming galaxies, i.e., M51, M81-M82 and Blue Dwarf Galaxies from the Unified Nearby Galaxy Catalog with an expected yield of a few hundred per year. Optical light curves will be resolved for the true time-of-onset for probes of gravitational waves by broadband time-sliced matched filtering.

  6. Prospects for Gravitational Wave Searches for Core-Collapse Supernovae within the Local Universe

    Science.gov (United States)

    Gill, Kiranjyot; Branchesi, Marica; Zanolin, Michele; Szczepanczyk, Marek; LIGO Collaboration

    2017-01-01

    We present an updated estimate of the intrinsic (vs observed) core collapse supernovae (CCSNe) rate within 20 Mpc from Earth, which is roughly the largest distance of interest for the searches for gravitational waves (GWs) from CCSNe with laser interferometers. Recognizing that CCSN galaxy host models are morphologically dependent, we separate the galaxies within 20 Mpc into the local field and Virgo cluster and account for biases, such as galactic plane absorption. The improved estimation of the CCSNe rate within 20 Mpc is 430 +/- 21 CCSNe Century -1 Mpc-1. We also discuss the Feldman-Cousins and GRB methodologies for detecting CCSNe when there are multiple CCSNe optical triggers, as predicted for advanced LIGO data science runs. Illustrative examples of the sensitivity improvement with respect to the single-event current approaches are provided for rapidly rotating semi-analytical models of GW emissions and real (publicly released) LIGO data.

  7. Search for. gamma. rays from the supernova 1987A at energies greater than 100 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Bond, I.A.; Budding, E.; Conway, M.J.; Fenton, K.B.; Fujii, H.; Fujii, Z.; Hasegawa, H.; Hayashida, N.; Honda, M.; Hotta, N.

    1988-03-21

    We searched for ultrahigh-energy ..gamma.. rays emitted by the supernova 1987A with a new cosmic-ray facility installed at the Black Birch Range in New Zealand. The observations from 13 October to 3 December 1987 suggest no clear clustering of events around the direction of the supernova. We conclude that an upper limit on the flux ..gamma.. rays of energies greater than 100 TeV is 1.1 x 10/sup -12/ cm/sup -2/ s/sup -1/ (95% confidence limit) for a differential spectral index ..cap alpha.. = 2.0 and source distance d = 50 kpc. This value gives an upper bound on the ..gamma..-ray luminosity of the supernova of 5.5 x 10/sup 38/ erg s/sup -1/ for 10/sup 14/--10/sup 17/ eV

  8. Methodology of the joint search for Gravitational Wave and Low Energy Neutrino signals from Core-Collapse Supernovae

    Science.gov (United States)

    Casentini, Claudio

    2016-05-01

    Core-Collapse Supernovae (CCSNe) have a neutrino (v) signature confirmed by SN 1987A and are potential sources of Gravitational Waves (GWs). vs and GWs coming from these sources will reach the observer almost simultaneously and without significant interaction with interstellar matter. The expected GW signals are in the range of the upcoming advanced detectors for galactic neighborhood events. However, there are still significant uncertainties on the theoretical model of the emission. A joint search of coincident vs and GWs from these sources would bring valuable information from the inner core of the collapsing star and would enhance the detection of the so-called Silent Supernovae. Recently, a project for a joint search involving GW interferometers and v detectors has started. In this paper we discuss about the principal GW theoretical models of emission, and we present a methodological study of the joint search project between GW and v.

  9. A Search for New Candidate Super-Chandrasekhar-Mass Type Ia Supernovae in the Nearby Supernova Factory Dataset

    CERN Document Server

    Scalzo, The Nearby Supernova Factory: R; Antilogus, P; Aragon, C; Bailey, S; Baltay, C; Bongard, S; Buton, C; Canto, A; Cellier-Holzem, F; Childress, M; Chotard, N; Copin, Y; Fakhouri, H K; Gangler, E; Guy, J; Hsiao, E Y; Kerschhaggl, M; Kowalski, M; Nugent, P; Paech, K; Pain, R; Pecontal, E; Pereira, R; Perlmutter, S; Rabinowitz, D; Rigault, M; Runge, K; Smadja, G; Tao, C; Thomas, R C; Weaver, B A; Wu, C

    2012-01-01

    We present optical photometry and spectroscopy of five type Ia supernovae discovered by the Nearby Supernova Factory selected to be spectroscopic analogues of the candidate super-Chandrasekhar-mass events SN 2003fg and SN 2007if. Their spectra are characterized by hot, highly ionized photospheres near maximum light, for which SN 1991T supplies the best phase coverage among available close spectral templates. Like SN 2007if, these supernovae are overluminous (-19.5 < M_V < -20) and the velocity of the Si II 6355 absorption minimum is consistent with being constant in time from phases as early as a week before, and up to two weeks after, $B$-band maximum light. We interpret the velocity plateaus as evidence for a reverse-shock shell in the ejecta formed by interaction at early times with a compact envelope of surrounding material, as might be expected for SNe resulting from the mergers of two white dwarfs. We use the bolometric light curves and line velocity evolution of these SNe to estimate important pa...

  10. The rate of Supernovae from the combined sample of five searches

    CERN Document Server

    Cappellaro, E; Tsvetkov, D Y; Bartunov, O S; Pollas, C; Evans, R; Hamuy, M

    1996-01-01

    With the purpose to obtain new estimates of the rate of supernovae we joined the logs of five SN searches, namely the Asiago, Crimea, Cal{á}n-Tololo and OCA photographic surveys and the visual search by Evans (the sample counts 110 SNe). We found that the most prolific galaxies are late spirals in which most SNe are of type II (0.88 SNu). SN Ib/c are rarer than SN Ia (0.16 and 0.24 SNu, respectively), ruling out previous claims of a very high rate of SNIb/c. We also found that the rate of SN Ia in ellipticals (0.13 SNu) is smaller than in spirals, supporting the hypothesis of different ages of the progenitor systems in early and late type galaxies. Finally, we estimated that even assuming that separate classes of faint SN Ia and SN II do exist (SNe 1991bg and 1987A could be the respective prototypes) the overall SN rate is raised only by 20-30%, therefore excluding that faint SNe represent the majority of SN explosions. Also, the bright SNIIn are intrinsically very rare (2 to 5% of all SNII in spirals).

  11. A search for \\textit{Fermi} bursts associated to supernovae and their frequency of occurrence

    CERN Document Server

    Kovacevic, M; Wang, Y; Muccino, M; Della Valle, M; Amati, L; Barbarino, C; Enderli, M; Pisani, G B; Li, L

    2014-01-01

    Context: Observations suggest that the major fraction of long duration gamma-ray bursts (GRBs) are connected with broad-lines supernovae Ib/c, (SNe-Ibc). The presence of GRB-SNe is revealed by rebrightenings emerging from the optical GRB afterglow $10$--$15$ days, in the rest-frame of the source, after the prompt GRB emission. Aims: \\textit{Fermi}-GBM has a field of view (FoV) which is about 6.5 times larger than the FoV of \\textit{Swift}, therefore we expect that a number of GRB-SN connections have been missed due to lack of optical and X-ray instruments on board of \\textit{Fermi}, which are essential to reveal SNe associated with GRBs. This fact has motivated our search in the \\textit{Fermi} catalogue for possible GRB-SN events. Methods: The search for possible GRB-SN associations follows two requirements: (1) SN should fall inside the \\textit{Fermi}-GBM error box of the considered long GRB, and (2) this GRB should occur within $20$ days before the SN event. Results: We have found $5$ cases, within $z<0....

  12. A Search for New Candidate Super-Chandrasekhar-mass Type Ia Supernovae in the Nearby Supernova Factory Data Set

    Science.gov (United States)

    Scalzo, R.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Bongard, S.; Buton, C.; Canto, A.; Cellier-Holzem, F.; Childress, M.; Chotard, N.; Copin, Y.; Fakhouri, H. K.; Gangler, E.; Guy, J.; Hsiao, E. Y.; Kerschhaggl, M.; Kowalski, M.; Nugent, P.; Paech, K.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigault, M.; Runge, K.; Smadja, G.; Tao, C.; Thomas, R. C.; Weaver, B. A.; Wu, C.; Nearby Supernova Factory, The

    2012-09-01

    We present optical photometry and spectroscopy of five Type Ia supernovae discovered by the Nearby Supernova Factory selected to be spectroscopic analogs of the candidate super-Chandrasekhar-mass events SN 2003fg and SN 2007if. Their spectra are characterized by hot, highly ionized photospheres near maximum light, for which SN 1991T supplies the best phase coverage among available close spectral templates. Like SN 2007if, these supernovae are overluminous (-19.5 constant in time from phases as early as a week before, and up to two weeks after, B-band maximum light. We interpret the velocity plateaus as evidence for a reverse-shock shell in the ejecta formed by interaction at early times with a compact envelope of surrounding material, as might be expected for SNe resulting from the mergers of two white dwarfs. We use the bolometric light curves and line velocity evolution of these SNe to estimate important parameters of the progenitor systems, including 56Ni mass, total progenitor mass, and masses of shells and surrounding carbon/oxygen envelopes. We find that the reconstructed total progenitor mass distribution of the events (including SN 2007if) is bounded from below by the Chandrasekhar mass, with SN 2007if being the most massive. We discuss the relationship of these events to the emerging class of super-Chandrasekhar-mass SNe Ia, estimate the relative rates, compare the mass distribution to that expected for double-degenerate SN Ia progenitors from population synthesis, and consider implications for future cosmological Hubble diagrams.

  13. A SEARCH FOR NEW CANDIDATE SUPER-CHANDRASEKHAR-MASS TYPE Ia SUPERNOVAE IN THE NEARBY SUPERNOVA FACTORY DATA SET

    Energy Technology Data Exchange (ETDEWEB)

    Scalzo, R. [Research School of Astronomy and Astrophysics, Australian National University, Mount Stromlo Observatory, Cotter Road, Weston Creek, ACT 2611 (Australia); Aldering, G.; Aragon, C.; Bailey, S.; Childress, M.; Fakhouri, H. K.; Hsiao, E. Y. [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J. [Laboratoire de Physique Nucleaire et des Hautes Energies, Universite Pierre et Marie Curie Paris 6, Universite Paris Diderot Paris 7, CNRS-IN2P3, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Baltay, C. [Department of Physics, Yale University, New Haven, CT 06250-8121 (United States); Buton, C.; Kerschhaggl, M.; Kowalski, M. [Physikalisches Institut, Universitaet Bonn, Nussallee 12, D-53115 Bonn (Germany); Chotard, N.; Copin, Y.; Gangler, E. [Institut de Physique Nucleaire, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex (France); Nugent, P., E-mail: rscalzo@mso.anu.edu.au [Computational Cosmology Center, Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road MS 50B-4206, Berkeley, CA 94720 (United States); Collaboration: Nearby Supernova Factory; and others

    2012-09-20

    We present optical photometry and spectroscopy of five Type Ia supernovae discovered by the Nearby Supernova Factory selected to be spectroscopic analogs of the candidate super-Chandrasekhar-mass events SN 2003fg and SN 2007if. Their spectra are characterized by hot, highly ionized photospheres near maximum light, for which SN 1991T supplies the best phase coverage among available close spectral templates. Like SN 2007if, these supernovae are overluminous (-19.5 < M{sub V} < -20) and the velocity of the Si II {lambda}6355 absorption minimum is consistent with being constant in time from phases as early as a week before, and up to two weeks after, B-band maximum light. We interpret the velocity plateaus as evidence for a reverse-shock shell in the ejecta formed by interaction at early times with a compact envelope of surrounding material, as might be expected for SNe resulting from the mergers of two white dwarfs. We use the bolometric light curves and line velocity evolution of these SNe to estimate important parameters of the progenitor systems, including {sup 56}Ni mass, total progenitor mass, and masses of shells and surrounding carbon/oxygen envelopes. We find that the reconstructed total progenitor mass distribution of the events (including SN 2007if) is bounded from below by the Chandrasekhar mass, with SN 2007if being the most massive. We discuss the relationship of these events to the emerging class of super-Chandrasekhar-mass SNe Ia, estimate the relative rates, compare the mass distribution to that expected for double-degenerate SN Ia progenitors from population synthesis, and consider implications for future cosmological Hubble diagrams.

  14. Constraining the supersaturation density equation of state from core-collapse supernova simulations? Excluded volume extension of the baryons

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Tobias [University of Wroclaw, Wroclaw (Poland)

    2016-03-15

    In this article the role of the supersaturation density equation of state (EOS) is explored in simulations of failed core-collapse supernova explosions. Therefore the nuclear EOS is extended via a one-parameter excluded-volume description for baryons, taking into account their finite and increasing volume with increasing density in excess of saturation density. Parameters are selected such that the resulting supernova EOS represent extreme cases, with high pressure variations at supersaturation density which feature extreme stiff and soft EOS variants of the reference case, i.e. without excluded-volume corrections. Unlike in the interior of neutron stars with central densities in excess of several times saturation density, central densities of core-collapse supernovae reach only slightly above saturation density. Hence, the impact of the supersaturation density EOS on the supernova dynamics as well as the neutrino signal is found to be negligible. It is mainly determined from the low- and intermediate-density domain, which is left unmodified within this generalized excluded volume approach. (orig.)

  15. A Deep Search for Prompt Radio Emission from Thermonuclear Supernovae with the Very Large Array

    CERN Document Server

    Chomiuk, Laura; Chevalier, Roger A; Bruzewski, Seth; Foley, Ryan J; Parrent, Jerod; Strader, Jay; Badenes, Carles; Fransson, Claes; Kamble, Atish; Margutti, Raffaella; Rupen, Michael P; Simon, Joshua D

    2015-01-01

    Searches for circumstellar material around Type Ia supernovae (SNe Ia) are one of the most powerful tests of the nature of SN Ia progenitors, and radio observations provide a particularly sensitive probe of this material. Here we report radio observations for SNe Ia and their lower-luminosity thermonuclear cousins. We present the largest, most sensitive, and spectroscopically diverse study of prompt (delta t <~ 1 yr) radio observations of 85 thermonuclear SNe, including 25 obtained by our team with the unprecedented depth of the Karl G. Jansky Very Large Array. With these observations, SN 2012cg joins SN 2011fe and SN 2014J as a SN Ia with remarkably deep radio limits and excellent temporal coverage (six epochs, spanning 5--216 days after explosion, yielding Mdot/v_w <~ 5 x 10^-9 M_sun/yr / (100 km/s), assuming epsilon_B = 0.1 and epsilon_e = 0.1). All observations yield non-detections, placing strong constraints on the presence of circumstellar material. We present analytical models for the temporal an...

  16. The Search for Supernova-produced Radionuclides in Terrestrial Deep-sea Archives

    CERN Document Server

    Feige, Jenny; Winkler, Stephan R; Merchel, Silke; Fifield, L Keith; Korschinek, Gunther; Rugel, Georg; Breitschwerdt, Dieter

    2012-01-01

    An enhanced concentration of 60Fe was found in a deep ocean's crust in 2004 in a layer corresponding to an age of ~2 Myr. The confirmation of this signal in terrestrial archives as supernova-induced and detection of other supernova-produced radionuclides is of great interest. We have identified two suitable marine sediment cores from the South Australian Basin and estimated the intensity of a possible signal of the supernova-produced radionuclides 26Al, 53Mn, 60Fe and the pure r-process element 244Pu in these cores. A finding of these radionuclides in a sediment core might allow to improve the time resolution of the signal and thus to link the signal to a supernova event in the solar vicinity ~2 Myr ago. Furthermore, it gives an insight on nucleosynthesis scenarios in massive stars, the condensation into dust grains and transport mechanisms from the supernova shell into the solar system.

  17. Worldwide trends in fishing interest indicated by Internet search volume

    Science.gov (United States)

    Wilde, G.R.; Pope, K.L.

    2013-01-01

    There is a growing body of literature that shows internet search volume on a topic, such as fishing, is a viable measure of salience. Herein, internet search volume for 'fishing' and 'angling' is used as a measure of public interest in fishing, in particular, recreational fishing. An online tool, Google Insights for Search, which allows one to study internet search terms and their volume since 2004, is used to examine trends in interest in fishing for 50 countries. Trends in normalised fishing search volume, during 2004 through 2011, varied from a 72.6% decrease (Russian Federation) to a 133.7% increase (Hungary). Normalised fishing search volume declined in 40 (80%) of the countries studied. The decline has been relatively large in English-speaking countries, but also has been large in Central and South American, and European countries. Analyses of search queries provide a low-cost means of gaining insight into angler interests and, possibly, behaviour in countries around the world.

  18. LOSS Revisited - I: Unraveling correlations between supernova rates and galaxy properties, as measured in a re-analysis of the Lick Observatory Supernova Search

    CERN Document Server

    Graur, Or; Huang, Shan; Modjaz, Maryam; Shivvers, Isaac; Filippenko, Alexei V; Li, Weidong

    2016-01-01

    Most types of supernovae (SNe) have yet to be connected with their progenitor stellar systems. Here, we re-analyze the ten-year 1998-2008 SN sample collected by the Lick Observatory Supernova Search (LOSS) in order to constrain the progenitors of SNe Ia and stripped-envelope SNe (SE SNe; i.e., SNe IIb, Ib, Ic, and broad-lined Ic). We matched the LOSS galaxy sample with spectroscopy from the Sloan Digital Sky Survey and measured SN rates as a function of galaxy stellar mass, specific star-formation rate (sSFR), and oxygen abundance (metallicity). We find significant correlations between the SN rates and all three galaxy properties. The SN Ia correlations are consistent with other measurements, as well as with our previous explanation of these measurements in the form of a combination of the SN Ia delay-time distribution and the correlation between galaxy mass and age. Intriguingly, we measure a deficiency in the SE SN rates, relative to the SN II rates, in galaxies with low stellar masses, high sSFR values, an...

  19. Nearby Supernova Rates from the Lick Observatory Supernova Search. III. The Rate-Size Relation, and the Rates as a Function of Galaxy Hubble Type and Colour

    CERN Document Server

    Li, Weidong; Leaman, Jesse; Filippenko, Alexei V; Poznanski, Dovi; Wang, Xiaofeng; Ganeshalingam, Mohan; Mannucci, Filippo

    2010-01-01

    This is the third paper of a series in which we present new measurements of the observed rates of supernovae (SNe) in the local Universe, determined from the Lick Observatory Supernova Search (LOSS). We have considered a sample of about 1000 SNe and used an optimal subsample of 726 SNe (274 SNe Ia, 116 SNe Ibc, and 324 SNe II) to determine our rates. We study the trend of the rates as a function of a few quantities available for our galaxy sample, such as luminosity in the B and K bands, stellar mass, and morphological class. We discuss different choices (SN samples, input SN luminosity functions, inclination correction factors) and their effect on the rates and their uncertainties. A comparison between our SN rates and the published measurements shows that they are consistent with each other to within uncertainties when the rate calculations are done in the same manner. Nevertheless, our data demonstrate that the rates cannot be adequately described by a single parameter using either galaxy Hubble types or B...

  20. The IceCube Neutrino Observatory VI: Neutrino Oscillations, Supernova Searches, Ice Properties

    OpenAIRE

    The IceCube Collaboration

    2011-01-01

    Atmospheric neutrino oscillations with DeepCore; Supernova detection with IceCube and beyond; Study of South Pole ice transparency with IceCube flashers; Submitted papers to the 32nd International Cosmic Ray Conference, Beijing 2011.

  1. An Expanded HST/WFC3 Survey of M83: Project Overview and Targeted Supernova Remnant Search

    CERN Document Server

    Blair, William P; Dopita, Michael A; Ghavamian, Parviz; Hammer, Derek; Kuntz, K D; Long, Knox S; Soria, Roberto; Whitmore, Bradley C; Winkler, P Frank

    2014-01-01

    We present an optical/NIR imaging survey of the face-on spiral galaxy M83, using data from the Hubble Space Telescope Wide Field Camera 3 (WFC3). Seven fields are used to cover a large fraction of the inner disk, with observations in nine broadband and narrowband filters. In conjunction with a deep Chandra survey and other new radio and optical ground-based work, these data enable a broad range of science projects to be pursued. We provide an overview of the WFC3 data and processing and then delve into one topic, the population of young supernova remnants. We used a search method targeted toward soft X-ray sources to identify 26 new supernova remnants. Many compact emission nebulae detected in [Fe II] 1.644 micron align with known remnants and this diagnostic has also been used to identify many new remnants, some of which are hard to find with optical images. We include 37 previously identified supernova remnants that the data reveal to be <0.5'' in angular size and thus are difficult to characterize from ...

  2. The Sloan Digital Sky Survey-II Supernova Survey:Search Algorithm and Follow-up Observations

    Energy Technology Data Exchange (ETDEWEB)

    Sako, Masao; /Pennsylvania U. /KIPAC, Menlo Park; Bassett, Bruce; /Cape Town U. /South African Astron. Observ.; Becker, Andrew; /Washington U., Seattle, Astron. Dept.; Cinabro, David; /Wayne State U.; DeJongh, Don Frederic; /Fermilab; Depoy, D.L.; /Ohio State U.; Doi, Mamoru; /Tokyo U.; Garnavich, Peter M.; /Notre Dame U.; Craig, Hogan, J.; /Washington U., Seattle, Astron. Dept.; Holtzman, Jon; /New Mexico State U.; Jha, Saurabh; /Stanford U., Phys. Dept.; Konishi, Kohki; /Tokyo U.; Lampeitl, Hubert; /Baltimore, Space; Marriner, John; /Fermilab; Miknaitis, Gajus; /Fermilab; Nichol, Robert C.; /Portsmouth U.; Prieto, Jose Luis; /Ohio State U.; Richmond, Michael W.; /Rochester Inst.; Schneider, Donald P.; /Penn State U., Astron. Astrophys.; Smith, Mathew; /Portsmouth U.; SubbaRao, Mark; /Chicago U. /Tokyo U. /Tokyo U. /South African Astron. Observ. /Tokyo

    2007-09-14

    The Sloan Digital Sky Survey-II Supernova Survey has identified a large number of new transient sources in a 300 deg2 region along the celestial equator during its first two seasons of a three-season campaign. Multi-band (ugriz) light curves were measured for most of the sources, which include solar system objects, Galactic variable stars, active galactic nuclei, supernovae (SNe), and other astronomical transients. The imaging survey is augmented by an extensive spectroscopic follow-up program to identify SNe, measure their redshifts, and study the physical conditions of the explosions and their environment through spectroscopic diagnostics. During the survey, light curves are rapidly evaluated to provide an initial photometric type of the SNe, and a selected sample of sources are targeted for spectroscopic observations. In the first two seasons, 476 sources were selected for spectroscopic observations, of which 403 were identified as SNe. For the Type Ia SNe, the main driver for the Survey, our photometric typing and targeting efficiency is 90%. Only 6% of the photometric SN Ia candidates were spectroscopically classified as non-SN Ia instead, and the remaining 4% resulted in low signal-to-noise, unclassified spectra. This paper describes the search algorithm and the software, and the real-time processing of the SDSS imaging data. We also present the details of the supernova candidate selection procedures and strategies for follow-up spectroscopic and imaging observations of the discovered sources.

  3. Star Trek: The Search for the First Alleged Crab Supernova Rock Art

    Science.gov (United States)

    Krupp, E. C.

    2014-01-01

    Since the 1950s, star/crescent combinations in prehistoric rock art in the American Southwest have become broadly accepted as eyewitness records of the Crab supernova explosion, a spectacular event visible in 1054 A.D. For more than three decades, images of this "supernova" rock art have routinely appeared in astronomy textbooks, in popular articles, on websites, and in television programs. As this Crab supernova interpretation became more fashionable, Griffith Observatory Director E.C. Krupp began a long-term effort to inspect each of these sites in person. His field work eventually led him, in 2008, to the two sites in northern Arizona that started this cottage industry in supernova rock art, sites that had been lost and had not been revisited for 50 years. Developments in the study of rock art, Pueblo Indian iconography, and Pueblo ceremonialism have permitted a greater appreciation of the role of the sky in the ancient Southwest. The best known star/crescent sites are surveyed to clarify the discipline required for cross-disciplinary research. Through this exploration of an aspect of the relationship between astronomy and culture, the presentation acknowledges the intent of American Institute of Physics Andrew Gemant Award.

  4. X-ray Emission from Supernovae in Dense Circumstellar Matter Environments: a Search for Collisionless Shocks

    Science.gov (United States)

    Ofek, E. O.; Fox, D.; Cenko, Stephen B.; Sullivan, M; Gnat, O.; Frail, D. A.; Horesh, A.; Corsi, A.; Quimby, R. M.; Gehrels, N.; Kulkarni, S. R.; Gal-Yam, A.; Nugent, P. E.; Yaron, O.; Fillippenko, A. V; Kasliwal, M. M.; Bildsten, L.; Bloom, J. S.; Poznanski, D.; Arcavi, I.; Laher, R. R.; Levitan, D.; Sesar, B.; Surace, J..

    2013-01-01

    The optical light curve of some supernovae (SNe) may be powered by the outward diffusion of the energy deposited by the explosion shock (the so-called shock breakout) in optically thick (Tau approx > 30) circumstellar matter (CSM). Recently, it was shown that the radiation-mediated and radiation-dominated shock in an optically thick wind must transform into a collisionless shock and can produce hard X-rays. The X-rays are expected to peak at late times, relative to maximum visible light. Here we report on a search, using Swift/XRT and Chandra, for X-ray emission from 28 SNe that belong to classes whose progenitors are suspected to be embedded in dense CSM. Our sample includes 19 Type IIn SNe, one Type Ibn SN, and eight hydrogen-poor superluminous SNe (SLSN-I such as SN 2005ap). Two SNe (SN 2006jc and SN 2010jl) have X-ray properties that are roughly consistent with the expectation for X-rays from a collisionless shock in optically thick CSM. However, the X-ray emission from SN 2006jc can also be explained as originating in an optically thin region. Thus, we propose that the optical light curve of SN 2010jl is powered by shock breakout in CSM. We suggest that two other events (SN 2010al and SN 2011ht) were too X-ray bright during the SN maximum optical light to be explained by the shock-breakout model.We conclude that the light curves of some, but not all, SNe IIn/Ibn are powered by shock breakout in CSM. For the rest of the SNe in our sample, including all of the SLSN-I events, our X-ray limits are not deep enough and were typically obtained too early (i.e., near the SN maximum light) for definitive conclusions about their nature. Late-time X-ray observations are required in order to further test whether these SNe are indeed embedded in dense CSM. We review the conditions required for a shock breakout in a wind profile. We argue that the timescale, relative to maximum light, for the SN to peak in X-rays is a probe of the column density and the density profile above

  5. A HIGH-RESOLUTION SPECTROSCOPIC SEARCH FOR THE REMAINING DONOR FOR TYCHO'S SUPERNOVA

    Energy Technology Data Exchange (ETDEWEB)

    Kerzendorf, Wolfgang E.; Yong, David; Schmidt, Brian P.; Murphy, Simon J.; Bessell, Michael S. [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Cotter Road, Weston Creek, ACT 2611 (Australia); Simon, Joshua D. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Jeffery, C. Simon [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom); Anderson, Jay [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Podsiadlowski, Philipp [Department of Astrophysics, University of Oxford, Oxford, OX1 3RH (United Kingdom); Gal-Yam, Avishay [Benoziyo Center for Astrophysics, Faculty of Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Silverman, Jeffrey M.; Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Nomoto, Ken' ichi [Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Venn, Kim A. [Department of Physics and Astronomy, University of Victoria, Elliott Building, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada); Foley, Ryan J., E-mail: wkerzend@mso.anu.edu.au [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-09-10

    In this paper, we report on our analysis using Hubble Space Telescope astrometry and Keck-I HIRES spectroscopy of the central six stars of Tycho's supernova remnant (SN 1572). With these data, we measured the proper motions, radial velocities, rotational velocities, and chemical abundances of these objects. Regarding the chemical abundances, we do not confirm the unusually high [Ni/Fe] ratio previously reported for Tycho-G. Rather, we find that for all metrics in all stars, none exhibit the characteristics expected from traditional Type Ia supernova single-degenerate-scenario calculations. The only possible exception is Tycho-B, a rare, metal-poor A-type star; however, we are unable to find a suitable scenario for it. Thus, we suggest that SN 1572 cannot be explained by the standard single-degenerate model.

  6. First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corpuz, A.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalmus, P.; Kalogera, V.; Kamaretsos, I.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Loew, K.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, K. N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Santamaria, L.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-11-01

    We present results from a search for gravitational-wave bursts coincident with two core-collapse supernovae observed optically in 2007 and 2011. We employ data from the Laser Interferometer Gravitational-wave Observatory (LIGO), the Virgo gravitational-wave observatory, and the GEO 600 gravitational-wave observatory. The targeted core-collapse supernovae were selected on the basis of (1) proximity (within approximately 15 Mpc), (2) tightness of observational constraints on the time of core collapse that defines the gravitational-wave search window, and (3) coincident operation of at least two interferometers at the time of core collapse. We find no plausible gravitational-wave candidates. We present the probability of detecting signals from both astrophysically well-motivated and more speculative gravitational-wave emission mechanisms as a function of distance from Earth, and discuss the implications for the detection of gravitational waves from core-collapse supernovae by the upgraded Advanced LIGO and Virgo detectors.

  7. A First Targeted Search for Gravitational-Wave Bursts from Core-Collapse Supernovae in Data of First-Generation Laser Interferometer Detectors

    CERN Document Server

    Abbott, B P; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calder'on; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavagli`a, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corpuz, A; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J -P; Countryman, S T; Couvares, P; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Del'eglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; D'iaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H -B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J -D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; Gonz'alez, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J -M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jim'enez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalmus, P; Kalogera, V; Kamaretsos, I; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; K'ef'elian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y -M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Kr'olak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Loew, K; Logue, J; Lombardi, A L; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; L"uck, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; na-Sandoval, F Maga; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; M'arka, S; M'arka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, K N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Pereira, R; Perreca, A; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; P"urrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosi'nska, D; Rowan, S; R"udiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Santamaria, L; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O E S; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Sch"onbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepa'nczyk, M J; Tacca, M; Talukder, D; Tanner, D B; T'apai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; T"oyr"a, D; Travasso, F; Traylor, G; Trifir`o, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; Brand, J F J van den; Broeck, C Van Den; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vas'uth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Vicer'e, A; Vinciguerra, S; Vine, D J; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; zny, A Zadro; Zangrando, L; Zanolin, M; Zendri, J -P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-01-01

    We present results from a search for gravitational-wave bursts coincident with a set of two core-collapse supernovae observed between 2007 and 2011. We employ data from the Laser Interferometer Gravitational-wave Observatory (LIGO), the Virgo gravitational-wave observatory, and the GEO 600 gravitational-wave observatory. The targeted core-collapse supernovae were selected on the basis of (1) proximity (within approximately 15 Mpc), (2) tightness of observational constraints on the time of core collapse that defines the gravitational-wave search window, and (3) coincident operation of at least two interferometers at the time of core collapse. We find no plausible gravitational-wave candidates. We present the probability of detecting signals from both astrophysically well-motivated and more speculative gravitational-wave emission mechanisms as a function of distance from Earth, and discuss the implications for the detection of gravitational waves from core-collapse supernovae by the upgraded Advanced LIGO and V...

  8. A search for thermal X-ray signatures in Gamma-Ray Bursts I: Swift bursts with optical supernovae

    CERN Document Server

    Starling, R L C; Pe'er, A; Beardmore, A P; Osborne, J P

    2012-01-01

    The X-ray spectra of Gamma-Ray Bursts can generally be described by an absorbed power law. The landmark discovery of thermal X-ray emission in addition to the power law in the unusual GRB 060218, followed by a similar discovery in GRB 100316D, showed that during the first thousand seconds after trigger the soft X-ray spectra can be complex. Both the origin and prevalence of such spectral components still evades understanding, particularly after the discovery of thermal X-ray emission in the classical GRB 090618. Possibly most importantly, these three objects are all associated with optical supernovae, begging the question of whether the thermal X-ray components could be a result of the GRB-SN connection, possibly in the shock breakout. We therefore performed a search for blackbody components in the early Swift X-ray spectra of 11 GRBs that have or may have associated optical supernovae, accurately recovering the thermal components reported in the literature for GRBs 060218, 090618 and 100316D. We present the ...

  9. SEARCH FOR GAMMA-RAY EMISSION FROM THE SUPERNOVA REMNANT IC 443 WITH THE MAGIC TELESCOPE

    Directory of Open Access Journals (Sweden)

    R. J. García López

    2009-01-01

    Full Text Available TeV observations of Supernova remnants (SNRs and, in particular, of SNRs which appear to be physically related to EGRET sources are a prime target for the MAGIC telescope. MAGIC's spatial resolution and sensi- tivity can probe the main mechanism responsible for producing high energy photons in the SNR neighbourhood. Based on a recent systematical analysis of the molecular environment of the vicinity of all SNR-EGRET source pairs, the IC 443 remnant was chosen for observations with MAGIC. We brie y describe the observational strategy which provided the detection of a new very-high energy gamma-ray source: MAGIC 0616+225.

  10. Nowcasting Intraseasonal Recreational Fishing Harvest with Internet Search Volume.

    Science.gov (United States)

    Carter, David W; Crosson, Scott; Liese, Christopher

    2015-01-01

    Estimates of recreational fishing harvest are often unavailable until after a fishing season has ended. This lag in information complicates efforts to stay within the quota. The simplest way to monitor quota within the season is to use harvest information from the previous year. This works well when fishery conditions are stable, but is inaccurate when fishery conditions are changing. We develop regression-based models to "nowcast" intraseasonal recreational fishing harvest in the presence of changing fishery conditions. Our basic model accounts for seasonality, changes in the fishing season, and important events in the fishery. Our extended model uses Google Trends data on the internet search volume relevant to the fishery of interest. We demonstrate the model with the Gulf of Mexico red snapper fishery where the recreational sector has exceeded the quota nearly every year since 2007. Our results confirm that data for the previous year works well to predict intraseasonal harvest for a year (2012) where fishery conditions are consistent with historic patterns. However, for a year (2013) of unprecedented harvest and management activity our regression model using search volume for the term "red snapper season" generates intraseasonal nowcasts that are 27% more accurate than the basic model without the internet search information and 29% more accurate than the prediction based on the previous year. Reliable nowcasts of intraseasonal harvest could make in-season (or in-year) management feasible and increase the likelihood of staying within quota. Our nowcasting approach using internet search volume might have the potential to improve quota management in other fisheries where conditions change year-to-year.

  11. Nowcasting Intraseasonal Recreational Fishing Harvest with Internet Search Volume.

    Directory of Open Access Journals (Sweden)

    David W Carter

    Full Text Available Estimates of recreational fishing harvest are often unavailable until after a fishing season has ended. This lag in information complicates efforts to stay within the quota. The simplest way to monitor quota within the season is to use harvest information from the previous year. This works well when fishery conditions are stable, but is inaccurate when fishery conditions are changing. We develop regression-based models to "nowcast" intraseasonal recreational fishing harvest in the presence of changing fishery conditions. Our basic model accounts for seasonality, changes in the fishing season, and important events in the fishery. Our extended model uses Google Trends data on the internet search volume relevant to the fishery of interest. We demonstrate the model with the Gulf of Mexico red snapper fishery where the recreational sector has exceeded the quota nearly every year since 2007. Our results confirm that data for the previous year works well to predict intraseasonal harvest for a year (2012 where fishery conditions are consistent with historic patterns. However, for a year (2013 of unprecedented harvest and management activity our regression model using search volume for the term "red snapper season" generates intraseasonal nowcasts that are 27% more accurate than the basic model without the internet search information and 29% more accurate than the prediction based on the previous year. Reliable nowcasts of intraseasonal harvest could make in-season (or in-year management feasible and increase the likelihood of staying within quota. Our nowcasting approach using internet search volume might have the potential to improve quota management in other fisheries where conditions change year-to-year.

  12. A search for supernova remnants in NGC 6946 using the [Fe II] 1.64 μm line

    Energy Technology Data Exchange (ETDEWEB)

    Bruursema, Justice; Meixner, Margaret [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Long, Knox S.; Otsuka, Masaaki, E-mail: justiceb@pha.jhu.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-09-01

    Shock models indicate and observations show that in the infrared (IR), supernova remnants (SNRs) emit strongly in [Fe II] at 1.64 μm. Here, we report the results of a search for SNRs in NGC 6946 relying on [Fe II] 1.64 μm line emission, where we employed an adjacent [Fe II]{sub Off} filter to accurately assess the local continuum levels. For this study, we used the WIYN High Resolution Infrared Camera on the WIYN 3.5 m telescope to image NGC 6946 in broadbands J and H and narrowbands [Fe II], [Fe II]{sub Off}, Paβ, and Paβ{sub Off}. From our search, we have identified 48 SNR candidates (SNRcs), 6 of which are coincident with sources found in prior radio, optical, and/or X-ray studies. The measured [Fe II] fluxes of our SNRcs range from 1.5 × 10{sup –16} to 4.2 × 10{sup –15} erg s{sup –1} cm{sup –2} and are among the highest of previously published extragalactic SNR [Fe II] fluxes. All of the candidates now need to be confirmed spectroscopically. However, the fact that we detect as many objects as we did suggests that [Fe II] can be used as an effective search tool to find extragalactic SNRs.

  13. Web search queries can predict stock market volumes.

    Science.gov (United States)

    Bordino, Ilaria; Battiston, Stefano; Caldarelli, Guido; Cristelli, Matthieu; Ukkonen, Antti; Weber, Ingmar

    2012-01-01

    We live in a computerized and networked society where many of our actions leave a digital trace and affect other people's actions. This has lead to the emergence of a new data-driven research field: mathematical methods of computer science, statistical physics and sociometry provide insights on a wide range of disciplines ranging from social science to human mobility. A recent important discovery is that search engine traffic (i.e., the number of requests submitted by users to search engines on the www) can be used to track and, in some cases, to anticipate the dynamics of social phenomena. Successful examples include unemployment levels, car and home sales, and epidemics spreading. Few recent works applied this approach to stock prices and market sentiment. However, it remains unclear if trends in financial markets can be anticipated by the collective wisdom of on-line users on the web. Here we show that daily trading volumes of stocks traded in NASDAQ-100 are correlated with daily volumes of queries related to the same stocks. In particular, query volumes anticipate in many cases peaks of trading by one day or more. Our analysis is carried out on a unique dataset of queries, submitted to an important web search engine, which enable us to investigate also the user behavior. We show that the query volume dynamics emerges from the collective but seemingly uncoordinated activity of many users. These findings contribute to the debate on the identification of early warnings of financial systemic risk, based on the activity of users of the www.

  14. Web search queries can predict stock market volumes.

    Directory of Open Access Journals (Sweden)

    Ilaria Bordino

    Full Text Available We live in a computerized and networked society where many of our actions leave a digital trace and affect other people's actions. This has lead to the emergence of a new data-driven research field: mathematical methods of computer science, statistical physics and sociometry provide insights on a wide range of disciplines ranging from social science to human mobility. A recent important discovery is that search engine traffic (i.e., the number of requests submitted by users to search engines on the www can be used to track and, in some cases, to anticipate the dynamics of social phenomena. Successful examples include unemployment levels, car and home sales, and epidemics spreading. Few recent works applied this approach to stock prices and market sentiment. However, it remains unclear if trends in financial markets can be anticipated by the collective wisdom of on-line users on the web. Here we show that daily trading volumes of stocks traded in NASDAQ-100 are correlated with daily volumes of queries related to the same stocks. In particular, query volumes anticipate in many cases peaks of trading by one day or more. Our analysis is carried out on a unique dataset of queries, submitted to an important web search engine, which enable us to investigate also the user behavior. We show that the query volume dynamics emerges from the collective but seemingly uncoordinated activity of many users. These findings contribute to the debate on the identification of early warnings of financial systemic risk, based on the activity of users of the www.

  15. Web Search Queries Can Predict Stock Market Volumes

    Science.gov (United States)

    Bordino, Ilaria; Battiston, Stefano; Caldarelli, Guido; Cristelli, Matthieu; Ukkonen, Antti; Weber, Ingmar

    2012-01-01

    We live in a computerized and networked society where many of our actions leave a digital trace and affect other people’s actions. This has lead to the emergence of a new data-driven research field: mathematical methods of computer science, statistical physics and sociometry provide insights on a wide range of disciplines ranging from social science to human mobility. A recent important discovery is that search engine traffic (i.e., the number of requests submitted by users to search engines on the www) can be used to track and, in some cases, to anticipate the dynamics of social phenomena. Successful examples include unemployment levels, car and home sales, and epidemics spreading. Few recent works applied this approach to stock prices and market sentiment. However, it remains unclear if trends in financial markets can be anticipated by the collective wisdom of on-line users on the web. Here we show that daily trading volumes of stocks traded in NASDAQ-100 are correlated with daily volumes of queries related to the same stocks. In particular, query volumes anticipate in many cases peaks of trading by one day or more. Our analysis is carried out on a unique dataset of queries, submitted to an important web search engine, which enable us to investigate also the user behavior. We show that the query volume dynamics emerges from the collective but seemingly uncoordinated activity of many users. These findings contribute to the debate on the identification of early warnings of financial systemic risk, based on the activity of users of the www. PMID:22829871

  16. The Search for Faint Radio Supernova Remnants in the Outer Galaxy: Five New Discoveries

    CERN Document Server

    Gerbrandt, Stephanie; Kothes, Roland; Geisbuesch, Joern; Tung, Albert

    2014-01-01

    High resolution and sensitivity large-scale radio surveys of the Milky Way are critical in the discovery of very low surface brightness supernova remnants (SNRs), which may constitute a significant portion of the Galactic SNRs still unaccounted for (ostensibly the Missing SNR problem). The overall purpose here is to present the results of a systematic, deep data-mining of the Canadian Galactic Plane Survey (CGPS) for faint, extended non-thermal and polarized emission structures that are likely the shells of uncatalogued supernova remnants. We examine 5$\\times$5 degree mosaics from the entire 1420 MHz continuum and polarization dataset of the CGPS after removing unresolved point sources and subsequently smoothing them. Newly revealed extended emission objects are compared to similarly-prepared CGPS 408 MHz continuum mosaics, as well as to source-removed mosaics from various existing radio surveys at 4.8 GHz, 2.7 GHz, and 327 MHz, to identify candidates with non-thermal emission characteristics. We integrate fl...

  17. The search for failed supernovae with the Large Binocular Telescope: confirmation of a disappearing star

    CERN Document Server

    Adams, S M; Gerke, J R; Stanek, K Z; Dai, X

    2016-01-01

    We present Hubble Space Telescope imaging confirming the optical disappearance of the failed supernova candidate identified by Gerke et al. (2015). This $\\sim 25~M_{\\odot}$ red supergiant experienced a weak $\\sim 10^{6}~L_{\\odot}$ optical outburst in 2009 and is now at least 5 magnitudes fainter than the progenitor in the optical. The mid-IR flux has slowly decreased to the lowest levels since the first measurements in 2004. There is faint ($2000-3000~L_{\\odot}$) near-IR emission likely associated with the source. We find the late-time evolution of the source to be inconsistent with obscuration from an ejected, dusty shell. Models of the spectral energy distribution indicate that the remaining bolometric luminosity is $>6$ times fainter than that of the progenitor and is decreasing as $\\sim t^{-4/3}$. We conclude that the transient is unlikely to be a SN impostor or stellar merger. The event is consistent with the ejection of the envelope of a red supergiant in a failed supernova and the late-time emission co...

  18. Supernova rates from the SUDARE VST-Omegacam search II. Rates in a galaxy sample

    Science.gov (United States)

    Botticella, M. T.; Cappellaro, E.; Greggio, L.; Pignata, G.; Della Valle, M.; Grado, A.; Limatola, L.; Baruffolo, A.; Benetti, S.; Bufano, F.; Capaccioli, M.; Cascone, E.; Covone, G.; De Cicco, D.; Falocco, S.; Haeussler, B.; Harutyunyan, V.; Jarvis, M.; Marchetti, L.; Napolitano, N. R.; Paolillo, M.; Pastorello, A.; Radovich, M.; Schipani, P.; Tomasella, L.; Turatto, M.; Vaccari, M.

    2017-02-01

    Aims: This is the second paper of a series in which we present measurements of the supernova (SN) rates from the SUDARE survey. The aim of this survey is to constrain the core collapse (CC) and Type Ia SN progenitors by analysing the dependence of their explosion rate on the properties of the parent stellar population averaging over a population of galaxies with different ages in a cosmic volume and in a galaxy sample. In this paper, we study the trend of the SN rates with the intrinsic colours, the star formation activity and the masses of the parent galaxies. To constrain the SN progenitors we compare the observed rates with model predictions assuming four progenitor models for SNe Ia with different distribution functions of the time intervals between the formation of the progenitor and the explosion, and a mass range of 8-40 M⊙ for CC SN progenitors. Methods: We considered a galaxy sample of approximately 130 000 galaxies and a SN sample of approximately 50 events. The wealth of photometric information for our galaxy sample allows us to apply the spectral energy distribution (SED) fitting technique to estimate the intrinsic rest frame colours, the stellar mass and star formation rate (SFR) for each galaxy in the sample. The galaxies have been separated into star-forming and quiescent galaxies, exploiting both the rest frame U-V vs. V-J colour-colour diagram and the best fit values of the specific star formation rate (sSFR) from the SED fitting. Results: We found that the SN Ia rate per unit mass is higher by a factor of six in the star-forming galaxies with respect to the passive galaxies, identified as such both on the U-V vs. V-J colour-colour diagram and for their sSFR. The SN Ia rate per unit mass is also higher in the less massive galaxies that are also younger. These results suggest a distribution of the delay times (DTD) less populated at long delay times than at short delays. The CC SN rate per unit mass is proportional to both the sSFR and the galaxy

  19. Search for supernova-produced {sup 60}Fe in the microfossil record

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Peter; Bishop, Shawn; Chernenko, Valentyna; Faestermann, Thomas; Famulok, Nicolai; Fimiani, Leticia; Gomez, Jose; Hain, Karin; Korschinek, Gunther [TU Muenchen, Physik Department (Germany); Egli, Ramon [ZAMG, Wien (Austria); Frederichs, Thomas [Universitaet Bremen, Geowissenschaften (Germany); Hanzlik, Marianne [TU Muenchen, Fakultaet fuer Chemie (Germany); Merchel, Silke; Rugel, Georg [HZDR, Dresden (Germany)

    2014-07-01

    Material distributed into the interstellar medium by supernova explosions can be incorporated into terrestrial archives. After the discovery of live {sup 60}Fe atoms in 2-3 Myr old layers of a Pacific Ocean ferromanganese crust, a confirmation of this signal, as well as a mapping of the signal with high time-resolution is desirable. Another reservoir in which the {sup 60}Fe signature should have been incorporated are the fossils of magnetotactic bacteria in ocean sediment. To this end, two sediment cores from the Eastern Equatorial Pacific were obtained, iron was chemically extracted with high selectivity towards biogenic magnetite, and the extraction procedure was characterized using novel magnetic measurements. The {sup 60}Fe/Fe concentration in the samples was then measured with accelerator mass spectrometry at the GAMS setup in Garching. Preliminary results for both sediment cores are reported.

  20. A High-Resolution Spectroscopic Search for the Remaining Donor for Tycho's Supernova

    CERN Document Server

    Kerzendorf, Wolfgang E; Schmidt, Brian P; Simon, Joshua D; Jeffery, C Simon; Anderson, Jay; Podsiadlowski, Philipp; Gal-Yam, Avishay; Silverman, Jeffrey M; Filippenko, Alexei V; Nomoto, Ken'ichi; Murphy, Simon J; Bessell, Michael S; Venn, Kim A; Foley, Ryan J

    2012-01-01

    In this paper, we report on our analysis using Hubble Space Telescope astrometry and Keck-I HIRES spectroscopy of the central six stars of Tycho's supernova remnant (SN 1572). With these data, we measured the proper motions, radial velocities, rotational velocities, and chemical abundances of these objects. Regarding the chemical abundances, we do not confirm the unusu- ally high [Ni/Fe] ratio previously reported for Tycho-G. Rather, we find that for all metrics in all stars, none exhibit the characteristics expected from traditional SN Ia single-degenerate-scenario calculations. The only possible exception is Tycho-B, a rare, metal-poor A-type star; however, we are unable to find a suitable scenario for it. Thus, we suggest that SN 1572 cannot be explained by the standard single-degenerate model.

  1. Searching for the Time Variation in Supernova Remnant RX J1713.7-3946

    CERN Document Server

    Sezer, Aytap; Cui, Xiaohong; Bamba, Aya; Ohira, Yutaka

    2016-01-01

    Supernova Remnant RX J1713.7-3946 emits synchrotron X-rays and very high energy $\\gamma$-rays. Recently, thermal X-ray line emission is detected from ejecta plasma. CO and HI observations indicate that a highly inhomogeneous medium surrounding the SNR. It is interacting with dense molecular clouds in the northwest and the southwest of the remnant. The origin of the $\\gamma$-ray emission from RX J1713.7-3946 is still uncertain. Detection of rapid variability in X-ray emission from RX J1713.7-3946 indicates the magnetic field $B$ $\\sim$ mG. In this work, we investigate the time variation in X-ray flux, luminosity and photon index of RX J1713.7-3946. For this investigation, we study the northwest part of the remnant using Suzaku data in 2006 and 2010. We present preliminary results based on our analysis and interpretations about these X-ray time variability.

  2. Search for Early Gamma-ray Production in Supernovae Located in a Dense Circumstellar Medium with the Fermi LAT

    CERN Document Server

    ,

    2015-01-01

    Supernovae (SNe) exploding in a dense circumstellar medium (CSM) are hypothesized to accelerate cosmic rays in collisionless shocks and emit GeV gamma rays and TeV neutrinos on a time scale of several months. We perform the first systematic search for gamma-ray emission in Fermi LAT data in the energy range from 100 MeV to 300 GeV from the ensemble of 147 SNe Type IIn exploding in dense CSM. We search for a gamma-ray excess at each SNe location in a one year time window. In order to enhance a possible weak signal, we simultaneously study the closest and optically brightest sources of our sample in a joint-likelihood analysis in three different time windows (1 year, 6 months and 3 months). For the most promising source of the sample, SN 2010jl (PTF10aaxf), we repeat the analysis with an extended time window lasting 4.5 years. We do not find a significant excess in gamma rays for any individual source nor for the combined sources and provide model-independent flux upper limits for both cases. In addition, we de...

  3. A Search for Neutrinos from the Solar hep Reaction and the Diffuse Supernova Neutrino Background with the Sudbury Neutrino Observatory

    CERN Document Server

    Ahmed, S N; Beier, E W; Bellerive, A; Bergevin, M; Biller, S D; Boulay, M G; Chan, Y D; Chen, M; Chen, X; Cleveland, B T; Cox, G A; Currat, C A; Dai, X; Dalnoki-Veress, F; Deng, H; Detwiler, J; Di Marco, M; Doe, P J; Doucas, G; Drouin, P L; Duncan, F A; Dunford, M; Dunmore, J A; Earle, E D; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Fleurot, F; Ford, R J; Formaggio, J A; Gagnon, N; Goon, J TM; Graham, K; Guillian, E; Hahn, R L; Hallin, A L; Hallman, E D; Harvey, P J; Hazama, R; Heeger, K M; Heintzelman, W J; Heise, J; Helmer, R L; Hemingway, R J; Henning, R; Hime, A; Howard, C; Howe, M A; Huang, M; Jagam, P; Jelley, N A; Klein, J R; Kormos, L L; Kos, M; Krüger, A; Kraus, C V; Krauss, C B; Kutter, T; Kyba, C C M; Labranche, H; Lange, R; Law, J; Lawson, I T; Lesko, K T; Leslie, J R; Loach, J C; Luoma, S; MacLellan, R; Majerus, S; Mak, H B; Maneira, J; Marino, A D; Martin, R; McCauley, N; McDonald, A B; McGee, S; Miin, C; Miknaitis, K K S; Miller, M L; Monreal, B; Nickel, B G; Noble, A J; Norman, E B; Oblath, N S; Okada, C E; O'Keeffe, H M; Orebi-Gann, G D; Oser, S M; Ott, R; Peeters, S J M; Poon, A W P; Prior, G; Rielage, K; Robertson, B C; Robertson, R G H; Rollin, E; Schwendener, M H; Secrest, J A; Seibert, S R; Simard, O; Sims, C J; Sinclair, D; Skensved, P; Stokstad, R G; Stonehill, L C; Tesic, G; Tolich, N; Tsui, T; Van Berg, R; Van de Water, R G; Van Devender, B A; Virtue, C J; Walker, T J; Wall, B L; Waller, D; Wan Chan Tseung, H; Wark, D L; Wendland, J; West, N; Wilkerson, J F; Wilson, J R; Wouters, J M; Wright, A; Yeh, M; Zhang, F; Zuber, K

    2006-01-01

    A search has been made for neutrinos from the hep reaction in the Sun and from the diffuse supernova neutrino background (DSNB) using data collected during the first operational phase of the Sudbury Neutrino Observatory. For the hep neutrino search, two events are observed in the effective electron energy range of 14.3 MeV

  4. The historical supernovae

    CERN Document Server

    Clark, David H

    1977-01-01

    The Historical Supernovae is an interdisciplinary study of the historical records of supernova. This book is composed of 12 chapters that particularly highlight the history of the Far East. The opening chapter briefly describes the features of nova and supernova, stars which spontaneously explode with a spectacular and rapid increase in brightness. The succeeding chapter deals with the search for the historical records of supernova from Medieval European monastic chronicles, Arabic chronicles, astrological works etc., post renaissance European scientific writings, and Far Eastern histories and

  5. Systematic search for gamma-ray emitting molecular clouds in the vicinity of supernova remnants

    CERN Document Server

    Häffner, Stephanie; Stegmann, Christian

    2013-01-01

    Observations of very-high-energy (VHE) gamma-ray emission from supernova remnants (SNR) established them as sources of accelerated particles up to energies of 100 TeV. The dominant process - leptonic or hadronic - responsible for the VHE emission is still not proven for most of the SNRs. Molecular clouds (MCs) in the vicinity of SNRs provide increased amount of target material for accelerated particles escaping the SNRs, thus making MCs potential gamma-ray sources. The predicted gamma-ray flux for MCs offset from the SNR shock depends on the applied diffusion model for VHE particles and the SNR and MC properties, which encounter large uncertainties. While the the average galactic diffusion coefficient is estimated, the spatially resolved propagation properties of VHE cosmic rays are unknown. gamma-ray emitting MCs provide a unique possibility to derive new information on the propagation of VHE particles through the ISM and on the acceleration of hadrons at SNRs. We present in this paper a strategy and first r...

  6. Search for new supernova remnant shells in the Galactic plane with H.E.S.S

    CERN Document Server

    Pühlhofer, G; Capasso, M; Chaves, R C G; Deil, C; Djannati-Ataï, A; Donath, A; Eger, P; Gottschall, D; Laffon, H; Marandon, V; Oakes, L; Renaud, M; Sasaki, M; Terrier, R; Vink, J; Bamba, A

    2015-01-01

    Amongst the population of TeV gamma-ray sources detected with the High Energy Stereoscopic System (H.E.S.S.) in the Galactic plane, clearly identified supernova remnant (SNR) shells constitute a small but precious source class. TeV-selected SNRs are prime candidates for sources of efficient cosmic-ray acceleration. In this work, we present new SNR candidates that have been identified in the entire H.E.S.S. phase I data set of the Galactic plane recorded over the past ten years. Identification with a known SNR shell candidate was successful for one new source, HESS J1534-571. In other cases, TeV-only shell candidates are challenging to firmly identify as SNRs due to their lack of detected non-thermal emission in lower energy bands. We will discuss how these objects may present an important link between young and evolved SNRs, since their shell emission may be dominated by hadronic processes.

  7. Supernova rates from the SUDARE VST-Omegacam search II. Rates in a galaxy sample

    CERN Document Server

    Botticella, M T; Greggio, L; Pignata, G; Della Valle, M; Grado, A; Limatola, L; Baruffolo, A; Benetti, S; Bufano, F; Capaccioli, M; Cascone, E; Covone, G; De Cicco, D; Falocco, S; Haeussler, B; Harutyunyan, V; Jarvis, M; Marchetti, L; Napolitano, N R; Paolillo, M; Pastorello, A; Radovich, M; Schipani, P; Tomasella, L; Turatto, M; Vaccari, M

    2016-01-01

    This is the second paper of a series in which we present measurements of the Supernova (SN) rates from the SUDARE survey. In this paper, we study the trend of the SN rates with the intrinsic colours, the star formation activity and the mass of the parent galaxies. We have considered a sample of about 130000 galaxies and a SN sample of about 50 events. We found that the SN Ia rate per unit mass is higher by a factor of six in the star-forming galaxies with respect to the passive galaxies. The SN Ia rate per unit mass is also higher in the less massive galaxies that are also younger. These results suggest a distribution of the delay times (DTD) less populated at long delay times than at short delays. The CC SN rate per unit mass is proportional to both the sSFR and the galaxy mass. The trends of the Type Ia and CC SN rates as a function of the sSFR and the galaxy mass that we observed from SUDARE data are in agreement with literature results at different redshifts. The expected number of SNe Ia is in agreement ...

  8. Searching for soft relativistic jets in Core-collapse Supernovae with the IceCube Optical Follow-up Program

    CERN Document Server

    Abbasi, R; Abu-Zayyad, T; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Allen, M M; Altmann, D; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Bay, R; Alba, J L Bazo; Beattie, K; Beatty, J J; Bechet, S; Becker, J K; Becker, K -H; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Brown, A M; Buitink, S; Caballero-Mora, K S; Carson, M; Chirkin, D; Christy, B; Clevermann, F; Cohen, S; Colnard, C; Cowen, D F; Silva, A H Cruz; D'Agostino, M V; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; Degner, T; Demirörs, L; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Díaz-Vélez, J C; Dierckxsens, M; Dreyer, J; Dumm, J P; Dunkman, M; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Fox, B D; Franckowiak, A; Franke, R; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Góra, D; Grant, D; Griesel, T; Groß, A; Grullon, S; Gurtner, M; Ha, C; Ismail, A Haj; Hallgren, A; Halzen, F; Han, K; Hanson, K; Heinen, D; Helbing, K; Hellauer, R; Herquet, P; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, B; Homeier, A; Hoshina, K; Huelsnitz, W; Hülß, J -P; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Johansson, H; Kampert, K -H; Kappes, A; Karg, T; Karle, A; Kenny, P; Kiryluk, J; Kislat, F; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, S; Koskinen, D J; Kowalski, M; Kowarik, T; Krasberg, M; Kroll, G; Kurahashi, N; Kuwabara, T; Labare, M; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lünemann, J; Madsen, J; Marotta, A; Maruyama, R; Mase, K; Matis, H S; Meagher, K; Merck, M; Mészáros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Nam, J W; Naumann, U; Nygren, D R; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Panknin, S; Paul, L; Heros, C Pérez de los; Petrovic, J; Piegsa, A; Pieloth, D; Porrata, R; Posselt, J; Price, P B; Przybylski, G T; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Rodrigues, J P; Rothmaier, F; Rott, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Schmidt, T; Schönwald, A; Schukraft, A; Schultes, A; Schulz, O; Schunck, M; Seckel, D; Semburg, B; Seo, S H; Sestayo, Y; Seunarine, S; Silvestri, A; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stezelberger, T; Stokstad, R G; Stössl, A; Strahler, E A; Ström, R; Stüer, M; Sullivan, G W; Swillens, Q; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Tosi, D; van Eijndhoven, N; Vandenbroucke, J; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wischnewski, R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Akerlof, C W; Pandey, S B; Yuan, F; Zheng, W

    2011-01-01

    Context. Transient neutrino sources such as Gamma-Ray Bursts (GRBs) and Supernovae (SNe) are hypothesized to emit bursts of high-energy neutrinos on a time-scale of \\lesssim 100 s. While GRB neutrinos would be produced in high relativistic jets, core-collapse SNe might host soft-relativistic jets, which become stalled in the outer layers of the progenitor star leading to an efficient production of high-energy neutrinos. Aims. To increase the sensitivity to these neutrinos and identify their sources, a low-threshold optical follow-up program for neutrino multiplets detected with the IceCube observatory has been implemented. Methods. If a neutrino multiplet, i.e. two or more neutrinos from the same direction within 100 s, is found by IceCube a trigger is sent to the Robotic Optical Transient Search Experiment, ROTSE. The 4 ROTSE telescopes immediately start an observation program of the corresponding region of the sky in order to detect an optical counterpart to the neutrino events. Results. No statistically si...

  9. Searching for soft relativistic jets in core-collapse supernovae with the IceCube optical follow-up program

    Science.gov (United States)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; de Clercq, C.; Degner, T.; Demirörs, L.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Hellauer, R.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kroll, G.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schönwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Strahler, E. A.; Ström, R.; Stüer, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.; IceCube Collaboration; Akerlof, C. W.; Pandey, S. B.; Yuan, F.; Zheng, W.; ROTSE Collaboration

    2012-03-01

    Context. Transient neutrino sources such as gamma-ray bursts (GRBs) and supernovae (SNe) are hypothesized to emit bursts of high-energy neutrinos on a time-scale of ≲100 s. While GRB neutrinos would be produced in high relativistic jets, core-collapse SNe might host soft-relativistic jets, which become stalled in the outer layers of the progenitor star leading to an efficient production of high-energy neutrinos. Aims: To increase the sensitivity to these neutrinos and identify their sources, a low-threshold optical follow-up program for neutrino multiplets detected with the IceCube observatory has been implemented. Methods: If a neutrino multiplet, i.e. two or more neutrinos from the same direction within 100 s, is found by IceCube a trigger is sent to the Robotic Optical Transient Search Experiment, ROTSE. The 4 ROTSE telescopes immediately start an observation program of the corresponding region of the sky in order to detect an optical counterpart to the neutrino events. Results: No statistically significant excess in the rate of neutrino multiplets has been observed and furthermore no coincidence with an optical counterpart was found. Conclusions: The search allows, for the first time, to set stringent limits on current models predicting a high-energy neutrino flux from soft relativistic hadronic jets in core-collapse SNe. We conclude that a sub-population of SNe with typical Lorentz boost factor and jet energy of 10 and 3 × 1051 erg, respectively, does not exceed 4.2% at 90% confidence.

  10. The dark energy survey Y1 supernova search: Survey strategy compared to forecasts and the photometric type Is SN volumetric rate

    Science.gov (United States)

    Fischer, John Arthur

    For 70 years, the physics community operated under the assumption that the expansion of the Universe must be slowing due to gravitational attraction. Then, in 1998, two teams of scientists used Type Ia supernovae to discover that cosmic expansion was actually acceler- ating due to a mysterious "dark energy." As a result, Type Ia supernovae have become the most cosmologically important transient events in the last 20 years, with a large amount of effort going into their discovery as well as understanding their progenitor systems. One such probe for understanding Type Ia supernovae is to use rate measurements to de- termine the time delay between star formation and supernova explosion. For the last 30 years, the discovery of individual Type Ia supernova events has been accelerating. How- ever, those discoveries were happening in time-domain surveys that probed only a portion of the redshift range where expansion was impacted by dark energy. The Dark Energy Survey (DES) is the first project in the "next generation" of time-domain surveys that will discovery thousands of Type Ia supernovae out to a redshift of 1.2 (where dark energy be- comes subdominant) and DES will have better systematic uncertainties over that redshift range than any survey to date. In order to gauge the discovery effectiveness of this survey, we will use the first season's 469 photometrically typed supernovee and compare it with simulations in order to update the full survey Type Ia projections from 3500 to 2250. We will then use 165 of the 469 supernovae out to a redshift of 0.6 to measure the supernovae rate both as a function of comoving volume and of the star formation rate as it evolves with redshift. We find the most statistically significant prompt fraction of any survey to date (with a 3.9? prompt fraction detection). We will also reinforce the already existing tension in the measurement of the delayed fraction between high (z > 1.2) and low red- shift rate measurements, where we find no

  11. Search for isotopic signatures of a supernova explosion close to the solar system in marine sediments; Recherche de signatures isotopiques dans les sediments marins de l'explosion d'une supernova proche du systeme solaire

    Energy Technology Data Exchange (ETDEWEB)

    Fitoussi, Caroline [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, (CSNSM) IN2P3/CNRS, Campus d' Orsay, Bat 108, 91405 Orsay (France)

    2006-06-15

    The recent observation of a {sup 60}Fe peak in a deep-sea ferro-manganese crust has been interpreted as due to a supernova explosion relatively close to the solar system 2.8 {+-} 0.4 Myr ago. To confirm this interpretation with better time-resolved measurements, and the simultaneous access, on the same sample, to other isotopes and geochemical phases, marine sediments seem to be a tool of choice. The objective of this work was to search for isotopic anomalies which would be characteristic for residues of this supernova. More specifically, {sup 129}I, {sup 60}Fe, and {sup 26}Al have been investigated, being measured by Accelerator Mass Spectrometry (AMS). Quantifying these nuclides' fluxes would help constrain stellar nucleosynthesis models. These residues are isotopes initially produced during hydrostatic and/or explosive nucleosynthesis. The physical conditions during the explosion (temperature, neutron density) are such that supernovae are thought to be good candidates for the astrophysical site of the r-process. The {sup 129}I study showed that measurement of pre-anthropogenic {sup 129}I/{sup 127}I ratios need a very strict control of the various potential {sup 129}I sources, especially when working with small quantities (micrograms) of iodine. This study revealed that the expected pre-anthropogenic {sup 129}I/{sup 127}I ratio for pre-nuclear samples in the marine environment shows a large discrepancy between theoretical calculations and experimental measurements. {sup 60}Fe and {sup 26}Al measurements allow us to conclude that, in the authigenic phase of the marine sediments, there is no {sup 60}Fe anomaly in the time interval defined by the signal found on the Fe-Mn crust (from 2.4 to 3.2 Myr), and no {sup 26}Al anomaly from 2.6 to 3.2 Myr. (author)

  12. Popularity of Different Lampyrid Species in Japanese Culture as Measured by Google Search Volume

    Directory of Open Access Journals (Sweden)

    Kenta Takada

    2011-07-01

    Full Text Available I investigated the popularity of different lampyrid species (34 species in Japanese culture as part of a study on cultural entomology. Popularity was assessed by the Google search volume for Japanese lampyrid species names in katakana and hiragana scripts, using the Keyword Tool of Google AdWords. The search volume of lampyrid species as “Genji-botaru” (Luciola cruciata Motschulsky, “Heike-botaru” (Luciola lateralis Motschulsky and “Hime-botaru” (Hotaria parvula Kiesenwetter, in either or both katakana and hiragana syllabic scripts, was enormously high relative to other lampyrid species, indicating the biased attention of Japanese to these lampyrid species. In addition, search volumes for familial or common lampyrid name (“Hotaru” was assessed and compared with that of 34 lampyrid species. This analyzing result showed that: (1 the search volumes for katakana and hiragana were 37.7 and 773.1 times higher for “Hotaru” than “Genji-botaru”, respectively; and (2 the search volume for all lampyrid species was clearly higher in katakana than hiragana, whereas the search volumes for “Hotaru” were clearly higher in hiragana than katakana. These results suggest that: (1 the Japanese public tends to perceive lampyrids with not a clear but an ambiguous taxonomic view; and (2 the attitude of the Japanese public toward lampyrids differs between those who perceive lampyrids with a clear taxonomic view (at species level and with an ambiguous taxonomic view.

  13. Popularity of Different Lampyrid Species in Japanese Culture as Measured by Google Search Volume.

    Science.gov (United States)

    Takada, Kenta

    2011-07-05

    I investigated the popularity of different lampyrid species (34 species) in Japanese culture as part of a study on cultural entomology. Popularity was assessed by the Google search volume for Japanese lampyrid species names in katakana and hiragana scripts, using the Keyword Tool of Google AdWords. The search volume of lampyrid species as "Genji-botaru" (Luciola cruciata Motschulsky), "Heike-botaru" (Luciola lateralis Motschulsky) and "Hime-botaru" (Hotaria parvula Kiesenwetter), in either or both katakana and hiragana syllabic scripts, was enormously high relative to other lampyrid species, indicating the biased attention of Japanese to these lampyrid species. In addition, search volumes for familial or common lampyrid name ("Hotaru") was assessed and compared with that of 34 lampyrid species. This analyzing result showed that: (1) the search volumes for katakana and hiragana were 37.7 and 773.1 times higher for "Hotaru" than "Genji-botaru", respectively; and (2) the search volume for all lampyrid species was clearly higher in katakana than hiragana, whereas the search volumes for "Hotaru" were clearly higher in hiragana than katakana. These results suggest that: (1) the Japanese public tends to perceive lampyrids with not a clear but an ambiguous taxonomic view; and (2) the attitude of the Japanese public toward lampyrids differs between those who perceive lampyrids with a clear taxonomic view (at species level) and with an ambiguous taxonomic view.

  14. Galaxy Zoo Supernovae

    Science.gov (United States)

    Smith, A. M.; Lynn, S.; Sullivan, M.; Lintott, C. J.; Nugent, P. E.; Botyanszki, J.; Kasliwal, M.; Quimby, R.; Bamford, S. P.; Fortson, L. F.; Schawinski, K.; Hook, I.; Blake, S.; Podsiadlowski, P.; Jönsson, J.; Gal-Yam, A.; Arcavi, I.; Howell, D. A.; Bloom, J. S.; Jacobsen, J.; Kulkarni, S. R.; Law, N. M.; Ofek, E. O.; Walters, R.

    2011-04-01

    This paper presents the first results from a new citizen science project: Galaxy Zoo Supernovae. This proof-of-concept project uses members of the public to identify supernova candidates from the latest generation of wide-field imaging transient surveys. We describe the Galaxy Zoo Supernovae operations and scoring model, and demonstrate the effectiveness of this novel method using imaging data and transients from the Palomar Transient Factory (PTF). We examine the results collected over the period 2010 April-July, during which nearly 14 000 supernova candidates from the PTF were classified by more than 2500 individuals within a few hours of data collection. We compare the transients selected by the citizen scientists to those identified by experienced PTF scanners and find the agreement to be remarkable - Galaxy Zoo Supernovae performs comparably to the PTF scanners and identified as transients 93 per cent of the ˜130 spectroscopically confirmed supernovae (SNe) that the PTF located during the trial period (with no false positive identifications). Further analysis shows that only a small fraction of the lowest signal-to-noise ratio detections (r > 19.5) are given low scores: Galaxy Zoo Supernovae correctly identifies all SNe with ≥8σ detections in the PTF imaging data. The Galaxy Zoo Supernovae project has direct applicability to future transient searches, such as the Large Synoptic Survey Telescope, by both rapidly identifying candidate transient events and via the training and improvement of existing machine classifier algorithms. This publication has been made possible by the participation of more than 10 000 volunteers in the Galaxy Zoo Supernovae project ().

  15. Supernova VLBI

    Science.gov (United States)

    Bartel, N.

    2009-08-01

    We review VLBI observations of supernovae over the last quarter century and discuss the prospect of imaging future supernovae with space VLBI in the context of VSOP-2. From thousands of discovered supernovae, most of them at cosmological distances, ˜50 have been detected at radio wavelengths, most of them in relatively nearby galaxies. All of the radio supernovae are Type II or Ib/c, which originate from the explosion of massive progenitor stars. Of these, 12 were observed with VLBI and four of them, SN 1979C, SN 1986J, SN 1993J, and SN 1987A, could be imaged in detail, the former three with VLBI. In addition, supernovae or young supernova remnants were discovered at radio wavelengths in highly dust-obscured galaxies, such as M82, Arp 299, and Arp 220, and some of them could also be imaged in detail. Four of the supernovae so far observed were sufficiently bright to be detectable with VSOP-2. With VSOP-2 the expansion of supernovae can be monitored and investigated with unsurpassed angular resolution, starting as early as the time of the supernova's transition from its opaque to transparent stage. Such studies can reveal, in a movie, the aftermath of a supernova explosion shortly after shock break out.

  16. Supernova explosions

    CERN Document Server

    Branch, David

    2017-01-01

    Targeting advanced students of astronomy and physics, as well as astronomers and physicists contemplating research on supernovae or related fields, David Branch and J. Craig Wheeler offer a modern account of the nature, causes and consequences of supernovae, as well as of issues that remain to be resolved. Owing especially to (1) the appearance of supernova 1987A in the nearby Large Magellanic Cloud, (2) the spectacularly successful use of supernovae as distance indicators for cosmology, (3) the association of some supernovae with the enigmatic cosmic gamma-ray bursts, and (4) the discovery of a class of superluminous supernovae, the pace of supernova research has been increasing sharply. This monograph serves as a broad survey of modern supernova research and a guide to the current literature. The book’s emphasis is on the explosive phases of supernovae. Part 1 is devoted to a survey of the kinds of observations that inform us about supernovae, some basic interpreta tions of such data, and an overview of t...

  17. Aspherical supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Kasen, Daniel Nathan [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    Although we know that many supernovae are aspherical, the exact nature of their geometry is undetermined. Because all the supernovae we observe are too distant to be resolved, the ejecta structure can't be directly imaged, and asymmetry must be inferred from signatures in the spectral features and polarization of the supernova light. The empirical interpretation of this data, however, is rather limited--to learn more about the detailed supernova geometry, theoretical modeling must been undertaken. One expects the geometry to be closely tied to the explosion mechanism and the progenitor star system, both of which are still under debate. Studying the 3-dimensional structure of supernovae should therefore provide new break throughs in our understanding. The goal of this thesis is to advance new techniques for calculating radiative transfer in 3-dimensional expanding atmospheres, and use them to study the flux and polarization signatures of aspherical supernovae. We develop a 3-D Monte Carlo transfer code and use it to directly fit recent spectropolarimetric observations, as well as calculate the observable properties of detailed multi-dimensional hydrodynamical explosion simulations. While previous theoretical efforts have been restricted to ellipsoidal models, we study several more complicated configurations that are tied to specific physical scenarios. We explore clumpy and toroidal geometries in fitting the spectropolarimetry of the Type Ia supernova SN 2001el. We then calculate the observable consequences of a supernova that has been rendered asymmetric by crashing into a nearby companion star. Finally, we fit the spectrum of a peculiar and extraordinarily luminous Type Ic supernova. The results are brought to bear on three broader astrophysical questions: (1) What are the progenitors and the explosion processes of Type Ia supernovae? (2) What effect does asymmetry have on the observational diversity of Type Ia supernovae, and hence their use in cosmology? (3

  18. Aspherical supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Kasen, Daniel Nathan

    2004-05-21

    Although we know that many supernovae are aspherical, the exact nature of their geometry is undetermined. Because all the supernovae we observe are too distant to be resolved, the ejecta structure can't be directly imaged, and asymmetry must be inferred from signatures in the spectral features and polarization of the supernova light. The empirical interpretation of this data, however, is rather limited--to learn more about the detailed supernova geometry, theoretical modeling must been undertaken. One expects the geometry to be closely tied to the explosion mechanism and the progenitor star system, both of which are still under debate. Studying the 3-dimensional structure of supernovae should therefore provide new break throughs in our understanding. The goal of this thesis is to advance new techniques for calculating radiative transfer in 3-dimensional expanding atmospheres, and use them to study the flux and polarization signatures of aspherical supernovae. We develop a 3-D Monte Carlo transfer code and use it to directly fit recent spectropolarimetric observations, as well as calculate the observable properties of detailed multi-dimensional hydrodynamical explosion simulations. While previous theoretical efforts have been restricted to ellipsoidal models, we study several more complicated configurations that are tied to specific physical scenarios. We explore clumpy and toroidal geometries in fitting the spectropolarimetry of the Type Ia supernova SN 2001el. We then calculate the observable consequences of a supernova that has been rendered asymmetric by crashing into a nearby companion star. Finally, we fit the spectrum of a peculiar and extraordinarily luminous Type Ic supernova. The results are brought to bear on three broader astrophysical questions: (1) What are the progenitors and the explosion processes of Type Ia supernovae? (2) What effect does asymmetry have on the observational diversity of Type Ia supernovae, and hence their use in cosmology? (3

  19. Type Ia Supernova Rate Measurements to Redshift 2.5 from Candles: Searching for Prompt Explosions in the Early Universe

    Science.gov (United States)

    Rodney, Steven A.; Riess, Adam G.; Strogler, Louis-Gregory; Dahlen, Tomas; Graur, Or; Casertano, Stefano; Dickinson, Mark E.; Ferguson, Henry C.; Garnavich, Peter; Cenko, Stephen Bradley

    2014-01-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) was a multi-cycle treasury program on the Hubble Space Telescope(HST) that surveyed a total area of approx. 0.25 deg(sup 2) with approx.900 HST orbits spread across five fields over three years. Within these survey images we discovered 65 supernovae (SNe) of all types, out to z approx. 2.5. We classify approx. 24 of these as Type Ia SNe (SNe Ia) based on host galaxy redshifts and SN photometry (supplemented by grism spectroscopy of six SNe). Here we present a measurement of the volumetric SN Ia rate as a function of redshift, reaching for the first time beyond z = 2 and putting new constraints on SN Ia progenitor models. Our highest redshift bin includes detections of SNe that exploded when the universe was only approx. 3 Gyr old and near the peak of the cosmic star formation history. This gives the CANDELS high redshift sample unique leverage for evaluating the fraction of SNe Ia that explode promptly after formation (500 Myr). Combining the CANDELS rates with all available SN Ia rate measurements in the literature we find that this prompt SN Ia fraction isfP0.530.09stat0.100.10sys0.26, consistent with a delay time distribution that follows a simplet1power law for all timest40 Myr. However, mild tension is apparent between ground-based low-z surveys and space-based high-z surveys. In both CANDELS and the sister HST program CLASH (Cluster Lensing And Supernova Survey with Hubble), we find a low rate of SNe Ia at z > 1. This could be a hint that prompt progenitors are in fact relatively rare, accounting for only 20 of all SN Ia explosions though further analysis and larger samples will be needed to examine that suggestion.

  20. A Search for Neutrinos from the Solar hep Reaction and the DiffuseSupernova Neutrino Background with the Sudbury Neutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Aharmim, B.; Ahmed, S.N.; Anthony, A.E.; Beier, E.W.; Bellerive,A.; Bergevin, M.; Biller, S.D.; Boulay, M.G.; Chan, Y.D.; Chen, M.; Chen,X.; Cleveland, B.T.; Cox, G.A.; Currat, C.A.; Dai, X.; Dalnoki-Veress,F.; Deng, H.; Detwiler, J.; DiMarco, M.; Doe, P.J.; Doucas, G.; Drouin,P.-L.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Evans,H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R.J.; Formaggio, J.A.; Gagnon, N.; Goon, J.T.M.; Graham, K.; Guillian, E.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hemingway,R.J.; Henning, R.; Hime, A.; Howard, C.; Howe, M.A.; Huang, M.; Jagam,P.; Jelley, N.A.; Klein, J.R.; Kormos, L.L.; Kos, M.; Krueger, A.; Kraus,C.; Krauss, C.B.; Kutter, T.; Kyba, C.C.M.; Labranche, H.; Lange, R.; Law, J.Lawson.I.T.; Lesko, K.T.; Leslie, J.R.; Loach, J.C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H.B.; Maneira, J.; Marino, A.D.; Martin,R.; McCauley, N.; McDonald, A.B.; McGee, S.; Mifflin, C.; Miknaitis,K.K.S.; Miller, M.L.; Monreal, B.; Nickel, B.G.; Noble, A.J.; Norman,E.B.; Oblath, N.S.; Okada, C.E.; O' Keeffe, H.M.; Orebi Gann, G.D.; Oser,S.M.; Ott, R.; Peeters, S.J.M.; Poon, A.W.P.; Prior, G.; Rielage, K.; Robertson, B.C.; Robertson, R.G.H.; Rollin, E.; Schwendener, M.H.; Secrest, J.A.; Seibert, S.R.; Simard, O.; Sims, C.J.; Sinclair, D.; Skensved, P.; Stokstad, R.G.; Stonehill, L.C.; Tesic, G.; Tolich, N.; Tsui, T.; Van Berg, R.; Van de Water, R.G.; VanDevender, B.A.; Virtue,C.J.; Walker, T.J.; Wall, B.L.; Waller, D.; Wan Chan Tseung, H.; Wark,D.L.; Wendland, J.; West, N.; Wilkerson, J.F.; Wilson, J.R.; Wouters,J.M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2006-08-01

    A search has been made for neutrinos from the hep reactionin the Sun and from the diffuse supernova neutrino background (DSNB)using data collected during the first operational phase of the SudburyNeutrino Observatory, with an exposure of 0.65 kilotonne-years. For thehep neutrino search, two events are observed in the effective electronenergy range of 14.3 MeV

  1. Cosmology with Superluminous Supernovae

    CERN Document Server

    Scovacricchi, Dario; Bacon, David; Sullivan, Mark; Prajs, Szymon

    2015-01-01

    We predict cosmological constraints for forthcoming surveys using Superluminous Supernovae (SLSNe) as standardisable candles. Due to their high peak luminosity, these events can be observed to high redshift (z~3), opening up new possibilities to probe the Universe in the deceleration epoch. We describe our methodology for creating mock Hubble diagrams for the Dark Energy Survey (DES), the "Search Using DECam for Superluminous Supernovae" (SUDSS) and a sample of SLSNe possible from the Large Synoptic Survey Telescope (LSST), exploring a range of standardisation values for SLSNe. We include uncertainties due to gravitational lensing and marginalise over possible uncertainties in the magnitude scale of the observations (e.g. uncertain absolute peak magnitude, calibration errors). We find that the addition of only ~100 SLSNe from SUDSS to 3800 Type Ia Supernovae (SNe Ia) from DES can improve the constraints on w and Omega_m by at least 20% (assuming a flat wCDM universe). Moreover, the combination of DES SNe Ia a...

  2. Department of Defense Report on Search for Human Radiation Experiment Records, 1944 - 1994, Volume 2

    Science.gov (United States)

    1997-06-01

    radioisotope lymphography. A comparison of stannous phytate and antimony sulfide Addendum to Volume I, Appendix I—Records Search 27 IARMY 1944-1,074...of supraclavicular nodes. Although previously published animal data suggested utility of Tc-99m stannous phytate for lymph-node imaging, Tc99m

  3. Type Ia Supernova Rate Measurements to Redshift 2.5 from CANDELS : Searching for Prompt Explosions in the Early Universe

    CERN Document Server

    Rodney, Steven A; Strolger, Louis-Gregory; Dahlen, Tomas; Graur, Or; Casertano, Stefano; Dickinson, Mark E; Ferguson, Henry C; Garnavich, Peter; Hayden, Brian; Jha, Saurabh W; Jones, David O; Kirshner, Robert P; Koekemoer, Anton M; McCully, Curtis; Mobasher, Bahram; Patel, Brandon; Weiner, Benjamin J; Cenko, Bradley S; Clubb, Kelsey I; Cooper, Michael; Filippenko, Alexei V; Frederiksen, Teddy F; Hjorth, Jens; Leibundgut, Bruno; Matheson, Thomas; Nayyeri, Hooshang; Penner, Kyle; Trump, Jonathan; Silverman, Jeffrey M; U, Vivian; Bostroem, K Azalee; Challis, Peter; Rajan, Abhijith; Wolff, Schuyler; Faber, S M; Grogin, Norman A; Kocevski, Dale

    2014-01-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) was a multi-cycle treasury program on the Hubble Space Telescope (HST) that surveyed a total area of ~0.25 deg^2 with ~900 HST orbits spread across 5 fields over 3 years. Within these survey images we discovered 65 supernovae (SN) of all types, out to z~2.5. We classify ~24 of these as Type Ia SN (SN Ia) based on host galaxy redshifts and SN photometry (supplemented by grism spectroscopy of 6 SN). Here we present a measurement of the volumetric SN Ia rate as a function of redshift, reaching for the first time beyond z=2 and putting new constraints on SN Ia progenitor models. Our highest redshift bin includes detections of SN that exploded when the universe was only ~3 Gyr old and near the peak of the cosmic star formation history. This gives the CANDELS high redshift sample unique leverage for evaluating the fraction of SN Ia that explode promptly after formation (40 Myr. However, a mild tension is apparent between ground-based low-z...

  4. Searching for swept-up Hydrogen and Helium in the late-time spectra of 11 nearby Type Ia supernovae

    CERN Document Server

    Maguire, Kate; Sullivan, Mark; Mazzali, Paolo A

    2015-01-01

    The direct detection of a stellar system that explodes as a Type Ia supernova (SN Ia) has not yet been successful. Various indirect methods have been used to investigate SN Ia progenitor systems but none have produced conclusive results. A prediction of single-degenerate models is that H- (or He-) rich material from the envelope of the companion star should be swept up by the SN ejecta in the explosion. Seven SNe Ia have been analysed to date looking for signs of H-rich material in their late-time spectra and none were detected. We present results from new late-time spectra of 11 SNe Ia obtained at the VLT using XShooter and FORS2. We present the tentative detection of H-alpha emission for SN 2013ct, corresponding to ~0.007 Msun of stripped/ablated companion star material (under the assumptions of the spectral modelling). This mass is significantly lower than expected for single-degenerate scenarios, suggesting that >0.1 Msun of H-rich is present but not observed. We do not detect H-alpha emission in the othe...

  5. Radio Supernovae in the Local Universe

    CERN Document Server

    Kamble, Atish; Berger, Edo; Zauderer, Ashley; Chakraborti, Sayan; Williams, Peter

    2014-01-01

    In the last three decades, about 50 radio supernovae have been detected as a result of targeted searches of optically discovered supernovae in the local universe. Despite this relatively small number some diversity among them has already been identified which is an indication of the underlying richness of radio supernovae waiting to be discovered. For example, comparison of star formation and supernova discovery rate imply that as many as half of the supernovae remain undetected in the traditional optical searches, either because of intrinsic dimness or due to dust obscuration. This has far reaching consequences to the models of stellar and galaxy evolution. A radio sky survey would be ideal to uncover larger supernova population. Transient radio sky would benefit significantly from such a survey. With the advent of advanced gravitational wave detectors a new window is set to open on the local Universe. Localization of these gravitational detectors is poor to identify electromagnetic counterparts of the gravi...

  6. Viewpoint Selection Using Hybrid Simplex Search and Particle Swarm Optimization for Volume Rendering

    Directory of Open Access Journals (Sweden)

    Zhang You-sai,,,

    2012-09-01

    Full Text Available In this paper we proposed a novel method of viewpoint selection using the hybrid Nelder-Mead (NM simplex search and particle swarm optimization (PSO to improve the efficiency and the intelligent level of volume rendering. This method constructed the viewpoint quality evaluation function in the form of entropy by utilizing the luminance and structure features of the two-dimensional projective image of volume data. During the process of volume rendering, the hybrid NM-PSO algorithm intended to locate the globally optimal viewpoint or a set of the optimized viewpoints automatically and intelligently. Experimental results have shown that this method avoids redundant interactions and evidently improves the efficiency of volume rendering. The optimized viewpoints can focus on the important structural features or the region of interest in volume data and exhibit definite correlation with the perception character of human visual system. Compared with the methods based on PSO or NM simplex search, our method has the better performance of convergence rate, convergence accuracy and robustness.

  7. Real-time volumetric visualization of high-resolution array and toroidal volume search sonar data

    Science.gov (United States)

    Cross, Robert A.

    1998-09-01

    The Advanced Volume Visualization Display (AVVD) research program is a joint research program between the Fraunhofer Center for Research in Computer Graphics, Inc. and Innovative Research and Development Corp. It is dedicated the application of the human visual system to real-time visualization of high- resolution volumetric sensor data sets. The AVVD program has successfully demonstrated its application to undersea imaging using data from the Naval Undersea Warfare Center -- Division Newport's High Resolution Array (HRA), and from the Naval Surface Warfare Center -- Coastal System Stations's Toroidal Volume Search Sonar (TVSS).

  8. The search for gamma radiation from supernova 1987A in an experiment aboard the Salut-7/Cosmos-1686 complex

    Science.gov (United States)

    Bachilova, R. N.; Bloch, G. M.; Pankov, V. M.; Prohin, V. L.; Rutkovsky, A. I.; Rumin, S. P.

    1988-07-01

    Gamma-quanta flux measurements were carried out during February-October 1987 in a search for radiation from SN 1987A. The time dependence of the mean monthly gamma-quanta flux measured with the Nega telescope at an altitude of 500 km in the equatorial region is analyzed. The upper limit of the gamma-quanta flux is determined to be 1.5 x 10 to the -6th/sq cm s keV on the 3-sigma level for the 1.5-4.4 MeV energy interval.

  9. Associative data search in phase-encoded volume holographic storage systems

    Science.gov (United States)

    Berger, G.; Dietz, M.; Brauckmann, N.; Denz, C.

    2008-08-01

    We present a technique that enables true associative data search in phase-encoded volume holographic storage systems. The technique overcomes crucial shortcomings related to the only two methods proposed for associative searches in phase-encoded systems so far. An additional interferometric readout during content addressing is utilized to ascertain the cross-correlations between an input information and all data pages that are recorded by superposition in one location of the storage media. We present experimental investigations and thoroughly discuss the reliability of the technique. Under realistic conditions the inevitable normalization procedure, used to determine absolute correlation values, as well as the probability of small correlation values crucially affect the capabilities of associative search in phase-encoded holographic storage systems.

  10. Rates and progenitors of type Ia supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Wood-Vasey, William Michael [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    The remarkable uniformity of Type Ia supernovae has allowed astronomers to use them as distance indicators to measure the properties and expansion history of the Universe. However, Type Ia supernovae exhibit intrinsic variation in both their spectra and observed brightness. The brightness variations have been approximately corrected by various methods, but there remain intrinsic variations that limit the statistical power of current and future observations of distant supernovae for cosmological purposes. There may be systematic effects in this residual variation that evolve with redshift and thus limit the cosmological power of SN Ia luminosity-distance experiments. To reduce these systematic uncertainties, we need a deeper understanding of the observed variations in Type Ia supernovae. Toward this end, the Nearby Supernova Factory has been designed to discover hundreds of Type Ia supernovae in a systematic and automated fashion and study them in detail. This project will observe these supernovae spectrophotometrically to provide the homogeneous high-quality data set necessary to improve the understanding and calibration of these vital cosmological yardsticks. From 1998 to 2003, in collaboration with the Near-Earth Asteroid Tracking group at the Jet Propulsion Laboratory, a systematic and automated searching program was conceived and executed using the computing facilities at Lawrence Berkeley National Laboratory and the National Energy Research Supercomputing Center. An automated search had never been attempted on this scale. A number of planned future large supernovae projects are predicated on the ability to find supernovae quickly, reliably, and efficiently in large datasets. A prototype run of the SNfactory search pipeline conducted from 2002 to 2003 discovered 83 SNe at a final rate of 12 SNe/month. A large, homogeneous search of this scale offers an excellent opportunity to measure the rate of Type Ia supernovae. This thesis presents a new method for

  11. Smoking Supernovae

    CERN Document Server

    Gomez, H L; Dunne, L

    2007-01-01

    The question "Are supernovae important sources of dust?" is a contentious one. Observations with the Infrared Astronomical Satellite (IRAS) and the Infrared Space Observatory (ISO) only detected very small amounts of hot dust in supernova remnants. Here, we review observations of two young Galactic remnants with the Submillimetre Common User Bolometer Array (SCUBA), which imply that large quantities of dust are produced by supernovae. The association of dust with the Cassiopeia A remnant is in question due to the contamination of foreground material. In this article, we compare the emission from cold dust with CO emission towards Kepler's supernova remnant. We detect very little CO at the location of the submillimetre peaks. A comparison of masses from the CO and the dust clouds are made, and we estimate the 3 sigma upper limit on the gas-to-dust ratios to range from 25 - 65 suggesting that we cannot yet rule out freshly-formed or swept up circumstellar dust in Kepler's supernova remnant.

  12. Search for Orbital Motion of the Pulsar 4U 1626-67: Candidate for a Neutron Star with a Supernova Fall-back Accretion Disk

    Indian Academy of Sciences (India)

    Chetana Jain; Biswajit Paul; Kaustubh Joshi; Anjan Dutta; Harsha Raichur

    2007-12-01

    We report here results from a new search for orbital motion of the accretion powered X-ray pulsar 4U 1626-67 using two different analysis techniques. X-ray light curve obtained with the Proportional Counter Array of the Rossi X-ray Timing Explorer during a long observation carried out in February 1996, was used in this work. The spin period and the local period derivative were first determined from the broad 2–60 keV energy band light curve and these were used for all subsequent timing analysis. In the first technique, the orbital phase dependent pulse arrival times were determined for different trial orbital periods in the range of 500 to 10,000 s. We have determined a 3 upper limit of 13 lt-ms on the projected semimajor axis of the orbit of the neutron star for most of the orbital period range, while in some narrow orbital period ranges, covering about 10% of the total orbital period range, it is 20 lt-ms. In the second method, we have measured the pulse arrival times at intervals of 100 s over the entire duration of the observation. The pulse arrival time data were used to put an upper limit on any periodic arrival time delay using the Lomb–Scargle periodogram. We have obtained a similar upper limit of 10 lt-ms using the second method over the orbital period range of 500–10,000 s. This puts very stringent upper limits for the mass of the compact object except for the unlikely case of a complete face-on orientation of the binary system with respect to our line-of-sight. In the light of this measurement and the earlier reports, we discuss the possibility of this system being a neutron star with a supernovae fall-back accretion disk.

  13. Automated Supernova Discovery (Abstract)

    Science.gov (United States)

    Post, R. S.

    2015-12-01

    (Abstract only) We are developing a system of robotic telescopes for automatic recognition of Supernovas as well as other transient events in collaboration with the Puckett Supernova Search Team. At the SAS2014 meeting, the discovery program, SNARE, was first described. Since then, it has been continuously improved to handle searches under a wide variety of atmospheric conditions. Currently, two telescopes are used to build a reference library while searching for PSN with a partial library. Since data is taken every night without clouds, we must deal with varying atmospheric and high background illumination from the moon. Software is configured to identify a PSN, reshoot for verification with options to change the run plan to acquire photometric or spectrographic data. The telescopes are 24-inch CDK24, with Alta U230 cameras, one in CA and one in NM. Images and run plans are sent between sites so the CA telescope can search while photometry is done in NM. Our goal is to find bright PSNs with magnitude 17.5 or less which is the limit of our planned spectroscopy. We present results from our first automated PSN discoveries and plans for PSN data acquisition.

  14. Supernova 1987A: The Supernova of a Lifetime

    Science.gov (United States)

    Kirshner, Robert

    2017-01-01

    Supernova 1987A, the brightest supernova since Kepler's in 1604, was detected 30 years ago at a distance of 160 000 light years in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. Visible with the naked eye and detected with the full range of technology constructed since Kepler's time, SN 1987A has continued to be a rich source of empirical information to help understand supernova explosions and their evolution into supernova remnants. While the light output has faded by a factor of 10 000 000 over those 30 years, instrumentation, like the Hubble Space Telescope, the Chandra X-ray Observatory, and the Atacama Large Millimeter Array has continued to improve so that this supernova continues to be visible in X-rays, ultraviolet light, visible light, infrared light and in radio emission. In this review, I will sketch what has been learned from these observations about the pre-supernova star and its final stages of evolution, the explosion physics, the energy sources for emission, and the shock physics as the expanding debris encounters the circumstellar ring that was created about 20 000 years before the explosion. Today, SN 1987A is making the transition to a supernova remnant- the energetics are no longer dominated by the radioactive elements produced in the explosion, but by the interaction of the expanding debris with the surrounding gas. While we are confident that the supernova explosion had its origin in gravitational collapse, careful searches for a compact object at the center of the remnant place upper limits of a few solar luminosities on that relic. Support for HST GO programs 13401 and 13405 was provided by NASA through grants from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  15. Dusty supernovae running the thermodynamics of the matter reinserted within young and massive super stellar clusters

    CERN Document Server

    Tenorio-Tagle, Guillermo; González, Sergio Martínez; Muñoz-Tuñón, Casiana; Palouš, Jan; Wünsch, Richard

    2013-01-01

    Following the observational and theoretical evidence that points at core collapse supernovae as major producers of dust, here we calculate the hydrodynamics of the matter reinserted within young and massive super stellar clusters under the assumption of gas and dust radiative cooling. The large supernova rate expected in massive clusters allows for a continuous replenishment of dust immersed in the high temperature thermalized reinserted matter and warrants a stationary presence of dust within the cluster volume during the type II supernova era. We first show that such a balance determines the range of dust to gas mass ratio and this the dust cooling law. We then search for the critical line that separates stationary cluster winds from the bimodal cases in the cluster mechanical luminosity (or cluster mass) vs cluster size parameter space. In the latter, strong radiative cooling reduces considerably the cluster wind mechanical energy output and affects particularly the cluster central regions, leading to freq...

  16. SOUSA's Swift Supernova Siblings

    CERN Document Server

    Brown, Peter J

    2015-01-01

    Swift has observed over three hundred supernovae in its first ten years. Photometry from the Ultra-Violet Optical Telescope (UVOT) is being compiled in the Swift Optical/Ultraviolet Supernovae Archive (SOUSA). The diversity of supernovae leads to a wide dynamic range of intrinsic properties. The intrinsic UV brightness of supernovae as a function of type and epoch allows one to understand the distance ranges at which Swift can reliably detect supernovae. The large Swift sample also includes supernovae from the same galaxy as other Swift supernovae. Through the first ten years, these families include 34 supernovae from 16 host galaxies (two galaxies have each hosted three Swift supernovae).

  17. Simulating Supernova Light Curves

    Energy Technology Data Exchange (ETDEWEB)

    Even, Wesley Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dolence, Joshua C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-05

    This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth’s atmosphere.

  18. The Nearby Supernova Factory

    CERN Document Server

    Wood-Vasey, W M; Lee Byung Cheol; Loken, S; Nugent, P; Perlmutter, S; Siegrist, J L; Wang, L; Antilogus, P; Astier, Pierre; Hardin, D; Pain, R; Copin, Y; Smadja, G; Gangler, E; Castera, A; Adam, G; Bacon, R; Lemonnier, J P; Pecontal, A; Pécontal, E; Kessler, R

    2004-01-01

    The Nearby Supernova Factory (SNfactory) is an ambitious project to find and study in detail approximately 300 nearby Type Ia supernovae (SNe~Ia) at redshifts 0.03searches. In 2002, 35 SNe were found using our test-bed pipeline for automated SN search and discovery. The pipeline uses images from the asteroid search conducted by the Near Earth Asteroid Tracking group at JPL. Improvements in our subtraction techniques and analysis have allowed us to increase our effective SN discovery rate to ~12 SNe/month in 2003.

  19. X-Ray Supernovae

    CERN Document Server

    Immler, S; Immler, Stefan; Lewin, Walter H.G.

    2002-01-01

    We present a review of X-ray observations of supernovae (SNe). By observing the (~0.1--100 keV) X-ray emission from young SNe, physical key parameters such as the circumstellar matter (CSM) density, mass-loss rate of the progenitor and temperature of the outgoing and reverse shock can be derived as a function of time. Despite intensive search over the last ~25 years, only 15 SNe have been detected in X-rays. We review the individual X-ray observations of these SNe and discuss their implications as to our understanding of the physical processes giving rise to the X-ray emission.

  20. Supernova Forensics

    Science.gov (United States)

    Soderberg, Alicia M.

    2014-01-01

    For decades, the study of stellar explosions -- supernovae -- have focused almost exclusively on the strong optical emission that dominates the bolometric luminosity in the days following the ultimate demise of the star. Yet many of the leading breakthroughs in our understanding of stellar death have been enabled by obtaining data at other wavelengths. For example, I have shown that 1% of all supernovae give rise to powerful relativistic jets, representing the biggest bangs in the Universe since the Big Bang. My recent serendipitous X-ray discovery of a supernova in the act of exploding (“in flagrante delicto”) revealed a novel technique to discover new events and provide clues on the shock physics at the heart of the explosion. With the advent of sensitive new radio telescopes, my research group combines clues from across the electromagnetic spectrum (radio to gamma-ray), leading us to a holistic study of stellar death, the physics of the explosions, and their role in fertilizing the Universe with new elements, by providing the community with cosmic autopsy reports.

  1. Association between volume and momentum of online searches and real-world collective unrest

    Science.gov (United States)

    Qi, Hong; Manrique, Pedro; Johnson, Daniela; Restrepo, Elvira; Johnson, Neil F.

    A fundamental idea from physics is that macroscopic transitions can occur as a result of an escalation in the correlated activity of a many-body system's constituent particles. Here we apply this idea in an interdisciplinary setting, whereby the particles are individuals, their correlated activity involves online search activity surrounding the topics of social unrest, and the macroscopic phenomenon being measured are real-world protests. Our empirical study covers countries in Latin America during 2011-2014 using datasets assembled from multiple sources by subject matter experts. We find specifically that the volume and momentum of searches on Google Trends surrounding mass protest language, can detect - and may even pre-empt - the macroscopic on-street activity. Not only can this simple open-source solution prove an invaluable aid for monitoring civil order, our study serves to strengthen the increasing literature in the physics community aimed at understanding the collective dynamics of interacting populations of living objects across the life sciences.

  2. Object Classification at the Nearby Supernova Factory

    Energy Technology Data Exchange (ETDEWEB)

    Aragon, Cecilia R.; Bailey, Stephen; Aragon, Cecilia R.; Romano, Raquel; Thomas, Rollin C.; Weaver, B. A.; Wong, D.

    2007-12-21

    We present the results of applying new object classification techniques to the supernova search of the Nearby Supernova Factory. In comparison to simple threshold cuts, more sophisticated methods such as boosted decision trees, random forests, and support vector machines provide dramatically better object discrimination: we reduced the number of nonsupernova candidates by a factor of 10 while increasing our supernova identification efficiency. Methods such as these will be crucial for maintaining a reasonable false positive rate in the automated transient alert pipelines of upcoming large optical surveys.

  3. Matter mixing in aspherical core-collapse supernovae: a search for possible conditions for conveying $^{56}$Ni into high velocity regions

    CERN Document Server

    Ono, Masaomi; Ito, Hirotaka; Lee, Shiu-Hang; Mao, Jirong; Hashimoto, Masa-aki; Tolstov, Alexey

    2013-01-01

    We perform two-dimensional axisymmetric hydrodynamic simulations of matter mixing in aspherical core-collapse supernova explosions of a 16.3 $M_{\\odot}$ star with a compact hydrogen envelope. Observations of SN 1987A have provided evidence that $^{56}$Ni synthesized by explosive nucleosynthesis is mixed into fast moving matter ($\\gtrsim$ 3,500 km s$^{-1}$) in the exploding star. In order to clarify the key conditions for reproducing such high velocity of $^{56}$Ni, we revisit matter mixing in aspherical core-collapse supernova explosions. Explosions are initiated artificially by injecting thermal and kinetic energies around the interface between the iron core and the silicon-rich layer. Perturbations of 5% or 30% amplitude in the radial velocities are introduced at several points in time. We found that no high velocity $^{56}$Ni can be obtained if we consider bipolar explosions with perturbations (5% amplitude) of pre-supernova origins. If large perturbations (30% amplitude) are introduced or exist due to som...

  4. Echoes from Ancient supernovae in the Large Magellanic Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Rest, A; Suntzeff, N B; Olsen, K; Prieto, J L; Smith, R C; Welch, D L; Becker, A; Bergmann, M; Clocchiatti, A; Cook, K; Garg, A; Huber, M; Miknaitis, G; Minniti, D; Nikolaev, S; Stubbs, C

    2005-06-15

    In principle, historical supernovae could still be visible as scattered-light echoes even centuries later [1, 2]. Searches for surface brightness variations using photographic plates have not recovered any echoes in the regions of historical Galactic supernovae [3]. Using differenced images, our SuperMACHO collaboration has discovered three faint new variable surface brightness complexes with high apparent proper motion pointing back to well-defined positions in the Large Magellanic Cloud (LMC). These correspond to three of the six smallest (and likely youngest) supernova remnants believed to be due to thermonuclear (Type Ia) supernovae [4]. A lower limit to the age of these remnants and echoes is 200 years given the lack of any reported LMC supernovae until 1987. The discovery of historical supernova echoes in the LMC suggests that similar echoes for Galactic supernovae such as Tycho, Kepler, Cas A, or SN1006 could be visible using standard image differencing techniques.

  5. Detection of Supernova Neutrinos

    OpenAIRE

    Bekman, B.; Holeczek, J.; Kisiel, J4

    2004-01-01

    Matter effects on neutrino oscillations in both, a supernova and the Earth, change the observed supernova neutrino spectra. We calculate the expected number of supernova neutrino interactions for ICARUS, SK and SNO detectors as a function of the distance which they traveled in the Earth. Calculations are performed for supernova type II at 10kpc from the Earth, using standard supernova neutrino fluxes described by thermal Fermi--Dirac distributions and the PREM I Earth matter density profile.

  6. Type Ia supernova rate at $z \\sim 0.1$

    CERN Document Server

    Hardin, D P; Alard, C; Albert, J N; Amadon, A; Andersen, J; Ansari, R; Aubourg, E; Bareyre, P; Bauer, F; Beaulieu, J P; Blanc, G; Bouquet, A; Char, S; Charlot, X; Couchot, F; Coutures, C; Derue, F; Ferlet, R; Glicenstein, J F; Goldman, B; Gould, A; Graff, D; Gros, M H; Haïssinski, J; Hamilton, J C; Kat, J; Kim, A; Lasserre, T; Lesquoy, E; Loup, C; Magneville, C; Mansoux, B; Marquette, J B; Maurice, E; Milshtein, A I; Moniez, M; Palanque-Delabrouille, Nathalie; Perdereau, O; Prévôt, L; Regnault, N; Rich, J; Spiro, Michel; Vidal-Madjar, A; Vigroux, L; Zylberajch, S

    2000-01-01

    We present the EROS nearby supernova ($z \\sim 0.02 - 0.2$) search and the analysis of the first year of data (1997). A total of 80 square degrees were surveyed. Eight supernov{\\ae} were detected, four of which were spectroscopically identified as type Ia supernov{\\ae}. The search efficiency was determined with a Monte-Carlo simulation taking into account the efficiencies for both supernova detection and host galaxy identification. Assuming that for a given galaxy the supernova rate is proportional to the galactic luminosity, we compute a type Ia supernova explosion rate of: ${\\cal R} = 0.44 {}_{-0.21}^{+0.35} {}_{-0.07}^{+0.13} h^2: / 10^{10} \\lbsun / 100 {\\rm yrs}$ at an average redshift of $\\sim 0.1$ where the errors are respectively statistical and systematic (type misidentification included).

  7. Public health and pipe breaks in water distribution systems: analysis with internet search volume as a proxy.

    Science.gov (United States)

    Shortridge, Julie E; Guikema, Seth D

    2014-04-15

    Drinking water distribution infrastructure has been identified as a factor in waterborne disease outbreaks and improved understanding of the public health risks associated with distribution system failures has been identified as a priority area for research. Pipe breaks may pose a risk, as their occurrence and repair can result in low or negative pressure, potentially allowing contamination of drinking water from adjacent soils. However, measuring this phenomenon is challenging because the most likely health impact is mild gastrointestinal (GI) illness, which is unlikely to result in a doctor or hospital visit. Here we present a novel method that uses data mining techniques and internet search volume to assess the relationship between pipe breaks and symptoms of GI illness in two U.S. cities. Weekly search volume for the terms diarrhea and vomiting was used as the response variable with the number of pipe breaks in each city as a covariate as well as additional covariates to control for seasonal patterns, search volume persistence, and other sources of GI illness. The fit and predictive accuracy of multiple regression and data mining techniques were compared, with the best performance obtained using random forest and bagged regression tree models. Pipe breaks were found to be an important and positively correlated predictor of internet search volume in multiple models in both cities, supporting previous investigations that indicated an increased risk of GI illness from distribution system disturbances. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Cosmology with superluminous supernovae

    Science.gov (United States)

    Scovacricchi, D.; Nichol, R. C.; Bacon, D.; Sullivan, M.; Prajs, S.

    2016-02-01

    We predict cosmological constraints for forthcoming surveys using superluminous supernovae (SLSNe) as standardizable candles. Due to their high peak luminosity, these events can be observed to high redshift (z ˜ 3), opening up new possibilities to probe the Universe in the deceleration epoch. We describe our methodology for creating mock Hubble diagrams for the Dark Energy Survey (DES), the `Search Using DECam for Superluminous Supernovae' (SUDSS) and a sample of SLSNe possible from the Large Synoptic Survey Telescope (LSST), exploring a range of standardization values for SLSNe. We include uncertainties due to gravitational lensing and marginalize over possible uncertainties in the magnitude scale of the observations (e.g. uncertain absolute peak magnitude, calibration errors). We find that the addition of only ≃100 SLSNe from SUDSS to 3800 Type Ia Supernovae (SNe Ia) from DES can improve the constraints on w and Ωm by at least 20 per cent (assuming a flat wCDM universe). Moreover, the combination of DES SNe Ia and 10 000 LSST-like SLSNe can measure Ωm and w to 2 and 4 per cent, respectively. The real power of SLSNe becomes evident when we consider possible temporal variations in w(a), giving possible uncertainties of only 2, 5 and 14 per cent on Ωm, w0 and wa, respectively, from the combination of DES SNe Ia, LSST-like SLSNe and Planck. These errors are competitive with predicted Euclid constraints, indicating a future role for SLSNe for probing the high-redshift Universe.

  9. Linking Annual Prescription Volume of Antidepressants to Corresponding Web Search Query Data: A Possible Proxy for Medical Prescription Behavior?

    Science.gov (United States)

    Gahr, Maximilian; Uzelac, Zeljko; Zeiss, René; Connemann, Bernhard J; Lang, Dirk; Schönfeldt-Lecuona, Carlos

    2015-12-01

    Persons using the Internet to retrieve medical information generate large amounts of health-related data, which are increasingly used in modern health sciences. We analyzed the relation between annual prescription volumes (APVs) of several antidepressants with marketing approval in Germany and corresponding web search query data generated in Google to test whether web search query volume may be a proxy for medical prescription practice. We obtained APVs of several antidepressants related to corresponding prescriptions at the expense of the statutory health insurance in Germany from 2004 to 2013. Web search query data generated in Germany and related to defined search terms (active substance or brand name) were obtained with Google Trends. We calculated correlations (Person's r) between the APVs of each substance and the respective annual "search share" values; coefficients of determination (R) were computed to determine the amount of variability shared by the 2 variables. Significant and strong correlations between substance-specific APVs and corresponding annual query volumes were found for each substance during the observational interval: agomelatine (r = 0.968, R = 0.932, P = 0.01), bupropion (r = 0.962, R = 0.925, P = 0.01), citalopram (r = 0.970, R = 0.941, P = 0.01), escitalopram (r = 0.824, R = 0.682, P = 0.01), fluoxetine (r = 0.885, R = 0.783, P = 0.01), paroxetine (r = 0.801, R = 0.641, P = 0.01), and sertraline (r = 0.880, R = 0.689, P = 0.01). Although the used data did not allow to perform an analysis with a higher temporal resolution (quarters, months), our results suggest that web search query volume may be a proxy for corresponding prescription behavior. However, further studies analyzing other pharmacologic agents and prescription data that facilitate an increased temporal resolution are needed to confirm this hypothesis.

  10. Search for Molecular Outflows in Local Volume AGN with Herschel-PACS

    CERN Document Server

    Stone, M; Melendez, M; Sturm, E; Gracia-Carpio, J; Gonzalez-Alfonso, E

    2016-01-01

    We present the results from a systematic search for galactic-scale, molecular (OH 119 $\\mu$m) outflows in a sample of 52 Local Volume ($d < 50$ Mpc) Burst Alert Telescope detected active galactic nuclei (BAT AGN) with \\emph{Herschel}-PACS. We combine the results from our analysis of the BAT AGN with the published \\emph{Herschel}/PACS data of 43 nearby ($z<0.3$) galaxy mergers, mostly ultraluminous infrared galaxies (ULIRGs) and QSOs. The objects in our sample of BAT AGN have, on average, $\\sim 10-100$ times lower AGN luminosities, star formation rates (SFRs), and stellar masses than those of the ULIRG and QSO sample. OH 119 $\\mu$m is detected in 42 of our BAT AGN targets. Evidence for molecular outflows (i.e. OH absorption profiles with median velocities more blueshifted than $-$50 km s$^{-1}$ and/or blueshifted wings with 84-percentile velocities less than $-$300 km s$^{-1}$) is seen in only four BAT AGN (NGC~7479 is the most convincing case). Evidence for molecular inflows (i.e. OH absorption profiles...

  11. Search for broad absorption lines in spectra of stars in the field of supernova remnant RX J0852.0-4622 (Vela Jr.)

    CERN Document Server

    Iyudin, A F; Chugai, N N; Greiner, J; Axelsson, M; Larsson, S; Ryabchikova, T A

    2010-01-01

    Supernova remnant (SNR) RX J0852.0-4622 is one of the youngest and is most likely the closest among known galactic supernova remnants (SNRs). It was detected in X-rays, the 44Ti gamma-line, and radio. We obtain and analyze medium-resolution spectra of 14 stars in the direction towards the SNR RX J0852.0-4622 in an attempt to detect broad absorption lines of unshocked ejecta against background stars. Spectral synthesis is performed for all the stars in the wavelength range of 3740-4020AA to extract the broad absorption lines of Ca II related to the SNR RX J0852.0-4622. We do not detect any broad absorption line and place a 3-sigma upper limit on the relative depths of <0.04 for the broad Ca II absorption produced by the SNR. We detect narrow low and high velocity absorption components of Ca II. High velocity |V(LSR)|=100-140 km/s components are attributed to radiative shocks in clouds engulfed by the old Vela SNR. The upper limit to the absorption line strength combined with the width and flux of the 44Ti g...

  12. Diffuse supernova neutrinos at underground laboratories

    Science.gov (United States)

    Lunardini, Cecilia

    2016-06-01

    I review the physics of the Diffuse Supernova Neutrino flux (or Background, DSNB), in the context of future searches at the next generation of neutrino observatories. The theory of the DSNB is discussed in its fundamental elements, namely the cosmological rate of supernovae, neutrino production inside a core collapse supernova, redshift, and flavor oscillation effects. The current upper limits are also reviewed, and results are shown for the rates and energy distributions of the events expected at future liquid argon and liquid scintillator detectors of O(10) kt mass, and water Cherenkov detectors up to a 0.5 Mt mass. Perspectives are given on the significance of future observations of the DSNB, both at the discovery and precision phases, for the investigation of the physics of supernovae and of the properties of the neutrino.

  13. IceCube sensitivity for low-energy neutrinos from nearby supernovae

    Science.gov (United States)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K. H.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; de Clercq, C.; Degner, T.; Demirörs, L.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jakobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kroll, G.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richard, A. S.; Richman, M.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Singh, K.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Stüer, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.; IceCube Collaboration

    2011-11-01

    This paper describes the response of the IceCube neutrino telescope located at the geographic south pole to outbursts of MeV neutrinos from the core collapse of nearby massive stars. IceCube was completed in December 2010 forming a lattice of 5160 photomultiplier tubes that monitor a volume of ~1 km3 in the deep Antarctic ice for particle induced photons. The telescope was designed to detect neutrinos with energies greater than 100 GeV. Owing to subfreezing ice temperatures, the photomultiplier dark noise rates are particularly low. Hence IceCube can also detect large numbers of MeV neutrinos by observing a collective rise in all photomultiplier rates on top of the dark noise. With 2 ms timing resolution, IceCube can detect subtle features in the temporal development of the supernova neutrino burst. For a supernova at the galactic center, its sensitivity matches that of a background-free megaton-scale supernova search experiment. The sensitivity decreases to 20 standard deviations at the galactic edge (30 kpc) and 6 standard deviations at the Large Magellanic Cloud (50 kpc). IceCube is sending triggers from potential supernovae to the Supernova Early Warning System. The sensitivity to neutrino properties such as the neutrino hierarchy is discussed, as well as the possibility to detect the neutronization burst, a short outbreak of \\barνe's released by electron capture on protons soon after collapse. Tantalizing signatures, such as the formation of a quark star or a black hole as well as the characteristics of shock waves, are investigated to illustrate IceCube's capability for supernova detection.

  14. Luminous Supernovae

    CERN Document Server

    Gal-Yam, Avishay

    2012-01-01

    Supernovae (SNe), the luminous explosions of stars, were observed since antiquity, with typical peak luminosity not exceeding 1.2x10^{43} erg/s (absolute magnitude >-19.5 mag). It is only in the last dozen years that numerous examples of SNe that are substantially super-luminous (>7x10^{43} erg/s; <-21 mag absolute) were well-documented. Reviewing the accumulated evidence, we define three broad classes of super-luminous SN events (SLSNe). Hydrogen-rich events (SLSN-II) radiate photons diffusing out from thick hydrogen layers where they have been deposited by strong shocks, and often show signs of interaction with circumstellar material. SLSN-R, a rare class of hydrogen-poor events, are powered by very large amounts of radioactive 56Ni and arguably result from explosions of very massive stars due to the pair instability. A third, distinct group of hydrogen-poor events emits photons from rapidly-expanding hydrogen-poor material distributed over large radii, and are not powered by radioactivity (SLSN-I). Thes...

  15. Overview of the nearby supernova factory

    Energy Technology Data Exchange (ETDEWEB)

    Aldering, Greg; Adam, Gilles; Antilogus, Pierre; Astier, Pierre; Bacon, Roland; Bongard, S.; Bonnaud, C.; Copin, Yannick; Hardin, D.; Howell, D. Andy; Lemmonnier, Jean-Pierre; Levy, J.-M.; Loken, S.; Nugent, Peter; Pain, Reynald; Pecontal, Arlette; Pecontal, Emmanuel; Perlmutter, Saul; Quimby, Robert; Schahmaneche, Kyan; Smadja, Gerard; Wood-Vasey, W. Michael

    2002-07-29

    The Nearby Supernova Factory (SNfactory) is an international experiment designed to lay the foundation for the next generation of cosmology experiments (such as CFHTLS, wP, SNAP and LSST) which will measure the expansion history of the Universe using Type Ia supernovae. The SNfactory will discover and obtain frequent lightcurve spectrophotometry covering 3200-10000 {angstrom} for roughly 300 Type Ia supernovae at the low-redshift end of the smooth Hubble flow. The quantity, quality, breadth of galactic environments, and homogeneous nature of the SNfactory dataset will make it the premier source of calibration for the Type Ia supernova width-brightness relation and the intrinsic supernova colors used for K-correction and correction for extinction by host-galaxy dust. This dataset will also allow an extensive investigation of additional parameters which possibly influence the quality of Type Ia supernovae as cosmological probes. The SNfactory search capabilities and follow-up instrumentation include wide-field CCD imagers on two 1.2-m telescopes (via collaboration with the Near Earth Asteroid Tracking team at JPL and the QUEST team at Yale), and a two-channel integral-field-unit optical spectrograph/imager being fabricated for the University of Hawaii 2.2-m telescope. In addition to ground-based follow-up, UV spectra for a subsample of these supernovae will be obtained with HST. The pipeline to obtain, transfer via wireless and standard internet, and automatically process the search images is in operation. Software and hardware development is now underway to enable the execution of follow-up spectroscopy of supernova candidates at the Hawaii 2.2-m telescope via automated remote control of the telescope and the IFU spectrograph/imager.

  16. More Supernova Surprises

    Science.gov (United States)

    2010-09-24

    SEP 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE More Supernova Surprises 5a. CONTRACT NUMBER 5b. GRANT...PERSPECTIVES More Supernova Surprises ASTRONOMY J. Martin Laming Spectroscopic observations of the supernova SN1987A are providing a new window into high...a core-collapse supernova ) have stretched and motivated research that has expanded our knowledge of astrophysics. The brightest such event in

  17. SNO and Supernovae

    CERN Document Server

    Virtue, C J

    2001-01-01

    The Sudbury Neutrino Observatory (SNO) has unique capabilities as a supernova detector. In the event of a galactic supernova there are opportunities, with the data that SNO would collect, to constrain certain intrinsic neutrino properties significantly, to test details of the various models of supernova dynamics, and to provide prompt notification to the astronomical community through the Supernova Early Warning System (SNEWS). This paper consists of a discussion of these opportunities illustrated by some preliminary Monte Carlo results.

  18. The Search for Molecular Outflows in Local Volume AGNs with Herschel-PACS

    Science.gov (United States)

    Stone, M.; Veilleux, S.; Meléndez, M.; Sturm, E.; Graciá-Carpio, J.; González-Alfonso, E.

    2016-08-01

    We present the results from a systematic search for galactic-scale, molecular (OH 119 μm) outflows in a sample of 52 Local Volume (d\\lt 50 Mpc) Burst Alert Telescope detected active galactic nuclei (BAT AGNs) with Herschel-PACS. We combine the results from our analysis of the BAT AGNs with the published Herschel/PACS data of 43 nearby (z\\lt 0.3) galaxy mergers, mostly ultra-luminous infrared galaxies (ULIRGs) and QSOs. The objects in our sample of BAT AGNs have, on average, ˜ 10{--}100 times lower AGN luminosities, star formation rates, and stellar masses than those of the ULIRG and QSO samples. OH 119 μm is detected in 42 of our BAT AGN targets. Evidence for molecular outflows (i.e., OH absorption profiles with median velocities more blueshifted than -50 km s-1 and/or blueshifted wings with 84% velocities less than -300 km s-1) is seen in only four BAT AGNs (NGC 7479 is the most convincing case). Evidence for molecular inflows (i.e., OH absorption profiles with median velocities more redshifted than 50 km s-1) is seen in seven objects, although an inverted P-Cygni profile is detected unambiguously in only one object (Circinus). Our data show that both the starburst and AGN contribute to driving OH outflows, but the fastest OH winds require AGNs with quasar-like luminosities. We also confirm that the total absorption strength of OH 119 μm is a good proxy for dust optical depth as it correlates strongly with the 9.7 μm silicate absorption feature, a measure of obscuration originating in both the nuclear torus and host galaxy disk. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  19. Spectroscopic observations of eight supernovae at intermediate redshift

    CERN Document Server

    Balland, C; Amanullah, R; Astier, Pierre; Fabbro, S; Folatelli, G; Garavini, G; Goobar, A; Hardin, D; Irwin, M J; McMahon, R G; Mourão, A M; Nobili, S; Pain, R; Pascoal, R; Raux, J; Sainton, G; Schahmaneche, K; Walton, N A

    2007-01-01

    We present spectra of six Type Ia and two Type II supernovae obtained in June 2002 at the William Herschel Telescope during a search for Type Ia supernovae (SNIa) at intermediate redshift. Supernova type identification and phase determination are performed using a fitting technique based on a Xi2 minimization against a series of model templates. The spectra range from z=0.033 to z=0.328, including one spectroscopically underluminous SNIa at z=0.033. This set of spectra significantly increases the sample of well-observed type SNIa supernovae available in the range 0.15< z <0.35. Together with the twelve supernovae observed by our team in 1999 in the same redshift range, they form an homogeneous sample of seventeen type Ia supernovae with comparable signal-to-noise ratio and regular phase sampling in a still largely unexplored region of the redshift space.

  20. A Comprehensive Archival Search for Counterparts to Ultra-Compact High Velocity Clouds: Five Local Volume Dwarf Galaxies

    CERN Document Server

    Sand, D J; Bennet, P; Willman, B; Hargis, J; Strader, J; Olszewski, E; Tollerud, E J; Simon, J D; Caldwell, N; Guhathakurta, P; James, B L; Koposov, S; McLeod, B; Morrell, N; Peacock, M; Salinas, R; Seth, A C; Stark, D P; Toloba, E

    2015-01-01

    We report the discovery of five Local Volume dwarf galaxies uncovered during a comprehensive archival search for optical counterparts to ultra-compact high velocity clouds (UCHVCs). The UCHVC population of HI clouds are thought to be candidate gas-rich, low mass halos at the edge of the Local Group and beyond, but no comprehensive search for stellar counterparts to these systems has been presented. Careful visual inspection of all publicly available optical and ultraviolet imaging at the position of the UCHVCs revealed six blue, diffuse counterparts with a morphology consistent with a faint dwarf galaxy beyond the Local Group. Optical spectroscopy of all six candidate dwarf counterparts show that five have an H$\\alpha$-derived velocity consistent with the coincident HI cloud, confirming their association; the sixth diffuse counterpart is likely a background object. The size and luminosity of the UCHVC dwarfs is consistent with other known Local Volume dwarf irregular galaxies. The gas fraction ($M_{HI}/M_{sta...

  1. A Comprehensive Investigation Into Modeling Supernovae Spectra

    Science.gov (United States)

    Hillier, Desmond

    Supernovae are a rich source of information. By studying their light curves and spectra we gain insights into stellar evolution, the nature of the progenitor star, surface abundances at the time of the explosion, whether previous mass-loss episodes have occurred, the physics of the explosion including the amount and type of elements synthesized, and whether the explosion has produced significant mixing between shells of different chemical composition. To maximize the information that can be gleaned from observations of supernovae it is essential that we have the necessary spectroscopic tools. To this end, we are developing a code, CMFGEN, capable of modeling supernova light curves and spectra. The code is currently being used, to study core-collapse supernovae as well as those arising from the nuclear detonation of a White Dwarf star. We wish to extend CMFGEN's capabilities by developing a procedure to handle non-monotonic velocity flows so that we can treat shock breakout and the interaction of supernova ejecta with circumstellar material. We will also investigate magnetar-powered SNe, and explore the connection between Type Ib and Type Ic supernovae and those supernovae associated with long-duration gamma-ray bursters. Through detailed studies of individual supernova, and through the construction of model grids, we are able to infer deficiencies in our modeling, in our atomic data, and in the progenitor models, and hence make refinements so that we can improve our understanding of all SNe classes. Previous (IUE), current (HST, Chandra, GALEX), and future NASA missions (James Webb Telescope) do/will provide a wealth of data on supernovae. The proposed research is related to strategic subgoal 3D: "Discover the origin, structure, evolution, and destiny of the universe, and search for Earth-like planets." Supernovae are inherently coupled to the evolution of the universe and life: They can trigger star formation and they provide the raw materials (e.g., oxygen

  2. Cosmology from Type Ia Supernovae

    CERN Document Server

    Perlmutter, S; Deustua, S; Fabbro, S; Goldhaber, Gerson; Groom, D E; Kim, A G; Kim, M Y; Knop, R A; Nugent, P; Pennypacker, C R; Goobar, A; Pain, R; Hook, I M; Lidman, C E; Ellis, Richard S; Irwin, M J; McMahon, R G; Ruiz-Lapuente, P; Walton, N A; Schaefer, B; Boyle, B J; Filippenko, A V; Matheson, T; Fruchter, A S; Panagia, N; Newberg, H J M; Couch, W J

    1997-01-01

    This presentation reports on first evidence for a low-mass-density/positive-cosmological-constant universe that will expand forever, based on observations of a set of 40 high-redshift supernovae. The experimental strategy, data sets, and analysis techniques are described. More extensive analyses of these results with some additional methods and data are presented in the more recent LBNL report #41801 (Perlmutter et al., 1998; accepted for publication in Ap.J.), astro-ph/9812133 . This Lawrence Berkeley National Laboratory reprint is a reduction of a poster presentation from the Cosmology Display Session #85 on 9 January 1998 at the American Astronomical Society meeting in Washington D.C. It is also available on the World Wide Web at http://supernova.LBL.gov/ This work has also been referenced in the literature by the pre-meeting abstract citation: Perlmutter et al., B.A.A.S., volume 29, page 1351 (1997).

  3. The Distant Type Ia Supernova Rate

    Science.gov (United States)

    Pain, R.; Fabbro, S.; Sullivan, M.; Ellis, R. S.; Aldering, G.; Astier, P.; Deustua, S. E.; Fruchter, A. S.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hardin, D.; Hook, I. M.; Howell, D. A.; Irwin, M. J.; Kim, A. G.; Kim, M. Y.; Knop, R. A.; Lee, J. C.; Perlmutter, S.; Ruiz-Lapuente, P.; Schahmaneche, K.; Schaefer, B.; Walton, N. A.

    2002-05-28

    We present a measurement of the rate of distant Type Ia supernovae derived using 4 large subsets of data from the Supernova Cosmology Project. Within this fiducial sample, which surveyed about 12 square degrees, thirty-eight supernovae were detected at redshifts 0.25--0.85. In a spatially flat cosmological model consistent with the results obtained by the Supernova Cosmology Project, we derive a rest-frame Type Ia supernova rate at a mean red shift z {approx_equal} 0.55 of 1.53 {sub -0.25}{sub -0.31}{sup 0.28}{sup 0.32} x 10{sup -4} h{sup 3} Mpc{sup -3} yr{sup -1} or 0.58{sub -0.09}{sub -0.09}{sup +0.10}{sup +0.10} h{sup 2} SNu(1 SNu = 1 supernova per century per 10{sup 10} L{sub B}sun), where the first uncertainty is statistical and the second includes systematic effects. The dependence of the rate on the assumed cosmological parameters is studied and the redshift dependence of the rate per unit comoving volume is contrasted with local estimates in the context of possible cosmic star formation histories and progenitor models.

  4. The distant Type Ia supernova rate

    CERN Document Server

    Pain, R; Sullivan, M; Ellis, Richard S; Aldering, G; Astier, Pierre; Duestua, S E; Fruchter, A S; Goldhaber, Gerson; Goobar, A; Groom, D E; Hardin, D; Hook, I M; Howell, D A; Irwin, M J; Kim, A G; Kim, M Y; Knop, R A; Lee, J C; Lidman, C E; McMahon, R G; Nugent, P; Panagia, N; Pennypacker, C R; Perlmutter, S; Ruiz-Lapuente, P; Schahmaneche, K; Schaefer, B; Walton, N A

    2001-01-01

    We present a measurement of the rate of distant Type Ia supernovae derived using 4 large subsets of data from the Supernova Cosmology Project. Within this fiducial sample, which surveyed about 12 square degrees, thirty-eight supernovae were detected at redshifts 0.25--0.85. In a spatially-flat cosmological model consistent with the results obtained by the Supernova Cosmology Project, we derive a rest-frame Type Ia supernova rate at a mean redshift $z\\simeq0.55$ of $1.53 {^{+0.28}_{-0.25}} {^{+0.32}_{-0.31}} 10^{-4} h^3 {\\rm Mpc}^{-3} {\\rm yr}^{-1}$ or $0.58 {^{+0.10}_{-0.09}} {^{+0.10}_{-0.09}} h^2 {\\rm SNu}$ (1 SNu = 1 supernova per century per $10^{10}$\\Lbsun), where the first uncertainty is statistical and the second includes systematic effects. The dependence of the rate on the assumed cosmological parameters is studied and the redshift dependence of the rate per unit comoving volume is contrasted with local estimates in the context of possible cosmic star formation histories and progenitor models.

  5. Type Ia supernova rate studies from the SDSS-II Supernova Study

    Energy Technology Data Exchange (ETDEWEB)

    Dilday, Benjamin [Univ. of Chicago, IL (United States)

    2008-08-01

    The author presents new measurements of the type Ia SN rate from the SDSS-II Supernova Survey. The SDSS-II Supernova Survey was carried out during the Fall months (Sept.-Nov.) of 2005-2007 and discovered ~ 500 spectroscopically confirmed SNe Ia with densely sampled (once every ~ 4 days), multi-color light curves. Additionally, the SDSS-II Supernova Survey has discovered several hundred SNe Ia candidates with well-measured light curves, but without spectroscopic confirmation of type. This total, achieved in 9 months of observing, represents ~ 15-20% of the total SNe Ia discovered worldwide since 1885. The author describes some technical details of the SN Survey observations and SN search algorithms that contributed to the extremely high-yield of discovered SNe and that are important as context for the SDSS-II Supernova Survey SN Ia rate measurements.

  6. A search for metal-poor stars pre-enriched by pair-instability supernovae I.A pilot study for target selection from Sloan Digital Sky Survey

    Institute of Scientific and Technical Information of China (English)

    Jing Ren; Norbert Christlieb; Gang Zhao

    2012-01-01

    We report on a pilot study on identifying metal-poor stars pre-enriched by Pair-Instability Supernovae (PISNe).Very massive,first generation (Population Ⅲ) stars (140 M⊙ ≤ M ≤ 260 M⊙) end their lives as PISNe,which have been predicted by theories,but no relics of PISNe have been observed yet.Among the distinct characteristics of the yields of PISNe,as predicted by theoretical calculations,are a strong odd-even effect,and a strong overabundance of Ca with respect to iron and the solar ratio.We use the latter characteristic to identify metal-poor stars in the Galactic halo that have been pre-enriched by PISNe,by comparing metallicites derived from strong,co-added Fe lines detected in low-resolution (i.e.,R = λ/Δλ ~ 2000) spectra of the Sloan Digital Sky Survey (SDSS),with metallicities determined by the SDSS Stellar Parameters Pipeline (SSPP).The latter are based on the strength of the Ca Ⅱ K line and assumptions on the Ca/Fe abundance ratio.Stars are selected as candidates if their metallicity derived from Fe lines is significantly lower than the SSPP metallicities.In a sample of 12 300 stars for which SDSS spectroscopy is available,we have identified 18 candidate stars.Higher resolution and signal-to-noise ratio spectra of these candidates are being obtained with the Very Large Telescope of the European Southern Observatory and the XSHOOTER spectrograph,to determine their abundance patterns,and to verify our selection method.We plan to apply our method to the database of several million stellar spectra to be acquired with the Guo Shou Jing Telescope (LAMOST) in the next five years.

  7. OH Masers and Supernova Remnants

    CERN Document Server

    Wardle, Mark

    2012-01-01

    OH(1720 MHz) masers are created by the interaction of supernova remnants with molecular clouds. These masers are pumped by collisions in warm, shocked molecular gas with OH column densities in the range 10^{16}--10^{17} cm^{-2}. Excitation calculations suggest that inversion of the 6049 MHz OH line may occur at the higher column densities that have been inferred from main-line absorption studies of supernova remnants with the Green Bank Telescope. OH(6049 MHz) masers have therefore been proposed as a complementary indicator of remnant-cloud interaction. This motivated searches for 6049 MHz maser emission from supernova remnants using the Parkes 63 m and Effelsberg 100 m telescopes, and the Australia Telescope Compact Array. A total of forty-one remnants have been examined by one or more of these surveys, but without success. To check the accuracy of the OH column densities inferred from the single-dish observations we modelled OH absorption at 1667 MHz observed with the Very Large Array towards three supernov...

  8. Supernovae neutrino pasta interaction

    Science.gov (United States)

    Lin, Zidu; Horowitz, Charles; Caplan, Matthew; Berry, Donald; Roberts, Luke

    2017-01-01

    In core-collapse supernovae, the neutron rich matter is believed to have complex structures, such as spherical, slablike, and rodlike shapes. They are collectively called ``nuclear pasta''. Supernovae neutrinos may scatter coherently on the ``nuclear pasta'' since the wavelength of the supernovae neutrinos are comparable to the nuclear pasta scale. Consequently, the neutrino pasta scattering is important to understand the neutrino opacity in the supernovae. In this work we simulated the ``nuclear pasta'' at different temperatures and densities using our semi-classical molecular dynamics and calculated the corresponding static structure factor that describes ν-pasta scattering. We found the neutrino opacities are greatly modified when the ``pasta'' exist and may have influence on the supernovae neutrino flux and average energy. Our neutrino-pasta scattering effect can finally be involved in the current supernovae simulations and we present preliminary proto neutron star cooling simulations including our pasta opacities.

  9. Supernova Neutrino Detection

    Energy Technology Data Exchange (ETDEWEB)

    Gil-Botella, Ines, E-mail: ines.gil@ciemat.es [CIEMAT, Basic Research Department, Avenida Complutense, 22, 28040 Madrid (Spain)

    2011-07-25

    The neutrino burst from a core collapse supernova can provide information about the explosion mechanism and the mechanisms of proto neutron star cooling but also about the intrinsic properties of the neutrino such as flavor oscillations. One important question is to understand to which extend can the supernova and the neutrino physics be decoupled in the observation of a single supernova. The possibility to probe the neutrino mixing angle {theta}{sub 13} and the type of mass hierarchy from the detection of supernova neutrinos with liquid argon detectors is discussed in this paper. Moreover, a quantitatively study about the possibility to constrain the supernova parameters is presented. A very massive liquid argon detector ({approx} 100 kton) is needed to perform accurate measurements of these parameters. Finally the possible detection of the diffuse supernova neutrino background in liquid argon detectors is also described.

  10. The Frequency of Supernovae in the Early Universe

    Science.gov (United States)

    Melinder, Jens

    Supernovae are cosmic explosions of cataclysmic proportion that signify the death of a star. While being interesting phenomena in their own right, their brightness also make them excellent probes of the early universe. Depending on the type of the progenitor star and the origin of the explosion different subjects can be investigated. In this dissertation the work I have done on the detection, characterisation and rate measurements of supernovae in the Stockholm VIMOS Supernova Search is presented. We have discovered 16 supernovae that exploded billions of years ago (or, equivalently, at high redshift, z). The observed brightness and colour evolution have been used to classify the supernovae into either thermonuclear (type Ia) or core collapse (type II) supernovae. The accuracy of the classification code is high, only about 5% of the supernovae are mistyped, similar to other codes of the same kind. By comparing the observed frequency of supernovae to simulations the underlying supernova rate at these high redshifts have been measured. The main result reported in this thesis is that the core collapse supernova rate at high redshift matches the rates estimated from looking at the star formation history of the universe, and agree well with previous studies. The rate of Ia supernovae at high redshift have been investigated by several projects, our results show a somewhat higher rate of Ia supernovae than expected. Proper estimates of the systematic errors of rate measurements are found to be very important. Furthermore, by using novel techniques for reducing and stacking images, we have obtained a galaxy sample containing approximately 50,000 galaxies. Photometric redshifts have been obtained for most of the galaxies, the resulting accuracy below z=1 is on the order of 10%. The galaxy sample has also been used to find high redshift sources, so called Lyman Break Galaxies, at z=3-5.

  11. Atomic and molecular supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.

    1997-12-01

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  12. Absolute-Magnitude Distributions of Supernovae

    CERN Document Server

    Richardson, Dean; Wright, John; Maddox, Larry

    2014-01-01

    The absolute-magnitude distributions of seven supernova types are presented. The data used here were primarily taken from the Asiago Supernova Catalogue, but were supplemented with additional data. We accounted for both foreground and host-galaxy extinction. A bootstrap method is used to correct the samples for Malmquist bias. Separately, we generate volume-limited samples, restricted to events within 100 Mpc. We find that the superluminous events (M_B -15) make up about 3%. The normal Ia distribution was the brightest with a mean absolute blue magnitude of -19.25. The IIP distribution was the dimmest at -16.75.

  13. Neutrinos from Supernovae

    CERN Document Server

    Choubey, S; Choubey, Sandhya; Kar, Kamales

    2002-01-01

    In this review, the effect of flavor oscillations on the neutrinos released during supernova explosion after core collapse is described. In some scenarios there are large enhancement of the number of events compared to the no oscillation case. Various other features associated with supernova neutrinos are also discussed.

  14. Galaxy Zoo Supernovae

    CERN Document Server

    Smith, A M; Sullivan, M; Lintott, C J; Nugent, P E; Botyanszki, J; Kasliwal, M; Quimby, R; Bamford, S P; Fortson, L F; Schawinski, K; Hook, I; Blake, S; Podsiadlowski, P; Joensson, J; Gal-Yam, A; Arcavi, I; Howell, D A; Bloom, J S; Jacobsen, J; Kulkarni, S R; Law, N M; Ofek, E O; Walters, R

    2010-01-01

    This paper presents the first results from a new citizen science project: Galaxy Zoo Supernovae. This proof of concept project uses members of the public to identify supernova candidates from the latest generation of wide-field imaging transient surveys. We describe the Galaxy Zoo Supernovae operations and scoring model, and demonstrate the effectiveness of this novel method using imaging data and transients from the Palomar Transient Factory (PTF). We examine the results collected over the period April-July 2010, during which nearly 14,000 supernova candidates from PTF were classified by more than 2,500 individuals within a few hours of data collection. We compare the transients selected by the citizen scientists to those identified by experienced PTF scanners, and find the agreement to be remarkable - Galaxy Zoo Supernovae performs comparably to the PTF scanners, and identified as transients 93% of the ~130 spectroscopically confirmed SNe that PTF located during the trial period (with no false positive iden...

  15. Molecules in supernova ejecta

    CERN Document Server

    Cherchneff, Isabelle

    2011-01-01

    The first molecules detected at infrared wavelengths in the ejecta of a Type II supernova, namely SN1987A, consisted of CO and SiO. Since then, confirmation of the formation of these two species in several other supernovae a few hundred days after explosion has been obtained. However, supernova environments appear to hamper the synthesis of large, complex species due to the lack of microscopically-mixed hydrogen deep in supernova cores. Because these environments also form carbon and silicate dust, it is of importance to understand the role played by molecules in the depletion of elements and how chemical species get incorporated into dust grains. In the present paper, we review our current knowledge of the molecular component of supernova ejecta, and present new trends and results on the synthesis of molecules in these harsh, explosive events.

  16. Gravitational search for cryptovolcanism on the Moon: Evidence for large volumes of early igneous activity

    Science.gov (United States)

    Sori, Michael M.; Zuber, Maria T.; Head, James W.; Kiefer, Walter S.

    2016-07-01

    We define lunar cryptovolcanism as volcanic deposits on the Moon hidden by overlying material. Notably, cryptovolcanism includes both cryptomaria (subsurface extrusive basaltic deposits that are obscured by overlying higher albedo basin and crater ejecta) and earlier candidate extrusives, such as the Mg-suite. Knowledge of the volume and extent of cryptovolcanism is necessary for a comprehensive understanding of lunar volcanic history, particularly in early (pre 3.8 Ga) epochs when abundant impact craters and basins obscured surface volcanic deposits by lateral emplacement of ejecta. We use Gravity Recovery and Interior Laboratory (GRAIL) gravity and Lunar Orbiter Laser Altimeter (LOLA) topography data to construct maps of the Moon's positive Bouguer and isostatic gravity anomalies, and explore the possibility that these features are due to mass excesses associated with cryptovolcanism by cross-referencing the regions with geologic data such as dark halo craters. We model the potential cryptovolcanic deposits as buried high-density rectangular prisms at depth in the upper crust, and find a volume of candidate buried cryptovolcanism between 0.4 × 106 km3 and 4.8 × 106 km3, depending on assumptions about density and crustal compensation state. These candidate deposits correspond to a surface area of between 0.50 × 106 km2 and 1.14 × 106 km2, which would increase the amount of the lunar surface containing volcanic deposits from 16.6% to between 17.9% and 19.5%. The inferred volume of cryptovolcanism is comparable to the smallest estimates of the volume of visible mare basalts and up to ∼50% of the largest estimates; the high-resolution GRAIL and LOLA observations thus would collectively indicate that early (pre 3.8 Ga) lunar volcanism is an important element of lunar thermal evolution. Alternatively, the buried material could represent the presence of intrusive Mg-suite sills or plutons.

  17. Stripped-envelope supernova rates and host-galaxy properties

    CERN Document Server

    Graur, Or; Modjaz, Maryam; Maoz, Dan; Shivvers, Isaac; Filippenko, Alexei V; Li, Weidong

    2015-01-01

    The progenitors of stripped-envelope supernovae (SNe Ibc) remain to be conclsuively identified, but correlations between SN rates and host-galaxy properties can constrain progenitor models. Here, we present one result from a re-analysis of the rates from the Lick Observatory Supernova Search. Galaxies with stellar masses less than $\\sim 10^{10}~{\\rm M_\\odot}$ are less efficient at producing SNe Ibc than more massive galaxies. Any progenitor scenario must seek to explain this new observation.

  18. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ENTITLED "ODDERON SEARCHES AT RHIC" (VOLUME 76)

    Energy Technology Data Exchange (ETDEWEB)

    ORGANIZERS: GURYN, W.; KOVCHEGOV, Y.; VOGELSANG, W.; TRUEMAN, L.

    2005-10-25

    The Odderon, a charge-conjugation-odd partner of the Pomeron, has been a puzzle ever since its introduction in 1973. The Pomeron describes a colorless exchange with vacuum quantum numbers in the t-channel of hadronic scattering at high energies. The concept was originally formulated for the non-perturbative regime of Quantum Chromodynamics (QCD). In perturbation theory, the simplest picture of the Poineron is that of a two-gluon exchange process, whereas an Odderon can be thought of as an exchange of three gluons. Both the Pomeron and the Odderon are expected in QCD. However, while there exists plenty of experimental data that could be successfully described by Pomeron exchanges (for example in electron-proton and hadron-hadron scattering at high energies), no experimental sign of the Odderon has been observed. One of the very few hints so far is the difference in the diffractive minima of elastic proton-proton and proton-antiproton scattering measured at the ISR. The Odderon has recently received renewed attention by QCD researchers, mainly for the following two reasons. First of all, RHIC has entered the scene, offering exciting unique new opportunities for Odderon searches. RHIC provides collisions of nuclei at center-of-mass energies far exceeding those at all previous experiments. RHIC also provides collisions of protons of the highest center-of-mass energy, and in the interval, which has not been explored previously in p {bar p} collisions. In addition, it also has the unique feature of polarization for the proton beams, promising to become a crucial tool in Odderon searches. Indeed, theorists have proposed possible signatures of the Odderon in some spin asymmetries measurable at RHIC. Qualitatively unique signals should be seen in these observables if the Odderon coupling is large. Secondly, the Odderon has recently been shown to naturally emerge from the Color Glass Condensate (CGC), a theory for the high-energy asymptotics of QCD. It has been argued that

  19. IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae

    CERN Document Server

    Abbasi, R; Abu-Zayyad, T; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Allen, M M; Altmann, D; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Alba, J L Bazo; Beattie, K; Beatty, J J; Bechet, S; Becker, J K; Becker, K -H; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Brown, A M; Buitink, S; Caballero-Mora, K S; Carson, M; Chirkin, D; Christy, B; Clevermann, F; Cohen, S; Colnard, C; Cowen, D F; Silva, A H Cruz; D'Agostino, M V; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; Degner, T; Demirörs, L; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Diaz-Vélez, J C; Dierckxsens, M; Dreyer, J; Dumm, J P; Dunkman, M; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Fox, B D; Franckowiak, A; Franke, R; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Góra, D; Grant, D; Griesel, T; Groß, A; Grullon, S; Gurtner, M; Ha, C; Ismail, A Haj; Hallgren, A; Halzen, F; Han, K; Hanson, K; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, B; Homeier, A; Hoshina, K; Huelsnitz, W; Hülß, J -P; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jakobi, E; Jacobsen, J; Japaridze, G S; Johansson, H; Kampert, K -H; Kappes, A; Karg, T; Karle, A; Kenny, P; Kiryluk, J; Kislat, F; Klein, S R; Köhne, H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, S; Koskinen, D J; Kowalski, M; Kowarik, T; Krasberg, M; Kroll, G; Kurahashi, N; Kuwabara, T; Labare, M; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lünemann, J; Madsen, J; Marotta, A; Maruyama, R; Mase, K; Matis, H S; Meagher, K; Merck, M; Mészáros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Nam, J W; Naumann, U; Nygren, D R; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Panknin, S; Paul, L; Heros, C Pérez de los; Petrovic, J; Piegsa, A; Pieloth, D; Porrata, R; Posselt, J; Price, P B; Przybylski, G T; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Richard, A S; Richman, M; Rodrigues, J P; Rothmaier, F; Rott, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Schmidt, T; Schönwald, A; Schukraft, A; Schulte, L; Schultes, A; Schulz, O; Schunck, M; Seckel, D; Semburg, B; Seo, S H; Sestayo, Y; Seunarine, S; Silvestri, A; Singh, K; Slipak, A; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Stüer, M; Sullivan, G W; Swillens, Q; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Tosi, D; van Eijndhoven, N; Vandenbroucke, J; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wischnewski, R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Zoll, M

    2011-01-01

    This paper describes the response of the IceCube neutrino telescope located at the geographic South Pole to outbursts of MeV neutrinos from the core collapse of nearby massive stars. IceCube was completed in December 2010 forming a lattice of 5160 photomultiplier tubes that monitor a volume of ~ 1 cubic kilometer in the deep Antarctic ice for particle induced photons. The telescope was designed to detect neutrinos with energies greater than 100 GeV. Owing to subfreezing ice temperatures, the photomultiplier dark noise rates are particularly low. Hence IceCube can also detect large numbers of MeV neutrinos by observing a collective rise in all photomultiplier rates on top of the dark noise. With 2 ms timing resolution, IceCube can detect subtle features in the temporal development of the supernova neutrino burst. For a supernova at the galactic center, its sensitivity matches that of a background-free megaton-scale supernova search experiment. The sensitivity decreases to 20 standard deviations at the galactic...

  20. Optical Spectra and Light Curves of Supernovae

    CERN Document Server

    Filippenko, A V

    2003-01-01

    I review recent optical observations of supernovae (SNe) conducted by my group. The Lick Observatory Supernova Search with the 0.76-m Katzman Automatic Imaging Telescope is currently the world's most successful search for nearby SNe. We also use this telescope to obtain multicolor light curves of SNe. One of the more interesting SNe we discovered is SN 2000cx, which differs from all previously observed SNe Ia. Another very strange SN Ia that we studied is SN 2002cx, many of whose properties are opposite those of SN 2000cx. Extensive data on SNe II-P 1999em and 1999gi were used to derive distances with the expanding photosphere method. Results from spectropolarimetry suggest that the deeper we peer into the ejecta of core-collapse SNe, the greater the asphericity. We are using Hubble Space Telescope data to identify, or set limits on, the progenitors of core-collapse SNe.

  1. Mean platelet volume in bipolar disorder: the search for an ideal biomarker

    Directory of Open Access Journals (Sweden)

    Mert DG

    2016-08-01

    Full Text Available Derya Guliz Mert,1 Hatice Terzi2 1Department of Psychiatry, 2Department of Hematology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey Background: The pathophysiology of bipolar disorder (BD remains a mystery. In this context, interest in the role of the immune and inflammatory systems in BD has been increasing. We aimed to compare the routine hemogram values of BD patients with those of the participants in the healthy control group, to assess the inflammation levels of the two groups. Mean platelet volume (MPV can be obtained as routine hemogram parameters and may aid in the detection of systemic inflammation. Subjects and methods: This study was conducted with BD (manic episode inpatients (n=132 and healthy controls (n=135. Abnormally distributed variables (ie, neutrophil–lymphocyte ratio [NLR], platelet–lymphocyte ratio [PLR], neutrophils, lymphocytes, hemoglobin, hematocrit [HCT], mean corpuscular volume [MCV], mean corpuscular hemoglobin [MCH], mean corpuscular hemoglobin concentration [MCHC], red cell distribution width [RDW], MPV, and plateletcrit [PCT] were compared using the Mann–Whitney U-test. Student’s t-test was used to compare the mean ages and white blood cell, red blood cell, and platelet counts of the patients with BD against those of the participants in the control group. Results: The comparisons revealed that while the mean WBC and the median NLR, PLR, neutrophil, lymphocyte, MPV, and PCT values were significantly higher in the patients with BD (P<0.05, the median hemoglobin, RBC, HCT, and MCHC values were significantly higher in the control group (P<0.05. Conclusion: Comparisons of hemogram values of patients with BD against those of the healthy control group revealed that inflammatory cells (absolute neutrophil count, platelet count, PCT, and MPV and ratios (NLR, PLR seem to be altered during manic episodes. These findings support the hypothesis that inflammatory activation occurs in BD during manic

  2. Supernova electron capture rates

    CERN Document Server

    Martínez-Pinedo, G

    1999-01-01

    We have calculated the Gamow-Teller strength distributions for the ground states and low lying states of several nuclei that play an important role in the precollapse evolution of supernova. The calculations reproduce the experimental GT distributions nicely. The GT distribution are used to calculate electron capture rates for typical presupernova conditions. The computed rates are noticeably smaller than the presently adopted rates. The possible implications for the supernova evolution are discussed.

  3. The Core Collapse Supernova Rate from the SDSS-II Supernova Survey

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Matt; Cinabro, David; Dilday, Ben; Galbany, Lluis; Gupta, Ravi R.; Kessler, R.; Marriner, John; Nichol, Robert C.; Richmond, Michael; Schneider, Donald P.; Sollerman, Jesper

    2014-08-26

    We use the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SNS) data to measure the volumetric core collapse supernova (CCSN) rate in the redshift range (0.03 < z < 0.09). Using a sample of 89 CCSN, we find a volume-averaged rate of 1.06 ± 0.19 × 10(–)(4)((h/0.7)(3)/(yr Mpc(3))) at a mean redshift of 0.072 ± 0.009. We measure the CCSN luminosity function from the data and consider the implications on the star formation history.

  4. The core collapse supernova rate from the SDSS-II supernova survey

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Matt; Cinabro, David [Department of Physics and Astronomy, Wayne State University, Detroit, MI 48202 (United States); Dilday, Ben [Spokane, WA 99203 (United States); Galbany, Lluis [Millennium Institute of Astrophysics, Universidad de Chile, Casilla 36-D, Santiago (Chile); Gupta, Ravi R. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Kessler, R. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Marriner, John [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Nichol, Robert C. [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth PO1 2FX (United Kingdom); Richmond, Michael [School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY 14623 (United States); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Sollerman, Jesper, E-mail: cinabro@physics.wayne.edu [The Oskar Klein Centre, Department of Astronomy, AlbaNova, SE-106 91 Stockholm (Sweden)

    2014-09-10

    We use the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SNS) data to measure the volumetric core collapse supernova (CCSN) rate in the redshift range (0.03 < z < 0.09). Using a sample of 89 CCSN, we find a volume-averaged rate of 1.06 ± 0.19 × 10{sup –4}((h/0.7){sup 3}/(yr Mpc{sup 3})) at a mean redshift of 0.072 ± 0.009. We measure the CCSN luminosity function from the data and consider the implications on the star formation history.

  5. Possible use of the dedicated MARLY one meter telescope for intensive supernovae studies

    CERN Document Server

    Moniez, M

    2001-01-01

    The EROS2 microlensing search will end at the end of 2002. Apart of this microlensing search, EROS has discovered ~70 supernovae during 8 periods partially dedicated to a SN search. In this document, we investigated a new way of using the EROS telescope (The MARLY) after this date, as a dedicated nearby supernovae photometer. The performance of a set-up with two cameras allowing to simultaneously perform BVRI and U photometry have been estimated. Each year, of order of 100 type Ia supernovae at z ~0.05 should be photometrically followed-up during 80 days with a precision of 2% in BVRI and ~3,5% in U.

  6. Supernova Simulations and Strategies For the Dark Energy Survey

    CERN Document Server

    Bernstein, J P; Kuhlmann, S; Biswas, R; Kovacs, E; Aldering, G; Crane, I; Finley, D A; Frieman, J A; Hufford, T; Jarvis, M J; Kim, A G; Marriner, J; Mukherjee, P; Nichol, R C; Nugent, P; Parkinson, D; Reis, R R R; Sako, M; Spinka, H; Sullivan, M

    2011-01-01

    We present an analysis of supernova light curves simulated for the upcoming Dark Energy Survey (DES) supernova search. The simulations employ a code suite that generates and fits realistic light curves in order to obtain distance modulus/redshift pairs that are passed to a cosmology fitter. We investigated several different survey strategies including field selection, supernova selection biases, and photometric redshift measurements. Using the results of this study, we chose a 30 square degree search area in the griz filter set. We forecast 1) that this survey will provide a homogeneous sample of up to 4000 Type Ia supernovae in the redshift range 0.05supernova with an identified host galaxy will be obtained from spectroscopic observations of the host. A supernova spectrum will be obtained for a subset of the sample, which will be utilized for control studi...

  7. EVOLUTION OF THE CRAB NEBULA IN A LOW ENERGY SUPERNOVA

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haifeng; Chevalier, Roger A., E-mail: hy4px@virginia.edu, E-mail: rac5x@virginia.edu [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States)

    2015-06-20

    The nature of the supernova leading to the Crab Nebula has long been controversial because of the low energy that is present in the observed nebula. One possibility is that there is significant energy in extended fast material around the Crab but searches for such material have not led to detections. An electron capture supernova model can plausibly account for the low energy and the observed abundances in the Crab. Here, we examine the evolution of the Crab pulsar wind nebula inside a freely expanding supernova and find that the observed properties are most consistent with a low energy event. Both the velocity and radius of the shell material, and the amount of gas swept up by the pulsar wind point to a low explosion energy (∼10{sup 50} erg). We do not favor a model in which circumstellar interaction powers the supernova luminosity near maximum light because the required mass would limit the freely expanding ejecta.

  8. Evolution of the Crab nebula in a low energy supernova

    CERN Document Server

    Yang, Haifeng

    2015-01-01

    The nature of the supernova leading to the Crab Nebula has long been controversial because of the low energy that is present in the observed nebula. One possibility is that there is significant energy in extended fast material around the Crab but searches for such material have not led to detections. An electron capture supernova model can plausibly account for the low energy and the observed abundances in the Crab. Here, we examine the evolution of the Crab pulsar wind nebula inside a freely expanding supernova and find that the observed properties are most consistent with a low energy event. Both the velocity and radius of the shell material, and the amount of gas swept up by the pulsar wind point to a low explosion energy ($\\sim 10^{50}$ ergs). We do not favor a model in which circumstellar interaction powers the supernova luminosity near maximum light because the required mass would limit the freely expanding ejecta.

  9. Pre-Supernova Evolution of Massive Single and Binary Stars

    CERN Document Server

    Langer, N

    2012-01-01

    Massive stars are essential to understand a variety of branches of astronomy including galaxy and star cluster evolution, nucleosynthesis and supernovae, pulsars and black holes. It has become evident that massive star evolution is very diverse, being sensitive to metallicity, binarity, rotation, and possibly magnetic fields. While the problem to obtain a good statistical observational database is alleviated by current large spectroscopic surveys, it remains a challenge to model these diverse paths of massive stars towards their violent end stage. We show that the main sequence stage offers the best opportunity to gauge the relevance of the various possible evolutionary scenarios. This also allows to sketch the post-main sequence evolution of massive stars, for which observations of Wolf-Rayet stars give essential clues. Recent supernova discoveries due to the current boost in transient searches allow tentative mappings of progenitor models with supernova types, including pair instability supernovae and gamma...

  10. Prospective Type Ia Supernova Surveys From Dome A

    Energy Technology Data Exchange (ETDEWEB)

    Kim, A.; /LBL, Berkeley; Bonissent, A.; /Marseille, CPPM; Christiansen, J.L.; /Cal. Poly.; Ealet, A.; /Marseille, CPPM; Faccioli, L.; /UC, Berkeley; Gladney, L.; /Pennsylvania U.; Kushner, G.; /LBL, Berkeley; Linder, E.; /UC, Berkeley; Stoughton, C.; /Fermilab; Wang, L.; /Texas A-M /Purple Mountain Observ.

    2010-02-01

    Dome A, the highest plateau in Antarctica, is being developed as a site for an astronomical observatory. The planned telescopes and instrumentation and the unique site characteristics are conducive toward Type Ia supernova surveys for cosmology. A self-contained search and survey over five years can yield a spectro-photometric time series of {approx}1000 z < 0.08 supernovae. These can serve to anchor the Hubble diagram and quantify the relationship between luminosities and heterogeneities within the Type Ia supernova class, reducing systematics. Larger aperture ({approx}>4-m) telescopes are capable of discovering supernovae shortly after explosion out to z {approx} 3. These can be fed to space telescopes, and can isolate systematics and extend the redshift range over which we measure the expansion history of the universe.

  11. Prospective Type Ia supernova surveys from Dome A

    Energy Technology Data Exchange (ETDEWEB)

    Kim, A.; Bonissent, A.; Christiansen, J. L.; Ealet, A.; Faccioli, L.; Gladney, L.; Kushner, G.; Linder, E.; Stoughton, C.; Wang, L.

    2010-03-10

    Dome A, the highest plateau in Antarctica, is being developed as a site for an astronomical observatory. The planned telescopes and instrumentation and the unique site characteristics are conducive toward Type Ia supernova surveys for cosmology. A self-contained search and survey over 5 years can yield a spectro-photometric time series of ~;; 1000 z< 0:08 supernovae. These can serve to anchor the Hubble diagram and quantify the relationship between luminosities and heterogeneities within the Type Ia supernova class, reducing systematics. Larger aperture (>=4-m) telescopes are capable of discovering supernovae shortly after explosion out to z ~;; 3. These can be fed to space telescopes, and can isolate systematics and extend the redshift range over which we measure the expansion history of the universe.

  12. Cosmic Supernova Rate History and Type Ia Supernova Progenitors

    OpenAIRE

    Kobayashi, Chiaki; Nomoto, Ken'ichi; Tsujimoto, Takuji

    2001-01-01

    Adopting a single degenerate scenario for Type Ia supernova progenitors with the metallicity effect, we make a prediction of the cosmic supernova rate history as a composite of the supernova rates in spiral and elliptical galaxies, and compare with the recent observational data up to z ~ 0.55.

  13. Modeling Core Collapse Supernovae

    Science.gov (United States)

    Mezzacappa, Anthony

    2017-01-01

    Core collapse supernovae, or the death throes of massive stars, are general relativistic, neutrino-magneto-hydrodynamic events. The core collapse supernova mechanism is still not in hand, though key components have been illuminated, and the potential for multiple mechanisms for different progenitors exists. Core collapse supernovae are the single most important source of elements in the Universe, and serve other critical roles in galactic chemical and thermal evolution, the birth of neutron stars, pulsars, and stellar mass black holes, the production of a subclass of gamma-ray bursts, and as potential cosmic laboratories for fundamental nuclear and particle physics. Given this, the so called ``supernova problem'' is one of the most important unsolved problems in astrophysics. It has been fifty years since the first numerical simulations of core collapse supernovae were performed. Progress in the past decade, and especially within the past five years, has been exponential, yet much work remains. Spherically symmetric simulations over nearly four decades laid the foundation for this progress. Two-dimensional modeling that assumes axial symmetry is maturing. And three-dimensional modeling, while in its infancy, has begun in earnest. I will present some of the recent work from the ``Oak Ridge'' group, and will discuss this work in the context of the broader work by other researchers in the field. I will then point to future requirements and challenges. Connections with other experimental, observational, and theoretical efforts will be discussed, as well.

  14. The Most Luminous Supernovae

    Science.gov (United States)

    Sukhbold, Tuguldur; Woosley, S. E.

    2016-04-01

    Recent observations have revealed a stunning diversity of extremely luminous supernovae, seemingly increasing in radiant energy without bound. We consider simple approximate limits for what existing models can provide for the peak luminosity and total radiated energy for non-relativistic, isotropic stellar explosions. The brightest possible supernova is a Type I explosion powered by a sub-millisecond magnetar with field strength B ∼ few × {10}13 G. In extreme cases, such models might reach a peak luminosity of 2× {10}46 {erg} {{{s}}}-1 and radiate a total energy of up to 4× {10}52 {erg}. Other less luminous models are also explored, including prompt hyper-energetic explosions in red supergiants, pulsational-pair instability supernovae, pair-instability supernovae, and colliding shells. Approximate analytic expressions and limits are given for each case. Excluding magnetars, the peak luminosity is near 3× {10}44 {erg} {{{s}}}-1 for the brightest models and the corresponding limit on total radiated energy is 3× {10}51 {erg}. Barring new physics, supernovae with a light output over 3× {10}51 erg must be rotationally powered, either during the explosion itself or after, the most obvious candidate being a rapidly rotating magnetar. A magnetar-based model for the recent transient event, ASASSN-15lh is presented that strains, but does not exceed the limits of what the model can provide.

  15. Physics of supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, S.E.; Weaver, T.A.

    1985-12-13

    Presupernova models of massive stars are presented and their explosion by ''delayed neutrino transport'' examined. A new form of long duration Type II supernova model is also explored based upon repeated encounter with the electron-positron pair instability in stars heavier than about 60 Msub solar. Carbon deflagration in white dwarfs is discussed as the probable explanation of Type I supernovae and special attention is paid to the physical processes whereby a nuclear flame propagates through degenerate carbon. 89 refs., 12 figs.

  16. Demonstrating Supernova Remnant Evolution

    Science.gov (United States)

    Leahy, Denis A.; Williams, Jacqueline

    2017-01-01

    We have created a software tool to calculate at display supernova remnant evolution which includes all stages from early ejecta dominated phase to late-time merging with the interstellar medium. The software was created using Python, and can be distributed as Python code, or as an executable file. The purpose of the software is to demonstrate the different phases and transitions that a supernova remnant undergoes, and will be used in upper level undergraduate astrophysics courses as a teaching tool. The usage of the software and its graphical user interface will be demonstrated.

  17. BVRI Photometry of Supernovae

    OpenAIRE

    Ho, Wynn C. G.; Van Dyk, Schuyler D.; Peng, Chien Y.; Filippenko, Alexei V.; Leonard, Douglas C.; Matheson, Thomas; Treffers, Richard R.; Richmond, Michael W.

    2001-01-01

    We present optical photometry of one Type IIn supernova (1994Y) and nine Type Ia supernovae (1993Y, 1993Z, 1993ae, 1994B, 1994C, 1994M, 1994Q, 1994ae, and 1995D). SN 1993Y and SN 1993Z appear to be normal SN Ia events with similar rates of decline, but we do not have data near maximum brightness. The colors of SN 1994C suggest that it suffers from significant reddening or is intrinsically red. The light curves of SN 1994Y are complicated; they show a slow rise and gradual decline near maximum...

  18. The supernova cosmology cookbook: Bayesian numerical recipes

    CERN Document Server

    Karpenka, N V

    2015-01-01

    Theoretical and observational cosmology have enjoyed a number of significant successes over the last two decades. Cosmic microwave background measurements from the Wilkinson Microwave Anisotropy Probe and Planck, together with large-scale structure and supernova (SN) searches, have put very tight constraints on cosmological parameters. Type Ia supernovae (SNIa) played a central role in the discovery of the accelerated expansion of the Universe, recognised by the Nobel Prize in Physics in 2011. The last decade has seen an enormous increase in the amount of high quality SN observations, with SN catalogues now containing hundreds of objects. This number is expected to increase to thousands in the next few years, as data from next-generation missions, such as the Dark Energy Survey and Large Synoptic Survey Telescope become available. In order to exploit the vast amount of forthcoming high quality data, it is extremely important to develop robust and efficient statistical analysis methods to answer cosmological q...

  19. Supernova constraints on decaying vacuum cosmology

    CERN Document Server

    Carneiro, S; Borges, H A; Alcaniz, J S

    2006-01-01

    There is mounting observational evidence that the expansion of our Universe is undergoing a late-time acceleration. Among many proposals to describe this phenomenon, the cosmological constant seems to be the simplest and the most natural explanation. However, despite its observational successes, such a possibility exacerbates the well known cosmological constant problem, requiring a natural explanation for its small, but nonzero, value. In this paper we consider a cosmological scenario driven by a varying cosmological term, in which the vacuum energy density decays linearly with the Hubble parameter. We show that this model is indistinguishable from the standard one in that the early radiation phase is followed by a long dust-dominated era, and only recently the varying cosmological term becomes dominant, accelerating the cosmic expansion. In order to test the viability of this scenario we have used the most recent type Ia supernova data, i.e., the High-Z SN Search (HZS) Team and the Supernova Legacy Survey (...

  20. Planck intermediate results XXXI. Microwave survey of Galactic supernova remnants

    DEFF Research Database (Denmark)

    Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.

    2016-01-01

    The all-sky Planck survey in 9 frequency bands was used to search for emission from all 274 known Galactic supernova remnants. Of these, 16 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions were compiled to determine the mechanism for micr......The all-sky Planck survey in 9 frequency bands was used to search for emission from all 274 known Galactic supernova remnants. Of these, 16 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions were compiled to determine the mechanism...... for microwave emission. In only one case, IC 443, is there high-frequency emission clearly from dust associated with the supernova remnant. In all cases, the low-frequency emission is from synchrotron radiation. As predicted for a population of relativistic particles with energy distribution that extends...

  1. Theoretical models for supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, S.E.; Weaver, T.A.

    1981-09-21

    The results of recent numerical simulations of supernova explosions are presented and a variety of topics discussed. Particular emphasis is given to (i) the nucleosynthesis expected from intermediate mass (10sub solar less than or equal to M less than or equal to 100 Msub solar) Type II supernovae and detonating white dwarf models for Type I supernovae, (ii) a realistic estimate of the ..gamma..-line fluxes expected from this nucleosynthesis, (iii) the continued evolution, in one and two dimensions, of intermediate mass stars wherein iron core collapse does not lead to a strong, mass-ejecting shock wave, and (iv) the evolution and explosion of vary massive stars (M greater than or equal to 100 Msub solar of both Population I and III. In one dimension, nuclear burning following a failed core bounce does not appear likely to lead to a supernova explosion although, in two dimensions, a combination of rotation and nuclear burning may do so. Near solar proportions of elements from neon to calcium and very brilliant optical displays may be created by hypernovae, the explosions of stars in the mass range 100 M/sub solar/ to 300 M/sub solar/. Above approx. 300 M/sub solar/ a black hole is created by stellar collapse following carbon ignition. Still more massive stars may be copious producers of /sup 4/He and /sup 14/N prior to their collapse on the pair instability.

  2. Supernova 2013by

    DEFF Research Database (Denmark)

    Valenti, S.; Sand, D.; Stritzinger, M.

    2015-01-01

    We present multiband ultraviolet and optical light curves, as well as visual-wavelength and near-infrared spectroscopy of the Type II linear (IIL) supernova (SN) 2013by. We show that SN 2013by and other SNe IIL in the literature, after their linear decline phase that start after maximum, have...

  3. QCD and Supernovas

    Science.gov (United States)

    Barnes, T.

    2005-12-01

    In this contribution we briefly summarize aspects of the physics of QCD which are relevant to the supernova problem. The topic of greatest importance is the equation of state (EOS) of nuclear and strongly-interacting matter, which is required to describe the physics of the proto-neutron star (PNS) and the neutron star remnant (NSR) formed during a supernova event. Evaluation of the EOS in the regime of relevance for these systems, especially the NSR, requires detailed knowledge of the spectrum and strong interactions of hadrons of the accessible hadronic species, as well as other possible phases of strongly interacting matter, such as the quark-gluon plasma (QGP). The forces between pairs of baryons (both nonstrange and strange) are especially important in determining the EOS at NSR densities. Predictions for these forces are unfortunately rather model dependent where not constrained by data, and there are several suggestions for the QCD mechanism underlying these short-range hadronic interactions. The models most often employed for determining these strong interactions are broadly of two types, 1) meson exchange models (usually assumed in the existing neutron star and supernova literature), and 2) quark-gluon models (mainly encountered in the hadron, nuclear and heavy-ion literature). Here we will discuss the assumptions made in these models, and discuss how they are applied to the determination of hadronic forces that are relevant to the supernova problem.

  4. The Most Luminous Supernovae

    CERN Document Server

    Sukhbold, Tuguldur

    2016-01-01

    Recent observations have revealed an amazing diversity of extremely luminous supernovae, seemingly increasing in radiant energy without bound. We consider here the physical limits of what existing models can provide for the peak luminosity and total radiated energy for non-relativistic, isotropic stellar explosions. The brightest possible supernova is a Type I explosion powered by a sub-millisecond magnetar. Such models can reach a peak luminosity of $\\rm 2\\times10^{46}\\ erg\\ s^{-1}$ and radiate a total energy of $\\rm 4 \\times10^{52}\\ erg$. Other less luminous models are also explored, including prompt hyper-energetic explosions in red supergiants, pulsational-pair instability supernovae, and pair-instability supernovae. Approximate analytic expressions and limits are given for each case. Excluding magnetars, the peak luminosity is near $\\rm 1\\times10^{44}\\ erg\\ s^{-1}$ for the brightest models. The corresponding limits on total radiated power are $\\rm3 \\times 10^{51}\\ erg$ (Type I) and $\\rm1 \\times 10^{51}\\ ...

  5. Supernovae and Dark Energy

    Science.gov (United States)

    Domínguez, I.; Bravo, E.; Piersanti, L.; Straniero, O.; Tornambé, A.

    2009-08-01

    A decade ago the observations of thermonuclear supernovae at high-redhifts showed that the expansion rate of the Universe is accelerating and since then, the evidence for cosmic acceleration has gotten stronger. This acceleration requires that the Universe is dominated by dark energy, an exotic component characterized by its negative pressure. Nowadays all the available astronomical data (i.e. thermonuclear supernovae, cosmic microwave background, barionic acoustic oscillations, large scale structure, etc.) agree that our Universe is made of about 70% of dark energy, 25% of cold dark matter and only 5% of known, familiar matter. This Universe is geometrically flat, older than previously thought, its destiny is no longer linked to its geometry but to dark energy, and we ignore about 95% of its components. To understand the nature of dark energy is probably the most fundamental problem in physics today. Current astronomical observations are compatible with dark energy being the vacuum energy. Supernovae have played a fundamental role in modern Cosmology and it is expected that they will contribute to unveil the dark energy. In order to do that it is mandatory to understand the limits of supernovae as cosmological distance indicators, improving their precision by a factor 10.

  6. The Core-collapse rate from the Supernova Legacy Survey

    CERN Document Server

    Bazin, G; Rich, J; Ruhlmann-Kleider, V; Aubourg, E; Guillou, L Le; Astier, P; Balland, C; Basa, S; Carlberg, R G; Conley, A; Fouchez, D; Guy, J; Hardin, D; Hook, I M; Howell, D A; Pain, R; Perrett, K; Pritchet, C J; Regnault, N; Sullivan, M; Antilogus, P; Arsenijevic, V; Baumont, S; Fabbro, S; Du, J Le; Lidman, C; Mouchet, M; Mourão, A; Walker, E S

    2009-01-01

    We use three years of data from the Supernova Legacy Survey (SNLS) to study the general properties of core-collapse and type Ia supernovae. This is the first such study using the "rolling search" technique which guarantees well-sampled SNLS light curves and good efficiency for supernovae brighter than $i^\\prime\\sim24$. Using host photometric redshifts, we measure the supernova absolute magnitude distribution down to luminosities $4.5 {\\rm mag}$ fainter than normal SNIa. Using spectroscopy and light-curve fitting to discriminate against SNIa, we find a sample of 117 core-collapse supernova candidates with redshifts $z<0.4$ (median redshift of 0.29) and measure their rate to be larger than the type Ia supernova rate by a factor $4.5\\pm0.8(stat.) \\pm0.6 (sys.)$. This corresponds to a core-collapse rate at $z=0.3$ of $[1.42\\pm 0.3(stat.) \\pm0.3(sys.)]\\times10^{-4}\\yr^{-1}(h_{70}^{-1}\\Mpc)^{-3}$.

  7. Nucleosynthesis Basics and Applications to Supernovae

    CERN Document Server

    Thielemann, F K; Freiburghaus, C; Nomoto, K; Hashimoto, M; Pfeiffer, B; Kratz, K L

    1998-01-01

    This review concentrates on nucleosynthesis processes in general and their applications to massive stars and supernovae. A brief initial introduction is given to the physics in astrophysical plasmas which governs composition changes. We present the basic equations for thermonuclear reaction rates and nuclear reaction networks. The required nuclear physics input for reaction rates is discussed, i.e. cross sections for nuclear reactions, photodisintegrations, electron and positron captures, neutrino captures, inelastic neutrino scattering, and beta-decay half-lives. We examine especially the present state of uncertainties in predicting thermonuclear reaction rates, while the status of experiments is discussed by others in this volume (see M. Wiescher). It follows a brief review of hydrostatic burning stages in stellar evolution before discussing the fate of massive stars, i.e. the nucleosynthesis in type II supernova explosions (SNe II). Except for SNe Ia, which are explained by exploding white dwarfs in binary...

  8. Planck intermediate results XXXI. Microwave survey of Galactic supernova remnants

    DEFF Research Database (Denmark)

    Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.;

    2016-01-01

    The all-sky Planck survey in 9 frequency bands was used to search for emission from all 274 known Galactic supernova remnants. Of these, 16 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions were compiled to determine the mechanism for micr...

  9. Power-law correlations in finance-related Google searches, and their cross-correlations with volatility and traded volume: Evidence from the Dow Jones Industrial components

    Science.gov (United States)

    Kristoufek, Ladislav

    2015-06-01

    We study power-law correlations properties of the Google search queries for Dow Jones Industrial Average (DJIA) component stocks. Examining the daily data of the searched terms with a combination of the rescaled range and rescaled variance tests together with the detrended fluctuation analysis, we show that the searches are in fact power-law correlated with Hurst exponents between 0.8 and 1.1. The general interest in the DJIA stocks is thus strongly persistent. We further reinvestigate the cross-correlation structure between the searches, traded volume and volatility of the component stocks using the detrended cross-correlation and detrending moving-average cross-correlation coefficients. Contrary to the universal power-law correlations structure of the related Google searches, the results suggest that there is no universal relationship between the online search queries and the analyzed financial measures. Even though we confirm positive correlation for a majority of pairs, there are several pairs with insignificant or even negative correlations. In addition, the correlations vary quite strongly across scales.

  10. TYPE Ia SUPERNOVA CARBON FOOTPRINTS

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R. C.; Nugent, P. [Computational Cosmology Center, Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road MS 50B-4206, Berkeley, CA 94611 (United States); Aldering, G.; Aragon, C.; Bailey, S.; Childress, M.; Fakhouri, H. K.; Hsiao, E. Y.; Loken, S. [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Antilogus, P.; Bongard, S.; Canto, A. [Laboratoire de Physique Nucleaire et des Hautes Energies, Universite Pierre et Marie Curie Paris 6, Universite Paris Diderot Paris 7, CNRS-IN2P3, 4 place Jussieu, 75252 Paris Cedex 05 (France); Baltay, C. [Department of Physics, Yale University, New Haven, CT 06250-8121 (United States); Buton, C.; Kerschhaggl, M.; Kowalski, M.; Paech, K. [Physikalisches Institut, Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany); Chotard, N.; Copin, Y.; Gangler, E. [Universite de Lyon, F-69622 Lyon (France); and others

    2011-12-10

    We present convincing evidence of unburned carbon at photospheric velocities in new observations of five Type Ia supernovae (SNe Ia) obtained by the Nearby Supernova Factory. These SNe are identified by examining 346 spectra from 124 SNe obtained before +2.5 days relative to maximum. Detections are based on the presence of relatively strong C II {lambda}6580 absorption 'notches' in multiple spectra of each SN, aided by automated fitting with the SYNAPPS code. Four of the five SNe in question are otherwise spectroscopically unremarkable, with ions and ejection velocities typical of SNe Ia, but spectra of the fifth exhibit high-velocity (v > 20, 000 km s{sup -1}) Si II and Ca II features. On the other hand, the light curve properties are preferentially grouped, strongly suggesting a connection between carbon-positivity and broadband light curve/color behavior: three of the five have relatively narrow light curves but also blue colors and a fourth may be a dust-reddened member of this family. Accounting for signal to noise and phase, we estimate that 22{sup +10}{sub -6%} of SNe Ia exhibit spectroscopic C II signatures as late as -5 days with respect to maximum. We place these new objects in the context of previously recognized carbon-positive SNe Ia and consider reasonable scenarios seeking to explain a physical connection between light curve properties and the presence of photospheric carbon. We also examine the detailed evolution of the detected carbon signatures and the surrounding wavelength regions to shed light on the distribution of carbon in the ejecta. Our ability to reconstruct the C II {lambda}6580 feature in detail under the assumption of purely spherical symmetry casts doubt on a 'carbon blobs' hypothesis, but does not rule out all asymmetric models. A low volume filling factor for carbon, combined with line-of-sight effects, seems unlikely to explain the scarcity of detected carbon in SNe Ia by itself.

  11. Personalized Search

    CERN Document Server

    AUTHOR|(SzGeCERN)749939

    2015-01-01

    As the volume of electronically available information grows, relevant items become harder to find. This work presents an approach to personalizing search results in scientific publication databases. This work focuses on re-ranking search results from existing search engines like Solr or ElasticSearch. This work also includes the development of Obelix, a new recommendation system used to re-rank search results. The project was proposed and performed at CERN, using the scientific publications available on the CERN Document Server (CDS). This work experiments with re-ranking using offline and online evaluation of users and documents in CDS. The experiments conclude that the personalized search result outperform both latest first and word similarity in terms of click position in the search result for global search in CDS.

  12. Supernova-Remnant Origin of Cosmic Rays?

    CERN Document Server

    Butt, Y M; Romero, G E; Dame, T M; Combi, J A; Butt, Yousaf M.; Torres, Diego F.; Romero, Gustavo E.; Dame, Thomas M.; Combi, Jorge A.

    2002-01-01

    It is thought that Galactic cosmic ray (CR) nuclei are gradually accelerated to high energies (up to ~300 TeV/nucleon, where 1TeV=10^12eV) in the expanding shock-waves connected with the remnants of powerful supernova explosions. However, this conjecture has eluded direct observational confirmation^1,2 since it was first proposed in 1953 (ref. 3). Enomoto et al.^4 claim to have finally found definitive evidence that corroborates this model, proposing that the very-high-energy, TeV-range, gamma-rays from the supernova remnant (SNR) RX J1713.7-3946 are due to the interactions of energetic nuclei in this region. Here we argue that their claim is not supported by the existing multiwavelength spectrum of this source. The search for the origin(s) of Galactic cosmic ray nuclei may be closing in on the long-suspected supernova-remnant sources, but it is not yet over.

  13. Scheduled discoveries of 7+ high-Redshift supernovae: First cosmology results and bounds on q{sub 0}

    Energy Technology Data Exchange (ETDEWEB)

    Perlmutter, S., FNAL

    1998-09-01

    Our search for high-redshift Type Ia supernovae discovered, in its first years, a sample of seven supernovae. Using a ``batch`` search strategy, almost all were discovered before maximum light and were observed over the peak of their light curves. The spectra and light curves indicate that almost all were Type Ia supernovae at redshifts z = 0.35 - 0.5. These high-redshift supernovae can provide a distance indicator and ``standard clock`` to study the cosmological parameters q{sub 0} , {Lambda}, {Omega}{sub 0} , and H{sub 0}. This presentation and the following presentations of Kim et al. (1996), Goldhaber et al. (1996), and Pain et al. (1996) will discuss observation strategies and rates, analysis and calibration issues, the sources of measurement uncertainty, and the cosmological implications, including bounds on q{sub 0} , of these first high-redshift supernovae from our ongoing search.

  14. Supernova Photometric Classification Challenge

    CERN Document Server

    Kessler, Richard; Jha, Saurabh; Kuhlmann, Stephen

    2010-01-01

    We have publicly released a blinded mix of simulated SNe, with types (Ia, Ib, Ic, II) selected in proportion to their expected rate. The simulation is realized in the griz filters of the Dark Energy Survey (DES) with realistic observing conditions (sky noise, point spread function and atmospheric transparency) based on years of recorded conditions at the DES site. Simulations of non-Ia type SNe are based on spectroscopically confirmed light curves that include unpublished non-Ia samples donated from the Carnegie Supernova Project (CSP), the Supernova Legacy Survey (SNLS), and the Sloan Digital Sky Survey-II (SDSS-II). We challenge scientists to run their classification algorithms and report a type for each SN. A spectroscopically confirmed subset is provided for training. The goals of this challenge are to (1) learn the relative strengths and weaknesses of the different classification algorithms, (2) use the results to improve classification algorithms, and (3) understand what spectroscopically confirmed sub-...

  15. Collective supernova neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Mirizzi, Alessandro [Max Planck Institute for Physics, Munich (Germany)

    2009-07-01

    Neutrinos emitted by core-collapse supernovae (SNe) represent an important laboratory for both particle physics and astrophysics. While propagating in the dense SN environment, they can feel not only the presence of background matter (via ordinary Mikheev-Smirnov-Wolfenstein effects) but also of the gas of neutrinos and antineutrinos (via neutrino-neutrino interaction effects). The neutrino-neutrino interactions appear to modify the flavor evolution of SN neutrinos in a collective way, completely different from the ordinary matter effects. In these conditions, the flavor evolution equations become highly nonlinear, sometimes resulting in surprising phenomena when the entire neutrino system oscillates coherently as a single collective mode. In this talk, I present the recent results on collective supernova neutrino flavor conversions and I discuss about the sensitivity of these effects to the ordering of the neutrino mass spectrum.

  16. ADIDAS SUPERNOVA CTR10

    Institute of Scientific and Technical Information of China (English)

    刘楠

    2008-01-01

    ADIDAS SUPERNOVA CTR10作为ADIDAS控制型跑鞋中的佼佼者,鞋款结合了如立体FORMOTION,大面积的PRO-MODERATOR特殊材质,以及强化型的07款鞋模(EL-07),前脚掌大块ADIPRENE+等诸多ADIDAS的当家技术,但在实际的跑步过程中,这些技术点能否真正为跑步者带来明显的感受?请随我们进入到ADIDAS SUPERNOVA CONTROL10评测环节。

  17. Galaxy Outflows Without Supernovae

    CERN Document Server

    Sur, Sharanya; Ostriker, Eve C

    2016-01-01

    High surface density, rapidly star-forming galaxies are observed to have $\\approx 50-100\\,{\\rm km\\,s^{-1}}$ line-of-sight velocity dispersions, which are much higher than expected from supernova driving alone, but may arise from large-scale gravitational instabilities. Using three-dimensional simulations of local regions of the interstellar medium, we explore the impact of high velocity dispersions that arise from these disk instabilities. Parametrizing disks by their surface densities and epicyclic frequencies, we conduct a series of simulations that probe a broad range of conditions. Turbulence is driven purely horizontally and on large scales, neglecting any energy input from supernovae. We find that such motions lead to strong global outflows in the highly-compact disks that were common at high redshifts, but weak or negligible mass loss in the more diffuse disks that are prevalent today. Substantial outflows are generated if the one-dimensional horizontal velocity dispersion exceeds $\\approx 35\\,{\\rm km\\...

  18. Supernova Science Center

    Energy Technology Data Exchange (ETDEWEB)

    S. E. Woosley

    2008-05-05

    The Supernova Science Center (SNSC) was founded in 2001 to carry out theoretical and computational research leading to a better understanding of supernovae and related transients. The SNSC, a four-institutional collaboration, included scientists from LANL, LLNL, the University of Arizona (UA), and the University of California at Santa Cruz (UCSC). Intitially, the SNSC was funded for three years of operation, but in 2004 an opportunity was provided to submit a renewal proposal for two years. That proposal was funded and subsequently, at UCSC, a one year no-cost extension was granted. The total operational time of the SNSC was thus July 15, 2001 - July 15, 2007. This document summarizes the research and findings of the SNSC and provides a cummulative publication list.

  19. Nurseries of Supernovae

    DEFF Research Database (Denmark)

    Frederiksen, Teddy

    Type Ia supernovae (SNe) have long been the gold standard for precision cosmology and after several decades of intense research the supernova (SN) community was in 2011 honored by giving the Nobel Prize in physics for the discovery of Dark Energy to the leaders of the two big SN collaborations...... the gasphase metallicity, stellar mass and stellar age for this z = 1.55 host galaxy. I am also able to rule out the presence of any AGN though emission-line ratios. The host is classified as a highly star forming, low mass, low metallicity galaxy. It is a clear outlier in star formation and stellar mass...... compared to most low redshift (z 1) redshift SNe. This is mainly due to the change in specific star-formation rate as a function of redshift. This can potentially impact the use of high redshift SN Ia as standard candels...

  20. The Remnant of Supernova 1987A

    Science.gov (United States)

    McCray, Richard; Fransson, Claes

    2016-09-01

    Although it has faded by a factor of ˜107, SN 1987A is still bright enough to be observed in almost every band of the electromagnetic spectrum. Today, the bolometric luminosity of the debris is dominated by a far-infrared (˜200μm) continuum from ˜0.5 M⊙ of dust grains in the interior debris. The dust is heated by UV, optical, and near-infrared (NIR) emission resulting from radioactive energy deposition by 44Ti. The optical light of the supernova debris is now dominated by illumination of the debris by X-rays resulting from the impact of the outer supernova envelope with an equatorial ring (ER) of gas that was expelled some 20,000 years before the supernova explosion. X-ray and optical observations trace a complex system of shocks resulting from this impact, whereas radio observations trace synchrotron radiation from relativistic electrons accelerated by these shocks. The luminosity of the remnant is dominated by an NIR (˜20μm) continuum from dust grains in the ER heated by collisions with ions in the X-ray emitting gas. With the Atacama Large Millimeter Array (ALMA), we can observe the interior debris at millimeter/submillimeter wavelengths, which are not absorbed by the interior dust. The ALMA observations reveal bright emission lines from rotational transitions of CO and SiO lines that provide a new window into the interior structure of the supernova debris. Optical, NIR, and ALMA observations all indicate strongly asymmetric ejecta. Intensive searches have failed to yield any evidence for the compact object expected to reside at the center of the remnant. The current upper limit to the luminosity of such an object is a few tens of solar luminosities.

  1. The Acceleration of the Universe in the Light of Supernovae: The Key Role of CTIO

    Science.gov (United States)

    Hamuy, M.; Suntzeff, N. B.

    2015-05-01

    The discovery of acceleration and dark energy arguably constitutes the most revolutionary discovery in astrophysics in recent years. The Cerro Tololo Inter-American Observatory (CTIO) played a key role in this amazing discovery through three systematic surveys organized by staff astronomers: the “Tololo Supernova Program“ (1986-2000), the Calán/Tololo Project (1989-1993), and the “High-Z Supernova Search Team” (1994-1998). CTIO's state of the art instruments also were fundamental in the independent discovery of acceleration by the “Supernova Cosmology Project” (1992-1999). Here I summarize the work on supernovae carried out from CTIO that led to the discovery of acceleration and dark energy and provide a brief historical summary on the use of Type Ia supernovae in cosmology in order to provide context for the CTIO contribution.

  2. Observations and Theory of Supernovae

    CERN Document Server

    Wheeler, J C

    2003-01-01

    This Resource Letter provides a guide to the literature on the observations of supernovae and the theory of their explosion mechanisms. Journal articles and books are cited for the following topics: observations of the spectra, spectropolarimetry, and light curves of supernovae of various types, theory of thermonuclear explosions, core collapse, and radioactive decay, applications to cosmology, and possible connections to gamma-ray bursts.

  3. Collective neutrino oscillations in supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Huaiyu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States)

    2014-06-24

    In a dense neutrino medium neutrinos can experience collective flavor transformation through the neutrino-neutrino forward scattering. In this talk we present some basic features of collective neutrino flavor transformation in the context in core-collapse supernovae. We also give some qualitative arguments for why and when this interesting phenomenon may occur and how it may affect supernova nucleosynthesis.

  4. Mass Varying Neutrinos in Supernovae

    CERN Document Server

    Rossi-Torres, F; de Holanda, P C; Peres, O L G

    2010-01-01

    We study limits for the mass varying neutrino model, using constrains from supernova neutrinos placed by the r-process condition, $Y_e<0.5$. Also, we use this model in a supernova environment to study the regions of survival probability in the oscillation space parameter ($\\tan^2\\theta$ and $\\Delta m^2_0$), considering the channel $\

  5. ON THE RATES OF TYPE Ia SUPERNOVAE IN DWARF AND GIANT HOSTS WITH ROTSE-IIIb

    Energy Technology Data Exchange (ETDEWEB)

    Quimby, Robert M. [Kavli IPMU, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8583 (Japan); Yuan Fang [Research School of Astronomy and Astrophysics, Australian National University, Weston Creek, ACT 2611 (Australia); Akerlof, Carl [Physics Department, University of Michigan, Ann Arbor, MI 48109 (United States); Wheeler, J. Craig [Department of Astronomy, McDonald Observatory, University of Texas, Austin, TX 78712 (United States); Warren, Michael S. [Theoretical Division, Mail Stop B227, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2012-12-01

    We present a sample of 23 spectroscopically confirmed Type Ia supernovae (SNe Ia) that were discovered in the background of galaxy clusters targeted by ROTSE-IIIb and use up to 18 of these to determine the local (z-bar 0.05) volumetric rate. Since our survey is flux limited and thus biased against fainter objects, the pseudo-absolute magnitude distribution (pAMD) of SNe Ia in a given volume is an important concern, especially the relative frequency of high- to low-luminosity SNe Ia. We find that the pAMD derived from the volume-limited Lick Observatory Supernova Search (LOSS) sample is incompatible with the distribution of SNe Ia in a volume-limited (z < 0.12) sub-sample of the Sloan Digital Sky Survey II (SDSS-II). The LOSS sample requires far more low-luminosity SNe Ia than the SDSS-II can accommodate. Even though LOSS and SDSS-II have sampled different SNe Ia populations, their volumetric rates are surprisingly similar. Using the same model pAMD adopted in the SDSS-II SNe Ia rate calculation and excluding two high-luminosity SNe Ia from our sample, we derive a rate that is marginally higher than previous low-redshift determinations. With our full sample and the LOSS pAMD, our rate is more than double the canonical value. We also find that 5 of our 18 SNe Ia are hosted by very low luminosity (M{sub B} > -16) galaxies, whereas only 1 out of 79 nearby SDSS-II SNe Ia have such faint hosts. It is possible that previous works have undercounted either low-luminosity SNe Ia, SNe Ia in low-luminosity hosts, or peculiar SNe Ia (sometimes explicitly), and the total SNe Ia rate may be higher than the canonical value.

  6. Fixing the U-band photometry of Type Ia supernovae

    CERN Document Server

    Krisciunas, Kevin; Espinoza, Juan; Gonzalez, David; Gonzalez, Luis; Gonzalez, Sergio; Hamuy, Mario; Hsiao, Eric Y; Morrell, Nidia; Phillips, Mark M; Suntzeff, Nicholas B

    2012-01-01

    We present previously unpublished photometry of supernovae 2003gs and 2003hv. Using spectroscopically-derived corrections to the U-band photometry, we reconcile U-band light curves made from imagery with the Cerro Tololo 0.9-m, 1.3-m and Las Campanas 1-m telescopes. Previously, such light curves showed a 0.4 mag spread at one month after maximum light. This gives us hope that a set of corrected ultraviolet light curves of nearby objects can contribute to the full utilization of rest frame U-band data of supernovae at redshift ~0.3 to 0.8. As pointed out recently by Kessler et al. in the context of the Sloan Digital Sky Survey supernova search, if we take the published U-band photometry of nearby Type Ia supernovae at face value, there is a 0.12 mag U-band anomaly in the distance moduli of higher redshift objects. This anomaly led the Sloan survey to eliminate from their analyses all photometry obtained in the rest frame U-band. The Supernova Legacy Survey eliminated observer frame U-band photometry, which is ...

  7. Cosmological and supernova neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Balantekin, A. B. [Department of Physics, University of Wisconsin - Madison, Wisconsin 53706 (United States); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Kusakabe, M. [School of Liberal Arts and Science, Korea Aerospace University, Goyang 412-791 (Korea, Republic of); Mathews, G. J. [Department of Physics, University of Notre Dame, IN 46556 (United States); Nakamura, K. [Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Pehlivan, Y. [Mimar Sinan GSÜ, Department of Physics, Şişli, İstanbul 34380 (Turkey); Suzuki, T. [Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-06-24

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  8. GALAXY OUTFLOWS WITHOUT SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Sur, Sharanya [Indian Institute of Astrophysics, 2nd Block, Koramangala, Bangalore 560034 (India); Scannapieco, Evan [School of Earth and Space Exploration, Arizona State University, P.O. Box 876004, Tempe-85287 (United States); Ostriker, Eve C., E-mail: sharanya.sur@iiap.res.in, E-mail: sharanya.sur@asu.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2016-02-10

    High surface density, rapidly star-forming galaxies are observed to have ≈50–100 km s{sup −1} line of sight velocity dispersions, which are much higher than expected from supernova driving alone, but may arise from large-scale gravitational instabilities. Using three-dimensional simulations of local regions of the interstellar medium, we explore the impact of high velocity dispersions that arise from these disk instabilities. Parametrizing disks by their surface densities and epicyclic frequencies, we conduct a series of simulations that probe a broad range of conditions. Turbulence is driven purely horizontally and on large scales, neglecting any energy input from supernovae. We find that such motions lead to strong global outflows in the highly compact disks that were common at high redshifts, but weak or negligible mass loss in the more diffuse disks that are prevalent today. Substantial outflows are generated if the one-dimensional horizontal velocity dispersion exceeds ≈35 km s{sup −1}, as occurs in the dense disks that have star-formation rate (SFR) densities above ≈0.1 M{sub ⊙} yr{sup −1} kpc{sup −2}. These outflows are triggered by a thermal runaway, arising from the inefficient cooling of hot material coupled with successive heating from turbulent driving. Thus, even in the absence of stellar feedback, a critical value of the SFR density for outflow generation can arise due to a turbulent heating instability. This suggests that in strongly self-gravitating disks, outflows may be enhanced by, but need not caused by, energy input from supernovae.

  9. LOSS Revisited - II: The relative rates of different types of supernovae vary between low- and high-mass galaxies

    CERN Document Server

    Graur, Or; Modjaz, Maryam; Shivvers, Isaac; Filippenko, Alexei V; Li, Weidong; Smith, Nathan

    2016-01-01

    In Paper I of this series, we showed that the ratio between stripped-envelope supernova (SE SN) and Type II SN rates reveals a significant SE SN deficiency in galaxies with stellar masses $\\lesssim 10^{10}~{\\rm M}_\\odot$. Here, we test this result by splitting the volume-limited subsample of the Lick Observatory Supernova Search (LOSS) SN sample into low- and high-mass galaxies and comparing the relative rates of various SN types found in them. The LOSS volume-limited sample contains 180 SNe and SN impostors and is complete for SNe Ia out to 80 Mpc and core-collapse SNe out to 60 Mpc. All of these transients were recently reclassified by us in Shivvers et al. (in prep.) We find that the relative rates of some types of SNe differ between low- and high-mass galaxies: SNe Ib and Ic are underrepresented by a factor of ~3 in low-mass galaxies. These galaxies also contain the only examples of SN 1987A-like SNe in the sample and host ~9 times as many SN impostors. Normal SNe Ia are ~30% more common in low-mass galax...

  10. New Galactic supernova remnants discovered with IPHAS

    CERN Document Server

    Sabin, L; Contreras, M E; Olguín, L; Frew, D J; Stupar, M; Vázquez, R; Wright, N J; Corradi, R L M; Morris, R A H

    2013-01-01

    As part of a systematic search programme of a 10-degree wide strip of the Northern Galactic plane we present preliminary evidence for the discovery of four (and possibly five) new supernova remnants (SNRs). The pilot search area covered the 19-20 hour right ascension zone sampling from +20 to +55 degrees in declination using binned mosaic images from the INT Photometric H-alpha Survey (IPHAS). The optical identification of the candidate SNRs was based mainly on their filamentary and arc-like emission morphologies, their apparently coherent, even if fractured structure and clear disconnection from any diffuse neighbouring HII region type nebulosity. Follow-up optical spectroscopy was undertaken, sampling carefully across prominent features of these faint sources. The resulting spectra revealed typical emission line ratios for shock excited nebulae which are characteristic of SNRs, which, along with the latest diagnostic diagrams, strongly support the likely SNR nature of these sources: G038.7-1.3 (IPHASX J1906...

  11. Supernovae anisotropy power spectrum

    CERN Document Server

    Ghodsi, Hoda; Habibi, Farhang

    2016-01-01

    We contribute another anisotropy study to this field of research using Supernovae Type Ia (SNe Ia). In this work, we utilise the power spectrum calculation method and apply it to both the current SNe Ia data and simulation. Our simulations are constructed with the characteristics of the upcoming survey of the Large Synoptic Survey Telescope (LSST), which shall bring us the largest SNe Ia collection to date. We make predictions for the amplitude of a possible dipole anisotropy or anisotropy in higher multipole moments that would be detectable by the LSST.

  12. Detection strategies for a supernova gravitational wave burst in a network of interferometric detectors

    CERN Document Server

    Arnaud, N; Bizouard, M A; Brisson, V; Cavalier, F; Davier, M; Hello, P; Kreckelberg, S; Porter, E K; Arnaud, Nicolas; Barsuglia, Matteo; Bizouard, Marie-Anne; Brisson, Violette; Cavalier, Fabien; Davier, Michel; Hello, Patrice; Kreckelberg, Stephane; Porter, Edward K.

    2003-01-01

    Trying to detect the gravitational wave (GW) signal emitted by a type II supernova is a main challenge for the GW community. Indeed, the corresponding waveform is not accurately modeled as the supernova physics is very complex; in addition, all the existing numerical simulations agree on the weakness of the GW emission, thus restraining the number of sources potentially detectable. Consequently, triggering the GW signal with a confidence level high enough to conclude directly to a detection is very difficult, even with the use of a network of interferometric detectors. On the other hand, one can hope to take benefit from the neutrino and optical emissions associated to the supernova explosion, in order to discover and study GW radiation in an event already detected independently. This article aims at presenting some realistic scenarii for the search of the supernova GW bursts, based on the present knowledge of the emitted signals and on the results of network data analysis simulations. Both the direct search ...

  13. How to Find More Supernovae with Less Work: Object ClassificationTechniques for Difference Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Stephen; Aragon, Cecilia; Romano, Raquel; Thomas, RollinC.; Weaver, Benjamin A.; Wong, Daniel

    2007-05-02

    We present the results of applying new object classificationtechniques to difference images in the context of the Nearby SupernovaFactory supernova search. Most current supernova searches subtractreference images from new images, identify objects in these differenceimages, and apply simple threshold cuts on parameters such as statisticalsignificance, shape, and motionto reject objects such as cosmic rays,asteroids, and subtraction artifacts. Although most static objectssubtract cleanly, even a very low false positive detection rate can leadto hundreds of non-supernova candidates which must be vetted by humaninspection before triggering additional followup. In comparison to simplethreshold cuts, more sophisticated methods such as Boosted DecisionTrees, Random Forests, and Support Vector Machines provide dramaticallybetter object discrimination. At the Nearby Supernova Factory, we reducedthe number of non-supernova candidates by a factor of 10 while increasingour supernova identification efficiency. Methods such as these will becrucial for maintaining a reasonable false positive rate in the automatedtransient alert pipelines of upcoming projects such as PanSTARRS andLSST.

  14. Spectroscopic confirmation of high-redshift supernovae with the ESO VLT

    CERN Document Server

    Lidman, C E; Folatelli, G; Garavini, G; Nobili, S; Aldering, G; Amanullah, R; Antilogus, P; Astier, Pierre; Blanc, G; Burns, M S; Conley, A; Deustua, S E; Doi, M; Ellis, R; Fabbro, S; Fadeev, V; Gibbons, R; Goldhaber, G; Goobar, A; Groom, D E; Hook, I; Kashikawa, N; Kim, A G; Knop, R A; Lee Byung Cheol; Méndez, J; Morokuma, T; Motohara, K; Nugent, P; Pain, R; Perlmutter, S; Prasad, V; Quimby, R; Raux, J; Regnault, N; Ruiz-Lapuente, P; Sainton, G; Schaefer, B E; Schahmaneche, K; Smith, E; Spadafora, A L; Stanishev, V; Walton, N A; Wang, L; Wood-Vasey, W M; Yasuda, N

    2004-01-01

    We present VLT FORS1 and FORS2 spectra of 39 candidate high-redshift supernovae that were discovered as part of a cosmological study using Type Ia supernovae (SNe Ia) over a wide range of redshifts. From the spectra alone, 20 candidates are spectrally classified as SNe Ia with redshifts ranging from z=0.212 to z=1.181. Of the remaining 19 candidates, 1 might be a Type II supernova and 11 exhibit broad supernova-like spectral features and/or have supernova-like light curves. The candidates were discovered in 8 separate ground-based searches. In those searches in which SNe Ia at z ~ 0.5 were targeted, over 80% of the observed candidates were spectrally classified as SNe Ia. In those searches in which SNe Ia with z > 1 were targeted, 4 candidates with z > 1 were spectrally classified as SNe Ia and later followed with ground and space based observatories. We present the spectra of all candidates, including those that could not be spectrally classified as supernova.

  15. Supernova olivine from cometary dust

    Science.gov (United States)

    Messenger, Scott; Keller, Lindsay P.; Lauretta, Dante S.

    2005-01-01

    An interplanetary dust particle contains a submicrometer crystalline silicate aggregate of probable supernova origin. The grain has a pronounced enrichment in 18O/16O (13 times the solar value) and depletions in 17O/16O (one-third solar) and 29Si/28Si (olivine (forsterite 83) grains olivine grain could have formed by equilibrium condensation from cooling supernova ejecta if several different nucleosynthetic zones mixed in the proper proportions. The supernova grain is also partially encased in nitrogen-15-rich organic matter that likely formed in a presolar cold molecular cloud.

  16. Supernova Acceleration Probe: Studying Dark Energy with Type Ia Supernovae

    CERN Document Server

    Albert, J; Allam, S; Althouse, W E; Amanullah, R; Annis, J; Astier, Pierre; Aumeunier, M; Bailey, S; Baltay, C; Barrelet, E; Basa, S; Bebek, C; Bergström, L; Bernstein, G; Bester, M; Besuner, B; Bigelow, B; Blandford, R; Bohlin, R; Bonissent, A; Bower, C; Brown, M; Campbell, M; Carithers, W; Cole, D; Commins, Eugene D; Craig, W; Davis, T; Dawson, K; Day, C; De Harveng, M; De Jongh, F; Deustua, S; Diehl, H; Dobson, T; Dodelson, S; Ealet, A; Ellis, R; Emmet, W; Figer, D; Fouchez, D; Frerking, M; Frieman, J A; Fruchter, A; Gerdes, D; Gladney, L; Goldhaber, G; Goobar, A; Groom, D; Heetderks, H; Hoff, M; Holland, S; Huffer, M; Hui, L; Huterer, D; Jain, B; Jelinsky, P; Juramy, C; Karcher, A; Kent, S; Kahn, S; Kim, A; Kolbe, W; Krieger, B; Kushner, G; Kuznetsova, N; Lafever, R; Lamoureux, J; Lampton, M; Lefèvre, O; Lebrun, V; Levi, M; Limon, P; Lin, H; Linder, E; Loken, S; Lorenzon, W; Malina, R; Marian, L; Marriner, J P; Marshall, P; Massey, R; Mazure, A; McGinnis, B; McKay, T; McKee, S; Miquel, R; Mobasher, B; Morgan, N; Mortsell, E; Mostek, N; Mufson, S; Musser, J; Nakajima, R; Nugent, P; Olus, H; Pain, R; Palaio, N; Pankow, D; Peoples, John; Perlmutter, S; Peterson, D; Prieto, E; Rabinowitz, D; Réfrégier, A; Rhodes, J; Roe, N; Rusin, D; Scarpine, V; Schubnell, M; Seiffert, M; Sholl, M; Shukla, H; Smadja, G; Smith, R M; Smoot, George F; Snyder, J; Spadafora, A; Stabenau, F; Stebbins, A; Stoughton, C; Szymkowiak, A; Tarle, G; Taylor, K; Tilquin, A; Tomasch, A; Tucker, D; Vincent, D; Von der Lippe, H; Walder, J P; Wang, G; Weinstein, A; Wester, W; White, M

    2005-01-01

    The Supernova Acceleration Probe (SNAP) will use Type Ia supernovae (SNe Ia) as distance indicators to measure the effect of dark energy on the expansion history of the Universe. (SNAP's weak-lensing program is described in a companion White Paper.) The experiment exploits supernova distance measurements up to their fundamental systematic limit; strict requirements on the monitoring of each supernova's properties lead to the need for a space-based mission. Results from pre-SNAP experiments, which characterize fundamental SN Ia properties, will be used to optimize the SNAP observing strategy to yield data, which minimize both systematic and statistical uncertainties. SNAP has achieved technological readiness and the collaboration is poised to begin construction.

  17. Photometric redshifts for supernovae Ia in the Supernova Legacy Survey

    CERN Document Server

    Palanque-Delabrouille, Nathalie; Pascal, S; Rich, J; Guy, J; Bazin, G; Astier, P; Balland, C; Basa, S; Carlberg, R G; Conley, A; Fouchez, D; Hardin, D; Hook, I M; Howell, D A; Pain, R; Perrett, K; Pritchet, C J; Regnault, N; Sullivan, M

    2009-01-01

    We present a method using the SALT2 light curve fitter to determine the redshift of Type Ia supernovae in the Supernova Legacy Survey (SNLS) based on their photometry in g', r', i' and z'. On 289 supernovae of the first three years of SNLS data, we obtain a precision $\\sigma_{\\Delta z/(1+z)} = 0.022$ on average up to a redshift of 1.0, with a higher precision of 0.016 for z0.45. The rate of events with $|\\Delta z|/(1+z)>0.15$ (catastrophic errors) is 1.4%. Both the precision and the rate of catastrophic errors are better than what can be currently obtained using host galaxy photometric redshifts. Photometric redshifts of this precision may be useful for future experiments which aim to discover up to millions of supernovae Ia but without spectroscopy for most of them.

  18. Magnetar-Powered Supernovae in Two Dimensions. I. Superluminous Supernovae

    OpenAIRE

    Chen, Ke-Jung; Woosley, S. E.; Sukhbold, Tuguldur

    2016-01-01

    Previous studies have shown that the radiation emitted by a rapidly rotating magnetar embedded in a young supernova can greatly amplify its luminosity. These one-dimensional studies have also revealed the existence of an instability arising from the piling up of radiatively accelerated matter in a thin dense shell deep inside the supernova. Here we examine the problem in two dimensions and find that, while instabilities cause mixing and fracture this shell into filamentary structures that red...

  19. The Vela Supernova Remnant

    Science.gov (United States)

    Raymond, John C.

    We wish to obtain both emission and absorption line observations of the Vela Supernova remnant. The filament we wish to study in emission is the brightest filament in the SNR, so it will provide a spectrum twice the quality of any in existence. It is also located at the edge of an unusual bulge in the SNR, and it can be used to test the level of departure from pressure equilibrium in the remnant, which is useful as a test of evaporative models of SNR evolution. The absorption line studies will look for evidence of the drastically unstable behavior of shocks above 150 km/s predicted by Innes and Giddings. Four of the stars studied by Jenkins, Silk and Wallerstein showed marginal evidence for two positive or two negative high velocity components. If these multiple velocity components are confirmed, they support the secondary shock predictions of Innes and Giddings.

  20. Neutrinos and nucleosynthesis in supernova

    Energy Technology Data Exchange (ETDEWEB)

    Solis, U [Instituto de Ciencias Nucleares, Departamento de Fisica de Altas EnergIas, Universidad Nacional Autonoma de Mexico (ICN-UNAM). Apartado Postal 70-543, 04510 Mexico, D.F. (Mexico); D' Olivo, J C [Instituto de Ciencias Nucleares, Departamento de Fisica de Altas EnergIas, Universidad Nacional Autonoma de Mexico (ICN-UNAM). Apartado Postal 70-543, 04510 Mexico, D.F. (Mexico); Cabral-Rosetti, L G [Departamento de Posgrado, Centro Interdisciplinario de Investigacion y Docencia en Educacion Tecnica (CIIDET), Av. Universidad 282 Pte., Col. Centro, A. Postal 752, C.P. 76000, Santiago de Queretaro, Qro. (Mexico)

    2006-05-15

    The type II supernova is considered as a candidate site for the production of heavy elements. The nucleosynthesis occurs in an intense neutrino flux, we calculate the electron fraction in this environment.

  1. The Diffuse Supernova Neutrino Background

    CERN Document Server

    Beacom, John F

    2010-01-01

    The Diffuse Supernova Neutrino Background (DSNB) is the weak glow of MeV neutrinos and antineutrinos from distant core-collapse supernovae. The DSNB has not been detected yet, but the Super-Kamiokande (SK) 2003 upper limit on the electron antineutrino flux is close to predictions, now quite precise, based on astrophysical data. If SK is modified with dissolved gadolinium to reduce detector backgrounds and increase the energy range for analysis, then it should detect the DSNB at a rate of a few events per year, providing a new probe of supernova neutrino emission and the cosmic core-collapse rate. If the DSNB is not detected, then new physics will be required. Neutrino astronomy, while uniquely powerful, has proven extremely difficult -- only the Sun and the nearby Supernova 1987A have been detected to date -- so the promise of detecting new sources soon is exciting indeed.

  2. Toward a Standard Model of Core Collapse Supernovae

    OpenAIRE

    Mezzacappa, A.

    2000-01-01

    In this paper, we discuss the current status of core collapse supernova models and the future developments needed to achieve significant advances in understanding the supernova mechanism and supernova phenomenology, i.e., in developing a supernova standard model.

  3. [SKLOF: a new algorithm to reduce the range of supernova candidates].

    Science.gov (United States)

    Tu, Liang-ping; Wei, Hui-ming; Wei, Peng; Pan, Jing-chang; Luo, A-li; Zhao, Yong-heng

    2015-01-01

    Supernova (SN) is called the "standard candles" in the cosmology, the probability of outbreak in the galaxy is very low and is a kind of special, rare astronomical objects. Only in a large number of galaxies, we have a chance to find the supernova. The supernova which is in the midst of explosion will illuminate the entire galaxy, so the spectra of galaxies we obtained have obvious features of supernova. But the number of supernova have been found is very small relative to the large number of astronomical objects. The time computation that search the supernova be the key to weather the follow-up observations, therefore it needs to look for an efficient method. The time complexity of the density-based outlier detecting algorithm (LOF) is not ideal, which effects its application in large datasets. Through the improvement of LOF algorithm, a new algorithm that reduces the searching range of supernova candidates in a flood of spectra of galaxies is introduced and named SKLOF. Firstly, the spectra datasets are pruned and we can get rid of most objects are impossible to be the outliers. Secondly, we use the improved LOF algorithm to calculate the local outlier factors (LOF) of the spectra datasets remained and all LOFs are arranged in descending order. Finally, we can get the smaller searching range of the supernova candidates for the subsequent identification. The experimental results show that the algorithm is very effective, not only improved in accuracy, but also reduce the operation time compared with LOF algorithm with the guarantee of the accuracy of detection.

  4. Supernovae and Gamma Ray Bursts

    Directory of Open Access Journals (Sweden)

    M. Della Valle

    2007-01-01

    Full Text Available Se revisa el estatus observacional de la conexi on Supernova (SN/Estallido de Rayos-Gamma (GRB. Recientes (y no tan recientes observaciones de GRBs largos sugieren que una fracci on signi cativa de ellos (pero no todos est an asociados con supernovas brillantes del tipo Ib/c. Estimaciones actuales de las tasas de producci on de GRBs y SNs dan una raz on para GRB/SNe-Ibc en el rango 0:4%

  5. A New Determination of the High Redshift Type Ia Supernova Rateswith the Hubble Space Telescope Advanced Camera for Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsova, N.; Barbary, K.; Connolly, B.; Kim, A.G.; Pain, R.; Roe, N.A.; Aldering, G.; Amanullah, R.; Dawson, K.; Doi, M.; Fadeyev, V.; Fruchter, A.S.; Gibbons, R.; Goldhaber, G.; Goober, A.; Gude, A.; Knop,R.A.; Kowalski, M.; Lidman, C.; Morokuma, T.; Meyers, J.; Perlmutter, S.; Rubin, D.; Schlegel, D.J.; Spadafora, A.L.; Stanishev, V.; Strovink, M.; Suzuki, N.; Wang, L.; Yasuda, N.

    2007-10-01

    We present a new measurement of the volumetric rate of Type Ia supernova up to a redshift of 1.7, using the Hubble Space Telescope (HST) GOODS data combined with an additional HST dataset covering the North GOODS field collected in 2004. We employ a novel technique that does not require spectroscopic data for identifying Type Ia supernovae (although spectroscopic measurements of redshifts are used for over half the sample); instead we employ a Bayesian approach using only photometric data to calculate the probability that an object is a Type Ia supernova. This Bayesian technique can easily be modified to incorporate improved priors on supernova properties, and it is well-suited for future high-statistics supernovae searches in which spectroscopic follow up of all candidates will be impractical. Here, the method is validated on both ground- and space-based supernova data having some spectroscopic follow up. We combine our volumetric rate measurements with low redshift supernova data, and fit to a number of possible models for the evolution of the Type Ia supernova rate as a function of redshift. The data do not distinguish between a flat rate at redshift > 0.5 and a previously proposed model, in which the Type Ia rate peaks at redshift {approx} 1 due to a significant delay from star-formation to the supernova explosion. Except for the highest redshifts, where the signal to noise ratio is generally too low to apply this technique, this approach yields smaller or comparable uncertainties than previous work.

  6. Ozone Depletion from Nearby Supernovae

    CERN Document Server

    Gehrels, N; Jackman, C H; Cannizzo, J K; Mattson, B J; Chen, W; Gehrels, Neil; Laird, Claude M.; Jackman, Charles H.; Cannizzo, John K.; Mattson, Barbara J.; Chen, Wan

    2003-01-01

    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time, improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made in theoretical modeling of supernovae and of the resultant gamma-ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma-rays and cosmic rays. We find that for the combined ozone depletion roughly to double the ``biologically active'' UV flux received at the surface of the Earth, the supernova mu...

  7. Ozone Depletion from Nearby Supernovae

    Science.gov (United States)

    Gehrels, Neil; Laird, Claude M.; Jackman, Charles H.; Cannizzo, John K.; Mattson, Barbara J.; Chen, Wan; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made also in theoretical modeling of supernovae and of the resultant gamma ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma rays and cosmic rays. We find that for the combined ozone depletion from these effects roughly to double the 'biologically active' UV flux received at the surface of the Earth, the supernova must occur at approximately or less than 8 parsecs.

  8. First supernova companion star found

    Science.gov (United States)

    2004-01-01

    Supernova 1993J exploding hi-res Size hi-res: 222 kb Credits: ESA and Justyn R. Maund (University of Cambridge) Supernova 1993J exploding (artist’s impression) New observations with the Hubble Space Telescope allow a look into a supernova explosion under development. In this artist’s view the red supergiant supernova progenitor star (left) is exploding after having transferred about 10 solar masses of hydrogen gas to the blue companion star (right). This interaction process happened over about 250 years and affected the supernova explosion to such an extent that SN 1993J was later known as one of the most peculiar supernovae ever seen. Supernova 1993J exploding hi-res Size hi-res: 4200 kb Credits: ESA and Justyn R. Maund (University of Cambridge) The site of the Supernova 1993J explosion A virtual journey into one of the spiral arms of the grand spiral Messier 81 (imaged with the Isaac Newton Telescope on La Palma, left) reveals the superb razor-sharp imaging power of the NASA/ESA Hubble Space Telescope (Hubble’s WFPC2 instrument, below). The close-up (with Hubble’s ACS, to the right) is centred on the newly discovered companion star to Supernova 1993J that itself is no longer visible. The quarter-circle around the supernova companion is a so-called light echo originating from sheets of dust in the galaxy reflecting light from the original supernova explosion. Supernova 1993J explosing site hi-res Size hi-res: 1502 kb Credits: ESA and Justyn R. Maund (University of Cambridge) Close-up of the Supernova 1993J explosion site (ACS/HRC image) This NASA/ESA Hubble Space Telescope image shows the area in Messier 81 where Supernova 1993J exploded. The companion to the supernova ‘mother star’ that remains after the explosion is seen in the centre of the image. The image is taken with Hubble’s Advanced Camera for Surveys and is a combination of four exposures taken with ACS’ High Resolution Camera. The exposures were taken through two near-UV filters (250W

  9. A mildly relativistic radio jet from the otherwise normal type Ic supernova 2007gr.

    Science.gov (United States)

    Paragi, Z; Taylor, G B; Kouveliotou, C; Granot, J; Ramirez-Ruiz, E; Bietenholz, M; van der Horst, A J; Pidopryhora, Y; van Langevelde, H J; Garrett, M A; Szomoru, A; Argo, M K; Bourke, S; Paczyński, B

    2010-01-28

    The class of type Ic supernovae have drawn increasing attention since 1998 owing to their sparse association (only four so far) with long duration gamma-ray bursts (GRBs). Although both phenomena originate from the core collapse of a massive star, supernovae emit mostly at optical wavelengths, whereas GRBs emit mostly in soft gamma-rays or hard X-rays. Though the GRB central engine generates ultra-relativistic jets, which beam the early emission into a narrow cone, no relativistic outflows have hitherto been found in type Ib/c supernovae explosions, despite theoretical expectations and searches. Here we report radio (interferometric) observations that reveal a mildly relativistic expansion in a nearby type Ic supernova, SN 2007gr. Using two observational epochs 60 days apart, we detect expansion of the source and establish a conservative lower limit for the average apparent expansion velocity of 0.6c. Independently, a second mildly relativistic supernova has been reported. Contrary to the radio data, optical observations of SN 2007gr indicate a typical type Ic supernova with ejecta velocities approximately 6,000 km s(-1), much lower than in GRB-associated supernovae. We conclude that in SN 2007gr a small fraction of the ejecta produced a low-energy mildly relativistic bipolar radio jet, while the bulk of the ejecta were slower and, as shown by optical spectropolarimetry, mildly aspherical.

  10. The search for the origin of the Local Bubble redivivus

    CERN Document Server

    Fuchs, B; D'Avillez, M A; Dettbarn, C; Flynn, C

    2006-01-01

    We present a new unbiased search and analysis of all B stars in the solar neighbourhood (within a volume of 400 pc diameter) using the Arivel data base to track down the remains of the OB associations, which hosted the supernovae responsible for the Local Bubble in the interstellar gas. We find after careful dereddening and by comparison with theoretical isochrones, that besides the Upper Scorpius the Upper Centaurus Lupus and Lower Centaurus Crux subgroups are the youngest stellar associations in the solar neighbourhood with ages of 20 to 30 Myr, in agreement with previous work. In search for the ``smoking gun'' of the origin of the Local Bubble, we have traced the paths of the associations back into the past and found that they entered the present bubble region 10 to 15 Myr ago. We argue that the Local Bubble began to form then and estimate that 14 to 20 supernovae have gone off since. It is shown that the implied energy input is sufficient to excavate a bubble of the presently observed size.

  11. Twin Supernova Studies with SNe Ia from SNfactory

    Science.gov (United States)

    Fakhouri, Hannah; Aldering, G.; Aragon, C.; Hsiao, E.; Loken, S.; Nugent, P.; Perlmutter, S.; Runge, K.; Thomas, R. C.; Antilogous, P.; Bongard, S.; Canto, A.; Pain, R.; Wu, C.; Chotard, N.; Copin, Y.; Gangler, E.; Pereira, R.; Smadja, G.; Pecontal, E.; Baltay, C.; Rabinowitz, D.; Scalzo, R.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Paech, K.; Tao, C.

    2011-01-01

    We present a study of twin supernovae with spectrophotometric timeseries of nearby Type Ia supernova from the Nearby Supernova Factory (Aldering, et al. 2002). One advantage of "twins” is they offer the best opportunity for having objects with the same intrinsic luminosities and colors, ostensibly leaving only extrinsic factors such as dust to explain any observed differences in brightness and color. Using well-sampled timeseries data for over 100 nearby Hubble-flow SNe Ia, we study the impact of dust on the brightness differences of SN Ia twins in order to improve the standardization of these standardizable candles that have been and will continue to be a primary tool in the determination of cosmological parameters. Specifically we are able to solve for the relative extinction and RV needed to bring the twins into near-perfect agreement. We will present a study of the resulting distribution of RV. In searching for twin supernovae we have found groups of SNe, again differing only by a dust law that accounts for the brightness differences. These groups allow us to look for similarities in subsets of SNe and explore spectrophotometric differences from group to group.

  12. A fast contour descriptor algorithm for supernova imageclassification

    Energy Technology Data Exchange (ETDEWEB)

    Aragon, Cecilia R.; Aragon, David Bradburn

    2006-07-16

    We describe a fast contour descriptor algorithm and its application to a distributed supernova detection system (the Nearby Supernova Factory) that processes 600,000 candidate objects in 80 GB of image data per night. Our shape-detection algorithm reduced the number of false positives generated by the supernova search pipeline by 41% while producing no measurable impact on running time. Fourier descriptors are an established method of numerically describing the shapes of object contours, but transform-based techniques are ordinarily avoided in this type of application due to their computational cost. We devised a fast contour descriptor implementation for supernova candidates that meets the tight processing budget of the application. Using the lowest-order descriptors (F{sub 1} and F{sub -1}) and the total variance in the contour, we obtain one feature representing the eccentricity of the object and another denoting its irregularity. Because the number of Fourier terms to be calculated is fixed and small, the algorithm runs in linear time, rather than the O(n log n) time of an FFT. Constraints on object size allow further optimizations so that the total cost of producing the required contour descriptors is about 4n addition/subtraction operations, where n is the length of the contour.

  13. How Bright Can Supernovae Get?

    Science.gov (United States)

    Kohler, Susanna

    2016-04-01

    Supernovae enormous explosions associated with the end of a stars life come in a variety of types with different origins. A new study has examined how the brightest supernovae in the Universe are produced, and what limits might be set on their brightness.Ultra-Luminous ObservationsRecent observations have revealed many ultra-luminous supernovae, which haveenergies that challenge our abilities to explain them usingcurrent supernova models. An especially extreme example is the 2015 discovery of the supernova ASASSN-15lh, which shone with a peak luminosity of ~2*1045 erg/s, nearly a trillion times brighter than the Sun. ASASSN-15lh radiated a whopping ~2*1052 erg in the first four months after its detection.How could a supernova that bright be produced? To explore the answer to that question, Tuguldur Sukhbold and Stan Woosley at University of California, Santa Cruz, have examined the different sources that could produce supernovae and calculated upper limits on the potential luminosities ofeach of these supernova varieties.Explosive ModelsSukhbold and Woosley explore multiple different models for core-collapse supernova explosions, including:Prompt explosionA stars core collapses and immediately explodes.Pair instabilityElectron/positron pair production at a massive stars center leads to core collapse. For high masses, radioactivity can contribute to delayed energy output.Colliding shellsPreviously expelled shells of material around a star collide after the initial explosion, providing additional energy release.MagnetarThe collapsing star forms a magnetar a rapidly rotating neutron star with an incredibly strong magnetic field at its core, which then dumps energy into the supernova ejecta, further brightening the explosion.They then apply these models to different types of stars.Setting the LimitThe authors show that the light curve of ASASSN-15lh (plotted in orange) can be described by a model (black curve) in which a magnetar with an initial spin period of 0.7 ms

  14. Nurseries of Supernovae

    DEFF Research Database (Denmark)

    Frederiksen, Teddy

    mechanisms that governs the SN explosions. In the first of three papers I investigate the host galaxy of the first SN Ia found in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) SN search. From long slit spectroscopy using the Xshooter spectrograph and broadband photometry I determine....... In the second paper I investigate one of the high redshift SN Ia hosts found in the Subaru Deep Field (SDF) SN search. The SDF SN search relies heavily on photometric redshifts and transients previously identified as active galactic nuclei (AGN) to reproduce the cosmic SN rate. Due to the small number statistic...... activity. I found a young host galaxy with high star-formation rate and sub-solar metallicity. In the last paper I analyze the full high redshift (z > 1) SN host sample from the CANDELS and CLASH SN search. I determine the stellar properties of each host by fitting the broad-band photometry using the Gal...

  15. The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry

    Energy Technology Data Exchange (ETDEWEB)

    Miknaitis, Gajus; Pignata, G.; Rest, A.; Wood-Vasey, W.M.; Blondin, S.; Challis, P.; Smith, R.C.; Stubbs, C.W.; Suntzeff, N.B.; Foley, R.J.; Matheson, T.; Tonry, J.L.; Aguilera, C.; Blackman, J.W.; Becker, A.C.; Clocchiatti, A.; Covarrubias, R.; Davis, T.M.; Filippenko, A.V.; Garg, A.; Garnavich, P.M.; /Fermilab /Chile U., Catolica /Cerro-Tololo

    2007-01-08

    We describe the implementation and optimization of the ESSENCE supernova survey, which we have undertaken to measure the equation of state parameter of the dark energy. We present a method for optimizing the survey exposure times and cadence to maximize our sensitivity to the dark energy equation of state parameter w = P/{rho}c{sup 2} for a given fixed amount of telescope time. For our survey on the CTIO 4m telescope, measuring the luminosity distances and redshifts for supernovae at modest redshifts (z {approx} 0.5 {+-} 0.2) is optimal for determining w. We describe the data analysis pipeline based on using reliable and robust image subtraction to find supernovae automatically and in near real-time. Since making cosmological inferences with supernovae relies crucially on accurate measurement of their brightnesses, we describe our efforts to establish a thorough calibration of the CTIO 4m natural photometric system. In its first four years, ESSENCE has discovered and spectroscopically confirmed 102 type Ia SNe, at redshifts from 0.10 to 0.78, identified through an impartial, effective methodology for spectroscopic classification and redshift determination. We present the resulting light curves for the all type Ia supernovae found by ESSENCE and used in our measurement of w, presented in Wood-Vasey et al. (2007).

  16. Type II Supernovae as Probes of Cosmology

    CERN Document Server

    Poznanski, Dovi; Blondin, Stephane; Bloom, Joshua S; D'Andrea, Christopher B; Della Valle, Massimo; Dessart, Luc; Ellis, Richard S; Gal-Yam, Avishay; Goobar, Ariel; Hamuy, Mario; Hicken, Malcolm; Kasen, Daniel N; Krisciunas, Kevin L; Leonard, Douglas C; Li, Weidong; Livio, Mario; Marion, Howie; Matheson, Thomas; Neill, James D; Nomoto, Ken'ichi; Nugent, Peter E; Quimby, Robert; Sako, Masao; Sullivan, Mark; Thomas, Rollin C; Turatto, Massimo; Van Dyk, Schuyler D; Wood-Vasey, W Michael

    2009-01-01

    - Constraining the cosmological parameters and understanding Dark Energy have tremendous implications for the nature of the Universe and its physical laws. - The pervasive limit of systematic uncertainties reached by cosmography based on Cepheids and Type Ia supernovae (SNe Ia) warrants a search for complementary approaches. - Type II SNe have been shown to offer such a path. Their distances can be well constrained by luminosity-based or geometric methods. Competing, complementary, and concerted efforts are underway, to explore and exploit those objects that are extremely well matched to next generation facilities. Spectroscopic follow-up will be enabled by space- based and 20-40 meter class telescopes. - Some systematic uncertainties of Type II SNe, such as reddening by dust and metallicity effects, are bound to be different from those of SNe Ia. Their stellar progenitors are known, promising better leverage on cosmic evolution. In addition, their rate - which closely tracks the ongoing star formation rate -...

  17. The Nearby Supernova Factory: Toward A High-Precision Spectro-Photometry

    Energy Technology Data Exchange (ETDEWEB)

    Nearby Supernova Factory; Copin, Y.; Buton, C.; Gangler, E.; Smadja, G.; Pecontal, E.; Rigaudier, G.; Antilogus, P.; Bailey, S.; Pain, R.; Pereira, R.; Wu, C.; Aldering, G.; Aragon, C.; Bongard, S.; Childress, M.; Loken, S.; Nugent, P.; Perlmutter, S.; Runge, K.; Thomas, R.; Weaver, B.; Baltay, C.; Bauer, A.; Rabinowitz, D.; Scalzo, R.

    2007-07-01

    The Nearby Supernova Factory (SNfactory) is an international project to discover and study a large sample of type Ia supernovae in the redshift range 0.03 < z < 0.08. Follow-up spectro-photometric observations are performed using the dedicated Supernovae Integral-Field Spectrograph, mounted since 2004 on 2.2 m UH telescope. The goal is to acquire for each supernova and over its full life-time (more than 10 epochs) high spectro-photometric quality spectra over the extended optical range (320-1000 nm).I will present the current status of the SNfactory project, from search efficiency to first scientific results, with an emphasis on the spectro-photometric calibration issues and achievements.

  18. Type Ia supernova rate at a redshift of ~ 0.1

    CERN Document Server

    Blanc, G; Alard, C; Albert, J N; Aldering, G; Amadon, A; Andersen, J; Ansari, R; Aubourg, E; Balland, C; Bareyre, P; Beaulieu, J P; Charlot, X; Conley, A; Coutures, C; Dahlen, T; Derue, F; Fan, X; Ferlet, R; Folatelli, G; Fouqué, P; Garavini, G; Glicenstein, J F; Goldman, B; Goobar, A; Gould, A; Graff, D; Gros, M; Haïssinski, J; Hamadache, C; Hardin, D; Hook, I M; De Kat, J; Kent, S; Kim, A; Lasserre, T; Le Guillou, Laurent; Lesquoy, E; Loup, C; Magneville, C; Marquette, J B; Maurice, E; Maury, A; Milsztajn, A; Moniez, M; Mouchet, M; Newberg, H; Nobili, S; Palanque-Delabrouille, Nathalie; Perdereau, O; Prévôt, L; Rahal, Y R; Regnault, N; Rich, J; Ruiz-Lapuente, P; Spiro, M; Tisserand, P; Vidal-Madjar, A; Vigroux, L; Walton, N A; Zylberajch, S

    2004-01-01

    We present the type Ia rate measurement based on two EROS supernova search campaigns (in 1999 and 2000). Sixteen supernovae identified as type Ia were discovered. The measurement of the detection efficiency, using a Monte Carlo simulation, provides the type Ia supernova explosion rate at a redshift ~ 0.13. The result is $0.125^{+0.044+0.028}_{-0.034-0.028} h_{70}^2$ SNu where 1 SNu = 1 SN / $10^{10} L_{sun}^B$ / century. This value is compatible with the previous EROS measurement (Hardin et al. 2000), done with a much smaller sample, at a similar redshift. Comparison with other values at different redshifts suggests an evolution of the type Ia supernova rate.

  19. Can supernova remnants accelerate protons up to PeV energies?

    CERN Document Server

    Gabici, S; Zandanel, F

    2016-01-01

    Supernova remnants are believed to be the sources of galactic cosmic rays. Within this framework, diffusive shock acceleration must operate in these objects and accelerate protons all the way up to PeV energies. To do so, significant amplification of the magnetic field at the shock is required. The goal of this paper is to investigate the capability of supernova remnants to accelerate PeV protons. We present analytic estimates of the maximum energy of accelerated protons under various assumptions about the field amplification at supernova remnant shocks. We show that acceleration up to PeV energies is problematic in all the scenarios considered. This implies that either a different (more efficient) mechanism of field amplification operates at supernova remnant shocks, or that the sources of galactic cosmic rays in the PeV energy range should be searched somewhere else.

  20. Type Ia supernova rate at a redshift of ~;0.1

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, G.; Afonso, C.; Alard, C.; Albert, J.N.; Aldering, G.; Amadon, A.; Andersen, J.; Ansari, R.; Aubourg, E.; Balland, C.; Bareyre,P.; Beaulieu, J.P.; Charlot, X.; Conley, A.; Coutures, C.; Dahlen, T.; Derue, F.; Fan, X.; Ferlet, R.; Folatelli, G.; Fouque, P.; Garavini, G.; Glicenstein, J.F.; Goldman, B.; Goobar, A.; Gould, A.; Graff, D.; Gros,M.; Haissinski, J.; Hamadache, C.; Hardin, D.; Hook, I.M.; deKat, J.; Kent, S.; Kim, A.; Lasserre, T.; LeGuillou, L.; Lesquoy, E.; Loup, C.; Magneville, C.; Marquette, J.B.; Maurice, E.; Maury, A.; Milsztajn, A.; Moniez, M.; Mouchet, M.; Newberg, H.; Nobili, S.; Palanque-Delabrouille,N.; Perdereau, O.; Prevot, L.; Rahal, Y.R.; Regnault, N.; Rich, J.; Ruiz-Lapuente, P.; Spiro, M.; Tisserand, P.; Vidal-Madjar, A.; Vigroux,L.; Walton, N.A.; Zylberajch, S.

    2004-05-11

    We present the type Ia rate measurement based on two EROS supernova search campaigns (in 1999 and 2000). Sixteen supernovae identified as type Ia were discovered. The measurement of the detection efficiency, using a Monte Carlo simulation, provides the type Ia supernova explosion rate at a redshift {approx} 0.13. The result is 0.125{sub -0.034-0.028}{sup +0.044+0.028} h{sub 70}{sup 2} SNu where 1 SNu = 1 SN/10{sup 10} L{sub {circle_dot}}{sup B}/century. This value is compatible with the previous EROS measurement (Hardin et al. 2000), done with a much smaller sample, at a similar redshift. Comparison with other values at different redshifts suggests an evolution of the type Ia supernova rate.

  1. Light-echo spectroscopy of historic Supernovae

    Science.gov (United States)

    Krause, Oliver

    Young Galactic supernova remnants are unique laboratories for supernova physics. Due to their proximity they provide us with the most detailed view of the outcome of a supernova. However, the exact spectroscopic types of their original explosions have been undetermined so far -hindering to link the wealth of multi-wavelength knowledge about their remnants with the diverse population of supernovae. Light echoes, reflektions of the brilliant supernova burst of light by interstellar dust, provide a unique opportunity to reobserve today -with powerful scientific instruments of the 21st century -historic supernova exlosions even after hundreds of years and to conclude on their nature. We report on optical light-echo spectroscopy of two famous Galactic supernovae: Tycho Brahe's SN 1572 and the supernova that created the Cassiopeia A remnant around the year 1680. These observations finally recovered the missing spectroscopic classifications and provide new constraints on explosion models for future studies.

  2. Supernova Physics at DUNE

    CERN Document Server

    Ankowski, Artur; Benhar, Omar; Chen, Sun; Cherry, John; Cui, Yanou; Friedland, Alexander; Gil-Botella, Ines; Haghighat, Alireza; Horiuchi, Shunsaku; Huber, Patrick; Kneller, James; Laha, Ranjan; Li, Shirley; Link, Jonathan; Lovato, Alessandro; Macias, Oscar; Mariani, Camillo; Mezzacappa, Anthony; O'Connor, Evan; O'Sullivan, Erin; Rubbia, Andre; Scholberg, Kate; Takeuchi, Tatsu

    2016-01-01

    The DUNE/LBNF program aims to address key questions in neutrino physics and astroparticle physics. Realizing DUNE's potential to reconstruct low-energy particles in the 10-100 MeV energy range will bring significant benefits for all DUNE's science goals. In neutrino physics, low-energy sensitivity will improve neutrino energy reconstruction in the GeV range relevant for the kinematics of DUNE's long-baseline oscillation program. In astroparticle physics, low-energy capabilities will make DUNE's far detectors the world's best apparatus for studying the electron-neutrino flux from a supernova. This will open a new window to unrivaled studies of the dynamics and neutronization of a star's central core in real time, the potential discovery of the neutrino mass hierarchy, provide new sensitivity to physics beyond the Standard Model, and evidence of neutrino quantum-coherence effects. The same capabilities will also provide new sensitivity to `boosted dark matter' models that are not observable in traditional direc...

  3. A Supernova's Shockwaves

    Science.gov (United States)

    2007-01-01

    Supernovae are the explosive deaths of the universe's most massive stars. In death, these volatile creatures blast tons of energetic waves into the cosmos, destroying much of the dust surrounding them. This false-color composite from NASA's Spitzer Space Telescope and NASA's Chandra X-ray Observatory shows the remnant of one such explosion. The remnant, called N132D, is the wispy pink shell of gas at the center of this image. The pinkish color reveals a clash between the explosion's high-energy shockwaves and surrounding dust grains. In the background, small organic molecules called polycyclic aromatic hydrocarbons are shown as tints of green. The blue spots represent stars in our galaxy along this line of sight. N132D is located 163,000 light-years away in a neighboring galaxy called, the Large Magellanic Cloud. In this image, infrared light at 4.5 microns is mapped to blue, 8.0 microns to green and 24 microns to red. Broadband X-ray light is mapped purple. The infrared data were taken by Spitzer's infrared array camera and multiband imaging photometer, while the X-ray data were captured by Chandra.

  4. The Shape of Superluminous Supernovae

    Science.gov (United States)

    Kohler, Susanna

    2016-11-01

    What causes the tremendous explosions of superluminous supernovae? New observations reveal the geometry of one such explosion, SN 2015bn, providing clues as to its source.A New Class of ExplosionsImage of a type Ia supernova in the galaxy NGC 4526. [NASA/ESA]Supernovae are powerful explosions that can briefly outshine the galaxies that host them. There are several different classifications of supernovae, each with a different physical source such as thermonuclear instability in a white dwarf, caused by accretion of too much mass, or the exhaustion of fuel in the core of a massive star, leading to the cores collapse and expulsion of its outer layers.In recent years, however, weve detected another type of supernovae, referred to as superluminous supernovae. These particularly energetic explosions last longer months instead of weeks and are brighter at their peaks than normal supernovae by factors of tens to hundreds.The physical cause of these unusual explosions is still a topic of debate. Recently, however, a team of scientists led by Cosimo Inserra (Queens University Belfast) has obtained new observations of a superluminous supernova that might help address this question.The flux and the polarization level (black lines) along the dominant axis of SN 2015bn, 24 days before peak flux (left) and 28 days after peak flux (right). Blue lines show the authors best-fitting model. [Inserra et al. 2016]Probing GeometryInserra and collaborators obtained two sets of observations of SN 2015bn one roughly a month before and one a month after the superluminous supernovas peak brightness using a spectrograph on the Very Large Telescope in Chile. These observations mark the first spectropolarimetric data for a superluminous supernova.Spectropolarimetry is the practice of obtaining information about the polarization of radiation from an objects spectrum. Polarization carries information about broken spatial symmetries in the object: only if the object is perfectly symmetric can it

  5. Nurseries of Supernovae

    DEFF Research Database (Denmark)

    Frederiksen, Teddy

    . In the second paper I investigate one of the high redshift SN Ia hosts found in the Subaru Deep Field (SDF) SN search. The SDF SN search relies heavily on photometric redshifts and transients previously identified as active galactic nuclei (AGN) to reproduce the cosmic SN rate. Due to the small number statistic......, especially at high redshift, catastrophic redshift outliers and miss-identified transients can bias the inferred SN rate. The host galaxy of the SDF transient was observed with the Xshooter spectrograph. I confirm the photometric redshift of z = 1.55 and from emission-line ratios I can also rule out AGN...

  6. Characterising Dark Energy through supernovae

    CERN Document Server

    Davis, Tamara M

    2016-01-01

    Type Ia supernovae are a powerful cosmological probe, that gave the first strong evidence that the expansion of the universe is accelerating. Here we provide an overview of how supernovae can go further to reveal information about what is causing the acceleration, be it dark energy or some modification to our laws of gravity. We first summarise the many different approaches used to explain or test the acceleration, including parametric models (like the standard model, LambdaCDM), non-parametric models, dark fluid models such as quintessence, and extensions to standard gravity. We also show how supernova data can be used beyond the Hubble diagram, to give information on gravitational lensing and peculiar velocities that can be used to distinguish between models that predict the same expansion history. Finally, we review the methods of statistical inference that are commonly used, making a point of separating parameter estimation from model selection.

  7. Featured Image: Modeling Supernova Remnants

    Science.gov (United States)

    Kohler, Susanna

    2016-05-01

    This image shows a computer simulation of the hydrodynamics within a supernova remnant. The mixing between the outer layers (where color represents the log of density) is caused by turbulence from the Rayleigh-Taylor instability, an effect that arises when the expanding core gas of the supernova is accelerated into denser shell gas. The past standard for supernova-evolution simulations was to perform them in one dimension and then, in post-processing, manually smooth out regions that undergo Rayleigh-Taylor turbulence (an intrinsically multidimensional effect). But in a recent study, Paul Duffell (University of California, Berkeley) has explored how a 1D model could be used to reproduce the multidimensional dynamics that occur in turbulence from this instability. For more information, check out the paper below!CitationPaul C. Duffell 2016 ApJ 821 76. doi:10.3847/0004-637X/821/2/76

  8. Standardization of type Ia supernovae

    CERN Document Server

    Coelho, Rodrigo C V; Reis, Ribamar R R; Siffert, Beatriz B

    2014-01-01

    Type Ia supernovae (SNe Ia) have been intensively investigated due to its great homogeneity and high luminosity, which make it possible to use them as standardizable candles for the determination of cosmological parameters. In 2011, the physics Nobel prize was awarded for the discovery of the accelerating expansion of the Universe through observations of distant supernovae. This is a pedagogical article, aimed at those starting their study of that subject, in which we dwell on some topics related to the analysis of SNe Ia and their use in luminosity distance estimators. Here we investigate their spectral properties and light curve standardization, paying careful attention to the fundamental quantities directly related to the SNe Ia observables. Finally, we describe our own step-by-step implementation of a classical light curve fi?tter, the stretch, applying it to real data from the Carnegie Supernova Project.

  9. Dynamics of Kepler's supernova remnant

    Science.gov (United States)

    Borkowski, Kazimierz J.; Blondin, John M.; Sarazin, Craig L.

    1992-01-01

    Observations of Kepler's SNR have revealed a strong interaction with the ambient medium, far in excess of that expected at a distance of about 600 pc away from the Galactic plane where Kepler's SNR is located. This has been interpreted as a result of the interaction of supernova ejecta with the dense circumstellar medium (CSM). Based on the bow-shock model of Bandiera (1985), we study the dynamics of this interaction. The CSM distribution consists of an undisturbed stellar wind of a moving supernova progenitor and a dense shell formed in its interaction with a tenuous interstellar medium. Supernova ejecta drive a blast wave through the stellar wind which splits into the transmitted and reflected shocks upon hitting this bow-shock shell. We identify the transmitted shock with the nonradiative, Balmer-dominated shocks found recently in Kepler's SNR. The transmitted shock most probably penetrated the shell in the vicinity of the stagnation point.

  10. Distant Supernovae Indicate Ever-Expanding Universe

    Science.gov (United States)

    1998-12-01

    and its inhabitants are made comprise only a small fration of the gravitating mass in the Universe. There is now a new component, the "dark energy" which joins the "dark matter" in shaping the large-scale geometric and dynamical structure. Clearly, more observations are needed to further support the findings described here. They will soon be forthcoming, especially from new and large telescopes like the ESO Very Large Telescope (VLT) , that has recently delivered its first, impressive results. But already now, on the verge of the new millenium, we are having a first glimpse of extremely exciting and fundamental aspects in the continuing human quest for the deep truths of nature. Notes: [1] The ESO members of the "High-z Supernova Search" team (see URL: http://cfa-www.harvard.edu/cfa/oir/Research/supernova/HighZ.html) are Bruno Leibundgut and Patrick Woudt (ESO HQ, Garching, Germany) and Jason Spyromilio (Paranal Observatory, Chile). Chris Lidman (La Silla Observatory, Chile) and Isobel Hook (formerly ESO HQ, now Royal Observatory, Edinburgh, UK) are members of the "Supernova Cosmology Project" (see URL: http://www-supernova.lbl.gov/). The astronomers mostly used the ESO 3.6-m and 3.6-m NTT telescopes at La Silla for these research programmes. [2] In astronomy, the redshift (z) denotes the fraction by which the lines in the spectrum of an object are shifted towards longer wavelengths. The observed redshift of a distant galaxy or quasar gives a direct estimate of the universal expansion (i.e. the "recession velocity"). Since this expansion rate increases with the distance, the velocity is itself a function (the Hubble relation) of the distance to the object. For instance, a redshift of z = 0.1 corresponds to a velocity of 30,000 km/sec, and assuming a Hubble constant of 20 km/sec per million light-years, to a distance of about 1,500 million light-years. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http

  11. Software Based Supernova Recognition

    Science.gov (United States)

    Walters, Stephen M.

    2014-05-01

    This paper describes software for detecting Supernova (SN) in images. The software can operate in real-time to discover SN while data is being collected so the instrumentation can immediately be re-tasked to perform spectroscopy or photometry of a discovery. Because the instrumentation captures two images per minute, the realtime budget is constrained to 30 seconds per target, a challenging goal. Using a set of two to four images, the program creates a "Reference" (REF) image and a "New" (NEW) image where all images are used in both NEW and REF but any SN survives the combination process only in the NEW image. This process produces good quality images having similar noise characteristics but without artifacts that might be interpreted as SN. The images are then adjusted for seeing and brightness differences using a variant of Tomaney and Crotts method of Point Spread Function (PSF) matching after which REF is subtracted from NEW to produce a Difference (DIF) image. A Classifier is then trained on a grid of artificial SN to estimate the statistical properties of four attributes and used in a process to mask false positives that can be clearly identified as such. Further training to avoid any remaining false positives sets the range, in standard deviations for each attribute, that the Classifier will accept as a valid SN. This training enables the Classifier to discriminate between SN and most subtraction residue. Lastly, the DIF image is scanned and measured by the Classifier to find locations where all four properties fall within their acceptance ranges. If multiple locations are found, the one best conforming to the training estimates is chosen. This location is then declared as a Candidate SN, the instrumentation re-tasked and the operator notified.

  12. Dust around Type Ia supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lifan

    2005-10-20

    An explanation is given of the low value of R lambda triple bond A lambda/E(B - V), the ratio of absolute to selective extinction deduced from Type Ia supernova observations. The idea involves scattering by dust clouds located in the circumstellar environment, or at the highest velocity shells of the supernova ejecta. The scattered light tends to reduce the effective R lambda in the optical, but has an opposite effect in the ultraviolet. The presence of circumstellar dust can be tested by ultraviolet to near infrared observations and by multi-epoch spectropolarimetry of SNe Ia.

  13. Type Ia Supernovae and the discovery of the Cosmic Acceleration

    CERN Document Server

    Clocchiatti, Alejandro

    2011-01-01

    I present a review of the research and analysis paths that converged to make Type Ia SNe the most mature cosmological distance estimator of the present time. The narrative starts with the first works in the early decades of the 20th century and finishes with the more recent results. The review was written by a member of the High Z Supernova Search Team, the international group of astronomers that discovered Cosmic Acceleration in 1998. This result, confirmed by the Supernova Cosmology Project in 1999, received an impressive string of recognition culminating with the current Nobel prize in Physics. The review is presented thinking of physicists with a strong interest in Cosmology, who might have pondered why was that, after decades of not being able to agree upon the rate of cosmic expansion, astronomers were so quick to concur on cosmic acceleration.

  14. Spectroscopy of twelve Type Ia supernovae at intermediate redshift

    CERN Document Server

    Balland, C; Pain, R; Walton, N A; Amanullah, R; Astier, Pierre; Ellis, Richard S; Fabbro, S; Goobar, A; Hardin, D; Hook, I M; Irwin, M J; McMahon, R M; Mendez, J M; Ruiz-Lapuente, P; Sainton, G; Schahmaneche, K; Stanishev, V

    2005-01-01

    We present spectra of twelve Type Ia supernovae obtained in 1999 at the William Herschel Telescope and the Nordic Optical Telescope during a search for Type Ia supernovae (SN Ia) at intermediate redshift. The spectra range from z=0.178 to z=0.493, including five high signal-to-noise ratio SN Ia spectra in the still largely unexplored range 0.15 < z < 0.3. Most of the spectra were obtained before or around restframe B-band maximum light. None of them shows the peculiar spectral features found in low-redshift over- or under-luminous SN Ia. Expansion velocities of characteristic spectral absorption features such as SiII at 6355 angs., SII at 5640 angs. and CaII at 3945 angs. are found consistent with their low-z SN Ia counterparts.

  15. Magnetar-Powered Supernovae in Two Dimensions. I. Superluminous Supernovae

    CERN Document Server

    Chen, Ke-Jung; Sukhbold, Tuguldur

    2016-01-01

    Previous studies have shown that the radiation emitted by a rapidly rotating magnetar embedded in a young supernova can greatly amplify its luminosity. These one-dimensional studies have also revealed the existence of an instability arising from the piling up of radiatively accelerated matter in a thin dense shell deep inside the supernova. Here we examine the problem in two dimensions and find that, while instabilities cause mixing and fracture this shell into filamentary structures that reduce the density contrast, the concentration of matter in a hollow shell persists. The extent of the mixing depends upon the relative energy input by the magnetar and the kinetic energy of the inner ejecta. The light curve and spectrum of the resulting supernova will be appreciably altered, as will the appearance of the supernova remnant, which will be shellular and filamentary. A similar pile up and mixing might characterize other events where energy is input over an extended period by a centrally concentrated source, e.g...

  16. Core-collapse supernovae as possible counterparts of IceCube neutrino multiplets

    Energy Technology Data Exchange (ETDEWEB)

    Strotjohann, Nora Linn; Kowalski, Marek; Franckowiak, Anna [DESY, Zeuthen (Germany); Voge, Markus [Bonn Univ. (Germany). Physikalisches Institut; Collaboration: IceCube-Collaboration

    2016-07-01

    While an astrophysical neutrino flux has been detected by the IceCube Neutrino Observatory its sources remain so far unidentified. IceCube's Optical Follow-up Program is designed to search for the counterparts of neutrino multiplets using the full energy range of the IceCube detector down to 100 GeV. Two or more muon neutrinos arriving from the same direction within few seconds can trigger follow-up observations with optical and X-ray telescopes. Since 2010 the Palomar Transient Factory has followed up about 40 such neutrino alerts and detected several supernovae. Many of the detections are however likely random coincidences. In this talk I describe our search for supernovae and the prospects of identifying a supernova as a source of high-energy neutrinos.

  17. The death of massive stars - I. Observational constraints on the progenitors of type II-P supernovae

    CERN Document Server

    Smartt, S J; Crockett, R M; Maund, J R

    2008-01-01

    We present the results of a 10.5 yr, volume limited (28 Mpc) search for supernova (SN) progenitor stars. We compile all SNe discovered within this volume (132, of which 27% are type Ia) and determine the relative rates of each sub-type from literature studies : II-P (59%), Ib/c (29%), IIb (5%), IIn (4%) and II-L (3%). Twenty II-P SNe have high quality optical or near-IR pre-explosion images that allow a meaningful search for the progenitor stars. In four cases they are clearly red supergiants, one case is unconstrained, two fall on compact coeval star clusters and the other 13 have no progenitor detected. We review and update all the available data for the host galaxies (distance, metallicity and extinction) and determine masses and upper mass estimates using the STARS stellar evolutionary code and a single consistent homogeneous method. A maximum likelihood calculation suggests that the minimum stellar mass for a type II-P to form is m(min)=8.5 +1/-1.5 Msol and the maximum mass for II-P progenitors is m(max)...

  18. Are Supernovae Recorded in Indigenous Astronomical Traditions?

    CERN Document Server

    Hamacher, Duane W

    2014-01-01

    Novae and supernovae are rare astronomical events that would have had an influence on the sky-watching peoples who witnessed them. Although several bright novae/supernovae have been visible during recorded human history, there are many proposed but no confirmed accounts of supernovae in oral traditions or material culture. Criteria are established for confirming novae/supernovae in oral and material culture, and claims from around the world are discussed to determine if they meet these criteria. Australian Aboriginal traditions are explored for possible descriptions of novae/supernovae. Although representations of supernovae may exist in Indigenous traditions, and an account of a nova in Aboriginal traditions has been confirmed, there are currently no confirmed accounts of supernovae in Indigenous oral or material traditions.

  19. Supernova neutrinos and explosive nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J.; Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Mathews, G. J. [Center for Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Nakamura, K. [Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Suzuki, T. [Department of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-05-09

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and θ{sub 13}, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements {sup 11}B and {sup 7}Li encapsulated in the presolar grains. Combining the recent experimental constraints on θ{sub 13}, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  20. The Supernova - A Stellar Spectacle.

    Science.gov (United States)

    Straka, W. C.

    This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers of secondary school chemistry, physics, and earth science. The following topics concerning supernovae are included: the outburst as observed and according to theory, the stellar remnant, the nebular remnant, and a summary…

  1. Strange matter, detonations and supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O.G.; Horvath, J.E.; Vucetich, H.

    1989-01-01

    The authors present a possible scenario driven by QCD deconfinement in a high density nuclear matter medium. Some expected consequences for type II supernovae explosions are also given, particularly, the output energy that might be enough to account for the observed events.

  2. First-Year Spectroscopy for the SDSS-II Supernova Survey

    CERN Document Server

    Zheng, Chen; Sako, Masao; Marriner, John; Bassett, Bruce; Becker, Andrew; Choi, Changsu; Cinabro, David; DeJongh, Fritz; Depoy, Darren L; Dilday, Ben; Doi, Mamoru; Frieman, Joshua A; Garnavich, Peter M; Hogan, Craig J; Holtzman, Jon; Im, Myungshin; Jha, Saurabh; Kessler, Richard; Konishi, Kohki; Lampeitl, Hubert; Marshall, Jennifer L; McGinnis, David; Miknaitis, Gajus; Nichol, Robert C; Prieto, Jose Luis; Riess, Adam G; Richmond, Michael W; Schneider, Donald P; Smith, Mathew; Takanashi, Naohiro; Tokita, Kouichi; van der Heyden, Kurt; Yasuda, Naoki; Assef, Roberto J; Barentine, John; Bender, Ralf; Blandford, Roger D; Bremer, Malcolm; Brewington, Howard; Collins, Chris A; Crotts, Arlin; Dembicky, Jack; Eastman, Jason; Edge, Alastair; Elson, Ed; Eyler, Michael E; Filippenko, Alexei V; Foley, Ryan J; Frank, Stephan; Goobar, Ariel; Harvanek, Michael; Hopp, Ulrich; Ihara, Yutaka; Kahn, Steven; Ketzeback, William; Kleinman, Scott J; Kollatschny, Wolfram; Krzesiński, Jurek; Leloudas, Giorgos; Long, Daniel C; Lucey, John; Malanushenko, Elena; Malanushenko, Viktor; McMillan, Russet J; Morgan, Christopher W; Morokuma, Tomoki; Nitta, Atsuko; Ostman, Linda; Pan, Kaike; Romer, A Kathy; Saurage, Gabrelle; Schlesinger, Katie; Snedden, Stephanie A; Sollerman, Jesper; Stritzinger, Maximilian; Watson, Linda C; Watters, Shannon; Wheeler, J Craig; York, Donald

    2008-01-01

    This paper presents spectroscopy of supernovae discovered in the first season of the Sloan Digital Sky Survey-II Supernova Survey. This program searches for and measures multi-band light curves of supernovae in the redshift range z = 0.05 - 0.4, complementing existing surveys at lower and higher redshifts. Our goal is to better characterize the supernova population, with a particular focus on SNe Ia, improving their utility as cosmological distance indicators and as probes of dark energy. Our supernova spectroscopy program features rapid-response observations using telescopes of a range of apertures, and provides confirmation of the supernova and host-galaxy types as well as precise redshifts. We describe here the target identification and prioritization, data reduction, redshift measurement, and classification of 129 SNe Ia, 16 spectroscopically probable SNe Ia, 7 SNe Ib/c, and 11 SNe II from the first season. We also describe our efforts to measure and remove the substantial host galaxy contamination existi...

  3. First-Year Spectroscopy for the SDSS-II Supernova Survey

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Chen; Romani, Roger W.; Sako, Masao; Marriner, John; Bassett, Bruce; Becker, Andrew; Choi, Changsu; Cinabro, David; DeJongh, Fritz; Depoy, Darren L.; Dilday, Ben; Doi, Mamoru; Frieman, Joshua A.; Garnavich, Peter M.; Hogan, Craig J.; Holtzman, Jon; Im, Myungshin; Jha, Saurabh; Kessler, Richard; Konishi, Kohki; Lampeitl, Hubert

    2008-03-25

    This paper presents spectroscopy of supernovae discovered in the first season of the Sloan Digital Sky Survey-II Supernova Survey. This program searches for and measures multi-band light curves of supernovae in the redshift range z = 0.05-0.4, complementing existing surveys at lower and higher redshifts. Our goal is to better characterize the supernova population, with a particular focus on SNe Ia, improving their utility as cosmological distance indicators and as probes of dark energy. Our supernova spectroscopy program features rapid-response observations using telescopes of a range of apertures, and provides confirmation of the supernova and host-galaxy types as well as precise redshifts. We describe here the target identification and prioritization, data reduction, redshift measurement, and classification of 129 SNe Ia, 16 spectroscopically probable SNe Ia, 7 SNe Ib/c, and 11 SNe II from the first season. We also describe our efforts to measure and remove the substantial host galaxy contamination existing in the majority of our SN spectra.

  4. Supernova Neutrinos - MeV Messengers of the Extreme

    CERN Document Server

    CERN. Geneva

    2016-01-01

    A core-collapse supernova is a nearly perfect neutrino bomb. While capable of outshining its entire host galaxy, this stunning light show represents just a small portion of the explosion.  Indeed, each such cataclysmic event typically radiates two orders of magnitude more energy as low-energy neutrinos than it does as electromagnetic radiation or as kinetic shockwaves. Consequently, MeV-scale neutrinos are made in huge numbers as the star is dying, and because these ghostly subatomic particles interact so rarely with normal matter they easily escape the fireball, providing a window into one of the most violent and interesting volumes in space: the heart of a stellar collapse. This talk will cover some of the history of neutrinos and supernovas, as well as how we are preparing new technology and partnerships to observe the next spectacular explosion in all its multimessenger glory.

  5. Visualizations of Population III star formation and supernovae

    Science.gov (United States)

    Norman, M. L.; O'Shea, B. W.

    2006-06-01

    We present a visualization of a simulation of the formation of a Population III star and the resulting supernova performed with the Enzo adaptive mesh refinement cosmology code. This visualization, which will appear in the planetarium at the Denver Museum of Nature and Science, was produced in collaboration with Donna Cox, Robert Patterson, Stuart Levy, Matthew Hall and Lorne Leonard at the National Center for Supercomputing Applications. It traces the evolution of a 300 kpc/h (comoving) volume of the universe from 16 million years after the Big Bang until the collapse of the first primordial protostellar cloud at z=18, approximately 150 million years later. This star then explodes in a 30 solar mass supernova, which pollutes a region several hundred parsecs across with metals. This work was funded in part by the NSF, NASA and the Department of Energy.

  6. Classifying supernovae using only galaxy data

    Energy Technology Data Exchange (ETDEWEB)

    Foley, Ryan J. [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Mandel, Kaisey [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-12-01

    We present a new method for probabilistically classifying supernovae (SNe) without using SN spectral or photometric data. Unlike all previous studies to classify SNe without spectra, this technique does not use any SN photometry. Instead, the method relies on host-galaxy data. We build upon the well-known correlations between SN classes and host-galaxy properties, specifically that core-collapse SNe rarely occur in red, luminous, or early-type galaxies. Using the nearly spectroscopically complete Lick Observatory Supernova Search sample of SNe, we determine SN fractions as a function of host-galaxy properties. Using these data as inputs, we construct a Bayesian method for determining the probability that an SN is of a particular class. This method improves a common classification figure of merit by a factor of >2, comparable to the best light-curve classification techniques. Of the galaxy properties examined, morphology provides the most discriminating information. We further validate this method using SN samples from the Sloan Digital Sky Survey and the Palomar Transient Factory. We demonstrate that this method has wide-ranging applications, including separating different subclasses of SNe and determining the probability that an SN is of a particular class before photometry or even spectra can. Since this method uses completely independent data from light-curve techniques, there is potential to further improve the overall purity and completeness of SN samples and to test systematic biases of the light-curve techniques. Further enhancements to the host-galaxy method, including additional host-galaxy properties, combination with light-curve methods, and hybrid methods, should further improve the quality of SN samples from past, current, and future transient surveys.

  7. X-ray upper limits on the progenitor of the Type Ia supernova 2017cbv

    Science.gov (United States)

    Kong, A. K. H.

    2017-04-01

    Following the discovery of the Type Ia supernova 2017cbv (ATel #10158), we examined a combined archival Chandra observation of the host galaxy NGC 5643 taken in 2015 May 21 and Dec 26 to search for the X-ray progenitor.

  8. Acceleration of cosmic rays and gamma-ray emission from supernova remnant/molecular cloud associations

    CERN Document Server

    Gabici, S; Morlino, G; Nava, L

    2015-01-01

    The gamma-ray observations of molecular clouds associated with supernova remnants are considered one of the most promising ways to search for a solution of the problem of cosmic ray origin. Here we briefly review the status of the field, with particular emphasis on the theoretical and phenomenological aspects of the problem.

  9. Acceleration of cosmic rays and gamma-ray emission from supernova remnant/molecular cloud associations

    Directory of Open Access Journals (Sweden)

    Gabici Stefano

    2015-01-01

    Full Text Available The gamma-ray observations of molecular clouds associated with supernova remnants are considered one of the most promising ways to search for a solution of the problem of cosmic ray origin. Here we briefly review the status of the field, with particular emphasis on the theoretical and phenomenological aspects of the problem.

  10. Search for Majorana neutrinos with the SNO+ detector at SNOLAB

    Science.gov (United States)

    Maio, A.; SNO+ Collaboration

    2015-02-01

    The SNO+ experiment is adapting the Sudbury Neutrino Observatory (SNO) detector, in order to use isotope-loaded liquid scintillator as the active medium. SNO+ has multiple scientific goals, the main one being the search for neutrinoless double beta decay, the most promising signature for the possible Majorana character of neutrinos and for the absolute neutrino mass. Measurements of neutrinos from the Sun, the Earth, Supernovae and nuclear reactors are additional goals of the experiment. The detector consists of a 12m diameter spherical vessel, filled with 780 tonnes of Tellurium-loaded liquid scintillator, and surrounded by about 9500 PMTs. It is shielded by a large volume of ultra-pure water and the underground location at SNOLAB, Canada. This talk will review the Physics goals and current status of SNO+.

  11. LOSS Revisited. II. The Relative Rates of Different Types of Supernovae Vary between Low- and High-mass Galaxies

    Science.gov (United States)

    Graur, Or; Bianco, Federica B.; Modjaz, Maryam; Shivvers, Isaac; Filippenko, Alexei V.; Li, Weidong; Smith, Nathan

    2017-03-01

    In Paper I of this series, we showed that the ratio between stripped-envelope (SE) supernova (SN) and Type II SN rates reveals a significant SE SN deficiency in galaxies with stellar masses ≲ {10}10 {M}ȯ . Here, we test this result by splitting the volume-limited subsample of the Lick Observatory Supernova Search (LOSS) SN sample into low- and high-mass galaxies and comparing the relative rates of various SN types found in them. The LOSS volume-limited sample contains 180 SNe and SN impostors and is complete for SNe Ia out to 80 Mpc and core-collapse SNe out to 60 Mpc. All of these transients were recently reclassified by us in Shivvers et al. We find that the relative rates of some types of SNe differ between low- and high-mass galaxies: SNe Ib and Ic are underrepresented by a factor of ∼3 in low-mass galaxies. These galaxies also contain the only examples of SN 1987A-like SNe in the sample and host about nine times as many SN impostors. Normal SNe Ia seem to be ∼30% more common in low-mass galaxies, making these galaxies better sources for homogeneous SN Ia cosmology samples. The relative rates of SNe IIb are consistent in both low- and high-mass galaxies. The same is true for broad-line SNe Ic, although our sample includes only two such objects. The results presented here are in tension with a similar analysis from the Palomar Transient Factory, especially as regards SNe IIb.

  12. X-Ray Studies of Supernova Remnants: A Different View of Supernova Explosions

    CERN Document Server

    Badenes, Carles

    2010-01-01

    The unprecedented spatial and spectral resolutions of Chandra have revolutionized our view of the X-ray emission from supernova remnants. The excellent data sets accumulated on young, ejecta dominated objects like Cas A or Tycho present a unique opportunity to study at the same time the chemical and physical structure of the explosion debris and the characteristics of the circumstellar medium sculpted by the progenitor before the explosion. Supernova remnants can thus put strong constraints on fundamental aspects of both supernova explosion physics and stellar evolution scenarios for supernova progenitors. This view of the supernova phenomenon is completely independent of, and complementary to, the study of distant extragalactic supernovae at optical wavelengths. The calibration of these two techniques has recently become possible thanks to the detection and spectroscopic follow-up of supernova light echoes. In this paper, I will review the most relevant results on supernova remnants obtained during the first...

  13. Supernova neutrino detection in LAr TPCs

    Energy Technology Data Exchange (ETDEWEB)

    Gil-Botella, Ines, E-mail: ines.gil@ciemat.es [CIEMAT, Basic Research Department, Avenida Complutense, 22, 28040 Madrid (Spain)

    2011-08-10

    The neutrino burst from a core collapse supernova can provide information about the explosion mechanism and the mechanisms of proto neutron star cooling but also about the intrinsic properties of the neutrino such as flavor oscillations. One important question is to understand to which extent can the supernova and the neutrino physics be decoupled in the observation of a single supernova. The possibility to probe the neutrino mixing angle {theta}{sub 13} and the type of mass hierarchy from the detection of supernova neutrinos with liquid argon detectors is summarized in this paper. Moreover, a quantitative study about the possibility to constrain the supernova parameters is presented. A very massive liquid argon detector ({approx} 100 kton) is needed to perform accurate measurements of these parameters. In addition, these detectors could also provide information on the {nu}{sub e} component of the diffuse supernova neutrino background.

  14. Finding Distances to Type Ia Supernovae

    Science.gov (United States)

    Kohler, Susanna

    2016-03-01

    Type Ia supernovae are known as standard candles due to their consistency, allowing us to measure distances based on their brightness. But what if these explosions arent quite as consistent as we thought? Due scientific diligence requires careful checks, so a recent study investigates whether the metallicity of a supernovas environment affects the peak luminosity of the explosion.Metallicity Dependence?Type Ia supernovae are incredibly powerful tools for determining distances in our universe. Because these supernovae are formed by white dwarfs that explode when they reach a uniform accreted mass, the supernova peak luminosity is thought to be very consistent. This consistency allows these supernovae to be used as standard candles to measure distances to their host galaxies.But what if that peak luminosity is affected by a factor that we havent taken into account? Theorists have proposed that the luminosities of Type Ia supernovae might depend on the metallicity of their environments with high-metallicity environments suppressing supernova luminosities. If this is true, then we could be systematically mis-measuring cosmological distances using these supernovae.Testing AbundancesSupernova brightnesses vs. the metallicity of their environments. Low-metallicity supernovae (blue shading) and high-metallicity supernovae (red shading) have an average magnitude difference of ~0.14. [Adapted from Moreno-Raya et al. 2016]A team led by Manuel Moreno-Raya, of the Center for Energy, Environment and Technology (CIEMAT) in Spain, has observed 28 Type Ia supernovae in an effort to test for such a metallicity dependence. These supernovae each have independent distance measurements (e.g., from Cepheids or the Tully-Fisher relation).Moreno-Raya and collaborators used spectra from the 4.2-m William Herschel Telescope to estimate oxygen abundances in the region where each of these supernovae exploded. They then used these measurements to determine if metallicity of the local region

  15. VLBI observations of young Type II supernovae

    CERN Document Server

    Pérez-Torres, M A; Marcaide, J M

    2005-01-01

    We give an overview of circumstellar interaction in young Type II supernovae, as seen through the eyes of very-long-baseline interferometry (VLBI) observations. The resolution attained by such observations (best than 1 mas) is a powerful tool to probe the interaction that takes place after a supernova goes off. The direct imaging of a supernova permits, in principle, to estimate the deceleration of its expansion, and to obtain information on the eject and circumstellar density profiles, as well as estimates of the magnetic field intensity and relativistic particle energy density in the supernova. Unfortunately, only a handful of radio supernovae are close and bright enough as to permit their study with VLBI. We present results from our high-resolution observations of the nearby Type II radio supernovae SN1986J and SN2001gd.

  16. Improvements to type Ia supernova models

    Science.gov (United States)

    Saunders, Clare M.

    Type Ia Supernovae provided the first strong evidence of dark energy and are still an important tool for measuring the accelerated expansion of the universe. However, future improvements will be limited by systematic uncertainties in our use of Type Ia supernovae as standard candles. Using Type Ia supernovae for cosmology relies on our ability to standardize their absolute magnitudes, but this relies on imperfect models of supernova spectra time series. This thesis is focused on using data from the Nearby Supernova Factory both to understand current sources of uncertainty in standardizing Type Ia supernovae and to develop techniques that can be used to limit uncertainty in future analyses. (Abstract shortened by ProQuest.).

  17. A New Search for $ \

    CERN Multimedia

    Dore, U; Kodama, K; Ushida, N; Loverre, P F

    2002-01-01

    % WA95\\\\ \\\\ The question whether neutrino flavours mix at some level - and the related question whether neutrinos have non-zero mass - is one of the remaining great challenges of experimental physics. Neutrinos from supernovae, from the sun, from the earth's atmosphere, from nuclear reactors and from radioactive decays are currently under study; in this frame, experiments using accelerators play a privileged role because the well known neutrino source properties allow high precision measurements and background control.\\\\ \\\\The main goal of the CHORUS experiment is to search for neutrino oscillations in the $\

  18. High-energy antiprotons from old supernova remnants.

    Science.gov (United States)

    Blasi, Pasquale; Serpico, Pasquale D

    2009-08-21

    A recently proposed model explains the rise in energy of the positron fraction measured by the PAMELA satellite in terms of hadronic production of positrons in aged supernova remnants, and acceleration therein. Here we present a preliminary calculation of the antiproton flux produced by the same mechanism. While the model is consistent with present data, a rise of the antiproton to proton ratio is predicted at high energy, which strikingly distinguishes this scenario from other astrophysical explanations of the positron fraction (such as pulsars). We briefly discuss important implications for dark matter searches via antimatter.

  19. High-energy antiprotons from old supernova remnants

    CERN Document Server

    Blasi, Pasquale

    2009-01-01

    A recently proposed model (arXiv:0903.2794) explains the rise in energy of the positron fraction measured by the PAMELA satellite in terms of hadronic production of positrons in aged supernova remnants, and acceleration therein. Here we present a preliminary calculation of the anti-proton flux produced by the same mechanism. While the model is consistent with present data, a rise of the antiproton to proton ratio is predicted at high energy, which strikingly distinguishes this scenario from other astrophysical explanations of the positron fraction (like pulsars). We briefly discuss important implications for Dark Matter searches via antimatter.

  20. The Scientific Potential of Supernova Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Pagliaroli, G.; Vissani, F.

    2013-04-15

    Thanks to recent theoretical progresses and to the test bench of SN1987A, it has been possible to improve our ability to extract information from the future observations. In this paper we discuss a parameterized model of the neutrino emission. Two applications of this model are considered: 1) the investigation of the scientific potential of a future supernova for the study of the astrophysical parameters; 2) the expectations regarding the diffuse supernova neutrino background, namely, the relic supernova neutrinos.

  1. Magnetares como fuentes para potenciar supernovas superluminosas

    Science.gov (United States)

    Bersten, M. C.; Benvenuto, O. G.

    2016-08-01

    Magnetars have been proposed as one of the possible sources to power the light curve of super-luminous supernovae. We have included the energy deposited by a hypothetical magnetar in our one-dimensional hydrodynamical code, and analyzed the dynamical effect on the supernova ejecta. In particular, we present a model for SN 2011kl, the first object associated with a ultra-long-duration gamma-ray burst. Finally, we show its effect on the light curves of hydrogen rich supernovae.

  2. Magnetar Powered Ordinary Type IIP Supernovae

    OpenAIRE

    Sukhbold, Tuguldur; Thompson, Todd A.

    2017-01-01

    We investigate the properties of Type IIP supernovae that are dominantly powered by the rotational kinetic energy of the newly born neutron star. While the spin-down of a magnetar has previously been proposed as a viable energy source in the context of super-luminous supernovae, we show that a similar mechanism could produce both normal and peculiar Type IIP supernova light curves from red supergiant progenitors for a range of initial spin periods and equivalent dipole magnetic field strength...

  3. Interface dynamos in supernova progenitors

    CERN Document Server

    Blackman, E G; Thomas, J H; Blackman, Eric G.; Nordhaus, Jason T.; Thomas, John H.

    2004-01-01

    Observational evidence for anisotropy in supernovae (SN) and their phenomenological connection to jetted sources such as gamma-ray bursts^Mhave revived considerations of the role magnetohydrodynamic outflows might play therein. Understanding the types of dynamos that might operate in supernova progenitors is therefore relevant. In contrast to previous work, here we study an ``interface dynamo'' for the conditions of a rapidly rotating neutron star surrounded by a convective envelope. Such dynamos have been studied for the Sun, naked white dwarfs,and post-AGB stars, where analogous configurations of strong shear layers surrounded by convective envelopes are present. The interface dynamo provides estimates of large-scale poloidal and toroidal fields, whose product enters the Poynting flux. Because the poloidal field is much weaker than the toroidal magnetic field, the actual average Poynting flux is lower than rough estimates which invoke the only the magnitude of the total magnetic energy. The lower value is s...

  4. Environmental impact of Supernova Remnants

    CERN Document Server

    Dubner, Gloria

    2015-01-01

    The explosion of a supernovae (SN) represents the sudden injection of about 10^51 ergs of thermal and mechanical energy in a small region of space, causing the formation of powerful shock waves that propagate through the interstellar medium at speeds of several thousands of km/s. These waves sweep, compress and heat the interstellar material that they encounter, forming the supernova remnants. Their evolution over thousands of years change forever, irreversibly, not only the physical but also the chemical properties of a vast region of space that can span hundreds of parsecs. This contribution briefly analyzes the impact of these explosions, discussing the relevance of some phenomena usually associated with SNe and their remnants in the light of recent theoretical and observational results.

  5. Connecting supernovae with their environments

    Science.gov (United States)

    Galbany, L.

    2017-03-01

    We present MUSE observations of galaxy NGC 7469 from its Science Verification to show how powerful is the combination of high-resolution wide-field integral field spectroscopy with both photometric and spectroscopic observations of supernova (SN) explosions. Using STARLIGHT and H II explorer, we selected all H II regions of the galaxy and produced 2-dimensional maps of the Hα equivalent width, average luminosity-weighted stellar age, and oxygen abundance. We measured deprojected galactocentric distances for all H II regions, and radial gradients for all above-mentioned parameters. We positioned the type Ia SN2008ec in the Branch et al. diagram, and finally discussed the characteristics of the SN parent H II region compared to all other H II regions in the galaxy. In a near future, the AMUSING survey will be able to reproduce this analysis and construct statistical samples to enable the characterization of the progenitors of different supernova types.

  6. An Update on Radio Supernovae

    Science.gov (United States)

    van Dyk, Schuyler D.; Sramek, Richard A.; Weiler, Kurt W.; Montes, Marcos J.; Panagia, Nino

    The radio emission from supernovae (SNe) is nonthermal synchrotron radiation of high brightness temperature, with a ``turn-on'' delay at longer wavelengths, power-law decline after maximum with index beta, and spectral index alpha asymptotically decreasing with time to a final, optically thin value. Radio supernovae (RSNe) are best described by the Chevalier (1982) ``mini-shell'' model, with modifications by Weiler \\etal\\ (1990). RSNe observations provide a valuable probe of the SN circumstellar environment and constraints on progenitor masses. We present a progress report on a number of recent RSNe, as well as on new behavior from RSNe 1979C and 1980K, and on RSNe as potential distance indicators. In particular, we present updated radio light curves for SN 1993J in M81.

  7. Evidence for Nearby Supernova Explosions

    CERN Document Server

    Benítez, N; Canelles, M; Benitez, Narciso; Maiz-Apellaniz, Jesus; Canelles, Matilde

    2002-01-01

    Supernova explosions are one of the most energetic--and potentially lethal--phenomena in the Universe. Scientists have speculated for decades about the possible consequences for life on Earth of a nearby supernova, but plausible candidates for such an event were lacking. Here we show that the Scorpius-Centaurus OB association, a group of young stars currently located at~130 parsecs from the Sun, has generated 20 SN explosions during the last 11 Myr, some of them probably as close as 40 pc to our planet. We find that the deposition on Earth of 60Fe atoms produced by these explosions can explain the recent measurements of an excess of this isotope in deep ocean crust samples. We propose that ~2 Myr ago, one of the SNe exploded close enough to Earth to seriously damage the ozone layer, provoking or contributing to the Pliocene-Pleistocene boundary marine extinction.

  8. A New Determination of the High Redshift Type Ia Supernova Rates with the Hubble Space Telescope Advanced Camera for Surveys

    CERN Document Server

    Kuznetsova, N; Connolly, B; Kim, A G; Pain, R; Roe, N A; Aldering, G; Amanullah, R; Dawson, K; Doi, M; Fadeev, V; Fruchter, A S; Gibbons, R; Goldhaber, G; Goobar, A; Gude, A; Knop, R A; Kowalski, M; Lidman, C; Morokuma, T; Meyers, J; Perlmutter, S; Rubin, D; Schlegel, D J; Spadafora, A L; Stanishev, V; Strovink, M; Suzuki, N; Wang, L; Yasuda, N

    2007-01-01

    We present a new measurement of the volumetric rate of Type Ia supernova up to a redshift of 1.7, using the Hubble Space Telescope (HST) GOODS data combined with an additional HST dataset covering the North GOODS field collected in 2004. We employ a novel technique that does not require spectroscopic data for identifying Type Ia supernovae (although spectroscopic measurements of redshifts are used for over half the sample); instead we employ a Bayesian approach using only photometric data to calculate the probability that an object is a Type Ia supernova. This Bayesian technique can easily be modified to incorporate improved priors on supernova properties, and it is well-suited for future high-statistics supernovae searches in which spectroscopic follow up of all candidates will be impractical. Here, the method is validated on both ground- and space-based supernova data having some spectroscopic follow up. We combine our volumetric rate measurements with low redshift supernova data, and fit to a number of pos...

  9. Convection in Type 2 supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D.S.

    1993-10-15

    Results are presented here from several two dimensional numerical calculations of events in Type II supernovae. A new 2-D hydrodynamics and neutrino transport code has been used to compute the effect on the supernova explosion mechanism of convection between the neutrinosphere and the shock. This convection is referred to as exterior convection to distinguish it from convection beneath the neutrinosphere. The model equations and initial and boundary conditions are presented along with the simulation results. The 2-D code was used to compute an exterior convective velocity to compare with the convective model of the Mayle and Wilson 1-D code. Results are presented from several runs with varying sizes of initial perturbation, as well as a case with no initial perturbation but including the effects of rotation. The M&W code does not produce an explosion using the 2-D convective velocity. Exterior convection enhances the outward propagation of the shock, but not enough to ensure a successful explosion. Analytic estimates of the growth rate of the neutron finger instability axe presented. It is shown that this instability can occur beneath the neutrinosphere of the proto-neutron star in a supernova explosion with a growth time of {approximately} 3 microseconds. The behavior of the high entropy bubble that forms between the shock and the neutrinosphere in one dimensional calculations of supernova is investigated. It has been speculated that this bubble is a site for {gamma}-process generation of heavy elements. Two dimensional calculations are presented of the time evolution of the hot bubble and the surrounding stellar material. Unlike one dimensional calculations, the 2D code fails to achieve high entropies in the bubble. When run in a spherically symmetric mode the 2-D code reaches entropies of {approximately} 200. When convection is allowed, the bubble reaches {approximately} 60 then the bubble begins to move upward into the cooler, denser material above it.

  10. Understanding Core-Collapse Supernovae

    CERN Document Server

    Burrows, A

    2004-01-01

    I summarize, in the form of an extended abstract, the ongoing efforts at the University of Arizona (and in collaboration) to understand core-collapse supernovae theoretically. Included are short discussions of 1D (SESAME) and 2D (VULCAN/2D) codes and results, as well as discussions of the possible role of rotation. Highlighted are recent developments in multi-dimensional radiation hydrodynamics and the essential physics of the neutrino-driven mechanism.

  11. Convection in Type 2 supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Douglas Scott [Univ. of California, Davis, CA (United States)

    1993-10-15

    Results are presented here from several two dimensional numerical calculations of events in Type II supernovae. A new 2-D hydrodynamics and neutrino transport code has been used to compute the effect on the supernova explosion mechanism of convection between the neutrinosphere and the shock. This convection is referred to as exterior convection to distinguish it from convection beneath the neutrinosphere. The model equations and initial and boundary conditions are presented along with the simulation results. The 2-D code was used to compute an exterior convective velocity to compare with the convective model of the Mayle and Wilson 1-D code. Results are presented from several runs with varying sizes of initial perturbation, as well as a case with no initial perturbation but including the effects of rotation. The M&W code does not produce an explosion using the 2-D convective velocity. Exterior convection enhances the outward propagation of the shock, but not enough to ensure a successful explosion. Analytic estimates of the growth rate of the neutron finger instability axe presented. It is shown that this instability can occur beneath the neutrinosphere of the proto-neutron star in a supernova explosion with a growth time of ~ 3 microseconds. The behavior of the high entropy bubble that forms between the shock and the neutrinosphere in one dimensional calculations of supernova is investigated. It has been speculated that this bubble is a site for γ-process generation of heavy elements. Two dimensional calculations are presented of the time evolution of the hot bubble and the surrounding stellar material. Unlike one dimensional calculations, the 2D code fails to achieve high entropies in the bubble. When run in a spherically symmetric mode the 2-D code reaches entropies of ~ 200. When convection is allowed, the bubble reaches ~60 then the bubble begins to move upward into the cooler, denser material above it.

  12. Cosmic Ray Acceleration in Supernova Remnants

    CERN Document Server

    Blasi, Pasquale

    2010-01-01

    We review the main observational and theoretical facts about acceleration of Galactic cosmic rays in supernova remnants, discussing the arguments in favor and against a connection between cosmic rays and supernova remnants, the so-called supernova remnant paradigm for the origin of Galactic cosmic rays. Recent developments in the modeling of the mechanism of diffusive shock acceleration are discussed, with emphasis on the role of 1) magnetic field amplification, 2) acceleration of nuclei heavier than hydrogen, 3) presence of neutrals in the circumstellar environment. The status of the supernova-cosmic ray connection in the time of Fermi-LAT and Cherenkov telescopes is also discussed.

  13. Pulsational-Pair Instability Supernovae

    CERN Document Server

    Woosley, S E

    2016-01-01

    The final evolution of stars in the mass range 60 - 150 solar masses is explored. Depending upon their mass loss and rotation rates, many of these stars will end their lives as pulsational pair-instability supernovae. Even a non-rotating 70 solar mass star is pulsationally unstable during oxygen shell burning and can power a sub-luminous supernova. Rotation decreases the limit further. For more massive stars, the pulsations are less frequent, span a longer time, and are more powerful. Violent pulsations eject not only any residual low density envelope, but also that fraction of the helium core mass outside about 35 - 50 solar masses. The remaining core of helium and heavy elements continues to evolve, ultimately forming an iron core of about 2.5 solar masses that probably collapses to a black hole. A variety of observational transients result with total durations ranging from days to 10,000 years, and luminosities from 10$^{41}$ to 10$^{44}$ erg s$^{-1}$. Many transients resemble ordinary Type IIp supernovae,...

  14. Dark Energy and Termonuclear Supernovae

    Science.gov (United States)

    Domíngez, I.; Bravo, E.; Piersanti, L.; Tornambé, A.; Straniero, O.; Höflich, P.

    2008-12-01

    Nowadays it is widely accepted that the current Universe is dominated by dark energy and exotic matter, the so called StandardModel of Cosmoloy or CDM model. All the available data (Thermonuclear Supernovae, Cosmic Microwave Background, Baryon Acoustic Oscillations, Large Scale Structure, etc.) are compatible with a flat Universe made by ~70% of dark energy. Up to now observations agree that dark energy may be the vacuum energy (or cosmological constant) although improvements are needed to constrain further its equation of state. In this context, the cosmic destiny of the Universe is no longer linked to its geometry but to the nature of dark energy; it may be flat and expand forever or collapse. To understand the nature of dark energy is probably the most fundamental problem in physics today; it may open new roads of knowledge and led to unify gravity with the other fundamental interactions in nature. It is expected that astronomical data will continue to provide directions to theorists and experimental physicists. Type Ia supernovae (SNe Ia) have played a fundamental role, showing the acceleration of the expansion rate of the Universe a decade ago, and up to now they are the only astronomical observations that provide a direct evidence of the acceleration. However, in order to determine the source of the dark energy term it is mandatory to improve the precision of supernovae as distance indicators on cosmological scale.

  15. A spitzer space telescope study of SN 2002hh: An infrared echo from a type llP supernova

    DEFF Research Database (Denmark)

    Meikle, W. P. S.; Mattila, S.; Gerardy, C. L.;

    2006-01-01

    Stars: Supernovae: General, supernovae: individual (NGC 6946), Stars: Supernovae: Individual: Alphanumeric: SN 2002hh Udgivelsesdato: May 22......Stars: Supernovae: General, supernovae: individual (NGC 6946), Stars: Supernovae: Individual: Alphanumeric: SN 2002hh Udgivelsesdato: May 22...

  16. The Volumetric Rate of Superluminous Supernovae at z~1

    CERN Document Server

    Prajs, S; Smith, M; Levan, A; Karpenka, N V; Edwards, T D P; Walker, C R; Wolf, W M; Balland, C; Carlberg, R; Howell, A; Lidman, C; Pain, R; Pritchet, C; Ruhlmann-Kleider, V

    2016-01-01

    We present a measurement of the volumetric rate of superluminous supernovae (SLSNe) at z~1, measured using archival data from the first four years of the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). We develop a method for the photometric classification of SLSNe to construct our sample. Our sample includes two previously spectroscopically-identified objects, and a further new candidate selected using our classification technique. We use the point-source recovery efficiencies from Perrett et.al. (2010) and a Monte Carlo approach to calculate the rate based on our SLSN sample. We find that the three identified SLSNe from SNLS give a rate of 91 (+76/-36) SNe/Yr/Gpc^3 at a volume-weighted redshift of z=1.13. This is equivalent to 2.2 (+1.8/-0.9) x10^-4 of the volumetric core collapse supernova rate at the same redshift. When combined with other rate measurements from the literature, we show that the rate of SLSNe increases with redshift in a manner consistent with that of the cosmic star formati...

  17. Cygnus Loop Supernova Blast Wave

    Science.gov (United States)

    1993-01-01

    This is an image of a small portion of the Cygnus Loop supernova remnant, which marks the edge of a bubble-like, expanding blast wave from a colossal stellar explosion, occurring about 15,000 years ago. The HST image shows the structure behind the shock waves, allowing astronomers for the first time to directly compare the actual structure of the shock with theoretical model calculations. Besides supernova remnants, these shock models are important in understanding a wide range of astrophysical phenomena, from winds in newly-formed stars to cataclysmic stellar outbursts. The supernova blast is slamming into tenuous clouds of insterstellar gas. This collision heats and compresses the gas, causing it to glow. The shock thus acts as a searchlight revealing the structure of the interstellar medium. The detailed HST image shows the blast wave overrunning dense clumps of gas, which despite HST's high resolution, cannot be resolved. This means that the clumps of gas must be small enough to fit inside our solar system, making them relatively small structures by interstellar standards. A bluish ribbon of light stretching left to right across the picture might be a knot of gas ejected by the supernova; this interstellar 'bullet' traveling over three million miles per hour (5 million kilometres) is just catching up with the shock front, which has slowed down by ploughing into interstellar material. The Cygnus Loop appears as a faint ring of glowing gases about three degrees across (six times the diameter of the full Moon), located in the northern constellation, Cygnus the Swan. The supernova remnant is within the plane of our Milky Way galaxy and is 2,600 light-years away. The photo is a combination of separate images taken in three colors, oxygen atoms (blue) emit light at temperatures of 30,000 to 60,000 degrees Celsius (50,000 to 100,000 degrees Farenheit). Hydrogen atoms (green) arise throughout the region of shocked gas. Sulfur atoms (red) form when the gas cools to

  18. Dusty supernovae running the thermodynamics of the matter reinserted within young and massive super stellar clusters

    Energy Technology Data Exchange (ETDEWEB)

    Tenorio-Tagle, Guillermo; Silich, Sergiy; Martínez-González, Sergio [Instituto Nacional de Astrofísica Óptica y Electrónica, AP 51, 72000 Puebla (Mexico); Muñoz-Tuñón, Casiana [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Palouš, Jan; Wünsch, Richard, E-mail: gtt@inaoep.mx, E-mail: cmt@ll.iac.es [Astronomical Institute, Academy of Sciences of the Czech Republic, Boční II 1401, 141 31 Prague (Czech Republic)

    2013-12-01

    Following the observational and theoretical evidence that points at core-collapse supernovae (SNe) as major producers of dust, here we calculate the hydrodynamics of the matter reinserted within young and massive super stellar clusters under the assumption of gas and dust radiative cooling. The large SN rate expected in massive clusters allows for a continuous replenishment of dust immersed in the high temperature thermalized reinserted matter and warrants a stationary presence of dust within the cluster volume during the type II SN era. We first show that such a balance determines the range of the dust-to-gas-mass ratio, and thus the dust cooling law. We then search for the critical line that separates stationary cluster winds from the bimodal cases in the cluster mechanical luminosity (or cluster mass) versus cluster size parameter space. In the latter, strong radiative cooling reduces considerably the cluster wind mechanical energy output and affects particularly the cluster central regions, leading to frequent thermal instabilities that diminish the pressure and inhibit the exit of the reinserted matter. Instead, matter accumulates there and is expected to eventually lead to gravitational instabilities and to further stellar formation with the matter reinserted by former massive stars. The main outcome of the calculations is that the critical line is almost two orders of magnitude or more, depending on the assumed value of V {sub A∞}, lower than when only gas radiative cooling is applied. And thus, many massive clusters are predicted to enter the bimodal regime.

  19. See Change: the Supernova Sample from the Supernova Cosmology Project High Redshift Cluster Supernova Survey

    Science.gov (United States)

    Hayden, Brian; Perlmutter, Saul; Boone, Kyle; Nordin, Jakob; Rubin, David; Lidman, Chris; Deustua, Susana E.; Fruchter, Andrew S.; Aldering, Greg Scott; Brodwin, Mark; Cunha, Carlos E.; Eisenhardt, Peter R.; Gonzalez, Anthony H.; Jee, James; Hildebrandt, Hendrik; Hoekstra, Henk; Santos, Joana; Stanford, S. Adam; Stern, Daniel; Fassbender, Rene; Richard, Johan; Rosati, Piero; Wechsler, Risa H.; Muzzin, Adam; Willis, Jon; Boehringer, Hans; Gladders, Michael; Goobar, Ariel; Amanullah, Rahman; Hook, Isobel; Huterer, Dragan; Huang, Xiaosheng; Kim, Alex G.; Kowalski, Marek; Linder, Eric; Pain, Reynald; Saunders, Clare; Suzuki, Nao; Barbary, Kyle H.; Rykoff, Eli S.; Meyers, Joshua; Spadafora, Anthony L.; Sofiatti, Caroline; Wilson, Gillian; Rozo, Eduardo; Hilton, Matt; Ruiz-Lapuente, Pilar; Luther, Kyle; Yen, Mike; Fagrelius, Parker; Dixon, Samantha; Williams, Steven

    2017-01-01

    The Supernova Cosmology Project has finished executing a large (174 orbits, cycles 22-23) Hubble Space Telescope program, which has measured ~30 type Ia Supernovae above z~1 in the highest-redshift, most massive galaxy clusters known to date. Our SN Ia sample closely matches our pre-survey predictions; this sample will improve the constraint by a factor of 3 on the Dark Energy equation of state above z~1, allowing an unprecedented probe of Dark Energy time variation. When combined with the improved cluster mass calibration from gravitational lensing provided by the deep WFC3-IR observations of the clusters, See Change will triple the Dark Energy Task Force Figure of Merit. With the primary observing campaign completed, we present the preliminary supernova sample and our path forward to the supernova cosmology results. We also compare the number of SNe Ia discovered in each cluster with our pre-survey expectations based on cluster mass and SFR estimates. Our extensive HST and ground-based campaign has already produced unique results; we have confirmed several of the highest redshift cluster members known to date, confirmed the redshift of one of the most massive galaxy clusters at z~1.2 expected across the entire sky, and characterized one of the most extreme starburst environments yet known in a z~1.7 cluster. We have also discovered a lensed SN Ia at z=2.22 magnified by a factor of ~2.7, which is the highest spectroscopic redshift SN Ia currently known.

  20. COMPTEL upper limits on gamma-ray line emission from Supernova 1991T

    Science.gov (United States)

    Lichti, G. G.; Bennett, K.; Herder, J. W. Den; Diehl, R.; Morris, D.; Ryan, J.; Schoenfelder, V.; Steinle, H.; Strong, A. W.; Winkler, C.

    1994-01-01

    The imaging Compton telescope COMPTEL on board the Compton Gamma-Ray Observatory (CGRO) measures gamma-rays in the energy range 0.75-30 MeV with an energy resolution of 9.7% full width at half maximum (FWHM) at 1 MeV. From June 15 to 28, 1991 and again from October 3 to 17, 1991 the region containing the supernova SN 1991T was observed. A search for gamma-ray line emission from the supernova yields no detection of line emission from the supernova. 2 sigma upper limits for the two predicted lines at 847 keV and at 1.238 MeV of approximately equal to 3 x 10(exp -5) photons/(sq cm)(s) were derived. These limits are compared with the predictions of some theoretical models and constraints imposed by these limits on these models are discussed.

  1. Expansion of Kes 73, a shell supernova remnant containing a magnetar

    Science.gov (United States)

    Borkowski, Kazimierz

    2014-09-01

    Formation and evolution of highly magnetized neutron stars (magnetars) remain poorly understood. We can learn about magnetars by studying their remnants. Kes 73 is a young supernova remnant containing a magnetar. But basic properties of Kes 73, including its age, remain poorly known. We propose a third-epoch observation of Kes 73 with Chandra. When combined with the 2000 and 2006 observations, this will allow for determination of the remnant's age through expansion rate measurements. We will also search for spatial variations in expansion rate that will help in understanding of the remnant's dynamics. New observations will also be used to determine abundances of heavy-element supernova ejecta, placing further constraints on the supernova that produced Kes 73.

  2. COMPTEL upper limits on gamma-ray line emission from Supernova 1991T

    Science.gov (United States)

    Lichti, G. G.; Bennett, K.; Herder, J. W. Den; Diehl, R.; Morris, D.; Ryan, J.; Schoenfelder, V.; Steinle, H.; Strong, A. W.; Winkler, C.

    1994-01-01

    The imaging Compton telescope COMPTEL on board the Compton Gamma-Ray Observatory (CGRO) measures gamma-rays in the energy range 0.75-30 MeV with an energy resolution of 9.7% full width at half maximum (FWHM) at 1 MeV. From June 15 to 28, 1991 and again from October 3 to 17, 1991 the region containing the supernova SN 1991T was observed. A search for gamma-ray line emission from the supernova yields no detection of line emission from the supernova. 2 sigma upper limits for the two predicted lines at 847 keV and at 1.238 MeV of approximately equal to 3 x 10(exp -5) photons/(sq cm)(s) were derived. These limits are compared with the predictions of some theoretical models and constraints imposed by these limits on these models are discussed.

  3. The VLT Measures the Shape of a Type Ia Supernova

    Science.gov (United States)

    2003-08-01

    measurement uncertainty persists. " The asymmetry we have measured in SN 2001el is large enough to explain a large part of this intrinsic uncertainty ", says Lifan Wang, the leader of the team. " If all Type Ia supernovae are like this, it would account for a lot of the dispersion in brightness measurements. They may be even more uniform than we thought ." Reducing the dispersion in brightness measurements could of course also be attained by increasing significantly the number of supernovae we observe, but given that these measurements demand the largest and most expensive telescopes in the world, like the VLT, this is not the most efficient method. Thus, if the brightness measured a week or two after maximum was used instead, the sphericity would then have been restored and there would be no systematic errors from the unknown viewing angle. By this slight change in observational procedure, Type Ia supernovae could become even more reliable cosmic yardsticks. Theoretical implications The present detection of polarised spectral features strongly suggests that, to understand the underlying physics, the theoretical modelling of Type Ia supernovae events will have to be done in all three dimensions with more accuracy than is presently done. In fact, the available, highly complex hydrodynamic calculations have so far not been able to reproduce the structures exposed by SN 2001el. More information The results presented in this press release have been been described in a research paper in "Astrophysical Journal" ("Spectropolarimetry of SN 2001el in NGC 1448: Asphericity of a Normal Type Ia Supernova" by Lifan Wang and co-authors, Volume 591, p. 1110).

  4. Supernova remnants: the X-ray perspective

    NARCIS (Netherlands)

    Vink, J.

    2012-01-01

    Supernova remnants are beautiful astronomical objects that are also of high scientific interest, because they provide insights into supernova explosion mechanisms, and because they are the likely sources of Galactic cosmic rays. X-ray observations are an important means to study these objects. And i

  5. Single Degenerate Progenitors of Type Ia Supernovae

    Science.gov (United States)

    Bours, Madelon; Toonen, Silvia; Nelemans, Gijs

    2013-01-01

    There is a general agreement that Type Ia supernovae correspond to the thermonuclear runaway of a white dwarf (WD) in a compact binary. The details of these progenitor systems are still unclear. Using the population synthesis code SeBa and several assumption for the WD retention efficiency, we estimate the delay times and supernova rates for the single degenerate scenario.

  6. Supernova constraints on neutrino mass and mixing

    Indian Academy of Sciences (India)

    Srubabati Goswami

    2000-01-01

    In this article I review the constraints on neutrino mass and mixing coming from type-II supernovae. The bounds obtained on these parameters from shock reheating, -process nucleosynthesis and from SN1987A are discussed. Given the current constraints on neutrino mass and mixing the effect of oscillations of neutrinos from a nearby supernova explosion in future detectors will also be discussed.

  7. Cosmic-ray acceleration in supernova remnants

    NARCIS (Netherlands)

    Helder, E.A.

    2010-01-01

    Supernovae are among the most energetic events in the Universe. During the event, they expel their material with enormous speeds into the surroundings. In addition, supernovae are thought to transfer a sizable fraction of their energy into just a few particles: cosmic rays. These cosmic rays acquire

  8. A relativistic type Ibc supernova without a detected gamma-ray burst.

    Science.gov (United States)

    Soderberg, A M; Chakraborti, S; Pignata, G; Chevalier, R A; Chandra, P; Ray, A; Wieringa, M H; Copete, A; Chaplin, V; Connaughton, V; Barthelmy, S D; Bietenholz, M F; Chugai, N; Stritzinger, M D; Hamuy, M; Fransson, C; Fox, O; Levesque, E M; Grindlay, J E; Challis, P; Foley, R J; Kirshner, R P; Milne, P A; Torres, M A P

    2010-01-28

    Long duration gamma-ray bursts (GRBs) mark the explosive death of some massive stars and are a rare sub-class of type Ibc supernovae. They are distinguished by the production of an energetic and collimated relativistic outflow powered by a central engine (an accreting black hole or neutron star). Observationally, this outflow is manifested in the pulse of gamma-rays and a long-lived radio afterglow. Until now, central-engine-driven supernovae have been discovered exclusively through their gamma-ray emission, yet it is expected that a larger population goes undetected because of limited satellite sensitivity or beaming of the collimated emission away from our line of sight. In this framework, the recovery of undetected GRBs may be possible through radio searches for type Ibc supernovae with relativistic outflows. Here we report the discovery of luminous radio emission from the seemingly ordinary type Ibc SN 2009bb, which requires a substantial relativistic outflow powered by a central engine. A comparison with our radio survey of type Ibc supernovae reveals that the fraction harbouring central engines is low, about one per cent, measured independently from, but consistent with, the inferred rate of nearby GRBs. Independently, a second mildly relativistic supernova has been reported.

  9. A mildly relativistic radio jet from the otherwise normal Type Ic Supernova 2007gr

    CERN Document Server

    Paragi, Z; Kouveliotou, C; Granot, J; Ramirez-Ruiz, E; Bietenholz, M; van der Horst, A J; Pidopryhora, Y; van Langevelde, H J; Garrett, M A; Szomoru, A; Argo, M; Bourke, S; Paczynski, B; 10.1038/nature08713

    2010-01-01

    The class of type Ic supernovae have drawn increasing attention since 1998 owing to their sparse association (only four so far) with long duration gamma-ray bursts. Although both phenomena originate from the core collapse of a massive star, supernovae emit mostly at optical wavelengths, whereas GRBs emit mostly in soft gamma-rays or hard X-rays. Though the GRB central engine generates ultra-relativistic jets, which beam the early emission into a narrow cone, no relativistic outflows have hitherto been found in type Ib/c supernovae explosions, despite theoretical expectations and searches. Here we report radio (interferometric) observations that reveal a mildly relativistic expansion in a nearby type Ic supernova, SN 2007gr. Using two observational epochs 60 days apart, we detect expansion of the source and establish a conservative lower limit for the average apparent expansion velocity of 0.6c. Independently, a second mildly relativistic supernova has been reported. Contrary to the radio data, optical observa...

  10. Snapping Supernovae at z>1.7

    CERN Document Server

    Aldering, G; Kowalski, M; Linder, E V; Perlmutter, S; Aldering, Greg; Kim, Alex G.; Kowalski, Marek; Linder, Eric V.; Perlmutter, Saul

    2006-01-01

    We examine the utility of very high redshift Type Ia supernovae for cosmology and systematic uncertainty control. Next generation space surveys such as the Supernova/Acceleration Probe (SNAP) will obtain thousands of supernovae at z>1.7, beyond the design redshift for which the supernovae will be exquisitely characterized. We find that any z\\gtrsim2 standard candles' use for cosmological parameter estimation is quite modest and subject to pitfalls; we examine gravitational lensing, redshift calibration, and contamination effects in some detail. The very high redshift supernovae - both thermonuclear and core collapse - will provide copious interesting information on star formation, environment, and evolution. However, the new observational systematics that must be faced, as well as the limited expansion of SN-parameter space afforded, does not point to high value for 1.7

  11. Supernova shock breakout from a red supergiant.

    Science.gov (United States)

    Schawinski, Kevin; Justham, Stephen; Wolf, Christian; Podsiadlowski, Philipp; Sullivan, Mark; Steenbrugge, Katrien C; Bell, Tony; Röser, Hermann-Josef; Walker, Emma S; Astier, Pierre; Balam, Dave; Balland, Christophe; Carlberg, Ray; Conley, Alex; Fouchez, Dominique; Guy, Julien; Hardin, Delphine; Hook, Isobel; Howell, D Andrew; Pain, Reynald; Perrett, Kathy; Pritchet, Chris; Regnault, Nicolas; Yi, Sukyoung K

    2008-07-11

    Massive stars undergo a violent death when the supply of nuclear fuel in their cores is exhausted, resulting in a catastrophic "core-collapse" supernova. Such events are usually only detected at least a few days after the star has exploded. Observations of the supernova SNLS-04D2dc with the Galaxy Evolution Explorer space telescope reveal a radiative precursor from the supernova shock before the shock reached the surface of the star and show the initial expansion of the star at the beginning of the explosion. Theoretical models of the ultraviolet light curve confirm that the progenitor was a red supergiant, as expected for this type of supernova. These observations provide a way to probe the physics of core-collapse supernovae and the internal structures of their progenitor stars.

  12. Supernovae and Cosmology with Future European Facilities

    CERN Document Server

    Hook, I M

    2012-01-01

    Prospects for future supernova surveys are discussed, focusing on the ESA Euclid mission and the European Extremely Large Telescope(E-ELT), both expected to be in operation around the turn of the decade. Euclid is a 1.2m space survey telescope that will operate at visible and near-infrared wavelengths, and has the potential to find and obtain multi-band lightcurves for thousands of distant supernovae. The E-ELT is a planned general-purpose ground-based 40m-class optical-IR telescope with adaptive optics built in, which will be capable of obtaining spectra of Type Ia supernovae to redshifts of at least four. The contribution to supernova cosmology with these facilities will be discussed in the context of other future supernova programs such as those proposed for DES, JWST, LSST and WFIRST.

  13. The Population of Supernova Remnants in M51

    Science.gov (United States)

    Long, Knox S.; Blair, William P.; Kuntz, K. D.; Winkler, P. Frank

    2017-08-01

    The nearby, actively star-forming, nearly face-on spiral galaxy, M51 (NGC 5194/5), has been the site of four supernovae since 1941. As a result it should have a rich population of young supernova remnants (SNRs). Here we describe a search for optical SNRs in M51 among the 298 X-ray sources discovered inside the D25 contour in deep Chandra observations. The search uses interference filter images obtained with the WFC3 on Hubble Space Telescope and more recent images from GMOS on Gemini North. Of 80 emission nebulae identified in the HST images as SNR candidates based on elevated [SII]: Ha ratios compared to HII regions, 40 have X-ray counterparts. The diameters of the SNRs and SNR candidates detected with HST are systematically smaller than seen in SNR populations of other galaxies at comparable distances. However, this is most likely an instrumental effect, which our ongoing analysis of the new GMOS images will correct. At that point, we will be able to make of fair multi-wavelength comparison of the SNR population in M51 with other nearby, actively star-forming spiral galaxies, such as M83 and NGC6946.

  14. Discovery potential for supernova relic neutrinos with slow liquid scintillator detectors

    CERN Document Server

    Wei, Hanyu; Chen, Shaomin

    2016-01-01

    The detection of supernova relic neutrinos would provide a key support for our current understanding of stellar and cosmological evolution, and precise measurements of them would further give us an insight of the profound universe. In this paper we study the potential to detect supernova relic neutrinos using linear alkyl benzene, LAB, as a slow liquid scintillator, which features a good separation of Cherenkov and scintillation lights, thus providing a new ability in particle identification. We also address key issues of current experiments, including 1) the charged current background of atmospheric neutrinos in water Cherenkov detectors, and 2) the neutral current background of atmospheric neutrinos in typical liquid scintillator detectors. With LAB, a kiloton-scale detector, like the SNO, KamLAND, and the future Jinping neutrino detectors, with $\\mathcal{O}$(10) years of data, would have the sensitivity to discover supernova relic neutrinos, which is comparable to large-volume water Cherenkov, typical liqu...

  15. Discovery potential for supernova relic neutrinos with slow liquid scintillator detectors

    Science.gov (United States)

    Wei, Hanyu; Wang, Zhe; Chen, Shaomin

    2017-06-01

    Detection of supernova relic neutrinos could provide key support for our current understanding of stellar and cosmological evolution, and precise measurements of these neutrinos could yield novel insights into the universe. In this paper, we studied the detection potential of supernova relic neutrinos using linear alkyl benzene (LAB) as a slow liquid scintillator. The linear alkyl benzene features good separation of Cherenkov and scintillation lights, thereby providing a new route for particle identification. We further addressed key issues in current experiments, including (1) the charged current background of atmospheric neutrinos in water Cherenkov detectors and (2) the neutral current background of atmospheric neutrinos in typical liquid scintillator detectors. A kiloton-scale LAB detector at Jinping with O(10) years of data could discover supernova relic neutrinos with a sensitivity comparable to that of large-volume water Cherenkov detectors, typical liquid scintillator detectors, and liquid argon detectors.

  16. Non-linear diffusion of cosmic rays escaping from supernova remnants I: the effect of neutrals

    CERN Document Server

    Nava, Lara; Marcowith, Alexandre; Morlino, Giovanni; Ptuskin, Vladimir S

    2016-01-01

    Supernova remnants are believed to be the main sources of galactic Cosmic Rays (CR). Within this framework, particles are accelerated at supernova remnant shocks and then released in the interstellar medium. The mechanism through which CRs are released and the way in which they propagate still remain open issues. The main difficulty is the high non-linearity of the problem: CRs themselves excite the magnetic turbulence that confines them close to their sources. We solve numerically the coupled differential equations describing the evolution in space and time of the escaping particles and of the waves generated through the CR streaming instability. The warm ionized and warm neutral phases of the interstellar medium are considered. These phases occupy the largest fraction of the disk volume, where most supernovae explode, and are characterised by the significant presence of neutral particles. The friction between those neutrals and ions results in a very effective wave damping mechanism. It is found that stream...

  17. Exploring Supernova Remnants with the SPIES Project

    Science.gov (United States)

    Frank, Kari A.; Burrows, David N.; Dwarkadas, Vikram

    2017-01-01

    X-ray observations provide a key window into supernova remnants, providing measurements of a plethora of physical properties that are critical for understanding SNRs, their environments, their progenitors, and the SNe that created them. However, characterizing the entire volume of shocked plasma in a SNR is difficult, due to their complicated three dimensional morphologies and spectra. The SPIES project aims to address this problem by applying a novel X-ray analysis method, Smoothed Particle Inference (SPI), to XMM observations of 12 SNRs. SPI is a Bayesian modeling process that fits a population of gas blobs ("smoothed particles") such that their superposed emission reproduces the observed spatial and spectral distribution of photons. Emission-weighted distributions and maps of plasma properties, such as abundances and temperatures, are then extracted from the properties of the individual blobs. Additionally, because the collection of blobs is a multi-dimensional representation of the shocked plasma, we can carry out a more detailed exploration of plasma properties by extracting any subset of the blobs (e.g. those with the highest temperatures) and investigating its properties (e.g. map the abundances). Here we present preliminary results from SPI analyses of the first 6 remnants in the SPIES project.

  18. Quantifying Supernovae-driven Multiphase Galactic Outflows

    Science.gov (United States)

    Li, Miao; Bryan, Greg L.; Ostriker, Jeremiah P.

    2017-06-01

    Galactic outflows are observed everywhere in star-forming disk galaxies and are critical for galaxy formation. Supernovae (SNe) play the key role in driving the outflows, but there is no consensus as to how much energy, mass, and metal they can launch out of the disk. We perform 3D, high-resolution hydrodynamic simulations to study SNe-driven outflows from stratified media. Assuming the SN rate scales with gas surface density Σgas as in the Kennicutt-Schmidt relation, we find that the mass loading factor, η m, defined as the mass outflow flux divided by the star formation surface density, decreases with increasing Σgas as {η }{{m}}\\propto {{{Σ }}}{gas}-0.61. Approximately Σgas ≲ 50 M ⊙ pc-2 marks when η m ≳ 1. About 10%-50% of the energy and 40%-80% of the metals produced by SNe end up in the outflows. The tenuous hot phase (T > 3 × 105 K), which fills 60%-80% of the volume at the midplane, carries the majority of the energy and metals in the outflows. We discuss how various physical processes, including the vertical distribution of SNe, photoelectric heating, external gravitational field, and SN rate, affect the loading efficiencies. The relative scale height of gas and SNe is a very important factor in determining the loading efficiencies.

  19. Rapidly Rising Transients in the Supernova - Superluminous Supernova Gap

    CERN Document Server

    Arcavi, Iair; Howell, D Andrew; Bildsten, Lars; Leloudas, Giorgos; Hardin, Delphine; Prajs, Szymon; Perley, Daniel A; Svirski, Gilad; Gal-Yam, Avishay; Katz, Boaz; McCully, Curtis; Cenko, S Bradley; Lidman, Chris; Sullivan, Mark; Valenti, Stefano; Astier, Pierre; Balland, Cristophe; Carlberg, Ray G; Conley, Alex; Fouchez, Dominique; Guy, Julien; Pain, Reynald; Palanque-Delabrouille, Nathalie; Perrett, Kathy; Pritchet, Chris J; Regnault, Nicolas; Rich, James; Ruhlmann-Kleider, Vanina

    2015-01-01

    We present observations of four rapidly rising (t_{rise}~10d) transients with peak luminosities between those of supernovae (SNe) and superluminous SNe (M_{peak}~-20) - one discovered and followed by the Palomar Transient Factory (PTF) and three by the Supernova Legacy Survey (SNLS). The light curves resemble those of SN 2011kl, recently shown to be associated with an ultra-long-duration gamma ray burst (GRB), though no GRB was seen to accompany our SNe. The rapid rise to a luminous peak places these events in a unique part of SN phase space, challenging standard SN emission mechanisms. Spectra of the PTF event formally classify it as a Type II SN due to broad Halpha emission, but an unusual absorption feature, which can be interpreted as either high velocity Halpha (though deeper than in previously known cases) or Si II (as seen in Type Ia SNe), is also observed. We find that existing models of white dwarf detonations, CSM interaction, shock breakout in a wind (or steeper CSM) and magnetar spindown can not r...

  20. Spectroscopy of Type Ia Supernovae by the Carnegie Supernova Project

    CERN Document Server

    Folatelli, Gastón; Phillips, Mark M; Hsiao, Eric; Campillay, Abdo; Contreras, Carlos; Castellón, Sergio; Hamuy, Mario; Krzeminski, Wojtek; Roth, Miguel; Stritzinger, Maximilian; Burns, Christopher R; Freedman, Wendy L; Madore, Barry F; Murphy, David; Persson, S E; Prieto, José L; Suntzeff, Nicholas B; Krisciunas, Kevin; Anderson, Joseph P; Förster, Francisco; Maza, José; Pignata, Giuliano; Rojas, P Andrea; Boldt, Luis; Salgado, Francisco; Wyatt, Pamela; E., Felipe Olivares; Gal-Yam, Avishay; Sako, Masao

    2013-01-01

    This is the first release of optical spectroscopic data of low-redshift Type Ia supernovae (SNe Ia) by the Carnegie Supernova Project including 604 previously unpublished spectra of 93 SNe Ia. The observations cover a range of phases from 12 days before to over 150 days after the time of B-band maximum light. With the addition of 228 near-maximum spectra from the literature we study the diversity among SNe Ia in a quantitative manner. For that purpose, spectroscopic parameters are employed such as expansion velocities from spectral line blueshifts, and pseudo-equivalent widths (pW). The values of those parameters at maximum light are obtained for 78 objects, thus providing a characterization of SNe Ia that may help to improve our understanding of the properties of the exploding systems and the thermonuclear flame propagation. Two objects, namely SNe 2005M and 2006is, stand out from the sample by showing peculiar Si II and S II velocities but otherwise standard velocities for the rest of the ions. We further s...

  1. Carnegie Supernova Project: Observations of Type IIn Supernovae

    CERN Document Server

    Taddia, F; Sollerman, J; Phillips, M M; Anderson, J P; Boldt, L; Campillay, A; Castellón, S; Contreras, C; Folatelli, G; Hamuy, M; Heinrich-Josties, E; Krzeminski, W; Morrell, N; Burns, C R; Freedman, W L; Madore, B F; Persson, S E; Suntzeff, N B

    2013-01-01

    The observational diversity displayed by various Type IIn supernovae (SNe IIn) is explored and quantified. In doing so a more coherent picture ascribing the variety of observed SNe IIn types to particular progenitor scenarios is sought. Carnegie Supernova Project (CSP) optical and near-infrared light curves and visual-wavelength spectroscopy of the Type IIn SNe 2005kj, 2006aa, 2006bo, 2006qq and 2008fq are presented. Combined with previously published observations of the Type IIn SNe 2005ip and 2006jd (Stritzinger et al. 2012), the full CSP sample is used to derive physical parameters which describe the nature of the interaction between the expanding SN ejecta and the circum-stellar material (CSM). For each SN of our sample we find counterparts, identifying objects similar to SNe 1994W (SN 2006bo), 1998S (SN 2008fq) and 1988Z (SN 2006qq). We present the unprecedented initial u-band plateau of SN 2006aa, and its peculiar late-time luminosity and temperature evolution. For each SN, assuming the CSM was formed b...

  2. Statistics of Galactic Supernova Remnants

    Institute of Scientific and Technical Information of China (English)

    Jian-Wen Xu; Xi-Zhen Zhang; Jin-Lin Han

    2005-01-01

    We collected the basic parameters of 231 supernova remnants (SNRs) in our Galaxy, namely, distances (d) from the Sun, linear diameters (D), Galactic heights (Z), estimated ages (t), luminosities (L), surface brightness (∑) and flux densities (Si) at 1-GHz frequency and spectral indices (α). We tried to find possible correlations between these parameters. As expected, the linear diameters were found to increase with ages for the shell-type remnants, and also to have a tendency to increase with the Galactic heights. Both the surface brightness and luminosity of SNRs at 1-GHz tend to decrease with the linear diameter and with age. No other relations between the parameters were found.

  3. Petascale Supernova Simulation with CHIMERA

    Energy Technology Data Exchange (ETDEWEB)

    Messer, Bronson [ORNL; Bruenn, S. W. [Florida Atlantic University; Blondin, J. M. [North Carolina State University; Mezzacappa, Anthony [ORNL; Hix, William Raphael [ORNL; Dirk, Charlotte [Florida Atlantic University

    2007-01-01

    CHIMERA is a multi-dimensional radiation hydrodynamics code designed to study core-collapse supernovae. The code is made up of three essentially independent parts: a hydrodynamics module, a nuclear burning module, and a neutrino transport solver combined within an operator-split approach. We describe some ma jor algorithmic facets of the code and briefly discuss some recent results. The multi-physics nature of the problem, and the specific implementation of that physics in CHIMERA, provide a rather straightforward path to effective use of multi-core platforms in the near future.

  4. Petascale supernova simulation with CHIMERA

    Energy Technology Data Exchange (ETDEWEB)

    Messer, O E B [National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6008 (United States); Bruenn, S W [Department of Physics, Florida Atlantic University, 777 W Glades Road, Boca Raton, FL 33431-0991 (United States); Blondin, J M [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States); Hix, W R [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354 (United States); Mezzacappa, A [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354 (United States); Dirk, C J [Department of Physics, Florida Atlantic University, 777 W Glades Road, Boca Raton, FL 33431-0991 (United States)

    2007-07-15

    CHIMERA is a multi-dimensional radiation hydrodynamics code designed to study core-collapse supernovae. The code is made up of three essentially independent parts: a hydrodynamics module, a nuclear burning module, and a neutrino transport solver combined within an operator-split approach. We describe some major algorithmic facets of the code and briefly discuss some recent results. The multi-physics nature of the problem, and the specific implementation of that physics in CHIMERA, provide a rather straightforward path to effective use of multi-core platforms in the near future.

  5. Shell-type Supernova Remnants

    OpenAIRE

    Völk, H.

    2006-01-01

    The role of Supernova Remnants (SNRs) for the production of the Galactic Cosmic Rays is reviewed from the point of view of theory and very high energy gamma-ray experiments. The point is made that theory can describe young SNRs very well, if the evidence from the synchrotron emission is used to empirically determine several parameters of the theory, and thus theory can predict the relative contributions of hadronic and leptonic gamma rays at TeV energies. This is exemplified for several objec...

  6. Progress on multi-waveband observations of supernova remnants

    OpenAIRE

    Yang, Xuejuan; Lu, Fangjun; Tian, Wenwu

    2008-01-01

    The development of observational techniques has inriched our knowledge of supernova remnants. In this paper, we review the main progresses in the last decade, including new discoveries of supernova remnants and the associated (rare type of) pulsars, nucleosynthesis, the interaction between supernova remnants and molecular clouds, dust in the supernova remnants, shock physics, and cosmic ray accelerations.

  7. A sub-solar metallicity is required for superluminous supernova progenitors

    CERN Document Server

    Chen, T -W; Yates, R M; Nicholl, M; Krühler, T; Schady, P; Dennefeld, M; Inserra, C

    2016-01-01

    Host galaxy properties provide strong constraints on the stellar progenitors of superluminous supernovae. By comparing a sample of 18 low-redshift superluminous supernova hosts to a volume-limited galaxy population in the local Universe, we show that sub-solar metallici- ties seems to be a requirement. All superluminous supernovae in hosts with high measured gas-phase metallicities are found to explode at large galactocentric radii, indicating that the metallicity at the explosion site is likely lower than the integrated host value. We also confirm that high specific star-formation rates are a feature of superluminous supernova host galaxies, but interpret this as simply a consequence of the anti-correlation between gas-phase metallic- ity and specific star-formation rate and the requirement of on-going star formation to produce young, massive stars greater than ~ 10-20 M_sun . Based on our sample, we propose an upper limit of ~ 0.5 Z_sun for forming superluminous supernova progenitors (assuming an N2 metal- ...

  8. High-redshift supernova rates measured with the gravitational telescope A1689

    CERN Document Server

    Petrushevska, Tanja; Goobar, Ariel; Fabbro, Sebastien; Johansson, Joel; Kjellsson, Tor; Lidman, Chris; Paech, Kerstin; Richard, Johan; Dahle, Hakon; Ferretti, Raphael; Kneib, Jean-Paul; Limousin, Marceau; Nordin, Jakob; Stanishev, Vallery

    2016-01-01

    We present a ground-based near-infrared search for lensed supernovae behind the massive cluster Abell 1689 at z=0.18, one of the most powerful gravitational telescopes that nature provides. Our survey was based on multi-epoch $J$-band observations with the HAWK-I instrument on VLT, with supporting optical data from the Nordic Optical Telescope. Our search resulted in the discovery of five high-redshift, $0.671supernovae with magnifications in the range $\\Delta m$ = $-0.31$ to $-1.58$ mag, as calculated from lensing models in the literature. Thanks to the power of the lensing cluster, the survey had the sensitivity to detect supernovae up to very high-redshifts, $z$$\\sim$$3$, albeit for a limited region of space. We present a study of the core-collapse supernova rates for $0.4\\leq z< 2.9$, and find good agreement with both previous estimates, and the predictions from the star formation history. During our survey, we also discovered 2 type Ia supernov...

  9. Runaway Stars in Supernova Remnants

    Science.gov (United States)

    Pannicke, Anna; Neuhaeuser, Ralph; Dinçel, Baha

    2016-07-01

    Half of all stars and in particular 70 % of the massive stars are a part of a multiple system. A possible development for the system after the core collapse supernova (SN) of the more massive component is as follows: The binary is disrupted by the SN. The formed neutron star is ejected by the SN kick whereas the companion star either remains within the system and is gravitationally bounded to the neutron star, or is ejected with a spatial velocity comparable to its former orbital velocity (up to 500 km/s). Such stars with a large peculiar space velocity are called runaway stars. We present our observational results of the supernova remnants (SNRs) G184.6-5.8, G74.0-8.5 and G119.5+10.2. The focus of this project lies on the detection of low mass runaway stars. We analyze the spectra of a number of candidates and discuss their possibility of being the former companions of the SN progenitor stars. The spectra were obtained with INT in Tenerife, Calar Alto Astronomical Observatory and the University Observatory Jena. Also we investigate the field stars in the neighborhood of the SNRs G74.0-8.5 and G119.5+10.2 and calculate more precise distances for these SNRs.

  10. Dark Matter Triggers of Supernovae

    CERN Document Server

    Graham, Peter W; Varela, Jaime

    2015-01-01

    The transit of primordial black holes through a white dwarf causes localized heating around the trajectory of the black hole through dynamical friction. For sufficiently massive black holes, this heat can initiate runaway thermonuclear fusion causing the white dwarf to explode as a supernova. The shape of the observed distribution of white dwarfs with masses up to $1.25 M_{\\odot}$ rules out primordial black holes with masses $\\sim 10^{19}$ gm - $10^{20}$ gm as a dominant constituent of the local dark matter density. Black holes with masses as large as $10^{24}$ gm will be excluded if recent observations by the NuStar collaboration of a population of white dwarfs near the galactic center are confirmed. Black holes in the mass range $10^{20}$ gm - $10^{22}$ gm are also constrained by the observed supernova rate, though these bounds are subject to astrophysical uncertainties. These bounds can be further strengthened through measurements of white dwarf binaries in gravitational wave observatories. The mechanism p...

  11. How supernovae launch galactic winds?

    Science.gov (United States)

    Fielding, Drummond; Quataert, Eliot; Martizzi, Davide; Faucher-Giguère, Claude-André

    2017-09-01

    We use idealized three-dimensional hydrodynamic simulations of global galactic discs to study the launching of galactic winds by supernovae (SNe). The simulations resolve the cooling radii of the majority of supernova remnants (SNRs) and thus self-consistently capture how SNe drive galactic winds. We find that SNe launch highly supersonic winds with properties that agree reasonably well with expectations from analytic models. The energy loading (η _E= \\dot{E}_wind/ \\dot{E}_SN) of the winds in our simulations are well converged with spatial resolution while the wind mass loading (η _M= \\dot{M}_wind/\\dot{M}_\\star) decreases with resolution at the resolutions we achieve. We present a simple analytic model based on the concept that SNRs with cooling radii greater than the local scaleheight break out of the disc and power the wind. This model successfully explains the dependence (or lack thereof) of ηE (and by extension ηM) on the gas surface density, star formation efficiency, disc radius and the clustering of SNe. The winds our simulations are weaker than expected in reality, likely due to the fact that we seed SNe preferentially at density peaks. Clustering SNe in time and space substantially increases the wind power.

  12. Type Ia Supernova Carbon Footprints

    CERN Document Server

    Thomas, R C; Aragon, C; Antilogus, P; Bailey, S; Baltay, C; Bongard, S; Buton, C; Canto, A; Childress, M; Chotard, N; Copin, Y; Fakhouri, H K; Gangler, E; Hsiao, E Y; Kerschhaggl, M; Kowalski, M; Loken, S; Nugent, P; Paech, K; Pain, R; Pecontal, E; Pereira, R; Perlmutter, S; Rabinowitz, D; Rigault, M; Rubin, D; Runge, K; Scalzo, R; Smadja, G; Tao, C; Weaver, B A; Wu, C; Brown, P J; Milne, P A

    2011-01-01

    We present convincing evidence of unburned carbon at photospheric velocities in new observations of 5 Type Ia supernovae (SNe Ia) obtained by the Nearby Supernova Factory. These SNe are identified by examining 346 spectra from 124 SNe obtained before +2.5 d relative to maximum. Detections are based on the presence of relatively strong C II 6580 absorption "notches" in multiple spectra of each SN, aided by automated fitting with the SYNAPPS code. Four of the 5 SNe in question are otherwise spectroscopically unremarkable, with ions and ejection velocities typical of SNe Ia, but spectra of the fifth exhibits high-velocity (v > 20,000 km/s) Si II and Ca II features. On the other hand, the light curve properties are preferentially grouped, strongly suggesting a connection between carbon-positivity and broad band light curve/color behavior: Three of the 5 have relatively narrow light curves but also blue colors, and a fourth may be a dust-reddened member of this family. Accounting for signal-to-noise and phase, we ...

  13. Discovery Prospects for a Biogenic Supernova Signature

    CERN Document Server

    Bishop, Shawn

    2010-01-01

    Within the universe, the astrophysical sites responsible for the production of radioactive 60Fe, of half life 2.62 Myr, are primarily confined to two: Type 1a supernovae and massive stars that end their lives as Type II supernovae. Approximately 2.8 Myr before the present, our planet was subjected to the debris of a supernova explosion. The terrestrial proxy for this event was the discovery of live atoms of 60Fe in a deep sea ferromanganese crust, from which the terrestrial flux of supernova 60Fe was deduced. The signature for this supernova event should also be contained in microfossils produced by magnetotactic bacteria extant at the time of the Earth-supernova interaction. Using estimates for the terrestrial supernova 60Fe flux, combined with our empirically derived microfossil concentrations of a deep sea drill core, we deduce a conservative estimate of the 60Fe fraction as 60Fe/Fe = 3.6 x 10^{-15}; this value sits comfortably within the sensitivity limit of present accelerator mass spectrometry capabilit...

  14. An Open Catalog for Supernova Data

    CERN Document Server

    Guillochon, James; Margutti, Raffaella

    2016-01-01

    We present the Open Supernova Catalog, an online collection of observations and metadata for presently 20,000+ supernovae and related candidates. The catalog is freely available on the web (https://sne.space), with its main interface having been designed to be a user-friendly, rapidly-searchable table accessible on desktop and mobile devices. In addition to the primary catalog table containing supernova metadata, an individual page is generated for each supernova which displays its available metadata, light curves, and spectra spanning X-ray to radio frequencies. The data presented in the catalog is automatically rebuilt on a daily basis and is constructed by parsing several dozen sources, including the data presented in the supernova literature and from secondary sources such as other web-based catalogs. Individual supernova data is stored in the hierarchical, human- and machine-readable JSON format, with the entirety of each supernova's data being contained within a single JSON file bearing its name. The se...

  15. Type Ia Supernova Modeling with Spectrophotometric Data from the Nearby Supernova Factory

    Science.gov (United States)

    Saunders, Clare; Nearby Supernova Factory

    2017-01-01

    Type Ia supernova cosmology is currently limited by dispersion in standardized magnitudes, driven by a combination of calibration uncertainty and so-called ‘intrinsic dispersion.' This intrinsic dispersion is caused by supernova behavior that the current lightcurve fitters do not account for, and it can involve systematic trends. Using data from the Nearby Supernova Factory, we have developed an empirical model that captures a wider range of Type Ia supernova behavior and can be used to improve standardized magnitude dispersion. To do this, Gaussian Processes and Expectation Maximization Factor Analysis are used to generate spectral time series templates that can be combined linearly. Variations of this model are optimized, alternatively for supernova standardization or for maximum accuracy in the description of supernova spectral features. We present these models along with interpretation of the model components. Methods are discussed for the most efficient application of the models in cosmological surveys.

  16. First Results from the La Silla-QUEST Supernova Survey and the Carnegie Supernova Project

    CERN Document Server

    Walker, E S; Campillay, A; Citrenbaum, C; Contreras, C; Ellman, N; Feindt, U; Gonzalez, C; Graham, M L; Hadjiyska, E; Hsiao, E Y; Krisciunas, K; McKinnon, R; Ment, K; Morrell, N; Nugent, P; Phillips, M; Rabinowitz, D; Rostami, S; Seron, J; Stritzinger, M; Sullivan, M; Tucker, B E

    2016-01-01

    The LaSilla/QUEST Variability Survey (LSQ) and the Carnegie Supernova Project (CSP II) are collaborating to discover and obtain photometric light curves for a large sample of low redshift (z < 0.1) Type Ia supernovae. The supernovae are discovered in the LSQ survey using the 1 m ESO Schmidt telescope at the La Silla Observatory with the 10 square degree QUEST camera. The follow-up photometric observations are carried out using the 1 m Swope telescope and the 2.5 m du Pont telescopes at the Las Campanas Observatory. This paper describes the survey, discusses the methods of analyzing the data and presents the light curves for the first 31 Type Ia supernovae obtained in the survey. The SALT 2.4 supernova light curve fitter was used to analyze the photometric data, and the Hubble diagram for this first sample is presented. The measurement errors for these supernovae averaged 4%, and their intrinsic spread was 14%.

  17. Neutrinoless double beta decay search with SNO+

    Directory of Open Access Journals (Sweden)

    Lozza V.

    2014-01-01

    Full Text Available The SNO+ experiment is the follow up of SNO. The detector is located 2 km underground in the Vale Canada Ltd.’s Creighton Mine near Sudbury, Ontario, Canada. The active volume of the detector consists of 780 tonnes of Linear Alkyl Benzene (LAB in an acrylic vessel of 12 m diameter, surrounded by about 9500 PMTs. The main goal of the SNO+ experiment is the search for neutrinoless double beta decay of 130Te. With an initial loading of 0.3% of natural tellurium (nearly 800 kg of 130Te, it is expected to reach a sensitivity on the effective Majorana neutrino mass of about 100 meV after several years of data taking. Designed as a general purpose neutrino experiment, other exciting physical goals can be explored, like the measurement of reactor neutrino oscillations and geo-neutrinos in a geologically-interesting location, watch of supernova neutrinos and studies of solar neutrinos. A first commissioning phase with water filled detector will start at the end of 2013, while the double beta decay phase will start in 2015.

  18. An Open Catalog for Supernova Data

    Science.gov (United States)

    Guillochon, James; Parrent, Jerod; Kelley, Luke Zoltan; Margutti, Raffaella

    2017-01-01

    We present the Open Supernova Catalog, an online collection of observations and metadata for presently 36,000+ supernovae and related candidates. The catalog is freely available on the web (https://sne.space), with its main interface having been designed to be a user-friendly, rapidly searchable table accessible on desktop and mobile devices. In addition to the primary catalog table containing supernova metadata, an individual page is generated for each supernova, which displays its available metadata, light curves, and spectra spanning X-ray to radio frequencies. The data presented in the catalog is automatically rebuilt on a daily basis and is constructed by parsing several dozen sources, including the data presented in the supernova literature and from secondary sources such as other web-based catalogs. Individual supernova data is stored in the hierarchical, human- and machine-readable JSON format, with the entirety of each supernova’s data being contained within a single JSON file bearing its name. The setup we present here, which is based on open-source software maintained via git repositories hosted on github, enables anyone to download the entirety of the supernova data set to their home computer in minutes, and to make contributions of their own data back to the catalog via git. As the supernova data set continues to grow, especially in the upcoming era of all-sky synoptic telescopes, which will increase the total number of events by orders of magnitude, we hope that the catalog we have designed will be a valuable tool for the community to analyze both historical and contemporary supernovae.

  19. Postexplosion hydrodynamics of supernovae in red supergiants

    Science.gov (United States)

    Herant, Marc; Woosley, S. E.

    1994-01-01

    Shock propagation, mixing, and clumping are studied in the explosion of red supergiants as Type II supernovae using a two-dimensional smooth particle hydrodynamic (SPH) code. We show that extensive Rayleigh-Talor instabilities develop in the ejecta in the wake of the reverse shock wave. In all cases, the shell structure of the progenitor is obliterated to leave a clumpy, well-mixed supernova remnant. However, the occurrence of mass loss during the lifetime of the progenitor can significantly reduce the amount of mixing. These results are independent of the Type II supernova explosion mechanism.

  20. Chiral transport of neutrinos in supernovae

    Directory of Open Access Journals (Sweden)

    Yamamoto Naoki

    2017-01-01

    Full Text Available The conventional neutrino transport theory for core-collapse supernovae misses one key property of neutrinos: the left-handedness. The chirality of neutrinos modifies the hydrodynamic behavior at the macroscopic scale and leads to topological transport phenomena. We argue that such transport phenomena should play important roles in the evolution of core-collapse supernovae, and, in particular, lead to a tendency toward the inverse energy cascade from small to larger scales, which may be relevant to the origin of the supernova explosion.

  1. Chiral transport of neutrinos in supernovae

    CERN Document Server

    Yamamoto, Naoki

    2016-01-01

    The conventional neutrino transport theory for core-collapse supernovae misses one key property of neutrinos: the left-handedness. The chirality of neutrinos modifies the hydrodynamic behavior at the macroscopic scale and leads to topological transport phenomena. We argue that such transport phenomena should play important roles in the evolution of core-collapse supernovae, and, in particular, lead to a tendency toward the inverse energy cascade from small to larger scales, which may be relevant to the origin of the supernova explosion.

  2. A New Supernova Discovery/Classification

    Science.gov (United States)

    Howell, D. A.; Nugent, P. E.; Sullivan, M.; Gal-Yam, A.

    2010-10-01

    The Type Ia supernova science working group of the Palomar Transient Factory (ATEL#1964) reports the discovery of the Type Ia supernova PTF10ygu at RA=09:37:30.30, Dec=+23:09:33.6 (J2000) in the host galaxy NGC 2929 at z=0.025. The supernova was discovered on Oct. 12.5 UT when it was at magnitude 19.2 in R-band (calibrated wrt the USNO catalog). There was nothing at this location on Oct 8.5 UT to a limiting magnitude of 20.3, and a marginal detection (S/N=5) at R=19.6 on Oct.

  3. Supernovae and Gamma-Ray Bursts

    Science.gov (United States)

    Livio, Mario; Panagia, Nino; Sahu, Kailash

    2001-07-01

    Participants; Preface; Gamma-ray burst-supernova relation B. Paczynski; Observations of gamma-ray bursts G. Fishman; Fireballs T. Piran; Gamma-ray mechanisms M. Rees; Prompt optical emission from gamma-ray bursts R. Kehoe, C. Akerlof, R. Balsano, S. Barthelmy, J. Bloch, P. Butterworth, D. Casperson, T. Cline, S. Fletcher, F. Frontera, G. Gisler, J. Heise, J. Hills, K. Hurley, B. Lee, S. Marshall, T. McKay, A. Pawl, L. Piro, B. Priedhorsky, J. Szymanski and J. Wren; X-ray afterglows of gamma-ray bursts L. Piro; The first year of optical-IR observations of SN1998bw I. Danziger, T. Augusteijn, J. Brewer, E. Cappellaro, V. Doublier, T. Galama, J. Gonzalez, O. Hainaut, B. Leibundgut, C. Lidman, P. Mazzali, K. Nomoto, F. Patat, J. Spyromilio, M. Turatto, J. Van Paradijs, P. Vreeswijk and J. Walsh; X-ray emission of Supernova 1998bw in the error box of GRB980425 E. Pian; Direct analysis of spectra of type Ic supernovae D. Branch; The interaction of supernovae and gamma-ray bursts with their surroundings R. Chevalier; Magnetars, soft gamma-ray repeaters and gamma-ray bursts A. Harding; Super-luminous supernova remnants Y. -H. Chu, C. -H. Chen and S. -P. Lai; The properties of hypernovae: SNe Ic 1998bw, 1997ef, and SN IIn 1997cy K. Nomoto, P. Mazzali, T. Nakamura, K. Iwanmoto, K. Maeda, T. Suzuki, M. Turatto, I. Danziger and F. Patat; Collapsars, Gamma-Ray Bursts, and Supernovae S. Woosley, A. MacFadyen and A. Heger; Pre-supernova evolution of massive stars N. Panagia and G. Bono; Radio supernovae and GRB 980425 K. Weiler, N. Panagia, R. Sramek, S. Van Dyk, M. Montes and C. Lacey; Models for Ia supernovae and evolutionary effects P. Hoflich and I. Dominguez; Deflagration to detonation A. Khokhlov; Universality in SN Iae and the Phillips relation D. Arnett; Abundances from supernovae F. -K. Thielemann, F. Brachwitz, C. Freiburghaus, S. Rosswog, K. Iwamoto, T. Nakamura, K. Nomoto, H. Umeda, K. Langanke, G. Martinez-Pinedo, D. Dean, W. Hix and M. Strayer; Sne, GRBs, and the

  4. Neutrino scattering and flavor transformation in supernovae

    CERN Document Server

    Cherry, John F; Friedland, Alexander; Fuller, George M; Vlasenko, Alexey

    2012-01-01

    We argue that the small fraction of neutrinos that undergo direction-changing scattering outside of the neutrinosphere could have significant influence on neutrino flavor transformation in core-collapse supernova environments. We show that the standard treatment for collective neutrino flavor transformation is adequate at late times, but could be inadequate in the crucial shock revival/explosion epoch of core-collapse supernovae, where the potentials that govern neutrino flavor evolution are affected by the scattered neutrinos. Taking account of this effect, and the way it couples to entropy and composition, will require a new paradigm in supernova modeling.

  5. Radio Supernovae: Circum-Stellar Investigation (C.S.I.) of Supernova Progenitor Stars

    Science.gov (United States)

    2009-02-24

    ar X iv :0 90 2. 40 59 v1 [ as tr o- ph .H E ] 2 4 Fe b 20 09 Radio Supernovae : Circum-Stellar Investigation (C.S.I.) of Supernova Progenitor...FEB 2009 2. REPORT TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Radio Supernovae : Circum-Stellar Investigation (C.S.I...of Supernova Progenitor Stars 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f

  6. Observational data on Galactic supernova remnants: II. The supernova remnants within l = 90°-270°

    Directory of Open Access Journals (Sweden)

    Guseinov O.H.

    2004-01-01

    Full Text Available We have collected all the available data on Galactic supernova remnants given in the literature. The data of Galactic supernova remnants located in the Galactic longitude interval l=90° - 270° in all spectral bands are represented in this work. We have adopted distance values for the SNRs by examining these data. The data of various types on neutron stars connected to these supernova remnants are also represented. Remarks of some authors and by ourselves regarding the data and some properties of both the supernova remnants and the point sources are given.

  7. X-ray studies of supernova remnants: a different view of supernova explosions.

    Science.gov (United States)

    Badenes, Carles

    2010-04-20

    The unprecedented spatial and spectral resolutions of Chandra have revolutionized our view of the X-ray emission from supernova remnants. The excellent datasets accumulated on young, ejecta-dominated objects like Cas A or Tycho present a unique opportunity to study at the same time the chemical and physical structure of the explosion debris and the characteristics of the circumstellar medium sculpted by the progenitor before the explosion. Supernova remnants can thus put strong constraints on fundamental aspects of both supernova explosion physics and stellar evolution scenarios for supernova progenitors. This view of the supernova phenomenon is completely independent of, and complementary to, the study of distant extragalactic supernovae at optical wavelengths. The calibration of these two techniques has recently become possible thanks to the detection and spectroscopic follow-up of supernova light echoes. In this paper, I review the most relevant results on supernova remnants obtained during the first decade of Chandra and the impact that these results have had on open issues in supernova research.

  8. How to Find Gravitationally Lensed Type Ia Supernovae

    Science.gov (United States)

    Goldstein, Daniel A.; Nugent, Peter E.

    2017-01-01

    Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts (z ≳ 2), probe potential SN Ia evolution, and deliver high-precision constraints on H0, w, and Ωm via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear to be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts’ photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. Active galactic nuclei, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse SNe will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that the Large Synoptic Survey Telescope can discover up to 500 multiply imaged SNe Ia using this technique in a 10 year z-band search, more than an order of magnitude improvement over previous estimates. We also predict that the Zwicky Transient Facility should find up to 10 multiply imaged SNe Ia using this technique in a 3 year R-band search—despite the fact that this survey will not resolve a single system.

  9. Radio emision from supernova remnants

    Science.gov (United States)

    Dubner, G.

    2016-06-01

    The vast majority of supernova remnants (SNRs) in our Galaxy and nearby galaxies have been discovered through radio observations, and only a very small number of the SNRs catalogued in the Milky Way have not been detected in the radio band, or are poorly defined by current radio observations. The study of the radio emission from SNRs is an excellent tool to investigate morphological characteristics, marking the location of shock fronts and contact discontinuities; the presence, orientation and intensity of the magnetic field; the energy spectrum of the emitting particles; and the dynamical consequences of the interaction with the circumstellar and interstellar medium. I will review the present knowledge of different important aspects of radio remnants and their impact on the interstellar gas. Also, new radio studies of the Crab Nebula carried out with the Karl Jansky Very Large Array (JVLA) at 3 GHz and with ALMA at 100 GHz, will be presented.

  10. Supernova 1987A at 30

    Science.gov (United States)

    Spyromilio, J.; Leibundgut, B.; Fransson, C.; Larsson, J.; Migotto, K.; Girard, J.

    2017-03-01

    Thirty years on, SN 1987A continues to develop and, over the last decade in particular, has: revealed the presence of a large centrally concentrated reservoir of dust; shown the presence of molecular species within the ejecta; expanded such that the ejecta structure is angularly resolved; begun the destruction of the circumstellar ring and transitioned to being dominated by energy sources external to the ejecta. We are participating in a live experiment in the creation of a supernova remnant and here the recent progress is briefly overviewed. Exciting developments can be expected as the ejecta and the reverse shock continue their interaction, the X-rays penetrate into the cold molecular core and we observe the return of the material into the interstellar medium. We anticipate that the nature of the remnant of the leptonisation event in the centre will also be revealed.

  11. Progenitors of Supernovae Type Ia

    CERN Document Server

    Toonen, S; Bours, M; Zwart, S Portegies; Claeys, J; Mennekens, N; Ruiter, A

    2013-01-01

    Despite the significance of Type Ia supernovae (SNeIa) in many fields in astrophysics, SNeIa lack a theoretical explanation. The standard scenarios involve thermonuclear explosions of carbon/oxygen white dwarfs approaching the Chandrasekhar mass; either by accretion from a companion or by a merger of two white dwarfs. We investigate the contribution from both channels to the SNIa rate with the binary population synthesis (BPS) code SeBa in order to constrain binary processes such as the mass retention efficiency of WD accretion and common envelope evolution. We determine the theoretical rates and delay time distribution of SNIa progenitors and in particular study how assumptions affect the predicted rates.

  12. ANTIPROTONS PRODUCED IN SUPERNOVA REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Berezhko, E. G.; Ksenofontov, L. T., E-mail: ksenofon@ikfia.sbras.ru [Yu. G. Shafer Institute of Cosmophysical Research and Aeronomy, 31 Lenin Avenue, 677891 Yakutsk (Russian Federation)

    2014-08-20

    We present the energy spectrum of an antiproton cosmic ray (CR) component calculated on the basis of the nonlinear kinetic model of CR production in supernova remnants (SNRs). The model includes the reacceleration of antiprotons already existing in the interstellar medium as well as the creation of antiprotons in nuclear collisions of accelerated protons with gas nuclei and their subsequent acceleration by SNR shocks. It is shown that the production of antiprotons in SNRs produces a considerable effect in their resultant energy spectrum, making it essentially flatter above 10 GeV so that the spectrum at TeV energies increases by a factor of 5. The calculated antiproton spectrum is consistent with the PAMELA data, which correspond to energies below 100 GeV. As a consistency check, we have also calculated within the same model the energy spectra of secondary nuclei and show that the measured boron-to-carbon ratio is consistent with the significant SNR contribution.

  13. Progenitors of type Ia supernovae

    CERN Document Server

    Maeda, Keiichi

    2016-01-01

    Natures of progenitors of type Ia Supernovae (SNe Ia) have not yet been clarified. There has been long and intensive discussion on whether the so-called single degenerate (SD) scenario or the double degenerate (DD) scenario, or anything else, could explain a major population of SNe Ia, but the conclusion has not yet been reached. With rapidly increasing observational data and new theoretical ideas, the field of studying the SN Ia progenitors has been quickly developing, and various new insights have been obtained in recent years. This article aims at providing a summary of the current situation regarding the SN Ia progenitors, both in theory and observations. It seems difficult to explain the emerging diversity seen in observations of SNe Ia by a single population, and we emphasize that it is important to clarify links between different progenitor scenarios and different sub-classes of SNe Ia.

  14. Mass extinctions and supernova explosions

    CERN Document Server

    Korschinek, Gunther

    2016-01-01

    A nearby supernova (SN) explosion could have negatively influenced life on Earth, maybe even been responsible for mass extinctions. Mass extinction poses a significant extinction of numerous species on Earth, as recorded in the paleontologic, paleoclimatic, and geological record of our planet. Depending on the distance between the Sun and the SN, different types of threats have to be considered, such as ozone depletion on Earth, causing increased exposure to the Sun's ultraviolet radiation, or the direct exposure of lethal x-rays. Another indirect effect is cloud formation, induced by cosmic rays in the atmosphere which result in a drop in the Earth's temperature, causing major glaciations of the Earth. The discovery of highly intensive gamma ray bursts (GRBs), which could be connected to SNe, initiated further discussions on possible life-threatening events in Earth's history. The probability that GRBs hit the Earth is very low. Nevertheless, a past interaction of Earth with GRBs and/or SNe cannot be exclude...

  15. Astrophysics: Echo from an ancient supernova

    Science.gov (United States)

    Pastorello, Andrea; Patat, Ferdinando

    2008-12-01

    Light reflected off a dust cloud in the vicinity of the relic of Tycho Brahe's supernova, whose light first swept past Earth more than four centuries ago, literally sheds light on the nature of this cosmic explosion.

  16. The Supernova Impostor SN 2010da

    Science.gov (United States)

    Binder, Breanna A.; Williams, Benjamin F.; Kong, Albert K. H.; Plucinsky, Paul P.; Gaetz, Terrance J.; Skillman, Evan D.; Dolphin, Andrew E.

    2016-01-01

    Supernova impostors are optical transients that, despite being assigned a supernova designation, do not signal the death of a massive star or accreting white dwarf. Instead, many impostors are thought to be major eruptions from luminous blue variables. Although the physical cause of these eruptions is still debated, tidal interactions from a binary companion has recently gained traction as a possible explanation for observations of some supernova impostors. In this talk, I will discuss the particularly interesting impostor SN 2010da, which exhibits high-luminosity, variable X-ray emission. The X-ray emission is consistent with accretion onto a neutron star, making SN 2010da a likely high mass X-ray binary in addition to a supernova impostor. SN 2010da is a unique laboratory for understanding both binary interactions as drivers of massive star eruptions and the evolutionary processes that create high mass X-ray binaries.

  17. Physical processes in collapse driven supernova

    Energy Technology Data Exchange (ETDEWEB)

    Mayle, R.W.

    1985-11-01

    A model of the supernova explosion is discussed. The method of neutrino transport is discussed, since the explosive mechanism depends on neutrino heating of the material behind the accretion shock. The core region of these exploding stars becomes unstable to convective motions during the supernova evolution. Convective mixing allows more neutrinos to escape from under the neutrinosphere, and thus increases the amount of heating by neutrinos. An approximate method of incorporating convection is described, and some results of including convection in a computer model is presented. Another phenomena is seen in computer simulations of supernova, oscillations in the neutrino luminosity and mass accretion rate onto the protoneutron star. The last topic discussed in this thesis describes the attempt to understand this oscillation by perturbation of the steady state solution to equations approximating the complex physical processes occurring in the late time supernova. 42 refs., 31 figs.

  18. Inside the supernova a powerful convective engine

    CERN Document Server

    Herant, M; Hix, W R; Fryer, C F; Colgate, S A; Marc Herant; Willy Benz; Chris F Fryer; Stirling Colgate

    1994-01-01

    We present an extensive study of the inception of supernova explosions by following the evolution of the cores of two massive stars (15 Msun and 25 Msun) in two dimensions. Our calculations begin at the onset of core collapse and stop several 100 ms after the bounce, at which time successful explosions of the appropriate magnitude have been obtained. (...) Guided by our numerical results, we have developed a paradigm for the supernova explosion mechanism. We view a supernova as an open cycle thermodynamic engine in which a reservoir of low-entropy matter (the envelope) is thermally coupled and physically connected to a hot bath (the protoneutron star) by a neutrino flux, and by hydrodynamic instabilities. (...) In essence, a Carnot cycle is established in which convection allows out-of-equilibrium heat transfer mediated by neutrinos to drive low entropy matter to higher entropy and therefore extracts mechanical energy from the heat generated by gravitational collapse. We argue that supernova explosions are ne...

  19. Detecting supernovae neutrino with Earth matter effect

    CERN Document Server

    Liao, Wei

    2016-01-01

    We study Earth matter effect in oscillation of supernovae neutrinos. We show that detecting Earth matter effect gives an independent measurement of spectra of supernovae neutrinos, i.e. the flavor difference of the spectra of supernovae neutrinos. We study the effect of energy resolution and angular resolution of final electron or positron on detecting the signal of Earth matter effect. We show that varying the widths of energy bins in analysis can change the signal strength of Earth matter effect and the statistical fluctuation. A reasonable choice of energy bins can both suppress the statistical fluctuation and make out a good signal strength relative to the statistical fluctuation. Neutrino detectors with good energy resolution and good angular resolution are therefore preferred so that there are more freedom to vary energy bins and to optimize the signal of Earth matter effect in analyzing events of supernovae neutrinos.

  20. Supernovae, dark energy and the accelerating universe

    CERN Document Server

    Perlmutter, Saul

    1999-01-01

    Based on an analysis of 42 high-redshift supernovae discovered by the supernovae cosmology project, we have found evidence for a positive cosmological constant, Lambda, and hence an accelerating universe. In particular, the data are strongly inconsistent with a Lambda=0 flat cosmology, the simplest inflationary universe model. The size of our supernova sample allows us to perform a variety of statistical tests to check for possible systematic errors and biases. We will discuss results of these and other studies and the ongoing hunt for further loopholes to evade the apparent consequences of the measurements. We will present further work that begins to constrain the alternative physics theories of "dark energy" that have been proposed to explain these results. Finally, we propose a new concept for a definitive supernova measurement of the cosmological parameters.

  1. Shock Heated Dust in Young Supernova Remnants

    Science.gov (United States)

    Braun, R.; Strom, R. G.; van der Laan, H.; Greidanus, H.

    Infrared emission in young supernova remnants is interpreted as coming from shock-heated dust. Using models and data from other wavelength regimes, many physical parameters of the remnants can accurately be derived.

  2. Cosmic ray escape from supernova remnants

    CERN Document Server

    Gabici, Stefano

    2011-01-01

    Galactic cosmic rays are believed to be accelerated at supernova remnants via diffusive shock acceleration. Though this mechanism gives fairly robust predictions for the spectrum of particles accelerated at the shock, the spectrum of the cosmic rays which are eventually injected in the interstellar medium is more uncertain and depends on the details of the process of particle escape from the shock. Knowing the spectral shape of these escaping particles is of crucial importance in order to assess the validity of the supernova remnant paradigm for cosmic ray origin. Moreover, after escaping from a supernova remnant, cosmic rays interact with the surrounding ambient gas and produce gamma rays in the vicinity of the remnant itself. The detection of this radiation can be used as an indirect proof of the fact that the supernova remnant was indeed accelerating cosmic rays in the past.

  3. An "archaeological" quest for galactic supernova neutrinos

    CERN Document Server

    Lazauskas, Rimantas; Volpe, Cristina

    2009-01-01

    We explore the possibility to observe the effects of electron neutrinos from past galactic supernovae, through a geochemical measurement of the amount of Technetium 97 produced by neutrino-induced reactions in a Molybdenum ore. The calculations we present take into account the recent advances in our knowledge of neutrino interactions, of neutrino oscillations inside a supernova, of the solar neutrino flux at Earth and of possible failed supernovae. The predicted Technetium 97 abundance is of the order of 10^7 atoms per 10 kilotons of ore, which is close to the current geochemical experimental sensitivity. Of this, 10-20% is from supernovae. Considering the comparable size of uncertainties, more precision in the modeling of neutrino fluxes as well as of neutrino cross sections is required for a meaningful measurement.

  4. A review of type Ia supernova spectra

    CERN Document Server

    Parrent, J; Parthasarathy, M

    2014-01-01

    SN 2011fe was the nearest and best-observed type Ia supernova in a generation, and brought previous incomplete datasets into sharp contrast with the detailed new data. In retrospect, documenting spectroscopic behaviors of type Ia supernovae has been more often limited by sparse and incomplete temporal sampling than by consequences of signal-to-noise ratios, telluric features, or small sample sizes. As a result, type Ia supernovae have been primarily studied insofar as parameters discretized by relative epochs and incomplete temporal snapshots near maximum light. Here we discuss a necessary next step toward consistently modeling and directly measuring spectroscopic observables of type Ia supernova spectra. In addition, we analyze current spectroscopic data in the parameter space defined by empirical metrics, which will be relevant even after progenitors are observed and detailed models are refined.

  5. SN 1054: A pulsar-powered supernova?

    Science.gov (United States)

    Li, Shao-Ze; Yu, Yun-Wei; Huang, Yan

    2015-11-01

    The famous ancient supernova SN 1054 could have been too bright to be explained in the “standard” radioactive-powered supernova scenario. As an alternative attempt, we demonstrate that the spin-down of the newly born Crab pulsar could provide a sufficient energy supply to make SN 1054 visible at daytime for 23 days and at night for 653 days, where a one-zone semi-analytical model is employed. Our results indicate that SN 1054 could be a “normal” cousin of magnetar-powered superluminous supernovae. Therefore, SN 1054-like supernovae could be a probe to uncover the properties of newly born neutron stars, which provide initial conditions for studies on neutron star evolutions.

  6. Supernova Shock Breakout from a Red Supergiant

    CERN Document Server

    Schawinski, Kevin; Wolf, Christian; Podsiadlowski, Philipp; Sullivan, Mark; Steenbrugge, Katrien C; Bell, Tony; Roeser, Hermann-Josef; Walker, Emma; Astier, Pierre; Balam, Dave; Balland, Christophe; Basa, Stephane; Carlberg, Ray; Conley, Alex; Fouchez, Dominque; Guy, Julien; Hardin, Delphine; Hook, Isobel; Howell, Andy; Pain, Reynald; Perrett, Kathy; Pritchet, Chris; Regnault, Nicolas; Yi, Sukyoung K

    2008-01-01

    Massive stars undergo a violent death when the supply of nuclear fuel in their cores is exhausted, resulting in a catastrophic `core-collapse' supernova. Such events are usually detected long after the star has exploded. Here we report the first detection of the radiative precursor from a supernova shock before it has reached the surface of a star followed by the initial expansion of the star at the beginning of the explosion. Theoretical models of the ultraviolet light curve show that the progenitor was a red supergiant, as expected for this type of supernova. These observations provide a promising and novel way to probe the physics of core-collapse supernovae and the internal structures of their progenitors.

  7. Supernova Classification Using Swift UVOT Photometry

    Science.gov (United States)

    Smith, Madison; Brown, Peter J.

    2017-01-01

    With the great influx of supernova discoveries over the past few years, the observation time needed to acquire the spectroscopic data needed to classify supernova by type has become unobtainable. Instead, using the photometry of supernovae could greatly reduce the amount of time between discovery and classification. For this project we looked at the relationship between colors and supernova types through machine learning packages in Python. Using data from the Swift Ultraviolet/Optical Telescope (UVOT), each photometric point was assigned values corresponding to colors, absolute magnitudes, and the relative times from the peak brightness in several filters. These values were fed into three classifying methods, the nearest neighbors, decision tree, and random forest methods. We will discuss the success of these classification systems, the optimal filters for photometric classification, and ways to improve the classification.

  8. MDM OSMOS Spectroscopic classification of Supernovae

    Science.gov (United States)

    Bose, Subhash; Dong, Subo; Chen, Ping; Klusmeyer, J.; Prieto, Jose Luis; Shappee, B.; Shields, J.; Brown, J.; Stanek, K. Z.; Kochanek, C.

    2016-11-01

    We report optical spectroscopic classification of supernova candidates 2016hgd (ATel #9651), 2016hli (ATel #9685), CSS161013:015319+171853 and CSS161013:020130+141534 (http://nesssi.cacr.caltech.edu/catalina/AllSN.html).

  9. Could Google Trends Be Used to Predict Methamphetamine-Related Crime? An Analysis of Search Volume Data in Switzerland, Germany, and Austria.

    Science.gov (United States)

    Gamma, Alex; Schleifer, Roman; Weinmann, Wolfgang; Buadze, Anna; Liebrenz, Michael

    2016-01-01

    To compare the time trends of Google search interest in methamphetamine and criminal offences related to this drug. Google Trends data for the search term "meth" was compared to methamphetamine-related crime statistics (incl. use, possession, and dealing) in Switzerland, Germany, and Austria for the years 2004-2016. Google data was availably monthly. Crime data was available yearly, and monthly values were imputed. On the country level, internet search trends for "meth" roughly paralleled relevant criminal activity. State-level data, which was available for Austria, showed more heterogeneity. Cross-correlations for yearly data almost always peaked at a lag time of 0 and coefficients were mostly between 0.7 and 1.0 on the country level, and between 0.5 to 1.0 on the state level. Monthly cross-correlations based on imputed values were substantially lower, ranging from 0 to 0.6. These results encourage the further evaluation by law enforcement authorities of Google search activity as a possible predictor of methamphetamine-related crime. However, several limitations, in particular the crude temporal resolution of available crime data, precluded a detailed assessment of the relationship between internet search trends and the development of methamphetamine-related crime in central Europe.

  10. Neutrino-nucleus reactions in supernovae

    Science.gov (United States)

    Dzhioev, Alan A.; Vdovin, A. I.

    2016-01-01

    We study thermal effects on neutrino-nucleus reactions occurring under supernova conditions. The approach we use is based on the QRPA extended to finite temperature by the thermofield dynamics formalism. For the relevant supernova conditions we calculate inelastic neutrino scattering and neutrino absorption cross sections for two sample nuclei, 56Fe and 82Ge. In addition, we apply the approach to examine the rate of neutrino-antineutrino pair emission by hot nuclei.

  11. Neutrino-nucleus reactions in supernovae

    Directory of Open Access Journals (Sweden)

    Dzhioev Alan A.

    2016-01-01

    Full Text Available We study thermal effects on neutrino-nucleus reactions occurring under supernova conditions. The approach we use is based on the QRPA extended to finite temperature by the thermofield dynamics formalism. For the relevant supernova conditions we calculate inelastic neutrino scattering and neutrino absorption cross sections for two sample nuclei, 56Fe and 82Ge. In addition, we apply the approach to examine the rate of neutrino-antineutrino pair emission by hot nuclei.

  12. Supernova neutrino oscillations: What do we understand?

    Energy Technology Data Exchange (ETDEWEB)

    Dighe, Amol, E-mail: amol@theory.tifr.res.i [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India)

    2010-01-01

    We summarize our current understanding of the neutrino flavor conversions inside a core collapse supernova, clarifying the important role played by the 'collective effects' in determining flavor conversion probabilities. The potentially observable {nu}{sub e} and {nu}-bar {sub e} spectra may help us identify the neutrino mixing scenario, distinguish between primary flux models, and learn more about the supernova explosion.

  13. Collective flavor transitions of supernova neutrinos

    CERN Document Server

    Sigl, Guenter; Esteban-Pretel, Andreu; Pastor, Sergio; Mirizzi, Alessandro; Raffelt, Georg G; Serpico, Pasquale D

    2009-01-01

    We give a very brief overview of collective effects in neutrino oscillations in core collapse supernovae where refractive effects of neutrinos on themselves can considerably modify flavor oscillations, with possible repercussions for future supernova neutrino detection. We discuss synchronized and bipolar oscillations, the role of energy and angular neutrino modes, as well as three-flavor effects. We close with a short summary and some open questions.

  14. The SuperNova Early Warning System

    OpenAIRE

    Scholberg, K.

    2008-01-01

    A core collapse in the Milky Way will produce an enormous burst of neutrinos in detectors world-wide. Such a burst has the potential to provide an early warning of a supernova's appearance. I will describe the nature of the signal, the sensitivity of current detectors, and SNEWS, the SuperNova Early Warning System, a network designed to alert astronomers as soon as possible after the detected neutrino signal.

  15. Close binary white dwarfs and supernovae IA

    Directory of Open Access Journals (Sweden)

    R. Napiwotzki

    2004-01-01

    Full Text Available Informamos sobre el estado actual de los \\surveys" de velocidades radiales para binarias de enanas blancas (degeneradas dobles - DDs incluyendo SPY (Exploraci on ESO de progenitoras de supernovas Ia que recien- temente se llevaron a cabo en el VLT. Una amplia muestra de DDs nos permitir a poner fuertes restricciones sobre las fases evolutivas de los sistemas progenitores de binarias cercanas y tambi en llevar a cabo pruebas observacionales del escenario DD para supernovas de tipo Ia.

  16. Neutrino oscillations in core-collapse supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meng-Ru [TU Darmstadt (Germany); University of Minnesota, MN (United States); Huther, Lutz [TU Darmstadt (Germany); Fischer, Tobias; Martinez-Pinedo, Gabriel [TU Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Qian, Yong-Zhong [University of Minnesota, MN (United States)

    2013-07-01

    Neutrino oscillations play an important role in determining the spectra of neutrinos emitted from core-collapse supernova and must be considered in the analysis of supernova neutrino detection to understand both the supernova dynamics and the unknown neutrino mass hierarchy. We have studied neutrino oscillations in supernovae using the emission spectra of neutrinos and the dynamically evolving supernova density profile from a state-of-the-art supernova model. We find that in this model, different regions of neutrino oscillations are well separated. Collective neutrino oscillations happen at the innermost part such that the spectra of electron neutrinos and mu/tau neutrinos are partly swapped for the first few seconds in the cooling phase. Then, the high and low MSW resonances that occur after collective oscillations are both adiabatic. Using these results, we find that in this model, neutrino oscillations have little effect on the nucleosynthesis in the neutrino-driven winds. However, the detection of such a signal could possibly allow us to differentiate the neutrino mass hierarchy and to extract the shock revival time.

  17. The volumetric rate of superluminous supernovae at z ˜ 1

    Science.gov (United States)

    Prajs, S.; Sullivan, M.; Smith, M.; Levan, A.; Karpenka, N. V.; Edwards, T. D. P.; Walker, C. R.; Wolf, W. M.; Balland, C.; Carlberg, R.; Howell, D. A.; Lidman, C.; Pain, R.; Pritchet, C.; Ruhlmann-Kleider, V.

    2017-01-01

    We present a measurement of the volumetric rate of superluminous supernovae (SLSNe) at z ˜ 1.0, measured using archival data from the first four years of the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). We develop a method for the photometric classification of SLSNe to construct our sample. Our sample includes two previously spectroscopically identified objects, and a further new candidate selected using our classification technique. We use the point-source recovery efficiencies from Perrett et al. and a Monte Carlo approach to calculate the rate based on our SLSN sample. We find that the three identified SLSNe from SNLS give a rate of 91^{+76}_{-36} SNe yr-1 Gpc-3 at a volume-weighted redshift of z = 1.13. This is equivalent to 2.2^{+1.8}_{-0.9}× 10^{-4} of the volumetric core-collapse supernova rate at the same redshift. When combined with other rate measurements from the literature, we show that the rate of SLSNe increases with redshift in a manner consistent with that of the cosmic star formation history. We also estimate the rate of ultra-long gamma-ray bursts based on the events discovered by the Swift satellite, and show that it is comparable to the rate of SLSNe, providing further evidence of a possible connection between these two classes of events. We also examine the host galaxies of the SLSNe discovered in SNLS, and find them to be consistent with the stellar-mass distribution of other published samples of SLSNe.

  18. PREFACE: 5th Symposium on Large TPCs for Low Energy Rare Event Detection and Workshop on Neutrinos from Supernovae

    Science.gov (United States)

    Irastorza, Igor G.; Scholberg, Kate; Colas, Paul; Giomataris, Ioannis

    2011-08-01

    The Fifth International Symposium on large TPCs for low-energy rare-event detection was held at the auditorium of the Astroparticle and Cosmology (APC) Laboratory in Paris, on 14-17 December 2010. As for all previous meetings, always held in Paris in 2008, 2006, 2004 and 2002, it brought together a significant community of physicists involved in rare event searches and/or development of time projection chambers (TPCs). As a novelty this year, the meeting was extended with two half-day sessions on Supernova physics. These proceedings also include the contributions corresponding to the supernova sessions. The purpose of the meeting was to present and discuss the status of current experiments or projects involving the use of TPCs to search for rare events, like low-energy neutrinos, double beta decay, dark matter or axion experiments, as well as to discuss new results and ideas in the framework of the last developments of Micro Pattern Gaseous Detectors (MPGD), and how these are being - or could be - applied to these searches. As in previous meetings in this series, the format included an informal program with some recent highlighted results, rather than exhaustive reviews, with time for discussion and interaction. The symposium, the fifth of the series, is becoming consolidated as a regular meeting place for the synergic interplay between the fields of rare events and TPC development. The meeting started with a moving tribute by Ioannis Giomataris to the memory of George Charpak, who recently passed away. We then moved on to the usual topics like the status of some low-energy neutrino physics and double beta decay experiments, dark matter experiments with directional detectors, axion searches, or development results. A relevant subject this time was the electroluminescence in Xe TPCs, covered by several speakers. Every time the conference program is enriched with original slightly off-topic contributions that trigger the curiosity and stimulate further thought. As

  19. Type Ia supernova rate at a redshift of ­0.1

    DEFF Research Database (Denmark)

    Blanc ...[et al], G.; Andersen, J.

    2004-01-01

    stars: supernovae: general; galaxies: evolution; cosmology: miscellaneous; methods: observational......stars: supernovae: general; galaxies: evolution; cosmology: miscellaneous; methods: observational...

  20. Exploring the Outer Solar System with the ESSENCE Supernova Survey

    Energy Technology Data Exchange (ETDEWEB)

    Becker, A.C.; /Washington U., Seattle, Astron. Dept.; Arraki, K.; /Washington U., Seattle, Astron. Dept.; Kaib, N.A.; /Washington U., Seattle, Astron. Dept.; Wood-Vasey, W.M.; /Harvard-Smithsonian Ctr. Astrophys.; Aguilera, C.; /Cerro-Tololo InterAmerican Obs.; Blackman, J.W.; /Australian Natl. U., Canberra; Blondin, S.; /Harvard-Smithsonian Ctr. Astrophys.; Challis, P.; /Harvard-Smithsonian Ctr. Astrophys.; Clocchiatti, A.; /Rio de Janeiro, Pont. U. Catol.; Covarrubias, R.; /Kyushu Sangyo U.; Damke, G.; /Cerro-Tololo InterAmerican Obs.; Davis, T.M.; /Bohr Inst. /Queensland U.; Filippenko, A.V.; /UC, Berkeley; Foley, R.J.; /UC, Berkeley; Garg, A.; /Harvard-Smithsonian Ctr. Astrophys. /Harvard U.; Garnavich, P.M.; /Notre Dame U.; Hicken, M.; /Harvard-Smithsonian Ctr. Astrophys. /Harvard U.; Jha, S.; /Harvard U. /SLAC; Kirshner, R.P.; /Harvard-Smithsonian Ctr. Astrophys.; Krisciunas, K.; /Notre Dame U. /Texas A-M; Leibundgut, B.; /Munich, Tech. U. /UC, Berkeley /NOAO, Tucson /Washington U., Seattle, Astron. Dept. /Fermilab /Harvard-Smithsonian Ctr. Astrophys. /Harvard U. /Chile U., Santiago /Ohio State U. /Cerro-Tololo InterAmerican Obs. /Harvard U. /Baltimore, Space Telescope Sci. /Johns Hopkins U. /Australian Natl. U., Canberra /Australian Natl. U., Canberra /Cerro-Tololo InterAmerican Obs. /Munich, Tech. U. /Harvard-Smithsonian Ctr. Astrophys. /Harvard U. /Cerro-Tololo InterAmerican Obs. /Texas A-M /Cerro-Tololo InterAmerican Obs.

    2011-11-10

    We report the discovery and orbital determination of 14 trans-Neptunian objects (TNOs) from the ESSENCE Supernova Survey difference imaging data set. Two additional objects discovered in a similar search of the SDSS-II Supernova Survey database were recovered in this effort. ESSENCE repeatedly observed fields far from the solar system ecliptic (-21{sup o} < {beta} < -5{sup o}), reaching limiting magnitudes per observation of I {approx} 23.1 and R {approx} 23.7. We examine several of the newly detected objects in detail, including 2003 UC{sub 414}, which orbits entirely between Uranus and Neptune and lies very close to a dynamical region that would make it stable for the lifetime of the solar system. 2003 SS{sub 422} and 2007 TA{sub 418} have high eccentricities and large perihelia, making them candidate members of an outer class of TNOs. We also report a new member of the 'extended' or 'detached' scattered disk, 2004 VN{sub 112}, and verify the stability of its orbit using numerical simulations. This object would have been visible to ESSENCE for only {approx}2% of its orbit, suggesting a vast number of similar objects across the sky. We emphasize that off-ecliptic surveys are optimal for uncovering the diversity of such objects, which in turn will constrain the history of gravitational influences that shaped our early solar system.

  1. Tests of Environmental Effects on Type Ia Supernova Production

    Science.gov (United States)

    Sadler, Suzanna M.; Strolger, L.; Wolff, S.

    2011-01-01

    The host galaxy environments of type Ia supernovae (SNe Ia) provide our best opportunity for constraining the mechanism(s) of the SN Ia progenitor system, i.e., the stars involved, the incubation times, and the sensitivity of SNe Ia to changes in the local gas-phase metallicity. The latter can affect the luminosity of the resultant event, and possibly the success in ultimately yielding a SN Ia. We seek to solidify possible environmental trends in SN Ia rates from direct measures of host galaxy properties, using the sample collected by the Nearby Galaxies Supernova Search project. This study will uncover which has the greatest influence on SN Ia production efficiency: parent population age, rate of star-formation, or metallicity. Here, we will show some preliminary results from SSP model fitting (of age and [Fe/H]) to a selection of hosts obtained thus far from this study. The complete sample will provide a validity test of the mostly indirect trends being established for SNe Ia from the LOSS, SDSS, SNfactory and other surveys, and may ultimately steer future investigations towards more precise SN Ia cosmology.

  2. NTT and NOT spectroscopy of SDSS-II supernovae

    CERN Document Server

    Ostman, L; Goobar, A; Amanullah, R; Smith, M; Sollerman, J; Stanishev, V; Stritzinger, M D; Bassett, B A; Davis, T M; Edmondson, E; Frieman, J A; Garnavich, P M; Lampeitl, H; Leloudas, G; Marriner, J; Nichol, R C; Romer, K; Sako, M; Schneider, D P; Zheng, C

    2010-01-01

    Context. The SDSS-II Supernova Survey, conducted between 2005 and 2007, was designed to detect a large number of Type Ia supernovae (SNe Ia) around z~0.2, the redshift “gap” between low-z and high-z SN searches. The survey has provided multi-band photometric lightcurves for variable targets, and SN candidates were scheduled for spectroscopic observations, primarily to provide SN classification and accurate redshifts. We present SN spectra obtained in 2006 and 2007 using the NTT and the NOT. Aims. We provide an atlas of SN spectra in the range z =0.03-0.32 that complements the well-sampled lightcurves from SDSS-II in the forthcoming three-year SDSS SN cosmology analysis. The sample can, for example, be used for spectral studies of SNe Ia, which are critical for understanding potential systematic effects when SNe are used to determine cosmological distances. Methods. The spectra were reduced in a uniform manner, and special care was taken in estimating the uncertainties for the different processing st...

  3. Insights into thermonuclear supernovae from the incomplete silicon burning process

    CERN Document Server

    Bravo, E

    2012-01-01

    Type Ia supernova (SNIa) explosions synthesize a few tenths to several tenths of a solar mass, whose composition is the result of incomplete silicon burning that reaches peak temperatures of 4 GK to 5 GK. The elemental abundances are sensitive to the physical conditions in the explosion, making their measurement a promising clue to uncovering the properties of the progenitor star and of the explosion itself. Using a parameterized description of the thermodynamic history of matter undergoing incomplete silicon burning, we computed the final composition for a range of parameters wide enough to encompass current models of SNIa. Then, we searched for combinations of elemental abundances that trace the parameters values and are potentially measurable. For this purpose, we divide the present study into two epochs of SNIa, namely the optical epoch, from a few weeks to several months after the explosion, and the X-ray epoch, which refers to the time period in which the supernova remnant is young, starting one or two ...

  4. Photometric selection of high-redshift type Ia supernovae

    CERN Document Server

    Sullivan, M; Perrett, K; Nugent, P; Astier, Pierre; Aubourg, E; Balam, D; Basa, S; Carlberg, R; Conley, A; Fabbro, S; Fouchez, D; Guy, J; Hook, I; Lafoux, H; Neill, J D; Pain, R; Palanque-Delabrouille, Nathalie; Pritchet, C; Regnault, N; Rich, J; Taillet, R; Aldering, G; Baumont, S; Bronder, J; Filiol, M; Knop, R; Perlmutter, S; Tao, C

    2005-01-01

    We present a method for selecting high-redshift type Ia supernovae (SNe Ia) located via rolling SN searches. The technique, using both color and magnitude information of events from only 2-3 epochs of multi-band real-time photometry, is able to discriminate between SNe Ia and core collapse SNe. Furthermore, for the SNe Ia, the method accurately predicts the redshift, phase and light-curve parameterization of these events based only on pre-maximum-light data. We demonstrate the effectiveness of the technique on a simulated survey of SNe Ia and core-collapse SNe, where the selection method effectively rejects most core-collapse SNe while retaining SNe Ia. We also apply the selection code to real-time data acquired as part of the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). During the period May 2004 to January 2005 in the SNLS, 440 SN candidates were discovered of which 70 were confirmed spectroscopically as SNe Ia and 15 as core-collapse events. For this test dataset, the selection technique ...

  5. Supernova remnants: the X-ray perspective

    Science.gov (United States)

    Vink, Jacco

    2012-12-01

    Supernova remnants are beautiful astronomical objects that are also of high scientific interest, because they provide insights into supernova explosion mechanisms, and because they are the likely sources of Galactic cosmic rays. X-ray observations are an important means to study these objects. And in particular the advances made in X-ray imaging spectroscopy over the last two decades has greatly increased our knowledge about supernova remnants. It has made it possible to map the products of fresh nucleosynthesis, and resulted in the identification of regions near shock fronts that emit X-ray synchrotron radiation. Since X-ray synchrotron radiation requires 10-100 TeV electrons, which lose their energies rapidly, the study of X-ray synchrotron radiation has revealed those regions where active and rapid particle acceleration is taking place. In this text all the relevant aspects of X-ray emission from supernova remnants are reviewed and put into the context of supernova explosion properties and the physics and evolution of supernova remnants. The first half of this review has a more tutorial style and discusses the basics of supernova remnant physics and X-ray spectroscopy of the hot plasmas they contain. This includes hydrodynamics, shock heating, thermal conduction, radiation processes, non-equilibrium ionization, He-like ion triplet lines, and cosmic ray acceleration. The second half offers a review of the advances made in field of X-ray spectroscopy of supernova remnants during the last 15 year. This period coincides with the availability of X-ray imaging spectrometers. In addition, I discuss the results of high resolution X-ray spectroscopy with the Chandra and XMM-Newton gratings. Although these instruments are not ideal for studying extended sources, they nevertheless provided interesting results for a limited number of remnants. These results provide a glimpse of what may be achieved with future microcalorimeters that will be available on board future X

  6. Neutrinos from type-II supernovae and the neutrino-driven supernova mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Janka, H.T. [Max-Planck-Institut fuer Astrophysik, Garching (Germany)

    1996-11-01

    Supernova 1987A has confirmed fundamental aspects of our theoretical view of type-II supernovae: Type-II supernovae are a consequence of the collapse of the iron core of a massive evolved star and lead to the formation of a neutron star or black hole. This picture is most strongly supported by the detection of electron antineutrinos in the IMB and Kamiokande II experiments in connection with SN 1987A. However, the mechanism causing the supernova explosion is not yet satisfactorily understood. In this paper the properties of the neutrino emission from supernovae and protoneutron stars will be reviewed; analytical estimates will be derived and results of numerical simulations will be shown. It will be demonstrated that the spectral distributions of the emitted neutrinos show clear and systematic discrepancies compared with thermal (black body-type) emission. This must be taken into account when neutrino observations from supernovae are to be interpreted, or when implications of the neutrino emission on nucleosynthesis processes in mantle and envelope of the progenitor star are to be investigated. Furthermore, the influence of neutrinos on the supernova dynamics will be discussed, in particular their crucial role in causing the explosion by Wilson`s neutrino-driven delayed mechanism. Possible implications of convection inside the newly born neutron star and between surface and the supernova shock will be addressed and results of multi-dimensional simulations will be presented. (author) 7 figs., 1 tab., refs.

  7. Ovarian volume throughout life

    DEFF Research Database (Denmark)

    Kelsey, Thomas W; Dodwell, Sarah K; Wilkinson, A Graham

    2013-01-01

    cancer. To date there is no normative model of ovarian volume throughout life. By searching the published literature for ovarian volume in healthy females, and using our own data from multiple sources (combined n=59,994) we have generated and robustly validated the first model of ovarian volume from...... to about 2.8 mL (95% CI 2.7-2.9 mL) at the menopause and smaller volumes thereafter. Our model allows us to generate normal values and ranges for ovarian volume throughout life. This is the first validated normative model of ovarian volume from conception to old age; it will be of use in the diagnosis...

  8. A unified explanation for the supernova rate-galaxy mass dependency based on supernovae discovered in Sloan galaxy spectra

    CERN Document Server

    Graur, Or; Modjaz, Maryam

    2014-01-01

    Using a method to discover and classify supernovae (SNe) in galaxy spectra, we detect 91 Type Ia SNe (SNe Ia) and 16 Type II SNe (SNe II) among ~740,000 galaxies of all types and ~215,000 star-forming galaxies without active galactic nuclei, respectively, in Data Release 9 of the Sloan Digital Sky Survey. Of these SNe, 22 SNe Ia and 8 SNe II are new discoveries reported here for the first time. We use our SN samples to measure SN rates per unit mass as a function of galaxy stellar mass, star-formation rate (SFR), and specific SFR (sSFR), as derived by the MPA-JHU Galspec pipeline. We confirm the rate-mass correlations, first discovered by the Lick Observatory Supernova Search, for both SNe Ia and SNe II at median redshifts of ~0.1 and ~0.075, respectively. The mass-normalized SN Ia and SN II rates, averaged over all masses and redshifts in their respective galaxy samples, are 0.10 +/- 0.01 (stat) +/- 0.01 (sys) X 10^-12 Msol^-1 yr^-1 and 0.52 +0.16 -0.13 (stat) +0.02 -0.05 (sys) X 10^-12 Msol^-1 yr^-1, respec...

  9. HET LRS2 Observations of Halpha in Old Hydrogen-deficient Supernovae

    Science.gov (United States)

    Wheeler, J. Craig Craig; Pooley, David A.; Vinko, Jozsef; Szalai, Tamas; Marion, Howie H.; Sand, David J.; McQueen, Phillip; Silverman, Jeffrey M.

    2017-06-01

    For 3 years, we have been using narrow-band filters with the DIAFI imager on the HJS 2.7 m telescope to search for evidence that hydrogen-deficient supernovae undergo delayed collision with previously ejected circumstellar material and associated excitation of Halpha (see abstract by Pooley et al.). A powerful method to determine whether detected Halpha flux is from an HII region or a supernova is to obtain spectra; broad lines (> 1000 km/s) will be a certain indicator of a supernova. We have observed about 20 events that ranged in age from about 1000 days to nearly 80 years for which we have detected Halpha in the vicinity of the supernova. So far, only SN 2014C showed the broad H that is concrete evidence of ongoing circumstellar interaction. One interesting aspect revealed by the spectra is that we often pick up the two [N II] lines that typically accompany H in H II regions. Our spectra of SN 2008ha did not show these [N II] lines. The absence of the [N II] lines might be a clue to circumstellar interaction in conditions where the shock had slowed to a point where the H is not detectably broadened.

  10. Extending the supernova Hubble diagram to z~1.5 with the Euclid space mission

    CERN Document Server

    Astier, P; Brescia, M; Cappellaro, E; Carlberg, R G; Cavuoti, S; Della Valle, M; Gangler, E; Goobar, A; Guy, J; Hardin, D; Hook, I M; Kessler, R; Kim, A; Linder, E; Longo, G; Maguire, K; Mannucci, F; Mattila, S; Nichol, R; Pain, R; Regnault, N; Spiro, S; Sullivan, M; Tao, C; Turatto, M; Wang, X F; Wood-Vasey, W M

    2014-01-01

    We forecast dark energy constraints that could be obtained from a new large sample of Type Ia supernovae where those at high redshift are acquired with the Euclid space mission. We simulate a three-prong SN survey: a z<0.35 nearby sample (8000 SNe), a 0.2Supernova Infra-Red Experiment" (DESIRE), is designed to fit within 6 months of Euclid observing time, with a dedicated observing program. We simulate the SN events as they would be observed in rolling-search mode by the various instruments, and derive the quality of expected cosmological constraints. We account for known systematic uncertainties, in particular calibration uncertainties including their contribution through the training of the supernova model used to fit the supernovae li...

  11. The Carnegie Supernova Project: Intrinsic Colors of Type Ia Supernovae

    CERN Document Server

    Burns, Christopher R; Phillips, M M; Hsiao, E Y; Contreras, Carlos; Persson, S E; Folatelli, Gaston; Boldt, Luis; Campillay, Abdo; Catellón, Sergio; Freedman, Wendy L; Madore, Barry F; Morrell, Nidia; Salgado, Francisco; Suntzeff, Nicholas B

    2014-01-01

    We present an updated analysis of the intrinsic colors of SNe Ia using the latest data release of the Carnegie Supernova Project. We introduce a new light-curve parameter very similar to stretch that is better suited for fast-declining events, and find that these peculiar types can be seen as extensions to the population of "normal" SNe Ia. With a larger number of objects, an updated fit to the Lira relation is presented along with evidence for a dependence on the late-time slope of the B-V color-curves with stretch and color. Using the full wavelength range from u to H band, we place constraints on the reddening law for the sample as a whole and also for individual events/hosts based solely on the observed colors. The photometric data continue to favor low values of Rv, though with large variations from event to event, indicating an intrinsic distribution. We confirm the findings of other groups that there appears to be a correlation between the derived reddening law, Rv, and the color excess, E(B-V), such t...

  12. Type Ia Supernova Progenitors, Environmental Effects and Cosmic Supernova Rates

    CERN Document Server

    Nomoto, K; Hachisu, I; Kato, M; Kobayashi, C; Tsujimoto, T; Nomoto, Ken'ichi; Umeda, Hideyuki; Hachisu, Izumi; Kato, Mariko; Kobayashi, Chiaki; Tsujimoto, Takuji

    1999-01-01

    Relatively uniform light curves and spectral evolution of Type Ia supernovae (SNe Ia) have led to the use of SNe Ia as a ``standard candle'' to determine cosmological parameters, such as the Hubble constant, the density parameter, and the cosmological constant. Whether a statistically significant value of the cosmological constant can be obtained depends on whether the peak luminosities of SNe Ia are sufficiently free from the effects of cosmic and galactic evolutions. Here we first review the single degenerate scenario for the Chandrasekhar mass white dwarf (WD) models of SNe Ia. We identify the progenitor's evolution and population with two channels: (1) the WD+RG (red-giant) and (2) the WD+MS (near main-sequence He-rich star) channels. In these channels, the strong wind from accreting white dwarfs plays a key role, which yields important age and metallicity effects on the evolution. We then address the questions whether the nature of SNe Ia depends systematically on environmental properties such as metalli...

  13. Supernovae under microscope: how supernovae overlap to form superbubbles

    CERN Document Server

    Yadav, Naveen; Sharma, Prateek; Nath, Biman B

    2016-01-01

    We explore the formation of superbubbles through energy deposition by multiple supernovae (SNe) in a uniform medium. We use total energy conserving, 3-D hydrodynamic simulations to study how SNe correlated in space and time create superbubbles. While isolated SNe fizzle out completely by $\\sim 1$ Myr due to radiative losses, for a realistic cluster size it is likely that subsequent SNe go off within the hot/dilute bubble and sustain the shock till the cluster lifetime. We scan the parameter space of ISM density ($n_{g0}$), number of SNe ($N_{\\rm OB}$), and star cluster radius ($r_{\\rm cl}$) to study the conditions for the formation of an overpressured (super)bubble. For realistic cluster sizes, we find that the bubble remains overpressured only if, for a given $n_{g0}$, $N_{\\rm OB}$ is sufficiently large. While most of the input energy is still lost radiatively, superbubbles can retain up to $\\sim 5-10\\%$ of the input energy in form of kinetic+thermal energy till 10 Myr for ISM density $n_{g0} \\approx 1$ cm$^...

  14. Dynamics of Fe-Ni Bubbles in Young Supernova Remnants

    CERN Document Server

    Blondin, J M; Reynolds, S P

    2001-01-01

    Observations of core-collapse supernovae (SNe) have revealed the presence of extensive mixing of radioactive material in SN ejecta. The mixing of radioactive material, mostly freshly synthesized Ni, is not complete, which leads to a two-phase SN ejecta structure. The low-density phase consists of Fe bubbles, created by the energy input from radioactive Co and Ni, surrounded by compressed high-density metal-rich ejecta. We report on the theoretical investigation of supernova remnant (SNR) dynamics with the two-phase SN ejecta. We first present 3-dimensional hydrodynamic simulations of a single Fe bubble immersed in an outer ejecta envelope, and compare the results with previous work on shock-cloud interactions. We then consider randomly distributed Fe bubbles with an average volume filling fraction of 1/2. We find that the presence of Fe bubbles leads to vigorous turbulence and mixing of Fe with other heavy elements and with the ambient normal-abundance gas. The turbulent energy can be an order of magnitude la...

  15. The physics of core collapse supernovae

    Science.gov (United States)

    Swesty, Frank Douglas

    1993-01-01

    I have developed an equation of state (EOS) for hot, dense matter that is intended specifically for use in radiation hydrodynamic simulations of supernovae, proto-neutron star cooling, and neutron stars. This EOS makes use of an adjustable nucleon-nucleon interaction that allows for the input of various nuclear force parameters that are not well determined by laboratory measurements. Properties of the EOS as a function of these input parameters were studied and comparisons were made to another EOS that is currently used in stellar collapse simulations. Using this EOS I have conducted simulations of core collapse supernovae with several ideas in mind. First, I have attempted to delineate role of the incompressibility of dense matter in supernovae. I have conducted a parameter study in which the compression modulous of bulk nuclear matter was varied and have found some new and surprising results. When the EOS is constrained by the observed mass of 1.44M(solar mass) for one of the components of the binary pulsar system PSR1913+16, the 'stiffness' of the EOS no longer plays a role in the shock dynamics of the supernova. Secondly, I varied the symmetry energy coefficients in the EOS to determine the role of these coefficients in supernovae. I have found that the symmetry energy behavior of the EOS has potentially observable effects and may play an important role in determining the efficacy of the late-time heating mechanism for the explosion and the stability of the post-bounce core against convection. Finally, I have developed an implicit, general relativistic, radiation hydrodynamics algorithm for the numerical simulation of supernovae. By allowing simulation timesteps to exceed the Courant timescale, this algorithm makes practical high resolution simulations of supernovae to late times. I discuss this algorithm and the associated computer code along with code verification tests and an example of a late-time calculation.

  16. Supernova Dust at Sub-micrometer Scales

    Science.gov (United States)

    Nittler, Larry; Stroud, R. M.

    2006-06-01

    Meteorites contain nanometer to micrometer stardust grains, which formed in pre-solar generations of stars and exhibit large isotopic anomalies that reflect the nuclear processes that occurred in their individual parent stars [1]. Supernovae of Type II have been identified as the sources of much of the stardust, including grains of SiC, Si3N4, graphite and Mg2SiO4. Although, the isotopic compositions of many elements in these grains point unambiguously to supernova nucleosynthesis processes [2], the data require extensive and heterogeneous mixing of disparate nuclear burning zones. A recent study found that individual 200 nm TiC sub-grains within a 12 micron supernova graphite grain have uniform Ti isotopic composition but a range of O isotopic ratios [3]. New microanalysis techniques allow us to correlate the physical microstructures of supernova grains with isotopic composition, e.g., SiC and Si3N4, providing a sub-micron view of condensation processes in supernova ejecta. Results on two SiC grains indicate that micron-sized SiC grains from supernovae consist of assemblages of smaller crystallites with some evidence of radiation and/or shock processing. This is in strong contrast to SiC grains from AGB stars, which are typically single euhedral crystals [4]. The Si, C and N isotopic compositions of the grains are highly uniform, in contrast to the model of [5], which predicts strong isotopic gradients in supernova-derived SiC grains.This work is supported by NASA.[1] Clayton D. D. and Nittler L. R. (2004) ARAA, 42, 39-78.[2] Nittler L. R., et al. (1996) ApJ, 462, L31-34.[3] Stadermann F. J., et al. (2005) GCA, 69, 177-188.[4] Daulton T. L., et al. (2002) Science, 296, 1852-1855.[5] Deneault E. A.-N., et al. (2003) ApJ, 594, 312-325.

  17. High-redshift supernova rates measured with the gravitational telescope A 1689

    Science.gov (United States)

    Petrushevska, T.; Amanullah, R.; Goobar, A.; Fabbro, S.; Johansson, J.; Kjellsson, T.; Lidman, C.; Paech, K.; Richard, J.; Dahle, H.; Ferretti, R.; Kneib, J. P.; Limousin, M.; Nordin, J.; Stanishev, V.

    2016-10-01

    Aims: We present a ground-based, near-infrared search for lensed supernovae behind the massive cluster Abell 1689 at z = 0.18, which is one of the most powerful gravitational telescopes that nature provides. Methods: Our survey was based on multi-epoch J-band observations with the HAWK-I instrument on VLT, with supporting optical data from the Nordic Optical Telescope. Results: Our search resulted in the discovery of five photometrically classified, core-collapse supernovae with high redshifts of 0.671 formula>math id="mml_eq2" type="inline">10-12 SNe L⊙,B-1 yr-1math>formula->), where the error bars indicate 1σ confidence intervals, statistical and systematic, respectively. The cluster rate normalized by the stellar mass is 0.10+0.13-0.096±0.02 in SNuM h2 (SNuM ≡10-12SNe M-1⊙ yr-1). Furthermore, we explore the optimal future survey for improving the core-collapse supernova rate measurements at z ≳ 2 using gravitational telescopes, and for detections with multiply lensed images, and we find that the planned WFIRST space mission has excellent prospects. Conclusions: Massive clusters can be used as gravitational telescopes to significantly expand the survey range of supernova searches, with important implications for the study of the high-z transient Universe. Based on observations made with European Southern Observatory (ESO) telescopes at the Paranal Observatory under programme ID 082.A-0431; 0.83.A-0398, 091.A-0108 and ID 093.A-0278, PI: A. Goobar.The deep average image (FITS file) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/594/A54

  18. A Study on Semantic Searching, Semantic Search Engines and Technologies Used for Semantic Search Engines

    OpenAIRE

    Junaid Rashid; Muhammad Wasif Nisar

    2016-01-01

    Semantic search engines(SSE) are more efficient than other web engines because in this era of busy life everyone wants an exact answer to his question which only semantic engines can provide. The immense increase in the volume of data, traditional search engines has increased the number of answers to satisfy the user. This creates the problem to search for the desired answer. To solve this problem, the trend of developing semantic search engines is increasing day by da...

  19. Professional Microsoft search fast search, Sharepoint search, and search server

    CERN Document Server

    Bennett, Mark; Kehoe, Miles; Voskresenskaya, Natalya

    2010-01-01

    Use Microsoft's latest search-based technology-FAST search-to plan, customize, and deploy your search solutionFAST is Microsoft's latest intelligent search-based technology that boasts robustness and an ability to integrate business intelligence with Search. This in-depth guide provides you with advanced coverage on FAST search and shows you how to use it to plan, customize, and deploy your search solution, with an emphasis on SharePoint 2010 and Internet-based search solutions.With a particular appeal for anyone responsible for implementing and managing enterprise search, this book presents t

  20. The Supernovae Analysis Application (SNAP)

    Science.gov (United States)

    Bayless, Amanda J.; Fryer, Chris L.; Wollaeger, Ryan; Wiggins, Brandon; Even, Wesley; de la Rosa, Janie; Roming, Peter W. A.; Frey, Lucy; Young, Patrick A.; Thorpe, Rob; Powell, Luke; Landers, Rachel; Persson, Heather D.; Hay, Rebecca

    2017-09-01

    The SuperNovae Analysis aPplication (SNAP) is a new tool for the analysis of SN observations and validation of SN models. SNAP consists of a publicly available relational database with observational light curve, theoretical light curve, and correlation table sets with statistical comparison software, and a web interface available to the community. The theoretical models are intended to span a gridded range of parameter space. The goal is to have users upload new SN models or new SN observations and run the comparison software to determine correlations via the website. There are problems looming on the horizon that SNAP is beginning to solve. For example, large surveys will discover thousands of SNe annually. Frequently, the parameter space of a new SN event is unbounded. SNAP will be a resource to constrain parameters and determine if an event needs follow-up without spending resources to create new light curve models from scratch. Second, there is no rapidly available, systematic way to determine degeneracies between parameters, or even what physics is needed to model a realistic SN. The correlations made within the SNAP system are beginning to solve these problems.

  1. The Supernovae Analysis Application (SNAP)

    CERN Document Server

    Bayless, Amanda J; Wiggins, Brandon; Even, Wesley; Wollaeger, Ryan; de la Rosa, Janie; Roming, Peter W A; Frey, Lucy; Young, Patrick A; Thorpe, Rob; Powell, Luke; Landers, Rachel; Persson, Heather D; Hay, Rebecca

    2016-01-01

    The SuperNovae Analysis aPplication (SNAP) is a new tool for the analysis of SN observations and validation of SN models. SNAP consists of an open source relational database with (a) observational light curve, (b) theoretical light curve, and (c) correlation table sets, statistical comparison software, and a web interface available to the community. The theoretical models are intended to span a gridded range of parameter space. The goal is to have users to upload new SN models or new SN observations and run the comparison software to determine correlations via the web site. There are looming problems on the horizon that SNAP begins to solve. Namely, large surveys will discover thousands of SNe annually. Frequently, the parameter space of a new SN event is unbounded. SNAP will be a resource to constrain parameters and determine if an event needs follow-up without spending resources to create new light curve models from scratch. Secondly, there is not a rapidly available, systematic way to determine degeneracie...

  2. Fingerprints of a Local Supernova

    CERN Document Server

    Manuel, Oliver

    2009-01-01

    The results of precise analysis of elements and isotopes in meteorites, comets, the Earth, the Moon, Mars, Jupiter, the solar wind, solar flares, and the solar photosphere since 1960 reveal fingerprints of a local supernova (SN), undiluted by interstellar material. Heterogeneous SN debris formed the planets. The Sun formed on the neutron (n) rich SN core. The ground-state masses of nuclei reveal repulsive n-n interactions that trigger n-emission and a series of nuclear reactions that generate solar luminosity, the solar wind, and the measured flux of solar neutrinos. The location of the Sun's high-density core shifts relative to the solar surface as gravitational forces exerted by the major planets cause the Sun to experience abrupt acceleration and deceleration, like a yoyo on a string, in its orbit about the ever-changing centre-of-mass of the solar system. Solar cycles (surface magnetic activity, solar eruptions, and sunspots) and major climate changes arise from changes in the depth of the energetic SN co...

  3. Supernova Remnant in 3-D

    Science.gov (United States)

    2009-01-01

    [figure removed for brevity, see original site] Click on the image for the movie For the first time, a multiwavelength three-dimensional reconstruction of a supernova remnant has been created. This stunning visualization of Cassiopeia A, or Cas A, the result of an explosion approximately 330 years ago, uses data from several telescopes: X-ray data from NASA's Chandra X-ray Observatory, infrared data from NASA's Spitzer Space Telescope and optical data from the National Optical Astronomy Observatory 4-meter telescope at Kitt Peak, Ariz., and the Michigan-Dartmouth-MIT 2.4-meter telescope, also at Kitt Peak. In this visualization, the green region is mostly iron observed in X-rays. The yellow region is a combination of argon and silicon seen in X-rays, optical, and infrared including jets of silicon plus outer debris seen in the optical. The red region is cold debris seen in the infrared. Finally, the blue reveals the outer blast wave, most prominently detected in X-rays. Most of the material shown in this visualization is debris from the explosion that has been heated by a shock moving inwards. The red material interior to the yellow/orange ring has not yet encountered the inward moving shock and so has not yet been heated. These unshocked debris were known to exist because they absorb background radio light, but they were only recently discovered in infrared emission with Spitzer. The blue region is composed of gas surrounding the explosion that was heated when it was struck by the outgoing blast wave, as clearly seen in Chandra images. To create this visualization, scientists took advantage of both a previously known phenomenon the Doppler effect and a new technology that bridges astronomy and medicine. When elements created inside a supernova, such as iron, silicon and argon, are heated they emit light at certain wavelengths. Material moving towards the observer will have shorter wavelengths and material moving away will have longer wavelengths. Since the amount

  4. Asymmetric Explosions of Thermonuclear Supernovae

    CERN Document Server

    Ghezzi, C R; Horváth, J E

    2004-01-01

    A type Ia supernova explosion starts in a white dwarf as a laminar deflagration at the center of the star and soon several hydrodynamic instabilities (in particular, the Rayleigh-Taylor (R-T) instability) begin to act. In previous work (Ghezzi, de Gouveia Dal Pino, & Horvath 2001), we addressed the propagation of an initially laminar thermonuclear flame in presence of a magnetic field assumed to be dipolar. We were able to show that, within the framework of a fractal model for the flame velocity, the front is affected by the field through the quenching of the R-T instability growth in the direction perpendicular to the field lines. As a consequence, an asymmetry develops between the magnetic polar and the equatorial axis that gives a prolate shape to the burning front. We have here computed numerically the total integrated asymmetry as the flame front propagates outward through the expanding shells of decreasing density of the magnetized white dwarf progenitor, for several chemical compositions, and found...

  5. Short-term effects of supernova explosions on radiocarbon production

    Energy Technology Data Exchange (ETDEWEB)

    Povinec, P. (Komenskeho Univ., Bratislava (Czechoslovakia). Prirodovedecka Fakulta)

    1980-01-01

    The short-term increase in cosmic ray intensity caused by a supernova gamma-ray burst as well as the long-term increase resulting from corpuscular particles accelerated during the supernova explosion may be investigated by cosmogenic radiocarbon. It is shown that o.alactic supernovae exploding at distances up to 1 kpc from the Earth could cause a measurable increase in radiocarbon concentration in the past. Radiocarbon measurements for the period of the Tycho de Brahe supernova showed negative results.

  6. Progress in multi-waveband observations of supernova remnants

    Institute of Scientific and Technical Information of China (English)

    Xuejuan Yang; Fangjun Lu; Wenwu Tian

    2008-01-01

    The development of observational techniques has enriched our knowledge of supernova remnants.In this paper,we review the main progresses in the last decade,including new discoveries of supernova remnants and the associated(rare type of pulsars,nucleosynthesis,the interaction between supernova remnants and molecular clouds,dust in the supernova remnants,shock physics,and cosmic ray accelerations.

  7. GALACTIC AND EXTRAGALACTIC SUPERNOVA REMNANTS AS SITES OF PARTICLE ACCELERATION

    Directory of Open Access Journals (Sweden)

    Manami Sasaki

    2013-12-01

    Full Text Available Supernova remnants, owing to their strong shock waves, are likely sources of Galactic cosmic rays. Studies of supernova remnants in X-rays and gamma rays provide us with new insights into the acceleration of particles to high energies. This paper reviews the basic physics of supernova remnant shocks and associated particle acceleration and radiation processes. In addition, the study of supernova remnant populations in nearby galaxies and the implications for Galactic cosmic ray distribution are discussed.

  8. Superluminous Supernovae: No Threat from Eta Carinae

    Science.gov (United States)

    Thomas, Brian; Melott, A. L.; Fields, B. D.; Anthony-Twarog, B. J.

    2008-05-01

    Recently Supernova 2006gy was noted as the most luminous ever recorded, with a total radiated energy of 1044 Joules. It was proposed that the progenitor may have been a massive evolved star similar to η Carinae, which resides in our own galaxy at a distance of about 2.3 kpc. η Carinae appears ready to detonate. Although it is too distant to pose a serious threat as a normal supernova, and given its rotation axis is unlikely to produce a Gamma-Ray Burst oriented toward the Earth, η Carinae is about 30,000 times nearer than 2006gy, and we re-evaluate it as a potential superluminous supernova. We find that given the large ratio of emission in the optical to the X-ray, atmospheric effects are negligible. Ionization of the atmosphere and concomitant ozone depletion are unlikely to be important. Any cosmic ray effects should be spread out over 104 y, and similarly unlikely to produce any serious perturbation to the biosphere. We also discuss a new possible effect of supernovae, endocrine disruption induced by blue light near the peak of the optical spectrum. This is a possibility for nearby supernovae at distances too large to be considered "dangerous” for other reasons. However, due to reddening and extinction by the interstellar medium, η Carinae is unlikely to trigger such effects to any significant degree.

  9. Snapping Supernovae at z>1.7

    Energy Technology Data Exchange (ETDEWEB)

    Aldering, Greg; Kim, Alex G.; Kowalski, Marek; Linder, Eric V.; Perlmutter, Saul

    2006-07-03

    We examine the utility of very high redshift Type Ia supernovae for cosmology and systematic uncertainty control. Next generation space surveys such as the Supernova/Acceleration Probe (SNAP) will obtain thousands of supernovae at z>1.7, beyond the design redshift for which the supernovae will be exquisitely characterized. We find that any z gtrsim 2 standard candles' use for cosmological parameter estimation is quite modest and subject to pitfalls; we examine gravitational lensing, redshift calibration, and contamination effects in some detail. The very high redshift supernovae - both thermonuclear and core collapse - will provide copious interesting information on star formation, environment, and evolution. However, the new observational systematics that must be faced, as well as the limited expansion of SN-parameter space afforded, does not point to high value for 1.7

  10. A solar-type star polluted by calcium-rich supernova ejecta inside the supernova remnant RCW 86

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Langer, Norbert; Fossati, Luca; Bock, Douglas C.-J.; Castro, Norberto; Georgiev, Iskren Y.; Greiner, Jochen; Johnston, Simon; Rau, Arne; Tauris, Thomas M.

    2017-06-01

    When a massive star in a binary system explodes as a supernova, its companion star may be polluted with heavy elements from the supernova ejecta. Such pollution has been detected in a handful of post-supernova binaries 1 , but none of them is associated with a supernova remnant. We report the discovery of a binary G star strongly polluted with calcium and other elements at the position of the candidate neutron star [GV2003] N within the young galactic supernova remnant RCW 86. Our discovery suggests that the progenitor of the supernova that produced RCW 86 could have been a moving star, which exploded near the edge of its wind bubble and lost most of its initial mass because of common-envelope evolution shortly before core collapse, and that the supernova explosion might belong to the class of calcium-rich supernovae — faint and fast transients 2,3 , the origin of which is strongly debated 4-6 .

  11. Investigations of supernovae and supernova remnants in the era of SKA

    CERN Document Server

    Wang, Lingzhi; Zhu, Hui; Tian, Wenwu; Wang, Xiaofeng

    2015-01-01

    Two main physical mechanisms are used to explain supernova explosions: thermonuclear explosion of a white dwarf(Type Ia) and core collapse of a massive star (Type II and Type Ib/Ic). Type Ia supernovae serve as distance indicators that led to the discovery of the accelerating expansion of the Universe. The exact nature of their progenitor systems however remain unclear. Radio emission from the interaction between the explosion shock front and its surrounding CSM or ISM provides an important probe into the progenitor star's last evolutionary stage. No radio emission has yet been detected from Type Ia supernovae by current telescopes. The SKA will hopefully detect radio emission from Type Ia supernovae due to its much better sensitivity and resolution. There is a 'supernovae rate problem' for the core collapse supernovae because the optically dim ones are missed due to being intrinsically faint and/or due to dust obscuration. A number of dust-enshrouded optically hidden supernovae should be discovered via SKA1-...

  12. Supernova remnants, pulsar wind nebulae and their interaction

    NARCIS (Netherlands)

    Swaluw, E. van der

    2001-01-01

    A supernova explosion marks the end of the evolution of a massive star. What remains of the exploded star is a high density neutron star or a black hole. The material which has been ejected by the supernova explosion will manifest itself as a supernova remnant: a hot bubble of gas expanding in the

  13. The destruction of cosmological minihalos by primordial supernovae

    NARCIS (Netherlands)

    Whalen, D.; van Veelen, B.; O'Shea, B.W.; Norman, M.L.

    2008-01-01

    We present numerical simulations of primordial supernovae in cosmological minihalos at z ~ 20. We consider Type II supernovae, hypernovae, and pair instability supernovae (PISN) in halos from 6.9 × 105 to 1.2 × 107 M, those in which Population III stars are expected to form via H2 cooling. Our simul

  14. Search Cloud

    Science.gov (United States)

    ... of this page: https://medlineplus.gov/cloud.html Search Cloud To use the sharing features on this ... of Top 110 zoster vaccine Share the MedlinePlus search cloud with your users by embedding our search ...

  15. Electron capture in carbon dwarf supernovae

    Science.gov (United States)

    Mazurek, T. J.; Truran, J. W.; Cameron, A. G. W.

    1974-01-01

    The rates of electron capture on heavier elements under the extreme conditions predicted for dwarf star supernovae have been computed, incorporating modifications that seem to be indicated by present experimental results. An estimate of the maximum possible value of such rates is also given. The distribution of nuclei in nuclear statistical equilibrium has been calculated for the range of expected supernovae conditions, including the effects of the temperature dependence of nuclear partition functions. These nuclide abundance distributions are then used to compute nuclear equilibrium thermodynamic properties. The effects of the electron capture on such equilibrium matter are discussed. In the context of the 'carbon detonation' supernova model, the dwarf central density required to ensure core collapse to a neutron star configuration is found to be slightly higher than that obtained by Bruenn (1972) with the electron capture rates of Hansen (1966).-

  16. Supernova Recognition using Support Vector Machines

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Raquel A.; Aragon, Cecilia R.; Ding, Chris

    2006-10-01

    We introduce a novel application of Support Vector Machines(SVMs) to the problem of identifying potential supernovae usingphotometric and geometric features computed from astronomical imagery.The challenges of this supervised learning application are significant:1) noisy and corrupt imagery resulting in high levels of featureuncertainty,2) features with heavy-tailed, peaked distributions,3)extremely imbalanced and overlapping positiveand negative data sets, and4) the need to reach high positive classification rates, i.e. to find allpotential supernovae, while reducing the burdensome workload of manuallyexamining false positives. High accuracy is achieved viaasign-preserving, shifted log transform applied to features with peaked,heavy-tailed distributions. The imbalanced data problem is handled byoversampling positive examples,selectively sampling misclassifiednegative examples,and iteratively training multiple SVMs for improvedsupernovarecognition on unseen test data. We present crossvalidationresults and demonstrate the impact on a largescale supernova survey thatcurrently uses the SVM decision value to rank-order 600,000 potentialsupernovae each night.

  17. Probing Exotic Physics With Supernova Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Kelso, Chris; Hooper, Dan

    2010-09-01

    Future galactic supernovae will provide an extremely long baseline for studying the properties and interactions of neutrinos. In this paper, we discuss the possibility of using such an event to constrain (or discover) the effects of exotic physics in scenarios that are not currently constrained and are not accessible with reactor or solar neutrino experiments. In particular, we focus on the cases of neutrino decay and quantum decoherence. We calculate the expected signal from a core-collapse supernova in both current and future water Cerenkov, scintillating, and liquid argon detectors, and find that such observations will be capable of distinguishing between many of these scenarios. Additionally, future detectors will be capable of making strong, model-independent conclusions by examining events associated with a galactic supernova's neutronization burst.

  18. Supernova Neutrinos: Production, Oscillations and Detection

    CERN Document Server

    Mirizzi, Alessandro; Janka, Hans-Thomas; Saviano, Ninetta; Scholberg, Kate; Bollig, Robert; Hudepohl, Lorenz; Chakraborty, Sovan

    2015-01-01

    Neutrinos play a crucial role in the collapse and explosion of massive stars, governing the infall dynamics of the stellar core, triggering and fueling the explosion and driving the cooling and deleptonization of the newly formed neutron star. Due to their role neutrinos carry information from the heart of the explosion and, due to their weakly interacting nature, offer the only direct probe of the dynamics and thermodynamics at the center of a supernova. In this paper, we review the present status of modelling the neutrino physics and signal formation in collapsing and exploding stars. We assess the capability of current and planned large underground neutrino detectors to yield faithful information of the time and flavor dependent neutrino signal from a future Galactic supernova. We show how the observable neutrino burst would provide a benchmark for fundamental supernova physics with unprecedented richness of detail. Exploiting the treasure of the measured neutrino events requires a careful discrimination o...

  19. Supernova discoveries 2010: statistics and trends

    CERN Document Server

    Gal-Yam, Avishay

    2013-01-01

    We have inspected all supernova discoveries reported during 2010, a total of 538 events. This number includes a small number of "supernova impostors" (bright extragalactic eruptions) but not novae or events that turned out to be Galactic stars. We examine the statistics of all discovered objects, as well as those of the subset of spectroscopically-confirmed events. This year shows the rise of wide-field non-targeted supernova surveys to prominence, with the largest numbers of events contributed by the CRTS and PTF surveys (189 and 88 events respectively), followed by the integrated contribution of numerous amateurs (82 events). Among spectroscopically-confirmed events the PTF (88 events) leads, before amateur discoveries (69 events), closely followed by the CRTS and PS1 surveys (67 and 63 events, respectively). Traditional galaxy-targeted surveys such as LOSS and CHASE, maintain a strong contribution (50 and 36 events, respectively) with high spectroscopic completeness (96% for LOSS). It is interesting to not...

  20. Deep Recurrent Neural Networks for Supernovae Classification

    Science.gov (United States)

    Charnock, Tom; Moss, Adam

    2017-03-01

    We apply deep recurrent neural networks, which are capable of learning complex sequential information, to classify supernovae (code available at https://github.com/adammoss/supernovae). The observational time and filter fluxes are used as inputs to the network, but since the inputs are agnostic, additional data such as host galaxy information can also be included. Using the Supernovae Photometric Classification Challenge (SPCC) data, we find that deep networks are capable of learning about light curves, however the performance of the network is highly sensitive to the amount of training data. For a training size of 50% of the representational SPCC data set (around 104 supernovae) we obtain a type-Ia versus non-type-Ia classification accuracy of 94.7%, an area under the Receiver Operating Characteristic curve AUC of 0.986 and an SPCC figure-of-merit F 1 = 0.64. When using only the data for the early-epoch challenge defined by the SPCC, we achieve a classification accuracy of 93.1%, AUC of 0.977, and F 1 = 0.58, results almost as good as with the whole light curve. By employing bidirectional neural networks, we can acquire impressive classification results between supernovae types I, II and III at an accuracy of 90.4% and AUC of 0.974. We also apply a pre-trained model to obtain classification probabilities as a function of time and show that it can give early indications of supernovae type. Our method is competitive with existing algorithms and has applications for future large-scale photometric surveys.

  1. Nearby Supernova Factory Observations of SN 2006D: On SporadicCarbon Signatures in Early Type Ia Supernova Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R.C.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey,S.; Baltay, C.; Baron, E.; Bauer, A.; Buton, C.; Bongard, S.; Copin, Y.; Gangler, E.; Gilles, S.; Kessler, R.; Loken, S.; Nugent, P.; Pain, R.; Parrent, J.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigaudier, G.; Runge, K.; Scalzo, R.; Smadja, G.; Wang, L.; Weaver, B.A.

    2006-10-12

    We present four spectra of the Type Ia supernova SN Ia 2006Dextending from -7 to +13 days with respect to B-band maximum. The spectrainclude the strongest signature of unburned material at photosphericvelocities observed in a SN Ia to date. The earliest spectrum exhibits CII absorption features below 14,000 km/s, including a distinctive C IIlambda 6580 absorption feature. The carbon signatures dissipate as the SNapproaches peak brightness. In addition to discussing implications ofphotospheric-velocity carbon for white dwarf explosion models, we outlinesome factors that may influence the frequency of its detection before andaround peak brightness. Two effects are explored in this regard,including depopulation of the C II optical levels by non-LTE effects, andline-of-sight effects resulting from a clumpy distribution of unburnedmaterial with low volume-filling factor.

  2. Nearby Supernova Factory Observations of SN 2006D: On Sporadic Carbon Signatures in Early Type Ia Supernova Spectra

    CERN Document Server

    Factory, T N S; Aldering, G; Antilogus, P; Aragon, C; Bailey, S; Baltay, C; Baron, E; Bauer, A; Buton, C; Bongard, S; Copin, Y; Gangler, E; Gilles, S; Kessler, R; Loken, S; Nugent, P; Pain, R; Parrent, J; Pécontal, E; Pereira, R; Perlmutter, S; Rabinowitz, D; Rigaudier, G; Runge, K; Scalzo, R; Smadja, G; Wang, L; Weaver, B A; Factory, The Nearby Supernova

    2006-01-01

    We present four spectra of the Type Ia supernova (SN Ia) 2006D extending from -7 to +13 days with respect to B-band maximum. The spectra include the strongest signature of unburned material at photospheric velocities observed in a SN Ia to date. The earliest spectrum exhibits C II absorption features below 14,000 km/s, including a distinctive C II \\lambda 6580 absorption feature. The carbon signatures dissipate as the SN approaches peak brightness. In addition to discussing implications of photospheric-velocity carbon for white dwarf explosion models, we outline some factors that may influence the frequency of its detection before and around peak brightness. Two effects are explored in this regard, including depopulation of the C II optical levels by non-LTE effects, and line-of-sight effects resulting from a clumpy distribution of unburned material with low volume-filling factor.

  3. THE LOW-REDSHIFT CARNEGIE SUPERNOVA PROJECT

    Directory of Open Access Journals (Sweden)

    G. Folatelli

    2009-01-01

    Full Text Available We present the low-redshift Carnegie Supernova Project (CSP, an undergoing program to follow up about 250 nearby supernovae (SNe of all types. We brie y describe the observations which yield well-sampled, highly precise optical and near-infrared light curves in a well-understood photometric system, complemented with optical spectroscopy. As one of the main goals of the CSP, we preliminarily present the rst Hubble diagram using a sample of 30 Type-Ia SNe (SNe Ia.

  4. Spectroscopy of superluminous supernova host galaxies

    DEFF Research Database (Denmark)

    Leloudas, G.; Kruehler, T.; Schulze, S

    2015-01-01

    Superluminous supernovae (SLSNe) are very bright explosions that were only discovered recently and that show a preference for occurring in faint dwarf galaxies. Understanding why stellar evolution yields different types of stellar explosions in these environments is fundamental in order to both...... uncover the elusive progenitors of SLSNe and to study star formation in dwarf galaxies. In this paper, we present the first results of our project to study SUperluminous Supernova Host galaxIES, focusing on the sample for which we have obtained spectroscopy. We show that SLSNe-I and SLSNe-R (hydrogen...

  5. Collective Oscillations and Diffuse Supernova Neutrino Background

    Science.gov (United States)

    Kar, Kamales; Chakraborty, Sovan; Choubey, Sandhya

    2012-01-01

    Core-collapse supernova explosions give rise to the emission of a huge flux of neutrinos of all flavors. In this article we describe the phenomenon neutrino-neutrino interaction of these weakly interacting particles at the very high density central region of the stellar core giving rise to non-linear collective oscillations in both the neutrino and antineutrino sectors. The effect of the collective oscillations on the Diffuse Supernova Neutrino Background is elaborated with emphasis on its future detection and the connection of that to neutrino mass hierarchy.

  6. Formation of Nuclear "Pasta" in Supernovae

    CERN Document Server

    Watanabe, Gentaro; Maruyama, Toshiki; Sato, Katsuhiko; Yasuoka, Kenji; Ebisuzaki, Toshikazu

    2009-01-01

    In supernova cores, nuclear "pasta" phases such as triangular lattice of rod-like nuclei and layered structure of slab-like nuclei are considered to exist. However, it is still unclear whether or not they are actually formed in collapsing supernova cores. Using {\\it ab-initio} numerical simulations called the Quantum Molecular Dynamics (QMD), we here solve this problem by demonstrating that a lattice of rod-like nuclei is formed from a bcc lattice by compression. We also find that, in the transition process, the system undergoes zigzag configuration of elongated nuclei, which are formed by a fusion of two original spherical nuclei.

  7. Deflagrations and Detonations in Thermonuclear Supernovae

    CERN Document Server

    Gamezo, V N; Oran, E S; Gamezo, Vadim N.; Khokhlov, Alexei M.; Oran, Elaine S.

    2004-01-01

    We study a type Ia supernova explosion using three-dimensional numerical simulations based on reactive fluid dynamics. We consider a delayed-detonation model that assumes a deflagration-to-detonation transition. In contrast to the pure deflagration model, the delayed-detonation model releases enough energy to account for a healthy explosion, and does not leave carbon, oxygen, and intermediate-mass elements in central parts of a white dwarf. This removes the key disagreement between simulations and observations, and makes a delayed detonation the mostly likely mechanism for type Ia supernovae.

  8. New Variable Stars Discovered as By-product of the Beijing Astronomical Observatory Supernova Survey

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The Beijing Astronomical Observatory (BAO) 0.6 m telescope has been used for nearby supernova survey in more than 3000 fields, covering a total area of 235 deg2. More than 260 000 CCD images have been collected since April 1996, with 45 supernovae discovered. We searched for variables in about 90 000 images taken during 1996-1998. For the fields in which long period variables (LPVs) were discovered, we reduced further images taken from 1999 to 2000, for the period estimation.Among the 280 000 stars selected from the survey fields, i.e., brighter than 18 mag,we discovered seven new LPVs and reconfirmed three known LPVs. Additionally,we found 146 variable star candidates, and reconfirmed about 20 previously known or suspected objects.

  9. Constraining spacetime variations of nuclear decay rates from light curves of type Ia supernovae

    CERN Document Server

    Karpikov, Ivan; Troitsky, Sergey

    2015-01-01

    The luminosity of fading type Ia supernovae is governed by radioactive decays of 56Ni and 56Co. The decay rates are proportional to the Fermi coupling constant G_F and, therefore, are determined by the vacuum expectation value v of the Brout--Englert--Higgs field. We use the publicly available SNLS and UNION2.1 sets of light curves of type Ia supernova at various redshifts to constrain possible spacetime variations of the 56Ni decay rate. The resulting constraint is not very tight; however, it is the only direct bound on the variation of the decay rate for redshifts up to z~1. We discuss potential applications of the result to searches for non-constancy of G_F and v.

  10. Reducing Zero-point Systematics in Dark Energy Supernova Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Faccioli, Lorenzo; Kim, Alex G; Miquel, Ramon; Bernstein, Gary; Bonissent, Alain; Brown, Matthew; Carithers, William; Christiansen, Jodi; Connolly, Natalia; Deustua, Susana; Gerdes, David; Gladney, Larry; Kushner, Gary; Linder, Eric; McKee, Shawn; Mostek, Nick; Shukla, Hemant; Stebbins, Albert; Stoughton, Chris; Tucker, David

    2011-04-01

    We study the effect of filter zero-point uncertainties on future supernova dark energy missions. Fitting for calibration parameters using simultaneous analysis of all Type Ia supernova standard candles achieves a significant improvement over more traditional fit methods. This conclusion is robust under diverse experimental configurations (number of observed supernovae, maximum survey redshift, inclusion of additional systematics). This approach to supernova fitting considerably eases otherwise stringent mission cali- bration requirements. As an example we simulate a space-based mission based on the proposed JDEM satellite; however the method and conclusions are general and valid for any future supernova dark energy mission, ground or space-based.

  11. SALT2: using distant supernovae to improve the use of Type Ia supernovae as distance indicators

    CERN Document Server

    Guy, J; Baumont, S; Hardin, D; Pain, R; Regnault, N; Basa, S; Carlberg, R G; Conley, A; Fabbro, S; Fouchez, D; Hook, I M; Howell, D A; Perrett, K; Pritchet, C J; Rich, J; Sullivan, M; Antilogus, P; Aubourg, E; Bazin, G; Bronder, J; Filiol, M; Palanque-Delabrouille, Nathalie; Ripoche, P; Ruhlmann-Kleider, V

    2007-01-01

    We present an empirical model of Type Ia supernovae spectro-photometric evolution with time. The model is built using a large data set including light-curves and spectra of both nearby and distant supernovae, the latter being observed by the SNLS collaboration. We derive the average spectral sequence of Type Ia supernovae and their main variability components including a color variation law. The model allows us to measure distance moduli in the spectral range 2500-8000 A with calculable uncertainties, including those arising from variability of spectral features. Thanks to the use of high-redshift SNe to model the rest-frame UV spectral energy distribution, we are able to derive improved distance estimates for SNe Ia in the redshift range 0.8supernovae.

  12. The supernova-gamma-ray burst-jet connection.

    Science.gov (United States)

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

  13. The ASAS-SN Bright Supernova Catalog $-$ II. 2015

    CERN Document Server

    Holoien, T W -S; Stanek, K Z; Kochanek, C S; Shappee, B J; Prieto, J L; Dong, Subo; Brimacombe, J; Bishop, D W; Basu, U; Beacom, J F; Bersier, D; Chen, Ping; Danilet, A B; Falco, E; Godoy-Rivera, D; Goss, N; Pojmanski, G; Simonian, G V; Skowron, D M; Thompson, Todd A; Woźniak, P R; Avíla, C G; Bock, G; Carballo, J -L G; Conseil, E; Contreras, C; Cruz, I; andújar, J M F; Guo, Zhen; Hsiao, E Y; Kiyota, S; Koff, R A; Krannich, G; Madore, B F; Marples, P; Masi, G; Morrell, N; Monard, L A G; Munoz-Mateos, J C; Nicholls, B; Nicolas, J; Wagner, R M; Wiethoff, W S

    2016-01-01

    This manuscript presents information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) during 2015, its second full year of operations. The same information is presented for bright ($m_V\\leq17$), spectroscopically confirmed supernovae discovered by other sources in 2015. As with the first ASAS-SN bright supernova catalog, we also present redshifts and near-UV through IR magnitudes for all supernova host galaxies in both samples. Combined with our previous catalog, this work comprises a complete catalog of 455 supernovae from multiple professional and amateur sources, allowing for population studies that were previously impossible. This is the second of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.

  14. The ASAS-SN Bright Supernova Catalog - II. 2015

    Science.gov (United States)

    Holoien, T. W.-S.; Brown, J. S.; Stanek, K. Z.; Kochanek, C. S.; Shappee, B. J.; Prieto, J. L.; Dong, Subo; Brimacombe, J.; Bishop, D. W.; Basu, U.; Beacom, J. F.; Bersier, D.; Chen, Ping; Danilet, A. B.; Falco, E.; Godoy-Rivera, D.; Goss, N.; Pojmanski, G.; Simonian, G. V.; Skowron, D. M.; Thompson, Todd A.; Woźniak, P. R.; Ávila, C. G.; Bock, G.; Carballo, J.-L. G.; Conseil, E.; Contreras, C.; Cruz, I.; Andújar, J. M. F.; Guo, Zhen; Hsiao, E. Y.; Kiyota, S.; Koff, R. A.; Krannich, G.; Madore, B. F.; Marples, P.; Masi, G.; Morrell, N.; Monard, L. A. G.; Munoz-Mateos, J. C.; Nicholls, B.; Nicolas, J.; Wagner, R. M.; Wiethoff, W. S.

    2017-01-01

    This manuscript presents information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) during 2015, its second full year of operations. The same information is presented for bright (mV ≤ 17), spectroscopically confirmed supernovae discovered by other sources in 2015. As with the first ASAS-SN bright supernova catalog, we also present redshifts and near-UV through IR magnitudes for all supernova host galaxies in both samples. Combined with our previous catalog, this work comprises a complete catalog of 455 supernovae from multiple professional and amateur sources, allowing for population studies that were previously impossible. This is the second of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.

  15. Supernova Feedback in Molecular Clouds: Global Evolution and Dynamics

    CERN Document Server

    Körtgen, Bastian; Banerjee, Robi; Vázquez-Semadeni, Enrique; Zamora-Avilés, Manuel

    2016-01-01

    We use magnetohydrodynamical simulations of converging warm neutral medium flows to analyse the formation and global evolution of magnetised and turbulent molecular clouds subject to supernova feedback from massive stars. We show that supernova feedback alone fails to disrupt entire, gravitationally bound, molecular clouds, but is able to disperse small--sized (~10 pc) regions on timescales of less than 1 Myr. Efficient radiative cooling of the supernova remnant as well as strong compression of the surrounding gas result in non-persistent energy and momentum input from the supernovae. However, if the time between subsequent supernovae is short and they are clustered, large hot bubbles form that disperse larger regions of the parental cloud. On longer timescales, supernova feedback increases the amount of gas with moderate temperatures (T~300-3000 K). Despite its inability to disrupt molecular clouds, supernova feedback leaves a strong imprint on the star formation process. We find an overall reduction of the ...

  16. The Carnegie Supernova Project: The Low-Redshift Survey

    CERN Document Server

    Hamuy, M; Morrell, N I; Phillips, M M; Suntzeff, N B; Persson, S E; Roth, M; González, S; Krzeminski, W; Contreras, C S; Freedman, W L; Murphy, D C; Madore, B F; Wyatt, P; Maza, J; Filippenko, A V; Li, W; Pinto, P A; Hamuy, Mario; Folatelli, Gast\\'on; Morrell, Nidia I.; Phillips, Mark M.; Suntzeff, Nicholas B.; Roth, Miguel; Gonzalez, Sergio; Krzeminski, Wojtek; Contreras, Carlos; Freedman, Wendy L.; Madore, Barry F.; Maza, Jos\\'{e}; Filippenko, Alexei V.; Li, Weidong

    2005-01-01

    Supernovae are essential to understanding the chemical evolution of the Universe. Type Ia supernovae also provide the most powerful observational tool currently available for studying the expansion history of the Universe and the nature of dark energy. Our basic knowledge of supernovae comes from the study of their photometric and spectroscopic properties. However, the presently available data sets of optical and near-infrared light curves of supernovae are rather small and/or heterogeneous, and employ photometric systems that are poorly characterized. Similarly, there are relatively few supernovae whose spectral evolution has been well sampled, both in wavelength and phase, with precise spectrophotometric observations. The low-redshift portion of the Carnegie Supernova Project (CSP) seeks to remedy this situation by providing photometry and spectrophotometry of a large sample of supernovae taken on telescope/filter/detector systems that are well understood and well characterized. During a five-year program w...

  17. Search Recipes

    Science.gov (United States)

    ... Tips A to Z Map Search Enter your search term 98 results • Advanced Search Everything News Videos e- ... usda.gov https://www.whatscooking.fns.usda.gov/search/solr-results/im_field_term_program/child-nutrition-cnp-163 We would like ...

  18. X-ray studies of supernova remnants: A different view of supernova explosions

    OpenAIRE

    Badenes, Carles

    2010-01-01

    The unprecedented spatial and spectral resolutions of Chandra have revolutionized our view of the X-ray emission from supernova remnants. The excellent data sets accumulated on young, ejecta dominated objects like Cas A or Tycho present a unique opportunity to study at the same time the chemical and physical structure of the explosion debris and the characteristics of the circumstellar medium sculpted by the progenitor before the explosion. Supernova remnants can thus put strong constraints o...

  19. Search Patterns

    CERN Document Server

    Morville, Peter

    2010-01-01

    What people are saying about Search Patterns "Search Patterns is a delight to read -- very thoughtful and thought provoking. It's the most comprehensive survey of designing effective search experiences I've seen." --Irene Au, Director of User Experience, Google "I love this book! Thanks to Peter and Jeffery, I now know that search (yes, boring old yucky who cares search) is one of the coolest ways around of looking at the world." --Dan Roam, author, The Back of the Napkin (Portfolio Hardcover) "Search Patterns is a playful guide to the practical concerns of search interface design. It cont

  20. Supernova 1987A: a Template to Link Supernovae to their Remnants

    CERN Document Server

    Orlando, S; Pumo, M L; Bocchino, F

    2015-01-01

    The emission of supernova remnants reflects the properties of both the progenitor supernovae and the surrounding environment. The complex morphology of the remnants, however, hampers the disentanglement of the two contributions. Here we aim at identifying the imprint of SN 1987A on the X-ray emission of its remnant and at constraining the structure of the environment surrounding the supernova. We performed high-resolution hydrodynamic simulations describing SN 1987A soon after the core-collapse and the following three-dimensional expansion of its remnant between days 1 and 15000 after the supernova. We demonstrated that the physical model reproducing the main observables of SN 1987A during the first 250 days of evolution reproduces also the X-ray emission of the subsequent expanding remnant, thus bridging the gap between supernovae and supernova remnants. By comparing model results with observations, we constrained the explosion energy in the range $1.2-1.4\\times 10^{51}$~erg and the envelope mass in the rang...

  1. The ultraviolet properties of supernovae

    Science.gov (United States)

    Brown, Peter J.

    2009-09-01

    Ultraviolet (UV) observations of supernovae (SNe) probe an important wavelength region where hot temperatures, extinction, and metallicity have strong effects. In addition, they provide a comparison set against which to compare and better understand rest frame UV observations of high redshift SNe observed in the optical. UV observations, however, are rare due to the need for telescopes above the atmosphere and the difficulty in observing transient objects with space based observatories. Limited observations with space based observatories, primarily the International Ultraviolet Explorer and the Hubble Space Telescope, are reviewed, after which the Ultra-Violet/Optical Telescope (UVOT) on the Swift spacecraft is introduced. With Swift we have observed more SNe than all previous UV missions combined. Case studies of two individual SNe are first presented: SNe 2005am and 2005cs. SN 2005am is the first young SN observed with Swift, and the near-UV (uvw1: central wavelength ~ 2600 λ) light curve is consistent with the previous "template" derived from IUE and HST observations of SNe 1990N and 1992A. SN 2005cs is the first plateau-type II (IIP) with a well observed UV light curve. UVOT observations show a dramatic drop in the UV brightness and shift in the spectral energy distribution from blue to red caused by the dropping temperature and resulting line blanketing in the UV. These case studies demonstrate the information available from the UV data for individual SNe. A photometry method for proper accounting of coincidence loss, aperture corrections, and subtraction of the underlying galaxy is detailed. This method is then applied to a large sample of SNe observed with UVOT. We present 25 light curves and compare SNe by type and across types. The SNe Ia, with a few exceptions, are shown to have very similar light curves in the near UV, whereas, the three SNe Ib/c we have observed are very different. The SNe IIP all have rapidly fading UV light curves, though with

  2. Probable Bright Supernova discovered by PSST

    Science.gov (United States)

    Smith, K. W.; Wright, D.; Smartt, S. J.; Young, D. R.; Huber, M.; Chambers, K. C.; Flewelling, H.; Willman, M.; Primak, N.; Schultz, A.; Gibson, B.; Magnier, E.; Waters, C.; Tonry, J.; Wainscoat, R. J.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.

    2016-09-01

    A bright transient, which is a probable supernova, has been discovered as part of the Pan-STARRS Survey for Transients (PSST). Information on all objects discovered by the Pan-STARRS Survey for Transients is available at http://star.pst.qub.ac.uk/ps1threepi/ (see Huber et al. ATel #7153).

  3. Explosions inside Ejecta and Most Luminous Supernovae

    CERN Document Server

    Blinnikov, S I

    2008-01-01

    The extremely luminous supernova SN2006gy is explained in the same way as other SNIIn events: light is produced by a radiative shock propagating in a dense circumstellar envelope formed by a previous weak explosion. The problems in the theory and observations of multiple-explosion SNe IIn are briefly reviewed.

  4. Did Egret Detect Distant Supernova Remnants?

    CERN Document Server

    Torres, D F; Dame, T M; Combi, J A; Butt, Y M; Torres, Diego F.; Romero, Gustavo E.; Dame, Thomas M.; Combi, Jorge A.; Butt, Yousaf M.

    2004-01-01

    It might be thought that supernova remnants (SNRs) more distant than a few kiloparsec from Earth could not have been detected by the EGRET experiment. This work analyzes the observational status of this statement in the light of new CO studies of SNRs.

  5. Multipole expansion method for supernova neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Huaiyu; Shalgar, Shashank, E-mail: duan@unm.edu, E-mail: shashankshalgar@unm.edu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States)

    2014-10-01

    We demonstrate a multipole expansion method to calculate collective neutrino oscillations in supernovae using the neutrino bulb model. We show that it is much more efficient to solve multi-angle neutrino oscillations in multipole basis than in angle basis. The multipole expansion method also provides interesting insights into multi-angle calculations that were accomplished previously in angle basis.

  6. Ultraviolet diversity of Type Ia Supernovae

    DEFF Research Database (Denmark)

    Foley, Ryan J.; Pan, Yen-Chen; Brown, P.;

    2016-01-01

    Ultraviolet (UV) observations of Type Ia supernovae (SNe Ia) probe the outermost layers of the explosion, and UV spectra of SNe Ia are expected to be extremely sensitive to differences in progenitor composition and the details of the explosion. Here, we present the first study of a sample of high...

  7. First stars, hypernovae, and superluminous supernovae

    Science.gov (United States)

    Nomoto, Ken'Ichi

    2016-07-01

    After the big bang, production of heavy elements in the early universe takes place starting from the formation of the first (Pop III) stars, their evolution, and explosion. The Pop III supernova (SN) explosions have strong dynamical, thermal, and chemical feedback on the formation of subsequent stars and evolution of galaxies. However, the nature of Pop III stars/supernovae (SNe) have not been well-understood. The signature of nucleosynthesis yields of the first SN can be seen in the elemental abundance patterns observed in extremely metal-poor (EMP) stars. We show that the abundance patterns of EMP stars, e.g. the excess of C, Co, Zn relative to Fe, are in better agreement with the yields of hyper-energetic explosions (Hypernovae, (HNe)) rather than normal supernovae. We note the large variation of the abundance patterns of EMP stars propose that such a variation is related to the diversity of the GRB-SNe and posssibly superluminous supernovae (SLSNe). For example, the carbon-enhanced metal-poor (CEMP) stars may be related to the faint SNe (or dark HNe), which could be the explosions induced by relativistic jets. Finally, we examine the various mechanisms of SLSNe.

  8. Einstein Observations of Galactic supernova remnants

    Science.gov (United States)

    Seward, Frederick D.

    1990-01-01

    This paper summarizes the observations of Galactic supernova remnants with the imaging detectors of the Einstein Observatory. X-ray surface brightness contours of 47 remnants are shown together with gray-scale pictures. Count rates for these remnants have been derived and are listed for the HRI, IPC, and MPC detectors.

  9. Are Ti44-Producing Supernovae Exceptional?

    CERN Document Server

    The, L S; Diehl, R; Hartmann, D H; Iyudin, A F; Leising, M D; Meyer, B S; Motizuki, Y; Schönfelder, V

    2006-01-01

    According to standard models supernovae produce radioactive $^{44}$Ti, which should be visible in gamma-rays following decay to $^{44}$Ca for a few centuries. $^{44}Ti production is believed to be the source of cosmic $^{44}$Ca, whose abundance is well established. Yet, gamma-ray telescopes have not seen the expected young remnants of core collapse events. The $^{44}$Ti mean life of $\\tau \\simeq$ 89 y and the Galactic supernova rate of $\\simeq$ 3/100 y imply $\\simeq$ several detectable $^{44}Ti gamma-ray sources, but only one is clearly seen, the 340-year-old Cas A SNR. Furthermore, supernovae which produce much $^{44}Ti are expected to occur primarily in the inner part of the Galaxy, where young massive stars are most abundant. Because the Galaxy is transparent to gamma-rays, this should be the dominant location of expected gamma-ray sources. Yet the Cas A SNR as the only one source is located far from the inner Galaxy (at longitude 112 degree). We evaluate the surprising absence of detectable supernovae fro...

  10. Deep Recurrent Neural Networks for Supernovae Classification

    CERN Document Server

    Charnock, Tom

    2016-01-01

    We apply deep recurrent neural networks, which are capable of learning complex sequential information, to classify supernovae. The observational time and filter fluxes are used as inputs to the network, but since the inputs are agnostic additional data such as host galaxy information can also be included. Using the Supernovae Photometric Classification Challenge (SPCC) data, we find that deep networks are capable of learning about light curves, however the performance of the network is highly sensitive to the amount of training data. For a training size of 50% of the representational SPCC dataset (around 104 supernovae) we obtain a type Ia vs non type Ia classification accuracy of 94.8%, an area under the Receiver Operating Characteristic curve AUC of 0.986 and a SPCC figure-of-merit F1 = 0.64. We also apply a pre-trained model to obtain classification probabilities as a function of time, and show it can give early indications of supernovae type. Our method is competitive with existing algorithms and has appl...

  11. Essential ingredients in core-collapse supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Hix, W. Raphael [Physics Division, Oak Ridge National Laboratory, Oak Ridge TN 37831-6354 (United States); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200 (United States); Lentz, Eric J.; Chertkow, M. Austin; Harris, J. Austin [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200 (United States); Endeve, Eirik [Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge TN 37831-6008 (United States); Baird, Mark [Reactor and Nuclear Systems Division, Oak Ridge National Laboratory, Oak Ridge TN 37831-6003 (United States); Messer, O. E. Bronson [Physics Division, Oak Ridge National Laboratory, Oak Ridge TN 37831-6354 (United States); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200 (United States); Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge TN 37831-6008 (United States); Mezzacappa, Anthony [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200 (United States); Joint Institute for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6173 (United States); Bruenn, Stephen [Department of Physics, Florida Atlantic University, 777 W Glades Road, Boca Raton, FL 33431-0991 (United States); Blondin, John [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States)

    2014-04-15

    Carrying 10{sup 44} joules of kinetic energy and a rich mix of newly synthesized atomic nuclei, core-collapse supernovae are the preeminent foundries of the nuclear species which make up our solar system and ourselves. Signaling the inevitable death of a massive star, and the birth of a neutron star or black hole, core-collapse supernovae combine physics over a wide range in spatial scales, from kilometer-sized hydrodynamic motions (eventually growing to gigameter scale) down to femtometer-scale nuclear reactions. We will discuss our emerging understanding of the convectively-unstable, neutrino-driven explosion mechanism, based on increasingly realistic neutrino radiation hydrodynamic simulations that include progressively better nuclear and particle physics. Multi-dimensional models with spectral neutrino transport from several research groups, which slowly develop successful explosions for a range of progenitors, have recently motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of the births of neutron stars and the supernovae that result. Recent progress on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.

  12. Supernovae and high density nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Kahana, S.

    1986-01-01

    The role of the nuclear equation of state (EOS) in producing prompt supernova explosions is examined. Results of calculations of Baron, Cooperstein, and Kahana incorporating general relativity and a new high density EOS are presented, and the relevance of these calculations to laboratory experiments with heavy ions considered. 31 refs., 6 figs., 2 tabs.

  13. Essential ingredients in core-collapse supernovae

    Directory of Open Access Journals (Sweden)

    W. Raphael Hix

    2014-03-01

    Full Text Available Carrying 1044 joules of kinetic energy and a rich mix of newly synthesized atomic nuclei, core-collapse supernovae are the preeminent foundries of the nuclear species which make up our solar system and ourselves. Signaling the inevitable death of a massive star, and the birth of a neutron star or black hole, core-collapse supernovae combine physics over a wide range in spatial scales, from kilometer-sized hydrodynamic motions (eventually growing to gigameter scale down to femtometer-scale nuclear reactions. We will discuss our emerging understanding of the convectively-unstable, neutrino-driven explosion mechanism, based on increasingly realistic neutrino radiation hydrodynamic simulations that include progressively better nuclear and particle physics. Multi-dimensional models with spectral neutrino transport from several research groups, which slowly develop successful explosions for a range of progenitors, have recently motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of the births of neutron stars and the supernovae that result. Recent progress on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.

  14. Mutual influence of supernovae and molecular clouds

    CERN Document Server

    Iffrig, Olivier

    2014-01-01

    Context. Molecular clouds are known to be turbulent and strongly affected by stellar feedback. Moreover, stellar feedback is believed to be driving turbulence at large scales in galaxies. Aims. We study the role played by supernovae in molecular clouds and the influence of the magnetic field on this process. Methods. We perform three-dimensional numerical simulations of supernova explosions, in and near turbulent self-gravitating molecular clouds. In order to study the influence of the magnetic field, we perform both hydrodynamical and MHD simulations. We also run a series of simple uniform density medium simulations and develop a simple analytical model. Results. We find that the total amount of momentum that is delivered during supernova explosions typically varies by a factor of about 2 even when the gas density changes by 3 orders of magnitude. However, the amount of momentum delivered to the dense gas varies by almost a factor 10 if the supernova explodes within or outside the molecular cloud. The magnet...

  15. A catalogue of 294 Galactic supernova remnants

    CERN Document Server

    Green, D A

    2014-01-01

    A revised catalogue of 294 Galactic supernova remnants (SNRs) is presented, along with some simple statistics. This catalogue has twenty more entries than did the previous version (from 2009), as 21 new remnants have been added, and one object has been removed as it has been identified as an HII region.

  16. Rayleigh-Taylor mixing in supernova experiments

    Energy Technology Data Exchange (ETDEWEB)

    Swisher, N. C.; Abarzhi, S. I., E-mail: snezhana.abarzhi@gmail.com [Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Kuranz, C. C. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Arnett, D. [University of Arizona, Tucson, Arizona 85721 (United States); Hurricane, O.; Remington, B. A.; Robey, H. F. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-10-15

    We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor instability and Rayleigh-Taylor mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of the Rayleigh-Taylor flow in supernova experiments and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By properly accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are reported to describe asymptotic dynamics of Rayleigh-Taylor flow with time-dependent acceleration by applying theoretical analysis that considers symmetries and momentum transport. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments Rayleigh-Taylor flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; Rayleigh-Taylor mixing keeps order.

  17. Evidence for strange matter in supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O.G.; Horvath, J.E. (Facultad de Ciencias Astronomicas y Geofiiaasicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina de La Plata, Calle 49 y 115, Casilla de Correo 67, 1900 La Plata, Argentina (AR))

    1989-08-14

    With the aim of overcoming the present energetic difficulties in getting type-II supernovae explosions, we present a possible scenario based on strange-matter formation. The observational expectations of this picture are discussed and the predictions of the model for SN 1987A neutrinos and remnant pulsar are examined.

  18. Classification of 9 DES supernova by Magellan

    Science.gov (United States)

    Challis, P.; Kirshner, R.; Mandel, K.; Avelino, A.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Nichol, R.; Papadopoulos, A.; Childress, M.; D'Andrea, C.; Prajs, S.; Smith, M.; Sullivan, M.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.

    2016-09-01

    We report optical spectroscopy of 9 supernovae discovered by the Dark Energy Survey (ATel #4668). The spectra were obtained using LDSS-3C (covering 420-950nm) on the 6.5m Clay telescope at the Las Campanas Observatory.

  19. Clustering of supernova Ia host galaxies

    CERN Document Server

    Carlberg, R G; Le Borgne, D; Conley, A; Howell, D A; Perrett, K; Astier, Pierre; Balam, D; Balland, C; Basa, S; Hardin, D; Fouchez, D; Guy, J; Hook, I; Pain, R; Pritchet, C J; Regnault, N; Rich, J; Perlmutter, S

    2008-01-01

    For the first time the cross-correlation between type Ia supernova host galaxies and surrounding field galaxies is measured using the Supernova Legacy Survey sample. Over the z=0.2 to 0.9 redshift range we find that supernova hosts are correlated an average of 60% more strongly than similarly selected field galaxies over the 3-100 arcsec range and about a factor of 3 more strongly below 10 arcsec. The correlation errors are empirically established with a jackknife analysis of the four SNLS fields. The hosts are more correlated than the field at a significance of 99% in the fitted amplitude and slope, with the point-by-point difference of the two correlation functions having a reduced $\\chi^2$ for 8 degrees of freedom of 4.3, which has a probability of random occurrence of less than 3x10^{-5}. The correlation angle is 1.5+/-0.5 arcsec, which deprojects to a fixed co-moving correlation length of approximately 6.5+/- 2/h mpc. Weighting the field galaxies with the mass and star formation rate supernova frequencie...

  20. The Extreme Hosts of Extreme Supernovae

    CERN Document Server

    Neill, James D; Gal-Yam, Avishay; Quimby, Robert; Ofek, Eran; Wyder, Ted K; Howell, D Andrew; Nugent, Peter; Seibert, Mark; Martin, D Christopher; Overzier, Roderik; Barlow, Tom A; Foster, Karl; Friedman, Peter G; Morrissey, Patrick; Neff, Susan G; Schiminovich, David; Bianchi, Luciana; Donas, José; Heckman, Timothy M; Lee, Young-Wook; Madore, Barry F; Milliard, Bruno; Rich, R Michael; Szalay, Alex S

    2010-01-01

    We use GALEX ultraviolet (UV) and optical integrated photometry of the hosts of seventeen luminous supernovae (LSNe, having peak M_V 100 M_sun), by appearing in low-SFR hosts, are potential tests for theories of the initial mass function that limit the maximum mass of a star based on the S FR.

  1. The white dwarf's carbon fraction as a secondary parameter of Type Ia supernovae

    CERN Document Server

    Ohlmann, Sebastian T; Fink, Michael; Pakmor, Rüdiger; Seitenzahl, Ivo R; Sim, Stuart A; Roepke, Friedrich K

    2014-01-01

    Binary stellar evolution calculations predict that Chandrasekhar-mass carbon/oxygen white dwarfs (WDs) show a radially varying profile for the composition with a carbon depleted core. Many recent multi-dimensional simulations of Type Ia supernovae (SNe Ia), however, assume the progenitor WD has a homogeneous chemical composition. In this work, we explore the impact of different initial carbon profiles of the progenitor WD on the explosion phase and on synthetic observables in the Chandrasekhar-mass delayed detonation model. Spectra and light curves are compared to observations to judge the validity of the model. The explosion phase is simulated using the finite volume supernova code LEAFS, which is extended to treat different compositions of the progenitor WD. The synthetic observables are computed with the Monte Carlo radiative transfer code ARTIS. Differences in binding energies of carbon and oxygen lead to a lower nuclear energy release for carbon depleted material; thus, the burning fronts that develop ar...

  2. Scaling supernova hydrodynamics to the laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kane, J.O.

    1999-06-01

    Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, we are developing laboratory experiments of hydrodynamic mixing under conditions relevant to supernovae. Initial results were reported in J. Kane et al., Astrophys. J.478, L75 (1997) The Nova laser is used to shock two-layer targets, producing Richtmyer-Meshkov (RM) and Rayleigh-Taylor (RT) instabilities at the interfaces between the layers, analogous to instabilities seen at the interfaces of SN 1987A. Because the hydrodynamics in the laser experiments at intermediate times (3-40 ns) and in SN 1987A at intermediate times (5 s-10{sup 4} s) are well described by the Euler equations, the hydrodynamics scale between the two regimes. The experiments are modeled using the hydrodynamics codes HYADES and CALE, and the supernova code PROMETHEUS, thus serving as a benchmark for PROMETHEUS. Results of the experiments and simulations are presented. Analysis of the spike and bubble velocities in the experiment using potential flow theory and a modified Ott thin shell theory is presented. A numerical study of 2D vs. 3D differences in instability growth at the O-He and He-H interface of SN 1987A, and the design for analogous laser experiments are presented. We discuss further work to incorporate more features of the SN in the experiments, including spherical geometry, multiple layers and density gradients. Past and ongoing work in laboratory and laser astrophysics is reviewed, including experimental work on supernova remnants (SNRs). A numerical study of RM instability in SNRs is presented.

  3. Evidence of Historical Supernovae in Ice Cores

    Science.gov (United States)

    Young, Donna

    2011-05-01

    Within the framework of the U.S. Greenland Ice Core Science Project (GISP2), an ice core, known as the GISP H-Core, was collected in June, 1992 adjacent to the GISP2 summit drill site. The project scientists, Gisela A.M. Dreschhoff and Edward J. Zeller, were interested in dating solar proton events with volcanic eruptions. The GISP2-H 122-meter firn and ice core is a record of 415 years of liquid electrical conductivity (LEC) and nitrate concentrations, spanning the years 1992 at the surface through 1577 at the bottom. At the National Ice Core Laboratory in Denver, Colorado, the core (beneath the 12-meter firn) was sliced into 1.5 cm sections and analyzed. The resulting data set consisted of 7,776 individual analyses. The ultrahigh resolution sampling technique resulted in a time resolution of one week near the surface and one month at depth. The liquid electrical conductivity (LEC) sequence contains signals from a number of known volcanic eruptions and provides a dating system at specific locations along the core. The terrestrial and solar background nitrate records show seasonal and annual variations, respectively. However, major nitrate anomalies within the record do not correspond to any known terrestrial or solar events. There is evidence that these nitrate anomalies could be a record of supernovae events. Cosmic X-rays ionize atmospheric nitrogen, producing excess nitrate that is then deposited in the Polar Regions. The GISP2-H ice core has revealed nitrate anomalies at the times of the Tycho and Kepler supernovae. The Cassiopeia A supernova event may be documented in the core as well. We have developed a classroom activity for high school and college students, in which they examine several lines of evidence in the Greenland ice core, discriminating among nearby and mid-latitude volcanic activity, solar proton events, and supernovae. Students infer the date of the Cassiopeia A supernova.

  4. Infrared Light Curves of Type Ia Supernovae

    Science.gov (United States)

    Friedman, Andrew Samuel

    2012-05-01

    This thesis presents the CfAIR2 data set, which includes over 4000 near-Infrared (NIR) JHK8-band measurements of 104 Type Ia Supernovae (SN Ia) observed from 2005-2011 using PAIRITEL, the 1.3-m Peters Automated InfraRed Imaging TELescope at the Fred Lawrence Whipple Observatory (FLWO) on Mount Hopkins, Arizona. While the discovery of dark energy and most subsequent supernova cosmology has been performed using optical and Ultraviolet wavelength observations of SN Ia, a growing body of evidence suggests that NIR SN Ia observations will be crucial for future cosmological studies. Whereas SN Ia observed at optical wavelengths have been shown to be excellent standardizeable candles, using empirical correlations between luminosity, light curve shape, and color, the CfAIR2 data set strengthens the evidence that SN Ia at NIR wavelengths are essentially standard candles, even without correction for light-curve shape or for reddening. CfAIR2 was obtained as part of the CfA Supernova Program, an ongoing multi-wavelength follow-up effort at FLWO designed to observe high-quality, densely sampled light curves and spectra of hundreds of low-redshift SN Ia. CfAIR2 is the largest homogeneously observed and processed NIR data set of its kind to date, nearly tripling the number of individual JHK8-band observations and nearly doubling the set of SN Ia with published NIR light curves in the literature. Matched only by the recently published Carnegie Supernova Project sample, CfAIR2 complements the large and growing set of low-redshift optical and NIR SN Ia observations obtained by the CfA and other programs, making this data set a unique and particularly valuable local universe anchor for future supernova cosmology.

  5. The SILCC project - III. Regulation of star formation and outflows by stellar winds and supernovae

    Science.gov (United States)

    Gatto, Andrea; Walch, Stefanie; Naab, Thorsten; Girichidis, Philipp; Wünsch, Richard; Glover, Simon C. O.; Klessen, Ralf S.; Clark, Paul C.; Peters, Thomas; Derigs, Dominik; Baczynski, Christian; Puls, Joachim

    2017-04-01

    We study the impact of stellar winds and supernovae on the multiphase interstellar medium using three-dimensional hydrodynamical simulations carried out with FLASH. The selected galactic disc region has a size of (500 pc)2 × ±5 kpc and a gas surface density of 10 M⊙ pc-2. The simulations include an external stellar potential and gas self-gravity, radiative cooling and diffuse heating, sink particles representing star clusters, stellar winds from these clusters that combine the winds from individual massive stars by following their evolution tracks, and subsequent supernova explosions. Dust and gas (self-) shielding is followed to compute the chemical state of the gas with a chemical network. We find that stellar winds can regulate star (cluster) formation. Since the winds suppress the accretion of fresh gas soon after the cluster has formed, they lead to clusters that have lower average masses (102-104.3 M⊙) and form on shorter time-scales (10-3-10 Myr). In particular, we find an anticorrelation of cluster mass and accretion time-scale. Without winds, the star clusters easily grow to larger masses for ∼5 Myr until the first supernova explodes. Overall, the most massive stars provide the most wind energy input, while objects beginning their evolution as B-type stars contribute most of the supernova energy input. A significant outflow from the disc (mass loading ≳1 at 1 kpc) can be launched by thermal gas pressure if more than 50 per cent of the volume near the disc mid-plane can be heated to T > 3 × 105 K. Stellar winds alone cannot create a hot volume-filling phase. The models that are in best agreement with observed star formation rates drive either no outflows or weak outflows.

  6. The Rise and Fall of Type Ia Supernova Light Curves in the SDSS-II Supernova Survey

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, Brian T.; /Notre Dame U.; Garnavich, Peter M.; /Notre Dame U.; Kessler, Richard; /KICP, Chicago /Chicago U., EFI; Frieman, Joshua A.; /KICP, Chicago /Chicago U. /Fermilab; Jha, Saurabh W.; /Stanford U., Phys. Dept. /Rutgers U., Piscataway; Bassett, Bruce; /Cape Town U., Dept. Math. /South African Astron. Observ.; Cinabro, David; /Wayne State U.; Dilday, Benjamin; /Rutgers U., Piscataway; Kasen, Daniel; /UC, Santa Cruz; Marriner, John; /Fermilab; Nichol, Robert C.; /Portsmouth U., ICG /Baltimore, Space Telescope Sci. /Johns Hopkins U.

    2010-01-01

    We analyze the rise and fall times of Type Ia supernova (SN Ia) light curves discovered by the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. From a set of 391 light curves k-corrected to the rest-frame B and V bands, we find a smaller dispersion in the rising portion of the light curve compared to the decline. This is in qualitative agreement with computer models which predict that variations in radioactive nickel yield have less impact on the rise than on the spread of the decline rates. The differences we find in the rise and fall properties suggest that a single 'stretch' correction to the light curve phase does not properly model the range of SN Ia light curve shapes. We select a subset of 105 light curves well observed in both rise and fall portions of the light curves and develop a '2-stretch' fit algorithm which estimates the rise and fall times independently. We find the average time from explosion to B-band peak brightness is 17.38 {+-} 0.17 days, but with a spread of rise times which range from 13 days to 23 days. Our average rise time is shorter than the 19.5 days found in previous studies; this reflects both the different light curve template used and the application of the 2-stretch algorithm. The SDSS-II supernova set and the local SNe Ia with well-observed early light curves show no significant differences in their average rise-time properties. We find that slow-declining events tend to have fast rise times, but that the distribution of rise minus fall time is broad and single peaked. This distribution is in contrast to the bimodality in this parameter that was first suggested by Strovink (2007) from an analysis of a small set of local SNe Ia. We divide the SDSS-II sample in half based on the rise minus fall value, t{sub r} - t{sub f} {approx}< 2 days and t{sub r} - t{sub f} > 2 days, to search for differences in their host galaxy properties and Hubble residuals; we find no difference in host galaxy properties or Hubble

  7. Optical Identification of Cepheids in 19 Host Galaxies of Type Ia Supernovae and NGC 4258 with the Hubble Space Telescope

    CERN Document Server

    Hoffmann, Samantha L; Riess, Adam G; Yuan, Wenlong; Casertano, Stefano; Filippenko, Alexei V; Tucker, Brad E; Chornock, Ryan; Silverman, Jeffrey M; Welch, Douglas L; Goobar, Ariel; Amanullah, Rahman

    2016-01-01

    We present results of an optical search for Cepheid variable stars using the Hubble Space Telescope (HST) in 19 hosts of Type Ia supernovae (SNe Ia) and the maser-host galaxy NGC 4258, conducted as part of the SH0ES project (Supernovae and H0 for the Equation of State of dark energy). The targets include 9 newly imaged SN Ia hosts using a novel strategy based on a long-pass filter that minimizes the number of HST orbits required to detect and accurately determine Cepheid properties. We carried out a homogeneous reduction and analysis of all observations, including new universal variability searches in all SN Ia hosts, that yielded a total of 2200 variables with well-defined selection criteria -- the largest such sample identified outside the Local Group. These objects are used in a companion paper to determine the local value of H0 with a total uncertainty of 2.4%.

  8. Thermal effects in supernova matter

    Science.gov (United States)

    Constantinou, Constantinos

    A crucial ingredient in simulations of core collapse supernova (SN) explosions is the equation of state (EOS) of nucleonic matter for densities extending from 10-7 fm-3 to 1 ffm-3, temperatures up to 50 MeV, and proton-to-baryon fraction in the range 0 to 1/2. SN explosions release 99% of the progenitor star's gravitational potential energy in the form of neutrinos and, additionally, they are responsible for populating the universe with elements heavier than 56Fe. Therefore, the importance of understanding this phenomenon cannot be overstated as it could shed light onto the underlying nuclear and neutrino physics. A realistic EOS of SN matter must incorporate the nucleon-nucleon interaction in a many-body environment. We treat this problem with a non-relativistic potential model as well as relativistic mean-field theoretical one. In the former approach, we employ the Skyrme-like Hamiltonian density constructed by Akmal, Pandharipande, and Ravenhall which takes into account the long scattering lengths of nucleons that determine the low density characteristics. In the latter, we use a Walecka-like Lagrangian density supplemented by non-linear interactions involving scalar, vector, and isovector meson exchanges, calibrated so that known properties of nuclear matter are reproduced. We focus on the bulk homogeneous phase and calculate its thermodynamic properties as functions of baryon density, temperature, and proton-to-baryon ratio. The exact numerical results are then compared to those in the degenerate and non-degenerate limits for which analytical formulae have been derived. We find that the two models bahave similarly for densities up to nuclear saturation but exhibit differences at higher densities most notably in the isospin susceptibilities, the chemical potentials, and the pressure. The importance of the correct momentum dependence in the single particle potential that fits optical potentials of nucleon-nucleus scattering was highlighted in the context of

  9. Type Ia supernovae: explosions and progenitors

    Science.gov (United States)

    Kerzendorf, Wolfgang Eitel

    2011-08-01

    Supernovae are the brightest explosions in the universe. Supernovae in our Galaxy, rare and happening only every few centuries, have probably been observed since the beginnings of mankind. At first they were interpreted as religious omens but in the last half millennium they have increasingly been used to study the cosmos and our place in it. Tycho Brahe deduced from his observations of the famous supernova in 1572, that the stars, in contrast to the widely believe Aristotelian doctrine, were not immutable. More than 400 years after Tycho made his paradigm changing discovery using SN 1572, and some 60 years after supernovae had been identified as distant dying stars, two teams changed the view of the world again using supernovae. The found that the Universe was accelerating in its expansion, a conclusion that could most easily be explained if more than 70% of the Universe was some previously un-identified form of matter now often referred to as `Dark Energy'. Beyond their prominent role as tools to gauge our place in the Universe, supernovae themselves have been studied well over the past 75 years. We now know that there are two main physical causes of these cataclysmic events. One of these channels is the collapse of the core of a massive star. The observationally motivated classes Type II, Type Ib and Type Ic have been attributed to these events. This thesis, however is dedicated to the second group of supernovae, the thermonuclear explosions of degenerate carbon and oxygen rich material and lacking hydrogen - called Type Ia supernovae (SNe Ia). White dwarf stars are formed at the end of a typical star's life when nuclear burning ceases in the core, the outer envelope is ejected, with the degenerate core typically cooling for eternity. Theory predicts that such stars will self ignite when close to 1.38 Msun (called the Chandrasekhar Mass). Most stars however leave white dwarfs with 0.6 Msun, and no star leaves a remnant as heavy as 1.38 M! sun, which suggests

  10. Search Combinators

    CERN Document Server

    Schrijvers, Tom; Wuille, Pieter; Samulowitz, Horst; Stuckey, Peter J

    2012-01-01

    The ability to model search in a constraint solver can be an essential asset for solving combinatorial problems. However, existing infrastructure for defining search heuristics is often inadequate. Either modeling capabilities are extremely limited or users are faced with a general-purpose programming language whose features are not tailored towards writing search heuristics. As a result, major improvements in performance may remain unexplored. This article introduces search combinators, a lightweight and solver-independent method that bridges the gap between a conceptually simple modeling language for search (high-level, functional and naturally compositional) and an efficient implementation (low-level, imperative and highly non-modular). By allowing the user to define application-tailored search strategies from a small set of primitives, search combinators effectively provide a rich domain-specific language (DSL) for modeling search to the user. Remarkably, this DSL comes at a low implementation cost to the...

  11. Visual search

    NARCIS (Netherlands)

    Toet, A.; Bijl, P.

    2003-01-01

    Visual search, with or without the aid of optical or electro-optical instruments, plays a significant role in various types of military and civilian operations (e.g., reconnaissance, surveillance, and search and rescue). Advance knowledge of human visual search and target acquisition performance is

  12. On Deep-Ocean $^{60}Fe$ as a Fossil of a Near-Earth Supernova

    CERN Document Server

    Fields, B D; Fields, Brian D.; Ellis, John

    1999-01-01

    Live $^{60}$Fe has recently been reported in a deep-ocean ferromanganese crust. Analysis of the isotopic ratios in the sample suggests that the measured $^{60}$Fe abundance exceeds the levels generated by terrestrial and cosmogenic sources, and it has been proposed that the excess of $^{60}$Fe is a signature of a supernova that exploded near the earth several Myr ago. In this paper, we consider the possible background sources, and confirm that the measured $^{60}$Fe is significantly higher than all known backgrounds, in contrast with the reported abundance of live $^{53}$Mn. We discuss scenarios in which the data are consistent with a supernova event at a distance $D \\sim 30$ pc and an epoch $t_{\\rm SN} \\sim 5$ Myr ago. We propose tests that could confirm or refute the interpretation of the $^{60}$Fe discovery, including searches for $^{10}$Be, $^{129}$I and $^{146}$Sm. Such a nearby supernova event might have had some impact on the earth's biosphere, principally by enhancing the cosmic-ray flux. This might h...

  13. A reconnaissance of the possible donor stars to the Kepler supernova

    Energy Technology Data Exchange (ETDEWEB)

    Kerzendorf, Wolfgang E.; Childress, Michael; Schmidt, Brian P. [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Cotter Road, Weston Creek, ACT 2611 (Australia); Scharwächter, Julia [Observatoire de Paris, LERMA (CNRS: UMR 8112), 61 Av. de l' Observatoire, 75014 Paris (France); Do, Tuan, E-mail: wkerzend@mso.anu.edu.au [Department of Astronomy and Astrophysics, University of Toronto, 50 Saint George Street, Toronto, ON M5S 3H4 (Canada)

    2014-02-10

    The identity of Type Ia supernova progenitors remains a mystery, with various lines of evidence pointing toward either accretion from a nondegenerate companion or the rapid merger of two degenerate stars leading to the thermonuclear destruction of a white dwarf. In this paper, we spectroscopically scrutinize 24 of the brightest stars residing in the central 38'' × 38'' of the SN 1604 (Kepler) supernova remnant to search for a possible surviving companion star. We can rule out, with high certainty, a red giant companion star—a progenitor indicated by some models of the supernova remnant. Furthermore, we find no star that exhibits properties uniquely consistent with those expected of a donor star down to L > 10 L {sub ☉}. While the distribution of star properties toward the remnant are consistent with unrelated stars, we identify the most promising candidates for further astrometric and spectroscopic follow up. Such a program would either discover the donor star or place strong limits on progenitor systems to luminosities with L << L {sub ☉}.

  14. Timescale Stretch Parameterization of Type Ia Supernova B-band Light Curves

    CERN Document Server

    Goldhaber, Gerson; Kim, A; Aldering, G; Astier, Pierre; Conley, A; Deustua, S E; Ellis, R; Fabbro, S; Fruchter, A S; Goobar, A; Hook, I; Irwin, M; Kim, M; Knop, R A; Lidman, C E; McMahon, R; Nugent, P; Pain, R; Panagia, N; Pennypacker, C R; Perlmutter, S; Ruiz-Lapuente, P; Schaefer, B; Walton, N A; York, T; Project, The Supernova Cosmology

    2001-01-01

    R-band intensity measurements along the light curve of Type Ia supernovae discovered by the Supernova Cosmology Project (SCP) are fitted in brightness to templates allowing a free parameter the time-axis width factor w = s(1+z). The data points are then individually aligned in the time-axis, normalized and K-corrected back to the rest frame, after which the nearly 1300 normalized intensity measurements are found to lie on a well-determined common rest-frame B-band curve which we call the ``composite curve''. The same procedure is applied to 18 low-redshift Calan/Tololo SNe with z < 0.11; these nearly 300 B-band photometry points are found to lie on the composite curve equally well. The SCP search technique produces several measurements before maximum light for each supernova. We demonstrate that the linear stretch factor, s, which parameterizes the light-curve timescale appears independent of z,and applies equally well to the declining and rising parts of the light curve. In fact, the B-band template that ...

  15. Time-Varying Sodium Absorption in the Type Ia Supernova 2013gh

    CERN Document Server

    Ferretti, R; Goobar, A; Johansson, J; Vreeswijk, P M; Butler, R P; Cao, Y; Cenko, S B; Doran, G; Filippenko, A V; Freeland, E; Hosseinzadeh, G; Howell, D A; Lundqvist, P; Mattila, S; Nordin, J; Nugent, P E; Petrushevska, T; Valenti, S; Vogt, S; Wozniak, P

    2016-01-01

    Temporal variability of narrow absorption lines in high-resolution spectra of Type Ia supernovae (SNe Ia) is studied to search for circumstellar matter. Time series which resolve the profiles of absorption lines such as Na I D or Ca II H&K are expected to reveal variations due to photoionisation and subsequent recombination of the gases. The presence, composition, and geometry of circumstellar matter may hint at the elusive progenitor system of SNe Ia and could also affect the observed reddening law. To date, there are few known cases of time-varying Na I D absorption in SNe Ia, all of which occurred during relatively late phases of the supernova evolution. Photoionisation, however, is predicted to occur during the early phases of SNe Ia, when the supernova peaks in the ultraviolet. We therefore attempt to observe early-time absorption-line variations by obtaining high-resolution spectra of SNe before maximum light. We have obtained photometry and high-resolution spectroscopy of SNe Ia 2013gh and iPTF 13d...

  16. A supernova feedback implementation for the astrophysical simulation software Arepo

    CERN Document Server

    Bubel, André-Patrick

    2016-01-01

    Supernova (SN) explosions play an important role in the development of galactic structures. The energy and momentum imparted on the interstellar medium (ISM) in so called "supernova feedback" drives turbulence, heats the gas, enriches it with heavy elements, can lead to the formation of new stars or even suppress star formation by disrupting stellar nurseries. In the numerical simulation at the sub-galactic level, not including the energy and momentum of supernovas in the physical description of the problem can also lead to several problems that might partially be resolved by including a description of supernovas. In this thesis such an implementation is attempted for the combined numerical hydrodynamics and N-body simulation software Arepo (Springel, 2010). In a stochastic process a large amount of thermal energy is imparted on a number of neighbouring cells, mimicking the effect of a supernova explosions. We test this approach by modelling the explosion of a single supernova in a uniform density medium and ...

  17. Semi-supervised Learning for Photometric Supernova Classification

    CERN Document Server

    Richards, Joseph W; Freeman, Peter E; Schafer, Chad M; Poznanski, Dovi

    2011-01-01

    We present a semi-supervised method for photometric supernova typing. Our approach is to first use the nonlinear dimension reduction technique diffusion map to detect structure in a database of supernova light curves and subsequently employ random forest classification on a spectroscopically confirmed training set to learn a model that can predict the type of each newly observed supernova. We demonstrate that this is an effective method for supernova typing. As supernova numbers increase, our semi-supervised method efficiently utilizes this information to improve classification, a property not enjoyed by template based methods. Applied to supernova data simulated by Kessler et al. (2010b) to mimic those of the Dark Energy Survey, our methods achieve (cross-validated) 96% Type Ia purity and 86% Type Ia efficiency on the spectroscopic sample, but only 56% Type Ia purity and 48% efficiency on the photometric sample due to their spectroscopic followup strategy. To improve the performance on the photometric sample...

  18. The Supernova Legacy Survey 3-year sample: Type Ia Supernovae photometric distances and cosmological constraints

    CERN Document Server

    Guy, J; Conley, A; Regnault, N; Astier, P; Balland, C; Basa, S; Carlberg, R G; Fouchez, D; Hardin, D; Hook, I M; Howell, D A; Pain, R; Palanque-Delabrouille, N; Perrett, K M; Pritchet, C J; Rich, J; Ruhlmann-Kleider, V; Balam, D; Baumont, S; Ellis, R S; Fabbro, S; Fakhouri, H K; Fourmanoit, N; Gonzalez-Gaitan, S; Graham, M L; Hsiao, E; Kronborg, T; Lidman, C; Mourao, A M; Perlmutter, S; Ripoche, P; Suzuki, N; Walker, E S

    2010-01-01

    We present photometric properties and distance measurements of 252 high redshift Type Ia supernovae (0.15 < z < 1.1) discovered during the first three years of the Supernova Legacy Survey (SNLS). These events were detected and their multi-colour light curves measured using the MegaPrime/MegaCam instrument at the Canada-France-Hawaii Telescope (CFHT), by repeatedly imaging four one-square degree fields in four bands. Follow-up spectroscopy was performed at the VLT, Gemini and Keck telescopes to confirm the nature of the supernovae and to measure their redshifts. Systematic uncertainties arising from light curve modeling are studied, making use of two techniques to derive the peak magnitude, shape and colour of the supernovae, and taking advantage of a precise calibration of the SNLS fields. A flat LambdaCDM cosmological fit to 231 SNLS high redshift Type Ia supernovae alone gives Omega_M = 0.211 +/- 0.034(stat) +/- 0.069(sys). The dominant systematic uncertainty comes from uncertainties in the photometri...

  19. Photometric selection of Type Ia supernovae in the Supernova Legacy Survey

    CERN Document Server

    Bazin, G; Palanque-Delabrouille, N; Rich, J; Aubourg, E; Astier, P; Balland, C; Basa, S; Carlberg, R G; Conley, A; Fouchez, D; Guy, J; Hardin, D; Hook, I M; Howell, D A; Pain, R; Perrett, K; Pritchet, C J; Regnault, N; Sullivan, M; Fourmanoit, N; Gonzalez-Gaitan, S; Lidman, C; Perlmutter, S; Ripoche, P; Walker, E S

    2011-01-01

    We present a sample of 485 photometrically identified Type Ia supernova candidates mined from the first three years of data of the CFHT SuperNova Legacy Survey (SNLS). The images were submitted to a deferred processing independent of the SNLS real-time detection pipeline. Light curves of all transient events were reconstructed in the g_M, r_M, i_M and z_M filters and submitted to automated sequential cuts in order to identify possible supernovae. Pure noise and long-term variable events were rejected by light curve shape criteria. Type Ia supernova identification relied on event characteristics fitted to their light curves assuming the events to be normal SNe Ia. The light curve fitter SALT2 was used for this purpose, assigning host galaxy photometric redshifts to the tested events. The selected sample of 485 candidates is one magnitude deeper than that allowed by the SNLS spectroscopic identification. The contamination by supernovae of other types is estimated to be 4%. Testing Hubble diagram residuals with ...

  20. Two superluminous supernovae from the early universe discovered by the Supernova Legacy Survey

    CERN Document Server

    Howell, D A; Lidman, C; Sullivan, M; Conley, A; Astier, P; Carlberg, C Balland R G; Fouchez, D; Guy, J; Hardin, D; Pain, R; Palanque-Delabrouille, N; Perrett, K; Pritchet, C J; Regnault, N; Rich, J; Ruhlmann-Kleider, V

    2013-01-01

    We present spectra and lightcurves of SNLS 06D4eu and SNLS 07D2bv, two hydrogen-free superluminous supernovae discovered by the Supernova Legacy Survey. At z = 1.588, SNLS 06D4eu is the highest redshift superluminous SN with a spectrum, at M_U = -22.7 is one of the most luminous SNe ever observed, and gives a rare glimpse into the restframe ultraviolet where these supernovae put out their peak energy. SNLS 07D2bv does not have a host galaxy redshift, but based on the supernova spectrum, we estimate it to be at z ~ 1.5. Both supernovae have similar observer-frame griz lightcurves, which map to restframe lightcurves in the U-band and UV, rising in ~ 20 restframe days or longer, and declining over a similar timescale. The lightcurves peak in the shortest wavelengths first, consistent with an expanding blackbody starting near 15,000 K and steadily declining in temperature. We compare the spectra to theoretical models, and identify lines of C II, C III, Fe III, and Mg II in the spectrum of SNLS 06D4eu and SCP 06F6...

  1. VizieR Online Data Catalog: Optical supernova remnants in nearby galaxies (Vucetic+, 2015)

    Science.gov (United States)

    Vucetic, M. M.; Arbutina, B.; Urosevic, D.

    2015-09-01

    To estimate the contribution from SNRs to the total Hα emission used to determine SFRs in a galaxy, we searched the literature for all galaxies that have optically identified SNRs. In total, there are 25 of them (excluding the Milky Way). In following tables we give data for 18 nearby galaxies which have been surveyed for optical supernova remnants (SNRs). In each table we give coordinates, Hα fluxes, diameters and [SII]/Hα emission line ratios for detected SNRs, found in literature. (19 data files).

  2. Ejection of Supernova-Enriched Gas From Dwarf Disk Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Fragile, P C; Murray, S D; Lin, D C

    2004-06-15

    We examine the efficiency with which supernova-enriched gas may be ejected from dwarf disk galaxies, using a methodology previously employed to study the self-enrichment efficiency of dwarf spheroidal systems. Unlike previous studies that focused on highly concentrated starbursts, in the current work we consider discrete supernova events spread throughout various fractions of the disk. We model disk systems having gas masses of 10{sup 8} and 10{sup 9} M{sub {circle_dot}} with supernova rates of 30, 300, and 3000 Myr{sup -1}. The supernova events are confined to the midplane of the disk, but distributed over radii of 0, 30, and 80% of the disk radius, consistent with expectations for Type II supernovae. In agreement with earlier studies, we find that the enriched material from supernovae is largely lost when the supernovae are concentrated near the nucleus, as expected for a starburst event. In contrast, we find the loss of enriched material to be much less efficient (as low as 21%) when the supernovae occur over even a relatively small fraction of the disk. The difference is due to the ability of the system to relax following supernova events that occur over more extended regions. Larger physical separations also reduce the likelihood of supernovae going off within low-density ''chimneys'' swept out by previous supernovae. We also find that, for the most distributed systems, significant metal loss is more likely to be accompanied by significant mass loss. A comparison with theoretical predications indicates that, when undergoing self-regulated star formation, galaxies in the mass range considered shall efficiently retain the products of Type II supernovae.

  3. Vivid View of Tycho's Supernova Remnant

    Science.gov (United States)

    2008-01-01

    This composite image of the Tycho supernova remnant combines infrared and X-ray observations obtained with NASA's Spitzer and Chandra space observatories, respectively, and the Calar Alto observatory, Spain. It shows the scene more than four centuries after the brilliant star explosion witnessed by Tycho Brahe and other astronomers of that era. The explosion has left a blazing hot cloud of expanding debris (green and yellow). The location of the blast's outer shock wave can be seen as a blue sphere of ultra-energetic electrons. Newly synthesized dust in the ejected material and heated pre-existing dust from the area around the supernova radiate at infrared wavelengths of 24 microns (red). Foreground and background stars in the image are white.

  4. Tycho Brahe's supernova: light from centuries past

    CERN Document Server

    Ruiz-Lapuente, P

    2003-01-01

    The light curve of SN 1572 is described in the terms used nowadays to characterize SNeIa. By assembling the records of the observations done in 1572--74 and evaluating their uncertainties, it is possible to recover the light curve and the color evolution of this supernova. It is found that, within the SNe Ia family, the event should have been a SNIa with a normal rate of decline, its stretch factor being {\\it s} $\\sim$ 0.9. Visual light curve near maximum, late--time decline and the color evolution sustain this conclusion. After correcting for extinction, the luminosity of this supernova is found to be M$_{V}$ $=$ --19.58 --5 log (D/3.5 kpc) $\\pm$ 0.42.

  5. Impacto ambiental de los remanentes de supernova

    Science.gov (United States)

    Dubner, G. M.

    2015-08-01

    The explosion of a supernovae (SN) represents the sudden injection of about ergs of thermal and mechanical energy in a small region of space, causing the formation of powerful shock waves that propagate through the interstellar medium at speeds of several thousands of km/s. These waves sweep, compress and heat the interstellar material that they encounter, forming the supernova remnants. Their evolution over thousands of years change forever, irreversibly, not only the physical but also the chemical properties of a vast region of space that can span hundreds of parsecs. This contribution briefly analyzes the impact of these explosions, discussing the relevance of some phenomena usually associated with SNe and their remnants in the light of recent theoretical and observational results.

  6. Photometric Supernova Classification With Machine Learning

    CERN Document Server

    Lochner, Michelle; Peiris, Hiranya V; Lahav, Ofer; Winter, Max K

    2016-01-01

    Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Telescope (LSST), given that spectroscopic confirmation of type for all supernovae discovered with these surveys will be impossible. Here, we develop a multi-faceted classification pipeline, combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely SALT2 fits, to more independent techniques fitting parametric models to curves, to a completely model-independent wavelet approach. We cover a range of representative machine learning algorithms, including naive Bayes, k-nearest neighbors, support vector machines, artificial neural networks and boosted decision trees. We test the pipeline on simulated multi-ba...

  7. Neutrino Nucleosynthesis of radioactive nuclei in supernovae

    CERN Document Server

    Sieverding, A; Langanke, K; Martínez-Pinedo, G; Heger, A

    2015-01-01

    We study the neutrino-induced production of nuclides in explosive supernova nucleosynthesis for progenitor stars with solar metallicity and initial main sequence masses between 15 M$_\\odot$ and 40 M$_\\odot$. We improve previous investigations i) by using a global set of partial differential cross sections for neutrino-induced charged- and neutral-current reactions on nuclei with charge numbers $Z < 76 $ and ii) by considering modern supernova neutrino spectra which have substantially lower average energies compared to those previously adopted in neutrino nucleosynthesis studies. We confirm the production of $^7$Li, $^{11}$B, $^{138}$La, and $^{180}$Ta by neutrino nucleosynthesis, albeit at slightly smaller abundances due to the changed neutrino spectra. We find that for stars with a mass smaller than 20 M$_\\odot$, $^{19}$F is produced mainly by explosive nucleosynthesis while for higher mass stars it is produced by the $\

  8. Prospects for Neutrino Spin Coherence in Supernovae

    CERN Document Server

    Tian, James

    2016-01-01

    We present neutrino bulb model simulations of majorana neutrino coherent spin transformation (i.e., neutrino-antineutrino transformation) for conditions corresponding to the neutronization burst epoch of an O-Ne-Mg core collapse supernova. Significant neutrino spin transformation, in e.g. the neutronization burst, could alter the fluence of neutrinos and antineutrinos in a way which is potentially detectable for a galactic core collapse supernova. Our calculations for the first time treat geometric dilution in the spin evolution of the neutrinos and combine two-flavor and three-flavor neutrino flavor evolution with spin mixing physics. We find that significant spin transformations can occur, but only with an electron fraction profile which facilitates adiabatic conditions for the spin-channel resonance. Using our adopted parameters of neutrino energy spectra, luminosity, density and electron fraction profiles, our calculations require an unrealistically large neutrino rest mass to sustain the spin transformat...

  9. Multi-Wavelength Observations of Supernova Remnants

    Science.gov (United States)

    Williams, B.

    2012-01-01

    Supernova remnants (SNRs) provide a laboratory for studying various astrophysical processes, including particle acceleration, thermal and non thermal emission processes across the spectrum, distribution of heavy elements, the physics of strong shock waves, and the progenitor systems and environments of supernovae. Long studied in radio and X-rays, the past decade has seen a dramatic increase in the detection and subsequent study of SNRs in the infrared and gamma-ray regimes. Understanding the evolution of SNRs and their interaction with the interstellar medium requires a multi-wavelength approach. I will review the various physical processes observed in SNRs and how these processes are intertwined. In particular, I will focus on X-ray and infrared observations, which probe two very different but intrinsically connected phases of the ISM: gas and dust. I will discuss results from multi-wavelength studies of several SNRs at various stages of evolution, including Kepler, RCW 86, and the Cygnus Loop.

  10. SNCosmo: Python library for supernova cosmology

    Science.gov (United States)

    Barbary, Kyle; Barclay, Tom; Biswas, Rahul; Craig, Matt; Feindt, Ulrich; Friesen, Brian; Goldstein, Danny; Jha, Saurabh; Rodney, Steve; Sofiatti, Caroline; Thomas, Rollin C.; Wood-Vasey, Michael

    2016-11-01

    SNCosmo synthesizes supernova spectra and photometry from SN models, and has functions for fitting and sampling SN model parameters given photometric light curve data. It offers fast implementations of several commonly used extinction laws and can be used to construct SN models that include dust. The SNCosmo library includes supernova models such as SALT2, MLCS2k2, Hsiao, Nugent, PSNID, SNANA and Whalen models, as well as a variety of built-in bandpasses and magnitude systems, and provides convenience functions for reading and writing peculiar data formats used in other packages. The library is extensible, allowing new models, bandpasses, and magnitude systems to be defined using an object-oriented interface.

  11. Merging White Dwarfs and Thermonuclear Supernovae

    CERN Document Server

    van Kerkwijk, Marten H

    2012-01-01

    Thermonuclear supernovae result when interaction with a companion reignites nuclear fusion in a carbon-oxygen white dwarf, causing a thermonuclear runaway, a catastrophic gain in pressure, and the disintegration of the whole white dwarf. It is usually thought that fusion is reignited in near-pycnonuclear conditions when the white dwarf approaches the Chandrasekhar mass. I briefly describe two long-standing problems faced by this scenario, and our suggestion that these supernovae instead result from mergers of carbon-oxygen white dwarfs, including those that produce sub-Chandrasekhar mass remnants. I then turn to possible observational tests, in particular those that test the absence or presence of electron captures during the burning.

  12. Supernova Feedback in an Inhomogeneous Interstellar Medium

    CERN Document Server

    Martizzi, Davide; Quataert, Eliot

    2014-01-01

    Supernova (SN) feedback is one of the key processes shaping the interstellar medium (ISM) of galaxies. SNe contribute to (and in some cases may dominate) driving turbulence in the ISM and accelerating galactic winds. Modern cosmological simulations have sufficient resolution to capture the main structures in the ISM of galaxies, but are typically still not capable of explicitly resolving all of the small-scale stellar feedback processes, including the expansion of supernova remnants (SNRs). We perform a series of controlled three-dimensional hydrodynamic (adaptive mesh refinement, AMR) simulations of single SNRs expanding in an inhomogeneous density field with statistics motivated by those of the turbulent ISM. We use these to quantify the momentum and thermal energy injection from SNe as a function of spatial scale and the density, metallicity, and structure of the ambient medium. Using these results, we develop an analytic sub-resolution model for SN feedback for use in galaxy formation simulations. We then...

  13. An Unusually Fast-Evolving Supernova

    CERN Document Server

    Poznanski, Dovi; Nugent, Peter E; Bloom, Joshua S; Ganeshalingam, Mohan; Leonard, Douglas C; Li, Weidong; Thomas, Rollin C

    2009-01-01

    Analyses of supernovae (SNe) have revealed two main types of progenitors: exploding white dwarfs and collapsing massive stars. We present SN2002bj, which stands out as different from any SN reported to date. Its light curve rises and declines very rapidly, yet reaches a peak intrinsic brightness greater than -18 mag. A spectrum obtained 7 days after discovery shows the presence of helium and intermediate-mass elements, yet no clear hydrogen or iron-peak elements. The spectrum only barely resembles that of a Type Ia supernova, with added carbon and helium. Its properties suggest that SN2002bj may be representative of a class of progenitors that previously has been only hypothesized: a helium detonation on a white dwarf, ejecting a small envelope of material. New surveys should find many such objects, despite their scarcity.

  14. Nuclear pasta in supernovae and neutron stars

    CERN Document Server

    Watanabe, Gentaro

    2011-01-01

    In supernova cores and neutron star crusts, nuclei with exotic shapes such as rod-like and slab-like nuclei are expected to exist. These nuclei are collectively called nuclear "pasta". For the past decades, existence of the pasta phases in the equilibrium state has been studied using various methods. Recently, the formation process of the pasta phases, which has been a long-standing problem, has been unveiled using molecular dynamics simulations. In this review, we first provide the astrophysical background of supernovae and neutron stars and overview the history of the study of the pasta phases. We then focus on the recent study on the formation process of the pasta phases. Finally, we discuss future important issues related to the pasta phases: their astrophysical evidence and consequences.

  15. Cosmogenic Secondary Radiation from a Nearby Supernova

    Science.gov (United States)

    Overholt, Andrew

    2017-01-01

    Increasing evidence has been found for multiple supernovae within 100 pc of the solar system. Supernovae produce large amounts of cosmic rays which upon striking Earth's atmosphere, produce a cascade of secondary particles. Among these cosmic ray secondaries are neutrons and muons, which penetrate far within the atmosphere to sea level and even below sea level. Muons and neutrons are both forms of ionizing radiation which have been linked to increases in cancer, congenital malformations, and other maladies. This work focuses on the impact of muons, as they penetrate into ocean water to impact the lowest levels of the aquatic food chain. We have used monte carlo simulations (CORSIKA, MCNPx, and FLUKA) to determine the ionizing radiation dose due to cosmic ray secondaries. This information shows that although most astrophysical events do not supply the necessary radiation flux to prove dangerous; there may be other impacts such as an increase to mutation rate.

  16. Core-Collapse Supernovae: Reflections and Directions

    CERN Document Server

    Janka, H -Thomas; Huedepohl, Lorenz; Marek, Andreas; Mueller, Bernhard; Obergaulinger, Martin

    2012-01-01

    Core-collapse supernovae are among the most fascinating phenomena in astrophysics and provide a formidable challenge for theoretical investigation. They mark the spectacular end of the lives of massive stars and, in an explosive eruption, release as much energy as the sun produces during its whole life. A better understanding of the astrophysical role of supernovae as birth sites of neutron stars, black holes, and heavy chemical elements, and more reliable predictions of the observable signals from stellar death events are tightly linked to the solution of the long-standing puzzle how collapsing stars achieve to explode. In this article our current knowledge of the processes that contribute to the success of the explosion mechanism are concisely reviewed. After a short overview of the sequence of stages of stellar core-collapse events, the general properties of the progenitor-dependent neutrino emission will be briefly described. Applying sophisticated neutrino transport in axisymmetric (2D) simulations with ...

  17. SUPERNOVA 1987A: CELEBRATING A SILVER JUBILEE

    Directory of Open Access Journals (Sweden)

    Nino Panagia

    2013-12-01

    Full Text Available The story of the SN 1987A explosion is briefly reviewed. Although this supernova was somewhat peculiar, the study of SN 1987A has clarified quite a number of important aspects of the nature and the properties of supernovae, such as the confirmation of the core collapse of a massive star as the cause of the explosion, as well the confirmation that the decays 56Ni–56Co–56Fe at early times and 44Ti–44Sc at late times, are the main sources of the energy radiated by the ejecta. Still we have not been able to ascertain whether the progenitor was a single star or a binary system, nor have we been able to detect the stellar remnant, a neutron star that should be produced in the core collapse process.

  18. Strangelet spectra from type II supernovae

    CERN Document Server

    Vucetich, H

    1998-01-01

    We study in this work the fate of strangelets injected as a contamination in the tail of a "strange matter-driven" supernova shock. A simple model for the fragmentation and braking of the strangelets when they pass through the expanding oxygen shell is presented and solved to understand the reprocessing of this component. We find that the escaping spectrum is a scaled-down version of the one injected at the base of the oxygen shell. The supernova source is likely to produce low-energy particles of $A \\sim 100-1000$ quite independently of the initial conditions. However, it is difficult that ultrarrelativistic strangelets (such as the hypothetical Centauro primaries) can have an origin in those explosive events.

  19. Non-Standard Neutrino Interactions in Supernovae

    CERN Document Server

    Stapleford, Charles J; Kneller, James P; McLaughlin, Gail C; Shapiro, Brandon T

    2016-01-01

    Non Standard Interactions (NSI) of neutrinos with matter can significantly alter neutrino flavor evolution in supernovae and impact explosion dynamics with a potential of leaving an imprint of physics Beyond the Standard Model. In this manuscript we show that NSI can induce both Symmetric and Standard Matter-Neutrino Resonances (MNRs) previously studied only in compact object merger scenarios. We demonstrate that these new effects can take place in supernovae with non-standard interaction scales well below current experimental limits. A prerequisite for an NSI induced Standard MNR to occur is the presence of an inner (I) resonance transition close to the neutrino emission surface. Even in regions where the MNR does not occur, we find the NSI can induce neutrino collective effects due to the neutrino-neutrino interactions in scenarios not previously explored. We illustrate the variety of effects utilizing a two-flavor (anti)neutrino system with a single momentum mode in a homogeneous and isotropic environment....

  20. Reverse-Shock in Tycho's Supernova Remnant

    CERN Document Server

    Lu, F J; Zheng, S J; Zhang, S N; Long, X; Aschenbach, B

    2015-01-01

    Thermal X-ray emission from young supernova remnants (SNRs) is usually dominated by the emission lines of the supernova (SN) ejecta, which are widely believed being crossed and thus heated by the inwards propagating reverse shock (RS). Previous works using imaging X-ray data have shown that the ejecta are heated by the RS by locating the peak emission region of the most recently ionized matter, which is found well separated towards the inside from the outermost boundary. Here we report the discovery of a systematic increase of the Sulfur (S) to Silicon (Si) K$\\alpha$ line flux ratio with radius in Tycho's SNR. This allows us, for the first time, to present continuous radial profiles of the ionization age and, furthermore, the elapsed ionization time since the onset of the ionization, which tells the propagation history of the ionization front into the SNR ejecta.