WorldWideScience

Sample records for volume shape variation

  1. Dosimetric impact of the variation of the prostate volume and shape between pretreatment planning and treatment procedure

    International Nuclear Information System (INIS)

    Beaulieu, Luc; Aubin, Sylviane; Taschereau, Richard; Pouliot, Jean; Vigneault, Eric

    2002-01-01

    Purpose: The goal of this study is to evaluate the dosimetric impact on a pretreatment planning of prostatic volume and shape variations occurring between the moment of the volume study (preplanning) and just before a transperineal permanent seed implant procedure. Such variations could be an obvious source of misplacement of the seeds relative to the prostate gland and organs at risk. Other sources of dosimetric uncertainties, such as misplacement due to the procedure itself or edema, are eliminated by looking at these variations before the implant procedure. Methods and Materials: For 35 clinical cases, prostate contours were taken at preplanning time as well as in the operating room (OR) minutes before the procedure. Comparison of shape and volume between the two sets was made. The impact on V100 was evaluated by placing the seeds in their planned positions in the new volume (clinical situation) and also by performing a new plan with the second set of contours to simulate an intraoperative approach. Results: The volume taken in the OR remained unchanged compared to the pretreatment planning volume in only 37% of the cases. While on average the dose coverage loss from pretreatment planning due to a combination of variations of volume and shape was small at 5.7%, a V100 degradation of up to 20.9% was observed in extreme cases. Even in cases in which no changes in volume were observed, changes in shape occurred and strongly affected implant dosimetry. Conclusions: Variations of volume and shape between pretreatment planning and the implant procedure can have a strong impact on the dosimetry if the planning and the implant procedure are not performed on the same day. This is an argument in favor of performing implant dosimetry in the OR

  2. Effects of major geometric variations between intracavitary applications on pear-shaped isodose dimension in cancer of the cervix

    International Nuclear Information System (INIS)

    Kim, R. Y.

    1996-01-01

    PURPOSE: The basic principal of intracavitary brachytherapy for cancer of the cervix is based on specific loading rules to achieve a pear-shaped isodose distribution centered around the cervix. Recently, ICRU Report 38 recommends a dose reference volume for reporting. Our previous studies have confirmed that there is considerable variations of geometry between applications. This study is to evaluate the effect of major geometric variations on pear-shaped isodose dimension in manual afterloading low-dose-rate system. MATERIAL AND METHODS: One hundred orthogonal films of 50 patients with cancer of the cervix (2 applications/patient) were reviewed for comparative measurements of geometric variations between applications. Major geometric variations were found for 13 patients in lengths of tandem, 7 patients in colpostats separation and 16 patients in vaginal packing. The direct measurement of these geometric variations were compared with the three-dimensional measurement of the pear-shaped isodose enclosed by the point A between the two applications. RESULTS: The geometric variations in the width of colpostats separation and length of tandem were directly related to the width and height of the pear-shaped isodose dimension. The geometric relationship between the colpostats and distal tandem had an important effect on the thickness of the pear-shape. In optimization of poor geometry for rectum or bladder wall, high dose volume centered around the cervix is reduced without changing the overall pear-shaped volume due to changing configuration of the pear-shaped isodose. In our selected patients with two applications, variations in vaginal packing had no direct effect on the width and thickness of the pear-shape due to other variables. CONCLUSION: Major geometric variations between applications greatly affect the dimension of the pear-shaped isodose distribution. Optimization of poor geometry is quite limited without compromising the high-dose volume centered around the

  3. Evaluation of axillary dose coverage following whole breast radiotherapy: Variation with the breast volume and shape

    International Nuclear Information System (INIS)

    Aguiar, Artur; Gomes Pereira, Helena; Azevedo, Isabel; Gomes, Luciano

    2015-01-01

    Objective: To evaluate the axillary dose coverage in patients treated with tridimensional whole breast radiotherapy (3D-WBRT), according to the breast volume and shape in treatment position. Background: Several studies have demonstrated an insufficient dose contribution to the axillary levels, using 3D-WBRT, remaining unclear whether the breast volume and shape can influence it. Materials and methods: We retrospectively delineated the axillary levels on planning CT-images of 100 patients, treated with 3D-WBRT along 2012 in our institution. To estimate the shape we established an anatomic CT-based interval, defined as the Thoracic Extent (TE). The breast volume matched its CTV. Mean dose levels and V95 (volume receiving at least 95% of the prescribed dose) were evaluated. Results: Mean axillary level I (A1), II (A2) and III (A3) volume was 56.1 cc, 16.5 cc and 18.9 cc, respectively, and mean doses were 43.9 Gy, 38.6 Gy and 19.5 Gy. For breast volumes of <800 cc, 800–999 cc, 1000–1199 cc and >1200 cc, mean A1 V95 was 38%, 51%, 61.2% and 57.2% whereas median A2 V95 was 8.3%, 13.4%, 19.4% and 28% respectively. Regarding shape, where the breast relative position to the TE was categorized in intervals between 31% and 40%, 41% and 50%, 51% and 60%, and 61% and 70%, mean A1 V95 was 38.7%, 43.1%, 51.1% and 77.3% whereas mean A2 V95 was 6.1%, 11.2%, 17.1% and 37% respectively. Conclusions: We observed inadequate dose coverage to all axillary levels, even after applying a sub-analysis accounting for different breast volumes and shapes. Although higher doses were associated with the more voluminous and pendulous breasts, axillary coverage with 3D-WBRT seems to be inefficient, regardless of the breast morphology

  4. Target volume shape variation during irradiation of rectal cancer patients in supine position: Comparison with prone position

    International Nuclear Information System (INIS)

    Nijkamp, Jasper; Jong, Rianne de; Sonke, Jan-Jakob; Vliet, Corine van; Marijnen, Corrie

    2009-01-01

    Purpose: To quantify the inter-fraction shape variation of the mesorectum for rectal cancer patients treated with 5 x 5 Gy in supine position and compare it to variation in prone position. Methods and materials: For 28 patients a planning CT (pCT) and five daily cone-beam-CT (CBCT) scans were acquired in supine position. The mesorectal part of the CTV (MesoRect) was delineated on all scans. The shape variation was quantified by the distance between the pCT- and the CBCT delineations and stored in surface maps after online setup correction. Data were analyzed for male and female patients separately and compared to prone data. Results: A large range of systematic, 1-8 mm (1SD), and random, 1-5 mm, shape variation was found, comparable to prone patients. Random-shape variation was comparable for male and female patients, while systematic variation was 3 mm larger for female patients. Conclusions: Shape variation of the MesoRect is substantial, heterogeneous and different between male and female patients. Differences between supine and prone orientation, however, are small. Clinical margins should be differentiated in position along the cranio-caudal axis, in anterior-posterior direction and for gender. Margins should also be increased, even when online setup correction is used. Due to the small margin differences between prone and supine treatments, the setup choice should be determined on dose to the organs at risk.

  5. Body size and allometric variation in facial shape in children.

    Science.gov (United States)

    Larson, Jacinda R; Manyama, Mange F; Cole, Joanne B; Gonzalez, Paula N; Percival, Christopher J; Liberton, Denise K; Ferrara, Tracey M; Riccardi, Sheri L; Kimwaga, Emmanuel A; Mathayo, Joshua; Spitzmacher, Jared A; Rolian, Campbell; Jamniczky, Heather A; Weinberg, Seth M; Roseman, Charles C; Klein, Ophir; Lukowiak, Ken; Spritz, Richard A; Hallgrimsson, Benedikt

    2018-02-01

    Morphological integration, or the tendency for covariation, is commonly seen in complex traits such as the human face. The effects of growth on shape, or allometry, represent a ubiquitous but poorly understood axis of integration. We address the question of to what extent age and measures of size converge on a single pattern of allometry for human facial shape. Our study is based on two large cross-sectional cohorts of children, one from Tanzania and the other from the United States (N = 7,173). We employ 3D facial imaging and geometric morphometrics to relate facial shape to age and anthropometric measures. The two populations differ significantly in facial shape, but the magnitude of this difference is small relative to the variation within each group. Allometric variation for facial shape is similar in both populations, representing a small but significant proportion of total variation in facial shape. Different measures of size are associated with overlapping but statistically distinct aspects of shape variation. Only half of the size-related variation in facial shape can be explained by the first principal component of four size measures and age while the remainder associates distinctly with individual measures. Allometric variation in the human face is complex and should not be regarded as a singular effect. This finding has important implications for how size is treated in studies of human facial shape and for the developmental basis for allometric variation more generally. © 2017 Wiley Periodicals, Inc.

  6. Survival of alpha particle irradiated cells as a function of the shape and size of the sensitive volume (nucleus)

    International Nuclear Information System (INIS)

    Stinchcomb, T.G.; Roeske, J.C.

    1995-01-01

    Microdosimetry is the study of the stochastic variation of energy deposited within sub-cellular targets. As such, the size and shape of the critical target (i.e. cell nucleus) are essential when considering microdosimetric quantities. In this work, a microdosimetric analysis examines the expected cell survival as a function of the size and shape of the cell nucleus under conditions of irradiation emitting alpha particles. The results indicate that, in general, cell survival is relatively insensitive to changes in the shape of the cell nucleus when the volume is held constant. However, cell survival is a strong function of the variation in the size of the target. These results are useful when analysing the results of cell survival experiments for alpha particle emitters. (Author)

  7. Feeding variations and shape changes of a temperate reef clingfish during its early ontogeny

    Directory of Open Access Journals (Sweden)

    Valentina Bernal-Durán

    2017-06-01

    Full Text Available The majority of rocky reef fishes have complex life cycles, involving transition from a pelagic to a benthic environment. This means that as they grow, their morphology, behaviour and feeding habits must change. Therefore, shape changes occurring during early development of these fishes will be related to diet changes. The clingfish Sicyases sanguineus was selected for this study, because it displays a noticeable variation in shape from pelagic larvae to juvenile stage, and it is expected that diet composition will change as well. The pattern of shape changes was studied using geometric morphometrics. A set of 9 landmarks were digitized in 159 larval and juvenile fish and the same specimens were used for gut content analysis. Allometric growth was most prominent early in the ontogeny, from 4 to 12 mm. Morphology changed from a thin and hydrodynamic shape to a more robust and deeper body prior to settlement. The diet of the clingfish during larval stages showed preferences for a variety of copepod stages. As individual grows the ingested prey volume increases, but not the number and width of prey. A partial least square analysis showed low covariance between shape changes and diet composition changes in prey number and volume, suggesting that the two processes were temporally decoupled. The biggest shape changes, a lengthening of the visceral cavity and a flattening of the head, occurred up to 12 mm standard length, while the largest feeding differentiation, shifting from copepods to microalgae, occurred after 16 mm. Results suggest that shape changes precede trophic changes in this clingfish species during the transition from a pelagic to a benthic habitat.

  8. Wing shape variation associated with mimicry in butterflies.

    Science.gov (United States)

    Jones, Robert T; Le Poul, Yann; Whibley, Annabel C; Mérot, Claire; ffrench-Constant, Richard H; Joron, Mathieu

    2013-08-01

    Mimetic resemblance in unpalatable butterflies has been studied by evolutionary biologists for over a century, but has largely focused on the convergence in wing color patterns. In Heliconius numata, discrete color-pattern morphs closely resemble comimics in the distantly related genus Melinaea. We examine the possibility that the shape of the butterfly wing also shows adaptive convergence. First, simple measures of forewing dimensions were taken of individuals in a cross between H. numata morphs, and showed quantitative differences between two of the segregating morphs, f. elegans and f. silvana. Second, landmark-based geometric morphometric and elliptical Fourier outline analyses were used to more fully characterize these shape differences. Extension of these techniques to specimens from natural populations suggested that, although many of the coexisting morphs could not be discriminated by shape, the differences we identified between f. elegans and f. silvana hold in the wild. Interestingly, despite extensive overlap, the shape variation between these two morphs is paralleled in their respective Melinaea comimics. Our study therefore suggests that wing-shape variation is associated with mimetic resemblance, and raises the intriguing possibility that the supergene responsible for controlling the major switch in color pattern between morphs also contributes to wing shape differences in H. numata. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  9. Effect of variation in equilibrium shape on ELMing H-mode performance in DIII-D diverted plasmas

    International Nuclear Information System (INIS)

    Fenstermacher, M.E.; Osborne, T.H.; Petrie, T.W.

    2001-01-01

    The changes in the performance of the core, pedestal, scrape-off-layer (SOL), and divertor plasmas as a result of changes in triangularity, δ, up/down magnetic balance, and secondary divertor volume were examined in shape variation experiments using ELMing H mode plasmas on DIII-D. In moderate density, unpumped plasmas, high δ∼0.7 increased the energy in the H mode pedestal and the global energy confinement of the core, primarily due to an increase in the margin by which the edge pressure gradient exceeded the value which would have been expected had it been limited by infinite-n ideal ballooning modes. In addition, a nearly balanced double-null (DN) shape was effective for sharing the peak heat flux in the divertor in these attached plasmas. For detached plasmas good heat flux sharing was obtained for a substantial range of unbalanced DN shapes. Finally, the presence of a second X-point in unbalanced DN shapes did not degrade the plasma performance if it was sufficiently far inside the vacuum vessel. These results indicate that a high δ unbalanced DN shape has some advantages over a single null shape for future high power tokamak operation. (author)

  10. Human midsagittal brain shape variation: patterns, allometry and integration

    Science.gov (United States)

    Bruner, Emiliano; Martin-Loeches, Manuel; Colom, Roberto

    2010-01-01

    Midsagittal cerebral morphology provides a homologous geometrical reference for brain shape and cortical vs. subcortical spatial relationships. In this study, midsagittal brain shape variation is investigated in a sample of 102 humans, in order to describe and quantify the major patterns of correlation between morphological features, the effect of size and sex on general anatomy, and the degree of integration between different cortical and subcortical areas. The only evident pattern of covariation was associated with fronto-parietal cortical bulging. The allometric component was weak for the cortical profile, but more robust for the posterior subcortical areas. Apparent sex differences were evidenced in size but not in brain shape. Cortical and subcortical elements displayed scarcely integrated changes, suggesting a modular separation between these two areas. However, a certain correlation was found between posterior subcortical and parietal cortical variations. These results should be directly integrated with information ranging from functional craniology to wiring organization, and with hypotheses linking brain shape and the mechanical properties of neurons during morphogenesis. PMID:20345859

  11. Effects of the volume and shape of voxels on the measurement of phantom volume using three-dimensional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mori, Koichi; Tonami, Syuichi; Nakamura, Mamoru; Kuranishi, Makoto; Hagino, Hirofumi; Saitou, Osamu; Yotsutsuji, Takashi

    2002-01-01

    Recently, an increasing number of volumetric studies of the human brain have been reported, using three-dimensional magnetic resonance imaging (3D-MRI). To our knowledge, however, there are few investigations on the relation of the volume and shape of voxels which constitute and MR image to the accuracy in volume measurement of an imaged object. The purpose of this study was to evaluate the effect of a different shape of voxel, that is, isotropic or anisotropic, as well as the volume of a voxel on the volume measurement based on the original image data and multiplanar reconstruction (MPR) data, respectively. In the experiment, we repeatedly acquired contiguous sagittal images of a single globe phantom with a known volume under the condition in which the volume and shape of voxels varied, on a 1.5 T MR scanner. We used a gradient echo sequence (3D FLASH). The volume of the globe phantom from both original images and MPR ones was measured on workstations employing a semi-automated local thresholding technique. As a result, the smaller volume of voxels tended to give us the more correct measurement, and an isotropic voxel reduced measurement errors as compared to an anisotropic one. Therefore, it is concluded that the setting of voxel with both an isotropic shape and small volume, e.g., a voxel of 1 mm x 1 mm x 1 mm at present, is recommended in order to get a precise volume measurement using 3D-MRI. (author)

  12. [Effects of the volume and shape of voxels on the measurement of phantom volume using three-dimensional magnetic resonance imaging].

    Science.gov (United States)

    Mori, Koichi; Hagino, Hirofumi; Saitou, Osamu; Yotsutsuji, Takashi; Tonami, Syuichi; Nakamura, Mamoru; Kuranishi, Makoto

    2002-01-01

    Recently, an increasing number of volumetric studies of the human brain have been reported, using three-dimensional magnetic resonance imaging (3D-MRI). To our knowledge, however, there are few investigations on the relation of the volume and shape of voxels which constitute an MR image to the accuracy in volume measurement of an imaged object. The purpose of this study was to evaluate the effect of a different shape of voxel, that is, isotropic or anisotropic, as well as the volume of a voxel on the volume measurement based on the original image data and multiplanar reconstruction (MPR) data, respectively. In the experiment, we repeatedly acquired contiguous sagittal images of a single globe phantom with a known volume under the condition in which the volume and shape of voxels varied, on a 1.5T MR scanner. We used a gradient echo sequence (3D FLASH). The volume of the globe phantom from both original images and MPR ones was measured on workstations employing a semi-automated local thresholding technique. As a result, the smaller volume of voxels tended to give us the more correct measurement, and an isotropic voxel reduced measurement errors as compared to an anisotropic one. Therefore, it is concluded that the setting of voxel with both an isotropic shape and small volume, e.g., a voxel of 1 mm x 1 mm x 1 mm at present, is recommended in order to get a precise volume measurement using 3D-MRI.

  13. Estimation of lung volumes from chest radiographs using shape information

    International Nuclear Information System (INIS)

    Pierce, R.J.; Brown, D.J.; Holmes, M.; Cumming, G.; Denison, D.M.

    1979-01-01

    The cross-sectional shapes of the chest and its contained structures were assessed in post-mortem anatomical sections and from computerised tomographic scans in living subjects. These shapes are described by simple equations that can be used to increase the accuracy of measuring lung volumes from chest radiographs. Radiographic estimates of total lung capacity, using the equations, were compared with plethysmographic and single-breath helium dilution measurements in 35 normal subjects. After correction for posture effects the radiographic estimates of TLC, which measure the displacement volume of the lung, exceeded the plethysmographic estimates of contained gas volume by a mean of 720 ml, which was taken as the volume of tissue, blood, and water in the lungs. The single-breath dilution estimates of TLC fell short of the plethysmographic values by a mean of 480 ml, taken as the volume of contained gas that was inaccessible to helium in 10 seconds. The tomographic studies suggested that the radiographic technique of measuring lung displacement volumes has an accuracy of +- 210 ml. The method is rapid and simple to use and the intra- and inter-observer variabilities of <1% and <5% respectively. (author)

  14. Geographic variation in chin shape challenges the universal facial attractiveness hypothesis.

    Directory of Open Access Journals (Sweden)

    Zaneta M Thayer

    Full Text Available The universal facial attractiveness (UFA hypothesis proposes that some facial features are universally preferred because they are reliable signals of mate quality. The primary evidence for this hypothesis comes from cross-cultural studies of perceived attractiveness. However, these studies do not directly address patterns of morphological variation at the population level. An unanswered question is therefore: Are universally preferred facial phenotypes geographically invariant, as the UFA hypothesis implies? The purpose of our study is to evaluate this often overlooked aspect of the UFA hypothesis by examining patterns of geographic variation in chin shape. We collected symphyseal outlines from 180 recent human mandibles (90 male, 90 female representing nine geographic regions. Elliptical Fourier functions analysis was used to quantify chin shape, and principle components analysis was used to compute shape descriptors. In contrast to the expectations of the UFA hypothesis, we found significant geographic differences in male and female chin shape. These findings are consistent with region-specific sexual selection and/or random genetic drift, but not universal sexual selection. We recommend that future studies of facial attractiveness take into consideration patterns of morphological variation within and between diverse human populations.

  15. Volume determination of irregularly-shaped quasi-spherical nanoparticles.

    Science.gov (United States)

    Attota, Ravi Kiran; Liu, Eileen Cherry

    2016-11-01

    Nanoparticles (NPs) are widely used in diverse application areas, such as medicine, engineering, and cosmetics. The size (or volume) of NPs is one of the most important parameters for their successful application. It is relatively straightforward to determine the volume of regular NPs such as spheres and cubes from a one-dimensional or two-dimensional measurement. However, due to the three-dimensional nature of NPs, it is challenging to determine the proper physical size of many types of regularly and irregularly-shaped quasi-spherical NPs at high-throughput using a single tool. Here, we present a relatively simple method that determines a better volume estimate of NPs by combining measurements from their top-down projection areas and peak heights using two tools. The proposed method is significantly faster and more economical than the electron tomography method. We demonstrate the improved accuracy of the combined method over scanning electron microscopy (SEM) or atomic force microscopy (AFM) alone by using modeling, simulations, and measurements. This study also exposes the existence of inherent measurement biases for both SEM and AFM, which usually produce larger measured diameters with SEM than with AFM. However, in some cases SEM measured diameters appear to have less error compared to AFM measured diameters, especially for widely used IS-NPs such as of gold, and silver. The method provides a much needed, proper high-throughput volumetric measurement method useful for many applications. Graphical Abstract The combined method for volume determination of irregularly-shaped quasi-spherical nanoparticles.

  16. Cranial shape variation in adult howler monkeys (Alouatta seniculus).

    Science.gov (United States)

    Fiorenza, Luca; Bruner, Emiliano

    2018-01-01

    Howler monkeys (genus Alouatta) display a distinctive cranial architecture characterized by airorhynchy (or retroflexion of the facial skeleton on the cranial base), a small braincase, and a posteriorly oriented foramen magnum. This configuration has been associated with distinct factors including a high folivory diet, locomotion, and the presence of a specialized vocal tract characterized by large hyoid bone. However, the morphological relationships between the facial and neurocranial blocks in Alouatta have been scarcely investigated. In this study we quantitatively analyzed the cranial shape variation in Alouatta seniculus, to evaluate possible influences and constraints in face and braincase associated with airorhynchy. We also considered the structural role of the pteric area within the cranial functional matrix. We applied landmark-based analysis and multivariate statistics to 31 adult crania, computing shape analyses based on 3D coordinates registration as well as the analysis of the Euclidean distance matrix to investigate patterns of intraspecific morphological variability. Our results suggest that allometry is the main source of variation involved in shaping cranial morphology in howlers, influencing the degree of facial proportions and braincase flattening, and generating the main sexual differences. Larger individuals are characterized by a higher degree of airorhynchy, neurocranial flattening, and expansion of the zygomatic arch. Allometric variations influence the skull as a whole, without distinct patterns for face and braincase, which behave as an integrated morphological unit. A preliminary survey on the pteric pattern suggests that the morphology of this area may be the result of variations in the vertical growth rates between face and braincase. Future studies should be dedicated to the ontogenetic series and focus on airorhynchy in terms of differential growth among distinct cranial districts. © 2017 Wiley Periodicals, Inc.

  17. Elliptic Fourier Analysis of body shape variation of Hippocampus spp. (seahorse in Danajon Bank, Philippines

    Directory of Open Access Journals (Sweden)

    S. R. M. Tabugo-Rico

    2017-12-01

    Full Text Available Seahorses inhabit various ecosystems hence, had become a flagship species of the marine environment. The Philippines as a hot spot of biodiversity in Asia holds a number of species of seahorses. This serve as an exploratory study to describe body shape variation of selected common seahorse species: Hippocampus comes, Hippocampus histrix, Hippocampus spinosissimus and Hippocampus kuda from Danajon bank using Elliptic Fourier Analysis. The method was done to test whether significant yet subtle differences in body shape variation can be species-specific, habitat-influenced and provide evidence of sexual dimorphism. It is hypothesized that phenotypic divergence may provide evidence for genetic differentiation or mere adaptations to habitat variation. Results show significant considerable differences in the body shapes of the five populations based on the canonical variate analysis (CVA and multivariate analysis of variance (MANOVA with significant p values. Populations were found to be distinct from each other suggesting that body shape variation is species-specific, habitat-influenced and provided evidence for sexual dimorphism. Results of discriminant analysis show further support for species specific traits and sexual dimorphism. This study shows the application of the method of geometric morphometrics specifically elliptic fourier analysis in describing subtle body shape variation of selected Hippocampus species.

  18. Changes in hemoglobin-oxygen affinity with shape variations of red blood cells

    Science.gov (United States)

    Chowdhury, Aniket; Dasgupta, Raktim; Majumder, Shovan K.

    2017-10-01

    Shape variations of red blood cells (RBCs) are known to occur upon exposure to various drugs or under diseased conditions. The commonly observed discocytic RBCs can be transformed to echinocytic or stomatocytic shape under such conditions. Raman spectra of the three major shape variations, namely discocyte, echinocyte, and stomatocyte, of RBCs were studied while subjecting the cells to oxygenated and deoxygenated conditions. Analysis of the recorded spectra suggests an increased level of hemoglobin (Hb)-oxygen affinity for the echinocytes. Also, some level of Hb degradation could be noticed for the deoxygenated echinocytes. The effects may arise from a reduced level of intracellular adenosine triphosphate in echinocytic cells and an increased fraction of submembrane Hb.

  19. Determination of protein and solvent volumes in protein crystals from contrast variation data

    Energy Technology Data Exchange (ETDEWEB)

    Badger, J. [Brandeis Univ., Waltham, MA (United States)

    1994-12-31

    By varying the relative values of protein and solvent scattering densities in a crystal, it is possible to obtain information on the shape and dimensions of protein molecular envelopes. Neutron diffraction methods are ideally suited to these contrast variation experiments because H/D exchange leads to large differential changes in the protein and solvent scattering densities and is structurally non-perturbing. Low resolution structure factors have been measured from cubic insulin crystals with differing H/D contents. Structure factors calculated from a simple binary density model, in which uniform scattering densities represent the protein and solvent volumes in the crystals, were compared with these data. The contrast variation differences in the sets of measured structure factors were found to be accurately fitted by this simple model. Trial applications to two problems in crystal structure determination illustrate how this fact may be exploited. (1) A translation function that employs contrast variation data gave a sharp minimum within 1-9{Angstrom} of the correctly positioned insulin molecule and is relatively insensitive to errors in the atomic model. (2) An ab initio phasing method for the contrast variation data, based on analyzing histograms of the density distributions in trial maps, was found to recover the correct molecular envelope.

  20. Variation of gross tumor volume and clinical target volume definition for lung cancer

    International Nuclear Information System (INIS)

    Liang Jun; Li Minghui; Chen Dongdu

    2011-01-01

    Objective: To study the variation of gross tumor volume (GTV) and clinical target volume (CTV) definition for lung cancer between different doctors. Methods: Ten lung cancer patients with PET-CT simulation were selected from January 2008 to December 2009.GTV and CTV of these patients were defined by four professors or associate professors of radiotherapy independently. Results: The mean ratios of largest to smallest GTV and CTV were 1.66 and 1.65, respectively. The mean coefficients of variation for GTV and CTV were 0.20 and 0.17, respectively. System errors of CTV definition in three dimension were less than 5 mm, which was the largest in inferior and superior (0.48 cm, 0.37 cm, 0.32 cm; F=0.40, 0.60, 0.15, P=0.755, 0.618, 0.928). Conclusions: The variation of GTV and CTV definition for lung cancer between different doctors exist. The mean ratios of largest to smallest GTV and CTV were less than 1.7. The variation was in hilar and mediastinum lymphanode regions. System error of CTV definition was the largest (<5 mm) in cranio-caudal direction. (authors)

  1. Volume regulation and shape bifurcation in the cell nucleus.

    Science.gov (United States)

    Kim, Dong-Hwee; Li, Bo; Si, Fangwei; Phillip, Jude M; Wirtz, Denis; Sun, Sean X

    2015-09-15

    Alterations in nuclear morphology are closely associated with essential cell functions, such as cell motility and polarization, and correlate with a wide range of human diseases, including cancer, muscular dystrophy, dilated cardiomyopathy and progeria. However, the mechanics and forces that shape the nucleus are not well understood. Here, we demonstrate that when an adherent cell is detached from its substratum, the nucleus undergoes a large volumetric reduction accompanied by a morphological transition from an almost smooth to a heavily folded surface. We develop a mathematical model that systematically analyzes the evolution of nuclear shape and volume. The analysis suggests that the pressure difference across the nuclear envelope, which is influenced by changes in cell volume and regulated by microtubules and actin filaments, is a major factor determining nuclear morphology. Our results show that physical and chemical properties of the extracellular microenvironment directly influence nuclear morphology and suggest that there is a direct link between the environment and gene regulation. © 2015. Published by The Company of Biologists Ltd.

  2. Genetics of body shape and armour variation in threespine sticklebacks.

    Science.gov (United States)

    Leinonen, T; Cano, J M; Merilä, J

    2011-01-01

    Patterns of genetic variation and covariation can influence the rate and direction of phenotypic evolution. We explored the possibility that the parallel morphological evolution seen in threespine stickleback (Gasterosteus aculeatus) populations colonizing freshwater environments is facilitated by patterns of genetic variation and covariation in the ancestral (marine) population. We estimated the genetic (G) and phenotypic (P) covariance matrices and directions of maximum additive genetic (g(max) ) and phenotypic (p(max) ) covariances of body shape and armour traits. Our results suggest a role for the ancestral G in explaining parallel morphological evolution in freshwater populations. We also found evidence of genetic constraints owing to the lack of variance in the ancestral G. Furthermore, strong genetic covariances and correlations among traits revealed that selective factors responsible for threespine stickleback body shape and armour divergence may be difficult to disentangle. The directions of g(max) and p(max) were correlated, but the correlations were not high enough to imply that phenotypic patterns of trait variation and covariation within populations are very informative of underlying genetic patterns. © 2010 The Authors. Journal of Evolutionary Biology © 2010 European Society For Evolutionary Biology.

  3. Monte Carlo Method with Heuristic Adjustment for Irregularly Shaped Food Product Volume Measurement

    Directory of Open Access Journals (Sweden)

    Joko Siswantoro

    2014-01-01

    Full Text Available Volume measurement plays an important role in the production and processing of food products. Various methods have been proposed to measure the volume of food products with irregular shapes based on 3D reconstruction. However, 3D reconstruction comes with a high-priced computational cost. Furthermore, some of the volume measurement methods based on 3D reconstruction have a low accuracy. Another method for measuring volume of objects uses Monte Carlo method. Monte Carlo method performs volume measurements using random points. Monte Carlo method only requires information regarding whether random points fall inside or outside an object and does not require a 3D reconstruction. This paper proposes volume measurement using a computer vision system for irregularly shaped food products without 3D reconstruction based on Monte Carlo method with heuristic adjustment. Five images of food product were captured using five cameras and processed to produce binary images. Monte Carlo integration with heuristic adjustment was performed to measure the volume based on the information extracted from binary images. The experimental results show that the proposed method provided high accuracy and precision compared to the water displacement method. In addition, the proposed method is more accurate and faster than the space carving method.

  4. Monte Carlo method with heuristic adjustment for irregularly shaped food product volume measurement.

    Science.gov (United States)

    Siswantoro, Joko; Prabuwono, Anton Satria; Abdullah, Azizi; Idrus, Bahari

    2014-01-01

    Volume measurement plays an important role in the production and processing of food products. Various methods have been proposed to measure the volume of food products with irregular shapes based on 3D reconstruction. However, 3D reconstruction comes with a high-priced computational cost. Furthermore, some of the volume measurement methods based on 3D reconstruction have a low accuracy. Another method for measuring volume of objects uses Monte Carlo method. Monte Carlo method performs volume measurements using random points. Monte Carlo method only requires information regarding whether random points fall inside or outside an object and does not require a 3D reconstruction. This paper proposes volume measurement using a computer vision system for irregularly shaped food products without 3D reconstruction based on Monte Carlo method with heuristic adjustment. Five images of food product were captured using five cameras and processed to produce binary images. Monte Carlo integration with heuristic adjustment was performed to measure the volume based on the information extracted from binary images. The experimental results show that the proposed method provided high accuracy and precision compared to the water displacement method. In addition, the proposed method is more accurate and faster than the space carving method.

  5. The Genetic Basis of Baculum Size and Shape Variation in Mice

    Directory of Open Access Journals (Sweden)

    Nicholas G. Schultz

    2016-05-01

    Full Text Available The rapid divergence of male genitalia is a preeminent evolutionary pattern. This rapid divergence is especially striking in the baculum, a bone that occurs in the penis of many mammalian species. Closely related species often display diverse baculum morphology where no other morphological differences can be discerned. While this fundamental pattern of evolution has been appreciated at the level of gross morphology, nearly nothing is known about the genetic basis of size and shape divergence. Quantifying the genetic basis of baculum size and shape variation has been difficult because these structures generally lack obvious landmarks, so comparing them in three dimensions is not straightforward. Here, we develop a novel morphometric approach to quantify size and shape variation from three-dimensional micro-CT scans taken from 369 bacula, representing 75 distinct strains of the BXD family of mice. We identify two quantitative trait loci (QTL that explain ∼50% of the variance in baculum size, and a third QTL that explains more than 20% of the variance in shape. Together, our study demonstrates that baculum morphology may diverge relatively easily, with mutations at a few loci of large effect that independently modulate size and shape. Based on a combination of bioinformatic investigations and new data on RNA expression, we prioritized these QTL to 16 candidate genes, which have hypothesized roles in bone morphogenesis and may enable future genetic manipulation of baculum morphology.

  6. Intraspecific phytochemical variation shapes community and population structure for specialist caterpillars.

    Science.gov (United States)

    Glassmire, Andrea E; Jeffrey, Christopher S; Forister, Matthew L; Parchman, Thomas L; Nice, Chris C; Jahner, Joshua P; Wilson, Joseph S; Walla, Thomas R; Richards, Lora A; Smilanich, Angela M; Leonard, Michael D; Morrison, Colin R; Simbaña, Wilmer; Salagaje, Luis A; Dodson, Craig D; Miller, Jim S; Tepe, Eric J; Villamarin-Cortez, Santiago; Dyer, Lee A

    2016-10-01

    Chemically mediated plant-herbivore interactions contribute to the diversity of terrestrial communities and the diversification of plants and insects. While our understanding of the processes affecting community structure and evolutionary diversification has grown, few studies have investigated how trait variation shapes genetic and species diversity simultaneously in a tropical ecosystem. We investigated secondary metabolite variation among subpopulations of a single plant species, Piper kelleyi (Piperaceae), using high-performance liquid chromatography (HPLC), to understand associations between plant phytochemistry and host-specialized caterpillars in the genus Eois (Geometridae: Larentiinae) and associated parasitoid wasps and flies. In addition, we used a genotyping-by-sequencing approach to examine the genetic structure of one abundant caterpillar species, Eois encina, in relation to host phytochemical variation. We found substantive concentration differences among three major secondary metabolites, and these differences in chemistry predicted caterpillar and parasitoid community structure among host plant populations. Furthermore, E. encina populations located at high elevations were genetically different from other populations. They fed on plants containing high concentrations of prenylated benzoic acid. Thus, phytochemistry potentially shapes caterpillar and wasp community composition and geographic variation in species interactions, both of which can contribute to diversification of plants and insects. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  7. Temperature Condition and Spherical Shell Shape Variation of Space Gauge-Alignment Spacecraft

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2016-01-01

    Full Text Available A high precision spherical shell is one of the geometrical shape embodiments of a gaugealignment spacecraft to determine and control a radar channel energy potential of the ground-based complex for the traffic control of space objects. Passive relays of signals and some types of smallsized instrumentation standard reflectors used for radar gauge and alignment have the same shape. Orbits of the considered spacecraft can be either circular with a height of about 1000 km, including those close to the polar, or elliptical with an apogee of up to 2200 km.In case there is no thermal control system in spacecrafts of these types the solar radiation is a major factor to define the thermal state of a spherical shell in the illuminated orbit area. With the shell in fixed position with respect to direction towards the Sun an arising uneven temperature distribution over its surface leads to variation of the spherically ideal shell shape, which may affect the functional characteristics of the spacecraft. The shell rotation about an axis perpendicular to the direction towards the Sun may reduce an unevenness degree of the temperature distribution.The uneven temperature distribution over the spherical shell surface in conditions of the lowEarth space and this unevenness impact on the shell shape variation against its spherical shape can be quantively estimated by the appropriate methods of mathematical modeling using modification of a previously developed mathematical model to describe steady temperature state of such shell on the low-Earth orbit. The paper considers the shell made from a polymeric composite material. Its original spherical shape is defined by rather low internal pressure. It is assumed that equipment in the shell, if any, is quite small-sized. This allows us to ignore its impact on the radiative transfer in the shell cavity. Along with defining the steady temperature distribution over the shell surface at its fixed orientation with respect to

  8. Target volume delineation variation in radiotherapy for early stage rectal cancer in the Netherlands

    International Nuclear Information System (INIS)

    Nijkamp, Jasper; Haas-Kock, Danielle F.M. de; Beukema, Jannet C.; Neelis, Karen J.; Woutersen, Dankert; Ceha, Heleen; Rozema, Tom; Slot, Annerie; Vos-Westerman, Hanneke; Intven, Martijn; Spruit, Patty H.; Linden, Yvette van der; Geijsen, Debby; Verschueren, Karijn; Herk, Marcel B. van; Marijnen, Corrie A.M.

    2012-01-01

    Purpose: The aim of this study was to measure and improve the quality of target volume delineation by means of national consensus on target volume definition in early-stage rectal cancer. Methods and materials: The CTV’s for eight patients were delineated by 11 radiation oncologists in 10 institutes according to local guidelines (phase 1). After observer variation analysis a workshop was organized to establish delineation guidelines and a digital atlas, with which the same observers re-delineated the dataset (phase 2). Variation in volume, most caudal and cranial slice and local surface distance variation were analyzed. Results: The average delineated CTV volume decreased from 620 to 460 cc (p < 0.001) in phase 2. Variation in the caudal CTV border was reduced significantly from 1.8 to 1.2 cm SD (p = 0.01), while it remained 0.7 cm SD for the cranial border. The local surface distance variation (cm SD) reduced from 1.02 to 0.74 for anterior, 0.63 to 0.54 for lateral, 0.33 to 0.25 for posterior and 1.22 to 0.46 for the sphincter region, respectively. Conclusions: The large variation in target volume delineation could significantly be reduced by use of consensus guidelines and a digital delineation atlas. Despite the significant reduction there is still a need for further improvement.

  9. Impact of elliptical shaped red oak logs on lumber grade and volume recovery

    Science.gov (United States)

    Patrick M. Rappold; Brian H. Bond; Janice K. Wiedenbeck; Roncs Ese-Etame

    2007-01-01

    This research examined the grade and volume of lumber recovered from red oak logs with elliptical shaped cross sections. The volume and grade of lumber recovered from red oak logs with low (e ≤ 0.3) and high (e ≥ 0.4) degrees of ellipticity was measured at four hardwood sawmills. There was no significant difference (...

  10. Automatized spleen segmentation in non-contrast-enhanced MR volume data using subject-specific shape priors

    Science.gov (United States)

    Gloger, Oliver; Tönnies, Klaus; Bülow, Robin; Völzke, Henry

    2017-07-01

    To develop the first fully automated 3D spleen segmentation framework derived from T1-weighted magnetic resonance (MR) imaging data and to verify its performance for spleen delineation and volumetry. This approach considers the issue of low contrast between spleen and adjacent tissue in non-contrast-enhanced MR images. Native T1-weighted MR volume data was performed on a 1.5 T MR system in an epidemiological study. We analyzed random subsamples of MR examinations without pathologies to develop and verify the spleen segmentation framework. The framework is modularized to include different kinds of prior knowledge into the segmentation pipeline. Classification by support vector machines differentiates between five different shape types in computed foreground probability maps and recognizes characteristic spleen regions in axial slices of MR volume data. A spleen-shape space generated by training produces subject-specific prior shape knowledge that is then incorporated into a final 3D level set segmentation method. Individually adapted shape-driven forces as well as image-driven forces resulting from refined foreground probability maps steer the level set successfully to the segment the spleen. The framework achieves promising segmentation results with mean Dice coefficients of nearly 0.91 and low volumetric mean errors of 6.3%. The presented spleen segmentation approach can delineate spleen tissue in native MR volume data. Several kinds of prior shape knowledge including subject-specific 3D prior shape knowledge can be used to guide segmentation processes achieving promising results.

  11. Tumor response parameters for head and neck cancer derived from tumor-volume variation during radiation therapy

    International Nuclear Information System (INIS)

    Chvetsov, Alexei V.

    2013-01-01

    Purpose: The main goal of this paper is to reconstruct a distribution of cell survival fractions from tumor-volume variation for a heterogeneous group of head and neck cancer patients and compare this distribution to the data from predictive assays. Methods: To characterize the tumor-volume variation during radiation therapy treatment, the authors use a two-level tumor-volume model of cell population that separates the entire tumor cell population into two subpopulations of viable cells and lethally damaged cells. This parameterized radiobiological model is integrated with a least squares objective function and a simulated annealing optimization algorithm to describe time-dependent tumor-volume variation rates in individual patients. Several constraints have been used in the optimization problem because tumor-volume variation during radiotherapy is described by a sum of exponentials; therefore, the problem of accurately fitting a model to measured data is ill-posed. The model was applied to measured tumor-volume variation curves from a clinical study on tumor-volume variation during radiotherapy for 14 head and neck cancer patients in which an integrated CT/linear particle accelerator (LINAC) system was used for tumor-volume measurements. Results: The two-level cell population tumor-volume modeling is capable of describing tumor-volume variation throughout the entire treatment for 11 of the 14 patients. For three patients, the tumor-volume variation was described only during the initial part of treatment, a fact that may be related to the neglected hypoxia in the two-level approximation. The predicted probability density distribution for the survival fractions agrees with the data obtained using in vitro studies with predictive assays. The mean value 0.35 of survival fraction obtained in this study is larger than the value 0.32 from in vitro studies, which could be expected because of greater repair in vivo. The mean half-life obtained in this study for the head

  12. Environmental effects on the shape variation of male ultraviolet patterns in the Brimstone butterfly ( Gonepteryx rhamni, Pieridae, Lepidoptera)

    Science.gov (United States)

    Pecháček, Pavel; Stella, David; Keil, Petr; Kleisner, Karel

    2014-12-01

    The males of the Brimstone butterfly ( Gonepteryx rhamni) have ultraviolet pattern on the dorsal surfaces of their wings. Using geometric morphometrics, we have analysed correlations between environmental variables (climate, productivity) and shape variability of the ultraviolet pattern and the forewing in 110 male specimens of G. rhamni collected in the Palaearctic zone. To start with, we subjected the environmental variables to principal component analysis (PCA). The first PCA axis (precipitation, temperature, latitude) significantly correlated with shape variation of the ultraviolet patterns across the Palaearctic. Additionally, we have performed two-block partial least squares (PLS) analysis to assess co-variation between intraspecific shape variation and the variation of 11 environmental variables. The first PLS axis explained 93 % of variability and represented the effect of precipitation, temperature and latitude. Along this axis, we observed a systematic increase in the relative area of ultraviolet colouration with increasing temperature and precipitation and decreasing latitude. We conclude that the shape variation of ultraviolet patterns on the forewings of male Brimstones is correlated with large-scale environmental factors.

  13. Heart Performance Determination by Visualization in Larval Fishes: Influence of Alternative Models for Heart Shape and Volume

    Directory of Open Access Journals (Sweden)

    Prescilla Perrichon

    2017-07-01

    Full Text Available Understanding cardiac function in developing larval fishes is crucial for assessing their physiological condition and overall health. Cardiac output measurements in transparent fish larvae and other vertebrates have long been made by analyzing videos of the beating heart, and modeling this structure using a conventional simple prolate spheroid shape model. However, the larval fish heart changes shape during early development and subsequent maturation, but no consideration has been made of the effect of different heart geometries on cardiac output estimation. The present study assessed the validity of three different heart models (the “standard” prolate spheroid model as well as a cylinder and cone tip + cylinder model applied to digital images of complete cardiac cycles in larval mahi-mahi and red drum. The inherent error of each model was determined to allow for more precise calculation of stroke volume and cardiac output. The conventional prolate spheroid and cone tip + cylinder models yielded significantly different stroke volume values at 56 hpf in red drum and from 56 to 104 hpf in mahi. End-diastolic and stroke volumes modeled by just a simple cylinder shape were 30–50% higher compared to the conventional prolate spheroid. However, when these values of stroke volume multiplied by heart rate to calculate cardiac output, no significant differences between models emerged because of considerable variability in heart rate. Essentially, the conventional prolate spheroid shape model provides the simplest measurement with lowest variability of stroke volume and cardiac output. However, assessment of heart function—especially if stroke volume is the focus of the study—should consider larval heart shape, with different models being applied on a species-by-species and developmental stage-by-stage basis for best estimation of cardiac output.

  14. Noninvasive pulse pressure variation and stroke volume variation to predict fluid responsiveness at multiple thresholds : a prospective observational study

    NARCIS (Netherlands)

    Vos, Jaap Jan; Poterman, Marieke; Papineau Salm, Pieternel; Van Amsterdam, Kai; Struys, Michel M. R. F.; Scheeren, Thomas W. L.; Kalmar, Alain F.

    2015-01-01

    Pulse pressure variation (PPV) and stroke volume variation (SVV) are dynamic preload variables that can be measured noninvasively to assess fluid responsiveness (FR) in anesthetized patients with mechanical ventilation. Few studies have examined the effectiveness of predicting FR according to the

  15. Mandibular ramus shape variation and ontogeny in Homo sapiens and Homo neanderthalensis.

    Science.gov (United States)

    Terhune, Claire E; Ritzman, Terrence B; Robinson, Chris A

    2018-04-27

    As the interface between the mandible and cranium, the mandibular ramus is functionally significant and its morphology has been suggested to be informative for taxonomic and phylogenetic analyses. In primates, and particularly in great apes and humans, ramus morphology is highly variable, especially in the shape of the coronoid process and the relationship of the ramus to the alveolar margin. Here we compare ramus shape variation through ontogeny in Homo neanderthalensis to that of modern and fossil Homo sapiens using geometric morphometric analyses of two-dimensional semilandmarks and univariate measurements of ramus angulation and relative coronoid and condyle height. Results suggest that ramus, especially coronoid, morphology varies within and among subadult and adult modern human populations, with the Alaskan Inuit being particularly distinct. We also identify significant differences in overall anterosuperior ramus and coronoid shapes between H. sapiens and H. neanderthalensis, both in adults and throughout ontogeny. These shape differences are subtle, however, and we therefore suggest caution when using ramus morphology to diagnose group membership for individual specimens of these taxa. Furthermore, we argue that these morphologies are unlikely to be representative of differences in masticatory biomechanics and/or paramasticatory behaviors between Neanderthals and modern humans, as has been suggested by previous authors. Assessments of ontogenetic patterns of shape change reveal that the typical Neanderthal ramus morphology is established early in ontogeny, and there is little evidence for divergent postnatal ontogenetic allometric trajectories between Neanderthals and modern humans as a whole. This analysis informs our understanding of intraspecific patterns of mandibular shape variation and ontogeny in H. sapiens and can shed further light on overall developmental and life history differences between H. sapiens and H. neanderthalensis. Copyright

  16. Elliptic Fourier analysis of crown shapes in Quercus petraea trees

    Directory of Open Access Journals (Sweden)

    Ovidiu Hâruţa

    2011-02-01

    Full Text Available Shape is a fundamental morphological descriptor, significant in taxonomic research as well as in ecomorphology, one method of estimation being from digitally processed images. In the present study, were analysed shapes of Q. petraea crowns, pertaining to five different stem diameter classes, from three similar stands. Based on measurements on terrestrial digital vertical photos, crown size analysis was performed and correlations between crown and stem variables were tested. Linear regression equations between crown volumes and dbh, and crown volumes and stem volumes were derived, explaining more than half of data variability. Employment of elliptic Fourier analysis (EFA, a powerful analysis tool, permitted the extraction of the mean shape from crowns, characterized by high morphological variability. The extracted, most important, coefficients were used to reconstruct the average shape of the crowns, using Inverse Fourier Transform. A mean shape of the crown, corresponding to stand conditions in which competition is added as influential shaping factor, aside genetic program of the species, is described for each stem diameter class. Crown regions with highest shape variability, from the perspective of stage developmentof the trees, were determined. Accordingly, the main crown shape characteristics are: crown elongation, mass center, asymmetry with regard to the main axis, lateral regions symmetrical and asymmetrical variations.

  17. Elliptic Fourier analysis of crown shapes in Quercus petraea trees

    Directory of Open Access Journals (Sweden)

    Ovidiu Hâruţa

    2011-06-01

    Full Text Available Shape is a fundamental morphological descriptor, significant in taxonomic research as well as in ecomorphology, one method of estimation being from digitally processed images. In the present study, were analysed shapes of Q. petraea crowns, pertaining to five different stem diameter classes, from three similar stands. Based on measurements on terrestrial digital vertical photos, crown size analysis was performed and correlations between crown and stem variables were tested. Linear regression equations between crown volumes and dbh, and crown volumes and stem volumes were derived, explaining more than half of data variability. Employment of elliptic Fourier analysis (EFA, a powerful analysis tool, permitted the extraction of the mean shape from crowns, characterized by high morphological variability. The extracted, most important, coefficients were used to reconstruct the average shape of the crowns, using Inverse Fourier Transform. A mean shape of the crown, corresponding to stand conditions in which competition is added as influential shaping factor, aside genetic program of the species, is described for each stem diameter class. Crown regions with highest shape variability, from the perspective of stage development of the trees, were determined. Accordingly, the main crown shape characteristics are: crown elongation, centroid position, asymmetry with regard to the main axis, lateral regions symmetrical and asymmetrical variations

  18. Stroke volume variation compared with pulse pressure variation and cardiac index changes for prediction of fluid responsiveness in mechanically ventilated patients

    Directory of Open Access Journals (Sweden)

    Randa Aly Soliman

    2015-04-01

    Conclusions: Baseline stroke volume variation ⩾8.15% predicted fluid responsiveness in mechanically ventilated patients with acute circulatory failure. The study also confirmed the ability of pulse pressure variation to predict fluid responsiveness.

  19. Automated robust generation of compact 3D statistical shape models

    Science.gov (United States)

    Vrtovec, Tomaz; Likar, Bostjan; Tomazevic, Dejan; Pernus, Franjo

    2004-05-01

    Ascertaining the detailed shape and spatial arrangement of anatomical structures is important not only within diagnostic settings but also in the areas of planning, simulation, intraoperative navigation, and tracking of pathology. Robust, accurate and efficient automated segmentation of anatomical structures is difficult because of their complexity and inter-patient variability. Furthermore, the position of the patient during image acquisition, the imaging device and protocol, image resolution, and other factors induce additional variations in shape and appearance. Statistical shape models (SSMs) have proven quite successful in capturing structural variability. A possible approach to obtain a 3D SSM is to extract reference voxels by precisely segmenting the structure in one, reference image. The corresponding voxels in other images are determined by registering the reference image to each other image. The SSM obtained in this way describes statistically plausible shape variations over the given population as well as variations due to imperfect registration. In this paper, we present a completely automated method that significantly reduces shape variations induced by imperfect registration, thus allowing a more accurate description of variations. At each iteration, the derived SSM is used for coarse registration, which is further improved by describing finer variations of the structure. The method was tested on 64 lumbar spinal column CT scans, from which 23, 38, 45, 46 and 42 volumes of interest containing vertebra L1, L2, L3, L4 and L5, respectively, were extracted. Separate SSMs were generated for each vertebra. The results show that the method is capable of reducing the variations induced by registration errors.

  20. Body size and allometric shape variation in the molly Poecilia vivipara along a gradient of salinity and predation.

    Science.gov (United States)

    Araújo, Márcio S; Perez, S Ivan; Magazoni, Maria Julia C; Petry, Ana C

    2014-12-04

    Phenotypic diversity among populations may result from divergent natural selection acting directly on traits or via correlated responses to changes in other traits. One of the most frequent patterns of correlated response is the proportional change in the dimensions of anatomical traits associated with changes in growth or absolute size, known as allometry. Livebearing fishes subject to predation gradients have been shown to repeatedly evolve larger caudal peduncles and smaller cranial regions under high predation regimes. Poecilia vivipara is a livebearing fish commonly found in coastal lagoons in the north of the state of Rio de Janeiro, Brazil. Similar to what is observed in other predation gradients, lagoons inhabited by P. vivipara vary in the presence of piscivorous fishes; contrary to other poeciliid systems, populations of P. vivipara vary greatly in body size, which opens the possibility of strong allometric effects on shape variation. Here we investigated body shape diversification among six populations of P. vivipara along a predation gradient and its relationship with allometric trajectories within and among populations. We found substantial body size variation and correlated shape changes among populations. Multivariate regression analysis showed that size variation among populations accounted for 66% of shape variation in females and 38% in males, suggesting that size is the most important dimension underlying shape variation among populations of P. vivipara in this system. Changes in the relative sizes of the caudal peduncle and cranial regions were only partly in line with predictions from divergent natural selection associated with predation regime. Our results suggest the possibility that adaptive shape variation among populations has been partly constrained by allometry in P. vivipara. Processes governing body size changes are therefore important in the diversification of this species. We conclude that in species characterized by substantial

  1. SU-E-T-429: Uncertainties of Cell Surviving Fractions Derived From Tumor-Volume Variation Curves

    International Nuclear Information System (INIS)

    Chvetsov, A

    2014-01-01

    Purpose: To evaluate uncertainties of cell surviving fraction reconstructed from tumor-volume variation curves during radiation therapy using sensitivity analysis based on linear perturbation theory. Methods: The time dependent tumor-volume functions V(t) have been calculated using a twolevel cell population model which is based on the separation of entire tumor cell population in two subpopulations: oxygenated viable and lethally damaged cells. The sensitivity function is defined as S(t)=[δV(t)/V(t)]/[δx/x] where δV(t)/V(t) is the time dependent relative variation of the volume V(t) and δx/x is the relative variation of the radiobiological parameter x. The sensitivity analysis was performed using direct perturbation method where the radiobiological parameter x was changed by a certain error and the tumor-volume was recalculated to evaluate the corresponding tumor-volume variation. Tumor volume variation curves and sensitivity functions have been computed for different values of cell surviving fractions from the practically important interval S 2 =0.1-0.7 using the two-level cell population model. Results: The sensitivity functions of tumor-volume to cell surviving fractions achieved a relatively large value of 2.7 for S 2 =0.7 and then approached zero as S 2 is approaching zero Assuming a systematic error of 3-4% we obtain that the relative error in S 2 is less that 20% in the range S2=0.4-0.7. This Resultis important because the large values of S 2 are associated with poor treatment outcome should be measured with relatively small uncertainties. For the very small values of S2<0.3, the relative error can be larger than 20%; however, the absolute error does not increase significantly. Conclusion: Tumor-volume curves measured during radiotherapy can be used for evaluation of cell surviving fractions usually observed in radiation therapy with conventional fractionation

  2. Gender-based differences in the shape of the human corpus callosum are associated with allometric variations

    Science.gov (United States)

    Bruner, Emiliano; de la Cuétara, José Manuel; Colom, Roberto; Martin-Loeches, Manuel

    2012-01-01

    The corpus callosum displays considerable morphological variability between individuals. Although some characteristics are thought to differ between male and female brains, there is no agreement regarding the source of this variation. Biomedical imaging and geometric morphometrics have provided tools to investigate shape and size variation in terms of integration and correlation. Here we analyze variations at the midsagittal outline of the corpus callosum in a sample of 102 young adults in order to describe and quantify the pattern of covariation associated with its morphology. Our results suggest that the shape of the corpus callosum is characterized by low levels of morphological integration, which explains the large variability. In larger brains, a minor allometric component involves a relative reduction of the splenium. Small differences between males and?females are associated with this allometric pattern, induced primarily by size variation rather than gender-specific characteristics. PMID:22296183

  3. Steady-state groundwater recharge in trapezoidal-shaped aquifers: A semi-analytical approach based on variational calculus

    Science.gov (United States)

    Mahdavi, Ali; Seyyedian, Hamid

    2014-05-01

    This study presents a semi-analytical solution for steady groundwater flow in trapezoidal-shaped aquifers in response to an areal diffusive recharge. The aquifer is homogeneous, anisotropic and interacts with four surrounding streams of constant-head. Flow field in this laterally bounded aquifer-system is efficiently constructed by means of variational calculus. This is accomplished by minimizing a properly defined penalty function for the associated boundary value problem. Simple yet demonstrative scenarios are defined to investigate anisotropy effects on the water table variation. Qualitative examination of the resulting equipotential contour maps and velocity vector field illustrates the validity of the method, especially in the vicinity of boundary lines. Extension to the case of triangular-shaped aquifer with or without an impervious boundary line is also demonstrated through a hypothetical example problem. The present solution benefits from an extremely simple mathematical expression and exhibits strictly close agreement with the numerical results obtained from Modflow. Overall, the solution may be used to conduct sensitivity analysis on various hydrogeological parameters that affect water table variation in aquifers defined in trapezoidal or triangular-shaped domains.

  4. Assessment of the accuracy of ABC/2 variations in traumatic epidural hematoma volume estimation: a retrospective study

    Directory of Open Access Journals (Sweden)

    Pengfei Yan

    2016-04-01

    Full Text Available Background. The traumatic epidural hematoma (tEDH volume is often used to assist in tEDH treatment planning and outcome prediction. ABC/2 is a well-accepted volume estimation method that can be used for tEDH volume estimation. Previous studies have proposed different variations of ABC/2; however, it is unclear which variation will provide a higher accuracy. Given the promising clinical contribution of accurate tEDH volume estimations, we sought to assess the accuracy of several ABC/2 variations in tEDH volume estimation. Methods. The study group comprised 53 patients with tEDH who had undergone non-contrast head computed tomography scans. For each patient, the tEDH volume was automatically estimated by eight ABC/2 variations (four traditional and four newly derived with an in-house program, and results were compared to those from manual planimetry. Linear regression, the closest value, percentage deviation, and Bland-Altman plot were adopted to comprehensively assess accuracy. Results. Among all ABC/2 variations assessed, the traditional variations y = 0.5 × A1B1C1 (or A2B2C1 and the newly derived variations y = 0.65 × A1B1C1 (or A2B2C1 achieved higher accuracy than the other variations. No significant differences were observed between the estimated volume values generated by these variations and those of planimetry (p > 0.05. Comparatively, the former performed better than the latter in general, with smaller mean percentage deviations (7.28 ± 5.90% and 6.42 ± 5.74% versus 19.12 ± 6.33% and 21.28 ± 6.80%, respectively and more values closest to planimetry (18/53 and 18/53 versus 2/53 and 0/53, respectively. Besides, deviations of most cases in the former fell within the range of 20% (90.57% and 96.23, respectively. Discussion. In the current study, we adopted an automatic approach to assess the accuracy of several ABC/2 variations for tEDH volume estimation. Our initial results showed that the variations y = 0.5 × A1B1C1 (or A2B2C1

  5. Characterizations of the diurnal shapes of OI 630.0 nm dayglow intensity variations: inferences

    Directory of Open Access Journals (Sweden)

    D. Chakrabarty

    2002-11-01

    Full Text Available Measurements of OI 630.0 nm thermospheric dayglow emission by means of the Dayglow Photometer (DGP at Mt. Abu (24.6° N, 73.7° E, dip lat 19.09° N, a station under the crest of Equatorial Ionization Anomaly (EIA, reveal day-to-day changes in the shapes of the diurnal profiles of dayglow intensity variations. These shapes have been characterized using the magnetometer data from equatorial and low-latitude stations. Substantial changes have been noticed in the shapes of the dayglow intensity variations between 10:00–15:00 IST (Indian Standard Time during the days when normal and counter electrojet events are present over the equator. It is found that the width (the time span corresponding to 0.8 times the maximum dayglow intensity of the diurnal profile has a linear relationship with the integrated electrojet strength. Occasional deviation from this linear relationship is attributed to the presence of substantial mean meridional wind.Key words. Ionosphere (equatorial ionosphere; ionosphere – atmosphere interactions; ionospheric disturbances

  6. Characterizations of the diurnal shapes of OI 630.0 nm dayglow intensity variations: inferences

    Directory of Open Access Journals (Sweden)

    D. Chakrabarty

    Full Text Available Measurements of OI 630.0 nm thermospheric dayglow emission by means of the Dayglow Photometer (DGP at Mt. Abu (24.6° N, 73.7° E, dip lat 19.09° N, a station under the crest of Equatorial Ionization Anomaly (EIA, reveal day-to-day changes in the shapes of the diurnal profiles of dayglow intensity variations. These shapes have been characterized using the magnetometer data from equatorial and low-latitude stations. Substantial changes have been noticed in the shapes of the dayglow intensity variations between 10:00–15:00 IST (Indian Standard Time during the days when normal and counter electrojet events are present over the equator. It is found that the width (the time span corresponding to 0.8 times the maximum dayglow intensity of the diurnal profile has a linear relationship with the integrated electrojet strength. Occasional deviation from this linear relationship is attributed to the presence of substantial mean meridional wind.

    Key words. Ionosphere (equatorial ionosphere; ionosphere – atmosphere interactions; ionospheric disturbances

  7. Ecogeographical Variation in Skull Shape of South-American Canids: Abiotic or Biotic Processes?

    Science.gov (United States)

    de Moura Bubadué, Jamile; Cáceres, Nilton; Dos Santos Carvalho, Renan; Meloro, Carlo

    Species morphological changes can be mutually influenced by environmental or biotic factors, such as competition. South American canids represent a quite recent radiation of taxa that evolved forms very disparate in phenotype, ecology and behaviour. Today, in the central part of South America there is one dominant large species (the maned wolf, Chrysocyon brachyurus ) that directly influence sympatric smaller taxa via interspecific killing. Further south, three species of similar sized foxes ( Lycalopex spp.) share the same habitats. Such unique combination of taxa and geographic distribution makes South American dogs an ideal group to test for the simultaneous impact of climate and competition on phenotypic variation. Using geometric morphometrics, we quantified skull size and shape of 431 specimens belonging to the eight extant South American canid species: Atelocynus microtis , Cerdocyon thous , Ch. brachyurus , Lycalopex culpaeus , L. griseus , L. gymnocercus , L. vetulus and Speothos venaticus . South American canids are significantly different in both skull size and shape. The hypercarnivorous bush dog is mostly distinct in shape from all the other taxa while a degree of overlap in shape-but not size-occurs between species of the genus Lycalopex . Both climate and competition impacts interspecific morphological variation. We identified climatic adaptations as the main driving force of diversification for the South American canids. Competition has a lower degree of impact on their skull morphology although it might have played a role in the past, when canid community was richer in morphotypes.

  8. Predicting Variation of DNA Shape Preferences in Protein-DNA Interaction in Cancer Cells with a New Biophysical Model.

    Science.gov (United States)

    Batmanov, Kirill; Wang, Junbai

    2017-09-18

    DNA shape readout is an important mechanism of transcription factor target site recognition, in addition to the sequence readout. Several machine learning-based models of transcription factor-DNA interactions, considering DNA shape features, have been developed in recent years. Here, we present a new biophysical model of protein-DNA interactions by integrating the DNA shape properties. It is based on the neighbor dinucleotide dependency model BayesPI2, where new parameters are restricted to a subspace spanned by the dinucleotide form of DNA shape features. This allows a biophysical interpretation of the new parameters as a position-dependent preference towards specific DNA shape features. Using the new model, we explore the variation of DNA shape preferences in several transcription factors across various cancer cell lines and cellular conditions. The results reveal that there are DNA shape variations at FOXA1 (Forkhead Box Protein A1) binding sites in steroid-treated MCF7 cells. The new biophysical model is useful for elucidating the finer details of transcription factor-DNA interaction, as well as for predicting cancer mutation effects in the future.

  9. Interobserver variations of target volume delineation and its impact on irradiated volume in accelerated partial breast irradiation with intraoperative interstitial breast implant

    Directory of Open Access Journals (Sweden)

    Ritu Raj Upreti

    2017-02-01

    Full Text Available Purpose: To investigate the interobserver variations in delineation of lumpectomy cavity (LC and clinical target volume (CTV, and its impact on irradiated volume in accelerated partial breast irradiation using intraoperative multicatheter brachytherapy. Material and methods : Delineation of LC and CTV was done by five radiation oncologists on planning computed tomography (CT scans of 20 patients with intraoperative interstitial breast implant. Cavity visualization index (CVI, four-point index ranging from (0 = poor to (3 = excellent was created and assigned by observers for each patient. In total, 200 contours for all observers and 100 treatment plans were evaluated. Spatial concordance (conformity index, CI common , and CIgen, average shift in the center of mass (COM, and ratio of maximum and minimum volumes (V max /V min of LC and CTV were quantified among all observers and statistically analyzed. Variation in active dwell positions (0.5 cm step for each catheter, total reference air kerma (TRAK, volume enclosed by prescription isodose (V100% among observers and its spatial concordance were analyzed. Results : The mean ± SD CI common of LC and CTV was 0.54 ± 0.09, and 0.58 ± 0.08, respectively. Conformity index tends to increase, shift in COM and V max /V min decrease significantly (p < 0.05, as CVI increased. Out of total 309 catheters, 29.8% catheters had no change, 29.8% and 17.5% catheters had variations of 1 and 2 dwell positions (0.5 cm and 1 cm, respectively. 9.3% catheters shown variations ≥ 10 dwell positions (5 cm. The mean ± SD CI common of V100% was 0.75 ± 0.11. The mean observed V max /V min of prescription isodose and TRAK was 1.18 (range, 1.03 to 1.56 and 1.11 (range, 1.03 to 1.35, respectively. Conclusions : Interobserver variability in delineation of target volume was found to be significantly related to CVI. Smaller variability was observed with excellent visualization of LC. Interobserver variations showed dosimetric

  10. Ancestral Variations in the Shape and Size of the Zygoma.

    Science.gov (United States)

    Oettlé, Anna C; Demeter, Fabrice P; L'abbé, Ericka N

    2017-01-01

    The variable development of the zygoma, dictating its shape and size variations among ancestral groups, has important clinical implications and valuable anthropological and evolutionary inferences. The purpose of the study was to review the literature regarding the variations in the zygoma with ancestry. Ancestral variation in the zygoma reflects genetic variations because of genetic drift as well as natural selection and epigenetic changes to adapt to diet and climate variations with possible intensification by isolation. Prominence of the zygoma, zygomaxillary tuberosity, and malar tubercle have been associated with Eastern Asian populations in whom these features intensified. Prominence of the zygoma is also associated with groups from Eastern Europe and the rest of Asia. Diffusion of these traits occurred across the Behring Sea to the Arctic areas and to North and South America. The greatest zygomatic projections are exhibited in Arctic groups as an adaptation to extreme cold conditions, while Native South American groups also present with other features of facial robusticity. Groups from Australia, Malaysia, and Oceania show prominence of the zygoma to a certain extent, possibly because of archaic occupations by undifferentiated Southeast Asian populations. More recent interactions with Chinese groups might explain the prominent cheekbones noted in certain South African groups. Many deductions regarding evolutionary processes and diversifications of early groups have been made. Cognisance of these ancestral variations also have implications for forensic anthropological assessments as well as plastic and reconstructive surgery. More studies are needed to improve accuracy of forensic anthropological identification techniques. Anat Rec, 300:196-208, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Quantifying floral shape variation in 3D using microcomputed tomography: a case study of a hybrid line between actinomorphic and zygomorphic flowers.

    Science.gov (United States)

    Wang, Chun-Neng; Hsu, Hao-Chun; Wang, Cheng-Chun; Lee, Tzu-Kuei; Kuo, Yan-Fu

    2015-01-01

    The quantification of floral shape variations is difficult because flower structures are both diverse and complex. Traditionally, floral shape variations are quantified using the qualitative and linear measurements of two-dimensional (2D) images. The 2D images cannot adequately describe flower structures, and thus lead to unsatisfactory discrimination of the flower shape. This study aimed to acquire three-dimensional (3D) images by using microcomputed tomography (μCT) and to examine the floral shape variations by using geometric morphometrics (GM). To demonstrate the advantages of the 3D-μCT-GM approach, we applied the approach to a second-generation population of florist's gloxinia (Sinningia speciosa) crossed from parents of zygomorphic and actinomorphic flowers. The flowers in the population considerably vary in size and shape, thereby served as good materials to test the applicability of the proposed phenotyping approach. Procedures were developed to acquire 3D volumetric flower images using a μCT scanner, to segment the flower regions from the background, and to select homologous characteristic points (i.e., landmarks) from the flower images for the subsequent GM analysis. The procedures identified 95 landmarks for each flower and thus improved the capability of describing and illustrating the flower shapes, compared with typically lower number of landmarks in 2D analyses. The GM analysis demonstrated that flower opening and dorsoventral symmetry were the principal shape variations of the flowers. The degrees of flower opening and corolla asymmetry were then subsequently quantified directly from the 3D flower images. The 3D-μCT-GM approach revealed shape variations that could not be identified using typical 2D approaches and accurately quantified the flower traits that presented a challenge in 2D images. The approach opens new avenues to investigate floral shape variations.

  12. Quantifying floral shape variation in 3D using microcomputed tomography: a case study of a hybrid line between actinomorphic and zygomorphic flowers

    Directory of Open Access Journals (Sweden)

    Chun-Neng eWang

    2015-09-01

    Full Text Available The quantification of floral shape variations is difficult because flower structures are both diverse and complex. Traditionally, floral shape variations are quantified using the qualitative and linear measurements of two-dimensional (2D images. The 2D images cannot adequately describe flower structures, and thus lead to unsatisfactory discrimination of the flower shape. This study aimed to acquire three-dimensional (3D images by using microcomputed tomography (μCT and to examine the floral shape variations by using geometric morphometrics (GM. To demonstrate the advantages of the 3D-µCT-GM approach, we applied the approach to a second-generation population of florist’s gloxinia (Sinningia speciosa crossed from parents of zygomorphic and actinomorphic flowers. The flowers in the population considerably vary in size and shape, thereby served as good materials to test the applicability of the proposed phenotyping approach. Procedures were developed to acquire 3D volumetric flower images using a μCT scanner, to segment the flower regions from the background, and to select homologous characteristic points (i.e., landmarks from the flower images for the subsequent GM analysis. The procedures identified 95 landmarks for each flower and thus improved the capability of describing and illustrating the flower shapes, compared with typically lower number of landmarks in 2D analyses. The GM analysis demonstrated that flower opening and dorsoventral symmetry were the principal shape variations of the flowers. The degrees of flower opening and corolla asymmetry were then subsequently quantified directly from the 3D flower images. The 3D-µCT-GM approach revealed shape variations that could not be identified using typical 2D approaches and accurately quantified the flower traits that presented a challenge in 2D images. The approach opens new avenues to investigate floral shape variations.

  13. Intraspecific shape variation in horseshoe crabs: the importance of sexual and natural selection for local adaptation

    DEFF Research Database (Denmark)

    Faurby, Søren; Nielsen, Kasper Sauer Kollerup; Bussarawit, Somchai

    2011-01-01

    . Differences in shape variation between sexes were tested with F-tests, which showed lower intrapopulation morphometric variation in males than females. These results indicate a lower degree of local adaptation on body shape in C. rotundicauda and T. gigas than in L. polyphemus and a lower degree of local......A morphometric analysis of the body shape of three species of horseshoe crabs was undertaken in order to infer the importance of natural and sexual selection. It was expected that natural selection would be most intense, leading to highest regional differentiation, in the American species Limulus...... polyphemus, which has the largest climatic differences between different populations. Local adaptation driven by sexual selection was expected in males but not females because horseshoe crab mating behaviour leads to competition between males, but not between females. Three hundred fifty-nine horseshoe crabs...

  14. On the intraspecific variation in morphometry and shape of sagittal otoliths of common sardine, Strangomera bentincki, off central-southern Chile

    Directory of Open Access Journals (Sweden)

    Sandra Curin-Osorio

    2012-11-01

    Full Text Available Size and shape of fish otoliths are species-specific, but some species also display intraspecific variations. The common sardine, Strangomera bentincki, is a small pelagic fish inhabiting a seasonal upwelling ecosystem off central-southern Chile, having two discrete spawning sites along its latitudinal distribution. Otoliths of specimens were collected from commercial catches in Talcahuano and Corral, representing the central and south spawning zones. On the basis of otolith images, size-based shape descriptors were used to detect ontogenetic variation, and morphometric variables (length, breadth, area, perimeter and weight were used to detect geographical differences in size and shape of otoliths. Outline analysis was studied on the basis of elliptic Fourier descriptors through multivariate statistical procedures. Size-based shape descriptors showed that otolith shape starts to be stable for fish larger than 12 cm total length, which keep an elliptical form. Morphometric variables for fish larger than 12 cm revealed intraspecific variation between central and south zones, which were associated with otolith weight and breadth. Outline analysis did not reveal significant spatial differences, but extreme intraspecific variation was due to the antirostrum, excisure, and posterior part of otoliths. Intraspecific variation in otolith size could be linked to differences in each spawning habitat and related to geographical origin, whose differences are not clearly identified. It is concluded that intraspecific variability in morphometric variables of sardine otoliths revealed geographic differences in size that are not attributable to allometric effects, and that otolith shape was similar between specimens from different geographic origin.

  15. Variation in Measurements of Transtibial Stump Model Volume A Comparison of Five Methods

    NARCIS (Netherlands)

    Bolt, A.; de Boer-Wilzing, V. G.; Geertzen, J. H. B.; Emmelot, C. H.; Baars, E. C. T.; Dijkstra, P. U.

    Objective: To determine the right moment for fitting the first prosthesis, it is necessary to know when the volume of the stump has stabilized. The aim of this study is to analyze variation in measurements of transtibial stump model volumes using the water immersion method, the Design TT system, the

  16. Validity and reliability of a novel 3D scanner for assessment of the shape and volume of amputees' residual limb models.

    Directory of Open Access Journals (Sweden)

    Elena Seminati

    Full Text Available Objective assessment methods to monitor residual limb volume following lower-limb amputation are required to enhance practitioner-led prosthetic fitting. Computer aided systems, including 3D scanners, present numerous advantages and the recent Artec Eva scanner, based on laser free technology, could potentially be an effective solution for monitoring residual limb volumes.The aim of this study was to assess the validity and reliability of the Artec Eva scanner (practical measurement against a high precision laser 3D scanner (criterion measurement for the determination of residual limb model shape and volume.Three observers completed three repeat assessments of ten residual limb models, using both the scanners. Validity of the Artec Eva scanner was assessed (mean percentage error <2% and Bland-Altman statistics were adopted to assess the agreement between the two scanners. Intra and inter-rater reliability (repeatability coefficient <5% of the Artec Eva scanner was calculated for measuring indices of residual limb model volume and shape (i.e. residual limb cross sectional areas and perimeters.Residual limb model volumes ranged from 885 to 4399 ml. Mean percentage error of the Artec Eva scanner (validity was 1.4% of the criterion volumes. Correlation coefficients between the Artec Eva and the Romer determined variables were higher than 0.9. Volume intra-rater and inter-rater reliability coefficients were 0.5% and 0.7%, respectively. Shape percentage maximal error was 2% at the distal end of the residual limb, with intra-rater reliability coefficients presenting the lowest errors (0.2%, both for cross sectional areas and perimeters of the residual limb models.The Artec Eva scanner is a valid and reliable method for assessing residual limb model shapes and volumes. While the method needs to be tested on human residual limbs and the results compared with the current system used in clinical practice, it has the potential to quantify shape and volume

  17. Intra-aortic balloon shape change: effects on volume displacement during inflation and deflation.

    Science.gov (United States)

    Khir, Ashraf William; Bruti, Gianpaolo

    2013-07-01

    It has been observed that operating the intra-aortic balloon at an angle to the horizontal resulted in a reduction of the volume displaced toward the coronary arteries and compromised afterload reduction. Therefore, the aim of this work is to examine whether changing the current balloon shape, which has not been altered for 40 years, could compensate for the negative hemodynamic effects due to angulation. We tested two tapered balloons, increasing diameter (TID) and decreasing diameter (TDD), and compared the results with those obtained from a standard cylindrical balloon. The balloons were tested in vitro at 60 beats/min and a static pressure of 90 mm Hg. The balloons were operated at four angles (0°, 20°, 30°, 45°), and the pressure at three locations along the balloon (base, middle, and tip) was also measured. Flow rate upstream of the tip of the balloon was also measured to indicate the flow displaced toward the coronary circulation. The relative volume displaced toward (VUTVi) and suctioned away from (VUTVd) the simulated ascending aorta, during inflation and deflation, respectively, is reduced when a standard cylindrical balloon is operated at an angle to the horizontal. The TDD provided the greatest VUTVi and also produced the largest pulse pressure during deflation. Although the TID provided less VUTVi and VUTVd at smaller angles, it was not markedly affected by the change of angle. According to these results, different balloon shapes analyzed, with comparable volume to that of a cylindrical balloon, produced greater inflation and deflation benefits, at the horizontal and at a range of angles to the horizontal. Further investigations are required to optimize the shape of the tapered balloons to fit into the available physiological space. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  18. Cardiac variation of inferior vena cava: new concept in the evaluation of intravascular blood volume.

    Science.gov (United States)

    Nakamura, Kensuke; Tomida, Makoto; Ando, Takehiro; Sen, Kon; Inokuchi, Ryota; Kobayashi, Etsuko; Nakajima, Susumu; Sakuma, Ichiro; Yahagi, Naoki

    2013-07-01

    Evaluation of the intravascular blood volume is an important assessment in emergency and critical care medicine. Measurement of the inferior vena cava (IVC) respiratory variation by ultrasound echography is useful, but it entails subjective problems. We have hypothesized that IVC cardiac variation is also correlated with intravascular blood volume and analyzed it automatically using computer software of two kinds, later comparing the results. Snakes, software to track boundaries by curve line continuity, and template matching software were incorporated into a computer with an ultrasound machine to track the short-axis view of IVC automatically and analyze it with approximation by ellipse. Eight healthy volunteers with temporary mild hypovolemia underwent echography before and after passive leg raising and while wearing medical anti-shock trousers. IVC cardiac variation was visually decreased by both leg raising and medical anti-shock trousers. The collapse index (maximum - minimum/maximum) of area during three cardiac beats was decreased showing a good relationship to fluid load simulations; 0.24 ± 0.03 at baseline versus 0.11 ± 0.01 with leg raising and 0.12 ± 0.01 with medical anti-shock trousers. In conclusion, IVC cardiac variation has the potential to provide an evaluation of water volume. It presents some advantages in mechanical analysis over respiratory variation. At the very least, we need to exercise some caution with cardiac variation when evaluating respiratory variation.

  19. Post-traumatic stress and age variation in amygdala volumes among youth exposed to trauma.

    Science.gov (United States)

    Weems, Carl F; Klabunde, Megan; Russell, Justin D; Reiss, Allan L; Carrión, Victor G

    2015-12-01

    Theoretically, normal developmental variation in amygdala volumes may be altered under conditions of severe stress. The purpose of this article was to examine whether posttraumatic stress moderates the association between age and amygdala volumes in youth exposed to traumatic events who are experiencing symptoms of post-traumatic stress disorder (PTSD). Volumetric imaging was conducted on two groups of youth aged 9-17 years: 28 with exposure to trauma and PTSD symptoms (boys = 15, girls = 13) and 26 matched (age, IQ) comparison youth (Controls; boys = 12, girls = 14). There was a significant group by age interaction in predicting right amygdala volumes. A positive association between age and right amygdala volumes was observed, but only in PTSD youth. These associations with age remained when controlling for IQ, total brain volumes and sex. Moreover, older youth with PTSD symptoms had relatively larger right amygdala volumes than controls. Findings provide evidence that severe stress may influence age-related variation in amygdala volumes. Results further highlight the importance of utilizing age as an interactive variable in pediatric neuroimaging research, in so far as age may act as an important moderator of group differences. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  20. Describing shell shape variations and sexual dimorphism of Golden Apple Snail, Pomacea caniculata (Lamarck, 1822 using geometric morphometric analysis

    Directory of Open Access Journals (Sweden)

    C.C. Cabuga

    2017-09-01

    Full Text Available Pomacea caniculata or Golden Apple Snail (GAS existed to be a rice pest in the Philippines and in Asia. Likewise, geographic location also contributes its increasing populations thus making it invasive among freshwater habitats and rice field areas. This study was conducted in order to describe shell shape variations and sexual dimorphism among the populations of P. caniculata. A total of 180 were randomly collected in the three lakes of Esperanza, Agusan del Sur (Lake Dakong Napo, Lake Oro, and Lake Cebulan, of which each lake comprised of 60 samples (30 males and 30 females. To determine the variations and sexual dimorphism in the shell shape of golden apple snail, coordinates was administered to relative warp analysis and the resulting data were subjected to Multivariate Analysis of Variance (MANOVA, Principal Component Analysis (PCA and Canonical Variate Analysis (CVA. The results show statistically significant (P<0.05 from the appended male and female dorsal and ventral/apertural portion. While male and female spire height, body size, and shell shape opening also shows significant variations. These phenotypic distinctions could be associated with geographic isolation, predation and nutrient component of the gastropods. Thus, the importance of using geometric morphometric advances in describing sexual dimorphism in the shell shape of P. caniculata.

  1. Assessment of interpatient heterogeneity in tumor radiosensitivity for nonsmall cell lung cancer using tumor-volume variation data

    Energy Technology Data Exchange (ETDEWEB)

    Chvetsov, Alexei V., E-mail: chvetsov2@gmail.com; Schwartz, Jeffrey L.; Mayr, Nina [Department of Radiation Oncology, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98195-6043 (United States); Yartsev, Slav [London Regional Cancer Program, London Health Sciences Centre, 790 Commissioners Road East, London, Ontario 46A 4L6 (Canada)

    2014-06-15

    Purpose: In our previous work, the authors showed that a distribution of cell surviving fractionsS{sub 2} in a heterogeneous group of patients could be derived from tumor-volume variation curves during radiotherapy for head and neck cancer. In this research study, the authors show that this algorithm can be applied to other tumors, specifically in nonsmall cell lung cancer. This new application includes larger patient volumes and includes comparison of data sets obtained at independent institutions. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage computed tomography. Statistical distributions of cell surviving fractionsS{sub 2} and clearance half-lives of lethally damaged cells T{sub 1/2} have been reconstructed in each patient group by using a version of the two-level cell population model of tumor response and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Nonsmall cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractionsS{sub 2} for nonsmall cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sub 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Conclusions: The data obtained

  2. The effect of laser pulse shape variations on the adiabat of NIF capsule implosions

    Energy Technology Data Exchange (ETDEWEB)

    Robey, H. F.; MacGowan, B. J.; Landen, O. L.; LaFortune, K. N.; Widmayer, C.; Celliers, P. M.; Moody, J. D.; Ross, J. S.; Ralph, J.; LePape, S.; Berzak Hopkins, L. F.; Spears, B. K.; Haan, S. W.; Clark, D.; Lindl, J. D.; Edwards, M. J. [LLNL, Livermore, California 94550 (United States)

    2013-05-15

    Indirectly driven capsule implosions on the National Ignition Facility (NIF) [Moses et al., Phys. Plasmas 16, 041006 (2009)] are being performed with the goal of compressing a layer of cryogenic deuterium-tritium (DT) fuel to a sufficiently high areal density (ρR) to sustain the self-propagating burn wave that is required for fusion power gain greater than unity. These implosions are driven with a temporally shaped laser pulse that is carefully tailored to keep the DT fuel on a low adiabat (ratio of fuel pressure to the Fermi degenerate pressure). In this report, the impact of variations in the laser pulse shape (both intentionally and unintentionally imposed) on the in-flight implosion adiabat is examined by comparing the measured shot-to-shot variations in ρR from a large ensemble of DT-layered ignition target implosions on NIF spanning a two-year period. A strong sensitivity to variations in the early-time, low-power foot of the laser pulse is observed. It is shown that very small deviations (∼0.1% of the total pulse energy) in the first 2 ns of the laser pulse can decrease the measured ρR by 50%.

  3. Rejecting escape events in large volume Ge detectors by a pulse shape selection procedure

    International Nuclear Information System (INIS)

    Del Zoppo, A.; Agodi, C.; Alba, R.; Bellia, G.; Coniglione, R.; Loukachine, K.; Maiolino, C.; Migneco, E.; Piattelli, P.; Santonocito, D.; Sapienza, P.

    1993-01-01

    The dependence of the response to γ-rays of a large volume Ge detector on the interval width of a selected initial rise pulse slope is investigated. The number of escape events associated with a small pulse slope is found to be greater than the corresponding number of full energy events. An escape event rejection procedure based on the observed correlation between energy deposition and pulse shape is discussed. Such a procedure seems particularly suited for the design of highly granular large volume Ge detector arrays. (orig.)

  4. Geometric morphometrics of functionally distinct floral organs in Iris pumila: Analyzing patterns of symmetric and asymmetric shape variations

    Directory of Open Access Journals (Sweden)

    Radović Sanja

    2017-01-01

    Full Text Available The Iris flower is a complex morphological structure composed of two trimerous whorls of functionally distinct petaloid organs (the falls and the standards, one whorl of the stamens and one tricarpellary gynoecium. The petal-like style arms of the carpels are banded over the basal part of the falls, forming three pollination tunnels, each of which is perceived by the Iris pollinators as a single bilaterally symmetrical flower. Apart from the stamens, all petaloid floral organs are preferentially involved in advertising rewards to potential pollinators. Here we used the methods of geometric morphometrics to explore the shape variation in falls, standards and style arms of the Iris pumila flowers and to disentangle the symmetric and the asymmetric component of the total shape variance. Our results show that symmetric variation contributes mostly to the total shape variance in each of the three floral organs. Fluctuating asymmetry (FA was the dominant component of the asymmetric shape variation in the falls and the standards, but appeared to be marginally significant in the style arms. The values of FA indexes for the shape of falls (insects’ landing platforms and for the shape of standards (long-distance reward signals were found to be two orders of magnitude greater compared to that of the style arms. Directional asymmetry appeared to be very low, but highly statistically significant for all analyzed floral organs. Because floral symmetry can reliably indicate the presence of floral rewards, an almost perfect symmetry recorded for the style arm shape might be the outcome of pollinator preferences for symmetrical pollination units. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 173007

  5. Patterns of Fluctuating Asymmetry and Shape Variation in Chironomus riparius (Diptera, Chironomidae) Exposed to Nonylphenol or Lead

    Science.gov (United States)

    Arambourou, Hélène; Beisel, Jean-Nicolas; Branchu, Philippe; Debat, Vincent

    2012-01-01

    Deformities and fluctuating asymmetry in chironomid larvae have been proposed as sensitive indicators of biological stress and are commonly used to assess the ecological impact of human activities. In particular, they have been associated in Chironomus riparius, the most commonly used species, with heavy metal and pesticide river pollution. In this study, the effect of lead and 4-nonylphenol on mouthpart morphological variation of Chironomus riparius larvae was investigated by traditional and geometric morphometrics. For this purpose, first to fourth instar larvae were exposed to sediment spiked with lead (from 3.0 to 456.9 mg/kg dry weight) or 4-NP (from 0.1 to 198.8 mg/kg dry weight). Mentum phenotypic response to pollutants was assessed by four parameters: (1) the frequency of deformities, (2) fluctuating asymmetry of mentum length, (3) fluctuating asymmetry of mentum shape and (4) the mentum mean shape changes. Despite the bioaccumulation of pollutants in the chironomid’s body, no significant differences between control and stressed groups were found for mouthpart deformities and fluctuating asymmetry of mentum length. Slight effects on mentum shape fluctuating asymmetry were observed for two stressed groups. Significant mean shape changes, consisting of tooth size increase and tooth closing, were detected for lead and 4-NP exposure respectively. Those variations, however, were negligible in comparison to mentum shape changes due to genetic effects. These results suggest that the use of mentum variation as an indicator of toxic stress in Chironomus riparius should be considered cautiously. PMID:23133660

  6. Whole Prostate Volume and Shape Changes with the Use of an Inflatable and Flexible Endorectal Coil

    International Nuclear Information System (INIS)

    Osman, M.; Shebel, H.; Sankineni, S.; Bernardo, M.L.; Daar, D.; Choyke, P.L.; Turkbey, B.; Agarwal, H.K.; Osman, M.; Shebel, H.; Bernardo, M.L.; Wood, P.J.; Pinto, P.A.; Agarwal, H.K.

    2014-01-01

    To determine to what extent an inflatable endorectal coil (ERC) affects whole prostate (WP) volume and shape during prostate MRI. Materials and Methods. 79 consecutive patients underwent T2W MRI at 3T first with a 6-channel surface coil and then with the combination of a 16-channel surface coil and ERC in the same imaging session. WP volume was assessed by manually contouring the prostate in each T2W axial slice. PSA density was also calculated. The maximum anterior-posterior (AP), left-right (LR), and cranio caudal (CC) prostate dimensions were measured. Changes in WP prostate volume, PSA density, and prostate dimensions were then evaluated. Results. In 79 patients, use of an ERC yielded no significant change in whole prostate volume (0.6 ± 5.7 %, Ρ=0.270) and PSA density (-0.2 ±5.6%,Ρ=0.768 ). However, use of an ERC significantly decreased the AP dimension of the prostate by -8.6 ±7.8%(Ρ<0.001), increased LR dimension by 4.5 ± 5.8 %(Ρ<0.001), and increased the CC dimension by 8.8 ±6.9 %( Ρ<0.001). Conclusion. Use of an ERC in prostate MRI results in the shape deformation of the prostate gland with no significant change in the volume of the prostate measured on T2W MRI. Therefore, WP volumes calculated on ERC MRI can be reliably used in clinical work flow.

  7. Effect of structural modifications on the drying kinetics of foods: changes in volume, surface area and product shape

    Directory of Open Access Journals (Sweden)

    Antonio De Michelis

    2013-10-01

    Full Text Available Macro and micro-structural changes take place during food dehydration. Macro-structural changes encompass modifications in shape, area and volume. Studies of such changes are important because dehydration kinetics (essential for calculating industrial dryers may be highly influenced by changes in food shape and dimensions. The overall changes in volume, surface area (“shrinkage” and shape (Heywood factor, with provides a close description of food shape were determined experimentally, and the results were correlated with simple expressions. Hence, although dehydration kinetics can be modeled with simplified overall shrinkage expressions, the possibility of selecting a suitable geometry and predicting the characteristics dimensions will provide higher accuracy. An additional unresolved problem is the lack of a general model that predicts macro-structural changes for various foods and diverse geometries. In this work, based on experimental data of sweet and sour cherries, and rose hip fruits, a simplified general model to predict changes in volume and surface area are proposed. To estimate how the changes in characteristic dimensions affect the kinetic studies, experimental drying curves for the three fruits by means of a diffusional model considered the following variants for the characteristic dimensions: (i The radius of the fresh food, assumed constant; (ii The radius of the partially dehydrated product; (iii The radius predicted by the correlation for structural changes, especially volume, obtained in this work and generalized for the three fruits, and (iv to demonstrate the need to study the macro-structural changes for all dehydrated foods, also be present the case of a restructured food.

  8. Menstrual variation of breast volume and T2 relaxation times in cyclical mastalgia

    International Nuclear Information System (INIS)

    Hussain, Zainab; Brooks, Jonathan; Percy, Dave

    2008-01-01

    Purpose: Hormonal activity causes breast volume to change during the menstrual cycle. One possible cause of this volume change is thought to be due to water retention or oedema within the tissues. We used magnetic resonance imaging (MRI) to study the variation in breast volume and 1 H Magnetic Resonance Spectroscopy (MRS) to measure T 2 relaxation times which are known to increase with increasing tissue water content. We hypothesised that an increase in breast volume will elevate T 2 relaxation due to the presence of an increased water content within the breast. T 2 Relaxation time and volume were studied in fifteen control subjects and in a cohort of eight patients with cyclical mastalgia in order to determine whether changes in breast volume and T 2 relaxation times differed in controls and patients during menses, ovulation and premenses. Method: Breast volume was determined by the Cavalieri method in combination with point counting techniques on MR images and T 2 relaxation times of the water and fat in a voxel of breast tissue were obtained using 1 H Magnetic Resonance Spectroscopy (MRS). Results: Statistical analysis (ANOVA) demonstrated highly significant differences in breast volume between the three stages of the cycle (p 2 of fat or water did not depend on stage of cycle. T-tests demonstrated no significant differences in T 2 of water or fat between patient and control groups. The average T 2 relaxation time of water was lowest in the patient and control groups during ovulation and highest in the patient group during premenses. Conclusion: We have performed the first combined volumetric and spectroscopic study of women with cyclical mastalgia and demonstrated that the global changes in volumes and T 2 were not significantly different from normal menstrual variations

  9. Rotation and scale invariant shape context registration for remote sensing images with background variations

    Science.gov (United States)

    Jiang, Jie; Zhang, Shumei; Cao, Shixiang

    2015-01-01

    Multitemporal remote sensing images generally suffer from background variations, which significantly disrupt traditional region feature and descriptor abstracts, especially between pre and postdisasters, making registration by local features unreliable. Because shapes hold relatively stable information, a rotation and scale invariant shape context based on multiscale edge features is proposed. A multiscale morphological operator is adapted to detect edges of shapes, and an equivalent difference of Gaussian scale space is built to detect local scale invariant feature points along the detected edges. Then, a rotation invariant shape context with improved distance discrimination serves as a feature descriptor. For a distance shape context, a self-adaptive threshold (SAT) distance division coordinate system is proposed, which improves the discriminative property of the feature descriptor in mid-long pixel distances from the central point while maintaining it in shorter ones. To achieve rotation invariance, the magnitude of Fourier transform in one-dimension is applied to calculate angle shape context. Finally, the residual error is evaluated after obtaining thin-plate spline transformation between reference and sensed images. Experimental results demonstrate the robustness, efficiency, and accuracy of this automatic algorithm.

  10. Hospital variation in 30-day mortality after colorectal cancer surgery in denmark: the contribution of hospital volume and patient characteristics

    DEFF Research Database (Denmark)

    Osler, Merete; Iversen, Lene Hjerrild; Borglykke, Anders

    2011-01-01

    This study examines variation between hospitals in 30-day mortality after surgery for colorectal cancer (CRC) in Denmark and explores whether hospital volume and patient characteristics contribute to any variation between hospitals.......This study examines variation between hospitals in 30-day mortality after surgery for colorectal cancer (CRC) in Denmark and explores whether hospital volume and patient characteristics contribute to any variation between hospitals....

  11. On the effect of standard PFEM remeshing on volume conservation in free-surface fluid flow problems

    Science.gov (United States)

    Franci, Alessandro; Cremonesi, Massimiliano

    2017-07-01

    The aim of this work is to analyze the remeshing procedure used in the particle finite element method (PFEM) and to investigate how this operation may affect the numerical results. The PFEM remeshing algorithm combines the Delaunay triangulation and the Alpha Shape method to guarantee a good quality of the Lagrangian mesh also in large deformation processes. However, this strategy may lead to local variations of the topology that may cause an artificial change of the global volume. The issue of volume conservation is here studied in detail. An accurate description of all the situations that may induce a volume variation during the PFEM regeneration of the mesh is provided. Moreover, the crucial role of the parameter α used in the Alpha Shape method is highlighted and a range of values of α for which the differences between the numerical results are negligible, is found. Furthermore, it is shown that the variation of volume induced by the remeshing reduces by refining the mesh. This check of convergence is of paramount importance for the reliability of the PFEM. The study is carried out for 2D free-surface fluid dynamics problems, however the conclusions can be extended to 3D and to all those problems characterized by significant variations of internal and external boundaries.

  12. Volume Measurement Algorithm for Food Product with Irregular Shape using Computer Vision based on Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    Joko Siswantoro

    2014-11-01

    Full Text Available Volume is one of important issues in the production and processing of food product. Traditionally, volume measurement can be performed using water displacement method based on Archimedes’ principle. Water displacement method is inaccurate and considered as destructive method. Computer vision offers an accurate and nondestructive method in measuring volume of food product. This paper proposes algorithm for volume measurement of irregular shape food product using computer vision based on Monte Carlo method. Five images of object were acquired from five different views and then processed to obtain the silhouettes of object. From the silhouettes of object, Monte Carlo method was performed to approximate the volume of object. The simulation result shows that the algorithm produced high accuracy and precision for volume measurement.

  13. MRT letter: Guided filtering of image focus volume for 3D shape recovery of microscopic objects.

    Science.gov (United States)

    Mahmood, Muhammad Tariq

    2014-12-01

    In this letter, a shape from focus (SFF) method is proposed that utilizes the guided image filtering to enhance the image focus volume efficiently. First, image focus volume is computed using a conventional focus measure. Then each layer of image focus volume is filtered using guided filtering. In this work, the all-in-focus image, which can be obtained from the initial focus volume, is used as guidance image. Finally, improved depth map is obtained from the filtered image focus volume by maximizing the focus measure along the optical axis. The proposed SFF method is efficient and provides better depth maps. The improved performance is highlighted by conducting several experiments using image sequences of simulated and real microscopic objects. The comparative analysis demonstrates the effectiveness of the proposed SFF method. © 2014 Wiley Periodicals, Inc.

  14. Significance of breast boost volume changes during radiotherapy in relation to current clinical interobserver variations

    International Nuclear Information System (INIS)

    Hurkmans, Coen; Admiraal, Marjan; Sangen, Maurice van der; Dijkmans, Ingrid

    2009-01-01

    Background and purpose: Nowadays, many departments introduce CT images for breast irradiation techniques, aiming to obtain a better accuracy in the definition of the relevant target volumes. However, the definition of the breast boost volume based on CT images requires further investigation, because it may not only vary between observers, but it may also change during the course of treatment. This study aims to quantify the variability of the CT based visible boost volume (VBV) during the course of treatment in relation to the variability between observers. Materials and methods: Ten patients with stage T1-2 invasive breast cancer treated with breast conservative surgery and post surgical radiotherapy were included in this study. In addition to the regular planning CT which is obtained several days prior to radiotherapy, three additional CT scans were acquired 3, 5 and 7 weeks after the planning CT scan. Four radiation oncologists delineated the VBV in all scans. Conformity of the delineations was analysed both between observers, and between scans taken at different periods of the radiotherapy treatment. Results: The VBV averaged over all patients decreased during the course of the treatment from an initial 40 cm 3 to 28 cm 3 , 27 cm 3 and 25 cm 3 after 3, 5 and 7 weeks, respectively. Assuming the VBV to be spherical, this corresponds to a reduction in diameter of 5-6 mm. More detailed analysis revealed that this reduction was more pronounced when radiotherapy started within 30 days after surgery. These boost volume changes over time were found to be significant (p = 0.02) even in the presence of interobserver variations. Moreover, the conformity index (CI) for the volume changes was of the same magnitude as the conformity index for the interobserver variation (0.25 and 0.31, respectively). Conclusions: Breast boost volume variations during a course of radiotherapy are significant in relation to current clinical interobserver variations. This is an important

  15. Head shape variation in eastern and western Montpellier snakes

    Directory of Open Access Journals (Sweden)

    Marco Mangiacotti

    2014-12-01

    Full Text Available The Montpellier snake Malpolon monspessulanus is a wide-ranging species that inhabits Western and Eastern Europe, North Africa and Middle East. Four clades have been recognised as two species, M. insignitus and M. monspessulanus, each with two subspecies. Clades have been substantially identified on the basis of molecular data, pholidosis and colouration, while morphometric traits have been ignored. We compared head shape of 54 specimens belonging to three out of the four clades (M. insignitus insignitus, M. i. fuscus, and M. monspessulanus monspessulanus by means of geometric morphometrics. We found a significant differentiation: the supraocular and frontal area showed the largest amount of variation, being respectively much thinner in M. i. insignitus, a bit less thin in M. i. fuscus and definitely wider in M. m. monspessulanus. Our findings are fully in agreement with the genetic studies and phylogeny explains more than 20% of the observed variation, supporting the taxonomic distinction inside the genus Malpolon. The functional and/or adaptive meaning of the observed differences is not clear, but it seems unlikely that it may be related to diet. Combining morphological data with phylogeography and environmental features, we formulated an explanatory hypothesis that allowed a precise and testable prediction.

  16. Effect of surface roughness variation on the transmission characteristics of D-shaped fibers with ambient index change

    International Nuclear Information System (INIS)

    Kim, Hyun-Joo; Kwon, Oh-Jang; Han, Young-Geun

    2010-01-01

    The influence of surface roughness on the sensitivity of D-shaped fibers to changes in the ambient index was investigated. In order to obtain D-shaped fibers with different surface roughness, we polished one side of the fibers by using different abrasive grits. The topographies of the surfaces of the polished D-shaped fibers were then observed by using atomic force microscopy (AFM). The light scattered from the rough surfaces of the D-shaped fibers was measured by using optical microscopy. The effect of an ambient index change on the transmission characteristics of D-shaped fibers was measured for various values of the surface roughness. The experimental results indicate that variations in the surface roughness have a considerable influence on the sensitivity of the transmission characteristics of D-shaped fibers to changes in the ambient index.

  17. Evaluation of the Efficacy of Standardized Uptake Value (SUV-shape Scheme for Thyroid Volume Determination in Graves’ Disease: A Comparison with Ultrasonography

    Directory of Open Access Journals (Sweden)

    yangchun chen

    2017-01-01

    Full Text Available Objective(s: In this study, we aimed to evaluate the efficacy of thyroid volume measurement using 99mTc pertechnetate single-photon emission computed tomography (SPECT images, acquired by the standardized uptake value (SUV-shape scheme designed by our expert team.Methods: A total of 18 consecutive patients with Graves’ disease (GD were subjected to both ultrasonographic and 99mTc pertechnetate SPECT examinations of thyroid within a five-day interval. The volume of thyroid lobes and isthmus was measured by ultrasonography (US according to the ellipsoid volume equation. The total thyroid volume, determined as the sum of the volume of both lobes and isthmus, was recorded as TV-US (i.e., thyroid volume measured by US and set as the reference. The thyroid volume was defined according to our SUV-shape scheme and was recorded as TV-SS (i.e., thyroid volume determined by the SUV-shape scheme. The data were analyzed using the Bland-Altman plot, linear regression analysis, Spearman’s rank correlation, and paired t-test, if necessary.Results: The values of TV-SS (40.2±29.4 mL and TV-US (43.0±34.7 mL were not significantly different (t=0.813; P=0.43. The linear regression equation of the two values was determined as TV-US= 1.072 × TV-SS − 0.29(r=0.906; P

  18. Research in Shape Analysis

    CERN Document Server

    Leonard, Kathryn; Tari, Sibel; Hubert, Evelyne; Morin, Geraldine; El-Zehiry, Noha; Chambers, Erin

    2018-01-01

    Based on the second Women in Shape (WiSH) workshop held in Sirince, Turkey in June 2016, these proceedings offer the latest research on shape modeling and analysis and their applications. The 10 peer-reviewed articles in this volume cover a broad range of topics, including shape representation, shape complexity, and characterization in solving image-processing problems. While the first six chapters establish understanding in the theoretical topics, the remaining chapters discuss important applications such as image segmentation, registration, image deblurring, and shape patterns in digital fabrication. The authors in this volume are members of the WiSH network and their colleagues, and most were involved in the research groups formed at the workshop. This volume sheds light on a variety of shape analysis methods and their applications, and researchers and graduate students will find it to be an invaluable resource for further research in the area.

  19. Composite Elements for Biomimetic Aerospace Structures with Progressive Shape Variation Capabilities

    Directory of Open Access Journals (Sweden)

    Alessandro Airoldi

    2016-07-01

    Full Text Available The paper presents some engineering solutions for the development of innovative aerodynamic surfaces with the capability of progressive shape variation. A brief introduction of the most significant issues related to the design of such morphing structures is provided. Thereafter, two types of structural solutions are presented for the design of internal compliant structures and flexible external skins. The proposed solutions exploit the properties and the manufacturing techniques of long fibre reinforced plastic in order to fulfil the severe and contradictory requirements related to the trade-off between morphing performance and load carrying capabilities.

  20. Menstrual variation of breast volume and T{sub 2} relaxation times in cyclical mastalgia

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Zainab [Department of Medical Imaging, University of Liverpool, Johnstone Building, Brownlow Hill, P.O. Box 147, Liverpool, Merseyside L69 3GB (United Kingdom); Magnetic Resonance and Image Analysis Research Centre, University of Liverpool, Johnstone Building, Brownlow Hill, P.O. Box 147, Liverpool, Merseyside L69 3GB (United Kingdom)], E-mail: zay@liverpool.ac.uk; Brooks, Jonathan [Magnetic Resonance and Image Analysis Research Centre, University of Liverpool, Johnstone Building, Brownlow Hill, P.O. Box 147, Liverpool, Merseyside L69 3GB (United Kingdom); Department of Human Anatomy and Genetics, University of Oxford, Oxford (United Kingdom); Percy, Dave [Centre for Operational Research and Applied Statistics, University of Salford, Salford, Greater Manchester M5 4WT (United Kingdom)

    2008-02-15

    Purpose: Hormonal activity causes breast volume to change during the menstrual cycle. One possible cause of this volume change is thought to be due to water retention or oedema within the tissues. We used magnetic resonance imaging (MRI) to study the variation in breast volume and {sup 1}H Magnetic Resonance Spectroscopy (MRS) to measure T{sub 2} relaxation times which are known to increase with increasing tissue water content. We hypothesised that an increase in breast volume will elevate T{sub 2} relaxation due to the presence of an increased water content within the breast. T{sub 2} Relaxation time and volume were studied in fifteen control subjects and in a cohort of eight patients with cyclical mastalgia in order to determine whether changes in breast volume and T{sub 2} relaxation times differed in controls and patients during menses, ovulation and premenses. Method: Breast volume was determined by the Cavalieri method in combination with point counting techniques on MR images and T{sub 2} relaxation times of the water and fat in a voxel of breast tissue were obtained using {sup 1}H Magnetic Resonance Spectroscopy (MRS). Results: Statistical analysis (ANOVA) demonstrated highly significant differences in breast volume between the three stages of the cycle (p < 0.0005) with breast volume being greatest premenstrually. Patients did not exhibit an increase in volume premenstrually, significantly above controls. T{sub 2} of fat or water did not depend on stage of cycle. T-tests demonstrated no significant differences in T{sub 2} of water or fat between patient and control groups. The average T{sub 2} relaxation time of water was lowest in the patient and control groups during ovulation and highest in the patient group during premenses. Conclusion: We have performed the first combined volumetric and spectroscopic study of women with cyclical mastalgia and demonstrated that the global changes in volumes and T{sub 2} were not significantly different from normal

  1. The MRI study of hippocampal volume and shape in the youth and older

    International Nuclear Information System (INIS)

    Li Yuefeng; Jiang Ping; Tong Xinkang; Wang Dongqing; Peng Weibin; Wei Chuanshe; Yin Ruigen; Zhao Liang; Sun Weibin; Wang Zhengchao

    2009-01-01

    Objective: In the base of the landmarks of the hippocampus identified with neighborhood structures, to measure volumes and shape of normal older age group and youth group's hippocampus and hippocampal head, body, tail. Methods: Thirty younger people (age 20-29 years, youth group) and thirty older people (above 60 years, older age group) were scanned by MR, anatomic landmarks were found, which were constancy and easy to be recognized for segmentation hippocampus. The hippocampal volumes, average areas and number of the hippocampal layer were measured, the interclass data of two groups, different gender and sides were compared with statistics methods of t test and the hippocampal model were made with the three-dimensional reconstruction. Results: All landmarks of 60 subjects could be distinguished clearly, such as uncal recess, triangle of the lateral ventricle, uncal apex et al. The discrepancies of two groups volumes of gender had not statistical significance. The youth groups volumes of left hippocampus, head, body and tail were (1250±174), (653±115), (372±116), (2277±109) mm 3 , and the right were (1255±147), (657±129), (386±105), (2298±213) mm 3 . There was no statistical significance between left and right (t=0.08,0.10,0.33,0.35, P>0.05). The older age groups volumes of left hippocampus, head, body and tail were (660 + 109), (472 -+92), (181 -+73), (1313 + 163) mm 3 ,and the right were (717±116), (474±95), (240±75), (1432±171) mm 3 . Older hippocampal volumes were obviously bigger in right tail than in left (t=2.21, P 0.05). There were manifest statistical significance between two groups left volumes of hippocampus and each parts(t=15.78,6.71,7.70,20.83, P 2 and the right were (73±22), (58±19) mm 2 . Both two groups had manifest statistical significance (t=3.33,2.81, P<0.01). The number of layers of youth and older groups were (11.1± 3.2), (7.9±3.9) layers, and the right were (11.5±3.7), (8.2±3.1) layers. Both two groups had manifest

  2. Accurate measurement of volume and shape of resting and activated blood platelets from light scattering.

    Science.gov (United States)

    Moskalensky, Alexander E; Yurkin, Maxim A; Konokhova, Anastasiya I; Strokotov, Dmitry I; Nekrasov, Vyacheslav M; Chernyshev, Andrei V; Tsvetovskaya, Galina A; Chikova, Elena D; Maltsev, Valeri P

    2013-01-01

    We introduce a novel approach for determination of volume and shape of individual blood platelets modeled as an oblate spheroid from angle-resolved light scattering with flow-cytometric technique. The light-scattering profiles (LSPs) of individual platelets were measured with the scanning flow cytometer and the platelet characteristics were determined from the solution of the inverse light-scattering problem using the precomputed database of theoretical LSPs. We revealed a phenomenon of parameter compensation, which is partly explained in the framework of anomalous diffraction approximation. To overcome this problem, additional a priori information on the platelet refractive index was used. It allowed us to determine the size of each platelet with subdiffraction precision and independent of the particular value of the platelet aspect ratio. The shape (spheroidal aspect ratio) distributions of platelets showed substantial differences between native and activated by 10 μM adenosine diphosphate samples. We expect that the new approach may find use in hematological analyzers for accurate measurement of platelet volume distribution and for determination of the platelet activation efficiency.

  3. Effects of DARPP-32 Genetic Variation on Prefrontal Cortex Volume and Episodic Memory Performance

    Directory of Open Access Journals (Sweden)

    Ninni Persson

    2017-05-01

    Full Text Available Despite evidence of a fundamental role of DARPP-32 in integrating dopamine and glutamate signaling, studies examining gene coding for DARPP-32 in relation to neural and behavioral correlates in humans are scarce. Post mortem findings suggest genotype specific expressions of DARPP-32 in the dorsal frontal lobes. Therefore, we investigated the effects of genomic variation in DARPP-32 coding on frontal lobe volumes and episodic memory. Volumetric data from the dorsolateral (DLPFC, and visual cortices (VC were obtained from 61 younger and older adults (♀54%. The major homozygote G, T, or A genotypes in single nucleotide polymorphisms (SNPs: rs879606; rs907094; rs3764352, the two latter in complete linkage disequilibrium, at the DARPP-32 regulating PPP1R1B gene, influenced frontal gray matter volume and episodic memory (EM. Homozygous carriers of allelic variants with lower DARPP-32 expression had an overall larger prefrontal volume in addition to greater EM recall accuracy after accounting for the influence of age. The SNPs did not influence VC volume. The genetic effects on DLPFC were greater in young adults and selective to this group for EM. Our findings suggest that genomic variation maps onto individual differences in frontal brain volumes and cognitive functions. Larger DLPFC volumes were also related to better EM performance, suggesting that gene-related differences in frontal gray matter may contribute to individual differences in EM. These results need further replication from experimental and longitudinal reports to determine directions of causality.

  4. Bladder volume variations of cervical cancer patient in radiation therapy using ultrasonography

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jong Ho [Dept. of Radiation Oncology, Pusan National University Hospital, Pusan (Korea, Republic of)

    2016-12-15

    The bladder volume change was measured using ultrasonography for helping decrease the side effects and other organ variations in the location of radiation therapy for cervical cancer patients. An experiment was performed targeting patients who were treated with radiation therapy at PNUH within the period from September to December 2015. To maintain the bladder volume, each patient was instructed to drink 500 cc water before and after CT simulation, 60 minutes before the dry run. Also, the bladder volume was measured in each patient CT scan, and a 3D conformal therapy plan was designed. The bladder volumes measured before and after the CT simulation, dry run, and radiation treatment planning were compared and analyzed. The average volume and average error of the bladder that were obtained from the measurement based on the CT scan images had the lowest standard deviation in the CT simulation. This means that the values that were obtained before and after the CT simulation were statistically relevant and correlative. Moreover, the bladder volume measured via ultrasonography was larger size, the average volume in the CT scan. But the values that were obtained Dry run and after the CT simulation were not statistically relevant. Drinking a certain amount of water helps a patient maintain his/her bladder volume for a dry run. Even then, it is difficult to maintain the bladder volume for the dry run. Also, whether or not the patients followed the directions for the dry run correctly is important.

  5. Variation of clinical target volume definition in three-dimensional conformal radiation therapy for prostate cancer

    International Nuclear Information System (INIS)

    Valicenti, Richard K.; Sweet, John W.; Hauck, Walter W.; Hudes, Richard S.; Lee, Tony; Dicker, Adam P.; Waterman, Frank M.; Anne, Pramila R.; Corn, Benjamin W.; Galvin, James M.

    1999-01-01

    Purpose: Currently, three-dimensional conformal radiation therapy (3D-CRT) planning relies on the interpretation of computed tomography (CT) axial images for defining the clinical target volume (CTV). This study investigates the variation among multiple observers to define the CTV used in 3D-CRT for prostate cancer. Methods and Materials: Seven observers independently delineated the CTVs (prostate ± seminal vesicles [SV]) from the CT simulation data of 10 prostate cancer patients undergoing 3D-CRT. Six patients underwent CT simulation without the use of contrast material and serve as a control group. The other 4 had urethral and bladder opacification with contrast medium. To determine interobserver variation, we evaluated the derived volume, the maximum dimensions, and the isocenter for each examination of CTV. We assessed the reliability in the CTVs among the observers by correlating the variation for each class of measurements. This was estimated by intraclass correlation coefficient (ICC), with 1.00 defining absolute correlation. Results: For the prostate volumes, the ICC was 0.80 (95% confidence interval [CI]: 0.56-0.96). This changed to 0.92 (95% CI: 0.75-0.99) with the use of contrast material. Similarly, the maximal prostatic dimensions were reliable and improved. There was poor agreement in defining the SV. For this structure, the ICC never exceeded 0.28. The reliability of the isocenter was excellent, with the ICC exceeding 0.83 and 0.90 for the prostate ± SV, respectively. Conclusions: In 3D-CRT for prostate cancer, there was excellent agreement among multiple observers to define the prostate target volume but poor agreement to define the SV. The use of urethral and bladder contrast improved the reliability of localizing the prostate. For all CTVs, the isocenter was very reliable and should be used to compare the variation in 3D dosimetry among multiple observers

  6. Variation in Annual Volume at a University Hospital Does Not Predict Mortality for Pancreatic Resections

    Directory of Open Access Journals (Sweden)

    Rita A. Mukhtar

    2008-01-01

    Full Text Available Annual volume of pancreatic resections has been shown to affect mortality rates, prompting recommendations to regionalize these procedures to high-volume hospitals. Implementation has been difficult, given the paucity of high-volume centers and the logistical hardships facing patients. Some studies have shown that low-volume hospitals achieve good outcomes as well, suggesting that other factors are involved. We sought to determine whether variations in annual volume affected patient outcomes in 511 patients who underwent pancreatic resections at the University of California, San Francisco between 1990 and 2005. We compared postoperative mortality and complication rates between low, medium, or high volume years, designated by the number of resections performed, adjusting for patient characteristics. Postoperative mortality rates did not differ between high volume years and medium/low volume years. As annual hospital volume of pancreatic resections may not predict outcome, identification of actual predictive factors may allow low-volume centers to achieve excellent outcomes.

  7. Meta-analysis of genome-wide association studies identifies 8 novel loci involved in shape variation of human head hair

    Science.gov (United States)

    Liu, Fan; Chen, Yan; Zhu, Gu; Hysi, Pirro G; Wu, Sijie; Adhikari, Kaustubh; Breslin, Krystal; Pośpiech, Ewelina; Hamer, Merel A; Peng, Fuduan; Muralidharan, Charanya; Acuna-Alonzo, Victor; Canizales-Quinteros, Samuel; Bedoya, Gabriel; Gallo, Carla; Poletti, Giovanni; Rothhammer, Francisco; Bortolini, Maria Catira; Gonzalez-Jose, Rolando; Zeng, Changqing; Xu, Shuhua; Jin, Li; Uitterlinden, André G; Ikram, M Arfan; van Duijn, Cornelia M; Nijsten, Tamar; Walsh, Susan; Branicki, Wojciech; Wang, Sijia; Ruiz-Linares, Andrés; Spector, Timothy D; Martin, Nicholas G; Medland, Sarah E; Kayser, Manfred

    2018-01-01

    Abstract Shape variation of human head hair shows striking variation within and between human populations, while its genetic basis is far from being understood. We performed a series of genome-wide association studies (GWASs) and replication studies in a total of 28 964 subjects from 9 cohorts from multiple geographic origins. A meta-analysis of three European GWASs identified 8 novel loci (1p36.23 ERRFI1/SLC45A1, 1p36.22 PEX14, 1p36.13 PADI3, 2p13.3 TGFA, 11p14.1 LGR4, 12q13.13 HOXC13, 17q21.2 KRTAP, and 20q13.33 PTK6), and confirmed 4 previously known ones (1q21.3 TCHH/TCHHL1/LCE3E, 2q35 WNT10A, 4q21.21 FRAS1, and 10p14 LINC00708/GATA3), all showing genome-wide significant association with hair shape (P < 5e-8). All except one (1p36.22 PEX14) were replicated with nominal significance in at least one of the 6 additional cohorts of European, Native American and East Asian origins. Three additional previously known genes (EDAR, OFCC1, and PRSS53) were confirmed at the nominal significance level. A multivariable regression model revealed that 14 SNPs from different genes significantly and independently contribute to hair shape variation, reaching a cross-validated AUC value of 0.66 (95% CI: 0.62–0.70) and an AUC value of 0.64 in an independent validation cohort, providing an improved accuracy compared with a previous model. Prediction outcomes of 2504 individuals from a multiethnic sample were largely consistent with general knowledge on the global distribution of hair shape variation. Our study thus delivers target genes and DNA variants for future functional studies to further evaluate the molecular basis of hair shape in humans. PMID:29220522

  8. Meta-analysis of genome-wide association studies identifies 8 novel loci involved in shape variation of human head hair.

    Science.gov (United States)

    Liu, Fan; Chen, Yan; Zhu, Gu; Hysi, Pirro G; Wu, Sijie; Adhikari, Kaustubh; Breslin, Krystal; Pospiech, Ewelina; Hamer, Merel A; Peng, Fuduan; Muralidharan, Charanya; Acuna-Alonzo, Victor; Canizales-Quinteros, Samuel; Bedoya, Gabriel; Gallo, Carla; Poletti, Giovanni; Rothhammer, Francisco; Bortolini, Maria Catira; Gonzalez-Jose, Rolando; Zeng, Changqing; Xu, Shuhua; Jin, Li; Uitterlinden, André G; Ikram, M Arfan; van Duijn, Cornelia M; Nijsten, Tamar; Walsh, Susan; Branicki, Wojciech; Wang, Sijia; Ruiz-Linares, Andrés; Spector, Timothy D; Martin, Nicholas G; Medland, Sarah E; Kayser, Manfred

    2018-02-01

    Shape variation of human head hair shows striking variation within and between human populations, while its genetic basis is far from being understood. We performed a series of genome-wide association studies (GWASs) and replication studies in a total of 28 964 subjects from 9 cohorts from multiple geographic origins. A meta-analysis of three European GWASs identified 8 novel loci (1p36.23 ERRFI1/SLC45A1, 1p36.22 PEX14, 1p36.13 PADI3, 2p13.3 TGFA, 11p14.1 LGR4, 12q13.13 HOXC13, 17q21.2 KRTAP, and 20q13.33 PTK6), and confirmed 4 previously known ones (1q21.3 TCHH/TCHHL1/LCE3E, 2q35 WNT10A, 4q21.21 FRAS1, and 10p14 LINC00708/GATA3), all showing genome-wide significant association with hair shape (P 5e-8). All except one (1p36.22 PEX14) were replicated with nominal significance in at least one of the 6 additional cohorts of European, Native American and East Asian origins. Three additional previously known genes (EDAR, OFCC1, and PRSS53) were confirmed at the nominal significance level. A multivariable regression model revealed that 14 SNPs from different genes significantly and independently contribute to hair shape variation, reaching a cross-validated AUC value of 0.66 (95% CI: 0.62-0.70) and an AUC value of 0.64 in an independent validation cohort, providing an improved accuracy compared with a previous model. Prediction outcomes of 2504 individuals from a multiethnic sample were largely consistent with general knowledge on the global distribution of hair shape variation. Our study thus delivers target genes and DNA variants for future functional studies to further evaluate the molecular basis of hair shape in humans. © The Author(s) 2017. Published by Oxford University Press.

  9. Objective definition of rosette shape variation using a combined computer vision and data mining approach.

    Directory of Open Access Journals (Sweden)

    Anyela Camargo

    Full Text Available Computer-vision based measurements of phenotypic variation have implications for crop improvement and food security because they are intrinsically objective. It should be possible therefore to use such approaches to select robust genotypes. However, plants are morphologically complex and identification of meaningful traits from automatically acquired image data is not straightforward. Bespoke algorithms can be designed to capture and/or quantitate specific features but this approach is inflexible and is not generally applicable to a wide range of traits. In this paper, we have used industry-standard computer vision techniques to extract a wide range of features from images of genetically diverse Arabidopsis rosettes growing under non-stimulated conditions, and then used statistical analysis to identify those features that provide good discrimination between ecotypes. This analysis indicates that almost all the observed shape variation can be described by 5 principal components. We describe an easily implemented pipeline including image segmentation, feature extraction and statistical analysis. This pipeline provides a cost-effective and inherently scalable method to parameterise and analyse variation in rosette shape. The acquisition of images does not require any specialised equipment and the computer routines for image processing and data analysis have been implemented using open source software. Source code for data analysis is written using the R package. The equations to calculate image descriptors have been also provided.

  10. Variation in orbitofrontal cortex volume: relation to sex, emotion regulation and affect.

    Science.gov (United States)

    Welborn, B Locke; Papademetris, Xenophon; Reis, Deidre L; Rajeevan, Nallakkandi; Bloise, Suzanne M; Gray, Jeremy R

    2009-12-01

    Sex differences in brain structure have been examined extensively but are not completely understood, especially in relation to possible functional correlates. Our two aims in this study were to investigate sex differences in brain structure, and to investigate a possible relation between orbitofrontal cortex subregions and affective individual differences. We used tensor-based morphometry to estimate local brain volume from MPRAGE images in 117 healthy right-handed adults (58 female), age 18-40 years. We entered estimates of local brain volume as the dependent variable in a GLM, controlling for age, intelligence and whole-brain volume. Men had larger left planum temporale. Women had larger ventromedial prefrontal cortex (vmPFC), right lateral orbitofrontal (rlOFC), cerebellum, and bilateral basal ganglia and nearby white matter. vmPFC but not rlOFC volume covaried with self-reported emotion regulation strategies (reappraisal, suppression), expressivity of positive emotions (but not of negative), strength of emotional impulses, and cognitive but not somatic anxiety. vmPFC volume statistically mediated sex differences in emotion suppression. The results confirm prior reports of sex differences in orbitofrontal cortex structure, and are the first to show that normal variation in vmPFC volume is systematically related to emotion regulation and affective individual differences.

  11. Systematic Investigation of Magnetostriction in Composite Magnetorheological Elastomers: the Effect of Particle Shape, Alignment, and Volume Fraction

    Science.gov (United States)

    Kassner, Christopher; Rieger, William; von Lockette, Paris; Lofland, Samuel

    2013-03-01

    We have completed a study of the magnetoelastic properties of several types of magnetorheological elastomers (MREs), composites consisting of magnetic particles cured in an elastic matrix. We have made a number of samples with different particle arrangements (pseudo-random and aligned), volume fraction, and particle shape (rods, spheres, and disks) and measured the field dependent strain in order to determine the magnetostriction. We found that the magnetostriction in these samples is highly dependent on the sample particle shape (aspect ratio) and volume fraction and ordering to a lesser extent. While much of the past work has focused on spherical particles, our results indicate that both rods and disks can yield enhanced results. We discuss our findings in terms of magnetic energy of the particles and elastic energy of the matrix. We then consider the issue of optimization. This work was supported in part by NSF Grant CMMI - 0927326.

  12. Changes in Prostate Shape and Volume and Their Implications for Radiotherapy After Introduction of Endorectal Balloon as Determined by MRI at 3T

    International Nuclear Information System (INIS)

    Heijmink, Stijn W.T.P.J.; Scheenen, Tom W.J.; Lin, Emile N.J.T. van; Visser, Andries G.; Kiemeney, Lambertus A.L.M.; Witjes, J. Alfred; Barentsz, Jelle O.

    2009-01-01

    Purpose: To determine the changes in prostate shape and volume after the introduction of an endorectal coil (ERC) by means of magnetic resonance imaging (MRI) at 3T. Methods and materials: A total of 44 consecutive patients with biopsy-proven prostate cancer underwent separate MRI examinations at 3T with a body array coil and subsequently with an ERC inflated with 50 mL of fluid. Prospectively, two experienced readers independently evaluated all data sets in random order. The maximal anteroposterior, right-to-left, and craniocaudal prostate diameters, as well as the total prostate and peripheral zone and central gland volumes were measured before and after ERC introduction. The changes in prostate shape and volume were analyzed using Wilcoxon's test for paired samples. Results: The introduction of the ERC significantly changed the prostate shape in all three directions, with mean changes in the anteroposterior, right-to-left, and craniocaudal diameters of 15.7% (5.5 mm), 7.7% (3.5 mm), and 6.3% (2.2 mm), respectively. The mean total prostate, peripheral zone, and central gland volume decreased significantly after ERC introduction by 17.9% (8.3 cm 3 ), 21.6% (4.8 cm 3 ), and 14.2% (3.4 cm 3 ), respectively. Conclusion: ERC introduction as observed by 3T MRI changed the prostate shape and volume significantly. The mean anteroposterior diameter was reduced by nearly one-sixth of its original diameter, and the mean total prostate volume was decreased by approximately 18%. This could cause difficulties and should be considered when using ERC-based MRI for MRI-computed tomography fusion and radiotherapy planning.

  13. Revisiting the returns-volume relationship: Time variation, alternative measures and the financial crisis

    Science.gov (United States)

    Cook, Steve; Watson, Duncan

    2017-03-01

    Following its introduction in the seminal study of Osborne (1959), a voluminous literature has emerged examining the returns-volume relationship for financial assets. The present paper revisits this relationship in an examination of the FTSE100 which extends the existing literature in two ways. First, alternative daily measures of the FTSE100 index are used to create differing returns and absolute returns series to employ in an examination of returns-volume causality. Second, rolling regression analysis is utilised to explore potential time variation in the returns-volume relationship. The findings obtained depict a hitherto unconsidered complexity in this relationship with the type of returns series considered and financial crisis found to be significant underlying factors. The implications of the newly derived results for both the understanding of the nature of the returns-volume relationship and the development of theories in connection to it are discussed.

  14. Geometric Topology and Shape Theory

    CERN Document Server

    Segal, Jack

    1987-01-01

    The aim of this international conference the third of its type was to survey recent developments in Geometric Topology and Shape Theory with an emphasis on their interaction. The volume contains original research papers and carefully selected survey of currently active areas. The main topics and themes represented by the papers of this volume include decomposition theory, cell-like mappings and CE-equivalent compacta, covering dimension versus cohomological dimension, ANR's and LCn-compacta, homology manifolds, embeddings of continua into manifolds, complement theorems in shape theory, approximate fibrations and shape fibrations, fibered shape, exact homologies and strong shape theory.

  15. Studies on a pulse shaping system for fast coincidence with very large volume HPGe detectors

    International Nuclear Information System (INIS)

    Bose, S.; Chatterjee, M.B.; Sinha, B.K.; Bhattacharya, R.

    1987-01-01

    A variant of the leading edge timing (LET) has been proposed which compensates the ''walk'' due to risetime spread in very large volume (∝100 cm 3 ) HPGe detectors. The method - shape compensated leading edge timing (SCLET) - can be used over a wide dynamic range of energies with 100% efficiency and has been compared with the LET and ARC methods. A time resolution of 10 ns fwhm and 21 ns fwtm has been obtained with 22 Na gamma rays and two HPGe detectors of 96 and 114 cm 3 volume. This circuit is easy to duplicate and use can be a low cost alternative to commercial circuits in experiments requiring a large number of detectors. (orig.)

  16. Stochastic and sensitivity analysis of shape error of inflatable antenna reflectors

    Science.gov (United States)

    San, Bingbing; Yang, Qingshan; Yin, Liwei

    2017-03-01

    Inflatable antennas are promising candidates to realize future satellite communications and space observations since they are lightweight, low-cost and small-packaged-volume. However, due to their high flexibility, inflatable reflectors are difficult to manufacture accurately, which may result in undesirable shape errors, and thus affect their performance negatively. In this paper, the stochastic characteristics of shape errors induced during manufacturing process are investigated using Latin hypercube sampling coupled with manufacture simulations. Four main random error sources are involved, including errors in membrane thickness, errors in elastic modulus of membrane, boundary deviations and pressure variations. Using regression and correlation analysis, a global sensitivity study is conducted to rank the importance of these error sources. This global sensitivity analysis is novel in that it can take into account the random variation and the interaction between error sources. Analyses are parametrically carried out with various focal-length-to-diameter ratios (F/D) and aperture sizes (D) of reflectors to investigate their effects on significance ranking of error sources. The research reveals that RMS (Root Mean Square) of shape error is a random quantity with an exponent probability distribution and features great dispersion; with the increase of F/D and D, both mean value and standard deviation of shape errors are increased; in the proposed range, the significance ranking of error sources is independent of F/D and D; boundary deviation imposes the greatest effect with a much higher weight than the others; pressure variation ranks the second; error in thickness and elastic modulus of membrane ranks the last with very close sensitivities to pressure variation. Finally, suggestions are given for the control of the shape accuracy of reflectors and allowable values of error sources are proposed from the perspective of reliability.

  17. Image-guided radiotherapy of bladder cancer: bladder volume variation and its relation to margins

    DEFF Research Database (Denmark)

    Muren, Ludvig; Redpath, Anthony Thomas; Lord, Hannah

    2007-01-01

    : The correlation between the relative bladder volume (RBV, defined as repeat scan volume/planning scan volume) and the margins required to account for internal motion was first studied using a series of 20 bladder cancer patients with weekly repeat CT scanning during treatment. Both conformal RT (CRT) and IGRT......BACKGROUND AND PURPOSE: To control and account for bladder motion is a major challenge in radiotherapy (RT) of bladder cancer. This study investigates the relation between bladder volume variation and margins in conformal and image-guided RT (IGRT) for this disease. MATERIALS AND METHODS...... these patients were given fluid intake restrictions on alternating weeks during treatment. RESULTS: IGRT gave the strongest correlation between the RBV and margin size (R(2)=0.75; p10mm were required in only 1% of the situations when the RBV1, whereas isotropic margins >10...

  18. A Comparative Study of Pituitary Volume Variations in MRI in Acute Onset of Psychiatric Conditions.

    Science.gov (United States)

    Soni, Brijesh Kumar; Joish, Upendra Kumar; Sahni, Hirdesh; George, Raju A; Sivasankar, Rajeev; Aggarwal, Rohit

    2017-02-01

    The growing belief that endocrine abnormalities may underlie many mental conditions has led to increased use of imaging and hormonal assays in patients attending to psychiatric OPDs. People who are in an acute phase of a psychiatric disorder show Hypothalamic Pituitary Adrenal (HPA) axis hyperactivity, but the precise underlying central mechanisms are unclear. To assess the pituitary gland volume variations in patients presenting with new onset acute psychiatric illness in comparison with age and gender matched controls by using MRI. The study included 50 patients, with symptoms of acute psychiatric illness presenting within one month of onset of illness and 50 age and gender matched healthy controls. Both patients and controls were made to undergo MRI of the Brain. A 0.9 mm slices of entire brain were obtained by 3 dimensional T1 weighted sequence. Pituitary gland was traced in all sagittal slices. Anterior pituitary and posterior pituitary bright spot were measured separately in each slice. Volume of the pituitary (in cubic centimetre- cm 3 ) was calculated by summing areas. Significance of variations in pituitary gland volumes was compared between the cases and controls using Analysis of Covariance (ANOVA). There were significantly larger pituitary gland volumes in the cases than the controls, irrespective of psychiatric diagnosis (ANOVA, f=15.56; p=0.0002). Pituitary volumes in cases were 15.36% (0.73 cm 3 ) higher than in controls. There is a strong likelihood of HPA axis overactivity during initial phase of all mental disorders along with increased pituitary gland volumes. Further studies including hormonal assays and correlation with imaging are likely to provide further insight into neuroanatomical and pathological basis of psychiatric disorders.

  19. A correlation study on position and volume variation of primary lung cancer during respiration by four-dimensional CT

    International Nuclear Information System (INIS)

    Zhang Yingjie; Li Jianbin; Tian Shiyu; Li Fengxiang; Fan Tingyong; Shao Qian; Xu Min; Lu Jie

    2011-01-01

    Objective: To investigate the correlation of position movement of primary tumor with interested organs and skin markers, and to investigate the correlation of volume variation of primary tumors and lungs during different respiration phases for patients with lung cancer at free breath condition scanned by four-dimensional CT (4DCT) simulation. Methods: 16 patients with lung cancer were scanned at free breath condition by simulation 4DCT which connected to a respiration-monitoring system. A coordinate system was created based on image of T 5 phase,gross tumor volume (GTV) and normal tissue structures of 10 phases were contoured. The three dimensional position variation of them were measured and their correlation were analyzed, and the same for the volume variation of GTV and lungs of 10 respiratory phases. Results: Movement range of lung cancer in different lobe differed extinct: 0.8 - 5.0 mm in upper lobe, 5.7 -5.9 mm in middle lobe and 10.2 - 13.7 mm in lower lobe, respectively. Movement range of lung cancer in three dimensional direction was different: z-axis 4.3 mm ± 4.3 mm > y-axis 2.2 mm ± 1.0 mm > x-axis 1.7 mm ± 1.5 mm (χ 2 =16.22, P =0.000), respectively. There was no statistical significant correlation for movement vector of GTV and interested structures (r =-0.50 - -0.01, P =0.058 - -0.961), nor for volume variation of tumor and lung (r =0.23, P =0.520). Conclusions: Based on 4DCT, statistically significant differences of GTV centroid movement are observed at different pulmonary lobes and in three dimensional directions. So individual 4DCT measurement is necessary for definition of internal target volume margin for lung cancer. (authors)

  20. Chlorophyll-a specific volume scattering function of phytoplankton.

    Science.gov (United States)

    Tan, Hiroyuki; Oishi, Tomohiko; Tanaka, Akihiko; Doerffer, Roland; Tan, Yasuhiro

    2017-06-12

    Chlorophyll-a specific light volume scattering functions (VSFs) by cultured phytoplankton in visible spectrum range is presented. Chlorophyll-a specific VSFs were determined based on the linear least squares method using a measured VSFs with different chlorophyll-a concentrations. We found obvious variability of it in terms of spectral and angular shapes of VSF between cultures. It was also presented that chlorophyll-a specific scattering significantly affected on spectral variation of the remote sensing reflectance, depending on spectral shape of b. This result is useful for developing an advance algorithm of ocean color remote sensing and for deep understanding of light in the sea.

  1. HSP90 Shapes the Consequences of Human Genetic Variation.

    Science.gov (United States)

    Karras, Georgios I; Yi, Song; Sahni, Nidhi; Fischer, Máté; Xie, Jenny; Vidal, Marc; D'Andrea, Alan D; Whitesell, Luke; Lindquist, Susan

    2017-02-23

    HSP90 acts as a protein-folding buffer that shapes the manifestations of genetic variation in model organisms. Whether HSP90 influences the consequences of mutations in humans, potentially modifying the clinical course of genetic diseases, remains unknown. By mining data for >1,500 disease-causing mutants, we found a strong correlation between reduced phenotypic severity and a dominant (HSP90 ≥ HSP70) increase in mutant engagement by HSP90. Examining the cancer predisposition syndrome Fanconi anemia in depth revealed that mutant FANCA proteins engaged predominantly by HSP70 had severely compromised function. In contrast, the function of less severe mutants was preserved by a dominant increase in HSP90 binding. Reducing HSP90's buffering capacity with inhibitors or febrile temperatures destabilized HSP90-buffered mutants, exacerbating FA-related chemosensitivities. Strikingly, a compensatory FANCA somatic mutation from an "experiment of nature" in monozygotic twins both prevented anemia and reduced HSP90 binding. These findings provide one plausible mechanism for the variable expressivity and environmental sensitivity of genetic diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Can a central blood volume deficit be detected by systolic pressure variation during spontaneous breathing?

    DEFF Research Database (Denmark)

    Dahl, Michael; Hayes, Chris; Steen Rasmussen, Bodil

    2016-01-01

    BACKGROUND: Whether during spontaneous breathing arterial pressure variations (APV) can detect a volume deficit is not established. We hypothesized that amplification of intra-thoracic pressure oscillations by breathing through resistors would enhance APV to allow identification of a reduced card...

  3. Variations in Hip Shape Are Associated with Radiographic Knee Osteoarthritis: Cross-sectional and Longitudinal Analyses of the Johnston County Osteoarthritis Project.

    Science.gov (United States)

    Nelson, Amanda E; Golightly, Yvonne M; Renner, Jordan B; Schwartz, Todd A; Liu, Felix; Lynch, John A; Gregory, Jenny S; Aspden, Richard M; Lane, Nancy E; Jordan, Joanne M

    2016-02-01

    Hip shape by statistical shape modeling (SSM) is associated with hip radiographic osteoarthritis (rOA). We examined associations between hip shape and knee rOA given the biomechanical interrelationships between these joints. Bilateral baseline hip shape assessments [for those with at least 1 hip with a Kellgren-Lawrence arthritis grading scale (KL) 0 or 1] from the Johnston County Osteoarthritis Project were available. Proximal femur shape was defined on baseline pelvis radiographs and evaluated by SSM, producing mean shape and continuous variables representing independent modes of variation (14 modes = 95% of shape variance). Outcomes included prevalent [baseline KL ≥ 2 or total knee replacement (TKR)], incident (baseline KL 0/1 with followup ≥ 2), and progressive knee rOA (KL increase of ≥ 1 or TKR). Limb-based logistic regression models for ipsilateral and contralateral comparisons were adjusted for age, sex, race, body mass index (BMI), and hip rOA, accounting for intraperson correlations. We evaluated 681 hips and 682 knees from 342 individuals (61% women, 83% white, mean age 62 yrs, BMI 29 kg/m(2)). Ninety-nine knees (15%) had prevalent rOA (4 knees with TKR). Lower modes 2 and 3 scores were associated with ipsilateral prevalent knee rOA, and only lower mode 3 scores were associated with contralateral prevalent knee rOA. No statistically significant associations were seen for incident or progressive knee rOA. Variations in hip shape were associated with prevalent, but not incident or progressive, knee rOA in this cohort, and may reflect biomechanical differences between limbs, genetic influences, or common factors related to both hip shape and knee rOA.

  4. Millimeter-wave Line Ratios and Sub-beam Volume Density Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Leroy, Adam K.; Gallagher, Molly [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Usero, Antonio [Observatorio Astronmico Nacional (IGN), C/Alfonso XII, 3, E-28014 Madrid (Spain); Schruba, Andreas [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße 1, D-85748 Garching (Germany); Bigiel, Frank [Institute für theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle Str. 2, D-69120 Heidelberg (Germany); Kruijssen, J. M. Diederik; Schinnerer, Eva [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstraße 12-14, D-69120 Heidelberg (Germany); Kepley, Amanda [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Blanc, Guillermo A. [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Bolatto, Alberto D. [Department of Astronomy, Laboratory for Millimeter-wave Astronomy, and Joint Space Institute, University of Maryland, College Park, MD 20742 (United States); Cormier, Diane; Jiménez-Donaire, Maria J. [Max Planck Institute für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Hughes, Annie [CNRS, IRAP, 9 av. du Colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France); Rosolowsky, Erik [Department of Physics, University of Alberta, Edmonton, AB (Canada)

    2017-02-01

    We explore the use of mm-wave emission line ratios to trace molecular gas density when observations integrate over a wide range of volume densities within a single telescope beam. For observations targeting external galaxies, this case is unavoidable. Using a framework similar to that of Krumholz and Thompson, we model emission for a set of common extragalactic lines from lognormal and power law density distributions. We consider the median density of gas that produces emission and the ability to predict density variations from observed line ratios. We emphasize line ratio variations because these do not require us to know the absolute abundance of our tracers. Patterns of line ratio variations have the potential to illuminate the high-end shape of the density distribution, and to capture changes in the dense gas fraction and median volume density. Our results with and without a high-density power law tail differ appreciably; we highlight better knowledge of the probability density function (PDF) shape as an important area. We also show the implications of sub-beam density distributions for isotopologue studies targeting dense gas tracers. Differential excitation often implies a significant correction to the naive case. We provide tabulated versions of many of our results, which can be used to interpret changes in mm-wave line ratios in terms of adjustments to the underlying density distributions.

  5. Detecting hippocampal shape changes in Alzheimer's disease using statistical shape models

    Science.gov (United States)

    Shen, Kaikai; Bourgeat, Pierrick; Fripp, Jurgen; Meriaudeau, Fabrice; Salvado, Olivier

    2011-03-01

    The hippocampus is affected at an early stage in the development of Alzheimer's disease (AD). Using brain Magnetic Resonance (MR) images, we can investigate the effect of AD on the morphology of the hippocampus. Statistical shape models (SSM) are usually used to describe and model the hippocampal shape variations among the population. We use the shape variation from SSM as features to classify AD from normal control cases (NC). Conventional SSM uses principal component analysis (PCA) to compute the modes of variations among the population. Although these modes are representative of variations within the training data, they are not necessarily discriminant on labelled data. In this study, a Hotelling's T 2 test is used to qualify the landmarks which can be used for PCA. The resulting variation modes are used as predictors of AD from NC. The discrimination ability of these predictors is evaluated in terms of their classification performances using support vector machines (SVM). Using only landmarks statistically discriminant between AD and NC in SSM showed a better separation between AD and NC. These predictors also showed better correlation to the cognitive scores such as mini-mental state examination (MMSE) and Alzheimer's disease assessment scale (ADAS).

  6. Target volume delineation in external beam partial breast irradiation: less inter-observer variation with preoperative- compared to postoperative delineation

    NARCIS (Netherlands)

    Leij, F. van der; Elkhuizen, P.H.M.; Janssen, T.M.; Poortmans, P.M.P.; Sangen, M. van der; Scholten, A.N.; Vliet-Vroegindeweij, C. van; Boersma, L.J.

    2014-01-01

    The challenge of adequate target volume definition in external beam partial breast irradiation (PBI) could be overcome with preoperative irradiation, due to less inter-observer variation. We compared the target volume delineation for external beam PBI on preoperative versus postoperative CT scans of

  7. Novel genetic loci associated with hippocampal volume.

    Science.gov (United States)

    Hibar, Derrek P; Adams, Hieab H H; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L; Hofer, Edith; Renteria, Miguel E; Bis, Joshua C; Arias-Vasquez, Alejandro; Ikram, M Kamran; Desrivières, Sylvane; Vernooij, Meike W; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H; Beiser, Alexa; Bernard, Manon; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Gutman, Boris A; Hass, Johanna; Haukvik, Unn K; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liewald, David C M; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre F; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; McKay, David R; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C; Nyquist, Paul; Loohuis, Loes M Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Saremi, Arvin; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Lee, Sven J; Van der Meer, Dennis; Van Donkelaar, Marjolein M J; Van Eijk, Kristel R; Van Erp, Theo G M; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Craen, Anton J M; De Geus, Eco J C; De Jager, Philip L; De Zubicaray, Greig I; Deary, Ian J; Debette, Stéphanie; DeCarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald H H; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Hulshoff Pol, Hilleke E; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Francis J; McMahon, Katie L; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W J H; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G; Hernández, Maria C Valdés; Van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J A; Van Haren, Neeltje E M; van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Vellas, Bruno; Veltman, Dick J; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, Ronald H; Zonderman, Alan B; Martin, Nicholas G; Van Duijn, Cornelia M; Wright, Margaret J; Longstreth, W T; Schumann, Gunter; Grabe, Hans J; Franke, Barbara; Launer, Lenore J; Medland, Sarah E; Seshadri, Sudha; Thompson, Paul M; Ikram, M Arfan

    2017-01-18

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r g =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.

  8. Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks.

    Science.gov (United States)

    Löwenberg, Candy; Balk, Maria; Wischke, Christian; Behl, Marc; Lendlein, Andreas

    2017-04-18

    The ability of hydrophilic chain segments in polymer networks to strongly interact with water allows the volumetric expansion of the material and formation of a hydrogel. When polymer chain segments undergo reversible hydration depending on environmental conditions, smart hydrogels can be realized, which are able to shrink/swell and thus alter their volume on demand. In contrast, implementing the capacity of hydrogels to switch their shape rather than volume demands more sophisticated chemical approaches and structural concepts. In this Account, the principles of hydrogel network design, incorporation of molecular switches, and hydrogel microstructures are summarized that enable a spatially directed actuation of hydrogels by a shape-memory effect (SME) without major volume alteration. The SME involves an elastic deformation (programming) of samples, which are temporarily fixed by reversible covalent or physical cross-links resulting in a temporary shape. The material can reverse to the original shape when these molecular switches are affected by application of a suitable stimulus. Hydrophobic shape-memory polymers (SMPs), which are established with complex functions including multiple or reversible shape-switching, may provide inspiration for the molecular architecture of shape-memory hydrogels (SMHs), but cannot be identically copied in the world of hydrophilic soft materials. For instance, fixation of the temporary shape requires cross-links to be formed also in an aqueous environment, which may not be realized, for example, by crystalline domains from the hydrophilic main chains as these may dissolve in presence of water. Accordingly, dual-shape hydrogels have evolved, where, for example, hydrophobic crystallizable side chains have been linked into hydrophilic polymer networks to act as temperature-sensitive temporary cross-links. By incorporating a second type of such side chains, triple-shape hydrogels can be realized. Considering the typically given light

  9. Amygdala Volume in Offspring from Multiplex for Alcohol Dependence Families: The Moderating Influence of Childhood Environment and 5-HTTLPR Variation.

    Science.gov (United States)

    Hill, Shirley Y; Wang, Shuhui; Carter, Howard; McDermott, Michael D; Zezza, Nicholas; Stiffler, Scott

    2013-12-12

    The increased susceptibility for developing alcohol dependence seen in offspring from families with alcohol dependence may be related to structural and functional differences in brain circuits that influence emotional processing. Early childhood environment, genetic variation in the serotonin transporter-linked polymorphic region (5-HTTLPR) of the SLCA4 gene and allelic variation in the Brain Derived Neurotrophic Factor (BDNF) gene have each been reported to be related to volumetric differences in the temporal lobe especially the amygdala. Magnetic resonance imaging was used to obtain amygdala volumes for 129 adolescent/young adult individuals who were either High-Risk (HR) offspring from families with multiple cases of alcohol dependence (N=71) or Low-Risk (LR) controls (N=58). Childhood family environment was measured prospectively using age-appropriate versions of the Family Environment Scale during a longitudinal follow-up study. The subjects were genotyped for Brain-Derived Neurotrophic Factor (BDNF) Val66Met and the serotonin transporter polymorphism (5-HTTLPR). Two family environment scale scores (Cohesion and Conflict), genotypic variation, and their interaction were tested for their association with amygdala volumes. Personal and prenatal exposure to alcohol and drugs were considered in statistical analyses in order to more accurately determine the effects of familial risk group differences. Amygdala volume was reduced in offspring from families with multiple alcohol dependent members in comparison to offspring from control families. High-Risk offspring who were carriers of the S variant of the 5-HTTLPR polymorphism had reduced amygdala volume in comparison to those with an LL genotype. Larger amygdala volume was associated with greater family cohesion but only in Low-Risk control offspring. Familial risk for alcohol dependence is an important predictor of amygdala volume even when removing cases with significant personal exposure and covarying for

  10. Beyond body size: muscle biochemistry and body shape explain ontogenetic variation of anti-predatory behaviour in the lizard Salvator merianae.

    Science.gov (United States)

    de Barros, Fábio Cury; de Carvalho, José Eduardo; Abe, Augusto Shinya; Kohlsdorf, Tiana

    2016-06-01

    Anti-predatory behaviour evolves under the strong action of natural selection because the success of individuals avoiding predation essentially defines their fitness. Choice of anti-predatory strategies is defined by prey characteristics as well as environmental temperature. An additional dimension often relegated in this multilevel equation is the ontogenetic component. In the tegu Salvator merianae, adults run away from predators at high temperatures but prefer fighting when it is cold, whereas juveniles exhibit the same flight strategy within a wide thermal range. Here, we integrate physiology and morphology to understand ontogenetic variation in the temperature-dependent shift of anti-predatory behaviour in these lizards. We compiled data for body shape and size, and quantified enzyme activity in hindlimb and head muscles, testing the hypothesis that morphophysiological models explain ontogenetic variation in behavioural associations. Our prediction is that juveniles exhibit body shape and muscle biochemistry that enhance flight strategies. We identified biochemical differences between muscles mainly in the LDH:CS ratio, whereby hindlimb muscles were more glycolytic than the jaw musculature. Juveniles, which often use evasive strategies to avoid predation, have more glycolytic hindlimb muscles and are much smaller when compared with adults 1-2 years old. Ontogenetic differences in body shape were identified but marginally contributed to behavioural variation between juvenile and adult tegus, and variation in anti-predatory behaviour in these lizards resides mainly in associations between body size and muscle biochemistry. Our results are discussed in the ecological context of predator avoidance by individuals differing in body size living at temperature-variable environments, where restrictions imposed by the cold could be compensated by specific phenotypes. © 2016. Published by The Company of Biologists Ltd.

  11. Target volume delineation in external beam partial breast irradiation: Less inter-observer variation with preoperative- compared to postoperative delineation

    International Nuclear Information System (INIS)

    Leij, Femke van der; Elkhuizen, Paula H.M.; Janssen, Tomas M.; Poortmans, Philip; Sangen, Maurice van der; Scholten, Astrid N.; Vliet-Vroegindeweij, Corine van; Boersma, Liesbeth J.

    2014-01-01

    The challenge of adequate target volume definition in external beam partial breast irradiation (PBI) could be overcome with preoperative irradiation, due to less inter-observer variation. We compared the target volume delineation for external beam PBI on preoperative versus postoperative CT scans of twenty-four breast cancer patients

  12. Variations in CT determination of target volume with active breath co-ordinate in radiotherapy for post-operative gastric cancer.

    Science.gov (United States)

    Li, Gui-Chao; Zhang, Zhen; Ma, Xue-Jun; Yu, Xiao-Li; Hu, Wei-Gang; Wang, Jia-Zhou; Li, Qi-Wen; Liang, Li-Ping; Shen, Li-Jun; Zhang, Hui; Fan, Ming

    2016-01-01

    To investigate interobserver and inter-CT variations in using the active breath co-ordinate technique in the determination of clinical tumour volume (CTV) and normal organs in post-operative gastric cancer radiotherapy. Ten gastric cancer patients were enrolled in our study, and four radiation oncologists independently determined the CTVs and organs at risk based on the CT simulation data. To determine interobserver and inter-CT variation, we evaluated the maximum dimensions, derived volume and distance between the centres of mass (CMs) of the CTVs. We assessed the reliability in CTV determination among the observers by conformity index (CI). The average volumes ± standard deviation (cm(3)) of the CTV, liver, left kidney and right kidney were 674 ± 138 (range, 332-969), 1000 ± 138 (range, 714-1320), 149 ± 13 (range, 104-183) and 141 ± 21 (range, 110-186) cm(3), respectively. The average inter-CT distances between the CMs of the CTV, liver, left kidney and right kidney were 0.40, 0.56, 0.65 and 0.6 cm, respectively; the interobserver values were 0.98, 0.53, 0.16 and 0.15 cm, respectively. In the volume size of CTV for post-operative gastric cancer, there were significant variations among multiple observers, whereas there was no variation between different CTs. The slices in which variations more likely occur were the slices of the lower verge of the hilum of the spleen and porta hepatis, then the paraoesophageal lymph nodes region and abdominal aorta, and the inferior vena cava, and the variation in the craniocaudal orientation from the interobserver was more predominant than that from inter-CT. First, this is the first study to evaluate the interobserver and inter-CT variations in the determination of the CTV and normal organs in gastric cancer with the use of the active breath co-ordinate technique. Second, we analysed the region where variations most likely occur. Third, we investigated the influence of interobserver variation on

  13. Repeat CT assessed CTV variation and PTV margins for short- and long-course pre-operative RT of rectal cancer

    International Nuclear Information System (INIS)

    Nijkamp, Jasper; Swellengrebel, Maurits; Hollmann, Birgit; Jong, Rianne de; Marijnen, Corrie; Vliet-Vroegindeweij, Corine van; Triest, Baukelien van; Herk, Marcel van; Sonke, Jan-Jakob

    2012-01-01

    Purpose: To quantify the inter-fraction shape variation of the CTV in rectal-cancer patients treated with 5 × 5 (SCRT) and 25 × 2 Gy (LCRT) and derive PTV margins. Methods and materials: Thirty-three SCRT with daily repeat CT scans and 30 LCRT patients with daily scans during the first week followed by weekly scans were included. The CTV was delineated on all scans and local shape variation was calculated with respect to the planning CT. Margin estimation was done using the local shape variation to assure 95% minimum dose for at least 90% of patients. Results: Using 482 CT scans, systematic and random CTV shape variation was heterogeneous, ranging from 0.2 cm close to bony structures up to 1.0 cm SD at the upper-anterior CTV region. A significant reduction in rectal volume during LCRT resulted in an average 0.5 cm posterior shift of the upper-anterior CTV. Required margins ranged from 0.7 cm close to bony structures up to 3.1 and 2.3 cm in the upper-anterior region for SCRT and LCRT, respectively. Conclusions: Heterogeneous shape variation demands anisotropic PTV margins. Required margins were substantially larger in the anterior direction compared to current clinical margins. These larger margins were, however, based on strict delineated CTVs, resulting in smaller PTVs compared to current practice.

  14. SU-E-T-427: Cell Surviving Fractions Derived From Tumor-Volume Variation During Radiotherapy for Non-Small Cell Lung Cancer: Comparison with Predictive Assays

    Energy Technology Data Exchange (ETDEWEB)

    Chvetsov, A; Schwartz, J; Mayr, N [University of Washington, Seattle, WA (United States); Yartsev, S [London Health Sciences Centre, London, Ontario (Canada)

    2014-06-01

    Purpose: To show that a distribution of cell surviving fractions S{sub 2} in a heterogeneous group of patients can be derived from tumor-volume variation curves during radiotherapy for non-small cell lung cancer. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage (MV) computed tomography (CT). Statistical distributions of cell surviving fractions S{sup 2} and cell clearance half-lives of lethally damaged cells T1/2 have been reconstructed in each patient group by using a version of the two-level cell population tumor response model and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Non-small cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S{sub 2} for non-small cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sup 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Comparison of the reconstructed cell surviving fractions with patient survival data shows that the patient survival time decreases as the cell surviving fraction increases. Conclusion: The data obtained in this work suggests that the cell surviving fractions S{sub 2} can be reconstructed from the tumor volume

  15. SU-E-T-427: Cell Surviving Fractions Derived From Tumor-Volume Variation During Radiotherapy for Non-Small Cell Lung Cancer: Comparison with Predictive Assays

    International Nuclear Information System (INIS)

    Chvetsov, A; Schwartz, J; Mayr, N; Yartsev, S

    2014-01-01

    Purpose: To show that a distribution of cell surviving fractions S 2 in a heterogeneous group of patients can be derived from tumor-volume variation curves during radiotherapy for non-small cell lung cancer. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage (MV) computed tomography (CT). Statistical distributions of cell surviving fractions S 2 and cell clearance half-lives of lethally damaged cells T1/2 have been reconstructed in each patient group by using a version of the two-level cell population tumor response model and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Non-small cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S 2 for non-small cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S 2 reconstructed from tumor volume variation agree with the PDF measured in vitro. Comparison of the reconstructed cell surviving fractions with patient survival data shows that the patient survival time decreases as the cell surviving fraction increases. Conclusion: The data obtained in this work suggests that the cell surviving fractions S 2 can be reconstructed from the tumor volume variation curves measured

  16. The Genetics of Canine Skull Shape Variation

    Science.gov (United States)

    Schoenebeck, Jeffrey J.; Ostrander, Elaine A.

    2013-01-01

    A dog’s craniofacial diversity is the result of continual human intervention in natural selection, a process that began tens of thousands of years ago. To date, we know little of the genetic underpinnings and developmental mechanisms that make dog skulls so morphologically plastic. In this Perspectives, we discuss the origins of dog skull shapes in terms of history and biology and highlight recent advances in understanding the genetics of canine skull shapes. Of particular interest are those molecular genetic changes that are associated with the development of distinct breeds. PMID:23396475

  17. Midsagittal brain variation and MRI shape analysis of the precuneus in adult individuals

    Science.gov (United States)

    Bruner, Emiliano; Rangel de Lázaro, Gizéh; de la Cuétara, José Manuel; Martín-Loeches, Manuel; Colom, Roberto; Jacobs, Heidi I L

    2014-01-01

    Recent analyses indicate that the precuneus is one of the main centres of integration in terms of functional and structural processes within the human brain. This neuroanatomical element is formed by different subregions, involved in visuo-spatial integration, memory and self-awareness. We analysed the midsagittal brain shape in a sample of adult humans (n = 90) to evidence the patterns of variability and geometrical organization of this area. Interestingly, the major brain covariance pattern within adult humans is strictly associated with the relative proportions of the precuneus. Its morphology displays a marked individual variation, both in terms of geometry (mostly in its longitudinal dimensions) and anatomy (patterns of convolution). No patent differences are evident between males and females, and the allometric effect of size is minimal. However, in terms of morphology, the precuneus does not represent an individual module, being influenced by different neighbouring structures. Taking into consideration the apparent involvement of the precuneus in higher-order human brain functions and evolution, its wide variation further stresses the important role of these deep parietal areas in modern neuroanatomical organization. PMID:24397462

  18. Variation in the Definition of Clinical Target Volumes for Pelvic Nodal Conformal Radiation Therapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Lawton, Colleen A.F.; Michalski, Jeff; El-Naqa, Issam; Kuban, Deborah; Lee, W. Robert; Rosenthal, Seth A.; Zietman, Anthony; Sandler, Howard; Shipley, William; Ritter, Mark; Valicenti, Richard; Catton, Charles; Roach, Mack; Pisansky, Thomas M.; Seider, Michael

    2009-01-01

    Purpose: We conducted a comparative study of clinical target volume (CTV) definition of pelvic lymph nodes by multiple genitourinary (GU) radiation oncologists looking at the levels of discrepancies amongst this group. Methods and Materials: Pelvic computed tomography (CT) scans from 2 men were distributed to 14 Radiation Therapy Oncology Group GU radiation oncologists with instructions to define CTVs for the iliac and presacral lymph nodes. The CT data with contours were then returned for analysis. In addition, a questionnaire was completed that described the physicians' method for target volume definition. Results: Significant variation in the definition of the iliac and presacral CTVs was seen among the physicians. The minimum, maximum, mean (SD) iliac volumes (mL) were 81.8, 876.6, 337.6 ± 203 for case 1 and 60.3, 627.7, 251.8 ± 159.3 for case 2. The volume of 100% agreement was 30.6 and 17.4 for case 1 and 2 and the volume of the union of all contours was 1,012.0 and 807.4 for case 1 and 2, respectively. The overall agreement was judged to be moderate in both cases (kappa = 0.53 (p < 0.0001) and kappa = 0.48 (p < 0.0001). There was no volume of 100% agreement for either of the two presacral volumes. These variations were confirmed in the responses to the associated questionnaire. Conclusions: Significant disagreement exists in the definition of the CTV for pelvic nodal radiation therapy among GU radiation oncology specialists. A consensus needs to be developed so as to accurately assess the merit and safety of such treatment.

  19. Genomic regulation of natural variation in cortical and noncortical brain volume

    Directory of Open Access Journals (Sweden)

    Laughlin Rick E

    2006-02-01

    Full Text Available Abstract Background The relative growth of the neocortex parallels the emergence of complex cognitive functions across species. To determine the regions of the mammalian genome responsible for natural variations in cortical volume, we conducted a complex trait analysis using 34 strains of recombinant inbred (Rl strains of mice (BXD, as well as their two parental strains (C57BL/6J and DBA/2J. We measured both neocortical volume and total brain volume in 155 coronally sectioned mouse brains that were Nissl stained and embedded in celloidin. After correction for shrinkage, the measured cortical and noncortical brain volumes were entered into a multiple regression analysis, which removed the effects of body size and age from the measurements. Marker regression and interval mapping were computed using WebQTL. Results An ANOVA revealed that more than half of the variance of these regressed phenotypes is genetically determined. We then identified the regions of the genome regulating this heritability. We located genomic regions in which a linkage disequilibrium was present using WebQTL as both a mapping engine and genomic database. For neocortex, we found a genome-wide significant quantitative trait locus (QTL on chromosome 11 (marker D11Mit19, as well as a suggestive QTL on chromosome 16 (marker D16Mit100. In contrast, for noncortex the effect of chromosome 11 was markedly reduced, and a significant QTL appeared on chromosome 19 (D19Mit22. Conclusion This classic pattern of double dissociation argues strongly for different genetic factors regulating relative cortical size, as opposed to brain volume more generally. It is likely, however, that the effects of proximal chromosome 11 extend beyond the neocortex strictly defined. An analysis of single nucleotide polymorphisms in these regions indicated that ciliary neurotrophic factor (Cntf is quite possibly the gene underlying the noncortical QTL. Evidence for a candidate gene modulating neocortical

  20. Statistical shape modeling based renal volume measurement using tracked ultrasound

    Science.gov (United States)

    Pai Raikar, Vipul; Kwartowitz, David M.

    2017-03-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the fourth most common cause of kidney transplant worldwide accounting for 7-10% of all cases. Although ADPKD usually progresses over many decades, accurate risk prediction is an important task.1 Identifying patients with progressive disease is vital to providing new treatments being developed and enable them to enter clinical trials for new therapy. Among other factors, total kidney volume (TKV) is a major biomarker predicting the progression of ADPKD. Consortium for Radiologic Imaging Studies in Polycystic Kidney Disease (CRISP)2 have shown that TKV is an early, and accurate measure of cystic burden and likely growth rate. It is strongly associated with loss of renal function.3 While ultrasound (US) has proven as an excellent tool for diagnosing the disease; monitoring short-term changes using ultrasound has been shown to not be accurate. This is attributed to high operator variability and reproducibility as compared to tomographic modalities such as CT and MR (Gold standard). Ultrasound has emerged as one of the standout modality for intra-procedural imaging and with methods for spatial localization has afforded us the ability to track 2D ultrasound in physical space which it is being used. In addition to this, the vast amount of recorded tomographic data can be used to generate statistical shape models that allow us to extract clinical value from archived image sets. In this work, we aim at improving the prognostic value of US in managing ADPKD by assessing the accuracy of using statistical shape model augmented US data, to predict TKV, with the end goal of monitoring short-term changes.

  1. Reduce in Variation and Improve Efficiency of Target Volume Delineation by a Computer-Assisted System Using a Deformable Image Registration Approach

    International Nuclear Information System (INIS)

    Chao, K.S. Clifford; Bhide, Shreerang FRCR; Chen, Hansen; Asper, Joshua PAC; Bush, Steven; Franklin, Gregg; Kavadi, Vivek; Liengswangwong, Vichaivood; Gordon, William; Raben, Adam; Strasser, Jon; Koprowski, Christopher; Frank, Steven; Chronowski, Gregory; Ahamad, Anesa; Malyapa, Robert; Zhang Lifei; Dong Lei

    2007-01-01

    Purpose: To determine whether a computer-assisted target volume delineation (CAT) system using a deformable image registration approach can reduce the variation of target delineation among physicians with different head and neck (HN) IMRT experiences and reduce the time spent on the contouring process. Materials and Methods: We developed a deformable image registration method for mapping contours from a template case to a patient case with a similar tumor manifestation but different body configuration. Eight radiation oncologists with varying levels of clinical experience in HN IMRT performed target delineation on two HN cases, one with base-of-tongue (BOT) cancer and another with nasopharyngeal cancer (NPC), by first contouring from scratch and then by modifying the contours deformed by the CAT system. The gross target volumes were provided. Regions of interest for comparison included the clinical target volumes (CTVs) and normal organs. The volumetric and geometric variation of these regions of interest and the time spent on contouring were analyzed. Results: We found that the variation in delineating CTVs from scratch among the physicians was significant, and that using the CAT system reduced volumetric variation and improved geometric consistency in both BOT and NPC cases. The average timesaving when using the CAT system was 26% to 29% for more experienced physicians and 38% to 47% for the less experienced ones. Conclusions: A computer-assisted target volume delineation approach, using a deformable image-registration method with template contours, was able to reduce the variation among physicians with different experiences in HN IMRT while saving contouring time

  2. Natural Selection and Recombination Rate Variation Shape Nucleotide Polymorphism Across the Genomes of Three Related Populus Species.

    Science.gov (United States)

    Wang, Jing; Street, Nathaniel R; Scofield, Douglas G; Ingvarsson, Pär K

    2016-03-01

    A central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome resequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum, and population-scaled recombination rates in three species of Populus: Populus tremula, P. tremuloides, and P. trichocarpa. We find that P. tremuloides has the highest level of genome-wide variation, skewed allele frequencies, and population-scaled recombination rates, whereas P. trichocarpa harbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, due to both purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination largely explain the disparate magnitudes and signatures of linked selection that we observe among species. The present work provides the first phylogenetic comparative study on a genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species. Copyright © 2016 by the Genetics Society of America.

  3. Bladder filling variations during concurrent chemotherapy and pelvic radiotherapy in rectal cancer patients: early experience of bladder volume assessment using ultrasound scanner

    International Nuclear Information System (INIS)

    Chang, Jee Suk; Yoon, Hong In; Cha, Hye Jung; Chang, Yoon Sun; Cho, Yeo Na; Keum, Ki Chang; Koom, Woong Sub

    2013-01-01

    To describe the early experience of analyzing variations and time trends in bladder volume of the rectal cancer patients who received bladder ultrasound scan. We identified 20 consecutive rectal cancer patients who received whole pelvic radiotherapy (RT) and bladder ultrasound scan between February and April 2012. Before simulation and during the entire course of treatment, patients were scanned with portable automated ultrasonic bladder scanner, 5 times consecutively, and the median value was reported. Then a radiation oncologist contoured the bladder inner wall shown on simulation computed tomography (CT) and calculated its volume. Before simulation, the median bladder volume measured using simulation CT and bladder ultrasound scan was 427 mL (range, 74 to 1,172 mL) and 417 mL (range, 147 to 1,245 mL), respectively. There was strong linear correlation (R = 0.93, p < 0.001) between the two results. During the course of treatment, there were wide variations in the bladder volume and every time, measurements were below the baseline with statistical significance (12/16). At 6 weeks after RT, the median volume was reduced by 59.3% to 175 mL. Compared to the baseline, bladder volume was reduced by 38% or 161 mL on average every week for 6 weeks. To our knowledge, this study is the first to prove that there are bladder volume variations and a reduction in bladder volume in rectal cancer patients. Moreover, our results will serve as the basis for implementation of bladder training to patients receiving RT with full bladder.

  4. Discriminative Shape Alignment

    DEFF Research Database (Denmark)

    Loog, M.; de Bruijne, M.

    2009-01-01

    , not taking into account that eventually the shapes are to be assigned to two or more different classes. This work introduces a discriminative variation to well-known Procrustes alignment and demonstrates its benefit over this classical method in shape classification tasks. The focus is on two...

  5. Listening to the Shape of a Drum

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 10. Listening to the Shape of a Drum - You Cannot Hear the Shape of a Drum! S Kesavan. General Article Volume 3 Issue 10 October 1998 pp 49-58. Fulltext. Click here to view fulltext PDF. Permanent link:

  6. Cellular basis of morphological variation and temperature-related plasticity in Drosophila melanogaster strains with divergent wing shapes.

    Science.gov (United States)

    Torquato, Libéria Souza; Mattos, Daniel; Matta, Bruna Palma; Bitner-Mathé, Blanche Christine

    2014-12-01

    Organ shape evolves through cross-generational changes in developmental patterns at cellular and/or tissue levels that ultimately alter tissue dimensions and final adult proportions. Here, we investigated the cellular basis of an artificially selected divergence in the outline shape of Drosophila melanogaster wings, by comparing flies with elongated or rounded wing shapes but with remarkably similar wing sizes. We also tested whether cellular plasticity in response to developmental temperature was altered by such selection. Results show that variation in cellular traits is associated with wing shape differences, and that cell number may play an important role in wing shape response to selection. Regarding the effects of developmental temperature, a size-related plastic response was observed, in that flies reared at 16 °C developed larger wings with larger and more numerous cells across all intervein regions relative to flies reared at 25 °C. Nevertheless, no conclusive indication of altered phenotypic plasticity was found between selection strains for any wing or cellular trait. We also described how cell area is distributed across different intervein regions. It follows that cell area tends to decrease along the anterior wing compartment and increase along the posterior one. Remarkably, such pattern was observed not only in the selected strains but also in the natural baseline population, suggesting that it might be canalized during development and was not altered by the intense program of artificial selection for divergent wing shapes.

  7. Small-scale variations in leaf shape under anthropogenic disturbance in dioecious forest forb mercurialis perennis: A geometric morphometric examination

    Directory of Open Access Journals (Sweden)

    Vujić Vukica

    2016-01-01

    Full Text Available Plants are exposed to increasing levels of diverse human activities that have profound effects on their overall morphology and, specifically, on leaf morphology. Anthropogenic disturbances in urban and suburban forest recreational sites are attracting growing research interest. To explore the persisting recreational impact on leaf shape and size, we conducted a field study on the dioecious forb Mercurialis perennis L. (Euphorbiaceae, typical for undisturbed understory communities. We selected adjacent sites in a suburban forest, which experience contrasting regimes of disturbance by human trampling under otherwise concordant natural conditions. Patterns of leaf shape and size variation and putative sex-specific response to disturbance were analyzed using a geometric morphometric approach. In addition to leaf-level data, plant height, internode and leaf number were analyzed to explore the same response at the whole-plant level. The results show significant variations associated with disturbance at both levels: plants growing under a heavy disturbance regime had shorter stems with a greater number of wider and shorter leaves. Significant differences between sites were also found for leaf size, with larger leaves observed in an undisturbed site. The effects of sex and sex x site interaction on leaf size and shape were nonsignificant, pointing to the absence of sexual dimorphism and sex-specific response to disturbance. Contrary to leaf shape and size, all three analyzed shoot traits showed highly significant sexual dimorphism, with male plants being higher and having higher leaf and internode count. [Projekat Ministarstva nauke Republike Srbije, br. 173025

  8. Variation and decomposition of the partial molar volume of small gas molecules in different organic solvents derived from molecular dynamics simulations.

    Science.gov (United States)

    Klähn, Marco; Martin, Alistair; Cheong, Daniel W; Garland, Marc V

    2013-12-28

    The partial molar volumes, V(i), of the gas solutes H2, CO, and CO2, solvated in acetone, methanol, heptane, and diethylether are determined computationally in the limit of infinite dilution and standard conditions. Solutions are described with molecular dynamics simulations in combination with the OPLS-aa force field for solvents and customized force field for solutes. V(i) is determined with the direct method, while the composition of V(i) is studied with Kirkwood-Buff integrals (KBIs). Subsequently, the amount of unoccupied space and size of pre-formed cavities in pure solvents is determined. Additionally, the shape of individual solvent cages is analyzed. Calculated V(i) deviate only 3.4 cm(3) mol(-1) (7.1%) from experimental literature values. Experimental V(i) variations across solutions are reproduced qualitatively and also quantitatively in most cases. The KBI analysis identifies differences in solute induced solvent reorganization in the immediate vicinity of H2 (<0.7 nm) and solvent reorganization up to the third solvation shell of CO and CO2 (<1.6 nm) as the origin of V(i) variations. In all solutions, larger V(i) are found in solvents that exhibit weak internal interactions, low cohesive energy density and large compressibility. Weak internal interactions facilitate solvent displacement by thermal solute movement, which enhances the size of solvent cages and thus V(i). Additionally, attractive electrostatic interactions of CO2 and the solvents, which do not depend on internal solvent interactions only, partially reversed the V(i) trends observed in H2 and CO solutions where electrostatic interactions with the solvents are absent. More empty space and larger pre-formed cavities are found in solvents with weak internal interactions, however, no evidence is found that solutes in any considered solvent are accommodated in pre-formed cavities. Individual solvent cages are found to be elongated in the negative direction of solute movement. This wake behind

  9. Variation and decomposition of the partial molar volume of small gas molecules in different organic solvents derived from molecular dynamics simulations

    Science.gov (United States)

    Klähn, Marco; Martin, Alistair; Cheong, Daniel W.; Garland, Marc V.

    2013-12-01

    The partial molar volumes, bar V_i, of the gas solutes H2, CO, and CO2, solvated in acetone, methanol, heptane, and diethylether are determined computationally in the limit of infinite dilution and standard conditions. Solutions are described with molecular dynamics simulations in combination with the OPLS-aa force field for solvents and customized force field for solutes. bar V_i is determined with the direct method, while the composition of bar V_i is studied with Kirkwood-Buff integrals (KBIs). Subsequently, the amount of unoccupied space and size of pre-formed cavities in pure solvents is determined. Additionally, the shape of individual solvent cages is analyzed. Calculated bar V_i deviate only 3.4 cm3 mol-1 (7.1%) from experimental literature values. Experimental bar V_i variations across solutions are reproduced qualitatively and also quantitatively in most cases. The KBI analysis identifies differences in solute induced solvent reorganization in the immediate vicinity of H2 (<0.7 nm) and solvent reorganization up to the third solvation shell of CO and CO2 (<1.6 nm) as the origin of bar V_i variations. In all solutions, larger bar V_i are found in solvents that exhibit weak internal interactions, low cohesive energy density and large compressibility. Weak internal interactions facilitate solvent displacement by thermal solute movement, which enhances the size of solvent cages and thus bar V_i. Additionally, attractive electrostatic interactions of CO2 and the solvents, which do not depend on internal solvent interactions only, partially reversed the bar V_i trends observed in H2 and CO solutions where electrostatic interactions with the solvents are absent. More empty space and larger pre-formed cavities are found in solvents with weak internal interactions, however, no evidence is found that solutes in any considered solvent are accommodated in pre-formed cavities. Individual solvent cages are found to be elongated in the negative direction of solute

  10. An analytical model for shape memory alloy fiber-reinforced composite thin-walled beam undergoing large deflection

    Directory of Open Access Journals (Sweden)

    Yongsheng Ren

    2015-03-01

    Full Text Available The structural model of the thin-walled laminated beams with integral shape memory alloy active fibers and accounting for geometrically nonlinear is presented in this article. The structural modeling is split into two parts: a two-dimensional analysis over the cross section and a geometrically nonlinear analysis of a beam along the beam span. The variational asymptotic method is used to formulate the force–deformation relationship equations taking into account the presence of active shape memory alloy fibers distributed along the cross section of the beam. The geometrically nonlinear governing equations are derived using variational principle and based on the von Kármán-type nonlinear strain–displacement relations. The equations are then solved using Galerkin’s method and an incremental Newton–Raphson method. The validation for the proposed model has been carried out by comparison of the present results with those available in the literature. The results show that significant extension, bending, and twisting coupled nonlinear deflections occur during the phase transformation due to shape memory alloy actuation. The effects of the volume fraction of the shape memory alloy fiber and ply angle are also addressed.

  11. Measurement, variation, and scaling of osteocyte lacunae: a case study in birds.

    Science.gov (United States)

    D'Emic, Michael D; Benson, Roger B J

    2013-11-01

    Basic issues surrounding osteocyte biology are still poorly understood, including the variability of osteocyte morphology within and among bones, individuals, and species. Several studies have suggested that the volume or shape of osteocytes (or their lacunae) is related to bone and/or organismal growth rate or metabolism, but the nature of this relationship, if any, is unclear. Furthermore, several studies have linked osteocyte lacuna volume with genome size or growth rate and suggested that osteocyte lacuna volume is unrelated to body size. Herein the scaling of osteocyte lacuna volume with body mass, growth and basal metabolic rates, genome size, and red blood cell size is examined using a broad sample of extant birds within a phylogenetic framework. Over 12,000 osteocyte lacuna axes were measured in a variety of bones from 34 avian and four non-avian dinosaur species. Osteocyte lacunae in parallel-fibered bone are scalene ellipsoids; their morphology and volume cannot be reliably estimated from any single thin section, and using a prolate ellipsoid model to estimate osteocyte lacuna volume results in a substantial (ca. 2-7 times) underestimate relative to true lacunar volume. Orthogonal thin sections reveal that in birds, even when only observing parallel-fibered, primary, cortical bone, intra-skeletal variation in osteocyte lacuna volume and shape is very high (volumes vary by a factor of 5.4 among different bones), whereas variation among homologous bones of the same species is low (1.2-44%; mean=12%). Ordinary and phylogenetically informed bivariate and multiple regressions demonstrate that in birds, osteocyte volume scales significantly but weakly with body mass and mass-specific basal metabolic rate and moderately with genome size, but not with erythrocyte size. Avian whole-body growth rate and osteocyte lacuna volume are weakly and inversely related. Finally, we present the first three-dimensionally calculated osteocyte volumes for several non

  12. Cone Beam CT Imaging Analysis of Interfractional Variations in Bladder Volume and Position During Radiotherapy for Bladder Cancer

    International Nuclear Information System (INIS)

    Yee, Don; Parliament, Matthew; Rathee, Satyapal; Ghosh, Sunita; Ko, Lawrence; Murray, Brad

    2010-01-01

    Purpose: To quantify daily bladder size and position variations during bladder cancer radiotherapy. Methods and Materials: Ten bladder cancer patients underwent daily cone beam CT (CBCT) imaging of the bladder during radiotherapy. Bladder and planning target volumes (bladder/PTV) from CBCT and planning CT scans were compared with respect to bladder center-of-mass shifts in the x (lateral), y (anterior-posterior), and z (superior-inferior) coordinates, bladder/PTV size, bladder/PTV margin positions, overlapping areas, and mutually exclusive regions. Results: A total of 262 CBCT images were obtained from 10 bladder cancer patients. Bladder center of mass shifted most in the y coordinate (mean, -0.32 cm). The anterior bladder wall shifted the most (mean, -0.58 cm). Mean ratios of CBCT-derived bladder and PTV volumes to planning CT-derived counterparts were 0.83 and 0.88. The mean CBCT-derived bladder volume (± standard deviation [SD]) outside the planning CT counterpart was 29.24 cm 3 (SD, 29.71 cm 3 ). The mean planning CT-derived bladder volume outside the CBCT counterpart was 47.74 cm 3 (SD, 21.64 cm 3 ). The mean CBCT PTV outside the planning CT-derived PTV was 47.35 cm 3 (SD, 36.51 cm 3 ). The mean planning CT-derived PTV outside the CBCT-derived PTV was 93.16 cm 3 (SD, 50.21). The mean CBCT-derived bladder volume outside the planning PTV was 2.41 cm 3 (SD, 3.97 cm 3 ). CBCT bladder/ PTV volumes significantly differed from planning CT counterparts (p = 0.047). Conclusions: Significant variations in bladder and PTV volume and position occurred in patients in this trial.

  13. A Caulobacter MreB mutant with irregular cell shape exhibits compensatory widening to maintain a preferred surface area to volume ratio

    Science.gov (United States)

    Harris, Leigh K.; Dye, Natalie A.; Theriot, Julie A.

    2014-01-01

    Summary Rod-shaped bacteria typically elongate at a uniform width. To investigate the genetic and physiological determinants involved in this process, we studied a mutation in the morphogenetic protein MreB in Caulobacter crescentus that gives rise to cells with a variable-width phenotype, where cells have regions that are both thinner and wider than wild-type. During growth, individual cells develop a balance of wide and thin regions, and mutant MreB dynamically localizes to poles and thin regions. Surprisingly, the surface area to volume ratio of these irregularly-shaped cells is, on average, very similar to wild-type. We propose that, while mutant MreB localizes to thin regions and promotes rod-like growth there, wide regions develop as a compensatory mechanism, allowing cells to maintain a wild-type-like surface area to volume ratio. To support this model, we have shown that cell widening is abrogated in growth conditions that promote higher surface area to volume ratios, and we have observed individual cells with high ratios return to wild-type levels over several hours by developing wide regions, suggesting that compensation can take place at the level of individual cells. PMID:25266768

  14. Specification of volume and dose in radiotherapy

    International Nuclear Information System (INIS)

    Levernes, S.

    1997-01-01

    As a result of a questionnaire about dose and volume specifications in radiotherapy in the Nordic countries, a group has been set up to propose common recommendations for these countries. The proposal is partly based on ICRU 50, but with major extensions. These extensions fall into three areas: patient geometry, treatment geometry, and dose specifications. For patient geometry and set-up one need alignment markings and anatomical reference points, the latter can be divided into internal and external reference points. These points are necessary to get relationships between coordinate systems related to patient and to treatment unit. For treatment geometry the main volume will be an anatomical target volume which just encompass the clinical target volume with all its variations and movements. This anatomical volume are the most suitable volume for prescription, optimization and reporting dose. A set-up margin should be added to the beam periphery in beams-eye-view to get the minimum size and shape of the beam. For dose specification the most important parameter for homogeneous dose distributions is the arithmetic mean of dose to the anatomical target volume together with its standard deviation. In addition the dose to the ICRU reference point should be reported for intercomparison, together with minimum and maximum doses or dose volume histograms for the anatomical target volume. (author)

  15. Remote Sensing of Crystal Shapes in Ice Clouds

    Science.gov (United States)

    van Diedenhoven, Bastiaan

    2017-01-01

    Ice crystals in clouds exist in a virtually limitless variation of geometries. The most basic shapes of ice crystals are columnar or plate-like hexagonal prisms with aspect ratios determined by relative humidity and temperature. However, crystals in ice clouds generally display more complex structures owing to aggregation, riming and growth histories through varying temperature and humidity regimes. Crystal shape is relevant for cloud evolution as it affects microphysical properties such as fall speeds and aggregation efficiency. Furthermore, the scattering properties of ice crystals are affected by their general shape, as well as by microscopic features such as surface roughness, impurities and internal structure. To improve the representation of ice clouds in climate models, increased understanding of the global variation of crystal shape and how it relates to, e.g., location, cloud temperature and atmospheric state is crucial. Here, the remote sensing of ice crystal macroscale and microscale structure from airborne and space-based lidar depolarization observations and multi-directional measurements of total and polarized reflectances is reviewed. In addition, a brief overview is given of in situ and laboratory observations of ice crystal shape as well as the optical properties of ice crystals that serve as foundations for the remote sensing approaches. Lidar depolarization is generally found to increase with increasing cloud height and to vary with latitude. Although this variation is generally linked to the variation of ice crystal shape, the interpretation of the depolarization remains largely qualitative and more research is needed before quantitative conclusions about ice shape can be deduced. The angular variation of total and polarized reflectances of ice clouds has been analyzed by numerous studies in order to infer information about ice crystal shapes from them. From these studies it is apparent that pristine crystals with smooth surfaces are generally

  16. Volume inequalities for asymmetric Wulff shapes

    OpenAIRE

    Schuster, Franz E.; Weberndorfer, Manuel

    2012-01-01

    Sharp reverse affine isoperimetric inequalities for asymmetric Wulff shapes and their polars are established, along with the characterization of all extremals. These new inequalities have as special cases previously obtained simplex inequalities by Ball, Barthe and Lutwak, Yang, and Zhang. In particular, they provide the solution to a problem by Zhang.

  17. Evaluation of two intracavitary high-dose-rate brachytherapy devices for irradiating additional and irregularly shaped volumes of breast tissue

    International Nuclear Information System (INIS)

    Lu, Sharon M.; Scanderbeg, Daniel J.; Barna, Patrick; Yashar, William; Yashar, Catheryn

    2012-01-01

    The SAVI and Contura breast brachytherapy applicators represent 2 recent advancements in brachytherapy technology that have expanded the number of women eligible for accelerated partial breast irradiation in the treatment of early-stage breast cancer. Early clinical experience with these 2 single-entry, multichannel high-dose-rate brachytherapy devices confirms their ease of use and dosimetric versatility. However, current clinical guidelines for SAVI and Contura brachytherapy may result in a smaller or less optimal volume of treated tissue compared with traditional interstitial brachytherapy. This study evaluates the feasibility of using the SAVI and Contura to irradiate larger and irregularly shaped target volumes, approaching what is treatable with the interstitial technique. To investigate whether additional tissue can be treated, 17 patients treated with the SAVI and 3 with the Contura were selected. For each patient, the planning target volume (PTV) was modified to extend 1.1 cm, 1.3 cm, and 1.5 cm beyond the tumor bed cavity. To evaluate dose conformance to an irregularly shaped target volume, 9 patients treated with the SAVI and 3 with the Contura were selected from the original 20 patients. The following asymmetric PTV margin combinations were assessed for each patient: 1.5/0.3, 1.3/0.3, and 1.1/0.3 cm. For all patients, treatment planning was performed, adopting the National Surgical Adjuvant Breast and Bowel Project guidelines, and dosimetric comparisons were made. The 6–1 and 8–1 SAVI devices can theoretically treat a maximal tissue margin of 1.5 cm and an asymmetric PTV with margins ranging from 0.3 to 1.5 cm. The 10–1 SAVI and Contura can treat a maximal margin of 1.3 cm and 1.1 cm, respectively, and asymmetric PTV with margins ranging from 0.3–1.3 cm. Compared with the Contura, the SAVI demonstrated greater dosimetric flexibility. Risk of developing excessive hot spots increased with the size of the SAVI device. Both the SAVI and Contura

  18. A model to incorporate organ deformation in the evaluation of dose/volume relationship

    International Nuclear Information System (INIS)

    Yan, D.; Jaffray, D.; Wong, J.; Brabbins, D.; Martinez, A. A.

    1997-01-01

    Purpose: Measurements of internal organ motion have demonstrated that daily organ deformation exists during the course of radiation treatment. However, a model to evaluate the resultant dose delivered to a daily deformed organ remains a difficult challenge. Current methods which model such organ deformation as rigid body motion in the dose calculation for treatment planning evaluation are incorrect and misleading. In this study, a new model for treatment planning evaluation is introduced which incorporates patient specific information of daily organ deformation and setup variation. The model was also used to retrospectively analyze the actual treatment data measured using daily CT scans for 5 patients with prostate treatment. Methods and Materials: The model assumes that for each patient, the organ of interest can be measured during the first few treatment days. First, the volume of each organ is delineated from each of the daily measurements and cumulated in a 3D bit-map. A tissue occupancy distribution is then constructed with the 50% isodensity representing the mean, or effective, organ volume. During the course of treatment, each voxel in the effective organ volume is assumed to move inside a local 3D neighborhood with a specific distribution function. The neighborhood and the distribution function are deduced from the positions and shapes of the organ in the first few measurements using the biomechanics model of viscoelastic body. For each voxel, the local distribution function is then convolved with the spatial dose distribution. The latter includes also the variation in dose due to daily setup error. As a result, the cumulative dose to the voxel incorporates the effects of daily setup variation and organ deformation. A ''variation adjusted'' dose volume histogram, aDVH, for the effective organ volume can then be constructed for the purpose of treatment evaluation and optimization. Up to 20 daily CT scans and daily portal images for 5 patients with prostate

  19. Shape Abnormalities of the Caudate Nucleus Correlate with Poorer Gait and Balance

    DEFF Research Database (Denmark)

    Macfarlane, Matthew D; Looi, Jeffrey C L; Walterfang, Mark

    2015-01-01

    published method and volumes calculated. The relationships between volume and physical performance on the SPPB were investigated with shape analysis using the spherical harmonic shape description toolkit. RESULTS: There was no correlation between the severity of WMHs and striatal volumes. Caudate nuclei...... volume correlated with performance on the SPPB at baseline but not at follow-up, with subsequent shape analysis showing left caudate changes occurred in areas corresponding to inputs of the dorsolateral prefrontal, premotor, and motor cortex. There was no correlation between putamen volumes...

  20. Constitutive model for a stress- and thermal-induced phase transition in a shape memory polymer

    International Nuclear Information System (INIS)

    Guo, Xiaogang; Liu, Liwu; Liu, Yanju; Zhou, Bo; Leng, Jinsong

    2014-01-01

    Recently, increasing applications of shape memory polymers have pushed forward the development of appropriate constitutive models for smart materials such as the shape memory polymer. During the heating process, the phase transition, which is a continuous time-dependent process, happens in the shape memory polymer, and various individual phases will form at different configuration temperatures. In addition, these phases can generally be divided into two parts: the frozen and active phase (Liu Y et al 2006 Int. J. Plast. 22 279–313). During the heating or cooling process, the strain will be stored or released with the occurring phase transition between these two parts. Therefore, a shape memory effect emerges. In this paper, a new type of model was developed to characterize the variation of the volume fraction in a shape memory polymer during the phase transition. In addition to the temperature variation, the applied stress was also taken as a significant influence factor on the phase transition. Based on the experimental results, an exponential equation was proposed to describe the relationship between the stress and phase transition temperature. For the sake of describing the mechanical behaviors of the shape memory polymer, a three-dimensional constitutive model was established. Also, the storage strain, which was the key factor of the shape memory effect, was also discussed in detail. Similar to previous works, we first explored the effect of applied stress on storage strain. Through comparisons with the DMA and the creep experimental results, the rationality and accuracy of the new phase transition and constitutive model were finally verified. (paper)

  1. Updated Methods for Seed Shape Analysis

    Directory of Open Access Journals (Sweden)

    Emilio Cervantes

    2016-01-01

    Full Text Available Morphological variation in seed characters includes differences in seed size and shape. Seed shape is an important trait in plant identification and classification. In addition it has agronomic importance because it reflects genetic, physiological, and ecological components and affects yield, quality, and market price. The use of digital technologies, together with development of quantification and modeling methods, allows a better description of seed shape. Image processing systems are used in the automatic determination of seed size and shape, becoming a basic tool in the study of diversity. Seed shape is determined by a variety of indexes (circularity, roundness, and J index. The comparison of the seed images to a geometrical figure (circle, cardioid, ellipse, ellipsoid, etc. provides a precise quantification of shape. The methods of shape quantification based on these models are useful for an accurate description allowing to compare between genotypes or along developmental phases as well as to establish the level of variation in different sets of seeds.

  2. Patterns of variation and covariation in the shapes of mandibular bones of juvenile salmonids in the genus Oncorhynchus

    Science.gov (United States)

    Watson, Sawyer; Couture, Ryan B.; McKibben, Natasha S.; Nichols, James T.; Richardson, Shannon E.; Noakes, David L. G.

    2016-01-01

    SUMMARY What is the nature of evolutionary divergence of the jaw skeleton within the genus Oncorhynchus? How can two associated bones evolve new shapes and still maintain functional integration? Here, we introduce and test a ‘concordance’ hypothesis, in which an extraordinary matching of the evolutionary shape changes of the dentary and angular articular serves to preserve their fitting together. To test this hypothesis, we examined morphologies of the dentary and angular articular at parr (juvenile) stage, and at three levels of biological organization – between salmon and trout, between sister species within both salmon and trout, and among three types differing in life histories within one species, O. mykiss. The comparisons show bone shape divergences among the groups at each level; morphological divergence between salmon and trout is marked even at this relatively early life history stage. We observed substantial matching between the two mandibular bones in both pattern and amount of shape variation, and in shape covariation across species. These findings strongly support the concordance hypothesis, and reflect functional and/or developmental constraint on morphological evolution. We present evidence for developmental modularity within both bones. The locations of module boundaries were predicted from the patterns of evolutionary divergences, and for the dentary, at least, would appear to facilitate its functional association with the angular articular. The modularity results suggest that development has biased the course of evolution. PMID:26372063

  3. [Hospital variation in anastomotic leakage after rectal cancer surgery in the Spanish Association of Surgeons project: The contribution of hospital volume].

    Science.gov (United States)

    Ortiz, Héctor; Biondo, Sebastiano; Codina, Antonio; Ciga, Miguel Á; Enríquez-Navascués, José; Espín, Eloy; García-Granero, Eduardo; Roig, José Vicente

    2016-04-01

    This multicentre observational study aimed to determine the anastomotic leak rate in the hospitals included in the Rectal Cancer Project of the Spanish Society of Surgeons and examine whether hospital volume may contribute to any variation between hospitals. Hospital variation was quantified using a multilevel approach on prospective data derived from the multicentre database of all adenocarcinomas of the rectum operated by an anterior resection at 84 surgical departments from 2006 to 2013. The following variables were included in the analysis; demographics, American Society of Anaesthesiologists classification, use of defunctioning stoma, tumour location and stage, administration of neoadjuvant treatment, and annual volume of elective surgical procedures. A total of 7231 consecutive patients were included. The rate of anastomotic leak was 10.0%. Stratified by annual surgical volume hospitals varied from 9.9 to 11.3%. In multilevel regression analysis, the risk of anastomotic leak increased in male patients, in patients with tumours located below 12 cm from the anal verge, and advanced tumour stages. However, a defunctioning stoma seemed to prevent this complication. Hospital surgical volume was not associated with anastomotic leak (OR: 0.852, [0.487-1.518]; P=.577). Furthermore, there was a statistically significant variation in anastomotic leak between all departments (MOR: 1.475; [1.321-1.681]; P<0.001). Anastomotic leak varies significantly among hospitals included in the project and this difference cannot be attributed to the annual surgical volume. Copyright © 2015 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Variation in Results of Volume Measurements of Stumps of Lower-Limb Amputees : A Comparison of 4 Methods

    NARCIS (Netherlands)

    de Boer-Wilzing, Vera G.; Bolt, Arjen; Geertzen, Jan H.; Emmelot, Cornelis H.; Baars, Erwin C.; Dijkstra, Pieter U.

    de Boer-Wilzing VG, Bolt A, Geertzen JH, Emmelot CH, Baars EC, Dijkstra PU. Variation in results of volume measurements of stumps of lower-limb amputees: a comparison of 4 methods. Arch Phys Med Rehabil 2011;92:941-6. Objective: To analyze the reliability of 4 methods (water immersion,

  5. Geographic body size and shape variation in a mainland anolis (Squamata: Dactyloidae) from northwestern South America (Colombia)

    International Nuclear Information System (INIS)

    Calderon Espinosa, Martha L; Barragan Contreras, Leidy Alejandra

    2014-01-01

    Anolis auratus is a widely distributed species, from Costa Rica in Central America, through northern South America, including Colombia, Venezuela, northern Brazil, Surinam and the Guyanas. In Colombia, its widespread distribution across different life zones suggests that these lizards occupy different environments and exhibit different microhabitat use in different geographic areas. On the other hand, some observations suggest that this species prefers open areas, selecting grasslands over brushy areas, and thus, an alternative hypothesis is that microhabitat use is similar among different populations. In Anolis, body variables related to locomotion (body size and shape) defines structural microhabitat use, so two distinct patterns could be expected in this species: Conservative or highly variable body size and shape throughout the species distribution. To test these predictions, we characterized geographic variation in morphometric traits of this species in Colombia. Females and males were similar in body size, but exhibited differences in some variables related to body shape. These characteristics also varied among males and females from different regions, suggesting heterogeneous use of structural microhabitat, between sexes and among populations. As an alternative, phylogenetic divergence among populations could also account for the observed differences. Absence of ecological and phylogenetic data limits our ability to identify the underlying causes of this pattern. However, we provide a general framework to explore hypotheses about evolution of body size and shape in this species.

  6. Adjusting shape-memory properties of amorphous polyether urethanes and radio-opaque composites thereof by variation of physical parameters during programming

    International Nuclear Information System (INIS)

    Cui, J; Kratz, K; Lendlein, A

    2010-01-01

    Various composites have been prepared to improve the mechanical properties of shape-memory polymers (SMPs) or to incorporate new functionalities (e.g. magneto-sensitivity) in polymer matrices. In this paper, we systematically investigated the influence of the programming temperature T prog and the applied strain ε m as parameters of the shape-memory creation procedure (SMCP) on the shape-memory properties of an amorphous polyether urethane and radio-opaque composites thereof. Recovery under stress-free conditions was quantified by the shape recovery rate R r and the switching temperature T sw , while the maximum recovery stress σ max was determined at the characteristic temperature T σ,max under constant strain conditions. Excellent shape-memory properties were achieved in all experiments with R r values in between 80 and 98%. σ max could be tailored from 0.4 to 3.7 MPa. T sw and T σ,max could be systematically adjusted from 33 to 71 °C by variation of T prog for each investigated sample. The investigated radio-opaque shape-memory composites will form the material basis for mechanically active scaffolds, which could serve as an intelligent substitute for the extracellular matrix to study the influence of mechanical stimulation of tissue development

  7. Limitations of the planning organ at risk volume (PRV) concept.

    Science.gov (United States)

    Stroom, Joep C; Heijmen, Ben J M

    2006-09-01

    Previously, we determined a planning target volume (PTV) margin recipe for geometrical errors in radiotherapy equal to M(T) = 2 Sigma + 0.7 sigma, with Sigma and sigma standard deviations describing systematic and random errors, respectively. In this paper, we investigated margins for organs at risk (OAR), yielding the so-called planning organ at risk volume (PRV). For critical organs with a maximum dose (D(max)) constraint, we calculated margins such that D(max) in the PRV is equal to the motion averaged D(max) in the (moving) clinical target volume (CTV). We studied margins for the spinal cord in 10 head-and-neck cases and 10 lung cases, each with two different clinical plans. For critical organs with a dose-volume constraint, we also investigated whether a margin recipe was feasible. For the 20 spinal cords considered, the average margin recipe found was: M(R) = 1.6 Sigma + 0.2 sigma with variations for systematic and random errors of 1.2 Sigma to 1.8 Sigma and -0.2 sigma to 0.6 sigma, respectively. The variations were due to differences in shape and position of the dose distributions with respect to the cords. The recipe also depended significantly on the volume definition of D(max). For critical organs with a dose-volume constraint, the PRV concept appears even less useful because a margin around, e.g., the rectum changes the volume in such a manner that dose-volume constraints stop making sense. The concept of PRV for planning of radiotherapy is of limited use. Therefore, alternative ways should be developed to include geometric uncertainties of OARs in radiotherapy planning.

  8. Automatic shape model building based on principal geodesic analysis bootstrapping

    DEFF Research Database (Denmark)

    Dam, Erik B; Fletcher, P Thomas; Pizer, Stephen M

    2008-01-01

    iteration are used. Thereby, we gradually capture the shape variation in the training collection better and better. Convergence of the method is explicitly enforced. The method is evaluated on collections of artificial training shapes where the expected shape mean and modes of variation are known by design...

  9. Billiards in L-shaped tables with barriers

    DEFF Research Database (Denmark)

    Bainbridge, Matthew

    2010-01-01

    We compute the volumes of the eigenform loci in the moduli space of genus-two Abelian differentials. From this, we obtain asymptotic formulas for counting closed billiards paths in certain L-shaped polygons with barriers.......We compute the volumes of the eigenform loci in the moduli space of genus-two Abelian differentials. From this, we obtain asymptotic formulas for counting closed billiards paths in certain L-shaped polygons with barriers....

  10. Formation of D- and I-shaped geochemical profiles in saucer-shaped sills due to post- emplacement magma flow induced by thermal stresses

    Science.gov (United States)

    Aarnes, I.; Podladchikov, Y. Y.; Neumann, E.

    2007-12-01

    There are still unresolved problems in the processes of emplacement and crystallization of saucer shaped sill intrusions. We use geochemistry and numerical modelling in order to constrain identify processes in mafic sill intrusions. Profiles sampled through through a saucer-shaped sill complex in the Karoo igneous province, South Africa show a variety of geochemical variations. Some variations are observed repeatedly, i.e. the D- and I-shaped profiles. D-shaped profiles are recognized by having the least evolved composition in the center (high Mg#) with more evolved composition at the upper and lower margins (low Mg#), resulting in a D-shaped Mg# profile. I- shaped profiles are recognized by having no variation in the Mg# through the profile. The formation mechanism of D-shaped profiles is enigmatic, as classical fractional crystallization theory predicts C-shapes to occur. The least evolved composition will be at the margins where crystallization initiates, and with continued cooling and crystallization the center will be progressively more evolved. Hence, we need another formation mechanism. The most common explanation for D-shaped profiles is a movement of early formed phenocrysts towards the center due to flow segregation. However, petrographical evidences from a D-shaped profile in this study show no phenocryst assemblage in the center, and the modal composition is homogeneous through the profile. We propose that differentiation is caused by a melt flow from the central parts of the sill towards the margins driven by underpressure anomalies at the margins. The underpressures develop because of strong cooling gradients at the margins, assuming no volume change due to a rigid crystal network. The less compatible elements associated with the melt phase will be transported into the margins by advection, resulting in a more evolved total system composition from a higher total melt percentage. The central parts will progressively be depleted in the less compatible

  11. A three-dimensional geometric morphometrics view of the cranial shape variation and population history in the New World.

    Science.gov (United States)

    Galland, Manon; Friess, Martin

    2016-09-10

    Craniofacial variation in past and present Amerindians has been attributed to the effect of multiple founder events, or to one major migration followed by in situ differentiation and possibly recurrent contacts among Circum-Arctic groups. Our study aims to: (i) detect morphological differences that may indicate several migrations; (ii) test for the presence of genetic isolation; and (iii) test the correlation between shape data and competing settlement hypotheses by taking into account geography, chronology, climate effects, the presence of genetic isolation and recurrent gene flow. We analyzed a large sample of three-dimensional (3D) cranial surface scans (803 specimens) including past and modern groups from America and Australasia. Shape variation was investigated using geometric morphometrics. Differential external gene flow was evaluated by applying genetic concepts to morphometric data (Relethford-Blangero approach). Settlement hypotheses were tested using a matrix correlation approach (Mantel tests). Our results highlight the strong dichotomy between Circum-Arctic and continental Amerindians as well as the impact of climate adaptation, and possibly recurrent gene flow in the Circum-Arctic area. There is also evidence for the impact of genetic isolation on phenetic variation in Baja California. Several settlement hypotheses are correlated with our data. The three approaches used in this study highlight the importance of local processes especially in Baja California, and caution against the use of overly simplistic models when searching for the number of migration events. The results stress the complexity of the settlement of the Americas as well as the mosaic nature of the processes involved in this process. Am. J. Hum. Biol. 28:646-661, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Macrophytes shape trophic niche variation among generalist fishes.

    Directory of Open Access Journals (Sweden)

    Ivana Vejříková

    Full Text Available Generalist species commonly have a fundamental role in ecosystems as they can integrate spatially distinct habitats and food-web compartments, as well as control the composition, abundance and behavior of organisms at different trophic levels. Generalist populations typically consist of specialized individuals, but the potential for and hence degree of individual niche variation can be largely determined by habitat complexity. We compared individual niche variation within three generalist fishes between two comparable lakes in the Czech Republic differing in macrophyte cover, i.e. macrophyte-rich Milada and macrophyte-poor Most. We tested the hypothesis that large individual niche variation among generalist fishes is facilitated by the presence of macrophytes, which provides niches and predation shelter for fish and their prey items. Based on results from stable nitrogen (δ15N and carbon (δ13C isotopic mixing models, perch (Perca fluviatilis L. and rudd (Scardinius erythrophthalmus (L. showed larger individual variation (i.e., variance in trophic position in Milada as compared to Most, whereas no significant between-lake differences were observed for roach (Rutilus rutilus (L.. Contrary to our hypothesis, all the three species showed significantly lower individual variation in the relative reliance on littoral food resources in Milada than in Most. Rudd relied significantly more whereas perch and roach relied less on littoral food resources in Milada than in Most, likely due to prevalent herbivory by rudd and prevalent zooplanktivory by perch and roach in the macrophyte-rich Milada as compared to macrophyte-poor Most. Our study demonstrates how the succession of macrophyte vegetation, via its effects on the physical and biological complexity of the littoral zone and on the availability of small prey fish and zooplankton, can strongly influence individual niche variation among generalist fishes with different ontogenetic trajectories, and hence

  13. Macrophytes shape trophic niche variation among generalist fishes

    Science.gov (United States)

    Vejřík, Lukáš; Šmejkal, Marek; Čech, Martin; Sajdlová, Zuzana; Frouzová, Jaroslava; Kiljunen, Mikko; Peterka, Jiří

    2017-01-01

    Generalist species commonly have a fundamental role in ecosystems as they can integrate spatially distinct habitats and food-web compartments, as well as control the composition, abundance and behavior of organisms at different trophic levels. Generalist populations typically consist of specialized individuals, but the potential for and hence degree of individual niche variation can be largely determined by habitat complexity. We compared individual niche variation within three generalist fishes between two comparable lakes in the Czech Republic differing in macrophyte cover, i.e. macrophyte-rich Milada and macrophyte-poor Most. We tested the hypothesis that large individual niche variation among generalist fishes is facilitated by the presence of macrophytes, which provides niches and predation shelter for fish and their prey items. Based on results from stable nitrogen (δ15N) and carbon (δ13C) isotopic mixing models, perch (Perca fluviatilis L.) and rudd (Scardinius erythrophthalmus (L.)) showed larger individual variation (i.e., variance) in trophic position in Milada as compared to Most, whereas no significant between-lake differences were observed for roach (Rutilus rutilus (L.)). Contrary to our hypothesis, all the three species showed significantly lower individual variation in the relative reliance on littoral food resources in Milada than in Most. Rudd relied significantly more whereas perch and roach relied less on littoral food resources in Milada than in Most, likely due to prevalent herbivory by rudd and prevalent zooplanktivory by perch and roach in the macrophyte-rich Milada as compared to macrophyte-poor Most. Our study demonstrates how the succession of macrophyte vegetation, via its effects on the physical and biological complexity of the littoral zone and on the availability of small prey fish and zooplankton, can strongly influence individual niche variation among generalist fishes with different ontogenetic trajectories, and hence the overall

  14. Phase volume fractions and strain measurements in an ultrafine-grained NiTi shape-memory alloy during tensile loading

    International Nuclear Information System (INIS)

    Young, M.L.; Wagner, M.F.-X.; Frenzel, J.; Schmahl, W.W.; Eggeler, G.

    2010-01-01

    An ultrafine-grained pseudoelastic NiTi shape-memory alloy wire with 50.9 at.% Ni was examined using synchrotron X-ray diffraction during in situ uniaxial tensile loading (up to 1 GPa) and unloading. Both macroscopic stress-strain measurements and volume-averaged lattice strains are reported and discussed. The loading behavior is described in terms of elasto-plastic deformation of austenite, emergence of R phase, stress-induced martensitic transformation, and elasto-plastic deformation, grain reorientation and detwinning of martensite. The unloading behavior is described in terms of stress relaxation and reverse plasticity of martensite, reverse transformation of martensite to austenite due to stress relaxation, and stress relaxation of austenite. Microscopically, lattice strains in various crystallographic directions in the austenitic B2, martensitic R, and martensitic B19' phases are examined during loading and unloading. It is shown that the phase transformation occurs in a localized manner along the gage length at the plateau stress. Phase volume fractions and lattice strains in various crystallographic reflections in the austenite and martensite phases are examined over two transition regions between austenite and martensite, which have a width on the order of the wire diameter. Anisotropic effects observed in various crystallographic reflections of the austenitic phase are also discussed. The results contribute to a better understanding of the tensile loading behavior, both macroscopically and microscopically, of NiTi shape-memory alloys.

  15. Adaptive evolution of plastron shape in emydine turtles.

    Science.gov (United States)

    Angielczyk, Kenneth D; Feldman, Chris R; Miller, Gretchen R

    2011-02-01

    Morphology reflects ecological pressures, phylogeny, and genetic and biophysical constraints. Disentangling their influence is fundamental to understanding selection and trait evolution. Here, we assess the contributions of function, phylogeny, and habitat to patterns of plastron (ventral shell) shape variation in emydine turtles. We quantify shape variation using geometric morphometrics, and determine the influence of several variables on shape using path analysis. Factors influencing plastron shape variation are similar between emydine turtles and the more inclusive Testudinoidea. We evaluate the fit of various evolutionary models to the shape data to investigate the selective landscape responsible for the observed morphological patterns. The presence of a hinge on the plastron accounts for most morphological variance, but phylogeny and habitat also correlate with shape. The distribution of shape variance across emydine phylogeny is most consistent with an evolutionary model containing two adaptive zones--one for turtles with kinetic plastra, and one for turtles with rigid plastra. Models with more complex adaptive landscapes often fit the data only as well as the null model (purely stochastic evolution). The adaptive landscape of plastron shape in Emydinae may be relatively simple because plastral kinesis imposes overriding mechanical constraints on the evolution of form. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  16. From global to local statistical shape priors novel methods to obtain accurate reconstruction results with a limited amount of training shapes

    CERN Document Server

    Last, Carsten

    2017-01-01

    This book proposes a new approach to handle the problem of limited training data. Common approaches to cope with this problem are to model the shape variability independently across predefined segments or to allow artificial shape variations that cannot be explained through the training data, both of which have their drawbacks. The approach presented uses a local shape prior in each element of the underlying data domain and couples all local shape priors via smoothness constraints. The book provides a sound mathematical foundation in order to embed this new shape prior formulation into the well-known variational image segmentation framework. The new segmentation approach so obtained allows accurate reconstruction of even complex object classes with only a few training shapes at hand.

  17. variations in dimensions and shape of thoracic cage with aging

    African Journals Online (AJOL)

    the rib cage dimensions, the shape and cross- ..... Figure 6: CT axial section of thorax, showing the internal thoracic dimensions and shape at different age .... Dean J, Koehler R, Schleien C, Michael J, Chantarojanasiri T, Rogers M, Traystman ...

  18. Shape analysis in medical image analysis

    CERN Document Server

    Tavares, João

    2014-01-01

    This book contains thirteen contributions from invited experts of international recognition addressing important issues in shape analysis in medical image analysis, including techniques for image segmentation, registration, modelling and classification, and applications in biology, as well as in cardiac, brain, spine, chest, lung and clinical practice. This volume treats topics such as, anatomic and functional shape representation and matching; shape-based medical image segmentation; shape registration; statistical shape analysis; shape deformation; shape-based abnormity detection; shape tracking and longitudinal shape analysis; machine learning for shape modeling and analysis; shape-based computer-aided-diagnosis; shape-based medical navigation; benchmark and validation of shape representation, analysis and modeling algorithms. This work will be of interest to researchers, students, and manufacturers in the fields of artificial intelligence, bioengineering, biomechanics, computational mechanics, computationa...

  19. Variational methods for crystalline microstructure analysis and computation

    CERN Document Server

    Dolzmann, Georg

    2003-01-01

    Phase transformations in solids typically lead to surprising mechanical behaviour with far reaching technological applications. The mathematical modeling of these transformations in the late 80s initiated a new field of research in applied mathematics, often referred to as mathematical materials science, with deep connections to the calculus of variations and the theory of partial differential equations. This volume gives a brief introduction to the essential physical background, in particular for shape memory alloys and a special class of polymers (nematic elastomers). Then the underlying mathematical concepts are presented with a strong emphasis on the importance of quasiconvex hulls of sets for experiments, analytical approaches, and numerical simulations.

  20. Adjustable mounting device for high-volume production of beam-shaping systems for high-power diode lasers

    Science.gov (United States)

    Haag, Sebastian; Bernhardt, Henning; Rübenach, Olaf; Haverkamp, Tobias; Müller, Tobias; Zontar, Daniel; Brecher, Christian

    2015-02-01

    In many applications for high-power diode lasers, the production of beam-shaping and homogenizing optical systems experience rising volumes and dynamical market demands. The automation of assembly processes on flexible and reconfigurable machines can contribute to a more responsive and scalable production. The paper presents a flexible mounting device designed for the challenging assembly of side-tab based optical systems. It provides design elements for precisely referencing and fixating two optical elements in a well-defined geometric relation. Side tabs are presented to the machine allowing the application of glue and a rotating mechanism allows the attachment to the optical elements. The device can be adjusted to fit different form factors and it can be used in high-volume assembly machines. The paper shows the utilization of the device for a collimation module consisting of a fast-axis and a slow-axis collimation lens. Results regarding the repeatability and process capability of bonding side tab assemblies as well as estimates from 3D simulation for overall performance indicators achieved such as cycle time and throughput will be discussed.

  1. Do Muscles Constrain Skull Shape Evolution in Strepsirrhines?

    Science.gov (United States)

    Fabre, Anne-Claire; Perry, Jonathan M G; Hartstone-Rose, Adam; Lowie, AuróLien; Boens, Andy; Dumont, MaÏtena

    2018-02-01

    Despite great interest and decades of research, the musculoskeletal relationships of the masticatory system in primates are still not fully understood. However, without a clear understanding of the interplay between muscles and bones it remains difficult to understand the functional significance of morphological traits of the skeleton. Here, we aim to study the impacts of the masticatory muscles on the shape of the cranium and the mandible as well as their co-variation in strepsirrhine primates. To do so, we use 3D geometric morphometric approaches to assess the shape of each bone of the skull of 20 species for which muscle data are available in the literature. Impacts of the masticatory muscles on the skull shape were assessed using non-phylogenetic regressions and phylogenetic regressions whereas co-variations were assessed using two-blocks partial least square (2B-PLS) and phylogenetic 2B-PLS. Our results show that there is a phylogenetic signal for skull shape and masticatory muscles. They also show that there is a significant impact of the masticatory muscles on cranial shape but not as much as on the mandible. The co-variations are also stronger between the masticatory muscles and cranial shape even when taking into account phylogeny. Interestingly, the results of co-variation between the masticatory muscles and mandibular shape show a more complex pattern in two different directions to get strong muscles associated with mandibular shape: a folivore way (with the bamboo lemurs and sifakas) and a hard-object eater one (with the aye-aye). Anat Rec, 301:291-310, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  2. Interspecific variation of ontogeny and skull shape among porpoises (Phocoenidae).

    Science.gov (United States)

    Galatius, Anders; Berta, Annalisa; Frandsen, Marie Schou; Goodall, R Natalie P

    2011-02-01

    All extant members of Phocoenidae (porpoises) have been characterized as pedomorphic based on skeletal characters. To investigate the ontogenetic background for pedomorphosis and assess interspecific differences in ontogeny among phocoenids, samples of the six extant species were compared in terms of development of both epiphyseal and cranial suture fusion. Across all species, full maturity of the vertebral column was rare. Vertebral epiphyseal development did not progress so far in most Phocoena phocoena as in Phocoenoides dalli and Phocoena dioptrica. P. phocoena, Phocoena spinipinnis, Ph. dalli, and P. dioptrica, for which large series were available, were further compared in terms of ontogeny of cranial shape by three-dimensional geometric morphometrics. Ph. dalli and P. dioptrica generally showed further development of cranial sutures than the other species. Postnatal skull shape development was similar for all species studied; the majority of interspecific shape differences are present at parturition. Smaller species had a higher rate of shape development relative to growth in size than Ph. dalli and P. dioptrica, but they still showed less allometric development due to less postnatal growth. Interspecific shape differences indicate phylogenetic relationships similar to that proposed based on morphology or convergent evolution of the two pelagic species, Ph. dalli and P. dioptrica, under the scenarios suggested by recent molecular studies. A shape trend coinciding with habitat preference was detected; in species with pelagic preference the position and orientation of the foramen magnum aligned the skull with the vertebral column; the rostrum showed less ventral inclination, and the facial region was larger and more concave in lateral aspect. Copyright © 2010 Wiley-Liss, Inc.

  3. Non-invasive measurements of pulse pressure variation and stroke volume variation in anesthetized patients using the Nexfin blood pressure monitor.

    Science.gov (United States)

    Stens, Jurre; Oeben, Jeroen; Van Dusseldorp, Ab A; Boer, Christa

    2016-10-01

    Nexfin beat-to-beat arterial blood pressure monitoring enables continuous assessment of hemodynamic indices like cardiac index (CI), pulse pressure variation (PPV) and stroke volume variation (SVV) in the perioperative setting. In this study we investigated whether Nexfin adequately reflects alterations in these hemodynamic parameters during a provoked fluid shift in anesthetized and mechanically ventilated patients. The study included 54 patients undergoing non-thoracic surgery with positive pressure mechanical ventilation. The provoked fluid shift comprised 15° Trendelenburg positioning, and fluid responsiveness was defined as a concomitant increase in stroke volume (SV) >10 %. Nexfin blood pressure measurements were performed during supine steady state, Trendelenburg and supine repositioning. Hemodynamic parameters included arterial blood pressure (MAP), CI, PPV and SVV. Trendelenburg positioning did not affect MAP or CI, but induced a decrease in PPV and SVV by 3.3 ± 2.8 and 3.4 ± 2.7 %, respectively. PPV and SVV returned back to baseline values after repositioning of the patient to baseline. Bland-Altman analysis of SVV and PPV showed a bias of -0.3 ± 3.0 % with limits of agreement ranging from -5.6 to 6.2 %. The SVV was more superior in predicting fluid responsiveness (AUC 0.728) than the PVV (AUC 0.636), respectively. The median bias between PPV and SVV was different for patients younger [-1.5 % (-3 to 0)] or older [+2 % (0-4.75)] than 55 years (P < 0.001), while there were no gender differences in the bias between PPV and SVV. The Nexfin monitor adequately reflects alterations in PPV and SVV during a provoked fluid shift, but the level of agreement between PPV and SVV was low. The SVV tended to be superior over PPV or Eadyn in predicting fluid responsiveness in our population.

  4. Changes in prostate shape and volume and their implications for radiotherapy after introduction of endorectal balloon as determined by MRI at 3T.

    NARCIS (Netherlands)

    Heijmink, S.W.T.P.J.; Scheenen, T.W.J.; Lin, E.N.J.T. van; Visser, A.G.; Kiemeney, L.A.L.M.; Witjes, J.A.; Barentsz, J.O.

    2009-01-01

    PURPOSE: To determine the changes in prostate shape and volume after the introduction of an endorectal coil (ERC) by means of magnetic resonance imaging (MRI) at 3T. METHODS AND MATERIALS: A total of 44 consecutive patients with biopsy-proven prostate cancer underwent separate MRI examinations at 3T

  5. Size and shape in Melipona quadrifasciata anthidioides Lepeletier, 1836 (Hymenoptera; Meliponini

    Directory of Open Access Journals (Sweden)

    LA Nunes

    Full Text Available This study aimed to identify differences in wing shape among populations of Melipona quadrifasciata anthidioides obtained in 23 locations in the semi-arid region of Bahia state (Brazil. Analysis of the Procrustes distances among mean wing shapes indicated that population structure did not determine shape variation. Instead, populations were structured geographically according to wing size. The Partial Mantel Test between morphometric (shape and size distance matrices and altitude, taking geographic distances into account, was used for a more detailed understanding of size and shape determinants. A partial Mantel test between morphometris (shape and size variation and altitude, taking geographic distances into account, revealed that size (but not shape is largely influenced by altitude (r = 0.54 p < 0.01. These results indicate greater evolutionary constraints for the shape variation, which must be directly associated with aerodynamic issues in this structure. The size, however, indicates that the bees tend to have larger wings in populations located at higher altitudes.

  6. Size and shape in Melipona quadrifasciata anthidioides Lepeletier, 1836 (Hymenoptera; Meliponini).

    Science.gov (United States)

    Nunes, L A; Passos, G B; Carvalho, C A L; Araújo, E D

    2013-11-01

    This study aimed to identify differences in wing shape among populations of Melipona quadrifasciata anthidioides obtained in 23 locations in the semi-arid region of Bahia state (Brazil). Analysis of the Procrustes distances among mean wing shapes indicated that population structure did not determine shape variation. Instead, populations were structured geographically according to wing size. The Partial Mantel Test between morphometric (shape and size) distance matrices and altitude, taking geographic distances into account, was used for a more detailed understanding of size and shape determinants. A partial Mantel test between morphometris (shape and size) variation and altitude, taking geographic distances into account, revealed that size (but not shape) is largely influenced by altitude (r = 0.54 p < 0.01). These results indicate greater evolutionary constraints for the shape variation, which must be directly associated with aerodynamic issues in this structure. The size, however, indicates that the bees tend to have larger wings in populations located at higher altitudes.

  7. Local and latitudinal variation in abundance: the mechanisms shaping the distribution of an ecosystem engineer.

    Science.gov (United States)

    Crutsinger, Gregory M; Gonzalez, Angélica L; Crawford, Kerri M; Sanders, Nathan J

    2013-01-01

    Ecological processes that determine the abundance of species within ecological communities vary across space and time. These scale-dependent processes are especially important when they affect key members of a community, such as ecosystem engineers that create shelter and food resources for other species. Yet, few studies have examined the suite of processes that shape the abundance of ecosystem engineers. Here, we evaluated the relative influence of temporal variation, local processes, and latitude on the abundance of an engineering insect-a rosette-galling midge, Rhopalomyia solidaginis (Diptera: Cecidomyiidae). Over a period of 3-5 years, we studied the density and size of galls across a suite of local experiments that manipulated genetic variation, soil nutrient availability, and the removal of other insects from the host plant, Solidago altissima (tall goldenrod). We also surveyed gall density within a single growing season across a 2,300 km latitudinal transect of goldenrod populations in the eastern United States. At the local scale, we found that host-plant genotypic variation was the best predictor of rosette gall density and size within a single year. We found that the removal of other insect herbivores resulted in an increase in gall density and size. The amendment of soil nutrients for four years had no effect on gall density, but galls were smaller in carbon-added plots compared to control and nitrogen additions. Finally, we observed that gall density varied several fold across years. At the biogeographic scale, we observed that the density of rosette gallers peaked at mid-latitudes. Using meta-analytic approaches, we found that the effect size of time, followed by host-plant genetic variation and latitude were the best predictors of gall density. Taken together, our study provides a unique comparison of multiple factors across different spatial and temporal scales that govern engineering insect herbivore density.

  8. TU-C-17A-06: Evaluating IMRT Plan Deliverability Via PTV Shape and MLC Motion

    International Nuclear Information System (INIS)

    McGurk, R; Smith, VA; Price, M

    2014-01-01

    Purpose: For step-and-shoot intensity-modulated radiation therapy (IMRT) plans, the dosimetry and deliverability can be affected by the number and shape of the segments used. Thus, plan deliverability is likely related to target volume and shape. We investigated whether the sphericity of target volumes and the previously proposed Modulation Complexity Score (MCS) could be used together to improve the detection of IMRT fields that failed quality assurance (QA). Methods: 526 and 353 IMRT fields from 32 prostate and 28 head-and-neck (H'N) patients, respectively, were analyzed. MCS was used to quantify the complexity of multi-leaf collimator shapes and motion patterns for each field. Sphericity was calculated using the surface area and volume of each patient’s planning target volume (PTV). Logistic regression models with MCS-alone or MCS and sphericity terms were fit to PlanUNC IMRT pass/fail results (5% dose difference, 4mm distance-to-agreement criteria) using SAS 9.3 (Cary, NC). Model concordance, discordance and area under the curve (AUC) were used to quantify model accuracy. Results: Mean (±1 standard deviation) MCS for prostate and H'N were 0.58(±0.15) and 0.40 (±0.14), respectively. Mean sphericity scores were 0.75(±0.05) for prostate and 0.63 (±0.12) for H'N. Both metrics were significantly different between treatment locations (p<0.01, Wilcoxon Rank Sum Test) indicating greater complexity in shape and variations for H'N PTVs. For prostate, concordance, discordance and AUC using MCS alone were 80.8%, 18.7% and 0.811. Including sphericity in the model improved these to 81.7%, 17.7% and 0.820. For H'N, the original concordance, discordance and AUC were of 72.9%, 26.9% and 0.729. Including sphericity into the model improved these metrics to 76.5%, 23.2% and 0.729. Conclusion: Sphericity provides a quantitative measure of PTV shape. While improvement in IMRT QA failure detection was modest for both prostate and H'N plans

  9. Morphological assessment of the stylohyoid complex variations with cone beam computed tomography in a Turkish population.

    Science.gov (United States)

    Buyuk, C; Gunduz, K; Avsever, H

    2018-01-01

    The aim of this investigation was to evaluate the length, thickness, sagittal and transverse angulations and the morphological variations of the stylohyoid complex (SHC), to assess their probable associations with age and gender, and to investigate the prevalence of it in a wide range of a Turkish sub-population by using cone beam computed tomography (CBCT). The CBCT images of the 1000 patients were evaluated retrospectively. The length, thickness, sagittal and transverse angulations, morphological variations and ossification degrees of SHC were evaluated on multiplanar reconstructions (MPR) adnd three-dimensional (3D) volume rendering (3DVR) images. The data were analysed statistically by using nonparametric tests, Pearson's correlation coefficient, Student's t test, c2 test and one-way ANOVA. Statistical significance was considered at p 35 mm). The mean sagittal angle value was measured to be 72.24° and the mean transverse angle value was 70.81°. Scalariform shape, elongated type and nodular calcification pattern have the highest mean age values between the morphological groups, respectively. Calcified outline was the most prevalent calcification pattern in males. There was no correlation between length and the calcification pattern groups while scalariform shape and pseudoarticular type were the longest variations. We observed that as the anterior sagittal angle gets wider, SHC tends to get longer. The most observed morphological variations were linear shape, elongated type and calcified outline pattern. Detailed studies on the classification will contribute to the literature. (Folia Morphol 2018; 77, 1: 79-89).

  10. Quantitative genetics of plastron shape in slider turtles (Trachemys scripta).

    Science.gov (United States)

    Myers, Erin M; Janzen, Fredric J; Adams, Dean C; Tucker, John K

    2006-03-01

    Shape variation is widespread in nature and embodies both a response to and a source for evolution and natural selection. To detect patterns of shape evolution, one must assess the quantitative genetic underpinnings of shape variation as well as the selective environment that the organisms have experienced. Here we used geometric morphometrics to assess variation in plastron shell shape in 1314 neonatal slider turtles (Trachemys scripta) from 162 clutches of laboratory-incubated eggs from two nesting areas. Multivariate analysis of variance indicated that nesting area has a limited role in describing plastron shape variation among clutches, whereas differences between individual clutches were highly significant, suggesting a prominent clutch effect. The covariation between plastron shape and several possible maternal effect variables (yolk hormone levels and egg dimensions) was assessed for a subset of clutches and found to be negligible. We subsequently employed several recently proposed methods for estimating heritability from shape variables, and generalized a univariate approach to accommodate unequal sample sizes. Univariate estimates of shape heritability based on Procrustes distances yielded large values for both nesting populations (h2 approximately 0.86), and multivariate estimates of maximal additive heritability were also large for both nesting populations (h2max approximately 0.57). We also estimated the dominant trend in heritable shape change for each nesting population and found that the direction of shape evolution was not the same for the two sites. Therefore, although the magnitude of shape evolution was similar between nesting populations, the manner in which plastron shape is evolving is not. We conclude that the univariate approach for assessing quantitative genetic parameters from geometric morphometric data has limited utility, because it is unable to accurately describe how shape is evolving.

  11. Women in Shape Modeling Workshop

    CERN Document Server

    Tari, Sibel

    2015-01-01

    Presenting the latest research from the growing field of mathematical shape analysis, this volume is comprised of the collaborations of participants of the Women in Shape Modeling (WiSh) workshop, held at UCLA's Institute for Pure and Applied Mathematics in July 2013. Topics include: Simultaneous spectral and spatial analysis of shape Dimensionality reduction and visualization of data in tree-spaces, such as classes of anatomical trees like airways and blood vessels Geometric shape segmentation, exploring shape segmentation from a Gestalt perspective, using information from the Blum medial axis of edge fragments in an image Representing and editing self-similar details on 3D shapes, studying shape deformation and editing techniques Several chapters in the book directly address the problem of continuous measures of context-dependent nearness and right shape models. Medical and biological applications have been a major source of motivation in shape research, and key topics are examined here in detail. All...

  12. Quantum Computation with Ultrafast Laser Pulse Shaping

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 6. Quantum Computation with Ultrafast Laser Pulse Shaping. Debabrata Goswami. General Article Volume 10 Issue 6 June 2005 pp 8-14. Fulltext. Click here to view fulltext PDF. Permanent link:

  13. An in situ neutron diffraction study of shape setting shape memory NiTi

    International Nuclear Information System (INIS)

    Benafan, O.; Padula, S.A.; Noebe, R.D.; Brown, D.W.; Clausen, B.; Vaidyanathan, R.

    2013-01-01

    A bulk polycrystalline Ni 49.9 Ti 50.1 (at.%) shape memory alloy specimen was shape set while neutron diffraction spectra were simultaneously acquired. The objective was to correlate internal stress, phase volume fraction, and texture measurements (from neutron diffraction spectra) with the macroscopic stress and shape changes (from load cell and extensometry measurements) during the shape setting procedure and subsequent shape recovery. Experimental results showed the evolution of the martensitic transformation (lattice strains, phase fractions and texture) against external constraints during both heating and cooling. Constrained heating resulted in a build-up of stresses during the martensite to austenite transformation, followed by stress relaxation due to thermal expansion, final conversion of retained martensite, and recovery processes. Constrained cooling also resulted in stress build-up arising from thermal contraction and early formation of martensite, followed by relaxation as the austenite fully transformed to martensite. Comparisons were also made between specimens pre-shape set and post-shape set with and without external constraints. The specimens displayed similar shape memory behavior consistent with the microstructure of the shape set sample, which was mostly unchanged by the shape setting process and similar to that of the as-received material

  14. A Review on Anatomical Variations of Mental Foramen (Number, Location, Shape, Symmetry, Direction and Size

    Directory of Open Access Journals (Sweden)

    F Ezoddini-Ardakani

    2016-02-01

    Full Text Available Mental foramen is located on the anterior aspect of the mandible that permits the terminal branch of the inferior alveolar nerve and blood vessels to exit. The anatomical variations of mental foramen are of considerable importance in local anesthesia, treatment of the fractures in the parasymphysis area, orthognatic surgeries, implant placement, etc. Regarding the importance of mental foramen in dentistry (from local anesthesia to invasive surgical procedures, this study intends to review the anatomical variations of mental foramen in this study. Absence of mental foramen is rare. On the other hand, prevalence of accessory mental foramen has been estimated lower than 15% in the most studies. The position of mental foramen is normally between first and second premolar teeth or under second premolar tooth in different ethnic groups and bilateral symmetry exists in regard with location in most cases. In most studies, the ratio of distance from mental foramen to symphysis to distance from symphysis to posterior border of ramus has been reported about 1/3.5 to 1/3. Mental foramen is oval or circular in shape and its most common direction is usually posterosuperior. Its size in different studies has been estimated about 2 to 5 millimeters and asymmetry in size is possible on both sides of mandible. Due to variations of mental foramen between various ethnic groups and even different individuals in the same ethnic group, using advanced imaging techniques such as CBCT is recommended in order to gain detailed knowledge of anatomy and morphology of mental foramen before applying invasive surgeries.

  15. Stereolithographic volume evaluation of healing and shaping after rhinoplasty operations.

    Science.gov (United States)

    Tatlidede, Soner; Turgut, Gürsel; Gönen, Emre; Kayali, Mahmut Ulvi; Baş, Lütfü

    2009-07-01

    Nasal edema and volume changes are unavoidable processes during the healing period after rhinoplasty. Various applications were reported regarding the prevention of early edema; however, the literature shows no study focused on the course of the nasal edema and volume changes up-to-date. We aimed to study the nasal volume changes during the first year of postoperative healing period and to form a recovery and volume change diagram with the obtained data. We prepared standard frames and nasal molds of 7 rhinoplasty patients at regular time intervals (preoperative period and at the postoperative 1st, 2nd, 4th, 8th, 12th, 24th, and 52nd weeks). Plaster nasal models were created by using these molds. Volumes of models were measured by computed tomographic scanning and three-dimensional image processing programs. According to our results, the nasal edema reaches its maximum level at the postoperative fourth week and then rapidly decreases until its minimum level at the eighth week. In contrast with the general opinion, the nasal volume begins to increase smoothly reaching to a level minimally below the preoperative value by the end of the first year.

  16. Pairwise harmonics for shape analysis

    KAUST Repository

    Zheng, Youyi

    2013-07-01

    This paper introduces a simple yet effective shape analysis mechanism for geometry processing. Unlike traditional shape analysis techniques which compute descriptors per surface point up to certain neighborhoods, we introduce a shape analysis framework in which the descriptors are based on pairs of surface points. Such a pairwise analysis approach leads to a new class of shape descriptors that are more global, discriminative, and can effectively capture the variations in the underlying geometry. Specifically, we introduce new shape descriptors based on the isocurves of harmonic functions whose global maximum and minimum occur at the point pair. We show that these shape descriptors can infer shape structures and consistently lead to simpler and more efficient algorithms than the state-of-the-art methods for three applications: intrinsic reflectional symmetry axis computation, matching shape extremities, and simultaneous surface segmentation and skeletonization. © 2012 IEEE.

  17. Resolving three-dimensional shape of sub-50 nm wide lines with nanometer-scale sensitivity using conventional optical microscopes

    International Nuclear Information System (INIS)

    Attota, Ravikiran; Dixson, Ronald G.

    2014-01-01

    We experimentally demonstrate that the three-dimensional (3-D) shape variations of nanometer-scale objects can be resolved and measured with sub-nanometer scale sensitivity using conventional optical microscopes by analyzing 4-D optical data using the through-focus scanning optical microscopy (TSOM) method. These initial results show that TSOM-determined cross-sectional (3-D) shape differences of 30 nm–40 nm wide lines agree well with critical-dimension atomic force microscope measurements. The TSOM method showed a linewidth uncertainty of 1.22 nm (k = 2). Complex optical simulations are not needed for analysis using the TSOM method, making the process simple, economical, fast, and ideally suited for high volume nanomanufacturing process monitoring.

  18. Complex pattern of variation in neurocranial ontogeny revealed by CT-scanning.

    Science.gov (United States)

    Anzelmo, Marisol; Ventrice, Fernando; Kelmansky, Diana; Sardi, Marina

    2018-05-01

    The neurocranium of hominid species has been largely studied with reference to the midsagittal plane, with variations being attributed to brain evolution. By contrast, there is limited information on variation in non-midsagittal regions, which are the points of insertion of muscles and bony structures related to mastication. This work aims to analyze ontogenetic changes and sexual dimorphism (SD) in midsagittal and non-midsagittal neurocranial structures from a contemporary human sample comprising 138 computed tomography (CT) cranial images of individuals ranging from infants to adults. Morphology of the vault and the base was assessed by registering landmarks and semilandmarks, which were analyzed by geometric morphometrics, and the endocranial volume (EV). The results of regressions and Kruskal-Wallis test indicate that the major size and shape changes in both midsagittal and non-midsagittal regions occur during infancy and juvenility; shape changes are also associated with an increase in EV. The size of the midsagittal vault, the shape of the non-midsagittal vault and the size of the base show an extension of ontogenetic trajectories. Sexes show similar changes in shape but different changes in size. We conclude that brain growth appears to be an important factor influencing the morphology of the neurocranium, at least during infancy and childhood. Subsequent changes may be attributed to osteogenic activity and the differential growth of the brain lobes. Masticatory-related bony structures and muscles may not be strong enough factors to induce independent modifications in non-midsagittal structures. The small influence of the cranial muscles would explain why the human neurocranium is a quite integrated structure.

  19. Influences of excluded volume of molecules on signaling processes on the biomembrane.

    Directory of Open Access Journals (Sweden)

    Masashi Fujii

    Full Text Available We investigate the influences of the excluded volume of molecules on biochemical reaction processes on 2-dimensional surfaces using a model of signal transduction processes on biomembranes. We perform simulations of the 2-dimensional cell-based model, which describes the reactions and diffusion of the receptors, signaling proteins, target proteins, and crowders on the cell membrane. The signaling proteins are activated by receptors, and these activated signaling proteins activate target proteins that bind autonomously from the cytoplasm to the membrane, and unbind from the membrane if activated. If the target proteins bind frequently, the volume fraction of molecules on the membrane becomes so large that the excluded volume of the molecules for the reaction and diffusion dynamics cannot be negligible. We find that such excluded volume effects of the molecules induce non-trivial variations of the signal flow, defined as the activation frequency of target proteins, as follows. With an increase in the binding rate of target proteins, the signal flow varies by i monotonically increasing; ii increasing then decreasing in a bell-shaped curve; or iii increasing, decreasing, then increasing in an S-shaped curve. We further demonstrate that the excluded volume of molecules influences the hierarchical molecular distributions throughout the reaction processes. In particular, when the system exhibits a large signal flow, the signaling proteins tend to surround the receptors to form receptor-signaling protein clusters, and the target proteins tend to become distributed around such clusters. To explain these phenomena, we analyze the stochastic model of the local motions of molecules around the receptor.

  20. Effect of Particle Shape on Mechanical Behaviors of Rocks: A Numerical Study Using Clumped Particle Model

    Science.gov (United States)

    Rong, Guan; Liu, Guang; Zhou, Chuang-bing

    2013-01-01

    Since rocks are aggregates of mineral particles, the effect of mineral microstructure on macroscopic mechanical behaviors of rocks is inneglectable. Rock samples of four different particle shapes are established in this study based on clumped particle model, and a sphericity index is used to quantify particle shape. Model parameters for simulation in PFC are obtained by triaxial compression test of quartz sandstone, and simulation of triaxial compression test is then conducted on four rock samples with different particle shapes. It is seen from the results that stress thresholds of rock samples such as crack initiation stress, crack damage stress, and peak stress decrease with the increasing of the sphericity index. The increase of sphericity leads to a drop of elastic modulus and a rise in Poisson ratio, while the decreasing sphericity usually results in the increase of cohesion and internal friction angle. Based on volume change of rock samples during simulation of triaxial compression test, variation of dilation angle with plastic strain is also studied. PMID:23997677

  1. Effect of particle shape on mechanical behaviors of rocks: a numerical study using clumped particle model.

    Science.gov (United States)

    Rong, Guan; Liu, Guang; Hou, Di; Zhou, Chuang-Bing

    2013-01-01

    Since rocks are aggregates of mineral particles, the effect of mineral microstructure on macroscopic mechanical behaviors of rocks is inneglectable. Rock samples of four different particle shapes are established in this study based on clumped particle model, and a sphericity index is used to quantify particle shape. Model parameters for simulation in PFC are obtained by triaxial compression test of quartz sandstone, and simulation of triaxial compression test is then conducted on four rock samples with different particle shapes. It is seen from the results that stress thresholds of rock samples such as crack initiation stress, crack damage stress, and peak stress decrease with the increasing of the sphericity index. The increase of sphericity leads to a drop of elastic modulus and a rise in Poisson ratio, while the decreasing sphericity usually results in the increase of cohesion and internal friction angle. Based on volume change of rock samples during simulation of triaxial compression test, variation of dilation angle with plastic strain is also studied.

  2. Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors.

    Directory of Open Access Journals (Sweden)

    Farzad Tahmasbi

    Full Text Available This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed.

  3. Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors

    Science.gov (United States)

    Tahmasbi, Farzad; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.; Tahir, M. M.

    2016-01-01

    This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed. PMID:27478894

  4. Quantitative analysis of fetal facial morphology using 3D ultrasound and statistical shape modeling: a feasibility study.

    Science.gov (United States)

    Dall'Asta, Andrea; Schievano, Silvia; Bruse, Jan L; Paramasivam, Gowrishankar; Kaihura, Christine Tita; Dunaway, David; Lees, Christoph C

    2017-07-01

    The antenatal detection of facial dysmorphism using 3-dimensional ultrasound may raise the suspicion of an underlying genetic condition but infrequently leads to a definitive antenatal diagnosis. Despite advances in array and noninvasive prenatal testing, not all genetic conditions can be ascertained from such testing. The aim of this study was to investigate the feasibility of quantitative assessment of fetal face features using prenatal 3-dimensional ultrasound volumes and statistical shape modeling. STUDY DESIGN: Thirteen normal and 7 abnormal stored 3-dimensional ultrasound fetal face volumes were analyzed, at a median gestation of 29 +4  weeks (25 +0 to 36 +1 ). The 20 3-dimensional surface meshes generated were aligned and served as input for a statistical shape model, which computed the mean 3-dimensional face shape and 3-dimensional shape variations using principal component analysis. Ten shape modes explained more than 90% of the total shape variability in the population. While the first mode accounted for overall size differences, the second highlighted shape feature changes from an overall proportionate toward a more asymmetric face shape with a wide prominent forehead and an undersized, posteriorly positioned chin. Analysis of the Mahalanobis distance in principal component analysis shape space suggested differences between normal and abnormal fetuses (median and interquartile range distance values, 7.31 ± 5.54 for the normal group vs 13.27 ± 9.82 for the abnormal group) (P = .056). This feasibility study demonstrates that objective characterization and quantification of fetal facial morphology is possible from 3-dimensional ultrasound. This technique has the potential to assist in utero diagnosis, particularly of rare conditions in which facial dysmorphology is a feature. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Wave energy devices with compressible volumes.

    Science.gov (United States)

    Kurniawan, Adi; Greaves, Deborah; Chaplin, John

    2014-12-08

    We present an analysis of wave energy devices with air-filled compressible submerged volumes, where variability of volume is achieved by means of a horizontal surface free to move up and down relative to the body. An analysis of bodies without power take-off (PTO) systems is first presented to demonstrate the positive effects a compressible volume could have on the body response. Subsequently, two compressible device variations are analysed. In the first variation, the compressible volume is connected to a fixed volume via an air turbine for PTO. In the second variation, a water column separates the compressible volume from another volume, which is fitted with an air turbine open to the atmosphere. Both floating and bottom-fixed, axisymmetric, configurations are considered, and linear analysis is employed throughout. Advantages and disadvantages of each device are examined in detail. Some configurations with displaced volumes less than 2000 m 3 and with constant turbine coefficients are shown to be capable of achieving 80% of the theoretical maximum absorbed power over a wave period range of about 4 s.

  6. Hominid mandibular corpus shape variation and its utility for recognizing species diversity within fossil Homo.

    Science.gov (United States)

    Lague, Michael R; Collard, Nicole J; Richmond, Brian G; Wood, Bernard A

    2008-12-01

    Mandibular corpora are well represented in the hominin fossil record, yet few studies have rigorously assessed the utility of mandibular corpus morphology for species recognition, particularly with respect to the linear dimensions that are most commonly available. In this study, we explored the extent to which commonly preserved mandibular corpus morphology can be used to: (i) discriminate among extant hominid taxa and (ii) support species designations among fossil specimens assigned to the genus Homo. In the first part of the study, discriminant analysis was used to test for significant differences in mandibular corpus shape at different taxonomic levels (genus, species and subspecies) among extant hominid taxa (i.e. Homo, Pan, Gorilla, Pongo). In the second part of the study, we examined shape variation among fossil mandibles assigned to Homo (including H. habilis sensu stricto, H. rudolfensis, early African H. erectus/H. ergaster, late African H. erectus, Asian H. erectus, H. heidelbergensis, H. neanderthalensis and H. sapiens). A novel randomization procedure designed for small samples (and using group 'distinctness values') was used to determine whether shape variation among the fossils is consistent with conventional taxonomy (or alternatively, whether a priori taxonomic groupings are completely random with respect to mandibular morphology). The randomization of 'distinctness values' was also used on the extant samples to assess the ability of the test to recognize known taxa. The discriminant analysis results demonstrated that, even for a relatively modest set of traditional mandibular corpus measurements, we can detect significant differences among extant hominids at the genus and species levels, and, in some cases, also at the subspecies level. Although the randomization of 'distinctness values' test is more conservative than discriminant analysis (based on comparisons with extant specimens), we were able to detect at least four distinct groups among the

  7. Hominid mandibular corpus shape variation and its utility for recognizing species diversity within fossil Homo

    Science.gov (United States)

    Lague, Michael R; Collard, Nicole J; Richmond, Brian G; Wood, Bernard A

    2008-01-01

    Mandibular corpora are well represented in the hominin fossil record, yet few studies have rigorously assessed the utility of mandibular corpus morphology for species recognition, particularly with respect to the linear dimensions that are most commonly available. In this study, we explored the extent to which commonly preserved mandibular corpus morphology can be used to: (i) discriminate among extant hominid taxa and (ii) support species designations among fossil specimens assigned to the genus Homo. In the first part of the study, discriminant analysis was used to test for significant differences in mandibular corpus shape at different taxonomic levels (genus, species and subspecies) among extant hominid taxa (i.e. Homo, Pan, Gorilla, Pongo). In the second part of the study, we examined shape variation among fossil mandibles assigned to Homo(including H. habilis sensu stricto, H. rudolfensis, early African H. erectus/H. ergaster, late African H. erectus, Asian H. erectus, H. heidelbergensis, H. neanderthalensis and H. sapiens). A novel randomization procedure designed for small samples (and using group ‘distinctness values’) was used to determine whether shape variation among the fossils is consistent with conventional taxonomy (or alternatively, whether a priori taxonomic groupings are completely random with respect to mandibular morphology). The randomization of ‘distinctness values’ was also used on the extant samples to assess the ability of the test to recognize known taxa. The discriminant analysis results demonstrated that, even for a relatively modest set of traditional mandibular corpus measurements, we can detect significant differences among extant hominids at the genus and species levels, and, in some cases, also at the subspecies level. Although the randomization of ‘distinctness values’ test is more conservative than discriminant analysis (based on comparisons with extant specimens), we were able to detect at least four distinct groups

  8. Combined Shape and Topology Optimization

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman

    Shape and topology optimization seeks to compute the optimal shape and topology of a structure such that one or more properties, for example stiffness, balance or volume, are improved. The goal of the thesis is to develop a method for shape and topology optimization which uses the Deformable...... Simplicial Complex (DSC) method. Consequently, we present a novel method which combines current shape and topology optimization methods. This method represents the surface of the structure explicitly and discretizes the structure into non-overlapping elements, i.e. a simplicial complex. An explicit surface...... representation usually limits the optimization to minor shape changes. However, the DSC method uses a single explicit representation and still allows for large shape and topology changes. It does so by constantly applying a set of mesh operations during deformations of the structure. Using an explicit instead...

  9. A note on stereological estimation of the volume-weighted second moment of particle volume

    DEFF Research Database (Denmark)

    Jensen, E B; Sørensen, Flemming Brandt

    1991-01-01

    It is shown that for a variety of biological particle shapes, the volume-weighted second moment of particle volume can be estimated stereologically using only the areas of particle transects, which can be estimated manually by point-counting....

  10. Shape preferred orientation of iron grains compatible with Earth's uppermost inner core hemisphericity

    Science.gov (United States)

    Calvet, Marie; Margerin, Ludovic

    2018-01-01

    Constraining the possible patterns of iron fabrics in the Earth's Uppermost Inner Core (UIC) is key to unravel the mechanisms controlling its growth and dynamics. In the framework of crystalline micro-structures composed of ellipsoidal, aligned grains, we discuss possible textural models of UIC compatible with observations of P-wave attenuation and velocity dispersion. Using recent results from multiple scattering theory in textured heterogeneous materials, we compute the P-wave phase velocity and scattering attenuation as a function of grain volume, shape, and orientation wrt to the propagation direction of seismic P-waves. Assuming no variations of the grain volume between the Eastern and Western hemisphere, we show that two families of texture are compatible with the degree-one structure of the inner core as revealed by the positive correlation between seismic velocity and attenuation. (1) Strong flattening of grains parallel to the Inner Core Boundary in the Western hemisphere and weak anisometry in the Eastern hemisphere. (2) Strong radial elongation of grains in the Western hemisphere and again weak anisometry in the Eastern hemisphere. Both textures can quantitatively explain the seismic data in a limited range of grain volumes. Furthermore, the velocity and attenuation anisotropy locally observed under Africa demands that the grains be locally elongated in the direction of Earth's meridians. Our study demonstrates that the hemispherical seismic structure of UIC can be entirely explained by changes in the shape and orientation of grains, thereby offering an alternative to changes in grain volumes. In the future, our theoretical toolbox could be used to systematically test the compatibility of textures predicted by geodynamical models with seismic observations.

  11. Listening to the Shape of a Drum

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 9. Listening to the Shape of a Drum - The Mathematics of Vibrating Drums. S Kesavan. General Article Volume 3 Issue 9 September 1998 pp 26-34. Fulltext. Click here to view fulltext PDF. Permanent link:

  12. Variations in Target Volume Definition for Postoperative Radiotherapy in Stage III Non-Small-Cell Lung Cancer: Analysis of an International Contouring Study

    International Nuclear Information System (INIS)

    Spoelstra, Femke; Senan, Suresh; Le Pechoux, Cecile; Ishikura, Satoshi; Casas, Francesc; Ball, David; Price, Allan; De Ruysscher, Dirk; Soernsen de Koste, John R. van

    2010-01-01

    Purpose: Postoperative radiotherapy (PORT) in patients with completely resected non-small-cell lung cancer with mediastinal involvement is controversial because of the failure of earlier trials to demonstrate a survival benefit. Improved techniques may reduce toxicity, but the treatment fields used in routine practice have not been well studied. We studied routine target volumes used by international experts and evaluated the impact of a contouring protocol developed for a new prospective study, the Lung Adjuvant Radiotherapy Trial (Lung ART). Methods and Materials: Seventeen thoracic radiation oncologists were invited to contour their routine clinical target volumes (CTV) for 2 representative patients using a validated CD-ROM-based contouring program. Subsequently, the Lung ART study protocol was provided, and both cases were contoured again. Variations in target volumes and their dosimetric impact were analyzed. Results: Routine CTVs were received for each case from 10 clinicians, whereas six provided both routine and protocol CTVs for each case. Routine CTVs varied up to threefold between clinicians, but use of the Lung ART protocol significantly decreased variations. Routine CTVs in a postlobectomy patient resulted in V 20 values ranging from 12.7% to 54.0%, and Lung ART protocol CTVs resulted in values of 20.6% to 29.2%. Similar results were seen for other toxicity parameters and in the postpneumectomy patient. With the exception of upper paratracheal nodes, protocol contouring improved coverage of the required nodal stations. Conclusion: Even among experts, significant interclinician variations are observed in PORT fields. Inasmuch as contouring variations can confound the interpretation of PORT results, mandatory quality assurance procedures have been incorporated into the current Lung ART study.

  13. Selection on spur shape in Impatiens capensis.

    Science.gov (United States)

    Young, Helen J

    2008-06-01

    Rapid speciation within some plant families has been attributed to the evolution of floral spurs and to the effect of spur length on plant reproductive success. The flowers of Impatiens capensis (jewelweed) possess a long, curved spur in which nectar is produced and stored. Spur length and curvature varies among plants within one population. Here I document that spur shape is variable in natural populations, variation within plants is less than variation among plants, and spur shape is correlated with components of female and male reproductive success. The apparent natural selection is weakly directional in 1 of 2 years, with greatest seed production and pollen removal occurring in flowers with the greatest spur curvature. Bee pollinator visit length is longest at flowers with highly curved spurs, and they leave less nectar in these spurs than in flowers with straighter spurs. Spur angle evolution may be limited, at least in part, by opposing selection by nectar-robbers who prefer to visit flowers with greater spur curvature. Other factors that might contribute to the maintenance of spur angle variation are temporal variation in the strength of selection and potential genetic correlations of spur shape with other traits under selection.

  14. Shape-morphing nanocomposite origami.

    Science.gov (United States)

    Andres, Christine M; Zhu, Jian; Shyu, Terry; Flynn, Connor; Kotov, Nicholas A

    2014-05-20

    Nature provides a vast array of solid materials that repeatedly and reversibly transform in shape in response to environmental variations. This property is essential, for example, for new energy-saving technologies, efficient collection of solar radiation, and thermal management. Here we report a similar shape-morphing mechanism using differential swelling of hydrophilic polyelectrolyte multilayer inkjets deposited on an LBL carbon nanotube (CNT) composite. The out-of-plane deflection can be precisely controlled, as predicted by theoretical analysis. We also demonstrate a controlled and stimuli-responsive twisting motion on a spiral-shaped LBL nanocomposite. By mimicking the motions achieved in nature, this method offers new opportunities for the design and fabrication of functional stimuli-responsive shape-morphing nanoscale and microscale structures for a variety of applications.

  15. Variations of radon volume activities in soil and indoor air and their correlation

    International Nuclear Information System (INIS)

    Mojzes, A.

    1998-01-01

    Some manual measurements of volume activity of 222 Rn ai soil air and in indoor air of building together with parallel measurements of some meteorological parameters (temperature, humidity and pressure) of both atmospheric and indoor air were carried out. The measurements were performed in the building of Faculty and in its subsoil which consists of slope loams of the base of SW slopes of granitic Male Karpaty Mountains in the area of confluence of the Vidrica Creek with an arm of the Donau river. The monitoring measurements lasted form more than one and a half year, from January 1977 to August 1998, with the frequency of approximately once a week in each object. The soil air was taken from a permanently set up and sealed pipe from the depth of 0.8 m which was placed approximately 10 m from the building at the open air. All measurements of 222 Rn volume activities were performed with a portable fully automatic scintillation detector based on exchangeable Lucas cells. There were also performed the parallel measurements of some meteorological parameters (temperature, humidity and pressure) of air in each object. The geological basement of building is a source of indoor radon. The volume activities of soil 222 Rn range from about 2 kBq/m 3 to about 20 kBq/m 3 with the average of 9.26 kBq/m 3 and the standard deviation of 2.95 kBq/m 3 . The volume activities of indoor air in basement room were form 150 Bq/m 3 to 225 Bq/m 3 and on the third story they were from 125 Bq/m 3 to 175 Bq/m 3 (approximately). The results of monitoring measurements during 20 months period point out the intensity of interaction of geological substrate with building interior through the values of the volume activity of 222 Rn. Therefore a method of building foundation is one of the most important factors which determines the quantity of radon in indoor air. In the light of quality, the fluctuation of radon presence in the bottom part of the buildings is strongly determined by the variations of

  16. Daily variations in delivered doses in patients treated with radiotherapy for localized prostate cancer

    International Nuclear Information System (INIS)

    Kupelian, Patrick A.; Langen, Katja M.; Zeidan, Omar A.; Meeks, Sanford L.; Willoughby, Twyla R.; Wagner, Thomas H.; Jeswani, Sam; Ruchala, Kenneth J.; Haimerl, Jason; Olivera, Gustavo H.

    2006-01-01

    Purpose: The aim of this work was to study the variations in delivered doses to the prostate, rectum, and bladder during a full course of image-guided external beam radiotherapy. Methods and Materials: Ten patients with localized prostate cancer were treated with helical tomotherapy to 78 Gy at 2 Gy per fraction in 39 fractions. Daily target localization was performed using intraprostatic fiducials and daily megavoltage pelvic computed tomography (CT) scans, resulting in a total of 390 CT scans. The prostate, rectum, and bladder were manually contoured on each CT by a single physician. Daily dosimetric analysis was performed with dose recalculation. The study endpoints were D95 (dose to 95% of the prostate), rV2 (absolute rectal volume receiving 2 Gy), and bV2 (absolute bladder volume receiving 2 Gy). Results: For the entire cohort, the average D95 (±SD) was 2.02 ± 0.04 Gy (range, 1.79-2.20 Gy). The average rV2 (±SD) was 7.0 ± 8.1 cc (range, 0.1-67.3 cc). The average bV2 (±SD) was 8.7 ± 6.8 cc (range, 0.3-36.8 cc). Unlike doses for the prostate, there was significant daily variation in rectal and bladder doses, mostly because of variations in volume and shape of these organs. Conclusion: Large variations in delivered doses to the rectum and bladder can be documented with daily megavoltage CT scans. Image guidance for the targeting of the prostate, even with intraprostatic fiducials, does not take into account the variation in actual rectal and bladder doses. The clinical impact of techniques that take into account such dosimetric parameters in daily patient set-ups should be investigated

  17. Nuclear level density variation with angular momentum induced shape transition

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2016-01-01

    Variation of Nuclear level density (NLD) with the excitation energy and angular momentum in particular has been a topic of interest in the recent past and there have been continuous efforts in this direction on the theoretical and experimental fronts but a conclusive trend in the variation of nuclear level density parameter with angular momentum has not been achieved so far. A comprehensive investigation of N=68 isotones around the compound nucleus 119 Sb from neutron rich 112 Ru (Z=44) to neutron deficient 127 Pr (Z= 59) nuclei is presented to understand the angular momentum induced variations in inverse level density parameter and the possible influence of deformation and structural transitions on the variations on NLd

  18. THE EFFECT OF VOLUME VARIATION OF SILVER NANOPARTICLE SOLUTION TOWARDS THE POROSITY AND COMPRESSIVE STRENGTH OF MORTAR

    Directory of Open Access Journals (Sweden)

    W.S.B. Dwandaru

    2016-10-01

    Full Text Available As the world is growing rapidly, people need better building materials such as mortar. The aim of this research is to determine the effect of adding silver nanoparticle solution towards the porosity and compressive strength of mortar. This research was started by making silver nanoparticle solution from nitrate silver (AgNO3. The solution is then characterized using Uv-Vis spectrophotometer. 5 mM silver nanoparticle is added in the process of mortar production with volume variation of the silver nanoparticle solution. The porosity, compressive strength, and the content of mortar were determined by digital scale, universal testing machine, and X-ray diffraction, respectively. For silver nanoparticle solution volumes of (in mL 0, 5, 10, 15, 20, and 25 the porosity obtained are (in % 20.38, 19.48, 19.42, 18.9, 17.8, and 17.5, respectively. The best increase in compressive strength is obtained for (in MPa 29,068, 29,308, and 31,385, with nanoparticle solution volumes of (in mL 5, 10, and 15   Keywords: mortar, silver nanoparticle, compressive strength

  19. Spatial and temporal variation of residence time and storage volume of subsurface water evaluated by multi-tracers approach in mountainous headwater catchments

    Science.gov (United States)

    Tsujimura, Maki; Yano, Shinjiro; Abe, Yutaka; Matsumoto, Takehiro; Yoshizawa, Ayumi; Watanabe, Ysuhito; Ikeda, Koichi

    2015-04-01

    Headwater catchments in mountainous region are the most important recharge area for surface and subsurface waters, additionally time and stock information of the water is principal to understand hydrological processes in the catchments. However, there have been few researches to evaluate variation of residence time and storage volume of subsurface water in time and space at the mountainous headwaters especially with steep slope. We performed an investigation on age dating and estimation of storage volume using simple water budget model in subsurface water with tracing of hydrological flow processes in mountainous catchments underlain by granite, Paleozoic and Tertiary, Yamanashi and Tsukuba, central Japan. We conducted hydrometric measurements and sampling of spring, stream and ground waters in high-flow and low-flow seasons from 2008 through 2012 in the catchments, and CFCs, stable isotopic ratios of oxygen-18 and deuterium, inorganic solute constituent concentrations were determined on all water samples. Residence time of subsurface water ranged from 11 to 60 years in the granite catchments, from 17 to 32 years in the Paleozoic catchments, from 13 to 26 years in the Tertiary catchments, and showed a younger age during the high-flow season, whereas it showed an older age in the low-flow season. Storage volume of subsurface water was estimated to be ranging from 10 ^ 4 to 10 ^ 6 m3 in the granite catchments, from 10 ^ 5 to 10 ^ 7 m3 in the Paleozoic catchments, from 10 ^ 4 to 10 ^ 6 m3 in the Tertiary catchments. In addition, seasonal change of storage volume in the granite catchments was the highest as compared with those of the Paleozoic and the Tertiary catchments. The results suggest that dynamic change of hydrological process seems to cause a larger variation of the residence time and storage volume of subsurface water in time and space in the granite catchments, whereas higher groundwater recharge rate due to frequent fissures or cracks seems to cause larger

  20. Abnormal Gray Matter Shape, Thickness, and Volume in the Motor Cortico-Subcortical Loop in Idiopathic Rapid Eye Movement Sleep Behavior Disorder: Association with Clinical and Motor Features.

    Science.gov (United States)

    Rahayel, Shady; Postuma, Ronald B; Montplaisir, Jacques; Bedetti, Christophe; Brambati, Simona; Carrier, Julie; Monchi, Oury; Bourgouin, Pierre-Alexandre; Gaubert, Malo; Gagnon, Jean-François

    2018-02-01

    Idiopathic rapid eye movement sleep behavior disorder (iRBD) is a major risk factor for Parkinson's disease and dementia with Lewy bodies. Anatomical gray matter abnormalities in the motor cortico-subcortical loop areas remain under studied in iRBD patients. We acquired T1-weighted images and administrated quantitative motor tasks in 41 patients with polysomnography-confirmed iRBD and 41 healthy subjects. Cortical thickness and voxel-based morphometry (VBM) analyses were performed to investigate local cortical thickness and gray matter volume changes, vertex-based shape analysis to investigate shape of subcortical structures, and structure-based volumetric analyses to investigate volumes of subcortical and brainstem structures. Cortical thickness analysis revealed thinning in iRBD patients in bilateral medial superior frontal, orbitofrontal, anterior cingulate cortices, and the right dorsolateral primary motor cortex. VBM results showed lower gray matter volume in iRBD patients in the frontal lobes, anterior cingulate gyri, and caudate nucleus. Shape analysis revealed extensive surface contraction in the external and internal segments of the left pallidum. Clinical and motor impaired features in iRBD were associated with anomalies of the motor cortico-subcortical loop. In summary, iRBD patients showed numerous gray matter structural abnormalities in the motor cortico-subcortical loop, which are associated with lower motor performance and clinical manifestations of iRBD. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Variational segmentation problems using prior knowledge in imaging and vision

    DEFF Research Database (Denmark)

    Fundana, Ketut

    This dissertation addresses variational formulation of segmentation problems using prior knowledge. Variational models are among the most successful approaches for solving many Computer Vision and Image Processing problems. The models aim at finding the solution to a given energy functional defined......, prior knowledge is needed to obtain the desired solution. The introduction of shape priors in particular, has proven to be an effective way to segment objects of interests. Firstly, we propose a prior-based variational segmentation model to segment objects of interest in image sequences, that can deal....... Many objects have high variability in shape and orientation. This often leads to unsatisfactory results, when using a segmentation model with single shape template. One way to solve this is by using more sophisticated shape models. We propose to incorporate shape priors from a shape sub...

  2. Variational Monte Carlo Technique

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 8. Variational Monte Carlo Technique: Ground State Energies of Quantum Mechanical Systems. Sukanta Deb. General Article Volume 19 Issue 8 August 2014 pp 713-739 ...

  3. Inter fraction variations in rectum and bladder volumes and dose distributions during high dose rate brachytherapy treatment of the uterine cervix investigated by repetitive CT-examinations

    International Nuclear Information System (INIS)

    Hellebust, Taran Paulsen; Dale, Einar; Skjoensberg, Ane; Olsen, Dag Rune

    2001-01-01

    Purpose: To evaluate variation of dose to organs at risk for patients receiving fractionated high dose rate gynaecological brachytherapy by using CT-based 3D treatment planning and dose-volume histograms (DVH). Materials and methods: Fourteen patients with cancer of the uterine cervix underwent three to six CT examinations (mean 4.9) during their course of high-dose-rate brachytherapy using radiographically compatible applicators. The rectal and bladder walls were delineated and DVHs were calculated. Results: Inter fraction variation of the bladder volume (CV mean =44.1%) was significantly larger than the inter fraction variation of the mean dose (CV mean =19.9%, P=0.005) and the maximum dose (CV mean =17.5%, P=0.003) of the bladder wall. The same trend was seen for rectum, although the figures were not significantly different. Performing CT examinations at four of seven brachytherapy fractions reduced the uncertainty to 4 and 7% for the bladder and rectal doses, respectively. A linear regression analysis showed a significant, negative relationship between time after treatment start and the whole bladder volume (P=0.018), whereas no correlation was found for the rectum. For both rectum and bladder a linear regression analysis revealed a significant, negative relationship between the whole volume and median dose (P<0.05). Conclusion: Preferably a CT examination should be provided at every fraction. However, this is logistically unfeasible in most institutions. To obtain reliable DVHs the patients will in the future undergo 3-4 CT examinations during the course of brachytherapy at our institution. Since this study showed an association between large bladder volumes and dose reductions, the patients will be treated with a standardized bladder volume

  4. Interspecific variation of ontogeny and skull shape among porpoises (Phocoenidae)

    DEFF Research Database (Denmark)

    Galatius-Jørgensen, Anders; Berta, Annalisa; Frandsen, Marie Michele Schou

    2011-01-01

    . dioptrica, for which large series were available, were further compared in terms of ontogeny of cranial shape by three-dimensional geometric morphometrics. Ph. dalli and P. dioptrica generally showed further development of cranial sutures than the other species. Postnatal skull shape development was similar...... was detected; in species with pelagic preference the position and orientation of the foramen magnum aligned the skull with the vertebral column; the rostrum showed less ventral inclination, and the facial region was larger and more concave in lateral aspect. J. Morphol., 2011. © 2010 Wiley-Liss, Inc....

  5. Volume cross section of auroral radar backscatter and RMS plasma fluctuations inferred from coherent and incoherent scatter data: a response on backscatter volume parameters

    Directory of Open Access Journals (Sweden)

    M. V. Uspensky

    2011-06-01

    Full Text Available Norway and Finland STARE radar measurements in the eastward auroral electrojet are combined with EISCAT CP-1 measurements of the electron density and electric field vector in the common scattering volume to investigate the variation of the auroral radar volume cross section (VCS with the flow angle of observations (radar look direction with respect to the E×B electron drift. The data set available consists of ~6000 points for flow angles of 40–85° and electron drifts between 500 and 2000 m s−1. The EISCAT electron density N(h-profile data are used to estimate the effective electron density, aspect angle and thickness of the backscattering layer. It is shown that the flow angle variation of the VCS is rather weak, only ~5 dB within the range of the considered flow angles. The VCS values themselves respond almost linearly to the square of both the electron drift velocity magnitude and the effective electron density. By adopting the inferred shape of the VCS variation with the flow angle and the VCS dependence upon wavelength, the relative amplitude of electrostatic electron density fluctuations over all scales is estimated. Inferred values of 2–4 percent react nearly linearly to the electron drift velocity in the range of 500–1000 m s−1 but the rate of increase slows down at electron drifts >1000 m s−1 and density fluctuations of ~5.5 percent due to, perhaps, progressively growing nonlinear wave losses.

  6. Numerical Investigation of the Effect of Bottom Shape on the Flow Field and Particle Suspension in a DTB Crystallizer

    Directory of Open Access Journals (Sweden)

    Hao Pan

    2016-01-01

    Full Text Available The influence of the bottom shape on the flow field distribution and particle suspension in a DTB crystallizer was investigated by Computational Fluid Dynamics (CFD coupled with Two-Fluid Model (Eulerian model. Volume fractions of three sections were monitored on time, and effect on particle suspension could be obtained by analyzing the variation tendency of volume fraction. The results showed that the protruding part of a W type bottom could make the eddies smaller, leading to the increase of velocity in the vortex. Modulating the detailed structure of the W type bottom to make the bottom surface conform to the streamlines can reduce the loss of the kinetic energy of the flow fluid and obtain a larger flow velocity, which made it possible for the particles in the bottom to reach a better suspension state. Suitable shape parameters were also obtained; the concave and protruding surface diameter are 0.32 and 0.373 times of the cylindrical shell diameter, respectively. It is helpful to provide a theoretical guidance for optimization of DTB crystallizer.

  7. The effect on patency of type, shape and volume of a vein collar used at the distal anastomis of PTFE-bypass to arteries below-knee

    DEFF Research Database (Denmark)

    Lundgren, F; Schroeder, Torben Veith

    2012-01-01

    The aim of this paper was to study the effect on patency rate of different types of vein collar (Miller's original or St Mary's boot), different length/height shapes of vein collar, and different vein collar volumes at the distal anastomosis of PTFE-bypass grafts to below-knee arteries in patients...

  8. Impact of organ shape variations on margin concepts for cervix cancer ART.

    Science.gov (United States)

    Seppenwoolde, Yvette; Stock, Markus; Buschmann, Martin; Georg, Dietmar; Bauer-Novotny, Kwei-Yuang; Pötter, Richard; Georg, Petra

    2016-09-01

    Target and organ movement motivate adaptive radiotherapy for cervix cancer patients. We investigated the dosimetric impact of margin concepts with different levels of complexity on both organ at risk (OAR) sparing and PTV coverage. Weekly CT and daily CBCT scans were delineated for 10 patients. The dosimetric impact of organ shape variations were evaluated for four (isotropic) margin concepts: two static PTVs (PTV 6mm and PTV 15mm ), a PTV based on ITV of the planning CT and CBCTs of the first treatment week (PTV ART ITV ) and an adaptive PTV based on a library approach (PTV ART Library ). Using static concepts, OAR doses increased with large margins, while smaller margins compromised target coverage. ART PTVs resulted in comparable target coverage and better sparing of bladder (V40Gy: 15% and 7% less), rectum (V40Gy: 18 and 6cc less) and bowel (V40Gy: 106 and 15cc less) compared to PTV 15mm . Target coverage evaluation showed that for elective fields a static 5mm margin sufficed. PTV ART Library achieved the best dosimetric results. However when weighing clinical benefit against workload, ITV margins based on repetitive movement evaluation during the first week also provide improvements over static margin concepts. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Goal-directed fluid optimization based on stroke volume variation and cardiac index during one-lung ventilation in patients undergoing thoracoscopy lobectomy operations: a pilot study

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    2013-07-01

    Full Text Available OBJECTIVES: This pilot study was designed to utilize stroke volume variation and cardiac index to ensure fluid optimization during one-lung ventilation in patients undergoing thoracoscopic lobectomies. METHODS: Eighty patients undergoing thoracoscopic lobectomy were randomized into either a goal-directed therapy group or a control group. In the goal-directed therapy group, the stroke volume variation was controlled at 10%±1%, and the cardiac index was controlled at a minimum of 2.5 L.min-1.m-2. In the control group, the MAP was maintained at between 65 mm Hg and 90 mm Hg, heart rate was maintained at between 60 BPM and 100 BPM, and urinary output was greater than 0.5 mL/kg-1/h-1. The hemodynamic variables, arterial blood gas analyses, total administered fluid volume and side effects were recorded. RESULTS: The PaO2/FiO2-ratio before the end of one-lung ventilation in the goal-directed therapy group was significantly higher than that of the control group, but there were no differences between the goal-directed therapy group and the control group for the PaO2/FiO2-ratio or other arterial blood gas analysis indices prior to anesthesia. The extubation time was significantly earlier in the goal-directed therapy group, but there was no difference in the length of hospital stay. Patients in the control group had greater urine volumes, and they were given greater colloid and overall fluid volumes. Nausea and vomiting were significantly reduced in the goal-directed therapy group. CONCLUSION: The results of this study demonstrated that an optimization protocol, based on stroke volume variation and cardiac index obtained with a FloTrac/Vigileo device, increased the PaO2/FiO2-ratio and reduced the overall fluid volume, intubation time and postoperative complications (nausea and vomiting in thoracic surgery patients requiring one-lung ventilation.

  10. Shaping 3-D Volumes in Immersive Virtual Environments

    DEFF Research Database (Denmark)

    Stenholt, Rasmus

    of the user’s work in such tasks. This tech- nique is compared to two other techniques, a spherical brush and a box-shaped lasso, in an evaluation which seeks to identify the pros and cons of the tools. The magic wand proves to be faster to use than the other, but only in certain geomet- ric scenarios...

  11. Technical Note: Harmonic analysis applied to MR image distortion fields specific to arbitrarily shaped volumes.

    Science.gov (United States)

    Stanescu, T; Jaffray, D

    2018-05-25

    Magnetic resonance imaging is expected to play a more important role in radiation therapy given the recent developments in MR-guided technologies. MR images need to consistently show high spatial accuracy to facilitate RT specific tasks such as treatment planning and in-room guidance. The present study investigates a new harmonic analysis method for the characterization of complex 3D fields derived from MR images affected by system-related distortions. An interior Dirichlet problem based on solving the Laplace equation with boundary conditions (BCs) was formulated for the case of a 3D distortion field. The second-order boundary value problem (BVP) was solved using a finite elements method (FEM) for several quadratic geometries - i.e., sphere, cylinder, cuboid, D-shaped, and ellipsoid. To stress-test the method and generalize it, the BVP was also solved for more complex surfaces such as a Reuleaux 9-gon and the MR imaging volume of a scanner featuring a high degree of surface irregularities. The BCs were formatted from reference experimental data collected with a linearity phantom featuring a volumetric grid structure. The method was validated by comparing the harmonic analysis results with the corresponding experimental reference fields. The harmonic fields were found to be in good agreement with the baseline experimental data for all geometries investigated. In the case of quadratic domains, the percentage of sampling points with residual values larger than 1 mm were 0.5% and 0.2% for the axial components and vector magnitude, respectively. For the general case of a domain defined by the available MR imaging field of view, the reference data showed a peak distortion of about 12 mm and 79% of the sampling points carried a distortion magnitude larger than 1 mm (tolerance intrinsic to the experimental data). The upper limits of the residual values after comparison with the harmonic fields showed max and mean of 1.4 mm and 0.25 mm, respectively, with only 1.5% of

  12. PROGRAM HTVOL: The Determination of Tree Crown Volume by Layers

    Science.gov (United States)

    Joseph C. Mawson; Jack Ward Thomas; Richard M. DeGraaf

    1976-01-01

    A FORTRAN IV computer program calculates, from a few field measurements, the volume of tree crowns. This volume is in layers of a specified thickness of trees or large shrubs. Each tree is assigned one of 15 solid forms, formed by using one of five side shapes (a circle, an ellipse, a neiloid, a triangle, or a parabolalike shape), and one of three bottom shapes (a...

  13. PPARα L162V underlies variation in serum triglycerides and subcutaneous fat volume in young males

    Directory of Open Access Journals (Sweden)

    Clarkson Priscilla M

    2007-08-01

    Full Text Available Abstract Background Of the five sub-phenotypes defining metabolic syndrome, all are known to have strong genetic components (typically 50–80% of population variation. Studies defining genetic predispositions have typically focused on older populations with metabolic syndrome and/or type 2 diabetes. We hypothesized that the study of younger populations would mitigate many confounding variables, and allow us to better define genetic predisposition loci for metabolic syndrome. Methods We studied 610 young adult volunteers (average age 24 yrs for metabolic syndrome markers, and volumetric MRI of upper arm muscle, bone, and fat pre- and post-unilateral resistance training. Results We found the PPARα L162V polymorphism to be a strong determinant of serum triglyceride levels in young White males, where carriers of the V allele showed 78% increase in triglycerides relative to L homozygotes (LL = 116 ± 11 mg/dL, LV = 208 ± 30 mg/dL; p = 0.004. Men with the V allele showed lower HDL (LL = 42 ± 1 mg/dL, LV = 34 ± 2 mg/dL; p = 0.001, but women did not. Subcutaneous fat volume was higher in males carrying the V allele, however, exercise training increased fat volume of the untrained arm in V carriers, while LL genotypes significantly decreased in fat volume (LL = -1,707 ± 21 mm3, LV = 17,617 ± 58 mm3 ; p = 0.002, indicating a systemic effect of the V allele on adiposity after unilateral training. Our study suggests that the primary effect of PPARα L162V is on serum triglycerides, with downstream effects on adiposity and response to training. Conclusion Our results on association of PPARα and triglycerides in males showed a much larger effect of the V allele than previously reported in older and less healthy populations. Specifically, we showed the V allele to increase triglycerides by 78% (p = 0.004, and this single polymorphism accounted for 3.8% of all variation in serum triglycerides in males (p = 0.0037.

  14. Shape morphing Kirigami mechanical metamaterials.

    Science.gov (United States)

    Neville, Robin M; Scarpa, Fabrizio; Pirrera, Alberto

    2016-08-05

    Mechanical metamaterials exhibit unusual properties through the shape and movement of their engineered subunits. This work presents a new investigation of the Poisson's ratios of a family of cellular metamaterials based on Kirigami design principles. Kirigami is the art of cutting and folding paper to obtain 3D shapes. This technique allows us to create cellular structures with engineered cuts and folds that produce large shape and volume changes, and with extremely directional, tuneable mechanical properties. We demonstrate how to produce these structures from flat sheets of composite materials. By a combination of analytical models and numerical simulations we show how these Kirigami cellular metamaterials can change their deformation characteristics. We also demonstrate the potential of using these classes of mechanical metamaterials for shape change applications like morphing structures.

  15. Structural Variation Shapes the Landscape of Recombination in Mouse.

    Science.gov (United States)

    Morgan, Andrew P; Gatti, Daniel M; Najarian, Maya L; Keane, Thomas M; Galante, Raymond J; Pack, Allan I; Mott, Richard; Churchill, Gary A; de Villena, Fernando Pardo-Manuel

    2017-06-01

    Meiotic recombination is an essential feature of sexual reproduction that ensures faithful segregation of chromosomes and redistributes genetic variants in populations. Multiparent populations such as the Diversity Outbred (DO) mouse stock accumulate large numbers of crossover (CO) events between founder haplotypes, and thus present a unique opportunity to study the role of genetic variation in shaping the recombination landscape. We obtained high-density genotype data from [Formula: see text] DO mice, and localized 2.2 million CO events to intervals with a median size of 28 kb. The resulting sex-averaged genetic map of the DO population is highly concordant with large-scale (order 10 Mb) features of previously reported genetic maps for mouse. To examine fine-scale (order 10 kb) patterns of recombination in the DO, we overlaid putative recombination hotspots onto our CO intervals. We found that CO intervals are enriched in hotspots compared to the genomic background. However, as many as [Formula: see text] of CO intervals do not overlap any putative hotspots, suggesting that our understanding of hotspots is incomplete. We also identified coldspots encompassing 329 Mb, or [Formula: see text] of observable genome, in which there is little or no recombination. In contrast to hotspots, which are a few kilobases in size, and widely scattered throughout the genome, coldspots have a median size of 2.1 Mb and are spatially clustered. Coldspots are strongly associated with copy-number variant (CNV) regions, especially multi-allelic clusters, identified from whole-genome sequencing of 228 DO mice. Genes in these regions have reduced expression, and epigenetic features of closed chromatin in male germ cells, which suggests that CNVs may repress recombination by altering chromatin structure in meiosis. Our findings demonstrate how multiparent populations, by bridging the gap between large-scale and fine-scale genetic mapping, can reveal new features of the recombination

  16. Molecular shape and medicinal chemistry: a perspective.

    Science.gov (United States)

    Nicholls, Anthony; McGaughey, Georgia B; Sheridan, Robert P; Good, Andrew C; Warren, Gregory; Mathieu, Magali; Muchmore, Steven W; Brown, Scott P; Grant, J Andrew; Haigh, James A; Nevins, Neysa; Jain, Ajay N; Kelley, Brian

    2010-05-27

    The eight contributions here provide ample evidence that shape as a volume or as a surface is a vibrant and useful concept when applied to drug discovery. It provides a reliable scaffold for "decoration" with chemical intuition (or bias) for virtual screening and lead optimization but also has its unadorned uses, as in library design, ligand fitting, pose prediction, or active site description. Computing power has facilitated this evolution by allowing shape to be handled precisely without the need to reduce down to point descriptors or approximate metrics, and the diversity of resultant applications argues for this being an important step forward. Certainly, it is encouraging that as computation has enabled our intuition, molecular shape has consistently surprised us in its usefulness and adaptability. The first Aurelius question, "What is the essence of a thing?", seems well answered, however, the third, "What do molecules do?", only partly so. Are the topics covered here exhaustive, or is there more to come? To date, there has been little published on the use of the volumetric definition of shape described here as a QSAR variable, for instance, in the prediction or classification of activity, although other shape definitions have been successful applied, for instance, as embodied in the Compass program described above in "Shape from Surfaces". Crystal packing is a phenomenon much desired to be understood. Although powerful models have been applied to the problem, to what degree is this dominated purely by the shape of a molecule? The shape comparison described here is typically of a global nature, and yet some importance must surely be placed on partial shape matching, just as the substructure matching of chemical graphs has proved useful. The approach of using surfaces, as described here, offers some flavor of this, as does the use of metrics that penalize volume mismatch less than the Tanimoto, e.g., Tversky measures. As yet, there is little to go on as to how

  17. Size and shape dependent lattice parameters of metallic nanoparticles

    International Nuclear Information System (INIS)

    Qi, W. H.; Wang, M. P.

    2005-01-01

    A model is developed to account for the size and shape dependent lattice parameters of metallic nanoparticles, where the particle shape difference is considered by introducing a shape factor. It is predicted that the lattice parameters of nanoparticles in several nanometers decrease with decreasing of the particle size, which is consistent with the corresponding experimental results. Furthermore, it is found that the particle shape can lead to 10% of the total lattice variation. The model is a continuous media model and can deal with the nanoparticles larger than 1 nm. Since the shape factor approaches to infinity for nanowires and nanofilms, therefore, the model cannot be generalized to the systems of nanowires and nanofilms. For the input parameters are physical constants of bulk materials, therefore, the present model may be used to predict the lattice variation of different metallic nanoparticles with different lattice structures

  18. Discordant coral-symbiont structuring: factors shaping geographical variation of Symbiodinium communities in a facultative zooxanthellate coral genus, Oculina

    Science.gov (United States)

    Leydet, Karine Posbic; Hellberg, Michael E.

    2016-06-01

    Understanding the factors that help shape the association between corals and their algal symbionts, zooxanthellae ( Symbiodinium), is necessary to better understand the functional diversity and acclimatization potential of the coral host. However, most studies focus on tropical zooxanthellate corals and their obligate algal symbionts, thus limiting our full comprehension of coral-algal symbiont associations. Here, we examine algal associations in a facultative zooxanthellate coral. We survey the Symbiodinium communities associated with Oculina corals in the western North Atlantic and the Mediterranean using one clade-level marker ( psbA coding region) and three fine-scale markers ( cp23S- rDNA, b7sym15 flanking region, and b2sym17). We ask whether Oculina spp. harbor geographically different Symbiodinium communities across their geographic range and, if so, whether the host's genetics or habitat differences are correlated with this geographical variation. We found that Oculina corals harbor different Symbiodinium communities across their geographical range. Of the habitat differences (including chlorophyll a concentration and depth), sea surface temperature is better correlated with this geographical variation than the host's genetics, a pattern most evident in the Mediterranean. Our results suggest that although facultative zooxanthellate corals may be less dependent on their algal partners compared to obligate zooxanthellate corals, the Symbiodinium communities that they harbor may nevertheless reflect acclimatization to environmental variation among habitats.

  19. Shape Effect on the Temperature Field during Microwave Heating Process

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2018-01-01

    Full Text Available Aiming at improving the food quality during microwave process, this article mainly focused on the numerical simulation of shape effect, which was evaluated by microwave power absorption capability and temperature distribution uniformity in a single sample heated in a domestic microwave oven. This article only took the electromagnetic field and heat conduction in solid into consideration. The Maxwell equations were used to calculate the distribution of microwave electromagnetic field distribution in the microwave cavity and samples; then the electromagnetic energy was coupled as the heat source in the heat conduction process in samples. Quantitatively, the power absorption capability and temperature distribution uniformity were, respectively, described by power absorption efficiency (PAE and the statistical variation of coefficient (COV. In addition, we defined the comprehensive evaluation coefficient (CEC to describe the usability of a specific sample. In accordance with volume or the wave numbers and penetration numbers in the radial and axial directions of samples, they can be classified into different groups. And according to the PAE, COV, and CEC value and the specific need of microwave process, an optimal sample shape and orientation could be decided.

  20. Intraspecific variation in body size and shape in an Andean highland anole species, Anolis ventrimaculatus (Squamata: Dactyloidae

    Directory of Open Access Journals (Sweden)

    Martha L. Calderón-Espinosa

    2013-03-01

    Full Text Available Variation in body characteristics related to lizard locomotion has been poorly studied at the intraspecific level in Anolis species. Local adaptation due to habitat heterogeneity has been reported in some island species. However, studies of mainland species are particularly scarce and suggest different patterns: high variability among highland lizards and poorly differentiated populations in one Amazonian species. We characterized inter population variation of body size and shape in the highland Andean Anolis ventrimaculatus, an endemic species from Western Colombia. A total of 15 morphometric variables were measured in specimens from the reptile collection of the Instituto de Ciencias Naturales, Universidad Nacional, Colombia. The study included individuals from seven different highland localities. We found size and shape sexual dimorphism, both of which varied among localities. Patterns of variation in body proportions among populations were different in both males and females, suggesting that either sexual or natural selective factors are different in each locality and between sexes. Since this species exhibits a fragmented distribution in highlands, genetic divergence may also be a causal factor of the observed variation. Ecological, behavioral, additional morphological as well as phylogenetic data, may help to understand the evolutionary processes behind the geographic patterns found in this species.La diversificación fenotípica al interior de una especie en características de dimensiones corporales relacionadas con la locomoción de los lagartos, se ha estudiado poco en especies de Anolis. Los datos de algunas especies de isla revelan patrones distintos de variación geográfica y sugieren que la adaptación local, debida a la heterogeneidad del hábitat, ocurre a este nivel. Los estudios de especies de continente son particularmente escasos y sugieren patrones distintos: un lagarto altoandino altamente variable y poblaciones poco

  1. A new shape design method of salt cavern used as underground gas storage

    International Nuclear Information System (INIS)

    Wang, Tongtao; Yan, Xiangzhen; Yang, Henglin; Yang, Xiujuan; Jiang, Tingting; Zhao, Shuai

    2013-01-01

    Graphical abstract: Safety factor contours of four salt cavern gas storages after running 10 years. Highlights: ► We propose a new model to design the shape of salt cavern gas storage. ► The concepts of slope instability and pressure arch are introduced into the shape design. ► The max. gas pressure determines the shapes and dimensions of cavern lower structure. ► The min. gas pressure decides the shapes and dimensions of cavern upper structure. - Abstract: A new model used to design the shape and dimension of salt cavern gas storage is proposed in the paper. In the new model, the cavern is divided into two parts, namely the lower and upper structures, to design. The concepts of slope instability and pressure arch are introduced into the shape design of the lower and upper structures respectively. Calculating models are established according to the concepts. Field salt cavern gas storage in China is simulated as examples, and its shape and dimension are proposed. The effects of gas pressure, friction angle and cohesion of rock salt on the cavern stability are discussed. Moreover, the volume convergence, displacement, plastic volume rate, safety factor, and effective strain are compared with that of three other existing shapes salt caverns to validate the performance of newly proposed cavern. The results show that the max. gas pressure determines the shape and dimension of cavern lower structure, while the min. gas pressure decides that of cavern upper structure. With the increase of friction angle and cohesion of rock salt, the stability of salt cavern is increased. The newly proposed salt cavern gas storage has more notable advantages than the existing shapes of salt cavern in volume convergence, displacement, plastic volume rate, safety factor, and effective strain under the same conditions

  2. Crystal shapes on striped surface domains

    International Nuclear Information System (INIS)

    Valencia, Antoni

    2004-01-01

    The equilibrium shapes of a simple cubic crystal in contact with a planar chemically patterned substrate are studied theoretically using an effective interface model. The substrate is primarily made of lyophobic material and is patterned with a lyophilic (easily wettable) stripe domain. Three regimes can be distinguished for the equilibrium shapes of the crystal. The transitions between these regimes as the volume of the crystal is changed are continuous or discontinuous depending on the strength of the couplings between the crystal and the lyophilic and lyophobic surface domains. If the crystal grows through a series of states close to equilibrium, the discontinuous transitions correspond to growth instabilities. These transitions are compared with similar results that have been obtained for a volume of liquid wetting a lyophilic stripe domain

  3. 3D active shape modeling for cardiac MR and CT image segmentation

    NARCIS (Netherlands)

    Assen, Hans Christiaan van

    2006-01-01

    3D Active Shape Modeling is a technique to capture shape information from a training set containing characteristic shapes of, e.g., a heart. The description contains a mean shape, and shape variations (e.g. eigen deformations and eigen values). Many models based on these statistics, and used for

  4. Genetic variation shapes protein networks mainly through non-transcriptional mechanisms.

    Directory of Open Access Journals (Sweden)

    Eric J Foss

    2011-09-01

    Full Text Available Networks of co-regulated transcripts in genetically diverse populations have been studied extensively, but little is known about the degree to which these networks cause similar co-variation at the protein level. We quantified 354 proteins in a genetically diverse population of yeast segregants, which allowed for the first time construction of a coherent protein co-variation matrix. We identified tightly co-regulated groups of 36 and 93 proteins that were made up predominantly of genes involved in ribosome biogenesis and amino acid metabolism, respectively. Even though the ribosomal genes were tightly co-regulated at both the protein and transcript levels, genetic regulation of proteins was entirely distinct from that of transcripts, and almost no genes in this network showed a significant correlation between protein and transcript levels. This result calls into question the widely held belief that in yeast, as opposed to higher eukaryotes, ribosomal protein levels are regulated primarily by regulating transcript levels. Furthermore, although genetic regulation of the amino acid network was more similar for proteins and transcripts, regression analysis demonstrated that even here, proteins vary predominantly as a result of non-transcriptional variation. We also found that cis regulation, which is common in the transcriptome, is rare at the level of the proteome. We conclude that most inter-individual variation in levels of these particular high abundance proteins in this genetically diverse population is not caused by variation of their underlying transcripts.

  5. Combining high-resolution satellite images and altimetry to estimate the volume of small lakes

    Science.gov (United States)

    Baup, F.; Frappart, F.; Maubant, J.

    2014-05-01

    This study presents an approach to determining the volume of water in small lakes (manager of the lake. Three independent approaches are developed to estimate the lake volume and its temporal variability. The first two approaches (HRBV and ABV) are empirical and use synchronous ground measurements of the water volume and the satellite data. The results demonstrate that altimetry and imagery can be effectively and accurately used to monitor the temporal variations of the lake (R2ABV = 0.98, RMSEABV = 5%, R2HRBV = 0.90, and RMSEABV = 7.4%), assuming a time-varying triangular shape for the shore slope of the lake (this form is well adapted since it implies a difference inferior to 2% between the theoretical volume of the lake and the one estimated from bathymetry). The third method (AHRBVC) combines altimetry (to measure the lake level) and satellite images (of the lake surface) to estimate the volume changes of the lake and produces the best results (R2AHRBVC = 0.98) of the three methods, demonstrating the potential of future Sentinel and SWOT missions to monitor small lakes and reservoirs for agricultural and irrigation applications.

  6. Kirkwood-Buff integrals of finite systems: shape effects

    Science.gov (United States)

    Dawass, Noura; Krüger, Peter; Simon, Jean-Marc; Vlugt, Thijs J. H.

    2018-06-01

    The Kirkwood-Buff (KB) theory provides an important connection between microscopic density fluctuations in liquids and macroscopic properties. Recently, Krüger et al. derived equations for KB integrals for finite subvolumes embedded in a reservoir. Using molecular simulation of finite systems, KB integrals can be computed either from density fluctuations inside such subvolumes, or from integrals of radial distribution functions (RDFs). Here, based on the second approach, we establish a framework to compute KB integrals for subvolumes with arbitrary convex shapes. This requires a geometric function w(x) which depends on the shape of the subvolume, and the relative position inside the subvolume. We present a numerical method to compute w(x) based on Umbrella Sampling Monte Carlo (MC). We compute KB integrals of a liquid with a model RDF for subvolumes with different shapes. KB integrals approach the thermodynamic limit in the same way: for sufficiently large volumes, KB integrals are a linear function of area over volume, which is independent of the shape of the subvolume.

  7. Cylindrical-shaped nanotube field effect transistor

    KAUST Repository

    Hussain, Muhammad Mustafa; Fahad, Hossain M.; Smith, Casey E.; Rojas, Jhonathan Prieto

    2015-01-01

    A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.

  8. Cylindrical-shaped nanotube field effect transistor

    KAUST Repository

    Hussain, Muhammad Mustafa

    2015-12-29

    A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.

  9. Contração volumétrica e forma dos frutos de mamona durante a secagem = Shape and shrinkage of the castor bean fruit during the drying process

    Directory of Open Access Journals (Sweden)

    André Luís Duarte Goneli

    2011-01-01

    Full Text Available O objetivo do presente trabalho foi avaliar o efeito da variação do teor de água na contração volumétrica, dimensões características e forma dos frutos de mamona durante a secagem. Foram utilizados frutos colhidos com teor de água de 2,50 (b.s., secos à temperatura de 40ºC até o teor final de 0,11 (b.s.. O tamanho dos frutos foi determinadopor meio da variação do volume e a forma foi analisada pela esfericidade e circularidade. A contração volumétrica dos frutos foi determinada pela relação entre o volume em cada teor de água e o volume inicial. Com base nos resultados, concluiu-se que a forma dos frutos de mamona é influenciada pela redução do teor de água, promovendo redução da esfericidade e circularidade. As dimensões características (comprimento, largura e espessura e o diâmetrogeométrico médio dos frutos sofrem redução de suas magnitudes com a redução do teor de água. A redução do teor de água influencia a contração volumétrica unitária e da massa dos frutos de mamona, provocando redução de seus valores em 46,0 e 63,0%, respectivamente.O modelo polinomial, dentre aqueles testados, foi o que melhor representou o fenômeno da contração volumétrica da massa e unitária dos frutos de mamona.The objective of this work was to evaluate the effect of moisture content on castor bean fruit shrinkage, dimensional characteristics and shape during drying. Castor bean fruits were harvested with 2.50 (d.b. moisture content and dried at 40°C up to final moisturecontent of 0.11 (d.b.. The size of the fruits was determined according to the shrinkage rate and the shape analyzed through the sphericity and circularity method. Castor fruit shrinkage was determined by the ratio between its volume with respective moisture content and its initial volume. Based on the obtained results, it can be concluded that the shape castor bean fruits is influenced by reduction in moisture content promoting the sphericity and

  10. Polymer crowding and shape distributions in polymer-nanoparticle mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Wei Kang; Denton, Alan R., E-mail: alan.denton@ndsu.edu [Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050 (United States)

    2014-09-21

    Macromolecular crowding can influence polymer shapes, which is important for understanding the thermodynamic stability of polymer solutions and the structure and function of biopolymers (proteins, RNA, DNA) under confinement. We explore the influence of nanoparticle crowding on polymer shapes via Monte Carlo simulations and free-volume theory of a coarse-grained model of polymer-nanoparticle mixtures. Exploiting the geometry of random walks, we model polymer coils as effective penetrable ellipsoids, whose shapes fluctuate according to the probability distributions of the eigenvalues of the gyration tensor. Accounting for the entropic cost of a nanoparticle penetrating a larger polymer coil, we compute the crowding-induced shift in the shape distributions, radius of gyration, and asphericity of ideal polymers in a theta solvent. With increased nanoparticle crowding, we find that polymers become more compact (smaller, more spherical), in agreement with predictions of free-volume theory. Our approach can be easily extended to nonideal polymers in good solvents and used to model conformations of biopolymers in crowded environments.

  11. Polymer crowding and shape distributions in polymer-nanoparticle mixtures

    International Nuclear Information System (INIS)

    Lim, Wei Kang; Denton, Alan R.

    2014-01-01

    Macromolecular crowding can influence polymer shapes, which is important for understanding the thermodynamic stability of polymer solutions and the structure and function of biopolymers (proteins, RNA, DNA) under confinement. We explore the influence of nanoparticle crowding on polymer shapes via Monte Carlo simulations and free-volume theory of a coarse-grained model of polymer-nanoparticle mixtures. Exploiting the geometry of random walks, we model polymer coils as effective penetrable ellipsoids, whose shapes fluctuate according to the probability distributions of the eigenvalues of the gyration tensor. Accounting for the entropic cost of a nanoparticle penetrating a larger polymer coil, we compute the crowding-induced shift in the shape distributions, radius of gyration, and asphericity of ideal polymers in a theta solvent. With increased nanoparticle crowding, we find that polymers become more compact (smaller, more spherical), in agreement with predictions of free-volume theory. Our approach can be easily extended to nonideal polymers in good solvents and used to model conformations of biopolymers in crowded environments

  12. Industrial based volume manufacturing of lightweight aluminium alloy panel components with high-strength and complex-shape for car body and chassis structures

    Science.gov (United States)

    Anyasodor, Gerald; Koroschetz, Christian

    2017-09-01

    To achieve the high volume manufacture of lightweight passenger cars at economic cost as required in the automotive industry, low density materials and new process route will be needed. While high strength aluminium alloy grades: AA7075 and AA6082 may provide the alternative material solution, hot stamping process used for high-strength and ultrahigh strength steels such as boron steel 22mnb5 can enable the volume manufacture of panel components with high-strength and complex-shape for car body and chassis structures. These aluminium alloy grades can be used to manufacture panel components with possible yield strengths ≥ 500 MPa. Due to the differences in material behaviors, hot stamping process of 22mnb5 cannot be directly applied to high strength aluminium alloy grades. Despite recorded successes in laboratories, researches and niche hot forming processes of high strength aluminium alloy grades, not much have been achieved for adequate and efficient volume manufacturing system applicable in the automotive industry. Due to lack of such system and based on expert knowledge in hot stamping production-line, AP&T presents in this paper a hot stamping processing route for high strength aluminium alloys been suitable for production-line development and volume manufacturing.

  13. Prediction of Process-Induced Distortions in L-Shaped Composite Profiles Using Path-Dependent Constitutive Law

    Science.gov (United States)

    Ding, Anxin; Li, Shuxin; Wang, Jihui; Ni, Aiqing; Sun, Liangliang; Chang, Lei

    2016-10-01

    In this paper, the corner spring-in angles of AS4/8552 L-shaped composite profiles with different thicknesses are predicted using path-dependent constitutive law with the consideration of material properties variation due to phase change during curing. The prediction accuracy mainly depends on the properties in the rubbery and glassy states obtained by homogenization method rather than experimental measurements. Both analytical and finite element (FE) homogenization methods are applied to predict the overall properties of AS4/8552 composite. The effect of fiber volume fraction on the properties is investigated for both rubbery and glassy states using both methods. And the predicted results are compared with experimental measurements for the glassy state. Good agreement is achieved between the predicted results and available experimental data, showing the reliability of the homogenization method. Furthermore, the corner spring-in angles of L-shaped composite profiles are measured experimentally and the reliability of path-dependent constitutive law is validated as well as the properties prediction by FE homogenization method.

  14. Electrostatics-driven shape transitions in soft shells.

    Science.gov (United States)

    Jadhao, Vikram; Thomas, Creighton K; Olvera de la Cruz, Monica

    2014-09-02

    Manipulating the shape of nanoscale objects in a controllable fashion is at the heart of designing materials that act as building blocks for self-assembly or serve as targeted drug delivery carriers. Inducing shape deformations by controlling external parameters is also an important way of designing biomimetic membranes. In this paper, we demonstrate that electrostatics can be used as a tool to manipulate the shape of soft, closed membranes by tuning environmental conditions such as the electrolyte concentration in the medium. Using a molecular dynamics-based simulated annealing procedure, we investigate charged elastic shells that do not exchange material with their environment, such as elastic membranes formed in emulsions or synthetic nanocontainers. We find that by decreasing the salt concentration or increasing the total charge on the shell's surface, the spherical symmetry is broken, leading to the formation of ellipsoids, discs, and bowls. Shape changes are accompanied by a significant lowering of the electrostatic energy and a rise in the surface area of the shell. To substantiate our simulation findings, we show analytically that a uniformly charged disc has a lower Coulomb energy than a sphere of the same volume. Further, we test the robustness of our results by including the effects of charge renormalization in the analysis of the shape transitions and find the latter to be feasible for a wide range of shell volume fractions.

  15. Femoral shaft bowing in the coronal plane has more significant effect on the coronal alignment of TKA than proximal or distal variations of femoral shape.

    Science.gov (United States)

    Kim, Jong-Min; Hong, Soo-Heon; Kim, Jong-Min; Lee, Bum-Sik; Kim, Dong-Eun; Kim, Kyung-Ah; Bin, Seong-Il

    2015-07-01

    The aim of this study was to determine (1) variations in the shape of the proximal, middle, and distal femur in a series of Korean patients who had undergone total knee arthroplasty (TKA), (2) the preoperative relationship between these three parameters and the distal valgus cutting angle referenced off the femoral intramedullary guide, and (3) whether there was any relationship between femoral bowing and variations in the shape of the proximal or distal femur in the coronal plane. The preoperative long-standing anteroposterior radiographs of 316 consecutive osteoarthritis patients who underwent primary TKA from 2009 to 2011 were examined. The femoral neck shaft angle, the femoral shaft bowing angle, and the mechanical lateral distal femoral angle were measured to assess the shape of the proximal, middle, and distal femur, respectively. The valgus cutting angle of the femur was defined as the angle between the distal anatomical and mechanical axes of the femur. The study population showed large variations in femoral shape. The mean femoral intramedullary guide angle was 6.5° ± 1.3° (range: 4°-13°). The femoral shaft bowing angle was the factor that showed the strongest correlation with this angle (P shaft angle showed no correlation (n.s.). The femoral shaft bowing angle showed a weak correlation with the mechanical lateral distal femoral angle (P = 0.001), but was not significantly correlated with the femoral neck shaft angle (n.s.). Apparent femoral bowing (>3° of lateral or medial bowing) was found in 42 (13.3 %) of cases (37 cases of lateral bowing and five of medial bowing). Cases with lateral apparent femoral bowing >3° had a distal cutting angle of 8.6° ± 2.2° relative to the femoral intramedullary guide. The femoral intramedullary guide angle was mainly influenced by femoral shaft bowing among femoral deformities in the coronal plane. Therefore, to increase the accuracy of distal femoral cut during TKA, it is necessary to confirm femoral

  16. Extravascular Lung Water Does Not Increase in Hypovolemic Patients after a Fluid-Loading Protocol Guided by the Stroke Volume Variation

    Directory of Open Access Journals (Sweden)

    Carlos Ferrando

    2012-01-01

    Full Text Available Introduction. Circulatory failure secondary to hypovolemia is a common situation in critical care patients. Volume replacement is the first option for the treatment of hypovolemia. A possible complication of volume loading is pulmonary edema, quantified at the bedside by the measurement of extravascular lung water index (ELWI. ELWI predicts progression to acute lung injury (ALI in patients with risk factors for developing it. The aim of this study was to assess whether fluid loading guided by the stroke volume variation (SVV, in patients presumed to be hypovolemic, increased ELWI or not. Methods. Prospective study of 17 consecutive postoperative, fully mechanically ventilated patients diagnosed with circulatory failure secondary to presumed hypovolemia were included. Cardiac index (CI, ELWI, SVV, and global end-diastolic volume index (GEDI were determined using the transpulmonary thermodilution technique during the first 12 hours after fluid loading. Volume replacement was done with a strict hemodynamic protocol. Results. Fluid loading produced a significant increase in CI and a decrease in SVV. ELWI did not increase. No correlation was found between the amount of fluids administered and the change in ELWI. Conclusion. Fluid loading guided by SVV in hypovolemic and fully mechanically ventilated patients in sinus rhythm does not increase ELWI.

  17. 3D Shape Perception in Posterior Cortical Atrophy: A Visual Neuroscience Perspective

    Science.gov (United States)

    Gillebert, Céline R.; Schaeverbeke, Jolien; Bastin, Christine; Neyens, Veerle; Bruffaerts, Rose; De Weer, An-Sofie; Seghers, Alexandra; Sunaert, Stefan; Van Laere, Koen; Versijpt, Jan; Vandenbulcke, Mathieu; Salmon, Eric; Todd, James T.; Orban, Guy A.

    2015-01-01

    Posterior cortical atrophy (PCA) is a rare focal neurodegenerative syndrome characterized by progressive visuoperceptual and visuospatial deficits, most often due to atypical Alzheimer's disease (AD). We applied insights from basic visual neuroscience to analyze 3D shape perception in humans affected by PCA. Thirteen PCA patients and 30 matched healthy controls participated, together with two patient control groups with diffuse Lewy body dementia (DLBD) and an amnestic-dominant phenotype of AD, respectively. The hierarchical study design consisted of 3D shape processing for 4 cues (shading, motion, texture, and binocular disparity) with corresponding 2D and elementary feature extraction control conditions. PCA and DLBD exhibited severe 3D shape-processing deficits and AD to a lesser degree. In PCA, deficient 3D shape-from-shading was associated with volume loss in the right posterior inferior temporal cortex. This region coincided with a region of functional activation during 3D shape-from-shading in healthy controls. In PCA patients who performed the same fMRI paradigm, response amplitude during 3D shape-from-shading was reduced in this region. Gray matter volume in this region also correlated with 3D shape-from-shading in AD. 3D shape-from-disparity in PCA was associated with volume loss slightly more anteriorly in posterior inferior temporal cortex as well as in ventral premotor cortex. The findings in right posterior inferior temporal cortex and right premotor cortex are consistent with neurophysiologically based models of the functional anatomy of 3D shape processing. However, in DLBD, 3D shape deficits rely on mechanisms distinct from inferior temporal structural integrity. SIGNIFICANCE STATEMENT Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by progressive visuoperceptual dysfunction and most often an atypical presentation of Alzheimer's disease (AD) affecting the ventral and dorsal visual streams rather than the medial

  18. 3D Shape Perception in Posterior Cortical Atrophy: A Visual Neuroscience Perspective.

    Science.gov (United States)

    Gillebert, Céline R; Schaeverbeke, Jolien; Bastin, Christine; Neyens, Veerle; Bruffaerts, Rose; De Weer, An-Sofie; Seghers, Alexandra; Sunaert, Stefan; Van Laere, Koen; Versijpt, Jan; Vandenbulcke, Mathieu; Salmon, Eric; Todd, James T; Orban, Guy A; Vandenberghe, Rik

    2015-09-16

    Posterior cortical atrophy (PCA) is a rare focal neurodegenerative syndrome characterized by progressive visuoperceptual and visuospatial deficits, most often due to atypical Alzheimer's disease (AD). We applied insights from basic visual neuroscience to analyze 3D shape perception in humans affected by PCA. Thirteen PCA patients and 30 matched healthy controls participated, together with two patient control groups with diffuse Lewy body dementia (DLBD) and an amnestic-dominant phenotype of AD, respectively. The hierarchical study design consisted of 3D shape processing for 4 cues (shading, motion, texture, and binocular disparity) with corresponding 2D and elementary feature extraction control conditions. PCA and DLBD exhibited severe 3D shape-processing deficits and AD to a lesser degree. In PCA, deficient 3D shape-from-shading was associated with volume loss in the right posterior inferior temporal cortex. This region coincided with a region of functional activation during 3D shape-from-shading in healthy controls. In PCA patients who performed the same fMRI paradigm, response amplitude during 3D shape-from-shading was reduced in this region. Gray matter volume in this region also correlated with 3D shape-from-shading in AD. 3D shape-from-disparity in PCA was associated with volume loss slightly more anteriorly in posterior inferior temporal cortex as well as in ventral premotor cortex. The findings in right posterior inferior temporal cortex and right premotor cortex are consistent with neurophysiologically based models of the functional anatomy of 3D shape processing. However, in DLBD, 3D shape deficits rely on mechanisms distinct from inferior temporal structural integrity. Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by progressive visuoperceptual dysfunction and most often an atypical presentation of Alzheimer's disease (AD) affecting the ventral and dorsal visual streams rather than the medial temporal system. We applied

  19. Alternative free volume models and positron cages for the characterisation of nanoporosity in materials

    International Nuclear Information System (INIS)

    Felix, M.V.; Morones, R.; Castano, V.M.

    2004-01-01

    Three semi-empirical positron stationary Quantum Models were developed for the study of nanoporosity in a wide range of solid porous materials. The cubic, conic and cylindrical well potentials were considered and their geometric parameters related to the Positron Annihilation LifeTime (PALT) measurements. If a conic or a cubic symmetry is assumed, a resonance lifetime phenomenon was found, which enables proposal of a technique to catch positrons in free volume sites. In the cylindrical case, an alternative method to determine free volume sizes in materials was developed. The free volume equations of these new models were then compared to the well-known and widely utilised Spherical Free Volume Model (SFVM) and remarkable differences were found. A strong variation of the free volume size-positron lifetime relation with the geometry involved was observed and a remarkable dependence of the electron layer thickness parameter ΔR with the hole-shape under study and with the nature of the material considered. The mathematical functions appearing in the conic and cylindrical cases are the superposition of Bessel functions of the first kind and trigonometric functions in the cubic case. Generalised free volume diagrams were constructed and a brief geometrical scheme of the diverse cases considered was obtained. (author)

  20. Detecting global and local hippocampal shape changes in Alzheimer's disease using statistical shape models

    NARCIS (Netherlands)

    Shen, Kai-kai; Fripp, Jurgen; Mériaudeau, Fabrice; Chételat, Gaël; Salvado, Olivier; Bourgeat, Pierrick; Saradha, A.; Abdi, Hervé; Abdulkadir, Ahmed; Acharya, Deepa; Achuthan, Anusha; Adluru, Nagesh; Aghajanian, Jania; Agrusti, Antonella; Agyemang, Alex; Ahdidan, Jamila; Ahmad, Duaa; Ahmed, Shiek; Aisen, Paul; Akhondi-Asl, Alireza; Aksu, Yaman; Alberca, Roman; Alcauter, Sarael; Alexander, Daniel; Alin, Aylin; Almeida, Fabio; Alvarez-Lineara, Juan; Amlien, Inge; Anand, Shyam; Anderson, Dallas; Ang, Amma; Angersbach, Steve; Ansarian, Reza; Aoyama, Eiji; Appannah, Arti; Arfanakis, Konstantinos; Armor, Tom; Arrighi, Michael; Arumughababu, S. Vethanayaki; Arunagiri, Vidhya; Ashe-McNalley, Cody; Ashford, Wes; Le Page, Aurelie; Avants, Brian; Aviv, Richard; Awasthi, Sukrati; Ayache, Nicholas; Chen, Wei; Richard, Edo; Schmand, Ben

    2012-01-01

    The hippocampus is affected at an early stage in the development of Alzheimer's disease (AD). With the use of structural magnetic resonance (MR) imaging, we can investigate the effect of AD on the morphology of the hippocampus. The hippocampal shape variations among a population can be usually

  1. Prostate Contouring Variation: Can It Be Fixed?

    International Nuclear Information System (INIS)

    Khoo, Eric L.H.; Schick, Karlissa; Plank, Ashley W.; Poulsen, Michael; Wong, Winnie W.G.; Middleton, Mark; Martin, Jarad M.

    2012-01-01

    Purpose: To assess whether an education program on CT and MRI prostate anatomy would reduce inter- and intraobserver prostate contouring variation among experienced radiation oncologists. Methods and Materials: Three patient CT and MRI datasets were selected. Five radiation oncologists contoured the prostate for each patient on CT first, then MRI, and again between 2 and 4 weeks later. Three education sessions were then conducted. The same contouring process was then repeated with the same datasets and oncologists. The observer variation was assessed according to changes in the ratio of the encompassing volume to intersecting volume (volume ratio [VR]), across sets of target volumes. Results: For interobserver variation, there was a 15% reduction in mean VR with CT, from 2.74 to 2.33, and a 40% reduction in mean VR with MRI, from 2.38 to 1.41 after education. A similar trend was found for intraobserver variation, with a mean VR reduction for CT and MRI of 9% (from 1.51 to 1.38) and 16% (from 1.37 to 1.15), respectively. Conclusion: A well-structured education program has reduced both inter- and intraobserver prostate contouring variations. The impact was greater on MRI than on CT. With the ongoing incorporation of new technologies into routine practice, education programs for target contouring should be incorporated as part of the continuing medical education of radiation oncologists.

  2. Inclusive jet cross sections and jet shapes at CDF

    International Nuclear Information System (INIS)

    Wainer, N.

    1991-09-01

    The inclusive jet cross section and jet shapes at √s = 1.8 TeV have been measured by CDF at the Fermilab Tevatron Collider. results are compared to recent next-to-leading order QCD calculations, which predict variation of the cross section with cone size, as well as variation of the jet shape with energy. A lower limit on the parameter Λ c , which characterize a contact interaction associated with quark sub-structure is determined to be 1400 GeV at the 95% confidence level. 3 refs., 4 figs

  3. Skull shapes of the Lissodelphininae: radiation, adaptation and asymmetry.

    Science.gov (United States)

    Galatius, Anders; Goodall, R Natalie P

    2016-06-01

    Within Delphinidae, the sub-family Lissodelphininae consists of 8 Southern Ocean species and 2 North Pacific species. Lissodelphininae is a result of recent phylogenetic revisions based on molecular methods. Thus, morphological radiation within the taxon has not been investigated previously. The sub-family consists of ecologically diverse groups such as (1) the Cephalorhynchus genus of 4 small species inhabiting coastal and shelf waters, (2) the robust species in the Lagenorhynchus genus with the coastal La. australis, the offshore La. cruciger, the pelagic species La. obscurus and La. obliquidens, and (3) the morphologically aberrant genus Lissodelphis. Here, the shapes of 164 skulls from adults of all 10 species were compared using 3-dimensional geometric morphometrics. The Lissodelphininae skulls were supplemented by samples of Lagenorhynchus albirostris and Delphinus delphis to obtain a context for the variation found within the subfamily. Principal components analysis was used to map the most important components of shape variation on phylogeny. The first component of shape variation described an elongation of the rostrum, lateral and dorsoventral compression of the neurocranium and smaller temporal fossa. The two Lissodelphis species were on the high extreme of this spectrum, while Lagenorhynchus australis, La. cruciger and Cephalorhynchus heavisidii were at the low extreme. Along the second component, La. cruciger was isolated from the other species by its expanded neurocranium and concave facial profile. Shape variation supports the gross phylogenetic relationships proposed by recent molecular studies. However, despite the great diversity of ecology and external morphology within the subfamily, shape variation of the feeding apparatus was modest, indicating a similar mode of feeding across the subfamily. All 10 species were similar in their pattern of skull asymmetry, but interestingly, two species using narrowband high frequency clicks (La. cruciger and C

  4. A comparative study of set up variations and bowel volumes in supine versus prone positions of patients treated with external beam radiation for carcinoma rectum.

    Science.gov (United States)

    Rajeev, K R; Menon, Smrithy S; Beena, K; Holla, Raghavendra; Kumar, R Rajaneesh; Dinesh, M

    2014-01-01

    A prospective study was undertaken to evaluate the influence of patient positioning on the set up variations to determine the planning target volume (PTV) margins and to evaluate the clinical relevance volume assessment of the small bowel (SB) within the irradiated volume. During the period of months from December 2011 to April 2012, a computed tomography (CT) scan was done either in supine position or in prone position using a belly board (BB) for 20 consecutive patients. All the patients had histologically proven rectal cancer and received either post- or pre-operative pelvic irradiation. Using a three-dimensional planning system, the dose-volume histogram for SB was defined in each axial CT slice. Total dose was 46-50 Gy (2 Gy/fraction), delivered using the 4-field box technique. The set up variation of the study group was assessed from the data received from the electronic portal imaging device in the linear accelerator. The shift along X, Y, and Z directions were noted. Both systematic and random errors were calculated and using both these values the PTV margin was calculated. The systematic errors of patients treated in the supine position were 0.87 (X-mm), 0.66 (Y-mm), 1.6 (Z-mm) and in the prone position were 1.3 (X-mm), 0.59 (Y-mm), 1.17 (Z-mm). The random errors of patients treated in the supine positions were 1.81 (X-mm), 1.73 (Y-mm), 1.83 (Z-mm) and in prone position were 2.02 (X-mm), 1.21 (Y-mm), 3.05 (Z-mm). The calculated PTV margins in the supine position were 3.45 (X-mm), 2.87 (Y-mm), 5.31 (Z-mm) and in the prone position were 4.91 (X-mm), 2.32 (Y-mm), 5.08 (Z-mm). The mean volume of the peritoneal cavity was 648.65 cm 3 in the prone position and 1197.37 cm 3 in the supine position. The prone position using BB device was more effective in reducing irradiated SB volume in rectal cancer patients. There were no significant variations in the daily set up for patients treated in both supine and prone positions.

  5. Volume estimation of extensor muscles of the lower leg based on MR imaging

    International Nuclear Information System (INIS)

    Lund, Hans; Christensen, Line; Savnik, Anette; Danneskiold-Samsoee, Bente; Bliddal, Henning; Boesen, Jens

    2002-01-01

    Magnetic resonance imaging can be used to measure the muscle volume of a given muscle or muscle group. The purpose of this study was to determine both the intra- and inter-observer variation of the manually outlined volume of the extensor muscles (tibialis anterior, extensor digitorum longus and extensor hallucis longus), to estimate the minimum number of slices needed for these calculations and to compare estimates of volume based on an assumed conic shape of the muscles with that of an assumed cylindrical shape, the calculation in both cases based on the Cavalieri principle. Eleven young and healthy subjects (4 women and 7 men, age range 24-40 years) participated. Magnetic resonance imaging of the left leg was obtained on a 1.5-T MR system using a knee coil (receive only). A total of 50 consecutive slices were obtained beginning 10 cm below the caput fibula sin. and proceeding distally with a slice thickness of 1.5 mm without gap. The intra-class correlation coefficient (ICC) was used to calculate the relative reliability (interval from 0 to 1.0). A high reliability for both intra- and inter-reliability was observed (ICC 0.98 and 1.0). The difference was only 0.004% between calculations based on measurement of all 50 slices with respect to 8 slices equally distributed along the muscle group. No difference was found between the two different volumetric assumptions in the Cavalieri principle. The manually outlining of extensor muscles volumes was reliable and only 8 slices of the calf were needed. No difference was seen between the two used mathematical calculations. (orig.)

  6. Variation of Red Blood Cell Distribution Width and Mean Platelet Volume after Moderate Endurance Exercise

    Directory of Open Access Journals (Sweden)

    Giuseppe Lippi

    2014-01-01

    Full Text Available Although physical exercise strongly influences several laboratory parameters, data about the hematological changes after medium distance running are scarce. We studied 31 middle-trained athletes (mean training regimen 217±32 min/week who performed a 21.1 km, half-marathon run. Blood samples were collected before the run, at the end, and 3 and 20 hours thereafter. The complete blood count was performed on Advia 2120 and included red blood cell (RBC, reticulocyte, and platelet counts; hemoglobin; mean corpuscular volume (MCV; mean corpuscular hemoglobin (MCH; reticulocyte haemoglobin content (Ret CHR; RBC distribution width (RDW, mean platelet volume (MPV. No significant variations were observed for MCH and Ret CHR. The RBC, reticulocyte, and hemoglobin values modestly decreased after the run. The MCV significantly increased at the end of running but returned to baseline 3 hours thereafter. The RDW constantly increased, reaching a peak 20 hours after the run. The platelet count and MPV both increased after the run and returned to baseline 3 hours thereafter. These results may have implications for definition of reference ranges and antidoping testing, and may also contribute to explaining the relationship between endurance exercise and mortality, since previous studies reported that RDW and MPV may be significantly associated with cardiovascular disease.

  7. 3D shape extraction segmentation and representation of soil microstructures using generalized cylinders

    Science.gov (United States)

    Ngom, Ndèye Fatou; Monga, Olivier; Ould Mohamed, Mohamed Mahmoud; Garnier, Patricia

    2012-02-01

    This paper focuses on the modeling of soil microstructures using generalized cylinders, with a specific application to pore space. The geometric modeling of these microstructures is a recent area of study, made possible by the improved performance of computed tomography techniques. X-scanners provide very-high-resolution 3D volume images ( 3-5μm) of soil samples in which pore spaces can be extracted by thresholding. However, in most cases, the pore space defines a complex volume shape that cannot be approximated using simple analytical functions. We propose representing this shape using a compact, stable, and robust piecewise approximation by means of generalized cylinders. This intrinsic shape representation conserves its topological and geometric properties. Our algorithm includes three main processing stages. The first stage consists in describing the volume shape using a minimum number of balls included within the shape, such that their union recovers the shape skeleton. The second stage involves the optimum extraction of simply connected chains of balls. The final stage copes with the approximation of each simply optimal chain using generalized cylinders: circular generalized cylinders, tori, cylinders, and truncated cones. This technique was applied to several data sets formed by real volume computed tomography soil samples. It was possible to demonstrate that our geometric representation supplied a good approximation of the pore space. We also stress the compactness and robustness of this method with respect to any changes affecting the initial data, as well as its coherence with the intuitive notion of pores. During future studies, this geometric pore space representation will be used to simulate biological dynamics.

  8. Ecological and evolutionary influences on body size and shape in the Galápagos marine iguana (Amblyrhynchus cristatus).

    Science.gov (United States)

    Chiari, Ylenia; Glaberman, Scott; Tarroso, Pedro; Caccone, Adalgisa; Claude, Julien

    2016-07-01

    Oceanic islands are often inhabited by endemic species that have undergone substantial morphological evolutionary change due to processes of multiple colonizations from various source populations, dispersal, and local adaptation. Galápagos marine iguanas are an example of an island endemic exhibiting high morphological diversity, including substantial body size variation among populations and sexes, but the causes and magnitude of this variation are not well understood. We obtained morphological measurements from marine iguanas throughout their distribution range. These data were combined with genetic and local environmental data from each population to investigate the effects of evolutionary history and environmental conditions on body size and shape variation and sexual dimorphism. Our results indicate that body size and shape are highly variable among populations. Sea surface temperature and island perimeter, but not evolutionary history as depicted by phylogeographic patterns in this species, explain variation in body size among populations. Conversely, evolutionary history, but not environmental parameters or island size, was found to influence variation in body shape among populations. Finally, in all populations except one, we found strong sexual dimorphism in body size and shape in which males are larger, with higher heads than females, while females have longer heads than males. Differences among populations suggest that plasticity and/or genetic adaptation may shape body size and shape variation in marine iguanas. This study will help target future investigations to address the contribution of plasticity versus genetic adaptation on size and shape variation in marine iguanas.

  9. Effect of Combustion-chamber Shape on the Performance of a Prechamber Compression-ignition Engine

    Science.gov (United States)

    Moore, C S; Collins, J H , Jr

    1934-01-01

    The effect on engine performance of variations in the shape of the prechamber, the shape and direction of the connecting passage, the chamber volume using a tangential passage, the injection system, and the direction od the fuel spray in the chamber was investigated using a 5 by 7 inch single-cylinder compression-ignition engine. The results show that the performance of this engine can be considerably improved by selecting the best combination of variables and incorporating them in a single design. The best combination as determined from these tests consisted of a disk-shaped chamber connected to the cylinder by means of a flared tangential passage. The fuel was injected through a single-orifice nozzle directed normal to the air swirl and in the same plane. At an engine speed of 1,500 r.p.m. and with the theoretical fuel quantity for no excess air, the engine developed a brake mean effective pressure of 115 pounds per square inch with a fuel consumption of 0.49 pound per brake horsepower-hour and an explosion pressure of 820 pounds per square inch. A brake mean effective pressure of 100 pounds per square inch with a brake-fuel consumption of 0.44 pound per horsepower-hour at 1,500 r.p.m. was obtained.

  10. Bladder filling variation during conformal radiotherapy for rectal cancer

    Science.gov (United States)

    Sithamparam, S.; Ahmad, R.; Sabarudin, A.; Othman, Z.; Ismail, M.

    2017-05-01

    Conformal radiotherapy for rectal cancer is associated with small bowel toxicity mainly diarrhea. Treating patients with a full bladder is one of the practical solutions to reduce small bowel toxicity. Previous studies on prostate and cervix cancer patients revealed that maintaining consistent bladder volume throughout radiotherapy treatment is challenging. The aim of this study was to measure bladder volume variation throughout radiotherapy treatment. This study also measured the association between bladder volume changes and diarrhea. Twenty two rectal cancer patients were recruited prospectively. Patients were planned for treatment with full bladder following departmental bladder filling protocol and the planning bladder volume was measured during CT-simulation. During radiotherapy, the bladder volume was measured weekly using cone-beam computed tomography (CBCT) and compared to planning bladder volume. Incidence and severity of diarrhea were recorded during the weekly patient review. There was a negative time trend for bladder volume throughout five weeks treatment. The mean bladder volume decreased 18 % from 123 mL (SD 54 mL) during CT-simulation to 101 mL (SD 71 mL) on the 5th week of radiotherapy, but the decrease is not statistically significant. However, there was a large variation of bladder volume within each patient during treatment. This study showed an association between changes of bladder volume and diarrhea (P = 0.045). In conclusion bladder volume reduced throughout radiotherapy treatment for conformal radiotherapy for rectal cancer and there was a large variation of bladder volume within patients.

  11. Bladder filling variation during conformal radiotherapy for rectal cancer

    International Nuclear Information System (INIS)

    Sithamparam, S; Ahmad, R; Sabarudin, A; Othman, Z; Ismail, M

    2017-01-01

    Conformal radiotherapy for rectal cancer is associated with small bowel toxicity mainly diarrhea. Treating patients with a full bladder is one of the practical solutions to reduce small bowel toxicity. Previous studies on prostate and cervix cancer patients revealed that maintaining consistent bladder volume throughout radiotherapy treatment is challenging. The aim of this study was to measure bladder volume variation throughout radiotherapy treatment. This study also measured the association between bladder volume changes and diarrhea. Twenty two rectal cancer patients were recruited prospectively. Patients were planned for treatment with full bladder following departmental bladder filling protocol and the planning bladder volume was measured during CT-simulation. During radiotherapy, the bladder volume was measured weekly using cone-beam computed tomography (CBCT) and compared to planning bladder volume. Incidence and severity of diarrhea were recorded during the weekly patient review. There was a negative time trend for bladder volume throughout five weeks treatment. The mean bladder volume decreased 18 % from 123 mL (SD 54 mL) during CT-simulation to 101 mL (SD 71 mL) on the 5th week of radiotherapy, but the decrease is not statistically significant. However, there was a large variation of bladder volume within each patient during treatment. This study showed an association between changes of bladder volume and diarrhea (P = 0.045). In conclusion bladder volume reduced throughout radiotherapy treatment for conformal radiotherapy for rectal cancer and there was a large variation of bladder volume within patients. (paper)

  12. Midsagittal Brain Shape Correlation with Intelligence and Cognitive Performance

    Science.gov (United States)

    Bruner, Emiliano; Martin-Loeches, Manuel; Burgaleta, Miguel; Colom, Roberto

    2011-01-01

    Brain shape might influence cognitive performance because of the relationships between functions, spatial organization, and differential volumetric development of cortical areas. Here we analyze the relationships between midsagittal brain shape variation and a set of basic psychological measures. Coordinates in 2D from 102 MRI-scanned young adult…

  13. Killer whale morphology - Variation in morphology of killer whale ecotypes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We are using elliptic Fourier analysis to determine the patterns of variation in morphology of dorsal fin shape, saddle patch shape, and eye patch shape of resident,...

  14. Shape and Texture Based Classification of Fish Species

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Ólafsdóttir, Hildur; Ersbøll, Bjarne Kjær

    2009-01-01

    In this paper we conduct a case study of ¯sh species classi- fication based on shape and texture. We consider three fish species: cod, haddock, and whiting. We derive shape and texture features from an appearance model of a set of training data. The fish in the training images were manual outlined......, and a few features including the eye and backbone contour were also annotated. From these annotations an optimal MDL curve correspondence and a subsequent image registration were derived. We have analyzed a series of shape and texture and combined shape and texture modes of variation for their ability...

  15. Effect of gas expansion on the front shape of a Taylor bubble: an experimental contribution

    Directory of Open Access Journals (Sweden)

    Santos Laura

    2014-03-01

    Full Text Available An experimental study where an individual Taylor bubble rises through water with different bubble volume expansion rates is presented with the (front bubble shape determination as main objective. A combination of two techniques, Particle Image Velocimetry (PIV and Pulsed Shadowgraphy (PS, was used to collect images for further treatment in order to characterize the liquid flow pattern in front of the bubble and the bubble shape. Processing the images acquired with pulsed illumination from behind the bubble it was possible to define with precision the bubble shape at different stages when it was expanding. The operation conditions used allowed a wide range of volume expansion rates (0 to 28.5 × 10-6 m3/s with a significant effect on the Taylor bubble velocity; increases in bubble velocity up to 21% were observed relatively to constant volume system condition. Nevertheless, it seems that the front shape of Taylor bubbles does not change significantly with the upward liquid flow rates induced by gas expansion, at least for the volume expansion rates used in the experiments.

  16. Constructal tree-shaped flow structures

    International Nuclear Information System (INIS)

    Bejan, A.; Lorente, S.

    2007-01-01

    This paper is an introduction to a new trend in the conceptual design of energy systems: the generation of flow configuration based on the 'constructal' principle that the global performance is maximized by balancing and arranging the various flow resistances (the irreversibilities) in a flow system that is free to morph. The paper focuses on distribution and collection, which are flows that connect one point (source, or sink) with an infinity of points (volume, area, curve). The flow configurations that emerge from this principle are tree-shaped, and the systems that employ them are 'vascularized'. The paper traces the most recent progress made on constructal vascularization. The direction is from large-scale applications toward microscales. The large-scale tree-shaped designs of electric power distribution systems and networks for natural gas and water are now invading small-scale designs such as fuel cells, heat exchangers and cooled packages of electronics. These flow configurations have several properties in common: freedom to morph, multiple scales, hierarchy, nonuniform (optimal) distribution of scales through the available volume, compactness and finite complexity

  17. The African Genome Variation Project shapes medical genetics in Africa

    Science.gov (United States)

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O.; Choudhury, Ananyo; Ritchie, Graham R. S.; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N.; Young, Elizabeth H.; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P.; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A.; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S.

    2015-01-01

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.

  18. The African Genome Variation Project shapes medical genetics in Africa.

    Science.gov (United States)

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O; Choudhury, Ananyo; Ritchie, Graham R S; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N; Young, Elizabeth H; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S

    2015-01-15

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.

  19. Pixel-by-pixel analysis of DCE-MRI curve shape patterns in knees of active and inactive juvenile idiopathic arthritis patients

    International Nuclear Information System (INIS)

    Hemke, Robert; Lavini, Cristina; Maas, Mario; Nusman, Charlotte M.; Berg, J.M. van den; Schonenberg-Meinema, Dieneke; Kuijpers, Taco W.; Dolman, Koert M.; Rossum, Marion A.J. van

    2014-01-01

    To compare DCE-MRI parameters and the relative number of time-intensity curve (TIC) shapes as derived from pixel-by-pixel DCE-MRI TIC shape analysis between knees of clinically active and inactive juvenile idiopathic arthritis (JIA) patients. DCE-MRI data sets were prospectively obtained. Patients were classified into two clinical groups: active disease (n = 43) and inactive disease (n = 34). Parametric maps, showing seven different TIC shape types, were created per slice. Statistical measures of different TIC shapes, maximal enhancement (ME), maximal initial slope (MIS), initial area under the curve (iAUC), time-to-peak (TTP), enhancing volume (EV), volume transfer constant (K trans ), extravascular space fractional volume (V e ) and reverse volume transfer constant (k ep ) of each voxel were calculated in a three-dimensional volume-of-interest of the synovial membrane. Imaging findings from 77 JIA patients were analysed. Significantly higher numbers of TIC shape 4 (P = 0.008), median ME (P = 0.015), MIS (P = 0.001) and iAUC (P = 0.002) were observed in clinically active compared with inactive patients. TIC shape 5 showed higher presence in the clinically inactive patients (P = 0.036). The pixel-by-pixel DCE-MRI TIC shape analysis method proved capable of differentiating clinically active from inactive JIA patients by the difference in the number of TIC shapes, as well as the descriptive parameters ME, MIS and iAUC. (orig.)

  20. Investigation of Interfraction Variations of MammoSite Balloon Applicator in High-Dose-Rate Brachytherapy of Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Kim, Yongbok; Johnson, Mark M.S.; Trombetta, Mark G.; Parda, David S.; Miften, Moyed

    2008-01-01

    Purpose: To measure the interfraction changes of the MammoSite applicator and evaluate their dosimetric effect on target coverage and sparing of organs at risk. Methods and Materials: A retrospective evaluation of the data from 19 patients who received 10 fractions (34 Gy) of high-dose-rate partial breast irradiation was performed. A computed tomography-based treatment plan was generated for Fraction 1, and a computed tomography scan was acquired just before the delivery of each fraction to ensure a consistent shape of the balloon. The eccentricity, asymmetry, and planning target volume (PTV) for plan evaluation purposes (PTV E VAL), as well as trapped air gaps, were measured for all patients. Furthermore, 169 computed tomography-based treatment plans were retrospectively generated for Fractions 2-10. Interfraction dosimetric variations were evaluated using the %PTV E VAL coverage, target dose homogeneity index, target dose conformal index, and maximum doses to the organs at risks. Results: The average variation of eccentricity and asymmetry from Fraction 1 values of 3.5% and 1.1 mm was -0.4% ± 1.6% and -0.1 ± 0.6 mm. The average trapped air gap volume was dramatically reduced from before treatment (3.7 cm 3 ) to Fraction 1 (0.8 cm 3 ). The PTV E VAL volume change was insignificant. The average variation for the %PTV E VAL, target dose homogeneity, and target dose conformal index from Fraction 1 values of 94.7%, 0.64, and 0.85 was 0.15% ± 2.4%, -0.35 ± 2.4%, and -0.34 ± 4.9%, respectively. The average Fraction 1 maximum skin and ipsilateral lung dose of 3.2 Gy and 2.0 Gy varied by 0.08 ± 0.47 and -0.16 ± 0.29 Gy, respectively. Conclusion: The interfraction variations were patient specific and fraction dependent. Although the average interfraction dose variations for the target and organs at risk were not clinically significant, the maximum variations could be clinically significant

  1. Modeling the behaviour of shape memory materials under large deformations

    Science.gov (United States)

    Rogovoy, A. A.; Stolbova, O. S.

    2017-06-01

    In this study, the models describing the behavior of shape memory alloys, ferromagnetic materials and polymers have been constructed, using a formalized approach to develop the constitutive equations for complex media under large deformations. The kinematic and constitutive equations, satisfying the principles of thermodynamics and objectivity, have been derived. The application of the Galerkin procedure to the systems of equations of solid mechanics allowed us to obtain the Lagrange variational equation and variational formulation of the magnetostatics problems. These relations have been tested in the context of the problems of finite deformation in shape memory alloys and ferromagnetic materials during forward and reverse martensitic transformations and in shape memory polymers during forward and reverse relaxation transitions from a highly elastic to a glassy state.

  2. Lighting design for globally illuminated volume rendering.

    Science.gov (United States)

    Zhang, Yubo; Ma, Kwan-Liu

    2013-12-01

    With the evolution of graphics hardware, high quality global illumination becomes available for real-time volume rendering. Compared to local illumination, global illumination can produce realistic shading effects which are closer to real world scenes, and has proven useful for enhancing volume data visualization to enable better depth and shape perception. However, setting up optimal lighting could be a nontrivial task for average users. There were lighting design works for volume visualization but they did not consider global light transportation. In this paper, we present a lighting design method for volume visualization employing global illumination. The resulting system takes into account view and transfer-function dependent content of the volume data to automatically generate an optimized three-point lighting environment. Our method fully exploits the back light which is not used by previous volume visualization systems. By also including global shadow and multiple scattering, our lighting system can effectively enhance the depth and shape perception of volumetric features of interest. In addition, we propose an automatic tone mapping operator which recovers visual details from overexposed areas while maintaining sufficient contrast in the dark areas. We show that our method is effective for visualizing volume datasets with complex structures. The structural information is more clearly and correctly presented under the automatically generated light sources.

  3. Low-Gain Circularly Polarized Antenna with Torus-Shaped Pattern

    Science.gov (United States)

    Amaro, Luis R.; Kruid, Ronald C.; Vacchione, Joseph D.; Prata, Aluizio

    2012-01-01

    The Juno mission to Jupiter requires an antenna with a torus-shaped antenna pattern with approximately 6 dBic gain and circular polarization over the Deep Space Network (DSN) 7-GHz transmit frequency and the 8-GHz receive frequency. Given the large distances that accumulate en-route to Jupiter and the limited power afforded by the solar-powered vehicle, this toroidal low-gain antenna requires as much gain as possible while maintaining a beam width that could facilitate a +/-10deg edge of coverage. The natural antenna that produces a toroidal antenna pattern is the dipole, but the limited approx. = 2.2 dB peak gain would be insufficient. Here a shaped variation of the standard bicone antenna is proposed that could achieve the required gains and bandwidths while maintaining a size that was not excessive. The final geometry that was settled on consisted of a corrugated, shaped bicone, which is fed by a WR112 waveguide-to-coaxial- waveguide transition. This toroidal low-gain antenna (TLGA) geometry produced the requisite gain, moderate sidelobes, and the torus-shaped antenna pattern while maintaining a very good match over the entire required frequency range. Its "horn" geometry is also low-loss and capable of handling higher powers with large margins against multipactor breakdown. The final requirement for the antenna was to link with the DSN with circular polarization. A four-layer meander-line array polarizer was implemented; an approach that was fairly well suited to the TLGA geometry. The principal development of this work was to adapt the standard linear bicone such that its aperture could be increased in order to increase the available gain of the antenna. As one increases the aperture of a standard bicone, the phase variation across the aperture begins to increase, so the larger the aperture becomes, the greater the phase variation. In order to maximize the gain from any aperture antenna, the phase should be kept as uniform as possible. Thus, as the standard

  4. Measuring stone volume - three-dimensional software reconstruction or an ellipsoid algebra formula?

    Science.gov (United States)

    Finch, William; Johnston, Richard; Shaida, Nadeem; Winterbottom, Andrew; Wiseman, Oliver

    2014-04-01

    To determine the optimal method for assessing stone volume, and thus stone burden, by comparing the accuracy of scalene, oblate, and prolate ellipsoid volume equations with three-dimensional (3D)-reconstructed stone volume. Kidney stone volume may be helpful in predicting treatment outcome for renal stones. While the precise measurement of stone volume by 3D reconstruction can be accomplished using modern computer tomography (CT) scanning software, this technique is not available in all hospitals or with routine acute colic scanning protocols. Therefore, maximum diameters as measured by either X-ray or CT are used in the calculation of stone volume based on a scalene ellipsoid formula, as recommended by the European Association of Urology. In all, 100 stones with both X-ray and CT (1-2-mm slices) were reviewed. Complete and partial staghorn stones were excluded. Stone volume was calculated using software designed to measure tissue density of a certain range within a specified region of interest. Correlation coefficients among all measured outcomes were compared. Stone volumes were analysed to determine the average 'shape' of the stones. The maximum stone diameter on X-ray was 3-25 mm and on CT was 3-36 mm, with a reasonable correlation (r = 0.77). Smaller stones (15 mm towards scalene ellipsoids. There was no difference in stone shape by location within the kidney. As the average shape of renal stones changes with diameter, no single equation for estimating stone volume can be recommended. As the maximum diameter increases, calculated stone volume becomes less accurate, suggesting that larger stones have more asymmetric shapes. We recommend that research looking at stone clearance rates should use 3D-reconstructed stone volumes when available, followed by prolate, oblate, or scalene ellipsoid formulas depending on the maximum stone diameter. © 2013 The Authors. BJU International © 2013 BJU International.

  5. Anomalous Shape Changes of Silicon Nanopillars by Electrochemical Lithiation

    KAUST Repository

    Lee, Seok Woo

    2011-07-13

    Silicon is one of the most attractive anode materials for use in Li-ion batteries due to its ∼10 times higher specific capacity than existing graphite anodes. However, up to 400% volume expansion during reaction with Li causes particle pulverization and fracture, which results in rapid capacity fading. Although Si nanomaterials have shown improvements in electrochemical performance, there is limited understanding of how volume expansion takes place. Here, we study the shape and volume changes of crystalline Si nanopillars with different orientations upon first lithiation and discover anomalous behavior. Upon lithiation, the initially circular cross sections of nanopillars with 〈100〉, 〈110〉, and 〈111〉 axial orientations expand into cross, ellipse, and hexagonal shapes, respectively. We explain this by identifying a high-speed lithium ion diffusion channel along the 〈110〉 direction, which causes preferential volume expansion along this direction. Surprisingly, the 〈111〉 and 〈100〉 nanopillars shrink in height after partial lithiation, while 〈110〉 nanopillars increase in height. The length contraction is suggested to be due to a collapse of the {111} planes early in the lithiation process. These results give new insight into the Si volume change process and could help in designing better battery anodes. © 2011 American Chemical Society.

  6. Modelling human hard palate shape with Bézier curves.

    Directory of Open Access Journals (Sweden)

    Rick Janssen

    Full Text Available People vary at most levels, from the molecular to the cognitive, and the shape of the hard palate (the bony roof of the mouth is no exception. The patterns of variation in the hard palate are important for the forensic sciences and (palaeoanthropology, and might also play a role in speech production, both in pathological cases and normal variation. Here we describe a method based on Bézier curves, whose main aim is to generate possible shapes of the hard palate in humans for use in computer simulations of speech production and language evolution. Moreover, our method can also capture existing patterns of variation using few and easy-to-interpret parameters, and fits actual data obtained from MRI traces very well with as little as two or three free parameters. When compared to the widely-used Principal Component Analysis (PCA, our method fits actual data slightly worse for the same number of degrees of freedom. However, it is much better at generating new shapes without requiring a calibration sample, its parameters have clearer interpretations, and their ranges are grounded in geometrical considerations.

  7. Relationship between Stroke Volume Variation and Blood Transfusion during Liver Transplantation.

    Science.gov (United States)

    Choi, Jae Moon; Lee, Yoon Kyung; Yoo, Hwanhee; Lee, Sukyung; Kim, Hee Yeong; Kim, Young-Kug

    2016-01-01

    Intraoperative blood transfusion increases the risk for perioperative mortality and morbidity in liver transplant recipients. A high stroke volume variation (SVV) method has been proposed to reduce blood loss during living donor hepatectomy. Herein, we investigated whether maintaining high SVV could reduce the need for blood transfusion and also evaluated the effect of the high SVV method on postoperative outcomes in liver transplant recipients. We retrospectively analyzed 332 patients who underwent liver transplantation, divided into control (maintaining blood transfusion requirement and hemodynamic parameters, including SVV, as well as postoperative outcomes, such as incidences of acute kidney injury, durations of postoperative intensive care unit and hospital stay, and rates of 1-year mortality. Mean SVV values were 7.0% ± 1.3% in the control group (n = 288) and 11.2% ± 1.8% in the high SVV group (n = 44). The median numbers of transfused packed red blood cells and fresh frozen plasmas in the high SVV group were significantly lower than those in control group (0 vs. 2 units, P = 0.003; and 0 vs. 3 units, P = 0.033, respectively). No significant between-group differences were observed for postoperative outcomes. Maintaining high SVV can reduce the blood transfusion requirement during liver transplantation without worsening postoperative outcomes. These findings provide insights into improving perioperative management in liver transplant recipients.

  8. Genome-Wide Association Study on Male Genital Shape and Size in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Baku Takahara

    Full Text Available Male genital morphology of animals with internal fertilization and promiscuous mating systems have been one of the most diverse and rapidly evolving morphological traits. The male genital morphology in general is known to have low phenotypic and genetic variations, but the genetic basis of the male genital variation remains unclear. Drosophila melanogaster and its closely related species are morphologically very similar, but the shapes of the posterior lobe, a cuticular projection on the male genital arch are distinct from each other, representing a model system for studying the genetic basis of male genital morphology. In this study, we used highly inbred whole genome sequenced strains of D. melanogaster to perform genome wide association analysis on posterior lobe morphology. We quantified the outline shape of posterior lobes with Fourier coefficients obtained from elliptic Fourier analysis and performed principal component analysis, and posterior lobe size. The first and second principal components (PC1 and PC2 explained approximately 88% of the total variation of the posterior lobe shape. We then examined the association between the principal component scores and posterior lobe size and 1902142 single nucleotide polymorphisms (SNPs. As a result, we obtained 15, 14 and 15 SNPs for PC1, PC2 and posterior lobe size with P-values smaller than 10(-5. Based on the location of the SNPs, 13, 13 and six protein coding genes were identified as potential candidates for PC1, PC2 and posterior lobe size, respectively. In addition to the previous findings showing that the intraspecific posterior shape variation are regulated by multiple QTL with strong effects, the present study suggests that the intraspecific variation may be under polygenic regulation with a number of loci with small effects. Further studies are required for investigating whether these candidate genes are responsible for the intraspecific posterior lobe shape variation.

  9. The influence of respiratory motion on CT image volume definition

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Romero, Ruth, E-mail: rrromero@salud.madrid.org; Castro-Tejero, Pablo, E-mail: pablo.castro@salud.madrid.org [Servicio de Radiofísica y Protección Radiológica, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid (Spain)

    2014-04-15

    Purpose: Radiotherapy treatments are based on geometric and density information acquired from patient CT scans. It is well established that breathing motion during scan acquisition induces motion artifacts in CT images, which can alter the size, shape, and density of a patient's anatomy. The aim of this work is to examine and evaluate the impact of breathing motion on multislice CT imaging with respiratory synchronization (4DCT) and without it (3DCT). Methods: A specific phantom with a movable insert was used. Static and dynamic phantom acquisitions were obtained with a multislice CT. Four sinusoidal breath patterns were simulated to move known geometric structures longitudinally. Respiratory synchronized acquisitions (4DCT) were performed to generate images during inhale, intermediate, and exhale phases using prospective and retrospective techniques. Static phantom data were acquired in helical and sequential mode to define a baseline for each type of respiratory 4DCT technique. Taking into account the fact that respiratory 4DCT is not always available, 3DCT helical image studies were also acquired for several CT rotation periods. To study breath and acquisition coupling when respiratory 4DCT was not performed, the beginning of the CT image acquisition was matched with inhale, intermediate, or exhale respiratory phases, for each breath pattern. Other coupling scenarios were evaluated by simulating different phantom and CT acquisition parameters. Motion induced variations in shape and density were quantified by automatic threshold volume generation and Dice similarity coefficient calculation. The structure mass center positions were also determined to make a comparison with their theoretical expected position. Results: 4DCT acquisitions provided volume and position accuracies within ±3% and ±2 mm for structure dimensions >2 cm, breath amplitude ≤15 mm, and breath period ≥3 s. The smallest object (1 cm diameter) exceeded 5% volume variation for the breath

  10. Three-dimensional quantitative analysis of healthy foot shape: a proof of concept study.

    Science.gov (United States)

    Stanković, Kristina; Booth, Brian G; Danckaers, Femke; Burg, Fien; Vermaelen, Philippe; Duerinck, Saartje; Sijbers, Jan; Huysmans, Toon

    2018-01-01

    Foot morphology has received increasing attention from both biomechanics researches and footwear manufacturers. Usually, the morphology of the foot is quantified by 2D footprints. However, footprint quantification ignores the foot's vertical dimension and hence, does not allow accurate quantification of complex 3D foot shape. The shape variation of healthy 3D feet in a population of 31 adult women and 31 adult men who live in Belgium was studied using geometric morphometric methods. The effect of different factors such as sex, age, shoe size, frequency of sport activity, Body Mass Index (BMI), foot asymmetry, and foot loading on foot shape was investigated. Correlation between these factors and foot shape was examined using multivariate linear regression. The complex nature of a foot's 3D shape leads to high variability in healthy populations. After normalizing for scale, the major axes of variation in foot morphology are (in order of decreasing variance): arch height, combined ball width and inter-toe distance, global foot width, hallux bone orientation (valgus-varus), foot type (e.g. Egyptian, Greek), and midfoot width. These first six modes of variation capture 92.59% of the total shape variation. Higher BMI results in increased ankle width, Achilles tendon width, heel width and a thicker forefoot along the dorsoplantar axis. Age was found to be associated with heel width, Achilles tendon width, toe height and hallux orientation. A bigger shoe size was found to be associated with a narrow Achilles tendon, a hallux varus, a narrow heel, heel expansion along the posterior direction, and a lower arch compared to smaller shoe size. Sex was found to be associated with differences in ankle width, Achilles tendon width, and heel width. Frequency of sport activity was associated with Achilles tendon width and toe height. A detailed analysis of the 3D foot shape, allowed by geometric morphometrics, provides insights in foot variations in three dimensions that can not be

  11. Shape-induced anisotropy in antiferromagnetic nanoparticles

    International Nuclear Information System (INIS)

    Gomonay, O.; Kondovych, S.; Loktev, V.

    2014-01-01

    High fraction of the surface atoms considerably enhances the influence of size and shape on the magnetic and electronic properties of nanoparticles. Shape effects in ferromagnetic nanoparticles are well understood and allow us to set and control the parameters of a sample that affect its magnetic anisotropy during production. In the present paper we study the shape effects in the other widely used magnetic materials – antiferromagnets, – which possess vanishingly small or zero macroscopic magnetization. We take into account the difference between the surface and bulk magnetic anisotropy of a nanoparticle and show that the effective magnetic anisotropy depends on the particle shape and crystallographic orientation of its faces. The corresponding shape-induced contribution to the magnetic anisotropy energy is proportional to the particle volume, depends on magnetostriction, and can cause formation of equilibrium domain structure. Crystallographic orientation of the nanoparticle surface determines the type of domain structure. The proposed model allows us to predict the magnetic properties of antiferromagnetic nanoparticles depending on their shape and treatment. - Highlights: • We demonstrate that the shape effects in antiferromagnetic nanoparticles stem from the difference of surface and bulk magnetic properties combined with strong magnetoelastic coupling. • We predict shape-induced anisotropy in antiferromagnetic particles with large aspect ratio. • We predict different types of domain structures depending on the orientation of the particle faces

  12. Bilinear models for inter- and intra-patient variation of the prostate

    International Nuclear Information System (INIS)

    Jeong, Y; Radke, R J; Lovelock, D M

    2010-01-01

    We propose bilinear models for capturing and effectively decoupling the expected shape variations of an organ both across the patient population and within a specific patient. Bilinear models have been successfully introduced in other areas of computer vision, but they have rarely been used in medical imaging applications. Our particular interest is in modeling the shape variation of the prostate for potential use in radiation therapy treatment planning. Using a dataset of 204 prostate shapes contoured from CT imagery of 12 different patients, we build bilinear models and show that they can fit both training and testing shapes accurately. We also show how the bilinear model can adapt to a new patient using only a few example shapes, producing a patient-specific model that also reflects expected content variation learnt from a broader population. Finally, we evaluate the training and testing projection error, adaptation performance and image segmentation accuracy of the bilinear model compared to linear principal component analysis and hierarchical point distribution models with the same number of parameters.

  13. Does Height to Width Ratio Correlate with Mean Volume in Gastropods?

    Science.gov (United States)

    Barriga, R.; Seixas, G.; Payne, J.

    2012-12-01

    Marine organisms' shell shape and size show important biological information. For example, shape and size can dictate how the organism ranges for food and escapes predation. Due to lack of data and analysis, the evolution of shell size in marine gastropods (snails) remains poorly known. In this study, I attempt to find the relationship between height to width ratio and mean volume. I collected height and width measurements from primary literature sources and calculated volume from these measurements. My results indicate that there was no correlation between height to width ratio and mean volume between 500 to 200 Ma, but there was a correlation between 200 Ma to present where there is a steady increase in both height to width ratio and mean volume. This means that shell shape was not an important factor at the beginning of gastropod evolution but after 200 Ma body size evolution was increasingly driven by the height to width ratio.

  14. Micrometer-scale 3-D shape characterization of eight cements: Particle shape and cement chemistry, and the effect of particle shape on laser diffraction particle size measurement

    International Nuclear Information System (INIS)

    Erdogan, S.T.; Nie, X.; Stutzman, P.E.; Garboczi, E.J.

    2010-01-01

    Eight different portland cements were imaged on a synchrotron beam line at Brookhaven National Laboratory using X-ray microcomputed tomography at a voxel size of about 1 μm per cubic voxel edge. The particles ranged in size roughly between 10 μm and 100 μm. The shape and size of individual particles were computationally analyzed using spherical harmonic analysis. The particle shape difference between cements was small but significant, as judged by several different quantitative shape measures, including the particle length, width, and thickness distributions. It was found that the average shape of cement particles was closely correlated with the volume fraction of C 3 S (alite) and C 2 S (belite) making up the cement powder. It is shown that the non-spherical particle shape of the cements strongly influence laser diffraction results, at least in the sieve size range of 20 μm to 38 μm. Since laser diffraction particle size measurement is being increasingly used by the cement industry, while cement chemistry is always a main factor in cement production, these results could have important implications for how this kind of particle size measurement should be understood and used in the cement industry.

  15. Radiographic determination of urinary bladder volume and residual urine volume

    International Nuclear Information System (INIS)

    Klumair, J.

    1977-01-01

    In the course of a long study the author has tested most of the methods for determination of urinary bladder volume. A radiographic method which can state bladder volume exactly in cc's is attainable only with great time and effort. In the author's experience, however, it is possible, by means of a pattern in connection with a IVP, to estimate residual urine volume from a post-void picture of the bladder with sufficient accuracy for practical purposes. An account is given of the production of this pattern and of two relatively simple calculations for residual volume based on AP and lateral views of circular- and ellipsoid-shaped bladders. Also discussed is the radiation exposure which varies with the radiographic methods used. In male patients, the radiation exposure appears to be negligible, especially when the testicles are protected by a radiation shield. In female patients - which make up only a small fraction of all patients -, radiation exposure is higher but must be accepted. (orig./MG) [de

  16. Multidimensional analysis of Drosophila wing variation in Evolution ...

    Indian Academy of Sciences (India)

    2008-12-23

    Dec 23, 2008 ... the different components of phenotypic variation of a complex trait: the wing. ... of Drosophila wing variation in. Evolution Canyon. J. Genet. 87, 407–419]. Introduction ..... identify the effect of slope on wing shape (figure 2,c). All.

  17. Influence of reaction chamber shape on cast-iron spheroidization process in-mold

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2010-01-01

    Full Text Available This paper presents a results concerning the influence of reaction chamber shape on cast – iron spheroidization process in form. The volume of the tested reaction chambers was about 118000mm3. Reaction chambers in the shape of: rectangular, cylinder and spherical cap were examined. It has been shown that the best graphite spheroidizing process was provided by spherical cap chamber shape. The reaction of cast – iron with magnesium in reaction chamber depends on the flow of cast – iron in the chamber. In rectangular and cylinder shape chambers proceed the impact of diphase stream on flat bottom wall. It causes the creation on its surface film, called: cast – iron “film”, where single grains of magnesium master alloy exist. The largest part of master alloy is drifted by liquid cast – iron to the top and only there graphite spheroidization process proceed. In the spherical cap shape reaction chamber, as a result of rotation movement of liquid cast – iron throughout its volume, graphite spheroidization process proceed. Apart from the reaction chamber shape, applying of mixing chamber ensure full cast – iron spheroidization process.

  18. Three-Dimensional Piecewise-Continuous Class-Shape Transformation of Wings

    Science.gov (United States)

    Olson, Erik D.

    2015-01-01

    Class-Shape Transformation (CST) is a popular method for creating analytical representations of the surface coordinates of various components of aerospace vehicles. A wide variety of two- and three-dimensional shapes can be represented analytically using only a modest number of parameters, and the surface representation is smooth and continuous to as fine a degree as desired. This paper expands upon the original two-dimensional representation of airfoils to develop a generalized three-dimensional CST parametrization scheme that is suitable for a wider range of aircraft wings than previous formulations, including wings with significant non-planar shapes such as blended winglets and box wings. The method uses individual functions for the spanwise variation of airfoil shape, chord, thickness, twist, and reference axis coordinates to build up the complete wing shape. An alternative formulation parameterizes the slopes of the reference axis coordinates in order to relate the spanwise variation to the tangents of the sweep and dihedral angles. Also discussed are methods for fitting existing wing surface coordinates, including the use of piecewise equations to handle discontinuities, and mathematical formulations of geometric continuity constraints. A subsonic transport wing model is used as an example problem to illustrate the application of the methodology and to quantify the effects of piecewise representation and curvature constraints.

  19. Marginal Shape Deep Learning: Applications to Pediatric Lung Field Segmentation.

    Science.gov (United States)

    Mansoor, Awais; Cerrolaza, Juan J; Perez, Geovanny; Biggs, Elijah; Nino, Gustavo; Linguraru, Marius George

    2017-02-11

    Representation learning through deep learning (DL) architecture has shown tremendous potential for identification, localization, and texture classification in various medical imaging modalities. However, DL applications to segmentation of objects especially to deformable objects are rather limited and mostly restricted to pixel classification. In this work, we propose marginal shape deep learning (MaShDL), a framework that extends the application of DL to deformable shape segmentation by using deep classifiers to estimate the shape parameters. MaShDL combines the strength of statistical shape models with the automated feature learning architecture of DL. Unlike the iterative shape parameters estimation approach of classical shape models that often leads to a local minima, the proposed framework is robust to local minima optimization and illumination changes. Furthermore, since the direct application of DL framework to a multi-parameter estimation problem results in a very high complexity, our framework provides an excellent run-time performance solution by independently learning shape parameter classifiers in marginal eigenspaces in the decreasing order of variation. We evaluated MaShDL for segmenting the lung field from 314 normal and abnormal pediatric chest radiographs and obtained a mean Dice similarity coefficient of 0.927 using only the four highest modes of variation (compared to 0.888 with classical ASM 1 (p-value=0.01) using same configuration). To the best of our knowledge this is the first demonstration of using DL framework for parametrized shape learning for the delineation of deformable objects.

  20. On Shape Optimization for an Evolution Coupled System

    International Nuclear Information System (INIS)

    Leugering, G.; Novotny, A. A.; Perla Menzala, G.; Sokołowski, J.

    2011-01-01

    A shape optimization problem in three spatial dimensions for an elasto-dynamic piezoelectric body coupled to an acoustic chamber is introduced. Well-posedness of the problem is established and first order necessary optimality conditions are derived in the framework of the boundary variation technique. In particular, the existence of the shape gradient for an integral shape functional is obtained, as well as its regularity, sufficient for applications e.g. in modern loudspeaker technologies. The shape gradients are given by functions supported on the moving boundaries. The paper extends results obtained by the authors in (Math. Methods Appl. Sci. 33(17):2118–2131, 2010) where a similar problem was treated without acoustic coupling.

  1. Abnormal subcortical nuclei shapes in patients with type 2 diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ji; Wang, Xiaoyang; Li, Hui; Yang, Yanqiu; Lu, Jingjing; Chen, Ziqian [Fuzhou General Hospital, Department of Medical Imaging, Fuzhou, Fujian (China); Zhang, Junxiang [Bengbu Medical College, Department of Medical Imaging, Bengbu, Anhui (China); Liu, Xuebing [Fuzhou General Hospital, Department of Medical Imaging, Fuzhou, Fujian (China); The Second Affiliated Hospital of Nanjing Medical University, Department of Medical Imaging, Nanjing, Jiangsu (China); Xu, Xiangjin [Fuzhou General Hospital, Department of Endocrinology, Fuzhou, Fujian (China); Cao, Bo [The Second Affiliated Hospital of Nanjing Medical University, Department of Medical Imaging, Nanjing, Jiangsu (China)

    2017-10-15

    Type 2 diabetes mellitus (T2DM) increases the risk of brain atrophy and dementia. We aimed to elucidate deep grey matter (GM) structural abnormalities and their relationships with T2DM cognitive deficits by combining region of interest (ROI)-based volumetry, voxel-based morphometry (VBM) and shape analysis. We recruited 23 T2DM patients and 24 age-matched healthy controls to undergo T1-weighted structural MRI scanning. Images were analysed using the three aforementioned methods to obtain deep GM structural shapes and volumes. Biochemical and cognitive assessments were made and were correlated with the resulting metrics. Shape analysis revealed that T2DM is associated with focal atrophy in the bilateral caudate head and dorso-medial part of the thalamus. ROI-based volumetry only detected thalamic volume reduction in T2DM when compared to the controls. No significant between-group differences were found by VBM. Furthermore, a worse performance of cognitive processing speed correlated with more severe GM atrophy in the bilateral dorso-medial part of the thalamus. Also, the GM volume in the bilateral dorso-medial part of the thalamus changed negatively with HbA{sub 1c}. Shape analysis is sensitive in identifying T2DM deep GM structural abnormalities and their relationships with cognitive impairments, which may greatly assist in clarifying the neural substrate of T2DM cognitive dysfunction. (orig.)

  2. Abnormal subcortical nuclei shapes in patients with type 2 diabetes mellitus

    International Nuclear Information System (INIS)

    Chen, Ji; Wang, Xiaoyang; Li, Hui; Yang, Yanqiu; Lu, Jingjing; Chen, Ziqian; Zhang, Junxiang; Liu, Xuebing; Xu, Xiangjin; Cao, Bo

    2017-01-01

    Type 2 diabetes mellitus (T2DM) increases the risk of brain atrophy and dementia. We aimed to elucidate deep grey matter (GM) structural abnormalities and their relationships with T2DM cognitive deficits by combining region of interest (ROI)-based volumetry, voxel-based morphometry (VBM) and shape analysis. We recruited 23 T2DM patients and 24 age-matched healthy controls to undergo T1-weighted structural MRI scanning. Images were analysed using the three aforementioned methods to obtain deep GM structural shapes and volumes. Biochemical and cognitive assessments were made and were correlated with the resulting metrics. Shape analysis revealed that T2DM is associated with focal atrophy in the bilateral caudate head and dorso-medial part of the thalamus. ROI-based volumetry only detected thalamic volume reduction in T2DM when compared to the controls. No significant between-group differences were found by VBM. Furthermore, a worse performance of cognitive processing speed correlated with more severe GM atrophy in the bilateral dorso-medial part of the thalamus. Also, the GM volume in the bilateral dorso-medial part of the thalamus changed negatively with HbA_1_c. Shape analysis is sensitive in identifying T2DM deep GM structural abnormalities and their relationships with cognitive impairments, which may greatly assist in clarifying the neural substrate of T2DM cognitive dysfunction. (orig.)

  3. Modeling Self-Occlusions/Disocclusions in Dynamic Shape and Appearance Tracking for Obtaining Precise Shape

    KAUST Repository

    Yang, Yanchao

    2013-05-01

    We present a method to determine the precise shape of a dynamic object from video. This problem is fundamental to computer vision, and has a number of applications, for example, 3D video/cinema post-production, activity recognition and augmented reality. Current tracking algorithms that determine precise shape can be roughly divided into two categories: 1) Global statistics partitioning methods, where the shape of the object is determined by discriminating global image statistics, and 2) Joint shape and appearance matching methods, where a template of the object from the previous frame is matched to the next image. The former is limited in cases of complex object appearance and cluttered background, where global statistics cannot distinguish between the object and background. The latter is able to cope with complex appearance and a cluttered background, but is limited in cases of camera viewpoint change and object articulation, which induce self-occlusions and self-disocclusions of the object of interest. The purpose of this thesis is to model self-occlusion/disocclusion phenomena in a joint shape and appearance tracking framework. We derive a non-linear dynamic model of the object shape and appearance taking into account occlusion phenomena, which is then used to infer self-occlusions/disocclusions, shape and appearance of the object in a variational optimization framework. To ensure robustness to other unmodeled phenomena that are present in real-video sequences, the Kalman filter is used for appearance updating. Experiments show that our method, which incorporates the modeling of self-occlusion/disocclusion, increases the accuracy of shape estimation in situations of viewpoint change and articulation, and out-performs current state-of-the-art methods for shape tracking.

  4. Price-volume multifractal analysis and its application in Chinese stock markets

    Science.gov (United States)

    Yuan, Ying; Zhuang, Xin-tian; Liu, Zhi-ying

    2012-06-01

    An empirical research on Chinese stock markets is conducted using statistical tools. First, the multifractality of stock price return series, ri(ri=ln(Pt+1)-ln(Pt)) and trading volume variation series, vi(vi=ln(Vt+1)-ln(Vt)) is confirmed using multifractal detrended fluctuation analysis. Furthermore, a multifractal detrended cross-correlation analysis between stock price return and trading volume variation in Chinese stock markets is also conducted. It is shown that the cross relationship between them is also found to be multifractal. Second, the cross-correlation between stock price Pi and trading volume Vi is empirically studied using cross-correlation function and detrended cross-correlation analysis. It is found that both Shanghai stock market and Shenzhen stock market show pronounced long-range cross-correlations between stock price and trading volume. Third, a composite index R based on price and trading volume is introduced. Compared with stock price return series ri and trading volume variation series vi, R variation series not only remain the characteristics of original series but also demonstrate the relative correlation between stock price and trading volume. Finally, we analyze the multifractal characteristics of R variation series before and after three financial events in China (namely, Price Limits, Reform of Non-tradable Shares and financial crisis in 2008) in the whole period of sample to study the changes of stock market fluctuation and financial risk. It is found that the empirical results verified the validity of R.

  5. Design, implementation and test of the XSC extreme shape controller in JET

    International Nuclear Information System (INIS)

    Albanese, R.; Ambrosino, G.; Ariola, M.; Cenedese, A.; Crisanti, F.; Tommasi, G. De; Mattei, M.; Piccolo, F.; Pironti, A.; Sartori, F.; Villone, F.

    2005-01-01

    A new model-based plasma current and shape controller has been set up and tested on the JET Tokamak with the existing active circuits and control. The installation has been carried out without causing any interference to the plasma operation and without requiring a long commissioning time. Eventually, the new controller was used on really extremely shaped internal transport barrier experiments at high poloidal beta and in the presence of quite large variations of the plasma current density profile (variation range Δβ pol up to 1.5 and Δl i up to 0.5). The extreme shape controller (XSC) controller architecture and philosophy also offer new interesting opportunities, e.g., the separatrix sweeping on the divertor plates without significantly affecting the overall plasma shape, and the possibility of improving the overall tokamak performance via combined control of plasma shape, current and profile. The adopted methodology constitutes also an important test bed for feedback control strategies of ITER relevance

  6. Response of different injector typologies to dwell time variations and a hydraulic analysis of closely-coupled and continuous rate shaping injection schedules

    International Nuclear Information System (INIS)

    Ferrari, A.; Mittica, A.

    2016-01-01

    Highlights: • Direct and indirect acting injectors are tested considering multiple injections. • The injection fusion threshold is higher for ballistic injectors than for stroke-end limited injectors. • The internal dynamics of the injector is analyzed for closely-coupled double injections. • Different regimes are identified and classified in the short dwell time range. • Innovative rate shaping injection schedules are defined for solenoid injectors. - Abstract: The multiple injection performance of Common Rail injectors has been analyzed at a hydraulic test rig as the dwell time was varied. The dependence of the injected volume on the dwell time has been investigated for direct acting piezoelectric and hydraulically-controlled (or indirect-acting) servo injectors. The injected fuel volumes in the long dwell-time range have been shown to be affected by the pressure waves that travel along the high pressure circuit for hydraulically-controlled servo injectors. On the other hand, the influence of pressure-wave-induced disturbances on multiple injection performance has been shown to be negligible for direct acting piezoelectric injectors. An analysis of closely-coupled injections has been conducted on a solenoid injector. When the dwell time is progressively reduced below a critical value, an increase in the fuel quantity that is injected in the second shot is observed. Injection fusion phenomena occur as the dwell time is diminished below a certain threshold and a maximum in the fuel volume, which is injected during the joint injections, is eventually detected for a very short electric dwell time value close to 100 μs. The cycle-to-cycle dispersion around this dwell time value results to be reduced significantly. A previously developed 1D model of the fuel injection system has been applied to analyze the injector transients. Detailed knowledge of the injection dynamics in the short dwell time region is of fundamental importance to optimize the

  7. Joint Segmentation and Shape Regularization with a Generalized Forward Backward Algorithm.

    Science.gov (United States)

    Stefanoiu, Anca; Weinmann, Andreas; Storath, Martin; Navab, Nassir; Baust, Maximilian

    2016-05-11

    This paper presents a method for the simultaneous segmentation and regularization of a series of shapes from a corresponding sequence of images. Such series arise as time series of 2D images when considering video data, or as stacks of 2D images obtained by slicewise tomographic reconstruction. We first derive a model where the regularization of the shape signal is achieved by a total variation prior on the shape manifold. The method employs a modified Kendall shape space to facilitate explicit computations together with the concept of Sobolev gradients. For the proposed model, we derive an efficient and computationally accessible splitting scheme. Using a generalized forward-backward approach, our algorithm treats the total variation atoms of the splitting via proximal mappings, whereas the data terms are dealt with by gradient descent. The potential of the proposed method is demonstrated on various application examples dealing with 3D data. We explain how to extend the proposed combined approach to shape fields which, for instance, arise in the context of 3D+t imaging modalities, and show an application in this setup as well.

  8. ANDRA - Referential Materials. Volume 1: Context and scope; Volume 2: Argillaceous materials; Volume 3: Cementitious materials; Volume 4: The corrosion of metallic materials

    International Nuclear Information System (INIS)

    2001-01-01

    This huge document gathers four volumes. The first volume presents some generalities about materials used in the storage of radioactive materials (definition, design principle, current choices and corresponding storage components, general properties of materials and functions of the corresponding storage components, physical and chemical solicitations experienced by materials in a storage), and the structure and content of the other documents. The second volume addresses argillaceous materials. It presents some generalities about these materials in the context of a deep geological storage, and about their design. It presents and comments the crystalline and chemical, and physical and chemical characteristics of swelling argillaceous materials and minerals, describes how these swelling argillaceous materials are shaped and set up, presents and comments physical properties (hydraulic, mechanical and thermal properties) of these materials, comments and discusses the modelling of the geo-chemical behaviour, and their behaviour in terms of containment and transport of radionuclides. The third volume addresses cementitious materials. It presents some generalities about these materials in the context of a deep geological storage, and about their definition and specifications. It presents some more detailed generalities (cement definition and composition, hydration, microstructure of hydrated cements, adjuvants), presents and comments their physical properties (fresh concrete structure and influence of composition, main aimed properties in the hardened status, transfer, mechanical, and thermal properties, shaping and setting up of these materials, technical solutions for hydraulic works). The fourth volume addresses the corrosion of metallic materials. It presents some generalities about these materials in the context of a deep geological storage of radioactive materials. It presents metallic materials and discusses their corrosion behaviour. It describes the peculiarities

  9. Blue mussel shell shape plasticity and natural environments: a quantitative approach

    DEFF Research Database (Denmark)

    Telesca, Luca; Michalek, Kati; Sanders, Trystan

    2018-01-01

    Shape variability represents an important direct response of organisms to selective environments. Here, we use a combination of geometric morphometrics and generalised additive mixed models (GAMMs) to identify spatial patterns of natural shell shape variation in the North Atlantic and Arctic blue...... scales analysed. Our results show how shell shape plasticity represents a powerful indicator to understand the alterations of blue mussel communities in rapidly changing environments....

  10. Fast multiview three-dimensional reconstruction method using cost volume filtering

    Science.gov (United States)

    Lee, Seung Joo; Park, Min Ki; Jang, In Yeop; Lee, Kwan H.

    2014-03-01

    As the number of customers who want to record three-dimensional (3-D) information using a mobile electronic device increases, it becomes more and more important to develop a method which quickly reconstructs a 3-D model from multiview images. A fast multiview-based 3-D reconstruction method is presented, which is suitable for the mobile environment by constructing a cost volume of the 3-D height field. This method consists of two steps: the construction of a reliable base surface and the recovery of shape details. In each step, the cost volume is constructed using photoconsistency and then it is filtered according to the multiscale. The multiscale-based cost volume filtering allows the 3-D reconstruction to maintain the overall shape and to preserve the shape details. We demonstrate the strength of the proposed method in terms of computation time, accuracy, and unconstrained acquisition environment.

  11. Fabrication of custom-shaped grafts for cartilage regeneration.

    Science.gov (United States)

    Koo, Seungbum; Hargreaves, Brian A; Gold, Garry E; Dragoo, Jason L

    2010-10-01

    to create a custom-shaped graft through 3D tissue shape reconstruction and rapid-prototype molding methods using MRI data, and to test the accuracy of the custom-shaped graft against the original anatomical defect. An iatrogenic defect on the distal femur was identified with a 1.5 Tesla MRI and its shape was reconstructed into a three-dimensional (3D) computer model by processing the 3D MRI data. First, the accuracy of the MRI-derived 3D model was tested against a laser-scan based 3D model of the defect. A custom-shaped polyurethane graft was fabricated from the laser-scan based 3D model by creating custom molds through computer aided design and rapid-prototyping methods. The polyurethane tissue was laser-scanned again to calculate the accuracy of this process compared to the original defect. The volumes of the defect models from MRI and laser-scan were 537 mm3 and 405 mm3, respectively, implying that the MRI model was 33% larger than the laser-scan model. The average (±SD) distance deviation of the exterior surface of the MRI model from the laser-scan model was 0.4 ± 0.4 mm. The custom-shaped tissue created from the molds was qualitatively very similar to the original shape of the defect. The volume of the custom-shaped cartilage tissue was 463 mm3 which was 15% larger than the laser-scan model. The average (±SD) distance deviation between the two models was 0.04 ± 0.19 mm. This investigation proves the concept that custom-shaped engineered grafts can be fabricated from standard sequence 3-D MRI data with the use of CAD and rapid-prototyping technology. The accuracy of this technology may help solve the interfacial problem between native cartilage and graft, if the grafts are custom made for the specific defect. The major source of error in fabricating a 3D custom-shaped cartilage graft appears to be the accuracy of a MRI data itself; however, the precision of the model is expected to increase by the utilization of advanced MR sequences with higher magnet

  12. MINERAL HORIZONS, ELECTROMAGNETIC FIELDS AND CIRCULAR SHAPES IN THE GRASS

    Directory of Open Access Journals (Sweden)

    Valentino Straser

    2009-12-01

    Full Text Available The occasional appearance of circular shapes in meadows and farmland located on slopes usually affected by gravitational phenomena, offered an occasion for verifying the possible relation between the position of the circles in the grass, the gravitational movement of the slope affecting its mineral horizons and the variations of electric and static magnetic fields close to the circular shapes and in the surrounding area. The stress caused by the “creeping” movement in the uderlying ground turned out to be in direct relation with the variation in the electric and magnetic fields caused by piezoelectric and piezomagnetic minerals such as quartz. The onset of the electromagnetic process involves the conversion of electric energy on the surface into an area of spherical shape which is linked with a different growth of herbaceous species compared to the surrounding vegetation.

  13. Multi-shape active composites by 3D printing of digital shape memory polymers.

    Science.gov (United States)

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L; Qi, H Jerry

    2016-04-13

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers - digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications.

  14. Multi-shape active composites by 3D printing of digital shape memory polymers

    Science.gov (United States)

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-04-01

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers - digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications.

  15. Total Variation Depth for Functional Data

    KAUST Repository

    Huang, Huang

    2016-11-15

    There has been extensive work on data depth-based methods for robust multivariate data analysis. Recent developments have moved to infinite-dimensional objects such as functional data. In this work, we propose a new notion of depth, the total variation depth, for functional data. As a measure of depth, its properties are studied theoretically, and the associated outlier detection performance is investigated through simulations. Compared to magnitude outliers, shape outliers are often masked among the rest of samples and harder to identify. We show that the proposed total variation depth has many desirable features and is well suited for outlier detection. In particular, we propose to decompose the total variation depth into two components that are associated with shape and magnitude outlyingness, respectively. This decomposition allows us to develop an effective procedure for outlier detection and useful visualization tools, while naturally accounting for the correlation in functional data. Finally, the proposed methodology is demonstrated using real datasets of curves, images, and video frames.

  16. Statistical 2D and 3D shape analysis using Non-Euclidean Metrics

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Hilger, Klaus Baggesen; Wrobel, Mark Christoph

    2002-01-01

    We address the problem of extracting meaningful, uncorrelated biological modes of variation from tangent space shape coordinates in 2D and 3D using non-Euclidean metrics. We adapt the maximum autocorrelation factor analysis and the minimum noise fraction transform to shape decomposition. Furtherm......We address the problem of extracting meaningful, uncorrelated biological modes of variation from tangent space shape coordinates in 2D and 3D using non-Euclidean metrics. We adapt the maximum autocorrelation factor analysis and the minimum noise fraction transform to shape decomposition....... Furthermore, we study metrics based on repated annotations of a training set. We define a way of assessing the correlation between landmarks contrary to landmark coordinates. Finally, we apply the proposed methods to a 2D data set consisting of outlines of lungs and a 3D/(4D) data set consisting of sets...

  17. Abnormal subcortical nuclei shapes in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Chen, Ji; Zhang, Junxiang; Liu, Xuebing; Wang, Xiaoyang; Xu, Xiangjin; Li, Hui; Cao, Bo; Yang, Yanqiu; Lu, Jingjing; Chen, Ziqian

    2017-10-01

    Type 2 diabetes mellitus (T2DM) increases the risk of brain atrophy and dementia. We aimed to elucidate deep grey matter (GM) structural abnormalities and their relationships with T2DM cognitive deficits by combining region of interest (ROI)-based volumetry, voxel-based morphometry (VBM) and shape analysis. We recruited 23 T2DM patients and 24 age-matched healthy controls to undergo T1-weighted structural MRI scanning. Images were analysed using the three aforementioned methods to obtain deep GM structural shapes and volumes. Biochemical and cognitive assessments were made and were correlated with the resulting metrics. Shape analysis revealed that T2DM is associated with focal atrophy in the bilateral caudate head and dorso-medial part of the thalamus. ROI-based volumetry only detected thalamic volume reduction in T2DM when compared to the controls. No significant between-group differences were found by VBM. Furthermore, a worse performance of cognitive processing speed correlated with more severe GM atrophy in the bilateral dorso-medial part of the thalamus. Also, the GM volume in the bilateral dorso-medial part of the thalamus changed negatively with HbA 1c . Shape analysis is sensitive in identifying T2DM deep GM structural abnormalities and their relationships with cognitive impairments, which may greatly assist in clarifying the neural substrate of T2DM cognitive dysfunction. • Type 2 diabetes mellitus is accompanied with brain atrophy and cognitive dysfunction • Deep grey matter structures are essential for multiple cognitive processes • Shape analysis revealed local atrophy in the dorso-medial thalamus and caudatum in patients • Dorso-medial thalamic atrophy correlated to cognitive processing speed slowing and high HbA1c. • Shape analysis has advantages in unraveling neural substrates of diabetic cognitive deficits.

  18. Morphological variations and sexual dimorphism in Chelonoidis carbonaria (Spix, 1824 and Chelonoidis denticulata (Linnaeus, 1766 (Testudinidae

    Directory of Open Access Journals (Sweden)

    MS Barros

    Full Text Available Chelonoidis Dcarbonaria and C. denticulata are two tortoises which are widely distributed Brazil. Although they occur sympatrically in different areas, C. carbonaria prefers open areas, while C. denticulata chooses forest areas. Significant morphological variations can be observed in these species due to the fact that they occupy a vast and environmentally diverse area. Data on shell shape of captive individuals reveal important differences between the two species, mainly in the plastron scutes, carapace width, and head length. Variation in shape is greater in C. carbonaria than in C. denticulata, which may be associated to a more elaborate and complex mating ritual. The shell shape in C. denticulata is more elongated than in C. carbonaria due to ecological habits. These aspects lead to a greater restriction in shape, limiting variation and dimorphism. In C. carbonaria, the shell opening is larger than in C. denticulata, which affords greater variation in shape. A more elongated shell facilitates movements of C. denticulata in densely forested areas. Yet, this characteristic reduces shell opening, lessening the possibilities of variation in form.

  19. Yield impact for wafer shape misregistration-based binning for overlay APC diagnostic enhancement

    Science.gov (United States)

    Jayez, David; Jock, Kevin; Zhou, Yue; Govindarajulu, Venugopal; Zhang, Zhen; Anis, Fatima; Tijiwa-Birk, Felipe; Agarwal, Shivam

    2018-03-01

    The importance of traditionally acceptable sources of variation has started to become more critical as semiconductor technologies continue to push into smaller technology nodes. New metrology techniques are needed to pursue the process uniformity requirements needed for controllable lithography. Process control for lithography has the advantage of being able to adjust for cross-wafer variability, but this requires that all processes are close in matching between process tools/chambers for each process. When this is not the case, the cumulative line variability creates identifiable groups of wafers1 . This cumulative shape based effect is described as impacting overlay measurements and alignment by creating misregistration of the overlay marks. It is necessary to understand what requirements might go into developing a high volume manufacturing approach which leverages this grouping methodology, the key inputs and outputs, and what can be extracted from such an approach. It will be shown that this line variability can be quantified into a loss of electrical yield primarily at the edge of the wafer and proposes a methodology for root cause identification and improvement. This paper will cover the concept of wafer shape based grouping as a diagnostic tool for overlay control and containment, the challenges in implementing this in a manufacturing setting, and the limitations of this approach. This will be accomplished by showing that there are identifiable wafer shape based signatures. These shape based wafer signatures will be shown to be correlated to overlay misregistration, primarily at the edge. It will also be shown that by adjusting for this wafer shape signal, improvements can be made to both overlay as well as electrical yield. These improvements show an increase in edge yield, and a reduction in yield variability.

  20. Effects of the shape anisotropy and biasing field on the magnetization reversal process of the diamond-shaped NiFe nano films

    Science.gov (United States)

    Xu, Sichen; Yin, Jianfeng; Tang, Rujun; Zhang, Wenxu; Peng, Bin; Zhang, Wanli

    2017-11-01

    The effects of the planar shape anisotropy and biasing field on the magnetization reversal process (MRP) of the diamond-shaped NiFe nano films have been investigated by micromagnetic simulations. Results show that when the length to width ratio (LWR) of the diamond-shaped film is small, the MRP of the diamond-shaped films are sensitive to LWR. But when LWR is larger than 2, a stable domain switching mode is observed which nucleates from the center of the diamond and then expands to the edges. At a fixed LWR, the magnitude of the switching fields decrease with the increase of the biasing field, but the domain switching mode is not affected by the biasing field. Further analysis shows that demagnetization energy dominates over the MRP of the diamond-shaped films. The above LWR dependence of MRP can be well explained by a variation of the shape anisotropic factor with LWR.

  1. Phylogeny and adaptation shape the teeth of insular mice.

    Science.gov (United States)

    Ledevin, Ronan; Chevret, Pascale; Ganem, Guila; Britton-Davidian, Janice; Hardouin, Emilie A; Chapuis, Jean-Louis; Pisanu, Benoit; da Luz Mathias, Maria; Schlager, Stefan; Auffray, Jean-Christophe; Renaud, Sabrina

    2016-02-10

    By accompanying human travels since prehistorical times, the house mouse dispersed widely throughout the world, and colonized many islands. The origin of the travellers determined the phylogenetic source of the insular mice, which encountered diverse ecological and environmental conditions on the various islands. Insular mice are thus an exceptional model to disentangle the relative role of phylogeny, ecology and climate in evolution. Molar shape is known to vary according to phylogeny and to respond to adaptation. Using for the first time a three-dimensional geometric morphometric approach, compared with a classical two-dimensional quantification, the relative effects of size variation, phylogeny, climate and ecology were investigated on molar shape diversity across a variety of islands. Phylogeny emerged as the factor of prime importance in shaping the molar. Changes in competition level, mostly driven by the presence or absence of the wood mouse on the different islands, appeared as the second most important effect. Climate and size differences accounted for slight shape variation. This evidences a balanced role of random differentiation related to history of colonization, and of adaptation possibly related to resource exploitation. © 2016 The Author(s).

  2. A molecular dynamics study of ambient and high pressure phases of silica: structure and enthalpy variation with molar volume.

    Science.gov (United States)

    Rajappa, Chitra; Sringeri, S Bhuvaneshwari; Subramanian, Yashonath; Gopalakrishnan, J

    2014-06-28

    Extensive molecular dynamics studies of 13 different silica polymorphs are reported in the isothermal-isobaric ensemble with the Parrinello-Rahman variable shape simulation cell. The van Beest-Kramer-van Santen (BKS) potential is shown to predict lattice parameters for most phases within 2%-3% accuracy, as well as the relative stabilities of different polymorphs in agreement with experiment. Enthalpies of high-density polymorphs - CaCl2-type, α-PbO2-type, and pyrite-type - for which no experimental data are available as yet, are predicted here. Further, the calculated enthalpies exhibit two distinct regimes as a function of molar volume-for low and medium-density polymorphs, it is almost independent of volume, while for high-pressure phases a steep dependence is seen. A detailed analysis indicates that the increased short-range contributions to enthalpy in the high-density phases arise not only from an increased coordination number of silicon but also shorter Si-O bond lengths. Our results indicate that amorphous phases of silica exhibit better optimization of short-range interactions than crystalline phases at the same density while the magnitude of Coulombic contributions is lower in the amorphous phase.

  3. Effect of precipitation on the shape memory effect of Ti50Ni25Cu25 melt-spun ribbon

    International Nuclear Information System (INIS)

    Tong Yunxiang; Liu Yong; Xie Zeliang; Zarinejad, Mehrdad

    2008-01-01

    The present research aims to provide accurate understanding of the relation between precipitation (volume fraction, morphology, type) and shape memory effect of Ti 50 Ni 25 Cu 25 melt-spun ribbon. Rapid thermal annealing was used to control the microstructural development while the shape memory effect of the ribbon was determined under constraint thermal cycling. The results show that the precipitation process takes the following sequence: B11 TiCu → B11 TiCu + Ti 2 (Ni, Cu) → Ti 2 (Ni, Cu) with increasing annealing temperature or duration. The shape memory effect is found to depend on both the volume fraction and the distribution of the precipitates. The former affects the shape recovery strain through reduction of the transformation volume participating the shape recovery. The latter affects the shape recovery strain through strengthening the matrix thus reducing the martensite strain which is more predominant under low constraint stresses. Precipitation strengthening, on the other hand, reduces the tendency of dislocation generation/movement, thus reducing the irreversible strain and improving shape recovery strain. This understanding provides guidelines on the optimization of the shape memory properties of the Ti 50 Ni 25 Cu 25 melt-spun ribbon via post-processing annealing

  4. Small-Volume Injections: Evaluation of Volume Administration Deviation From Intended Injection Volumes.

    Science.gov (United States)

    Muffly, Matthew K; Chen, Michael I; Claure, Rebecca E; Drover, David R; Efron, Bradley; Fitch, William L; Hammer, Gregory B

    2017-10-01

    regression model. Analysis of variance was used to determine whether the absolute log proportional error differed by the intended injection volume. Interindividual and intraindividual deviation from the intended injection volume was also characterized. As the intended injection volumes decreased, the absolute log proportional injection volume error increased (analysis of variance, P standard deviations of the log proportional errors for injection volumes between physicians and pediatric PACU nurses; however, the difference in absolute bias was significantly higher for nurses with a 2-sided significance of P = .03. Clinically significant dose variation occurs when injecting volumes ≤0.5 mL. Administering small volumes of medications may result in unintended medication administration errors.

  5. Interfractional Variations in Patient Setup and Anatomic Change Assessed by Daily Computed Tomography

    International Nuclear Information System (INIS)

    Li, X. Allen; Qi, X. Sharon; Pitterle, Marissa; Kalakota, Kapila; Mueller, Kevin; Erickson, Beth A.; Wang Dian; Schultz, Christopher J.; Firat, Selim Y.; Wilson, J. Frank

    2007-01-01

    Purpose: To analyze the interfractional variations in patient setup and anatomic changes at seven anatomic sites observed in image-guided radiotherapy. Methods and Materials: A total of 152 patients treated at seven anatomic sites using a Hi-Art helical tomotherapy system were analyzed. Daily tomotherapy megavoltage computed tomography images acquired before each treatment were fused to the planning kilovoltage computed tomography images to determine the daily setup errors and organ motions and deformations. The setup errors were corrected before treatment and were used, along with the organ motions, to determine the clinical target volume/planning target volume margins. The organ motions and deformations for 3 representative patient cases (pancreas, uterus, and soft-tissue sarcoma) and for 14 kidneys of 7 patients are presented. Results: Interfractional setup errors in the skull, brain, and head and neck are significantly smaller than those in the chest, abdomen, pelvis, and extremities. These site-specific relationships are statistically significant. The margins required to account for these setup errors range from 3 to 8 mm for the seven sites. The margin to account for both setup errors and organ motions for kidney is 16 mm. Substantial interfractional anatomic changes were observed. For example, the pancreas moved up to ±20 mm and volumes of the uterus and sarcoma varied ≤30% and 100%, respectively. Conclusion: The interfractional variations in patient setup and in shapes, sizes, and positions of both targets and normal structures are site specific and may be used to determine the site-specific margins. The data presented in this work dealing with seven anatomic sites may be useful in developing adaptive radiotherapy

  6. Development of a statistical shape model of multi-organ and its performance evaluation

    International Nuclear Information System (INIS)

    Nakada, Misaki; Shimizu, Akinobu; Kobatake, Hidefumi; Nawano, Shigeru

    2010-01-01

    Existing statistical shape modeling methods for an organ can not take into account the correlation between neighboring organs. This study focuses on a level set distribution model and proposes two modeling methods for multiple organs that can take into account the correlation between neighboring organs. The first method combines level set functions of multiple organs into a vector. Subsequently it analyses the distribution of the vectors of a training dataset by a principal component analysis and builds a multiple statistical shape model. Second method constructs a statistical shape model for each organ independently and assembles component scores of different organs in a training dataset so as to generate a vector. It analyses the distribution of the vectors of to build a statistical shape model of multiple organs. This paper shows results of applying the proposed methods trained by 15 abdominal CT volumes to unknown 8 CT volumes. (author)

  7. Three-dimensional reconstruction volume: a novel method for volume measurement in kidney cancer.

    Science.gov (United States)

    Durso, Timothy A; Carnell, Jonathan; Turk, Thomas T; Gupta, Gopal N

    2014-06-01

    The role of volumetric estimation is becoming increasingly important in the staging, management, and prognostication of benign and cancerous conditions of the kidney. We evaluated the use of three-dimensional reconstruction volume (3DV) in determining renal parenchymal volumes (RPV) and renal tumor volumes (RTV). We compared 3DV with the currently available methods of volume assessment and determined its interuser reliability. RPV and RTV were assessed in 28 patients who underwent robot-assisted laparoscopic partial nephrectomy for kidney cancer. Patients with a preoperative creatinine level of kidney pre- and postsurgery overestimated 3D reconstruction volumes by 15% to 102% and 12% to 101%, respectively. In addition, volumes obtained from 3DV displayed high interuser reliability regardless of experience. 3DV provides a highly reliable way of assessing kidney volumes. Given that 3DV takes into account visible anatomy, the differences observed using previously published methods can be attributed to the failure of geometry to accurately approximate kidney or tumor shape. 3DV provides a more accurate, reproducible, and clinically useful tool for urologists looking to improve patient care using analysis related to volume.

  8. Ambient Occlusion Effects for Combined Volumes and Tubular Geometry

    KAUST Repository

    Schott, M.; Martin, T.; Grosset, A. V. P.; Smith, S. T.; Hansen, C. D.

    2013-01-01

    This paper details a method for interactive direct volume rendering that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube-shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The algorithm extends the recently presented the directional occlusion shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry. Stream tube geometries are computed using an effective spline-based interpolation and approximation scheme that avoids self-intersection and maintains coherent orientation of the stream tube segments to avoid surface deforming twists. Furthermore, strategies to reduce the geometric and specular aliasing of the stream tubes are discussed.

  9. Ambient Occlusion Effects for Combined Volumes and Tubular Geometry

    KAUST Repository

    Schott, M.

    2013-06-01

    This paper details a method for interactive direct volume rendering that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube-shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The algorithm extends the recently presented the directional occlusion shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry. Stream tube geometries are computed using an effective spline-based interpolation and approximation scheme that avoids self-intersection and maintains coherent orientation of the stream tube segments to avoid surface deforming twists. Furthermore, strategies to reduce the geometric and specular aliasing of the stream tubes are discussed.

  10. Automatic gallbladder segmentation using combined 2D and 3D shape features to perform volumetric analysis in native and secretin-enhanced MRCP sequences.

    Science.gov (United States)

    Gloger, Oliver; Bülow, Robin; Tönnies, Klaus; Völzke, Henry

    2017-11-24

    We aimed to develop the first fully automated 3D gallbladder segmentation approach to perform volumetric analysis in volume data of magnetic resonance (MR) cholangiopancreatography (MRCP) sequences. Volumetric gallbladder analysis is performed for non-contrast-enhanced and secretin-enhanced MRCP sequences. Native and secretin-enhanced MRCP volume data were produced with a 1.5-T MR system. Images of coronal maximum intensity projections (MIP) are used to automatically compute 2D characteristic shape features of the gallbladder in the MIP images. A gallbladder shape space is generated to derive 3D gallbladder shape features, which are then combined with 2D gallbladder shape features in a support vector machine approach to detect gallbladder regions in MRCP volume data. A region-based level set approach is used for fine segmentation. Volumetric analysis is performed for both sequences to calculate gallbladder volume differences between both sequences. The approach presented achieves segmentation results with mean Dice coefficients of 0.917 in non-contrast-enhanced sequences and 0.904 in secretin-enhanced sequences. This is the first approach developed to detect and segment gallbladders in MR-based volume data automatically in both sequences. It can be used to perform gallbladder volume determination in epidemiological studies and to detect abnormal gallbladder volumes or shapes. The positive volume differences between both sequences may indicate the quantity of the pancreatobiliary reflux.

  11. A model to simulate day-to-day variations in rectum shape

    NARCIS (Netherlands)

    Hoogeman, Mischa S.; van Herk, Marcel; Yan, Di; Boersma, Liesbeth J.; Koper, Peter C. M.; Lebesque, Joos V.

    2002-01-01

    PURPOSE: To develop a model that predicts possible rectum configurations that can occur during radiotherapy of prostate cancer on the basis of a planning CT scan and patient group data. MATERIALS AND METHODS: We used a stochastic shape description model with a limited number of parameters (area,

  12. Statistical shape and appearance models of bones.

    Science.gov (United States)

    Sarkalkan, Nazli; Weinans, Harrie; Zadpoor, Amir A

    2014-03-01

    When applied to bones, statistical shape models (SSM) and statistical appearance models (SAM) respectively describe the mean shape and mean density distribution of bones within a certain population as well as the main modes of variations of shape and density distribution from their mean values. The availability of this quantitative information regarding the detailed anatomy of bones provides new opportunities for diagnosis, evaluation, and treatment of skeletal diseases. The potential of SSM and SAM has been recently recognized within the bone research community. For example, these models have been applied for studying the effects of bone shape on the etiology of osteoarthritis, improving the accuracy of clinical osteoporotic fracture prediction techniques, design of orthopedic implants, and surgery planning. This paper reviews the main concepts, methods, and applications of SSM and SAM as applied to bone. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Adding a Piece to the Leaf Epidermal Cell Shape Puzzle.

    Science.gov (United States)

    von Wangenheim, Daniel; Wells, Darren M; Bennett, Malcolm J

    2017-11-06

    The jigsaw puzzle-shaped pavement cells in the leaf epidermis collectively function as a load-bearing tissue that controls organ growth. In this issue of Developmental Cell, Majda et al. (2017) shed light on how the jigsaw shape can arise from localized variations in wall stiffness between adjacent epidermal cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Cultural Variation in Implicit Mental Illness Stigma.

    Science.gov (United States)

    Cheon, Bobby K; Chiao, Joan Y

    2012-10-01

    Culture shapes how individuals perceive and respond to others with mental illness. Prior studies have suggested that Asians and Asian Americans typically endorse greater stigma of mental illness compared to Westerners (White Europeans and Americans). However, whether these differences in stigma arise from cultural variations in automatic affective reactions or deliberative concerns of the appropriateness of one's reactions to mental illness remains unknown. Here we compared implicit and explicit attitudes toward mental illness among Asian and Caucasian Americans. Asian Americans showed stronger negative implicit attitudes toward mental illness relative to Caucasian Americans, suggesting that cultural variation in stigma of mental illness can be observed even when concerns regarding the validity and appropriateness of one's attitudes toward mental illness are minimized. Asian Americans also explicitly endorsed greater desire for social distance from mental illness relative to Caucasian Americans. These findings suggest that cultural variations in mental illness stigma may arise from cultural differences in automatic reactions to mental illness, though cultural variations in deliberative processing may further shape differences in these immediate reactions to mental illness.

  15. Shape-Tailored Features and their Application to Texture Segmentation

    KAUST Repository

    Khan, Naeemullah

    2014-04-01

    Texture Segmentation is one of the most challenging areas of computer vision. One reason for this difficulty is the huge variety and variability of textures occurring in real world, making it very difficult to quantitatively study textures. One of the key tools used for texture segmentation is local invariant descriptors. Texture consists of textons, the basic building block of textures, that may vary by small nuisances like illumination variation, deformations, and noise. Local invariant descriptors are robust to these nuisances making them beneficial for texture segmentation. However, grouping dense descriptors directly for segmentation presents a problem: existing descriptors aggregate data from neighborhoods that may contain different textured regions, making descriptors from these neighborhoods difficult to group, leading to significant errors in segmentation. This work addresses this issue by proposing dense local descriptors, called Shape-Tailored Features, which are tailored to an arbitrarily shaped region, aggregating data only within the region of interest. Since the segmentation, i.e., the regions, are not known a-priori, we propose a joint problem for Shape-Tailored Features and the regions. We present a framework based on variational methods. Extensive experiments on a new large texture dataset, which we introduce, show that the joint approach with Shape-Tailored Features leads to better segmentations over the non-joint non Shape-Tailored approach, and the method out-performs existing state-of-the-art.

  16. Impact of electromechanical parameter variations in treatment volume doses and adjacent structures; Impacto da variacao dos parametros eletro-mecanicos nas doses do volume de tratamento e nas estruturas adjacentes

    Energy Technology Data Exchange (ETDEWEB)

    Morais, M.E.; Campos, A.M. [Instituto Nacional do Cancer (INCa), Rio de Janeiro, RJ (Brazil). Programa de Qualidade em Radioterapia]. E-mails: memorais@yahoo.com.br; amcampos@inca.gov.br; Goncalves, J. F. [Instituto de Oncologia e Radioterapia GV, Governador Valadares, MG (Brazil)]. E-mail: joelfgoncalves@yahoo.com.br; Ferreira, M.L. [Centro Radioterapico Gavea, Rio de Janeiro, RJ (Brazil)]. E-mail: mluciaf@yahoo.com

    2003-07-01

    ICRU Report 62 recommends that radiotherapy treatment dose should be prescribed in such a way that the dose to the target volume varies no more than 10%. In order to keep this goal, a very important role is played by the quality assurance (QA) of the treatment unit associated to the high level work of the personnel involved in planning and patient treatment. This paper shows the influence of the main electrical and mechanical linear accelerator parameters: field size, source-skin distance, gantry angle and light x radiation field coincidence in tumor volume and adjacent organ doses. We simulated a cubic tumor and a cubic adjacent critical organ in a cubic phantom and used a 3D Prowess system for planning. The treatment has been simulated for a 6 MV linear accelerator. We simulated two treatment planning: one using all the parameters inside their tolerance limits and another doubling these limits. The final results have show that, if the irradiation machine operates out of the tolerance limits, the dose variation in the planning target volume (PTV) can goes till {+-} 5,8% and in the critical adjacent organ till {+-} 7,7%. Therefore we concluded that, according to the complexity of the treatment, it can be necessary to reduce the tolerance levels advised by the IAEA/TECDOC - 1151. (author)

  17. Virtual work and shape change in solid mechanics

    CERN Document Server

    Frémond, Michel

    2017-01-01

    This book provides novel insights into two basic subjects in solid mechanics: virtual work and shape change. When we move a solid, the work we expend in moving it is used to modify both its shape and its velocity. This observation leads to the Principle of Virtual Work. Virtual work depends linearly on virtual velocities, which are velocities we may think of. The virtual work of the internal forces accounts for the changes in shape. Engineering provides innumerable examples of shape changes, i.e., deformations, and of velocities of deformation. This book presents examples of usual and unusual shape changes, providing with the Principle of Virtual Work various and sometimes new equations of motion for smooth and non-smooth (i.e., with collisions) motions: systems of disks, systems of balls, classical and non-classical small deformation theories, systems involving volume and surface damage, systems with interactions at a distance (e.g., solids reinforced by fibers), systems involving porosity, beams with third ...

  18. Technical note: Quantification of neurocranial shape variation using the shortest paths connecting pairs of anatomical landmarks.

    Science.gov (United States)

    Morita, Yusuke; Ogihara, Naomichi; Kanai, Takashi; Suzuki, Hiromasa

    2013-08-01

    Three-dimensional geometric morphometric techniques have been widely used in quantitative comparisons of craniofacial morphology in humans and nonhuman primates. However, few anatomical landmarks can actually be defined on the neurocranium. In this study, an alternative method is proposed for defining semi-landmarks on neurocranial surfaces for use in detailed analysis of cranial shape. Specifically, midsagittal, nuchal, and temporal lines were approximated using Bezier curves and equally spaced points along each of the curves were defined as semi-landmarks. The shortest paths connecting pairs of anatomical landmarks as well as semi-landmarks were then calculated in order to represent the surface morphology between landmarks using equally spaced points along the paths. To evaluate the efficacy of this method, the previously outlined technique was used in morphological analysis of sexual dimorphism in modern Japanese crania. The study sample comprised 22 specimens that were used to generate 110 anatomical semi-landmarks, which were used in geometric morphometric analysis. Although variations due to sexual dimorphism in human crania are very small, differences could be identified using the proposed landmark placement, which demonstrated the efficacy of the proposed method. Copyright © 2013 Wiley Periodicals, Inc.

  19. The Shape of a Sausage: A Challenging Problem in the Calculus of Variations

    Science.gov (United States)

    Deakin, Michael A. B.

    2010-01-01

    Many familiar household objects (such as sausages) involve the maximization of a volume under geometric constraints. A flexible but inextensible membrane bounds a volume which is to be filled to capacity. In the case of the sausage, a full analytic solution is here provided. Other related but more difficult problems seem to demand approximate…

  20. Knowledge-based reconstruction for measurement of right ventricular volumes on cardiovascular magnetic resonance images in a mixed population.

    Science.gov (United States)

    Pieterman, Elise D; Budde, Ricardo P J; Robbers-Visser, Daniëlle; van Domburg, Ron T; Helbing, Willem A

    2017-09-01

    Follow-up of right ventricular performance is important for patients with congenital heart disease. Cardiac magnetic resonance imaging is optimal for this purpose. However, observer-dependency of manual analysis of right ventricular volumes limit its use. Knowledge-based reconstruction is a new semiautomatic analysis tool that uses a database including knowledge of right ventricular shape in various congenital heart diseases. We evaluated whether knowledge-based reconstruction is a good alternative for conventional analysis. To assess the inter- and intra-observer variability and agreement of knowledge-based versus conventional analysis of magnetic resonance right ventricular volumes, analysis was done by two observers in a mixed group of 22 patients with congenital heart disease affecting right ventricular loading conditions (dextro-transposition of the great arteries and right ventricle to pulmonary artery conduit) and a group of 17 healthy children. We used Bland-Altman analysis and coefficient of variation. Comparison between the conventional method and the knowledge-based method showed a systematically higher volume for the latter group. We found an overestimation for end-diastolic volume (bias -40 ± 24 mL, r = .956), end-systolic volume (bias -34 ± 24 mL, r = .943), stroke volume (bias -6 ± 17 mL, r = .735) and an underestimation of ejection fraction (bias 7 ± 7%, r = .671) by knowledge-based reconstruction. The intra-observer variability of knowledge-based reconstruction varied with a coefficient of variation of 9% for end-diastolic volume and 22% for stroke volume. The same trend was noted for inter-observer variability. A systematic difference (overestimation) was noted for right ventricular size as assessed with knowledge-based reconstruction compared with conventional methods for analysis. Observer variability for the new method was comparable to what has been reported for the right ventricle in children and congenital

  1. Variations of target volume definition and daily target volume localization in stereotactic body radiotherapy for early-stage non–small cell lung cancer patients under abdominal compression

    Energy Technology Data Exchange (ETDEWEB)

    Han, Chunhui, E-mail: chan@coh.org; Sampath, Sagus; Schultheisss, Timothy E.; Wong, Jeffrey Y.C.

    2017-07-01

    We aimed to compare gross tumor volumes (GTV) in 3-dimensional computed tomography (3DCT) simulation and daily cone beam CT (CBCT) with the internal target volume (ITV) in 4-dimensional CT (4DCT) simulation in stereotactic body radiotherapy (SBRT) treatment of patients with early-stage non–small cell lung cancer (NSCLC) under abdominal compression. We retrospectively selected 10 patients with NSCLC who received image-guided SBRT treatments under abdominal compression with daily CBCT imaging. GTVs were contoured as visible gross tumor on the planning 3DCT and daily CBCT, and ITVs were contoured using maximum intensity projection (MIP) images of the planning 4DCT. Daily CBCTs were registered with 3DCT and MIP images by matching of bony landmarks in the thoracic region to evaluate interfractional GTV position variations. Relative to MIP-based ITVs, the average 3DCT-based GTV volume was 66.3 ± 17.1% (range: 37.5% to 92.0%) (p < 0.01 in paired t-test), and the average CBCT-based GTV volume was 90.0 ± 6.7% (daily range: 75.7% to 107.1%) (p = 0.02). Based on bony anatomy matching, the center-of-mass coordinates for CBCT-based GTVs had maximum absolute shift of 2.4 mm (left-right), 7.0 mm (anterior-posterior [AP]), and 5.2 mm (superior-inferior [SI]) relative to the MIP-based ITV. CBCT-based GTVs had average overlapping ratio of 81.3 ± 11.2% (range: 45.1% to 98.9%) with the MIP-based ITV, and 57.7 ± 13.7% (range: 35.1% to 83.2%) with the 3DCT-based GTV. Even with abdominal compression, both 3DCT simulations and daily CBCT scans significantly underestimated the full range of tumor motion. In daily image-guided patient setup corrections, automatic bony anatomy-based image registration could lead to target misalignment. Soft tissue-based image registration should be performed for accurate treatment delivery.

  2. Sexual Dimorphism and Allometric Effects Associated With the Wing Shape of Seven Moth Species of Sphingidae (Lepidoptera: Bombycoidea).

    Science.gov (United States)

    de Camargo, Willian Rogers Ferreira; de Camargo, Nícholas Ferreira; Corrêa, Danilo do Carmo Vieira; de Camargo, Amabílio J Aires; Diniz, Ivone Rezende

    2015-01-01

    Sexual dimorphism is a pronounced pattern of intraspecific variation in Lepidoptera. However, moths of the family Sphingidae (Lepidoptera: Bombycoidea) are considered exceptions to this rule. We used geometric morphometric techniques to detect shape and size sexual dimorphism in the fore and hindwings of seven hawkmoth species. The shape variables produced were then subjected to a discriminant analysis. The allometric effects were measured with a simple regression between the canonical variables and the centroid size. We also used the normalized residuals to assess the nonallometric component of shape variation with a t-test. The deformations in wing shape between sexes per species were assessed with a regression between the nonreduced shape variables and the residuals. We found sexual dimorphism in both wings in all analyzed species, and that the allometric effects were responsible for much of the wing shape variation between the sexes. However, when we removed the size effects, we observed shape sexual dimorphism. It is very common for females to be larger than males in Lepidoptera, so it is expected that the shape of structures such as wings suffers deformations in order to preserve their function. However, sources of variation other than allometry could be a reflection of different reproductive flight behavior (long flights in search for sexual mates in males, and flight in search for host plants in females). © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  3. Estimation of Apple Volume and Its Shape Indentation Using Image Processing Technique and Neural Network

    Directory of Open Access Journals (Sweden)

    M Jafarlou

    2014-04-01

    Full Text Available Physical properties of agricultural products such as volume are the most important parameters influencing grading and packaging systems. They should be measured accurately as they are considered for any good system design. Image processing and neural network techniques are both non-destructive and useful methods which are recently used for such purpose. In this study, the images of apples were captured from a constant distance and then were processed in MATLAB software and the edges of apple images were extracted. The interior area of apple image was divided into some thin trapezoidal elements perpendicular to longitudinal axis. Total volume of apple was estimated by the summation of incremental volumes of these elements revolved around the apple’s longitudinal axis. The picture of half cut apple was also captured in order to obtain the apple shape’s indentation volume, which was subtracted from the previously estimated total volume of apple. The real volume of apples was measured using water displacement method and the relation between the real volume and estimated volume was obtained. The t-test and Bland-Altman indicated that the difference between the real volume and the estimated volume was not significantly different (p>0.05 i.e. the mean difference was 1.52 cm3 and the accuracy of measurement was 92%. Utilizing neural network with input variables of dimension and mass has increased the accuracy up to 97% and the difference between the mean of volumes decreased to 0.7 cm3.

  4. The decomposition of deformation: New metrics to enhance shape analysis in medical imaging.

    Science.gov (United States)

    Varano, Valerio; Piras, Paolo; Gabriele, Stefano; Teresi, Luciano; Nardinocchi, Paola; Dryden, Ian L; Torromeo, Concetta; Puddu, Paolo E

    2018-05-01

    In landmarks-based Shape Analysis size is measured, in most cases, with Centroid Size. Changes in shape are decomposed in affine and non affine components. Furthermore the non affine component can be in turn decomposed in a series of local deformations (partial warps). If the extent of deformation between two shapes is small, the difference between Centroid Size and m-Volume increment is barely appreciable. In medical imaging applied to soft tissues bodies can undergo very large deformations, involving large changes in size. The cardiac example, analyzed in the present paper, shows changes in m-Volume that can reach the 60%. We show here that standard Geometric Morphometrics tools (landmarks, Thin Plate Spline, and related decomposition of the deformation) can be generalized to better describe the very large deformations of biological tissues, without losing a synthetic description. In particular, the classical decomposition of the space tangent to the shape space in affine and non affine components is enriched to include also the change in size, in order to give a complete description of the tangent space to the size-and-shape space. The proposed generalization is formulated by means of a new Riemannian metric describing the change in size as change in m-Volume rather than change in Centroid Size. This leads to a redefinition of some aspects of the Kendall's size-and-shape space without losing Kendall's original formulation. This new formulation is discussed by means of simulated examples using 2D and 3D platonic shapes as well as a real example from clinical 3D echocardiographic data. We demonstrate that our decomposition based approaches discriminate very effectively healthy subjects from patients affected by Hypertrophic Cardiomyopathy. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Application of Elliptic Fourier analysis to describe the lamina cribrosa shape with age and intraocular pressure.

    Science.gov (United States)

    Sanfilippo, P G; Grimm, J L; Flanagan, J G; Lathrop, K L; Sigal, I A

    2014-11-01

    The lamina cribrosa (LC) plays an important biomechanical role in the optic nerve head (ONH). We developed a statistical shape model of the LC and tested if the shape varies with age or IOP. The ONHs of 18 donor eyes (47-91 years, mean 76 years) fixed at either 5 or 50 mmHg of IOP were sectioned, stained, and imaged under a microscope. A 3D model of each ONH was reconstructed and the outline of the vertical sagittal section closest to the geometric center of the LC extracted. The outline shape was described using Elliptic Fourier analysis, and principal components analysis (PCA) employed to identify the primary modes of LC shape variation. Linear mixed effect models were used to determine if the shape measurements were associated with age or IOP. The analysis revealed several modes of shape variation: thickness and depth directly (PC 1), or inversely (PC 2) related, and superior-inferior asymmetry (PC 3). Only PC 3 was associated with IOP, with higher IOP correlating with greater curvature of the LC superiorly compared to inferiorly. Our analysis enabled a concise and complete characterization of LC shape, revealing variations without defining them a priori. No association between LC shape and age was found for the relatively old population studied. Superior-inferior asymmetry of LC shape was associated with IOP, with more asymmetry at higher IOP. Increased IOP was not associated with LC thickness or depth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Complementary effect of patient volume and quality of care on hospital cost efficiency.

    Science.gov (United States)

    Choi, Jeong Hoon; Park, Imsu; Jung, Ilyoung; Dey, Asoke

    2017-06-01

    This study explores the direct effect of an increase in patient volume in a hospital and the complementary effect of quality of care on the cost efficiency of U.S. hospitals in terms of patient volume. The simultaneous equation model with three-stage least squares is used to measure the direct effect of patient volume and the complementary effect of quality of care and volume. Cost efficiency is measured with a data envelopment analysis method. Patient volume has a U-shaped relationship with hospital cost efficiency and an inverted U-shaped relationship with quality of care. Quality of care functions as a moderator for the relationship between patient volume and efficiency. This paper addresses the economically important question of the relationship of volume with quality of care and hospital cost efficiency. The three-stage least square simultaneous equation model captures the simultaneous effects of patient volume on hospital quality of care and cost efficiency.

  7. Life history dependent morphometric variation in stream-dwelling Atlantic salmon

    Science.gov (United States)

    Letcher, B.H.

    2003-01-01

    The time course of morphometric variation among life histories for stream-dwelling Atlantic salmon (Salmo salar L.) parr (age-0+ to age-2+) was analyzed. Possible life histories were combinations of parr maturity status in the autumn (mature or immature) and age at outmigration (smolt at age-2+ or later age). Actual life histories expressed with enough fish for analysis in the 1997 cohort were immature/age-2+ smolt, mature/age-2 +smolt, and mature/age-2+ non-smolt. Tagged fish were assigned to one of the three life histories and digital pictures from the field were analyzed using landmark-based geometric morphometrics. Results indicated that successful grouping of fish according to life history varied with fish age, but that fish could be grouped before the actual expression of the life histories. By March (age-1+), fish were successfully grouped using a descriptive discriminant function and successful assignment ranged from 84 to 97% for the remainder of stream residence. A jackknife of the discriminant function revealed an average life history prediction success of 67% from age-1+ summer to smolting. Low sample numbers for one of the life histories may have limited prediction success. A MANOVA on the shape descriptors (relative warps) also indicated significant differences in shape among life histories from age-1+ summer through to smolting. Across all samples, shape varied significantly with size. Within samples, shape did not vary significantly with size for samples from December (age-0+) to May (age-1+). During the age-1+ summer however, shape varied significantly with size, but the relationship between shape and size was not different among life histories. In the autumn (age-1+) and winter (age-2+), life history differences explained a significant portion of the change in shape with size. Life history dependent morphometric variation may be useful to indicate the timing of early expressions of life history variation and as a tool to explore temporal and

  8. Irregular Shaped Building Design Optimization with Building Information Modelling

    Directory of Open Access Journals (Sweden)

    Lee Xia Sheng

    2016-01-01

    Full Text Available This research is to recognise the function of Building Information Modelling (BIM in design optimization for irregular shaped buildings. The study focuses on a conceptual irregular shaped “twisted” building design similar to some existing sculpture-like architectures. Form and function are the two most important aspects of new buildings, which are becoming more sophisticated as parts of equally sophisticated “systems” that we are living in. Nowadays, it is common to have irregular shaped or sculpture-like buildings which are very different when compared to regular buildings. Construction industry stakeholders are facing stiff challenges in many aspects such as buildability, cost effectiveness, delivery time and facility management when dealing with irregular shaped building projects. Building Information Modelling (BIM is being utilized to enable architects, engineers and constructors to gain improved visualization for irregular shaped buildings; this has a purpose of identifying critical issues before initiating physical construction work. In this study, three variations of design options differing in rotating angle: 30 degrees, 60 degrees and 90 degrees are created to conduct quantifiable comparisons. Discussions are focused on three major aspects including structural planning, usable building space, and structural constructability. This research concludes that Building Information Modelling is instrumental in facilitating design optimization for irregular shaped building. In the process of comparing different design variations, instead of just giving “yes or no” type of response, stakeholders can now easily visualize, evaluate and decide to achieve the right balance based on their own criteria. Therefore, construction project stakeholders are empowered with superior evaluation and decision making capability.

  9. Towards a genetic architecture of cryptic genetic variation

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 84; Issue 3. Towards a genetic architecture of cryptic genetic variation and genetic assimilation: the contribution of K. G. Bateman. Ian Dworkin. Commentary on J. Genet. Classic Volume 84 Issue 3 December 2005 pp 223-226 ...

  10. The African Genome Variation Project shapes medical genetics in Africa

    Science.gov (United States)

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O.; Choudhury, Ananyo; Ritchie, Graham R. S.; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N.; Young, Elizabeth H.; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P.; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A.; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S.

    2014-01-01

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterisation of African genetic diversity is needed. The African Genome Variation Project (AGVP) provides a resource to help design, implement and interpret genomic studies in sub-Saharan Africa (SSA) and worldwide. The AGVP represents dense genotypes from 1,481 and whole genome sequences (WGS) from 320 individuals across SSA. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across SSA. We identify new loci under selection, including for malaria and hypertension. We show that modern imputation panels can identify association signals at highly differentiated loci across populations in SSA. Using WGS, we show further improvement in imputation accuracy supporting efforts for large-scale sequencing of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa, showing for the first time that such designs are feasible. PMID:25470054

  11. Investigation of hydrodynamics on local scour by shape of single spur dike in river bend

    International Nuclear Information System (INIS)

    Masjedi, A; Foroushani, E P

    2012-01-01

    A series of experiments were conducted in which the the scour hole associated with model spur dike was measured in a 180 degree laboratory flume bend under clear-water overtopping flows. In this study, the local scour were conducted for three different shapes of oblong, rectangulat chamfered of straight spur dikes at the bend with various Froude number. The main goals of the experiments were to evaluate the effect of the three different shapes of straight spur dikes on the volume of scour and potential aquatic habitat and on minimizing erosion adjacent to the streambanks. The experiments showed that of the three different shapes of straight spur dikes tested, the least erosion of the around in the near bank region was associated with the spur dikes with oblong shape, while the greatest volume of the scour hole was associated with the rectangular shape. So it was observed that, as Froude number increases, the scour increases.

  12. Shape of the nuclear magnetic resonance line in anisotropic superconductors with an irregular vortex lattice

    International Nuclear Information System (INIS)

    Minkin, A.V.; Tsarevskij, S.L.

    2006-01-01

    For high-temperature superconductors the shape of a NMR spectrum line is built regarding for variation of inhomogeneity of irregular vortex lattice magnetic field near superconductor surface. It is shown that the shape of a NMR line is not simply widened but noticeably varies depending on the degree of irregularity of a superconductor vortex lattice. This variation is associated with a local symmetry decrease in an irregular vortex lattice of the superconductor. Taking into account these circumstances may considerably change conclusions about the type of a vortex lattice and superconductor parameters which are commonly gained from NMR line shape analysis [ru

  13. Correlation between corpus callosum shape and cognitive performance in healthy young adults.

    Science.gov (United States)

    Martín-Loeches, Manuel; Bruner, Emiliano; de la Cuétara, José Manuel; Colom, Roberto

    2013-05-01

    Corpus callosum (CC) might be related to cognitive performance because of its role in interhemispheric communication. Previous research has focused mainly on volumetric analyses of the CC, yielding contradictory results to some extent. Shape is an approach that integrates and extends the data obtained with the volumetric methodology. Here, we analyze the relationships between midsagittal CC shape variation and several cognitive measures. 2D coordinates from 102 MRI-scanned young adult human CCs were superimposed through a Procrustes approach. The residual variation was regressed onto 21 cognitive measures completed by the participants. Most of these measures (including general intelligence, working memory, executive functioning, and mental speed) were unrelated to midsagittal CC morphology. However, attentional control did show consistent and significant correlations with CC shape variation. Slower responses in attentional control were systematically associated with more curved and thinner CC, with consequent rotation of the splenium and the genu. Although the magnitude of the correlations suggests a small relationship of midsagittal CC geometry and attention, the results provide interesting clues regarding the links between brain anatomical configuration and human cognitive function.

  14. Variations in cereal volume affect the amount selected and eaten for breakfast

    OpenAIRE

    Rolls, Barbara J.; Meengs, Jennifer S.; Roe, Liane S.

    2014-01-01

    Food volume could influence both the portions that people take and the amount that they eat, but these effects have had little investigation. The influence of food volume was tested by systematically reducing the flake size of a breakfast cereal so that the cereal was more compact and the same weight filled a smaller volume. In a crossover design, 41 adults ate cereal for breakfast once a week for four weeks during 2011-2012. The cereal was either standard wheat flakes or th...

  15. Visualization of the variability of 3D statistical shape models by animation.

    Science.gov (United States)

    Lamecker, Hans; Seebass, Martin; Lange, Thomas; Hege, Hans-Christian; Deuflhard, Peter

    2004-01-01

    Models of the 3D shape of anatomical objects and the knowledge about their statistical variability are of great benefit in many computer assisted medical applications like images analysis, therapy or surgery planning. Statistical model of shapes have successfully been applied to automate the task of image segmentation. The generation of 3D statistical shape models requires the identification of corresponding points on two shapes. This remains a difficult problem, especially for shapes of complicated topology. In order to interpret and validate variations encoded in a statistical shape model, visual inspection is of great importance. This work describes the generation and interpretation of statistical shape models of the liver and the pelvic bone.

  16. General least-squares fitting procedures to minimize the volume of a hyperellipsoid

    International Nuclear Information System (INIS)

    Wadlinger, E.A.

    1979-01-01

    Several methods for determining the shape parameters, which in two dimensions are the Courant-Snyder parameters, and the volume of an ellipse or hyperellipse that represent a set of phase-space points in a two or more dimensional hyperspace are presented. The ellipse parameters are useful for matching a beam to an accelerating or transport system and in studies of emittance growth. The fitting procedure minimizes the total volume of a hyperellipse by adjusting the ellipse shape parameters. The total volume is the sum of the individual particle volumes defined by the hyperellipse that passes through the phase-space point of a particle. A two-dimensional space is considered first; the results are then generalized to higher dimensions. Computer programs using these techniques were written. 1 figure

  17. Estimating Small-Body Gravity Field from Shape Model and Navigation Data

    Science.gov (United States)

    Park, Ryan S.; Werner, Robert A.; Bhaskaran, Shyam

    2008-01-01

    This paper presents a method to model the external gravity field and to estimate the internal density variation of a small-body. We first discuss the modeling problem, where we assume the polyhedral shape and internal density distribution are given, and model the body interior using finite elements definitions, such as cubes and spheres. The gravitational attractions computed from these approaches are compared with the true uniform-density polyhedral attraction and the level of accuracies are presented. We then discuss the inverse problem where we assume the body shape, radiometric measurements, and a priori density constraints are given, and estimate the internal density variation by estimating the density of each finite element. The result shows that the accuracy of the estimated density variation can be significantly improved depending on the orbit altitude, finite-element resolution, and measurement accuracy.

  18. Bare-Hand Volume Cracker for Raw Volume Data Analysis

    Directory of Open Access Journals (Sweden)

    Bireswar Laha

    2016-09-01

    Full Text Available Analysis of raw volume data generated from different scanning technologies faces a variety of challenges, related to search, pattern recognition, spatial understanding, quantitative estimation, and shape description. In a previous study, we found that the Volume Cracker (VC 3D interaction (3DI technique mitigated some of these problems, but this result was from a tethered glove-based system with users analyzing simulated data. Here, we redesigned the VC by using untethered bare-hand interaction with real volume datasets, with a broader aim of adoption of this technique in research labs. We developed symmetric and asymmetric interfaces for the Bare-Hand Volume Cracker (BHVC through design iterations with a biomechanics scientist. We evaluated our asymmetric BHVC technique against standard 2D and widely used 3D interaction techniques with experts analyzing scanned beetle datasets. We found that our BHVC design significantly outperformed the other two techniques. This study contributes a practical 3DI design for scientists, documents lessons learned while redesigning for bare-hand trackers, and provides evidence suggesting that 3D interaction could improve volume data analysis for a variety of visual analysis tasks. Our contribution is in the realm of 3D user interfaces tightly integrated with visualization, for improving the effectiveness of visual analysis of volume datasets. Based on our experience, we also provide some insights into hardware-agnostic principles for design of effective interaction techniques.

  19. Effectiveness evaluation of two volumizing hyaluronic acid dermal fillers in a controlled, randomized, double-blind, split-face clinical study

    Directory of Open Access Journals (Sweden)

    Kerscher M

    2017-06-01

    Full Text Available Martina Kerscher,1 Karla Agsten,2 Maria Kravtsov,3 Welf Prager4 1Department of Cosmetic Science, University of Hamburg, 2SCIderm GmbH, Hamburg, Germany; 3Anteis S.A., Geneva, Switzerland; 4Prager & Partner Dermatologische Praxis, Hamburg, Germany Background: Enhancement of the midface can be achieved with volumizing hyaluronic acid (HA fillers.Objective: The objective of this study was to compare the safety and effectiveness of Cohesive Polydensified Matrix® 26 mg/mL HA gel (CPM-26 and Vycross® 20 mg/ml HA gel (VYC-20 in a controlled, randomized, evaluator-blind, split-face clinical study.Patients and methods: Subjects with moderate-to-severe malar volume loss on the Merz Aesthetics Scale (MAS received CPM-26 on one side and VYC-20 on the contralateral side of the face. Effectiveness assessments were performed by blinded evaluators including photographic and live MAS ratings and live Global Aesthetic Improvement Scale (GAIS ratings. Calculations of anatomical volume variations at month 3 (M3, month 6 (M6, month 12 (M12 and month 18 (M18 were also performed.Results: Non-inferiority of CPM-26 versus VYC-20 was demonstrated at M3 (primary end point based on MAS. GAIS rating showed that significantly more subjects had better improvement with CPM-26 than with VYC-20 at month 1, M3, M12 and M18 (p=0.0032, p=0.0074, p=0.0384 and p=0.0110, respectively. Standardized evaluation of volume variations from baseline to M3, M12 and M18 showed that CPM-26 created more volume augmentation at all time points, and the difference was significant at M3.Conclusion: CPM-26 was non-inferior to VYC-20 based on MAS ratings at M3 and demonstrated a favorable safety and effectiveness profile for midfacial volume enhancement with results lasting up to M18. Keywords: cohesive polydensified matrix, hyaluronic acid fillers, Belotero® Volume, Modélis® SHAPE, Juvéderm® VOLUMA®, volumizing

  20. Prediction of dementia by hippocampal shape analysis

    DEFF Research Database (Denmark)

    Achterberg, Hakim C.; van der Lijn, Fedde; den Heijer, Tom

    2010-01-01

    This work investigates the possibility of predicting future onset of dementia in subjects who are cognitively normal, using hippocampal shape and volume information extracted from MRI scans. A group of 47 subjects who were non-demented normal at the time of the MRI acquisition, but were diagnosed...... with dementia during a 9 year follow-up period, was selected from a large population based cohort study. 47 Age and gender matched subjects who stayed cognitively intact were selected from the same cohort study as a control group. The hippocampi were automatically segmented and all segmentations were inspected...... and, if necessary, manually corrected by a trained observer. From this data a statistical model of hippocampal shape was constructed, using an entropy-based particle system. This shape model provided the input for a Support Vector Machine classifier to predict dementia. Cross validation experiments...

  1. Statistical descriptions of scaphoid and lunate bone shapes

    NARCIS (Netherlands)

    van de Giessen, Martijn; Foumani, Mahyar; Streekstra, Geert J.; Strackee, Simon D.; Maas, Mario; van Vliet, Lucas J.; Grimbergen, Kees A.; Vos, Frans M.

    2010-01-01

    Diagnosing of injuries of the wrist bones is problematic due to a highly complex and variable geometry. knowledge of variations of healthy bone shapes is essential to detect wrist pathologies, developing prosthetics and investigating biomechanical properties of the wrist joint. In previous

  2. Geometric morphometrics in primatology: craniofacial variation in Homo sapiens and Pan troglodytes.

    Science.gov (United States)

    Lynch, J M; Wood, C G; Luboga, S A

    1996-01-01

    Traditionally, morphometric studies have relied on statistical analysis of distances, angles or ratios to investigate morphometric variation among taxa. Recently, geometric techniques have been developed for the direct analysis of landmark data. In this paper, we offer a summary (with examples) of three of these newer techniques, namely shape coordinate, thin-plate spline and relative warp analyses. Shape coordinate analysis detected significant craniofacial variation between 4 modern human populations, with African and Australian Aboriginal specimens being relatively prognathous compared with their Eurasian counterparts. In addition, the Australian specimens exhibited greater basicranial flexion than all other samples. The observed relationships between size and craniofacial shape were weak. The decomposition of shape variation into affine and non-affine components is illustrated via a thin-plate spline analysis of Homo and Pan cranial landmarks. We note differences between Homo and Pan in the degree of prognathism and basicranial flexion and the position and orientation of the foramen magnum. We compare these results with previous studies of these features in higher primates and discuss the utility of geometric morphometrics as a tool in primatology and physical anthropology. We conclude that many studies of morphological variation, both within and between taxa, would benefit from the graphical nature of these techniques.

  3. Martensitic transformations and the shape memory effect in Ti-Zr-Nb-Al high-temperature shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fei; Yu, Zhiguo; Xiong, Chengyang [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, Beijing 100191 (China); Qu, Wentao; Yuan, Bifei [School of Mechanical Engineering, Xi’an Shiyou University, Xi’an 710065 (China); Wang, Zhenguo [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, Beijing 100191 (China); Li, Yan, E-mail: liyan@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, Beijing 100191 (China)

    2017-01-02

    The microstructures, phase transformations, mechanical properties and shape memory effect of Ti-20Zr-10Nb-xAl (x=1, 2, 3, 4 at%) alloys were investigated. The X-ray diffraction results show that the alloys are composed of a single martensitic α″-phase and that the corresponding unit cell volume decreases with increasing Al content. The reverse martensitic transformation start temperature (A{sub s}) of the Ti-20Zr-10Nb-Al alloy is 534 K and decreases with increasing Al content. The addition of Al results in solid solution strengthening and grain refinement strengthening, thus improving the mechanical properties and the shape memory effect of the Ti-20Zr-10 Nb-xAl alloys. The Ti-20Zr-10Nb-3Al alloy shows the greatest shape memory strain (3.2%) and the largest tensile strain (17.6%) as well as a very high tensile strength (886 MPa).

  4. Processes for an Architecture of Volume

    DEFF Research Database (Denmark)

    Mcgee, Wes; Feringa, Jelle; Søndergaard, Asbjørn

    2013-01-01

    This paper addresses both the architectural, conceptual motivations and the tools and techniques necessary for the digital production of an architecture of volume. The robotic manufacturing techniques of shaping volumetric materials by hot wire and abrasive wire cutting are discussed through...

  5. Partial Molar Volumes of Aqua Ions from First Principles.

    Science.gov (United States)

    Wiktor, Julia; Bruneval, Fabien; Pasquarello, Alfredo

    2017-08-08

    Partial molar volumes of ions in water solution are calculated through pressures obtained from ab initio molecular dynamics simulations. The correct definition of pressure in charged systems subject to periodic boundary conditions requires access to the variation of the electrostatic potential upon a change of volume. We develop a scheme for calculating such a variation in liquid systems by setting up an interface between regions of different density. This also allows us to determine the absolute deformation potentials for the band edges of liquid water. With the properly defined pressures, we obtain partial molar volumes of a series of aqua ions in very good agreement with experimental values.

  6. LLE Review Quarterly Report (July-September 1998). Volume 76

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Reuben [Univ. of Rochester, NY (United States). Lab. for Laser Energetics

    1998-09-01

    This volume of the LLE Review, covering the period July-September 1998, includes reports on two of the newest subsystems in the OMEGA laser facility. A. V. Okishev, M. D. Skeldon, and W. Seka have developed a highly stable, diode-pumped Nd:YLF master oscillator for the OMEGA laser system. This new master oscillator produces either single-frequency Q-switched pulses or cw radiation for the OMEGA pulse-shaping system. The switch-over between these two regimes requires no laser realignment. The new master oscillator is completely computer controlled and has been operating continuously in OMEGA for six months without operator intervention. A. Babushkin, W. Bittle, S. A. Letzring, M. D. Skeldon, and W. Seka have designed a negative-feedback–controlled regenerative amplifier that has been part of the OMEGA laser system for the past two years. The negative feedback makes the energy output of the regenerative amplifier stable and insensitive to the variations in pulse energy. This amplifier’s long-term output energy stability is the highest ever demonstrated for a millijoule-level laser system, either flashlamp pumped or diode pumped. Other articles in this volume are titled: Transcient Bandwidth Analysis of Photoconductive Microwave Switches Implemented in the OMEGA Pulse-Shaping System; Simulations of Near-Field Intensity Modulations in High-Intensity Laser Beams due to Self- and Cross-Phase Modulation Between Orthogonally Polarized Laser Beams Emerging from a Diamond-Turned KDP Wedge; X-Ray Radiographic System Used to Measure the Evolution of Broadband Imprint in Laser-Driven Planar Targets; Collisionless Damping of Localized Plasma Waves in Laser-Produces Plasmas and Application to Stimulated Raman Scattering in Filaments; LLE's Summer High School Research Program; FY98 Laser Facility Report; and, National Laser Users' Facilty News.

  7. Gamma-ray peak shapes from cadmium zinc telluride detectors

    Energy Technology Data Exchange (ETDEWEB)

    Namboodiri, M.N.; Lavietes, A.D.; McQuaid, J.H.

    1996-09-01

    We report the results of a study of the peak shapes in the gamma spectra measured using several 5 x 5 x 5 mm{sup 3} cadmium zinc telluride (CZT) detectors. A simple parameterization involving a Gaussian and an exponential low energy tail describes the peak shapes sell. We present the variation of the parameters with gamma energy. This type of information is very useful in the analysis of complex gamma spectra consisting of many peaks.

  8. Effect of laser pulse shaping parameters on the fidelity of quantum logic gates.

    Science.gov (United States)

    Zaari, Ryan R; Brown, Alex

    2012-09-14

    The effect of varying parameters specific to laser pulse shaping instruments on resulting fidelities for the ACNOT(1), NOT(2), and Hadamard(2) quantum logic gates are studied for the diatomic molecule (12)C(16)O. These parameters include varying the frequency resolution, adjusting the number of frequency components and also varying the amplitude and phase at each frequency component. A time domain analytic form of the original discretized frequency domain laser pulse function is derived, providing a useful means to infer the resulting pulse shape through variations to the aforementioned parameters. We show that amplitude variation at each frequency component is a crucial requirement for optimal laser pulse shaping, whereas phase variation provides minimal contribution. We also show that high fidelity laser pulses are dependent upon the frequency resolution and increasing the number of frequency components provides only a small incremental improvement to quantum gate fidelity. Analysis through use of the pulse area theorem confirms the resulting population dynamics for one or two frequency high fidelity laser pulses and implies similar dynamics for more complex laser pulse shapes. The ability to produce high fidelity laser pulses that provide both population control and global phase alignment is attributed greatly to the natural evolution phase alignment of the qubits involved within the quantum logic gate operation.

  9. Genetics of human body size and shape: body proportions and indices.

    Science.gov (United States)

    Livshits, Gregory; Roset, A; Yakovenko, K; Trofimov, S; Kobyliansky, E

    2002-01-01

    The study of the genetic component in morphological variables such as body height and weight, head and chest circumference, etc. has a rather long history. However, only a few studies investigated body proportions and configuration. The major aim of the present study was to evaluate the extent of the possible genetic effects on the inter-individual variation of a number of body configuration indices amenable to clear functional interpretation. Two ethnically different pedigree samples were used in the study: (1) Turkmenians (805 individuals) from Central Asia, and (2) Chuvasha (732 individuals) from the Volga riverside, Russian Federation. To achieve the aim of the present study we proposed three new indices, which were subjected to a statistical-genetic analysis using modified version of "FISHER" software. The proposed indices were: (1) an integral index of torso volume (IND#1), an index reflecting a predisposition of body proportions to maintain a balance in a vertical position (IND#2), and an index of skeletal extremities volume (IND#3). Additionally, the first two principal factors (PF1 and PF2) obtained on 19 measurements of body length and breadth were subjected to genetic analysis. Variance decomposition analysis that simultaneously assess the contribution of gender, age, additive genetic effects and effects of environment shared by the nuclear family members, was applied to fit variation of the above three indices, and PF1 and PF2. The raw familial correlation of all study traits and in both samples showed: (1) all marital correlations did not differ significantly from zero; (2) parent-offspring and sibling correlations were all positive and statistically significant. The parameter estimates obtained in variance analyses showed that from 40% to 75% of inter-individual variation of the studied traits (adjusted for age and sex) were attributable to genetic effects. For PF1 and PF2 in both samples, and for IND#2 (in Chuvasha pedigrees), significant common sib

  10. Larval development and shape variation of the kelpfish Myxodes viridis (Teleostei: Clinidae

    Directory of Open Access Journals (Sweden)

    Francisca Zavala-Muñoz

    2016-03-01

    Full Text Available Larval development and shape ontogeny of the kelpfish Myxodes viridis (Clinidae are described for the first time. A total of 214 individuals ranging between 3.51 and 23.09 mm standard length collected off central Chile were assessed employing classic and geometric morphometrics, illustration with camera lucida and a double-staining technique for cartilaginous and bone structure observation. Based on characteristics such as yolk sac presence and fin formation, six stages of larval development were differentiated: yolk sac, preflexion, flexion, early postflexion, late postflexion and juvenile. Shape changes during development are subtle and occur smoothly, being more significant in the head and preanal length, and ontogenetic allometry accounts for almost 15%. Cartilage formation takes place first at the branchial arches and cranium; then hypural, haemal and neural arches are consecutively formed. Bony structure ossification occurs late in the development. Vertebral centra ossify directly, without cartilaginous matrix replacement.

  11. Exploring Conceptual Frameworks of Models of Atomic Structures and Periodic Variations, Chemical Bonding, and Molecular Shape and Polarity: A Comparison of Undergraduate General Chemistry Students with High and Low Levels of Content Knowledge

    Science.gov (United States)

    Wang, Chia-Yu; Barrow, Lloyd H.

    2013-01-01

    The purpose of the study was to explore students' conceptual frameworks of models of atomic structure and periodic variations, chemical bonding, and molecular shape and polarity, and how these conceptual frameworks influence their quality of explanations and ability to shift among chemical representations. This study employed a purposeful sampling…

  12. Variation and Linguistic Theory.

    Science.gov (United States)

    Bailey, Charles-James N.

    This volume presents principles and models for describing language variation, and introduces a time-based, dynamic framework for linguistic description. The book first summarizes some of the problems of grammatical description encountered from Saussure through the present and then outlines possibilities for new descriptions of language which take…

  13. Eddy current heating of irregularly shaped plates by slow ramped fields

    International Nuclear Information System (INIS)

    Dresner, L.

    1979-01-01

    Theorems are presented for estimating eddy current heating of irregularly shaped plates by a perpendicular ramped field. The theorems, which are derived from two complementary variational principles, give upper and lower bounds to the eddy current heating. Illustrative results are given for rectangles, isosceles triangles, sectors of circular annuli, rhombuses, and L-shaped plates. A comparison is made with earlier work

  14. Automatic delineation of functional volumes in emission tomography for oncology applications

    International Nuclear Information System (INIS)

    Hatt, M.

    2008-12-01

    One of the main factors of error for semi-quantitative analysis in positron emission tomography (PET) imaging for diagnosis and patient follow up, as well as new flourishing applications like image guided radiotherapy, is the methodology used to define the volumes of interest in the functional images. This is explained by poor image quality in emission tomography resulting from noise and partial volume effects induced blurring, as well as the variability of acquisition protocols, scanner models and image reconstruction procedures. The large number of proposed methodologies for the definition of a PET volume of interest does not help either. The majority of such proposed approaches are based on deterministic binary thresholding that are not robust to contrast variation and noise. In addition, these methodologies are usually unable to correctly handle heterogeneous uptake inside tumours. The objective of this thesis is to develop an automatic, robust, accurate and reproducible 3D image segmentation approach for the functional volumes determination of tumours of all sizes and shapes, and whose activity distribution may be strongly heterogeneous. The approach we have developed is based on a statistical image segmentation framework, combined with a fuzzy measure, which allows to take into account both noisy and blurry properties of nuclear medicine images. It uses a stochastic iterative parameters estimation and a locally adaptive model of the voxel and its neighbours for the estimation and segmentation. The developed approaches have been evaluated using a large array of datasets, comprising both simulated and real acquisitions of phantoms and tumours. The results obtained on phantom acquisitions allowed to validate the accuracy of the segmentation with respect to the size of considered structures, down to 13 mm in diameter (about twice the spatial resolution of a typical PET scanner), as well as its robustness with respect to noise, contrast variation, acquisition

  15. Combined shape and topology optimization for minimization of maximal von Mises stress

    DEFF Research Database (Denmark)

    Lian, Haojie; Christiansen, Asger Nyman; Tortorelli, Daniel A.

    2017-01-01

    This work shows that a combined shape and topology optimization method can produce optimal 2D designs with minimal stress subject to a volume constraint. The method represents the surface explicitly and discretizes the domain into a simplicial complex which adapts both structural shape and topology....... By performing repeated topology and shape optimizations and adaptive mesh updates, we can minimize the maximum von Mises stress using the p-norm stress measure with p-values as high as 30, provided that the stress is calculated with sufficient accuracy....

  16. Uncertainty visualization in HARDI based on ensembles of ODFs

    KAUST Repository

    Jiao, Fangxiang; Phillips, Jeff M.; Gur, Yaniv; Johnson, Chris R.

    2012-01-01

    In this paper, we propose a new and accurate technique for uncertainty analysis and uncertainty visualization based on fiber orientation distribution function (ODF) glyphs, associated with high angular resolution diffusion imaging (HARDI). Our visualization applies volume rendering techniques to an ensemble of 3D ODF glyphs, which we call SIP functions of diffusion shapes, to capture their variability due to underlying uncertainty. This rendering elucidates the complex heteroscedastic structural variation in these shapes. Furthermore, we quantify the extent of this variation by measuring the fraction of the volume of these shapes, which is consistent across all noise levels, the certain volume ratio. Our uncertainty analysis and visualization framework is then applied to synthetic data, as well as to HARDI human-brain data, to study the impact of various image acquisition parameters and background noise levels on the diffusion shapes. © 2012 IEEE.

  17. Uncertainty visualization in HARDI based on ensembles of ODFs

    KAUST Repository

    Jiao, Fangxiang

    2012-02-01

    In this paper, we propose a new and accurate technique for uncertainty analysis and uncertainty visualization based on fiber orientation distribution function (ODF) glyphs, associated with high angular resolution diffusion imaging (HARDI). Our visualization applies volume rendering techniques to an ensemble of 3D ODF glyphs, which we call SIP functions of diffusion shapes, to capture their variability due to underlying uncertainty. This rendering elucidates the complex heteroscedastic structural variation in these shapes. Furthermore, we quantify the extent of this variation by measuring the fraction of the volume of these shapes, which is consistent across all noise levels, the certain volume ratio. Our uncertainty analysis and visualization framework is then applied to synthetic data, as well as to HARDI human-brain data, to study the impact of various image acquisition parameters and background noise levels on the diffusion shapes. © 2012 IEEE.

  18. Otolith shape: a population marker for Atlantic herring Clupea harengus.

    Science.gov (United States)

    Libungan, L A; Óskarsson, G J; Slotte, A; Jacobsen, J A; Pálsson, S

    2015-04-01

    Otolith shape variation of seven Atlantic herring Clupea harengus populations from Canada, the Faroe Islands, Iceland, Ireland, Norway and Scotland, U.K., covering a large area of the species' distribution, was studied in order to see if otolith shape can be used to discriminate between populations. The otolith shape was obtained using quantitative shape analysis, transformed with Wavelet and analysed with multivariate methods. Significant differences were detected among the seven populations, which could be traced to three morphological structures in the otoliths. The differentiation in otolith shape between populations was not only correlated with their spawning time, indicating a strong environmental effect, but could also be due to differing life-history strategies. A model based on the shape differences discriminates with 94% accuracy between Icelandic summer spawners and Norwegian spring spawners, which are known to mix at feeding grounds. This study shows that otolith shape could become an accurate marker for C. harengus population discrimination. © 2015 The Fisheries Society of the British Isles.

  19. Control of cell volume in the J774 macrophage by microtubule disassembly and cyclic AMP

    Science.gov (United States)

    Melmed, RN; Karanian, PJ; Berlin, RD

    1981-01-01

    We have explored the possibilities that cell volume is regulated by the status of microtubule assembly and cyclic AMP metabolism and may be coordinated with shape change. Treatment of J774.2 mouse macrophages with colchicine caused rapid microtubule disassembly and was associated with a striking increase (from 15-20 to more than 90 percent) in the proportion of cells with a large protuberance at one pole. This provided a simple experimental system in which shape changes occurred in virtually an entire cell population in suspension. Parallel changes in cell volume could then be quantified by isotope dilution techniques. We found that the shape change caused by colchicine was accompanied by a decrease in cell volume of approximately 20 percent. Nocodozole, but not lumicolchicine, caused identical changes in both cell shape and cell volume. The volume loss was not due to cell lysis nor to inhibition of pinocytosis. The mechanism of volume loss was also examined. Colchicine induced a small but reproducible increase in activity of the ouabain-sensitive Na(+), K(+)-dependent ATPase. However, inhibition of this enzyme/transport system by ouabain did not change cell volume nor did it block the colchicines-induced decrease in volume. One the other hand, SITS (4’acetamido, 4-isothiocyano 2,2’ disulfonic acid stilbene), an inhibitor of anion transport, inhibited the effects of colchicines, thus suggesting a role for an anion transport system in cell volume regulation. Because colchicine is known to activate adenylate cyclase in several systems and because cell shape changes are often induced by hormones that elevate cyclic AMP, we also examined the effects of cyclic AMP on cell volume. Agents that act to increase syclic AMP (cholera toxin, which activates adenylate cyclase; IBMX, and inhibitor of phosphodiesterase; and dibutyryl cyclic AMP) all caused a volume decrease comparable to that of colchicine. To define the effective metabolic pathway, we studied two mutants of J

  20. Migration of a solid and arbitrarily-shaped particle near a plane slipping wall

    International Nuclear Information System (INIS)

    Ghalya, Néjiba; Sellier, Antoine; Feuillebois, François

    2012-01-01

    This work is concerned with the rigid-body migration of a solid and arbitrary-shaped particle immersed in a Newtonian liquid in vicinity of a plane, motionless and impermeable wall where a Navier slip condition holds. The net hydrodynamic force and torque exerted on the moving particle are obtained by appealing to a new boundary elements approach which makes use of a specific Green tensor recently determined elsewhere. The advocated technique results in the treatment of a Fredholm boundary-integral equation of the first kind on the particle surface and, by contrast to earlier works in this field, makes it possible to cope with non-spherical particles. The proposed numerical implementation is benchmarked against results obtained for a sphere by using the bipolar coordinates. Preliminary new results for the friction coefficients of an non-spheroidal ellipsoid are also reported and compared with those for a volume-equivalent sphere. The variations of the friction coefficients with the slip length are analogous for both particles.

  1. Direct and simultaneous estimation of cardiac four chamber volumes by multioutput sparse regression.

    Science.gov (United States)

    Zhen, Xiantong; Zhang, Heye; Islam, Ali; Bhaduri, Mousumi; Chan, Ian; Li, Shuo

    2017-02-01

    Cardiac four-chamber volume estimation serves as a fundamental and crucial role in clinical quantitative analysis of whole heart functions. It is a challenging task due to the huge complexity of the four chambers including great appearance variations, huge shape deformation and interference between chambers. Direct estimation has recently emerged as an effective and convenient tool for cardiac ventricular volume estimation. However, existing direct estimation methods were specifically developed for one single ventricle, i.e., left ventricle (LV), or bi-ventricles; they can not be directly used for four chamber volume estimation due to the great combinatorial variability and highly complex anatomical interdependency of the four chambers. In this paper, we propose a new, general framework for direct and simultaneous four chamber volume estimation. We have addressed two key issues, i.e., cardiac image representation and simultaneous four chamber volume estimation, which enables accurate and efficient four-chamber volume estimation. We generate compact and discriminative image representations by supervised descriptor learning (SDL) which can remove irrelevant information and extract discriminative features. We propose direct and simultaneous four-chamber volume estimation by the multioutput sparse latent regression (MSLR), which enables jointly modeling nonlinear input-output relationships and capturing four-chamber interdependence. The proposed method is highly generalized, independent of imaging modalities, which provides a general regression framework that can be extensively used for clinical data prediction to achieve automated diagnosis. Experiments on both MR and CT images show that our method achieves high performance with a correlation coefficient of up to 0.921 with ground truth obtained manually by human experts, which is clinically significant and enables more accurate, convenient and comprehensive assessment of cardiac functions. Copyright © 2016 Elsevier

  2. Estimating nonrigid motion from inconsistent intensity with robust shape features

    International Nuclear Information System (INIS)

    Liu, Wenyang; Ruan, Dan

    2013-01-01

    Purpose: To develop a nonrigid motion estimation method that is robust to heterogeneous intensity inconsistencies amongst the image pairs or image sequence. Methods: Intensity and contrast variations, as in dynamic contrast enhanced magnetic resonance imaging, present a considerable challenge to registration methods based on general discrepancy metrics. In this study, the authors propose and validate a novel method that is robust to such variations by utilizing shape features. The geometry of interest (GOI) is represented with a flexible zero level set, segmented via well-behaved regularized optimization. The optimization energy drives the zero level set to high image gradient regions, and regularizes it with area and curvature priors. The resulting shape exhibits high consistency even in the presence of intensity or contrast variations. Subsequently, a multiscale nonrigid registration is performed to seek a regular deformation field that minimizes shape discrepancy in the vicinity of GOIs. Results: To establish the working principle, realistic 2D and 3D images were subject to simulated nonrigid motion and synthetic intensity variations, so as to enable quantitative evaluation of registration performance. The proposed method was benchmarked against three alternative registration approaches, specifically, optical flow, B-spline based mutual information, and multimodality demons. When intensity consistency was satisfied, all methods had comparable registration accuracy for the GOIs. When intensities among registration pairs were inconsistent, however, the proposed method yielded pronounced improvement in registration accuracy, with an approximate fivefold reduction in mean absolute error (MAE = 2.25 mm, SD = 0.98 mm), compared to optical flow (MAE = 9.23 mm, SD = 5.36 mm), B-spline based mutual information (MAE = 9.57 mm, SD = 8.74 mm) and mutimodality demons (MAE = 10.07 mm, SD = 4.03 mm). Applying the proposed method on a real MR image sequence also provided

  3. Effect of the shape and size of dosimeters on the response of solid state/EPR dosimetry

    International Nuclear Information System (INIS)

    Yordanov, Nicola D.; Fabisiak, Slawomir; Lagunov, Oleg

    2006-01-01

    The influence of the shape and size of dosimeters used in solid state-EPR (SS/EPR) dosimetry on their response is reported. It is shown that for commonly used cylindrical (rod) shaped dosimeters of equal height, prepared of low (ε=<3) dielectric constant materials, linearity between their volume and the EPR response is observed when their diameter varies between 3 and 5mm. Further increase of the dosimeter's diameter is not recommended since the increased penetration of the dosimeter material into the electric component of the microwave field in the EPR cavity increases the dielectric losses and decreases the EPR response. In an attempt to improve the sensitivity of the SS/EPR dosimetry we have prepared and tested new, flat-shaped, dosimeters of low (ε∼2) dielectric constant materials which were found to exhibit: (i) linear EPR response within 1-5mm thickness; (ii) higher sensitivity than cylindrical dosimeters at equal sample volume; (iii) increased by ca. 270% EPR sensitivity at 5mm thickness compared to the cylindrical dosimeters with the same diameter (ca. 1.7 times increased sample volume). Using flat shape dosimeters of suitable size provides 2.7 times higher EPR sensitivity of single estimation

  4. On a variational principle for shape optimization and elliptic free boundary problems

    Directory of Open Access Journals (Sweden)

    Raúl B. González De Paz

    2009-02-01

    Full Text Available A variational principle for several free boundary value problems using a relaxation approach is presented. The relaxed Energy functional is concave and it is defined on a convex set, so that the minimizing points are characteristic functions of sets. As a consequence of the first order optimality conditions, it is shown that the corresponding sets are domains bounded by free boundaries, so that the equivalence of the solution of the relaxed problem with the solution of several free boundary value problem is proved. Keywords: Calculus of variations, optimization, free boundary problems.

  5. Allelic heterogeneity and trade-off shape natural variation for response to soil micronutrient.

    Directory of Open Access Journals (Sweden)

    Seifollah Poormohammad Kiani

    Full Text Available As sessile organisms, plants have to cope with diverse environmental constraints that may vary through time and space, eventually leading to changes in the phenotype of populations through fixation of adaptive genetic variation. To fully comprehend the mechanisms of evolution and make sense of the extensive genotypic diversity currently revealed by new sequencing technologies, we are challenged with identifying the molecular basis of such adaptive variation. Here, we have identified a new variant of a molybdenum (Mo transporter, MOT1, which is causal for fitness changes under artificial conditions of both Mo-deficiency and Mo-toxicity and in which allelic variation among West-Asian populations is strictly correlated with the concentration of available Mo in native soils. In addition, this association is accompanied at different scales with patterns of polymorphisms that are not consistent with neutral evolution and show signs of diversifying selection. Resolving such a case of allelic heterogeneity helps explain species-wide phenotypic variation for Mo homeostasis and potentially reveals trade-off effects, a finding still rarely linked to fitness.

  6. A cadaveric study involving variations in external morphology of gall bladder

    Directory of Open Access Journals (Sweden)

    Anjankar Vaibhav Prakash, Panshewdikar Pradnyesh N, Joshi DS, Anjankar Ashish Prakash

    2013-04-01

    Full Text Available Background: Variations in the pattern of the extra hepatic biliary tract are usual and are commonly encountered during some radiological investigations or in operation theaters. Such Variations of the morphology of Gall bladder have been well documented in the literature for many years but a detail morphological study of variations of the gall bladder and its incidence is very rare. In this era of quick results, increasing use of diagnostic and interventional procedures makes it important to study variations of gall bladder morphology. Most of the interventional procedures in this modern era are done laparoscopically and there is tremendous increase in the number of laparoscopic cholecystectomies. So, sound knowledge of possible variations in morphology of gall bladder is important. Materials and Methods: This study was undertaken on 90 cadaveric liver and gall bladder specimens in terms of length, maximum transverse diameter, shape, external variations of gall bladder, Interior and length of gall bladder below the inferior border of the liver. Results: GB had length ranging between 7 and 10 cm, transverse diameter between 2 and 5 cm. The commonest shape observed in this study was pear shaped in 82.22% of cases. The length of gall bladder below the inferior border of liver varied between 0.4 and 2.5 cm. Conclusion: The growing importance of such variations, lie not only from the point of biliary disease but also with respect to the various invasive techniques in the diagnosis and treatment of gall bladder and extrahepatic bile duct disease.

  7. Experimental determination of the dynamic shape factor of primary sodium peroxide aerosols

    International Nuclear Information System (INIS)

    Barbe, M.

    1985-09-01

    A hypothetical accident in a fast breeeder reactor could cause aerosols to be generated in a sodium fire. The computer codes relative to the modeling of such accidents make it necessary to use various input parameters among which the dynamic shape factor kappa of the aerosols produced. This study concerns the shape factor of sodium peroxide; the discrepancies between the values of this parameter given in the literature justifies the usefulness of our work. We have tried to use the simplest method. The dynamic shape factor is proportional to the ratio of the equivalent volume diameter to the aerodynamic diameter for a given particle. Therefore, these two quantities must be determined. The particles are classified by means of a centrifuge as a function of their aerodynamic diameter; the equivalent volume diameter of the particles thus selected can then be determined by assessing the mass (neutron activation) and the number (electron microscope) on the same sample of particles. Our results show that the dynamic shape factor of sodium peroxide submicronic particles generated by a fire is nearly 1 and the values of this parameter increase with the particles size [fr

  8. Slope shape effect on runoff and soil erosion under natural rainfall conditions

    OpenAIRE

    Sensoy H; Kara

    2014-01-01

    Slope is often non-uniform along the hillslope, with variations describing concave and convex shapes associated with natural hillslopes. This is because runoff generations vary significantly over short distances, with changes in surface alteration during or between flow events on different slope shapes. The aim of this research is to determine the effects of slope shapes on runoff and soil erosion. A field experiment was conducted from September 2007 to September 2009 on hillside field plots ...

  9. Inter- and intra-observer variation in soft-tissue sarcoma target definition.

    Science.gov (United States)

    Roberge, D; Skamene, T; Turcotte, R E; Powell, T; Saran, N; Freeman, C

    2011-08-01

    To evaluate inter- and intra-observer variability in gross tumor volume definition for adult limb/trunk soft tissue sarcomas. Imaging studies of 15 patients previously treated with preoperative radiation were used in this study. Five physicians (radiation oncologists, orthopedic surgeons and a musculoskeletal radiologist) were asked to contour each of the 15 tumors on T1-weighted, gadolinium-enhanced magnetic resonance images. These contours were drawn twice by each physician. The volume and center of mass coordinates for each gross tumor volume were extracted and a Boolean analysis was performed to measure the degree of volume overlap. The median standard deviation in gross tumor volumes across observers was 6.1% of the average volume (range: 1.8%-24.9%). There was remarkably little variation in the 3D position of the gross tumor volume center of mass. For the 15 patients, the standard deviation of the 3D distance between centers of mass ranged from 0.06 mm to 1.7 mm (median 0.1mm). Boolean analysis demonstrated that 53% to 90% of the gross tumor volume was common to all observers (median overlap: 79%). The standard deviation in gross tumor volumes on repeat contouring was 4.8% (range: 0.1-14.4%) with a standard deviation change in the position of the center of mass of 0.4mm (range: 0mm-2.6mm) and a median overlap of 93% (range: 73%-98%). Although significant inter-observer differences were seen in gross tumor volume definition of adult soft-tissue sarcoma, the center of mass of these volumes was remarkably consistent. Variations in volume definition did not correlate with tumor size. Radiation oncologists should not hesitate to review their contours with a colleague (surgeon, radiologist or fellow radiation oncologist) to ensure that they are not outliers in sarcoma gross tumor volume definition. Protocols should take into account variations in volume definition when considering tighter clinical target volumes. Copyright © 2011 Société française de radioth

  10. Variations in cereal volume affect the amount selected and eaten for breakfast.

    Science.gov (United States)

    Rolls, Barbara J; Meengs, Jennifer S; Roe, Liane S

    2014-09-01

    Food volume could influence both the portions that people take and the amount that they eat, but these effects have had little investigation. The influence of food volume was tested by systematically reducing the flake size of a breakfast cereal so that the cereal was more compact and the same weight filled a smaller volume. In a crossover design, 41 adults ate cereal for breakfast once a week for 4 weeks during 2011 and 2012. The cereal was either standard wheat flakes or the same cereal crushed to reduce the volume to 80%, 60%, or 40% of the standard. A constant weight of cereal was provided in an opaque container and participants poured the amount they wanted into a bowl, added fat-free milk and noncalorie sweetener as desired, and consumed as much as they wanted. Results from a mixed linear model showed that as flake size was reduced, subjects poured a smaller volume of cereal, but still took a greater amount by weight and energy content (both P values breakfast energy intake increased from a mean±standard error of the mean of 286±18 kcal to 358±19 kcal, an increase of a mean±standard error of the mean 34%±7% (Pportion served, which in turn affects energy intake. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  11. Unusual shapes for a catenary under the effects of surface tension and gravity: A variational treatment

    International Nuclear Information System (INIS)

    Behroozi, F.; Mohazzabi, P.; McCrickard, J.

    1995-01-01

    The familiar catenary is the shape assumed by a chain or string as it hangs from two points. The mathematical equation of the catenary was first published more than three hundred years ago by Leibnitz and Huygen, among others. Here we consider the shapes assumed by a hanging string in the presence of gravity and surface tension. The surface tension is introduced by suspending the string from a thin horizontal rod while the area bounded by the string and the rod is covered with a soap film. The string then assumes new and wonderful shapes depending on the relative strength of the surface tension and the weight per unit length of the string. When surface tension dominates, the string is pulled inward, assuming a convex shape similar to the Greek letter γ. On the other hand, when gravity is dominant the string is pulled outward and assumes a concave shape best described as a distorted catenary. However, when the gravitational force normal to the string matches the surface tension, the string takes a linear configuration similar to the letter V. Under suitable conditions, the string can be made to assume any of the three configurations by adjusting the separation of its end points. The equations that describe the shape of the string are derived by minimizing the total energy of the system and are presented for the three principal configurations

  12. Piezoelectric Lead Zirconate Titanate (PZT) Ring Shaped Contour-Mode MEMS Resonators

    Science.gov (United States)

    Kasambe, P. V.; Asgaonkar, V. V.; Bangera, A. D.; Lokre, A. S.; Rathod, S. S.; Bhoir, D. V.

    2018-02-01

    Flexibility in setting fundamental frequency of resonator independent of its motional resistance is one of the desired criteria in micro-electromechanical (MEMS) resonator design. It is observed that ring-shaped piezoelectric contour-mode MEMS resonators satisfy this design criterion than in case of rectangular plate MEMS resonators. Also ring-shaped contour-mode piezoelectric MEMS resonator has an advantage that its fundamental frequency is defined by in-plane dimensions, but they show variation of fundamental frequency with different Platinum (Pt) thickness referred as change in ratio of fNEW /fO . This paper presents the effects of variation in geometrical parameters and change in piezoelectric material on the resonant frequencies of Platinum piezoelectric-Aluminium ring-shaped contour-mode MEMS resonators and its electrical parameters. The proposed structure with Lead Zirconate Titanate (PZT) as the piezoelectric material was observed to be a piezoelectric material with minimal change in fundamental resonant frequency due to Platinum thickness variation. This structure was also found to exhibit extremely low motional resistance of 0.03 Ω as compared to the 31-35 Ω range obtained when using AlN as the piezoelectric material. CoventorWare 10 is used for the design, simulation and corresponding analysis of resonators which is Finite Element Method (FEM) analysis and design tool for MEMS devices.

  13. Characterization of Target Volume Changes During Breast Radiotherapy Using Implanted Fiducial Markers and Portal Imaging

    International Nuclear Information System (INIS)

    Harris, Emma J.; Donovan, Ellen M.; Yarnold, John R.; Coles, Charlotte E.; Evans, Philip M.

    2009-01-01

    Purpose: To determine target volume changes by using volume and shape analysis for patients receiving radiotherapy after breast conservation surgery and to compare different methods of automatically identifying changes in target volume, position, size, and shape during radiotherapy for use in adaptive radiotherapy. Methods and Materials: Eleven patients undergoing whole breast radiotherapy had fiducial markers sutured into the excision cavity at the time of surgery. Patients underwent imaging using computed tomography (for planning and at the end of treatment) and during treatment by using portal imaging. A marker volume (MV) was defined by using the measured marker positions. Changes in both individual marker positions and MVs were identified manually and using six automated similarity indices. Comparison of the two types of analysis (manual and automated) was undertaken to establish whether similarity indices can be used to automatically detect changes in target volumes. Results: Manual analysis showed that 3 patients had significant MV reduction. This analysis also showed significant changes between planning computed tomography and the start of treatment for 9 patients, including single and multiple marker movement, deformation (shape change), and rotation. Four of the six similarity indices were shown to be sensitive to the observed changes. Conclusions: Significant changes in size, shape, and position occur to the fiducial marker-defined volume. Four similarity indices can be used to identify these changes, and a protocol for their use in adaptive radiotherapy is suggested

  14. Novel genetic loci associated with hippocampal volume

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); H.H.H. Adams (Hieab); N. Jahanshad (Neda); G. Chauhan (Ganesh); J.L. Stein; E. Hofer (Edith); M.E. Rentería (Miguel); J.C. Bis (Joshua); A. Arias-Vásquez (Alejandro); Ikram, M.K. (M. Kamran); S. Desrivières (Sylvane); M.W. Vernooij (Meike); L. Abramovic (Lucija); S. Alhusaini (Saud); N. Amin (Najaf); M. Andersson (Micael); K. Arfanakis (Konstantinos); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); L. Athanasiu (Lavinia); T. Axelsson (Tomas); A.H. Beecham (Ashley); A. Beiser (Alexa); M. Bernard (Manon); S.H. Blanton (Susan H.); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.M. Brickman (Adam M.); Carmichael, O. (Owen); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); V. Chouraki (Vincent); G. Cuellar-Partida (Gabriel); F. Crivello (Fabrice); A. den Braber (Anouk); Doan, N.T. (Nhat Trung); S.M. Ehrlich (Stefan); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); R.F. Gottesman (Rebecca); O. Grimm (Oliver); M.D. Griswold (Michael); T. Guadalupe (Tulio); Gutman, B.A. (Boris A.); J. Hass (Johanna); U.K. Haukvik (Unn); D. Hoehn (David); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); Jørgensen, K.N. (Kjetil N.); N. Karbalai (Nazanin); D. Kasperaviciute (Dalia); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil); D.C. Liewald (David C.); L.M. Lopez (Lorna); M. Luciano (Michelle); C. MacAre (Christine); Marquand, A.F. (Andre F.); M. Matarin (Mar); R. Mather; M. Mattheisen (Manuel); McKay, D.R. (David R.); Milaneschi, Y. (Yuri); S. Muñoz Maniega (Susana); K. Nho (Kwangsik); A.C. Nugent (Allison); P. Nyquist (Paul); Loohuis, L.M.O. (Loes M. Olde); J. Oosterlaan (Jaap); M. Papmeyer (Martina); Pirpamer, L. (Lukas); B. Pütz (Benno); A. Ramasamy (Adaikalavan); Richards, J.S. (Jennifer S.); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); N. Rommelse (Nanda); S. Ropele (Stefan); E.J. Rose (Emma); N.A. Royle (Natalie); T. Rundek (Tatjana); P.G. Sämann (Philipp); Saremi, A. (Arvin); C.L. Satizabal (Claudia L.); L. Schmaal (Lianne); N.J. Schork (Nicholas); Shen, L. (Li); J. Shin (Jean); Shumskaya, E. (Elena); A.V. Smith (Albert Vernon); R. Sprooten (Roy); L.T. Strike (Lachlan); A. Teumer (Alexander); D. Tordesillas-Gutierrez (Diana); R. Toro (Roberto); D. Trabzuni (Danyah); S. Trompet (Stella); D. Vaidya (Dhananjay); J. van der Grond (Jeroen); S.J. van der Lee (Sven); Van Der Meer, D. (Dennis); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); T.G.M. van Erp (Theo G.); Van Rooij, D. (Daan); E. Walton (Esther); L.T. Westlye (Lars); C.D. Whelan (Christopher); B.G. Windham (B Gwen); A.M. Winkler (Anderson); K. Wittfeld (Katharina); G. Woldehawariat (Girma); A. Björnsson (Asgeir); Wolfers, T. (Thomas); L.R. Yanek (Lisa); Yang, J. (Jingyun); A.P. Zijdenbos; M.P. Zwiers (Marcel); I. Agartz (Ingrid); L. Almasy (Laura); D.J. Ames (David); Amouyel, P. (Philippe); O.A. Andreassen (Ole); S. Arepalli (Sampath); A.A. Assareh; S. Barral (Sandra); M.E. Bastin (Mark); Becker, D.M. (Diane M.); J.T. Becker (James); D.A. Bennett (David A.); J. Blangero (John); H. van Bokhoven (Hans); D.I. Boomsma (Dorret); H. Brodaty (Henry); R.M. Brouwer (Rachel); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan); K. Bulayeva (Kazima); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); D.M. Cannon (Dara); G. Cavalleri (Gianpiero); Cheng, C.-Y. (Ching-Yu); S. Cichon (Sven); M.R. Cookson (Mark); A. Corvin (Aiden); B. Crespo-Facorro (Benedicto); J.E. Curran (Joanne); M. Czisch (Michael); A.M. Dale (Anders); G.E. Davies (Gareth); A.J. de Craen (Anton); E.J.C. de Geus (Eco); P.L. de Jager (Philip); G.I. de Zubicaray (Greig); I.J. Deary (Ian J.); S. Debette (Stéphanie); C. DeCarli (Charles); N. Delanty; C. Depondt (Chantal); A.L. DeStefano (Anita); A. Dillman (Allissa); S. Djurovic (Srdjan); D.J. Donohoe (Dennis); D.A. Drevets (Douglas); Duggirala, R. (Ravi); M.D. Dyer (Matthew); C. Enzinger (Christian); S. Erk; T. Espeseth (Thomas); Fedko, I.O. (Iryna O.); Fernández, G. (Guillén); L. Ferrucci (Luigi); S.E. Fisher (Simon); D. Fleischman (Debra); I. Ford (Ian); M. Fornage (Myriam); T. Foroud (Tatiana); P.T. Fox (Peter); C. Francks (Clyde); Fukunaga, M. (Masaki); Gibbs, J.R. (J. Raphael); D.C. Glahn (David); R.L. Gollub (Randy); H.H.H. Göring (Harald H.); R.C. Green (Robert C.); O. Gruber (Oliver); V. Gudnason (Vilmundur); S. Guelfi (Sebastian); Håberg, A.K. (Asta K.); N.K. Hansell (Narelle); J. Hardy (John); C.A. Hartman (C.); Hashimoto, R. (Ryota); K. Hegenscheid (Katrin); J. Heinz (Judith); S. Le Hellard (Stephanie); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); Ho, B.-C. (Beng-Choon); P.J. Hoekstra (Pieter); W. Hoffmann (Wolfgang); A. Hofman (Albert); F. Holsboer (Florian); G. Homuth (Georg); N. Hosten (Norbert); J.J. Hottenga (Jouke Jan); M.J. Huentelman (Matthew); H.H. Pol; Ikeda, M. (Masashi); Jack, C.R. (Clifford R.); S. Jenkinson (Sarah); R. Johnson (Robert); Jönsson, E.G. (Erik G.); J.W. Jukema; R. Kahn (René); Kanai, R. (Ryota); I. Kloszewska (Iwona); Knopman, D.S. (David S.); P. Kochunov (Peter); Kwok, J.B. (John B.); S. Lawrie (Stephen); H. Lemaître (Herve); X. Liu (Xinmin); D.L. Longo (Dan L.); O.L. Lopez (Oscar L.); S. Lovestone (Simon); Martinez, O. (Oliver); J.-L. Martinot (Jean-Luc); V.S. Mattay (Venkata S.); McDonald, C. (Colm); A.M. McIntosh (Andrew); McMahon, F.J. (Francis J.); McMahon, K.L. (Katie L.); P. Mecocci (Patrizia); I. Melle (Ingrid); Meyer-Lindenberg, A. (Andreas); S. Mohnke (Sebastian); Montgomery, G.W. (Grant W.); D.W. Morris (Derek W); T.H. Mosley (Thomas H.); T.W. Mühleisen (Thomas); B. Müller-Myhsok (B.); M.A. Nalls (Michael); M. Nauck (Matthias); T.E. Nichols (Thomas); W.J. Niessen (Wiro); M.M. Nöthen (Markus); L. Nyberg (Lars); Ohi, K. (Kazutaka); R.L. Olvera (Rene); R.A. Ophoff (Roel); M. Pandolfo (Massimo); T. Paus (Tomas); Z. Pausova (Zdenka); B.W.J.H. Penninx (Brenda); Pike, G.B. (G. Bruce); S.G. Potkin (Steven); B.M. Psaty (Bruce); S. Reppermund; M. Rietschel (Marcella); J.L. Roffman (Joshua); N. Seiferth (Nina); J.I. Rotter (Jerome I.); M. Ryten (Mina); Sacco, R.L. (Ralph L.); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); R. Schmidt (Reinhold); Schmidt, H. (Helena); C.J. Schofield (Christopher); Sigursson, S. (Sigurdur); Simmons, A. (Andrew); A. Singleton (Andrew); S.M. Sisodiya (Sanjay); Smith, C. (Colin); J.W. Smoller; H. Soininen (H.); V.M. Steen (Vidar); D.J. Stott (David J.); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); M. Tsolaki (Magda); C. Tzourio (Christophe); A.G. Uitterlinden (André); Hernández, M.C.V. (Maria C. Valdés); M.P. van der Brug (Marcel); A. van der Lugt (Aad); N.J. van der Wee (Nic); N.E.M. van Haren (Neeltje E.); D. van 't Ent (Dennis); M.J.D. van Tol (Marie-José); B.N. Vardarajan (Badri); B. Vellas (Bruno); D.J. Veltman (Dick); H. Völzke (Henry); H.J. Walter (Henrik); J. Wardlaw (Joanna); A.M.J. Wassink (Annemarie); M.E. Weale (Michael); Weinberger, D.R. (Daniel R.); Weiner, M.W. (Michael W.); Wen, W. (Wei); E. Westman (Eric); T.J.H. White (Tonya); Wong, T.Y. (Tien Y.); Wright, C.B. (Clinton B.); R.H. Zielke (Ronald H.); A.B. Zonderman; N.G. Martin (Nicholas); C.M. van Duijn (Cornelia); M.J. Wright (Margaret); W.T. Longstreth Jr; G. Schumann (Gunter); H.J. Grabe (Hans Jörgen); B. Franke (Barbara); L.J. Launer (Lenore); S.E. Medland (Sarah Elizabeth); S. Seshadri (Sudha); P.M. Thompson (Paul); M.K. Ikram (Kamran)

    2017-01-01

    textabstractThe hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic

  15. Constructal tree-shaped two-phase flow for cooling a surface

    Energy Technology Data Exchange (ETDEWEB)

    Zamfirescu, C.; Bejan, A. [Duke University, Durham, NC (United States). Dept. of Mechanical Engineering and Materials Science

    2003-07-01

    This paper documents the strong relation that exists between the changing architecture of a complex flow system and the maximization of global performance under constraints. The system is a surface with uniform heating per unit area, which is cooled by a network with evaporating two-phase flow. Illustrations are based on the design of the cooling network for a skating rink. The flow structure is optimized as a sequence of building blocks, which starts with the smallest (elemental volume of fixed size), and continues with assemblies of stepwise larger sizes (first construct, second construct, etc.). The optimized flow network is tree shaped. Three features of the elemental volume are optimized: the cross-sectional shape, the elemental tube diameter, and the shape of the elemental area viewed from above. The tree that emerges at larger scales is optimized for minimal amount of header material and fixed pressure drop. The optimal number of constituents in each new (larger) construct decreases as the size and complexity of the construct increase. Constructs of various levels of complexity compete: the paper shows how to select the optimal flow structure subject to fixed size (cooled surface), pressure drop and amount of header material. (author)

  16. Developmental changes in hippocampal shape among preadolescent children.

    Science.gov (United States)

    Lin, Muqing; Fwu, Peter T; Buss, Claudia; Davis, Elysia P; Head, Kevin; Muftuler, L Tugan; Sandman, Curt A; Su, Min-Ying

    2013-11-01

    It is known that the largest developmental changes in the hippocampus take place during the prenatal period and during the first two years of postnatal life. Few studies have been conducted to address the normal developmental trajectory of the hippocampus during childhood. In this study shape analysis was applied to study the normal developing hippocampus in a group of 103 typically developing 6- to 10-year-old preadolescent children. The individual brain was normalized to a template, and then the hippocampus was manually segmented and further divided into the head, body, and tail sub-regions. Three different methods were applied for hippocampal shape analysis: radial distance mapping, surface-based template registration using the robust point matching (RPM) algorithm, and volume-based template registration using the Demons algorithm. All three methods show that the older children have bilateral expanded head segments compared to the younger children. The results analyzed based on radial distance to the centerline were consistent with those analyzed using template-based registration methods. In analyses stratified by sex, it was found that the age-associated anatomical changes were similar in boys and girls, but the age-association was strongest in girls. Total hippocampal volume and sub-regional volumes analyzed using manual segmentation did not show a significant age-association. Our results suggest that shape analysis is sensitive to detect sub-regional differences that are not revealed in volumetric analysis. The three methods presented in this study may be applied in future studies to investigate the normal developmental trajectory of the hippocampus in children. They may be further applied to detect early deviations from the normal developmental trajectory in young children for evaluating susceptibility for psychopathological disorders involving hippocampus. Copyright © 2013 ISDN. Published by Elsevier Ltd. All rights reserved.

  17. Stroke subtype classification by geometrical descriptors of lesion shape.

    Directory of Open Access Journals (Sweden)

    Bastian Cheng

    Full Text Available Inference of etiology from lesion pattern in acute magnetic resonance imaging is valuable for management and prognosis of acute stroke patients. This study aims to assess the value of three-dimensional geometrical lesion-shape descriptors for stroke-subtype classification, specifically regarding stroke of cardioembolic origin.Stroke Etiology was classified according to ASCOD in retrospectively selected patients with acute stroke. Lesions were segmented on diffusion-weighed datasets, and descriptors of lesion shape quantified: surface area, sphericity, bounding box volume, and ratio between bounding box and lesion volume. Morphological measures were compared between stroke subtypes classified by ASCOD and between patients with embolic stroke of cardiac and non-cardiac source.150 patients (mean age 77 years; 95% CI, 65-80 years; median NIHSS 6, range 0-22 were included. Group comparison of lesion shape measures demonstrated that lesions caused by small-vessel disease were smaller and more spherical compared to other stroke subtypes. No significant differences of morphological measures were detected between patients with cardioembolic and non-cardioembolic stroke.Stroke lesions caused by small vessel disease can be distinguished from other stroke lesions based on distinctive morphological properties. However, within the group of embolic strokes, etiology could not be inferred from the morphology measures studied in our analysis.

  18. Combined shape and topology optimization for minimization of maximal von Mises stress

    International Nuclear Information System (INIS)

    Lian, Haojie; Christiansen, Asger N.; Tortorelli, Daniel A.; Sigmund, Ole; Aage, Niels

    2017-01-01

    Here, this work shows that a combined shape and topology optimization method can produce optimal 2D designs with minimal stress subject to a volume constraint. The method represents the surface explicitly and discretizes the domain into a simplicial complex which adapts both structural shape and topology. By performing repeated topology and shape optimizations and adaptive mesh updates, we can minimize the maximum von Mises stress using the p-norm stress measure with p-values as high as 30, provided that the stress is calculated with sufficient accuracy.

  19. Evolutionary significance of epigenetic variation

    NARCIS (Netherlands)

    Richards, C.L.; Verhoeven, K.J.F.; Bossdorf, O.; Wendel, J.F.; Greilhuber, J.; Dolezel, J.; Leitch, I.J.

    2012-01-01

    Several chapters in this volume demonstrate how epigenetic work at the molecular level over the last few decades has revolutionized our understanding of genome function and developmental biology. However, epigenetic processes not only further our understanding of variation and regulation at the

  20. The importance of geomorphic and hydrologic factors in shaping the sensitivity of alpine/subalpine lake volumes to shifts in climate

    Science.gov (United States)

    Mercer, J.; Liefert, D. T.; Shuman, B. N.; Befus, K. M.; Williams, D. G.; Kraushaar, B.

    2017-12-01

    Alpine and subalpine lakes are important components of the hydrologic cycle in mountain ecosystems. These lakes are also highly sensitive to small shifts in temperature and precipitation. Mountain lake volumes and their contributions to mountain hydrology may change in response to even minor declines in snowpack or increases in temperature. However, it is still not clear to what degree non-climatic factors, such as geomorphic setting and lake geometry, play in shaping the sensitivity of high elevation lakes to climate change. We investigated the importance of lake geometry and groundwater connectivity to mountain lakes in the Snowy Range, Wyoming using a combination of hydrophysical and hydrochemical methods, including stable water isotopes, to better understand the role these factors play in controlling lake volume. Water isotope values in open lakes were less sensitive to evaporation compared to those in closed basin lakes. Lake geometry played an important role, with wider, shallower lakes being more sensitive to evaporation over time. Groundwater contributions appear to play only a minor role in buffering volumetric changes to lakes over the growing season. These results confirm that mountain lakes are sensitive to climate factors, but also highlight a significant amount of variability in that sensitivity. This research has implications for water resource managers concerned with downstream water quantity and quality from mountain ecosystems, biologists interested in maintaining aquatic biodiversity, and paleoclimatologists interested in using lake sedimentary information to infer past climate regimes.

  1. Using active shape modeling based on MRI to study morphologic and pitch-related functional changes affecting vocal structures and the airway.

    Science.gov (United States)

    Miller, Nicola A; Gregory, Jennifer S; Aspden, Richard M; Stollery, Peter J; Gilbert, Fiona J

    2014-09-01

    The shape of the vocal tract and associated structures (eg, tongue and velum) is complicated and varies according to development and function. This variability challenges interpretation of voice experiments. Quantifying differences between shapes and understanding how vocal structures move in relation to each other is difficult using traditional linear and angle measurements. With statistical shape models, shape can be characterized in terms of independent modes of variation. Here, we build an active shape model (ASM) to assess morphologic and pitch-related functional changes affecting vocal structures and the airway. Using a cross-sectional study design, we obtained six midsagittal magnetic resonance images from 10 healthy adults (five men and five women) at rest, while breathing out, and while listening to, and humming low and high notes. Eighty landmark points were chosen to define the shape of interest and an ASM was built using these (60) images. Principal component analysis was used to identify independent modes of variation, and statistical analysis was performed using one-way repeated-measures analysis of variance. Twenty modes of variation were identified with modes 1 and 2 accounting for half the total variance. Modes 1 and 9 were significantly associated with humming low and high notes (P structures, and airway. Mode 2 highlighted wide structural variations between subjects. This study highlights the potential of active shape modeling to advance understanding of factors underlying morphologic and pitch-related functional variations affecting vocal structures and the airway in health and disease. Copyright © 2014 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  2. Novel genetic loci associated with hippocampal volume

    NARCIS (Netherlands)

    Hibar, Derrek P.; Adams, Hieab H. H.; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L.; Hofer, Edith; Renteria, Miguel E.; Bis, Joshua C.; Arias-Vasquez, Alejandro; Ikram, M. Kamran; Desrivières, Sylvane; Vernooij, Meike W.; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S.; Armstrong, Nicola J.; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H.; Beiser, Alexa; Bernard, Manon; Blanton, Susan H.; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brickman, Adam M.; Carmichael, Owen; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L.; Gottesman, Rebecca F.; Grimm, Oliver; Griswold, Michael E.; Guadalupe, Tulio; Gutman, Boris A.; Hass, Johanna; Haukvik, Unn K.; Hoehn, David; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N.; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Liewald, David C. M.; Lopez, Lorna M.; Luciano, Michelle; Macare, Christine; Marquand, Andre F.; Matarin, Mar; Mather, Karen A.; Mattheisen, Manuel; McKay, David R.; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C.; Nyquist, Paul; Loohuis, Loes M. Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S.; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J.; Royle, Natalie A.; Rundek, Tatjana; Sämann, Philipp G.; Saremi, Arvin; Satizabal, Claudia L.; Schmaal, Lianne; Schork, Andrew J.; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V.; Sprooten, Emma; Strike, Lachlan T.; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; van der Grond, Jeroen; van der Lee, Sven J.; van der Meer, Dennis; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; van Erp, Theo G. M.; van Rooij, Daan; Walton, Esther; Westlye, Lars T.; Whelan, Christopher D.; Windham, Beverly G.; Winkler, Anderson M.; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R.; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P.; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A.; Arepalli, Sampath; Assareh, Amelia A.; Barral, Sandra; Bastin, Mark E.; Becker, Diane M.; Becker, James T.; Bennett, David A.; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I.; Brodaty, Henry; Brouwer, Rachel M.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Bulayeva, Kazima B.; Cahn, Wiepke; Calhoun, Vince D.; Cannon, Dara M.; Cavalleri, Gianpiero L.; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R.; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E.; Czisch, Michael; Dale, Anders M.; Davies, Gareth E.; de Craen, Anton J. M.; de Geus, Eco J. C.; de Jager, Philip L.; de Zubicaray, Greig I.; Deary, Ian J.; Debette, Stéphanie; Decarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C.; Duggirala, Ravi; Dyer, Thomas D.; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O.; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E.; Fleischman, Debra A.; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M.; Fox, Peter T.; Francks, Clyde; Fukunaga, Masaki; Gibbs, J. Raphael; Glahn, David C.; Gollub, Randy L.; Göring, Harald H. H.; Green, Robert C.; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K.; Hansell, Narelle K.; Hardy, John; Hartman, Catharina A.; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G.; Heslenfeld, Dirk J.; Ho, Beng-Choon; Hoekstra, Pieter J.; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Pol, Hilleke E. Hulshoff; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G.; Jukema, J. Wouter; Kahn, René S.; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L.; Lopez, Oscar L.; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S.; McDonald, Colm; McIntosh, Andrew M.; McMahon, Francis J.; McMahon, Katie L.; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W.; Morris, Derek W.; Mosley, Thomas H.; Mühleisen, Thomas W.; Müller-Myhsok, Bertram; Nalls, Michael A.; Nauck, Matthias; Nichols, Thomas E.; Niessen, Wiro J.; Nöthen, Markus M.; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L.; Ophoff, Roel A.; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W. J. H.; Pike, G. Bruce; Potkin, Steven G.; Psaty, Bruce M.; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L.; Romanczuk-Seiferth, Nina; Rotter, Jerome I.; Ryten, Mina; Sacco, Ralph L.; Sachdev, Perminder S.; Saykin, Andrew J.; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R.; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M.; Smith, Colin; Smoller, Jordan W.; Soininen, Hilkka; Steen, Vidar M.; Stott, David J.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G.; Hernández, Maria C. Valdés; van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J. A.; van Haren, Neeltje E. M.; van 't Ent, Dennis; van Tol, Marie-Jose; Vardarajan, Badri N.; Vellas, Bruno; Veltman, Dick J.; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M.; Wassink, Thomas H.; Weale, Michael E.; Weinberger, Daniel R.; Weiner, Michael W.; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y.; Wright, Clinton B.; Zielke, Ronald H.; Zonderman, Alan B.; Martin, Nicholas G.; van Duijn, Cornelia M.; Wright, Margaret J.; Longstreth, W. T.; Schumann, Gunter; Grabe, Hans J.; Franke, Barbara; Launer, Lenore J.; Medland, Sarah E.; Seshadri, Sudha; Thompson, Paul M.; Ikram, M. Arfan

    2017-01-01

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of

  3. Simulation of auroral current sheet equilibria and associated V-shaped potential structures

    International Nuclear Information System (INIS)

    Singh, N.; Thiemann, H.; Schunk, R.W.

    1983-01-01

    Results from numerical simulations of auroral current sheet equilibrium and associated V-shaped potential structures are presented. It is shown that with allowance for both hot magnetospheric ion and cold ionospheric ion populations, the perpendicular potential drop, assiciated with a non-neutral auroral current sheet is critically controlled by the temperature of the 'heated' ionospheric ions. The heating is caused by the wave turbulence excited by the auroral current sheet. In the presence of heated ionospheric ions, a relatively large variation in the temperature of the hot magnetospheric ion population causes a very small variation in the potential drop thetam. The perpendicular potential drop acts to produce a V-shaped double layer with multiple potential steps parallel to the magnetic field when a zero potential boundary condition is imposed at the ionospheric boundary. Outside the V-shaped potential structure, ionospheric return currents develop self-consistently

  4. Bladder filling variation during radiation treatment of prostate cancer: Can the use of a bladder ultrasound scanner and biofeedback optimize bladder filling?

    International Nuclear Information System (INIS)

    Stam, Marcel R.; Lin, Emile N.J. Th. van; Vight, Lisette P. van der; Kaanders, Johannes; Visser, Andries G.

    2006-01-01

    Purpose: To investigate the use of a bladder ultrasound scanner in achieving a better reproducible bladder filling during irradiation of pelvic tumors, specifically prostate cancer. Methods and Materials: First, the accuracy of the bladder ultrasound scanner relative to computed tomography was validated in a group of 26 patients. Next, daily bladder volume variation was evaluated in a group of 18 patients. Another 16 patients participated in a biofeedback protocol, aiming at a more constant bladder volume. The last objective was to study correlations between prostate motion and bladder filling, by using electronic portal imaging device data on implanted gold markers. Results: A strong correlation between bladder scanner volume and computed tomography volume (r = 0.95) was found. Daily bladder volume variation was very high (1 Sd = 47.2%). Bladder filling and daily variation did not significantly differ between the control and the feedback group (47.2% and 40.1%, respectively). Furthermore, no linear correlations between bladder volume variation and prostate motion were found. Conclusions: This study shows large variations in daily bladder volume. The use of a biofeedback protocol yields little reduction in bladder volume variation. Even so, the bladder scanner is an easy to use and accurate tool to register these variations

  5. Trans-membrane area asymmetry controls the shape of cellular organelles

    NARCIS (Netherlands)

    Beznoussenko, Galina V; Pilyugin, Sergei S; Geerts, Willie J C; Kozlov, Michael M; Burger, Koert N J; Luini, Alberto; Derganc, Jure; Mironov, Alexander A

    2015-01-01

    Membrane organelles often have complicated shapes and differ in their volume, surface area and membrane curvature. The ratio between the surface area of the cytosolic and luminal leaflets (trans-membrane area asymmetry (TAA)) determines the membrane curvature within different sites of the organelle.

  6. Exploration of continuous variability in collections of 3D shapes

    KAUST Repository

    Ovsjanikov, Maks; Li, Wilmot; Guibas, Leonidas J.; Mitra, Niloy J.

    2011-01-01

    As large public repositories of 3D shapes continue to grow, the amount of shape variability in such collections also increases, both in terms of the number of different classes of shapes, as well as the geometric variability of shapes within each class. While this gives users more choice for shape selection, it can be difficult to explore large collections and understand the range of variations amongst the shapes. Exploration is particularly challenging for public shape repositories, which are often only loosely tagged and contain neither point-based nor part-based correspondences. In this paper, we present a method for discovering and exploring continuous variability in a collection of 3D shapes without correspondences. Our method is based on a novel navigation interface that allows users to explore a collection of related shapes by deforming a base template shape through a set of intuitive deformation controls. We also help the user to select the most meaningful deformations using a novel technique for learning shape variability in terms of deformations of the template. Our technique assumes that the set of shapes lies near a low-dimensional manifold in a certain descriptor space, which allows us to avoid establishing correspondences between shapes, while being rotation and scaling invariant. We present results on several shape collections taken directly from public repositories. © 2011 ACM.

  7. Exploration of continuous variability in collections of 3D shapes

    KAUST Repository

    Ovsjanikov, Maks

    2011-07-01

    As large public repositories of 3D shapes continue to grow, the amount of shape variability in such collections also increases, both in terms of the number of different classes of shapes, as well as the geometric variability of shapes within each class. While this gives users more choice for shape selection, it can be difficult to explore large collections and understand the range of variations amongst the shapes. Exploration is particularly challenging for public shape repositories, which are often only loosely tagged and contain neither point-based nor part-based correspondences. In this paper, we present a method for discovering and exploring continuous variability in a collection of 3D shapes without correspondences. Our method is based on a novel navigation interface that allows users to explore a collection of related shapes by deforming a base template shape through a set of intuitive deformation controls. We also help the user to select the most meaningful deformations using a novel technique for learning shape variability in terms of deformations of the template. Our technique assumes that the set of shapes lies near a low-dimensional manifold in a certain descriptor space, which allows us to avoid establishing correspondences between shapes, while being rotation and scaling invariant. We present results on several shape collections taken directly from public repositories. © 2011 ACM.

  8. Asteroid 16 Psyche: Radar Observations and Shape Model

    Science.gov (United States)

    Shepard, Michael K.; Richardson, James E.; Taylor, Patrick A.; Rodriguez-Ford, Linda A.; Conrad, Al; de Pater, Imke; Adamkovics, Mate; de Kleer, Katherine R.; Males, Jared; Morzinski, Kathleen M.; Miller Close, Laird; Kaasalainen, Mikko; Viikinkoski, Matti; Timerson, Bradley; Reddy, Vishnu; Magri, Christopher; Nolan, Michael C.; Howell, Ellen S.; Warner, Brian D.; Harris, Alan W.

    2016-10-01

    We observed 16 Psyche, the largest M-class asteroid in the main belt, using the S-band radar at Arecibo Observatory. We obtained 18 radar imaging and 6 continuous wave runs in November and December 2015, and combined these with 16 continuous wave runs from 2005 and 6 recent adaptive-optics (AO) images to generate a three-dimensional shape model of Psyche. Our model is consistent with a previously published AO image [Hanus et al. Icarus 226, 1045-1057, 2013] and three multi-chord occultations. Our shape model has dimensions 279 x 232 x 189 km (±10%), Deff = 226 ± 23 km, and is 6% larger than, but within the uncertainties of, the most recently published size and shape model generated from the inversion of lightcurves [Hanus et al., 2013]. Psyche is roughly ellipsoidal but displays a mass-deficit over a region spanning 90° of longitude. There is also evidence for two ~50-70 km wide depressions near its south pole. Our size and published masses lead to an overall bulk density estimate of 4500 ± 1400 kg m-3. Psyche's mean radar albedo of 0.37 ± 0.09 is consistent with a near-surface regolith composed largely of iron-nickel and ~40% porosity. Its radar reflectivity varies by a factor of 1.6 as the asteroid rotates, suggesting global variations in metal abundance or bulk density in the near surface. The variations in radar albedo appear to correlate with large and small-scale shape features. Our size and Psyche's published absolute magnitude lead to an optical albedo of pv = 0.15 ± 0.03, and there is evidence for albedo variegations that correlate with shape features.

  9. New trends in shape optimization

    CERN Document Server

    Leugering, Günter

    2015-01-01

    This volume reflects “New Trends in Shape Optimization” and is based on a workshop of the same name organized at the Friedrich-Alexander University Erlangen-Nürnberg in September 2013. During the workshop senior mathematicians and young scientists alike presented their latest findings. The format of the meeting allowed fruitful discussions on challenging open problems, and triggered a number of new and spontaneous collaborations. As such, the idea was born to produce this book, each chapter of which was written by a workshop participant, often with a collaborator. The content of the individual chapters ranges from survey papers to original articles; some focus on the topics discussed at the Workshop, while others involve arguments outside its scope but which are no less relevant for the field today. As such, the book offers readers a balanced introduction to the emerging field of shape optimization.

  10. Automated drumlin shape and volume estimation using high resolution LiDAR imagery (Curvature Based Relief Separation): A test from the Wadena Drumlin Field, Minnesota

    Science.gov (United States)

    Yu, Peter; Eyles, Nick; Sookhan, Shane

    2015-10-01

    Resolving the origin(s) of drumlins and related megaridges in areas of megascale glacial lineations (MSGL) left by paleo-ice sheets is critical to understanding how ancient ice sheets interacted with their sediment beds. MSGL is now linked with fast-flowing ice streams but there is a broad range of erosional and depositional models. Further progress is reliant on constraining fluxes of subglacial sediment at the ice sheet base which in turn is dependent on morphological data such as landform shape and elongation and most importantly landform volume. Past practice in determining shape has employed a broad range of geomorphological methods from strictly visualisation techniques to more complex semi-automated and automated drumlin extraction methods. This paper reviews and builds on currently available visualisation, semi-automated and automated extraction methods and presents a new, Curvature Based Relief Separation (CBRS) technique; for drumlin mapping. This uses curvature analysis to generate a base level from which topography can be normalized and drumlin volume can be derived. This methodology is tested using a high resolution (3 m) LiDAR elevation dataset from the Wadena Drumlin Field, Minnesota, USA, which was constructed by the Wadena Lobe of the Laurentide Ice Sheet ca. 20,000 years ago and which as a whole contains 2000 drumlins across an area of 7500 km2. This analysis demonstrates that CBRS provides an objective and robust procedure for automated drumlin extraction. There is strong agreement with manually selected landforms but the method is also capable of resolving features that were not detectable manually thereby considerably expanding the known population of streamlined landforms. CBRS provides an effective automatic method for visualisation of large areas of the streamlined beds of former ice sheets and for modelling sediment fluxes below ice sheets.

  11. Probiotics for Rectal Volume Variation During Radiation Therapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Ki, Yongkan; Kim, Wontaek; Nam, Jiho; Kim, Donghyun; Lee, Juhye; Park, Dahl; Jeon, Hosang; Ha, Honggu; Kim, Taenam; Kim, Dongwon

    2013-01-01

    Purpose: To investigate the effect of the probiotic Lactobacillus acidophilus on the percentage volume change of the rectum (PVC R ), a crucial factor of prostate movement. Methods and Materials: Prostate cancer patients managed with tomotherapy as a radical treatment were enrolled in the study to take a probiotic capsule containing 1.0 × 10 8 colony-forming units of L acidophilus or a placebo capsule twice daily. Radiation therapy was performed at a dose of 78 Gy in 39 fractions. The PVC R , defined as the difference in rectal volume between the planning computed tomographic (CT) and daily megavoltage CT images, was analyzed. Results: Forty patients were randomized into 2 groups. The L acidophilus group showed significantly lower median rectal volume and median PVC R values than the placebo group. L acidophilus showed a significant reduction effect on the PVC R (P R . Conclusions: L acidophilus was useful in reducing the PVC R , which is the most important determining factor of prostate position, during radiation therapy for prostate cancer

  12. Disentangling the phylogenetic and ecological components of spider phenotypic variation.

    Science.gov (United States)

    Gonçalves-Souza, Thiago; Diniz-Filho, José Alexandre Felizola; Romero, Gustavo Quevedo

    2014-01-01

    An understanding of how the degree of phylogenetic relatedness influences the ecological similarity among species is crucial to inferring the mechanisms governing the assembly of communities. We evaluated the relative importance of spider phylogenetic relationships and ecological niche (plant morphological variables) to the variation in spider body size and shape by comparing spiders at different scales: (i) between bromeliads and dicot plants (i.e., habitat scale) and (ii) among bromeliads with distinct architectural features (i.e., microhabitat scale). We partitioned the interspecific variation in body size and shape into phylogenetic (that express trait values as expected by phylogenetic relationships among species) and ecological components (that express trait values independent of phylogenetic relationships). At the habitat scale, bromeliad spiders were larger and flatter than spiders associated with the surrounding dicots. At this scale, plant morphology sorted out close related spiders. Our results showed that spider flatness is phylogenetically clustered at the habitat scale, whereas it is phylogenetically overdispersed at the microhabitat scale, although phylogenic signal is present in both scales. Taken together, these results suggest that whereas at the habitat scale selective colonization affect spider body size and shape, at fine scales both selective colonization and adaptive evolution determine spider body shape. By partitioning the phylogenetic and ecological components of phenotypic variation, we were able to disentangle the evolutionary history of distinct spider traits and show that plant architecture plays a role in the evolution of spider body size and shape. We also discussed the relevance in considering multiple scales when studying phylogenetic community structure.

  13. Widespread range expansions shape latitudinal variation in insect thermal limits

    Science.gov (United States)

    Lancaster, Lesley T.

    2016-06-01

    Current anthropogenic impacts, including habitat modification and climate change, may contribute to a sixth mass extinction. To mitigate these impacts and slow further losses of biodiversity, we need to understand which species are most at risk and identify the factors contributing to current and future declines. Such information is often obtained through large-scale, comparative and biogeographic analysis of lineages or traits that are potentially sensitive to ongoing anthropogenic change--for instance to predict which regions are most susceptible to climate change-induced biodiversity loss. However, for this approach to be generally successful, the underlying causes of identified geographical trends need to be carefully considered. Here, I augment and reanalyse a global data set of insect thermal tolerances, evaluating the contribution of recent and contemporary range expansions to latitudinal variation in thermal niche breadth. Previous indications that high-latitude ectotherms exhibit broad thermal niches and high warming tolerances held only for species undergoing range expansions or invasions. In contrast, species with stable or declining geographic ranges exhibit latitudinally decreasing absolute thermal tolerances and no latitudinal variation in tolerance breadths. Thus, non-range-expanding species, particularly insular or endemic species, which are often of highest conservation priority, are unlikely to tolerate future climatic warming at high latitudes.

  14. A variational approach to liver segmentation using statistics from multiple sources

    Science.gov (United States)

    Zheng, Shenhai; Fang, Bin; Li, Laquan; Gao, Mingqi; Wang, Yi

    2018-01-01

    Medical image segmentation plays an important role in digital medical research, and therapy planning and delivery. However, the presence of noise and low contrast renders automatic liver segmentation an extremely challenging task. In this study, we focus on a variational approach to liver segmentation in computed tomography scan volumes in a semiautomatic and slice-by-slice manner. In this method, one slice is selected and its connected component liver region is determined manually to initialize the subsequent automatic segmentation process. From this guiding slice, we execute the proposed method downward to the last one and upward to the first one, respectively. A segmentation energy function is proposed by combining the statistical shape prior, global Gaussian intensity analysis, and enforced local statistical feature under the level set framework. During segmentation, the shape of the liver shape is estimated by minimization of this function. The improved Chan-Vese model is used to refine the shape to capture the long and narrow regions of the liver. The proposed method was verified on two independent public databases, the 3D-IRCADb and the SLIVER07. Among all the tested methods, our method yielded the best volumetric overlap error (VOE) of 6.5 +/- 2.8 % , the best root mean square symmetric surface distance (RMSD) of 2.1 +/- 0.8 mm, the best maximum symmetric surface distance (MSD) of 18.9 +/- 8.3 mm in 3D-IRCADb dataset, and the best average symmetric surface distance (ASD) of 0.8 +/- 0.5 mm, the best RMSD of 1.5 +/- 1.1 mm in SLIVER07 dataset, respectively. The results of the quantitative comparison show that the proposed liver segmentation method achieves competitive segmentation performance with state-of-the-art techniques.

  15. A morphospace for reef fishes: elongation is the dominant axis of body shape evolution.

    Directory of Open Access Journals (Sweden)

    Thomas Claverie

    Full Text Available Tropical reef fishes are widely regarded as being perhaps the most morphologically diverse vertebrate assemblage on earth, yet much remains to be discovered about the scope and patterns of this diversity. We created a morphospace of 2,939 species spanning 56 families of tropical Indo-Pacific reef fishes and established the primary axes of body shape variation, the phylogenetic consistency of these patterns, and whether dominant patterns of shape change can be accomplished by diverse underlying changes. Principal component analysis showed a major axis of shape variation that contrasts deep-bodied species with slender, elongate forms. Furthermore, using custom methods to compare the elongation vector (axis that maximizes elongation deformation and the main vector of shape variation (first principal component for each family in the morphospace, we showed that two thirds of the families diversify along an axis of body elongation. Finally, a comparative analysis using a principal coordinate analysis based on the angles among first principal component vectors of each family shape showed that families accomplish changes in elongation with a wide range of underlying modifications. Some groups such as Pomacentridae and Lethrinidae undergo decreases in body depth with proportional increases in all body regions, while other families show disproportionate changes in the length of the head (e.g., Labridae, the trunk or caudal region in all combinations (e.g., Pempheridae and Pinguipedidae. In conclusion, we found that evolutionary changes in body shape along an axis of elongation dominates diversification in reef fishes. Changes in shape on this axis are thought to have immediate implications for swimming performance, defense from gape limited predators, suction feeding performance and access to some highly specialized habitats. The morphological modifications that underlie changes in elongation are highly diverse, suggesting a role for a range of

  16. A Morphospace for Reef Fishes: Elongation Is the Dominant Axis of Body Shape Evolution

    Science.gov (United States)

    Claverie, Thomas; Wainwright, Peter C.

    2014-01-01

    Tropical reef fishes are widely regarded as being perhaps the most morphologically diverse vertebrate assemblage on earth, yet much remains to be discovered about the scope and patterns of this diversity. We created a morphospace of 2,939 species spanning 56 families of tropical Indo-Pacific reef fishes and established the primary axes of body shape variation, the phylogenetic consistency of these patterns, and whether dominant patterns of shape change can be accomplished by diverse underlying changes. Principal component analysis showed a major axis of shape variation that contrasts deep-bodied species with slender, elongate forms. Furthermore, using custom methods to compare the elongation vector (axis that maximizes elongation deformation) and the main vector of shape variation (first principal component) for each family in the morphospace, we showed that two thirds of the families diversify along an axis of body elongation. Finally, a comparative analysis using a principal coordinate analysis based on the angles among first principal component vectors of each family shape showed that families accomplish changes in elongation with a wide range of underlying modifications. Some groups such as Pomacentridae and Lethrinidae undergo decreases in body depth with proportional increases in all body regions, while other families show disproportionate changes in the length of the head (e.g., Labridae), the trunk or caudal region in all combinations (e.g., Pempheridae and Pinguipedidae). In conclusion, we found that evolutionary changes in body shape along an axis of elongation dominates diversification in reef fishes. Changes in shape on this axis are thought to have immediate implications for swimming performance, defense from gape limited predators, suction feeding performance and access to some highly specialized habitats. The morphological modifications that underlie changes in elongation are highly diverse, suggesting a role for a range of developmental processes

  17. Measurable inhomogeneities in stock trading volume flow

    Science.gov (United States)

    Cortines, A. A. G.; Riera, R.; Anteneodo, C.

    2008-08-01

    We investigate the statistics of volumes of shares traded in stock markets. We show that the stochastic process of trading volumes can be understood on the basis of a mixed Poisson process at the microscopic time level. The beta distribution of the second kind (also known as q-gamma distribution), that has been proposed to describe empirical volume histograms, naturally results from our analysis. In particular, the shape of the distribution at small volumes is governed by the degree of granularity in the trading process, while the exponent controlling the tail is a measure of the inhomogeneities in market activity. Furthermore, the present case furnishes empirical evidence of how power law probability distributions can arise as a consequence of a fluctuating intrinsic parameter.

  18. MORPHOLOGICAL VARIATIONS OF SPLEEN: A CADAVERIC STUDY

    Directory of Open Access Journals (Sweden)

    Siva Chidambaram

    2015-07-01

    Full Text Available The Spleen is a large lymphoid organ situated in the left hypochondrial region having an important role in immunological and hematological functions of the human body. The aim of this study was to find the morphological variations of the spleen with respect to it’s a Shape, b Number of notches on its borders and c Presence of anomalous fissure on its surface. The Study was done on 60 formalin fixed cadaveric spleen from the Department of Anatomy, Narayana Medical College, Nellore, Andhra Pradesh. Out of 60 spleens we examined, the various shapes of the spleen were noted suc h as wedge shape (73.33%, triangular (13.33%, tetrahedral (6.67% and oval shape(6.67%.The number of spleen showing notches on its superior border was 38(63.33% and in inferior border it was 6(10%. Absence of splenic notch was observed in 10(16.67% s pleens and the remaining 6 spleens (10% shows notches on its both the borders. The anomalous splenic fissure was found in 4(6.67% spleens on its diaphragmatic surface. The knowledge of variations in the morphology of spleen are essential for physician, s urgeon, radiologist and forensic surgeon to differentiate it from the splenic pathology and splenic injury. In addition to this, it is also important for anatomist during routine classroom dissection and discussion.

  19. Use of geometric morphometrics to identify ecophenotypic variation of juvenile Persian sturgeon Acipenser persicus

    Directory of Open Access Journals (Sweden)

    Shima Bakhshalizadeh

    2017-06-01

    Full Text Available Study of phenotypic variation is essential for identifying discrete phenotypic stocks. We sampled immature Persian sturgeon from the eastern and western portion of the southern Caspian Sea to test for morphological differences that could predict the ecophenotypic variation of Persian sturgeon. Geometric morphometric methods were used to quantify body shape. Configuration of landmark coordinates of fish body were scaled, translated and rotated using generalized Procrustes analysis, followed by univariate analysis of variance of resulting shape coordinates to evaluate potential morphological differences between regions. A principal component analysis was carried out to reduce the number of dimensions without the loss of information. The discriminate function analysis was performed to determine the efficacy of body landmarks for discrimination by geographic variants. Within-group linkage was inferred for dendrogram clusters using Pearson correlation distance on the basis of the average linkage method as a complement for discriminate analysis. Principle component analysis revealed that the largest differences were in body size. Most notable were differences in distance between head landmarks and the dorsal fin between eastern and western regions. Fish from the western region exhibited a longer distance from head landmarks to the dorsal fin than fish from the eastern region. Furthermore, the ventral portion of fish from the western region was longer than that of the eastern individuals. These findings show that juvenile Persian sturgeon already possess morphological traits that can be used to discriminate fish from different regions. Furthermore, these differences are discernible in spite of the volume of artificially-inseminated sturgeon larva that have been released during the past 40 years.

  20. An unusual case of Y-shaped right renal vein.

    Science.gov (United States)

    Lavy, M; Martin, L; Eouzan, D; Turco, C; Heyd, B; Mantion, G; Parratte, B; Tatu, L

    2015-01-01

    Vascular renal anomalies are frequent, multiple and well described and result from errors in vessel embryogenesis between the 6th and 10th week of gestation. Historically, variations are described in anatomic dissection and currently mostly in image interpretation. We report an anatomic variation concerning the right renal vein which, to our knowledge, has never been described in the literature either by dissection or by radiological examination. This variation was discovered during the routine dissection of an embalmed male body. It consists of a Y-shaped right renal vein and is associated with multiple retroperitoneal variations: a bilateral accessory renal artery, a trident ending of the right renal artery and a left testicular vein variation. Venous and arterial renal anatomy and its variations are fundamentally important in renal surgery, especially concerning living donor renal grafts. These variations may be diagnosed thanks to injected tomodensitometry which has a good sensitivity and specificity for anomalies. Preoperative diagnosis of an anatomic vascular renal variation may reduce morbidity during surgery, which is why precise examination of injected tomography should be mandatory.

  1. Fin shape thermal optimization using Bejan's constuctal theory

    CERN Document Server

    Lorenzini, Giulio

    2011-01-01

    The book contains research results obtained by applying Bejan's Constructal Theory to the study and therefore the optimization of fins, focusing on T-shaped and Y-shaped ones. Heat transfer from finned surfaces is an example of combined heat transfer natural or forced convection on the external parts of the fin, and conducting along the fin. Fin's heat exchange is rather complex, because of variation of both temperature along the fin and convective heat transfer coefficient. Furthermore possible presence of more fins invested by the same fluid flow has to be considered.Classical fin theory tri

  2. Prostate malignancy grading using gland-related shape descriptors

    Science.gov (United States)

    Braumann, Ulf-Dietrich; Scheibe, Patrick; Loeffler, Markus; Kristiansen, Glen; Wernert, Nicolas

    2014-03-01

    A proof-of-principle study was accomplished assessing the descriptive potential of two simple geometric measures (shape descriptors) applied to sets of segmented glands within images of 125 prostate cancer tissue sections. Respective measures addressing glandular shapes were (i) inverse solidity and (ii) inverse compactness. Using a classifier based on logistic regression, Gleason grades 3 and 4/5 could be differentiated with an accuracy of approx. 95%. Results suggest not only good discriminatory properties, but also robustness against gland segmentation variations. False classifications in part were caused by inadvertent Gleason grade assignments, as a-posteriori re-inspections had turned out.

  3. Estimating volume, biomass, and potential emissions of hand-piled fuels

    Science.gov (United States)

    Clinton S. Wright; Cameron S. Balog; Jeffrey W. Kelly

    2009-01-01

    Dimensions, volume, and biomass were measured for 121 hand-constructed piles composed primarily of coniferous (n = 63) and shrub/hardwood (n = 58) material at sites in Washington and California. Equations using pile dimensions, shape, and type allow users to accurately estimate the biomass of hand piles. Equations for estimating true pile volume from simple geometric...

  4. Shape of shock wave produced by a concentrated impact on a surface

    International Nuclear Information System (INIS)

    Nutt, G.; Klein, L.

    1981-01-01

    An approximate similarity solution, derived by Raizer, of a concentrated impact (or intense explosion) at the boundary of a semi-infinite volume of a perfect gas is used to determine the propagation velocity of the shock front as a function of its position. This velocity function is then used to obtain the shape of the propagating shock wave. It is shown that dish-shaped shock fronts are formed when the movement of the gas at the surface is into the gas region and that cup-shaped shock fronts are formed when the movement is out of the gas region. Comparison of these results with the shapes of explosions and meteorite craters are discussed

  5. Anatomic variation of cranial parasympathetic ganglia

    Directory of Open Access Journals (Sweden)

    Selma Siéssere

    2008-06-01

    Full Text Available Having broad knowledge of anatomy is essential for practicing dentistry. Certain anatomical structures call for detailed studies due to their anatomical and functional importance. Nevertheless, some structures are difficult to visualize and identify due to their small volume and complicated access. Such is the case of the parasympathetic ganglia located in the cranial part of the autonomic nervous system, which include: the ciliary ganglion (located deeply in the orbit, laterally to the optic nerve, the pterygopalatine ganglion (located in the pterygopalatine fossa, the submandibular ganglion (located laterally to the hyoglossus muscle, below the lingual nerve, and the otic ganglion (located medially to the mandibular nerve, right beneath the oval foramen. The aim of this study was to present these structures in dissected anatomic specimens and perform a comparative analysis regarding location and morphology. The proximity of the ganglia and associated nerves were also analyzed, as well as the number and volume of fibers connected to them. Human heads were dissected by planes, partially removing the adjacent structures to the point we could reach the parasympathetic ganglia. With this study, we concluded that there was no significant variation regarding the location of the studied ganglia. Morphologically, our observations concur with previous classical descriptions of the parasympathetic ganglia, but we observed variations regarding the proximity of the otic ganglion to the mandibular nerve. We also observed that there were variations regarding the number and volume of fiber bundles connected to the submandibular, otic, and pterygopalatine ganglia.

  6. Modeling Per Capita State Health Expenditure Variat...

    Data.gov (United States)

    U.S. Department of Health & Human Services — Modeling Per Capita State Health Expenditure Variation State-Level Characteristics Matter, published in Volume 3, Issue 4, of the Medicare and Medicaid Research...

  7. Design and experimental testing of an adaptive shape-morphing tensegrity structure, with frequency self-tuning capabilities, using shape-memory alloys

    International Nuclear Information System (INIS)

    Santos, Filipe Amarante dos; Rodrigues, André; Micheletti, Andrea

    2015-01-01

    The present paper explores the capabilities of a tensegrity-inspired tower with regard to frequency tuning by shape morphing. To change the configuration of the proposed structure, shape-memory-alloy (SMA) actuators are used. This actuation principle also takes advantage of the variation of the elastic modulus of SMAs associated with the martensitic transformation. The temperature modulation of the SMA wires is successfully achieved by Joule heating, through a proportional-integral-derivative controller, to change between a low-temperature shape and a high-temperature shape. The implementation of a short-time-Fourier-transform control algorithm allows for the correct identification of the dominant input frequency, associated with the dynamic excitation. This information is used to automatically change the configuration of the structure in order to shift its natural frequency away from that of the dynamic excitation. With this frequency tuning, one obtains a reduction of the accelerations throughout the structure up to about 80%. The good performance of the proposed control approach gives promising indications regarding the use of tensegrity systems, in combination with SMAs, for shape-morphing applications, and, in particular, for self-tuning structures. (paper)

  8. EFFECT OF BODY SHAPE ON THE AERODYNAMICS OF PROJECTILES AT SUPERSONIC SPEEDS

    Directory of Open Access Journals (Sweden)

    ABDULKAREEM SH. MAHDI

    2008-12-01

    Full Text Available An investigation has been made to predict the effects of forebody and afterbody shapes on the aerodynamic characteristics of several projectile bodies at supersonic speeds using analytical methods combined with semi-empirical design curves. The considered projectile bodies had a length-to-diameter ratio of 6.67 and included three variations of forebody shape and three variations of afterbody shape. The results, which are verified by comparison with available experimental data, indicated that the lowest drag was achieved with a cone-cylinder at the considered Mach number range. It is also shown that the drag can be reduced by boattailing the afterbody. The centre-of-pressure assumed a slightly rearward location for the ogive-cylinder configuration when compared to the configuration with boattailed afterbody where it was the most forward. With the exception of the boattailed afterbody, all the bodies indicated inherent static stability above Mach number 2 for a centre-of-gravity location at about 40% from the body nose.

  9. Intraspecific variation shapes community-level behavioral responses to urbanization in spiders.

    Science.gov (United States)

    Dahirel, Maxime; Dierick, Jasper; De Cock, Maarten; Bonte, Dries

    2017-09-01

    Urban areas are an extreme example of human-changed environments, exposing organisms to multiple and strong selection pressures. Adaptive behavioral responses are thought to play a major role in animals' success or failure in such new environments. Approaches based on functional traits have proven especially valuable to understand how species communities respond to environmental gradients. Until recently, they have, however, often ignored the potential consequences of intraspecific trait variation (ITV). When ITV is prevalent, it may highly impact ecological processes and resilience against stressors. This may be especially relevant in animals, in which behavioral traits can be altered very flexibly at the individual level to track environmental changes. We investigated how species turnover and ITV influenced community-level behavioral responses in a set of 62 sites of varying levels of urbanization, using orb web spiders and their webs as models of foraging behavior. ITV alone explained around one-third of the total trait variation observed among communities. Spider web structure changed according to urbanization, in ways that increase the capture efficiency of webs in a context of smaller urban prey. These trait shifts were partly mediated by species turnover, but ITV increased their magnitude, potentially helping to buffer the effects of environmental changes on communities. The importance of ITV varied depending on traits and on the spatial scale at which urbanization was considered. Despite being neglected from community-level analyses in animals, our results highlight the importance of accounting for intraspecific trait variation to fully understand trait responses to (human-induced) environmental changes and their impact on ecosystem functioning. © 2017 by the Ecological Society of America.

  10. Natural selection maintains a single-locus leaf shape cline in Ivyleaf morning glory, Ipomoea hederacea.

    Science.gov (United States)

    Campitelli, Brandon E; Stinchcombe, John R

    2013-02-01

    Clines in phenotypic traits with an underlying genetic basis potentially implicate natural selection. However, neutral evolutionary processes such as random colonization, spatially restricted gene flow, and genetic drift could also result in similar spatial patterns, especially for single-locus traits because of their susceptibility to stochastic events. One way to distinguish between adaptive and neutral mechanisms is to compare the focal trait to neutral genetic loci to determine whether neutral loci demonstrate clinal variation (consistent with a neutral cline), or not. Ivyleaf morning glory, Ipomoea hederacea, exhibits a latitudinal cline for a Mendelian leaf shape polymorphism in eastern North America, such that lobed genotypes dominate northern populations and heart-shaped genotypes are restricted to southern populations. Here, we evaluate potential evolutionary mechanisms for this cline by first determining the allele frequencies at the leaf shape locus for 77 populations distributed throughout I. hederacea's range and then comparing the geographical pattern at this locus to neutral amplified fragment length polymorphism (AFLP) loci. We detected both significant clinal variation and high genetic differentiation at the leaf shape locus across all populations. In contrast, 99% of the putatively neutral loci do not display clinal variation, and I. hederacea populations show very little overall genetic differentiation, suggesting that there is a moderate level of gene flow. In addition, the leaf shape locus was identified as a major F(ST) outlier experiencing divergent selection, relative to all the AFLP loci. Together, these data strongly suggest that the cline in leaf shape is being maintained by spatially varying natural selection. © 2012 Blackwell Publishing Ltd.

  11. Corrections to the Walker-Thompson estimate of the cascade volume

    International Nuclear Information System (INIS)

    Swaminarayan, S.; Nastasi, M.

    2009-01-01

    Sigmund [P. Sigmund, Appl. Phys. Lett. 25 (1974) 169] analytically predicted that the ratio of cascade volume to energy distribution volume should follow a universal curve that is sigmoidal in shape. Subsequent Monte Carlo simulations by Walker and Thompson [R.S. Walker, D.A. Thompson, Radiat. Eff. 37 (1978) 113] showed that although this curve is sigmoidal in shape, the curve is different for different materials with large deviations from Sigmund's prediction at high M 2 /M 1 . Our analysis of the Walker and Thompson approach has revealed an error in the analytical equations used. A correct analysis of volume ratios using a different set of equations is presented. Analysis of data produced by SRIM [J.F. Ziegler, J.P. Biersack, U. Littmark, in: The Stopping and Range of Ions in solids, Pergamon, New York, 1985] (Monte Carlo) simulations gives results that are in good agreement with Sigmund's predictions.

  12. Magneto-active shape memory composites by incorporating ferromagnetic microparticles in a thermo-responsive polyalkenamer

    International Nuclear Information System (INIS)

    Cuevas, J M; German, L; Iturrondobeitia, M; Alonso, J; Laza, J M; Vilas, J L; León, L M

    2009-01-01

    Covalently crosslinked semi-crystalline polyalkenamer-based shape memory polymers (SMPs) were prepared and characterized. Thermal and thermo-mechanical properties of thermo-sensitive polymers manufactured by melt compounding were investigated, and shape memory features demonstrated. For remote activation of shape recovery properties, electromagnetic inductive heating of a series of iron-based ferromagnetic microparticles was evaluated for subsequent incorporation into a shape memory polymeric matrix. The inductive heating capacity of micro-sized iron-filled polyalkenamers with different volume fraction contents was optimized and a comparison of thermo-mechanical properties of filled and unfilled shape memory polymeric networks was performed. Electromagnetically triggered shape memory properties of easily formed composites were documented and shape memory recovery rates comparable to those obtained by conventional heating methods were demonstrated for further research and design of new types of applications

  13. Probiotics for Rectal Volume Variation During Radiation Therapy for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ki, Yongkan [Department of Radiation Oncology, Pusan National University School of Medicine, Busan (Korea, Republic of); Kim, Wontaek, E-mail: rokwt@hanmail.net [Department of Radiation Oncology, Pusan National University School of Medicine, Busan (Korea, Republic of); Nam, Jiho; Kim, Donghyun; Lee, Juhye; Park, Dahl; Jeon, Hosang [Department of Radiation Oncology, Pusan National University School of Medicine, Busan (Korea, Republic of); Ha, Honggu; Kim, Taenam [Department of Urology, Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan (Korea, Republic of); Kim, Dongwon [Department of Radiation Oncology, Pusan National University School of Medicine, Busan (Korea, Republic of)

    2013-11-15

    Purpose: To investigate the effect of the probiotic Lactobacillus acidophilus on the percentage volume change of the rectum (PVC{sub R}), a crucial factor of prostate movement. Methods and Materials: Prostate cancer patients managed with tomotherapy as a radical treatment were enrolled in the study to take a probiotic capsule containing 1.0 × 10{sup 8} colony-forming units of L acidophilus or a placebo capsule twice daily. Radiation therapy was performed at a dose of 78 Gy in 39 fractions. The PVC{sub R}, defined as the difference in rectal volume between the planning computed tomographic (CT) and daily megavoltage CT images, was analyzed. Results: Forty patients were randomized into 2 groups. The L acidophilus group showed significantly lower median rectal volume and median PVC{sub R} values than the placebo group. L acidophilus showed a significant reduction effect on the PVC{sub R} (P<.001). However, the radiation therapy fraction number did not significantly influence the PVC{sub R}. Conclusions: L acidophilus was useful in reducing the PVC{sub R}, which is the most important determining factor of prostate position, during radiation therapy for prostate cancer.

  14. Ovarian volume throughout life

    DEFF Research Database (Denmark)

    Kelsey, Thomas W; Dodwell, Sarah K; Wilkinson, A Graham

    2013-01-01

    conception to 82 years of age. This model shows that 69% of the variation in ovarian volume is due to age alone. We have shown that in the average case ovarian volume rises from 0.7 mL (95% CI 0.4-1.1 mL) at 2 years of age to a peak of 7.7 mL (95% CI 6.5-9.2 mL) at 20 years of age with a subsequent decline...... to about 2.8 mL (95% CI 2.7-2.9 mL) at the menopause and smaller volumes thereafter. Our model allows us to generate normal values and ranges for ovarian volume throughout life. This is the first validated normative model of ovarian volume from conception to old age; it will be of use in the diagnosis......The measurement of ovarian volume has been shown to be a useful indirect indicator of the ovarian reserve in women of reproductive age, in the diagnosis and management of a number of disorders of puberty and adult reproductive function, and is under investigation as a screening tool for ovarian...

  15. Eliminating Unpredictable Variation through Iterated Learning

    Science.gov (United States)

    Smith, Kenny; Wonnacott, Elizabeth

    2010-01-01

    Human languages may be shaped not only by the (individual psychological) processes of language acquisition, but also by population-level processes arising from repeated language learning and use. One prevalent feature of natural languages is that they avoid unpredictable variation. The current work explores whether linguistic predictability might…

  16. Onto the stability analysis of hyperbolic secant-shaped Bose-Einstein condensate

    Science.gov (United States)

    Sabari, S.; Murali, R.

    2018-05-01

    We analyze the stability of the hyperbolic secant-shaped attractive Bose-Einstein condensate in the absence of external trapping potential. The appropriate theoretical model for the system is described by the nonlinear mean-field Gross-Pitaevskii equation with time varying two-body interaction effects. Using the variational method, the stability of the system is analyzed under the influence of time varying two-body interactions. Further we confirm that the stability of the attractive condensate increases by considering the hyperbolic secant-shape profile instead of Gaussian shape. The analytical results are compared with the numerical simulation by employing the split-step Crank-Nicholson method.

  17. The shapes of bird beaks are highly controlled by nondietary factors.

    Science.gov (United States)

    Bright, Jen A; Marugán-Lobón, Jesús; Cobb, Samuel N; Rayfield, Emily J

    2016-05-10

    Bird beaks are textbook examples of ecological adaptation to diet, but their shapes are also controlled by genetic and developmental histories. To test the effects of these factors on the avian craniofacial skeleton, we conducted morphometric analyses on raptors, a polyphyletic group at the base of the landbird radiation. Despite common perception, we find that the beak is not an independently targeted module for selection. Instead, the beak and skull are highly integrated structures strongly regulated by size, with axes of shape change linked to the actions of recently identified regulatory genes. Together, size and integration account for almost 80% of the shape variation seen between different species to the exclusion of morphological dietary adaptation. Instead, birds of prey use size as a mechanism to modify their feeding ecology. The extent to which shape variation is confined to a few major axes may provide an advantage in that it facilitates rapid morphological evolution via changes in body size, but may also make raptors especially vulnerable when selection pressures act against these axes. The phylogenetic position of raptors suggests that this constraint is prevalent in all landbirds and that breaking the developmental correspondence between beak and braincase may be the key novelty in classic passerine adaptive radiations.

  18. Influence of Helical Cell Shape on Motility of Helicobacter Pylori

    Science.gov (United States)

    Hardcastle, Joseph; Martinez, Laura; Salama, Nina; Bansil, Rama; Boston University Collaboration; University of Washington Collaboration

    2014-03-01

    Bacteria's body shape plays an important role in motility by effecting chemotaxis, swimming mechanisms, and swimming speed. A prime example of this is the bacteria Helicobacter Pylori;whose helical shape has long been believed to provide an advantage in penetrating the viscous mucus layer protecting the stomach lining, its niche environment. To explore this we have performed bacteria tracking experiments of both wild-type bacteria along with mutants, which have a straight rod shape. A wide distribution of speeds was found. This distribution reflects both a result of temporal variation in speed and different shape morphologies in the bacterial population. Our results show that body shape plays less role in a simple fluid. However, in a more viscous solution the helical shape results in increased swimming speeds. In addition, we use experimentally obtained cell shape measurements to model the hydrodynamic influence of cell shape on swimming speed using resistive force theory. The results agree with the experiment, especially when we fold in the temporal distribution. Interestingly, our results suggest distinct wild-type subpopulations with varying number of half helices can lead to different swimming speeds. NSF PHY

  19. Geometric morphometric analysis of cyclical body shape changes in color pattern variants of Cichla temensis Humboldt, 1821 (Perciformes: Cichlidae demonstrates reproductive energy allocation

    Directory of Open Access Journals (Sweden)

    Paul Reiss

    Full Text Available Previously recognized color and pattern variants of adult Cichla temensis in Amazon flood pulse river environments reflect the cycling of individuals through seasonal sexual maturity and spawning. Individuals also vary in shape from blocky to fusiform. To determine if shape differences are related to patterns of fat reserve deposition and utilization, and to quantify the relationship of shape with color and pattern variation and life history status, specimens in each of four previously defined grades of color and pattern variation were compared using geometric morphometric techniques. Progressive shape changes occurred between grades independent of sex and correlated to gonosomatic index (GSI. Thin plate spline deformation visualizations indicate that the observed shape differences are related to fat deposition patterns. The seasonal timing of shape change and its link to color pattern variation, sexual maturity and local water level conditions suggests a relationship between the physiological and behavioral characteristics of C. temensis and the cyclical flood pulse pattern of its habitat.

  20. Vertical vibration and shape oscillation of acoustically levitated water drops

    International Nuclear Information System (INIS)

    Geng, D. L.; Xie, W. J.; Yan, N.; Wei, B.

    2014-01-01

    We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.

  1. Vertical vibration and shape oscillation of acoustically levitated water drops

    Energy Technology Data Exchange (ETDEWEB)

    Geng, D. L.; Xie, W. J.; Yan, N.; Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2014-09-08

    We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.

  2. Shape Effect of Crushed Sand Filler on Rheology: A Preliminary Experimental and Numerical Study

    DEFF Research Database (Denmark)

    Spangenberg, Jon; Cepuritis, Rolands; Hovad, Emil

    2016-01-01

    Two types of filler from crushed sand were mixed with cement paste with constant superplasticizer dosage per mass of cement to investigate how their shape affects the rheology. The fillers were mylonitic quartz diorite and limestone produced using Vertical Shaft Impact (VSI) crusher and air...... was quantified with the slump flow test (i.e. mini cone). The shape effect was isolated in the experiments by the use of non overlapping bimodal particle distributions of cement particles with a number average diameter of approximate to 0.01 mm and filler particles with a number average diameter of approximate...... to 0.1 mm. The two filler types were tested with a range of chi-values (volume of cement divided by total volume of solids). The flowability of the matrix increased with decreasing aspect ratios of the filler. However, the chi-value at which the maximum volume fraction threshold was obtained varied...

  3. A general methodology for three-dimensional analysis of variation in target volume delineation

    NARCIS (Netherlands)

    Remeijer, P.; Rasch, C.; Lebesque, J. V.; van Herk, M.

    1999-01-01

    A generic method for three-dimensional (3-D) evaluation of target volume delineation in multiple imaging modalities is presented. The evaluation includes geometrical and statistical methods to estimate observer differences and variability in defining the Gross Tumor Volume (GTV) in relation to the

  4. Design a freeform microlens array module for any arbitrary-shape collimated beam shaping and color mixing

    Science.gov (United States)

    Chen, Enguo; Wu, Rengmao; Guo, Tailiang

    2014-06-01

    Collimated beam shaping with freeform surface usually employs a predefined mapping to tailor one or multiple freeform surfaces. Limitation on those designs is that the source, the freeform optics and the target are in fixed one-to-one correspondence with each other. To overcome this drawback, this paper presents a kind of freeform microlens array module integrated with an ultra-thin freeform microlens array and a condenser lens to reshape any arbitrary-shape collimated beam into a prescribed uniform rectangular illumination and achieve color mixing. The design theory is explicitly given, and some key issues are addressed. Several different application examples are given, and the target is obtained with high uniformity and energy efficiency. This freeform microlens array module, which shows better flexibility and practicality than the regular designs, can be used not only to reshape any arbitrary-shape collimated beam (or a collimated beam integrated with several sub-collimated beams), but also most importantly to achieve color mixing. With excellent optical performance and ultra-compact volume, this optical module together with the design theory can be further introduced into other applications and will have a huge market potential in the near future.

  5. A Variational Approach to the Estimate of the Permittivity of a Composite with Dispersed Inclusions

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2015-01-01

    Full Text Available Composites are inhomogeneous materials (heterogeneous solid body, which fall into the matrix and inclusions. The matrix in a composite is a binder between the inclusions. The properties of the inclusions mainly determine the application of composites. Selection of the characteristics of the matrix and inclusions enables us to meet the requirements for materials to be used in various fields of technology. Composites are widely used as structural or thermal protection material and as functional materials in various electrical devices, including dielectrics. One of the most important characteristics of the composite dielectric is the relative permittivity. The latter is primarily determined by the dielectric properties of the matrix and inclusions, as well as the shape and volume concentration of inclusions.For a composite with dispersed inclusions we are able to construct adequate mathematical models which enable us to predict sufficiently reliably the dependence of its dielectric constant on these defining parameters. In this paper, among the various approaches to the construction of such models we emphasize a variational approach which allows us not only to determine this dependence, but also obtain guaranteed bilateral boundaries of the area of possible values of the dielectric constant of the composite used to estimate the highest accuracy of calculated values.The representative element of the composite structure with inclusions of spherical shape modeling the form of dispersed inclusions with dimensions close to all directions is considered. For the representative element we obtained the electrostatic potential distribution that is permissible for the minimized functional. The latter is the part of the variational form of a mathematical model which describes the dielectric properties of the considered composite. From the equality of the values of this functional on the received permissible distribution in a representative element of the

  6. Variations of bubble cavitation and temperature elevation during lesion formation by high-intensity focused ultrasound.

    Science.gov (United States)

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2013-08-01

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in both thermal ablations for solid tumor/cancer and soft-tissue fragmentation. Mechanical and thermal effects, which play an important role in the HIFU treatment simultaneously, are dependent on the operating parameters and may vary with the progress of therapy. Mechanical erosion in the shape of a "squid," a "dumbbell" lesion with both mechanical and thermal lesions, or a "tadpole" lesion with mechanical erosion at the center and thermal necrosis on the boundary in the transparent gel phantom could be produced correspondingly with the pulse duration of 5-30 ms, which is much longer than histotripsy burst but shorter than the time for tissue boiling, and pulse repetition frequency (PRF) of 0.2-5 Hz. Meanwhile, variations of bubble cavitation (both inertial and stable cavitation) and temperature elevation in the focal region (i.e., z = -2.5, 0, and 2.5 mm) were measured by passive cavitation detection (PCD) and thermocouples during the therapeutic procedure, respectively. Stable cavitation increased with the pulse duration, PRF, and the number of pulses delivered. However, inertial cavitation was found to increase initially and then decrease with long pulse duration and high PRF. Temperature in the pre-focal region is always higher than those at the focal and post-focal position in all tests. Great variations of PCD signals and temperature elevation are due to the generation and persistence of large bubble, which is resistant to collapse and occurs with the increase of pulse duration and PRF. Similar lesion pattern and variations were also observed in ex vivo porcine kidneys. Hyperechoes in the B-mode ultrasound image were comparable to the shape and size of lesions in the dissected tissue. Thermal lesion volume increased with the increase of pulse duration and PRF, but mechanical erosion reached its maximum volume with the pulse duration of 20 ms and PRF of 1

  7. A Volume Constrained Variational Problem with Lower-Order Terms

    International Nuclear Information System (INIS)

    Morini, M.; Rieger, M.O.

    2003-01-01

    We study a one-dimensional variational problem with two or more level set constraints. The existence of global and local minimizers turns out to be dependent on the regularity of the energy density. A complete characterization of local minimizers and the underlying energy landscape is provided. The Γ -limit when the phases exhaust the whole domain is computed

  8. Statistical 3D shape analysis of gender differences in lateral ventricles

    Science.gov (United States)

    He, Qing; Karpman, Dmitriy; Duan, Ye

    2010-03-01

    This paper aims at analyzing gender differences in the 3D shapes of lateral ventricles, which will provide reference for the analysis of brain abnormalities related to neurological disorders. Previous studies mostly focused on volume analysis, and the main challenge in shape analysis is the required step of establishing shape correspondence among individual shapes. We developed a simple and efficient method based on anatomical landmarks. 14 females and 10 males with matching ages participated in this study. 3D ventricle models were segmented from MR images by a semiautomatic method. Six anatomically meaningful landmarks were identified by detecting the maximum curvature point in a small neighborhood of a manually clicked point on the 3D model. Thin-plate spline was used to transform a randomly selected template shape to each of the rest shape instances, and the point correspondence was established according to Euclidean distance and surface normal. All shapes were spatially aligned by Generalized Procrustes Analysis. Hotelling T2 twosample metric was used to compare the ventricle shapes between males and females, and False Discovery Rate estimation was used to correct for the multiple comparison. The results revealed significant differences in the anterior horn of the right ventricle.

  9. Global variation in woodpecker species richness shaped by tree availability

    DEFF Research Database (Denmark)

    Ilsoe, Sigrid Kistrup; Kissling, W. Daniel; Fjeldsa, Jon

    2017-01-01

    . Location: Global. Methods: We used spatial and non-spatial regressions to test for relationships between broad-scale woodpecker species richness and predictor variables describing current and deep-time availability of trees, current climate, Quaternary climate change, human impact, topographical...... a negative indirect effect on woodpecker species richness. Main conclusions: Global species richness of woodpeckers is primarily shaped by current tree cover and precipitation, reflecting a strong biotic association between woodpeckers and trees. Human influence can have a negative effect on woodpecker....... As an example, woodpeckers (Picidae) are closely associated with trees and woody habitats because of multiple morphological and ecological specializations. In this study, we test whether this strong biotic association causes woodpecker diversity to be closely linked to tree availability at a global scale...

  10. Wafer-shape metrics based foundry lithography

    Science.gov (United States)

    Kim, Sungtae; Liang, Frida; Mileham, Jeffrey; Tsai, Damon; Bouche, Eric; Lee, Sean; Huang, Albert; Hua, C. F.; Wei, Ming Sheng

    2017-03-01

    As device shrink, there are many difficulties with process integration and device yield. Lithography process control is expected to be a major challenge due to tighter overlay and focus control requirement. The understanding and control of stresses accumulated during device fabrication has becoming more critical at advanced technology nodes. Within-wafer stress variations cause local wafer distortions which in turn present challenges for managing overlay and depth of focus during lithography. A novel technique for measuring distortion is Coherent Gradient Sensing (CGS) interferometry, which is capable of generating a high-density distortion data set of the full wafer within a time frame suitable for a high volume manufacturing (HVM) environment. In this paper, we describe the adoption of CGS (Coherent Gradient Sensing) interferometry into high volume foundry manufacturing to overcome these challenges. Leveraging this high density 3D metrology, we characterized its In-plane distortion as well as its topography capabilities applied to the full flow of an advanced foundry manufacturing. Case studies are presented that summarize the use of CGS data to reveal correlations between in-plane distortion and overlay variation as well as between topography and device yield.

  11. Image segmentation with a novel regularized composite shape prior based on surrogate study

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Tingting, E-mail: tingtingzhao@mednet.ucla.edu; Ruan, Dan, E-mail: druan@mednet.ucla.edu [The Department of Radiation Oncology, University of California, Los Angeles, California 90095 (United States)

    2016-05-15

    Purpose: Incorporating training into image segmentation is a good approach to achieve additional robustness. This work aims to develop an effective strategy to utilize shape prior knowledge, so that the segmentation label evolution can be driven toward the desired global optimum. Methods: In the variational image segmentation framework, a regularization for the composite shape prior is designed to incorporate the geometric relevance of individual training data to the target, which is inferred by an image-based surrogate relevance metric. Specifically, this regularization is imposed on the linear weights of composite shapes and serves as a hyperprior. The overall problem is formulated in a unified optimization setting and a variational block-descent algorithm is derived. Results: The performance of the proposed scheme is assessed in both corpus callosum segmentation from an MR image set and clavicle segmentation based on CT images. The resulted shape composition provides a proper preference for the geometrically relevant training data. A paired Wilcoxon signed rank test demonstrates statistically significant improvement of image segmentation accuracy, when compared to multiatlas label fusion method and three other benchmark active contour schemes. Conclusions: This work has developed a novel composite shape prior regularization, which achieves superior segmentation performance than typical benchmark schemes.

  12. Image segmentation with a novel regularized composite shape prior based on surrogate study

    International Nuclear Information System (INIS)

    Zhao, Tingting; Ruan, Dan

    2016-01-01

    Purpose: Incorporating training into image segmentation is a good approach to achieve additional robustness. This work aims to develop an effective strategy to utilize shape prior knowledge, so that the segmentation label evolution can be driven toward the desired global optimum. Methods: In the variational image segmentation framework, a regularization for the composite shape prior is designed to incorporate the geometric relevance of individual training data to the target, which is inferred by an image-based surrogate relevance metric. Specifically, this regularization is imposed on the linear weights of composite shapes and serves as a hyperprior. The overall problem is formulated in a unified optimization setting and a variational block-descent algorithm is derived. Results: The performance of the proposed scheme is assessed in both corpus callosum segmentation from an MR image set and clavicle segmentation based on CT images. The resulted shape composition provides a proper preference for the geometrically relevant training data. A paired Wilcoxon signed rank test demonstrates statistically significant improvement of image segmentation accuracy, when compared to multiatlas label fusion method and three other benchmark active contour schemes. Conclusions: This work has developed a novel composite shape prior regularization, which achieves superior segmentation performance than typical benchmark schemes.

  13. The shape, stability and breakage of pendant liquid bridges

    Science.gov (United States)

    Padday, J. F.; Pétré, G.; Rusu, C. G.; Gamero, J.; Wozniak, G.

    1997-12-01

    Pendant liquid bridges are defined as pendant drops supporting a solid axisymmetric endplate at their lower end. The stability and shape properties of such bridges are defined in terms of the capillary properties of the system and of the mass and radius of the lower free-floating endplate. The forces acting in the pendant liquid bridge are defined exactly and expressed in dimensionless form. Numerical analysis has been used to derive the properties of a given bridge and it is shown that as the bridge grows by adding more liquid to the system a maximum volume is reached. At this maximum volume, the pendant bridge becomes unstable with the length of the bridge increasing spontaneously and irreversibly at constant volume. Finally the bridge breaks with the formation of a satellite drop or an extended thread. The bifurcation and breakage processes have been recorded using a high-speed video camera with a digital recording rate of up to 6000 frames per second. The details of the shape of the bridge bifurcation and breakage for many pendant bridge systems have been recorded and it is shown that satellite drop formation after rupture is not always viscosity dependent. Bifurcation and breakage in simulated low gravity demonstrated that breakage was very nearly symmetrical about a plane through the middle of the pendant bridge.

  14. The Multipoint Global Shape Optimization of Flying Configuration with Movable Leading Edges Flaps

    Directory of Open Access Journals (Sweden)

    Adriana NASTASE

    2012-12-01

    Full Text Available The aerodynamical global optimized (GO shape of flying configuration (FC, at two cruising Mach numbers, can be realized by morphing. Movable leading edge flaps are used for this purpose. The equations of the surfaces of the wing, of the fuselage and of the flaps in stretched position are approximated in form of superpositions of homogeneous polynomes in two variables with free coefficients. These coefficients together with the similarity parameters of the planform of the FC are the free parameters of the global optimization. Two enlarged variational problems with free boundaries occur. The first one consists in the determination of the GO shape of the wing-fuselageFC, with the flaps in retracted position, which must be of minimum drag, at higher cruising Mach number. The second enlarged variational problem consists in the determination of the GO shape of the flaps in stretched position in such a manner that the entire FC shall be of minimum drag at the second lower Mach number. The iterative optimum-optimorum (OO theory of the author is used for the solving of these both enlarged variational problems. The inviscid GO shape of the FC is used only in the first step of iteration and the own developed hybrid solutions for the compressible Navier-Stokes partial-differential equations (PDEs are used for the determination of the friction drag coefficient and up the second step of iteration of OO theory.

  15. Incubator weaning in preterm infants and associated practice variation.

    Science.gov (United States)

    Schneiderman, R; Kirkby, S; Turenne, W; Greenspan, J

    2009-08-01

    To evaluate the relationship of weight of preterm infants when first placed into an open crib with days to full oral feedings, growth velocity and length of stay (LOS), and to identify unwarranted variation in incubator weaning after adjusting for severity indices. A retrospective study using the ParadigmHealth neonatal database from 2003 to 2006 reviewed incubator weaning to an open crib in appropriate-for-gestational-age (AGA) infants from 22 to weeks gestation. Primary outcome measurements included days to full oral (PO) feeding, weight gain from open crib to discharge and length of stay. Models were severity adjusted. To understand hospital practice variation, we also used a regression model to estimate the weight at open crib for the top 10 volume hospitals. In all 2908 infants met the inclusion criteria for the study. Their mean weight at open crib was 1850 g. On average every additional 100 g an infant weighed at the open crib was associated with increased time to full PO feeding by 0.8 days, decreased weight gained per day by 1 gram and increased LOS by 0.9 days. For the top 10 volume hospitals, severity variables alone accounted for 9% of the variation in weight at open crib, whereas the hospital in which the baby was treated accounted for an additional 19% of the variation. Even after controlling for severity, significant practice variation exists in weaning to an open crib, leading to potential delays in achieving full-volume oral feeds, decreased growth velocity and prolonged LOS.

  16. Genetic and environmental correlates of morphological variation in a marine fish: the case of Baltic Sea herring ( Clupea harengus )

    DEFF Research Database (Denmark)

    Jørgensen, H.B.H.; Pertoldi, C.; Hansen, Michael Møller

    2008-01-01

    Baltic Sea herring (Clupea harengus) have been shown to exhibit morphological differences across the marked salinity and temperature gradients in the region. Here we analyse genetic (nine microsatellite loci), morpho metric (skull shape), and meristic (pectoral fin rays and number of vertebrae...... and plastic responses. Skull shape, including and excluding size variation, differed significantly among samples, both temporally and spatially. Genetic and morphometric distances were correlated, especially when size variation was excluded from the analysis. When size variation was included, skull shape...... variation was more closely correlated with environmental distances among spawning locations. Vertebrate number differed among samples and was correlated with environmental distances, whereas the number of fin rays was not. Genetic and geographic distances among samples were not correlated....

  17. Postprandial hepatic volume change: spiral CT evaluation in case of liver cirrhosis

    International Nuclear Information System (INIS)

    Rho, Kwang Suk; Moon, Jang Il; Ko, Myong Kwan; Byun, Joo Nam; Kim, Young Suk; Kim, Young Chol; Oh, Jae Hee

    1999-01-01

    To investigate the usefulness of evaluating liver cirrhosis through the measurement of liver volume. In a control group(20 normal subjects) and 20 cirrhotic patients, variations in liver volume before and after a meal were obtained. A case-control study was conducted between the two groups. In the control group, the range of increased liver volume after the meal was 67-186ml. Mean increased liver volume was 119.3ml, the range of percentage increase was 6-12.4% and the mean percentage increase was 9.89%. In cirrhotic patients, the range of increased liver volume after the meal was 1-20ml. Mean increase liver volume was 6.9ml, the range of percentage increase was 0-1.9% and the mean percentage increase was 0.65%. Compared with the control group, cirrhotic patients showed a much smaller increase in liver volume(p<0.01). Difference in variation of liver volume between a control group and cirrhotic patients before and after a meal can be used for the evaluation of liver cirrhosis

  18. Climates Past, Present, and Yet-to-Come Shape Climate Change Vulnerabilities.

    Science.gov (United States)

    Nadeau, Christopher P; Urban, Mark C; Bridle, Jon R

    2017-10-01

    Climate change is altering life at multiple scales, from genes to ecosystems. Predicting the vulnerability of populations to climate change is crucial to mitigate negative impacts. We suggest that regional patterns of spatial and temporal climatic variation scaled to the traits of an organism can predict where and why populations are most vulnerable to climate change. Specifically, historical climatic variation affects the sensitivity and response capacity of populations to climate change by shaping traits and the genetic variation in those traits. Present and future climatic variation can affect both climate change exposure and population responses. We provide seven predictions for how climatic variation might affect the vulnerability of populations to climate change and suggest key directions for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Stereological quantification of tumor volume, mean nuclear volume and total number of melanoma cells correlated with morbidity and mortality

    DEFF Research Database (Denmark)

    Bønnelykke-Behrndtz, Marie Louise; Sørensen, Flemming Brandt; Damsgaard, Tine Engberg

    2008-01-01

    potential indicators of prognosis. Sixty patients who underwent surgery at the Department of Plastic Surgery, Aarhus University Hospital, from 1991 to 1994 were included in the study. Total tumor volume was estimated by the Cavalieri technique, total number of tumor cells by the optical dissector principle...... showed a significant impact on both disease-free survival (p=0.001) and mortality (p=0.009). In conclusion, tumor volume and total number of cancer cells were highly reproducible but did not add additional, independent prognostic information regarding the study population.......Stereological quantification of tumor volume, total number of tumor cells and mean nuclear volume provides unbiased data, regardless of the three-dimensional shape of the melanocytic lesion. The aim of the present study was to investigate whether these variables are reproducible and may represent...

  20. DNA origami-based shape IDs for single-molecule nanomechanical genotyping

    Science.gov (United States)

    Zhang, Honglu; Chao, Jie; Pan, Dun; Liu, Huajie; Qiang, Yu; Liu, Ke; Cui, Chengjun; Chen, Jianhua; Huang, Qing; Hu, Jun; Wang, Lianhui; Huang, Wei; Shi, Yongyong; Fan, Chunhai

    2017-04-01

    Variations on DNA sequences profoundly affect how we develop diseases and respond to pathogens and drugs. Atomic force microscopy (AFM) provides a nanomechanical imaging approach for genetic analysis with nanometre resolution. However, unlike fluorescence imaging that has wavelength-specific fluorophores, the lack of shape-specific labels largely hampers widespread applications of AFM imaging. Here we report the development of a set of differentially shaped, highly hybridizable self-assembled DNA origami nanostructures serving as shape IDs for magnified nanomechanical imaging of single-nucleotide polymorphisms. Using these origami shape IDs, we directly genotype single molecules of human genomic DNA with an ultrahigh resolution of ~10 nm and the multiplexing ability. Further, we determine three types of disease-associated, long-range haplotypes in samples from the Han Chinese population. Single-molecule analysis allows robust haplotyping even for samples with low labelling efficiency. We expect this generic shape ID-based nanomechanical approach to hold great potential in genetic analysis at the single-molecule level.

  1. Shell shape as a biomarker of marine pollution historic increase.

    Science.gov (United States)

    Márquez, F; Primost, M A; Bigatti, G

    2017-01-30

    Buccinanops globulosus is a TBT sensitive marine gastropod, classified as a good indicator of imposex incidence and used as a model to study adverse contamination effects. Population and maritime industries has incremented pollution in Nuevo gulf harbor since 1970s, promoting morphological changes in B. globulosus shell shape. We study the shell shape of the species comparing present day's specimens from the harbor zone with those collected in the same zone before the increasing of maritime activity and pre-Hispanic archaeological Middens. We demonstrated that harbor pollution produces globular shell shape in B. globulosus, an effect that probably allows gastropods to isolate themselves from the external adverse environment. On the contrary, shells from pre-Hispanic periods, unpolluted sites and those collected before the expansion of maritime activities, presented an elongated shell shape. Our study confirms that shell shape variation in marine gastropods can be used as a biomarker of harbor pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Protein structure and ionic selectivity in calcium channels: selectivity filter size, not shape, matters.

    Science.gov (United States)

    Malasics, Attila; Gillespie, Dirk; Nonner, Wolfgang; Henderson, Douglas; Eisenberg, Bob; Boda, Dezso

    2009-12-01

    Calcium channels have highly charged selectivity filters (4 COO(-) groups) that attract cations in to balance this charge and minimize free energy, forcing the cations (Na(+) and Ca(2+)) to compete for space in the filter. A reduced model was developed to better understand the mechanism of ion selectivity in calcium channels. The charge/space competition (CSC) mechanism implies that Ca(2+) is more efficient in balancing the charge of the filter because it provides twice the charge as Na(+) while occupying the same space. The CSC mechanism further implies that the main determinant of Ca(2+) versus Na(+) selectivity is the density of charged particles in the selectivity filter, i.e., the volume of the filter (after fixing the number of charged groups in the filter). In this paper we test this hypothesis by changing filter length and/or radius (shape) of the cylindrical selectivity filter of our reduced model. We show that varying volume and shape together has substantially stronger effects than varying shape alone with volume fixed. Our simulations show the importance of depletion zones of ions in determining channel conductance calculated with the integrated Nernst-Planck equation. We show that confining the protein side chains with soft or hard walls does not influence selectivity.

  3. Cardiothoracic ratio on chest radiograph in pediatric heart disease: How does it correlate with heart volumes at magnetic resonance imaging?

    Energy Technology Data Exchange (ETDEWEB)

    Grotenhuis, Heynric B. [The University of Toronto, Division of Cardiology, Department of Paediatrics, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto (Canada); Zhou, Cheng; Isaac, Kathryn V. [The University of Toronto, Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto (Canada); Tomlinson, George [University of Toronto, Department of Medicine, Toronto General Hospital and Mt. Sinai Hospital, Toronto (Canada); Seed, Mike; Grosse-Wortmann, Lars; Yoo, Shi-Joon [The University of Toronto, Division of Cardiology, Department of Paediatrics, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto (Canada); The University of Toronto, Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto (Canada)

    2015-10-15

    The cardiothoracic ratio by chest radiograph is widely used as a marker of cardiac size. The purpose of this study is to correlate cardiothoracic ratio and cardiac volumes as measured by cardiovascular magnetic resonance (MR) in common structural and myopathic heart disease with increased cardiac size due to volume overload or hypertrophy. A retrospective single center study was performed in all patients between 2007 and 2013 with repaired tetralogy of Fallot (TOF), aortic regurgitation, isolated left-to-right shunt and hypertrophic cardiomyopathy (HCM) who underwent cardiovascular MR and chest radiograph within 6 months of each other. Cardiothoracic ratios by chest radiograph (frontal and lateral) were compared to cardiac volumes (indexed for body surface area) by cardiovascular MR. One hundred twenty-seven patients (mean age: 11.2 ± 5.5 years) were included in this study (76 with TOF, 23 with isolated left-to-right shunt, 16 with aortic regurgitation and 12 with HCM). Frontal cardiothoracic ratio of all groups correlated with indexed right ventricular (RV) end-diastolic volume (EDVI) (r = 0.40, P < 0.01) and indexed total heart volume (THVI) (r = 0.27, P < 0.01). In TOF patients, frontal cardiothoracic ratio correlated with RVEDVI (r = 0.34, P < 0.01; coefficient of variation = 27.6%), indexed RV end-systolic volume (ESVI) (r = 0.44, P < 0.01; coefficient of variation = 33.3%) and THVI (r = 0.35, P < 0.01; coefficient of variation = 19.6%), although RV volumes and THVI showed widespread variation given the high coefficients of variation. In patients with aortic regurgitation, frontal cardiothoracic ratio correlated with left ventricular (LV) EDVI (r = 0.50, P = 0.047), but not with THVI and aortic regurgitant fraction, and widespread variation for LV EDVI (coefficient of variation = 19.2%), LV ESVI (coefficient of variation = 32.5%) and THVI (coefficient of variation = 13.6%) was also observed. Frontal cardiothoracic ratio was not correlated with cardiac volumes

  4. The morphing properties of a vascular shape memory composite

    International Nuclear Information System (INIS)

    Cortes, P; Kubas, G; Terzak, J; Phillips, D; Baur, J W

    2014-01-01

    This work investigates the fabrication, experimentation, testing, and modeling of shape memory composites consisting of two-way shape memory alloy (SMA) tubes embedded in a shape memory polymer (SMP) matrix. The hybrid system here investigated is thermally activated via internal transport of thermal fluids through the SMA vascular system. The resulting shape memory composite (SMC) combines the high modulus and high specific actuation force of SMAs with the strong shape fixing and variable stiffness of SMPs to create a light-weight composite capable of controllably and rapidly achieving two shape memory states. Specifically, a 25° thermally induced out-of-plane bending state is achieved with a 2% volume fraction of SMA in the composite after 2 min of being activated by an internal thermal fluid. Here, while the thermal structural design of the SMC was not optimized and the thermal cycling was significantly restricted by the low thermal conduction of the SMP, the deflection of the composite was within 20% of the expected value modeled by the thermal–mechanical finite element analysis (FEA) here performed. The close agreement between the experimental performance and the modeled composite response suggests that morphing composites based on SMAs and SMPs are promising structures for adaptive applications. (paper)

  5. Radar observations and shape model of asteroid 16 Psyche

    Science.gov (United States)

    Shepard, Michael K.; Richardson, James; Taylor, Patrick A.; Rodriguez-Ford, Linda A.; Conrad, Al; de Pater, Imke; Adamkovics, Mate; de Kleer, Katherine; Males, Jared R.; Morzinski, Katie M.; Close, Laird M.; Kaasalainen, Mikko; Viikinkoski, Matti; Timerson, Bradley; Reddy, Vishnu; Magri, Christopher; Nolan, Michael C.; Howell, Ellen S.; Benner, Lance A. M.; Giorgini, Jon D.; Warner, Brian D.; Harris, Alan W.

    2017-01-01

    Using the S-band radar at Arecibo Observatory, we observed 16 Psyche, the largest M-class asteroid in the main belt. We obtained 18 radar imaging and 6 continuous wave runs in November and December 2015, and combined these with 16 continuous wave runs from 2005 and 6 recent adaptive-optics (AO) images (Drummond et al., 2016) to generate a three-dimensional shape model of Psyche. Our model is consistent with a previously published AO image (Hanus et al., 2013) and three multi-chord occultations. Our shape model has dimensions 279 × 232 × 189 km (± 10%), Deff = 226 ± 23 km, and is 6% larger than, but within the uncertainties of, the most recently published size and shape model generated from the inversion of lightcurves (Hanus et al., 2013). Psyche is roughly ellipsoidal but displays a mass-deficit over a region spanning 90° of longitude. There is also evidence for two ∼50-70 km wide depressions near its south pole. Our size and published masses lead to an overall bulk density estimate of 4500 ± 1400 kgm-3. Psyche's mean radar albedo of 0.37 ± 0.09 is consistent with a near-surface regolith composed largely of iron-nickel and ∼40% porosity. Its radar reflectivity varies by a factor of 1.6 as the asteroid rotates, suggesting global variations in metal abundance or bulk density in the near surface. The variations in radar albedo appear to correlate with large and small-scale shape features. Our size and Psyche's published absolute magnitude lead to an optical albedo of pv = 0.15 ± 0.03, and there is evidence for albedo variegations that correlate with shape features.

  6. Pedestal performance dependence upon plasma shape in DIII-D

    International Nuclear Information System (INIS)

    Leonard, A.W.; Casper, T.A.; Groebner, R.J.; Osborne, T.H.; Snyder, P.B.; Thomas, D.M.

    2007-01-01

    Higher moments of the plasma shape than triangularity are found to significantly affect the pedestal pressure and the edge localized mode (ELM) characteristics in DIII-D. The shape dependence of the pedestal pressure was experimentally examined by varying the squareness in the proposed ITER configuration while holding the triangularity fixed. Over this scan the pedestal pressure increased by ∼50% from highest squareness to lowest squareness. The variation of pedestal energy is found to be consistent with the stability analysis of the measured profiles. The ELM energy also varied with the shape to maintain a nearly constant fraction of the pedestal energy. Stability analysis using model shapes and pressure profiles indicates that much of the advantage of high triangularity for high pedestal pressure can be achieved in lower triangularity shapes by optimizing squareness and/or the distance of the secondary upper separatrix from the primary separatrix. In high beta discharges an increase in pedestal pressure is observed with higher global stored energy. The greatest pedestal pressure increase is at low squareness due to an increase in both the pressure gradient stability limit and the width of the pedestal. The variation in pedestal pressure with squareness was also used to optimize 'hybrid' discharges in DIII-D where a lower pedestal pressure was required for an improved overall performance. In the 'hybrid' regime low squareness resulted in a high pedestal pressure with large infrequent ELMs that eventually triggered an internal 2/1 tearing mode that locked, resulting in a disruption. At higher squareness the pedestal pressure was reduced with smaller and more rapid ELMs, resulting in the maintenance of a steady beneficial internal 3/2 tearing mode and good confinement. For all the cases studied, an increase in the pedestal width at low squareness appears to be a significant factor in the increase in the total pedestal pressure

  7. Spiral-shaped reactor for water disinfection

    KAUST Repository

    Soukane, Sofiane

    2016-04-20

    Chlorine-based processes are still widely used for water disinfection. The disinfection process for municipal water consumption is usually carried out in large tanks, specifically designed to verify several hydraulic and disinfection criteria. The hydrodynamic behavior of contact tanks of different shapes, each with an approximate total volume of 50,000 m3, was analyzed by solving turbulent momentum transport equations with a computational fluid dynamics code, namely ANSYS fluent. Numerical experiments of a tracer pulse were performed for each design to generate flow through curves and investigate species residence time distribution for different inlet flow rates, ranging from 3 to 12 m3 s−1. A new nature-inspired Conch tank design whose shape follows an Archimedean spiral was then developed. The spiral design is shown to strongly outperform the other tanks’ designs for all the selected plug flow criteria with an enhancement in efficiency, less short circuiting, and an order of magnitude improvement in mixing and dispersion. Moreover, following the intensification philosophy, after 50% reduction in its size, the new design retains its properties and still gives far better results than the classical shapes.

  8. Shape memory alloys applied to improve rotor-bearing system dynamics - an experimental investigation

    DEFF Research Database (Denmark)

    Enemark, Søren; Santos, Ilmar; Savi, Marcelo A.

    2015-01-01

    passing through critical speeds. In this work, the feasibility of applying shape memory alloys to a rotating system is experimentally investigated. Shape memory alloys can change their stiffness with temperature variations and thus they may change system dynamics. Shape memory alloys also exhibit...... perturbations and mass imbalance responses of the rotor-bearing system at different temperatures and excitation frequencies are carried out to determine the dynamic behaviour of the system. The behaviour and the performance in terms of vibration reduction and system adaptability are compared against a benchmark...... configuration comprised by the same system having steel springs instead of shape memory alloy springs. The experimental results clearly show that the stiffness changes and hysteretic behaviour of the shape memory alloys springs alter system dynamics both in terms of critical speeds and mode shapes. Vibration...

  9. Atlas-based analysis of cardiac shape and function: correction of regional shape bias due to imaging protocol for population studies.

    Science.gov (United States)

    Medrano-Gracia, Pau; Cowan, Brett R; Bluemke, David A; Finn, J Paul; Kadish, Alan H; Lee, Daniel C; Lima, Joao A C; Suinesiaputra, Avan; Young, Alistair A

    2013-09-13

    Cardiovascular imaging studies generate a wealth of data which is typically used only for individual study endpoints. By pooling data from multiple sources, quantitative comparisons can be made of regional wall motion abnormalities between different cohorts, enabling reuse of valuable data. Atlas-based analysis provides precise quantification of shape and motion differences between disease groups and normal subjects. However, subtle shape differences may arise due to differences in imaging protocol between studies. A mathematical model describing regional wall motion and shape was used to establish a coordinate system registered to the cardiac anatomy. The atlas was applied to data contributed to the Cardiac Atlas Project from two independent studies which used different imaging protocols: steady state free precession (SSFP) and gradient recalled echo (GRE) cardiovascular magnetic resonance (CMR). Shape bias due to imaging protocol was corrected using an atlas-based transformation which was generated from a set of 46 volunteers who were imaged with both protocols. Shape bias between GRE and SSFP was regionally variable, and was effectively removed using the atlas-based transformation. Global mass and volume bias was also corrected by this method. Regional shape differences between cohorts were more statistically significant after removing regional artifacts due to imaging protocol bias. Bias arising from imaging protocol can be both global and regional in nature, and is effectively corrected using an atlas-based transformation, enabling direct comparison of regional wall motion abnormalities between cohorts acquired in separate studies.

  10. Trauma of the Frontal Region Is Influenced by the Volume of Frontal Sinuses. A Finite Element Study

    Directory of Open Access Journals (Sweden)

    Srbislav S. Pajic

    2017-07-01

    Full Text Available Anatomy of frontal sinuses varies individually, from differences in volume and shape to a rare case when the sinuses are absent. However, there are scarce data related to influence of these variations on impact generated fracture pattern. Therefore, the aim of this study was to analyse the influence of frontal sinus volume on the stress distribution and fracture pattern in the frontal region. The study included four representative Finite Element models of the skull. Reference model was built on the basis of computed tomography scans of a human head with normally developed frontal sinuses. By modifying the reference model, three additional models were generated: a model without sinuses, with hypoplasic, and with hyperplasic sinuses. A 7.7 kN force was applied perpendicularly to the forehead of each model, in order to simulate a frontal impact. The results demonstrated that the distribution of impact stress in frontal region depends on the frontal sinus volume. The anterior sinus wall showed the highest fragility in case with hyperplasic sinuses, whereas posterior wall/inner plate showed more fragility in cases with hypoplasic and undeveloped sinuses. Well-developed frontal sinuses might, through absorption of the impact energy by anterior wall, protect the posterior wall and intracranial contents.

  11. Transformers: Shape-Changing Space Systems Built with Robotic Textiles

    Science.gov (United States)

    Stoica, Adrian

    2013-01-01

    Prior approaches to transformer-like robots had only very limited success. They suffer from lack of reliability, ability to integrate large surfaces, and very modest change in overall shape. Robots can now be built from two-dimensional (2D) layers of robotic fabric. These transformers, a new kind of robotic space system, are dramatically different from current systems in at least two ways. First, the entire transformer is built from a single, thin sheet; a flexible layer of a robotic fabric (ro-fabric); or robotic textile (ro-textile). Second, the ro-textile layer is foldable to small volume and self-unfolding to adapt shape and function to mission phases.

  12. Unexpectedly rapid evolution of mandibular shape in hominins.

    Science.gov (United States)

    Raia, P; Boggioni, M; Carotenuto, F; Castiglione, S; Di Febbraro, M; Di Vincenzo, F; Melchionna, M; Mondanaro, A; Papini, A; Profico, A; Serio, C; Veneziano, A; Vero, V A; Rook, L; Meloro, C; Manzi, G

    2018-05-09

    Members of the hominins - namely the so-called 'australopiths' and the species of the genus Homo - are known to possess short and deep mandibles and relatively small incisors and canines. It is commonly assumed that this suite of traits evolved in early members of the clade in response to changing environmental conditions and increased consumption of though food items. With the emergence of Homo, the functional meaning of mandible shape variation is thought to have been weakened by technological advancements and (later) by the control over fire. In contrast to this expectation, we found that mandible shape evolution in hominins is exceptionally rapid as compared to any other primate clade, and that the direction and rate of shape change (from the ape ancestor) are no different between the australopiths and Homo. We deem several factors including the loss of honing complex, canine reduction, and the acquisition of different diets may have concurred in producing such surprisingly high evolutionary rates. This study reveals the evolution of mandibular shape in hominins has strong morpho-functional and ecological significance attached.

  13. A below-ground herbivore shapes root defensive chemistry in natural plant populations

    OpenAIRE

    Huber, Meret; Bont, Zoe; Fricke, Julia; Brillatz, Th?o; Aziz, Zohra; Gershenzon, Jonathan; Erb, Matthias

    2016-01-01

    Plants display extensive intraspecific variation in secondary metabolites. However, the selective forces shaping this diversity remain often unknown, especially below ground. Using Taraxacum officinale and its major native insect root herbivore Melolontha melolontha, we tested whether below-ground herbivores drive intraspecific variation in root secondary metabolites. We found that high M. melolontha infestation levels over recent decades are associated with high concentrations of major root ...

  14. Improving scale invariant feature transform-based descriptors with shape-color alliance robust feature

    Science.gov (United States)

    Wang, Rui; Zhu, Zhengdan; Zhang, Liang

    2015-05-01

    Constructing appropriate descriptors for interest points in image matching is a critical aspect task in computer vision and pattern recognition. A method as an extension of the scale invariant feature transform (SIFT) descriptor called shape-color alliance robust feature (SCARF) descriptor is presented. To address the problem that SIFT is designed mainly for gray images and lack of global information for feature points, the proposed approach improves the SIFT descriptor by means of a concentric-rings model, as well as integrating the color invariant space and shape context with SIFT to construct the SCARF descriptor. The SCARF method developed is more robust than the conventional SIFT with respect to not only the color and photometrical variations but also the measuring similarity as a global variation between two shapes. A comparative evaluation of different descriptors is carried out showing that the SCARF approach provides better results than the other four state-of-the-art related methods.

  15. Hadronic vs. electromagnetic pulse shape discrimination in CsI(Tl) for high energy physics experiments

    Science.gov (United States)

    Longo, S.; Roney, J. M.

    2018-03-01

    Pulse shape discrimination using CsI(Tl) scintillators to perform neutral hadron particle identification is explored with emphasis towards application at high energy electron-positron collider experiments. Through the analysis of the pulse shape differences between scintillation pulses from photon and hadronic energy deposits using neutron and proton data collected at TRIUMF, it is shown that the pulse shape variations observed for hadrons can be modelled using a third scintillation component for CsI(Tl), in addition to the standard fast and slow components. Techniques for computing the hadronic pulse amplitudes and shape variations are developed and it is shown that the intensity of the additional scintillation component can be computed from the ionization energy loss of the interacting particles. These pulse modelling and simulation methods are integrated with GEANT4 simulation libraries and the predicted pulse shape for CsI(Tl) crystals in a 5 × 5 array of 5 × 5 × 30 cm3 crystals is studied for hadronic showers from 0.5 and 1 GeV/c KL0 and neutron particles. Using a crystal level and cluster level approach for photon vs. hadron cluster separation we demonstrate proof-of-concept for neutral hadron detection using CsI(Tl) pulse shape discrimination in high energy electron-positron collider experiments.

  16. Volume of a laser-induced microjet

    Science.gov (United States)

    Kawamoto, Sennosuke; Hayasaka, Keisuke; Noguchi, Yuto; Tagawa, Yoshiyuki

    2015-11-01

    Needle-free injection systems are of great importance for medical treatments. In spite of their great potential, these systems are not commonly used. One of the common problems is strong pain caused by diffusion shape of the jet. To solve this problem, the usage of a high-speed highly-focused microjet as needle-free injection system is expected. It is thus crucial to control important indicators such as ejected volume of the jet for its safe application. We conduct experiments to reveal which parameter influences mostly the ejected volume. In the experiments, we use a glass tube of an inner diameter of 500 micro-meter, which is filled with the liquid. One end is connected to a syringe and the other end is opened. Radiating the pulse laser instantaneously vapors the liquid, followed by the generation of a shockwave. We find that the maximum volume of a laser-induced bubble is approximately proportional to the ejected volume. It is also found that the occurrence of cavitation does not affect the ejected volume while it changes the jet velocity.

  17. Thermoelastic properties on Cu-Zn-Al shape memory springs

    Directory of Open Access Journals (Sweden)

    Carlos Augusto do Nascimento Oliveira

    2010-06-01

    Full Text Available This paper present a thermomechanical study of actuators in form of helical springs made from shape memory alloy wires that can work as actuator and/or as sensor. These abilities are due to the martensitic transformation. This transformation is a diffusionless phase transition that occurs by a cooperative atomic rearrange mechanism. In this work, helical spring actuators were manufactured from Cu-Zn-Al shape memory alloy wires. The springs were submitted to constant tensile loads and thermal cycles. This procedure allows to determine thermoelastic properties of the shape memory springs. Thermomechanical properties were analyzed during 50 thermal cycles in the temperature range from 20 to 130 °C. Results of variations in critical transformation temperatures, thermoelastic strain and thermal hysteresis are discussed based on defects rearrangement and martensitic transformation theory.

  18. A characteristic ventricular shape in myelomeningocele-associated hydrocephalus? A CT stereology study

    International Nuclear Information System (INIS)

    Roost, D. van; Solymosi, L.; Funke, K.

    1995-01-01

    We measured the volume of the supratentorial ventricles in 39 consecutive children with myelomeningocele (MMC) and associated hydrocephalus, using a stereological method based on the Cavalieri theorem of systematic sampling. We distinguished the following groups: newborns before and after cerebrospinal fluid shunting (14), a somewhat larger group of newborns with an untreated MMC-associated hydrocephalus (25) and a group of shunted children at a mean age of 1.5 years (28). We paid special attention to the shape of the lateral ventricles, looking separately at the anterior and posterior halves. The measurements were compared with a healthy control group (10) and with children with hydrocephalus unrelated to MMC (15). The average volume ratio of the posterior to the anterior half of the lateral ventricles was 1.05 ± 0.39 in non-hydrocephalic children, 1.11 ± 0.55 in untreated hydrocephalic children without MMC, and 2.15 ± 0.65 in MMC-associated hydrocephalus prior to shunting. These ratios did not change significantly after shunting. This confirms our impression that MMC-associated hydrocephalus shows a characteristic shape, with a disproportionate enlargement of the posterior part of the lateral ventricles, in clear contrast to the normal-width frontal horns. This shape is reminiscent of the fetal ventricular shape. It reveals disturbance of brain development in children with MMC, which goes beyond the classic description of the Chiari malformation. (orig.)

  19. Shape of vaginal suppositories affects willingness-to-try and preference.

    Science.gov (United States)

    Li, Bangde; Zaveri, Toral; Ziegler, Gregory R; Hayes, John E

    2013-03-01

    HIV and other sexually transmitted infections (STIs) are a global threat to public health that may be countered, in part, by microbicides. A successful microbicide must be both biologically efficacious and highly acceptable to users. Sensory attributes have a direct influence on product acceptability. We created a series of vaginal suppositories appropriate for use as microbicides to investigate the influence of shape on women's willingness-to-try. The influence of perceived size and firmness on acceptability was also assessed. Sexually-active women (n=99) were invited to participate in an evaluation of vaginal suppositories in 5 different shapes including: Bullet, Long Oval, Round Oval, Teardrop and Tampon. The volume (3mL) and formulation for these five prototypes were identical. After manipulating prototypes ex vivo (in their hands), participants rated their willingness-to-try on a 100-point visual analog scale. The appropriateness of size and firmness were evaluated using 5-point just-about-right (JAR) scales. Each participant evaluated all five prototypes individually. Samples were presented in a counterbalanced monadic sequence using a Williams design. Mean willingness-to-try varied by shape, with Bullet and Long Oval receiving significantly higher scores. This was consistent with JAR data for size, as 70% and 65% of women indicated these shapes were 'just-about-right', respectively. In contrast, a minority of women endorsed the other 3 shapes as having a size that was 'just-about-right'. The proportion of women who felt the firmness was 'just-about-right' was uniformly high, irrespective of shape, suggesting prior attempts to optimize the formula were successful. Perceptions of size and firmness were influenced by the physical length and width of the prototypes, in spite of having constant volume. Women showed high willingness-to-try when asked to assume they were at risk. These results are relevant for behavioral and formulation scientists working on

  20. A fully integrated 16 channel digitally trimmed pulse shaping amplifier

    International Nuclear Information System (INIS)

    Hearn, W.E.; Wright, M.E.

    1993-11-01

    A fully integrated CMOS pulse shaping amplifier has been developed at LBL. All frequency dependent networks are included on the chip. Provision is made for tuning to compensate for process variations. The overall architecture and details of the circuitry are discussed. Test results are presented

  1. SU-F-T-31: Shape and Isodose Distributions in Co60 HDR Brachytherapy for Different Utero-Vaginal Time Ratios

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Sprinberg, G [Faculty of Sciences, Montevideo, Montevideo (Venezuela, Bolivarian Republic of); Piriz, G [Hospital Pereyra Rossell, Montevideo, Montevideo (Venezuela, Bolivarian Republic of)

    2016-06-15

    Purpose: To optimize the dose in bladder and rectum and show the different shapes of the isodose volumes in Co60-HDR brachytherapy, considering different utero and vaginal sources dwell ratio times (TU:TV). Methods: Besides Ir192-HDR, new Co60-HDR sources are being incorporated. We considered different TU:TV times and computed the dosis in bladder, rectum and at the reference points of the Manchester system. Also, we calculated the isodose volume and shape in each case. We used a EZAG-BEBIG Co0.A86 model with TPS HDRplus3.0.4. and LCT42-7, LCT42-2(R,L) applicators. A reference dose RA= 1.00 Gy was given to the A-right point. We considered the TU:TV dwell time ratios 1:0.25, 1:0.33, 1:0.5, 1:1, 1:2, 1:3, and 1:4. Given TU:TV, the stop time at each dwell position is fixed for each applicator. Results: Increasing TU:TV systematically results in a decreasing of the dose in bladder and rectum, e.g. 9% and 27% reduction were found in 1:0.25 with respect to 1:1, while 12% and 34% increase were found in 1:4 with respect to 1:1. Also, the isodose volume parameters height (h), width (w), thickness (t) and volume (hwt) increased from the 1:0.25 case to the 1:4 value: hwt is 25% lower and 31% higher than the 1:1 reference volume in these cases. Also w decreased for higher TU:TV and may compromise the tumoral volume coverage, decreasing 17% in the 1:0.25 case compared to the 1:1 case. The shape of the isodose volume was obtained for the different TU:TV considered. Conclusion: We obtained the shape of isodose volumes for different TU:TV values in gynecological Co60-HDR. We studied the dose reduction in bladder and rectum for different TU:TV ratios. The volume parameters and hwt are strongly dependent on this ratio. This information is useful for a quantitative check of the TPS and as a starting point towards optimization.

  2. Automatic lung segmentation in functional SPECT images using active shape models trained on reference lung shapes from CT.

    Science.gov (United States)

    Cheimariotis, Grigorios-Aris; Al-Mashat, Mariam; Haris, Kostas; Aletras, Anthony H; Jögi, Jonas; Bajc, Marika; Maglaveras, Nicolaos; Heiberg, Einar

    2018-02-01

    Image segmentation is an essential step in quantifying the extent of reduced or absent lung function. The aim of this study is to develop and validate a new tool for automatic segmentation of lungs in ventilation and perfusion SPECT images and compare automatic and manual SPECT lung segmentations with reference computed tomography (CT) volumes. A total of 77 subjects (69 patients with obstructive lung disease, and 8 subjects without apparent perfusion of ventilation loss) performed low-dose CT followed by ventilation/perfusion (V/P) SPECT examination in a hybrid gamma camera system. In the training phase, lung shapes from the 57 anatomical low-dose CT images were used to construct two active shape models (right lung and left lung) which were then used for image segmentation. The algorithm was validated in 20 patients, comparing its results to reference delineation of corresponding CT images, and by comparing automatic segmentation to manual delineations in SPECT images. The Dice coefficient between automatic SPECT delineations and manual SPECT delineations were 0.83 ± 0.04% for the right and 0.82 ± 0.05% for the left lung. There was statistically significant difference between reference volumes from CT and automatic delineations for the right (R = 0.53, p = 0.02) and left lung (R = 0.69, p automatic quantification of wide range of measurements.

  3. Habitat-specific morphological variation among threespine sticklebacks (Gasterosteus aculeatus within a drainage basin.

    Directory of Open Access Journals (Sweden)

    Mike M Webster

    Full Text Available Habitat-specific morphological variation, often corresponding to resource specialization, is well documented in freshwater fishes. In this study we used landmark based morphometric analyses to investigate morphological variation among threespine sticklebacks (Gasterosteus aculeatus L. from four interconnected habitat types within a single lowland drainage basin in eastern England. These included the upper and lower reaches of the river, the estuary, a connected ditch network and a coastal salt marsh. We found significant habitat-specific differences in morphology, with three axes of variation describing differences in orbit diameter, body depth, caudal peduncle shape and pectoral fin positioning as well as variation in relative dorsal and pelvic spine size. Interestingly, the ditch system, an artificial and heavily managed habitat, is populated by sticklebacks with a characteristic morphology, suggesting that human management of habitats can in some circumstances lead to morphological variation among the animals that inhabit them. We discuss the mechanisms that conceivably underlie the observed morphological variation and the further work necessary to identify them. Finally, we consider the implications of habitat-specific body shape variation for the behavioural ecology of this ecologically generalist species.

  4. Habitat-Specific Morphological Variation among Threespine Sticklebacks (Gasterosteus aculeatus) within a Drainage Basin

    Science.gov (United States)

    Webster, Mike M.; Atton, Nicola; Hart, Paul J. B.; Ward, Ashley J. W.

    2011-01-01

    Habitat-specific morphological variation, often corresponding to resource specialization, is well documented in freshwater fishes. In this study we used landmark based morphometric analyses to investigate morphological variation among threespine sticklebacks (Gasterosteus aculeatus L.) from four interconnected habitat types within a single lowland drainage basin in eastern England. These included the upper and lower reaches of the river, the estuary, a connected ditch network and a coastal salt marsh. We found significant habitat-specific differences in morphology, with three axes of variation describing differences in orbit diameter, body depth, caudal peduncle shape and pectoral fin positioning as well as variation in relative dorsal and pelvic spine size. Interestingly, the ditch system, an artificial and heavily managed habitat, is populated by sticklebacks with a characteristic morphology, suggesting that human management of habitats can in some circumstances lead to morphological variation among the animals that inhabit them. We discuss the mechanisms that conceivably underlie the observed morphological variation and the further work necessary to identify them. Finally, we consider the implications of habitat-specific body shape variation for the behavioural ecology of this ecologically generalist species. PMID:21698269

  5. Comparison of the free volume sizes and shapes determined from crystallographic and PALS data

    Directory of Open Access Journals (Sweden)

    Tydda Maciej

    2015-12-01

    Full Text Available Two different classes of molecular crystals were investigated. The first group was benzenediols, which are characterized by the same chemical composition but a different organization of their crystallographic structures; all of the compounds from this group have only one kind of free volumes. The second class was represented by olanzapine, which has more complex chemical composition and two kinds of free volumes in the structure. The o-Ps lifetime values determined from positron annihilation lifetime spectroscopy (PALS measurements agree quite well with those calculated for sizes found from crystallographic data for benzenediols (agreement within 10% of the lifetime values. For olanzapine, a good agreement is observed in the case of cuboidal free volumes, while for the other kind of void, the agreement is less satisfactory. Positronium diffusion coefficient determined from o-Ps redistribution in olanzapine agrees with these found for polymers.

  6. Patterns and determinants of floristic variation across lowland forests of Bolivia. Biotropica

    NARCIS (Netherlands)

    Toledo, M.; Poorter, L.; Peña-Claros, M.; Alarcón, A.; Balcázar, J.; Chuviña, J.; Leaño, C.; Licona, J.C.; Steege, ter H.; Bongers, F.

    2011-01-01

    Floristic variation is high in the Neotropics, but little is known about the factors shaping this variation at the mesoscale. We examined floristic composition and its relationship with environmental factors across 220 1-ha permanent plots in tropical lowland Bolivia. For each plot, abundance of 100

  7. Thermodynamics with pressure and volume under charged particle absorption

    Science.gov (United States)

    Gwak, Bogeun

    2017-11-01

    We investigate the variation of the charged anti-de Sitter black hole under charged particle absorption by considering thermodynamic volume. When the energy of the particle is considered to contribute to the internal energy of the black hole, the variation exactly corresponds to the prediction of the first law of thermodynamics. Nevertheless, we find the decrease of the Bekenstein-Hawking entropy for extremal and near-extremal black holes under the absorption, which is an irreversible process. This violation of the second law of thermodynamics is only found when considering thermodynamic volume. We test the weak cosmic censorship conjecture affected by the violation. Fortunately, the conjecture is still valid, but extremal and near-extremal black holes do not change their configurations when any particle enters the black hole. This result is quite different from the case in which thermodynamic volume is not considered.

  8. Influence of 3D particle shape on the mechanical behaviour through a novel characterization method

    Directory of Open Access Journals (Sweden)

    Ouhbi Noura

    2017-01-01

    Full Text Available The sensitivity of the mechanical behaviour of railway ballast to particle shape variation is studied through Discrete Element Method (DEM numerical simulations, focusing on some basic parameters such as solid fraction, coordination number, or force distribution. We present an innovative method to characterize 3D particle shape using Proper Orthogonal Decomposition (POD of scanned ballast grains with a high accuracy. The method enables not only shape characterization but also the generation of 3D distinct and angular shapes. Algorithms are designed for face and edge recognition.

  9. Pulse shape analysis and position determination in segmented HPGe detectors: The AGATA detector library

    Energy Technology Data Exchange (ETDEWEB)

    Bruyneel, B. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Service de Physique Nucleaire, CEA Saclay, Gif-sur-Yvette (France); Birkenbach, B.; Reiter, P. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany)

    2016-03-15

    The AGATA Detector Library (ADL) was developed for the calculation of signals from highly segmented large volume high-purity germanium (HPGe) detectors. ADL basis sets comprise a huge amount of calculated position-dependent detector pulse shapes. A basis set is needed for Pulse Shape Analysis (PSA). By means of PSA the interaction position of a γ -ray inside the active detector volume is determined. Theoretical concepts of the calculations are introduced and cover the relevant aspects of signal formation in HPGe. The approximations and the realization of the computer code with its input parameters are explained in detail. ADL is a versatile and modular computer code; new detectors can be implemented in this library. Measured position resolutions of the AGATA detectors based on ADL are discussed. (orig.)

  10. Seasonal variation in sports participation.

    Science.gov (United States)

    Schüttoff, Ute; Pawlowski, Tim

    2018-02-01

    This study explores indicators describing socio-demographics, sports participation characteristics and motives which are associated with variation in sports participation across seasons. Data were drawn from the German Socio-Economic Panel which contains detailed information on the sports behaviour of adults in Germany. Overall, two different measures of seasonal variation are developed and used as dependent variables in our regression models. The first variable measures the coefficient of (seasonal) variation in sport-related energy expenditure per week. The second variable measures whether activity drops below the threshold as defined by the World Health Organization (WHO). Results suggest that the organisational setting, the intensity and number of sports practised, and the motive for participation are strongly correlated with the variation measures used. For example, both, participation in a sports club and a commercial facility, are associated with reduced seasonal variation and a significantly higher probability of participating at a volume above the WHO threshold across all seasons. These findings give some impetus for policymaking and the planning of sports programmes as well as future research directions.

  11. Searching for God: Illness-Related Mortality Threats and Religious Search Volume in Google in 16 Nations.

    Science.gov (United States)

    Pelham, Brett W; Shimizu, Mitsuru; Arndt, Jamie; Carvallo, Mauricio; Solomon, Sheldon; Greenberg, Jeff

    2018-03-01

    We tested predictions about religiosity and terror management processes in 16 nations. Specifically, we examined weekly variation in Google search volume in each nation for 12 years (all weeks for which data were available). In all 16 nations, higher than usual weekly Google search volume for life-threatening illnesses (cancer, diabetes, and hypertension) predicted increases in search volume for religious content (e.g., God, Jesus, prayer) in the following week. This effect held up after controlling for (a) recent past and annual variation in religious search volume, (b) increases in search volume associated with religious holidays, and (c) variation in searches for a non-life-threatening illness ("sore throat"). Terror management threat reduction processes appear to occur across the globe. Furthermore, they may occur over much longer periods than those studied in the laboratory. Managing fears of death via religious belief regulation appears to be culturally pervasive.

  12. Nonlinear Vibration and Mode Shapes of FG Cylindrical Shells

    Directory of Open Access Journals (Sweden)

    Saeed Mahmoudkhani

    Full Text Available Abstract The nonlinear vibration and normal mode shapes of FG cylindrical shells are investigated using an efficient analytical method. The equations of motion of the shell are based on the Donnell’s non-linear shallow-shell, and the material is assumed to be gradually changed across the thickness according to the simple power law. The solution is provided by first discretizing the equations of motion using the multi-mode Galerkin’s method. The nonlinear normal mode of the system is then extracted using the invariant manifold approach and employed to decouple the discretized equations. The homotopy analysis method is finally used to determine the nonlinear frequency. Numerical results are presented for the backbone curves of FG cylindrical shells, nonlinear mode shapes and also the nonlinear invariant modal surfaces. The volume fraction index and the geometric properties of the shell are found to be effective on the type of nonlinear behavior and also the nonlinear mode shapes of the shell. The circumferential half-wave numbers of the nonlinear mode shapes are found to change with time especially in a thinner cylinder.

  13. Bubble formation in shear-thinning fluids: Laser image measurement and a novel correlation for detached volume

    Directory of Open Access Journals (Sweden)

    Fan Wenyuan

    2017-01-01

    Full Text Available A laser image system has been established to quantify the characteristics of growing bubbles in quiescent shear-thinning fluids. Bubble formation mechanism was investigated by comparing the evolutions of bubble instantaneous shape, volume and surface area in two shear-thinning liquids with those in Newtonian liquid. The effects of solution mass concentration, gas chamber volume and orifice diameter on bubble detachment volume are discussed. By dimensional analysis, a single bubble volume detached within a moderate gas flowrate range was developed as a function of Reynolds number ,Re, Weber number, We, and gas chamber number, Vc, based on the orifice diameter. The results reveal that the generated bubble presents a slim shape due to the shear-thinning effect of the fluid. Bubble detachment volume increases with the solution mass concentration, gas chamber volume and orifice diameter. The results predicted by the present correlation agree better with the experimental data than the previous ones within the range of this paper.

  14. Variational formulation and stability analysis of a three dimensional superelastic model for shape memory alloys

    Science.gov (United States)

    Alessi, Roberto; Pham, Kim

    2016-02-01

    This paper presents a variational framework for the three-dimensional macroscopic modelling of superelastic shape memory alloys in an isothermal setting. Phase transformation is accounted through a unique second order tensorial internal variable, acting as the transformation strain. Postulating the total strain energy density as the sum of a free energy and a dissipated energy, the model depends on two material scalar functions of the norm of the transformation strain and a material scalar constant. Appropriate calibration of these material functions allows to render a wide range of constitutive behaviours including stress-softening and stress-hardening. The quasi-static evolution problem of a domain is formulated in terms of two physical principles based on the total energy of the system: a stability criterion, which selects the local minima of the total energy, and an energy balance condition, which ensures the consistency of the evolution of the total energy with respect to the external loadings. The local phase transformation laws in terms of Kuhn-Tucker relations are deduced from the first-order stability condition and the energy balance condition. The response of the model is illustrated with a numerical traction-torsion test performed on a thin-walled cylinder. Evolutions of homogeneous states are given for proportional and non-proportional loadings. Influence of the stress-hardening/softening properties on the evolution of the transformation domain is emphasized. Finally, in view of an identification process, the issue of stability of homogeneous states in a multi-dimensional setting is answered based on the study of second-order derivative of the total energy. Explicit necessary and sufficient conditions of stability are provided.

  15. Surface Freshwater Storage Variations in the Orinoco Floodplains Using Multi-Satellite Observations

    Directory of Open Access Journals (Sweden)

    Frédéric Frappart

    2014-12-01

    Full Text Available Variations in surface water extent and storage are poorly characterized from regional to global scales. In this study, a multi-satellite approach is proposed to estimate the water stored in the floodplains of the Orinoco Basin at a monthly time-scale using remotely-sensed observations of surface water from the Global Inundation Extent Multi-Satellite (GIEMS and stages from Envisat radar altimetry. Surface water storage variations over 2003–2007 exhibit large interannual variability and a strong seasonal signal, peaking during summer, and associated with the flood pulse. The volume of surface water storage in the Orinoco Basin was highly correlated with the river discharge at Ciudad Bolivar (R = 0.95, the closest station to the mouth where discharge was estimated, although discharge lagged one month behind storage. The correlation remained high (R = 0.73 after removing seasonal effects. Mean annual variations in surface water volume represented ~170 km3, contributing to ~45% of the Gravity Recovery and Climate Experiment (GRACE-derived total water storage variations and representing ~13% of the total volume of water that flowed out of the Orinoco Basin to the Atlantic Ocean.

  16. Human vision model in relation to characteristics of shapes for the Mach band effect.

    Science.gov (United States)

    Wu, Bo-Wen; Fang, Yi-Chin

    2015-10-01

    For human vision to recognize the contours of objects means that, as the contrast variation at the object's edges increases, so will the Mach band effect of human vision. This paper more deeply investigates the relationship between changes in the contours of an object and the Mach band effect of human vision. Based on lateral inhibition and the Mach band effect, we studied subjects' eyes as they watched images of different shapes under a fixed brightness at 34  cd/m2, with changes of contrast and spatial frequency. Three types of display were used: a television, a computer monitor, and a projector. For each display used, we conducted a separate experiment for each shape. Although the maximum values for the contrast sensitivity function curves of the displays were different, their variations were minimal. As the spatial frequency changed, the diminishing effect of the different lines also was minimal. However, as the shapes at the contour intersections were modified by the Mach band effect, a greater degree of variation occurred. In addition, as the spatial frequency at a contour intersection increased, the Mach band effect became lower, along with changes in the corresponding contrast sensitivity function curve. Our experimental results on the characteristics of human vision have led to what we believe is a new vision model based on tests with different shapes. This new model may be used for future development and implementation of an artificial vision system.

  17. TOTAL WOOD VOLUME ESTIMATION OF EUCALYPTUS SPECIES BY IMAGES OF LANDSAT SATELLITE

    Directory of Open Access Journals (Sweden)

    Elias Fernando Berra

    2012-12-01

    Full Text Available http://dx.doi.org/10.5902/198050987566Models relating spectral answers with biophysical parameters aim estimate variables, like wood volume, without the necessity of frequent field measurements. The objective was to develop models to estimate wood volume by Landsat 5 TM images, supported by regional forest inventory data. The image was geo-referenced and converted to spectral reflectance. After, the images-index NDVI (Normalized Difference Vegetation Index and SR (Simple Ratio was generated. The reflectance values of the bands (TM1, TM2, TM3 e TM4 and of the indices (NDVI and SR was related with the wood volume. The biggest correlation with volume was with the NDVI and SR indices. The variables selection was made by Stepwise method, which returned three regression models as significant to explain the variation in volume. Finally, the best fitted model was selected (volume = -830,95 + 46,05 (SR + 107,47 (TM2, which was applied on the Landsat image where the pixels had started to represent the estimated volume in m³/ha on the Eucalyptus sp. production units. This model, significant at 95% confidence level, explains 68% of the wood volume variation.

  18. Symptom dimensions are associated with progressive brain volume changes in schizophrenia

    NARCIS (Netherlands)

    Collin, G.; Derks, E. M.; van Haren, N. E. M.; Schnack, H. G.; Hulshoff Pol, H. E.; Kahn, R. S.; Cahn, W.

    2012-01-01

    Background: There is considerable variation in progressive brain volume changes in schizophrenia. Whether this is related to the clinical heterogeneity that characterizes the illness remains to be determined. This study examines the relationship between change in brain volume over time and

  19. Respiratory variation in peak aortic velocity accurately predicts fluid responsiveness in children undergoing neurosurgery under general anesthesia.

    Science.gov (United States)

    Morparia, Kavita G; Reddy, Srijaya K; Olivieri, Laura J; Spaeder, Michael C; Schuette, Jennifer J

    2018-04-01

    The determination of fluid responsiveness in the critically ill child is of vital importance, more so as fluid overload becomes increasingly associated with worse outcomes. Dynamic markers of volume responsiveness have shown some promise in the pediatric population, but more research is needed before they can be adopted for widespread use. Our aim was to investigate effectiveness of respiratory variation in peak aortic velocity and pulse pressure variation to predict fluid responsiveness, and determine their optimal cutoff values. We performed a prospective, observational study at a single tertiary care pediatric center. Twenty-one children with normal cardiorespiratory status undergoing general anesthesia for neurosurgery were enrolled. Respiratory variation in peak aortic velocity (ΔVpeak ao) was measured both before and after volume expansion using a bedside ultrasound device. Pulse pressure variation (PPV) value was obtained from the bedside monitor. All patients received a 10 ml/kg fluid bolus as volume expansion, and were qualified as responders if stroke volume increased >15% as a result. Utility of ΔVpeak ao and PPV and to predict responsiveness to volume expansion was investigated. A baseline ΔVpeak ao value of greater than or equal to 12.3% best predicted a positive response to volume expansion, with a sensitivity of 77%, specificity of 89% and area under receiver operating characteristic curve of 0.90. PPV failed to demonstrate utility in this patient population. Respiratory variation in peak aortic velocity is a promising marker for optimization of perioperative fluid therapy in the pediatric population and can be accurately measured using bedside ultrasonography. More research is needed to evaluate the lack of effectiveness of pulse pressure variation for this purpose.

  20. Mechanochemical Polarization of Contiguous Cell Walls Shapes Plant Pavement Cells.

    Science.gov (United States)

    Majda, Mateusz; Grones, Peter; Sintorn, Ida-Maria; Vain, Thomas; Milani, Pascale; Krupinski, Pawel; Zagórska-Marek, Beata; Viotti, Corrado; Jönsson, Henrik; Mellerowicz, Ewa J; Hamant, Olivier; Robert, Stéphanie

    2017-11-06

    The epidermis of aerial plant organs is thought to be limiting for growth, because it acts as a continuous load-bearing layer, resisting tension. Leaf epidermis contains jigsaw puzzle piece-shaped pavement cells whose shape has been proposed to be a result of subcellular variations in expansion rate that induce local buckling events. Paradoxically, such local compressive buckling should not occur given the tensile stresses across the epidermis. Using computational modeling, we show that the simplest scenario to explain pavement cell shapes within an epidermis under tension must involve mechanical wall heterogeneities across and along the anticlinal pavement cell walls between adjacent cells. Combining genetics, atomic force microscopy, and immunolabeling, we demonstrate that contiguous cell walls indeed exhibit hybrid mechanochemical properties. Such biochemical wall heterogeneities precede wall bending. Altogether, this provides a possible mechanism for the generation of complex plant cell shapes. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Numerical study of pressure drop and heat transfer from circular and cam-shaped tube bank in cross-flow of nanofluid

    International Nuclear Information System (INIS)

    Mirabdolah Lavasani, Arash; Bayat, Hamidreza

    2016-01-01

    Highlights: • Flow around non-circular and circular shaped tube bank is studied. • Effect of using Al_2O_3-water nanofluid on flow and heat transfer is discussed. • Tubes are with in-line and staggered arrangement. • Pressure drop of non-circular tube is noticeably lower that circular tube. - Abstract: Flow and heat transfer of nanofluid inside circular and cam-shaped tube bank is studied numerically. Reynolds number for cam-shaped tube bank is defined based on equivalent diameter of circular tube and varies in range of 100 ⩽ Re_D ⩽ 400. Nanofluid is made by adding Al_2O_3 nanoparticle with volume fraction of 1–7% to pure water. Results show using nanofluid results in higher heat transfer rate for both circular tube bank and cam-shaped tube bank. Also, staggered arrangement has higher heat transfer for both circular and cam-shaped tube bank. Pressure drop from cam-shaped tube bank is substantially lower than circular tube bank for all range of Reynolds number and volume fraction.

  2. The radial shapes of intermediate energy microscopic optical potentials

    International Nuclear Information System (INIS)

    Shen Qingbiao; Wang Chang; Tian Ye; Zhuo Yizhong

    1984-01-01

    The radial shapes of intermediate energy proton microscopic optical potentials of 40 Ca are calculated with nuclear matter approach by Skyrme interactions. The calculated results show that the real central potential in central region of nucleus changes from attractive to repulsive when the energy of incident nucleon is above 150 MeV and appears apparently a 'wine-bottle-bottom' shape in the transition energy region (from 150 MeV to 300 MeV). This tendency is consistent with empirical optical potential obtained through fitting experiments and microscopic optical potential calculated with relativistic mean field theory as well as with the BHF theory. The calculated imaginary part of the microscopic optical potential changes from the dominant surface absorption into the volume absorption and its absolute value become larger as energy increases. The effects of Skyrme force parameters to the radial shape of the calculated microscopic optical potential are analysed in detail

  3. Optimum shape design of incompressible hyperelastic structures with analytical sensitivity analysis

    International Nuclear Information System (INIS)

    Jarraya, A.; Wali, M.; Dammark, F.

    2014-01-01

    This paper is focused on the structural shape optimization of incompressible hyperelastic structures. An analytical sensitivity is developed for the rubber like materials. The whole shape optimization process is carried out by coupling a closed geometric shape in R 2 with boundaries, defined by B-splines curves, exact sensitivity analysis and mathematical programming method (S.Q.P: sequential quadratic programming). Design variables are the control points coordinate. The objective function is to minimize Von-Mises stress, constrained to the total material volume of the structure remains constant. In order to validate the exact Jacobian method, the sensitivity calculation is performed: numerically by an efficient finite difference scheme and by the exact Jacobian method. Numerical optimization examples are presented for elastic and hyperelastic materials using the proposed method.

  4. Measurement and correlation of excess molar volumes for mixtures of 1-propanol and aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Gahlyan, Suman; Rani, Manju; Maken, Sanjeev Kumar; Lee, Inkyu; Moon, Il

    2015-01-01

    Excess molar volumes (V m E ) have been measured at 303.15 K for 1-propanol+benzene or toluene or o- or m- or p-xylene mixtures using V-shape dilatometer. The V m E values, for an equimolar composition, vary in the order: benzene>toluene-m-xylene>o-xylene>p-xylene. The V m E data have been used to calculate partial molar volumes, excess partial molar volumes, and apparent molar volumes of 1-propanol and aromatic hydrocarbons over the entire range of composition. The excess volume data have also been interpreted in terms of graph-theoretical approach and Prigogine-Flory-Patterson theory (PFP). While PFP theory fails to predict the V m E values for systems with s-shaped V m E versus x 1 graph, the V m E values calculated by graph theory compare reasonably well with the corresponding experimental values. This graph theory analysis has further yielded information about the state of aggregation of pure components as well as of the mixtures

  5. Human Computer Interface Design Criteria. Volume 1. User Interface Requirements

    Science.gov (United States)

    2010-03-19

    127 13.3.4 Typography ................................................................................................... 127 13.3.5...meaning assigned to the shape. 13.3.4 Typography In general, variations in typography are not used for coding, since they may conflict with font...attributes selected by users in a system-level or browser-level setting and be illegible when rendered. However, if variations in typography are

  6. Kinematical tests for the intrinsic shapes of galaxies

    International Nuclear Information System (INIS)

    Capaccioli, M.; Fasano, G.

    1984-01-01

    Determining the intrinsic shape of elliptical galaxies has been an illusive enterprise, but one fundamental to the understanding of their internal dynamics and formation. Here the problem is approached dynamically; noting that the velocity dispersion is largest when sighted down the longest axis, the correlations are derived of velocity dispersion with observed eccentricity expected, after the known trend of velocity dispersion with luminosity is removed. Using a compilation of published data, the relation between luminosity and velocity dispersion is determined more accurately. The residuals are examined as a function of axis ratio in order to construct a test for the intrinsic shape of galaxies. The effects of projection are modelled and possible intrinsic variations are examined. (author)

  7. Heritability of face shape in twins: a preliminary study using 3D stereophotogrammetry and geometric morphometrics

    Directory of Open Access Journals (Sweden)

    Seth M. Weinberg

    2013-11-01

    Full Text Available Introduction: Previous research suggests that aspects of facial surface morphology are heritable.  Traditionally, heritability studies have used a limited set of linear distances to quantify facial morphology and often employ statistical methods poorly designed to deal with biological shape.  In this preliminary report, we use a combination of 3D photogrammetry and landmark-based morphometrics to explore which aspects of face shape show the strongest evidence of heritability in a sample of twins. Methods: 3D surface images were obtained from 21 twin pairs (10 monozygotic, 11 same-sex dizygotic.  Thirteen 3D landmarks were collected from each facial surface and their coordinates subjected to geometric morphometric analysis.  This involved superimposing the individual landmark configurations and then subjecting the resulting shape coordinates to a principal components analysis.  The resulting PC scores were then used to calculate rough narrow-sense heritability estimates. Results: Three principal components displayed evidence of moderate to high heritability and were associated with variation in the breadth of orbital and nasal structures, upper lip height and projection, and the vertical and forward projection of the root of the nose due to variation in the position of nasion. Conclusions: Aspects of facial shape, primarily related to variation in length and breadth of central midfacial structures, were shown to demonstrate evidence of strong heritability. An improved understanding of which facial features are under strong genetic control is an important step in the identification of specific genes that underlie normal facial variation.

  8. Influences on particle shape in underwater pelletizing processes

    Energy Technology Data Exchange (ETDEWEB)

    Kast, O., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Musialek, M., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Geiger, K., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de [Institut für Kunststofftechnik, University of Stuttgart (Germany)

    2014-05-15

    Underwater pelletizing has gained high importance within the last years among the different pelletizing technologies, due to its advantages in terms of throughput, automation, pellet quality and applicability to a large variety of thermoplastics. The resulting shape and quality of pellets, however, differ widely, depending on material characteristics and effects not fully understood yet. In an experimental set-up, pellets of different volumes and shapes were produced and the medium pellet mass, the pellet surface and the bulk density were analyzed in order to identify the influence of material properties and process parameters. Additionally, the shaping kinetics at the die opening were watched with a specially developed camera system. It was found that rheological material properties correlate with process parameters and resulting particle form in a complex way. Higher cutting speeds were shown to have a deforming influence on the pellets, leading to less spherical s and lower bulk densities. More viscous materials, however, showed a better resistance against this. Generally, the viscous properties of polypropylene proofed to be dominant over the elastic ones in regard to their influence on pellet shape. It was also shown that the shapes filmed at the die opening and the actual form of the pellets after a cooling track do not always correlate, indicating a significant influence of thermodynamic properties during the cooling.

  9. MVP: A Simple and Effective Model to Simulate the Mean and Variation of Photosynthetically Active Radiation Under Discrete Forest Canopies

    Science.gov (United States)

    Song, C.; Band, L. E.

    2003-12-01

    The spatial patterns of Photosynthetically Active Radiation (PAR) under forest canopies, including both its mean and spatial variation, are critical factors that determine numerous ecophysiological processes in plant ecosystems. Though numerous models have been developed that can accurately simulate PAR transmission through plant canopies, Beer's law remains the primary model used in ecological models to describe PAR transmission through plant canopies due to the fact that the more accurate models are too complicated to be used operationally. This study developed a simple and computationally efficient model to simulate both the Mean and Variation of PAR (MVP) under the forest canopy. The model provides a careful description of the effects of gaps on the variable light environment under forest canopy, while it simplifies the simulation of multiple scattering of photons. The model assumes that a forest canopy is composed of individual crowns distributed within upper and lower boundaries with two types of gaps: the between- and within-crown gaps. The inputs to the model are canopy structural parameters, including canopy depth, tree count density, tree crown shape, and foliage area volume density (m2/m3, leaf areas per unit crown volume). The between-crown gaps are simulated with geometric optics, and the within-crown gaps are described by Beer's law. The model accounts for the covariance of PAR in space through time, making it possible to simulate both instantaneous variation of PAR and variation of daily accumulated PAR. Validation with observed PAR using ten quantum sensors under the Old Black Spruce stand at the Southern Study Area of the BOREAS project indicates the model captures the mean and variation of PAR under forest canopy reasonably well. The model is simple enough that it can be used by other ecological models, such as ecosystem dynamics and carbon budget models. Further validation and testing of the model with other types forest are needed in the future.

  10. Delineating modern variation from extinct morphology in the fossil record using shells of the Eastern Box Turtle (Terrapene carolina)

    Science.gov (United States)

    2018-01-01

    Characterization of morphological variation in the shells of extant Eastern Box Turtles, Terrapene carolina, provides a baseline for comparison to fossil populations. It also provides an example of the difficulties inherent to recognizing intraspecific diversity in the fossil record. The degree to which variation in fossils of T. carolina can be accommodated by extant variation in the species has been disagreed upon for over eighty years. Using morphometric analyses of the carapace, I address the relationship between modern and fossil T. carolina in terms of sexual dimorphism, geographic and subspecific variation, and allometric variation. Modern T. carolina display weak male-biased sexual size dimorphism. Sexual shape dimorphism cannot be reliably detected in the fossil record. Rather than a four-part subspecific division, patterns of geographic variation are more consistent with clinal variation between various regions in the species distribution. Allometric patterns are qualitatively similar to those documented in other emydid turtles and explain a significant amount of shape variation. When allometric patterns are accounted for, Holocene specimens are not significantly different from modern specimens. In contrast, several geologically older specimens have significantly different carapace shape with no modern analogue. Those large, fossilized specimens represent extinct variation occupying novel portions of morphospace. This study highlights the need for additional documentation of modern osteological variation that can be used to test hypotheses of intraspecific evolution in the fossil record. PMID:29513709

  11. Whole object surface area and volume of partial-view 3D models

    International Nuclear Information System (INIS)

    Mulukutla, Gopal K; Proussevitch, Alexander A; Genareau, Kimberly D; Durant, Adam J

    2017-01-01

    Micro-scale 3D models, important components of many studies in science and engineering, are often used to determine morphological characteristics such as shape, surface area and volume. The application of techniques such as stereoscopic scanning electron microscopy on whole objects often results in ‘partial-view’ models with a portion of object not within the field of view thus not captured in the 3D model. The nature and extent of the surface not captured is dependent on the complex interaction of imaging system attributes (e.g. working distance, viewing angle) with object size, shape and morphology. As a result, any simplistic assumptions in estimating whole object surface area or volume can lead to significant errors. In this study, we report on a novel technique to estimate the physical fraction of an object captured in a partial-view 3D model of an otherwise whole object. This allows a more accurate estimate of surface area and volume. Using 3D models, we demonstrate the robustness of this method and the accuracy of surface area and volume estimates relative to true values. (paper)

  12. Understanding 3D human torso shape via manifold clustering

    Science.gov (United States)

    Li, Sheng; Li, Peng; Fu, Yun

    2013-05-01

    Discovering the variations in human torso shape plays a key role in many design-oriented applications, such as suit designing. With recent advances in 3D surface imaging technologies, people can obtain 3D human torso data that provide more information than traditional measurements. However, how to find different human shapes from 3D torso data is still an open problem. In this paper, we propose to use spectral clustering approach on torso manifold to address this problem. We first represent high-dimensional torso data in a low-dimensional space using manifold learning algorithm. Then the spectral clustering method is performed to get several disjoint clusters. Experimental results show that the clusters discovered by our approach can describe the discrepancies in both genders and human shapes, and our approach achieves better performance than the compared clustering method.

  13. ICP curve morphology and intracranial flow-volume changes

    DEFF Research Database (Denmark)

    Unnerbäck, Mårten; Ottesen, Johnny T.; Reinstrup, Peter

    2018-01-01

    proposed to shape the ICP curve. This study tested the hypothesis that the ICP curve correlates to intracranial volume changes. METHODS: Cine phase contrast magnetic resonance imaging (MRI) examinations were performed in neuro-intensive care patients with simultaneous ICP monitoring. The MRI was set......BACKGROUND: The intracranial pressure (ICP) curve with its different peaks has been extensively studied, but the exact physiological mechanisms behind its morphology are still not fully understood. Both intracranial volume change (ΔICV) and transmission of the arterial blood pressure have been...

  14. Moral values are associated with individual differences in regional brain volume.

    Science.gov (United States)

    Lewis, Gary J; Kanai, Ryota; Bates, Timothy C; Rees, Geraint

    2012-08-01

    Moral sentiment has been hypothesized to reflect evolved adaptations to social living. If so, individual differences in moral values may relate to regional variation in brain structure. We tested this hypothesis in a sample of 70 young, healthy adults examining whether differences on two major dimensions of moral values were significantly associated with regional gray matter volume. The two clusters of moral values assessed were "individualizing" (values of harm/care and fairness) and "binding" (deference to authority, in-group loyalty, and purity/sanctity). Individualizing was positively associated with left dorsomedial pFC volume and negatively associated with bilateral precuneus volume. For binding, a significant positive association was found for bilateral subcallosal gyrus and a trend to significance for the left anterior insula volume. These findings demonstrate that variation in moral sentiment reflects individual differences in brain structure and suggest a biological basis for moral sentiment, distributed across multiple brain regions.

  15. Using otolith shape for intraspecific discrimination: the case of gurnards (Scorpaeniformes, Triglidae

    Directory of Open Access Journals (Sweden)

    Stefano Montanini

    2015-11-01

    Full Text Available The sagittal otoliths are sound transducers and play an important role in fish hearing. Triglidae (Teleostei, Scorpaeniformes are known for sound producing ability in agonistic contexts related to territorial defence, reproduction and competitive feeding (Amorim et al., 2004. Chelidonichthys cuculus and C. lucerna show a significant body size-depth relationship and specie-specific feeding strategies with growth. Both juveniles and adults of C. cuculus prey necto-benthic invertebrates while C. lucerna specimens change diet from crustaceans to teleost during growth (Stagioni et al., 2012; Vallisneri et al., 2014; Montanini et al., 2015. The goal of this study was to analyze intraspecific shape variations in sagitta of model species of gurnards. 217 specimens were collected during bottom trawl surveys in Adriatic sea (northeastern Mediterranean. Each left sagitta was removed, cleaned in ultrasounds bath and kept dry. The otolith digital images were processed to calculate five shape indices (aspect ratio, roundness, rectangularity, ellipticity and circularity. Indices were normalised to avoid allometric effects according to Lleonart et al. (2000, than processed by linear discriminant analysis (LDA. The SHAPE program was used to extract the outline and to assess the variability of shapes (EFA method and estimated it through the study of principal component analysis (PCA. Considering the first two discriminant functions, LDA plot showed a clearly separation between juvenile and adults for both species. About EFA, the first 4 principal component discriminated over 80% of variance and significant differences were found at critical size between juveniles and adults for all the components analysed. The allometric trends corresponded to a relative elongation of the sulcus acusticus and an increase of excisura ostii. The combined use of the two external outlines methods should be highly informative for intraspecific discrimination and might be related to

  16. Atomic Force Microscopy Based Cell Shape Index

    Science.gov (United States)

    Adia-Nimuwa, Usienemfon; Mujdat Tiryaki, Volkan; Hartz, Steven; Xie, Kan; Ayres, Virginia

    2013-03-01

    Stellation is a measure of cell physiology and pathology for several cell groups including neural, liver and pancreatic cells. In the present work, we compare the results of a conventional two-dimensional shape index study of both atomic force microscopy (AFM) and fluorescent microscopy images with the results obtained using a new three-dimensional AFM-based shape index similar to sphericity index. The stellation of astrocytes is investigated on nanofibrillar scaffolds composed of electrospun polyamide nanofibers that has demonstrated promise for central nervous system (CNS) repair. Recent work by our group has given us the ability to clearly segment the cells from nanofibrillar scaffolds in AFM images. The clear-featured AFM images indicated that the astrocyte processes were longer than previously identified at 24h. It was furthermore shown that cell spreading could vary significantly as a function of environmental parameters, and that AFM images could record these variations. The new three-dimensional AFM-based shape index incorporates the new information: longer stellate processes and cell spreading. The support of NSF PHY-095776 is acknowledged.

  17. Tumor motion and deformation during external radiotherapy of bladder cancer

    International Nuclear Information System (INIS)

    Lotz, Heidi T.; Pos, Floris J.; Hulshof, Maarten C.C.M.; Herk, Marcel van; Lebesque, Joos V.; Duppen, Joop C.; Remeijer, Peter

    2006-01-01

    Purpose: First, to quantify bladder-tumor motion in 3 dimensions during a 4-week to 5-week course of external radiotherapy. Second, to relate the motion to the tumor location on the bladder wall. Third, to extensively evaluate gross tumor volume (GTV) shape and volume changes during the course of the treatment. Methods and Materials: Multiple repeat computed tomography (CT) images were obtained for 21 bladder cancer patients. These scans were matched to the rigid bony anatomy. For each patient, the main direction and magnitude of the tumor movement was determined by use of principle-component analysis. To study GTV shape changes, all GTVs were registered to the GTV in the planning CT scan, and the residual shape errors were determined by measurement of edge variations perpendicular to the median surface. Results: Gross tumor volume translations were largest in cranial-caudal and anterior-posterior direction (SD, 0.1 to ∼0.9 cm). The translations were strongly correlated with the tumor location on the bladder wall. The average value of the local standard deviations of the GTV shape ranged from 0.1 to approximately 0.35 cm. Conclusions: Despite large differences in bladder filling, variations in GTV shape were small compared with variations in GTV position. Geometric uncertainties in the GTV position depended strongly on the tumor location on the bladder wall

  18. Tumor motion and deformation during external radiotherapy of bladder cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lotz, Heidi T [Department of Radiation Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Department of Radiation Oncology, Academic Medical Centre, University of Amsterdam, Amsterdam (Netherlands); Pos, Floris J [Department of Radiation Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Hulshof, Maarten C.C.M. [Department of Radiation Oncology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Department of Radiation Oncology, Academic Medical Centre, University of Amsterdam, Amsterdam (Netherlands); Herk, Marcel van [Department of Radiation Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Lebesque, Joos V [Department of Radiation Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Duppen, Joop C [Department of Radiation Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Remeijer, Peter [Department of Radiation Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands)

    2006-04-01

    Purpose: First, to quantify bladder-tumor motion in 3 dimensions during a 4-week to 5-week course of external radiotherapy. Second, to relate the motion to the tumor location on the bladder wall. Third, to extensively evaluate gross tumor volume (GTV) shape and volume changes during the course of the treatment. Methods and Materials: Multiple repeat computed tomography (CT) images were obtained for 21 bladder cancer patients. These scans were matched to the rigid bony anatomy. For each patient, the main direction and magnitude of the tumor movement was determined by use of principle-component analysis. To study GTV shape changes, all GTVs were registered to the GTV in the planning CT scan, and the residual shape errors were determined by measurement of edge variations perpendicular to the median surface. Results: Gross tumor volume translations were largest in cranial-caudal and anterior-posterior direction (SD, 0.1 to {approx}0.9 cm). The translations were strongly correlated with the tumor location on the bladder wall. The average value of the local standard deviations of the GTV shape ranged from 0.1 to approximately 0.35 cm. Conclusions: Despite large differences in bladder filling, variations in GTV shape were small compared with variations in GTV position. Geometric uncertainties in the GTV position depended strongly on the tumor location on the bladder wall.

  19. Magnetic fluid axisymmetric volume on a horizontal plane near a vertical line conductor in case of non-wetting

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradova, A.S., E-mail: vinogradova.msu@gmail.com; Turkov, V.A.; Naletova, V.A.

    2017-06-01

    Static shapes of a magnetic fluid axisymmetric volume on a horizontal plane in the magnetic field of a vertical line conductor are studied theoretically in case of non-wetting while the current is slowly changing in a quasi-static manner. The possibility of the fluid shape hysteresis for a cyclic increase and decrease of the current and of spasmodic changes at certain values of the current is investigated. - Highlights: • Magnetic fluid on a horizontal plane near a line conductor is studied theoretically. • For fixed current and volume various static shapes are obtained. • Spasmodic and hysteresis phenomena are found.

  20. Liquid volumes measurements by isotopic dilution

    International Nuclear Information System (INIS)

    Herrera M, J.M.

    1981-01-01

    By the nuclear technique, isotopic dilution industrial liquid volumes may be measured in large size recipients of irregular shapes using radiotracers. In the present work laboratory and pilot test are made with 2 radiotracers for optimizing the technique and later done on an industrial scale, obtaining a maximum deviation of +-2%, some recommendations are given to improve the performance of the technique. (author)